
iSeries

Security -- Security-related APIs

Version 5 Release 3

ERserver

���

iSeries

Security -- Security-related APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 205.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Security-related APIs 1

APIs 3

Add Verifier (QYDOADDV, QydoAddVerifier) API . 4

Authorities and Locks 4

Required Parameter Group 4

Error Messages 5

Change Previous Sign-On Date (QSYCHGPR) API . . 6

Authorities and Locks 6

Required Parameter 6

Error Messages 6

Change Service Tools User ID (QSYCHGDS) API . . 7

Authorities and Locks 8

Required Parameter Group 8

Optional Parameter Group 9

Error Messages 10

Change User Password (QSYCHGPW) API 11

Authorities and Locks 11

Required Parameter Group 11

Optional Parameter Group 12

Usage Notes 13

Error Messages 14

Change User Profile UID or GID (QSYCHGID) API 15

Authorities and Locks 15

Required Parameter Group 16

Error Messages 16

Check Encrypted User Password (QSYCUPWD) API 17

Authorities and Locks 18

Required Parameter Group 18

UPWD0100 Format 19

Field Descriptions 19

Error Messages 19

Check Profile Token User (QSYCHKTU,

QsyChkPrfTknUser) API 20

Authorities and Locks 20

Required Parameter Group 20

Error Messages 21

Check System (QYDOCHKS, QydoCheckSystem)

API 21

Authorities and Locks 22

Optional Parameter Group 22

RSLT0100 format 23

Field Descriptions 23

Usage Notes 23

Error Messages 24

Check User Authority to an Object (QSYCUSRA)

API 25

Authorities and Locks 25

Required Parameter Group 26

Error Messages 27

Check User Special Authorities (QSYCUSRS) API . . 28

Authorities and Locks 28

Required Parameter Group 28

Error Messages 29

QwtClearJuid()—Clear Job User Identity 30

Parameters 30

Authorities and Locks 30

Return Value 30

Usage Notes 31

Convert Authority Values to MI Value (QSYCVTA)

API 31

Required Parameter Group 31

Error Messages 32

Generate Profile Token (QsyGenPrfTkn) API . . . 33

Authorities and Locks 34

Required Parameter Group 34

Error Messages 35

Generate Profile Token (QSYGENPT) API 36

Authorities and Locks 37

Required Parameter Group 37

Optional Parameter Group 39

Usage Notes 39

Error Messages 39

Generate Profile Token Extended (QsyGenPrfTknE)

API 40

Authorities and Locks 41

Required Parameter Group 41

Usage Notes 42

Error Messages 43

Generate Profile Token From Profile Token

(QSYGENFT, QsyGenPrfTknFromPrfTkn) API . . . 44

Authorities and Locks 44

Required Parameter Group 45

Error Messages 45

Get Profile Handle (QSYGETPH) API 46

Authorities and Locks 47

Required Parameter Group 47

Optional Parameter Group 1 48

Optional Parameter Group 2 48

Usage Notes 49

Error Messages 49

Get Profile Handle (QsyGetProfileHandle) API . . 50

Authorities and Locks 51

Required Parameter Group 51

Usage Notes 52

Error Messages 52

Get Profile Handle No Password

(QsyGetProfileHandleNoPwd) API 53

Authorities and Locks 54

Required Parameter Group 54

Usage Notes 55

Error Messages 55

Get Profile Token Time Out (QSYGETPT,

QsyGetPrfTknTimeOut) API 56

Authorities and Locks 56

Required Parameter Group 56

Error Messages 57

Invalidate Profile Token (QSYINVPT,

QsyInvalidatePrfTkn) API 57

Authorities and Locks 58

Required Parameter Group 58

Error Messages 58

List Authorized Users (QSYLAUTU) API 58

© Copyright IBM Corp. 1998, 2005 iii

Authorities and Locks 59

Required Parameter Group 59

User Space Variables 59

Error Messages 61

List Objects Secured by Authorization List

(QSYLATLO) API 62

Authorities and Locks 62

Required Parameter Group 62

User Space Variables 63

Error Messages 69

List Objects That Adopt Owner Authority

(QSYLOBJP) API 69

Authorities and Locks 70

Required Parameter Group 70

User Space Variables 71

Error Messages 74

List Objects User Is Authorized to, Owns, or Is

Primary Group of (QSYLOBJA) API 75

Authorities and Locks 75

Required Parameter Group 76

Optional Parameter Group 77

User Space Variables 78

Error Messages 84

List Users Authorized to Object (QSYLUSRA) API 85

Authorities and Locks 86

Required Parameter Group 86

Optional Parameter Group 87

User Space Variables 87

Field Descriptions 88

Error Messages 90

Open List of Authorized Users (QGYOLAUS) API 91

Differences between QSYRAUTU and

QGYOLAUS 91

Authorities and Locks 91

Required Parameter Group 92

Optional Parameter 93

Receiver Variable Description 93

Field Descriptions 94

Error Messages 95

Release Profile Handle (QSYRLSPH,

QsyReleaseProfileHandle) API 95

Authorities and Locks 96

Required Parameter 96

Optional Parameter 96

Usage Notes 96

Error Messages 97

Remove All Profile Tokens (QsyRemoveAllPrfTkns)

API 97

Authorities and Locks 97

Required Parameter 97

Error Messages 98

Remove All Profile Tokens For User

(QsyRemoveAllPrfTknsForUser) API 98

Authorities and Locks 98

Required Parameter Group 98

Error Messages 99

Remove Profile Token (QsyRemovePrfTkn) API . . 99

Authorities and Locks 99

Required Parameter Group 99

Error Messages 100

Remove Profile Tokens (QSYRMVPT) API 100

Authorities and Locks 101

Required Parameter Group 101

Optional Parameter Group 101

Error Messages 101

Remove User Application Information

(QsyRemoveUserApplicationInfo) API 102

Authorities and Locks 102

Required Parameter Group 102

Error Messages 103

Reset Profile Attributes (QSYRESPA) API 103

Authorities and Locks 104

Required Parameter 104

Error Messages 104

Retrieve Authorized Users (QSYRAUTU) API . . 105

Authorities and Locks 105

Required Parameter Group 106

Optional Parameter 107

Receiver Variable Description 108

AUTU0100 Format 108

AUTU0150 Format 108

AUTU0200 Format 108

AUTU0250 Format 108

Format of Returned Records Feedback

Information 109

Field Descriptions 109

Error Messages 110

Retrieve Encrypted User Password (QSYRUPWD)

API 110

Authorities and Locks 111

Required Parameter Group 111

Format of Receiver Variable 112

Field Descriptions 112

Error Messages 112

Retrieve Object Signatures (QYDORTVO, 113

Authorities and Locks 113

Required Parameter Group 114

Receiver Structure 115

Header 115

Receiver Header area 115

Field Descriptions 115

Signature Section 116

Field Descriptions 117

Certificate Format CERT0200 (or CERT0210) . . 117

Error Messages 117

Retrieve Objects Secured by Authorization List

(QGYRATLO) API 118

Differences between QSYLATLO and

QGYRATLO 118

Authorities and Locks 119

Required Parameter Group 119

Format of Receiver Variable 120

Format of List Information 124

Field Descriptions 124

Format of Section Information 125

Field Descriptions 125

Error Messages 126

Retrieve Security Attributes (QSYRTVSA) API . . 127

Authorities and Locks 127

Required Parameter Group 127

RTSA0100 Format 128

Field Descriptions 128

iv iSeries: Security -- Security-related APIs

Error Messages 129

Retrieve User Application Information

(QsyRetrieveUserApplicationInfo) API 129

Authorities and Locks 130

Required Parameter Group 130

Receiver Variable Description 131

Format of Returned Records Feedback

Information 131

Field Descriptions 131

Error Messages 132

Retrieve User Authority to Object (QSYRUSRA)

API 133

Authorities and Locks 133

Required Parameter Group 134

Optional Parameter Group 1 135

Optional Parameter Group 2 135

Receiver Variable Description 135

Group Information Table 140

Error Messages 142

Retrieve User Information (QSYRUSRI) API . . . 143

Authorities and Locks 143

Required Parameter Group 143

Receiver Variable Description 144

USRI0100 Format 144

USRI0200 Format 145

USRI0300 Format 145

Field Descriptions 147

Error Messages 157

Retrieve Users Authorized to an Object

(QSYRTVUA) API 158

Authorities and Locks 158

Required Parameter Group 159

Receiver Variable Description 160

Format of Returned Records Feedback

Information 160

Error Messages 164

Set Encrypted User Password (QSYSUPWD) API 165

Authorities and Locks 165

Required Parameter Group 165

UPWD0100 Format 166

Field Descriptions 166

Error Messages 166

Set Job User Identity (QWTSJUID) API 167

Authorities and Locks 168

Required Parameter 168

Usage Notes 168

Error Messages 168

QwtSetJuid()—Set Job User Identity 169

Parameters 169

Authorities and Locks 169

Return Value 169

Set Profile Handle (QWTSETP,

QsySetToProfileHandle) API 170

Output Queue Considerations 171

Required Parameter 171

Optional Parameter 171

Usage Notes 171

Error Messages 171

Set To Profile Token (QSYSETPT, QsySetToPrfTkn)

API 172

QPRTJOB 173

Output Queue Considerations 173

Authorities and Locks 173

Required Parameter Group 173

Error Messages 173

Usage Notes 174

Sign Buffer (QYDOSGNB, QydoSignBuffer) . . . 175

Authorities and Locks 175

Required Parameter Group 176

Field Descriptions 177

Resulting signature formats 177

SGNB0100 format 177

SGNB0200 format 177

SGNB0300 format 178

SGNB0400 format 178

Field Descriptions 178

Error Messages 179

Sign Object (QYDOSGNO, QydoSignObject) API 180

Authorities and Locks 180

Required Parameter Group 181

Multiple objects characteristics format 182

Field Descriptions 183

RSLT0100 format 184

Field Descriptions 184

Error Messages 185

Update User Application Information

(QsyUpdateUserApplicationInfo) API 186

Authorities and Locks 186

Required Parameter Group 186

Error Messages 187

Verify Buffer (QYDOVFYB, QydoVerifyBuffer) . . 188

Authorities and Locks 189

Required Parameter Group 189

Field Descriptions 190

Error Messages 190

Verify Object (QYDOVFYO, QydoVerifyObject) API 191

Authorities and Locks 191

Required Parameter Group 192

Multiple objects characteristics format 193

Field Descriptions 193

RSLT0100 format 194

Field Descriptions 194

Error Messages 195

Security-related Exit Programs 196

Exit Programs 196

Change User Profile Exit Program 196

Authorities and Locks 197

Required Parameter 197

Format of Change Profile Exit Information . . 197

Field Descriptions 198

Create User Profile Exit Program 198

Authorities and Locks 198

Required Parameter 198

Format of Create Profile Exit Information . . . 198

Field Descriptions 199

Delete User Profile Exit Program 199

Authorities and Locks 200

Required Parameter 200

Format of Delete Profile Exit Information . . . 200

Field Descriptions 200

Restore User Profile Exit Program 200

Authorities and Locks 201

Contents v

Required Parameter 201

Format of Restore Profile Exit Information . . . 201

Field Descriptions 201

Validate Password Exit Program 202

Authorities and Locks 202

Required Parameter 202

Format of Validate Password Exit Information 203

Field Descriptions 203

Appendix. Notices 205

Trademarks 206

Terms and conditions for downloading and

printing publications 207

Code disclaimer information 208

vi iSeries: Security -- Security-related APIs

Security-related APIs

The OS/400(R) security-related APIs allow you to:

v Perform many of the security functions through a program interface. You can use APIs instead of CL

commands.

v Combine many individual jobs into a single server or overhead job without compromising system

security.

These APIs can be used to consolidate server jobs to reduce processing time and storage use because the

system performs job management tasks for only one job. They also speed response time for system users.

For general information about OS/400 system security, see the Basic system security and planning topic.

The security-related APIs are:

v “Add Verifier (QYDOADDV, QydoAddVerifier) API” on page 4 (QYDOADDV, QydoAddVerifier)) adds

a certificate to the local system’s *SIGNATUREVERIFICATION certificate store that the local system

can use later to verify the integrity of objects on the system.

v “Change Previous Sign-On Date (QSYCHGPR) API” on page 6 (QSYCHGPR) changes the previous

sign-on date and time to the current date and time for the current user of the job.

v “Change Service Tools User ID (QSYCHGDS) API” on page 7 (QSYCHGDS) changes the ID name or

the password (or both) for service tools user IDs.

v “Change User Password (QSYCHGPW) API” on page 11 (QSYCHGPW) changes a user’s password.

v “Change User Profile UID or GID (QSYCHGID) API” on page 15 (QSYCHGID) changes the user ID

(UID) or group ID (GID) value for a user profile object.

v “Check Encrypted User Password (QSYCUPWD) API” on page 17 (QSYCUPWD) checks to see if the

encrypted password data for the specified user profile on the system on which this API is run is the

same as the encrypted password data for the user on the system where the Retrieve Encrypted User

Password (QSYRUPWD) API was run.

v “Check Profile Token User (QSYCHKTU, QsyChkPrfTknUser) API” on page 20 (QSYCHKTU,

QsyChkPrfTknUser) verifies that the user profile associated with the token is the same as the current

user profile in the thread.

v

“Check System (QYDOCHKS, QydoCheckSystem) API” on page 21 (QYDOCHKS,

QydoCheckSystem) checks key operating system object’s signatures.

v “Check User Authority to an Object (QSYCUSRA) API” on page 25 (QSYCUSRA) returns an indication

about a user’s specified authority to an object.

v “Check User Special Authorities (QSYCUSRS) API” on page 28 (QSYCUSRS) returns an indication of a

user’s special authorities.

v “QwtClearJuid()—Clear Job User Identity” on page 30 (QwtClearJuid()) clears any job user identity that

was previously set by the QwtSetJuid() function or by the Set Job User Identity (QWTSJUID) API.

v “Convert Authority Values to MI Value (QSYCVTA) API” on page 31 (QSYCVTA) converts authority

values to the machine interface (MI) representation of the value.

v

“Generate Profile Token (QsyGenPrfTkn) API” on page 33 (QsyGenPrfTkn) verifies that the caller

has authority to generate a profile token for the requested profile and then generates a profile token.

v “Generate Profile Token (QSYGENPT) API” on page 36 (QSYGENPT) verifies that the caller has

authority to generate a profile token for the requested profile and then generates a profile token.

v “Generate Profile Token Extended (QsyGenPrfTknE) API” on page 40 (QsyGenPrfTknE) verifies that

the caller has authority to generate a profile token for the requested profile and then generates a profile

token.

© Copyright IBM Corp. 1998, 2005 1

v “Generate Profile Token From Profile Token (QSYGENFT, QsyGenPrfTknFromPrfTkn) API” on page 44

(QSYGENFT, QsyGenPrfTknFromPrfTkn) generates a profile token using an existing profile token.

v “Get Profile Handle (QSYGETPH) API” on page 46 (QSYGETPH) validates a user ID and password,

and creates an encrypted abbreviation called a profile handle for that user profile.

v “Get Profile Handle (QsyGetProfileHandle) API” on page 50 (QsyGetProfileHandle) validates user IDs

and passwords and creates a profile handle, for use in jobs that run under more than one user profile.

v

“Get Profile Handle No Password (QsyGetProfileHandleNoPwd) API” on page 53

(QsyGetProfileHandleNoPwd) validates user IDs and creates a profile handle, for use in jobs that run

under more than one user profile.

v “Get Profile Token Time Out (QSYGETPT, QsyGetPrfTknTimeOut) API” on page 56 (QSYGETPT,

QsyGetPrfTknTimeOut) gets the number of seconds until a profile token is not valid.

v “Invalidate Profile Token (QSYINVPT, QsyInvalidatePrfTkn) API” on page 57 (QSYINVPT,

QsyInvalidatePrfTkn) invalidates a profile token.

v “List Authorized Users (QSYLAUTU) API” on page 58 (QSYLAUTU) puts a list of authorized users of

the system in a user space.

v “List Objects Secured by Authorization List (QSYLATLO) API” on page 62 (QSYLATLO) puts a list of

objects secured by an authorization list in a user space.

v “List Objects That Adopt Owner Authority (QSYLOBJP) API” on page 69 (QSYLOBJP) puts a list of

objects that adopt an owner’s authority in a user space.

v “List Objects User Is Authorized to, Owns, or Is Primary Group of (QSYLOBJA) API” on page 75

(QSYLOBJA) puts a list of objects that a user is authorized to, owns, or is the primary group owner for

into a user space.

v “List Users Authorized to Object (QSYLUSRA) API” on page 85 (QSYLUSRA) puts a list of users

privately authorized to an object in a user space.

v “Open List of Authorized Users (QGYOLAUS) API” on page 91 (QGYOLAUS) provides information

about the authorized users of the system.

v “Release Profile Handle (QSYRLSPH, QsyReleaseProfileHandle) API” on page 95 (QSYRLSPH,

QsyReleaseProfileHandle) validates a given profile handle and then releases it.

v “Remove All Profile Tokens (QsyRemoveAllPrfTkns) API” on page 97 (QsyRemoveAllPrfTkns)

provides an interface to remove all profiles on the system.

v “Remove All Profile Tokens For User (QsyRemoveAllPrfTknsForUser) API” on page 98

(QsyRemoveAllPrfTknsForUser) provides an interface to remove all profile tokens that have been

generated for a specific user profile.

v “Remove Profile Token (QsyRemovePrfTkn) API” on page 99 (QsyRemovePrfTkn) removes the

specified profile token.

v “Remove Profile Tokens (QSYRMVPT) API” on page 100 (QSYRMVPT) provides an interface to remove

all profile tokens that have been generated for user profiles on the system, or to remove all profile

tokens that have been generated for a specific user profile.

v

“Remove User Application Information (QsyRemoveUserApplicationInfo) API” on page 102

(QsyRemoveUserApplicationInfo) removes the specified application information from the specified user

profile.

v “Reset Profile Attributes (QSYRESPA) API” on page 103 (QSYRESPA) resets four attributes of

system-supplied user profiles.

v “Retrieve Authorized Users (QSYRAUTU) API” on page 105 (QSYRAUTU) returns a list of authorized

user names on the system and information about those users.

v “Retrieve Encrypted User Password (QSYRUPWD) API” on page 110 (QSYRUPWD) returns to the

caller the encrypted password for the specified user profile.

v “Retrieve Object Signatures (QYDORTVO,” on page 113 (QYDORTVO, QydoRetrieveDigitalSignatures)

retrieves certificate information from a signed iSeries object.

2 iSeries: Security -- Security-related APIs

v “Retrieve Objects Secured by Authorization List (QGYRATLO) API” on page 118 (QGYRATLO)

provides a list of objects that are secured by an authorization list.

v “Retrieve Security Attributes (QSYRTVSA) API” on page 127 (QSYRTVSA) retrieves information about

the current and pending security attributes of the system.

v

“Retrieve User Application Information (QsyRetrieveUserApplicationInfo) API” on page 129

(QsyRetrieveUserApplicationInfo) retrieves the application information for a user profile.

v “Retrieve User Authority to Object (QSYRUSRA) API” on page 133 (QSYRUSRA) returns the user’s

authority to an object.

v “Retrieve User Information (QSYRUSRI) API” on page 143 (QSYRUSRI) returns the information about

a user.

v “Retrieve Users Authorized to an Object (QSYRTVUA) API” on page 158 (QSYRTVUA) provides

information about the users who are authorized to an object.

v “Set Encrypted User Password (QSYSUPWD) API” on page 165 (QSYSUPWD) sets the encrypted

password for the specified user profile by using the receiver variable that was retrieved by the Retrieve

Encrypted User Password (QSYRUPWD) API.

v “Set Job User Identity (QWTSJUID) API” on page 167 (QWTSJUID) performs two operations that can

be used to explicitly set the job user identity of the current job.

v “QwtSetJuid()—Set Job User Identity” on page 169 (QwtSetJuid()) sets the job user identity of the

current job to the name of the current user profile of the job.

v “Set Profile Handle (QWTSETP, QsySetToProfileHandle) API” on page 170 (QWTSETP,

QsySetToProfileHandle) switches the job to run under a new profile.

v “Set To Profile Token (QSYSETPT, QsySetToPrfTkn) API” on page 172 (QSYSETPT, QsySetToPrfTkn)

validates the profile token and changes the current thread to run under the user and group profiles

represented by the profile token.

v “Sign Buffer (QYDOSGNB, QydoSignBuffer)” on page 175 (QYDOSGNB, QydoSignBuffer) allows the

local system to certify that the series of bytes being signed is trustworthy.

v “Sign Object (QYDOSGNO, QydoSignObject) API” on page 180 (QYDOSGNO, QydoSignObject) allows

the local system to certify that the object being signed is trustworthy as of the time the object is being

signed.

v

“Update User Application Information (QsyUpdateUserApplicationInfo) API” on page 186

(QsyUpdateUserApplicationInfo) updates the specified application information for a user profile.

v “Verify Buffer (QYDOVFYB, QydoVerifyBuffer)” on page 188 (QYDOVFYB, QydoVerifyBuffer) allows

the local system to verify that the series of bytes signed earlier has not been tampered with.

v “Verify Object (QYDOVFYO, QydoVerifyObject) API” on page 191 (QYDOVFYO, QydoVerifyObject)

checks to see if an object has changed since it was signed.

 Top | Security APIs | APIs by category

APIs

These are the APIs for this category.

Security-related APIs 3

#TOP_OF_PAGE
sec.htm
aplist.htm

Add Verifier (QYDOADDV, QydoAddVerifier) API

 Required Parameter Group:

1 Certificate path name

Input Char(*)

2 Length of certificate path name

Input Binary(4)

3 Format of certificate path name

Input Char(8)

4 Certificate label

Input Char(*)

5 Length of certificate label

Input Binary(4)

6 Error code

I/O Char(*)
 Service Program Name: QYDOADD1

 Default Public Authority: *USE

 Threadsafe: No

The Add Verifier (OPM, QYDOADDV; ILE, QydoAddVerifier) API adds a certificate to the local system’s

*SIGNATUREVERIFICATION certificate store that the local system can use later to verify the integrity of

objects on the system. This certificate represents the system or company that has signed objects that the

local system will want to use. Object signatures are used to detect changes to an object that affect the

integrity of that object. Object signatures also identify the origin of the object; that is, which system or

company the object came from.

Note: If the certificate store does not exist, it will be created with a certificate store password of

″VERIFYSIGNATURE″. This password should be changed as soon as possible to a non-trivial password

using the Digital Certificate Manager.

Authorities and Locks

Authority Required

*ALLOBJ and *SECADM special authorities. Also the ″allow certificate updates″ must be set on

the service tools menu.

Locks Object containing certificate will be locked exclusive no read

Required Parameter Group

Certificate path name

INPUT; CHAR(*)

 The path name of the stream file that has the certificate you wish to add to the

*SIGNATUREVERIFICATION certificate store on the local system. This certificate store is a list of

certificates the local system uses to verify the integrity of signed objects. If you are using format

4 iSeries: Security -- Security-related APIs

OBJN0100, this parameter is assumed to be represented in the coded character set identifier

(CCSID) currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed

to be represented in the default CCSID of the job.

Length of certificate path name

INPUT; BINARY(4)

 The length of the contents of the certificate path name parameter. If the format of certificate path

name is OBJN0200, this field must include the QLG path name structure in addition to the path

name itself. If the format of certificate path name is OBJN0100, only the path name itself is

included.

Format of certificate path name

INPUT; CHAR(8)

 The format of the certificate path name parameter.

 OBJN0100 The certificate path name is a simple path name.

OBJN0200 The certificate path name is an LG-type path name.

Certificate label

INPUT; CHAR(*)

 Names the certificate that will be stored in the database. This label must be unique in the

database; you cannot have another certificate with the same name in the database.

 This certificate should have been created by exporting a verification certificate from the

*OBJECTSIGNING certificate store on the system that signed the objects or buffers to be verified.

Exporting any other way will not be useable by this API. Digital Certificate Manager (DCM) can

be used for several file formats including this format. DCM will need to be used if other file

formats are used.

 This certificate should not have been signed by a local Certificate Authority (CA). This API does

not support adding CA certificates. DCM will need to be used to import CA certificates prior to

using this API to add certificates from those CAs. The certificate stores come with several Internet

CA certificates already installed.

Length of certificate label

INPUT; BINARY(4)

 The length of the contents of the certificate label parameter.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF222E E User profile does not have *SECADM (or *ALLOBJ) special authority.

CPFA0A9 E Object not found. Object is &1.

CPFB724 E Option &2 of the operating system is required to work with object signatures.

CPFB73A E The password for the certificate key database needs to be set.

CPF9EA2 E Certificate is not in a supported format. This certificate may have been exported from the

*SIGNATUREVERIFICATION certificate store instead of the *OBJECTSIGNING certificate store.

CPF9EA6 E Function &1 cannot be used. The function specified is one that is currently prevented from being

used.

CPF9EB0 E Certificate with label &2 is already in the certificate store.

CPF9EB2 E A Certificate Authority (CA) certificate cannot be added using this API.

Security-related APIs 5

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF9EB3 E The issuer of the certificate may not be in the certificate store. Certificate was not added.

API introduced: V5R2

 Top | Security APIs | APIs by category

Change Previous Sign-On Date (QSYCHGPR) API

 Required Parameter:

1 Error Code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Change Previous Sign-On Date (QSYCHGPR) API changes the previous sign-on date and time to the

current date and time for the user profile that is currently running. If a user has been swapped in using

the Set Profile (QWTSETP) API, that user’s previous sign-on date and time is the one that gets changed.

Authorities and Locks

None

Required Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2213 E Not able to allocate user profile &1.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | Security APIs | APIs by category

6 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Change Service Tools User ID (QSYCHGDS) API

 Required Parameter Group:

1 Requesting service tools user ID

Input Char(*)

2 Requesting service tools user ID password

Input Char(*)

3 Service tools user ID to be changed

Input Char(10)

4 New service tools user ID

Input Char(*)

5 New service tools user ID password

Input Char(*)

6 Error code

I/O Char(*)
 Optional Parameter Group:

7 Length of requesting service tools user ID profile

Input Bin(4)

8 Length of requesting service tools user ID password

Input Bin(4)

9 CCSID of requesting service tools user ID password

Input Bin(4)

10 Length of new service tools user ID

Input Bin(4)

11 Length of new service tools user ID password

Input Bin(4)

12 CCSID of new service tools user ID password

Input Bin(4)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Change Service tools user ID (QSYCHGDS) API changes the ID name or the password (or both) for

service tools user IDs.

Calling this API from a command line may result in a security exposure since the plain text service tools

user ID and password may appear in the job log. Therefore, you should avoid calling this API from the

command line.

Security-related APIs 7

Authorities and Locks

When the requesting service tools user ID is different than the service tools user ID to be changed, the

requesting service tools user ID must have the Service Tool user function privilege “Service Tool

Security”.

When the requesting service tools user ID is the same as the service tools user ID to be changed and the

service tools user ID name is to be changed, the requesting service tools user ID must have the Service

Tool user function privilege ″Service Tool Security″.

Required Parameter Group

Requesting service tools user ID

INPUT; CHAR(*)

 The requesting service tools user ID. This value is converted to uppercase. If the optional

parameter group is not specified, a default of length 8 is used. The requesting service tools user

ID parameter should be padded with trailing blank characters if necessary.

Requesting service tools user ID password

INPUT; CHAR(*)

 The password for the requesting service tools user ID.

Service tools user ID to be changed

INPUT; CHAR(10)

 The service tools user ID to be changed. This value is converted to uppercase. The service tools

user ID to be changed parameter should be padded with trailing blank characters. You can use

these special values for the service tools user ID to be changed:

 *SECURITY Change the security capability profile.

*FULL Change the full capability profile.

*BASIC Change the basic capability profile.

*SERVICE Change the service capability profile.

New service tools user ID

INPUT; CHAR(*)

 The new service tools user ID or *SAME. This value is converted to uppercase. If the optional

parameter group is not specified, a default length of 8 is used. The new service tools user ID

parameter should be padded with trailing blank characters if necessary.

New service tools user ID password

INPUT; CHAR(*)

 The new service tools user ID password or *SAME.

 If 128 character, case sensitive passwords are enabled for the service tools user IDs, then *SAME

is not allowed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

8 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Optional Parameter Group

Length of requesting service tools user ID

INPUT; BINARY(4)

 The length, in bytes, of the ID contained in the requesting service tools ID parameter. If the

optional parameter group is not specified, a default of 8 is used. The requesting service tools user

ID parameter should be padded with trailing blank characters, if necessary, to the size specified

by this parameter.

 This parameter accepts values from 1 to 10.

Length of requesting service tools user ID password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the requesting service tools user ID password

parameter. If the optional parameter group is not specified, a default of 8 is used. The requesting

service tools user ID password parameter should be padded with trailing blank characters, if

necessary, to the size specified by this parameter.

 This parameter accepts values from 1 to 512. If 128 character, case sensitive passwords are not

enabled for the service tools user IDs, the password is limited to 8 characters. If 128 character,

case sensitive passwords are enabled for the service tools user IDs, then this password may be

from 6 to 512 bytes. However, values greater than 128 should only be used if multi-byte

characters are specified for the service tools user ID password. The number of characters, as

interpreted by the CCSID of the service tools user ID password parameter, cannot exceed 128.

CCSID of requesting service tools user ID password

INPUT; BINARY(4)

 The CCSID of the requesting service tools user ID password parameter. If the optional parameter

group is not specified, CCSID 37 is used. For a list of valid CCSIDs, see the Globalization topic in

the iSeries Information Center.

 The valid values are:

 0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job

CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.

1-65533 A valid CCSID in this range.

Length of new service tools user ID

INPUT; BINARY(4)

 The length, in bytes, of the ID contained in the new service tools user ID parameter. If the

optional parameter group is not specified, a default of 8 is used. The new service tools user ID

parameter should be padded with trailing blank characters, if necessary, to the size specified by

this parameter.

 This parameter accepts values from 1 to 10.

Length of new service tools user ID password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the new service tools user ID password

parameter. If the optional parameter group is not specified, a default of 8 is used. The new

service tools user ID password parameter should be padded with trailing blank characters, if

necessary, to the size specified by this parameter.

 This parameter accepts values from 1 to 512. If 128 character, case sensitive passwords are not

enabled for the service tools user IDs, the password is limited to 8 characters. If 128 character,

case sensitive passwords are enabled for the service tools user IDs, then this password may be

from 6 to 512 bytes. However, values greater than 128 should only be used if multi-byte

Security-related APIs 9

characters are specified for the service tools user ID password. The number of characters, as

interpreted by the CCSID of the service tools user ID password parameter, cannot exceed 128.

CCSID of new service tools user ID password

INPUT; BINARY(4)

 The CCSID of the new service tools user ID password parameter. If the optional parameter group

is not specified, CCSID 37 is used. For a list of valid CCSIDs, see the Globalization topic in the

iSeries Information Center.

 The valid values are:

 0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job

CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.

1-65533 A valid CCSID in this range.

Error Messages

 Message ID Error Message Text

CPF225B E Service tools user ID to be changed is not correct.

CPF225C E Requesting service tools user ID not correct.

CPF225D E Requesting service tools user ID password not correct.

CPF3BC7 E CCSID &1 outside of valid range.

CPF3BDE E CCSID &1 not supported by API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF4AB3 E Error changing service tools user ID. Reason code &1.

CPF4AB7 E Service tools user ID password cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R1

 Top | Security APIs | APIs by category

10 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Change User Password (QSYCHGPW) API

 Required Parameter Group:

1 User ID

Input Char(10)

2 Current password

Input Char(*)

3 New password

Input Char(*)

4 Error code

I/O Char(*)
 Optional Parameter Group:

5 Length of current password

Input Bin(4)

6 CCSID of current password

Input Bin(4)

7 Length of new password

Input Bin(4)

8 CCSID of new password

Input Bin(4)
 Default Public Authority: *USE

 Threadsafe: No

The Change User Password (QSYCHGPW) API changes a user’s password. You must know the existing

password that you want to change, unless you have *SECADM special authority and *OBJMGT and *USE

authority to the user profile being changed.

This API provides support similar to the Change Password (CHGPWD) command.

Authorities and Locks

If the user ID parameter is not *CURRENT or the user ID of the user that is currently running, the caller

of the API must have *SECADM special authority and *OBJMGT and *USE authorities to the user profile

being changed to change the password. If the current password parameter is *NOPWD, the caller of the

API must have *SECADM special authority and *OBJMGT and *USE authorities to the user profile being

changed.

Required Parameter Group

User ID

INPUT; CHAR(10)

 The name of the user whose password is being changed.

Security-related APIs 11

You can specify the following special value:

 *CURRENT The password of the user currently running is changed.

Current password

INPUT; CHAR(*)

 The current password for the user. Verification is done to ensure this is the correct password for

the user before the password is changed, unless *NOPWD is specified. All trailing blank and null

characters are removed from the current password before it is verified.

 You can specify the following special values:

 *NONE The user currently does not have a password

or the password is not managed locally.

*NOPWD The current password for the user is not verified before changing the password. The caller of the

API must have *SECADM special authority and *OBJMGT and *USE authorities to the user profile

being changed to specify this value.

New password

INPUT; CHAR(*)

 The new password for the user. Verification is done to ensure the new password meets the

password composition rules of the system. All trailing blank and null characters are removed

from the new password before it is verified.

 You can specify the following special value:

 *NONE The user is changed to not have a password. This value is not allowed if *CURRENT, the user ID

of the user that is currently running, or QSECOFR is specified on the user ID parameter.

 If the local password management (LCLPWDMGT) value for the user profile specified on the

user ID parameter is set to *NO, then the local OS/400 password will be set to *NONE. The

password value specified in this parameter will be sent to other IBM products that do password

synchronization (for example, iSeries Integration for Windows Server).

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Length of current password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the current password parameter. If the optional

parameter group is not specified, a default of 10 is used. The current password parameter should

be padded with trailing blank characters, if necessary, to the size specified by this parameter.

 This parameter accepts values from 1 to 512; however, values greater than 128 should only be

used if multi-byte characters are specified for the current password. The number of characters, as

interpreted by the CCSID of the current password parameter, cannot exceed 128.

CCSID of current password

INPUT; BINARY(4)

12 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The CCSID of the current password parameter. If the optional parameter group is not specified

and the system is operating at password level 0 or 1, CCSID 37 is used. If the optional parameter

group is not specified and the system is operating at password level 2 or 3, the default CCSID of

the job is used to determine the CCSID of the data to be converted. For a list of valid CCSIDs, see

the Globalization topic in the iSeries Information Center.

 The valid values are:

 0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job

CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.

1-65533 A valid CCSID in this range.

65535 When the system is operating at password level 0 or 1, CCSID 37 is used. When the system is

operating at password level 2 or 3, this value is rejected.

Length of new password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the new password parameter. If the optional

parameter group is not specified, a default of 10 is used. The new password parameter should be

padded with trailing blank characters, if necessary, to the size specified by this parameter.

 This parameter accepts values from 1 to 512; however, values greater than 128 should only be

used if multi-byte characters are specified for the new password. The number of characters, as

interpreted by the CCSID of the new password parameter, cannot exceed 128.

CCSID of new password

INPUT; BINARY(4)

 The CCSID of the new password parameter. If the optional parameter group is not specified and

the system is operating at password level 0 or 1, CCSID 37 is used. If the optional parameter

group is not specified and the system is operating at password level 2 or 3, the default CCSID of

the job is used to determine the CCSID of the data to be converted. For a list of valid CCSIDs, see

the Globalization topic in the iSeries Information Center.

 The valid values are:

 0 The CCSID of the job is used to determine the CCSID of the data to be converted. If the job

CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.

1-65533 A valid CCSID in this range.

65535 When the system is operating at password level 0 or 1, CCSID 37 is used. When the system is

operating at password level 2 or 3, this value is rejected.

Usage Notes

If the caller of the API:

v Enters the wrong password for the user, and

v Exceeds the maximum number of times allowed by the system value QMAXSIGN, and

v The system value QMAXSGNACN is set to disable user profiles,

then the user profile specified on the user parameter is disabled.

You cannot specify the following user ID profile names for the user parameter:

 QAUTPROF QCLUMGT QCLUSTER QCOLSRV

 QDBSHR QDBSHRDO QDIRSRV QDFTOWN

 QDLFM QDOC QDSNX QFNC

 QGATE QIPP QLPAUTO QLPINSTALL

 QMGTC QMSF QNFSANON QNETSPLF

Security-related APIs 13

QNTP QPEX QPM400 QSNADS

 QSPL QSPLJOB QSRVAGT QSYS

 QTCM QTCP QTFTP QTMHHTP1

 QTSTRQS QYCMCIMOM QYPSJSVR

When the new password is checked to ensure it meets the password composition rules for the system,

only one error is returned per API call. Therefore, if the new password fails more than one of the rules,

multiple calls to the API are needed to determine a correct new password.

If *NOPWD is specified for the current password, then the QPWDPOSDIF (Limit password character

positions) system value cannot be checked. This system value determines whether the characters in the

same position in the current and new password must be different. This value cannot be checked without

the current password value.

You should avoid calling this API from a command line. If this API is called from CL and CL commands

are being logged for the job or CL program, the call parameters for the API are logged in the job log. This

means the passwords appear in the job log.

If the optional parameter group is not specified, the current and new password lengths default to 10 and

the CCSID of the current and new passwords default to 37. These are the values that were used by the

QSYCHGPW API prior to the addition of the optional parameter group.

You cannot specify a password length greater than 10 unless the system is operating at a password level

of 2 or 3.

Error Messages

 Message ID Error Message Text

CPD2201 E System user profile cannot be changed.

CPD2356 E New password cannot be same as current password.

CPF0001 E Error found on &1 command.

CPF22C0 E Password does not meet password rules. Return code &1.

CPF22C2 E Password less than &1 characters.

CPF22C3 E Password longer than &1 characters.

CPF22C4 E Password matches one of 32 previous passwords.

CPF22C5 E Password contains one of the following: &1.

CPF22C6 E Password contains two numbers next to each other.

CPF22C7 E Password contains a character used more than once.

CPF22C8 E Same character in same position as previous password.

CPF22C9 E Password must contain a number.

CPF22D0 E Password contains a character repeated consecutively.

CPF22D1 E Password cannot be same as user ID.

CPF22D2 E Password approval program &1 not found.

CPF22D3 E Password approval program signaled an error.

CPF22D4 E Not allowed to use password approval program.

CPF22D5 E Parameters in password approval program not correct.

CPF22E2 E Password not correct for user profile &1.

CPF22E3 E User profile &1 is disabled.

CPF22F5 E Value &1 for new password not allowed.

CPF22F6 E New password cannot be *NONE.

CPF2203 E User profile &1 not correct.

CPF2213 E Not able to allocate user profile &1.

CPF222E E &1 special authority is required.

CPF2225 E Not able to allocate internal system object.

CPF2292 E *SECADM required to create or change user profiles.

