\\
//%/
NN






@server
iSeries
CL Programming

Version 5

SC41-5721-06



Note
Before using this information and the product it supports, be sure to read the information in
[Appendix E, “Notices,” on page 453)

Seventh Edition (April 2004)

This edition applies to version5, release3, modification 0 of IBM Operating System /400 (Program 5722-551) and to
all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all
reduced instruction set computer (RISC) models nor does it run on CISC models.

This edition replaces SC41-5721-05. This edition applies only to reduced instruction set computer (RISC) systems.

© Copyright International Business Machines Corporation 1997, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.



Contents
Figures

About CL Programming (SC41 5721)
Who should read this book .

Prerequisite and related 1nformat10n .

How to send your comments .

Chapter 1. Introduction

Control Language
Procedure
Module .

Program . .
Service Program .
Command Syntax.

CL Procedures .

Command Definition

Menus .

Command Prompters

Objects and Libraries
Objects
Libraries.

Messages .
Message Descrlptlons
Message Queues .

Testing Functions .

Chapter 2. CL Programmlng
Creating a CL Program
Interactive Entry.
Batch Entry
Parts of a CL Procedure .
Example of a Simple CL Program .
Commands Used in CL Procedures
Commands Entered on the RQSDTA and CMD
Parameters
CL Commands
Using CL Procedures .
Working with Variables
Declaring a Variable .
Using Variables to Spec1fy a Llst or Quahfled
Name .o
Lowercase Characters in Varlables
Variables Replacing Reserved or Numeric
Parameter Values .
Changing the Value of a Var1ab1e .
Trailing Blanks on Command Parameters
Writing Comments in CL Procedures .
Controlling Processing within a CL Procedure .
Using the GOTO Command and Labels .
Using the IF Command .
Using the ELSE Command
Using Embedded IF Commands .
Using the DO Command and DO Groups .
Using the DOUNTIL Command .
Using the DOWHILE Command

© Copyright IBM Corp. 1997, 2004

. Vil

. ix
. ix

O O WO UIUTUIUIEE WNNN R - =

- M
S 12
.13
.13

.15
. 16

. 16
. 16
.18
.21
.23

.23
.24

. 25
. 26
.27
. 29
. 29
. 30
. 30
. 32
. 34
. 35
. 36
. 37

Using the DOFOR Command . . . . . . .38
Using the ITERATE Command . . . . . . .39
Using the LEAVE Command . . . .40
Using the SELECT Command and SELECT
Groups. . . .. 40
Using the *AND >‘OR and *NOT Operators .4
Using the %BINARY Built-In Function . . . .45
Using the %SUBSTRING Built-In Function . . . 47
Using the %SWITCH Built-In Function . . . .49
Using the Monitor Message (MONMSG)
Command. . . . .. .50
Values That Can Be Used as Varlables .. . . .53
Retrieving System Values. . . . . . . . .53
Retrieving Configuration Source . . . . . .55
Retrieving Configuration Status . . . . . .56
Retrieving Network Attributes . . . . . . .56
Retrieving Job Attributes . . . . . . . . .56
Retrieving Object Descriptions . . . . . . .57
Retrieving User Profile Attributes . . . . .58
Retrieving Member Description Informatlon . .58
Working with CL Procedures . . o059
Logging CL Procedure Commands ... . .60
CL Module Compiler Listings . . . . . . .61
Errors Encountered during Compilation. . . . 63
Obtaining a Procedure Dump . . . . . . .63
Displaying Module Attributes . . . . . . .65
Displaying Program Attributes . . . . . . .65
Return Code Summary . . . 65
Compiling Source Programs for a Prev1ous Release 66
Previous-Release (*PRV) Libraries . . . . 66
Installing CL Compiler Support for a Prev1ous
Release. . . . . . . . . . . . . . .67

Chapter 3. Controlling Flow and
Communicating between Programs and
Procedures. . . . . . . . . . . . .69

CALL Command . . . . . . . . . . . .69

CALLPRC Command . . . . . . . . . . .70

RETURN Command . . . . A

Passing Parameters between Programs and

Procedures . . e e .. T2
Using the CALL Command e . .75
Common Errors When Calling Programs and
Procedures . . . .. .78

Using Data Queues to Communlcate between

Programs and Procedures . . . . . . . . .82
Remote Data Queues . . . . .8
Comparisons with Using Database Flles as
Queues. . . . .. . . . . .86
Similarities to Message Queues .. . . . .86
Prerequisites for Using Data Queues . . . . .87
Managing the Storage Used by a Data Queue . . 87
Allocating Data Queues . . . . . . . . .87
Examples Using a Data Queue . . . . . . .88

iii



Creating Data Queues Associated with an Output

Queue . .92
Using Data Areas to Communrcate between
Procedures and Programs .92
Local Data Area . .93
Group Data Area . 94
Program Initialization Parameter (PIP) Data Area 94
Remote Data Areas . . 95
Creating a Data Area . . 95
Data Area Locking and Allocatlon . 9
Displaying a Data Area . 96
Changing a Data Area. . 96
Retrieving a Data Area . 96
Retrieve Data Area Examples . 9
Changing and Retrieving a Data Area Example 97
Chapter 4. Objects and Libraries . 99
Object Types and Common Attributes .99
Functions Performed on Objects .99
Functions the System Performs Automatlcally .99
Functions You Can Perform Using Commands 100
Libraries . . 100
Library Lists. . 101
Displaying a Library L1st . 109
Using Generic Object Names . . 109
Searching for Multlple Ob]ects ora Smgle Ob]ect 110
Using Libraries . . 110
Creating a Library . . 111
Specifying Authority for L1brar1es .11
Security Considerations for Objects . .. 113
Default Public Authority for Newly Created
Objects . . 113
Default Auditing Attrlbute for Newly Created
Objects P i )
Placing Objects in L1brar1es . 115
Deleting and Clearing Libraries . 115
Displaying Library Names and Contents . 116
Displaying and Retrieving lerary Descrlptlons 117
OS/400 Globalization. P V4
Describing Objects. . 119
Displaying Object Descrlptlons . 119
Retrieving Object Descriptions. . 123
RTVOBJD Example . . 124
Creation Information for Objects . . . 125
Detecting Unused Objects on the System . . 125
Moving Objects from One Library to Another . 131
Creating Duplicate Objects . . . 133
Renaming Objects . . . 135
Compressing or Decompressmg Ob]ects . 136
Compression of Objects . . . 137
Temporarily Decompressed Objects . . 137
Automatic Decompression of Objects . 138
Deleting Objects . 139
Allocating Resources . . . . 139
Displaying the Lock States for Ob]ects . . 142

Chapter 5. Working with Objects in CL
Procedures and Programs. . . . . . 1
Accessing Objects in CL Programs

iv CL Programming V5R3

45

. 145

Exceptions: Accessing Command Definitions,

Files, and Procedures. . 146
Checking for the Existence of an Ob]ect . 147
Working with Files in CL Procedures . 148

Referring to Files in a CL Procedure. . . . 151
Opening and Closing Files in a CL Procedure 151

Declaring a File . . 152
Sending and Receiving Data w1th a Dlsplay Flle 153
Writing a CL Program to Control a Menu . . 155
Overriding Display Files in a CL Procedure . 156
Working with Multiple Device Display Files . . 157
Receiving Data from a Database File . 160
Overriding Database Files in a CL Procedure or
Program . . 160
Referring to Output Flles from Dlsplay
Commands . . . . . . . . . . . . .16l
Chapter 6. Advanced Programming
Topics . 163
Using the QCAPCMD Program . 163
Using the QCMDEXC Program . 163
Using the QCMDEXC Program w1th DBCS Data 165
Using the QCMDCHK Program . . .. . 166
Using Message Subfiles in a CL Program or
Procedure . 168
Allowing User Changes to CL Commands at Run
Time . . . 168
Using the OS/ 400 Prompter w1th1n a CL
Procedure or Program . 168
Selective Prompting for CL Commands . . 170
QCMDEXC with Promptmg in CL Procedures
and Programs . N VK
Using the Programmer Menu . . . 173
Uses of the Start Programmer Menu
(STRPGMMNU) Command. . 174
Command Analyzer Exit Points . . 175
Application Programming for DBCS Data . 175
Designing DBCS Application Programs. . 175
Converting Alphanumeric Programs to Process
DBCS Data . . . 175
Using DBCS Data in a CL Program . . 176
Sample CL Programs . . 177
Initial Program for Setup (Programmer) . 177
Moving an Object from a Test Library to a
Production Library (Programmer) . . 177
Saving Specific Objects in an Application
(System Operator) . Lo . 178
Recovery from Abnormal End (System
Operator). . 178
Submitting a Job (System Operator) .. 178
Timing Out While Waiting for Input from a
Device Display . . . . . 179
Performing Date Ar1thmet1c .. . . .180
Retrieving Program Attributes. . . . 181
Loading and Running an Application from Tape or
Optical Media . . . ... 181
Responsibilities of the Apphcatlon erter ..o 181
Chapter 7. Defining Messages . . 183
Creating a Message File . . 185



Message Files in Independent ASPs .

Determining the Size of a Message File.
Adding Messages to a File .

Assigning a Message Identifier .

Defining Messages and Message Help

Assigning a Severity Code .

Defining Substitution Variables

Specifying Validity Checking for Replies

Sending an Immediate Message and Handling a

Reply . . .
Defining Default Values for Rephes .
Specifying Default Message Handlmg for
Escape Messages .
Example of Describing a Message
Defining Double-Byte Messages .
System Message File Searches .
Searching for a Message File
Overriding Message Files
Types of Message Queues .
Creating or Changing a Message Queue
Job Message Queues .

Chapter 8. Working with Messages
Sending Messages to a System User .
Sending Messages from a CL Program .
Messages .
Examples of Sendmg Messages
Call Stack Entry Identification on
SNDPGMMSG . .
Receiving Messages in a CL Procedure or
Program . .
Retrieving Messages ina CL Procedure

Removing Messages from a Message Queue .

Monitoring for Messages in a CL Program or
Procedure .

Default Handling .

Notify Messages

Status Messages

Preventing the Display of Status Messages
Break-Handling Programs . .
QSYSMSG Message Queue .

Messages Sent to QSYSMSG Message Queue

Sample Program to Receive Messages from
QSYSMSG
Using the System Reply Llst
Reply Handling
Message Logging .
Job Log
QHST History Log .
Format of the History Log .
Processing the QHST File
QHST Job Start and Completion Messages
Deleting QHST Files . .

Chapter 9. Defining Commands
Overview of How to Define Commands
Step Description
Authority Needed for the Commands You
Define.
Example of Creatmg a Command

. 186
. 186
. 187
. 187
. 188
. 189
. 190
. 192

. 192
. 194

. 194
. 196
. 196
. 197
. 197
. 197
. 201
. 202
. 206

211

. 211
. 212
. 213
. 215

. 218

. 232
. 237
. 238

. 239
. 244
. 245
. 245
. 246
. 247
. 249

249

. 267
. 269
. 272
. 272
. 272
. 282
. 285
. 286
. 286
. 288

. 289
. 289
. 290

. 292
. 292

How to Define Commands .
Using the CMD Statement .
Defining Parameters .
Data Type and Parameter Restrlctlons .
Defining Lists for Parameters .
Defining a Simple List
Defining a Mixed List
Defining Lists within Lists .
Defining a Qualified Name. .
Defining a Dependent Relationship .
Possible Choices and Values
Using Prompt Control
Conditional Prompting .
Additional Parameters .
Using Key Parameters and a Prompt Overrlde
Program .

Procedure for Usmg Prompt Overrrde Programs

CL Sample for Usmg the Prompt Override
Program . . S

Creating Commands . . .
Command Definition Source Lrstmg

Errors Encountered when Processing Command

Definition Statements. .
Displaying a Command Definition .
Effect of Changing the Command Definition of a
Command in a Procedure or Program .
Changing Command Defaults .
Writing a Command Processing Program or
Procedure
Writing a CL or HLL Command Processmg
Program . .
Writing a REXX Command Processmg
Procedure .
Writing a Validity Checklng Program .
Examples of Defining and Creating Commands
Calling Application Programs .
Substituting a Default Value
Displaying an Output Queue .
Displaying Messages from IBM Commands
More Than Once S
Creating Abbreviated Commands
Deleting Files and Source Members .
Deleting Program Objects

Chapter 10. Documenting Commands
Commands and Command Help .
Writing Command Help.
Generating UIM Source for Command Help
Sharing Common Help . . .
Organizing Help Text into Help Modules .
Generating HTML Source for Command
Documentation .

Chapter 11. Debugging Programs
Debugging ILE Programs

The ILE Source Debugger

Debug Commands

. 292
. 293
. 294
. 299
. 305
. 307
. 311
. 313
. 317
. 320
. 320
. 322
. 322
. 325

. 325
325

. 329
. 332
. 333

. 335
. 336

. 337
. 339

. 342

. 342

. 344
. 345

346

. 346
. 347
. 347

. 348
. 349
. 349
. 350

353

. 353
. 354
. 354
. 355
. 356

. 356

. 357
. 357
. 357
. 358

Preparing a Program Ob]ect for a Debug Sessmn 359

Starting the ILE Source Debugger
Adding Program Objects to a Debug Session

Contents

. 360
361

A\



Removing Program Objects from a Debug
Session

Viewing the Program Source

Changing a Module Object . .
Stepping through the Program Ob]ect .
Stepping over Program Objects

Stepping into Program Objects

Displaying Variables . .

Changing the Value of Variables .

Attributes of a Variable Examples

Equating a Name with a Variable, Express1on
or Command

Source Debug Natlonal Language Support for
ILE CL . . .

Debugging OPM Programs

Debug Mode

The Call Stack . .
Handling Unmonitored Messages
Breakpoints .

Traces .

Display Functlons

Displaying the Values of Varlables
Changing the Values of Variables.
Using a Job to Debug Another Job
Debugging at the Machine Interface Level
Security Considerations .

Appendix A. TFRCTL Command
Using the TFRCTL Command .

vi

CL Programming V5R3

. 362
. 364
. 364
. 371
. 372
. 372
. 373
. 375
. 377

. 377

. 377
. 378
. 379
. 380
. 381
. 383
. 387
. 391
. 391
. 392
. 393
. 396
. 396

. 399
. 399

Passing Parameters

Appendix B. Job Log Output Files
Directing a Job Log .
Model for the Primary Job Log

Appendix C. IBM-Supplied Libraries in

Licensed Programs (LP).

IBM-Supplied Libraries for the OS / 400 Llcensed

Program .
IBM- Supphed Lrbrarres for Other 1Ser1es
Licensed Programs o

Appendix D. Abbreviations of CL

Commands and Keywords.
CL Command Verb Abbreviations

CL Command Abbreviations

CL Command Keyword Abbrevratlons

Appendix E. Notices
Programming Interface Information .
Trademarks .

Bibliography.

Index .

. 400

403

. 403
. 403

. 413

. 413

. 415

. 419
. 419
. 421
. 432

. 453
. 454
. 454
. 457

. 459



Figures

@

[y
SOXPXNO e

11.
12.
13.
14.

Example of Accessing a Remote Data Queue
Example of Call PGM. .
Example of an Application Using the
LODRUN Command . .o
Example of runtime call stack .
Example of TOPGMQ(*PRV *) .
Example of using a simple name .
Example of using a complex name
Example 1 of using *PGMBDY .
Example 2 of using *PGMBDY .
Example 3 of using *PGMBDY .
Example of runtime call stack .
Example of using *CTLBDY.

Simple List Example . .

REXX Simple List Example .

© Copyright IBM Corp. 1997, 2004

86

. 164

. 182
. 220
. 221
. 223
. 224
. 226
. 227
. 228
. 230
. 231
. 309
. 310

15.
16.
17.

18.
19.
20.
21.
22.

23.
24.

Command Relationships for CL and HLL
Command Relationships for REXX

Adding an ILE Program Object to a Debug
Session.

Adding an ILE Program Ob]ect to a Debug
Session.

Removing an ILE Program Ob]ect from a

Debug Session .

Removing an ILE Program Ob]ect from a

Debug Session . .

Display a Module V1ew . .
Changing a View of a Module Ob]ect
Setting a Conditional Breakpoint .
Displaying a Variable using F11 (Dlsplay
variable) .

343

. 344

. 361

. 362

. 363

. 363
. 364

365

. 368

. 373

vii



viii CL Programming V5R3



About CL Programming (SC41-5721)

This book provides a wide-range discussion of OS/400 programming topics,
including:

* Control language programming.

* OS/400 programming concepts.

* Objects and libraries.

* Message handling.

* User-defined commands.

¢ User-defined menus.

¢ Testing functions.

Who should read this book

This book is intended for the OS/400 programmer or application programmer,
including non-CL programmers. While CL programming is discussed in detail,
much of the material in this book applies to the system in general and may be
used by programmers of all high-level languages supported by the iSeries servers.

Prerequisite and related information

Use the iSeries Information Center as your starting point for iSeries technical
information.

You can access the Information Center two ways:
* From the following Web site:
http://www.ibm.com/eserver/iseries/infocenter

e From the iSeries Information Center, SK3T-4091-04 CD-ROM. This CD-ROM ships
with your new iSeries hardware or IBM Operating System /400 software upgrade
order. You can also order the CD-ROM from the IBM Publications Center:

http://www.ibm.com/shop/publications/order

The iSeries Information Center contains new and updated iSeries information such
as software and hardware installation, Linux, WebSphere, Java, high availability,
database, logical partitions, CL commands, and system application programming
interfaces (APIs). In addition, it provides advisors and finders to assist in planning,
troubleshooting, and configuring your iSeries hardware and software.

With every new hardware order, you receive the iSeries Setup and Operations
CD-ROM, SK3T-4098-02. This CD-ROM contains IBM @server IBM e(logo)server
iSeries Access for Windows and the EZ-Setup wizard. iSeries Access Family offers
a powerful set of client and server capabilities for connecting PCs to iSeries
servers. The EZ-Setup wizard automates many of the iSeries setup tasks.

For other related information, see the [“Bibliography” on page 457

© Copyright IBM Corp. 1997, 2004 ix



How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
iSeries documentation, fill out the readers” comment form at the back of this book.

* If you prefer to send comments by mail, use the readers’ comment form with the
address that is printed on the back. If you are mailing a readers’ comment form
from a country or region other than the United States, you can give the form to
the local IBM branch office or IBM representative for postage-paid mailing.

 If you prefer to send comments by FAX, use either of the following numbers:
— United States, Canada, and Puerto Rico: 1-800-937-3430
— Other countries or regions: 1-507-253-5192
 If you prefer to send comments electronically, use one of these e-mail addresses:
— Comments on books:
RCHCLERK®@us.ibm.com
— Comments on the iSeries Information Center:
RCHINFOC®@us.ibm.com

Be sure to include the following:

e The name of the book or iSeries Information Center topic.

¢ The publication number of a book.

* The page number or topic of a book to which your comment applies.

X  CL Programming V5R3



Chapter 1. Introduction

This introduction describes several major concepts of Operating System /400®
(OS/400). These concepts are discussed in more detail in the following chapters.

System operation is controlled by the following:

¢ CL commands. CL commands are used singly in batch and interactive jobs,
(such as from the Command Entry display) and in CL programs and procedures.

* Menu options. System operation can be controlled by selecting menu options.
Interactive users can use the iSeries server menus to perform many system tasks.

* System messages. System messages are used to communicate between programs
and procedures and to communicate between programs and procedures and
users. Messages can report both status information and error conditions.

Control Language

Control language (CL) is the primary interface to the operating system and can be
used at the same time by users at different workstations. A single control language
statement is called a command. Commands can be entered in the following ways:
* Individually from a workstation.

* As part of batch jobs.

* As source statements to create a CL program or procedure.

Commands can be entered individually from any command line or the Command
Entry display.

To simplify the use of CL, all the commands use a consistent syntax. In addition,
the operating system provides prompting support for all commands, default values
for most command parameters, and validity checking to ensure that a command is
entered correctly before the function is performed. Thus, CL provides a single,
flexible interface to many different system functions that can be used by different
system users.

For information about specific commands, see the in the iSeries™
Information Center.

Procedure

A procedure is a set of self-contained high-level language statements that performs
a particular task and then returns to the caller.

In CL, a procedure usually begins with a PGM statement and ends with an
ENDPGM statement.

Module

A module is the object that results from compiling high-level language source
statements using an ILE (Integrated Language Environment®) compiler. A CL
module is created by compiling CL source using the Create CL Module
(CRTCLMOD) command. A module must be bound into a program to run.

© Copyright IBM Corp. 1997, 2004 1



A CL module consists of two parts: A user-written procedure, and a program entry
procedure that is generated by the CL compiler. In other HLL (for example, C), a
single module may contain multiple user-written procedures.

Program

0S/400® supports two types of programs. An ILE program is a program written in
an Integrated Language Environment (ILE)-conforming high-level language. ILE
programs are OS/400 objects that contain one or more modules. Modules cannot
be run until they are bound into programs. These programs must have a program
entry procedure. The CL compiler generates a program entry procedure in each
module it creates. A single-module ILE program can be created using the Create
Bound CL Program (CRTBNDCL) command. The Create Program (CRTPGM)
command can be used to create an ILE program that contains module objects
generated by different ILE compilers, including ILE CL. For more information
about ILE modules, ILE programs and service programs, and binding directories,

An OPM CL program is a program that conforms to the original program model
(OPM). OPM CL programs are objects that result from compiling source using the
Create CL Program (CRTCLPGM) command.

Service Program

A service program is an OS/400 object that contains one or more modules. You
can run programs that are not bound to service programs if they do not require
any procedures from the service program. However, you cannot run any
procedures from a service program unless that service program is bound to a
program. In order to call procedures in a service program, you must export the
procedure name. A service program is created using the Create Service Program
(CRTSRVPGM) command

While a program has only one entry point, a service program can have multiple
entry points. You cannot call service programs directly. You can call procedures in
a service program from other procedures in programs and service programs.

Command Syntax

2 CL Programming V5R3

A command name and parameters make up each command. A command name
usually consists of a verb, or action, followed by a noun or phrase that identifies
the receiver of the action. Abbreviated words, usually one to three letters, make up
the command name. This reduces the amount of typing that is required to enter
the command. For example, one of the CL commands is the Send Message
command. You would use the command that is named SNDMSG to send a
message from a user to a message queue.

The parameters used in CL commands are keyword parameters. The keyword,
usually abbreviated the same way as commands, identifies the purpose of the
parameter. However, when commands are entered, some keywords may be
omitted by specifying the parameters in a certain order (positional specification).

For a list of abbreviations used in CL commands and keywords, see |prendix D,l
[“Abbreviations of CL Commands and Keywords,” on page 419]




CL Procedures

CL programs and procedures are made up of CL commands. The commands are
compiled into either an OPM program or an ILE module that can be bound into
programs made up of modules written in CL or other languages. Advantages of
using CL programs and procedures include:

Using CL programs and procedures is faster than entering and running the
commands individually.

CL programs and procedures provide consistent processing of the same set of

commands and logic.

Some functions require CL commands that cannot be entered individually and
must be part of a CL program or procedure.

CL programs and procedures can be tested and debugged like other high-level
language (HLL) programs and procedures.

Parameters can be passed to CL programs and procedures to adapt the
operations performed by the program or procedure to the particular
requirements of that use.

You can bind CL modules with other ILE high-level language modules into a
program.

CL programs and procedures can be used for many kinds of applications. For
example, CL procedures can be used to:

Provide an interface to the user of an interactive application through which the
user can request application functions without an understanding of the
commands used in the program or procedure. This makes the workstation user’s
job easier and reduces the chances of errors occurring when commands are
entered.

Control the operation of an application by establishing variables used in the
application (such as date, time, and external indicators) and specifying the
library list used by the application. This ensures that these operations are
performed whenever the application is run.

Provide predefined routines for the system operator, such as procedures to start
a subsystem, to provide backup copies of files, or to perform other operating
functions. The use of CL programs and procedures reduces the number of
commands the operator uses regularly, and ensures that system operations are
performed consistently.

Most of the CL commands provided by the system can be used in CL programs
and procedures. Some commands are specifically designed for use in CL programs
and procedures and are not available when commands are entered individually.
These commands include:

Logic control commands that can be used to control which operations are
performed by the program or procedure according to conditions that exist when
the program or procedure is run. For example, if a certain condition exists, then
do certain processing, else do some other operation. These logic operations
provide both conditional and unconditional branching within the CL program or
procedure.

Data operations that provide a way for the program or procedure to
communicate with a workstation user. Data operations let the program or
procedure send formatted data to and receive data from the workstation, and
allow limited access to the database.

Commands that allow the program or procedure to send messages to the display
station user.

Chapter 1. Introduction 3



* Commands that receive messages sent by other programs and procedures. These
messages can provide normal communication between programs and
procedures, or indicate that errors or other exceptional conditions exist.

* The use of variables and parameters for passing information between commands
in the program or procedure and between programs and procedures.

* Commands that call other procedures. (Procedures cannot be called from the
command line or in the batch job stream.)

Using CL programs and procedures, applications can be designed with a separate
program or procedure for each function, and with a CL program or procedure
controlling which programs or procedures are run within the application. The
application can consist of both CL and other HLL programs or procedures. In this
type of application, CL programs or procedures are used to:

* Determine which programs or procedures in the application are to be run.

* Provide system functions that are not available through other HLL languages.

¢ Provide interaction with the application user.

CL programs and procedures provide the flexibility needed to let the application
user select what operations to perform and run the necessary procedures.

Command Definition

4 cCL Programming V5R3

Command definition allows system users to create additional commands to meet
specific application needs. These commands are similar to the system commands.

Each command on the system has a command definition object and a command

processing program (CPP). The command definition object defines the command,

including:

* The command name

* The CPP

* The parameters and values that are valid for the command

* Validity checking information the system can use to validate the command when
it is entered

¢ Prompt text to be displayed if a prompt is requested for the command.

* Online help information

The CPP is the program called when the command is entered. Because the system
performs validity checking when the command is entered, the CPP does not
always have to check the parameters passed to it.

The command definition functions can be used to:

* Create unique commands needed by system users while keeping a consistent
interface for CL command users.

* Define alternative versions of CL commands to meet the requirements of system
users. This function might include having different defaults for parameter
values, or simplifying the commands so that some parameters would not need
to be entered. Constant values can be defined for those parameters. The
IBM-supplied commands should not be changed.

See [Chapter 9, “Defining Commands”| for a detailed discussion of command
definition. See [Chapter 10, “Documenting Commands”| for information about
writing online help information for commands.




Menus

The system provides a large number of menus that allow users to perform many
functions just by selecting menu options. The advantages of using menus to
perform system tasks include:

* Users do not need to understand CL commands and command syntax.
e The amount of typing and the chance of errors are greatly reduced.

Information about creating menus that can be used like the system-supplied menus

is described in the |[Application Display Programmingl@ book.

| Command Prompters

Command prompters allow you to prompt for command parameters and values.
The prompters can be invoked directly or called from application programs. Using
the prompters allows you to easily build syntactically correct CL command strings,
because the prompters insert parameter keyword names and parameter delimiters,
such as apostrophes and parentheses, for you. The CL prompters also provide
access to online command help, which can be used to describe the command,
parameters and parameter values, command examples, and error messages
signaled by the command.

iSeries Navigator provides a graphical CL command prompter for use on a client
PC. iSeries Access for Web provides an HTML form-based CL command prompter
for use in a web browser.

0S/400 provides a CL command prompter that you can use from the command
line by pressing F4. In addition, the Display Command Line Window
(QUSCMDLN) API allows you display a command line from within an application.

Objects and Libraries

An object is a named storage space that consists of a set of characteristics that
describes the object and, in some cases, data. An object is anything that exists in
and occupies space in storage and on which operations can be performed. The
attributes of an object include its name, type, size, the date it was created, and a
description provided by the user who created the object. The value of an object is
the collection of information stored in the object. The value of a program, for
example, is the code that makes up the program. The value of a file is the
collection of records that makes up the file. The concept of an object simply
provides a term that can be used to refer to a number of different items that can be
stored in the system, regardless of what the items are.

Objects

The functions performed by most of the CL commands are applied to objects.
Some commands can be used on any type of object and others apply only to a
specific type of object.

The system supports various unique types of objects. Some types identify objects
common to many data processing systems, such as:

* Files
¢ Programs
¢ Commands

Chapter 1. Introduction 5



e Libraries
* Queues
* Modules

* Service programs

Other object types are less familiar, such as:
» User profiles

* Job descriptions

¢ Subsystem descriptions

* Device descriptions

Different object types have different operational characteristics. These differences
make each object type unique. For example, because a file is an object that contains
data, its operational characteristics differ from those of a program, which contains
instructions.

Each object has a name. The object name and the object type are used to identify
an object. The object name is assigned by the user creating the object. The object
type is determined by the command used to create the object. For example, if a
program was created and given the name OEUPDT (for order entry update), the
program could always be referred to by that name. The system uses the object
name (OEUPDT) and object type (program) to locate the object and perform
operations on it. Several objects can have the same name, but they must either be
different object types or be stored in different libraries.

The system maintains integrity by preventing the misuse of certain functions,
depending on the object type. For example, the command CALL causes a program
object to run. If you specified CALL and named a file, the command would fail
unless there happened to be a program with the same name.

Libraries

A library is an object that is used to group related objects, and to find objects by
name when they are used. Thus, a library is a directory to a group of objects. You
can use libraries to group the objects into any meaningful collection. For example,
you can group objects according to security requirements, backup requirements, or
processing requirements. The amount of available disk storage limits the number
of objects that a library can contain, and the number of libraries on the system.

The object grouping performed by libraries is a logical grouping. When a library is
created, you can specify into which user auxiliary storage pool (ASP) or
independent auxiliary storage pool (independent disk pool) the library should be
created. All objects created into the library are created into the same ASP as the
library. Objects in a library are not necessarily physically adjacent to each other.
The size of a library, or of any other object, is not restricted by the amount of
adjacent space available in storage. The system finds the necessary storage for
objects as they are stored in the system. See the [[ndependent disk pools| topic in
the iSeries Information Center for details about independent ASPs.

Most types of objects are placed in a library when they are created. The AUT
parameter on CRTLIB defines the public authority of the library. The CRTAUT
parameter specifies the default authority for objects that are created into the
library. If the command creating the object specifies *LIBCRTAUT for the AUT
parameter, the object’s public authority is the create authority that was specified
for the library. You can move most object types from one library to another, but a

6  CL Programming V5R3



single object cannot be in more than one library at the same time. When you move
an object to a different library, the object is not moved in storage. You now locate
the object through the new library. You can also rename and copy most object
types from one library into another.

A library name can be used to provide another level of identification to the name
of an object. As described earlier, an object is identified by its name and its type.
The name of the library further qualifies the object name. The combination of an
object name and the library name is called the qualified name of the object. The
qualified name tells the system the name of the object and the library it is in.

The following diagram shows two libraries and the qualified names of the objects
in them:

Qualified
Library: OELIB ObjectNames Library: PAYLIB
ORDFIL = OELIB/ORDFIL » EMPMAST
—— OELIB/OEUPDT
CUSTMAST PAYLIB/EMPMAST PAYHIST
PAYLIB/PAYPGM ——
PAYLIB/PAYHIST
RBAFN548-0

Two objects with the same name and type can exist in different libraries. Two
different objects with the same name cannot exist in the same library unless their
object types differ. This design allows a program that refers to objects by name to
work with different objects (objects with the same name but stored in different
libraries) in successive runs of the program without changing the program itself.
Also, a workstation user who is creating a new object does not need to be
concerned about names used for objects in other libraries. For example, in the
following diagram, a new file named MONTHUPD (monthly update) could be
added to the library OELIB, but not to the library ACCTLIB. The creation of the
file into ACCTLIB would fail because another object named MONTHUPD and of
type file already exists in library ACCTLIB.

Library: OELIB Library: ACCTLIB
ORDFIL OEUPDT ORDFIL BILLING
(file) (program) (file) (program)
CUSTMAST MONTHUPD
(file) (file)
A
YES NO
MONTHUPD
(new file)
RBAFN549-0

Chapter 1. Introduction 7



An object is identified within a library by the object name and type. Many CL
commands apply only to a single object type, so the object type does not have to
be explicitly identified. For those commands that apply to many object types, the
object type must be explicitly identified.

See |“Using Libraries” on page 110| for detail on how to use libraries to find objects.

Messages

A message is a communication sent from one user, program, or procedure to
another. Most data processing systems provide communications between the
system and the operator to handle errors and other conditions that occur during
processing. OS/400 also provides message handling functions that support
two-way communications between programs and system users, between programs,
between procedures within a program, and between system users. Two types of
messages are supported:

¢ Immediate messages, which are created by the program or system user when
they are sent and are not permanently stored in the system.

* Predefined messages, which are created before they are used. These messages
are placed in a message file when they are created, and retrieved from that file
when they are used.

Because messages can be used to provide communications between programs,
between procedures in a program, and between programs and users, using the
0S/400 message handling functions should be considered when developing
applications. The following concepts of message handling are important to
application development:

* Messages can be defined in messages files, which are outside the programs that
use them, and variable information can be provided in the message text when a
message is sent. Because messages are defined outside the programs, the
programs do not have to be changed when the messages are changed. This
approach also allows the same program to be used with message files containing
translations of the messages into different languages.

* Messages are sent to and received from message queues, which are separate
objects on the system. A message sent to a queue can remain on the queue until
it is explicitly received by a program or workstation user.

* A program can send messages to a user who requested the program regardless
of what workstation that user has signed on to. Messages do not have to be sent
to a specific device; one program can be used from different workstations
without change.

See the Globalization topic in the Programming category of the iSeries Information
Center for information on Coded Character Set Identifier (CCSID) for menus,
messages, and message descriptions.

Message Descriptions

8 CL Programming V5R3

A message description defines a message to OS/400. The message description
contains the text of the message and information about replacement variables, and
can include variable data that is provided by the message sender when the
message is sent.

Message descriptions are stored in message files. Each description must have an
identifier that is unique within the file. When a message is sent, the message file
and the message identifier tell the system which message description is to be used.



Message Queues

When a message is sent to a procedure, a program, or a system user, it is placed
on a message queue associated with that procedure, program, or user. The
procedure, program, or user sees the message by receiving it from the queue.

0OS/400 provides message queues for:
* Each workstation on the system

* Each user enrolled on the system

* The system operator

¢ The system history log

Additional message queues can be created to meet any special application
requirements. Messages sent to message queues are kept, so the receiver of the
message does not need to process the message immediately.

Testing Functions

The system includes functions that let a programmer observe operations performed
as a program runs. These functions can be used to locate operations that are not
performing as intended. Testing functions can be used in either batch or interactive
jobs from a workstation. In either case, the program being observed must be in the
testing environment, called debug mode.

The testing functions narrow the search for errors that are difficult to find in the
procedure’s source statements. Often, an error is apparent only because the output
produced is not what is expected. To find those errors, you need to be able to stop
the program at a given point (called a breakpoint) and examine variable information
in the program to see if it is correct. You might want to make changes to those
variables before letting the program continue running.

You do not need to know machine language instructions, nor is there a need to

include special instructions in the program to use the testing functions. The

0S/400 testing functions lets you:

e Stop a running program at any named point in the program’s source statements.

 Display information about procedure variables at any point where the program
can be stopped. You can also change the variable information before continuing
procedure processing.