CPF3BC7 E CCSID &1 outside of valid range.

14 iSeries: Security -- Security-related APIs

Message ID Error Message Text

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

Change User Profile UID or GID (QSYCHGID) API

 Required Parameter Group:

1 User profile name

Input Char(10)

2 User ID number (UID)

Input Binary(4)

3 Group ID number (GID)

Input Binary(4)

4 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Change User Profile UID or GID (QSYCHGID) API provides an interface to change the user ID

number (UID) or group ID number (GID) for a user profile. The UID or GID value for any user profile on

the system may be changed. If the UID value is changed and the user profile owns objects in a directory

(not including objects in the QSYS.LIB or QDLS file system), then the UID information for these objects is

also changed. If the GID value is changed and the user profile is the primary group for objects in a

directory, then the GID information for these objects is also changed. The UID or GID of a profile that is

active in a process can be changed only when the system is in restricted state. (For example, the system

would probably have to be in restricted state to change the UID for the QSYS user profile.) However, the

UID of the user profile currently running cannot be changed, and the GID of the groups for the user

profile currently running cannot be changed.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM

Security-related APIs 15

#TOP_OF_PAGE
sec.htm
aplist.htm

User Profile Lock

*EXCL

Required Parameter Group

User profile name

INPUT; CHAR(10)

 The name of the user profile whose UID or GID is to be changed.

User ID number (UID)

INPUT; BINARY(4)

 The new UID for the user profile.

 This field must contain one of the following values:

 1 to 4294967294 The new UID value.

4294967295 The UID for this user profile does not change. This value is the same as X’FFFFFFFF’ or -1 in

languages that do not support unsigned integers.

Group ID number (GID)

INPUT; BINARY(4)

 The new GID for the user profile.

 This field must contain one of the following values:

 1 to 4294967294 The new GID.

4294967295 The GID for this user profile does not change. This value is the same as X’FFFFFFFF’ or -1 in

languages that do not support unsigned integers.

0 This user profile will no longer have a GID.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPFA1C8 D Error occurred while attempting to change the UID or GID information.

CPF22CE E The &1 value &2 is used by another user profile.

CPF22DB E The user profile being changed must have a GID.

CPF22DE E Not allowed to change the UID or GID of user profile &1.

CPF2203 E User profile &1 not correct.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF222E E &1 special authority is required.

CPF2225 E Not able to allocate internal system object.

CPF224B E &1 value is not valid.

CPF224C E Cannot change the UID value for QSECOFR.

CPF224D E User profile &1 cannot have a GID.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

16 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Top | Security APIs | APIs by category

Check Encrypted User Password (QSYCUPWD) API

 Required Parameter Group:

1 Encrypted password return code

Output Char(1)

2 Receiver variable from QSYRUPWD

Input Char(*)

3 Format

Input Char(8)

4 Error code

I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Check Encrypted User Password (QSYCUPWD) API checks to see if the encrypted password data for

the specified user profile on the system on which this API is run is the same as the encrypted password

data for the user on the system where the Retrieve Encrypted User Password (QSYRUPWD) API was run.

The API does not check the iSeries Support for Windows Network Neighborhood (iSeries NetServer)

encrypted password information. Only the encrypted passwords used to sign on from a sign-on display

are checked.

The QSYCUPWD API follows this process:

v Verifies that the user calling this API is authorized.

v Verifies that the user profile specified in the receiver variable from QSYRUPWD parameter exists and is

correct.

– If the user profile is disabled, the incorrect password count is incremented and the appropriate value

is set in the encrypted password return code.

– If the password for the user profile is *NONE or expired, the appropriate value is set in the

encrypted password return code.

If the local password management (LCLPWDMGT) value for the

user profile is *NO, then the password for the user profile will be *NONE.

v Checks to see if the encrypted passwords can be compared. If the passwords cannot be compared, the

appropriate value is set in the encrypted password return code.

The release versions and password levels must be compatible between the system on which this API is

run and the system where the QSYRUPWD API was run to be able to compare the passwords. The

passwords can be compared only if the user profile has a password for password level 0 or 1 on both

systems or a password for password level 2 or 3 on both systems. If a system is at a release previous to

V5R1M0, then the password for the user profile on that system is a password for password level 0 or

1.

Security-related APIs 17

#TOP_OF_PAGE
sec.htm
aplist.htm

To determine if the user profile has a password for password level 0 or 1 or for password level 2 or 3,

run either the Display Authorized Users (DSPAUTUSR) command and use the F11 key to see password

level information, the Print User Profile (PRTUSRPRF) command using TYPE(*PWDLVL), or the

Display User Profile (DSPUSRPRF) command using TYPE(*BASIC) to an outfile. These commands

must be run on a V5R1M0 (or later) system.

v Compares the passwords. If the passwords do not match, the incorrect password count is incremented.

The QMAXSIGN system value contains the maximum number of incorrect attempts to sign on. If the

QMAXSGNACN system value is set to disable the user profile, repeated attempts to check the

encrypted password when there is a mismatch will disable the user profile.

Authorities and Locks

User Profile Authority

Caller of this API must have *ALLOBJ and *SECADM special authorities

API Public Authority

*EXCLUDE

Required Parameter Group

Encrypted password return code

OUTPUT; CHAR(1)

 Whether the encrypted password for the user profile on the system on which this API is run

matches the encrypted password for the same user profile that is specified in the receiver variable

from QSYRUPWD parameter. This parameter contains one of the following:

 0 The passwords match.

1 The user profile on the system on which this API is run is disabled.

2 The password for the user on the system on which this API is run is *NONE.

3 The password for the user profile on the system on which this API is run is expired.

4 The passwords could not be compared.

9 The passwords do not match.

Receiver variable from QSYRUPWD

INPUT; CHAR(*)

 The variable that is used to check the encrypted password for the user. The receiver variable from

the QSYRUPWD API must be used as input to this API. For this API to successfully check the

encrypted password for the user, the bytes returned value must be equal to the bytes available

value in the input data. The input data must be retrieved from the receiver variable used by the

QSYRUPWD API and cannot be changed in any way.

Format

INPUT; CHAR(8)

 The name of the format that is used to check the user’s encrypted password data. The following

value is allowed:

 “UPWD0100

Format” on page

19

Encrypted password will be checked.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

18 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

UPWD0100 Format

The following table describes the input variable that is to be passed as the second parameter to

QSYCUPWD. This input variable must be the same data as the receiver variable that is returned by the

QSYRUPWD API. The receiver variable, returned by the QSYRUPWD API, cannot be changed in any way

prior to passing the data as input to the QSYCUPWD API. If this data is changed, the QSYCUPWD API

will not be able to successfully check the password for the user. For detailed descriptions of the fields in

the tables, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User profile name

18 12 CHAR(*) Encrypted user password data

Field Descriptions

Bytes available. The number of bytes of data available when retrieved by the QSYRUPWD API. For the

QSYCUPWD API to successfully check the encrypted password for the user, this value must be equal to

the bytes returned value. If the bytes available field is greater than the bytes returned field, this input

cannot be used to successfully check the encrypted password for the user.

Bytes returned. The number of bytes of data.

Encrypted user password data. The encrypted password data for the user profile.

User profile name. The name of the user profile for which the password will be checked.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2225 E Not able to allocate internal system object.

CPF222E E &1 special authority is required.

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF4AB2 E Receiver variable from QSYRUPWD has been altered.

CPF9801 E Object &2 in library &3 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | Security APIs | APIs by category

Security-related APIs 19

#TOP_OF_PAGE
sec.htm
aplist.htm

Check Profile Token User (QSYCHKTU, QsyChkPrfTknUser) API

 Required Parameter Group for QSYCHKTU:

1 Result

Output Bin(4)

2 Profile token

Input Char(32)

3 Error Code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

 Syntax for QsyChkPrfTknUser:

 #include <qsyptkn.h>

 void QsyChkPrfTknUser

 (int *Result,

 unsigned char *Profile_token,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Check Profile Token User (OPM, QSYCHKTU; ILE, QsyChkPrfTknUser) API verifies that the user

profile associated with the token is the same as the current user profile in the thread. No other attributes

associated with the token are compared with the attributes of the current thread.

Authorities and Locks

None

Required Parameter Group

Result OUTPUT; BIN(4)

 The results from the check. If 1 is returned, the profile associated with the token is the same as

the current user profile in the thread. If 0 is returned, the profile associated with the token is

different from the current user profile in the thread.

Profile token

INPUT; CHAR(32)

 The profile token to be checked.

20 iSeries: Security -- Security-related APIs

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2225 E Not able to allocate internal system object.

CPF2274 E Profile token is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &, entered for this API was not valid.

CPF9872 E Program or service program & in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | Security APIs | APIs by category

Check System (QYDOCHKS, QydoCheckSystem) API

 Optional Parameter Group:

1 Results path name

Input Char(*)

2 Length of results path name

Input Binary(4)

3 Format of results path name

Input Char(8)

4 Format of content of results file

Input Char (8)

5 Error code

I/O Char(*)

 Service Program Name: QYDOCHK1

 Default Public Authority: *USE

 Threadsafe: No

The Check System (OPM, QYDOCHKS; ILE, QydoCheckSystem) API checks to see if any key operating

system object has changed since it was signed. If any of these objects is unsigned, it is reported as an

error. Only signatures from a system trusted source are valid.
Note: This API can take several hours to complete.

Security-related APIs 21

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

Authority Required

*AUDIT special authority is required.

 See open() API for the authority needed to the results path name. The file is open for append and

is created if it does not already exist.

Locks Object will be locked shared allow read.

Optional Parameter Group

Results path name.

INPUT; CHAR(*)

 The path name of the object you want to contain the results on this call. This object may not be in

a library (that is, may not be under the /QSYS.LIB directory). The name may be relative to the

current directory or may specify the entire path name. For example to store results in a file called

SIGNED.LST in the MYDIR directory, the results path name would be ’/MYDIR/SIGNED.LST’. If

you are using format OBJN0100, this parameter is assumed to be represented in the coded

character set identifier (CCSID) currently in effect for the job. If the CCSID of the job is 65535,

this parameter is assumed to be represented in the default CCSID of the job.

 If this is an existing file, results will be appended to the end of the file. Otherwise, a new file will

be created.

 The default is not to have a results file.

Length of results path name.

INPUT; BINARY(4)

 The length of the results path name. 0 length means no results file are used, and the results path

name and format of results path name parameter values are not used. If the format of results

path name is OBJN0200, this field must include the QLG path name structure in addition to the

path name itself. If the format of results path name is OBJN0100, only the path name itself is

included.

Format of results path name

INPUT; CHAR(8)

 Format of the results path name

 OBJN0100 The results path name is a simple path name.

OBJN0200 The results path name is an LG-type path name.

Format of content of results path name

INPUT; CHAR(8)

 The format of the contents of the file containing the results of this call.

 RSLT0100 The basic information is returned for each object specified by the object path name parameter.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

22 iSeries: Security -- Security-related APIs

open.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

RSLT0100 format

The following table describes the order and format of the data returned in the RSLT0100 format. This

data is repeated for each object that was attempted to be verified. For detailed descriptions of the fields

in the tables, see “Field Descriptions.”

Note:All data in this file will be in CCSID 1200. New files will be created in this CCSID. If an existing file

is named that has a different CCSID, an error will be reported.

 Offset

Type Field Dec Hex

0 0 CHAR(7) Message identifier

7 7 CHAR(9) Reserved

16 10 CHAR(8) Date

24 18 CHAR(8) Reserved

32 20 CHAR(1) Operation type

33 21 CHAR(15) Operation type description

48 30 CHAR(8) Reserved

56 38 CHAR(*) Fully qualified object name

Field Descriptions

Date. The date the operation took place. The format will be YYYYMMDD. For example, June 30, 2002

will be 20020630.

Fully qualified object name. The simple path name from the root to the object whose signature is being

verified. The field will be terminated with a new line character.

Message identifier. The error message used to report failure. This field is blank if no error was detected

for this object.

Operation type. The operation that was attempted.

 0 Signing operation

1 Verifying operation

2 Checking operation

Operation type description. Short word description of the operation that was attempted.

Reserved. This field currently is not used. It is filled with blanks.

Usage Notes

The following messages can be sent to the joblog and added to records in the Results Path Name.

 Message ID Message Text

CPFB722 D Object not signed.

CPFB723 D Object signed, but signature is not valid.

CPFB72A D The object had no trusted signatures on the object.

CPFB72B D Object not found.

CPFB72C D The object cannot currently be signed or verified.

Security-related APIs 23

Error Messages

 Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9EA6 E QVFYOBJRST system value does not verify object signatures during restore at its current setting.

CPFA08D E Request information value is not valid.

CPFA0A4 E Too many open files for process.

CPFA0AA E Error occurred while attempting to obtain space.

CPFA0D4 E File system error occurred.

CPFB735 E The digital signature API parameter &1 is not large enough.

CPFB736 E The digital signature API parameter &1 is not small enough.

CPFB737 E The digital signature API parameter &1 is a null pointer.

CPFB738 E The digital signature API parameter &1 is not a valid format type.

CPFB739 E The digital signature API parameter &1 is out of range.

CPFB740 E The format name for the pathname is not valid.

CPFB741 E The length of the path name parameter is not valid.

CPFB744 E The format of the results file for the digital signing API is an incorrect value.

CPFB745 E The format name for the results file path name is not valid.

CPFB746 E The results file path name length is not large enough.

CPFB749 E Object signature operation ended abnormally. &1 objects attempted, &2 objects successfully

processed.

CPFB74D E Results file could not be used.

API introduced: V5R3

 Top | Security APIs | APIs by category

24 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Check User Authority to an Object (QSYCUSRA) API

 Required Parameter Group:

1 Authority indicator

Output Char(1)

2 User profile name

Input Char(10)

3 Qualified object name

Input Char(20)

4 Object type

Input Char(10)

5 Authority

Input Char(*)

6 Number of authorities

Input Binary(4)

7 Call level

Input Binary(4)

8 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Check User Authority to Object (QSYCUSRA) API provides an indication of whether the user has the

specified authority to an object.

Authorities and Locks

The following authority is required for the user calling this API, unless the user profile name parameter

is *CURRENT or the name of the profile that is currently running, the caller owns the object, or the object

is an authorization list:

v *OBJMGT authority to the object.

v *READ authority to the user profile.

If the user profile is *CURRENT or the name of the profile that is running currently, the authority to the

user includes any authority specified on the object (private, group, authorization list, or public) plus any

program adopted authority. If the user profile is not *CURRENT or the name of the profile that is

running currently, the authority available to the user is the authority specified on the object.

Adopted authority is authority given to the user by the program for the duration of that program. If

previous programs in the program stack adopt their owner’s authority, the adopted authority for the

current program is the accumulated adopted authority from all other programs in the program stack that

adopt authority.

Security-related APIs 25

Required Parameter Group

Authority indicator

OUTPUT; CHAR(1)

 Whether the user has the specified authority to the object. The field contains one of the following:

 Y The user has the specified authority.

N The user does not have the specified authority.

User profile name

INPUT; CHAR(10)

 The name of the user whose authority is checked.

 You can specify the following special value:

 *Current Checks the authority of the current user to the specified object.

Qualified object name

INPUT; CHAR(20)

 The name of the object whose authority is checked. The first 10 characters specify the object

name; the second 10 characters specify the library. You can use these special values for the library

name:

 *CURLIB The current library is used to locate the object. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the object.

Object type

INPUT; CHAR(10)

 The type of object whose authority is checked.

Authority

INPUT; CHAR(*)

 The authority to check for. This parameter can contain up to eleven 10-character fields. The

following identifies the type of authority the user has to the object:

 *EXCLUDE Exclude authority. If this value is specified, no other values can be specified.

*ALL All authority.

*CHANGE Change authority.

*USE Use authority.

*AUTLMGT Authorization list management authority. This value is only valid if the object type is *AUTL.

*OBJALTER Object alter authority.

*OBJOPR Object operational authority.

*OBJMGT Object management authority.

*OBJEXIST Object existence authority.

*OBJREF Object reference authority.

*READ Read authority.

*ADD Add authority.

*UPD Update authority.

*DLT Delete authority.

*EXECUTE Execute authority.

Number of authorities

INPUT; BINARY(4)

26 iSeries: Security -- Security-related APIs

The number of authorities specified in the authority parameter. You can specify 1 through 11

authorities.

Call level

INPUT; BINARY(4)

 The number of call levels to back up in the program stack to do the authority check. For example,

if the program that calls this API adopts authority, you would probably not want the authority

check to use the adopted authority. Therefore, the authority check should be done at the call level

previous to the current level. This parameter should then contain a 1. You can check the authority

at the various call levels by signifying a numeric equivalent to the call level. For example, to

check the authority at the current call level, specify a 0; to check the authority at the previous call

level, specify a 1.

 This parameter is only used if the user profile name parameter is *CURRENT or the current user

for the job.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF22FA E Authority value &1 not valid.

CPF22FB E Must specify *EXCLUDE or *AUTL as only authority value.

CPF22F7 E Number of authorities must be between 1 and &1.

CPF22F9 E Call level &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3C31 E Object type &1 is not valid.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

Security-related APIs 27

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Check User Special Authorities (QSYCUSRS) API

 Required Parameter Group:

1 Authority indicator

Output Char(1)

2 User profile name

Input Char(10)

3 Special authority

Input Char(*)

4 Number of authorities

Input Binary(4)

5 Call level

Input Binary(4)

6 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Check User Special Authorities (QSYCUSRS) API provides an indication of whether the user has the

specified special authorities.

Authorities and Locks

User Profile Authority

*READ

 When the API checks for special authorities and the user profile name parameter is *CURRENT or the

user who is currently running, the special authorities available to the user include any special authorities

the user or the group has, and any program adopted special authorities. If the user profile specified is not

the user currently running, then the special authorities available to the user are only the special

authorities the user and his group have.

If previous programs in the program stack adopt their owner’s authority, the adopted authority for the

current program is the accumulated adopted authority from all other programs in the program stack that

adopt authority.

Required Parameter Group

Authority indicator

OUTPUT; CHAR(1)

 Whether the user has the specified special authorities.

 This parameter contains one of the following:

 Y The user has the specified special authorities.

28 iSeries: Security -- Security-related APIs

N The user does not have the specified special authorities.

User profile name

INPUT; CHAR(10)

 The name of the user whose special authorities are checked.

 You can specify the following special value:

 *CURRENT The special authorities for the user currently running are checked.

Special authority

INPUT; CHAR(*)

 The special authorities checked for the user. This parameter can contain up to eight 10-character

fields.
Each of the 10-character fields can contain one of the following special values.

 *ALLOBJ All object special authority.

*AUDIT Audit special authority.

*IOSYSCFG Input/output system configuration special authority.

*JOBCTL Job control special authority.

*SAVSYS Save system special authority.

*SECADM Security administrator special authority.

*SERVICE Service special authority.

*SPLCTL Spool control special authority.

Number of authorities

INPUT; BINARY(4)

 The number of special authorities specified in the special authority parameter. You can specify 1

through 8.

Call level

INPUT; BINARY(4)

 The number of call levels to back up in the program stack to do the authority check. For example,

if the program that calls this API adopts authority, you would probably not want the authority

check to use the adopted authority. Therefore, the authority check should be done at the call level

previous to the current level. This parameter should then contain a 1. You can check the authority

at the various call levels by signifying a numeric equivalent to the call level. For example, to

check the authority at the current call level, specify a 0; to check the authority at the previous call

level, specify a 1.

 This parameter is only used if the user profile name parameter is *CURRENT, or the current user

name for the job.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF22F7 E Number of authorities must be between 1 and &1.

CPF22F8 E Special authority value &1 not valid.

CPF22F9 E Call level &1 not valid.

Security-related APIs 29

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2225 E Not able to allocate internal system object.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

QwtClearJuid()—Clear Job User Identity

 Syntax

 #include <qwtjuid.h>

 int QwtClearJuid(void);

 Service Program Name: QWTJUID

 Default Public Authority: *EXCLUDE

 Threadsafe: No; see “Usage Notes” on page 31.

TheQwtClearJuid() function clears any job user identity that was previously set by the QwtSetJuid()

function or by the Set Job User Identity (QWTSJUID) API. This function may only be called when the job

is running single threaded. The job user identity then defaults to the user profile that the job is currently

running under.

Parameters

None

Authorities and Locks

If the job user identity is currently set, then either *USE authority to the user profile associated with the

job user identity or all object (*ALLOBJ) special authority is required. If the job user identity is not

already set, then no authorization is required.

Return Value

[EPERM]

Operation not permitted.

30 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 Function not allowed.

 Function not allowed while running multithreaded.

Usage Notes

The QwtClearJuid() function may be called in a job that allows multiple threads, but only while it is

running single threaded. It explicitly denies access if any secondary threads are active.

API introduced: V4R3

 Top | Security APIs | APIs by category

Convert Authority Values to MI Value (QSYCVTA) API

 Required Parameter Group:

1 Converted authority value

Output Char(2)

2 Authority special value

Input Char(*)

3 Number of authorities

Input Binary(4)

4 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Convert Authority Values to MI Value (QSYCVTA) API converts the special values indicating

authority to the corresponding machine interface (MI) representation of that value.

Required Parameter Group

Converted authority value

OUTPUT; CHAR(2)

 The MI representation of the authority special value in hexadecimal format.

Authority special value

INPUT; CHAR(*)

 The authority special values that are converted. The converted value is the cumulative value of

all authority special values specified. This parameter can contain up to eleven 10-character fields.

Each of the 10-character fields can contain one of the following special values. The following

identifies the authority special values that are converted to the corresponding MI representation

of that value.

Security-related APIs 31

#TOP_OF_PAGE
sec.htm
aplist.htm

*ADD Add authority.

*ALL All authority.

*AUTL Authorization list authority. If this value is specified, no other values can specified. This authority

value is only valid for *PUBLIC authority on an object secured by an authorization list.

*AUTLMGT Authorization list management authority.

*CHANGE Change authority.

*DLT Delete authority.

*EXECUTE Execute authority.

*EXCLUDE Exclude authority. If this value is specified, no other values can be specified.

*OBJALTER Object alter authority.

*OBJEXIST Object existence authority.

*OBJMGT Object management authority.

*OBJOPR Object operational authority.

*OBJREF Object reference authority.

*READ Read authority.

*UPD Update authority.

*USE Use authority.

Number of authorities

INPUT; BINARY(4)

 The number of authority special values specified in the authority special value parameter. You

can specify 1 through 11.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF22FA E Authority value &1 not valid.

CPF22FB E Must specify *EXCLUDE or *AUTL as only authority value.

CPF22F7 E Number of authorities must be between 1 and &1.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

32 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Generate Profile Token (QsyGenPrfTkn) API

 Syntax for QsyGenPrfTkn:

 #include <qsyptkn.h>

 void QsyGenPrfTkn

 (unsigned char *Profile_token,

 char *User_profile_name,

 char *User_password,

 int *Time_out_interval,

 char *Profile_token_type,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Generate Profile Token (QsyGenPrfTkn) API verifies that the caller has authority to generate a profile

token for the requested profile and then generates a profile token. This profile token can be passed to one

or more additional processes which can then use it to perform tasks on behalf of the authenticated user.

This API requires a special value to be specified for the user password parameter. If you need to validate

a user password, see the Generate Profile Token Extended (QsyGenPrfTknE) API.

The Generate Profile Token API follows this process:

v Verifies that the user ID and password value are correct. Incorrect password values and special cases

are handled as follows:

– *NOPWD is not allowed if the user profile name is the name of the user profile running currently.

– To obtain a profile token for a profile that does not have a password, specify *NOPWD,

*NOPWDCHK or *NOPWDSTS for the password parameter.

You cannot obtain a profile token for the following system-supplied user profiles:

 QAUTPROF QDLFM QMSF QSNADS QTSTRQS

 QCLUMGT QDOC QNETSPLF QSPL

 QCOLSRV QDSNX QNFSANON QSPLJOB

 QDBSHR QFNC QNTP QSRVAGT

 QDBSHRDO QGATE QPEX QSYS

 QDFTOWN QLPAUTO QPM400 QTCP

 QDIRSRV QLPINSTALL QRJE QTFTP

– To obtain a profile token for a profile that is disabled, specify *NOPWDCHK for the password

parameter.

– To obtain a profile token when the password is expired, specify *NOPWDCHK or *NOPWDSTS for

the password parameter.
v Generates the profile token designating the user’s authorities.

The maximum number of profile tokens that can be generated is approximately 2,000,000 per system;

after that, the space to store them is full. Message CPF4AAA is sent to the application, and no more

profile tokens can be generated until one is removed.

v Updates the last-used date for the user and its group profiles.

v Resets the signon attempts not valid count to zero when a profile token is successfully generated for a

user.

Security-related APIs 33

v If security-related events are being audited, adds an entry to the QAUDJRN audit journal to indicate

that a profile token is created.

Authorities and Locks

API Public Authority

*USE

User profile authority

*USE

User Profile Lock

*LSRD

Required Parameter Group

Profile token

OUTPUT; CHAR(32)

 The profile token that is generated.

User profile name

INPUT; CHAR(10)

 The name of the user for which to generate the profile token.

User password

INPUT; CHAR(10)

 The password value used to generate the profile token.

 Only special values are allowed for this parameter. A special value must be a 10 character, blank

padded value in CCSID 37.

 One of the following special values must be specified:

 *NOPWD The user requesting the profile token must have *USE authority to the user profile.

A profile token does not get created for a disabled user profile.

A profile token does not get created for a user profile with an expired password.

This value is not allowed if the name of the currently running profile is specified for the user

profile name parameter.

*NOPWDCHK The user requesting the profile token must have *USE authority to the user profile.

If the profile is disabled, the user requesting the profile token must have *ALLOBJ and *SECADM

special authorities to get a token.

If the password is expired, the user requesting the profile token must have *ALLOBJ and

*SECADM special authorities to get a token.

*NOPWDSTS The user requesting the profile token must have *USE authority to the user profile.

A profile token does not get created for a disabled user profile.

If the password is expired, the user requesting the profile token must have *ALLOBJ and

*SECADM special authorities to get a token.

Time out interval

INPUT; BINARY(4)

 The time before the profile token times out.

34 iSeries: Security -- Security-related APIs

You can specify one of the following values:

 -1 Use system default value (3600 seconds)

1-3600 Time out value in seconds.

Profile token type

INPUT; CHAR(1)

 The type of the profile token to be generated.

 You can specify one of the following values:

 1 Single-use profile token. A single-use profile token can be used only on the Set To Profile Token

(QSYSETPT; QsySetToProfileToken) API once and cannot be used to generate new profile tokens.

2 Multiple-use profile token. A multiple-use profile token can be used on the Set To Profile Token

(QSYSETPT; QsySetToPrfTkn) API an unlimited number of times, but cannot be used to generate

new profile tokens.

3 Multiple-use, regenerable profile token. A multiple-use, regenerable profile token can be used on

the Set To Profile Token (QSYSETPT; QsySetToPrfTkn) API an unlimited number of times and can

be used to generate a new single-use, multiple-use, or multiple-use, regenerable profile token.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF22E3 E User profile &1 is disabled.

CPF22E4 E Password for user profile &1 has expired.

CPF22E9 E *USE authority to user profile &1 required.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF227F E *NOPWD not allowed for current user.

CPF3CF1 E Error code parameter not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AAA E Maximum number of profile tokens have been generated.

CPF4AAB E Time out value not valid.

CPF4AAD E Profile token type not valid.

CPF4AB8 E Insufficient authority for user profile &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R5

 Top | Security APIs | APIs by category

Security-related APIs 35

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Generate Profile Token (QSYGENPT) API

 Required Parameter Group:

1 Profile token

Output Char(32)

2 User profile name

Input Char(10)

3 User password

Input Char(*)

4 Time out interval

Input Bin(4)

5 Profile token type

Input Char(1)

6 Error code

I/O Char(*)
 Optional Parameter Group:

7 Length of user password

Input Bin(4)

8 CCSID of user password

Input Bin(4)

 Default Public Authority: *USE

 Service Program: QSYPTKN

 Threadsafe: Yes

The Generate Profile Token (OPM, QSYGENPT) API verifies that the caller has authority to generate a

profile token for the requested profile and then generates a profile token. This profile token can be passed

to one or more additional processes which can then use it to perform tasks on behalf of the authenticated

user.

The Generate Profile Token API follows this process:

v Verifies that the user ID and password value are correct. Incorrect password values and special cases

are handled as follows:

– If the password is not correct, the incorrect password count is increased. (The QMAXSIGN system

value contains the maximum number of incorrect attempts to sign on.) If the QMAXSGNACN

system value is set to disable the user profile, repeated attempts to generate a profile token using an

incorrect password disables the user ID. This keeps applications from methodically determining user

passwords.

36 iSeries: Security -- Security-related APIs

– *NOPWD is not allowed if the user profile name is the name of the user profile running currently.

– To obtain a profile token for a profile that does not have a password, specify *NOPWDCHK or

*NOPWDSTS for the password parameter.

You cannot obtain a profile token for the following system-supplied user profiles:

 QAUTPROF QDLFM QMSF QSNADS QTSTRQS

 QCLUMGT QDOC QNETSPLF QSPL

 QCOLSRV QDSNX QNFSANON QSPLJOB

 QDBSHR QFNC QNTP QSRVAGT

 QDBSHRDO QGATE QPEX QSYS

 QDFTOWN QLPAUTO QPM400 QTCP

 QDIRSRV QLPINSTALL QRJE QTFTP

–

To obtain a profile token for a profile that is disabled, specify *NOPWDCHK for the password

parameter.

–

To obtain a profile token when the password is expired, specify *NOPWDCHK or *NOPWDSTS

for the password parameter.

v Generates the profile token designating the user’s authorities.

The maximum number of profile tokens that can be generated is approximately 2,000,000; after that,

the space to store them is full. Message CPF4AAA is sent to the application, and no more profile

tokens can be generated until one is removed.

v Updates the last-used date for the user and its group profiles.

v Resets the signon attempts not valid count to zero when a profile token is successfully generated for a

user.

v If security-related events are being audited, adds an entry to the QAUDJRN audit journal to indicate

that a profile token is created.

Authorities and Locks

API Public Authority

*USE

User profile authority, if the password is *NOPWD *NOPWDCHK or *NOPWDSTS.

*USE

User Profile Lock

*LSRD

Required Parameter Group

Profile token

OUTPUT; CHAR(32)

 The profile token that is generated.

User profile name

INPUT; CHAR(10)

 The name of the user for which to generate the profile token.

User password

INPUT; CHAR(*)

 The password of the user for which to generate the profile token

or a special value.

 Password of the user

v Length of password and CCSID of password are required

Security-related APIs 37

Special value

v Length of password and CCSID of password are not allowed when specifying a special value.

v A special value must be a 10 character, blank padded value in CCSID 37.

v

v Special values allowed are:

 *NOPWD

The user requesting the profile token must have *USE authority to the user profile.

A profile token does not get created for a disabled user profile.

A profile token does not get created for a user profile with an expired password.

This value is not allowed if the name of the currently running profile is specified for the user

profile name parameter.

*NOPWDCHK The user requesting the profile token must have *USE authority to the user profile.

If the profile is disabled, the user requesting the profile token must have *ALLOBJ and

*SECADM special authorities to get a token.

If the password is expired, the user requesting the profile token must have *ALLOBJ and

*SECADM special authorities to get a token.

*NOPWDSTS The user requesting the profile token must have *USE authority to the user profile.

A profile token does not get created for a disabled user profile.

If the password is expired, the user requesting the profile token must have *ALLOBJ and

*SECADM special authorities to get a token.

Time out interval

INPUT; BINARY(4)

 The time before the profile token times out.

 You can specify one of the following values:

 -1 Use system default value (3600 seconds)

1-3600 Time out value in seconds.

Profile token type

INPUT; CHAR(1)

 The type of the profile token to be generated.

 You can specify one of the following values:

 1 Single-use profile token. A single-use profile token can be used only on the Set To Profile Token

(QSYSETPT; QsySetToProfileToken) API once and cannot be used to generate new profile tokens.

2 Multiple-use profile token. A multiple-use profile token can be used on the Set To Profile Token

(QSYSETPT; QsySetToPrfTkn) API an unlimited number of times, but cannot be used to generate

new profile tokens.

3 Multiple-use, regenerable profile token. A multiple-use, regenerable profile token can be used on

the Set To Profile Token (QSYSETPT; QsySetToPrfTkn) API an unlimited number of times and can

be used to generate a new single-use, multiple-use, or multiple-use, regenerable profile token.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

38 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Optional Parameter Group

This parameter group is required when specifying a password for the password parameter. It is not

allowed when specifying a special value.

Length of user password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the user password parameter.

The valid values are:

 1-512 The length of the password in the user password parameter.

CCSID of user password

INPUT; BINARY(4)

 The CCSID of the user password parameter. For a list of valid CCSIDs, see the Globalization

topic in the iSeries Information Center.

 The valid values are:

 -1

The current password level for the system is used to

determine the CCSID of the password data. When calling

this API on password level 0 or 1, CCSID 37 is used.

When calling this API on password level 2 or 3, the

default CCSID (DFTCCSID) job attribute is used. See

usage notes for more details.

0 The CCSID of the job is used to determine the CCSID of

the data to be converted. If the job CCSID is 65535, the

CCSID from the default CCSID (DFTCCSID) job attribute

is used.

1-65533 A valid CCSID in this range.

Usage Notes

The CCSID parameter on this API can lead to potential problems if coded with inconsistent CCSID

values. Passwords created using the CRTUSRPRF, CHGUSRPRF, and CHGPWD CL commands, as well as

the QSYCHGPW API (when called without passing the CCSID parameter), while the system is running

password level 0 or 1 are created using CCSID 37. Passwords created using these CL commands and the

QSYCHGPW API (without the CCSID parameter specified) when running password level 2 or 3 are

created using the default job CCSID. Using variant characters $, @ and #, as well as other variant

characters, in a user password may result in inconsistencies when converting from one CCSID to another.

When calling this API on password level 0 or 1, CCSID 37 should be specified unless the password string

is in a known CCSID. When calling this API on password level 2 or 3, pass the default job CCSID unless

the password string is in a known CCSID.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF227F E *NOPWD not allowed for current user.

CPF22E2 E Password not correct for user profile &1.

CPF22E3 E User profile &1 is disabled.

CPF22E4 E Password for user profile &1 has expired.

Security-related APIs 39

Message ID Error Message Text

CPF22E5 E No password associated with user profile &1.

CPF22E9 E *USE authority to user profile &1 required.

CPF3BC7 E CCSID &1 outside of valid range.

CPF3BDE E CCSID &1 not supported by API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C3C E

Value for parameter &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF4AAA E Maximum number of profile tokens have been generated.

CPF4AAB E Time out value not valid.

CPF4AAD E Profile token type not valid.

CPF4AB8 E Insufficient authority for user profile &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R5

 Top | Security APIs | APIs by category

Generate Profile Token Extended (QsyGenPrfTknE) API

 Syntax for QsyGenPrfTknE:

 #include <qsyptkn.h>

 void QsyGenPrfTknE

 (unsigned char *Profile_token,

 char *User_profile_name,

 char *User_password,

 int Length_of_user_password,

 unsigned int CCSID_of_user_password,

 int Time_out_interval,

 char Profile_token_type,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Generate Profile Token Extended (QsyGenPrfTknE) API verifies that the caller has authority to

generate a profile token for the requested profile and then generates a profile token. This profile token

can be passed to one or more additional processes which can then use it to perform tasks on behalf of the

authenticated user.

This API requires the password for the profile to be specified. If you need to generate a profile token

for a profile without specifying the password, see the Generate Profile Token (QsyGenPrfTkn) API.

The Generate Profile Token API follows this process:

v Verifies that the user ID and password value are correct. Incorrect password values and special cases

are handled as follows:

40 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

– If the password is not correct, the incorrect password count is increased. (The QMAXSIGN system

value contains the maximum number of incorrect attempts to sign on.) If the QMAXSGNACN

system value is set to disable the user profile, repeated attempts to generate a profile token using an

incorrect password disables the user ID. This keeps applications from methodically determining user

passwords.

– To obtain a profile token for a profile that does not have a password,

use the Generate Profile

Token (QsyGenPrfTkn) API.

–

To obtain a profile token for a profile that is disabled, use the Generate Profile Token

(QsyGenPrfTkn) API.

–

To obtain a profile token when the password is expired, use the Generate Profile Token

(QsyGenPrfTkn) API.

v Generates the profile token designating the user’s authorities.

The maximum number of profile tokens that can be generated is approximately 2,000,000; after that,

the space to store them is full. Message CPF4AAA is sent to the application, and no more profile

tokens can be generated until one is removed.

v Updates the last-used date for the user and its group profiles.

v Resets the signon attempts not valid count to zero when a profile token is successfully generated for a

user.

v If security-related events are being audited, adds an entry to the QAUDJRN audit journal to indicate

that a profile token is created.

Authorities and Locks

API Public Authority

*USE

User Profile Lock

*LSRD

Required Parameter Group

Profile token

OUTPUT; CHAR(32)

 The profile token that is generated.

User profile name

INPUT; CHAR(10)

 The name of the user for which to generate the profile token.

User password

INPUT; CHAR(*)

 The password of the user for which to generate the profile token.

Special values are not allowed for this parameter.

Length of user password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the user password parameter.

Security-related APIs 41

The valid values are:

 1-512 The length of the password in the password parameter.

CCSID of user password

INPUT; BINARY(4)

 The CCSID of the user password parameter. For a list of valid CCSIDs, see the Globalization

topic in the iSeries Information Center.

 The valid values are:

 -1

The current password level for the system is used to

determine the CCSID of the password data. When calling

this API on password level 0 or 1, CCSID 37 is used.

When calling this API on password level 2 or 3, the

default CCSID (DFTCCSID) job attribute is used. See

usage notes for more details.

0 The CCSID of the job is used to determine the CCSID of

the data to be converted. If the job CCSID is 65535, the

CCSID from the default CCSID (DFTCCSID) job attribute

is used.

1-65533 A valid CCSID in this range.

Time out interval

INPUT; BINARY(4)

 The time before the profile token times out.

 You can specify one of the following values:

 -1 Use system default value (3600 seconds)

1-3600 Time out value in seconds.

Profile token type

INPUT; CHAR(1)

 The type of the profile token to be generated.

 You can specify one of the following values:

 1 Single-use profile token. A single-use profile token can be used only on the Set To Profile Token

(QSYSETPT; QsySetToProfileToken) API once and cannot be used to generate new profile tokens.

2 Multiple-use profile token. A multiple-use profile token can be used on the Set To Profile Token

(QSYSETPT; QsySetToPrfTkn) API an unlimited number of times, but cannot be used to generate

new profile tokens.

3 Multiple-use, regenerable profile token. A multiple-use, regenerable profile token can be used on

the Set To Profile Token (QSYSETPT; QsySetToPrfTkn) API an unlimited number of times and can

be used to generate a new single-use, multiple-use, or multiple-use, regenerable profile token.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Usage Notes

The CCSID parameter on this API can lead to potential problems if coded with inconsistent CCSID

values. Passwords created using the CRTUSRPRF, CHGUSRPRF, and CHGPWD CL commands, as well as

42 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

the QSYCHGPW API (when called without passing the CCSID parameter), while the system is running

password level 0 or 1 are created using CCSID 37. Passwords created using these CL commands and the

QSYCHGPW API (without the CCSID parameter specified) when running password level 2 or 3 are

created using the default job CCSID. Using variant characters $, @ and #, as well as other variant

characters, in a user password may result in inconsistencies when converting from one CCSID to another.

When calling this API on password level 0 or 1, CCSID 37 should be specified unless the password string

is in a known CCSID. When calling this API on password level 2 or 3, pass the default job CCSID unless

the password string is in a known CCSID.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF227F E *NOPWD not allowed for current user.

CPF22E2 E Password not correct for user profile &1.

CPF22E3 E User profile &1 is disabled.

CPF22E4 E Password for user profile &1 has expired.

CPF22E5 E No password associated with user profile &1.

CPF22E9 E *USE authority to user profile &1 required.

CPF3BC7 E CCSID &1 outside of valid range.

CPF3BDE E CCSID &1 not supported by API.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AAA E Maximum number of profile tokens have been generated.

CPF4AAB E Time out value not valid.

CPF4AAD E Profile token type not valid.

CPF4AB8 E Insufficient authority for user profile &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | Security APIs | APIs by category

Security-related APIs 43

#TOP_OF_PAGE
sec.htm
aplist.htm

Generate Profile Token From Profile Token (QSYGENFT,

QsyGenPrfTknFromPrfTkn) API

 Required Parameter Group for QSYGENFT:

1 New profile token

Output Char(32)

2 From profile token

Input Char(32)

3 Time out interval

Input Bin(4)

4 New profile token type

Input Char(1)

5 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

 Syntax for QsyGenPrfTknFromPrfTkn:

 #include <qsyptkn.h>

 void QsyGenPrfTknFromPrfTkn

 (unsigned char *New_profile_token,

 unsigned char *From_profile_token,

 int *Time_out_interval,

 char *New_profile_token_type,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Generate Profile Token From Profile Token (OPM, QSYGENFT; ILE, QsyGenPrfTknFromPrfTkn) API

generates a profile token using an existing profile token. The existing profile token must be a valid,

multiple-use, regenerable profile token. The new profile token will represent the same user and group

information as the original profile token.

Authorities and Locks

API Public Authority

*USE

44 iSeries: Security -- Security-related APIs

Required Parameter Group

Profile token

OUTPUT; CHAR(32)

 The profile token that is generated.

From profile token

INPUT; CHAR(32)

 The multiple-use, regenerable profile token used to generate the new profile token.

Time out interval

INPUT; BINARY(4)

 The time in seconds before the new profile token times out.

 You can specify one of the following values:

 -1 Use system default value (3600 seconds)

1-3600 Time out value in second.

New profile token type

INPUT; CHAR(1)

 You can specify one of the following values:

 1 Single-use profile token. A single-use profile token can be used only on the Set To Profile Token

(QSYSETPT; QsySetToProfileToken) API once and cannot be used to generate new profile tokens.

2 Multiple-use profile token. A multiple-use profile token can be used on the Set To Profile Token

(QSYSETPT; QsySetToPrfTkn) API an unlimited number of times, but cannot be used to generate

new profile tokens.

3 Multiple-use, regenerable profile token. A multiple-use, regenerable profile token can be used on

the Set To Profile Token (QSYSETPT; QsySetToPrfTkn) API an unlimited number of times and can

be used to generate a new single-use, multiple-use, or multiple-use, regenerable profile token.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2225 E Not able to allocate internal system object.

CPF2274 E Profile token not valid.

CPF229F E Profile token not valid type.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AAA E Maximum number of profile tokens have been generated.

CPF4AAB E Time out value not valid.

CPF4AAD E Profile token type not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R5

 Top | Security APIs | APIs by category

Security-related APIs 45

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Get Profile Handle (QSYGETPH) API

 Required Parameter Group:

1 User ID

Input Char(10)

2 Password

Input Char(*)

3 Profile handle

Output Char(12)
 Optional Parameter Group 1:

4 Error code

I/O Char(*)
 Optional Parameter Group 2:

5 Length of password

Input Bin(4)

6 CCSID of password

Input Bin(4)

 Default Public Authority: *USE

 Threadsafe: Yes

The Get Profile Handle (QSYGETPH) API validates user IDs and passwords and creates a profile handle

for use in jobs that run under more than one user profile. The profile handle is temporary; you can use it

only in the job that created it.

The QSYGETPH API follows this process:

v Verifies that the user ID and password are correct. Incorrect passwords and special cases are handled

as follows:

– If the password is not correct, the incorrect password count is increased. (The QMAXSIGN system

value contains the maximum number of incorrect attempts to sign on.) If the QMAXSGNACN

system value is set to disable the user profile, repeated attempts to validate an incorrect password

disable the user ID. This keeps applications from methodically determining user passwords.

– To obtain a profile handle for a profile that does not have a password,

specify *NOPWD,

*NOPWDCHK or *NOPWDSTS for the password parameter.

You cannot obtain a profile handle for the following system-supplied user profiles:

 QAUTPROF QDLFM QMSF QSNADS QTSTRQS

 QCLUMGT QDOC QNETSPLF QSPL

 QCOLSRV QDSNX QNFSANON QSPLJOB

46 iSeries: Security -- Security-related APIs

QDBSHR QFNC QNTP QSRVAGT

 QDBSHRDO QGATE QPEX QSYS

 QDFTOWN QLPAUTO QPM400 QTCP

 QDIRSRV QLPINSTALL QRJE QTFTP

–

To obtain a profile handle for a profile that is disabled, specify *NOPWDCHK for the password

parameter.

–

To obtain a profile handle when the password is expired, specify *NOPWDCHK or *NOPWDSTS

for the password parameter.

v Generates the profile handle, a 12-character random string designating the user’s authorities. This

string, not the user’s password, supplies the Set Profile Handle (QWTSETP, QsySetProfileHandle) and

the Release Profile Handle (QSYRLSPH, QsyReleaseHandle) APIs.

The maximum number of profile handles that can be created is approximately 20,000 per job; after that,

the space to store them is full. Message CPF22E6 is sent to the application, and QSYGETPH stops

generating profile handles.

Be sure to keep track of the profile handles created in the calling application. If the application calls

QSYGETPH twice with the same user profile and password, QSYGETPH returns two different profile

handles. Either handle can be used, but generating and using just one is more efficient.

v Updates the last-used date for the user and group profiles.

v Resets the signon attempts not valid count to zero.

v If security-related events are being audited, adds an entry to the QAUDJRN audit journal to indicate

that a profile handle is created.

Authorities and Locks

API Public Authority

*USE

User profile authority, if the password is *NOPWD,

*NOPWDCHK or *NOPWDSTS.

*USE

User Profile Lock

*LSRD

Required Parameter Group

User ID

INPUT; CHAR(10)

 The user ID of the profile for which the handle is being created.

A user ID must be a 10

character, blank padded value in CCSID 37.

 You can specify the following special value:

 *CURRENT A handle is generated with the current

thread information.

When specifying *CURRENT, password is ignored and length of password and CCSID of password

are not allowed.

Password

INPUT; CHAR(*)

Security-related APIs 47

The password for the user ID

or a special value.

 Password for the user ID

v Length of password and CCSID of password are required

Special value

v Length of password and CCSID of password are not allowed when specifying a special value.

v A special value must be a 10 character, blank padded value in CCSID 37.

v Special values allowed are:

 *NOPWD

The user requesting the profile handle must have *USE authority to the user profile.

A profile handle does not get created for a disabled user profile.

A profile handle does not get created for a user profile with an expired password.

*NOPWDCHK

The user requesting the profile handle must have *USE authority to the user profile.

If the profile is disabled, the user requesting the profile handle must have *ALLOBJ and

*SECADM special authorities to get a handle.

If the password is expired, the user requesting the profile handle must have *ALLOBJ and

*SECADM special authorities to get a handle.

*NOPWDSTS The user requesting the profile handle must have *USE authority to the user profile.

A profile handle does not get created for a disabled user profile.

If the password is expired, the user requesting the profile handle must have *ALLOBJ and

*SECADM special authorities to get a handle.

Profile handle

OUTPUT; CHAR(12)

 A unique string or handle designating the user profile to use as input to other routines. The

handle is temporary; you can use it only in the job that created it.

Optional Parameter Group 1

This parameter group is required when specifying a password for the password parameter. It is

optional when specifying a special value.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 2

This parameter group is required when specifying a password for the password parameter. It is not

allowed when specifying a special value.

Length of password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the user profile password parameter.

 The valid values are:

 1-512 The length of the password in the password parameter.

48 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

CCSID of password

INPUT; BINARY(4)

 The CCSID of the password parameter. For a list of valid CCSIDs, see the Globalization topic in

the iSeries Information Center.

 The valid values are:

 -1

The current password level for the system is used to

determine the CCSID of the password data. When calling

this API on password level 0 or 1, CCSID 37 is used.

When calling this API on password level 2 or 3, the

default CCSID (DFTCCSID) job attribute is used. See

usage notes for more details.

0 The CCSID of the job is used to determine the CCSID of

the data to be converted. If the job CCSID is 65535, the

CCSID from the default CCSID (DFTCCSID) job attribute

is used.

1-65533 A valid CCSID in this range.

Usage Notes

Profile handles are a limited resource; it is possible to run out of handles. To guarantee that you always

have a profile handle to switch back to, it is recommended that you get a profile handle for both the

current

thread and the user profile

to which you plan to switch. If for some reason you cannot do

this, and if you cannot get a profile handle that will allow you to switch back, then it probably is safest

to end the thread or job.

The CCSID parameter on this API can lead to potential problems if coded with inconsistent CCSID

values. Passwords created using the CRTUSRPRF, CHGUSRPRF, and CHGPWD CL commands, as well as

the QSYCHGPW API (when called without passing the CCSID parameter), while the system is running

password level 0 or 1 are created using CCSID 37. Passwords created using these CL commands and the

QSYCHGPW API (without the CCSID parameter specified) when running password level 2 or 3 are

created using the default job CCSID. Using variant characters $, @ and #, as well as other variant

characters, in a user password may result in inconsistencies when converting from one CCSID to another.

When calling this API on password level 0 or 1, CCSID 37 should be specified unless the password string

is in a known CCSID. When calling this API on password level 2 or 3, pass the default job CCSID unless

the password string is in a known CCSID.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF22E2 E Password not correct for user profile &1.

CPF22E3 E User profile &1 is disabled.

CPF22E4 E Password for user profile &1 has expired.

CPF22E5 E No password associated with user profile &1.

CPF22E6 E Maximum number of profile handles have been generated.

CPF22E9 E *USE authority to user profile &1 required.

CPF24B4 E Severe error while addressing parameter list.

CPF3BC7 E CCSID &1 outside of valid range.

CPF3BDE E CCSID &1 not supported by API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C3C E

Value for parameter &1 not valid.

Security-related APIs 49

Message ID Error Message Text

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF4AB8 E Insufficient authority for user profile &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | Security APIs | APIs by category

Get Profile Handle (QsyGetProfileHandle) API

 Syntax for QsyGetProfileHandle:

 #include <qsyphandle.h>

 void QsyGetProfileHandle

 (unsigned char *Profile_handle,

 char *User_ID,

 char *Password,

 int Length_of_password,

 unsigned int CCSID_of_password,

 void *Error_code);

 Service Program: QSYPHANDLE

 Default Public Authority: *USE

 Threadsafe: Yes

The Get Profile Handle (QsyGetProfileHandle) API validates user IDs and passwords and creates a

profile handle, for use in jobs that run under more than one user profile. The profile handle is temporary;

you can use it only in the job that created it.

This API requires the password for the user ID to be specified. If you need to create a profile handle

for a user ID without specifying the password, see the Get Profile Handle No Password

(QsyGetProfileHandleNoPwd) API.

The Get Profile Handle API follows this process:

v Verifies that the user ID and password are correct. Incorrect passwords and special cases are handled

as follows:

–

– If the password is not correct, the incorrect password count is increased. (The QMAXSIGN system

value contains the maximum number of incorrect attempts to sign on.) If the QMAXSGNACN

system value is set to disable the user profile, repeated attempts to validate an incorrect password

disables the user ID. This keeps applications from methodically determining user passwords.

–

To obtain a profile handle for *CURRENT user, use the Get Profile Handle No Password

(QsyGetProfileHandleNoPwd) API.

50 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

– To obtain a profile handle for a profile that does not have a password,

use the Get Profile Handle

No Password (QsyGetProfileHandleNoPwd) API.

v

To obtain a profile handle for a profile that is disabled, use the Get Profile Handle No Password

(QsyGetProfileHandleNoPwd) API.

v

To obtain a profile handle when the password is expired, use the Get Profile Handle No Password

(QsyGetProfileHandleNoPwd) API.

v Generates the profile handle, a 12-character random string designating the user’s authorities. This

string, not the user’s password, supplies the Set Profile Handle (QWTSETP, QsySetProfileHandle) and

the Release Profile Handle (QSYRLSPH, QsyReleaseHandle) APIs.

The maximum number of profile handles that can be created is approximately 20,000 per job; after that,

the space to store them is full. Message CPF22E6 is sent to the application, and Get Profile Handle

stops generating profile handles.

Be sure to keep track of the profile handles created in the calling application. If the application calls

Get Profile Handle twice with the same user profile and password, Get Profile Handle returns two

different profile handles. Either handle can be used, but generating and using just one is more efficient.

v Updates the last-used date for the user and group profiles.

v Resets the signon attempts not valid count to zero.

v If security-related events are being audited, adds an entry to the QAUDJRN audit journal to indicate

that a profile handle is created.

Authorities and Locks

API Public Authority

*USE

User Profile Lock

*LSRD

Required Parameter Group

Profile handle

OUTPUT; CHAR(12)

 A unique string or handle designating the user profile to use as input to other routines. The

handle is temporary; you can use it only in the job that created it.

User ID

INPUT; CHAR(10)

 The user ID of the profile for which the handle is being created.

A user ID must be a 10

character, blank padded value in CCSID 37.

Password

INPUT; CHAR(*)

 The password for the user ID.

Special values are not allowed for this parameter.

Security-related APIs 51

Length of password

INPUT; BINARY(4)

 The length, in bytes, of the password contained in the user profile password parameter.

The valid values are:

 1-512 The length of the password in the password parameter.

CCSID of password

INPUT; BINARY(4)

 The CCSID of the password parameter. For a list of valid CCSIDs, see the Globalization topic in

the iSeries Information Center.

 The valid values are:

 -1

The current password level for the system is used to

determine the CCSID of the password data. When calling

this API on password level 0 or 1, CCSID 37 is used.

When calling this API on password level 2 or 3, the

default CCSID (DFTCCSID) job attribute is used. See

usage notes for more details.

0 The CCSID of the job is used to determine the CCSID of

the data to be converted. If the job CCSID is 65535, the

CCSID from the default CCSID (DFTCCSID) job attribute

is used.

1-65533 A valid CCSID in this range.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Usage Notes

Profile handles are a limited resource; it is possible to run out of handles. To guarantee that you always

have a profile handle to switch back to, it is recommended that you get a profile handle for both the

current

thread and the user profile

to which you plan to switch. If for some reason you cannot do

this, and if you cannot get a profile handle that will allow you to switch back, then it probably is safest

to end the thread or job.

The CCSID parameter on this API can lead to potential problems if coded with inconsistent CCSID

values. Passwords created using the CRTUSRPRF, CHGUSRPRF, and CHGPWD CL commands, as well as

the QSYCHGPW API (when called without passing the CCSID parameter), while the system is running

password level 0 or 1 are created using CCSID 37. Passwords created using these CL commands and the

QSYCHGPW API (without the CCSID parameter specified) when running password level 2 or 3 are

created using the default job CCSID. Using variant characters $, @ and #, as well as other variant

characters, in a user password may result in inconsistencies when converting from one CCSID to another.

When calling this API on password level 0 or 1, CCSID 37 should be specified unless the password string

is in a known CCSID. When calling this API on password level 2 or 3, pass the default job CCSID unless

the password string is in a known CCSID.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

52 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF22E2 E Password not correct for user profile &1.

CPF22E3 E User profile &1 is disabled.

CPF22E4 E Password for user profile &1 has expired.

CPF22E5 E No password associated with user profile &1.

CPF22E6 E Maximum number of profile handles have been generated.

CPF22E9 E *USE authority to user profile &1 required.

CPF3BC7 E CCSID &1 outside of valid range.

CPF3BDE E CCSID &1 not supported by API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C3C E

Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF4AB8 E Insufficient authority for user profile &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

Get Profile Handle No Password (QsyGetProfileHandleNoPwd) API

 Syntax for QsyGetProfileHandleNoPwd:

 #include <qsyphandle.h>

 void QsyGetProfileHandleNoPwd

 (unsigned char *Profile_handle,

 char *User_ID,

 char *Password_value,

 void *Error_code);

 Service Program: QSYPHANDLE

 Default Public Authority: *USE

 Threadsafe: Yes

The Get Profile Handle No Password (QsyGetProfileHandleNoPwd) API validates user IDs and creates a

profile handle, for use in jobs that run under more than one user profile. The profile handle is temporary;

you can use it only in the job that created it.

This API requires a special value to be specified for the password value parameter. If you need to

validate a user password, see the Get Profile Handle (QsyGetProfileHandle) API.

The Get Profile Handle No Password API follows this process:

v Verifies that the user ID and password value are correct. Incorrect password values and special cases

are handled as follows:

– To obtain a profile handle for a profile that does not have a password, specify *NOPWD,

*NOPWDCHK or *NOPWDSTS for the password parameter.

Security-related APIs 53

#TOP_OF_PAGE
sec.htm
aplist.htm

You cannot obtain a profile handle for the following system-supplied user profiles:

 QAUTPROF QDLFM QMSF QSNADS QTSTRQS

 QCLUMGT QDOC QNETSPLF QSPL

 QCOLSRV QDSNX QNFSANON QSPLJOB

 QDBSHR QFNC QNTP QSRVAGT

 QDBSHRDO QGATE QPEX QSYS

 QDFTOWN QLPAUTO QPM400 QTCP

 QDIRSRV QLPINSTALL QRJE QTFTP

– To obtain a profile handle for a profile that is disabled, specify *NOPWDCHK for the password

parameter.

– To obtain a profile handle when the password is expired, specify *NOPWDCHK or *NOPWDSTS for

the password parameter.
v Generates the profile handle, a 12-character random string designating the user’s authorities. This

string, not the user’s password, supplies the Set Profile Handle (QWTSETP, QsySetProfileHandle) and

the Release Profile Handle (QSYRLSPH, QsyReleaseHandle) APIs.

The maximum number of profile handles that can be created is approximately 20,000 per job; after that,

the space to store them is full. Message CPF22E6 is sent to the application, and Get Profile Handle

stops generating profile handles.

Be sure to keep track of the profile handles created in the calling application. If the application calls

Get Profile Handle twice with the same user profile and password, Get Profile Handle returns two

different profile handles. Either handle can be used, but generating and using just one is more efficient.

v Updates the last-used date for the user and group profiles.

v Resets the signon attempts not valid count to zero.

v If security-related events are being audited, adds an entry to the QAUDJRN audit journal to indicate

that a profile handle is created.

Authorities and Locks

API Public Authority

*USE

User profile authority

*USE

User Profile Lock

*LSRD

Required Parameter Group

Profile handle

OUTPUT; CHAR(12)

 A unique string or handle designating the user profile to use as input to other routines. The

handle is temporary; you can use it only in the job that created it.

User ID

INPUT; CHAR(10)

 The user ID of the profile for which the handle is being created. A user ID must be a 10 character,

blank padded value in CCSID 37.

 You can specify the following special value:

 *CURRENT A handle is generated with the current thread information.

54 iSeries: Security -- Security-related APIs

Password value

INPUT; CHAR(10)

 The password value for the user ID.

 Only special values are allowed for this parameter. A special value must be a 10 character, blank

padded value in CCSID 37.

 You must specify one of the following special values:

 *NOPWD The user requesting the profile handle must have *USE authority to the user profile.

A profile handle does not get created for a disabled user profile.

A profile handle does not get created for a user profile with an expired password.

*NOPWDCHK The user requesting the profile handle must have *USE authority to the user profile.

If the profile is disabled, the user requesting the profile handle must have *ALLOBJ and

*SECADM special authorities to get a handle.

If the password is expired, the user requesting the profile handle must have *ALLOBJ and

*SECADM special authorities to get a handle.

*NOPWDSTS The user requesting the profile handle must have *USE authority to the user profile.

A profile handle does not get created for a disabled user profile.

If the password is expired, the user requesting the profile handle must have *ALLOBJ and

*SECADM special authorities to get a handle.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Usage Notes

Profile handles are a limited resource. It is possible to run out. Therefore, to guarantee that you will

always have a profile handle to switch back to, it is recommended that you get a profile handle for both

the current thread and the user profile you plan to switch to. If for some reason you cannot do this, and

if you cannot get a profile handle that will allow you to switch back then it is probably safest to just end

the thread or job.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF22E3 E User profile &1 is disabled.

CPF22E4 E Password for user profile &1 has expired.

CPF22E6 E Maximum number of profile handles have been generated.

CPF22E9 E *USE authority to user profile &1 required.

CPF3C90 E Literal value cannot be changed.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF4AB8 E Insufficient authority for user profile &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Security-related APIs 55

error.htm#HDRERRCOD
error.htm#HDRERRCOD

API introduced: V5R3

 Top | Security APIs | APIs by category

Get Profile Token Time Out (QSYGETPT, QsyGetPrfTknTimeOut) API

 Required Parameter Group for QSYGETPT:

1 Time out

Output Binary(4)

2 Profile token

Input Char(32)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

 Syntax for QsyGetPrfTknTimeOut:

 #include <qsyptkn.h>

 void QsyGetPrfTknTimeOut

 (int *Time_out,

 unsigned char *Profile_token,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Get Profile Token Time Out (OPM, QSYGETPT; ILE, QsyGetPrfTknTimeOut) API gets the number of

seconds until a profile token is not valid.

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Time out

OUTPUT; BINARY(4)

 The seconds until the profile token times out. If 0 is returned, the profile token is no longer valid.

56 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Profile token

Input; CHAR(32)

 The profile token for which to get the time out.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2225 E Not able to allocate internal system object.

CPF2274 E Profile token is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R5

 Top | Security APIs | APIs by category

Invalidate Profile Token (QSYINVPT, QsyInvalidatePrfTkn) API

 Required Parameter Group for QSYINVPT:

1 Profile token

Input Char(32)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

 Syntax for QsyInvalidatePrfTkn:

 #include <qsyptkn.h>

 void QsyInvalidatePrfTkn

 (unsigned char *Profile_token,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

Security-related APIs 57

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

The Invalidate Profile Token (OPM, QSYINVPT; ILE, QsyInvalidatePrfTkn) API invalidates a profile

token. The profile token is no longer usable for other profile token APIs except the Remove Profile Token

(QSYRMVPT, QsyRemovePrfTkn) API.

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Profile token

INPUT; CHAR(32)

 The profile token to be invalidated.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

PF2225 E Not able to allocate internal system object.

CPF2274 E Profile token is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R5

 Top | Security APIs | APIs by category

List Authorized Users (QSYLAUTU) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The List Authorized Users (QSYLAUTU) API puts a list of authorized system users into a user space.

58 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

This API provides information similar to the Display Authorized Users (DSPAUTUSR) command.

Authorities and Locks

User Space Authority

*CHANGE

Authority to Library Containing User Space

*EXECUTE

Authority to User Profiles in List of Authorized Users

*READ, only those profiles that you have *READ authority to are returned.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the existing user space that the list of authorized users is returned to. The first 10

characters specify the user space name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is searched for the user space. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is searched for the user space.

Format name

INPUT; CHAR(8)

 The name of the format used to list the authorized users.

 You can specify these formats:

 “AUTU0100

Format” on page

60

Each entry contains the user name, group names, an indicator that specifies whether the user is a

user profile or a group profile, and an indicator that specifies whether the user is a group that has

members.

“AUTU0200

Format” on page

60

Each entry contains the same information as AUTU0100 plus the text description for the user.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

User Space Variables

The following tables describe the order and format of the data returned in the user space. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 60.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 0A CHAR(10) User space library name

20 14 CHAR(8) Format name

Security-related APIs 59

error.htm#HDRERRCOD
error.htm#HDRERRCOD

AUTU0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) User profile name

10 0A CHAR(10) Group name

20 14 BINARY(4) Number of supplemental groups

24 18 ARRAY(15) OF

CHAR(10)

Supplemental groups

174 AE CHAR(1) User or group indicator

175 AF CHAR(1) Group member indicator

AUTU0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) User profile name

10 0A CHAR(10) Group name

20 14 CHAR(50) Text name

70 46 CHAR(2) Reserved

72 48 BINARY(4) Number of supplemental groups

76 4C ARRAY(15) OF

CHAR(10)

Supplemental groups

226 E2 CHAR(1) User or group indicator

227 E3 CHAR(1) Group member indicator

Field Descriptions

Format name. The name of the format used to list authorized users.

Group member indicator. Whether this user is a group that has members.

Possible values follow:

 0 The user is not a group, or is a group but does not have any members. This value is returned if

the user or group indicator field is 0.

1 The user is a group that has members.

Group name. The name of the user’s group profile. If the user does not have a group profile, this field

contains *NONE.

Number of supplemental groups. The number of supplemental groups returned in the supplemental

groups field. The number of supplemental groups will be zero if the user does not have any

supplemental groups.

Reserved. An ignored field.

60 iSeries: Security -- Security-related APIs

Supplemental groups. The array of supplemental groups for the user profile. The number of

supplemental groups field will indicate how many entries there are in the array.

Text name. The text description for the authorized user.

User profile name. The name of the authorized user.

User space name. The name of the user space used to return the list of authorized users on the system.

User space library name. The name of the library containing the user space.

User or group indicator. Whether this user is a user profile or a group profile.

Possible values follow:

 0 User profile (profile does not have a GID)

1 Group profile (profile has a GID)

Error Messages

 Message ID Error Message Text

CPF2225 E Not able to allocate internal system object.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R4

 Top | “Security-related APIs,” on page 1 | Security APIs | APIs by category

Security-related APIs 61

#TOP_OF_PAGE
sec.htm
aplist.htm

List Objects Secured by Authorization List (QSYLATLO) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Authorization list

Input Char(10)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The List Objects Secured by Authorization List (QSYLATLO) API puts a list of objects secured by an

authorization list into a user space.

This API provides information similar to the Display Authorization List Objects (DSPAUTLOBJ)

command.

Authorities and Locks

User Space Authority

*CHANGE

Authority to Library Containing User Space

*EXECUTE

Authorization List Authority

Must not be *EXCLUDE authority

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the existing user space where the list of objects secured by the authorization list is

returned to. The first 10 characters specify the user space name, and the second 10 characters

specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the user space. If there is no current library, QGPL (general

purpose library)

*LIBL The library list is used to locate the user space.

Format name

INPUT; CHAR(8)

 The name of the format used to list objects secured by the authorization list.

62 iSeries: Security -- Security-related APIs

You can specify these formats:

 “ATLO0100

Format” on page

64

Each entry contains the object name, library, type, authority holder indicator, auxiliary storage

pool (ASP) device name of library, and ASP device name of object.

“ATLO0110

Format” on page

64

This format only returns path names for objects in a directory. Each entry contains the offset to the

path name, the length of the path name, type, authority holder indicator, ASP device name of

object, and the path name value. Objects in the QSYS.LIB and QDLS file systems are not returned

with this format.

“ATLO0200

Format” on page

65

Each entry contains the same information as ATLO0100 plus the object owner, attribute, text, and

primary group.

“ATLO0210

Format” on page

65

This format only returns path names for objects in a directory. Each entry contains the same

information as format ATLO0110 plus the object owner, attribute, text, and primary group. Objects

in the QSYS.LIB and QDLS file systems are not returned with this format.

“ATLO0300

Format” on page

65

Each entry contains the length of the entry, object name, library, type, authority holder indicator,

document library object (DLO) name, the name of the folder that the DLO is in, the displacement

to the path name, the length of the path name, ASP device name of library, ASP device name of

object, and the path name value. Objects in all file systems are returned with this format. Objects

are returned consecutively in three groups. Objects in the QSYS.LIB file system are in one group,

objects in the QDLS file system are in another group, and objects in directories are in the other

group. Information returned in the Header Section of the user space indicates how to get to the

beginning of each group of objects.

“ATLO0400

Format” on page

66

Each entry contains the same information as ATLO0300 plus the object owner, primary group,

attribute, and text. Objects in all file systems are returned with this format. Objects are returned

consecutively in three groups. Objects in the QSYS.LIB file system are in one group, objects in the

QDLS file system are in another group, and objects in directories are in the other group.

Information returned in the Header Section of the user space indicates how to get to the beginning

of each group of objects.

Authorization list

INPUT; CHAR(10)

 The name of the authorization list for which the secured objects are returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

User Space Variables

The following tables describe the order and format of the data returned in the user space. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 66.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 0A CHAR(10) User space library name specified

20 14 CHAR(8) Format name

28 1C CHAR(10) Authorization list

Security-related APIs 63

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Authorization list

10 0A CHAR(10) Authorization list library name

20 14 CHAR(10) Owner

30 1E CHAR(10) Primary group

40 28 BINARY(4) Reason code

44 2C BINARY(4) Offset to first QSYS.LIB object

48 30 BINARY(4) Entry number of first QSYS.LIB object

52 34 BINARY(4) Number of QSYS.LIB objects

56 38 BINARY(4) Offset to first QDLS object

60 3C BINARY(4) Entry number of first QDLS object

64 40 BINARY(4) Number of QDLS objects

68 44 BINARY(4) Offset to first directory object

72 48 BINARY(4) Entry number of first directory object

76 4C BINARY(4) Number of directory objects

ATLO0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(10) ASP device name of library

41 29 CHAR(10) ASP device name of object

ATLO0110 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(1) Reserved

20 14 CHAR(10) ASP device name of object

 CHAR(*) Path name

64 iSeries: Security -- Security-related APIs

ATLO0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(10) Owner

41 29 CHAR(10) Attribute

51 33 CHAR(50) Text description

101 65 CHAR(10) Primary group

111 6F CHAR(10) ASP device name of library

121 79 CHAR(10) ASP device name of object

ATLO0210 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(10) Owner

29 1D CHAR(10) Attribute

39 27 CHAR(50) Text description

89 59 CHAR(10) Primary group

99 63 CHAR(1) Reserved

100 64 CHAR(10) ASP device name of object

 CHAR(*) Path name

ATLO0300 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Length of entry

4 4 CHAR(10) Object name

14 0E CHAR(10) Library name

24 18 CHAR(10) Object type

34 22 CHAR(1) Authority holder

35 23 CHAR(12) DLO name

47 2F CHAR(63) Folder name

Security-related APIs 65

Offset

Type Field Dec Hex

110 6E CHAR(2) Reserved

112 70 BINARY(4) Displacement to path name

116 74 BINARY(4) Length of path name

120 78 CHAR(10) ASP device name of library

130 82 CHAR(10) ASP device name of object

 CHAR(*) Path name

ATLO0400 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Length of entry

4 4 CHAR(10) Object name

14 0E CHAR(10) Library name

24 18 CHAR(10) Object type

34 22 CHAR(1) Authority holder

35 23 CHAR(12) DLO name

47 2F CHAR(63) Folder name

110 6E CHAR(2) Reserved

112 70 BINARY(4) Displacement to path name

116 74 BINARY(4) Length of path name

120 78 CHAR(10) Owner

130 82 CHAR(10) Attribute

140 8C CHAR(50) Text description

190 BE CHAR(10) Primary group

200 C8 CHAR(10) ASP device name of library

210 D2 CHAR(10) ASP device name of object

 CHAR(*) Path name

Field Descriptions

ASP device name of library. The auxiliary storage pool (ASP) device name where the object’s library is

stored. If the object’s library is in the system ASP or one of the basic user ASPs, this field contains

*SYSBAS.

ASP device name of object. The auxiliary storage pool (ASP) device name where the object is stored. If

the object is in the system ASP or one of the basic user ASPs, this field contains *SYSBAS.

Attribute. The attribute of the secured object. If the object is not in the QSYS.LIB or QDLS file system,

this field is blank.

Authority holder. Whether the object is an authority holder. If the object is an authority holder, this field

is Y. If not, this field is N.

66 iSeries: Security -- Security-related APIs

Authorization list. The name of the authorization list for which the list of objects is returned.

Authorization list library name. The name of the library containing the authorization list.

Displacement to path name. The displacement in the entry to the start of the path name.

DLO name. The document library object (DLO) name for the object. If the object is not an *DOC

(document) or *FLR (folder) object, this field is blank.

Entry number of first directory object. The entry number of the first directory object (objects not in the

QSYS.LIB or QDLS file system) that is returned in the user space. This value is only set if you are using

format ATLO0300 or ATLO0400. Otherwise, -1 is returned. If the number of directory objects field is 0,

this value is also 0.

Entry number of first QDLS object. The entry number of the first QDLS object that is returned in the

user space. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is

returned. If the number of QDLS objects field is 0, this value is also 0.

Entry number of first QSYS.LIB object. The entry number of the first QSYS.LIB object that is returned in

the user space. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is

returned. If the number of QSYS.LIB objects field is 0, this value is also 0.

Folder name. The name of the folder that contains the DLO object. If the object is not in a folder, this

field contains *NONE.

Format name. The name of the format that is used to list objects secured by the authorization list.

Length of entry. The length (in bytes) of the current entry.

Length of path name. The length (in bytes) of the path name.

Library name. The name of the library that contains the user space, object, or authorization list.

Number of directory objects. The number of objects in directories (objects not in the QSYS.LIB or QDLS

file system) that are returned in the user space. This value is only set if you are using format ATLO0300

or ATLO0400. Otherwise, -1 is returned. If there are no entries for objects in directories in the user space,

0 is returned.

Number of QDLS objects. The number of objects in the QDLS file system that were returned in the user

space. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is returned. If

there are no entries for QDLS objects in the user space, 0 is returned.

Number of QSYS.LIB objects. The number of objects in the QSYS.LIB file system that were returned in

the user space. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is

returned. If there are no entries for QSYS.LIB objects in the user space, 0 is returned.

Object name. The name of the object secured by the authorization list. If the object is not in the QSYS.LIB

or QDLS file system, this field is blank.

Object type. The type of secured object.

Offset to first directory object. The offset to the first directory object (objects not in the QSYS.LIB or

QDLS file systems) that was returned in the user space. This value is only set if using format ATLO0300

or ATLO0400. Otherwise, -1 is returned. If ’Number of directory objects’ is 0, this value will also be 0.

Security-related APIs 67

Offset to first QDLS object. The offset to the first QDLS object that is returned in the user space. This

value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is returned. If the

number of QDLS objects field is 0, this value is also 0.

Offset to first QSYS.LIB object. The offset to the first QSYS.LIB object that is returned in the user space.

This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is returned. If the

number of QSYS.LIB objects field is 0, this value is also 0.

Offset to path name. The offset in the user space to the start of the path name.

Owner. The name of the owner of the authorization list or object.

Path name. The path name of the object secured by the authorization list. The user must request a format

that supports path names if path names are to be included in the information returned in the user space.

The structure of the path name returned is:

 Description Type

CCSID of the

returned path

name

Binary(4)

Country or

region ID

Char(2)

Language ID Char(3)

Reserved field Char(3)

Flag byte Binary(4)

Number of bytes

in the path name

Binary(4)

Path delimiter Char(2)

Reserved field Char(10)

Path name value Char(*)

Primary group. The name of the user who is the primary group for the authorization list or object. If

there is no primary group for the authorization list or object, this field will contain a value of *NONE.

Reason code. The reason code that further describes why the list is only a subset of all objects. The

following values can be returned:

v Reason code 0000. The list returned in the user space contains all objects meeting the search criteria.

v Reason code 0001. Objects were found that meet the search criteria but could not be included in the

returned list. The requested format could not handle path names for directory objects.

v Reason code 0002. Objects were found that meet the search criteria but could not be included in the

returned list. The requested format could not handle objects found in library QSYS.

v Reason code 0003. Directory objects were found but did not have links to them.

Reserved. This field is not used.

Text description. The descriptive text for the secured object. If the object is not in the QSYS.LIB or QDLS

file system, this field is blank.

User space library name specified. The name of the library containing the user space or object.

User space name specified. The user space used to return the list of objects secured by the authorization

list.

68 iSeries: Security -- Security-related APIs

Error Messages

 Message ID Error Message Text

CPF22AF E Not authorized to authorization list &1.

CPF2283 E Authorization list &1 does not exist.

CPF2289 E Unable to allocate authorization list &1.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

List Objects That Adopt Owner Authority (QSYLOBJP) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 User profile name

Input Char(10)

4 Object type

Input Char(10)

5 Continuation handle

Input Char(20)

6 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

Security-related APIs 69

#TOP_OF_PAGE
sec.htm
aplist.htm

The List Objects That Adopt Owner Authority (QSYLOBJP) API puts a list of objects that adopt an object

owner’s authority into a user space.

This API provides information similar to that provided by the Display Program Adopt (DSPPGMADP)

command.

Authorities and Locks

User Space Authority

*CHANGE

Authority to Library Containing User Space

*EXECUTE

User Profile Authority

*OBJMGT

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the existing user space to which the list of objects that adopt a user’s authority is

returned. The first 10 characters specify the user space name, and the second 10 characters specify

the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the user space. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the user space.

Format name

INPUT; CHAR(8)

 The name of the format that returns information on the objects that adopt a user’s authority.

 You can specify these formats:

 “OBJP0100

Format” on page

72

Each entry contains the object name, library, type, object in use indicator, auxiliary storage pool

(ASP) device name of library, and ASP device name of object.

“OBJP0110

Format” on page

72

This format only returns path names for objects in directories. Each entry contains the offset to the

path name, the length of the path name, ASP device name of object, and the path name value.

“OBJP0200

Format” on page

72

Each entry contains the same information as format OBJP0100 plus the object attribute and

descriptive text.

User profile name

INPUT; CHAR(10)

 The user name for which the list of objects that adopt the user’s authority is returned.

 You can specify the following special value:

 *CURRENT The list of objects that adopt the authority of the user currently running is returned. If *CURRENT

is used, the name of the current user is returned in the list header section of the user space.

Object type

INPUT; CHAR(10)

70 iSeries: Security -- Security-related APIs

The type of object for which the list of objects that adopt the user’s authority is returned.

 You can specify only the following special values:

 *ALL Return entries for all object types that adopt authority that is supported by the requested format

name.

*PGM Return entries for programs that adopt authority.