See either [“Debugging ILE Programs” on page 357 | for more information on
debugging Integrated Language Environment (ILE) programs or ["Debugging OPM|
rograms” on page 378| for more information on debugging OPM programs.

See the appropriate ILE guide for debugging information with other ILE
languages.

Chapter 1. Introduction 9



10 CL Programming V5R3



Chapter 2. CL Programming

The focus of this chapter is ILE rather than OPM. For this reason, ‘procedure’ is
used rather than ‘program’ for this chapter. However, when the discussion is about
CL commands in general, the word “program” may still be used.

A CL procedure is a group of CL commands that tells the system where to get
input, how to process it, and where to place the results. The procedure is assigned
a name by which it can then be called by other procedures or bound into a
program and called. As with other kinds of procedures, you must enter CL
procedure source statements, compile, and bind them before you can run the
procedure.

When you enter CL commands individually (from the Command Entry display, for
instance, or as individual commands in an input stream), each command is
separately processed. When you enter CL commands as source statements for a CL
procedure, the source remains for later modification if you choose, and the
commands are compiled into a module. This module remains as a permanent
system object that can be bound into other programs and run. Thus, CL is actually
a high-level programming language for system functions. CL procedures ensure
consistent processing of groups of commands. You can perform functions with a
CL procedure that you cannot perform by entering commands individually, and
the CL program or procedure provides better performance at run time than the
processing of several separate commands.

CL procedures can be used in batch or interactive processing. Certain commands
or functions are restricted to either batch or interactive jobs.

CL source statements consist of CL commands. You cannot use all CL commands
as CL source statements, and you can use some of them only in CL procedures or
OPM programs.

CL source statements can be entered in a database source member either
interactively from a workstation or in a batch job input stream from a device. To
create a program using CL source statements, you must enter the source statements
into a database source member. You can then create an ILE program by compiling
the source member into a module and binding the module into a program object.

CL procedures can be written for many purposes, including:

* To control the sequence of processing and calling of other programs or
procedures.

* To display a menu and run commands based on options selected from that
menu. This makes the workstation user’s job easier and reduces errors.

* To read a database file.

* To handle error conditions issued from commands, programs or procedures, by
monitoring for specific messages.

 To control the operation of an application by establishing variables used in the
application, such as date, time, and external indicators.

* To provide predefined functions for the system operator, such as starting a
subsystem or saving files. This reduces the number of commands the operator
uses regularly, and it ensures that system operations are performed consistently.

© Copyright IBM Corp. 1997, 2004 11



There are many advantages in using CL procedures for an application. For
example:

* Because the commands are stored in a form that can be processed when the
program is created, using programs is faster than entering and running the
commands individually.

* CL procedures are flexible. Parameters can be passed to CL procedures to adapt
the operations performed by the procedure to the requirements of a particular
use.

* CL procedures can be tested and debugged like other high-level language
programs and procedures.

* CL procedures and programs can incorporate conditional logic and special
functions not available when commands are entered individually.

* CL procedures can be bound with procedures of other languages.

You cannot use CL procedures to:

¢ Add or update records in database files.
 Use printer or ICF files.

* Use subfiles within display files.

* Use program-described display files.

Creating a CL Program

All programs are created in steps:

1. Source creation. CL procedures consist of CL commands. In most cases, source
statements are entered into a database file in the logical sequence determined
by your application design.

2. Module creation. Using the Create Control Language Module (CRTCLMOD)
command, this source is used to create a system object. The created CL module
can be bound into programs. A CL module contains one CL procedure. Other
HLL languages may contain multiple procedures for each module.

3. Program creation. Using the Create Program (CRTPGM) command, this module
(along with other modules and service programs) is used to create a program.

Note: If you want to create a program consisting of only one CL module, you can
use the Create Bound CL Program (CRTBNDCL) command, which combines
steps 2 and 3. If you want to create an OPM CL program from the CL
source statements, you can use the Create CL Program (CRTCLPGM)
command.

Interactive Entry

0OS/400 provides many menus and displays to assist the programmer, including
the Programmer Menu, the Command Entry display, command prompt displays,
and the Programming Development Manager (PDM) Menu. If you use the OS/400

security functions described in [Security - Referencel@l , your ability to use these
displays is controlled by the authority given to you in your user profile. User
profiles are generally created and maintained by a system security officer.

A frequently used source entry method is the source entry utility (SEU), which is
part of the WebSphere Development Studio. You can also use the Edit File (EDTF)
command to enter or change CL commands in a database source file. However,
EDTF does not provide the integrated CL command prompting support that is
built into SEU.

12 cCL Programming V5R3



Batch Entry

You can create CL source, a CL module, and a program in one batch input stream.
The following example shows the basic parts of the input stream. The input is
submitted to a job queue using the Submit Job (SBMJOB) command. The input
stream should follow this format:

// BCHJOB

CRTBNDCL PGM(QGPL/EDUPGM) SRCFILE(PERLIST)
// DATA FILE(PERLIST) FILETYPE (*SRC)

(CL Procedure Source)
//

/*
// ENDINP

This stream creates a program from inline source. If you want to keep the source
inline, a Copy File (CPYF) command could be used to copy the source into a
database file. The program could then be created using the database file.

You can also create a CL module directly from CL source on external media, such
as tape, using an IBM-supplied device file. The IBM-supplied tape source file is
QTAPSRC. Assume, for instance, that the CL source statements are in a source file
on tape named PGMA.

The first step is to identify the location of the source on tape by using the
following override command with LABEL attribute override:

OVRTAPF FILE(QTAPSRC) LABEL(PGMA)

Now you can consider the QTAPSRC file as the source file on the Create CL
Module (CRTCLMOD) command. To create the CL module based on the source
input from the tape file, enter the following command:

CRTCLMOD MODULE (QGPL/PGMA) SRCFILE(QTAPSRC)

When the CRTCLMOD command is processed, it treats the QTAPSRC source file
like any database source file. Using the override, the source is located on tape.
PGMA is created in QGPL, and the source for that module remains on tape.

Parts of a CL Procedure

While each source statement entered as part of a CL procedure is actually a CL
command, the source can be divided into the following basic parts used in many
typical CL procedures.

PGM command
PGM PARM(&A)

Optional PGM command beginning the procedure and identifying any
parameters received.

Declare commands
(DCL, DCLF, COPYRIGHT)

Mandatory declaration of procedure variables when variables are used. The
declare commands must precede all other commands except the PGM
command.

CL processing commands
CHGVAR, SNDPGMMSG, OVRDBF, DLTF, ...

Chapter 2. CL Programming 13



CL commands used as source statements to manipulate constants or
variables (this is a partial list).

Logic control commands
IF, THEN, ELSE, DO, ENDDO, DOWHILE, DOUNTIL, DOFOR, LEAVE, ITERATE,
GOTO, SELECT, ENDSELECT, WHEN, OTHERWISE

Commands used to control processing within the CL procedure.

Built-in functions
%SUBSTRING (%SST), %SWITCH, and %BINARY (%BIN)

Built-in functions and operators used in arithmetic, relational or logical
expressions.

Program control commands
CALL, RETURN

CL commands used to pass control to other programs.

Procedure control commands
CALLPRC, RETURN

CL commands used to pass control to other procedures.

ENDPGM command
ENDPGM

Optional End Program command.

The sequence, combination, and extent of these components are determined by the
logic and design of your application.

A CL procedure may refer to other objects that must exist when the procedure is
created, when the command is processed, or both. This distinction is discussed in
[“Accessing Objects in CL Programs” on page 145 |and in the sections discussing
various objects. In some circumstances, for your procedure to run successfully, you
may need:

* A display file. Use display files to format information on a device display. If
your procedure uses a display, you must enter and create the display file and
record format by using the Create Display File (CRTDSPF) command before
creating the module. You must declare it to the procedure in the declare section
by using the Declare File (DCLF) command. See ["Working with Files in CL]
[Procedures” on page 148 for more information.

* A database file. Records in a database file may be read by a CL procedure. If
your procedure uses a database file, the file must be created using the Create
Physical File (CRTPF) command or the Create Logical File (CRTLF) command
before the module is created. You can use Data Description Specifications (DDS),
Structured Query Language (SQL), or interactive data definition utility (IDDU)
to define the format of the records in the file. The file must also be declared to
the procedure in the DCL section using the Declare File (DCLF) command. See
[“Working with Files in CL Procedures” on page 14§ for more information.

* Other programs. If you use a CALL command, the called program must exist
before running the CALL command. It does not have to exist when compiling

the calling module. See [“Accessing Objects in CL Programs” on page 145/and
for more information.
* Other procedures. If you use the CALLPRC command, the called procedure

must exist at the time CRTPGM is run. It does not have to exist when
CRTCLMOD is run.

14 cCL Programming V5R3



Example of a Simple CL Program

A CL program can be as simple or as complex as you want. To consolidate several
activities normally done by the system operator at the beginning of the day (to call
programs A, B, and C, for example), you can create a CL procedure STARTUP with
the following code:

PGM /* STARTUP =/

CALL PGM(A)

CALL PGM(B)

CALL PGM(C)
ENDPGM

In this example, the Programmer Menu is used to create the program. You could
also use the programming development manager (PDM), which is part of the

WebSphere Development Studio.

To enter, create, and use this program, follow these steps:

Enter CL Source Display Physical File Member
Interactively enter CL Option 8 0001.00 PGM /*STARTUP*/
source in a physical Programmer » 0002.00 CALL PGM(A)
file member, using the Menu 0003.00 CALL PGM(B)
source entry ulitity 0004.00 CALL PGM(C)
(SEU). 0005.00 ENDPGM
Create Program Display STARTUP

Create a program Option 3 Object

object from the source Programmer after <
using the CRTBNDCL Menu Creation
command.

Run Program Display

Call the program Option 4

using a CALL Programmer

command. Menu

RBAFN529-1
To enter CL source:

* Select option 8 (Edit source) on the Programmer Menu and specify STARTUP in
the Parm field. (This option creates a source member named STARTUP that will
also be the name of the program.)

* Specify CLLE in the Type field and press the Enter key.

* On the SEU display, use the I (insert) line command to enter the CL commands
(CALL is a CL command).

~
Columns........: 1 71 Edit QGPL/QCLSRC
Find......: STARTUP
FMT Ax ..... (%36 1 cootooo B cootPooo & coo¥ooo & coo¥ooo B cocWooo B cooPooo ¥
*khkhkhkkhrhxk Beginning of data
\. ...... )

Chapter 2. CL Programming 15



When you have finished entering the source statements:
* Press F3 to exit from SEU.

* Accept the default on the exit display (option 2, Exit and update member) and
press the Enter key to return to the Programmer Menu.

* Select option 3 (Create object) to create a program from the source statements
you entered. You do not have to change any other information on the display.

Note: The referenced programs (A, B, and C) do not have to exist when the
program STARTUP is created.

When the program is created, you can call it from the Programmer Menu by
selecting option 4 (Call program) and specifying STARTUP in the Parm field. If
you attempt to run this sample program, however, the referenced programs must
exist by the time the CALL commands are run.

Commands Used in CL Procedures

A CL procedure can contain only CL commands. These can be IBM-supplied or
commands defined by you. You cannot use some IBM-supplied commands in CL
procedures. For information concerning the individual command descriptions and
their applicability in CL procedures, see the online help for a particular command,

or refer to the CL section of the Programming category in the iSeries Information

Center.

Commands Entered on the RQSDTA and CMD Parameters

Certain CL commands, such as Transfer Job (TFRJOB) and Submit Job (SBMJOB)
have RQSDTA or CMD parameters that can use another CL command as the
parameter value. Commands that can only be used within CL procedures cannot
be used as values on the RQSDTA or CMD parameter.

CL Commands

The following is a list of commands that are frequently used in CL procedures. You
can use this list to select the appropriate command for the function you want.
Refer to the CL section of the Programming category in the iSeries Information
Center for information about how to determine the command you might need.
Familiarity with the function of these commands will help you to understand
subsequent topics in this chapter. Superscript 1 indicates the commands that you
can use only in CL programs and procedures.

System Function

Change Procedure
Control

CL Procedure
Limits

CL Procedure
Logic

Command

CALL (Call)

CALLPRC (Call Procedure) *
RETURN (Return)

PGM (Program) '

ENDPGM (End Program) '
IF (If) *

ELSE (Else) *

DO (Do) !

Command Function

Calls a program

Calls a procedure.

Returns to the command following the command that
caused a program or procedure to be run

Indicates the start of CL procedure source

Indicates the end of CL procedure source

Processes commands based on the value of a logical
expression

Defines the action to be taken for the else (false)
condition of an IF command

Indicates the start of a Do group

16 CL Programming V5R3



System Function

CL Procedure
Variables

Conversion

Data Areas

Files

Messages

Command

DOWHILE (Do While)!

DOUNTIL (Do Until)*
DOFOR (Do For)!
LEAVE (Leave) '

ITERATE (Iterate) !

ENDDO (End Do) *
GOTO (Go To) !
SELECT (Select)’

WHEN (When)!
OTHERWISE (Otherwise)

ENDSELECT (End Select) !
CHGVAR (Change Variable)'

DCL (Declare) *

CHGVAR (Change Variable)"
CVTDAT (Convert Date) *
CHGDTAARA (Change Data Area)
CRTDTAARA (Create Data Area)
DLTDTAARA (Delete Data Area)
DSPDTAARA (Display Data Area)
RTVDTAARA (Retrieve Data Area) '
ENDRCV (End Receive) *

DCLF (Declare File) *

RCVF (Receive File) !
RTVMBRD (Retrieve Member
Description) '

SNDF (Send File) *

SNDRCVF (Send/Receive File) *
WAIT (Wait) !

MONMSG (Monitor Message)
RCVMSG (Receive Message) '
RMVMSG (Remove Message) '
RTVMSG (Retrieve Message) '
SNDPGMMSG (Send Program
Message) !

SNDRPY (Send Reply) !

SNDUSRMSG (Send User Message)

Command Function

Indicates the start of a Do group that processes a set of
commands while the value of a logical expression
remains true

Indicates the start of a Do group that processes a set of
commands until the value of a logical expression is true
Indicates the start of a Do group that processes
commands zero or more times based on specified values
Ends processing of commands in a Do While, Do Until,
or Do For group

Ends processing of commands in a Do While, Do Until,
or Do For group, and evaluates the group conditions
again

Indicates the end of a Do group

Branches to another command

Indicates the start of a Select group, which allows
conditional processing of command groups

Processes commands in a Select group when the value
of a logical expression is true

Defines the commands to be processed if no conditions
on a When command in a Select group are true
Indicates the end of a Select group

Changes the value of a CL variable

Declares a variable

Changes the value of a CL variable

Changes the format of a date

Changes a data area

Creates a data area

Deletes a data area

Displays a data area

Copies the content of a data area to a CL variable
Cancels a request for input previously issued by a
RCVE, SNDEF, or SNDRCVF command to a display file
Declares a display or database file

Reads a record from a display or database file
Retrieves a description of a specific member of a
database file

Writes a record to a display file

Writes a record to a display file and reads that record
after the user has replied

Waits for data to be received from an SNDF, RCVFE, or
SNDRCVF command issued to a display file

Monitors for escape, status, and notify messages sent to
a program’s message queue

Copies a message from a message queue into CL
variables in a CL procedure

Removes a specified message from a specified message
queue

Copies a predefined message from a message file into
CL procedure variables

Sends a program message to a message queue

Sends a reply message to the sender of an inquiry
message

Sends an informational or inquiry message to a display
station or system operator

Chapter 2. CL Programming 17



System Function

Miscellaneous
Commands

Program Creation
Commands

Command

CHKOB]J (Check Object)

PRTCMDUSG (Print Command
Usage)

RTVCFGSRC (Retrieve Configuration
Source)

RTVCFGSTS (Retrieve Configuration
Status) !

RTVJOBA (Retrieve Job Attributes) *

{{TVSYSVAL (Retrieve System Value)
RTVUSRPRF (Retrieve User Profile) *
CRTCLMOD (Create CL Module)

DLTMOD (Delete Module)
DLTPGM (Delete Program)
CRTBNDCL (Create Bound Control
Language Program)

CRTCLPGM (Create CL Program)
CRTPGM (Create Program)
CRTSRVPGM (Create Service
Program)

Command Function

Checks for the existence of an object and, optionally, the
necessary authority to use the object

Produces a cross-reference listing for a specified group
of commands used in a specified group of CL
procedures

Generates CL command source for creating existing
configuration objects and places the source in a source
file member

Gives applications the capability to retrieve
configuration status from three configuration objects:
line, controller, and device.

Retrieves the value of one or more job attributes and
places the values in a CL variable

Retrieves a system value and places it into a CL variable

Retrieves user profile attributes and places them into CL
variables
Creates a CL module

Deletes a module
Deletes a program
Creates a bound CL program.

Creates an OPM CL program.
Creates a program from one or more modules.
Creates a service program from one or more modules.

Using CL Procedures

CL programming is a flexible tool allowing you to perform a variety of operations.
Each of the following uses is described in greater detail in individual sections later
in this chapter. In general, you can:

* Use variables, logic control commands, expressions, and built-in functions to
manipulate and process data within a CL procedure:

PGM

DCL &C
DCL &A
DCL &B

*LGL
*DEC VALUE(22)
*CHAR VALUE (ABCDE)

CHGVAR &A (&A + 30)

IF (& < 50) THEN(CHGVAR &C '1')

DSPLIB

('Q" || &B)

IF (%SST(&B 5 1)=E) THEN(CHGVAR &A 12)

ENDPGM

18 CL Programming V5R3




* Use a system value as a variable in a CL procedure.

SystemValues

QTIME

PGM
DCL &TIME *CHAR 6

»RTVSYSVAL QTIME &TIME

QDATE

ENDPGM
RBAFN551-0

* Use a job attribute as a variable in a CL procedure.

Job Attributes

Job Name

Job Number

PGM
DCL &USER *CHAR 10

User Name - RTVJOBA USER(&USER)

ENDPGM

RBAFN552-0

* Send and receive data to and from a display file with a CL procedure.

Data Description
Specifications
(DDS)

Display

PGM
DCLF FILE(DISPLAY)
DCL &OPTION *CHAR

RCVF...

Option__

* Create a CL procedure to monitor error messages for a job, and take corrective

action if necessary.
PGM

ENDPGM

MONMSG MSGID(CPF0001) EXEC(GOTO ERROR)

CALL PROGA

2

»IF (&0PTION*EQl) THEN(CALLPGMA)

RBAFN553-0

Chapter 2. CL Programming

19



CALL PROGB
RETURN

ERROR: SNDPGMMSG MSG('A CALL command failed') MSGTYPE(*ESCAPE)
ENDPGM

* Control processing among procedures and programs and pass parameters from a
CL procedure to other procedures or programs to override files.

PROCA PROCB
PGM PGM
DCL... DCL...
CALL PROCB

CALL PROCC PARM(&FILEX)

ENDPGM

RETURN
ENDPGM

PROCC

» PGM (&FILEX)
DCL...

OVRDBF FILE(INPUT) TOFILE(&FILEX)

CALL PROCD

\4

RETURN
ENDPGM

RBAFN554-0

Used as a controlling procedure, a CL procedure can call procedures written in
other languages. The preceding illustration shows how control can be passed
between a CL procedure and RPG IV* and ILE COBOL procedures in an
application. To use the application, a workstation user would request program A,
which controls the entire application. The illustration shows a single bound
program (PGMA) that is called using the CALL command with PGMA. PGMA
consists of:

* A CL procedure (PGMA) calling an RPG IV procedure (PGMB)

An RPG 1V procedure (PGMB) calling another RPG IV procedure (PGMC)

An RPG 1V procedure (PGMB) calling a CL procedure (PGMD)

A CL procedure (PGMA) calling an ILE COBOL procedure (PGME)

20 CL Programming V5R3



* An ILE COBOL procedure (PGME) calling a CL procedure (PGMF)

Start
L»PGMA (cL) — »PGMB  (RPG) PGMC  (RPG)
CALLPRC PGHB CALLB PGMC — ,
.« END
ALLP i
C>. R PENE pGMD  (CL)
ENDPGHM CALLB PGMD — :
. < RETURN
t'PGME (COBOL) RETURN
. I»PGMF (cL)
CALL PGMF— )
. — .
- L RETURN
EXIT PROGRAM RBAFN502-0

The procedures can be created as indicated in the following example. You can enter
source for procedures in separate source members.

CRTCLMOD PGMA

CRTRPGMOD PGMB

CRTRPGMOD PGMC

CRTCLMOD PGMD

CRTCBLMOD PGME

CRTCLMOD PGMF

CRTPGM PGM(PGMA) +
MODULE (PGMA PGMB PGMC PGMD PGME PGMF) +
ENTMOD (*FIRST)

Working with Variables

CL procedures consist of CL commands, and the commands themselves consist of
the command statement, parameters, and parameter values.

Parameter values may be expressed as variables, constants, or expressions. A
variable is a named changeable value that can be accessed or changed by referring
to its name. Variables can be used as substitutes for most parameter values on CL
commands. When a CL variable is specified as a parameter value and the
command containing it is run, the value of the variable is used as the parameter
value. Every time the command is run, a different value can be substituted for the
variable. Variables and expressions can be used as parameter values only in CL
procedures and programs.

Variables are not stored in libraries; they are not objects; and their values are

destroyed when the procedure that contains them is no longer active. The use of
variables as values gives CL programming a special flexibility, because this allows

Chapter 2. CL Programming 21



high-level manipulation of objects whose content may change by specific
applications. You might, for instance, write a CL procedure to direct the processing
of other programs or the operation of several workstations without specifying
which programs or workstations are to be controlled. The system identifies these as
variables in the CL procedure. You can define (specify) the value of the variables
when running the CL procedure.

All variables must be declared (defined) to the CL procedure before they can be
used by the procedure:

* Declare variable. Defining it is accomplished using the Declare CL Variable
(DCL) command and consists of defining the attributes of the variable. The
attributes are type, length, and initial value.

DCL VAR(&AREA) TYPE(*CHAR) LEN(4) VALUE(BOOK)

* Declare file. If your CL procedure uses a file, you must specify the name of the
file in the FILE parameter on the Declare File (DCLF) command. The file
contains a description (format) of the records in the file and the fields in the
records. During compilation, the DCLF command implicitly declares CL
variables for the fields and indicators defined in the file.

For example, if the DDS for the file has one record in it with two fields (F1 and
F2), then two variables, &F1 and &F2, are automatically declared in the
program.

DCLF FILE(MCGANN/GUIDE)

If the file is a physical file which was created without DDS, one variable is
declared for the entire record. The variable has the same name as the file, and its
length is the same as the record length of the file.

The declare commands must precede all other commands in the procedure (except
the PGM command), but they can be intermixed in any order.

In addition to the uses discussed in this section, variables can be used to:

* Pass information between procedures and jobs. See [Chapter 3, “Controlling Flow|
[and Communicating between Programs and Procedures,” on page 69

* Pass information between procedures and device displays. See

[Multiple Device Display Files” on page 157

+ Conditionally process commands. See [’Controlling Processing within a CIJ
[Procedure” on page 29|

* Create objects. A variable can be used in place of an object name or library
name, or both. The following example shows the Create Physical File (CRTPF)
command used with a specified library in the first line, and with a variable
replacing the library name in the second line:

CRTPF FILE(DSTPRODLB/&FILE)
CRTPF  FILE(&LIB/&FILE)

Variables cannot be used to change a command name or keyword or to specify a
procedure name for the CALLPRC command. Command parameters, however, can
be changed during the processing of a CL procedure through the use of the

prompting function. See [“Allowing User Changes to CL Commands at Run Time”]
for more information.

It is also possible to assemble the keywords and parameters for a command and

process it using the QCAPCMD API or QCMDEXC API. See |”Using the|
CAPCMD Program” on page 163|and |“Using the QCMDEXC Program” on page|

163 for more information.

22 CL Programming V5R3



Declaring a Variable
In its simplest form, the Declare CL Variable (DCL) command has the following

parameters:
*CHAR
*DEC
DCL VAR(variable-name) TYPE <¢*LGL (LEN(length) VALUE(initial-value)
*INT
*UINT

RV2W271-3

When you use a DCL command, you must use the following rules:

¢ The CL variable name must begin with an ampersand (&) followed by as many
as 10 characters. The first character following the & must be alphabetic and the
remaining characters alphanumeric. For example, &PART

¢ The CL variable value must be one of the following:
— A character string as long as 5000 characters.

— A packed decimal value totaling up to 15 digits with as many as 9 decimal
positions.

— Alogical value ‘0" or 1", where 0’ can mean off, false, or no, and '1" can
mean on, true, or yes. A logical variable must be either ‘0" or '1".

— An integer value of two bytes or four bytes. The value can be negative if *INT
is specified for the TYPE parameter.

* If you do not specify an initial value, the following is assumed:
— ’0" for decimal variables
— Blanks for character variables
— 0" for logical variables.

— 0" for integer variables.

For decimal and character types, if you specify an initial value and do not
specify the LEN parameter, the default length is the same as the length of the
initial value. For type *CHAR, if you do not specify the LEN parameter, the
string can be as long as 5000 characters. For type *INT or *UINT, if you do not
specify the LEN parameter, the default length is 4.

* Declare the parameters as variables in the program DCL statements.

Using Variables to Specify a List or Qualified Name

The value on a parameter may be a list. For example, the Change Library List
(CHGLIBL) command requires a list of libraries on the LIBL parameter, each
separated by blanks. The elements in this list can be variables:

CHGLIBL LIBL(&LIB1 &LIB2 &LIB3)

When variables are used to specify elements in a list, each element must be
declared separately:

DCL VAR(&LIB1) TYPE(*CHAR) LEN(10) VALUE(QTEMP)
DCL VAR(&LIB2) TYPE(*CHAR) LEN(10) VALUE(QGPL)
DCL VAR(&LIB3) TYPE(*CHAR) LEN(10) VALUE(DISTLIB)
CHGLIBL LIBL(&LIBI &LIB2 &LIB3)

Variable elements cannot be specified in a list as a character string:

Incorrect:

Chapter 2. CL Programming 23



DCL  VAR(BLIBS) TYPE(%CHAR) LEN(20) +
VALUE('QTEMP QGPL DISTLIB')
CHGLIBL LIBL(&LIBS)

When presented as a single character string, the system does not view the list as a
list of separate elements, and an error will occur.

You can also use variables to specify a qualified name, if each qualifier is declared
as a separate variable:

DCL VAR(&PGM) TYPE(*CHAR) LEN(10)

DCL VAR(&LIB) TYPE(*CHAR) LEN(10)

CHGVAR VAR(&PGM) VALUE (MYPGM)
CHGVAR VAR(&LIB) VALUE(MYLIB)

DLTPGM PGM(ALIB/&PGM)
ENDPGM

In this example, the program and library name are declared separately. The
program and library name cannot be specified in one variable, as in the following
example:

Incorrect:

DCL VAR(&PGM) TYPE(*CHAR) LEN(11)
CHGVAR VAR(&PGM) VALUE ('MYLIB/MYPGM')
DLTPGM PGM(&PGM)

Here again the value is viewed by the system as a single character string, not as
two objects (a library and an object). If a qualified name must be handled as a
single variable with a character string value, you can use the built-in function
%SUBSTRING and the *TCAT concatenation function to assign object and library
names to separate variables. See ["Using the %SUBSTRING Built-In Function” on|
lpage 47] and [Chapter 9| for examples using the %SUBSTRING function.

Lowercase Characters in Variables

Reserved values, such as *LIBL, that can be used as variables must always be
expressed in uppercase letters, especially if they are presented as character strings
enclosed in apostrophes. For instance, if you wanted to substitute a variable for a
library name on a command, the correct code is as follows:

DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE('*LIBL')
DLTPGM &LIB/MYPROG;

However, it would be incorrect to specify the VALUE parameter this way:
DCL VAR(&LIB) TYPE(*CHAR) LEN(10) VALUE('*1ib1')

Note that if this VALUE parameter had not been enclosed in apostrophes, it would
have been correct, because without the apostrophes it would be translated to
uppercase automatically. This error frequently occurs when the parameter is passed
as input to a procedure or program from a display as a character string, and the
display entry is made in lowercase.

Note: The above paragraph does not take into account the fact that conversion to

uppercase is language dependent. REMEMBER: Relying on the system to
convert values to uppercase may produce unexpected results.

24 CL Programming V5R3



Variables Replacing Reserved or Numeric Parameter Values

Some CL commands allow both numeric or predefined (reserved) values on certain
parameters. Where this is true, you can also use character variables to represent the
value on the command parameter.

Each parameter on a command can accept only certain types of values. The
parameter may allow an integer, a character string, a reserved value, a variable of
a specified type, or some mixture of these, as values. Some types of values are
required for parameters. If the parameter allows numeric values (if the value is
defined in the command as *INT2, *INT4, *UINT2, *UINT4, or *DEC) and also
allows reserved values (a character string preceded by an asterisk), you can use a
variable as the value for the parameter. The variable must be declared as
TYPE(*CHAR) if you intend to use a reserved value.

For example, the Change Output Queue (CHGOUTQ) command has a job
separator (JOBSEP) parameter that can have a value of either a number (0 through
9) or the predefined default, *SAME. Because both the number and the predefined
value are acceptable, you can also write a CL procedure that substitutes a character
variable for the JOBSEP value:

PGM

DCL &NRESP *CHAR LEN(6)

DCL &SEP *CHAR LEN(4)

DCL &FILNAM *CHAR LEN(10)
DCL &FILLIB *CHAR LEN(10)

LOOP: SNDRCVF.....
IF (&SEP *EQ IGNR) GOTO END
ELSE IF (&SEP *EQ NONE) CHGVAR &NRESP '0'
ELSE IF (&SEP *EQ NORM) CHGVAR &NRESP '1'
ELSE IF (&SEP *EQ SAME) CHGVAR &NRESP '#SAME'
CHGOUTQ OUTQ(&FILLIB/&FILNAM) JOBSEP(&NRESP)
GOTO LOOP

END: RETURN
ENDPGM

In the preceding example, the display station user enters information on a display
describing the number of job separators desired for a specified output queue. The
variable &NRESP is a character variable manipulating numeric and predefined
values (note the use of apostrophes). The JOBSEP parameter on the CHGOUTQ
command will recognize these values as if they had been entered as numeric or
predefined values. The DDS for the display file used in this program should use
the VALUES keyword to restrict the user responses to IGNR, NONE, NORM, or
SAME.

If the parameter allows a numeric type of value (*INT2, *INT4, *UINT2, *UINT4, or
*DEC) and you do not intend to enter any reserved values (such as *SAME), then
you can use a decimal or integer variable in that parameter.

You can find information about the types of values that are allowed by command
parameters in The CL section of the Programming category in the iSeries

Information Center contains additional information.

Another alternative for this function is to use the prompter within CL procedures.

Chapter 2. CL Programming 25



Changing the Value of a Variable

You can change the value of a CL variable using the Change Variable (CHGVAR)
command. The value can be changed:

To a constant:

CHGVAR  VAR(&INVCMPLT) VALUE (0)

or

CHGVAR ~ &INVCMPLT 0

&INVCMPLT is set to 0.

To the value of another variable:

CHGVAR  VAR(&A) VALUE (&B)

or

CHGVAR  &A &B

&A is set to the value of the variable &B

To the value of an expression after it is evaluated:

CHGVAR  VAR(&A)  VALUE(8A + 1)

or

CHGVAR &A (8A + 1)

The value of &A is increased by 1.

To the value produced by the built-in function %SST (see
[%SUBSTRING Built-In Function” on page 47| for more information):

CHGVAR ~ VAR(&A)  VALUE(%SST(&B 1 5))

&A is set to the first five characters of the value of the variable &B

To the value produced by the built-in function %SWITCH (see
[%SWITCH Built-In Function” on page 49| for more information):

CHGVAR VAR(&A) VALUE(%SWITCH(OXX111X0))

&A is set to 1 if job switches 1 and 8 are 0 and job switches 4, 5 and 6 are 1;
otherwise, &A is set to 0.

To the value produced by the built-in function %BIN (see [‘Using the %BINARY|
[Built-In Function” on page 45| for more information):

CHGVAR VAR(&A) VALUE(%BIN((%B 1 4))

The first four characters of variable &B are converted to the decimal equivalent
and stored in variable &A.

The CHGVAR command can be used to retrieve and to change the local data area
also. For example, the following commands blank out 10 bytes of the local data
area and retrieve part of the local data area:

CHGVAR %SST(*LDA 1 10) ' '

CHGVAR &A %SST(*LDA 1 10)

The following table shows valid assignments to variables from values (literals or
variables).

Table 1. Valid assignments to variables from values

Character Decimal Signed Unsigned
Logical Value | Value Value Integer Value | Integer Value

Logical X

Variable

Character X X X X X

Variable

Decimal X X X X

Variable

26 CL Programming V5R3




Table 1. Valid assignments to variables from values (continued)

Character Decimal Signed Unsigned
Logical Value | Value Value Integer Value | Integer Value

Signed X X X X

Integer

Variable

Unsigned X X X X

Integer

Variable

Notes:

1.

When specifying a numeric value for a character variable, remember the
following:

* The value of the character variable is right-justified and, if necessary, padded
with leading zeros.

* The character variable must be long enough to contain a decimal point and a
minus (-) sign, when necessary.

* When used, a minus (-) sign is placed in the leftmost position of the value.

For example, &A is a character variable to be changed to the value of the
decimal variable &B. The length of &A is 6. The length and decimal positions
of &B are 5 and 2, respectively. The current value of &B is 123. The resulting
value of &A is 123.00.

When specifying a character value for a numeric variable, remember the
following:

* The decimal point is determined by the placement of a decimal point in the
character value. If the character value does not contain a decimal point, the
decimal point is placed in the rightmost position of the value.

* The character value can contain a minus (-) sign or plus (+) sign immediately
to the left of the value; no intervening blanks are allowed. If the character
value has no sign, the value is assumed to be positive.

e If the character value contains more digits to the right of the decimal point
than can be contained in the numeric variable, the digits are truncated if it’s
a decimal variable, or rounded if it's an integer variable. If the excess digits
are to the left of the decimal point, they are not truncated and an error
occurs.

For example, &C is a decimal variable to be changed to the value of the
character variable &D The length of &C is 5 with 2 decimal positions. The
length of &D is 10 and its current value is +123.1bbbb (where b=blank). The
resulting value of &C is 123.10.

Trailing Blanks on Command Parameters

Some command parameters are defined with the parameter value of VARY(*YES).
This parameter value causes the length of the value passed to be the number of
characters between the apostrophes. When a CL variable is used to specify the
value for a parameter defined in this way, the system removes trailing blanks
before determining the length of the variable to be passed to the command
processor program. If the trailing blanks are present and are significant for the
parameter, you must take special actions to ensure that the length passed includes
them. Most command parameters are defined and used in ways which do not

Chapter 2. CL Programming 27



cause this condition to occur. An example of a parameter defined where this
condition is likely to occur is the key value element of the POSITION parameter on
the OVRDBF command.

When this condition could occur, the desired result can be attained for these
parameters by constructing a command string that delimits the parameter value
with apostrophes and passing the string to QCMDEXC or QCAPCMD for
processing.