*SQLPKG Return entries for SQL packages that adopt authority.

*SRVPGM Return entries for service programs that adopt authority.

*JVAPGM Return entries for stream files that have attached JAVA programs that adopt authority.

Continuation handle

INPUT; CHAR(20)

 The handle used to continue from a previous call to this API that resulted in partially complete

information. You can determine if a previous call resulted in partially complete information by

checking the Information Status variable in the generic user space header following the API call.

 If the API is not attempting to continue from a previous call, this parameter must be set to

blanks. Otherwise, a valid continuation value must be supplied. The value may be obtained from

the list header section of the user space used in the previous call. When continuing, the first entry

in the returned list is the entry that immediately follows the last entry returned in the previous

call.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

User Space Variables

The following tables describe the order and format of the data returned in the user space. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 72.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 0A CHAR(10) User space library name specified

20 14 CHAR(8) Format name

28 1C CHAR(10) User name specified

38 26 CHAR(10) Object type

48 30 CHAR(20) Continuation handle

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User name

10 0A CHAR(20) Continuation handle

Security-related APIs 71

error.htm#HDRERRCOD
error.htm#HDRERRCOD

OBJP0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Object in use

31 1F CHAR(10) ASP device name of library

41 29 CHAR(10) ASP device name of object

OBJP0110 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) ASP device name of object

 CHAR(*) Path name

OBJP0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Object in use

31 1F CHAR(10) Attribute

41 29 CHAR(50) Text description

91 5B CHAR(10) ASP device name of library

101 65 CHAR(10) ASP device name of object

Field Descriptions

ASP device name of library. The auxiliary storage pool (ASP) device name where the object’s library is

stored. If the object’s library is in the system ASP or one of the basic user ASPs, this field contains

*SYSBAS.

ASP device name of object. The auxiliary storage pool (ASP) device name where the object is stored. If

the object is in the system ASP or one of the basic user ASPs, this field contains *SYSBAS.

Attribute. The object attribute.

72 iSeries: Security -- Security-related APIs

Continuation handle (header section). A continuation point for the API. This value is set based on the

contents of the Information Status variable in the generic header for the user space. The following

situations can occur:

v Information status-C. The information returned in the user space is valid and complete. No

continuation is necessary and the continuation handle is set to blanks.

v Information status-P. The information returned in the user space is valid but incomplete. The user may

call the API again, starting where the last call left off. The continuation handle contains a value which

may be supplied as an input parameter in later calls.

v Information status-I. The information returned in the user space is not valid and incomplete. The

content of the continuation handle is unpredictable.

Continuation handle (input section). Used to continue from a previous call to this API which resulted in

partially complete information.

Format name. The name of the format used to return information on the objects that adopt authority.

Length of path name. The length, in bytes, of the path name.

Library name. The name of the library containing the user space or object.

Object name. The name of the object that adopts the user’s authority.

Object in use. Whether the object is in use when the API tries to access it. If the object is in use, the API

is not able to determine if the object adopts the user’s authority. If the object is in use, this field is Y. If

not, this field is N.

Object type.

v Input Section: The type of object for which the list of objects adopting the user’s authority is returned.

v List Section: The type of object which adopts the user’s authority.

Offset to path name. The offset in the user space to the start of the path name.

Path name. The path name of the object that adopts the user’s authority.

The structure of the path name returned is:

 Description Type

CCSID of the

returned path

name

Binary(4)

Country or

region ID

Char(2)

Language ID Char(3)

Reserved field Char(3)

Path type Binary(4)

Number of bytes

in the path name

Binary(4)

Path delimiter Char(2)

Reserved field Char(10)

Path name value Char(*)

Text description. The text description of the object.

User name. The name of the owner of the object.

Security-related APIs 73

User name specified. The name of the user for which the list of objects that adopt the user’s authority is

returned.

User space library name specified. The name of the library that contains the user space.

User space name specified. The name of the user space to which the list of objects that adopt the users

authority is returned.

Error Messages

 Message ID Error Message Text

CPF22FD E Continuation handle not valid for API &1.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

74 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

List Objects User Is Authorized to, Owns, or Is Primary Group of

(QSYLOBJA) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 User profile name

Input Char(10)

4 Object type

Input Char(10)

5 Returned objects

Input Char(10)

6 Continuation handle

Input Char(20)

7 Error code

I/O Char(*)
 Optional Parameter Group:

8 Request list

Input Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The List Objects a User is Authorized to, Owns, or Is Primary Group of (QSYLOBJA) API puts a list of

objects a user is authorized to, owns, or is the primary group owner for into a user space. The list of

authorized objects only includes objects the user is specifically authorized to. The list does not include

objects the user is authorized to because:

v The user is part of a group that is authorized

v The user can access the object using the public authority

v The object is secured with an authorization list the user is authorized to

v The user can access the object using adopted authority

 This API provides information similar to that provided by the Display User Profile (DSPUSRPRF)

command when specifying *OBJAUT, *OBJOWN, or *OBJPGP for the type parameter.

Authorities and Locks

User Space Authority

*CHANGE

Security-related APIs 75

Authority to Library Containing User Space

*EXECUTE

User Profile Authority

*READ

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the existing user space used to return the list of objects a user is authorized to,

owns, or is the primary group for. The first 10 characters specify the user space name, and the

second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the user space. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the user space.

Format name

INPUT; CHAR(8)

 The name of the format used to list objects the owner is authorized to, owns, or is the primary

group for.

 You can specify these formats:

 “OBJA0100

Format” on page

78

Each entry contains the object name, library, type, authority holder indicator, ownership indicator,

auxiliary storage pool (ASP) device name of library, and ASP device name of object.

“OBJA0110

Format” on page

79

This format only returns path names for objects in a directory. Each entry contains the offset to the

path name, the length of the path name, type, authority holder indicator, ownership indicator, ASP

device name of object, and the path name value.

“OBJA0200

Format” on page

79

Each entry contains the same information as format OBJA0100 plus the authority values.

“OBJA0210

Format” on page

79

This format only returns path names for objects in a directory. Each entry contains the same

information as format OBJA0110 plus the authority values.

“OBJA0300

Format” on page

80

Each entry contains the same information as format OBJA0200 plus the object attribute and

descriptive text.

“OBJA0310

Format” on page

81

This format only returns path names for objects in a directory. Each entry contains the same

information as format OBJA0210 plus the attribute and descriptive text.

User profile name

INPUT; CHAR(10)

 The user name for which the list of objects is being returned.

 You can specify the following special value:

 *CURRENT The list of objects that the user currently running is authorized to, owns, or is the primary group

for is returned. If *CURRENT is used, the name of the current user is returned in the list header

section of the user space.

Object type

INPUT; CHAR(10)

76 iSeries: Security -- Security-related APIs

The type of object the list of objects is returned for.

 You can specify the following special value:

 *ALL Return entries of all object types.

Returned objects

INPUT; CHAR(10)

 The objects that are returned.

 You can specify the following special values:

 *OBJAUT The list of objects the user is authorized to is returned.

*OBJOWN The list of objects the user owns is returned.

*BOTH The list of objects the user is authorized to and owns is returned. The list of owned objects

precedes the list of authorized objects.

*REQLIST The values specified in the request list parameter is used.

Continuation handle

INPUT; CHAR(20)

 The handle used to continue from a previous call to this API that resulted in partially complete

information. You can determine if a previous call resulted in partially complete information by

checking the Information Status variable in the generic user space header following the API call.

 If the API is not attempting to continue from a previous call, this parameter must be set to

blanks. Otherwise, a valid continuation value must be supplied. The value may be obtained from

the list header section of the user space used in the previous call. When continuing, the first entry

in the returned list is the entry that immediately follows the last entry returned in the previous

call.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Request list

INPUT; CHAR(*)

 The list of objects that are to be returned. This parameter can return more information than

would be returned if the returned objects parameter was specified. This parameter is ignored

unless the value in the returned objects parameter is *REQLIST.

 You can specify the following values:

v Number of values in the list. - BINARY(4)

The number of values in the list of requests.

v List of requests - ARRAY(*) of CHAR(10)

The values requested to return objects for a user.

The possible values are:

– *OBJAUT. - Returns the list of objects the user is authorized to.

– *OBJOWN. - Returns the list of objects the user owns.

– *OBJPGP. - Returns the list of objects the that the user is the primary group for.

Security-related APIs 77

error.htm#HDRERRCOD
error.htm#HDRERRCOD

User Space Variables

The following tables describe the order and format of the data returned in the user space. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 81.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 0A CHAR(10) Library name specified

20 14 CHAR(8) Format name

28 1C CHAR(10) User profile name specified

38 26 CHAR(10) Object type

48 30 CHAR(10) Returned objects

58 3A CHAR(20) Continuation handle

78 4E BINARY(4) Offset to the request list

82 52 BINARY(4) Number of values in the request list

86 56 CHAR(*) List of requests

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User profile name

10 0A CHAR(20) Continuation handle

30 1E BINARY(4) Reason code

OBJA0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(1) Ownership

32 20 CHAR(10) ASP device name of library

42 2A CHAR(10) ASP device name of object

78 iSeries: Security -- Security-related APIs

OBJA0110 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(1) Ownership

20 14 CHAR(10) ASP device name of object

 CHAR(*) Path name

OBJA0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(1) Ownership

32 20 CHAR(10) Authority value

42 2A CHAR(1) Authorization list management

43 2B CHAR(1) Object operational

44 2C CHAR(1) Object management

45 2D CHAR(1) Object existence

46 2E CHAR(1) Data read

47 2F CHAR(1) Data add

48 30 CHAR(1) Data update

49 31 CHAR(1) Data delete

50 32 CHAR(1) Data execute

60 3C CHAR(10) Reserved

61 3D CHAR(1) Object alter

62 3E CHAR(1) Object reference

63 3F CHAR(10) ASP device name of library

73 49 CHAR(10) ASP device name of object

OBJA0210 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to path name

Security-related APIs 79

Offset

Type Field Dec Hex

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(1) Ownership

20 14 CHAR(10) Authority value

30 1E CHAR(1) Authorization list management

31 1F CHAR(1) Object operational

32 20 CHAR(1) Object management

33 21 CHAR(1) Object existence

34 22 CHAR(1) Object alter

35 23 CHAR(1) Object reference

36 24 CHAR(10) Reserved

46 2E CHAR(1) Data read

47 2F CHAR(1) Data add

48 30 CHAR(1) Data update

49 31 CHAR(1) Data delete

50 32 CHAR(1) Data execute

51 33 CHAR(10) ASP device name of object

 CHAR(*) Path name

OBJA0300 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(1) Ownership

32 20 CHAR(10) Authority value

42 2A CHAR(1) Authorization list management

43 2B CHAR(1) Object operational

44 2C CHAR(1) Object management

45 2D CHAR(1) Object existence

46 2E CHAR(1) Data read

47 2F CHAR(1) Data add

48 30 CHAR(1) Data update

49 31 CHAR(1) Data delete

50 32 CHAR(10) Attribute

60 3C CHAR(50) Text description

80 iSeries: Security -- Security-related APIs

Offset

Type Field Dec Hex

110 6E CHAR(1) Data execute

111 78 CHAR(10) Reserved

121 79 CHAR(1) Object alter

122 7A CHAR(1) Object reference

123 7B CHAR(10) ASP device name of library

133 85 CHAR(10) ASP device name of object

OBJA0310 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(1) Ownership

20 14 CHAR(10) Authority value

30 1E CHAR(1) Authorization list management

31 1F CHAR(1) Object operational

32 20 CHAR(1) Object management

33 21 CHAR(1) Object existence

34 22 CHAR(1) Object alter

35 23 CHAR(1) Object reference

36 24 CHAR(10) Reserved

46 2E CHAR(1) Data read

47 2F CHAR(1) Data add

48 30 CHAR(1) Data update

49 31 CHAR(1) Data delete

50 32 CHAR(1) Data execute

51 33 CHAR(10) Reserved

61 3D CHAR(10) Attribute

71 47 CHAR(50) Text description

121 79 CHAR(10) ASP device name of object

 CHAR(*) Path name

Field Descriptions

ASP device name of library. The auxiliary storage pool (ASP) device name where the object’s library is

stored. If the object’s library is in the system ASP or one of the basic user ASPs, this field contains

*SYSBAS.

Security-related APIs 81

ASP device name of object. The auxiliary storage pool (ASP) device name where the object is stored. If

the object is in the system ASP or one of the basic user ASPs, this field contains *SYSBAS.

Attribute. The object’s attribute.

Authority holder. Whether the object is an authority holder. If the object is an authority holder, this field

is Y. If not, this field is N.

Authority value. The special value indicating the user’s authority to the object.

This field contains one of the following values:

 *ALL The user has all object (operational, management, existence, alter and reference) and data (read,

add, update, delete, and execute) authorities to the object.

*CHANGE The user has object operational and all data authorities to the object.

*USE The user has object operational and data read and execute authorities to the object.

*EXCLUDE The user has none of the object or data authorities to the object, or authorization list management

authority.

USER DEF The user has some combination of object and data authorities that do not relate to a special value.

The individual authorities for the user should be checked to determine what authority the user

has to the object. This value is returned if the user owns an object and all authority for the user to

the object has been removed. If this happens, all individual authority fields are set to N.

Authorization list management. Whether the user has authorization list management authority to the

object. If the user has the authority, this field is Y. If not, this field is N. This field is only valid if the

object type is *AUTL.

Continuation handle (header section). A continuation point for the API. This value is set based on the

contents of the Information Status variable in the generic header for the user space.

The following situations can occur:

v Information status-C. The information returned in the user space is valid and complete. No

continuation is necessary and the continuation handle is set to blanks.

v Information status-P. The information returned in the user space is valid but incomplete. The user may

call the API again, picking up where the last call ended. The continuation handle contains a value, that

may be supplied as an input parameter in later calls.

v Information status-I. The information returned in the user space is not valid or complete. The contents

of the continuation handle are unpredictable.

Continuation handle (input section). The handle used to continue from a previous call to this API that

resulted in partially complete information.

Data add. Whether the user has this authority to the object. If the user has the authority, this field is Y. If

not, this field is N.

Data delete. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Data execute. Whether the user has this authority to the object. If the user has the authority, this field is

Y. If not, this field is N.

Data read. Whether the user has this authority to the object. If the user has the authority, this field is Y. If

not, this field is N.

82 iSeries: Security -- Security-related APIs

Data update. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Format name. The name of the format used to list objects the user is authorized to or owns.

Length of path name. The length, in bytes, of the path name.

Library name. The name of the library containing the user space or object.

Library name specified. The name of the library that will contain the user space or object.

List of requests. The list of values requested in the list of requests parameter.

Number of values in the request list. The number of values that were specified in the list of requests.

Object alter. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Object existence. Whether the user has this authority to the object. If the user has the authority, this field

is Y. If not, this field is N.

Object management. Whether the user has this authority to the object. If the user has the authority, this

field is Y. If not, this field is N.

Object name. The name of the object the user is authorized to, owns, or is the primary group for.

Object operational. Whether the user has this authority to the object. If the user has the authority, this

field is Y. If not, this field is N.

Object reference. Whether the user has this authority to the object. If the user has the authority, this field

is Y. If not, this field is N.

Object type.

 Input Section The type of object for which the list of authorized, owned, or primary group objects is returned.

List Section The type of object the user is authorized to, owns, or is the primary group of.

Offset to path name. The offset in the user space to the start of the path name.

Offset to the request list. The offset to the specified list of requests.

Ownership. Whether the user owns the object or is the primary group for the object. If the user owns the

object, this field is Y. If the user is the primary group for the object, this field is G. Otherwise, this field is

N.

Path name. The path name of the object the user owns, is authorized to, or is the primary group for.

The structure of the path name returned is:

 Description Type

CCSID of the

returned path

name

Binary(4)

Country or

region ID

Char(2)

Language ID Char(3)

Security-related APIs 83

Description Type

Reserved field Char(3)

Flag byte Binary(4)

Number of bytes

in the path name

Binary(4)

Path delimiter Char(2)

Reserved field Char(10)

Path name value Char(*)

Primary group. The name of the user who is the primary group for the authorization list or object. If

there is no primary group for the authorization list or object, this field will contain a value of *NONE.

Reason code. The reason code describing why the returned list is only a subset. The following values can

be returned:

v Reason code 0000. The list returned in the user space contains all objects meeting the search criteria.

v Reason code 0001. Objects were found that meet the search criteria but could not be included in the

returned list. The requested format could not handle path names for directory objects.

v Reason code 0002. Objects were found that meet the search criteria but could not be included in the

returned list. The requested format could not handle objects found in library QSYS.

v Reason code 0003. Directory objects were found but did not have links to them.

Reserved. An ignored field.

Returned objects. The objects that are returned.

Text description. The text description of the object.

User profile name. The user name used to return the list of objects.

User profile name specified. The user name for which the list of objects is returned.

User space name. The name of the user space used to return the list of objects.

User space name specified. The name of the user space in which the list of objects is returned.

Error Messages

 Message ID Error Message Text

CPF22FC E Value &1 not valid when specifying objects to be returned by API &2.

CPF22FD E Continuation handle not valid for API &1.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF222A E Value &1 not valid when specifying a list of requests for API &2.

CPF222B E The requested list parameter is not specified for API &1.

CPF222C E &1 is not valid for the number of requested list values for API &2.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

84 iSeries: Security -- Security-related APIs

Message ID Error Message Text

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

List Users Authorized to Object (QSYLUSRA) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Qualified object name

Input Char(20)

4 Object type

Input Char(10)

5 Error code

I/O Char(*)
 Optional Parameter Group:

6 ASP device

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: Yes

The List Users Authorized to Object (QSYLUSRA) API puts a list of users privately authorized to an

object, including an authorization list, into a user space. The information returned is the authority as it

exists for the object. Any authority the process has to the object through its group or adopted authority is

not included. *PUBLIC authority to the object is also returned in the first list entry of the user space.

If the object is a database file, an indication of whether the file has field authorities is returned.

This API provides information similar to that provided by the Display Authorization List (DSPAUTL)

command or the Display Object Authority (DSPOBJAUT) command.

Security-related APIs 85

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

User Space Authority

*CHANGE

Authority to Library Containing User Space

*EXECUTE

Specified Object or Authorization List Authority

*OBJMGT

Auxiliary Storage Pool Device Authority

*USE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the existing user space used to return the list of authorized users to the object. The

first 10 characters specify the user space name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the user space. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the user space.

Format name

INPUT; CHAR(8)

 The name of the format used to list authorized users.

 You can specify this format:

 “USRA0100

Format” on page

88

Each entry contains the user name and authority values.

Qualified object name

INPUT; CHAR(20)

 The name of the object for which the list of authorized users is returned. The first 10 characters

specify the object name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the object. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the object.

Object type

INPUT; CHAR(10)

 The type of object for which the list of authorized users is returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

86 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Optional Parameter Group

ASP device

INPUT; CHAR(10)

 The name of the auxiliary storage pool (ASP) device in which to search for the library that

contains the object.

 The valid values are:

 * All ASPs associated with the job will be searched. This is the default value if the parameter is not

specified.

*SYSBAS The system ASP and all basic user ASPs will be searched.

*ALL All ASPs that are currently available will be searched.

ASP device name The specified ASP will be searched.

If *CURLIB or *LIBL is specified for the library then the ASP device parameter must be specified

as *.

User Space Variables

The following tables describe the order and format of the data returned in the user space. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 88.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 0A CHAR(10) Library name specified

20 14 CHAR(8) Format name

28 1C CHAR(10) Object name

38 26 CHAR(10) Library name specified

48 30 CHAR(10) Object type

58 3A CHAR(10) ASP device

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Object name

10 0A CHAR(10) Library name specified

20 14 CHAR(10) Object type

30 1E CHAR(10) Owner name

40 28 CHAR(10) Authorization list

50 32 CHAR(10) Primary group

60 3C CHAR(1) Field authorities

61 3D CHAR(10) ASP device name of library

71 47 CHAR(10) ASP device name of object

Security-related APIs 87

USRA0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) User profile name

10 0A CHAR(10) Authority value

20 14 CHAR(1) Authorization list management

21 15 CHAR(1) Object operational

22 16 CHAR(1) Object management

23 17 CHAR(1) Object existence

24 18 CHAR(1) Data read

25 19 CHAR(1) Data add

26 1A CHAR(1) Data update

27 1B CHAR(1) Data delete

28 1C CHAR(1) Data execute

29 1D CHAR(10) Reserved

39 27 CHAR(1) Object alter

40 28 CHAR(1) Object reference

Field Descriptions

ASP device name of library. The auxiliary storage pool (ASP) device name where the object’s library is

stored. If the object’s library is in the system ASP or one of the basic user ASPs, this field contains

*SYSBAS.

ASP device name of object. The auxiliary storage pool (ASP) device name where the object is stored. If

the object is in the system ASP or one of the basic user ASPs, this field contains *SYSBAS.

Authority value. The user’s authority to the object.

This field contains one of the following values:

 *ALL The user has all object (operational, management, existence, alter, and reference) and data (read,

add, update, delete, and execute) authorities to the object.

*CHANGE The user has object operational and all data authorities to the object.

*USE The user has object operational and data read and execute authorities to the object.

*EXCLUDE The user has none of the object or data authorities to the object, or authorization list management

authority to the authorization list.

*AUTL The public authority for the object comes from the public authority on the authorization list

securing the object. This value can only be returned if there is an authorization list securing the

object and the authorized user is *PUBLIC.

USER DEF The user has some combination of object and data authorities that do not relate to a special value.

The individual authorities for the user should be checked to determine what authority the user

has to the object.

Authorization list. The name of the authorization list securing the object. If there is no authorization list

securing the object, this field is *NONE.

Authorization list management. Whether the user has this authority to the object. If the user has the

authority, this field is Y. If not, this field is N. This field is only valid if the object type is *AUTL.

88 iSeries: Security -- Security-related APIs

Data add. Whether the user has this authority to the object. If the user has the authority, this field is Y. If

not, this field is N.

Data delete. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Data execute. Whether the user has this authority to the object. If the user has the authority, this field is

Y. If not, this field is N.

Data read. Whether the user has this authority to the object. If the user has the authority, this field is Y. If

not, this field is N.

Data update. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Field authorities. Whether the object has field authorities. If the object is a database file and it has field

authorities, this field is Y. If not, this field is N. This field is only valid if the object type is *FILE. To see

the field authorities for a database file, do DSPOBJAUT OBJ(your_lib/your_dbfile) OBJTYPE(*FILE)

AUTTYPE(*FIELD).

Format name. The name of the format used to list users authorized to the object.

Library name specified. The name of the library the object containing the authorization list is in.

Primary group. The name of the user that is the primary group for the object. If there is not a primary

group for the object, the field will contain *NONE.

Object alter. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Object existence. Whether the user has this authority to the object. If the user has the authority, this field

is Y. If not, this field is N.

Object management. Whether the user has this authority to the object. If the user has the authority, this

field is Y. If not, this field is N.

Object name. The name of the object for which the list of authorized users is returned.

Object operational. Whether the user has this authority to the object. If the user has the authority, this

field is Y. If not, this field is N.

Object reference. Whether the user has this authority to the object. If the user has the authority, this field

is Y. If not, this field is N.

Object type. The type of object for which the list of authorized users is returned.

Owner. The name of the owner of the object. If all authority for the owner is removed, no list entry is

returned for the owner.

Reserved. An ignored field set to hexadecimal zeros.

User profile name. The name of the user authorized to the object.

This field can contain the following special value:

Security-related APIs 89

*PUBLIC Public authority (authority used by users not privately authorized) to the object. This is the first

entry in the list data section.

User space name specified. The name of the user space used to return the list of users authorized to the

object.

Error Messages

 Message ID Error Message Text

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF980B E Object &1 in library &2 not available.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9873 E ASP status is preventing access to object.

API introduced: V4R2

 Top | Security APIs | APIs by category

90 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Open List of Authorized Users (QGYOLAUS) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Selection criteria

Input Char(10)

7 Group profile name

Input Char(10)

8 Error Code

I/O Char(*)
 Optional Parameter:

9 Profile name

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Authorized Users (QGYOLAUS) API provides information about the authorized users

of the system. It returns a list of authorized user names that meet the selection criteria specified by the

caller of the API and information about those users. This API provides information similar to the Display

Authorized Users (DSPAUTUSR) command and the Retrieve Authorized Users (QSYRAUTU) API.

Differences between QSYRAUTU and QGYOLAUS

The QGYOLAUS API returns the same information that the Retrieve Authorized Users (QSYRAUTU) API

provides, but takes a complete snapshot at once and allows subsequent records to be obtained through

the Get List Entries (QGYGTLE) API.

Authorities and Locks

Authority to User Profiles in List of Authorized Users

*READ

 Note: Only those profiles to which you have *READ authority are returned in the list.

Security-related APIs 91

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results are not predictable.

List Information

OUTPUT; CHAR(80)

 Information about the list created by this program. For a description of the layout of this

parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable after filtering and sorting has

been done.

 If -1 is specified for this parameter, the entire list is built synchronously.

 If 0 is specified for this parameter, the entire list is built asynchronously in a server job.

 If a positive number of records to return is specified, at least that many records will be built

synchronously and the remainder will be built asynchronously in a server job.

Format name

INPUT; CHAR(8)

 The name of the format that is used to return information about the authorized users.

 You can specify these formats:

 “AUTU0100

Format” on page

93

Each entry contains the user name, an indicator that specifies whether the user is a user profile or

a group profile, and an indicator that specifies whether the user is a group that has members.

“AUTU0150

Format” on page

94

Each entry contains the same information as AUTU0100 plus the text description for the user.

“AUTU0200

Format” on page

94

Each entry contains the same information as AUTU0100 plus group profiles are returned for users

who are members of one or more groups.

“AUTU0250

Format” on page

94

Each entry contains the same information as AUTU0200 plus the text description for the user.

Selection criteria

INPUT; CHAR(10)

 This parameter specifies which users are returned. Possible special values follow:

 *ALL All user profile names and group profile names are returned. This is the same list of users that are

returned by the List Authorized Users (QSYLAUTU) API.

*USER User names that are not group profiles are returned. (Users that do not have a GID specified in

their user profiles.)

92 iSeries: Security -- Security-related APIs

oli.htm

*GROUP User names that are group profiles are returned. (Users that have a GID specified in their user

profiles.)

*MEMBER User names that are members of the group specified by the group profile name parameter are

returned. The users who do not have any group profiles can be retrieved by specifying

*NOGROUP for the group profile name. The group profile name parameter must contain a valid

group profile name or *NOGROUP when the selection criteria is *MEMBER.

Group profile name

INPUT; CHAR(10)

 The group profile whose members are to be returned. The profile specified must exist and must

be a group profile.

 A group profile name or *NOGROUP is required if *MEMBER is specified for the selection

criteria. The group profile name must be *NONE if the selection criteria is not *MEMBER.

 *NONE No group profile is specified.

group name Users who are a member of this group are returned.

*NOGROUP Users who are not a member of any group are returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter

Profile name

INPUT; CHAR(10)

 The profile names to include in the list. The selection criteria determines which users are included

in the list. Specifying a profile name can further limit the names that are returned.

 The profile name can be a simple name, a generic name, or the special value *ALL. If not

provided, *ALL is used as a default. Possible values follow:

 *ALL All profiles are listed.

Profile name If a generic profile name is specified, the profiles that match the generic name are returned. If a

simple profile name is specified, only that profile is returned.

Receiver Variable Description

The following tables describe the order and format of the data returned in the receiver variable for each

profile name in the list. For detailed descriptions of the fields in the tables, see “Field Descriptions” on

page 94.

AUTU0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

Security-related APIs 93

error.htm#HDRERRCOD
error.htm#HDRERRCOD

AUTU0150 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

12 0C CHAR(50) Text description

AUTU0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

12 0C BINARY(4) Number of group profiles

16 10 ARRAY(16) of

CHAR(10)

Group profiles

AUTU0250 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

12 0C CHAR(50) Text description

62 3E CHAR(2) Reserved

64 40 BINARY(4) Number of group profiles

68 44 ARRAY(16) of

CHAR(10)

Group profiles

Field Descriptions

Group members indicator. Whether this user is a group that has members. Possible values follow:

 0 The user is not a group, or is a group but does not have any members.

1 The user is a group that has members.

Group profiles. The array of group profiles for the user. The number of group profiles field indicates

how many entries are in the array.

Number of group profiles. The number of group profiles that are returned in the group profiles field.

The number of group profiles will be zero if the user is not a member of any group.

94 iSeries: Security -- Security-related APIs

Profile name. The name of an authorized user for whom information is returned.

Reserved. An ignored field.

Text description. The descriptive text for the user profile.

User or group indicator. Whether this user is a user profile or a group profile. Possible values follow:

 0 User profile

1 Group profile

Error Messages

 Message ID Error Message Text

CPF22B4 E Group profile &1 not found.

CPF22B7 E Profile &1 is not a group profile.

CPF22E0 E Group profile name cannot be *NONE when selection criteria is *MEMBER.

CPF22ED E Group profile name must be *NONE when selection criteria is not *MEMBER.

CPF22EE E Selection criteria is not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R1

 Top | Security APIs | APIs by category

Release Profile Handle (QSYRLSPH, QsyReleaseProfileHandle) API

 Required Parameter Group for QSYRLSPH:

1 Profile handle

Input Char(12)
Optional Parameter for QSYRLSPH:

2 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

Security-related APIs 95

#TOP_OF_PAGE
sec.htm
aplist.htm

Syntax for QsyReleaseProfileHandle:

 #include <qsyphandle.h>

void QsyReleaseProfileHandle

 (unsigned char * Profile_handle,

 void * Error_code);

 Service Program: QSYPHANDLE

 Default Public Authority: *USE

 Threadsafe: Yes

The Release Profile Handle (OPM, QSYRLSPH; ILE, QsyReleaseProfileHandle) API validates a given

profile handle and then releases it. To use the user profile represented by the deleted profile handle in the

job again, you must call the Get Profile Handle (QSYGETPH, QsyGetProfileHandle) API to generate a

new profile handle for the user profile.

Your application must perform any needed cleanup work like closing files and deallocating objects. The

Release Profile Handle API only releases the profile handle; it does not perform any cleanup in the job.

Authorities and Locks

None

Required Parameter

Profile handle

INPUT; CHAR(12)

 The profile handle to be released.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

 This parameter is optional for QSYRLSPH API and is omissable for the QsyReleaseProfileHandle

API.

Usage Notes

If the profile handle to be released is not valid (for example, the profile handle was not generated in this

job or had previously been released), the call to this API will not fail. Message CPF22E7 (ProfileHandle is

not valid) will be in the joblog as a diagnostic message.

96 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF2225 E Not able to allocate internal system object.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | Security APIs | APIs by category

Remove All Profile Tokens (QsyRemoveAllPrfTkns) API

 Syntax for QsyRemoveAllPrfTkns:

 #include <qsyptkn.h>

 void QsyRemoveAllPrfTkns

 (void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Remove All Profile Tokens (QsyRemoveAllPrfTkns) API provides an interface to remove all profiles

on the system. This may be useful if the maximum number of profile tokens have been generated for the

system (message CPF4AAA was sent or a PS-M security audit entry was sent). The most likely reason for

this to happen is that someone is attempting to lock up parts of the system by generating multitudes of

profile tokens. This API provides an alternative to restarting the system. After calling this API, the

administrator may want to analyze the audit log to determine who is attempting to lock up the system.

Authorities and Locks

API Public Authority

*USE

Special authority required

*ALLOBJ and *SECADM

Required Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Security-related APIs 97

#TOP_OF_PAGE
sec.htm
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF2225 E Not able to allocate internal system object.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R4

 Top | Security APIs | APIs by category

Remove All Profile Tokens For User (QsyRemoveAllPrfTknsForUser)

API

 Syntax for QsyRemoveAllPrfTknsForUser:

 #include <qsyptkn.h>

 void QsyRemoveAllPrfTknsForUser

 (char *User_profile,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Remove All Profile Tokens For User (QsyRemoveAllPrfTknsForUser) API provides an interface to

remove all profile tokens that have been generated for a specific user profile. You may want to remove all

profile tokens for a user profile if security information has changed for the user profile (for example, the

password or group list).

Authorities and Locks

API Public Authority

*USE

Special authority required

*SECADM

User profile authority

*OBJMGT and *USE

Required Parameter Group

User profile

INPUT; CHAR(10)

 The name of the user profile for which to remove profile tokens.

98 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF222E E &1 special authority is required.

CPF2217 E Not authorized to user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | Security APIs | APIs by category

Remove Profile Token (QsyRemovePrfTkn) API

 Syntax for QsyRemovePrfTkn:

 #include <qsyptkn.h>

 void QsyRemovePrfTkn

 (unsigned char *Profile_token,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Remove Profile Token (QsyRemovePrfTkn) API removes the specified profile token. The profile token

will no longer be valid for use with other profile token APIs.

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Profile token

INPUT; CHAR(32)

 The profile token to be removed.

Error code

I/O; CHAR(*)

Security-related APIs 99

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF2225 E Not able to allocate internal system object.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R4

 Top | Security APIs | APIs by category

Remove Profile Tokens (QSYRMVPT) API

 Required Parameter Group:

1 Remove option

Input Char(10)

2 Error code

I/O Char(*)
 Optional Parameter:

3 Profile token

Input Char(32)

 Default Public Authority: *USE

 Threadsafe: Yes

The Remove Profile Tokens (QSYRMVPT) API removes all profile tokens, removes all profile tokens for a

specific user profile, or removes a specific profile token. When a profile token is removed, it is no longer

valid for use with other profile token APIs.

This API can be used to remove all profile tokens on the system. This may be useful if the maximum

number of profile tokens have been generated for the system (message CPF4AAA was sent or a PS-M

security audit entry was sent). The most likely reason for this to happen is that someone is attempting to

lock up parts of the system by generating multitudes of profile tokens. This API provides an alternative

to restarting the system. After calling this API, the administrator may want to analyze the audit log to

determine who is attempting to lock up the system.

This API can be used to remove all profile tokens that have been generated for a user profile. You may

want to remove all profile tokens for a user profile if security information has changed for the user

profile (for example, the password or group list).

100 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

Authority, if *ALL is specified

*ALLOBJ and *SECADM

Authority, if specific user is specified

*SECADM

User profile authority, if specific user is specified

*OBJMGT and *USE

Required Parameter Group

Remove option

INPUT; CHAR(10)

 Whether all profile tokens are being removed, all profile tokens for a given user are being

removed, or a specific profile token is being removed.

 One of the following values may be specified:

 *ALL All profile tokens will be removed.

*PRFTKN The specified profile token will be removed. If this value is specified, the optional parameter that

contains the profile token must be specified.

User name The name of the user profile for which to remove all profile tokens.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Profile token

INPUT; CHAR(32)

 The profile token to be removed. This parameter is required only if *PRFTKN is specified in the Remove

option parameter. If the Remove option is not *PRFTKN and this parameter is specified, then this

parameter must contain *NONE.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF222E E &1 special authority is required.

CPF2217 E Not authorized to user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF2274 E Profile token is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R4

 Top | Security APIs | APIs by category

Security-related APIs 101

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Remove User Application Information

(QsyRemoveUserApplicationInfo) API

 Syntax for QsyRemoveUserApplicationInfo:

 #include <qsyusrin.h>

 void QsyRemoveUserApplicationInfo

 (char *User_profile,

 char *Application_information_ID,

 int *Length_of_application_information_ID,

 void *Error_code);

 Service Program: QSYUSRIN

 Default Public Authority: *USE

 Threadsafe: No

The Remove User Application Information (QsyRemoveUserApplicationInfo) API removes the specified

application information from the specified user profile.

The Change User Profile exit programs are not called from this API.

Authorities and Locks

If the user profile parameter is not *CURRENT or the user profile currently running, then the user profile

that calls this API must have *SECADM special authority and *OBJMGT and *USE authorities to the user

profile.

Required Parameter Group

User profile

INPUT; CHAR(10)

 The user profile for which the application information will be removed. The special value

*CURRENT may be specified to remove application information for the user profile that calls this

API.

Application information ID

INPUT; CHAR(*)

 The ID for the application information to be removed. The following can be specified for the

application information ID:

generic*

All application information IDs that have IDs beginning with the generic string will be

removed.

application information ID

Specific application information ID will be removed.

Length of application information ID

INPUT; BINARY(4)

 The length of the application information ID that is specified in the application information ID

parameter. The length of the application information ID must be a value from 1 to 200.

102 iSeries: Security -- Security-related APIs

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF226C E Not authorized to perform function.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AA2 E Application information ID &1 does not exist.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | Security APIs | APIs by category

Reset Profile Attributes (QSYRESPA) API

 Required Parameter:

1 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Reset Profile Attributes (QSYRESPA) API resets four attributes of system-supplied user profiles. Only

system-supplied user profiles that cannot be changed using the Change User Profile (CHGUSRPRF)

command are modified by the QSYRESPA API.

The following user profile attributes are reset:

v The password value is set to *NONE.

v The status value is set to *ENABLED.

v The password expired value is set to *NO

v The special authorities will be set to the appropriate values for the each system supplied profile.

 The following system supplied user profiles have their attributes reset:

 QAUTPROF QCLUMGT QCLUSTER QCOLSRV

 QDBSHR QDBSHRDO QDFTOWN QDIRSRV

 QDLFM QDOC QDSNX QFNC

 QGATE QIPP QLPAUTO QLPINSTALL

Security-related APIs 103

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

QMGTC QMSF QNTP QPEX

 QPPM400 QSNADS QSPL QSPLJOB

 QSRVAGT QTCP QTFTP QTSTRQS

 QYCMCIMOM QYPSJSVR

If errors are encountered processing an individual user profile, diagnostic message CPD22BD is issued

and processing continues with the next user profile. If any profiles cannot not be processed, escape

message CPF22F0 is sent to notify the caller to look at the diagnostic messages.

Authorities and Locks

The caller of the API must have *SECADM and *ALLOBJ special authorities.

Required Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF2225 E Not able to allocate internal system object.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R5

 Top | Security APIs | APIs by category

104 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

Retrieve Authorized Users (QSYRAUTU) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Returned records feedback information

Output Char(16)

4 Format name

Input Char(8)

5 Selection criteria

Input Char(10)

6 Starting profile name

Input Char(10)

7 Starting profile option

Input Char(1)

8 Group profile name

Input Char(10)

9 Error Code

I/O Char(*)
 Optional Parameter:

10 Ending profile name

Input Char(10)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Authorized Users (QSYRAUTU) API provides information about the authorized users of the

system. It returns a list of authorized user names that meet the selection criteria specified by the caller of

the API and information about those users. This API provides information similar to the Display

Authorized Users (DSPAUTUSR) command.

Authorities and Locks

Authority to User Profiles in List of Authorized Users

*READ

 Note: Only those profiles to which you have *READ authority are returned in the list.

Security-related APIs 105

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable.

Returned records feedback information

OUTPUT; CHAR(16)

 Information about the entries that are returned in the receiver variable.

 See “Format of Returned Records Feedback Information” on page 109 for details.

Format name

INPUT; CHAR(8)

 The name of the format that is used to return information about the authorized users.

 You can specify these formats:

 “AUTU0100

Format” on page

108

Each entry contains the user name, an indicator specifying whether the user is a user profile or a

group profile and an indicator specifying whether the user is a group that has members.

“AUTU0150

Format” on page

108

Each entry contains the same information as AUTU0100 plus the text description for the user.

“AUTU0200

Format” on page

108

Each entry contains the same information as AUTU0100 plus group profiles are returned for users

who are members of one or more groups.

“AUTU0250

Format” on page

108

Each entry contains the same information as AUTU0200 plus the text description for the user.

Selection criteria

INPUT; CHAR(10)

 The users that are returned.

 Possible values follow:

 *ALL All user profile and group profile names are returned. This is the same list of users that is

returned by the List Authorized Users (QSYLAUTU) API.

*USER User names that are not group profiles are returned. (Users that do not have a GID specified in

their user profile.)

*GROUP User names that are group profiles are returned. (Users that have a GID specified in their user

profile.)

*MEMBER User names that are members of the group specified by the group profile name parameter are

returned. The users who do not have any group profiles can be retrieved by specifying

*NOGROUP for the group profile name. Only user names that are not group profiles are returned.

The group profile name parameter must contain a valid group profile name or *NOGROUP when

the selection criteria parameter is *MEMBER.

106 iSeries: Security -- Security-related APIs

Starting profile name

INPUT; CHAR(10)

 The profile name at which to start the listing. The profile names are listed alphabetically.

 Possible values follow:

 *FIRST Profiles are returned starting with the first profile alphabetically.

profile name If an exact match for the starting profile name is found, the starting profile option parameter

indicates whether that profile name is returned.

 If an exact match for the starting profile name is not found, the listing begins with the first

existing profile name after the specified starting profile name. For example, assume the authorized

users are ED, FRANK, and MARY. If F is specified for the starting user profile, the list returned

would be FRANK and MARY.

Starting profile option

INPUT; CHAR(1)

 This parameter indicates whether the starting profile name is returned when an exact match for

the starting profile name is found. Possible values follow:

 0 Profile names greater than the starting profile are

returned.

1 Profile names equal to and greater than the starting

profile name are returned.

Group profile name

INPUT; CHAR(10)

 The group profile whose members are to be returned. The profile that is specified must exist and

must be a group profile.

 A group profile name or *NOGROUP is required if *MEMBER is specified for the selection

criteria parameter. The group profile name must be *NONE if the selection criteria parameter is

not *MEMBER.

 *NONE No group profile is specified.

group name Users who are a member of this group are returned.

*NOGROUP Users who are not a member of any group are returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter

Ending profile name

INPUT; CHAR(10)

 The profile name at which to end the listing. Specifying an ending profile name can limit the

names that are returned.

 If this parameter is not provided, *LAST is used as a default. Possible values are:

 *LAST Profiles up to and including the last profile are returned.

Profile name The last profile name to be included in the list.

Security-related APIs 107

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Receiver Variable Description

The following tables describe the order and format of the data returned in the receiver variable for each

profile name in the list. For detailed descriptions of the fields in the tables, see “Field Descriptions” on

page 109.

AUTU0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

AUTU0150 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

12 0C CHAR(50) Text description

AUTU0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

12 0C BINARY(4) Number of group profiles

16 10 ARRAY(16) of

CHAR(10)

Group profiles

AUTU0250 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(1) Group members indicator

12 0C CHAR(50) Text description

62 3E CHAR(2) Reserved

108 iSeries: Security -- Security-related APIs

Offset

Type Field Dec Hex

64 40 BINARY(4) Number of group profiles

68 44 ARRAY(16) of

CHAR(10)

Group profiles

Format of Returned Records Feedback Information

For a description of the fields in this format, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of profile names

12 C BINARY(4) Entry length for each profile returned

Field Descriptions

Bytes available.

The number of bytes of data available to be returned to the user in the receiver variable. If all data is

returned, bytes available is the same as the number of bytes returned. If the receiver variable was not big

enough to contain all of the data, this value is estimated based on the total number of authorized users of

the system and the format specified.

Bytes returned. The number of bytes of data returned to the user in the receiver variable. This is the

lesser of the number of bytes available to be returned or the length of the receiver variable.

Entry length for each profile returned. The entry length, in bytes, of each element in the list of profile

names. A value of zero is returned if the list is empty.

Group members indicator. Whether this user is a group that has members. Possible values follow:

 0 The user is not a group, or is a group but does not have any members.

1 The user is a group that has members.

Group profiles. The array of group profiles for the user. The number of group profiles field indicates

how many entries are in the array.

Number of group profiles. The number of group profiles returned in the group profiles field. The

number of group profiles will be zero if the user is not a member of any groups.

Number of profile names. The number of complete entries in the list of profile names. A value of zero is

returned if the list is empty.

Profile name. The name of an authorized user for whom information is returned.

Reserved. An ignored field.

Security-related APIs 109

Text description. The descriptive text for the user profile.

User or group indicator. Whether this user is a user profile or a group profile. Possible values follow:

 0 User profile

1 Group profile

Error Messages

 Message ID Error Message Text

CPF2225 E Not able to allocate internal system object.

CPF22B4 E Group profile &1 not found.

CPF22B7 E Profile &1 is not a group profile.

CPF22E0 E Group profile name cannot be *NONE when selection criteria is *MEMBER.

CPF22ED E Group profile name must be *NONE when selection criteria is not *MEMBER.

CPF22EE E Selection criteria is not valid.

CPF22EF E Starting profile option must be 0 or 1.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R7

 Top | Security APIs | APIs by category

Retrieve Encrypted User Password (QSYRUPWD) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format

Input Char(8)

4 User profile name

Input Char(10)

5 Error code

I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

110 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

The Retrieve Encrypted User Password (QSYRUPWD) API returns to the caller the encrypted password

data for the specified user profile. This API works with the Set Encrypted User Password (QSYSUPWD)

API in that the APIs allow the user to more easily mirror the user profile activity on a second system

based on the activity at the first system.

The data returned by the QSYRUPWD APIs should not be sent to a system that is at a

different

release or at a different password level. If data from this API is applied to a down-level system or a

system with a different password level, unexpected changes to the user’s password data could occur. For

example, if the encrypted password data is retrieved from a system operating at password level 3 and is

set on a system operating at password level 0 (or a pre-V5R1 system), the user profile’s password is

changed to *NONE. No checks are made to enforce these recommendations.

If the local password management (LCLPWDMGT) value for the specified user profile is *NO, then the

local OS/400 password will be set to *NONE when the QSYSUPWD API is called. Also, if the

LCLPWDMGT value is *NO for the user profile on the system where the QSYSUPWD API is called, then

the local OS/400 password will be set to *NONE.

Except for the iSeries Support for Windows Network Neighborhood (iSeries NetServer) password, the

QSYRUPWD API does not retrieve product-level encrypted data that may be associated with a user

profile.

Note: If an error occurs while attempting to retrieve the iSeries NetServer password, the CPF22F0 error

will be returned and no encrypted password data is returned.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM

API Public Authority

*EXCLUDE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable used to return the information about the user. The necessary size of this receiver

variable can be obtained by calling the QSYRUPWD API with the length of receiver variable set

to 8 bytes. The bytes available value that is returned in this receiver variable will indicate the

necessary size of the receiver variable. The receiver variable format is defined in “UPWD0100

Format” on page 112.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. This value must be at least 8 bytes in length. To obtain all

information necessary to call the QSYSUPWD API, you must use a receiver variable at least as

long as the bytes available value that is returned by this API.

Format

INPUT; CHAR(8)

 The name of the format that is used to return the user’s encrypted password.

 The following value is allowed:

 “UPWD0100

Format” on page

112

Encrypted password is returned.

Security-related APIs 111

User profile name

INPUT; CHAR(10)

 The name of the user for whom the encrypted password will be returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following tables describe the receiver variable that is returned by the QSYRUPWD API. This receiver

variable is used as input to the QSYSUPWD API (first parameter). The receiver variable cannot be

changed in any way prior to passing the data to the QSYSUPWD API. If this data is changed, the

QSYSUPWD API will not be able to successfully change the password for the user.

For detailed descriptions of the fields in this table, see “Field Descriptions.”

UPWD0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User profile name

18 12 CHAR(*) Encrypted user password data

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user. Bytes available may

increase from release to release but will always be a minimum of 2000 bytes. This field should be used to

set the length of receiver variable input parameter. If the bytes available field is greater than the bytes

returned field, the receiver variable cannot successfully be used as input to the QSYSUPWD API as not

all encrypted password data will be returned by this API.

Bytes returned. The number of bytes of data returned to the user in the receiver variable.

Encrypted user password data. The encrypted password data for the specified user profile.

User profile name. The name of the user profile for which information is being returned.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2225 E Not able to allocate internal system object.

CPF222E E &1 special authority is required.

CPF22F0 E Unexpected errors occurred during processing.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

112 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R7

 Top | Security APIs | APIs by category

Retrieve Object Signatures (QYDORTVO,

QydoRetrieveDigitalSignatures)API

 Required Parameter Group:

1 Object path name

Input Char(*)

2 Length of object path name

Input Binary(4)

3 Format of object path name

Input Char(8)

4 Receiver

Output Char(*)

5 Length of receiver variable

Input Binary(4)

6 Format of receiver variable

Input Char(8)

7 Error code

I/O Char(*)

 Service Program Name: QYDORTV1

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Object Signatures (OPM, QYDORTVO; ILE, QydoRetrieveDigitalSignatures) API retrieves

certificate information from a signed iSeries object.

Authorities and Locks

Authority Required

For objects in a library:

v *READ authority to the object

v *OBJOPR and *EXECUTE authority to the library.

For objects in a directory:

Security-related APIs 113

#TOP_OF_PAGE
sec.htm
aplist.htm

v *R authority to the object

v *X authority to each directory in the path.

Locks Object will be locked shared allow read.

Required Parameter Group

Object path name

INPUT; CHAR(*)

 The name of the object from which you want to retrieve signatures. If the object is not in a

library, the name may be relative to the current directory or may specify the entire path name. If

the object is in a library, the name must be in the form

’/QSYS.LIB/libname.LIB/objname.objtype’ if you are using format OBJN0100 object path naming.

For example, to sign a program named NEWEMPL in library PAYROLL, the qualified object

name would be ’/QSYS.LIB/PAYROLL.LIB/NEWEMPL.PGM’. Also, this parameter is assumed to

be represented in the coded character set identifier (CCSID) currently in effect for the job if you

are using format OBJN0100 object path naming. If the CCSID of the job is 65535, this parameter is

assumed to be represented in the default CCSID of the job.

 If the object is in the QSYS file system, the object type must be *PGM, *SRVPGM, *MODULE,

*SQLPKG, *FILE (save file), or *CMD.

Length of object path name

INPUT; BINARY(4)

 The length of the object path name. If the format of object path name is OBJN0200, this field must

include the QLG path name structure in addition to the path name itself. If the format of object

path name is OBJN0100, only the path name itself is included.

Format of object path name

INPUT; CHAR(8)

 The format of the object path name parameter

 OBJN0100 The object path name is a simple path name.

OBJN0200 The object path name is an LG-type path name.

Receiver

OUTPUT; CHAR(*)

 The structure that returns one or more blocks of certificate information from a digitally signed

object.

Length of receiver

INPUT; BINARY(4)

 Size (in bytes) of the receiver available for signatures to be returned.

Format of receiver

INPUT; CHAR(8)

114 iSeries: Security -- Security-related APIs

The format of certificate fields returned in the receiver.

 CERT0200 All certificate text fields are translated from the ASCII format into the job CCSID.

CERT0210 All certificate fields are returned in the original certificate ASCII format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Structure

The receiver structure is comprised of:

1. A header section

2. An array of subheader sections called signature sections

3. For each subheader section, a Certificate Format CERT0200 (or CERT0210) as documented in the Parse

Certificate (QSYPARSEC, QsyParserCertificate) API.

Header

Receiver Header area

For a description of the fields, see “Field Descriptions”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes_Returned

4 4 BINARY(4) Bytes_Available

8 8 BINARY(4) Offset_To_Sections

12 12 BINARY(4) Length_Of_Section

16 10 BINARY(4) Number_Of_Sections

20 14 BINARY(4) Number_Signatures_Returned

24 18 BINARY(4) Number_Signatures_Available

28 1C BINARY(4) Composite_Object

32 20 BINARY(4) Version

36 24 BINARY(4) IBM_Signed

40 28 CHAR(1) Core Signed

41 29 CHAR(1) Entire Signed

42 30 CHAR(1) Compressed Signature Exists

43 31 CHAR(1) Decompressed Signature Exists

44 2C CHAR(24) Reserved for future use

Field Descriptions

Bytes_Returned. Number of bytes returned by the API into the receiver.

Bytes_Available. Number of bytes available from the API

Security-related APIs 115

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset_To_Sections. Offset from beginning of struct to the first signature section

Length_Of_Section. Length of an individual signature section

Number_Of_Sections. The number of signature sections in the array of signature sections

Number_Signatures_Returned. How many signatures were returned

Number_Signatures_Available. How many signatures were available

Composite_Object. Composite object indicator. 0 if not composite; nonzero if composite.

Version. V5R1 value is zero. V5R2 value of 1 added to indicate added fields.

IBM_Signed. Whether IBM OS/400 signed. 1 if IBM OS/400 signed.

Core Signed. If Version is 0, Reserved.
″Core″ is applicable to *CMD objects only.
’1’ if there is a ″Core″ signature for some certificate. ’0’ if there is no ″Core″ signature on the object.

Entire Signed. If Version is 0, Reserved.
’1’ if there is an ″Entire″ signature for some certificate. ’0’ if there is no ″Entire″ signature on the object.

Compressed Signature Exists. If Version is 0, Reserved.
’1’ indicates the object has a digital signature for the compressed object for some certificate. ’0’ indicates

the object has no digital signature for the compressed object.

Decompressed Signature Exists. If Version is 0, Reserved.
’1’ indicates the object has a digital signature for the decompressed object for some certificate. ’0’

indicates the object has a digital signature for the decompressed object.

Signature Section

For a description of the fields, see Field Descriptions.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset_Cert_Info

4 4 BINARY(4) Length_Cert_Info

8 8 CHAR(8) Certificate_Format

16 10 CHAR(1) Reserved1

17 11 CHAR(7) Parse_Msg_ID

24 18 CHAR(14) Date_Signed

38 26 CHAR Signature_Scope

39 27 CHAR Compressed_Signature;

40 28 CHAR Decompressed_Signature;

41 29 CHAR(23) Reserved2

116 iSeries: Security -- Security-related APIs

#SIGN_FIELD_DESCRIPT

Field Descriptions

Offset_Cert_Info. Offset from beginning of receiver to the certificate information

Length_Cert_Info. Length of the certificate information

Certificate_Format. Format of the parsed certificate. Format is CERT0210 or CERT0200 per input request

or CERT0000 if not parsed.

Reserved1. Reserved byte

Parse_Msg_ID. Message result, if any, from parsing the certificate

Date_Signed. YYYYMMDDhhmmss format where YYYY represents the year, MM the month, hh the

hour, mm the minutes, and ss the seconds.

Signature_Scope. If Version is 0, Reserved.
’E’ if there is an ″Entire″ signature for some certificate. ’C’ if there is a ″Core″ signature on the object.

Compressed_Signature;. If Version is 0, Reserved.
’1’ indicates the object has a digital signature for the compressed object for this certificate. ’0’ indicates the

object has no digital signature for the compressed object for this certificate.

Decompressed_Signature;. If Version is 0, Reserved.
’1’ indicates the object has a digital signature for the decompressed object for this certificate. ’0’ indicates

the object has no digital signature for the decompressed object for this certificate.

Reserved2. RESERVED bytes

Certificate Format CERT0200 (or CERT0210)

Each subheader section provides a receiver-start relative offset to a certificate format CERT0200 (or

CERT0210) as documented in the Parse Certificate (QSYPARSEC, QsyParserCertificate) API.

The certificate format has offsets relative to a beginning offset of its own structure under the heading

″Certificate Format CERT0200 (Plain Text)″ in the API for Parse Certificate. These are retained in the API.

These structure offsets are thus displacements relative to the certificate format beginning within the

receiver.

If a message is issued when using the interface to parse the certificate, the message ID will be copied into

the signature section (the subheader) field Parse_Msg_ID.

Error Messages

 Message ID Error Message Text

CPFA0A9 E Object not found.

CPFB720 E Object type does not support signing.

CPFB722 E Object not signed.

CPFB724 E Option &2 of the operating system is required to work with object signatures.

CPFB735 E The digital signing API parameter &1 is not large enough.

CPFB736 E The digital signing API parameter &1 is not small enough.

CPFB737 E The digital signing API parameter &1 is a NULL pointer.

CPFB738 E The digital signing API parameter &1 is not a valid format type.

CPFB739 E The digital signing API parameter &1 is out of range.

CPFB740 E The format name for the pathname is not valid.

CPFB741 E The length of the path name parameter is not valid.

CPFB742 E The subdirectory option is not a valid value.

Security-related APIs 117

Message ID Error Message Text

CPFB743 E The value for stopping on the first error is not valid.

CPFB745 E The format name for the results file path name is not valid.

CPFB746 E The results file path name length is not large enough.

CPFB749 E Object signature operation ended abnormally. &3 objects attempted, &2 objects successfully

processed.

API introduced: V5R1

 Top | Security APIs | APIs by category

Retrieve Objects Secured by Authorization List (QGYRATLO) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Section information

Output Char(64)

5 Number of records to return

Input Binary(4)

6 Format name

Input Char(8)

7 Authorization list

Input Char(10)

8 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Objects Secured by Authorization List (QGYRATLO) API provides a list of objects that are

secured by an authorization list. This API provides information similar to the Display Authorization List

Objects (DSPAUTLOBJ) command and the List Objects Secured by Authorization List (QSYLATLO) API.

Differences between QSYLATLO and QGYRATLO

The QGYRATLO API returns the same information that the List Objects Secured by Authorization List

(QSYLATLO) API provides, but takes a complete snapshot at once and allows subsequent records to be

obtained through the Get List Entries (QGYGTLE) API.

118 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

Authorization List Authority

Must not be *EXCLUDE authority

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. For formats that contain variable

length data, the receiver variable length must be large enough to hold the fixed portion of the

record.

List information

OUTPUT; CHAR(80)

 The variable that is used to return status information about the list of secured objects that were

opened. See “Format of List Information” on page 124 for a description of this parameter.

Section information

OUTPUT; CHAR(64)

 The variable that is used to return entry information about the list of secured objects that was

opened. See “Format of Section Information” on page 125 for a description of this parameter.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable after the entire list has been

built. If -1 is specified, then all the records will be returned.

Format name

INPUT; CHAR(8)

 The name of the format that is used to list objects secured by the authorization list.

 You can specify these formats:

 “ATLO0100

Format” on page

120

Each entry contains the object name, library, type, authority holder indicator, auxiliary storage

pool (ASP) device name of library, and ASP device name of object.

“ATLO0110

Format” on page

120

This format only returns path names for objects in a directory. Each entry contains the offset to the

path name, the length of the path name, type, authority holder indicator, ASP device name of

object, and the path name value. Objects in the QSYS and QDLS file systems are not returned with

this format.

“ATLO0200

Format” on page

121

Each entry contains the same information as ATLO0100 plus the object owner, attribute, text, and

primary group.

“ATLO0210

Format” on page

121

This format only returns path names for objects in a directory. Each entry contains the same

information as format ATLO0110 plus the object owner, attribute, text, and primary group. Objects

in the QSYS and QDLS file systems are not returned with this format.

Security-related APIs 119

“ATLO0300

Format” on page

121

Each entry contains the length of the entry, object name, library, type, authority holder indicator,

document library object (DLO) name, the name of the folder that the DLO is in, the displacement

to the path name, the length of the path name, ASP device name of library, ASP device name of

object, and the path name value. Objects in all file systems will be returned with this format.

“ATLO0400

Format” on page

122

Each entry contains the same information as ATLO0300 plus the object owner, primary group,

attribute, and text. Objects in all file systems are returned with this format.

Authorization list

INPUT; CHAR(10)

 The name of the authorization list for which the secured objects are returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following tables describe the order and format of the data returned in the receiver variable. For

detailed descriptions of the fields in the tables, see “Field Descriptions” on page 122.

ATLO0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(10) ASP device name of library

41 29 CHAR(10) ASP device name of object

ATLO0110 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(1) Reserved

20 14 CHAR(10) ASP device name of object

 CHAR(*) Path name

120 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

ATLO0200 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Object name

10 0A CHAR(10) Library name

20 14 CHAR(10) Object type

30 1E CHAR(1) Authority holder

31 1F CHAR(10) Owner

41 29 CHAR(10) Attribute

51 33 CHAR(50) Text description

101 65 CHAR(10) Primary group

111 6F CHAR(10) ASP device name of library

121 79 CHAR(10) ASP device name of object

ATLO0210 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to path name

4 4 BINARY(4) Length of path name

8 8 CHAR(10) Object type

18 12 CHAR(1) Authority holder

19 13 CHAR(10) Owner

29 1D CHAR(10) Attribute

39 27 CHAR(50) Text description

89 59 CHAR(10) Primary group

99 63 CHAR(1) Reserved

100 64 CHAR(10) ASP device name of object

 CHAR(*) Path name

ATLO0300 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 CHAR(10) Object name

14 0E CHAR(10) Library name

24 18 CHAR(10) Object type

34 22 CHAR(1) Authority holder

35 23 CHAR(12) DLO name

47 2F CHAR(63) Folder name

Security-related APIs 121

Offset

Type Field Dec Hex

110 6E CHAR(2) Reserved

112 70 BINARY(4) Displacement to path name

116 74 BINARY(4) Length of path name

120 78 CHAR(10) ASP device name of library

130 82 CHAR(10) ASP device name of object

 CHAR(*) Path name

ATLO0400 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 CHAR(10) Object name

14 0E CHAR(10) Library name

24 18 CHAR(10) Object type

34 22 CHAR(1) Authority holder

35 23 CHAR(12) DLO name

47 2F CHAR(63) Folder name

110 6E CHAR(2) Reserved

112 70 BINARY(4) Displacement to path name

116 74 BINARY(4) Length of path name

120 78 CHAR(10) Owner

130 82 CHAR(10) Attribute

140 8C CHAR(50) Text description

190 BE CHAR(10) Primary group

200 C8 CHAR(10) ASP device name of library

210 D2 CHAR(10) ASP device name object

 CHAR(*) Path name

Field Descriptions

ASP device name of library. The auxiliary storage pool (ASP) device name where the object’s library is

stored. If the object’s library is in the system ASP or one of the basic user ASPs, this field contains

*SYSBAS.

ASP device name of object. The auxiliary storage pool (ASP) device name where the object is stored. If

the object is in the system ASP or one of the basic user ASPs, this field contains *SYSBAS.

Attribute. The attribute of the secured object. If the object is not in the QSYS or QDLS file system, this

field is blank.

Authority holder. Whether the object is an authority holder. If the object is an authority holder, this field

is Y. If not, this field is N.

122 iSeries: Security -- Security-related APIs

Authorization list. The name of the authorization list for which the list of objects is returned.

Authorization list library name. The name of the library that contains the authorization list.

Displacement to path name. The displacement in the entry to the start of the path name. The

displacement will be set to zero if the receiver variable is not large enough to hold the path name.

DLO name. The document library object (DLO) name for the object. If the object is not a *DOC

(document) or *FLR (folder) object, this field is blank.

Folder name. The name of the folder that contains the DLO object. If the object is not in a folder, this

field contains *NONE.

Length of entry. The length (in bytes) of the current entry.

Length of path name. The length (in bytes) of the path name.

Library name. The name of the library that contains the object.

Object name. The name of the object that is secured by the authorization list. If the object is not in the

QSYS or QDLS file system, this field is blank.

Object type. The type of secured object.

Offset to path name. The offset in the receiver variable to the start of the path name. The offset will be

set to zero if the receiver variable is not large enough to hold the path name.

Owner. The name of the owner of the authorization list or object.

Path name. The path name of the object that is secured by the authorization list. The user must request a

format that supports path names if path names are to be included in the information that is returned in

the receiver variable. The structure of the path name returned follows:

 Description Type

CCSID of the

returned path

name

Binary(4)

Country or

region ID

Char(2)

Language ID Char(3)

Reserved field Char(3)

Flag byte Binary(4)

Number of bytes

in the path name

Binary(4)

Path delimiter Char(2)

Reserved field Char(10)

Path name value Char(*)

Primary group. The name of the user who is the primary group for the authorization list or object. If

there is no primary group for the authorization list or object, this field contains a value of *NONE.

Reserved. An ignored field.

Text description. The descriptive text for the secured object. If the object is not in the QSYS or QDLS file

system, this field is blank.

Security-related APIs 123

Format of List Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Total records

4 4 BINARY(4) Records returned

8 8 CHAR(4) Request handle

12 C BINARY(4) Record length

16 10 CHAR(1) Information complete indicator

17 11 CHAR(13) Date and time created

30 1E CHAR(1) List status indicator

31 1F CHAR(1) Reserved

32 20 BINARY(4) Length of information returned

36 24 BINARY(4) First record in buffer

40 28 BINARY(4) Reason code

44 2C CHAR(36) Reserved

Field Descriptions

Date and time created. The date and time when the list was created.

The 13 characters are:

 0 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 The date, in YYMMDD (year, month, and day) format.

8-13 The time of day, in HHMMSS (hours, minutes, and seconds) format.

First record in buffer. The number of the first record in the receiver variable.

Information complete indicator. Whether all requested information has been supplied.
Possible values follow:

 I Incomplete information. An interruption causes the list to contain incomplete information about a

buffer or buffers.

P Partial and accurate information. Partial information is returned when the maximum space was

used and not all of the buffers requested were read.

C Complete and accurate information. All the buffers requested are read and returned.

Length of information returned. The size, in bytes, of the information that is returned in the receiver

variable.

List status indicator. The status of building the list.

Possible values follow:

 2 The list has been completely built.

Reason code. The reason code that further describes why the list is only a subset of all objects. The

following values can be returned:

124 iSeries: Security -- Security-related APIs

v Reason code 0000. The list returned in the receiver variable contains all objects that meet the search

criteria.

v Reason code 0001. Objects were found that meet the search criteria, but they could not be included in

the returned list. The requested format could not handle path names for directory objects.

v Reason code 0002. Objects were found that meet the search criteria, but they could not be included in

the returned list. The requested format could not handle objects found in library QSYS.

v Reason code 0003. Directory objects were found, but they did not have links to them.

 Record length. The length of each record of information returned. For variable length records, this value

is set to zero. For variable length records you can obtain the length of individual records from the records

themselves.

Records returned. The number of records returned in the receiver variable. This is the smallest of the

following three values:

v The number of records that will fit into the receiver variable.

v The number of records in the list.

v The number of records that are requested.

 Request handle. The handle of the request that can be used for subsequent requests of information from

the list. The handle is valid until the Close List (QGYCLST) API is called to close the list, or until the job

ends.

Note: This field should be treated as a hexadecimal field. It should not be converted from one CCSID to

another, for example, EBCDIC to ASCII, because doing so could result in an unusable value.

Reserved. An ignored field.

Total records. The total number of records available in the list.

Format of Section Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Entry number of first QSYS.LIB object

4 4 BINARY(4) Number of QSYS.LIB objects

8 8 BINARY(4) Entry number of first QDLS object

12 0C BINARY(4) Number of QDLS objects

16 10 BINARY(4) Entry number of first directory object

20 14 BINARY(4) Number of directory objects

24 18 CHAR(40) Reserved

Field Descriptions

Entry number of first directory object. The entry number of the first directory object (objects not in the

QSYS.LIB or QDLS file system) that was returned in the receiver variable. This value is only set if you are

using format ATLO0300 or ATLO0400. Otherwise, -1 is returned. If the number of directory objects field is

0, this value is also 0.

Security-related APIs 125

Entry number of first QDLS object. The entry number of the first QDLS object that was returned in the

receiver variable. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is

returned. If the number of QDLS objects field is 0, this value is also 0.

Entry number of first QSYS.LIB object. The entry number of the first QSYS.LIB object that was returned

in the receiver variable. This value is only set if you are using format ATLO0300 or ATLO0400.

Otherwise, -1 is returned. If the number of QSYS.LIB objects field is 0, this value is also 0.

Number of directory objects. The number of objects in directories (objects not in the QSYS.LIB or QDLS

file system) that were returned in the receiver variable. This value is only set if you are using format

ATLO0300 or ATLO0400. Otherwise, -1 is returned. If there are no entries for objects in directories in the

receiver variable, 0 is returned.

Number of QDLS objects. The number of objects in the QDLS file system that were returned in the

receiver variable. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1 is

returned. If there are no entries for QDLS objects in the receiver variable, 0 is returned.

Number of QSYS.LIB objects. The number of objects in the QSYS.LIB file system that were returned in

the receiver variable. This value is only set if you are using format ATLO0300 or ATLO0400. Otherwise, -1

is returned. If there are no entries for QSYS.LIB objects in the receiver variable, 0 is returned.

Reserved. An ignored field.

Error Messages

 Message ID Error Message Text

CPF22AF E Not authorized to authorization list &1.

CPF2283 E Authorization list &1 does not exist.

CPF2289 E Unable to allocate authorization list &1.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R1

 Top | Security APIs | APIs by category

126 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Retrieve Security Attributes (QSYRTVSA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Error code

I/O Char(*)

 Threadsafe: No

The Retrieve Security Attributes (QSYRTVSA) API retrieves information about the current and pending

security attributes of the system.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the command information to be returned.

 The following format name may be used:

 “RTSA0100

Format” on page

128

Basic system security attributes.

Error code

I/O; CHAR(*)

Security-related APIs 127

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RTSA0100 Format

The following table describes the information that is returned in the receiver variable for the RTSA0100

format. For detailed descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Current security level

12 C BINARY(4) Pending security level

16 10 BINARY(4) Current password level

20 14 BINARY(4) Pending password level

24 18 CHAR(1) Allow change to security related system values

25 19 CHAR(1) Allow add of digital certificates

26 1A CHAR(1) Allow service tools user ID password change

Field Descriptions

Allow add of digital certificates. Specifies whether or not digital certificates can be added to a certificate

store using the Add Verifier (QYDOADDV) API, and whether or not the password for a certificate store

can be reset using Digital Certificate Manager (DCM).

 0 Digital certificates cannot be added to a certificate store using the QYDOADDV API, and

certificate store passwords cannot be reset using DCM.

1 Digital certificates can be added to a certificate store using the QYDOADDV API, and certificate

store passwords can be reset using DCM.

Allow change to security related system values. Specifies whether or not the security related system

values can be changed.

 0 The security related system values cannot be changed.

1 The security related system values can be changed.

Allow service tools user ID password change. Specifies whether or not a service tools user ID with a

default password that is expired can change its own password.

 0 A service tools user ID with a default password that is expired cannot change its own password.

1 A service tools user ID with a default password that is expired can change its own password.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Current security level. This is the security level that is currently being used by the system. See the

QSECURITY system value for a list of the possible values.

128 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Current password level. This is the password level that is currently being used by the system. See the

QPWDLVL system value for a list of the possible values.

Pending security level. This is the security level that the system will use after the next IPL. It is the same

value as displayed by the Display System Value (DSPSYSVAL) command for the QSECURITY system

value. See the QSECURITY system value for a list of the possible values.

Pending password level. This is the password level that the system will use after the next IPL. It is the

same value as displayed by the Display System Value (DSPSYSVAL) command for the QPWDLVL system

value. See the QPWDLVL system value for a list of the possible values.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | Security APIs | APIs by category

Retrieve User Application Information

(QsyRetrieveUserApplicationInfo) API

 Syntax for QsyRetrieveUserApplicationInfo:

 #include <qsyusrin.h>

 void QsyRetrieveUserApplicationInfo

 (void *Receiver_variable,

 int *Length_of_receiver_variable,

 void *Return_records_feedback_information,

 char *Format_name,

 char *User_profile,

 char *Application_information_ID,

 int *Length_of_application_information_ID,

 void *Error_code);

 Service Program: QSYUSRIN

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve User Application Information (QsyRetrieveUserApplicationInfo) API returns a list of

application information entries for a user profile.

Security-related APIs 129

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

User Profile Authority

*READ

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable.

Returned records feedback information

OUTPUT; CHAR(12)

 Information about the entries that are returned in the receiver variable.

 See “Format of Returned Records Feedback Information” on page 131 for details.

Format name

INPUT; CHAR(8)

 The name of the format that is used to retrieve application information entries for the user

profile.

 You can specify this format:

 RUAI0100 For a detailed description of this format, see “RUAI0100 Format” on page 131.

User profile

INPUT; CHAR(10)

 The name of the user profile for which the application information will be retrieved. The special

value *CURRENT may be specified to retrieve application information for the user profile that

calls this API.

Application information ID

INPUT; CHAR(*)

 The ID for the application information to retrieve. The following can be specified for the

application information ID:

generic*

All application information IDs that have IDs beginning with the generic string will be

retrieved.

application information ID

Specific application information ID will be retrieved.

Length of application information ID

INPUT; BINARY(4)

130 iSeries: Security -- Security-related APIs

The length of the application information ID. The length of the application information ID may

be from 1 to 200.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Variable Description

The following tables describe the order and format of the data returned in the receiver variable. For

detailed descriptions of the fields in the tables, see “Field Descriptions.”

RUAI0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 CHAR(200) Application information ID

204 CC BINARY(4) Displacement to user application information

208 D0 BINARY(4) Length of user application information

212 D4 BINARY(4) CCSID of user application information

216 D8 CHAR(6) First valid release

 CHAR(*) User application information

Format of Returned Records Feedback Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of user application information entries

Field Descriptions

Application information ID. The application information ID that identifies this entry.

Bytes available. The number of bytes of data available to be returned to the user in the receiver variable.

If all data is returned, bytes available is the same as the number of bytes returned. If the receiver variable

was not large enough to contain all of the data, this value is estimated based on the total number of

application information entries for the user profile and the format specified.

Bytes returned. The number of bytes of data returned to the user in the receiver variable. This is the

lesser of the number of bytes available to be returned or the length of the receiver variable.

CCSID of user application information. The CCSID of the user application information. This will be the

default job CCSID of the job that last updated the user application information.

Displacement to user application information. The displacement in the entry to the start of the user

application information.

Security-related APIs 131

error.htm#HDRERRCOD
error.htm#HDRERRCOD

First valid release. The first release that this application information is valid. This field will be in the

format VxRxMx (for example, V5R3M0).

Length of entry. The length (in bytes) of the current entry. This length can be used to access the next

entry.

Length of user application information. The length (in bytes) of the user application information.

Number of user application information entries. The number of complete entries returned in the list of

user application information entries. A value of zero is returned if the list is empty.

User application information. The user application information that is associated with the user profile.

Error Messages

 Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF2222 E Storage limit is greater than specified for user profile &1.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | Security APIs | APIs by category

132 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Retrieve User Authority to Object (QSYRUSRA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Receiver variable length

Input Binary(4)

3 Format name

Input Char(8)

4 User profile name

Input Char(10)

5 Qualified object name

Input Char(20)

6 Object type

Input Char(10)

7 Error code

I/O Char(*)
 Optional Parameter Group 1:

8 ASP device

Input Char(10)

Optional Parameter Group 2:

9 Path name

Input Char(*)

10 Length of Path name

Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve User Authority to Object (QSYRUSRA) API returns a specific user’s authority for an object

to the caller.

Authorities and Locks

The following authorities are required for the user calling this API, unless the user profile specified is

*CURRENT, the caller owns the object, or the object is an authorization list:

v *OBJMGT authority to the object specified.

v *READ authority to the user profile specified (unless *PUBLIC is specified).

Security-related APIs 133

v *USE authority to the Auxiliary Storage Pool Device.

If previous programs in the program stack adopt their owner’s authority, the adopted authority for the

current program is the accumulated adopted authority from all other programs in the program stack that

adopt authority. Adopted authority is only valid when the user specified is *CURRENT.

If a path name

is specified, adopted authority is not used when accessing the path object.

If a path name is specified, *X authority is required for each directory in the path.

If a path name is specified, adopted authority is not used to locate the object but adopted authority will

be used when authority information is retrieved for the object.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable used to return the user’s authority to the object. This variable must be at least 8

bytes long.

Receiver variable length

INPUT; BINARY(4)

 The length of the receiver variable. The variable must be at least 8 bytes long.

Format name

INPUT; CHAR(8)

 The name of the format used to return the authority information.

 You can specify the following special value:

 “USRA0100

Format” on page

136

All authority information is returned.

User profile name

INPUT; CHAR(10)

 The name of the user whose object authority is returned.

 You can specify the following special values:

 *CURRENT The authority of the user currently running to the specified object is returned.

*PUBLIC The public authority for the object is returned.

Qualified object name

INPUT; CHAR(20)

 The name of the object whose authority is returned. The first 10 characters specify the object

name, and the second 10 characters specify the library.

If you want to use a path name instead of a qualified object name, then use this special value

for the object name:

 *OBJPATH Use the optional parameters, path name and path name length, to specify the object name. When

this special value is specified, the library name must be blanks.

134 iSeries: Security -- Security-related APIs

You can use these special values for the library name:

 *CURLIB The current library is used to locate the object. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the object.

Object type

INPUT; CHAR(10)

 The type of object for which authority information is returned.

The object type must be blank if

*OBJPATH is specified for the qualified object name.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

ASP device

INPUT; CHAR(10)

 The name of the auxiliary storage pool (ASP) device in which to search for the library that

contains the object.

If *OBJPATH is specifed for the qualifed object name, the ASP device must

be *.

 The valid values are:

 * All ASPs associated with the job will be searched. This is the default value if the parameter is not

specified.

*SYSBAS The system ASP and all basic user ASPs will be searched.

*ALL All ASPs that are currently available will be searched.

ASP device name The specified ASP will be searched.

If *CURLIB or *LIBL is specified for the library then the ASP device parameter must be specified

as *.

Optional Parameter Group 2

Path name

INPUT; CHAR(*)

 The object name, specified as a path name. This parameter is assumed to be represented in the

coded character set identifier (CCSID) currently in effect for the job. If the CCSID of the job is

65535, this parameter is assumed to be represented in the default CCSID of the job.

 If the length of the path name is -1, then this parameter is assumed to be a Qlg_Path_Name_T

structure that contains a path name or a pointer to a path name. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Length of path name

INPUT; BINARY(4)

 The length of the path name in bytes. If the length is -1, the path name parameter is assumed to

be a Qlg_Path_name_T structure. This value must be zero if no path name is specified.

Receiver Variable Description

The following tables describe the order and format of the data returned in the receiver variable. For

detailed descriptions of the fields in the tables, see “Field Descriptions” on page 137.