The following is an example of a program that can be used to run the OVRDBF
command so that the trailing blanks are included as part of the key value. This
same technique can be used for other commands that have parameters defined

using the parameter VARY(*YES); trailing blanks must be passed with the

parameter.
PGM PARM(&KEYVAL &LEN)
/*  PROGRAM TO SHOW HOW TO SPECIFY A KEY VALUE WITH TRAILING */
/* BLANKS AS PART OF THE POSITION PARAMETER ON THE OVRDBF */
/* COMMAND IN A CL PROGRAM. */
/*  THE KEY VALUE ELEMENT OF THE POSITION PARAMETER OF THE OVRDBF  */
/* COMMAND IS DEFINED USING THE VARY (*YES) PARAMETER. */
/* THE DESCRIPTION OF THIS PARAMETER ON THE ELEM COMMAND */
/* DEFINITION STATEMENT SPECIFIES THAT IF A PARAMETER */
/* DEFINED IN THIS WAY IS SPECIFIED AS A CL VARIABLE THE */
/* LENGTH IS PASSED AS THE VARIABLE WITH TRAILING BLANKS */
/* REMOVED. A CALL TO QCMDEXC USING APOSTROPHES TO DELIMIT */
/* THE LENGTH OF THE KEY VALUE CAN BE USED TO CIRCUMVENT */
/* THIS ACTION. */
/* PARAMETERS-- */
DCL VAR(&KEYVAL) TYPE(*CHAR) LEN(32) /* THE VALUE +
OF THE REQUESTED KEY. NOTE IT IS DEFINED AS +
32 CHAR. =/
DCL VAR(&LEN) TYPE(*INT) /* THE LENGTH +
OF THE KEY VALUE TO BE USED. ANY VALUE OF +
1 TO 32 CAN BE USED =/
/*  THE STRING TO BE FINISHED FOR THE OVERRIDE COMMAND TO BE */
/* PASSED TO QCMDEXC (NOTE 2 APOSTROPHES TO GET ONE). */
DCL VAR(&STRING) TYPE(*CHAR) LEN(100) +
VALUE('OVRDBF FILE(X3) POSITION(*KEY 1 FMT1 '' ')
/* POSITION MARKER 123456789 123456789 123456789 123456789 */
DCL VAR(&END) TYPE(*DEC) LEN(15 5) /* A VARIABLE +

TO CALCULATE THE END OF THE KEY IN &STRING =/

CHGVAR VAR(%SST(&STRING 40 &LEN)) VALUE(8KEYVAL) /% +
PUT THE KEY VALUE INTO COMMAND STRING FOR +
QCMDEXC IMMEDIATELY AFTER THE APOSTROPHE. */

CHGVAR VAR(REND) VALUE(&LEN + 40) /+ POSITION AFTER +
LAST CHARACTER OF KEY VALUE =/

CHGVAR VAR(%SST(&STRING &END 2)) VALUE('')') /% PUT +
A CLOSING APOSTROPHE & PAREN TO END +
PARAMETER */

CALL PGM(QCMDEXC) PARM(&STRING 100) /% CALL TO +
PROCESS THE COMMAND  /

ENDPGM

Note: If you use VARY(*YES) and RTNVAL(*YES) and are passing a CL variable,
the length of the variable is passed rather than the length of the data in the
CL variable.

28 CL Programming V5R3



Writing Comments in CL Procedures

When you want to write comments in your CL procedures or add comments to
commands in your procedures, use the character pairs /* and */. The comment is
written between these symbols.

The starting comment delimiter, /*, requires three characters unless the /*
characters appear in the first two positions of the command string. In the latter
situation, /* can be used without a following blank before a command.

You can enter the three-character starting comment delimiters in any of the
following ways (b represents a blank):

/*b
b/*
[ **

Therefore, the starting comment delimiter can be entered four ways. The starting
comment delimiter, /*, can:

¢ Begin in the first position of the command string
* Be preceded by a blank

* Be followed by a blank

* Be followed by an asterisk (/**).

Note: A comment cannot be imbedded within a comment.

For example, in the following procedure, comments are written to describe possible
user responses to a set of menu options:

PGM /% ORDO4OC ORDER DEPT GENERAL MENU */
DCLF FILE (ORDO40CD)
START: SNDRCVF  RCDFMT (MENU)

SELECT
WHEN (&RESP=1) THEN(CALL CUS210) /% CUSTOMER INQUIRY */
WHEN (8RESP=2) THEN(CALL ITM210) /+ ITEM INQUIRY */
WHEN (&RESP=3) THEN(CALL CUS210)  /* CUSTOMER NAME SEARCH */
WHEN (&RESP=4) THEN(CALL ORD215) /% ORDERS BY CUST x/
WHEN (&RESP=5) THEN(CALL ORD220)  /+ EXISTING ORDER */
WHEN (&RESP=6) THEN(CALL ORD410C) /* ORDER ENTRY x/
WHEN (&RESP=7) THEN(RETURN)

ENDSELECT

GOTO START

ENDPGM

Controlling Processing within a CL Procedure

Commands in a CL procedure are processed in consecutive sequence. Each
command is processed, one after another, in the sequence in which it is
encountered. You can alter this consecutive processing using commands that
change the flow of logic in the procedure. These commands can be conditional or
unconditional.

Unconditional branching means that you can instruct processing to branch to
commands or sets of commands located anywhere in the procedure without regard
to what conditions exist at the time the branch instruction is processed.
Unconditional processing commands include:

* GOTO
* ITERATE

Chapter 2. CL Programming 29



* LEAVE

Conditional branching means that under certain specified conditions, processing
may branch to sections or commands that are not consecutive within the
procedure. The branching may be to any statement in the procedure. This is called
conditional processing because the branching only occurs when the specified
condition is true. Conditional processing is usually associated with the IF
command. With the ELSE command, you can specify alternative processing if the
condition is not true.The simple DO command allows you to create groups of
commands that are always processed together, as a group, under specified
conditions. Conditional processing commands include:

e IF and THEN

» SELECT, WHEN, and OTHERWISE
* DOFOR

« DOWHILE

 DOUNTIL

Using the GOTO Command and Labels

The GOTO command processes an unconditional branch. With the GOTO
command, processing is directed to another part (identified by a label) of the
procedure whenever the GOTO command is encountered. This branching does not
depend on the evaluation of an expression. After the branch to the labeled
statement, processing begins at that statement and continues in consecutive
sequence; it does not return to the GOTO command unless specifically directed
back by another instruction. You can branch forward or backward. You cannot use
GOTO to go to a label outside the procedure. The GOTO command has one
parameter, which contains the label of the statement branched to:

GOTO CMDLBL(1abel)

A label identifies the statement in the procedure to which processing is directed by
the GOTO command. To use a GOTO command, the command you are branching
to must have a label.

PGM

START: éNDRCVF RCDFMT (MENU)
IF (&RESP=1) THEN(CALL CUS210)

GOTO START

ENDPGM

The label in this example is START. A label can have as many as 10 characters and
must be immediately followed by a colon, but blanks can occur between the label
and the command name.

Using the IF Command

The IF command is used to state a condition that, if true, specifies some statement
or group of statements in the procedure to be run. The ELSE command can be
used with the IF command to specify a statement or group of statements to be run
if the condition expressed by the IF command is false.

30 cCL Programming V5R3



The command includes an expression, which is tested (true or false), and a THEN
parameter that specifies the action to be taken if the expression is true. The IF
command is formatted as follows:

IF COND(logical-expression) THEN(CL-command)

The logical expression on the COND parameter may be a single logical variable or
constant, or it must describe a relationship between two or more operands; the
expression is then evaluated as true or false. See [“Using the *AND, *OR, and *NOT]
|Operators” on page 41|for more detailed information on the construction of logical
expressions.

If the condition described by the logical expression is evaluated as true, the
procedure processes the CL command on the THEN parameter. This may be a
single command, or a group of commands (see [“Using the DO Command and DO|
(Groups” on page 35). If the condition is not true, the procedure runs the next
sequential command.

Both COND and THEN are keywords on the command, and they can be omitted
for positional entry. The following are syntactically correct uses of this command:
IF COND(&RESP=1) THEN(CALL CUS210)

IF (&A *EQ &B) THEN(GOTO LABEL)
IF (8A=8B) GOTO LABEL

Blanks are required between the command name (IF) and the keyword (COND) or
value (&A). No blanks are permitted between the keyword, if specified, and the
left parenthesis enclosing the value.

The following is an example of conditional processing with an IF command.
Processing branches in different ways depending on the evaluation of the logical
expression in the IF commands. Assume, for instance, that at the start of the
following code, the value of &A is 2 and the value of &C is 4.

IF (&A=2) THEN(GOTO FINAL)
IF (&A=3) THEN(CHGVAR &C 5)

FINAL: IF (&C=5) CALL PROGA
ENDPGM

In this case, the procedure processes the first IF command before branching to
FINAL, skipping the intermediate code. It does not return to the second IF
command. At FINAL, because the test for &C=5 fails, PROGA is not called. The
procedure then processes the next command, ENDPGM, which signals the end of
the procedure, and returns control to the calling procedure.

Processing logic would be different if, using the same code, the initial values of the
variables were different. For instance, if at the beginning of this code the value of
&A is 3 and the value of &C is 4, the first IF statement is evaluated as false.
Instead of processing the GOTO FINAL command, the procedure ignores the first
IF statement and moves on to the next one. The second IF statement is evaluated
as true, and the value of &C is changed to 5. Subsequent statements, not shown
here, are also processed consecutively. When processing reaches the last IF
statement, the condition &C=5 is evaluated as true, and PROGA is called.

A series of consecutive IF statements are run independently. For instance:

Chapter 2. CL Programming 31



PGM /+ IFFY =/

DCL &A..

DCL &B..

DCL &C..

DCL &D..

DCL &AREA *CHAR LEN(5) VALUE(YESNO)

DCL &RESP..

IF (8A=8B) THEN(GOTO END) /+ IF #1 =/

IF (&C=&D) THEN(CALL PGMA)  /x IF #2 =/

IF (&RESP=1) THEN(CHGVAR &C 2) /% IF #3 =/
IF (%SUBSTRING(ZAREA 1 3) #EQ YES) THEN(CALL PGMB) /+ IF #4 =/
CHGVAR &B &C

END: ENDPGM

If, in this example, &A is not equal to &B, the next statement is run. If &C is equal
to &D, PGMA is called. When PGMA returns, the third IF statement is considered,
and so on. Note the difference in logic and processing between these simple
sequential IF statements and the use of IF with ELSE or the use of embedded IF
commands described later in the chapter (see[’Using the ELSE Command”|and
[“Using Embedded IF Commands” on page 34).

An embedded command is a command that is completely enclosed in the
parameter of another command. In the following examples, the CHGVAR
command and the DO command are embedded:

IF (&A =EQ &B) THEN(CHGVAR &A (&A+1))

IF (& *EQ &C) THEN(DO)

ENDDO

Using the ELSE Command

The ELSE command is a way of specifying alternative processing if the condition
on the associated IF command is false.

The IF command can be used without the ELSE command:

IF (8A=8B) THEN(CALLPRC PROCA)
CALLPRC PROCB

In this case, PROCA is called only if &A=&B, but PROCB is always called.

If you use an ELSE command in this procedure, however, the processing logic
changes. In the following example, if 4A=8&B, PROCA is called, and PROCB is not
called. If the expression &A=8B is not true, PROCB is called.

IF (8A=8B) THEN(CALLPRC PROCA)

ELSE CMD(CALLPRC PROCB)
CHGVAR &C 8

The ELSE command must be used when a false evaluation of an IF expression
leads to a distinct branch (that is, an exclusive either/or branch).

The real usefulness of the ELSE command is best demonstrated when combined
with Do groups. In the following example, the Do group may not be run,

32 CL Programming V5R3



depending on the evaluation of the IF expression, but the remaining commands are
always processed.

IF (8%A=8B) THEN(DO) 1
. Conditioned-Run Only if True
ENDDO /{
CHGVAR &C 8 »
SAVOBJ. .. Unconditioned-Run Whether or Not
CALL PGM(PAYROLL) Expression Is True
ENDPGM

RSLF157-0

With the ELSE command you can specify that a command or set of commands be
processed only if the expression is not true, thus completing the logical
alternatives:

IF (&A=&B) THEN(DO)

. Conditioned for True Only
ENDDO
ELSE DO
. Conditioned for False Only
ENDDO
CHGVAR &C 8

SAVORJ. .. »
CALL PGM(PAYROLL) [ Unconditioned

RV2wW275-1

Each ELSE command must have an associated IF command preceding it. If nested
levels of IF commands are present, each ELSE command is matched with the
innermost IF command that has not already been matched with another ELSE
command.

IF ... THEN ...

IF ...THEN(DO)
IF ...THEN(DO)

ENDDO
ELSE DO
IF ...THEN(DO)
ENDDO
ELSE DO
ENDDO
ENDDO
ELSE IF ... THEN ...
IF ... THEN ...
IF ... THEN ...

Chapter 2. CL Programming 33



In reviewing your procedure for matched ELSE commands, always start with the
innermost set.

The ELSE command can be used to test a series of mutually exclusive options. In
the following example, after the first successful IF test, the embedded command is
processed and the procedure processes the RCLRSC command:
IF COND(&OPTION=1) THEN(CALLPRC PRC(ADDREC))

ELSE  CMD(IF COND(&PTION=2) THEN(CALLPRC PRC(DSPFILE)))

ELSE  CMD(IF COND(&OPTION=3) THEN(CALLPRC PRC(PRINTFILE)))

ELSE CMD(IF COND(&0PTION=4) THEN(CALLPRC PRC(DUMP)))

RCLRSC
RETURN

Using Embedded IF Commands

An IF command can be embedded in another IF command. This would occur
when the command to be processed under a true evaluation (the CL command
placed on the THEN parameter) is itself another IF command:

IF (&A=&B) THEN(IF (&C=&D) THEN(GOTO END))
GOTO START

This can be useful when several conditions must be satisfied before a certain
command or group of commands is run. In the preceding example, if the first
expression is true, the system then reads the first THEN parameter; within that, if
the &C=8&D expression is evaluated as true, the system processes the command in the
second THEN parameter, GOTO END. Both expressions must be true to process
the GOTO END command. If one or the other is false, the GOTO START command
is run. Note the use of parentheses to organize expressions and commands.

Up to 25 levels of such embedding are permitted in CL programming.

As the levels of embedding increase and logic grows more complex, you may wish
to enter the code in free-form design to clarify relationships:

PGM
DCL &A *DEC 1
DCL &B *CHAR 2
DCL &RESP *DEC 1
IF (&RESP=1) +
IF (&A=5) +
IF (&B=N0) THEN(DO)

ENDDO
CHGVAR &A VALUE(8)
CALL PGM(DAILY)
ENDPGM

The preceding IF series is handled as one embedded command. Whenever any one
of the IF conditions fails, processing branches to the remainder of the code
(CHGVAR and subsequent commands). If the purpose of this code is to
accumulate a series of conditions, all of which must be true for the Do group to
process, it could be more easily coded using *AND with several expressions in one
command. See [“Using the *AND, *OR, and *NOT Operators” on page 41}

In some cases, however, the branch must be different depending on which
condition fails. You can accomplish this by adding an ELSE command for each
embedded IF command:

34 CL Programming V5R3



PGM
DCL &A ...
DCL &B ...
DCL &RESP ...
IF (&RESP=1) +
IF (8A=5) +
IF (&B=N0O) THEN(DO)

SNDPGMMSG . . .

ENDDO
ELSE CALLPRC PROCA
ELSE CALLPRC PROCB
CHGVAR &A 8
CALLPRC PROC(DAILY)
ENDPGM

Here, if all conditions are true, the SNDPGMMSG command is processed, followed
by the CHGVAR command. If the first and second conditions (&RESP=1 and &A=5)
are true, but the third (&B=N0) is false, PROCA is called; when PROCA returns, the
CHGVAR command is processed. If the second conditions fails, PROCB is called
(&B=N0 is not tested), followed by the CHGVAR command. Finally, if &RESP does
not equal 1, the CHGVAR command is immediately processed. The ELSE
command has been used to provide a different branch for each test.

Note: The following three examples are correct syntactical equivalents to the
embedded IF command in the preceding example:

IF (&RESP=1) THEN(IF (&A=5) THEN(IF (&B=NO) THEN(DO)))

IF (&RESP=1) THEN +
(IF (&A=5) THEN +
(IF (&B=NO) THEN(DO)))

IF (&RESP=1) +

(IF (&A=5) +
(IF (&B=NO) THEN(D0)))

Using the DO Command and DO Groups

The DO command lets you process a group of commands together. The group is
defined as all those commands between the DO command and the corresponding
ENDDO command.

Processing of the group is usually conditioned on the evaluation of an associated
command. Do groups are most frequently associated with the IF, ELSE, or
MONMSG commands. For instance:

IF (&A=&B) THEN(DO)

Do Group
ENDDO

ENDPGM

RV2W272-0

Chapter 2. CL Programming 35



If the logical expression (&A=8B) is true, then the Do group is processed. If the
expression is not true, then processing starts after the ENDDO command; the Do
group is skipped.

In the following procedure, if &A is not equal to &B, the system calls PROCB.
PROCA is not called, nor are any other commands in the Do group processed.

CALLPRC PROC

CHGVAR &A &B Do Group
SNDPGMMSG. . .

ENDDO J

CALLPRC PROCB

CHGVAR &ACCTS &B

IF (&A=&B) THEN(DO) \L
A

RV3W198-0

Do groups can be nested within other Do groups, up to a maximum of 25 levels of
nesting.

There are three levels of nesting in the following example. Note how each Do
group is completed by an ENDDO command.

PGM

IF (&A=&B) DO

CALL PGMA

IF (&A=5) DO

CHGVAR &A 26

CALL PGMB

IF (&AREA=YES) DO

First Nest

Second CHGVAR 8AREA NO
Nest Third Nest ¢ CHGVAR &P (&P+2)
ENDDO
CALLPRC ACCTSPAY
ENDDO
ENDDO
CALL PGMC
ENDPGM

RV3W199-0

In this example, if &A in the first nest does not equal 5, PGMC is called. If &A
does equal 5, the statements in the second Do group are processed. If &AREA in
the second Do group does not equal YES, procedure ACCTSPAY is called, because
processing moves to the next command after the Do group.

The CL compiler does not indicate the beginning or ending of Do groups. If the CL
compiler notes any unbalanced conditions, it is not easy to detect the actual errors.

Using the DOUNTIL Command

The Do Until (DOUNTIL) command processes a group of CL commands one or
more times. The group of commands is defined as those commands between the
DOUNTIL and the matching ENDDO command.

After the group of commands is processed, the stated condition is evaluated. If the
condition is true, the DOUNTIL group will be exited and processing will resume
with the next command following the associated ENDDO. If the condition is false,
the group will continue processing with the first command in the group.

36 CL Programming V5R3



The logical expression on the COND parameter may be a single logical variable or
constant, or it must describe a relationship between two or more operands; the
expression is then evaluated as true or false. See ['Using the *AND, *OR, and *NOT]|
Operators” on page 41|for more detailed information about the construction of
logical expressions.

The following is an example of conditional processing with a DOUNTIL command.
DOUNTIL (&LGL)

CHGVAR &INT (&INT + 1)
IF (&INT *GT 5) (CHGVAR &LGL '1')
ENDDO

The body of the DOUNTIL group will be run at least one time. If the initial value
of the &INT variable is 5 or more, &LGL will be set to true on the first time and
processing will continue following the ENDDO when the expression is evaluated
at the end of the group. If the initial value is less than 5, the body of the group
will continue to be repeated until the value of &INT is greater than 5 and the
value of &LGL is changed to true.

The LEAVE command may be used to exit the DOUNTIL group and resume
processing following the ENDDO. The ITERATE command may be used to skip
the remaining commands in the group and evaluate the stated condition
immediately.

Using the DOWHILE Command

The DOWHILE command lets you process a group of commands zero or more
times while the value of a logical expression is true. The DOWHILE command is
used to state a condition that, if true, specifies a command or group of commands
in the procedure to run. The group of commands is defined as those commands
between the DOWHILE and the matching ENDDO command.

After the group of commands is processed, the stated condition is evaluated. If the
condition is false, the DOWHILE group will be exited and processing will resume
with the next command following the associated ENDDO. If the condition is true,
the group will continue processing with the first command in the group. When the
ENDDO command is reached, control returns to the DOWHILE command to again
evaluate the condition.

The logical expression on the COND parameter may be a single logical variable or
constant, or it must describe a relationship between two or more operands; the
expression is then evaluated as true or false. See [“Using the *AND, *OR, and *NOT]
|Operators” on page 41|for more detailed information about the construction of
logical expressions.

The following is an example of conditional processing with a DOWHILE
command.

DOWHILE (&LGL)

iF (&INT *EQ 2) (CHGVAR &LGL '0')
ENDDO

Chapter 2. CL Programming 37



When the DOWHILE group is processed, the stated condition will be evaluated. If
the condition is true, the group of commands in the DOWHILE group is processed.
If the condition is false, processing continues with the command following the
associated ENDDO command.

If the value of &LGL is true, the commands in the DOWHILE group will be run
until &INT is equal to 2 causing the &LGL variable value to be set to false.

The LEAVE command may be used to exit the DOWHILE group and resume
processing following the ENDDO. The ITERATE command may be used to skip
the remaining commands in the group and evaluate the stated condition
immediately.

Using the DOFOR Command

The DOFOR command lets you process a group of commands a specified number
of times.

The DOFOR command specifies a variable, its initial value, an increment or
decrement amount, and a terminal value condition. The format of the DOFOR
command is:

DOFOR VAR(integer-variable) FROM(initial-value) TO(end-value) BY(integer-constant)

When processing of a DOFOR group is begun, the integer-variable specified on the
VAR parameter is initialized to the initial-value specified on the FROM parameter.
The value of the integer-variable is compared to the end-value as specified on the
TO parameter. When the integer-constant on the BY parameter is positive, the
comparison checks for integer-variable greater than the end-value. If the
integer-constant on the BY parameter is negative, the comparison checks for
integer-variable less than the end-value.

If the condition is not true, the body of the DOFOR group is processed. When the
ENDDO is reached, the integer-constant from the BY parameter is added to the
integer-value and the condition is evaluated again.

The following is an example of conditional processing with a DOFOR command.

CHGVAR &INT2 0
DOFOR VAR(&INT) FROM(2) TO(4) BY(1)

CHGVAR &INT2 (&INT2 + &INT)
ENDDO
/* &INT2 = 9 after running the DOFOR group 3 times =/

When the DOFOR group is processed, &INT is initialized to 2 and the value of
&INT is checked to see if it is greater than 4. It is not, so the body of the group is
processed. On the second iteration of the group, one is added to &INT and the
check is repeated. It is less than 4, so the DOFOR group is processed again. On
reaching the ENDDO the second time, the value of &INT is again incremented by
1. &INT now has a value of 4. Since &INT is still less than or equal to 4, the
DOFOR group is processed again. On reaching the ENDDO the third time, the
value of &INT is again incremented by 1. This time, the value is 5, and processing
continues with the command following the ENDDO.

The LEAVE command may be used to exit the DOFOR group and resume
processing following the ENDDO. The ITERATE command may be used to skip

38 cCL Programming V5R3



the remaining commands in the group, increment the controlling variable, and
evaluate the end-value condition immediately.

Using the ITERATE Command

The ITERATE command can be used to skip the remaining commands in an active
DOWHILE, DOUNTIL, or DOFOR group. ITERATE is not valid with simple DO
command groups.

An ITERATE command without a label will skip to the ENDDO of the innermost
active DO group. Specifying a label skips to the ENDDO of the DO associated with
the label.

The following illustrates use of the ITERATE command:

DO_1:
DO_2:DOWHILE &LGL
DO_3: DOFOR &INT FROM(0) TO(99)

IF (8A +EQ 12) THEN (ITERATE D0_1)

: /* Not processed if &A equals 12 */
IF (8A *GT 12) ITERATE

. /* Not processed if & greater than 12 */

ENDDO

IF (&A *LT 0) (ITERATE DO_1)
. /* Not processed if &A less than zero =/

ENDDO

In this example, the labels DO_1 and DO_2 are associated with the DOWHILE
group. They can be specified on an ITERATE command appearing in either the
DOWHILE or DOFOR group. When &A is equal to 12, the ITERATE DO_1
command is run. Processing continues at the ENDDO associated with the
DOWHILE command. The value of &LGL is evaluated and, if true, continues with
the DOFOR following the DOWHILE. If &LGL is false, processing continues with
the CL command following the second ENDDO.

If &A is not equal to 12 but is greater than 12, processing continues with the
ENDDO of the DOFOR group. The value of &INT is incremented and compared to
the ending value of 99. If &INT is less than or equal to 99, processing continues
with the first command following the DOFOR command. If &INT is greater than
99, processing continues with the next command following the first ENDDO.

When the third IF command is processed and &A is less than zero, processing
continues with the second ENDDO. The value of &LGL is evaluated and, if false,
control passes to the command following the ENDDO. If true, processing resumes
with the DOFOR command following the DOWHILE.

Chapter 2. CL Programming 39



Using the LEAVE Command

The LEAVE command can be used to exit an active DOWHILE, DOUNTIL, or
DOFOR group. It provides a structured manner to leave an active group without
resorting to the use of the GOTO command. LEAVE is not valid with simple DO
command groups.

A LEAVE command without a label will leave the innermost active DO group.
Specifying a label allows the processing to break out of one or more enclosing
groups.

The following illustrates use of the LEAVE command:

DO_1:
DO_2:DOWHILE &LGL
DO_3: DOFOR &INT FROM(0) TO(99)

IF (8A *EQ 12) THEN(LEAVE DO_1)

: /* Not processed if &A equals 12 */
IF (8 *GT 12) LEAVE

' /* Not processed if &A greater than 12 */

ENDDO

IF (8A *LT 0) (LEAVE DO_1)
. /* Not processed if & less than zero */

ENDDO

In this example, the labels DO_1 and DO_2 are associated with the DOWHILE
group. They can be specified on a LEAVE command appearing in either the
DOWHILE or DOFOR group. When &A is equal to 12, the LEAVE DO_1 command
is run and processing continues with the CL command following the second
ENDDO.

If &A is not equal to 12 but is greater than 12, the DOFOR group is exited and
processing continues with next command following the first ENDDO.

When the third IF command is processed and &A is less than zero, processing
continues with the next command following the first ENDDO.

Using the SELECT Command and SELECT Groups

The SELECT command is used to identify one or more conditions and an
associated group of commands to process when that condition is true. A special
group of commands may also be specified to be processed when none of the stated
conditions are true. Only one of the groups of commands identified by WHEN or
OTHERWISE commands will be processed within the group.

The general structure of the SELECT command is as follows:

SELECT
WHEN (condition-1) THEN(command-1)

40 CL Programming V5R3



WHEN (condition-n) THEN(command-n)
OTHERWISE command-x
ENDSELECT

A SELECT group must specify at least one WHEN command. The WHEN
command includes an expression, which is tested (true or false), and an optional
THEN parameter that specifies the action to take if the condition is true.

The logical expression on the COND parameter may be a single logical variable or
constant, or it must describe a relationship between two or more operands; the

expression is then evaluate as true or false. See [“Using the *AND, *OR, and *NOT|
for more detailed information about the construction of logical

expressions.

If the condition described by the logical expression is evaluated as true, the
procedure processes the CL command on the THEN parameter. This may be a
single command or a group of commands specified by the DO, DOWHILE,
DOUNTIL, or DOFOR commands. If the condition is not true, the condition
specified on the next WHEN command in the SELECT group is evaluated. If there
is no WHEN command following this one, the command identified by the
OTHERWISE command, if any, is processed. If there is no next WHEN and no
OTHERWISE command, processing continues with the next command following
the associated ENDSELECT command.
SELECT

WHEN (&LGL)

WHEN (&INT *LT ©) THEN(CHGVAR &INT 0)

WHEN (&INT *GT 0) (DOUNTIL (&INT *EQ 0))

CHGVAR &INT (&INT - 1)
ENDDO

OTHERWISE (CHGVAR &LGL '1')
ENDSELECT

If the initial value of &LGL is true ('1’), processing continues with the command
following the ENDSELECT, because there is no THEN parameter.

If the initial value of &LGL is false ('0"), the COND of the second WHEN is
evaluated. If &INT is less than zero, the CHGVAR is processed, setting the value of
&INT to zero. Processing then continues with the command following the
ENDSELECT.

If the first two conditions are not met, the value of &INT is checked to determine
if it is greater than zero. If the value is greater than zero, the DOUNTIL group is
entered and the value of &INT decremented until it reaches zero. When &INT
reaches zero, the DOUNTIL group is exited and processing continues with the next
command following the ENDSELECT.

If none of the conditions on any of the WHEN commands is evaluated as true, the
CHGVAR specified on the CMD parameter of the OTHERWISE command is
processed. The value of &INT remains unchanged while &LGL is set to true.
Processing then continues with the next command following the ENDSELECT.

Using the *AND, *OR, and *NOT Operators

*AND and *OR are the reserved values for logical operators used to specify the
relationship between operands in a logical expression. The ampersand symbol (&)
can replace the reserved value *AND, and the vertical bar (1) can replace *OR. The
reserved values must be preceded and followed by blanks. The operands in a

Chapter 2. CL Programming 41



logical expression consist of relational expressions or logical variables or constants
separated by logical operators. The *AND operator indicates that both operands
(on either side of the operator) have to be true to produce a true result. The *OR
operator indicates that one or the other of its operands must be true to produce a
true result.

Note: Using the ampersand symbol or the vertical bar can cause problems because
the symbols are not at the same code point for all code pages. To avoid this,
use *AND and *OR instead of the symbols.

Use operators, other than logical operators, in expressions to indicate the actions to
perform on the operands in the expression or the relationship between the
operands. There are three kinds of operators other than logical operators:

e Arithmetic (+, -, *, /)
* Character (*CAT, | |, *BCAT, |>, *TCAT, |1<)
* Relational (*EQ, =, *GT, >, *LT, <, *GE, >=, *LE, <=, *NE, -=, *NG, ->, *NL, ~<)

You can find information about these operators in the CL section of the
Programming category in the iSeries Information Center.

The following are examples of logical expressions:

((&€ *LT 1) *=AND (&TIME *GT 1430))
(&C *LT 1 *AND &TIME *GT 1430)
((&C < 1) & (&TIME>1430))

((&C< 1) & (&TIME>1430))

In each of these cases, the logical expression consists of three parts: two operands
and one operator (*AND or *OR, or their symbols). It is the type of operator
(*AND or *OR) that characterizes the expression as logical, not the type of
operand. Operands in logical expressions can be logical variables or other
expressions, such as relational expressions. (Relational expressions are
characterized by &gt, &It, or = symbols or corresponding reserved values.) For
instance, in the example:

((&C *LT 1) =AND (&TIME *GT 1430))

the entire logical expression is enclosed in parentheses, and both operands are
relational expressions, also enclosed separately in parentheses. As you can see from
the second example of logical expressions, the operands need not be enclosed in
separate parentheses, but it is recommended for clarity. Parentheses are not needed
because *AND and *OR have different priorities. *AND is always considered
before *OR. For operators of the same priority, parentheses can be used to control
the order in which operations are performed.

A simple relational expression can be written as the condition in a command:
IF (&A=&B) THEN(DO)

ENDDO
The operands in this relational expression could also be constants.

If you wish to specify more than one condition, you can use a logical expression
with relational expressions as operands:

42 CL Programming V5R3



IF ((&A=&B) *AND (&C=&D)) THEN(DO)

ENDDO

The series of dependent IF commands cited as an example in [“Using Embedded IH
Commands” on page 34| could be coded:

PGM

DCL &RESP *DEC 1

DCL &A *DEC 1

DCL &B *CHAR 2

IF ((&RESP=1) *AND (&A=5) *AND (&B=NO)) THEN(DO)

ENDDO
CHGVAR &A VALUE(8)
CALLPRC PROC (DAILY)
ENDPGM

Here the logical operators are again used between relational expressions.

Because a logical expression can also have other logical expressions as operands,
quite complex logic is possible:
IF (((&A=&B) *OR (&A=&C)) *AND ((&C=1) *OR (&D='0'))) THEN(DO)

In this case, &D is defined as a logical variable.

The result of the evaluation of any relational or logical expression is a 1" or "0
(true or false). The dependent command is processed only if the complete
expression is evaluated as true ('1’). The following command is interpreted in these
terms:

IF  ((& = &B) *AND (&C = &D)) THEN(DO)

((true'l") *AND (not true'@'))
(not true '0")

The expression is finally evaluated as not true ('0"), and, therefore, the DO is not
processed. For an explanation of how this evaluation was reached, see the matrices
later in this section.

This same process is used to evaluate a logical expression using logical variables,
as in this example:

PGM

DCL &A *LGL

DCL &B *LGL

IF (8 *OR &B) THEN(CALL PGM(PGMA))

ENDPGM

Here the conditional expression is evaluated to see if the value of &A or of &B is
equal to "1’ (true). If either is true, the whole expression is true, and PGMA is
called.

The final evaluation arrived at for all these examples of logical expressions is based
on standard matrices comparing two values (referred to here as &A and &B) under
an *OR or *AND operator.

Chapter 2. CL Programming 43



Use the following matrix when using *OR with logical variables or constants:

If &A is:

IO/ /0’ /1/ ’1/
and &B is:

/0/ Il/ IO/ Ill

the OR expression is:
IO/ 111 /1/ /1’

In short, for multiple OR operators with logical variables or constants, the
expression is false ('0") if all values are false. The expression is true ('1’) if any
values are true.

PGM

DCL &A *LGL VALUE('0')

DCL &B *LGL VALUE('1")

DCL &C *LGL VALUE('1")

IF (& *OR &B *OR &C) THEN(CALL PGMA)

ENDPGM

Here the values are not all false; therefore, the expression is true, and PGMA is
called.

Use the following matrix when evaluating a logical expression with *AND with
logical variables or constants:

If &A is:

/0/ IO/ Il/ Ill
and &B is:

IO/ 111 IOI /1[

the ANDed expression is:
IO/ /0’ /O/ ’1/

For multiple AND operators with logical variables or constants, the expression is
false ('0") when any value is false, and true when they are all true.

PGM

DCL &A *LGL VALUE('0")

DCL &B *LGL VALUE('1')

DCL &C *LGL VALUE('1')

IF (&A *AND &B *AND &C) THEN(CALL PGMA)

ENDPGM

Here the values are not all true; therefore, the expression is false, and PGMA is not
called.

These logical operators can only be used within an expression when the operands

represent a logical value, as in the preceding examples. It is incorrect to attempt to
use OR or AND for variables that are not logical. For instance:

44 cCL Programming V5R3



PGM

DCL &A *CHAR 3
DCL &B *CHAR 3
DCL &C *CHAR 3

Incorrect: IF (&A *OR &B *OR &C = YES) THEN...

The correct coding for this would be:
IF ((&A=YES) *OR (&B=YES) *OR (&C=YES)) THEN...

In this case, the ORing occurs between relational expressions.

The logical operator *NOT (or ~) is used to negate logical variables or constants.
Any *NOT operators must be evaluated before the *AND or *OR operators are
evaluated. Any values that follow *NOT operators must be evaluated before the
logical relationship between the operands is evaluated.