Security-related APIs 135

error.htm#HDRERRCOD
error.htm#HDRERRCOD
pns.htm

USRA0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Object authority / Data authority

18 12 CHAR(1) Authorization list management

19 13 CHAR(1) Object operational

20 14 CHAR(1) Object management

21 15 CHAR(1) Object existence

22 16 CHAR(1) Data read

23 17 CHAR(1) Data add

24 18 CHAR(1) Data update

25 19 CHAR(1) Data delete

26 1A CHAR(10) Authorization list

36 24 CHAR(2) Authority source

38 26 CHAR(1) Some adopted authority

39 27 CHAR(10) Adopted object authority

49 31 CHAR(1) Adopted authorization list management

50 32 CHAR(1) Adopted object operational

51 33 CHAR(1) Adopted object management

52 34 CHAR(1) Adopted object existence

53 35 CHAR(1) Adopted data read

54 36 CHAR(1) Adopted data add

55 37 CHAR(1) Adopted data update

56 38 CHAR(1) Adopted data delete

57 39 CHAR(1) Adopted data execute

58 3A CHAR(10) Reserved

68 44 CHAR(1) Adopted object alter

69 45 CHAR(1) Adopted object reference

70 46 CHAR(10) Reserved

80 50 CHAR(1) Data execute

81 51 CHAR(10) Reserved

91 5B CHAR(1) Object alter

92 5C CHAR(1) Object reference

93 5D CHAR(10) ASP device name of library

103 67 CHAR(10) ASP device name of object

113 71 CHAR(3) Reserved

116 74 BINARY(4) Offset to group information table

120 78 BINARY(4) Number of group table entries returned

* * Char(*) Group information table repeated for each of the user’s groups

136 iSeries: Security -- Security-related APIs

Field Descriptions

Adopted authorization list management. Whether the user has adopted this authority to the object. If the

user adopted the authority, this field is Y. If not, this field is N.

Adopted data add. Whether the user has adopted this authority to the object. If the user has adopted the

authority, this field is Y. If not, this field is N.

Adopted data delete. Whether the user has adopted this authority to the object. If the user has adopted

the authority, this field is Y. If not, this field is N.

Adopted data execute. Whether the user has adopted this authority to the object. If the user adopted the

authority, this field is Y. If not, this field is N.

Adopted data read. Whether the user has adopted this authority to the object. If the user has adopted the

authority, this field is Y. If not, this field is N.

Adopted data update. Whether the user has adopted this authority to the object. If the user has adopted

the authority, this field is Y. If not, this field is N.

Adopted object alter. Whether the user has adopted this authority to the object. If the user adopted the

authority, this field is Y. If not, this field is N.

Adopted object authority. The user’s adopted authority to the object. This field is only valid if some of

the user’s authority is adopted. If the user does not adopt authority, this field will be blank.

If a qualified object name is specified, the possible values are:

 *ALL The user adopted all object (operational, management, existence, alter, and reference) and data

(read, add, update, delete, and execute) authorities to the object.

*CHANGE The user adopted object operational and all data authorities to the object.

*USE The user adopted object operational and data read and execute authorities to the object.

USER DEF The user adopted some combination of object and data authorities that do not relate to a special

value. The individual authorities for the user should be checked to determine what authority the

user has adopted to the object.

If a path name is specified, the possible values are:

 *RWX The user has object operational and all data authorities.

*RW The user has object operational and data read, data add, data update, and data delete authorities.

*RX The user has object operational, data read, and data execute authorities

*WX The user has object operational and data add, data update, data delete, and data execute

authorities.

*R The user has object operational and data read authorities.

*W The user has object operational and data add, data update, and data delete authorities.

*X The user has object operational and data execute authorities.

*EXCLUDE The user has exclude authority.

*NONE The user does not have object operational or any data authorities.

USER DEF The user has some combination of object and data authorities that do not relate to a special value.

The individual authorities for the user should be checked to determine what authority the user

has to the object.

Security-related APIs 137

Note: If *OBJPATH is specified for the qualified object name parameter, be aware that adopted authority

is not used by most commands and APIs that accept path names as input.

Adopted object existence. Whether the user adopted this authority to the object. If the user adopted the

authority, this field is Y. If not, this field is N.

Adopted object management. Whether the user has adopted this authority to the object. If the user has

adopted the authority, this field is Y. If not, this field is N.

Adopted object operational. Whether the user has adopted this authority to the object. If the user has

adopted the authority, this field is Y. If not, this field is N.

Adopted object reference. Whether the user has adopted this authority to the object. If the user adopted

the authority, this field is Y. If not, this field is N.

ASP device name of library. The auxiliary storage pool (ASP) device name where the object’s library is

stored. If the object’s library is in the system ASP or one of the basic user ASPs, this field contains

*SYSBAS.

ASP device name of object. The auxiliary storage pool (ASP) device name where the object is stored. If

the object is in the system ASP or one of the basic user ASPs, this field contains *SYSBAS.

Authority source. Indicates where the authority that the user has to the object initially came from. The

authority may be a combination of authority from this source plus adopted authority.

This field contains one of the following special values:

 UA The user has *ALLOBJ special authority.

UO The user is privately authorized to the object.

UL The user is privately authorized to the authorization list securing the object.

GA The user’s groups have *ALLOBJ special authority.

GO The user’s groups are privately authorized to the object.

GL The user’s groups are privately authorized to the authorization list securing the object.

GC The user’s groups have a combination of private authority to the object and private authority to

the authorization list securing the object.

PO The user accesses the object through the public authority.

PL The user accesses the object through the public authority on the authorization list securing the

object.

AD All of the authority that the user has comes from adopted authority. This value is only returned if

the user is *CURRENT.

Authorization list. The name of the authorization list securing the object.

This field can contain one of the following special values:

 *NONE There is no authorization list securing the object.

*DAMAGED The authorization list securing the object is damaged.

Authorization list management. Whether the user has this authority to the object. If the user has the

authority, this field is Y. If not, this field is N.

Bytes available. The number of bytes of data available to be returned to the user. If all data is returned,

this is the same as the number of bytes returned. If the receiver variable was not big enough to contain

all of the data, this is the number of bytes that can be returned.

138 iSeries: Security -- Security-related APIs

Bytes returned. The number of bytes of data returned to the user. This is the lesser of the number of

bytes available to be returned or the length of the receiver variable.

Data add. Whether the user has this authority to the object. If the user has the authority, this field is Y. If

not, this field is N.

Data delete. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Data execute. Whether the user has this authority to the object. If the user has the authority, this field is

Y. If not, this field is N.

Data read. Whether the user has this authority to the object. If the user has the authority, this field is Y. If

not, this field is N.

Data update. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Group information table. A list of the user’s group authorities to the object.

Number of group table entries returned. Number of group table entries returned in the receiver variable.

Object alter. Whether the user has this authority to the object. If the user has the authority, this field is Y.

If not, this field is N.

Object authority / Data authority. If a qualified object name is specifed, this is a special value

indicating the user’s total authority to the object including adopted authority (if the user is *CURRENT).

If a path name is specified, this is a special value indicating the user’s data authority to the object and

includes any adopted authority (if the user is *CURRENT).

If a qualified object name is specified, the possible values are:

 *ALL The user has all object (operational, management, existence, alter and reference) and data (read,

add, update, delete, and execute) authorities to the object.

*CHANGE The user has object operational and all data authorities to the object.

*USE The user has object operational, data read, and data execute authorities to the object.

*EXCLUDE The user has exclude authority to the object.

USER DEF The user has some combination of object and data authorities that do not relate to a special value.

The individual authorities for the user should be checked to determine what authority the user

has to the object.

If a path name is specified, the possible values are:

 *RWX The user has object operational and all data authorities.

*RW The user has object operational and data read, data add, data update, and data delete authorities.

*RX The user has object operational, data read, and data execute authorities

*WX The user has object operational and data add, data update, data delete, and data execute

authorities.

*R The user has object operational and data read authorities.

*W The user has object operational and data add, data update, and data delete authorities.

*X The user has object operational and data execute authorities.

*EXCLUDE The user has exclude authority.

*NONE The user does not have object operational or any data authorities.

Security-related APIs 139

USER DEF The user has some combination of object and data authorities that do not relate to a special value.

The individual authorities for the user should be checked to determine what authority the user

has to the object.

Object existence. Whether the user has this authority to the object. If the user has the authority, this field

is Y. If not, this field is N.

Object management. Whether the user has this authority to the object. If the user has the authority, this

field is Y. If not, this field is N.

Object operational. Whether the user has this authority to the object. If the user has the authority, this

field is Y. If not, this field is N.

Object reference. Whether the user has this authority to the object. If the user has the authority, this field

is Y. If not, this field is N.

Offset to group information table. Offset from the beginning of the receiver variable to the first group

table entry.

Reserved. An ignored field set to hexadecimal zeros.

Some adopted authority. Whether some of the authority that the user has to the object comes from

adopted authority. If some of the authority is adopted, this field is Y. If not, this field is N. This field can

only contain Y if the user is *CURRENT.

Group Information Table

This table holds information about the authorities a group has to the object.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Displacement to next group entry

4 4 CHAR(10) Group profile

14 E CHAR(10) Object authority / Data authority

24 18 CHAR(1) Authority source

25 19 CHAR(1) Authorization List Management

26 1A CHAR(1) Object operational

27 1B CHAR(1) Object management

28 1C CHAR(1) Object existence

29 1D CHAR(1) Object alter

30 1E CHAR(1) Object reference

31 1F CHAR(10) Reserved

41 29 CHAR(1) Data read

42 2A CHAR(1) Data add

43 2B CHAR(1) Data update

44 2C CHAR(1) Data delete

45 2D CHAR(1) Data execute

46 2E CHAR(2) Reserved

140 iSeries: Security -- Security-related APIs

Field Descriptions

Authority source. Where the group’s authority comes from. The value of this field is one of these special

values:

 A The group has *ALLOBJ special authority.

O The group authority comes from private authority to the object.

L The group authority comes from the authorization list securing the object.

blank There is no authority source for the group.

Authorization List Management. Whether the group has this authority to the object. If the group has the

authority, this field is Y. If not, this field is N.

Data add. Whether the group has this authority to the object. If the group has the authority, this field is

Y. If not, this field is N.

Data delete. Whether the group has this authority to the object. If the group has the authority, this field

is Y. If not, this field is N.

Data execute. Whether the group has this authority to the object. If the group has the authority, this field

is Y. If not, this field is N.

Data read. Whether the group has this authority to the object. If the group has the authority, this field is

Y. If not, this field is N.

Data update. Whether the group has this authority to the object. If the group has the authority, this field

is Y. If not, this field is N.

Displacement to next group entry. Displacement to the next group entry. This field is 0 if there is not

another group entry.

Group profile. Name of a group in the user’s profile.

Object alter. Whether the group has this authority to the object. If the group has the authority, this field

is Y. If not, this field is N.

Object authority / Data authority. If a qualified object name is specified, this is a special value indicating

the group’s authority to the object. If a path name is specified, this is a special values indications the

group’s data authority to the object.

If a qualified object name is specified, this is one of the following values:

 *ALL The group has all object (operational, management, existence, alter and reference) and data (read,

add, update, delete, and execute) authorities to the object.

*CHANGE The group has object operational and all data authorities to the object.

*USE The group has object operational, data read, and data execute authorities to the object.

*EXCLUDE The group has exclude authority to the object, or authorization list management authority.

USER DEF The group has some combination of object and data authorities that do not relate to a special

value. The individual authorities for the group should be checked to determine what authority the

group has to the object.

If a path name is specified, this is one of the following values:

 *RWX The user has object operational and all data authorities.

*RW The user has object operational and read, add, update, and delete data authorities.

*RX The user has object operational, data read, and data execute authorities

Security-related APIs 141

*WX The user has object operational and add, update, delete, and execute data authorities.

*R The user has object operational and data read authorities.

*W The user has object operational and add, update, and delete data authorities.

*X The user has object operational and data execute authorities.

*EXCLUDE The user has exclude authority.

*NONE The user does not have object operational or any data authorities.

USER DEF The group has some combination of object and data authorities that do not relate to a special

value. The individual authorities for the group should be checked to determine what authority the

group has to the object.

Object existence. Whether the group has this authority to the object. If the group has the authority, this

field is Y. If not, this field is N.

Object management. Whether the group has this authority to the object. If the group has the authority,

this field is Y. If not, this field is N.

Object operational. Whether the group has this authority to the object. If the group has the authority, this

field is Y. If not, this field is N.

Object reference. Whether the group has this authority to the object. If the group has the authority, this

field is Y. If not, this field is N.

Error Messages

 Message ID Error Message Text

CPF18A2 D Path name parameters not specified.

CPF2203 E User profile &1 not correct.

CPF2225 E Not able to allocate internal system object.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF8122 E &8 damage on library &4.

CPF980B E Object &1 in library &2 not available.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9814 E Device &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9873 E ASP status is preventing access to object.

CPFA09C E Not authorized to object.

CPFA09E E Object in use. Object is &1.

CPFA0A3 E Path name resolution causes looping.

CPFA0A7 E Path name too long.

142 iSeries: Security -- Security-related APIs

Message ID Error Message Text

CPFA0A9 E Object not found.

CPFA0AB E Operation failed for object. Object is &1.

API Introduced: V2R2

 Top | Security APIs | APIs by category

Retrieve User Information (QSYRUSRI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Receiver variable length

Input Binary(4)

3 Format name

Input Char(8)

4 User profile name

Input Char(10)

5 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve User Information (QSYRUSRI) API provides information about a user profile. This API

provides information similar to the Retrieve User Profile (RTVUSRPRF) command or the Display User

Profile (DSPUSRPRF) command when *BASIC is specified for the type parameter.

Authorities and Locks

User Profile Authority

*READ

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable used to return the information about the user. This variable must be at least 8 bytes

long.

Receiver variable length

INPUT; BINARY(4)

 The length of the receiver variable. The variable must be 8 bytes long.

Format name

INPUT; CHAR(8)

Security-related APIs 143

#TOP_OF_PAGE
sec.htm
aplist.htm

The name of the format used to return information about the user.

 You can specify these formats:

 “USRI0100

Format”

Sign-on and password information is returned. The password itself is not returned.

“USRI0200

Format” on page

145

Authority information is returned.

“USRI0300

Format” on page

145

All user information is returned.

User profile name

INPUT; CHAR(10)

 The user name for which information is returned. You can specify the following special value:

 *CURRENT The information for the user currently running is returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Variable Description

The following tables describe the order and format of the data returned in the receiver variable. For

detailed descriptions of the fields in the tables, see “Field Descriptions” on page 147.

USRI0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User profile name

18 12 CHAR(13) Previous sign-on date and time

31 1F CHAR(1) Reserved

32 20 BINARY(4) Sign-on attempts not valid

36 24 CHAR(10) Status

46 2E CHAR(8) Password change date

54 36 CHAR(1) No password indicator

55 37 CHAR(1) Reserved

56 38 BINARY(4) Password expiration interval

60 3C CHAR(8) Date password expires

68 44 BINARY(4) Days until password expires

72 48 CHAR(1) Set password to expire

73 49 CHAR(10) Display sign-on information

83 53 CHAR(1) Local password management

144 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

USRI0200 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User profile name

18 12 CHAR(10) User class name

28 1C CHAR(15) Special authorities

43 2B CHAR(10) Group profile name

53 35 CHAR(10) Owner

63 3F CHAR(10) Group authority

73 49 CHAR(10) Limit capabilities

83 53 CHAR(10) Group authority type

93 5D CHAR(3) Reserved

96 60 BINARY(4) Offset to array of supplemental groups

100 64 BINARY(4) Number of supplemental groups

 ARRAY(*) OF

CHAR(10)

Supplemental groups

USRI0300 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User profile name

18 12 CHAR(13) Previous sign-on date and time

31 1F CHAR(1) Reserved

32 20 BINARY(4) Sign-on attempts not valid

36 24 CHAR(10) Status

46 2E CHAR(8) Password change date

54 36 CHAR(1) No password indicator

55 37 CHAR(1) Reserved

56 38 BINARY(4) Password expiration interval

60 3C CHAR(8) Date password expires

68 44 BINARY(4) Days until password expires

72 48 CHAR(1) Set password to expire

73 49 CHAR(10) User class name

83 53 CHAR(15) Special authorities

98 62 CHAR(10) Group profile name

108 6C CHAR(10) Owner

Security-related APIs 145

Offset

Type Field Dec Hex

118 76 CHAR(10) Group authority

128 80 CHAR(10) Assistance level

138 8A CHAR(10) Current library name

148 94 CHAR(10) Initial menu name

158 9E CHAR(10) Initial menu library name

168 A8 CHAR(10) Initial program name

178 B2 CHAR(10) Initial program library name

188 BC CHAR(10) Limit capabilities

198 C6 CHAR(50) Text description

248 F8 CHAR(10) Display sign-on information

258 102 CHAR(10) Limit device sessions

268 10C CHAR(10) Keyboard buffering

278 116 CHAR(2) Reserved

280 118 BINARY(4) Maximum allowed storage

284 11C BINARY(4) Storage used

288 120 CHAR(1) Highest scheduling priority

289 121 CHAR(10) Job description name

299 12B CHAR(10) Job description library name

309 134 CHAR(15) Accounting code

324 144 CHAR(10) Message queue name

334 14E CHAR(10) Message queue library name

344 158 CHAR(10) Message queue delivery method

354 162 CHAR(2) Reserved

356 164 BINARY(4) Message queue severity

360 168 CHAR(10) Output queue name

370 172 CHAR(10) Output queue library name

380 17C CHAR(10) Print device

390 186 CHAR(10) Special environment

400 190 CHAR(10) Attention-key-handling program name

410 19A CHAR(10) Attention-key-handling program library name

420 1A4 CHAR(10) Language ID

430 1AE CHAR(10) Country or region ID

440 1B8 BINARY(4) Character code set ID

444 1BC CHAR(36) User options

480 1E0 CHAR(10) Sort sequence table name

490 1EA CHAR(10) Sort sequence table library name

500 1F4 CHAR(10) Object auditing value

510 1FE CHAR(64) User action audit level

574 23E CHAR(10) Group authority type

584 248 BINARY(4) Offset to array of supplemental groups

146 iSeries: Security -- Security-related APIs

Offset

Type Field Dec Hex

588 24C BINARY(4) Number of supplemental groups

592 250 BINARY(4) User ID number

596 254 BINARY(4) Group ID number

600 258 BINARY(4) Offset to home directory

604 25C BINARY(4) Length of home directory

608 260 CHAR(16) Locale job attributes

624 270 BINARY(4) Offset to locale path name

628 274 BINARY(4) Length of locale path name

632 278 CHAR(1) Group member indicator

633 279 CHAR(1) Digital certificate indicator

634 27A CHAR(10) Character identifier control

644 284 BINARY(4) Offset to array of independent ASP storage usage descriptors

648 288 BINARY(4) Number of independent ASP storage usage descriptors

652 28C BINARY(4) Number of independent ASP storage usage descriptors returned

656 290 BINARY(4) Length of an independent ASP storage usage descriptor

660 294 CHAR(1) Local password management

 ARRAY(*)
CHAR(10)

Supplemental groups

 CHAR(*) Home directory

 CHAR(*) Locale path name

 ARRAY(*)
CHAR(*)

Independent ASP storage usage descriptors

Field Descriptions

Accounting code.

The accounting code that is associated with this user. If the user does not have an accounting code, this

field is blank.

Assistance level. The user interface that the user will use.

The field contains one of the following values:

 *SYSVAL The system value QASTLVL determines which user interface the user is using.

*BASIC The Operational Assistant user interface.

*INTERMED The system user interface.

*ADVANCED The expert system user interface.

Attention-key-handling program library name. The name of the library where the program is located.

This field can contain the special value of *LIBL. If the program name is a special value, this field is

blank.

Security-related APIs 147

Attention-key-handling program name. The Attention-key-handling program for this user.

This field may contain one of the following special values:

 *SYSVAL The system value QATNPGM determines the user’s Attention-key-handling program.

*NONE No Attention-key-handling program is used.

Bytes available. The number of bytes of data available to be returned to the user. If all data is returned,

this is the same as the number of bytes returned. If the receiver variable was not big enough to contain

all of the data, this is the number of bytes that can be returned.

Bytes returned. The number of bytes of data returned to the user. This is the lesser of the number of

bytes available to be returned or the length of the receiver variable.

Character code set ID. The character code set ID to be used by the system f or this user.

This field can contain the following special value:

 -2 The system value QCCSID is used to determine the user’s character code set ID.

Character identifier control. The character identifier control for the user.

This field can contain the following special values:

 *SYSVAL The value QCHRIDCTL system value will be used to determine the CHRID control for this user.

*DEVD The *DEVD special value performs the same function as on the CHRID command parameter for

display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command parameter

for display files, printer files, and panel groups.

Country or region ID. The country or region ID used by the system for this user.

This field can contain the following special value:

 *SYSVAL The system value QCNTRYID is used to determine the user’s country or region ID.

Current library name. This field contains the name of the user’s current library. If the user does not have

a current library, this field is *CRTDFT.

Date password expires. The date the user’s password expires, in *DTS (date-time stamp) format. If the

user’s password will not expire (password expiration interval of *NOMAX) or the user’s password is set

to expire, then this field is blank.

Days until password expires. The number of days until the password will expire.

This field contains one of the following values:

 0 The password is expired.

1-7 The number of days until the password expires.

-1 The password will not expire in the next 7 days.

Digital certificate indicator. Whether there are digital certificates associated with this user.

148 iSeries: Security -- Security-related APIs

Possible values follow:

 0 There are no digital certificates associated with this user.

1 There is at least one digital certificates associated with this user.

Display sign-on information. Whether the sign-on information display is shown when the user signs on.

The field contains one of the following values:

 *SYSVAL The system value QDSPSGNINF determines if the sign-on information display is shown when the

user signs on.

*YES The sign-on information display is shown when the user signs on.

*NO The sign-on information display is not shown when the user signs on.

Group authority. The authority the user’s group profile has to objects the user creates.

The field contains one of the following values:

 *NONE The group profile has no authority to the objects the user creates. If the user does not have a

group profile, the field contains this value.

*ALL The group profile has all authority to the objects the user creates.

*CHANGE The group profile has change authority to the objects the user creates.

*USE The group profile has use authority to the objects the user creates.

*EXCLUDE The group profile has exclude authority to the objects the user creates.

Group authority type. The type of authority the user’s group profile has to objects the user creates.

The field contains one of the following values:

 *PRIVATE The group profile has a private authority to the objects the user creates. If the user does not have

a group profile, the field contains this value.

*PGP The group profile will be the primary group for objects the user creates.

Group ID number. The group ID number for the user profile. The group ID number is used to identify

the user when it is a group and a member of the group is using the integrated file system.

Possible values follow:

 0 (*NONE) The user does not have a GID.

1-4294967294 A valid GID.

Group member indicator. Whether this user is a group that has members.

Possible values follow:

 0 The user is not a group, or is a group but does not have any members.

1 The user is a group that has members.

Group profile name. The name of the group profile. If the user does not have a group profile, this field

is *NONE.

Highest scheduling priority. The highest scheduling priority the user is allowed to have for each job

submitted to the system. The priority is a value from 0 through 9, with 0 being the highest priority.

Security-related APIs 149

Home directory. The home directory for this user profile. The home directory is the user’s initial working

directory. The working directory, associated with a process, is used in path name resolution in the

directory file system for path names that do not begin with a slash (/).

The structure for the home directory name returned is:

 Offset

Type Field Dec Hex

0 0 BINARY(4) CCSID of the returned home directory

4 4 CHAR(2) Country or region ID

6 6 CHAR(3) Language ID

9 9 CHAR(3) Reserved

12 C BINARY(4) Flags

16 10 BINARY(4) Number of bytes in the home directory name

20 14 CHAR(2) Home directory delimiter

22 16 CHAR(10) Reserved

32 26 CHAR(*) Home directory name value

Independent ASP storage usage descriptors An array of descriptors that contains the name of the

independent ASP, the maximum amount of auxiliary storage (in kilobytes) that can be assigned to store

permanent objects owned by the user on the independent ASP, and the amount of auxiliary storage (in

kilobytes) occupied by this user’s owned objects on the independent ASP. If the user does not have a

maximum amount of allowed storage on an independent ASP, the maximum storage field in the

descriptor will be set to -1 for *NOMAX.

The structure for the independent ASP storage usage descriptor is:

 Offset

Type Field Dec Hex

0 0 CHAR(10) Independent ASP name

10 A CHAR(2) Reserved

12 C BINARY(4) Maximum allowed storage

16 10 BINARY(4) Storage used

Initial menu name. The initial menu for the user. This field can contain the special value *SIGNOFF.

Initial menu library name. The name of the library that the initial menu is in. This field can contain the

special value of *LIBL. If the menu name is *SIGNOFF, this field is blank.

Initial program name. The initial program for the user. If the user does not have an initial program, this

field is *NONE.

Initial program library name. The name of the library that the initial program is in. This field can

contain the special value of *LIBL. If the program name is *NONE, this field is blank.

Job description name. The name of the job description used for jobs that start through subsystem work

station entries.

Job description library name. The name of the library that the job description is in. This field can contain

the special value *LIBL.

150 iSeries: Security -- Security-related APIs

Keyboard buffering. This field indicates the keyboard buffering value that is used when a job is

initialized for this user.

The field contains one of the following values:

 *SYSVAL The system value QKBDBUF determines the keyboard buffering value for this user.

*YES The type-ahead and attention-key buffering options are both on.

*NO The type-ahead and attention-key buffering options are not on.

*TYPEAHEAD The type-ahead option is on, but the attention-key buffering option is not.

Language ID. The language ID used by the system for this user.

This field can contain the following special value:

 *SYSVAL The system value QLANGID is used to determine the user’s language ID.

Length of an independent ASP storage usage descriptor. The length (in bytes) of one independent ASP

storage usage descriptor.

Length of home directory. The length (in bytes) of the home directory entry.

Length of locale path name. The length (in bytes) of the locale path name.

Limit capabilities. Whether the user has limited capabilities.

The field contains one of the following values:

 *PARTIAL The user cannot change his initial program or current library.

*YES The user cannot change his initial menu, initial program, or current library. The user cannot run

commands from the command line.

*NO The user is not limited.

Limit device sessions. Whether the user is limited to one device session.

The field contains one of the following values:

 *SYSVAL The system value QLMTDEVSSN determines if the user is limited to one device session.

*YES The user is limited to one device session.

*NO The user is not limited to one device session.

Locale job attributes. The job attributes that are taken from the user’s locale path name. If a particular

job attribute is taken from the locale path name, the specific field is Y (yes). If not, the specific field is N

(no).

The possible values follow:

 *NONE CHAR(1)

No job attributes are used from the locale path name at the time a job is started for this user

profile.

*SYSVAL CHAR(1)

The job attributes assigned from the locale path name are determined by the system value

QSETJOBATR at the time a job is started for this user profile.

Security-related APIs 151

*CCSID CHAR(1)

The coded character set identifier is set from the locale path name at the time a job is started for

this user profile.

*DATFMT CHAR(1)

The date format is set from the locale path name at the time a job is started for this user profile.

*DATSEP CHAR(1)

The date separator is set from the locale path name at the time a job is started for this user profile.

*SRTSEQ CHAR(1)

The sort sequence is set from the locale path name at the time a job is started for this user profile.

*TIMSEP CHAR(1)

The time separator is set from the locale path name at the time a job is started for this user profile.

*DECFMT CHAR(1)

The decimal format is set from the locale path name at the time a job is started for this user

profile.

Reserved CHAR(8)

An ignored field.

Locale path name. The locale path name that is assigned to the user profile when a job is started. This

field can contain a special value or a locale path name. If a special value is returned, the length of the

value is 10 and the value returned is one of the following:

 *C The C locale path name is assigned.

*NONE No locale path name is assigned.

*POSIX The POSIX locale path name is assigned.

*SYSVAL The QLOCALE system value is used to determine the locale path name.

If the value returned in this field is not a special value, it is returned in the following format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) CCSID

4 4 CHAR(2) Country or region ID

6 6 CHAR(3) Language ID

9 9 CHAR(3) Reserved

12 C BINARY(4) Flags

16 10 BINARY(4) Locale path name length

20 14 CHAR(2) Locale path name delimiter character

22 16 CHAR(10) Reserved

32 26 CHAR(*) Locale path name

Local password management. If password is managed locally, this field contains a Y. If not, this field is

N.

152 iSeries: Security -- Security-related APIs

Maximum allowed storage. The maximum amount of auxiliary storage (in kilobytes) that can be

assigned to store permanent objects owned by the user. If the user does not have a maximum amount of

allowed storage, this field contains -1 for *NOMAX.

Message queue name. The name of the message queue that is used by this user.

Message queue library name. The name of the library the message queue is in. This field can contain the

special value *LIBL.

Message queue delivery method. How the messages are delivered to the message queue used by the

user. This field contains one of the following special values:

 *BREAK The job to which the message queue is assigned is interrupted when a message arrives on the

message queue.

*DFT Messages requiring replies are answered with their default reply.

*HOLD The messages are held in the message queue until they are requested by the user or program.

*NOTIFY The job to which the message queue is assigned is notified when a message arrives on the

message queue.

Message queue severity. The lowest severity that a message can have and still be delivered to a user in

break or notify mode. The severity is a value from 0 through 99.

No password indicator. If *NONE is specified for the password in the user profile, this field contains a Y.

If not, this field is N.

Number of independent ASP storage usage descriptors. The total number of independent ASP storage

usage descriptors. The number of independent ASP storage usage descriptors will be 0 if the user does

not own any objects on any independent ASPs.

Number of independent ASP storage usage descriptors returned. The number of independent ASP

storage usage descriptors returned in the array. The number of independent ASP storage usage

descriptors will be 0 if the user does not own any objects on any independent ASPs.

Number of supplemental groups. The number of supplemental groups. The number of supplemental

groups will be zero if the user does not have any supplemental groups.

Object auditing value. The current user’s object auditing value.

The field contains one of the following values:

 *NONE No additional object auditing is done for the current user.

*CHANGE Object changes are audited for the current user if the object’s auditing value is *USRPRF.

*ALL Object read and change operations are audited for the current user if the object’s auditing value is

*USRPRF.

Offset to array of independent ASP storage usage descriptors. The offset from the beginning of the

receiver variable to the start of the array of independent ASP storage usage descriptors.

Offset to array of supplemental groups. The offset from the beginning of the receiver variable to the

start of the array of supplemental groups.

Offset to home directory. The offset from the beginning of the receiver variable to the start of the home

directory entry.

Security-related APIs 153

Offset to locale path name. The offset from the beginning of the receiver variable to the start of the

locale path name.

Output queue name. The output queue used by this user.

This field can contain one of the following special values:

 *WRKSTN The output queue assigned to the user’s work station is used.

*DEV An output queue with the same name as the device specified in the printer device parameter is

used by the user.

Output queue library name. The name of the library where the output queue is located. This field can

contain the special value *LIBL. If the output queue is *WRKSTN or *DEV, this field is blank.

Owner. This field indicates who is to own objects created by this user.

The field contains one of the following values:

 *USRPRF The user owns any objects the user creates. If the user does not have a group profile, the field

contains this value.

*GRPPRF The user’s group profile owns any objects the user creates.

Password change date. The date the user’s password was last changed, in *DTS (date-time stamp)

format.

Password expiration interval. The number of days (from 1 through 366) the user’s password can remain

active before it must be changed.

This field may contain one of the following special values:

 0 The system value QPWDEXPITV is used to determine the user’s password expiration interval.

-1 The user’s password does not expire (*NOMAX).

Previous sign-on date and time. The date and time the user last signed on. The 13 characters are:

v CHAR(1): Century, where 0 indicates years 19xx and 1 indicates years 20xx.

v CHAR(6): Date, in YYMMDD (year, month, day) format.

v CHAR(6): Time, in HHMMSS (hours, minutes, seconds) format.

If the user has never signed on the system, this field is blank.

Print device. The printer used to print for this user.

This field can contain one of the following special values:

 *WRKSTN The printer assigned to the user’s work station is used.

*SYSVAL The default system printer specified in the system value QPRTDEV is used.

Reserved. An ignored field.

Set password to expire. Whether the user’s password is set to expire, requiring the user to change the

password when signing on.

This field contains one of the following values:

154 iSeries: Security -- Security-related APIs

Y The user’s password is set to expire.

N The user’s password is not set to expire.

Sign-on attempts not valid. The number of sign-on attempts that were not valid since the last successful

sign-on.

Sort sequence table name. The name of the sort sequence table used for string comparisons. The

following possible special values can also be returned:

 *HEX The hexadecimal values of the characters are used to determine the sort sequence.

*LANGIDUNQ A unique-weight sort table associated with the language specified.

*LANGIDSHR A shared-weight sort table associated with the language specified.

*SYSVAL The system value QSRTSEQ.

Sort sequence table library name. The name of the library that is used to locate the sort sequence table.

This information is blank if the program does not contain any sort sequence information.

Special authorities. The special authorities the user has. If the user has the special authority, the field is

Y. If not, the field is N.

This field contains the following fields:

 *ALLOBJ CHAR(1)

All object. Whether the user has all object special authority.

*SECADM CHAR(1)

Security administrator. Whether the user has security administrator special authority.

*JOBCTL CHAR(1)

Job control. Whether the user has job control special authority.

*SPLCTL CHAR(1)

Spool control. Whether the user has spool control special authority.

*SAVSYS CHAR(1)

Save system. Whether the user has save system special authority.

*SERVICE CHAR(1)

Service. Whether the user has service special authority.

*AUDIT CHAR(1)

Audit. Whether the user has audit special authority.

*IOSYSCFG CHAR(1)

Input/output system configuration. Whether the user has input/output system configuration

special authority.

Reserved CHAR(7)

An ignored field.

Special environment. The special environment the user operates in after signing on.

This field contains one of the following special values:

 *SYSVAL The system value QSPCENV is used to determine the user’s special environment.

*NONE The user operates in the OS/400 environment.

Security-related APIs 155

*S36 The user operates in the System/36 environment.

Status. The status of the user profile.

This field contains one of the following values:

 *ENABLED The user profile is enabled; therefore, the user is able to sign on.

*DISABLED The user profile is disabled; therefore, the user cannot sign on.

Storage used. The amount of auxiliary storage (in kilobytes) occupied by this user’s owned objects.

Supplemental groups. The array of supplemental groups for the user profile.

Text description. The descriptive text for the user profile.

User action audit level. The action audit values for this user. If the user has a specific audit value, the

field is Y. If not, the field is N.

This field contains the following:

 *CMD CHAR(1)

The user has the *CMD audit value specified in the user profile.

*CREATE CHAR(1)

The user has the *CREATE audit value specified in the user profile.

*DELETE CHAR(1)

The user has the *DELETE audit value specified in the user profile.

*JOBDTA CHAR(1)

The user has the *JOBDTA audit value specified in the user profile.

*OBJMGT CHAR(1)

The user has the *OBJMGT audit value specified in the user profile.

*OFCSRV CHAR(1)

The user has the *OFCSRV audit value specified in the user profile.

*OPTICAL CHAR(1)

The user has the *OPTICAL audit value specified in the user profile.

*PGMADP CHAR(1)

The user has the *PGMADP audit value specified in the user profile.

*SAVRST CHAR(1)

The user has the *SAVRST audit value specified in the user profile.

*SECURITY CHAR(1)

The user has the *SECURITY audit value specified in the user profile.

*SERVICE CHAR(1)

The user has the *SERVICE audit value specified in the user profile.

*SPLFDTA CHAR(1)

The user has the *SPLFDTA audit value specified in the user profile.

*SYSMGT CHAR(1)

The user has the *SYSMGT audit value specified in the user profile.

156 iSeries: Security -- Security-related APIs

Reserved CHAR(51)

An ignored field.

User class name.

This field contains one of the following special values:

 *SECOFR The user has a class of security officer.

*SECADM The user has a class of security administrator.

*PGMR The user has a class of programmer.

*SYSOPR The user has a class of system operator.

*USER The user has a class of end user.

User ID number. The user ID (UID) number for the user profile. The UID is used to identify the user

when it is using the integrated file system.

User options. The options for users to customize their environment. This field contains the following

fields:

v CHAR(1): Show keywords (*CLKWD). Whether the keywords are shown when a CL command is

displayed. If the keywords are to be shown, this field is Y. If not, this field is N.

v CHAR(1): Show detailed information (*EXPERT). Whether more detailed information is shown when

the user is defining or changing the system using edit or display object authority. This user option is

independent of the ASTLVL parameter on the user profile and the ASTLVL parameter available on

commands. If the details are to be shown, this field is Y. If not, this field is N.

v CHAR(1): Full screen help (*HLPFULL). Whether UIM online help is to be displayed on a full screen

or in a window. If the full screen is to be shown, this field is Y. If not, this field is N.

v CHAR(1): Show status message (*STSMSG). Whether status messages sent to the user are shown. If the

status messages are to be shown, this field is Y. If not, this field is N.

v CHAR(1): Do not show status message (*NOSTSMSG). Whether status messages sent to the user are

not shown.

v CHAR(1): Roll key direction change (*ROLLKEY). Whether the opposite action from the system default

for roll keys is taken or not. If the opposite action is to be taken, this field is Y. If not, this field is N.

v CHAR(1): Printing complete message (*PRTMSG). Whether a message is sent to the user when a

spooled file is printed or not. If a message is to sent to the user, this field is Y. If not, this field is N.

v CHAR(29): Reserved.

User profile name. The name of the user profile for which the information is returned.

Error Messages

 Message ID Error Message Text

CPF2203 E User profile &1 not correct.

CPF2225 E Not able to allocate internal system object.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

Security-related APIs 157

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

Retrieve Users Authorized to an Object (QSYRTVUA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Returned records feedback information

Output Char(*)

4 Length of returned records feedback information

Input Binary(4)

5 Format name

Input Char(8)

6 Object name

Input Char(*)

7 Length of object name

Input Binary(4)

8 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Users Authorized to an Object (QSYRTVUA) API provides information about the users who

are authorized to an object. The API returns the following information:

v A list of users who have a private authority to the object and the authority that the users have

v The public authority for the object

v Other authority information for the object, such as the name of the owner, the primary group, and the

authorization list securing the object

v For objects in the QDLS file system, the sensitivity level of the object

This API provides information that is similar to the Display Authority (DSPAUT) command.

Authorities and Locks

*X is required for all directories in the path.

158 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Authority to Object

*OBJMGT

Authority to Object (QSYS.LIB *AUTL object)

No authority is required

Authority to Object (QDLS file system)

*ALL

Authority to Object (QOPT file system)

*USE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable that is specified in the user program. If the length

of receiver variable parameter that is specified is larger than the allocated size of the receiver

variable that is specified in the user program, the results are not predictable.

Returned records feedback information

OUTPUT; CHAR(*)

 Information about the object and information about the entries that are returned in the receiver

variable.

 See “Format of Returned Records Feedback Information” on page 160 for details.

Length of returned records feedback information

INPUT; BINARY(4)

 The length of the returned records feedback information provided. The length of the returned

records feedback information parameter may be specified up to the size of the returned records

feedback information variable specified in the user program. If the length of the returned records

feedback information parameter specified is larger than the allocated size of the returned records

feedback information variable that is specified in the user program, the results are not

predictable. The minimum length is 16 bytes.

Format name

INPUT; CHAR(8)

 The name of the format that is used to return information about the users who are authorized to

the object.

 You can specify this format:

 “RTUA0100

Format” on page

160

Each entry contains the name of the profile that is authorized to the object, whether the profile is a

user profile or a group profile, and the profile’s authority to the object.

Object name

INPUT; CHAR(*)

 The object name.

Security-related APIs 159

If the length of the object name is greater than 0, then this parameter is assumed to be a path

name represented in the coded character set identifier (CCSID) currently in effect for the job. If

the CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID

of the job.

 If the length of the object name is -1, then this parameter is assumed to be a Qlg_Path_Name_T

structure that contains a path name or a pointer to a path name. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Length of object name

INPUT; BINARY(4)

 The length of the object name.

If the length is -1, the object name parameter is assumed to be a

Qlg_Path_Name_T structure.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Variable Description

The following table describes the order and format of the data that is returned in the receiver variable for

each user that is authorized to the object. For detailed descriptions of the fields in the table, see “Field

Descriptions” on page 161.

RTUA0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Profile name

10 0A CHAR(1) User or group indicator

11 0B CHAR(10) Data authority

21 15 CHAR(1) Authorization list management

22 16 CHAR(1) Object management

23 17 CHAR(1) Object existence

24 18 CHAR(1) Object alter

25 19 CHAR(1) Object reference

26 1A CHAR(10) Reserved

36 24 CHAR(1) Object operational

37 25 CHAR(1) Data read

38 26 CHAR(1) Data add

39 27 CHAR(1) Data update

40 28 CHAR(1) Data delete

41 29 CHAR(1) Data execute

42 2A CHAR(10) Reserved

Format of Returned Records Feedback Information

For a description of the fields in this format, see “Field Descriptions” on page 161.

160 iSeries: Security -- Security-related APIs

pns.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned in the returned records feedback information

4 4 BINARY(4) Bytes available in the returned records feedback information

8 8 BINARY(4) Bytes returned in the receiver variable

12 C BINARY(4) Bytes available in the receiver variable

16 10 BINARY(4) Number of authorized users

20 14 BINARY(4) Entry length for each authorized user returned

24 18 CHAR(10) Owner

34 22 CHAR(10) Primary group

44 2C CHAR(10) Authorization list

54 36 CHAR(1) Sensitivity level

Field Descriptions

Authorization list. The name of the authorization list that is securing the object. If there is no

authorization list that secures the object, this field is *NONE.

Authorization list management. Whether the user has this authority to the object. This field is only valid

if the object is an authorization list.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Bytes available in the receiver variable. The number of bytes of data that is available to be returned to

the user in the receiver variable. All available data is returned if enough space is provided.

Bytes available in the returned records feedback information. The number of bytes of data available to

be returned to the user in the returned records feedback information. All available data is returned if

enough space is provided.

Bytes returned in the receiver variable. The number of bytes of data that is returned to the user in the

receiver variable.

Bytes returned in the returned records feedback information. The number of bytes of data returned to

the user in the returned records feedback information.

Data add. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Data authority. The data authority that the authorized user has to the object.

This field contains one of the following values:

Security-related APIs 161

*RWX The user has object operational, read, add, update, delete, and execute authorities to the object.

*RW The user has object operational, read, add, update, and delete authorities to the object.

*RX The user has object operational, read, and execute authorities to the object.

*WX The user has object operational, add, update, delete, and execute authorities to the object.

*R The user has object operational and read authorities to the object.

*W The user has object operational, add, update, and delete authorities to the object.

*X The user has object operational and execute authorities to the object.

*EXCLUDE The user has no authority to the object.

*AUTL The public authority to the object comes from the public authority on the authorization list that

secures the object. This value can be returned only if there is an authorization list that secures the

object and the authorized user is *PUBLIC.

USER DEF The user has some combination of data rights that do not relate to a special value. The API user

should check the individual authorities for the user to determine what authority the user has to

the object.

Data delete. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Data execute. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Data read. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Data update. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Entry length for each authorized user returned. The entry length, in bytes, of each entry in the list of

users who are authorized to the object.

Number of authorized users. The number of complete entries in the list of users who are authorized to

the object. A value of zero is returned if the list is empty.

Object alter. Whether the user has this authority to the object.

This field contains one of the following values:

162 iSeries: Security -- Security-related APIs

0 The user does not have this authority.

1 The user has this authority.

Object existence. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Object management. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Object operational. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Object reference. Whether the user has this authority to the object.

This field contains one of the following values:

 0 The user does not have this authority.

1 The user has this authority.

Owner. The name of the owner of the object. If the owner has no authority, no authorized user entry is

returned for the owner.

This field can contain the following special value:

 *NOUSRPRF The user profile that owns this object does not exist on this system.

Primary group. The name of the primary group for the object. If the primary group has no authority, no

authorized user entry is returned for the primary group.

This field can contain the following special value:

 *NONE There is no primary group for the object.

*NOUSRPRF The user profile that is the primary group for this object does not exist on this system.

Profile name. The name of the user profile that is authorized to the object.

This field can contain the following special values:

Security-related APIs 163

*PUBLIC Public authority (the authority used by users who are not privately authorized) to the object. This

is the first entry that is returned.

*NOUSRPRF The user profile that is authorized to this object does not exist on this system.

*NTWIRF The NetWare inherited rights filter to the object (only valid for the QNetWare file system).

*NTWEFF The NetWare effective rights to the object (only valid for the QNetWare file system).

Reserved. An ignored field.

Sensitivity level. The sensitivity level of a QDLS object. For all other objects, this field contains 0.

This field contains one of the following values:

 0 This value does not apply to this object.

1 (None) The object has no sensitivity restrictions.

2 (Personal) The object contains information intended for the user as an individual.

3 (Private) The object contains information that should be accessed only by the owner.

4 (Confidential) The object contains information that should be handled according to company

procedures.

User or group indicator. Whether this user is a user profile or a group profile.

This field contains one of the following values:

 0 This user is not a user or a group. This value is returned for special values such as *PUBLIC.

1 This user is a user profile.

2 This user is a group profile.

Error Messages

 Message ID Error Message Text

CPFA0A9 E Object not found. Object is &1.

CPFA0CE E Error occurred with path name parameter specified.

CPFA09C E Not authorized to object. Object is &1.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | Security APIs | APIs by category

164 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Set Encrypted User Password (QSYSUPWD) API

 Required Parameter Group:

1 Receiver variable from QSYRUPWD

Input Char(*)

2 Format

Input Char(8)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Set Encrypted User Password (QSYSUPWD) API sets the encrypted password data for the specified

user profile by using the receiver variable that was retrieved with the Retrieve Encrypted User Password

(QSYRUPWD) API.

The QSYSUPWD API changes the following fields in addition to the password values:

v The password expiration field is set to *NO.

v The password change date field is updated.

v The user profile change date is updated.

Note: If an error occurs while attempting to set the iSeries Support for Windows Network

Neighborhood (iSeries NetServer) password, the CPF22F0 error is returned and no other encrypted

password data is set.

If the local password management (LCLPWDMGT) value for the specified user profile is *NO, then the

local OS/400 password will be set to *NONE. Also, if the LCLPWDMGT value was *NO for the user

profile on the system where the QSYRUPWD API was called, then the local OS/400 password will be set

to *NONE.

The QSYRUPWD (Retrieve Encrypted User Password) API does not retrieve product-level encrypted data

that may be associated with a user profile. Additional steps may be needed after the QSYSUPWD (Set

Encrypted User Password) API is run, to ensure that product-level encrypted data is correct.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM

API Public Authority

*EXCLUDE

Required Parameter Group

Receiver variable from QSYRUPWD

INPUT; CHAR(*)

 The variable that is used to set the encrypted password for the user. The receiver variable from

the QSYRUPWD API must be used as input to this API. For this API to successfully set the

Security-related APIs 165

encrypted password for the user, the bytes returned value must be equal to the bytes available

value in the input data. The input data must be retrieved from the receiver variable used by the

QSYRUPWD API.

Format

INPUT; CHAR(8)

 The name of the format that is used to set the user’s encrypted password data.

 The following values are allowed:

 “UPWD0100

Format”

Encrypted password will be set

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

UPWD0100 Format

The following table describes the input variable that is to be passed as the first parameter to

QSYSUPWD. This input variable must be the same data as the receiver variable that is returned by the

QSYRUPWD API. The receiver variable, returned by the QSYRUPWD API, cannot be changed in any way

prior to passing the data as input to the QSYSUPWD API. If this data is changed, the QSYSUPWD API

will not be able to successfully change the password for the user. For detailed descriptions of the fields in

the tables, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) User profile name

18 12 CHAR(*) Encrypted user password data

Field Descriptions

Bytes available. The number of bytes of data available when retrieved by the QSYRUPWD API. For the

QSYSUPWD API to successfully set the encrypted password for the user, this value must be equal to the

bytes returned value. If the bytes available field is greater than the bytes returned field, this input cannot

be used to successfully set the encrypted password for the user.

Bytes returned. The number of bytes of data.

Encrypted user password data. The encrypted password data for the user profile.

User profile name. The name of the user profile for which the password will be changed.

Error Messages

 Message ID Error Message Text

CPD2201 E System user profile cannot be changed.

CPF2203 E User profile &1 not correct.

CPF2225 E Not able to allocate internal system object.

166 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF222E E &1 special authority is required.

CPF22F0 E Unexpected errors occurred during processing.

CPF3C21 E Format name &1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF4AB2 E Receiver variable from QSYRUPWD has been altered.

CPF9801 E Object &2 in library &3 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R7

 Top | Security APIs | APIs by category

Set Job User Identity (QWTSJUID) API

 Required Parameter:

1 Operation requested

Input Binary(4)

2 Error code

I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: Conditional; see “Usage Notes” on page 168.

The Set Job User Identity (QWTSJUID) API has two operations that can be used to explicitly set the job

user identity of the current job. The two operations are set and clear. The set operation explicitly sets the

job user identity to the name of the current user profile of the thread in which the API is called. The clear

operation clears any job user identity that was previously set by the QWTSJUID API or the QwtSetJuid()

function, and the default job user identity will then take effect.

The job user identity is the name of the user profile by which this job is known to other jobs. The job

user identity is used for authorization checks when other jobs on the system attempt to operate against

this job. Examples of functions that operate against another job include the Start Service Job (STRSRVJOB)

command, the Retrieve Job Information (QUSRJOBI) API, the Change Job (QWTCHGJB) API, all job

control commands, and functions that send signals from one job to another.

The job user identity is not used to make authorization checks from within this job. Authorization to

perform a function is always based on the current user profile of the thread in which the function is

called.

This API is intended to be used by either multithreaded servers or single threaded servers that want to

establish a job user identity that remains constant, regardless of the user profile under which it processes

individual client requests.

When a job user identity has not been explicitly set by an API, a job running single threaded will have a

job user identity that is the same as the current user profile that the job is running under at the time.

When a job user identity has not been explicitly set by an API, a job running multithreaded will have a

job user identity that is the name of the user profile that the job was running under at the time it became

multithreaded.

Security-related APIs 167

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

If the job user identity is currently set, then either *USE authority to the user profile associated with the

job user identity or all object (*ALLOBJ) special authority is required. If the job user identity is not

already set, then no authorization is required.

Required Parameter

Operation requested

INPUT; BINARY(4)

 The operation to be performed.

 The possible operations are:

 1 Set job user identity to the name of the job’s current user profile.

2 Clear the job user identity. The default job user identity will now take effect.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Usage Notes

Thread safety considerations:

v The set function is threadsafe.

v The clear function may be called in a job that allows multiple threads, but only while it is running

single threaded. The clear function will not be allowed if any secondary threads are active.

Error Messages

 Message ID Error Message Text

CPF180B E Function &1 not allowed.

CPF2217 E Not authorized to user profile &1.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R3

 Top | Security APIs | APIs by category

168 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

QwtSetJuid()—Set Job User Identity

 Syntax

#include <qwtjuid.h>

int QwtSetJuid(void);

 Service Program Name: QWTJUID

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

TheQwtSetJuid() function sets the job user identity of the current job to the name of the current user

profile of the thread in which the function is called.

The job user identity is the name of the user profile by which this job is known to other jobs. The job

user identity is used for authorization checks when other jobs on the system attempt to operate against

this job. Examples of functions that operate against another job include the Start Service Job (STRSRVJOB)

command, the Retrieve Job Information (QUSRJOBI) API, the Change Job (QWTCHGJB) API, all job

control commands, and functions that send signals from one job to another.

The job user identity is not used to make authorization checks from within this job. Authorization to

perform a function is always based on the current user profile of the thread in which the function is

called.

This API is intended to be used by either multithreaded servers or single threaded servers that want to

establish a job user identity that remains constant, regardless of the user profile under which it processes

individual client requests.

When a job user identity has not been explicitly set by an API, a job running single threaded will have a

job user identity that is the same as the current user profile that the job is running under at the time.

When a job user identity has not been explicitly set by an API, a job running multithreaded will have a

job user identity that is the name of the user profile that the job was running under at the time it became

multithreaded.

Parameters

None

Authorities and Locks

If the job user identity is currently set, then either *USE authority to the user profile associated with the

job user identity or all object (*ALLOBJ) special authority is required. If the job user identity is not

already set, then no authorization is required.

Return Value

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

Security-related APIs 169

API introduced: V4R3

 Top | Security APIs | APIs by category

Set Profile Handle (QWTSETP, QsySetToProfileHandle) API

 Required Parameter for QWTSETP:

1 Profile handle

Input Char(12)
 Optional Parameter for QWTSETP:

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 171.

 Syntax for QsySetToProfileHandle:

 #include <qsyphandle.h>

void QsySetToProfileHandle

 (unsigned char *Profile_handle,

 void *Error_code);

 Service Program: QSYPHANDLE

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 171.

The Set Profile Handle (OPM, QWTSETP; ILE, QsySetToProfileHandle) API validates the profile handle,

locks the user profile, and changes the current thread to run under the user and group profiles

represented by the profile handle. Once the change has been made, any open files and objects allocated

by the original profile are accessible to the new profile.

No other attributes associated with the user or group profile are replaced. The qualified job name does

not change to reflect the new user profile. However, any object created by the thread while running

under the new profile is owned by the new profile or its group profile. If the job is running single

threaded and the job user identity has not been explicitly set by an API, the job user identity is changed

to the name of the new profile. If the job is running multithreaded, the job user identity does not change.

If the profile handle is not valid, the Set Profile Handle API, adds an exception to the job log, and enters

a security violation in the QAUDJRN audit journal.

If you use this API to begin running under a specific profile, any spooled files created are, by default,

owned by that profile. This is controlled by the spool file owner (SPLFOWN) parameter on the CRTPRTF

170 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

command and is done by putting the file under a QPRTJOB job. Any spooled file command that

references the spooled file with the job special value * will only access those files that were created before

the profiles were swapped.

A QPRTJOB job is the name of a job that files are spooled under when the current job’s user name is not

the same as the user profile currently running. For example, if you use Set Profile Handle to set the

profile to user JOE and create a spooled file, the file is spooled under job nnnnnn/JOE/QPRTJOB. This

ensures that user JOE owns the spooled file and if that user uses the WRKSPLF command, the file is

displayed.

Output Queue Considerations

The output queue a spooled file is placed in may be different after using this API.

If the application

using this API produces spooled output that needs to be on a secure output queue or the application is

expecting the spooled output to be found on a particular output queue, configuration changes may be

required. See the Printing topic for information about which output queue contains the spooled output.

Required Parameter

Profile handle

INPUT; CHAR(12)

 The profile handle returned by the QSYGETPH API or QsyGetProfileHandle API for the user

profile to switch the thread to.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. This parameter is optional for the QWTSETP API and is omissable for the

QsySetToProfileHandle API.

Usage Notes

Considerations for Scope and Thread Safety

This API sets the user profile for the thread in which it is called. Thus if the API is called while running

multithreaded, it will result in different threads in the same process simultaneously running under

different user profiles.

While this API itself is threadsafe, it should only be used in a job that is running multithreaded when all

code running in the job is known to be trusted and operating in a coordinated manner. Some

considerations when running multiple threads under different user profiles are:

v The design of threads is for every thread in the job to share the same resources. With threads,

programs share the same static and heap storage, and by passing pointers, they can get at each other’s

automatic storage. They also share open files and other resources, such as the same QTEMP library and

the profile handles used by the Set Profile Handle API.

v Assume two users are allowed to run their own commands or programs in different threads of a single

job. One of the users may be able to read or write data of the other user. This access may occur

without the system doing an authority check or even auditing the fact that they read or modified that

data.

Error Messages

 Message ID Error Message Text

CPF22AD E Group profile for user not found.

Security-related APIs 171

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF22E7 E Profile handle is not valid.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF2225 E Not able to allocate internal system object.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R1

 Top | Security APIs | APIs by category

Set To Profile Token (QSYSETPT, QsySetToPrfTkn) API

 Required Parameter Group for QSYSETPT:

1 Profile token

Input Char(32)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

 Syntax for QsySetToPrfTkn:

 #include <qsyptkn.h>

 void QsySetToPrfTkn

 (unsigned char *Profile_token,

 void *Error_code);

 Service Program: QSYPTKN

 Default Public Authority: *USE

 Threadsafe: Yes

The Set To Profile Token (OPM, QSYSETPT; ILE, QsySetToPrfTkn) API validates the profile token and

changes the current thread to run under the user and group profiles represented by the profile token.

The qualified job name does not change to reflect the new user profile. Any object, however, created by

the thread while running under the new profile is owned by the new profile or its group profile. If the

job is running single threaded and the job user identity has not been explicitly set by an API, the job user

identity is changed to the name of the new profile. If the job is running multithreaded, the job user

identity does not change.

172 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

If the profile token is not valid, this API signals the message CPF2274 and puts an AF-W audit entry in

the QAUDJRN audit journal.

If you use this API to begin running under a specific profile, any spooled files created are, by default,

owned by that profile. This is controlled by the spool file owner (SPLFOWN) parameter on the CRTPRTF

command and is done by putting the spooled file under a QPRTJOB job. Any spooled file command that

references the spooled file with the job special value * will access only those files that were created before

the profiles were swapped.

QPRTJOB

A QPRTJOB job is the name of a job under which files are spooled when the current job’s user name is

not the same as the user profile running currently. For example, if you use this API to set the profile to

user JOE and create a spooled file, the file is spooled under job nnnnnn/JOE/QPRTJOB. This ensures that

user JOE owns the spooled file and if that user uses the WRKSPLF command, the file is displayed.

Output Queue Considerations

The output queue that a spooled file is placed in may be different after using this API.

If the

application using this API produces spooled output that needs to be on a secure output queue or the

application is expecting the spooled output to be found on a particular output queue, configuration

changes may be required. See the Printing topic for information about which output queue contains the

spooled output.

Authorities and Locks

API Public Authority

*USE

Required Parameter Group

Profile token

INPUT; CHAR(32)

 The profile token returned by the Generate Profile Token (QSYGENPT, QsyGenPrfTkn)API or

Generate Profile Token From Profile Token (QSYGENFT, QsyGenPrfTknFromPrfTkn) API that

represents the user profile to which to switch.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF18A8 E Error occured during set profile to profile token.

CPF2225 E Not able to allocate internal system object.

CPF2274 E Profile token is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Security-related APIs 173

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Usage Notes

Considerations for Scope and Thread Safety

This API sets the user profile for the thread in which it is called. Thus, if the API is called while running

multithreaded, it will result in different threads in the same process simultaneously running under

different user profiles.

While this API itself is threadsafe, it should only be used in a job that is running multithreaded when all

code running in the job is known to be trusted and operating in a coordinated manner. Some

considerations when running multiple threads under different user profiles are:

v The design of threads is for every thread in the job to share the same resources. With threads,

programs share the same static and heap storage, and by passing pointers, they can get at each other’s

automatic storage. They also share open files and other resources, such as the same QTEMP library and

the profile tokens used by this API.

v Assume two users are allowed to run their own commands or programs in different threads of a single

job. One of the users may be able to read or write data of the other user. This access may occur

without the system doing an authority check or even auditing the fact that they read or modified the

data.

 API introduced: V4R5

 Top | Security APIs | APIs by category

174 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Sign Buffer (QYDOSGNB, QydoSignBuffer)

 Required Parameter Group:

1 Buffer to sign

Input Char(*)

2 Description of buffer to sign

Input Char(*)

3 Number of descriptions of buffer to sign

Input Binary(4)

4 Application identifier

Input Char(*)

5 Length of application identifier

Input Binary(4)

6 Resulting signature

Output Char(*)

7 Length of resulting signature provided

Input Binary(4)

8 Format of resulting signature

Input Char(8)

9 Error Code

I/O Char(*)

 Service Program Name: QYDOBUFFER

 Default Public Authority: *USE

 Threadsafe: No

The Sign Buffer (OPM, QYDOSGNB; ILE, QydoSignBuffer) API allows the local system to certify that the

series of bytes being signed is trustworthy. It does this by generating a digital signature for those bytes

and returning this signature to the caller.

The application identifier will be used to find the certificate needed to sign this object. The certificate will

be used later to verify the contents of this object have not changed and this certificate will be reported as

having signed this object.

Authorities and Locks

API Public Authority

*USE.

Authority Required

To use this API, you must be authorized to the object signing applications function associated

with your application identifier through iSeries Navigator’s application administration support.

Security-related APIs 175

The Change Function Usage Information(QSYCHFUI) API, with a function ID of the same name

as the application identifier, also can be used to change the list of users that are allowed to use

this application identifier.

Required Parameter Group

Buffer to sign

INPUT; CHAR(*)

 The buffer of data to be signed. Only the part of the object described in the Description of buffer

to sign will be signed.

Description of buffer to sign

INPUT; CHAR(*)

 Array of offsets and lengths to the data to be signed. The API will treat these bytes as if they

were a contiguous stream of bytes. The offset is from the start of the buffer.

 The format of the description of the data to sign is in the following table. For detailed

descriptions of the fields in this table, see “Field Descriptions” on page 177.

 Offset

Type Field Dec Hex

0 0 Binary(4) Offset to start of first series of bytes to sign

4 4 Binary(4) Length of first series of bytes to sign

n n Binary(4) Offset to start of next series of bytes to sign

n+4 n+10 Binary(4) Length of next series of bytes to sign

Number of descriptions of buffer to sign

INPUT; BINARY(4)

 Number of offsets and lengths needed to describe what parts of the buffer should be signed.

Application identifier

INPUT; CHAR(*)

 The user-supplied application ID to sign objects with. The application type must be 4 (object

signing) and it must be assigned to a valid certificate label.

Length of application identifier

INPUT; BINARY(4)

 The length of the specified application identifier. This length must be a value from 1 to 30.

Resulting signature

OUTPUT; CHAR(*)

 Area to contain the signature to be returned by the API. See “Resulting signature formats” on

page 177 for details on the format of this parameter. This field may be NULL if the length of

resulting signature provided is 0.

Length of resulting signature provided

INPUT; BINARY(4)

 The length of the area provided to contain the returned signature.

Format of resulting signature

INPUT; CHAR(8)

176 iSeries: Security -- Security-related APIs

The format of the results of the signing operation.

 “SGNB0100

format”

Just the signature itself is returned. The signature will be in PKCS #1 block type 01 format.

“SGNB0200

format”

The signature itself and the certificate label needed to verify the signature are returned. The

signature will be in PKCS #1 block type 01 format.

“SGNB0300

format” on page

178

The signature itself and the ASN.1 encoded certificate itself needed to verify the signature are

returned. The signature will be in PKCS #1 block type 01 format.

“SGNB0400

format” on page

178

The signature itself and the distinguished name of the certificate needed to verify the signature are

returned. The signature will be in PKCS #1 block type 01 format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Field Descriptions

Length of first series of bytes to sign The number of bytes, including the first byte in the series, to be

included in the signature.

Length of next series of bytes to sign The number of bytes, including the first byte in the series, to be

included in the signature.

Offset to start of first series of bytes to sign. An offset to the first byte of a series of 1 or more bytes of

data to be included in the signature.

Offset to start of next series of bytes to sign. An offset to the first byte of a series of 1 or more bytes of

data to be included in the signature.

Resulting signature formats

For detailed descriptions of the fields in the tables, see “Field Descriptions” on page 178.

SGNB0100 format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to start of signature

4 4 BINARY(4) Length of signature

 CHAR(*) Signature

SGNB0200 format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to start of signature

4 4 BINARY(4) Length of signature

8 8 BINARY(4) Offset to start of certificate label

Security-related APIs 177

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

12 0C BINARY(4) Length of certificate label

 CHAR(*) Signature

 CHAR(*) Certificate label

SGNB0300 format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to start of signature

4 4 BINARY(4) Length of signature

8 8 BINARY(4) Offset to start of certificate

12 0C BINARY(4) Length of certificate

 CHAR(*) Signature

 CHAR(*) Certificate

SGNB0400 format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to start of signature

4 4 BINARY(4) Length of signature

8 8 BINARY(4) Offset to start of distinguished name

12 0C BINARY(4) Length of distinguished name

 CHAR(*) Signature

 CHAR(*) Distinguished name

Field Descriptions

Certificate. The ASN.1 encoded certificate that is needed to verify the signature.

Certificate label. The label of the certificate that is needed to verify the signature. This is the label of the

certificate in the *OBJECTSIGNING certificate store on the local system. This certificate will need to be

exported to the system that will verify this signature.

Distinguished name. The distinguished name of the certificate that is needed to verify the signature.

Length of certificate. Number of bytes needed to contain the ASN.1 encoded certificate.

Length of certificate label. Number of bytes needed to contain the certificate label.

Length of distinguished name. Number of bytes needed to contain the distinguished name.

Length of signature. Number of bytes needed to contain the signature.

178 iSeries: Security -- Security-related APIs

Offset to start of certificate. Offset from the beginning of this structure to the certificate.

Offset to start of certificate label. Offset from the beginning of this structure to the certificate label.

Offset to start of distinguished name. Offset from the beginning of this structure to the distinguished

name.

Offset to start of signature. Offset from the beginning of this structure to the signature.

Signature. The encrypted hash of the bytestream that was passed in to this API. This can be used later to

see if the bytestream has changed.

Error Messages

 Message ID Error Message Text

CPFB724 E Option &2 of the operating system is required to work with object signatures.

CPFB731 E Certificate store not found.

CPFB735 E The digital signing API parameter &1 is not large enough.

CPFB736 E The digital signing API parameter &1 is not small enough.

CPFB737 E The digital signing API parameter &1 is not small enough.

CPFB738 E The digital signing API parameter &1 is not a valid format type.

CPFB739 E The digital signing API parameter &1 is out of range.

CPFB73A E The password for the certificate key database needs to be set.

CPFB73F E The signing application certificate is expired.

CPFB74A E The application identifier on the digital signing API is not in a valid state.

CPF9EA0 E Length of resulting signature area is too small to hold results.

CPF9EAF E Attempt to sign or verify buffers failed with unexpected return code &1.

API introduced: V5R2

 Top | Security APIs | APIs by category

Security-related APIs 179

#TOP_OF_PAGE
sec.htm
aplist.htm

Sign Object (QYDOSGNO, QydoSignObject) API

 Required Parameter Group:

1 Object path name

Input Char(*)

2 Length of object path name

Input Binary(4)

3 Format of object path name

Input Char(8)

4 Application identifier

Input Char(*)

5 Length of application identifier

Input Binary(4)

6 Replace duplicate signature

Input Char(1)

7 Multiple objects characteristics

Input Char(*)

8 Length of multiple objects characteristics

Input Binary(4)

9 Error code

I/O Char(*)
 Service Program Name: QYDOSGN1

 Default Public Authority: *USE

 Threadsafe: No

The Sign Object (OPM, QYDOSGNO; ILE, QydoSignObject) API allows the local system to certify that the

object being signed is trustworthy as of the time the object is being signed.

The application identifier will be used to find the certificate needed to sign this object. The certificate will

be used later to verify the contents of this object have not changed and this certificate will be reported as

having signed this object.

Authorities and Locks

Authority Required

For objects in a library:

v *OBJOPR and *OBJMGT authority to the object

v *OBJOPR and *EXECUTE authority to the library.

For objects in a directory:

v *R and *OBJMGT authority to the object

180 iSeries: Security -- Security-related APIs

v *X authority to each directory in the path
*R for the directory with wildcards (that is, a pattern is specified)
*RX authority to each subdirectory searched if the subdirectories parameter specifies 1.

To use this API, you must be authorized to the object signing applications function associated

with your application identifier through iSeries Navigator’s application administration support.

The Change Function Usage Information (QSYCHFUI) API, with a function ID of the same name

as the application identifier, also can be used to change the list of users that are allowed to use

this application identifier.

 See open() API for the authority needed to the results path name. The file is open for append and

is created if it does not already exist.

Locks Object will be locked exclusive no read.

Required Parameter Group

Object path name

INPUT; CHAR(*)

 The path name of the object you want to sign. If the object is not in a library, the name may be

relative to the current directory or may specify the entire path name. If the object is in a library

the name must be in the form ’/QSYS.LIB/libname.LIB/objname.objtype’ if you are using format

OBJN0100 object path naming. For example to sign a program named NEWEMPL in library

PAYROLL, the qualified object name would be ’/QSYS.LIB/PAYROLL.LIB/NEWEMPL.PGM’ if

you are using format OBJN0100 object path naming. Also if you are using format OBJN0100

object path naming, this parameter is assumed to be represented in the coded character set

identifier (CCSID) currently in effect for the job. If the CCSID of the job is 65535, this parameter is

assumed to be represented in the default CCSID of the job.

 The path name may contain wildcard characters. ’*’ represents any number of unknown

characters. ’?’ represents any single unknown character. For example, to specify all the program

objects in library MYLIB, using format OBJN0100, you could specify

’/QSYS.LIB/MYLIB.LIB/*.PGM’. If you want to sign all signable objects in a library or directory,

specify the last part of the path name as simply ’*’. For example to sign all signable objects in

MYLIB, assuming you are using format OBJN0100, you could specify ’/QSYS.LIB/MYLIB.LIB/*’.

 If the object is in the QSYS file system, it must an object type *PGM, *SRVPGM, *MODULE,

*SQLPKG, *FILE (save file), or *CMD.

Length of object path name

INPUT; BINARY(4)

 The length of the object path name. If the format of object path name is OBJN0200, this field must

include the QLG path name structure in addition to the path name itself. If the format of object

path name is OBJN0100, only the path name itself is included.

Format of object path name

INPUT; CHAR(8)

 The format of the object path name parameter.

 OBJN0100 The object path name is a simple path name.

OBJN0200 The object path name is an LG-type path name.

Application identifier

INPUT; CHAR(*)

 The user-supplied application ID to sign objects with. The application type must be 4 (object

signing) and it must be assigned to a valid certificate label. User-supplied application IDs should

not preface their application ID with QIBM. User-supplied application IDs should start with the

company name to eliminate most problems that involve unique names. Application IDs should

Security-related APIs 181

open.htm

use an underscore (_) to separate parts of the name (for example, QIBM_OS400_HOSTSERVER).

Also, IDs for related applications should start with the same name (for example,

QIBM_DIRSRV_SERVER and QIBM_DIRSRV_REPLICATION).

 The following characters are allowed in an application ID. The first character of the application

ID must be one of the following:

 A-Z Uppercase A-Z

The remaining characters in the application ID must be made up of the following characters:

 A-Z Uppercase A-Z

0-9 Digits 0-9

. Period

_ Underscore

Length of application identifier

INPUT; BINARY(4)

 The length of the specified application identifier. This length must be a value from 1 to 30.

Replace duplicate signature

INPUT; CHAR(1)

 Whether the old signature is left or replaced if a signature using the same certificate as the

application identifier above uses is detected.

 0 Leave the old signature and report an error.

1 Replace the old signature.

 If the object contents have changed since the first time this certificate signed the object, the

signature is replaced automatically. This parameter only affects signatures where the content has

not changed.

Multiple objects characteristics

INPUT; CHAR(*)

 How multiple objects specified on the object path name parameter are handled. See “Multiple

objects characteristics format” for details on the format of this parameter. This field may be NULL

if the length of multiple objects characteristics is 0.

Length of multiple objects characteristics

INPUT; BINARY(4)

 The length of the specified multiple objects characteristics. This length may be 0 if you want to

use the default values for all these characteristics or 1 or greater to indicate how many bytes of

the characteristics should be used.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Multiple objects characteristics format

The format of the multiple objects characteristics is shown in the following table. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 183.

182 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 CHAR(1) Subdirectories

1 1 CHAR(1) Stop of first error

2 2 CHAR(1) Sign only core part of object

3 3 CHAR(5) Reserved

8 8 BINARY(4) Offset to results file path name

12 0C BINARY(4) Length of results file path name

16 10 CHAR(8) Format of results file path name

24 18 CHAR(8) Format of contents of the results file

CHAR(*) Results file path name

Field Descriptions

Format of content of the results file. The format of the content of the file containing the results of this

call.

 RSLT0100 The basic information is returned for each object specified by the object path name parameter.

Format of results path name. The format of the results path name parameter.

 OBJN0100 The results path name is a simple path name.

OBJN0200 The results path name is an LG-type path name.

Length of results path name. The length of the results path name. 0 length means no results file are

used, and the results path name and format of results path name parameter values are not used. If the

format of results path name is OBJN0200, this field must include the QLG path name structure in

addition to the path name itself. If the format of results path name is OBJN0100, only the path name itself

is included.

Offset to results path name. Offset from the beginning of this structure to the results path name.

Reserved. This field currently is not used. It is filled with binary zeroes.

Results path name. The path name of the object you want to contain the results on this call. This object

may not be in a library (that is, it may not be under the /QSYS.LIB directory). The name may be relative

to the current directory or may specify the entire path name. For example, to store results in a file called

SIGNED.LST in the MYDIR directory, the results path name would be ’/MYDIR/SIGNED.LST’. If you are

using format OBJN0100, this parameter is assumed to be represented in the coded character set identifier

(CCSID) currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

If this is an existing file, results are appended to the end of the file. Otherwise, a new file is created.

The default is not to have a results file.

Sign only core part of object. Whether the entire object be signed or not. This value only applies to

objects that can have the core part of the object signed. Objects which cannot have only a core part of the

object signed will sign the entire object, independent of the value specified here.

Security-related APIs 183

Currently, only *CMD objects can have a core part of the object signed.

 0 The entire object should be signed. This is the default value.

1 Only the core part of the object should be signed.

A value of hex 00 will be treated as the default value for this field. This can happen when a program

written in V5R1 (where this field was not defined) is run on V5R2.

Stop on first error. Whether control should be returned on the first error found.

 0 Continue processing objects even if some errors are found.

1 Stop on the first object that detects an error. This is the default value.

Subdirectories. Whether objects in directories under the directory specified in the object path name

parameter should be processed also.

 0 Process objects in the directory specified in the object path name parameter only. This is the

default value.

1 Process objects in the directory specified in the object name path parameter and in all directories

under that directory.

RSLT0100 format

The following table describes the order and format of the data returned in the RSLT0100 format. This

data is repeated for each object that was attempted to be processed. For detailed descriptions of the fields

in the tables, see “Field Descriptions.”

Note:All data in this file will be in CCSID 13488. New files will be created in this CCSID. If an existing

file is named that has a different CCSID, an error will be reported.

 Offset

Type Field Dec Hex

0 0 CHAR(7) Message identifier

7 7 CHAR(9) Reserved

16 10 CHAR(8) Date

24 18 CHAR(8) Reserved

32 20 CHAR(1) Operation type

33 21 CHAR(15) Operation type description

48 30 CHAR(8) Reserved

56 38 CHAR(*) Fully qualified object name

Field Descriptions

Date. The date the operation took place. The format will be YYYYMMDD. For example, June 30, 2002

will be 20020630.

Fully qualified object name. The simple path name from the root to the object being signed. The field

will be terminated with a new line character.

184 iSeries: Security -- Security-related APIs

Message identifier. The error message used to report failure. This field is blank if no error was detected

for this object.

Operation type. The operation that was attempted.

 0 Signing operation

1 Verifying operation

Operation type description. Short word description of the operation that was attempted.

Reserved. This field currently is not used. It is filled with blanks.

Error Messages

 Message ID Error Message Text

CPF9803 E Cannot allocate object &2 in library &3.

CPFA085 E Home directory not found for user &1.

CPFA086 E Matching quote not found in path name.

CPFA087 E Path name contains null character.

CPFA088 E Path name pattern not valid.

CPFA089 E Pattern not allowed in path name.

CPFA08B E Path name cannot begin with *.

CPFA08C E Pattern not allowed in path name directory.

CPFA08D E Request information value is not valid.

CPFA08E E More than one name matches pattern.

CPFA091 E Pattern not allowed in user name.

CPFA092 E Path name not converted.

CPFA094 E Path name not specified.

CPFA09C E Not authorized to object.

CPFA0A4 E Too many open files for process.

CPFA0AA E Error occurred while attempting to obtain space.

CPFA0D4 E File system error occurred.

CPFB720 E No signable object was found.

CPFB721 E Object supports signing, but *TGTRLS prevents signing.

CPFB724 E Option &2 of the operating system is required to work with object signatures.

CPFB72B E Object not found.

CPFB72C E The object cannot currently be signed or verified.

CPFB72E E The parameter for replace duplicate signature is not valid.

CPFB731 E Sign object certificate database does not exist.

CPFB735 E The digital signing API parameter &1 is not large enough.

CPFB736 E The digital signing API parameter &1 is not small enough.

CPFB737 E The digital signing API parameter &1 is not small enough.

CPFB738 E The digital signing API parameter &1 is not a valid format type.

CPFB739 E The digital signing API parameter &1 is out of range.

CPFB73A E The password for the certificate key database needs to be set.

CPFB73F E The signing application certificate is expired.

CPFB740 E The format name for the pathname is not valid.

CPFB741 E The length of the path name parameter is not valid.

CPFB742 E The subdirectory option is an invalid value.

CPFB743 E The value for stopping on the first error is not valid.

CPFB744 E The format of the results file for the digital signing API is an incorrect value.

CPFB745 E The format name for the results file path name is not valid.

CPFB746 E The results file path name length is not large enough.

CPFB747 E Object is in a state which is not eligible to be signed.

CPFB748 E Object signed by IBM, not eligible to be signed.

Security-related APIs 185

Message ID Error Message Text

CPFB749 E Object signature operation ended abnormally. &3 objects attempted, &2 objects successfully

processed.

CPFB74A E The application identifier on the digital signing API is not in a valid state.

CPFB74C E Object contains no data to sign (it is empty).

CPFB74D E Results file could not be used.