PGM

DCL &A *LGL '1'

DCL &B *LGL '0"
IF (%A *AND *NOT &B) THEN(CALL PGMA)

In this example, the values are all true; therefore, the expression is true, and
PGMA is called.

PGM

DCL &A *LGL

DCL &B *CHAR 3 VALUE('ABC')
DCL &C *CHAR 3 VALUE('XYZ')
CHGVAR &A VALUE(&B *EQ &C)
IF (8%A) THEN(CALLPRC PROCA)

In this example, the value is false, therefore, PROCA is not called.

For more information about logical and relational expressions, see the CL section of
the Programming category in the iSeries Information Center.

Using the %BINARY Built-In Function

The binary built-in function (%BINARY or %BIN) interprets the contents of a
specified CL character variable as a signed binary integer. The starting position
begins at the position specified and continues for a length of 2 or 4 characters.

The syntax of the binary built-in function is:
%BINARY (character-variable-name starting-position length)

or
%BIN(character-variable-name starting-position length)

The starting position and length are optional. However, if the starting position and
length are not specified, a starting position of 1 and length of the character variable
that is specified are used. In that case, you must declare the length of the character
variable as either 2 or 4.

If the starting position is specified, you must also specify a constant length of 2 or 4.
The starting position must be a positive number equal to or greater than 1. If the
sum of the starting position and the length is greater than the length of the
character variable, an error occurs. (A CL decimal or integer variable may also be
used for the starting position.)

Chapter 2. CL Programming 45



You can use the binary built-in function with both the IF and CHGVAR
commands. It can be used by itself or as part of an arithmetic or logical expression.
You can also use the binary built-in function on any command parameter that is
defined as numeric (TYPE of *DEC, *INT2, *INT4, *UINT2, or *UINT4) with
EXPR(*YES).

When the binary built-in function is used with the condition (COND) parameter on
the IF command or with the VALUE parameter on the Change Variable (CHGVAR)
command, the contents of the character variable is interpreted as a
binary-to-decimal conversion.

When the binary built-in function is used with the VAR parameter on the
CHGVAR command, the decimal value in the VALUE parameter is converted to a
2-byte or 4-byte signed binary integer and the result stored in the character
variable at the starting position specified. Decimal fractions are truncated.

The system uses the binary built-in function on the RTNVAL parameter of the
CALLPRC command to indicate that the calling procedure expects the called
procedure to return a signed binary integer.

A 2-byte character variable can hold signed binary integer values from -32 768
through 32 767. A 4-byte character variable can hold signed binary integer values
from -2 147 483 648 through 2 147 483 647.

The following are examples of the binary built-in function:

« DCL  VAR(&B2) TYPE(*CHAR) LEN(2)  VALUE(X'001C')
DCL  VAR(&N)  TYPE(#DEC)  LEN(3 0)
CHGVAR &N  %BINARY(&B2)

The contents of variable &B2 is treated as a 2-byte signed binary integer and
converted to its decimal equivalent of 28. It is then assigned to the decimal
variable &N

* DCL VAR(&N)  TYPE(*DEC)  LEN(5 0) VALUE(107)
DCL VAR(&B4) TYPE(*CHAR) LEN(4)
CHGVAR  %BIN(&B4) &N

The value of the decimal variable &N is converted to a 4-byte signed binary
number and is placed in character variable &B4 Variable &B4 will have the
value of X'0000006B'".

e DCL  VAR(&P) TYPE(*CHAR) LEN(100)
DCL  VAR(&L) TYPE(+DEC) LEN(5 0)
CHGVAR &L VALUE(%BIN(&P 1 2) * 5)

The first two characters of variable &P is treated as a signed binary integer,
converted to its decimal equivalent, and multiplied by 5. The product is
assigned to the decimal variable &L.

e DCL  VAR(&X)  TYPE(*CHAR) LEN(50)
CHGVAR  %BINARY(&X 15 2) VALUE(122.56)
The number 122.56 is truncated to the whole number 122 and is then converted
to a 2-byte signed binary integer and is placed at positions 15 and 16 of the
character variable &X. Positions 15 and 16 of variable &X will contain the
hexadecimal equivalent of X'007A'.

e DCL  VAR(&B4) TYPE(*CHAR) LEN(4)
CHGVAR  %BIN(&B4) VALUE(-57)
The value -57 is converted to a 4-byte signed binary integer and assigned to the
character variable &B4. The variable &B4 will then contain the value
X'FFFFFEC7'.

« DCL  VAR(&B2) TYPE(*CHAR) LEN(2)  VALUE(X'FF1B')
DCL  VAR(&C5) TYPE(%CHAR) LEN(5)
CHGVAR  &C5 %BINARY(&B2)

46 CL Programming V5R3



The contents of variable &B2 is treated as a 2-byte signed binary integer and
converted to its decimal equivalent of -229. The number is converted to character
form and stored in the variable character &C5. The character variable &C5 will
then contain the value -0229".

* DCL VAR(&C5) TYPE(*CHAR) LEN(5)  VALUE(' 1253'")
DCL VAR(&B2) TYPE(*CHAR) LEN(2)
CHGVAR  %BINARY(&B2) VALUE(&C5)

The character number 1253 in character variable &C5 is converted to a decimal
number. The decimal number 1253 is then converted to a 2-byte signed binary
integer and stored in the variable &B2. The variable &B2 will then have the
value X'04E5'.

e DCL VAR(&S) TYPE(*CHAR) LEN(100)
IF (%BIN(&S 1 2) *GT 10)
THEN( SNDPGMMSG MSG('Too many in Tist.') )

The first 2 bytes of the character variable &S are treated as a signed binary
integer when compared to the number 10. If the binary number has a value
larger than 10, then the SNDPGMMSG (Send Program Message) command is
run.

° DCL VAR (&RTNV) TYPE(*CHAR) LEN(4)
CALLPRC PRC(PROCA) RTNVAL(%BIN(&RTNV 1 4))

Procedure PROCA returns a 4-byte integer which is stored in variable &RTNV.

Using the %SUBSTRING Built-In Function

The substring built-in function (%SUBSTRING or?%SST) produces a character string
that is a subset of an existing character string and can only be used within a CL
procedure. In a CHGVAR command, the %SST function can be specified in place of
the variable (VAR parameter) to be changed or the value (VALUE parameter) to
which the variable is to be changed. In an IF command, the %SST function can be
specified in the expression.

The format of the substring built-in function is:
%SUBSTRING(character-variable-name starting-position length)

or

%SST(character-variable-name starting-position length)

You can code *LDA in place of the character variable name to indicate that the
substring function is performed on the contents of the local data area.

The substring function produces a substring from the contents of the specified CL
character variable or the local data area. The substring begins at the specified
starting position (which can be a variable name) and continues for the length
specified (which can also be a variable name). Neither the starting position nor the
length can be 0 or negative. If the sum of the starting position and the length of
the substring are greater than the length of the entire variable or the local data
area, an error occurs. The length of the local data area is 1024.

The following are examples of the substring built-in function:

e If the first two positions in the character variable &NAME are IN, the program
INV210 is called. The entire value of &NAME is passed to INV210 and the value
of &ERRCODE is unchanged. Otherwise, the value of &ERRCODE is set to 99.

DCL &NAME *CHAR VALUE (INVOICE)
DCL &ERRCODE *DEC (2 0)
IF (%SST(&NAME 1 2) *EQ 'IN') +
THEN(CALL INV210 &NAME)
ELSE CHGVAR &ERRCODE 99

Chapter 2. CL Programming 47



If the first two positions of &A match the first two positions of &B, the program
CUS210 is called.

DCL &A *CHAR VALUE(ABC)

DCL &B *CHAR VALUE (DEF)

IF (%SST(&A 1 2) *EQ %SUBSTRING(&B 1 2)) +

CALL CuUS210

Position and length can also be variables: This example changes the value of &X
beginning at position &Y for the length &Z to 123.

CHGVAR %SST(&X &Y &z) '123'

If &A is ABCDEFG before this CHGVAR command is run, &A is

CHGVAR %SST(&A 2 3) '123!

A123EFG after the command runs.

In this example, the length of the substring, 5, exceeds the length of the operand
YES to which it is compared. The operand is padded with blanks so that the
comparison is between YESNO and YESbb (where b is a blank). The condition is
false.

DCL VAR(&NAME) TYPE(*CHAR) LEN(5) VALUE(YESNO)

IF (%SST (&NAME 1 5) *EQ YES) +

THEN (CALL PROGA)
If the length of the substring is shorter than the operand, the substring is
padded with blanks for the comparison. For example:

DCL VAR(&NAME) TYPE(*CHAR) LEN(5) VALUE(YESNO)

iF (%SST(&NAME 1 3 ) *EQ YESNO) THEN(CALL PROG)
This condition is false because YESbb (where bb is two blanks) does not equal
YESNO.

The value of the variable &A is placed into positions 1 through 10 of the local
data area.

CHGVAR %SST(*LDA 1 10) &A

If the concatenation of positions 1 through 3 of the local data area plus the
constant "XYZ’ is equal to variable &A, then PROCA is called. For example, if
positions 1 through 3 of the local data area contain "ABC’ and variable &A has a
value of ABCXYZ, the test is true and PROCA is called.

IF (((%SST*LDA 1 3) *CAT 'XYZ') *EQ &A) THEN(CALLPRC PROCA)

This procedure scans the character variable &NUMBER and changes any leading
zeros to blanks. This can be used for simple editing of a field before displaying
in a message.

DCL &NUMBER *CHAR LEN(5)
DCL & *DEC LEN(3 0) VALUE(1)

LOOP:IF (%SST(SNUMBER &X 1) *EQ '0') DO
CHGVAR (%SST(&NUMBER &X 1)) ' ' /% Blank out =/
CHGVAR &X (&X + 1) /x Increment =/
IF (&X =NE 4) GOTO LOOP
ENDDO

The following procedure uses the substring built-in function to find the first
sentence in a 50-character field &INPUT and to place any remaining text in a field
&REMAINDER It assumes that a sentence must have at least 2 characters, and no
embedded periods.

48 CL Programming V5R3



PGM (&INPUT &REMAINDER)  /+ SEARCH */
DCL &INPUT *CHAR LEN(50)

DCL &REMAINDER *CHAR LEN(50)

DCL &X *INT /* INDEX */

DCL &L *INT /* REMAINING LENGTH */

DOFORL:
DOFOR &X 3 50
IF (%SST(&INPUT &X 1) *EQ '.') THEN(DO)

CHGVAR &L (50-&X)
CHGVAR &X (&X+1)
CHGVAR &REMAINDER %SST(&INPUT &X &L)
LEAVE
ENDDO

ENDDO

ENDPGM

The procedure starts by checking the third position for a period. Note that the
substring function checks &INPUT from position 3 to a length of 1, which is
position 3 only (length cannot be zero). If position 3 is a period, the remaining
length of &INPUT is calculated. The value of &X is advanced to the beginning of
the remainder, and the remaining portion of &INPUT is moved to &REMAINDER.

If position 3 is not a period, the procedure checks to see if it is at position 49. If so,
it assumes that position 50 is a period and returns. If it is not at position 49, the
procedure advances &X to position 4 and repeats the process.

Using the %SWITCH Built-In Function

The switch built-in function (%SWITCH) compares one or more of eight switches
with the eight switch settings already established for the job and returns a logical
value of ‘0" or "1". The initial values of the switches for the job are determined first
by the Create Job Description (CRTJOBD) command; the default value is 00000000.
You can change this if necessary using the SWS parameter on the SBMJOB,
CHGJOB, or JOB command; the default for these is the job description setting.
Other high-level languages may also set job switches.

If, in the comparison of your %SWITCH values against the job values, every switch
is the same, a logical value of "1’ (true) is returned. If any switch tested does not
have the value indicated, the result is a ‘0" (false).

The syntax of the %SWITCH built-in function is:
%SWITCH(8-character-mask)

The 8-character mask is used to indicate which job switches are to be tested, and

what value each switch is to be tested for. Each position in the mask corresponds
with one of the eight job switches in a job. Position 1 corresponds with job switch
1, position 2 with switch 2, and so on. Each position in the mask can be specified
as one of three values: 0, 1, or X.

0 The corresponding job switch is to be tested for a 0 (off).
1 The corresponding job switch is to be tested for a 1 (on).
X The corresponding job switch is not to be tested. The value in the switch

does not affect the result of %SWITCH.

Chapter 2. CL Programming 49



If %SWITCH(0X111XX0) is specified, job switches 1 and 8 are tested for Os; switches 3,
4, and 5 are tested for 1s; and switches 2, 6, and 7 are not tested. If each job switch
contains the value (1 or 0 only) shown in the mask, the result of %SWITCH is true
1.

Switches can be tested in a CL procedure to control the flow of the procedure. This
function is used in CL procedures with the IF and CHGVAR commands. Switches
can be changed in a CL procedure by the Change Job (CHGJOB) command. For CL
procedures, these changes take effect immediately.

%SWITCH with the IF Command

On the IF command, %SWITCH can be specified on the COND parameter as the
logical expression to be tested. In the following example, 0X111XX0 is compared to
the predetermined job switch setting:

IF  COND(%SWITCH(OX111XX0)) THEN(GOTO C)

If job switches 1, 3, 4, 5, and 8 contain 0, 1, 1, 1, and 0, respectively, the result is
true and the procedure branches to the command having the label C. If one or
more of the switches tested do not have the values indicated in the mask, the
result is false, and the branch does not occur.

In the following example, switches control conditional processing in two
procedures.

SBMJOB  JOB(APP502) JOBD(PAYROLL) CMD(CALL APP502)
SWS(11000000)

PGM /* CONTROL */

IF (%SWITCH(11XXXXXX)) CALLPRC PROCA
IF (%SWITCH(1OXXXXXX)) CALLPRC PROCB
IF (%SWITCH(O1XXXXXX)) CALLPRC PROCC
IF (%SWITCH(OOXXXXXX)) CALLPRC PROCD
ENDPGM

PGM /* PROCA x/

CALLPRC TRANS

IF (%SWITCH(1XXXXXXX)) CALLPRC CUS520
ELSE CALLPRC CUS521

ENDPGM

%SWITCH with the CHGVAR Command

On the CHGVAR command, you can specify %SWITCH to change the value of a
logical variable. The value of the logical variable is determined by the results of
comparing your %SWITCH settings with the job switch settings. If the result of the
comparison is true, the logical variable is set to "1". If the result is false, the
variable is set to ‘0". For instance, if the job switch is set to 10000001 and this
procedure is processed:

PGM
DCL &A *LGL
CHGVAR VAR(&A) VALUE(%SWITCH(10000001))

ENDPGM

then the variable &A has a value of "1’.

Using the Monitor Message (MONMSG) Command

Escape messages are sent to CL procedures by the commands in the CL procedures
and by the programs and procedures they call. These escape messages are sent to

50 cCL Programming V5R3



tell the procedures that errors were detected and requested functions were not
performed. CL procedures can monitor for the arrival of escape messages, and you
can specify through commands how to handle the messages. For example, if a CL
procedure tries to move a data area that has been deleted, an object-not-found
escape message is sent to the procedure by the Move Object (MOVOB]) command.

Using the Monitor Message (MONMSG) command, you can direct a procedure to
take predetermined action if specific errors occur during the processing of the
immediately preceding command. The MONMSG command is used to monitor for
escape, notify, or status messages sent to the call stack of the procedure in which
the MONMSG command is used. The MONMSG command has the following
parameters:

MONMSG ~ MSGID(message-identifier) CMPDTA(comparison-data) +
EXEC(CL-command)

Each message that is sent for a specific error has a unique identifier. You can enter
as many as 50 message identifiers on the MSGID parameter. (See the online help
for messages and identifiers). The CMPDTA parameter allows even greater
specification of error messages because you can check for a specific character string
in the MSGDTA portion of the message. On the EXEC parameter, you can specify a
CL command (such as a Call Program (CALL), Do (DO), or a Go To (GOTO)),
which directs the procedure to perform error recovery.

In the following example, the MONMSG command follows the Receive File
(RCVF) command and, therefore, is only monitoring for messages sent by the
RCVF command:
READLOOP: RCVF /* Read a file record =*/

MONMSG  MSGID(CPFO864) EXEC(GOTO CMDLBL(EOF))

/* Process the file record */

GOTO CMDLBL(READLOOP) /* Get another record =/
EOF: /* End of file processing =/

The escape message, CPF0864, is sent to the procedure’s invocation queue when
there are no more records in the file to read. Because the example specifies
MSGID(CPF0864), the MONMSG monitors for this condition. When it receives the
message, the GOTO CMDLBL(EOF) command is run.

You can also use the MONMSG command to monitor for messages sent by any
command in a CL procedure. The following example includes two MONMSG
commands. The first MONMSG command monitors for the messages CPF0001 and
CPF1999; these messages might be sent by any command run later in the
procedure. When either message is received from any of the commands running in
the procedure, control branches to the command identified by the label EXIT2.

The second MONMSG command monitors for the messages CPF2105 and
MCH1211. Because no command is coded for the EXEC parameter, these messages
are ignored.

PGM

DCL

MONMSG MSGID(CPFO001 CPF1999) EXEC(GOTO EXIT2)
MONMSG MSGID(CPF2105 MCH1211)

ENDPGM

Chapter 2. CL Programming 51



Message CPF0001 states that an error was found in the command that is identified
in the message itself. Message CPF1999, which can be sent by many of the
debugging commands, such as Change Program Variable (CHGPGMVAR), states
that errors occurred on the command, but it does not identify the command in the
message.

All error conditions monitored for by the MONMSG command with the EXEC
parameter specified (CPFO001 or CPF1999) are handled in the same way at EXIT2,
and it is not possible to return to the next sequential statement after the error. You
can avoid this by monitoring for specific conditions after each command and
branching to specific error correction procedures.

All error conditions monitored for by the MONMSG command without the EXEC
parameter specified (CPF2105 or MCH1211) are ignored, and procedure processing
continues with the next command.

If the error occurs when evaluating the expression on an IF command, the
condition is considered false. In the following example, MCH1211 (divide by zero)
could occur on the IF command. The condition would be considered false, and
PROCA would be called.

IF(&A / &B *EQ 5) THEN(DLTF ABC)
ELSE CALLPRC PROCA

If you code the MONMSG command at the beginning of your CL procedure, the
messages you specify are monitored throughout the program, regardless of which
command produces these messages. If the EXEC parameter is used, only the
GOTO command can be specified.

You can specify the same message identifier on a procedure-level or a
command-level MONMSG command. The command-level MONMSG commands
take precedence over the procedure-level MONMSG commands. In the following
example, if message CPF0001 is received on CMDB, CMDC is run. If message
CPFO0001 is received on any other command in the procedure, the procedure
branches to EXIT2. If message CPF1999 is received on any command, including
CMDB, the procedure branches to EXIT2.

PGM

MONMSG MSGID(CPFOOO1 CPF1999) EXEC(GOTO EXIT2)

CMDA

CMDB

MONMSG MSGID(CPFOOO1) EXEC(CMDC)

CMDD
EXIT2: ENDPGM

Because many escape messages can be sent to a procedure, you must decide which
ones you want to monitor for and handle. Most of these messages are sent to a
procedure only if there is an error in the procedure. Others are sent because of
conditions outside the procedure. Generally, a CL procedure should monitor for
those messages that pertain to its basic function and that it can handle
appropriately. For all other messages, OS/400 assumes an error has occurred and
takes appropriate default action.

For more information about handling messages in CL procedures, see

and Chapter

52 CL Programming V5R3



Values That Can Be Used as Variables

Retrieving System Values

A system value contains control information for the operation of certain parts of
the system. IBM® supplies several types of system values. For example, QDATE
and QTIME are date and time system values, which you set when OS/400 is
started.

You can bring system values into your procedure and manipulate them as
variables using the Retrieve System Value (RTVSYSVAL) command:

RTVSYSVAL SYSVAL(system-value-name) RTNVAR(CL-variable-name)

The RTNVAR parameter specifies the name of the variable in your CL procedure
that is to receive the value of the system value.

The type of the variable must match the type of the system value. For character
and logical system values, the length of the CL variable must equal the length of
the value. For decimal values, the length of the variable must be greater than or
equal to the length of the system value. System value attributes are defined in the
iSeries Information Center under the Systems Management category of
information.

System Value QTIME
In the following example, QTIME is received and moved to a variable, which is
then compared with another variable.
PGM
DCL VAR(&PWRDNTME) TYPE(*CHAR) LEN(6) VALUE('162500')
DCL VAR(&TIME) TYPE(%CHAR) LEN(6)
RTVSYSVAL SYSVAL(QTIME) RTNVAR(&TIME)
IF (8TIME *GT &PWRDNTME) THEN(DO)
SNDBRKMSG (' Powering down in 5 minutes. Please sign off."')
PWRDWNSYS ~ OPTION(*CNTRLD) DELAY(300) RESTART(*NO) +
IPLSRC (*PANEL)

ENDDO
ENDPGM

See the Systems Management category of information in the iSeries Information
Center for a list of system values and how you can change and display them.

System Value QDATE

In many applications, you may want to use the current date in your procedure by
retrieving the system value QDATE and placing it in a variable. You may also
want to change the format of that date for use in your procedure. To convert the
format of a date in a CL procedure, use the Convert Date (CVTDAT) command.

The format for the system date is the system value QDATFMT. The shipped value
of QDATEMT varies according to country or region. For example, 062488 is the
MDY (monthdayyear) format for June 24 1988. You can change this format to the
YMD, DMY, or the JUL (Julian) format. For Julian, the QDAY value is a 3-character
value from 001 to 366. It is used to determine the number of days between two
dates. You can also delete the date separators or change the character used as a
date separator with the CVTDAT command.

The format for the CVTDAT command is:

Chapter 2. CL Programming 53



CVTDAT DATE(date-to-be-converted) TOVAR(CL-variable) +
FROMFMT (o1d-format) TOFMT (new-format) +
TOSEP (new-separators)

The DATE parameter can specify a constant or a variable to be converted. Once the
date has been converted, it is placed in the variable named on the TOVAR
parameter. In the following example, the date in variable &DATE, which is
formatted as MDY, is changed to the DMY format and placed in the variable

&CVTDAT.
CVTDAT  DATE(&DATE) TOVAR(&CVTDAT) FROMFMT(*MDY) TOFMT (*DMY)
TOSEP (*SYSVAL)

The date separator remains as specified in the system value QDATSEP.

The CVTDAT command can be useful when creating objects or adding a member
that uses a date as part of its name. For example, assume that a member must be
added to a file using the current system date. Also, assume that the current date is
in the MDY format and is to be converted to the Julian format.

PGM

DCL &DATE6 *CHAR LEN(6)

DCL &DATE5 +CHAR LEN(5)

RTVSYSVAL QDATE RTNVAR(&DATE6)

CVTDAT DATE(RDATE6) TOVAR(&DATE5) TOFMT(*JUL) TOSEP(*NONE)
ADDPFM LIBI/FILEX MBR('MBR' =CAT &DATE5)

ENDPGM

If the current date is 5 January 1988, the added member would be named
MBR88005.

Remember the following when converting dates:

* The length of the value in the DATE parameter and the length of the variable on
the TOVAR parameter must be compatible with the date format. The length of
the variable on the TOVAR parameter must be at least:

1. For Non-Julian Dates possessing 2 digit years
a. Use 6 characters when using no separators.
July 28, 1978 would be written as 072878.
b. Use 8 characters when using separators.
July 28, 1978 would be written as 07-28-78.
2. For Non-Julian Dates with 4-digit years
a. Use 8 characters when using no separators.
July 28, 1978 would be written as 07281978.
b. Use 10 characters when using separators.
July 28, 1978 would be written as 07-28-1978.
3. For Julian dates with 2—-digit years
a. Use 5 characters when using no separators.
December 31, 1996 would be written as 96365.
b. Use 6 characters when using separators.
December 31, 1996 would be written as 96-365.
4. For Julian dates with 4-digit years,

54 CL Programming V5R3



a. 7 characters are required when no separators are used.
February 4, 1997 would be written as 1997035.

b. 8 characters are required when separators are used.
February 4, 1997 would be written as 1997-035.

Error messages are sent for converted characters that do not fit in the variable. If
the converted date is shorter than the variable, it is padded on the right with
blanks.

* In every date format except Julian, the month and day are 2-byte fields no
matter what value they contain. The year may be either 2-byte or 4-byte fields.
All converted values are right-justified and, when necessary, padded with
leading zeros.

* In the Julian format, day is a 3-byte field, and year is a 2-byte or 4-byte field. All
converted values are right-justified and, when necessary, padded with leading
Zeros.

The following is an alternative program that uses the ILE bindable API, Get
Current Local Time (CEELOCT), to convert a date to Julian format. To create this
program, you must use the Create Bound Control Language Program
(CRTBNDCL) command alone, or the Create Control Language Module
(CRTCLMOD) command and the Create Program (CRTPGM) command together.
PGM

DCL &LILDATE *INT  LEN(4)

DCL &PICTSTR *CHAR LEN(5) VALUE(YYDDD)
DCL &JULDATE =*CHAR LEN(5)

DCL &SECONDS =CHAR 8 /* Seconds from CEELOCT */
DCL &GREG *CHAR 23 /* Gregorian date from CEELOCT */
/* */
CALLPRC PRC(CEELOCT) /* Get current date and time */ +
PARM(&LILDATE /* Date in Lilian format */ +
&SECONDS /* Seconds field will not be used */ +
&GREG /* Gregorian field will not be used */ +
*OMIT) /* Omit feedback parameter */ +
/* so exceptions are signalled */

CALLPRC PRC(CEEDATE) +

PARM(&LILDATE /* Today's date */ +
&PICTSTR /* How to format */ +
&JULDATE /* Julian date */ +
*OMIT)

ADDPFM  LIBL/FILEX MBR('MBR' *CAT  &JULDATE')

ENDPGM

See the Programming category of information in the iSeries Information Center for
more information on ILE APlIs.

Retrieving Configuration Source

Using the Retrieve Configuration Source (RTVCFGSRC) command, you can
generate CL command source for creating existing configuration objects and place
the source in a source file member. The CL command source generated can be used
for the following:

* Moving configurations from system to system
* Maintaining on-site configurations

 Saving configurations (without using SAVSYS)

Chapter 2. CL Programming 55



Retrieving Configuration Status

Using the Retrieve Configuration Status (RTVCFGSTS) command, you can give
applications the capability to retrieve configuration status from three configuration
objects: line, controller, and device. The RTVCFGSTS command can be used in a
CL procedure to check the status of a configuration description.

Retrieving Network Attributes

Using the Retrieve Network Attributes (RTVNETA) command, you can retrieve the
network attributes of the system. These attributes can be changed using the
Change Network Attributes (CHGNETA) command and displayed using the
Display Network Attributes (DSPNETA) command. See the Systems Management
category of information in the iSeries Information Center for more information
about network attributes.

RTVNETA Example

In the following example, the default network output queue and the library that
contains it are retrieved, changed to QGPL/QPRINT, and later changed back to the
previous value.

PGM

DCL VAR(ZOUTQNAME) TYPE(*CHAR) LEN(10)

DCL VAR(8OUTQLIB) TYPE(*CHAR) LEN(10)

RTVNETA OUTQ(&OUTQNAME) OUTQLIB(&0UTQLIB)

CHGNETA OUTQ(QGPL/QPRINT)

CHGNETA  0UTQ(&0UTQLIB/&OUTQNAME)
ENDPGM

Retrieving Job Attributes

You can retrieve the job attributes and place their values in a CL variable to control
your applications.

Job attributes are retrieved using the Retrieve Job Attribute (RTVJOBA) command.
You can retrieve all job attributes, or any combination of them, with the RTVJOBA
command.

In the following CL procedure, a RTVJOBA command retrieves the name of the
user who called the procedure.
PGM
/* ORD410C Order entry program x/

DCL &CLKNAM TYPE(*CHAR) LEN(10)
DCL &NXTPGM TYPE(*CHAR) LEN(3)

RTVJOBA USER(&CLKNAM)

BEGIN: CALL ORD410S2 PARM(&NXTPGM &CLKNAM)
/* Customer prompt =*/
IF (&NXTPGM *EQ 'END') THEN(RETURN)

The variable &CLKNAM, in which the user name is to be passed, is first declared
using a DCL command. The RTVJOBA command follows the declare commands.

56 CL Programming V5R3



When the program ORD410S2 is called, two variables, &NXTPGM and
&CLKNAM, are passed to it. &NXTPGM is passed as blanks but could be changed
by ORD410S2.

RTVJOBA Example

Assume in the following CL procedure, an interactive job submits a program
including the CL procedure to batch. A Retrieve Job Attributes (RTVJOBA)
command retrieves the name of the message queue to which the job’s completion
message is sent, and uses that message queue to communicate with the user who
submitted the job.

PGM

DCL &MSGQ *CHAR 10

DCL &MSGQLIB *CHAR 10

DCL &MSGKEY =CHAR 4

DCL &REPLY =CHAR 1

DCL &ACCTNO =CHAR 6

RTVJOBA SBMMSGQ(&MSGQ) SBMMSGQLIB(&MSGQLIB)
IF (&MSGQ *EQ '=NONE') THEN(DO)

CHGVAR &MSGQ 'QSYSOPR'

CHGVAR &MSGQLIB 'QSYS'
ENDDO

IF (. . . ) THEN(DO)
SNDMSG : SNDPGMMSG MSG('Account number ' xCAT &ACCTNO *CAT 'is +
not valid. Do you want to cancel the update +
(Y or N)?') TOMSGQ(&MSGQLIB/&MSGQ) MSGTYPE(*INQ) +
KEYVAR (&MSGKEY)
RCVMSG MSGQ(*PGMQ) MSGTYPE(*RPY) MSGKEY (&MSGKEY) +
MSG(&REPLY) WAIT (*MAX)
IF (&REPLY *EQ 'Y') THEN(RETURN)
ELSE IF (&REPLY *NE 'N') THEN(GOTO SNDMSG)
ENDDO

Two variables, &MSGQ and &MSGQLIB, are declared to receive the name and
library of the message queue to be used. The RTVJOBA command is used to
retrieve the message queue name and library name. Because it is possible that a
message queue is not specified for the job, the message queue name is compared
to the value *NONE. If the comparison is equal, no message queue is specified,
and the variables are changed so that message queue QSYSOPR in library QSYS is
used. Later in the procedure, when an error condition is detected, an inquiry
message is sent to the specified message queue and the reply is received and
processed. Some of the other possible uses of the RTVJOBA command are:

* Retrieve one or more of the job attributes (such as output queue, library list) so
that they can be changed temporarily and later restored to their original values.

* Retrieve one or more of the job attributes for use in the SBMJOB command, so
that the submitted job will have the same attributes as the submitting job.

Retrieving Object Descriptions

You can also use the Retrieve Object Description (RTVOBJD) command to return
the descriptions of a specific object to a CL procedure. Variables are used to return

Chapter 2. CL Programming 57



the descriptions. You can use these descriptions to help you detect unused objects.
For more information about retrieving object descriptions, see|“Retrieving Object]
[Descriptions” on page 123

You can also use the Retrieve Object Description (QUSROBJD) application
programming interface (API) to return the description of a specific object to a
procedure. The system uses a variable to return the descriptions. For more
information, see the APIs section of the Programming category for the iSeries
Information Center.

Retrieving User Profile Attributes

Using the Retrieve User Profile Attributes (RTVUSRPRF) command, you can
retrieve the attributes of a user profile (except for the password) and place their
values in CL variables to control your applications. On this command, you can
specify either the 10-character user profile name or *CURRENT.

You can also monitor for escape messages after running the RTVUSRPRF
command. See the CL section of the Programming category in the iSeries
Information Center for more information.

RTVUSRPRF Example

In the following CL procedure, a RTVUSRPRF command retrieves the name of the
user who called the procedure and the name of a message queue to which to send
messages for that user:

DCL &USR =#CHAR 10
DCL &USRMSGQ =*CHAR 10
DCL &USRMSGQLIB +CHAR 10

RTVUSRPRF  USRPRF(*CURRENT) RTNUSRPRF(&USR) +
MGSQ(&USRMSGQ) MSGQLIB(&USRMSGQLIB)

The following information is returned to the procedure:
* &USR contains the user profile name of the user who called the program.

* &USRMSGQ contains the name of the message queue specified in the user
profile.

* &USRMSGQLIB contains the name of the library containing the message queue
associated with the user profile.

Retrieving Member Description Information

Using the Retrieve Member Description (RTVMBRD) command, you can retrieve
information about a member of a database file for use in your applications.

RTVMBRD Example

In the following CL procedure, a RTVMBRD command retrieves the description of
a specific member. Assume a database file called MFILE exists in the current
library (MYLIB) and contains 3 members (AMEMBER, BMEMBER, and

CMEMBER).

DCL &LIB TYPE (xCHAR) LEN(10)
DCL &MBR TYPE (*CHAR) LEN(10)
DCL  &SYS TYPE (xCHAR) LEN(4)

DCL &MTYPE  TYPE(*CHAR) LEN(5)
DCL &CRTDATE TYPE(*CHAR) LEN(13)
DCL &CHGDATE TYPE(*CHAR) LEN(13)
DCL  &TEXT TYPE (*CHAR) LEN(50)
DCL &NBRRCD  TYPE(*DEC) LEN(10 0)

58 cCL Programming V5R3



DCL &SIZE TYPE(+DEC) LEN(10 0)
DCL &USEDATE TYPE(*CHAR) LEN(13)
DCL &USECNT  TYPE(*DEC) LEN(5 0)
DCL &RESET  TYPE(*CHAR) LEN(13)

RTVMBRD  FILE(*CWeb siteIB/MYFILE) MBR(AMEMBER *NEXT) +
RTNLIB(&LIB) RTNSYSTEM(&SYS) RTNMBR(&MBR) +
FILEATR(&MTYPE) CRTDATE(&CRTDATE) TEXT(&TEXT) +
NBRCURRCD (&NBRRCD) DTASPCSIZ(&SIZE) USEDATE (8USEDATE) +
USECOUNT (&USECNT) RESETDATE (&RESET)

The following information is returned to the procedure:

* The current library name (MYLIB) is placed into the CL variable name &LIB

* The system that MYFILE was found on is placed into the CL variable name
&SYS (*LCL means the file was found on the local system, and *RMT means the
file was found on a remote system.)

¢ The member name (BMEMBER), since BMEMBER is the member immediately
after AMEMBER in a name ordered member list (*NEXT), is placed into the CL
variable named &MBR

¢ The file attribute of MYFILE is placed into the CL variable named &MTYPE
(*DATA means the member is a data member, and *SRC means the file is a
source member.)

* The creation date of BMEMBER is placed into the CL variable called &CRTDATE

* The text used to describe BMEMBER is placed into the CL variable called
&TEXT

* The current number of records in BMEMBER is placed into the CL variable
called &NBRRCD

* The size of BMEMBER's data space (in bytes) is placed into the CL variable
called &SIZE

¢ The date that BMEMBER was last used is placed into the CL variable called
&USEDATE

* The number of days that BMEMBER has been used is placed into the CL
variable called &USECNT The start date of this count is the value placed into
the CL variable called &RESET

Working with CL Procedures

A CL source procedure must be compiled into a module and bound into a
program before it can be run.

To create a CL program in one step, you can use the Create Bound Control
Language Program (CRTBNDCL) command and create a bound program with one
module.

You can also create a module with the Create Control Language Module
(CRTCLMOD) command. The module must then be bound into a program or
service program using the Create Program (CRTPGM) or Create Service Program
(CRTSRVPGM) command.

The following example creates the module ORD040C and places it in library
DSTPRODLB:

CRTCLMOD MODULE (DSTPRODLB/ORD040C) SRCFILE(QCLSRC)
TEXT('Order dept general menu program')

Chapter 2. CL Programming 59



The source commands for ORD040C are in the source file QCLSRC, and the source
member name is ORD040C. By default, a compiler listing is created.

On the Create Bound Control Language Program (CRTBNDCL) command, you can
specify listing options and whether the program should operate under the program
owner’s user profile.

rogram can run using either the owner’s user profile or the user’s user profile.
A ther th ! fil thy ! fil

CL procedures and programs are created using options on the Programming
Development Manager (PDM) menu or the Programmer Menu so the Create
Control Language Module (CRTCLMOD) command or CRTBNDCL command does
not have to be directly entered.

Logging CL Procedure Commands

You can specify that most CL commands run in a CL procedure be written
(logged) to the job log by specifying one of the following values on the LOG
parameter on the Create Control Language Module (CRTCLMOD) command or the
Create Bound Control Language Program (CRTBNDCL) command when the
procedure is compiled:

*JOB This default value indicates that logging is to occur when the job’s logging
option is on. The option is initially set for no logging, but it can be
changed by the LOGCLPGM parameter on the CHGJOB command.
Therefore, if you create the module or program with this value, you can
alter the logging option for each job or several times within a job.

*YES This value indicates that logging is to occur each time the CL procedure is
run. It cannot be changed by the CHGJOB command.

*NO This value indicates that no logging is to occur. It cannot be changed by
the CHGJOB command.

Because these values are part of the Create Control Language Module
(CRTCLMOD) and the Create Bound Control Language Program (CRTBNDCL)
commands, you must recompile the module or program to change them.

When you specify logging, you should use the Remove Message (RMVMSG)
command with care in order not to remove any logged commands from the job
log. If you specify CLEAR(*ALL) on the RMVMSG command, any commands
logged prior to running the RMVMSG command do not appear in the job log. This
affects only the CL procedure containing the RMVMSG command and does not
affect any logged commands for the preceding or following recursion levels.

Not all commands are logged to the job log. Following is a list of commands that
are not logged:

CALLPRC CHGVAR DCL

DCLF DO DOFOR
DOUNTIL DOWHILE ELSE
ENDDO ENDPGM ENDSELECT
GOTO IF ITERATE
LEAVE MONMSG OTHERWISE
PGM SELECT WHEN

60 cCL Programming V5R3



If the logging option is on, logging messages are sent to the CL procedure’s
message queue. If the CL procedure is running interactively, and the message level
on the job’s LOG parameter is set to 4, you can press F10 (Display detail messages)
to view the logging of all commands. You can print the log if the message level is
4 and you specify *PRINT when you sign off.

The log includes the time, program and procedure names, message texts, and
command names. Command names are qualified as they are on the original source
statement. Command parameters are also logged; if the parameter information is a
CL variable, the contents of the variable are printed (except for the RTNVAL
parameter).

Logging of commands affects performance.

CL Module Compiler Listings

When you create a CL module, you can create various types of listings using the
OPTION and OUTPUT parameters on the Create Control Language Module
(CRTCLMOD) command.

The OPTION parameter values and their meanings are:
* *GEN or *"NOGEN

Whether a module is to be created (*GEN is the default).
* *XREF or *NOXREF

Whether a listing of cross-references to variables and data references in the
source input is to be produced (*XREF is the default).

The OUTPUT parameter values and their meanings are:
* *PRINT - print listing
* *NONE - no compiler listing

The listing created by specifying the OUTPUT parameter is called a compiler listing.
The following shows a sample compiler listing. The callout numbers refer to
descriptions following the listing.

al al 3] |
I5722551 V5R3MO 041231 Control Language MYLIB/DUMPER SYSNAME  ©5/06/00 11:12:55 Page 1
Module . . . . . . . . oo o oo DUMPERR
Library . . . . . . .00 oo MYLIB
Source file . . . . . . . . . ..ot QCLSRC
Library . . . . . oo oo oo MYLIB
Source member name . . . . . . . . . : DUMPERR  05/06/94 10:42:26 EN
ISource printing options . . . . . *XREF  *NOSECLVL *NOEVENTF
Module Togging . . . . . . .. *JOB
Replace module object . . . . . *YES
Target release . . . . . . .. V5R3MO
Authority . . . *LIBCRTAUT
Sort sequence *HEX
Language identifier . . . . . . . . . ¢ *JOBRUN
Text . . . . ... .. ... ... .. ... Test program
Optimization . . . . . . . . .. ... ... =*NONE
Debugging view . . . . . . . . ... ... *STMT
Enable performance collection . . . . . . . . : *PEP
COMPITer & v v v e v e e e e e e e et IBM iSeries Control Language Compiler EN
Control Language Source
SEQNBR  #...+... 1 .ootie. 2 covbenn 3 s b i 5 Lo 6 kel 7 kel 8 e 9 Lo+ DATE EIR
B 100- PGM 05/06/94
200- DCL &ABC *CHAR 10 VALUE('THIS') 05/06/94
300- DCL &XYZ *CHAR 10 VALUE('THAT') EAN 05/06/94
400- DCL &MNO *CHAR 10 VALUE('OTHER') 05/06/94
500- CRTLIB LB(LARRY) 05/06/94
= CPDOO43 30 Keyword LB not valid for this command. EIll
600- DLTLIB LIB(MOE 05/06/94
* CPDOO13 30 A matching parenthesis not found.
700- MONMSG CPFOO0O EXEC(GOTO ERR) 05/06/94
800- ERROR: 05/06/94
900- CHGVAR &ABC 'ONE' 05/06/94
1000- CHGVAR &XYZ 'TWO' 05/06/94
1100- CHGVAR &MNO 'THREE' 05/06/94
1200- DMPCLPGM 05/06/94
1300- ENDPGM 05/06/94
*%x%xx% END OF SOURCE % x%x
5722SS1 V5R3MO 040201 Control Language MYLIB/DUMPER SYSNAME  ©5/06/00 11:12:55 Page 2

Cross Reference

Chapter 2. CL Programming 61



Declared Variables

Name
&ABC
&MNO

F“
XYz

Defined Type Length References
200 *CHAR 10 900
400 *CHAR 10 1100
300 *CHAR 10 1000

Defined Labels

Label
ERR

Defined References [N
700

Fkkkkk

* CPDO715 30 Label 'ERR ' does not exist.

ERROR

Total

800
*%x%x% END OF CROSS REFERENCE * %% xx*

5722SS1 V5R3MO 040201 Control Language MYLIB/DUMPER SYSNAME  ©5/06/04 11:12:55 Page 3
Message Summary
Severity
0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 [EHAN
0 0 3 0 0 0 0 0 0

Module DUMPERR not created in Tibrary MYLIB. Maximum error severit

Title:
(1] |
2] |
3] |

Prolog:

Source:

7]
8]

o. N
SUMMARY % % % % x
TIO

N % % % % *

y 3
*%*xx%x END 0O MESSAGE
IL

F
**x%xx END OF COMP A

The program number, release, modification level and date of OS/400.
The date and time of the compiler run.

The page number in the listing.

The parameter values specified (or defaults if not specified) on the Create
Control Language Module (CRTCLMOD) command. If the source is not in
a database file, the member name, date, and time are omitted.

The name of the compiler.

The sequence numbers of lines (records) in the source. A dash following a
sequence number indicates that a source statement begins at that sequence
number. The absence of a dash indicates that a statement is the
continuation of the previous statement.

Comments between source statements are handled like any other source
statement and have sequence numbers.

The source statements.

The last date the source statement was changed or added. If the source is
not in a database file, or the dates have been reset using RGZPFM, the
date is omitted.

If an error is found during compilation and can be traced to a specific
source statement, the error message is printed immediately following the
source statement. An asterisk (*) indicates the line contains an error
message. The line contains the message identifier, severity, and the text of
the message.

For more information about compilation errors, see [“Errors Encountered|
{during Compilation” on page 63/

Cross-References:

10] |

1] |

62  CL Programming V5R3

The symbolic variable table is a cross-reference listing of the variables
validly declared in the program. The table lists the variable, the sequence
number of the statement where the variable is declared, the variable’s
attributes, and the sequence numbers of statements that refer to the
variable.

The label table is a cross-reference listing of the labels validly defined in



the program. The table lists the label, the sequence number of the
statement where the label is defined, and the sequence numbers of
statements that refer to the label.

Messages:

This section is not included in the sample listing because no general error
messages were issued for the sample module. If there were general error messages
for this module, this section would contain, for each message, the message
identifier, the severity, and the message.

Message Summary:

EA0l A summary of the number of messages issued during compilation. The
total number is given along with totals by severity.

EEll A completion message is printed following the message summary.

The title, prologue, source, and message summary sections are always printed for
the *SOURCE option. The cross-reference section is printed if the *XREF option is
specified. The message section is printed only if general errors are found.

Errors Encountered during Compilation

In the compiler listing of a module, an error condition that relates directly to a
specific command is listed after that command. See [‘CL Module Compiler
[Listings” on page 61 for an example of these inline messages. Messages that do not
relate to a specific command but are more general in nature are listed in a
messages section of the listing, not inline with source statements.

The types of errors that are detected at compile time include syntax errors,
references to variables and labels not defined, and missing statements. The
following types of errors stop the procedure from being created (severity codes are
ignored).

* Value errors

* Syntax errors

* Errors related to dependencies between parameters within a command

 Errors detected during validity checking.

Even after an error that stops the procedure from being created is encountered, the
compiler continues to check the source for errors. This lets you see and correct as
many errors as possible before you try to create the module or program again.

Obtaining a Procedure Dump

You can obtain a CL procedure dump during procedure processing. The CL
procedure dump consists of a listing of all messages on the procedure’s message
queue and the values of all variables used in the procedure. This information may
be useful in determining the cause of a problem affecting procedure processing.

To obtain a CL procedure dump, do one of the following:

* Run the Dump CL Program (DMPCLPGM) command. This command can only
be used in a CL procedure and does not end the CL procedure.

¢ Enter D in response to inquiry message CPA0701 or CPA0702. The system sends
this message whenever it receives an unmonitored escape message from a CL
procedure. If the program is running in an interactive job, the system sends the

Chapter 2. CL Programming 63



message to the job’s external message queue. If the program is running as a
batch job, the system sends the message to the system operator message queue,
QSYSOPR.

Specify INQMSGRPY(*SYSRPYL) for the job. See the Systems Management
category of information in the iSeries Information Center for a description of this
job attribute. The IBM-supplied system reply list specifies a reply of D for
message CPA0702 or CPA0701. The system will print a dump if it receives one
of the inquiry messages.

Change the default reply for message CPA0701 or CPA0702 from C (cancel
program) to D (dump procedure). This prints a procedure dump whenever a
function check occurs in a CL procedure. To change the default, enter the
following command:

CHGMSGD MSGID(CPAQ702) MSGF(QCPFMSG) DFT(D)

Note: The security officer, or another user with update authority to the
QCPFEMSG file, must enter the CHGMSGD command.

Changing the message default causes a dump to be printed under any of the
following conditions:

The system operator message queue is in default mode and the message is sent
from a batch job.

The display station user presses the Enter key without typing a response,
causing the message default to be used.

INOQMSGRPY(*DFT) is specified for the job.

1]}
I5722551 V5R3MO 040201 Control Language MYLIB/DUMPER SYSNAME  ©5/06/00 ll:OS:OSEIPageI
Job name . . . . . ... : DSPO4 User name . . . . . . : SMITH Job number . . . . . . : 01329
Program name . . . . . . : DUMP Library . . . . . . . : MYLIB Statement . . . . . . . : 1200
odule name . . . . . . : DUMP Procedure name . . . : DUMP
Messages
Message ﬂl Message From To
Time 1D Sev Type Text Program Inst Program Inst
110503 CPC2102 00 Comp Library LARRY created. QLICRLIB *N DUMP *N
110503 CPF2110 40 ESC Library MOE not found. QLICLLIB *N DUMP *N
variables EN
IVariab]e Type Length Value Value in Hexadecimal
LTS P R e L e T ST
&ABC *CHAR 10 'ONE ! D6D5C540404040404040
&XYZ *CHAR 10 'TWO ! E3E6D640404040404040

xxxx%x END OF DUMP % % % %

EFHHl The program number, release, modification level and date of OS/400.

HHl The date and time the dump was printed.

Ell  The fully qualified name of the job in which the procedure was running.

Al The name and library of the program.

BHHE The number of the statement running when the dump was taken. If the

command is a nested command, the statement number is that of the outer
command.

Al Each message on the call message queue, including the time the message

was sent, message 1D, severity, type, text, sending program and instruction
number, and receiving program and instruction number.

EAl Al variables declared in the procedure, including variable name, type,

64 CL Programming V5R3

length, value, and hexadecimal value.

If a decimal variable contains decimal data that is not valid, the character
and hexadecimal values are printed as *CHAR variables.



If the value for the variable cannot be located, *NOT ADDRESSABLE is
printed. This can occur if the CL procedure is used in a command
processing program for a command that has a parameter with either
TYPE(*NULL) or PASSVAL(*NULL) specified, or if RTNVAL(*YES) was
specified for the parameter and a return variable is not coded on the
command.

If a variable is declared as TYPE(*LGL), it is shown on the dump as
*CHAR with a length of 1.

Displaying Module Attributes

You can use the Display Module (DSPMOD) command to display the attributes of
a module. The information displayed or printed can be used to determine the
options specified on the command used to create the module.

For more information on this command, see the CL section of the Programming
category in the iSeries Information Center.

Displaying Program Attributes

You can use the Display Program (DSPPGM) command to display the attributes of
a program. The information displayed or printed can be used to determine the
options specified on the command used to create the program.

For more information on this command, see the CL section of the Programming
category in the iSeries Information Center.

Return Code Summary

The return code (RTNCDE) parameter on the RTVJOBA command is a 5-digit
decimal value with no decimal positions (12345. for example). The decimal value
indicates the status of called programs. CL programs do not set the return code.
However, you can retrieve the current value of the return code as set by another
program in a CL program. You can do this by using the RTNCDE parameter of the
RTVJOBA command.

The following list summarizes the return codes used by languages supported on
0S/400:

* RPG IV programs
The return codes sent by the RPG IV compiler are:

0 When the program is created

2 When the program is not created

The return codes sent by running RPG IV programs are:

0 When a program is started, or by the CALL operation before a program
is called

1 When a program ends with LR set on

2 When a program ends with an error (response of C, D, F, or S to an

inquiry message)

3 When a program ends because of a halt indicator (H1-H9)

RPG IV return codes are tested only after a CALL:
— 0 or 1 indicate no error

Chapter 2. CL Programming 65



— 3 gives an RPG IV status code of 231
— Any other value gives an RPG IV status code 202 (call ended in error)

The return code cannot be tested directly by the user in the RPG IV program.
« ILE COBOL/400® programs
The return codes sent by running COBOL /400 programs are:

0 By each CALL statement before a program is called

2 When a program receives a function check (CPF9999) or the generic 1/0
exception handler gets control and there is no applicable USE procedure

COBOL/400 programs cannot retrieve these return codes. A return code value of
2 sends message CBE9001 and runs a Reclaim Resources (RCLRSC) command
with the *ABNORMAL option.

* C/400* programs

The current value of the integer return code returned by the last C/400® return
statement in a C/400 program.

Compiling Source Programs for a Previous Release

The Create Control Language Program (CRTCLPGM) command allows you to
compile CL source programs to use on a previous release by using the target
release (TGTRLS) parameter. The TGTRLS parameter specifies on which release of
the OS/400 licensed program the CL program object created intends to run. You
can specify *CURRENT, *PRYV, or a specific release level.

A CL program compiled with TGTRLS(*CURRENT) runs only on the current
release or later releases of the operating system. A CL program compiled with a
specified TGTRLS value other than *CURRENT can run on the specified release
value and on later releases.

Previous-Release (*PRV) Libraries

The CL compiler retrieves information about previous-release commands and files
from CL previous-release (*PRV) libraries. Two types of libraries contain
previous-release support: system libraries and user libraries. The libraries have the
names QSYSVxRxMx and QUSRVxRxMx. (VxRxMx represents the version, release,
and modification level of the supported previous release). For example, the
QUSRV4R5MO library supports a system that runs Version 4 Release 5 Modification
level 0 of the OS/400 licensed program.

When the CL compiler compiles for a supported previous release, it first checks for
commands and files in the previous-release libraries. When failing to find the
command or file in the previous-release libraries, the system performs a search of
the library list (*LIBL) or the qualified library.

QSYSVxRxMx Libraries: The QSYSVxRxMx libraries install at the same time as the
CL compiler support for a previous release installs. The QSYSVxRxMx libraries
include the command definition objects and output files (*OUTFILE) that are found
in library QSYS for that particular previous release.

QUSRVxRxMx Libraries: You can create your own QUSRVxRxMx libraries to hold
copies of your commands and files as they existed in the supported previous
release. This is especially important if the commands or files have changed on the
current release.

66 CL Programming V5R3



When the compiler looks for previous-release commands and files, it checks the
QUSRVxRxMx library (if it exists) before checking the QSYSVxRxMx library.

Note: Use the QUSRVxRxMXx libraries to hold previous-release user commands
and files, instead of the QSYSVxRxMXx libraries. When installing future
releases of the CL compiler, support for previous releases install as well.
Once the previous-release support is installed, the QUSRVxRxMXx libraries
for releases that are no longer supported can be deleted.

Do not add previous-release libraries to the library list (*LIBL). They contain
commands and files that support earlier releases and cannot run on the current
system. Only the CL compiler refers to and uses the commands and files in the
previous-release libraries. The system commands that are supplied for a previous
release are in the primary language for the system. There are no secondary
national language versions available.

See the appropriate CL Reference command, (Save Object (SAVOB]J), Save Changed
Object (SAVCHGOB]), or Save Library (SAVLIB)), for how to save objects on a
different release.

Note: CL programs that are compiled in the System/38"" environment cannot be
saved for a previous release.

Installing CL Compiler Support for a Previous Release
To install the *PRV CL compiler support and QSYSVxRxMx libraries:
1. Enter:
GO LICPGM

To view the Licensed Program Menu.
2. Select option 11 (Install licensed programs).

3. Select the option that is named *PRV CL Compiler Support. This causes the
QSYSVxRxMx libraries to install.

If you are not using the CL compiler support for a previous release, you can
remove this support by entering:

DLTLICPGM LICPGM(5769SS1) OPTION(9)

When the CL compiler support is removed, the QSYSVxRxMx libraries get
removed from the system, but the QUSRVxRxMx libraries do not. If no need
exists for the QUSRVxRxMXx libraries, you must explicitly delete them using the
Delete Library (DLTLIB) command.

Chapter 2. CL Programming 67



68 CL Programming V5R3



Chapter 3. Controlling Flow and Communicating between
Programs and Procedures

You can use the Call Program (CALL), Call Bound Procedure (CALLPRC), and
Return (RETURN) commands to pass control back and forth between programs
and procedures. Each command has slightly different characteristics. Information
may be passed to called programs and procedures as parameters when control is
passed.

Special attention should be given to programs created with USRPRF(*OWNER)
that run CALL or CALLPRC commands. Security characteristics of these
commands differ when they are processed in programs running under an owner’s

user profile. See the [Security - Referencer@‘ book for more information about
user profiles.

CALL Command

The Call Program (CALL) command calls a program named on the command, and
passes control to it. The CALL command has the following format:

CALL PGM(Tibrary-name/program-name) PARM(parameter-values)

The program name or library name may be a variable. If the called program is in a
library that is not on the library list, you must specify the qualified name of the
program on the PGM parameter. The PARM parameter is discussed under
[Parameters between Programs and Procedures” on page 72| When the called
program finishes running, control returns to the next command in the calling

program.
PROGA — PROGB
PGM PGM
DCL... DCL...
CALL PROGB CHGVAR. ..

SNDPGMMSG. . . «

ENDPGM ENDPGM
RBAFN555-0

© Copyright IBM Corp. 1997, 2004 69



The sequence of CALL commands in a set of programs calling each other is the
call stack. For example, in this series:

PROGA ~—»PROGB —»PROGC

CALL PROGB—— | CALL PROGC——

ENDPGM ENDPGM ENDPGM
RBAFN556-0

the call stack is:
Return Call

i
=i

PROGC

RBAFN530-0

When PROGC finishes processing, control returns to PROGB at the command after
the call to PROGC. Control is thus returned up the call stack. This occurs whether
or not PROGC ends with a RETURN or an ENDPGM command.

A CL program can call itself.

CALLPRC Command

The Call Bound Procedure (CALLPRC) command calls a procedure named on the
command, and passes control to it. The CALLPRC command has the following
format:

CALLPRC PRC(procedure-name) PARM(parameter-values) RTNVAL(return-value-variable)

The procedure name may not be a variable. The PARM parameter is discussed
under [“Passing Parameters between Programs and Procedures” on page 72| When
the called procedure finishes running, control returns to the next command in the

70  CL Programming V5R3



calling procedure.

PGMA
PROGA ——»PROGB
PGM PGM
DCL... DCL...
CALLPRC PROGB —— CHGVAR. ..

SNDPGMMSG. .. «

ENDPGM ENDPGM

RBAFN539-0

The sequence of CALLPRC commands in a set of procedures calling each other is
the call stack. For example, in this series:

PGMA SRVPGMA
PROCA —» PROCB » PROCC
CALLPRC PROCB CALLPRC PROCC
ENDPGM ENDPGM ENDPGM

RBAGN540-0

the call stack is:

Return Call

[ PROGA
[ PROGB

.
wall

RBAFN530-0

When PROGC finishes processing, control returns to PROGB at the command after
the call to PROGC. Control is thus returned up the call stack. This occurs whether
or not PROGC ends with a RETURN or an ENDPGM command.

A CL procedure can call itself.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 71



RETURN Command

The Return (RETURN) command in a CL procedure or OPM program removes that
procedure or OPM program from the call stack.

If the procedure containing the RETURN command was called by a CALLPRC
command, control is returned to the next sequential statement after that CALLPRC
command in the calling program.

If a MONMSG command specifies an action that ends with a RETURN command,
control is returned to the next sequential statement after the statement that called
the procedure or program containing the MONMSG command.

The RETURN command has no parameters.

Note: If you have a RETURN command in an initial program, the command entry
display is shown. You may wish to avoid this for security reasons.

Passing Parameters between Programs and Procedures

When you pass control to another program or procedure, you can also pass
information to it for modification or use within the receiving program or
procedure. See the discussion of this under [“Using the CALL Command” on page|
You can specify the information to be passed on the PARM parameter on the
CALL command or the CALLPRC command. The characteristics and requirements
for these commands are slightly different.

For instance, if PROGA contains the following command:
CALL PROGB PARM(&AREA)

then it calls PROGB and passes the value of &AREA to it. PROGB must start with
the PGM command, which also must specify the parameter it is to receive:

PGM PARM(&AREA) /+ PROGB */

For the CALL command or the CALLPRC command, you must specify the
parameters passed on the PARM parameter, and you must specify them on the
PARM parameter of the PGM command in the receiving program or procedure.
Because parameters are passed by position, not name, the position of the value
passed in the CALL command or the CALLPRC command must be the same as its
position on the receiving PGM command. For example, if PROGA contains the
following command:

CALL PROGB PARM(&A &B &C ABC)

it passes three variables and a character string, and if PROGB starts with:
PGM PARM(&C &B &A &D) /#*PROGB*/

then the value of &A in PROGA is used for &C in PROGB, and so on; &D in
PROGB is ABC. The order of the DCL statements in PROGB is unimportant. Only
the order in which the parameters are specified on the PGM statement determines
what variables are passed.

In addition to the position of the parameters, you must pay careful attention to
their length and type. Parameters listed in the receiving procedure or program
must be declared as the same length and type as they are in the calling procedure
or program. Decimal constants are always passed with a length of (15 5).

72 CL Programming V5R3



When you use the CALLPRC command and pass character string constants, you
must specify the exact number of bytes, and pass exactly that number. The called
procedure can use the information in the operational descriptor to determine the
exact number of bytes passed. You can use the API CEEDOD to access the
operational descriptor. See the APIs section of the Programming category for the
iSeries Information Center for information on the API CEEDOD.

When you use the CALL command, character string constants of 32 bytes or less
are always passed with a length of 32 bytes. If the string is longer than 32, you
must specify the exact number of bytes, and pass exactly that number.

The following is an example of a procedure or program that receives the value
&VAR1:

PGM PARM(&VAR1) /*PGMA=/
DCL VARl *CHAR LEN(36)

ENDPGM

The CALL command or CALLPRC command must specify 36 characters:
CALLPRC PGMA (ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJ)

The following example specifies the default lengths:

PGM PARM(&P1 &P2)

DCL VAR(&P1) TYPE(*CHAR) LEN(32)

DCL VAR(&P2) TYPE(*DEC) LEN(15 5)

IF (&P1 *EQ DATA) THEN(CALL MYPROG &P2)
ENDPGM

To call this program, you could specify:
CALL PROG (DATA 136)

The character string DATA is passed to &P1; the decimal value 136 is passed to
&P2

Referring to locally defined variables incurs less overhead than referring to passed
variables. Therefore, if the called procedure or program frequently refers to passed
variables, performance can be improved by copying the passed values into a local
variable and referring to the locally defined value rather than the passed value.

When calling an OPM CL program, the number of parameters that are passed to it
must exactly match the number that is expected by the program. The number that
is expected is determined at the time the program is created. (The operating
system prevents you from calling a program with more or fewer parameters than
the program expects). When calling an ILE program or procedure, the operating
system does not check the number of parameters that are passed on the call. In
addition, the space where the operating system stores the parameters is not
reinitialized between procedure calls. Calling a procedure that expects "n”
parameters with "n-1" parameters makes the system use whatever is in the
parameter space to access the "nth” parameter. The results of this action are very
unpredictable. This also applies to procedures written in other ILE languages that
call CL procedures or are called by CL procedures.

This also gives you more flexibility when you write ILE CL procedures, because
you can write procedures that have variable length parameter lists. For example,

based on the value of one parameter, a parameter that is specified later in the list

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 73



may not be required. If the controlling parameter indicated an unspecified optional
parameter, the called procedure should not attempt to refer to the optional
parameter.

You can also specify the special value *OMIT for any parameter that you want to
omit from the parameter list. If you specify *OMIT for a parameter, the calling
procedure passes a null pointer. The procedure that is called has to be prepared to
handle a null pointer if it refers to a parameter that is omitted. In control language
(CL), you can check for a null pointer by monitoring for MCH3601 on the first
reference to the omittable parameter. The procedure must take appopriate action if
it receives a MCH3601.

When calling procedures, you can pass arguments by reference and by value. For
more information about passing by value, see the Calls to Procedures and

Programs chapter in the|ILE Concept @ book.

The following example has two CL procedures. The first procedure expects one
parameter; if that parameter remains unspecified, results will be unpredictable. The
first procedure calls another procedure, PROC1. PROC1 expects one or two
parameters. If the value of the first parameter is '1’, it expects the second
parameter as specified. If the value of the second parameter is ‘0’, it assumes that
the second parameter remained unspecified and used a default value instead.
PROCT1 also uses the CEEDOD API to determine the actual length that is passed
for the second parameter.

74 CL Programming V5R3



MAIN: PGM  PARM(&TEXT)/* &TEXT must be specified. Results will be +
unpredictable if it is omitted.*/
DCL  VAR(&TEXT) TYPE(*CHAR) LEN(10)
CALLPRC  PRC(PROC1) PARM('0"')
CALLPRC ~ PRC(PROC1) PARM('1' &TEXT)
CALLPRC ~ PRC(PROC1) PARM('1' 'Goodbye')
ENDPGM

PROC1: PGM  PARM(&P1 &P2) /* PROC1 - Procedure with optional +
parameter &P2 */

DCL VAR(&P1) TYPE(*LGL) /*Flag which indicates +

whether or not &P2 will be specified. If +
value is '1', then &P2 is specified */

DCL  VAR(&P2) TYPE(*CHAR) LEN(10)

DCL  VAR(&MSG) TYPE(*CHAR) LEN(10)

DCL  VAR(&PARMPOS) TYPE(*CHAR) LEN(4) /+ +
Parameter position for CEEDOD*/

DCL  VAR(PARMDESC) TYPE(*CHAR) LEN(4) /* +
Parameter description for CEEDOD*/

DCL  VAR(PARMTYPE) TYPE(*CHAR) LEN(4) /* +
Parameter datatype from CEEDOD*/

DCL  VAR(&PARMINFO1) TYPE(*CHAR) LEN(4) /% +
Parameter information from CEEDOD x/

DCL  VAR(&PARMINF02) TYPE(*CHAR) LEN(4) /* +
Parameter information from CEEDOD x/

DCL  VAR(&PARMLEN) TYPE(*CHAR) LEN(4) /* +
Parameter length from CEEDOD*/

DCL  VAR(PARMLEND) TYPE(*DEC) LEN(3 0) /+* +
Decimal form of parameter lengthx/

IF  COND(&P1) THEN(DO) /* Parm 2 is+
specified, so use the parm value for the +
message text*/

CHGVAR VAR(%BIN(&PARMPOS 1 4)) VALUE(2) /* Tell +
CEEDOD that we want the operational +
descriptor for the second parameterx/

CALLPRC PRC(CEEDOD) PARM(&PARMPOS &PARMDESC +
&PARMTYPE &PARMINFO1 &PARMINFO2 &PARMLEN) +
/* Call CEEDOD to get the length of data +
specified for &P2x/

CHGVAR VAR(&PARMLEND) VALUE(%BIN(&PARMLEN 1 4)) /* +
Convert the Tength returned by CEEDOD to +
decimal format*/

CHGVAR VAR(&MSG) VALUE(%SST(&P2 1 &PARMLEND)) /* +

Copy the data passed in to a local variablex/

ENDO

ELSE  CMD(CHGVAR VAR(%MSG) VALUE('Hello')) /* Use +

"Hello" for the message textx/
SNDPGMMSG MSG (&MSG)
ENDPGM

Using the CALL Command

When the CALL command is issued by a CL procedure, each parameter value
passed to the called program can be a character string constant, a numeric
constant, a logical constant, or a CL variable. A maximum of 255 parameters can be
passed to the called program. The values of the parameters are passed in the order
in which they appear on the CALL command, and this must match the order in
which they appear in the parameter list of the called program. The names of the
variables passed do not have to be the same as the names on the receiving
parameter list. The names of the variables receiving the values in the called
program must be declared to the called program, but the order of the declare
commands is not important.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 75



No association exists between the storage in the called program and the variables
it receives. Instead, when the calling program passes a variable, the storage for the
variable is in the program in which it was originally declared. The system passes
variables by address. When passing a constant, the calling program makes a copy
of the constant, and passes the address of that copy to the called program.

The result is that when a variable is passed, the called program can change the
value of the variable, and the change is reflected in the calling program. The new
value does not have to be returned to the calling program for later use; it is
already there. Thus no special coding is needed for a variable that is to be returned
to the calling program. When a constant is passed, and its value is changed by the
called program, the changed value is not known to the calling program. Therefore,
if the calling program calls the same program again, it reinitializes the values of
constants, but not of variables.

An exception to the previous description is when the CALL command calls an ILE
C program. When using the CALL command to call an ILE C program and pass
character or logical constants, the system adds a null character (x'00") after the last
non-blank character. If the constant is a character string that is enclosed in
apostrophes or a hexadecimal constant, the null character is added after the last
character that was specified. This preserves the trailing blanks (x "40” characters).
Numeric values are not null-terminated.

If a CL program might be called using a CALL command that has not been

compiled (an interactive CALL command or through the SBMJOB command), the
decimal parameters (*DEC) should be declared with LEN(15 5), and the character
parameters (*CHAR) should be declared LEN(32) or less in the receiving program.

A CALL command that is not in a CL procedure or program cannot pass variables
as arguments. Be careful when specifying the CALL command as a command
parameter that is defined as TYPE(*CMDSTR). This converts the contents of any
variables that are specified on the PARM parameter to constants. The command
(CMD) parameters on the Submit Job (SBMJOB) command, Add Job Schedule
Entry (ADDJOBSCDE) command, or Change Job Schedule Entry (CHGJOBSCDE)
command are examples. The online help information for the Call (CALL)
command describes how to pass parameters when using the CALL command
interactively. Refer to the command help or to the command documentation in the
CL section of the Programming category in the iSeries Information Center.

Parameters can be passed and received as follows:

* Character string constants of 32 bytes or less are always passed with a length of
32 bytes (padded on the right with blanks). If a character constant is longer than
32 bytes, the entire length of the constant is passed. If the parameter is defined
to contain more than 32 bytes, the CALL command must pass a constant
containing exactly that number of bytes. Constants longer than 32 characters are
not padded to the length expected by the receiving program.

The receiving program can receive less than the number of bytes passed. For
example, if a program specifies that 4 characters are to be received and ABCDEF is
passed (padded with blanks in 26 positions), only ABCD are accepted and used by
the program.

If the receiving program receives more than the number of bytes passed, the
results may be unexpected. Numeric values passed as characters must be
enclosed in apostrophes.

* Decimal constants are passed in packed form and with a length of LEN(15 5),
where the value is 15 digits long, of which 5 digits are decimal positions. Thus,

76  CL Programming V5R3



if a parameter of 12345 is passed, the receiving program must declare the
decimal field with a length of LEN(15 5); the parameter is received as
12345.00000.

If you need to pass a numeric constant to a program and the program is
expecting a value with a length and precision other than 15 5, the constant can
be coded in hexadecimal format. The following CALL command shows how to
pass the value 25.5 to a program variable that is declared as LEN(5 2):

CALL PGMA PARM(X'02550F"')

* Logical constants are passed with a length of 32 bytes. The logical value 0 or 1 is
in the first byte, and the remaining bytes are blank. If a value other than 0 or 1
is passed to a program that expects a logical value, the results may be
unexpected.

* A floating point literal or floating point special value (*NAN, *INF, or *NEGINF)
is passed as a double precision value, which occupies 8 bytes. Although a CL
program cannot process floating point numbers, it can receive a floating point
value into a character variable and pass that variable to an HLL program that
can process floating point values.

¢ The system can pass a variable if the call is made from a CL procedure or
program. In this case the receiving program should declare the field to match
the variable that is defined in the calling CL procedure or program. For example,
assume that a CL procedure or program defines a decimal variable that is
named &CHKNUM as LEN(5 0). Then the receiving program should declare the
field as packed with 5 digits total, with no decimal positions. When running a
CALL command in batch mode by using the SBMJOB command in a CL
procedure or program, the system treats any variables that are passed as
arguments like constants.

e If either a decimal constant or a program variable can be passed to the called
program, the parameter should be defined as LEN(15 5), and any calling
program must adhere to that definition. If the type, number, order, and length of
the parameters do not match between the calling and receiving programs (other
than the length exception noted previously for character constants), results
cannot be predicted.

* In order for an integer constant to be passed to an integer variable, the constant
must be specified in hexadecimal format. The size of the hexadecimal constant
and integer variable must be the same.

* The value *N cannot be used to specify a null value because a null value cannot
be passed to another program.