CPFBC50 E No path names match input path names.

API introduced: V5R1

 Top | Security APIs | APIs by category

Update User Application Information (QsyUpdateUserApplicationInfo)

API

 Syntax for QsyUpdateUserApplicationInfo:

 #include <qsyusrin.h>

 void QsyUpdateUserApplicationInfo

 (char *User_profile,

 char *Application_information_ID,

 int *Length_of_application_information_ID,

 char *Application_information,

 int *Length_of_application_information,

 char *First_valid_release,

 void *Error_code);

 Service Program: QSYUSRIN

 Default Public Authority: *USE

 Threadsafe: No

The Update User Application Information (QsyUpdateUserApplicationInfo) API updates the specified

application information for a user profile. The specified information is stored in an object that is saved

and restored with the user profile.

The Change User Profile exit programs are not called from this API.

Authorities and Locks

If the user profile parameter is not *CURRENT or the user profile currently running, then the user profile

that calls this API must have *SECADM special authority and *OBJMGT and *USE authorities to the user

profile.

Required Parameter Group

User profile

INPUT; CHAR(10)

 The user profile for which the application information will be updated. The special value

*CURRENT may be specified to update application information for the user profile that calls this

API.

Application information ID

INPUT; CHAR(*)

186 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

The ID for the application information entry to update. IBM-supplied AS/400 application

information IDs are named QIBM_ccc_name, where ccc is the component identifier. User-supplied

application information IDs should not preface their application information ID with QIBM.

User-supplied application information IDs should start with the company name to eliminate most

problems that involve unique names. Application information IDs should use an underscore (_)

to separate parts of the name. Also, IDs for related applications should start with the same name.

 The first character of the application information ID must be one of the following:

 A-Z Uppercase A-Z

The remaining characters in the application information ID must be made up of the following

characters:

 A-Z Uppercase A-Z

0-9 Digits 0-9

. Period

_ Underscore

Length of application information ID

INPUT; BINARY(4)

 The length of the application information ID that is specified in the application information ID

parameter. The length of the application information ID must be a value from 1 to 200.

Application information

INPUT; CHAR(*)

 The application information to be associated with the specified user profile.

Length of application information

INPUT; BINARY(4)

 The length of the application information that is specified in the application information

parameter. The length of the application information must be a value from 1 to 1700.

First valid release

INPUT; CHAR(6)

 The first release that this application information is valid. This field is used to determine the

earliest release this user application information is valid when saving a user profile to a previous

release. If the user profile is saved to a release previous to the release specified in this field, this

information will not be saved with the user profile information. This field must be in the format

VxRxMx (for example, V5R3M0). The release specified must be V5R3M0 or greater.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2222 E Storage limit is greater than specified for user profile &1.

CPF226C E Not authorized to perform function.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

Security-related APIs 187

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF4AA0 E Application information ID &1 not valid.

CPF4AA1 E First release value &1 not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R3

 Top | Security APIs | APIs by category

Verify Buffer (QYDOVFYB, QydoVerifyBuffer)

 Required Parameter Group:

1 Buffer to verify

Input Char(*)

2 Description of buffer to verify

Input Char(*)

3 Number of descriptions to verify

Input Binary(4)

4 Signature to verify

Input Char(*)

5 Length of signature to verify

Input Binary(4)

6 Certificate to verify signature

Input Char(*)

7 Length of certificate to verify signature

Input Binary(4)

8 Format of the certificate

Input Char(8)

9 Error Code

I/O Char(*)
 Service Program Name: QYDOBUFFER

 Default Public Authority: *USE

 Threadsafe: No

The Verify Buffer (OPM, QYDOVFYB; ILE, QydoVerifyBuffer) API allows the local system to verify that

the series of bytes signed earlier has not been tampered with. It does this by verifying a digital signature

for those bytes.

188 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

API Public Authority

*USE.

Authority Required

None.

Required Parameter Group

Buffer to verify

INPUT; CHAR(*)

 The buffer of data to be verified. Only the part of the object described in the Description of buffer

to sign will be verified.

Description of buffer to verify

INPUT; CHAR(*)

 Array of offsets and lengths to the data to be verified. The API will treat these bytes as if they

were a contiguous stream of bytes.

 The format of the description of the data to verify is in the following table. For detailed

descriptions of the fields in this table, see “Field Descriptions” on page 190.

 Offset

Type Field Dec Hex

0 0 Binary(4) Offset to start of first series of bytes to verify

4 4 Binary(4) Length of first series of bytes to verify

n n Binary(4) Offset to start of next series of bytes to verify

n+4 n+4 Binary(4) Length of next series of bytes to verify

Number of descriptions to verify

INPUT; BINARY(4)

 Number of offsets and lengths needed to describe data to be verified.

Signature to verify

INPUT; CHAR(*)

 The signature to be verified. This signature will be checked against the data identified in the first

two parameters to see if the data has changed since it was signed by this signature.

Length of signature to verify

INPUT; BINARY(4)

 Length of the specified signature.

Certificate to verify signature

INPUT; CHAR(*)

Security-related APIs 189

The certificate that was used to create the signature. This certificate must be in the format

described in the ’Format of the certificate’ parameter.

Length of certificate to verify signature

INPUT; BINARY(4)

 Length of the specified certificate.

Format of the certificate

INPUT; CHAR(8)

 The format of the certificate to verify parameter:

 CERT0100 Certificate label. Uses *SIGNATUREVERIFICATION certificate store to find certificate.

CERT0200 ASN.1 encoded certificate. This is the certificate itself.

CERT0300 Distinguished name of certificate. Uses LDAP server to find certificate.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Field Descriptions

Length of first series of bytes to verify The number of bytes, including the first byte in the series, to be

included in the signature.

Length of next series of bytes to verify The number of bytes, including the first byte in the series, to be

included in the signature.

Offset to start of first series of bytes to verify. An offset to the first byte of a series of 1 or more bytes of

data to be included in the signature.

Pointer to start of next series of bytes to verify. An offset to the first byte of a series of 1 or more bytes

of data to be included in the signature.

Error Messages

 Message ID Error Message Text

CPFB724 E Option &2 of the operating system is required to work with object signatures.

CPFB731 E Certificate store not found.

CPFB735 E The digital signing API parameter &1 is not large enough.

CPFB736 E The digital signing API parameter &1 is not small enough.

CPFB737 E The digital signing API parameter &1 is not small enough.

CPFB738 E The digital signing API parameter &1 is not a valid format type.

CPFB739 E The digital signing API parameter &1 is out of range.

CPFB73A E The password for the certificate key database needs to be set.

CPF9EA0 E Length of resulting signature area is too small to hold results.

CPF9EA1 E Signature parameter is not in a supported format.

CPF9EA0 E Length of resulting signature area is too small to hold results.

CPF9EA2 E Certificate is not in a supported format.

CPF9EA3 E Certificate with label &2 not found.

CPF9EA4 E Buffer has a signature that is not valid..

190 iSeries: Security -- Security-related APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF9EAF E Attempt to sign or verify buffers failed with unexpected return code &1.

Introduced: V5R2

 Top | Security APIs | APIs by category

Verify Object (QYDOVFYO, QydoVerifyObject) API

 Required Parameter Group:

1 Object path name

Input Char(*)

2 Length of object path name

Input Binary(4)

3 Format of object path name

Input Char(8)

4 Multiple objects characteristics

Input Char(*)

5 Length of multiple objects characteristics

Input Binary(4)

6 Error code

I/O Char(*)

 Service Program Name: QYDOVFY1

 Default Public Authority: *USE

 Threadsafe: No

The Verify Object (OPM, QYDOVFYO; ILE, QydoVerifyObject) API checks to see if an object has changed

since it was signed. Only certificates in the local system’s Verify Object certificate database that have

signed this object will be checked. Any other signatures will be ignored. If none of the signatures of this

object are by certificates the local system recognizes, the object is considered unsigned. If the object is

unsigned, this is reported as an error. If any trusted signatures are valid, the object is considered

successfully verified.

Authorities and Locks

Authority Required

*AUDIT special authority is optional; if used, all objects can be verified. If *AUDIT special

authority is not used, you need to have:

 For objects in a library:

v *READ authority to the object

v *OBJOPR and *EXECUTE authority to the library.

Security-related APIs 191

#TOP_OF_PAGE
sec.htm
aplist.htm

For objects in a directory:

v *R authority to the object

v *X authority to each directory in the path
*R for the directory with wildcards (that is, a pattern is specified)
*RX authority to each subdirectory searched if the subdirectories parameter specifies 1.

See open() API for the authority needed to the results path name. The file is open for append and

is created if it does not already exist.

Locks Object will be locked shared allow read. Certificate database will be locked while certificates are

retrieved (to make up trusted certificate list needed to verify).

Required Parameter Group

Object path name

INPUT; CHAR(*)

 The name of the object you want to verify. If the object is not in a library, the name may be

relative to the current directory or may specify the entire path name. If the object is in a library

the name must be in the form ’/QSYS.LIB/libname.LIB/objname.objtype’ if you are using format

OBJN0100 object path naming. For example to sign a program named NEWEMPL in library

PAYROLL, the qualified object name would be ’/QSYS.LIB/PAYROLL.LIB/NEWEMPL.PGM’ if

you are using format OBJN0100 object path naming. Also if you are using format OBJN0100

object path naming, this parameter is assumed to be represented in the coded character set

identifier (CCSID) currently in effect for the job. If the CCSID of the job is 65535, this parameter is

assumed to be represented in the default CCSID of the job.

 The path name may contain wildcard characters. ’*’ will represent any number of unknown

characters. ’?’ will represent any single unknown character. For example, to specify all the

program objects in library MYLIB, using format OBJN0100, you could specify

’/QSYS.LIB/MYLIB.LIB/*.PGM’. If you want to verify all signable objects in a library or

directory, specify the last part of the path name as simply ’*’. For example to verify all signable

objects in MYLIB, assuming you are using format OBJN0100, you could specify

’/QSYS.LIB/MYLIB.LIB/*’.

 If the object is in the QSYS file system, it must an object type *PGM, *SRVPGM, *MODULE,

*SQLPKG, *FILE (save file), or *CMD.

Length of object path name

INPUT; BINARY(4)

 The length of the object path name. If the format of object path name is OBJN0200, this field must

include the QLG path name structure in addition to the path name itself. If the format of object

path name is OBJN0100, only the path name itself is included.

Format of object path name

INPUT; CHAR(8)

 The format of the object path name parameter.

 OBJN0100 The object path name is a simple path name.

OBJN0200 The object path name is an LG-type path name.

Multiple objects characteristics

INPUT; CHAR(*)

 How multiple objects specified on the object path name parameter are handled. See “Multiple

objects characteristics format” on page 193 for details on the format of this parameter. This field

may be NULL if the length of multiple objects characteristics is 0.

192 iSeries: Security -- Security-related APIs

open.htm

Length of multiple objects characteristics

INPUT; BINARY(4)

 The length of the specified multiple objects characteristics. This length may be 0 if you want to

use the default values for all these characteristics, or 1 or greater to indicate how many bytes of

the characteristics should be used.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Multiple objects characteristics format

The format of the multiple objects characteristics is shown in the following table. For detailed

descriptions of the fields in the tables, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(1) Subdirectories

1 1 CHAR(1) Stop of first error

2 2 CHAR(6) Reserved

8 8 BINARY(4) Offset to results file path name

12 0C BINARY(4) Length of results file path name

16 10 CHAR(8) Format of results file path name

24 18 CHAR(8) Format of contents of the results file

 CHAR(*) Results file path name

Field Descriptions

Format of content of the results file. The format of the contents of the file containing the results of this

call.

 RSLT0100 The basic information is returned for each object specified by the object path name parameter.

Format of results path name. The format of the results path name parameter.

 OBJN0100 The results path name is a simple path name.

OBJN0200 The results path name is an LG-type path name.

Length of results path name. The length of the results path name. 0 length means no results file are

used, and the results path name and format of results path name parameter values are not used. If the

format of results path name is OBJN0200, this field must include the QLG path name structure in

addition to the path name itself. If the format of results path name is OBJN0100, only the path name itself

is included.

Offset to results path name. Offset from the beginning of this structure to the results path name.

Reserved. This field currently is not used. It is filled with binary zeroes.

Results path name. The path name of the object you want to contain the results on this call. This object

may not be in a library (that is, may not be under the /QSYS.LIB directory). The name may be relative to

Security-related APIs 193

error.htm#HDRERRCOD
error.htm#HDRERRCOD

the current directory or may specify the entire path name. For example to store results in a file called

SIGNED.LST in the MYDIR directory, the results path name would be ’/MYDIR/SIGNED.LST’. If you are

using format OBJN0100, this parameter is assumed to be represented in the coded character set identifier

(CCSID) currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

If this is an existing file, results will be appended to the end of the file. Otherwise, a new file will be

created.

The default is not to have a results file.

Stop on first error. Whether control should be returned on the first error found.

 0 Continue processing objects even if some errors are found.

1 ″Start of change″>Stop on the first object that detects an error. This is the default value.

Subdirectories. Whether objects in directories under the directory specified in the object path name

parameter should be processed also.

 0 Process objects in the directory specified in the object path name parameter only. This is the

default value.

1 Process objects in the directory specified in the object name path parameter and in all directories

under that directory.

RSLT0100 format

The following table describes the order and format of the data returned in the RSLT0100 format. This

data is repeated for each object that was attempted to be verified. For detailed descriptions of the fields

in the tables, see “Field Descriptions.”

Note:All data in this file will be in CCSID 13488. New files will be created in this CCSID. If an existing

file is named that has a different CCSID, an error will be reported.

 Offset

Type Field Dec Hex

0 0 CHAR(7) Message identifier

7 7 CHAR(9) Reserved

16 10 CHAR(8) Date

24 18 CHAR(8) Reserved

32 20 CHAR(1) Operation type

33 21 CHAR(15) Operation type description

48 30 CHAR(8) Reserved

56 38 CHAR(*) Fully qualified object name

Field Descriptions

Date. The date the operation took place. The format will be YYYYMMDD. For example, June 30, 2002

will be 20020630.

Fully qualified object name. The simple path name from the root to the object whose signature is being

verified. The field will be terminated with a new line character.

194 iSeries: Security -- Security-related APIs

Message identifier. The error message used to report failure. This field is blank if no error was detected

for this object.

Operation type. The operation that was attempted.

 0 Signing operation

1 Verifying operation

Operation type description. Short word description of the operation that was attempted.

Reserved. This field currently is not used. It is filled with blanks.

Error Messages

 Message ID Error Message Text

CPFA085 E Home directory not found for user &1.

CPFA086 E Matching quote not found in path name.

CPFA087 E Path name contains null character.

CPFA088 E Path name pattern not valid.

CPFA089 E Pattern not allowed in path name.

CPFA08B E Path name cannot begin with *.

CPFA08C E Pattern not allowed in path name directory.

CPFA08D E Request information value is not valid.

CPFA08E E More than one name matches pattern.

CPFA091 E Pattern not allowed in user name.

CPFA092 E Path name not converted.

CPFA094 E Path name not specified.

CPFA0A4 E Too many open files for process.

CPFA0AA E Error occurred while attempting to obtain space.

CPFA0D4 E File system error occurred.

CPFB720 E No signable object was found.

CPFB722 E Object not signed.

CPFB723 E Object signed, but signature is not valid.

CPFB724 E Option &2 of the operating system is required to work with object signatures.

CPFB72A E The object had no trusted signatures on the object.

CPFB72B E Object not found.

CPFB72C E The object cannot currently be signed or verified.

CPFB735 E The digital signing API parameter &1 is not large enough.

CPFB736 E The digital signing API parameter &1 is not small enough.

CPFB737 E The digital signing API parameter &1 is not small enough.

CPFB738 E The digital signing API parameter &1 is not a valid format type.

CPFB739 E The digital signing API parameter &1 is out of range.

CPFB73A E The password for the certificate key database needs to be set.

CPFB740 E The format name for the pathname is not valid.

CPFB741 E The length of the path name parameter is not valid.

CPFB742 E The subdirectory option is an invalid value.

CPFB743 E The value for stopping on the first error is not valid.

CPFB744 E The format of the results file for the digital signing API is an incorrect v.

CPFB745 E The format name for the results file path name is not valid.

CPFB746 E The results file path name length is not large enough.

CPFB749 E Object signature operation ended abnormally. &1 objects attempted, &2 objects successfully

processed.

CPFB74D E Results file could not be used.

CPFBC50 E No path names match input path names.

API introduced: V5R1

Security-related APIs 195

Top | Security APIs | APIs by category

Security-related Exit Programs

You may write exit programs that are called by the operating system to perform user-profile-related

functions that suit your needs. With the use of these exit programs, the user-profile exit points notify you

when a user profile has been created, changed, and so forth. For example, if you are maintaining a

network of systems and you want to keep the user profile changes synchronized on all the systems, you

can use these exit points to be notified of all the create, change, and delete profile activity. When a user

profile is created on one system and you receive notification of that user profile being created, you can

retrieve all the user profile information and create a duplicate user profile on the other systems in your

network. The same can be done for any user profile changes and deletions.

For general information abou the OS/400(R) system security, see the iSeries Security Reference

book.

The OS/400 security-related exit programs are:

v “Change User Profile Exit Program” is called when a user profile has been changed on the iSeries.

v “Create User Profile Exit Program” on page 198 is called when a user profile is created on the iSeries.

v “Delete User Profile Exit Program” on page 199 is called when a user profile is deleted on the iSeries.

v “Restore User Profile Exit Program” on page 200 is called when a user profile is restored on the iSeries.

v “Validate Password Exit Program” on page 202 is called when a Change Password (CHGPWD)

command or Change Password (QSYCHGPW) API is executed.

 Note: The QIBM_QSY_HOSTFUNC, QIBM_QSY_OPNAVCENTRL, QIBM_QSY_OPNAVCLIENT,

QIBM_QSY_OTHERCENTRL, and QIBM_QSY_OTHERCLIENT exit points are used only to store function

registration information (see the Register Function (QSYRGFN, QsyRegisterFunction) API). The exit

programs within these exit points are never called, so the formats associated with these exit points

(FCNR0100 and FCNR0200) are never used or documented.

 Top | Security APIs | APIs by category

Exit Programs

These are the Exit Programs for this category.

Change User Profile Exit Program

 Required Parameter:

1 Change profile exit information

Input Char(*)

 QSYSINC Member Name: ECHGPRF1

 Exit Point Name: QIBM_QSY_CHG_PROFILE

 Exit Point Format Name: CHGP0100

The Change User Profile exit programs are called when a user profile has been changed on the iSeries

server by one of the following commands or API:

v Change User Profile (CHGUSRPRF) command

v Change User Auditing (CHGUSRAUD) command

196 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm
qsyrgfn.htm
#TOP_OF_PAGE
sec.htm
aplist.htm

v Reset Profile Attributes (QSYRESPA) API

Other OS/400 commands and APIs call the interfaces listed above. As a result, they cause the Change

User Profile exit programs to be called. A partial list of additional OS/400 interfaces that force calls to the

exit programs are listed below:

v Change Profile (CHGPRF) command

v Change Password (CHGPWD) command

v Change Password (QSYCHGPW) API

v Configure System Security (CFGSYSSEC) command

v Analyze Profile Activity (ANZPRFACT) command

There are some OS/400 interfaces that make changes to the user profile object that do not cause the

Change User Profile exit programs to be called. The most notable interfaces are listed below:

v Changing the user profile text description with the Change Object Description (CHGOBJD) command

v Granting or revoking private authority to an object

v Changing object ownership information

v Disabling a user profile during sign-on

v Setting the encrypted user password with the Set Encrypted Password (QSYSUPWD) API

The functions which do or don’t cause the exit program to be called may change from release to release

as commands and APIs are added.

When a user profile is changed on the iSeries server, as explained above, the operating system calls the

user-written exit programs through the registration facility. The exit point supports an unlimited number

of exit programs. (For information about adding an exit program to an exit point, see the Registration

Facility part.)

Note: The Change User Profile exit point ignores any return codes or error messages that are sent from

the exit program.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility

Required Parameter

Change profile exit information

INPUT; CHAR(*)

 Information needed by the exit program for notification of any profile changes. For details, see

“Format of Change Profile Exit Information.”

Format of Change Profile Exit Information

The following table shows the structure of the change profile exit information for format CHGP0100. For

a description of the fields in this format, see “Field Descriptions” on page 198.

 Offset

Type Field Dec Hex

0 0 CHAR(20) Exit point name

20 14 CHAR(8) Exit point format name

28 1C CHAR(10) User profile name

Security-related APIs 197

Field Descriptions

Exit point format name. The format name for the Change User Profile exit program. The possible format

name is:

 CHGP0100 The format name that is used after a user profile changed.

Exit point name. The name of the exit point that calls the exit program.

User profile name. The name of the user profile that changed.

Exit program introduced: V3R7

 Top | Security APIs | APIs by category

Create User Profile Exit Program

 Required Parameter:

1 Create profile exit information

Input Char(*)

 QSYSINC Member Name: ECRTPRF1

 Exit Point Name: QIBM_QSY_CRT_PROFILE

 Exit Point Format Name: CRTP0100

The Create User Profile exit program is called when a user profile is created on the iSeries server.

When a user profile is created on the iSeries server, the operating system calls the user-written exit

programs through the registration facility. The exit point supports an unlimited number of exit programs.

(For information about adding an exit program to an exit point, see the Registration Facility part.)

Note: The Create User Profile exit program ignores any return codes or error messages that are sent from

the exit program.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility

Required Parameter

Create profile exit information

INPUT; CHAR(*)

 Information needed by the exit program for notification of any profile being created. For details,

see “Format of Create Profile Exit Information.”

Format of Create Profile Exit Information

The following table shows the structure of the create profile exit information for format CRTP0100. For a

description of the fields in this format, see “Field Descriptions” on page 199.

198 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Offset

Type Field Dec Hex

0 0 CHAR(20) Exit point name

20 14 CHAR(8) Exit point format name

28 1C CHAR(10) User profile name

Field Descriptions

Exit point format name. The format name for the Create User Profile exit program. The possible format

name is:

 CRTP0100 The format name that is used after a user profile created.

Exit point name. The name of the exit point that is calling the exit program.

User profile name. The name of the user profile that was created.

Exit program introduced: V3R7

 Top | Security APIs | APIs by category

Delete User Profile Exit Program

 Required Parameter:

1 Delete profile exit information

Input Char(*)

 QSYSINC Member Name: EDLTPRF1, EDLTPRF2

 Exit Point Name: QIBM_QSY_DLT_PROFILE

 Exit Point Format Names: DLTP0100, DLTP0200

The Delete User Profile exit program is called when a user profile is deleted on the iSeries server.

When a user profile is deleted on the iSeries server, the operating system calls the user-written exit

programs through the registration facility. Exit programs can register to be notified before the profile is

deleted, after the profile is deleted, or both. The predeletion notification is sent prior to doing any owned

objects checking, which is required for the deletion of a user profile. Therefore, the predeletion

notification is not a guarantee that the profile will actually be deleted. The postdeletion notification is

sent after the profile is deleted.

The exit point supports an unlimited number of exit programs. (For information about adding an exit

program to an exit point, see the Registration Facility part.)

Note: The Delete User Profile exit program ignores any return codes or error messages that are sent from

the exit program.

Security-related APIs 199

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility

Required Parameter

Delete profile exit information

INPUT; CHAR(*)

 Information needed by the exit program for notification of any profile deletions. For details, see

“Format of Delete Profile Exit Information.”

Format of Delete Profile Exit Information

The following table shows the structure of the delete profile exit information for formats DLTP0100 and

DLTP0200. For a description of the fields in this format, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(20) Exit point name

20 14 CHAR(8) Exit point format name

28 1C CHAR(10) User profile name

Field Descriptions

Exit point format name. The format name for the Delete User Profile exit program. The possible format

name is:

 DLTP0100 The format name that is used after a user profile is deleted.

DLTP0200 The format name that is used before a user profile is deleted.

Exit point name. The name of the exit point that is calling the exit program.

User profile name. The name of the user profile being deleted.

Exit program introduced: V3R7

 Top | Security APIs | APIs by category

Restore User Profile Exit Program

 Required Parameter:

1 Restore profile exit information

Input Char(*)

 QSYSINC Member Name: ERSTPRF1

 Exit Point Name: QIBM_QSY_RST_PROFILE

 Exit Point Format Name: RSTP0100

The Restore User Profile exit program is called when a user profile is restored on the iSeries server.

200 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

When a user profile is restored to the iSeries server, the operating system calls the user-written exit

programs through the registration facility.

During a restore operation of the entire system, all required objects are not installed at the time user

profiles are being restored. Therefore, this exit point is not active during a restore operation of the entire

system.

This exit point supports up to 20 exit programs. (For information about adding an exit program to an exit

point, see the Registration Facility part.)

Note: The Restore User Profile exit program ignores any return codes or error messages that are sent

from the exit program.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility

Required Parameter

Restore profile exit information

INPUT; CHAR(*)

 Information needed by the exit program for notification of any profile restored. For details, see

“Format of Restore Profile Exit Information.”

Format of Restore Profile Exit Information

The following table shows the structure of the restore profile exit information for format RST0100. For a

description of the fields in this format, see “Field Descriptions.”

 Offset Type Field

Dec Hex

0 0 CHAR(20) Exit point name

20 14 CHAR(8) Exit point format name

28 1C CHAR(10) User profile name

Field Descriptions

Exit point format name. The format name for the Restore User Profile exit program. The possible format

name is:

 RSTP0100 The format name that is used after a user profile is restored.

Exit point name. The name of the exit point that calls the exit program.

User profile name. The name of the user profile that was restored.

Exit program introduced: V3R7

 Top | Security APIs | APIs by category

Security-related APIs 201

#TOP_OF_PAGE
sec.htm
aplist.htm

Validate Password Exit Program

 Required Parameter:

1 Validate password exit information

Input Char(*)

2 Return indicator

Output Char(1)
 QSYSINC Member Name: EVLDPWD1

 Exit Point Name: QIBM_QSY_VLD_PASSWRD

 Exit Point Format Name: VLDP0100

The Validate Password exit program is called when a Change Password (CHGPWD) command or Change

Password (QSYCHGPW) API is executed. The exit program is called after the password composition rules

have been checked.

The exit program examines the old and new password values for conformance with customer unique

password composition rules. The exit program returns an indication whether the new password should

be accepted or rejected. The exit point supports multiple exit programs. However, additional exit

programs will not be called after receiving a indication that the new password should be rejected from

one of the exit programs. (For information about adding an exit program to an exit point, see the

Registration Facility part.)

Any escape message received from an exit program or encountered while trying to call an exit program,

will be treated as an indication that the new password should be rejected.

The specified exit program must exist in the system auxiliary storage pool (ASP) or one of the basic user

ASPs at the time it is added to the registration facility. If the program does not exist, the request to add

the exit program will be rejected.

The exit program must exist in the system ASP or one of the basic user ASPs at the time the exit point

attempts to locate the exit program. If the specified exit program does not exist in the system ASP or one

of the basic user ASPs, the condition will be treated as an indication that the new password should be

rejected.

Note: The QPWDVLDPGM system value must be set to the value *REGFAC. If the QPWDVLDPGM

system value contains any other value, the validate password exit programs will not be called.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add or remove exit programs to the registration facility

Required Parameter

Validate password exit information

INPUT; CHAR(*)

 Information needed by the exit program for notification of any profile changes. For details, see

“Format of Validate Password Exit Information” on page 203.

202 iSeries: Security -- Security-related APIs

Return indicator

OUTPUT; CHAR(1)

 Indicates whether the new password should be accepted or rejected.

 ’0’ Indicates that the new password should be accepted.

’1’ Indicates that the new password should be rejected.

Note: Any value other than ’0’ indicates that the new password should be rejected.

Format of Validate Password Exit Information

The following table shows the structure of the validate password exit information for format VLDP0100.

For a description of the fields in this format, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(20) Exit point name

20 14 CHAR(8) Exit point format name

28 1C BINARY(4) Password level

32 20 CHAR(10) User profile name

42 2A CHAR(2) Reserved

44 2C BINARY(4) Offset to old password

48 30 BINARY(4) Length of old password

52 34 BINARY(4) CCSID of old password

56 38 BINARY(4) Offset to new password

60 3C BINARY(4) Length of new password

64 40 BINARY(4) CCSID of new password

 CHAR(*) Old password

 CHAR(*) New password

Field Descriptions

CCSID of new password. The CCSID of the new password field. For a list of valid CCSIDs, see the

Globalization topic in the iSeries Information Center.

CCSID of old password. The CCSID of the old password field. For a list of valid CCSIDs, see the

Globalization topic in the iSeries Information Center.

Exit point format name. The format name for the Change User Profile exit program. The possible format

name is:

 VLDP0100 The format name that is used before a user password is changed by the CHGPWD command or

QSYCHGPW API.

Exit point name. The name of the exit point that calls the exit program.

Length of new password. The length, in bytes, of the new password field.

Security-related APIs 203

When called by the QSYCHGPW API, this is the length supplied to (or defaulted to) the QSYCHGPW

API. It may include trailing blank or null characters which are removed by the system before changing

the password.

When called by the CHGPWD command, this is the length of the actual password with any trailing blank

or null characters removed.

Length of old password. The length, in bytes, of the old password field.

When called by the QSYCHGPW API, this is the length supplied to (or defaulted to) the QSYCHGPW

API. It may include trailing blank or null characters which are removed by the system before changing

the password.

When called by the CHGPWD command, this is the length of the actual password with any trailing blank

or null characters removed.

New password. The new password value.

Offset to new password. The offset from the beginning of the validate password exit information to the

new password field.

Offset to old password. The offset from the beginning of the validate password exit information to the

old password field.

Old password. The old password value.

Password level. The password level in affect for the system. See the QPWDLVL system value for a

description of the possible values.

User profile name. The name of the user profile whose password is being changed.

API introduced: V3R1

 Top | Security APIs | APIs by category

204 iSeries: Security -- Security-related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 205

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

206 iSeries: Security -- Security-related APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 207

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

208 iSeries: Security -- Security-related APIs

����

Printed in USA

	Contents
	Security-related APIs
	APIs
	Add Verifier (QYDOADDV, QydoAddVerifier) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Change Previous Sign-On Date (QSYCHGPR) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Change Service Tools User ID (QSYCHGDS) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Change User Password (QSYCHGPW) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Usage Notes
	Error Messages

	Change User Profile UID or GID (QSYCHGID) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Check Encrypted User Password (QSYCUPWD) API
	Authorities and Locks
	Required Parameter Group
	UPWD0100 Format
	Field Descriptions
	Error Messages

	Check Profile Token User (QSYCHKTU, QsyChkPrfTknUser) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Check System (QYDOCHKS, QydoCheckSystem) API
	Authorities and Locks
	Optional Parameter Group
	RSLT0100 format
	Field Descriptions
	Usage Notes
	Error Messages

	Check User Authority to an Object (QSYCUSRA) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Check User Special Authorities (QSYCUSRS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	QwtClearJuid()—Clear Job User Identity
	Parameters
	Authorities and Locks
	Return Value
	Usage Notes

	Convert Authority Values to MI Value (QSYCVTA) API
	Required Parameter Group
	Error Messages

	Generate Profile Token (QsyGenPrfTkn) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Generate Profile Token (QSYGENPT) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Usage Notes
	Error Messages

	Generate Profile Token Extended (QsyGenPrfTknE) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Generate Profile Token From Profile Token (QSYGENFT, QsyGenPrfTknFromPrfTkn) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Get Profile Handle (QSYGETPH) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Usage Notes
	Error Messages

	Get Profile Handle (QsyGetProfileHandle) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Get Profile Handle No Password (QsyGetProfileHandleNoPwd) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Get Profile Token Time Out (QSYGETPT, QsyGetPrfTknTimeOut) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Invalidate Profile Token (QSYINVPT, QsyInvalidatePrfTkn) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	List Authorized Users (QSYLAUTU) API
	Authorities and Locks
	Required Parameter Group
	User Space Variables
	Input Parameter Section
	AUTU0100 Format
	AUTU0200 Format
	Field Descriptions

	Error Messages

	List Objects Secured by Authorization List (QSYLATLO) API
	Authorities and Locks
	Required Parameter Group
	User Space Variables
	Input Parameter Section
	Header Section
	ATLO0100 Format
	ATLO0110 Format
	ATLO0200 Format
	ATLO0210 Format
	ATLO0300 Format
	ATLO0400 Format
	Field Descriptions

	Error Messages

	List Objects That Adopt Owner Authority (QSYLOBJP) API
	Authorities and Locks
	Required Parameter Group
	User Space Variables
	Input Parameter Section
	Header Section
	OBJP0100 Format
	OBJP0110 Format
	OBJP0200 Format
	Field Descriptions

	Error Messages

	List Objects User Is Authorized to, Owns, or Is Primary Group of (QSYLOBJA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	User Space Variables
	Input Parameter Section
	Header Section
	OBJA0100 Format
	OBJA0110 Format
	OBJA0200 Format
	OBJA0210 Format
	OBJA0300 Format
	OBJA0310 Format
	Field Descriptions

	Error Messages

	List Users Authorized to Object (QSYLUSRA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	User Space Variables
	Input Parameter Section
	Header Section
	USRA0100 Format

	Field Descriptions
	Error Messages

	Open List of Authorized Users (QGYOLAUS) API
	Differences between QSYRAUTU and QGYOLAUS
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Receiver Variable Description
	AUTU0100 Format
	AUTU0150 Format
	AUTU0200 Format
	AUTU0250 Format

	Field Descriptions
	Error Messages

	Release Profile Handle (QSYRLSPH, QsyReleaseProfileHandle) API
	Authorities and Locks
	Required Parameter
	Optional Parameter
	Usage Notes
	Error Messages

	Remove All Profile Tokens (QsyRemoveAllPrfTkns) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Remove All Profile Tokens For User (QsyRemoveAllPrfTknsForUser) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Remove Profile Token (QsyRemovePrfTkn) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Remove Profile Tokens (QSYRMVPT) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Remove User Application Information (QsyRemoveUserApplicationInfo) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Reset Profile Attributes (QSYRESPA) API
	Authorities and Locks
	Required Parameter
	Error Messages

	Retrieve Authorized Users (QSYRAUTU) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Receiver Variable Description
	AUTU0100 Format
	AUTU0150 Format
	AUTU0200 Format
	AUTU0250 Format
	Format of Returned Records Feedback Information
	Field Descriptions
	Error Messages

	Retrieve Encrypted User Password (QSYRUPWD) API
	Authorities and Locks
	Required Parameter Group
	Format of Receiver Variable
	UPWD0100 Format

	Field Descriptions
	Error Messages

	Retrieve Object Signatures (QYDORTVO,
	Authorities and Locks
	Required Parameter Group
	Receiver Structure
	Header
	Receiver Header area
	Field Descriptions
	Signature Section
	Field Descriptions
	Certificate Format CERT0200 (or CERT0210)
	Error Messages

	Retrieve Objects Secured by Authorization List (QGYRATLO) API
	Differences between QSYLATLO and QGYRATLO
	Authorities and Locks
	Required Parameter Group
	Format of Receiver Variable
	ATLO0100 Format
	ATLO0110 Format
	ATLO0200 Format
	ATLO0210 Format
	ATLO0300 Format
	ATLO0400 Format
	Field Descriptions

	Format of List Information
	Field Descriptions
	Format of Section Information
	Field Descriptions
	Error Messages

	Retrieve Security Attributes (QSYRTVSA) API
	Authorities and Locks
	Required Parameter Group
	RTSA0100 Format
	Field Descriptions
	Error Messages

	Retrieve User Application Information (QsyRetrieveUserApplicationInfo) API
	Authorities and Locks
	Required Parameter Group
	Receiver Variable Description
	RUAI0100 Format

	Format of Returned Records Feedback Information
	Field Descriptions
	Error Messages

	Retrieve User Authority to Object (QSYRUSRA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Receiver Variable Description
	USRA0100 Format
	Field Descriptions

	Group Information Table
	Field Descriptions

	Error Messages

	Retrieve User Information (QSYRUSRI) API
	Authorities and Locks
	Required Parameter Group
	Receiver Variable Description
	USRI0100 Format
	USRI0200 Format
	USRI0300 Format
	Field Descriptions
	Error Messages

	Retrieve Users Authorized to an Object (QSYRTVUA) API
	Authorities and Locks
	Required Parameter Group
	Receiver Variable Description
	RTUA0100 Format

	Format of Returned Records Feedback Information
	Field Descriptions

	Error Messages

	Set Encrypted User Password (QSYSUPWD) API
	Authorities and Locks
	Required Parameter Group
	UPWD0100 Format
	Field Descriptions
	Error Messages

	Set Job User Identity (QWTSJUID) API
	Authorities and Locks
	Required Parameter
	Usage Notes
	Error Messages

	QwtSetJuid()—Set Job User Identity
	Parameters
	Authorities and Locks
	Return Value

	Set Profile Handle (QWTSETP, QsySetToProfileHandle) API
	Output Queue Considerations
	Required Parameter
	Optional Parameter
	Usage Notes
	Considerations for Scope and Thread Safety

	Error Messages

	Set To Profile Token (QSYSETPT, QsySetToPrfTkn) API
	QPRTJOB
	Output Queue Considerations
	Authorities and Locks
	Required Parameter Group
	Error Messages
	Usage Notes
	Considerations for Scope and Thread Safety

	Sign Buffer (QYDOSGNB, QydoSignBuffer)
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Resulting signature formats
	SGNB0100 format
	SGNB0200 format
	SGNB0300 format
	SGNB0400 format
	Field Descriptions
	Error Messages

	Sign Object (QYDOSGNO, QydoSignObject) API
	Authorities and Locks
	Required Parameter Group
	Multiple objects characteristics format
	Field Descriptions
	RSLT0100 format
	Field Descriptions
	Error Messages

	Update User Application Information (QsyUpdateUserApplicationInfo) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Verify Buffer (QYDOVFYB, QydoVerifyBuffer)
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Error Messages

	Verify Object (QYDOVFYO, QydoVerifyObject) API
	Authorities and Locks
	Required Parameter Group
	Multiple objects characteristics format
	Field Descriptions
	RSLT0100 format
	Field Descriptions
	Error Messages

	Security-related Exit Programs
	Exit Programs
	Change User Profile Exit Program
	Authorities and Locks
	Required Parameter
	Format of Change Profile Exit Information
	Field Descriptions

	Create User Profile Exit Program
	Authorities and Locks
	Required Parameter
	Format of Create Profile Exit Information
	Field Descriptions

	Delete User Profile Exit Program
	Authorities and Locks
	Required Parameter
	Format of Delete Profile Exit Information
	Field Descriptions

	Restore User Profile Exit Program
	Authorities and Locks
	Required Parameter
	Format of Restore Profile Exit Information
	Field Descriptions

	Validate Password Exit Program
	Authorities and Locks
	Required Parameter
	Format of Validate Password Exit Information
	Field Descriptions

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