In the following example, program A passes six parameters: one logical constant,
three variables, one character constant, and one numeric constant.

PGM /* PROGRAM A =*/

DCL VAR(&B) TYPE(*CHAR)

DCL VAR(&C) TYPE(*DEC) LEN(15 5) VALUE(13.529)

DCL VAR(&D) TYPE(*CHAR) VALUE('1234.56')

CHGVAR VAR(&B) VALUE (ABCDEF)

CALL PGM(B) PARM('1' &B &C &D XYZ 2) /= Note blanks between parms */

ENDPGM

PGM PARM(&A &B &C &W &V &U) /* PROGRAM B x/
DCL VAR(&A) TYPE(*LGL)
DCL VAR(&B) TYPE(*CHAR) LEN(4)
DCL VAR(&C) TYPE(*DEC)
/* Default length (15 5) matches DCL LEN in program A =/
DCL VAR(&W) TYPE(*CHAR)

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 77



DCL VAR(&V) TYPE(*CHAR)
DCL VAR(&U) TYPE(*DEC)

. ENDPGM

Note: If the fifth parameter passed to PGMB was 456 instead of XYZ and was
intended as alphanumeric data, the value would have been specified as
'456' in the parameter.

The logical constant "1” does not have to be declared in the calling program. It is
declared as type logical and named &A in program B.

Because no length is specified on the DCL command for &B, the default length,
which is 32 characters, is passed. Only 6 characters of &B are specified (ABCDEF).
Because &B is declared with only 4 characters in program B, only those 4
characters are received. If they are changed in program B, those 4 positions for &B
will also be changed in program A for the remainder of this call.

The length (LEN) parameter must be specified for &C in program A. If it were not
specified, the length would default to the specified value’s length, which would be
incompatible with the default length expected in program B. &C has a value of
13.52900.

&W in program B (&D in program A) is received as a character because it is
declared as a character. Apostrophes are not necessary to indicate a string if TYPE
is *CHAR. In program A, the length defaults to the value’s length of 7 (the decimal
point is considered a position in a character string). Program B expects a length of
32. The first 7 characters are passed, but the contents past the position 7 cannot be
predicted.

The variable &V is a character string XYZ, padded with blanks on the right. The
variable &U is numeric data, 2.00000.

For information about default lengths in the DCL commands, refer to the
command help or to the command documentation in the CL section of the
Programming category in the iSeries Information Center.

Common Errors When Calling Programs and Procedures

The following sections describe the errors encountered most frequently in passing
values on a CALL command or a CALLPRC command. Some of these errors can
be very difficult to debug, and some have serious consequences for program
functions.

Date Type Errors Using the CALL Command

The total length of the command string includes the command name, spaces,
parameter names, parentheses, contents of variables and apostrophes used. For
most commands, the command string initiates the command processing program
as expected. However, for some commands some variables may not be passed as
expected. For more information on the topic of variables, see

ariables” on page 21
pag

When the CALL command is used with the CMD parameter on the SBMJOB
command, unexpected results may occur. Syntactically, the CALL command
appears the same when used with the CMD parameter as it does when used as the
compiler directive for the CALL command. When used with the CMD parameter,

78  CL Programming V5R3



the CALL command is converted to a command string that is run at a later time
when the batch subsystem initiates it. When the CALL command is used by itself,
the CL compiler generates code to perform the call.

Common problems with decimal constants and character variables often occur. In
the following cases, the command string is not constructed as needed:

* When decimal numbers are converted to decimal constants.

When the command string is run, the decimal constant is passed in a packed
form with a length of LEN(15 5). It is not passed in the form specified by the CL
variable.

* When a character variable is declared longer than 32 characters.

The contents of the character variable is passed as described previously, usually as
a quoted character constant with the trailing blanks removed. As a result, the
called program may not be passed enough data.

The following methods can be used to correct errors in constructing command

strings:

* Create the CALL command string to be submitted by concatenating the various
portions of the command together into one CL variable. Submit the command
string using the request data (RQSDTA) parameter of the SBMJOB command.

* For CL character variables larger than 32 characters where trailing blanks are
significant, create a variable that is one character larger than needed and
substring a non-blank character into the last position. This prevents the
significant blanks from being truncated. The called program should ignore the
extra character because it is beyond the length expected.

¢ Create a command that will initiate the program to be called. Submit the new
command instead of using the CALL command. The command definition
ensures the parameters are passed to the command processing program as
expected.

Data Type Errors
When passing a value, the data type (TYPE parameter) must be the same (*CHAR,

*DEC, or *LGL) in the calling procedure or program and in the called procedure or
program. Errors frequently occur in this area when you attempt to pass a numeric
constant. If the numeric constant is enclosed in apostrophes, it is passed as a
character string. However, if the constant is not enclosed in apostrophes, it is
passed as a packed numeric field with LEN(15 5).

In the following example, a quoted numeric value is passed to a program that
expects a decimal value. A decimal data error (escape message MCH1202) occurs
when variable &A is referred to in the called program (PGMA):

CALL  PGMA PARM('123') /* CALLING PROGRAM */
PGM  PARM(ZA) /% PGMA */
DCL  &A *DEC LEN(15 5) /# DEFAULT LENGTH */

iF (&A *GT 0) THEN(...) /* MCH1202 OCCURS HERE =*/

In the following example, a decimal value is passed to a program defining a
character variable. Generally, this error does not cause run-time failures, but
incorrect results are common:

CALL PGMB PARM(12345678) /* CALLING PROG */

PGM PARM(8A) /% PGMB =/

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 79



DCL &A *CHAR 8

éNDPGM
Variable &A in PGMB has a value of hex 001234567800000F.

Generally, data can be passed from a logical (*LGL) variable to a character
(*CHAR) variable, and vice versa, without error, so long as the value is expressed
as ’0" or "1".

Decimal Length and Precision Errors

If a decimal value is passed with an incorrect decimal length and precision (either
too long or too short), a decimal data error (MCH1202) occurs when the variable is
referred to. In the following examples, the numeric constant is passed as LEN(15
5), but is declared in the called procedure or program as LEN(5 2). Numeric
constants are always passed as packed decimal (15 5).

CALL PGMA PARM(123) /* CALLING PROG =*/

PGM PARM(8A) /% PGMA */
DCL &A *DEC (5 2)

iF (8A *GT ©) THEN(...) /* MCH1202 OCCURS HERE */

If a decimal variable had been declared with LEN(5 2) in the calling program or
procedure and the value had been passed as a variable instead of as a constant, no
error would occur.

If you need to pass a numeric constant to a procedure or program and the
procedure or program is expecting a value with a length and precision other than
15 5, the constant can be coded in hexadecimal format. The following CALL
command shows how to pass the value 25.5 to a program variable that is declared
as LEN(5 2):

CALL PGMA PARM(X'02550F"')

If a decimal value is passed with the correct length but with the wrong precision
(number of decimal positions), the receiving procedure or program interprets the
value incorrectly. In the following example, the numeric constant value (with
length (15 5)) passed to the procedure is handled as 25124.00.

CALL PGMA PARM(25.124) /+ CALLING PGM */

PGM PARM(&A) /* PGMA */
DCL &A *DEC (15 2) /* LEN SHOULD BE 15 5%/
éNDPGM

These errors occur when the variable is first referred to, not when it is passed or
declared. In the next example, the called program does not refer to the variable,
but instead simply places a value (of the detected wrong length) in the variable
returned to the calling program. The error is not detected until the variable is
returned to the calling program and first referred to. This kind of error can be
especially difficult to detect.

80 cCL Programming V5R3



PGM /* PGMA */

DCL &A *DEC (7 2)

CALL PGMB PARM(&A) /+ (7 2) PASSED TO PGMB =*/

IF (& *NE 0) THEN(...) /* *MCH1202 OCCURS HERE */

ENDPGM

PGM PARM(&A) /* PGMB */

DCL &A *DEC (5 2) /* WRONG LENGTH =/
CHGVAR &A (&B-&C) /* VALUE PLACED in &A =/
RETURN

When control returns to program PGMA and &A is referred to, the error occurs.

Character Length Errors

If you pass a character value longer than the declared character length of the
receiving variable, the receiving procedure or program cannot access the excess
length. In the following example, PGMB changes the variable that is passed to it to
blanks. Because the variable is declared with LEN(5), only 5 characters are changed
to blanks in PGMB, but the remaining characters are still part of the value when
referred to in PGMA.

PGM /* PGMA x/

DCL &A *CHAR 10

CHGVAR &A 'ABCDEFGHIJ'
CALL PGMB PARM(&A) /* PASS to PGMB */

IF (& *EQ ' ') THEN(...) /* THIS TEST FAILS =*/
ENDPGM

PGM PARM(&A) /* PGMB */

DCL &A *CHAR 5  /* THIS LEN ERROR*/

CHGVAR &A ' ' /* 5 POSITIONS ONLY; OTHERS UNAFFECTED */
RETURN

While this kind of error does not cause an escape message, variables handled this
way may function differently than expected.

If the value passed to a procedure or program is shorter than its declared length in
the receiving procedure or program, there may be more serious consequences. In
this case, the value of the variable in the called procedure or program consists of
its values as originally passed, and whatever follows that value in storage, up to
the length declared in the called procedure or program. The content of this
adopted storage cannot be predicted. If the passed value is a variable, it could be
followed by other variables or by internal control structures for the procedure or
program. If the passed value is a constant, it could be followed in storage by other
constants passed on the CALL or CALLPRC command or by internal control
structures.

If the receiving procedure or program changes the value, it operates on the original
value and on the adopted storage. The immediate effect of this could be to change
other variables or constants, or to change internal structures in such a way that the
procedure or program fails. Changes to the adopted storage take effect
immediately.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 81



In the following example, two 3-character constants are passed to the called
program. Character constants are passed with a minimum of 32 characters for the
CALL command. (Normally, the value is passed as 3 characters left-adjusted with
trailing blanks.) If the receiving program declares the receiving variable to be
longer than 32 positions the extra positions use adopted storage of unknown value.
For this example, assume that the two constants are adjacent in storage.

CALL PGMA ('ABC' 'DEF') /* PASSING PROG */

PGM PARM(&A &B) /* PGMA */

DCL &A *CHAR 50 /* VALUE:ABC+29' '+DEF+15' ' x/
DCL &B *CHAR 10 /* VALUE:DEF+7' ' =/

CHGVAR VAR(&A) (' ') /* THIS ALSO BLANKS &B =/

ENDPGM
Values passed as variables behave in exactly the same way.

In the following example, two 3-character constants are passed to the called
procedure. Only the number of characters specified are passed for the CALLPRC
command. If the receiving program declares the receiving variable to be longer
than the length of the passed constant, the extra positions use adopted storage of
unknown value.

In the following example, assume the two constants are adjacent in storage.
CALLPRC PRCA ('ABC' 'DEF') /+ PASSING PROG */

PGM PARM(&A &B) /* *PRCA x/

DCL &A *CHAR 5 /* VALUE:'ABC' + 'DE' =/

DCL &B *CHAR 3 /* VALUE: 'DEF"' =/

CHGVAR &A ' ' /* This also blanks the first two bytes of &B */
ENDPGM

Using Data Queues to Communicate between Programs and
Procedures

Data queues are a type of system object that you can create, to which one HLL
procedure or program can send data, and from which another HLL procedure or
program can receive data. The receiving program can be already waiting for the
data, or can receive the data later.

The advantages of using data queues are:

» Using data queues frees a job from performing some work. If the job is an
interactive job, this can provide better response time and decrease the size of the
interactive program and its process access group (PAG). This, in turn, can help
overall system performance. For example, if several workstation users enter a
transaction that involves updating and adding to several files, the system can
perform better if the interactive jobs submit the request for the transaction to a
single batch processing job.

* Data queues are the fastest means of asynchronous communication between two
jobs. Using a data queue to send and receive data requires less overhead than
using database files, message queues, or data areas to send and receive data.

82  CL Programming V5R3



* You can send to, receive from, and retrieve a description of a data queue in any
HLL procedure or program by calling the QSNDDTAQ, QRCVDTAQ,
QMHRDQM, QCLRDTAQ, and QMHQRDQD programs without exiting the
HLL procedure or program or calling a CL procedure or program to send,
receive, clear, or retrieve the description.

* When receiving data from a data queue, you can set a time out such that the job
waits until an entry arrives on the data queue. This differs from using the
EOFDLY parameter on the OVRDBF command, which causes the job to be
activated whenever the delay time ends.

* More than one job can receive data from the same data queue. This has an
advantage in certain applications where the number of entries to be processed is
greater than one job can handle within the desired performance restraints. For
example, if several printers are available to print orders, several interactive jobs
could send requests to a single data queue. A separate job for each printer could
receive from the data queue, either in first-in-first-out (FIFO), last-in-first-out
(LIFO), or in keyed-queue order.

* Data queues have the ability to attach a sender ID to each message being placed
on the queue. The sender ID, an attribute of the data queue which is established
when the queue is created, contains the qualified job name and current user
profile.

In addition to these advantages, you can journal your data queues. This allows you
to recover the object to a consistent state, even if the object was in the middle of
some change action when the abnormal initial program load (IPL) or crash
occurred. Journaling also provides for replication of the data queue journal to a
remote system (using remote journal for instance). This lets the system reproduce
the actions in a similar environment to replicate the application work. For more
information about journaling support on the iSeries server, see the

information in the Information Center.

The following is an example showing how data queues work. Several jobs place
entries on a data queue. The entries are handled by a server job. This might be
used to have jobs send processed orders to a single job that would do the printing.
Any number of jobs can send to the same queue.

Sending Job 1——¥

Sending Job 2—— / DTAQ ——»Server Job

Sending Job 3——»

RBAFN535-0

Another example using data queues follows. A primary job gets the work requests
and sends the entries to a data queue (by calling the QSNDDTAQ program). The
server jobs receive the entries from the data queue (by calling the QRCVDTAQ
program) and process the data. The server jobs can report status back to the
primary job using another data queue.

Data queues allow the primary job to route the work to the server jobs. This frees
the primary job to receive the next work request. Any number of server jobs can

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 83



receive from the same data queue.

Master Job Master Queues Server Jobs

Work INPUT
CALL QSNDDTAQ > —» Job 1
—» Job 2
—» Job 3

STATUS
CALL QRCVDTAQ i« —» Job 1

Results

D DTAQ —» Job 2
—» Job 3
RBAFN536-0

When no entries are on a data queue, server jobs have the following options:
* Wait until an entry is placed on the queue

* Wait for a specific period of time; if the entry still has not arrived, then continue
processing

* Do not wait, return immediately.

Data queues can also be used when a program needs to wait for input from
display files, ICF files, and data queues at the same time. When you specify the
DTAQ parameter for the following commands:

* Create Display File (CRTDSPF) command

* Change Display File (CHGDSPF) command

* Opverride Display File (OVRDSPF) command

* Create ICF File (CRTICFF) command

* Change ICF File (CHGICFF) command

* Opverride ICF File (OVRICFF) command

you can indicate a data queue that will have entries placed on it when any of the
following happens:

* An enabled command key or Enter key is pressed from an invited display
device

e Data becomes available from an invited ICF session

Support is available to optionally associate a data queue to an output queue by
using the Create Output Queue (CRTOUTQ) or Change Output Queue
(CHGOUTQ) command. The system logs entries in the data queue when spooled
files are in ready (RDY) status on the output queue. A user program can determine
when a spooled file is available on an output queue by using the Receive Data
Queue (QRCVDTAQ) API to receive information from a data queue. See the CL
section of the Programming category of the iSeries Information Center for details
about the [Create Output Queue (CRTOUTQ) command} For more information

about data queues on output queues see the [Printer Device Programmingl@
book.

Jobs running on the system can also place entries on the same data queue as the
one specified in the DTAQ parameter by using the QSNDDTAQ program.

84 CL Programming V5R3



An application calls the QRCVDTAQ program to receive each entry placed on the
data queue and then processes the entry based on whether it was placed there by a
display file, an ICF file, or the QSNDDTAQ program. For more information, see
“Example 2: Waiting for Input from a Display File and an ICF File” on page 89 and
“Example 3: Waiting for Input from a Display File and a Data Queue” on page 91

Remote Data Queues

You can access remote data queues with Distributed Data Management (DDM)
files. DDM files make it possible for a program residing on one server to access a
data queue on a remote server to perform any of the following functions:

* send data to a data queue
* receive data from a data queue
* clear data from a data queue

An application program that currently uses a standard data queue can also access
a remote DDM data queue without changing or compiling the application again.
To ensure the correct data queue is accessed, you may need to do one of the
following:

* Delete the standard data queue and create a DDM data queue that has the same
name as the original standard data queue.

* Rename the standard data queue.

You can create a DDM data queue with the following command:

CRTDTAQ DTAQ(LOCALLIB/DDMDTAQ) TYPE(*DDM)
RMTDTAQ (REMOTELIB/REMOTEDTAQ) RMTLOCNAME (SYSTEMB)
TEXT('DDM data queue to access data queue on SYSTEMB')

You can also use an expansion of the previous example ("Master Job/Server Job")
to create a DDM data queue to use with remote data queues. The master job
resides on SystemA; the data queues and server jobs are moved to SystemB. After
creating two DDM data queues (INPUT and STATUS), the master job continues to
communicate asynchronously with the server jobs that reside on SystemB. The
following example shows how to create a DDM data queue with remote data
queues:

CRTDTAQ DTAQ(LOCALLIB/INPUT) TYPE (*DDM)

RMTDTAQ(REMOTELIB/INPUT) RMTLOCNAME (SystemB)
TEXT('DDM data queue to access INPUT on SYSTEMB')

CRTDTAQ DTAQ(LOCALLIB/STATUS) TYPE (*DDM)
RMTDTAQ(REMOTELIB/STATUS) RMTLOCNAME (SystemB)
TEXT('DDM data queue to access STATUS on SYSTEMB')

The master job calls QSNDDTAQ, then passes the data queue name of
LOCALLIB/INPUT and sends the data to the remote data queue
(REMOTELIB/INPUT) on SystemB. To receive data from the remote data queue,
(REMOTELIB/STATUS), the master job passes the data queue name of
LOCALLIB/STATUS for the call to QRCVDTAQ.

See the CL section of the Programming category in the iSeries Information Center
for more information on DDM data queues.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 85



SystemA SystemB

Master Job
Work INPUT
—— Jobl
CALL QSNDDTAQ Job?
—» Job3
STATUS
—» Jobl
CALL QRCVDTAQ Job?
Results > Job3
RBAFN538-0

Figure 1. Example of Accessing a Remote Data Queue

86

Comparisons with Using Database Files as Queues

The following describes the differences between using data queues and database
files:

* Data queues have been improved to communicate between active procedures
and programs, not to store large volumes of data or large numbers of entries.
For these purposes, use database files as queues.

» Data queues should not be used for long-term storage of data. For this purpose,
you should use database files.

* When using data queues, you should include abnormal end routines in your
programs to recover any entries not yet completely processed before the system
is ended.

* It is good practice to periodically (such as once a day) delete and re-create a
data queue at a safe point. Performance can be affected if too many entries exist
without being removed. Re-creating the data queue periodically will return the
data queue to its optimal size. A more efficient approach may be to use the auto
reclaim feature, which is described in ["Managing the Storage Used by a Data|
[Queue” on page 87/

Similarities to Message Queues

Data queues are similar to message queues, in that procedures and programs can
send data to the queue that is received later by another procedure or program.

CL Programming V5R3



However, more than one program can have a receive pending on a data queue at
the same time, while only one program can have a receive pending on a message
queue at the same time. (Only one program receives an entry from a data queue,
even if more than one program is waiting.) Entries on a data queue are handled in
either first-in-first-out, last-in-first-out, or keyed-queue order. When an entry is
received, it is removed from the data queue.

Prerequisites for Using Data Queues

Before using a data queue, you must first create it using the Create Data Queue
(CRTDTAQ) command. The following is an example:

CRTDTAQ DTAQ(MYLIB/INPUT) MAXLEN(128)
TEXT('Sample data queue')

The required MAXLEN parameter specifies the maximum length (1 to 64,512
characters) of the entries that are sent to the data queue.

Managing the Storage Used by a Data Queue

Each entry receives a storage allocation when sent to a data queue. The storage
allocated will be the value that is specified for the maximum entry length of the
data queue that was specified on the Create Data Queue (CRTDTAQ) command.
When receiving an entry from a data queue, the data queue removes the entry, but
it does not free the auxiliary storage. The system uses the auxiliary storage again
when sending a new entry to the data queue. The queue grows larger when not
receiving entries that are sent to the queue. Smaller queues that have not been
extended past the initial number of entries have better performance. If a data
queue has grown too large, delete the data queue by using the Delete Data Queue
(DLTDTAQ) command. On completion of the data queue deletion, re-create the
queue by using the Create Data Queue (CRTDTAQ) command.

There is another way to manage the size of a data queue on Release V4R5M0 and
beyond. This consists of using the SIZE and AUTORCL keywords on the
CRTDTAQ command. You can use the SIZE keyword to specify the maximum
number of entries and the initial number of entries for the data queue. You can use
the AUTORCL keyword for a queue that has been extended to indicate if the data
queue should have storage automatically reclaimed when the queue is empty. The
amount of storage that remains allocated to the queue equals the initial number of
entries specified for the queue when it was created. If AUTORCL contains a value
of *NO, which is the default, the system does not automatically reclaim storage
from unused space. To reclaim the storage the data queue uses, you would need to
delete and re-create it as described in the preceding paragraph. Auto reclaim may
be expensive depending on the size of the queue, so the initial number of entries
specified on the CRTDTAQ command should be set to the largest typical number
of entries that are expected to be on the data queue. If the initial number of entries
is set too small, the system will execute the reclaim function more frequently.

Allocating Data Queues

If your application requires that a data queue is not accessed by more than one job
at a time, it should be coded to include an Allocate Object (ALCOB]J) command
before using a data queue. The data queue should then be deallocated using the
Deallocate Object (DLCOB]J) command when the application is finished using it.

The ALCOBJ command does not, by itself, restrict another job from sending or

receiving data from a data queue or clearing a data queue. However, if all
applications are coded to include the ALCOBJ command before any use of a data

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 87



queue, the allocation of a data queue already allocated to another job will fail,
preventing the data queue from use by more than one job at a time.

When an allocation fails because the data queue is already allocated to another job,
the system issues an error message, CPF1002. The Monitor Message (MONMSG)
command can be used in the application procedure to monitor for this message
and respond to the error message. Possible responses include sending a message to
the user and attempting to allocate the data queue again. See |”Monitoring fod
|Messages in a CL Program or Procedure” on page 239| for more information.

Examples Using a Data Queue

The following examples explain three methods to process data queue files.

Example 1: Waiting up to 2 Hours to Receive Data from Data
Queue

In the following example, program B specifies to wait up to 2 hours (7200 seconds)
to receive an entry from the data queue. Program A sends an entry to data queue
DTAQ1 in library QGPL. If program A sends an entry within 2 hours, program B
receives the entries from this data queue. Processing begins immediately. If 2 hours
elapse without procedure A sending an entry, program B processes the time-out
condition because the field length returned is 0. Program B continues receiving
entries until this time-out condition occurs. The programs are written in CL;
however, either program could be written in any high-level language.

The data queue is created with the following command:
CRTDTAQ DTAQ(QGPL/DTAQ1) MAXLEN(86)

In this example, all data queue entries are 80 bytes long.

In program A, the following statements relate to the data queue:
PGM

DCL &FLDLEN =*DEC LEN(5 0) VALUE(80)

DCL &FIELD *CHAR LEN(80)

. (determine data to be sent to the queue)

CALL QSNDDTAQ PARM(DTAQL QGPL &FLDLEN &FIELD)

In program B, the following statements relate to the data queue:

PGM

DCL &FLDLEN =«DEC LEN(5 0) VALUE(80)

DCL &FIELD =*CHAR LEN(80)

DCL &WAIT +DEC LEN(5 ©) VALUE(7200) /* 2 hours =*/

LOOP: CALL QRCVDTAQ PARM(DTAQl QGPL &FLDLEN &FIELD &WAIT)
IF (&FLDLEN *NE 0) DO  /* Entry received =/

. (process data from data queue)

GOTO LOOP  /* Get next entry from data queue */
ENDDO

. (no entries received for 2 hours; process time-out condition)

88 cCL Programming V5R3



Example 2: Waiting for Input from a Display File and an ICF File

The following example is different from the usual use of data queues because there
is only one job. The data queue serves as a communications object within the job
rather than between two jobs.

Job A
ICF |4 » Application Display
File Program File
A
N Data <
Queue

RBAFN544-0

In this example, a program is waiting for input from a display file and an ICF file.
Instead of alternately waiting for one and then the other, a data queue is used to
allow the program to wait on one object (the data queue). The program calls
QRCVDTAQ and waits for an entry to be placed on the data queue that was
specified on the display file and the ICF file. Both files specify the same data
queue. Two types of entries are put on the queue by display data management and
ICF data management support when the data is available from either file. ICF file
entries start with *ICFF and display file entries start with *DSPF.

The display file or ICF file entry that is put on the data queue is 80 characters in
length and contains the field attributes described in the following list. Therefore,
the data queue that is specified using the CRTDSPF, CHGDSPF, OVRDSPF,
CRTICFF, CHGICFF, and OVRICFF commands must have a length of at least 80
characters.

Position (and Data Type)
Description

1 through 10 (character)
The type of file that placed the entry on the data queue. This field will
have one of two values:
*ICFF for ICF file
*DSPF for display file

If the job receiving the data from the data queue has only one display file
or one ICF file open, then this is the only field needed to determine what
type of entry has been received from the data queue.

11 through 12 (binary)
The unique identifier for the file. The value of the identifier is the same as
the value in the open feedback area for the file. This field should be used
by the program receiving the entry from the data queue only if there is
more than one file with the same name placing entries on the data queue.

13 through 22 (character)
The name of the display file or ICF file. This is the name of the file actually
opened, after all overrides have been processed, and is the same as the file
name found in the open feedback area for the file. This field should be
used by the program receiving the entry from the data queue only if there
is more than one display file or ICF file that is placing entries on the data
queue.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 89



23 through 32 (character)
The library where the file is located. This is the name of the library, after
all overrides have been processed, and is the same as the library name
found in the open feedback area for the file. This field should be used by
the program receiving the entry from the data queue only if there is more
than one display file or ICF file that is placing entries on the data queue.

33 through 42 (character)
The program device name, after all overrides have been processed. This
name is the same as that found in the program device definition list of the
open feedback area. For file type *DSPF, this is the name of the display
device where the command or Enter key was pressed. For file type *ICFF,
this is the name of the program device where data is available. This field
should be used by the program receiving the entry from the data queue
only if the file that placed the entry on the data queue has more than one
device or session invited prior to receiving the data queue entry.

43 through 80 (character)
Reserved.

The following example shows coding logic that the program previously described
might use:

OPEN DSPFILE ... /* Open the Display file. DTAQ parameter specified on*/

/* CRTDSPF, CHGDSPF, or OVRDSPF for the file. */
OPEN ICFFILE ... /* Open the ICF file. DTAQ parameter specified on */
/* CRTICFF, CHGICFF, or OVRICFF for the file. */

DO
WRITE DSPFILE /* Write with Invite for the Display file */
WRITE ICFFILE /% Write with Invite for the ICF file */
CALL QRCVDTAQ /* Receive an entry from the data queue specified */
/* on the DTAQ parameters for the files. Entries */
/* are placed on the data queue when the data is */
/* available from any invited device or session x/
/* on either file. */

/* After the entry is received, determine which file %/
/* has data available, read the data, process it, */
/* invite the file again and return to process the =/

/* next entry on the data queue. */
IF "ENTRY TYPE' FIELD = 'xDSPF " THEN  /* Entry is from display =/
DO /* file. Since this entry=*/

/* does not contain the =/
/* data received, the data*/
/* must be read from the =/
/* file before it can be =*/

READ DATA FROM DISPLAY FILE /* processed. */
PROCESS INPUT DATA FROM DISPLAY FILE
WRITE TO DISPLAY FILE /* Write with Invite */
END
ELSE /* Entry is from ICF */

/* file. Since this entryx/
/* does not contain the */
/* data received, the datax*/
/* must be read from the =*/
/* file before it can be =*/
/* processed. */

90 cCL Programming V5R3



READ DATA FROM ICF FILE

PROCESS INPUT DATA FROM ICF FILE

WRITE TO ICF FILE /* Write with Invite */
LOOP BACK TO RECEIVE ENTRY FROM DATA QUEUE

END
Example 3: Waiting for Input from a Display File and a Data
Queue
In the following example, the program in Job B is waiting for input from a display
file that it is using and for input to arrive on the data queue from Job A. Instead of
alternately waiting for the display file and then the data queue, the program waits
for one object, the data queue.

Job A Job B
Batch Job Interactive Job Using
Placing User Entries Data Queue D1sp1a¥ File aﬁd
on the Receiving Entries
Data Queue from the Data Queue

A

Display File

RBAFN545-0

The program calls QRCVDTAQ and waits for the placement of an entry on the
data queue that was specified on the display file. Job A is also placing entries on
the same data queue. There are two types of entries that are put on this queue, the
display file entry, and the user-defined entry. Display data management places the
display file entry on the data queue when data is available from the display file.
Job A places the user-defined entry on the data queue.

The structure of the display file entry is described in the previous example.

The structure of the entry placed on the queue by Job A is defined by the
application programmer.

The following example shows coding logic that the application program in Job B
might use:

OPEN DSPFILE ... /* Open the Display file. DTAQ parameter specified onx/

/* CRTDSPF, CHGDSPF, or OVRDSPF for the file. */

DO
WRITE DSPFILE /% Write with Invite for the Display file */
CALL QRCVDTAQ /* Receive an entry from the data queue specified */
/* on the DTAQ parameter for the file. Entries */
/* are placed on the data queue either by Job A or =/
/* by display data management when data is */

/* available from any invited device on the display =/

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 91



/* file. */
/* After the entry is received, determine what type =/
/* of entry it is, process it, and return to receive */

/* the next entry on the data queue. */
IF "ENTRY TYPE' FIELD = 'xDSPF " THEN  /* Entry is from display */
DO /* file. Since this entryx*/

/* does not contain the */
/* data received, the datax*/
/* must be read from the =*/
/* file before it can be =*/

READ DATA FROM DISPLAY FILE /* processed. */
PROCESS INPUT DATA FROM DISPLAY FILE
WRITE TO DISPLAY FILE /* Write with Invite */
END
ELSE /* Entry is from Job A. =/

/* This entry contains  */
/* the data from Job A, =*/
/* so no read is required*/
/* before processing the */
/* data. */
PROCESS DATA QUEUE ENTRY FROM JOB A
LOOP BACK TO RECEIVE ENTRY FROM DATA QUEUE

END

Creating Data Queues Associated with an Output Queue

You can associate a data queue with an output queue. When a spooled file on the
output queue goes to a READY status, the data queue entry is sent to the data
queue. Use the Create Data Queue (CRTDTAQ) command to create the data queue.
Specify the maximum message length (MAXLEN) parameter value as at least 128.
The sequence (SEQ) parameter value should be *FIF0 or *LIFO.

For information about data queues associated with an output queue, see
lqueue support for spooled files|in the Printing category in the iSeries Information
Center, http://www.iseries.ibm.com/infocenter. This information also includes a
sample data queue entry, “Record type 01 data queue entry format”.

Using Data Areas to Communicate between Procedures and Programs

A data area is an object used to hold data for access by any job running on the
system. A data area can be used whenever you need to store information of limited
size, independent of the existence of procedures or files. Typical uses of data areas
are:

* To provide an area (perhaps within each job’s QTEMP library) to pass
information within a job.

* To provide a field that is easily and frequently changed to control references
within a job, such as:

— Supplying the next order number to be assigned
— Supplying the next check number
— Supplying the next save/restore media volume to be used

* To provide a constant field for use in several jobs, such as a tax rate or
distribution list.

* To provide limited access to a larger process that requires the data area. A data
area can be locked to a single user, thus preventing other users from processing
at the same time.

92 CL Programming V5R3



To create a data area other than a local or group data area, use the Create Data
Area (CRTDTAARA) command. By doing this, you create a separate object in a
specific library, and you can initialize it to a value. To use the value in a CL
procedure or program, use a Retrieve Data Area (RTVDTAARA) command to bring
the current value into a variable in your procedure or program. If you change this
value in your CL procedure or program and want to return the new value to the
data area, use the Change Data Area (CHGDTAARA) command.

To display the current value, use the Display Data Area (DSPDTAARA) command.
You can delete a data area using the Delete Data Area (DLTDTAARA) command.

You can journal your data areas. This allows you to recover the object to a
consistent state, even if the object was in the middle of some change action when
the abnormal IPL or crash occurred. Journaling also provides for replication of the
data area journal to a remote system (using remote journal for instance). This lets
the system reproduce the actions in a similar environment to replicate the
application work. For more information about journaling support on iSeries

servers, see the [Backup and Recovervl@ book.

Local Data Area

A local data area is created for each job in the system, including autostart jobs, jobs
started on the system by a reader, and subsystem monitor jobs.

The system creates a local data area, which is initially filled with blanks, with a
length of 1024 and type *CHAR. When you submit a job using the SBMJOB
command, the value of the submitting job’s local data area is copied into the
submitted job’s local data area. You can refer to your job’s local data area by
specifying *LDA for the DTAARA keyword on the CHGDTAARA, RTVDTAARA,
and DSPDTAARA commands or *LDA for the substring built-in function (%SST).

The following is true of a local data area:

* The local data area cannot be referred to from any other job.
* You cannot create, delete, or allocate a local data area.

* No library is associated with the local data area.

* You cannot change the local data area in a secondary thread.

e The ILE CL compiler generates code to ensure that a procedure running in a
secondary thread cannot access the local data area while a procedure running in
the initial thread is changing it.

The local data area contents exist across routing step boundaries. Therefore, using
a Transfer Job (TFRJOB), Transfer Batch Job (TFRBCHJOB), Reroute Job (RRTJOB),
or Return (RETURN) command does not affect the contents of the local data area.

You can use the local data area to:
* Pass information to a procedure or program without the use of a parameter list.

* Pass information to a submitted job by loading your information into the local
data area and submitting the job. Then, you can access the data from within
your submitted job.

* Improve performance over other types of data area accesses from a CL
procedure or program.

* Store information without the overhead of creating and deleting a data area
yourself.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 93



Most high-level languages can also use the local data area. The SBMxxxJOB and
STRxxxRDR commands cause jobs to start with a local data area initialized to
blanks. Only the SBMJOB command allows the contents of the submitting job’s
local data area to be passed to the new job.

Group Data Area
The system creates a group data area when an interactive job becomes a group job
(using the Change Group Attributes [CHGGRPA] command). Only one group data
area can exist for a group. The group data area is deleted when the last job in the
group is ended (with the ENDJOB, SIGNOFF, or ENDGRPJOB command, or with

an abnormal end), or when the job is no longer part of the group job (using the
CHGGRPA command with GRPJOB(*NONE) specified).

A group data area, which is initially filled with blanks, has a length of 512 and
type *CHAR. You can use a group data area from within a group job by specifying
*GDA for the DTAARA parameter on the CHGDTAARA, RTVDTAARA, and
DSPDTAARA commands. A group data area is accessible to all of the jobs in the

group.

The following are true for a group data area:

* You cannot use the group data area as a substitute for a character variable on
the substring built-in function (%SUBSTRING or %SST). (You can, however,
move a 512-byte character variable used by the substring function into or out of
the group data area.)

* A group data area cannot be referred to by jobs outside the group.

* You cannot create, delete, or allocate a group data area.

* No library is associated with a group data area.

The contents of a group data area are unchanged by the Transfer to Group Job
(TFRGRPJOB) command.

In addition to using the group data area as you use other data areas, you can use
the group data area to communicate information between group jobs in the same
group. For example, after issuing the Change Group Job Attributes (CHGGRPA)
command, the following command can be used to set the value of the group data
area:

CHGDTAARA DTAARA(*GDA) VALUE('January1988")

This command can be run from a program or can be issued by the workstation
user.

Any other CL procedure or program in the group can retrieve the value of the
group data area with the following CL command:

RTVDTAARA DTAARA(*GDA) RTNVAR(&GRPARA)

This command places the value of the group data area (January1988) into CL
variable &GRPARA.

Program Initialization Parameter (PIP) Data Area

A PIP data area (PDA) is created for each prestart job when the job is started. The
object sub-type of the PDA is different than a regular data area. The PDA can only
be referred to by the special value name *PDA. The size of the PDA is 2000 bytes
but the number of parameters contained in it is not restricted.

94 CL Programming V5R3



The RTVDTAARA, CHGDTAARA, and DSPDTAARA CL commands and the
RTVDTAARA and CHGDTAARA macro instructions support the special value
*PDA for the data area name parameter.

Remote Data Areas

You can access remote data areas by using Distributed Data Management (DDM).
You do not need to change or recompile an application program that resides on
one server when it retrieves data that resides on a remote server. To ensure that
you are accessing the correct data area, you may need to do one of the following:

¢ Delete the standard data area and create a DDM data area that has the same
name as the original standard data area

* Rename the standard data area

You can create a DDM data area by doing the following:

CRTDTAARA DTAARA(LOCALLIB/DDMDTAARA) TYPE (*DDM)
RMTDTAARA (REMOTELIB/RMTDTAARA) RMTLOCNAME (SYSTEMB)
TEXT('DDM data area to access data area on SYSTEMB')

To use a value from a data area on a remote server in a CL program, use the
Retrieve Data Area (RTVDTAARA) command. Specify the name of a DDM data
area to bring the current value into a variable in your program. If you change this
value in your CL program and want to return the new value to the remote data
area, use the Change Data Area (CHGDTAARA) command and specify the same
DDM data area.

If you specify the name of a DDM data area when using the Display Data Area
(DSPDTAARA) command, the value of the DDM data area is displayed, rather
than the value of the remote data area. You can delete a DDM data area using the
Delete Data Area (DLTDTAARA) command.

See the CL section of the Programming category in the iSeries Information Center
for more information on DDM data areas.

Creating a Data Area

Unlike variables, data areas are objects and must be created before they can be
used. A data area can be created as:

* A character string that can be as long as 2000 characters.

* A decimal value with different attributes, depending on whether it is used only
in a CL program or procedure or also with other high-level language programs
or procedures. For CL procedures and programs, the data area can have as many
as 15 digits to the left of the decimal point and as many as 9 digits to the right,
but only 15 digits total. For other languages, the data area can have as many as
15 digits to the left of the decimal point and as many as 9 to the right, for a total
of up to 24 digits.

* Alogical value ‘0’ or 1", where 0’ can mean off, false, or no; and 1’ can mean
on, true, or yes.

When you create a data area, you can also specify an initial value for the data area.
If you do not specify one, the following is assumed:

e 0 for decimal.
e Blanks for character.
* ’0’ for logical.

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 95



To create a data area, use the Create Data Area (CRTDTAARA) command. In the
following example, a data area is created to pass a customer number from one
program to another:

CRTDTAARA DTAARA(CUST) TYPE(*DEC) +
LEN(5 ©) TEXT('Next customer number')

Data Area Locking and Allocation

The CHGDTAARA command uses a *SHRUPD (shared for update) lock on the
data area during command processing. The RTVDTAARA and DSPDTAARA
commands use a *SHRRD (shared for read) lock on the data area during command
processing. If you are performing more than one operation on a data area, you
may want to use the Allocate Object (ALCOB]J) command to prevent other users
from accessing the data area until your operations are completed. For example, if
the data area contains a value that is read and incremented by jobs running at the
same time, the ALCOB] command can be used to protect the value in both the
read and update operations. See for how to allocate objects.

For information on handling data areas in other (non-CL) languages, refer to the
appropriate HLL reference manual.

Displaying a Data Area

You can display the attributes (name, library, type, length, data area text
description), and the value of a data area. See the CL section of the Programming
category in the iSeries Information Center for a detailed description of the
Display Data Area (DSPDTAARA) command.

The display uses the 24-digit format with leading zeros suppressed.

Changing a Data Area

The Change Data Area (CHGDTAARA) command changes all or part of the value
of a specified data area. It does not change any other attributes of the data area.
The new value can be a constant or a CL variable. If the command is in a CL
procedure, the data area does not need to exist when the program is created.

Retrieving a Data Area

The Retrieve Data Area (RTVDTAARA) command retrieves all or part of a
specified data area and copies it into a CL variable. The data area does not need to
exist at compilation time, and the CL variable need not have the same name as the
data area. Note that this command retrieves, but does not alter, the contents of the
specified data area.

Retrieve Data Area Examples

Example 1
Assume that you are using a data area named ORDINFO to track the status of an
order file. This data area is designed so that:

* Position 1 contains an O (open), a P (processing), or a C (complete).
» Position 2 contains an I (in-stock) or an O (out-of-stock).
* Positions 3 through 5 contain the initials of the order clerk.

You would declare these fields in your procedure as follows:

DCL VAR(&ORDSTAT) TYPE(*CHAR) LEN(1)
DCL VAR(&STOCKC) TYPE(*CHAR) LEN(1)
DCL VAR(&CLERK) TYPE(*CHAR) LEN(3)

96 CL Programming V5R3



To retrieve the order status into &ORDSTAT, you would enter the following:
RTVDTAARA DTAARA(ORDINFO (1 1)) RTNVAR(&ORDSTAT)

To retrieve the stock condition into &STOCK, you would enter the following:
RTVDTAARA DTAARA(ORDINFO (2 1)) RTNVAR(&STOCKC)

To retrieve the clerk’s initials into &CLERK, you would enter the following:
RTVDTAARA DTAARA(ORDINFO (3 3)) RTNVAR(&CLERK)

Each use of the RTVDTAARA command requires the data area to be accessed. If
you are retrieving many subfields, it is more efficient to retrieve the entire data
area into a variable, then use the substring built-in function to extract the subfields.

Example 2
The following example of the RTVDTAARA command places the specified contents
of a 5-character data area into a 3-character variable. This example:

* Creates a 5-character data area named DA (in library MYLIB) with the initial
value of 'ABCDE'

* Declares a 3-character variable named &CLVAR1
* Copies the contents of the last three positions of DA1 into &CLVAR1

To do this, the following commands would be entered:
CRTDTAARA DTAARA(MYLIB/DA1) TYPE(*CHAR) LEN(5) VALUE(ABCDE)

DCL VAR(&CLVAR1) TYPE(*CHAR) LEN(3)
RTVDTAARA DTAARA(MYLIB/DAL (3 3)) RTNVAR(&CLVARL)

&CLVAR1 now contains 'CDE'.

Example 3
The following example of the RTVDTAARA command places the contents of a
5-digit decimal data area into a 5-digit decimal digit variable. This example:

¢ Creates a 5-digit data area named DA2 (in library MYLIB) with two decimal
positions and the initial value of 12.39

* Declares a 5-digit variable named &CLVAR2 with one decimal position
* Copies the contents of DA2 into &CLVAR2

To do this, the following commands would be entered:
CRTDTAARA DTAARA(MYLIB/DA2) TYPE(*DEC) LEN(5 2) VALUE(12.39)

DCL VAR(&CLVAR2) TYPE(*DEC) LEN(5 1)
RTVDTAARA DTAARA(MYLIB/DA2) RTNVAR(&CLVAR2)

&CLVAR2 now contains 0012.3 (fractional truncation occurred).

Changing and Retrieving a Data Area Example

The following is an example of using the CHGDTAARA and RTVDTAARA
commands for character substring operations.

This example:

Chapter 3. Controlling Flow and Communicating between Programs and Procedures 97



* Creates a 10-character data area named DA (in library MYLIB) with initial
value ABCD56781J

e Declares a 5-character variable named &CLVAR1

* Changes the contents of data area DA1 (starting at position 5 for length 4) to the
value EFG padding after the G with 1 blank)

* Retrieves the contents of data area DA1 (starting at position 5 for length 5) into
the CL variable &CLVAR1

To do this, the following commands would be entered:
DCL VAR(&CLVARL) TYPE(*CHAR) LEN(5)

CRTDTAARA DTAARA(MYLIB/DAL) TYPE(%CHAR) LEN(10) +
VALUE (' ABCD56781J")

CHGDTAARA DTAARA((MYLIB/DAL) (5 4)) VALUE('EFG')
RTVDTAARA DTAARA((MYLIB/DA1) (5 5)) RTNVAR(&CLVAR1)

The variable &CLVAR1 now contains 'EFG I'.

98 CL Programming V5R3



Chapter 4. Objects and Libraries

Objects are the basic units on which commands perform operations. For example,
programs and files are objects. Through objects you can find, maintain, and process
your data on the iSeries server. You need only know what object and what
function (command) you want to use; you do not need to know the storage
address of your data to use it.

Note: Objects can reside in both libraries and directories. (Previously, an object
could reside only in a library.) This chapter contains information only about
objects residing in libraries. See the Integrated File System topics in the
Database and File Systems category of information of the iSeries
Information Center for information on directories.

Object Types and Common Attributes

Each type of object on the server has a unique purpose within the system and has
an associated set of commands which process that type of object. For a complete
list of the types of objects, the abbreviations used as parameter values for object
type parameters, and the definition of the object belonging to that type, refer to the
CL section of the Programming category in the iSeries Information Center.

Each object type has a set of common attributes that describes the object. These
common attributes are listed in [Table 3 on page 120} The online help information
for the Display Object Description (DSPOBJD) command describes these attributes.
Refer to the command documentation in the CL section of the Programming
category in the iSeries Information Center

Functions Performed on Objects

Many functions can be performed on objects. Some functions the system performs
automatically and others you request through commands.

Functions the System Performs Automatically

The functions performed automatically ensure that objects are processed in a
consistent, secure, and correct way. These functions are:

* Object type verification. The system checks the type of object and the type of
function being performed on the object to verify that function can be performed
on that type of object. For example, if the object specified in a CALL command
is not a program, the call function cannot be performed.

* Object authority verification. The system checks the object, the function, and the
user to verify that user can perform that function on that object. For example, if
USERA is not authorized to use OBJB in any way, he cannot request that any
functions be performed on it.

* Object lock enforcement. The system ensures that the integrity of objects is
preserved when two or more users try to use an object at the same time.
Simultaneous changes to an object are locked out; users cannot use an object
while it is being changed.

* Object damage detection and notification. The system monitors for errors during
the processing of objects and communicates to you unplanned failures that result
from the unrecognizable contents of objects. These failures are communicated to

© Copyright IBM Corp. 1997, 2004 99



you through standard messages that indicate object damage. The system is
designed so that these failures are rare, and monitoring and communicating
these failures provide integrity.

Functions You Can Perform Using Commands
The functions you can request through commands are of two types:

* Specific functions for each object type. For example, create, change, and display
are specific functions. The specific functions are described in other sections of
this manual that describe the object type.

¢ Some common functions that apply to objects in general are explained in this

guide:

Table 2. Common Functions for Objects

Function Page
Searching for multiple objects or a single object in a library
Specifying authority for objects in a library
Placing objects in libraries 115
Describing objects 119
Displaying object descriptions 119
Retrieving object descriptions 123
Detecting unused objects on the system 125
Moving objects between libraries 131
Creating duplicate objects 133
Renaming objects
Deleting objects
Allocating and deallocating objects
Displaying the lock states on objects
Checking for object existence

Libraries

On the iSeries server, objects are grouped in special objects called libraries. Objects
are found using libraries. To access an object in a library, you must be authorized
to the library and to the object. See [“Security Considerations for Objects” on page]
and [“Specifying Authority for Libraries” on page 111| for more information.

If you specify a library name in the same parameter as the object name, the object
name is called a qualified name.

When a library is created you can specify into which user Auxiliary storage pool
(ASP) the library should be created. A library can be created into a basic user ASP
or an Independent ASP. See the [[ndependent ASPs|article for details about the
independent ASPs. All objects created into the library are created into the same
ASP as the library.

If you are entering a command in which you must specify a qualified name, for
example, the object name could be:

DISTLIB/ORDO46OC

100 CL Programming V5R3



The order entry program ORD040C is in the library DISTLIB.

If you are using prompting during command entry and you are prompted for a
qualified name, you receive prompts for both the object name and the library
name. On most commands, you can specify a particular library name, specify
*CURLIB (the current library for the job), or use a library list. Library lists are
described in the following section.

Library Lists

For commands in which a qualified name can be specified, you can omit specifying
the library name. If you do so, either of the following happens:

 For a create command, the object is created and placed in the user’s current
library, *CURLIB, or in a system library, depending on the object type. For
example, programs are created and placed in *CURLIB; authorization lists are
created and placed in the system library, QSYS.

* For commands other than a create command, the system normally uses a library
list to find the object.

Library lists used by OS/400 consist of the following four parts.

System part
The system part of the library list contains objects needed by the system.

Product libraries
Two product libraries may be included in the library list. The system uses
product libraries to support languages and utilities that are dependent on
libraries other than QSYS to process their commands.

User commands and menus can also specify a product library on the
PRDLIB parameter on the Create Command (CRTCMD) and Create Menu
(CRTMNU) commands to ensure that dependent objects can be found.

The product libraries are managed by the system, which automatically
places product libraries (such as QRPG) into the reserved product library
position in the library list when needed. A product library may be a
duplicate of the current library or of a library in the user part of the library
list.

For example, assume that there is a product library in the library list when
a command or menu that has a product library starts. The system will
replace the product library in the library list with the new product library
until the new command ends or the user leaves the new menu.

Current library
The current library can be, but does not have to be, a duplicate of any
library in the library list. The value *CURLIB (current library) may be used
on most commands as a library name to represent whatever library has
been specified as the current library for the job. If no current library exists
in the library list and *CURLIB is specified as the library, QGPL is used.
You can change the current library for a job by using the Change Current
Library (CHGCURLIB) or Change Library List (CHGLIBL) command.

User part
The user part of the library list contains those libraries referred to by the
system’s users and applications. The user part, and the product and
current libraries, may be different for each job on the system. There is a
limit of 250 libraries.

Chapter 4. Objects and Libraries 101



For a list of the libraries shipped with the system or optionally installable on the
system, see [Appendix C, “IBM-Supplied Libraries in Licensed Programs (LP),” on|

|Eage 413.|

The following diagram shows an example of the structure of the library list:

Search order QSYS System Part

QSYS2
QUSRSYS
QHLPSYS
QPDA Product Library 1
QRPG Product Library 2
OELIB Current Library
OELIB User Part
QGPL

v QTEMP

RBAFN557-0

Note: The system places library QPDA in product library 1 when the source entry
utility (SEU) is used. When SEU is being used to syntax check source code,
a second product library can be added to product library 2. For example, if
you are syntax checking RPG source, then QPDA is product library 1 and
QRPG is product library 2. In most other system functions, product library 2
is not used.

Using a library list simplifies finding objects on the system. Each job has a library
list associated with it. When a library list is used to find an object, each library in
the list is searched in the order of its occurrence in the list until an object of the
specified name and type is found. If two or more objects of the same type and
name exist in the list, you get the object from the library that appears first in the
library list. The following diagram shows the searches made for an object both
when the library list (*LIBL) is used and when a library name is specified:

Note: Alternatively, use *NLVLIBL instead of *LIBL to qualify any command. Enter
the command from a CL program, on a command line, or anywhere you
normally enter a command. The system uses *NLVLIBL to determine which
libraries to search for the *CMD object. You search only the national
language support libraries in the library list by specifying *NLVLIBL.

For more information on signing and verification of *CMD objects, see the
[Object signing and signature verification| article in the Security category of

102  CL Programming V5R3



information of the iSeries Information Center.

FILE (ORDHDRP) QSYS
Library List
QSYS p
QGPL
QTEMP
QGPL
DISTLIB
DSTTESTLB R
QTEMP
DISTLIB
The system searches the ORDHDRP
libraries in their order | ————
of occurrence in the
Tibrary 1list until the
first file ORDHDRP is
found. DSTTESTLB
ORDHDRP

—File (DISTLIB/ORDHDRP)

The system searches the
library DISTLIB for the file
ORDHDRP. The T1ibrary DISTLIB
does not have to be in the
library list for the job.

RBAFN525-0

The following diagram shows what happens when two objects of the same name
but different types are in the library list. The system will search for CUSTINQ
*FILE in the library list by specifying:
DSPOBJD 0BJ(*LIBL/CUSTINQ) OBJTYPE(xFILE)

Chapter 4. Objects and Libraries 103



Library List

QSYS »
QGPL
QTEMP
QGPL
DISTLIB
DSTTESTLB o —
QTEMP
DISTLIB
CUSTINQ
(*PGM)
The system searches
the libraries in their
order of occurrence in
the Tibrary Tist until DSTTESTLB
an object of the same
name and type is CUSTINQ
found. The object in (*FILE)
DISTLIB with the name )
CUSTINQ is bypassed
because the object
type is not *FILE.
RBAFN541-0

Generally, a library list is more flexible and easier to use than qualified names.
More important than the advantage of not entering the library name, is the
advantage of performing functions in an application on different data simply by
using a different library list without having to change the application. For example,
a CL program PGMA updates a data area CHKNBR. If the library name is not
specified, the program can update the data area named CHKNBR in different
libraries depending on the use of the library list. For example, assume that JOBA

104 CL Programming V5R3



and JOBB both call PGMA as shown in the following illustration:

JOBA Libraries JOB B

PGMA 0SYS PGMA
DTAARA — DTAARA
(CHKNBR) (CHKNBR)

0GPL

Library List QTEMP Library List
0SYS ______ 0SYS
0GPL — 0GPL
QTEMP : QTEMP

DISTLIBI 1$éISTLIBl DISTLIB2
CHKNBR

CHKNBR — |”

RBAFN526-0

However, the use of a qualified name is advantageous in any of the following
situations:

* When the object you are using is not in the library list for the job

* When there is more than one object of the same name in the library list and you
want one in a specific library

* When you want to ensure that a specific library is used for security reasons.

If, however, you call a program using a qualified name and the program attempts
to open files whose names are not qualified, the files are not opened if they are not

Chapter 4. Objects and Libraries 105



in the library list, as shown in the following example:

JOB A Libraries
CALL DISTLIB2/PGMA — 0SYS
FILE -
(ORDENTP)
0GPL
Library List OTEMP
0SYS -
0GPL -
QTEMP
DISTLIBI DISTLIBI
DISTLIB?
> PGMA
ORDENTP
RBAFN527-0

The call to PGMA is successful because the program name is qualified on the
CALL command. However, when the program attempts to open file ORDENTP, the
open operation fails because the file is not in one of the libraries in the library list,
and its name is not qualified. If library DISTLIB2 was added to the library list or a
qualified file name was used, the program could open the file. Some high-level
languages do not allow a qualified file name to be specified. By using an Override
(OVRxxx) command, a qualified name can be specified.

A Job’s Library List

Each job’s library list consists of up to four parts: a system part, a user part, and
the current and product libraries. Only the system part will always be included in
the library list.

When the system is shipped, the system value QSYSLIBL contains the names of the
libraries to become the system part of the library list. The shipped values are

106 CL Programming V5R3



QSYS, QSYS2, QHLPSYS, and QUSRSYS. The system value QUSRLIBL contains the
names of the libraries to become the user part of the library list.

QSYSLIBL can contain 15 library names, and QUSRLIBL can contain 25 library
names. To change the system portion of a job’s library list, use the Change System
Library List (CHGSYSLIBL) command. To change the value of either QSYSLIBL or
QUSRLIBL, use the Change System Value (CHGSYSVAL) command. A change to
these system values takes effect on new jobs that are started after the system
values are changed.

Changing the Library List

For a running job, you can add entries to or remove entries from the library list by
using the Add Library List Entry (ADDLIBLE) command or the Remove Library
List Entry (RMVLIBLE) command, or you can change the libraries in the library
list by using the CHGLIBL command or the EDTLIBL command. These commands
change the user part of the library list, not the system part.

The current library may be added or changed using the Change Current Library
(CHGCURLIB) or CHGLIBL command. The current library can also be changed in
the user’s user profile, at sign-on, or on the Submit Job (SBMJOB) command. The
product libraries cannot be added using a CL command; these libraries are added
by the system when a command or menu using them is run. The product libraries
cannot be changed with a CL command; however, they can be changed with the
Change Library List (QLICHGLL) API.

When you use these commands, the change to the library list affects only the job in
which the command is run, and the change is effective only as long as the job is
running, or until you change the job’s library list again. When the library list is
changed through the use of these commands, the libraries must exist when the
command is run. A library cannot be deleted if it exists in your job’s library list. If
it exists in another job’s library list, it cannot be deleted only if the system value
QLIBLCKLVL is set to lock libraries in the library search list.

When a job is started, the user portion of the library list is determined by the
values contained in the job description or by values specified on the SBMJOB
command. A value of *SYSVAL can be specified, which causes the libraries
specified by the system value QUSRLIBL to become the user portion of the library
list. If you have specified library names in both the job description and the Batch
Job (BCHJOB) or SBMJOB command, the library names specified in the BCHJOB or
SBMJOB command override both the libraries specified in the job description and
the system value QUSRLIBL.

The following shows the order in which the user part of the library list specified in
QUSRLIBL is overridden by commands for individual jobs:

A library list can be specified in the job description that, when the job is run,
overrides the library list specified in QUSRLIBL. (See the Work Management topic
of the Systems Management category in the iSeries Information Center for more
information on job descriptions.)

* When a job is submitted either through a BCHJOB command or a SBMJOB
command, a library list can be specified on the command. This list overrides the
library list specified in the job description or in the system value QUSRLIBL.

* When a job is submitted using the SBMJOB command, *CURRENT (the default)
can be specified for the library list. *CURRENT indicates that the library list of
the job issuing the SBMJOB command is used.

Chapter 4. Objects and Libraries 107



* Within a job, an ADDLIBLE, RMVLIBLE, or CHGLIBL command can be used.
These commands override any previous library list specifications.

* The current library for the job can be changed using the CHGCURLIB or
CHGLIBL command.

Instead of entering the CHGLIBL command each time you want to change the
library list, you can place the command in a CL program:
PGM /* SETLIBL - Set library list =/

CHGLIBL LIBL(APPDEVLIB QGPL QTEMP)
ENDPGM

If you normally work with this library list, you could set up an initial program to
establish the library list instead of calling the program each time:

PGM /x Initial program for QPGMR */

CHGLIBL LIBL(APPDEVLIB QGPL QTEMP)

TFRCTL PGM(QPGMMENU)
ENDPGM

This program must be created and the user profile to which it will apply changed
to specify the new initial program. Control then transfers from this program to the
QPGMMENU program, which displays the Programmer Menu.

If you occasionally need to add a library to the library list specified in your initial
program, you can use the ADDLIBLE command to add that library to the library
list. For example, the following command adds the library JONES to the end of the
library list:

ADDLIBLE LIB(JONES) POSITION(*LAST)

If part of your job requires a different library list, you can write a CL program that
saves the current library list and later restores it, such as the following program.
PGM
DCL &LIBL *CHAR 2750
DCL &CMD *CHAR 2760
(1)  RTVJOBA USRLIBL(&LIBL)
(2)  CHGLIBL (QGPL QTEMP)

(3) éHGVAR &CMD ('CHGLIBL (' *CAT &LIBL *TCAT ')')
(4) CALL QCMDEXC (&CMD 2760)

ENDPGM

(1) Command to save the library list. The library list is stored into variable
&LIBL. Each library name occupies 10 bytes (padded on the right with
blanks if necessary), and one blank is between each library name.

(2) This command changes the library list as required by the following
function.

(3) The Change Variable (CHGVAR) command builds a CHGLIBL command
in variable &CMD.

(4) QCMDEXC is called to process the command string in variable &CMD.
The CHGVAR command is required before the call to QCMDEXC because
concatenation cannot be done on the CALL command.

108 CL Programming V5R3



Considerations for Setting Up a Library List
You should consider the following when setting up a library list and using it:

* The libraries in a library list must exist on the system. The system values
QSYSLIBL and QUSRLIBL are accessed when OS/400 is started. If a library in
either of these values does not exist on the system, a message is sent to the
system operator’s message queue (QSYSOPR), the library is ignored, and
0S/400 is started without the library. Once OS/400 is started, no libraries in the
library list of any active job can be deleted. You cannot delete a library in your
job’s library list. For another job, you cannot delete a library in the library list if
the QLIBLCKLVL system value is set to lock libraries in the library search list. If
any library in the library list specified in the job description or in a Batch Job
(BCHJOB) or Submit Job (SBMJOB) command does not exist or is not available,
the job is not started.

* The libraries in a library list must be authorized to all users who need to use
them. To initialize a library list (for example, in a Submit Job [SBMJOB], Job
[JOB], or Create Job Description [CRTJOBD] command), a user must have object
operational authority for the libraries or the job is not started. A user must also
have *USE authority to libraries added to the library list using the Add Library
List Entry (ADDLIBLE) or Change Library List (CHGLIBL) command.

* When a program running under an adopted user profile adds a library to the
library list that the current user is not authorized to and does not remove the
library from the library list before ending the program, the user keeps (*USE
authority) access to the library after the program exits. This only occurs when
*LIBL is specified to access the objects.

* System performance is better when the library list is kept as short as possible.

Displaying a Library List
You can use the Display Library List (DSPLIBL) command to display the library

list for a job currently running. The display contains a list of all the libraries in the
library list in the same order that they appear in the library list.

You can also display the library list for an active job using the Display Job
(DSPJOB) command and selecting option 13 from the Display Job menu.

Using Generic Object Names

Sometimes you may want to search for more than one object (even though only
one might be found) when the object names start with the same characters. This
type of search is called a generic search and can be used on several commands.

To use a generic search, specify a generic name in place of the object name on the
command. A generic name consists of a set of characters common to all the object
names that identifies a group of objects and ends with an * (asterisk). All objects
whose names begin with the specified characters and to which you are authorized
have the requested function performed on them. For example, if you entered the
Display Object Description (DSPOBJD) command using the generic name ORD¥,
object descriptions for the objects beginning with ORD are shown.

A generic search can be limited by the following library qualifiers on the generic
name (the library name parameter value is given in parentheses, if applicable):

* A specified library. The operation you requested is performed on the generically
named objects in the specified library only.

Chapter 4. Objects and Libraries 109



The library list for the job (*LIBL). The libraries are searched in the order they
are listed in the library list. The operation you requested is performed on the
generically named objects in the libraries specified in the library list for the job.

The current library for the job (*CURLIB). The current library for the job is
searched. If no current library exists, QGPL is used.

All libraries in the user part of the library list for the job (*USRLIBL). The
libraries are searched in the order they are listed in the library list, including the
current library (*CURLIB). The operation you requested is performed on the
generically named objects in the libraries specified in the user portion of the
library list for the job.

All user libraries for which you are authorized (*ALLUSR) and libraries
beginning with the letter Q as listed in [Generic library names|in the APIs section
of the Programming category in the iSeries Information Center .

The libraries are searched in alphanumeric order. The following S/36
environment libraries that begin with # are not searched with *ALLUSR
specified: #CGULIB, #COBLIB, #DFULIB, #DSULIB, #RPGLIB, #SDALIB, and
#SEULIB. The operation you requested is performed on the generically named
objects in all the user libraries for which you are authorized.

All libraries on the system for which you are authorized (*ALL). The libraries
are searched in alphanumeric order. The operation you requested is performed
on the generically named objects in all the libraries on the system for which you
are authorized.

IBM provides information on operations that use generic functions. Refer to the CL
section of the Programming category in the iSeries Information Center.

Searching for Multiple Objects or a Single Object

In

all commands for which you can specify a generic name, you can specify an

object name (no asterisk is specified) and you can search for multiple objects. If
you specify an object name and *ALL or *ALLUSR for the library name, the system
searches for multiple objects, and the search returns objects of the indicated name
and type for which you are authorized. If you specify a generic name, or if you

sp
su

ecify *ALL, *ALLUSR, or a library with an object name, you can specify all
pported object types (or *ALL object types).

Using Libraries
A

library is an object used to group related objects and to find objects by name.

Thus, a library is a directory to a group of objects.

You can use libraries to:

110 cL Programming V5R3

Group certain objects for individual users. This helps you manage the objects on
your system. For example, you might place all the files that a user JOE can use
in a library JOELIB.

Group all objects used for an individual application. For example, you might
place all your order entry files and programs into an order entry library
DISTLIB. You need only add one library to the library list to ensure that all your
order entry files and programs are in the list. This is advantageous if you do not
want to specify a library name every time you use an order entry file or
program.

Ensure security. For example, you can specify which users have authority to use
the library and what they are allowed to do with the library.



* Simplify security by having automatic authorization list and public authority
assignment for newly created objects based on the CRTAUT parameter value of
the library. Auditing attributes for newly created objects can be set based on the
Create Object Auditing (CRTOBJAUD) parameter value.

* Simplify save/restore operations by grouping objects that are saved and restored
at the same time into the same library. You can use a Save Library (SAVLIB)
command instead of saving objects individually using the Save Object (SAVOB]J)
command.

* Use multiple libraries for testing. Refer to[“Debugging OPM Programs” on pagel
for more information.

* Use multiple production libraries. For example, you can use one production
library for source files and for the creation of objects, one for the application
programs and files, one for objects that are infrequently saved, and one for
objects that are frequently saved.

Multiple libraries make it easier to use objects. For example, you can have two files
with the same name but in different libraries so that one can be used for testing
and the other for normal processing. As long as you do not specify the library
name in your program, the file name in the program does not have to be changed
for testing or normal processing. You control which library is used by using the
library list. (Objects of the same type can have the same names only if they are in
different libraries.)

The two types of libraries are production and test. A production library is for
normal processing. In debug mode, you can protect database files in production
libraries from being updated. While in debug mode, any files in test libraries can

be updated without any unique specifications. (See [“Debugging OPM Programs”]
for more information on using test libraries.)

Creating a Library

To create a library, use the Create Library (CRTLIB) command. For example, the
following CRTLIB command creates a library to be used to contain order entry files
and programs. The library is named DISTLIB and is a production library. The
default authority given to the public prevents a user from accessing the library.
Any object created into the library is given the default public authority of
*CHANGE based on the CRTAUT value.

CRTLIB  LIB(DISTLIB) TYPE(*PROD) CRTAUT(*CHANGE) CRTOBJAUD(*USRPRF) +
ASP(1) ASPDEV(*ASP) AUT(*EXCLUDE) TEXT('Distribution library')

You should not create a library with a name that begins with the letter Q. During a
generic search, the system assumes that most libraries with names that begin with
the letter Q (such as QRPG or QPDA) are system libraries. See

Object Names” on page 109| for more information.

Specifying Authority for Libraries

The following describes each of the authorities that can be given to users for

libraries. See the [Security - Referencel@ book for more information.

Object Authority
Object operational authority for a library gives the user authority to display the
description of a library.

Object management authority for a library includes authority to:

Chapter 4. Objects and Libraries 111



* Grant and revoke authority. You can only grant and revoke authorities that you
have. Only the object owner or a user with *ALLOB] authority can grant object
management authority for a library.

* Rename the library.

Object existence authority and use authority gives the user authority to delete a
library.

Object existence authority and object operational authority gives the user
authority to transfer ownership of the library.

Data Authority

Add authority and read authority for a library allows a user to create a new object
in the library or to move an object into the library.

Update authority and execute authority for a library allow a user to change the
name of an object in the library, provided the user is also authorized to the object.

Delete authority allows the user to remove entries from an object. Delete authority
for a library does not allow a user to delete objects in the library. Authority for the
object in the library is used to determine if the object can be deleted.

Execute authority allows the user to search the library for an object.

Combined Authority
*USE authority for a library (consisting of object operational authority, read
authority, and execute authority) includes authority to:

* Use a library to find an object

* Display library contents

* Place a library in the library list

* Save a library (if sufficient authority to the object)

* Delete objects from the library (if the user is authorized to the object in the
library)

*CHANGE authority for a library (consisting of object operational authority and
all data authorities to the library) includes authority to:

* Use a library to find an object

* Display library contents

* Place a library in the library list

* Save a library (if sufficient authority to the object)

* Delete objects from the library (if the user is authorized to the object in the
library)

* Add objects to the library.

*ALL authority provides all object authorities and data authorities. The user can
delete the library, specify the security for the library, change the library, and
display the library’s description and contents.

*EXCLUDE authority prevents users from accessing an object.

To display the authority associated with your library, you may use the Display
Object Authority (DSPOBJAUT) command.

112 cL Programming V5R3



Security Considerations for Objects

When the system accesses an object that you refer to, it checks to determine if you
are authorized to use the object and to use it in the way you are requesting.
Generally, you must be authorized at two levels:

* You must be authorized to use the object on which you have requested a
function to be performed.

* You must be authorized to the library containing the object. If a library list is
used, you must be authorized to the libraries in the list.

Object authority is controlled by the system’s security functions, which include the
following:

* An object owner and users with *ALLOB] special authority have all authority for
an object, and can grant and revoke authority to and from other users.

* Users have public authority when private authority has not been granted to
them for the object.

The Security - Reference@ book explains in detail the types of authority that can
be granted for an object and what authority a user needs to perform a function on
that object. Authority that can be granted for libraries is discussed under
[“Specifying Authority for Libraries” on page 111)

Special considerations apply when writing a program that must be secure (for

example, a program that adopts the security officer’s user profile). See the

@ book for information about writing these programs.

Display Audit Journal Entries (DSPAUDJRNE) Command

The Display Audit Journal Entries (DSPAUDJRNE) command allows you to
generate security journal audit reports. The reports are based on the audit entry
types and the user profile that are specified on the command. You can limit reports
to specific time frames, and you can search detached journal receivers. You can
direct these reports to the active display or an output queue.

RESTRICTIONS: You must have *ALLOBJ and *AUDIT special authorities to use
this command.

Refer to online help to see the parameter and value descriptions for this command.

Default Public Authority for Newly Created Objects

When objects are created in a library, the public authority for the object will, by
default, be set by using the CRTAUT value of the library.

By specifying:

CRTLIB LIB(TESTLIB) CRTAUT(*USE) AUT(*LIBCRTAUT)

The library TESTLIB is created. All objects created into library TESTLIB will, by
default, have public authority of *USE. The public authority for library TESTLIB is
determined by the CRTAUT value of library QSYS.

By specifying:

Chapter 4. Objects and Libraries 113



CRTDTAARA DTAARA(TESTLIB/DTAL) TYPE(*CHAR) +
AUT (*LIBCRTAUT)

CRTDTAARA DTAARA(TESTLIB/DTA2) TYPE(*CHAR) +
AUT (*EXCLUDE)

Data area DTAI is created into library TESTLIB. The public authority of DTA1 is
*USE based on the CRTAUT value of library TESTLIB.

Data area DTA2 is created into library TESTLIB. The public authority of DTA2 is
*EXCLUDE. *EXCLUDE was specified on the AUT parameter of the Create Data
Area (CRTDTAARA) command.

An authorization list can also be used to secure an object when it is created into a
library.

By specifying:

CRTAUTL AUTL(PAYROLL)
CRTLIB LIB(PAYLIB) CRTAUT(PAYROLL) +
AUT (*EXCLUDE)

An authorization list called PAYROLL is created. Library PAYLIB is created with
the public authority of *EXCLUDE. By default, an object created into library
PAYLIB is secured by authorization list PAYROLL.

By specifying:
CRTPF FILE(PAYLIB/PAYFILE) +
AUT (*LIBCRTAUT)

CRTPF FILE(PAYLIB/PAYACC) +
AUT (*CHANGE)

File PAYFILE is created into library PAYLIB. File PAYFILE is secured by
authorization list PAYROLL. The public authority of file PAYFILE is set to *YAUTL
as part of the Create Physical File (CRTPF) command. *AUTL indicates that the
public authority for file PAYFILE is taken from the authorization list securing file
PAYFILE, which is authorization list PAYROLL.

File PAYACC is created into library PAYLIB. The public authority for file PAYACC
is *CHANGE since it was specified on the AUT parameter of the CRTPF command.

Note: The *LIBCRTAUT value of the AUT parameter that exists on most CRT
commands indicates that the public authority for the object is set to the
CRTAUT value of the library that the object is being created into.

The CRTAUT value on the library specifies the default authority for public use of
the objects created into the library. These possible values are:

*SYSVAL
The public authority for the object being created is the value specified in
system value QCRTAUT

*ALL All public authorities

*CHANGE
Change authority

*USE Use authority

114 cL Programming V5R3



*EXCLUDE
Exclude authority

authorization list name
The authorization list secures the object

Default Auditing Attribute for Newly Created Objects

When objects are created in a library, the auditing attribute of the object will, by
default, be set by using the CRTOBJAUD value of the library.

By specifying:
CRTLIB LIB(PAYROLL) AUT(*EXCLUDE) CRTAUT(*EXCLUDE) CRTOBJAUD(*ALL)

all objects created into the payroll library are audited for both read and change

access. See the [Security - Reference@ book for details on auditing.

Placing Objects in Libraries

When you create an object, it is placed in a library. If you do not specify a library,
the object is placed in the current library for the job (*CURLIB) or, if there is no
current library for the job, in QGPL. When a library is created, you can specify the
public authority for objects created in the library by using the CRTAUT parameter
on the Create Library (CRTLIB) command. All objects placed in that library will
assume the specified public authority on the CRTAUT value of the library. To
specify a library, you specify a qualified name; that is, a library name and an object
name. For example, the following Create Physical File (CRTPF) command creates
an order entry physical file ORDHDRP to be placed in DISTLIB.

CRTPF FILE(DISTLIB/ORDHDRP)

To place an object in a library, you must have read and add authorities for the
library.

More than one object of the same type cannot have the same name and be in the
same library. For example, two files with the name ORDHDRP cannot both be in
the library DISTLIB. If you try to place into a library an object of the same name
and type as an object already in the library, the system rejects the request and
sends you a message indicating the reason.

Note: Use the QSYS library for system objects only. Do not restore other licensed
programs to the QSYS library because changes are lost when installing a
new release of OS/400.

Deleting and Clearing Libraries

When you delete a library with the Delete Library (DLTLIB) command, you delete
the objects in the library as well as the library itself. When you clear a library with
the Clear Library (CLRLIB) command, you delete objects in the library without
deleting the library. To delete or clear a library, all you need to specify is the
library name. For example:

DLTLIB LIB(DISTLIB)

or:
CLRLIB LIB(DISTLIB)

To delete a library, you must have object existence authority for both the library
and the objects within the library, and use authority for the library. If you try to

Chapter 4. Objects and Libraries 115



delete a library but do not have object existence authority for all the objects in the
library, the library and all objects for which you do not have authority are not
deleted. All objects for which you have authority are deleted. If you try to delete a
library but do not have object existence authority for the library, not only is the
library not deleted, but none of the objects in the library are deleted. If you want
to delete a specific object (for which you have object existence authority), you can
use a delete command for that type of object, such as the Delete Program
(DLTPGM) command.

You cannot delete a library in an active job’s library list. You must wait until the
end of the job before the deletion of the library is allowed. Because of this, you
must delete the library before the next routing step begins. When you delete a
library, you must be sure no one else needs the library or the objects within the
library.

If a library is part of the initial library list defined by the system values QSYSLIBL
and QUSRLIBL, the following steps should be followed to delete the library:

1. Use the Change System Value (CHGSYSVAL) command to remove the library
from the system value it is contained in. (The changed system value does not
affect the library list of any jobs running.)

2. Use the Change Library List (CHGLIBL) command to change the job’s library
list.

The Change System Library List (CHGSYSLIBL), Add Library List Entry
(ADDLIBLE), Edit Library List (EDTLIBL), and Remove Library List Entry
(RMVLIBLE) commands are also used to change the library list.

3. Use the DLTLIB command to delete the library and the objects in the library.

Note: You cannot delete the library QSYS and should not delete any objects in it.
You may cause the system to end because the system needs objects that are
in QSYS to operate properly. You should not delete the library QGPL
because it also contains some objects that are necessary for the system to be
able to perform effectively. You should not use the library QRECOVERY
because it is intended for system use only. The library QRECOVERY
contains objects that the system needs to operate properly.

For concerns about deleting objects other than libraries, see|“Deleting Objects” on|

To clear a library, you must have object existence authority for the objects within
the library and use authority for the library. If you try to clear a library but do not
have object existence authority for all the objects in the library, the objects you do
not have authority for are not deleted from the library. If an object is allocated to
someone else, it is not deleted.

Displaying Library Names and Contents

You can use the Display Library (DSPLIB) or Work with Libraries (WRKLIB)
command to display or print all the libraries you have authority to and find basic
information on each object within the libraries.

The object information includes:

¢ The name and type of the object
* The attributes of the object

* The size of the object

116 cCL Programming V5R3



¢ The description entered for the object when it was created

On the DSPLIB command, you can also specify a specific library name or names,

in which case you bypass the library selection display. In this list, the objects are

grouped by library; within each library, they are grouped by object type; within

each type, they are listed in alphanumeric order. The order of the libraries is one of

the following:

e If libraries are specified on the DSPLIB command, the libraries are displayed in
the order they are specified in the display command.

 If *LIBL or *USRLIBL is specified on the DSPLIB command, the order of the
libraries matches the order of the libraries in the library list for the job.

* If *ALL or *ALLUSR is specified on the DSPLIB command, the order of the
libraries is in alphanumeric order. The user must have read authority for the
library to be displayed.

For example, the following DSPLIB command displays a list of the objects
contained in DISTLIB:

DSPLIB LIB(DISTLIB) OUTPUT(*)

The asterisk (*) for the OUTPUT parameter means that the libraries are to be
shown at the display station if in interactive processing and printed if in batch
processing. To print a list when in interactive processing, specify *PRINT instead of
taking the default *.

See the CL section of the Programming category in the iSeries Information Center
for more information and sample displays for the DSPLIB command.

Displaying and Retrieving Library Descriptions
You can use the Display Library Description (DSPLIBD) and Retrieve Library

Description (RTVLIBD) commands to display and retrieve the description of
libraries.

The library description information includes:

* Type of library (either PROD or TEST)

* Auxiliary storage pool number of the library

* Auxiliary storage pool device name of the library
* Create authority of the library

* Create object auditing of the library

* Text description of the library

0S/400 Globalization

The OS/400 licensed program supports different national languages on the same
system. This allows information in one national language to be presented to one
user while information in a different national language is presented to another
user.

The language used for user-readable information (displays, messages, printed
output, and online help information) is controlled by the library list for the job. By
adding a national language library to the system portion of the library list,
different national language versions of information can be presented. For the

Chapter 4. Objects and Libraries 117



primary language, a national language version is the running code and textual
data for each licensed program entered. For the secondary language, it is the
textual data for all licensed programs.

The language information for the primary language of the system is stored in the
same libraries as the programs for IBM licensed programs. For example, if the
primary national language of the system is English, then libraries such as QSYS,
QHLPSYS, and QSSP contain information in English. Libraries QSYS and
QHLPSYS are on the system portion of the library list. Libraries for other licensed
programs (such as QRPGLE for ILE RPG for OS/400%) are added to the library list
by the system when they are needed.

National language versions other than the system primary language are installed
in secondary national language libraries. Each secondary language library contains
a single national language version of the displays, messages, commands prompts,
and help for all IBM licensed programs. The name of a secondary language library
is in the form QSYSnnnn, where nnnn is a language feature code. For example, the
feature code for French is 2928, so the secondary national language library name
for French is QSYS2928.

If a user wants information presented in the primary national language of the
system, no special action is required. To present information in a national language
different from the primary national language of the system, the user must change
the library list so that the desired national language library is positioned before all
other libraries in the library list that contains national language information. You
can use any of the following options to position the desired national language
library first:

* You can use the SYSLIBLE parameter on the CRTSBSD or CHGSBSD to present
displays, messages, and so on for a specific language. For example:

CRTSBSD SBSD(QSBSD 2928) POOLS((1 *NOTSG)) SYSLIBLE(QSYS2928)

* You can use the LIB parameter on the CHGSYSLIBL command to specify the
desired national language library at the top of the library list. For example:

CHGSYSLIBL LIB(QSYS2928)

* You can set up an initial program in the user profile to specify the desired
national library at the top of the library list for an interactive job. This is a good
option if the user does not want to run the CHGSYSLIBL command at every
sign-on. The initial program uses the Change System Library List (CHGSYSLIBL)
command to add the desired national language library to the top of the library
list.

Note: The authority shipped with the CHGSYSLIBL command does not allow
all users to run the command.

To enable a user to run the CHGSYSLIBL command without granting the user
rights to the command, you can write a CL program containing the CHGSYSLIBL
command. The program is owned by the security officer, and adopts the security
officer’s authority when created. Any user with authority to run the program can
use it to change the system part of the library list in the user’s job. The following is
an example of a program to set the library list for a French user.

PGM

CHGSYSLIBL LIB(QSYS2928) /* Use French information =/
ENDPGM

118 cL Programming V5R3



Describing Objects

Whenever you use a create command to create an object, you can describe the
object in a 50-character field on the TEXT parameter of the create command. Some
commands allow a default of *SRCMBRTXT which indicates the text for the object
being created is to be taken from the text of the source member from which the
object is being created. This is valid only for objects created from source in
database source files.

If the source input for the create command is a device or inline file, or if source is
not used, the default value is blank. This text becomes part of the object
description and can be displayed using the Display Object Description (DSPOBJD)
or Display Library (DSPLIB) command. The text can be changed using the Change
Object Description (CHGOBJD) command or many of the Change (CHGxxx)
commands that are specific to each object type.

Displaying Object Descriptions

You can use the Display Object Description (DSPOBJD) or Work with Objects
(WRKOBJ) command to display descriptions of objects. These descriptions are
helpful for determining if objects exist on the system but are not being used. If you
are using batch processing, the descriptions can be printed or written to a database
file. If you are using interactive processing, the descriptions can be displayed,
printed, or written to a database file.

You can display basic, full, or service attributes for object descriptions. These object
descriptions are found in the following table:

Chapter 4. Objects and Libraries 119



Table 3. Attributes Displayed for Object Descriptions

Basic Attributes

Full Attributes

Service Attributes (see
Notes)

Object name

Library name

Library ASP device
Object type

Extended attribute
Object size

Text description (partial)

Object name

Library name

Library ASP device
Object type

Owner

Primary Group
Extended attribute
User-defined attribute
Text description
Creation date and time
User who created object
System object created on
Object domain

Change date and time

Whether or not usage data
collected

Last used date

Days used count

Days used count reset date
Allow change by program
Object auditing value

Digitally signed

Digitally signed system-trusted
source

Digitally signed multiple
signatures

Object size

Offline size

Associated space size
Optimum space alignment
Freed status

Compression status

Object ASP number

Object overflowed

Object ASP device
Journaling status

Current or last journal
Journal images

Journal entries omitted
Journal start date and time

Save operation date and time

Restore operation date and time

Save command

Device type

Object name
Library name
Library ASP device
Object type

Source file and
library

Member name
Extended attribute

User-defined
attribute

Freed status
Object size
Creation date and
time

Date and time

member in source
file was last updated

System level
Compiler

Object control level
Changed by
program

Whether or not
changed by user
Licensed program
PTF number
APAR ID

Text description of
object or object
status conditions

120 cL Programming V5R3



Notes:

1. The service information is used by programming support personnel to
determine the level of the system on which an object was created and whether
or not the object has been changed since it was shipped. Some of this
information may be helpful to you because it indicates the source member used
to create an object and the last date of change to that source from which the
object was created.

2. Library objects contain only the names of the objects included in the library. If
DSPOBJD for object type *LIB is used, the object size information refers to the
size of the library object only, not the total size of the objects included in the
library.

You can use either the Retrieve Library Description API (QLIRLIBD) or the
command DSPLIB OUTPUT(*PRINT) to find the total size of the library.

Using the DSPOBJD or WRKOB] command, you can list the objects in a library for
which you are authorized by:

* Name

¢ Generic name

* Type
¢ Name or generic name within object type

The objects are listed by library; within a library, they are listed by type. Within
object type, the objects are listed in alphanumeric order.

You may want to use the DSPOBJD command in a batch job if you want to display
many objects with the *FULL or *SERVICE option. The output can go to a spooled
printer file and be printed instead of being shown at the display station, or the
output can go to a database file. If you direct the output to a database file, all the
attributes of the object are written to the file. Use the Display File Field Description
(DSPFFD) command for file QADSPOB]J, in library QSYS, to view the record
format for this file.

The following command displays the descriptions of the order entry files (that is,
the files in DISTLIB) whose names begin with ORD. ORD* is the generic name.

DSPOBJD  OBJ(DISTLIB/ORD*) OBJTYPE(*FILE) +
DETAIL(*BASIC) OUTPUT(*)

The resulting basic display is:

4 N
Display Object Description - Basic

Library 1 of 1
Library . . . . . . : DISTLIB Library ASP device . : *SYSBAS

Type options, press Enter.
5=Display full attributes 8=Display service attributes

Opt Object Type Attribute Size Text
_ ORDDTLP *FILE PF 8192  Order detail
ORDHDRP *FILE PF 8192  Order header

Bottom

\F3=Ex1‘t F12=Cancel F17=Top  F18=Bottom

If you specify *FULL instead of *BASIC or if you enter a 5 in front of ORDDTLP
on the basic display, the resulting full display is:

Chapter 4. Objects and Libraries 121



Display Object Description - Full

Object . . . . . . . : ORDDTLP Attribute . . . . . :
Library . . . . . : DISTLIB Owner . . . . . ..
Library ASP device . :  *SYSBAS Primary group
Type . . . . . . . . *FILE
User-defined information:
Attribute . . . . . . oo 0oL L
T 0 0 0 0 0 0 0 0 0 0000 0 o0 8
Creation information:
Creation date/time . . . . . . . . : 06/08/89 10:17:03
Created by user . . . . . . . .. ¢ QSECOFR
System created on . . . . . . . . : SYSTEMOl
Object domain . . . . . . . . . . : *SYSTEM

Press Enter to continue.

F3=Exit  Fl2=Cancel

Library 1 of 1
PF
QSECOFR
*NONE

More...

Press Enter to continue.

F3=Exit Fl2=Cancel
-

4 Display Object Description - Full
Library 1 of 1
Object . . . . . . . : ORDDTLP Attribute . . . . . : PF
Library . . . . . : DISTLIB Owner . . . . . . . : QSECOFR
Library ASP device . :  *SYSBAS Primary group *NONE
Type . . . . . . . . *FILE
Change/Usage information:
Change date/time . . . . . . . .. : 05/11/90 10:03:02
Usage data collected . . . . . . . : YES
Last used date . . . . . . . ... : 05/11/90
Days used count . . . . . . . .. : 20
Reset date . . . . . . . . . .. : 03/10/90
Allow change by program . . . . . : YES
Auditing/Integrity information:
Object auditing value . . . . . . ¢ *NONE
Digitally signed . . . . . . . . . : NO
More...

Press Enter to continue.

F3=Exit  Fl2=Cancel
o

Ve
Display Object Description - Full
Library 1 of 1
Object . . . . . . . : ORDDTLP Attribute . . . . . : PF
Library . . . . . : DISTLIB Owner . . . . . . . : QSECOFR
Library ASP device . : *SYSBAS Primary group *NONE
Type . . . . . . . . *FILE
Storage information:
Size . . . . . . . . . .. .. .. 32768
0ffline size . . . . . . . . . .. : 0
Associated space size . . . . . . : 3840
Optimum space alignment . . . . . : NO
Freed . . . ... ... .....: NO
Compressed . . . . . . . . . . . . : INELIGIBLE
Object ASP number . . . . . . . . g i
Object overflowed . . . . . . . : NO
Object ASP device . . . . . . .. : *SYSBAS
Journaling information:
Currently journaled . . . . . .. : NO
More...

122 CL Programming V5R3




Display Object Description - Full
Library 1 of 1

Object . . . . . . . : ORDDTLP Attribute . . . . . : PF

Library . . . . . : DISTLIB Owner . . . . . . . : QSECOFR
Library ASP device . :  *SYSBAS Primary group . . . :  =*NONE
Type . . . . . . . . ¢ *FILE

Save/Restore information:
Save date/time . . . . . . . . . . :
Restore date/time . . . . . . . . :
Save command . . . . . . . . . . . ¢
Device type . . . . . . . . .. .2
Bottom
Press Enter to continue.

F3=Exit  Fl2=Cancel
-

Retrieving Object Descriptions

You can use the Retrieve Object Description (RTVOB]D) command to return the
descriptions of a specific object to a CL procedure. Variables are used to return the
descriptions. You can use these descriptions to help you detect unused objects on
the system.

The command can return the following descriptions as variables for an object:
¢ The name of the library that contains the object

¢ Any extended attribute of an object (such as program or file type)

* User-defined attribute

* Text description of the object

* Name of the object owner’s user profile

¢ Name of the primary group for the object

* Object ASP number

* Library ASP number

¢ Object ASP device

* Library ASP device

* Indication of whether or not the object overflowed the ASP in which it resides
¢ Date and time the object was created

 Date and time the object was last changed

e Date and time the object was last saved

* Date and time the object was last saved during a SAVACT (*LIB, *SYSDEN, or
*YES) save operation

* Date and time the object was last restored

* Name of the object creator’s user profile

* System the object was created on

* Object domain

* Whether or not usage data was collected

* Date the object was last used

* Count (number) of days the object was used
* Date the use count was last reset

+ Storage status of the object data

* Compression status of the object

Chapter 4. Objects and Libraries 123



Size of the object in bytes

Size of the object in bytes of storage at the time of the last save
Command used to save the object

Tape sequence number generated when the object was saved on tape
Tape or diskette volumes used for saving the object

Type of the device the object was last saved to

Name of the save file if the object was saved to a save file

Name of the library that contains the save file if the object was saved to a save
file

File label used when the object was saved

Name of the source file that was used to create the object

Name of the library that contains the source file that was used to create the
object

Name of the member in the source file

Date and time the member in the source file was last updated

Level of the operating system when the object was created

Licensed program identifier, release level, and modification level of the compiler
Object control level for the created object

Information about whether or not the object can be changed by the Change
Object Description (QLICOBJDD) API

Indication of whether or not the object has been modified with the Change
Object Description (QLICOBJD) API

Information about whether or not the program was changed by the user

Name, release level, and modification level of the licensed program if the
retrieved object is part of a licensed program

Program Temporary Fix (PTF) number that resulted in the creation of the
retrieved object

Authorized Program Analysis Report (APAR) identification
Type of auditing for the object

Whether or not the object is digitally signed

Digitally signed system-trusted source

Digitally signed multiple signatures

Current journal status for the object

Current or last journal

Journal image information

Journal entries to be omitted information

The date and time that journaling was last started

RTVOBJD Example

In

Sp

the following CL procedure, a RTVOBJD command retrieves the description of a
ecific object. Assume an object called MOB]J exists in the current library (MYLIB).

DCL &LIB TYPE (*CHAR) LEN(10)
DCL &CRTDATE TYPE(*CHAR) LEN(13)
DCL &USEDATE TYPE(*CHAR) LEN(13)
DCL &USECNT  TYPE(*DEC) LEN(5 0)
DCL &RESET  TYPE(*CHAR) LEN(13)

124 cCL Programming V5R3



RTVOBJD  OBJ(MYLIB/MOBJ) OBJTYPE(*FILE) RTNLIB(&LIB)
CRTDATE (&CRTDATE) USEDATE (&USEDATE)
USECOUNT (&USECNT) RESETDATE (&RESET)

The following information is returned to the program:
* The current library name (MYLIB) is placed into the CL variable name &LIB.
* The creation date of MOB]J is placed into the CL variable called &CRTDATE.

¢ The date that MOB]J was last used is placed into the CL variable called
&USEDATE.

¢ The number of days that MOB] has been used is placed into the CL variable
called &USECNT. The start date of this count is the value placed into the CL
variable called &RESET.

Creation Information for Objects

The following information is provided in the object description and is set when the

object is created. It is useful for object management and maintenance.
* Creator of the object

— The creator of the object is the user profile that is performing the create
operation. This is true even if the user profile has a group profile and the
group profile owns the object.

— The creator of the object does not change when the ownership changes.

— The creator is the creator of the object on the media when an object is
restored.

— The creator of the object is the user running the command when an object
duplicated using the Create Duplicate Object (CRTDUPOBJ) command.

— The creator is *IBM for IBM-supplied objects.

is

— The creator of the object is blank for user objects that already existed on the

system before Version 1, Release 3.0.
¢ System on which the object was created

— When an object is restored, the system created on is the system the object on

the media was created on.
— For IBM-supplied objects, the system created on is 00000000.

— For objects that already existed on the system before Version 1, Release 3.0,

the system that is created is blank.

Detecting Unused Objects on the System

Information provided in the object description can help you detect and manage
unused objects on the system.

To detect an unused object, look at both the last-used date and the last-changed

date. Change commands do not update the last-used date unless the commands

cause the object to be deleted and created again, or the change operation causes

the object to be read as a part of the change.
* Date and time of last change

— When an object is created or changed, the system time stamps the object,
indicating the date and time the change occurred.

e Date of last use

— The date of last use is only updated once per day (the first time an object is

used in a day). The system date is used.

Chapter 4. Objects and Libraries

125



— An unsuccessful attempt to use an object does not update the last used date.
For example, if a user tries to use an object for which the user is not
authorized, the date of last use does not change.

— The date of last use is blank for new objects.

— When an object that already exists on the system is restored, the date of last
use comes from the object on the system. If it does not already exist when

restored, the date is blank.

— Objects that are deleted and re-created during the restore operation lose the

date of last use.

— The last used date for a database file is not updated when the number of
members in the file is zero. For example, if you use the CRTDUPOB]J to copy
objects and there are no members in the database file, the last used date is not

updated.

— The last used date for a database file is the last used date of the file member
with the most current last used date.

— For logical files, the last used date is the last time a logical member (or

cursor) was used.

— For physical files, the last used date is the last time the data in the data space
was used through a physical or logical access.

contains additional information about operations that cause the last-used
date to be updated for various object types.

Table 4. Updating Usage Information

Type of Object

Commands and Operations

All object types

Create Duplicate Object (CRTDUPOB]J) command and
other commands, such as the Copy Library (CPYLIB)
command, that use CRTDUPOB] to copy objects.

Grant Object Authority (GRTOBJAUT) command (for
referenced objects)

Binding directory

When bound with another module or binding directory
to create a bound program (CRTPGM command) or
bound service program (CRTSRVPGM command).
When updated on the Update Program UPDPGM
command or Update Service Program (UPDSRVPGM
command).

Change Request Description

Change Command Change Request Activity
(CHGCMDCRQA)

Chart format

Display Chart (DSPCHT) command

C locale description

Retrieve C Locale Description Source (RTVCLDSRC)
command or when referred to in a C program

Class

When used to start a job

Command

When run
When compiled in a CL program

When prompted during entry of source entry utility
(SEU) source

When calling the system in check mode
Note: Prompting from the command line and then
pressing F3 is not counted as a use of a command.

126 cCL Programming V5R3



Table 4. Updating Usage Information (continued)

Type of Object

Commands and Operations

Communications side information
(CSI)

When the CPI-Communications Initialize Conversation
(CMINIT) call is used to initialize values for various
conversation characteristics from the side information
object.

Connection list

When the connection list goes beyond status of vary on
pending

Cross system product map

When referred to in a CSP application

Cross system product table

When referred to in a CSP application

Controller description

When the controller goes beyond status of vary on
pending

Device description

When the device goes beyond status of vary on
pending

Data area

Retrieve Data Area (RTVDTAARA) command

Display Data Area (DSPDTAARA) command

Data queue

Usage information for the following APIs is updated
only once per job (the first time one of the APIs is
initiated).

Send Data Queue (QSNDDTAQ) API
Receive Data Queue (QRCVDTAQ) API
Retrieve Data Queue (QMHQRDQD) API

Read Data Queue (QMHRDQM) API

File (database file only unless
specified otherwise)

When closed (other files, such as device and save files,
also updated when closed)

When cleared
When initialized
When reorganized

Commands:
* Apply Journaled Changes (APYJRNCHG) command

* Remove Journaled Changes (RMVJRNCHG)
command

Font resource

When referred to during a print operation

Form definition

When referred to during a print operation

Graphics symbol set

When referred to by a GDDM?* or PGR graphics
application program

When loaded internally or using GSLSS

Job description

When used to establish a job

Job schedule

When the system submits a job for a job schedule entry

When the user takes ‘Option 10 = submit immediately’
from the WRKJOBSCDE panel

Job queue

When an entry is placed on or removed from the
queue

Chapter 4. Objects and Libraries 127



Table 4. Updating Usage Information (continued)

Type of Object

Commands and Operations

Line description

When the line goes beyond status of vary on pending

Locale

Retrieve locale APT QLGRTVLC

When a job starts if the user profile LOCALE value
contains a path name to a valid *LOCALE object.

Management collection

Only updated by commands and operations that affect
all object types.

Media definition

The SAVLIB, SAVOB]J, RSTLIB, RSTOBJ, SAVCHGOB]
commands; as well as, the BRMS and QSRSAVO API.

Menu

When a menu is displayed using the GO command

Message files

When a message is retrieved from a message file other
than QCPFMSG, ##MSG1, #MSG2, or QSSPMSG (such
as when a job log is built, a message queue is
displayed, help is requested on a message in the QHST
log, or a program receives a message other than a mark
message)

Merge Message File (MRGMSGF) command except
when the message file is QCPFMSG, ##MSG1, ##MSG2,
or QSSPMSG

Message queue

When a message is sent to, received from, or listed
message queue other than QSYSOPR and QHST

Module

When bound with another module or binding directory
to create a bound program (CRTPGM command) or
bound service program (CRTSRVPGM command).
When updated on the Update Program UPDPGM
command or Update Service Program (UPDSRVPGM
command).

Network interface description

When the network interface description goes beyond
status of vary on pending

Node List

Only updated by commands and operations that affect
all object types

Output queue

When an entry is placed on or removed from the
queue

Overlay

When referred to during a print operation

Page definition

When referred to during a print operation

Page segment

When referred to during a print operation

Panel group

When the Help key is used to request help information
for a specific prompt or panel, the date of usage is
updated

When a panel is displayed or printed from a panel
group

PDF map

Add PDF Map Entry (QPQAPME) API

Work with PDF Map Entries (WRKPDFMAPE)
command

Print descriptor group

When referred to during a print operation

Product Availability

Only updated by commands and operations that affect
all object types

128 cCL Programming V5R3



Table 4. Updating Usage Information (continued)

Type of Object

Commands and Operations

Product Load

Only updated by commands and operations that affect
all object types

Program

Retrieve CL Source (RTVCLSRC) command

When run and not a system program

PSF Configuration

When referred to during a print operation

Query definition

When used to generate a report

When extracted or exported

Query manager form

When used to generate a report

When extracted or exported

Query manager query

When used to generate a report

When extracted or exported

Search index

When the F11 key is used through the online help
information

When the Start Search Index (STRSCHIDX) command
is used

Server storage

Vary Configuration (VRYCFG) is run against a network
server description object

Service program

When a bound service program is activated

SQL Package

Only updated by commands and operations that affect
all object types

Subsystem description

When subsystem is started

Spelling aid dictionary

When used to create another dictionary
When retrieved

When a word is found in the dictionary during a spell
check and the dictionary is not an IBM-supplied
spelling aid dictionary

Table

When used by a program for translation

Time zone description

* Starting a job with the time zone description.

* Referencing the time zone description in order to
calculate a new current offset when a DST (Daylight
Savings Time) boundary is crossed.

User profile

When a job is initiated for the profile

When the profile is a group profile and a job is started
using a member of the group

Grant User Authority (GRTUSRAUT) command (for
referenced profile)

Workstation User Customization

Only updated by commands and operations that affect
all object types

The following is additional object usage information provided in the object

description:

¢ Counter of number of days used

Chapter 4. Objects and Libraries 129



— The count is increased when the date of last use is updated.

— When an object that already exists on the system is restored, the number of
days used comes from the object on the system. If it does not already exist
when restored, the count is zero.

— Objects that are deleted and re-created during the restore operation lose the
days used count.

— The days used count is zero for new objects.

Note: The iSeries server cannot determine the difference between old and new
device files. If you restore a device file on to the system and a device
file of that same name already exists, delete the existing file if you
want the days used count to be reset to zero. If the file is not deleted,
the system will interpret this as a restore operation of an old object and
retain the days used count.

— The days used count for a database file is the sum of the days used counts for
all file members. If there is an overflow on the sum, the maximum value (of
the days used counts field) is shown.

 Date days used count was reset

— When the days used count is reset using the Change Object Description
(CHGOBJD) command or the Change Object Description (QLICOB]D) API,
the date is recorded. The user then knows how long the days used count has
been active.

— If the days used count is reset for a file, all of the members have their days
used count reset.

Common situations that can delete the days used count and the last used date are
as follows:

* Restoring damaged objects on the system.

* Restoring programs when the system is not in a restricted state.

The Display Object Description (DSPOBJD) command can be used to display a full
description of an object. You can use the same command to write the description to

an output file. To retrieve the descriptions, use the Retrieve Object Description
(RTVOBJD) command.

Note: The application programming interface (API), QUSROBJD, provides the
same information as the Retrieve Object Description command. For more
information, see the APIs section of the Programming category for the
iSeries Information Center.

The Retrieve Member Description (RTVMBRD) command and Display File
Description (DSPFD) command provide similar information for members in a file.

Object usage information is not updated for the following object types:
* Alert table (*ALRTBL)

* Authorization list (*AUTL)

* Configuration list (*CFGL)

* Class-of-service description (*COSD)

* Data Dictionary (*DTADCT)

* Double-byte character set dictionary (*IGCDCT)

* Double-byte character set sort (*IGCSRT)

* Double-byte character set table (*IGCTBL)

130 CL Programming V5R3



 Edit description (*EDTD)

* Exit Registration (*EXITRG)

* Filter (*FTR)

* Forms control table (*FCT)

* Folder (*FLR)

¢ Internet Packet Exchange Description (*IPXD)
* Journal (*JRN)

* Journal receiver (*JRNRCV)

 Library (*LIB)

* Mode description (*MODD)

* Network Server Description (*NWSD)
* NetBIOS Description (*NTBD)

* Product definition (*PRDDEFN)

* Reference code translation table (*RCT)
* Session description (*SSND)

* S/36 machine description (*S36)

¢ User-defined SQL type (*SQLUDT)

e User queue (*USRQ)

Moving Objects from One Library to Another

You can use the Move Object (MOVOB]J) command to move objects between
libraries. Moving objects from one library to another is useful in that you make an
object temporarily unavailable and it lets you replace an out-of-date version of an
object with a new version. For example, a new primary file can be created to be
temporarily placed in a library other than the one containing the old primary file.
Because the data in the old primary file is normally copied to the new primary file,
the old primary file cannot be deleted until the new primary file has been created.
Then, the old primary file can be deleted and the new primary file can be moved
to the library that contained the old primary file.

You can only move an object if you have object management authority for the
object, delete and execute authority for the library the object is being moved from,
and add and read authority to the library the object is being moved to.

You can move an object out of the temporary library, QTEMP, but you cannot
move an object into QTEMP. Also, you cannot move an output queue unless it is
empty.

Moving journals and journal receivers is limited to moving these object types back
into the library in which they were originally created. If the journal objects have
been placed into QRCL by a Reclaim Storage (RCLSTG) command, they must be
moved back into their original library to be made operational.

The following is a list of objects that cannot be moved:
* Authorization lists (*AUTL)

* Class-of-service descriptions (*COSD)

* Cluster resource group (*CRG)

 Configuration lists (*CFGL)

* Connection lists (*CNNL)

Chapter 4. Objects and Libraries 131



* Controller descriptions (*CTLD)

* Data dictionaries (*DTADCT)

* Device descriptions (*DEVD)

* Display station message queues (*MSGQ)

* Documents (*DOC)

* Edit descriptions (*EDTD)

 Exit registration (*EXITRG)

* Folders (*FLR)

* Double-Byte Character Set (DBCS) font tables (*IGCTBL)
* Image catalog (*IMGCLG)

* Internet Packet Exchange Description (*IPXD)

* Job schedules (*JOBSCD)

* Libraries (*LIB)

* Line descriptions (*LIND)

* Mode descriptions (*MODD)

* NetBIOS description (*NTBD)

* Network interface descriptions (*NWID)

* Structured Query Language (SQL) packages (*SQLPKG)
* System/36 " machine descriptions (*S36)

¢ The system history log (QHST)

* The system operator message queue (QSYSOPR)
* Time zone description (*TIMZON)

* User-defined SQL type (*SQLUDT)

 User profiles (*USRPRF)

In the following example, a file from QGPL (where it was placed when it was
created) is moved to the order entry library DISTLIB so that it is grouped with
other order entry files.

QGPL (before) DISTLIB QGPL (after)
—————— MOVOBJ (ORDFILL

ORDFILL | | T is gone)
-  ORDFILL -

RBAFN528-0

To move the object, you must specify the to-library (TOLIB) as well as the object
type (OBJTYPE):
MOVOBJ O0BJ(QGPL/ORDFILL) OBJTYPE(*FILE) TOLIB(DISTLIB)

When you move objects, you should be careful not to move objects that other
objects depend on. For example, CL procedures may depend on the command
definitions of the commands used in the procedure to be in the same library at run
time as they were at module creation time. At compile time and at run time, the
command definitions are found either in the specified library or in a library in the
library list if *LIBL is specified. If a library name is specified, the command
definitions must be in the same library at run time as they were at compile time. If
*LIBL is specified, the command definitions can be moved between compile time

132  CL Programming V5R3



and program run time as long as they are moved to a library in the library list.
Similarly, any application program you write can depend on certain objects being
in specific libraries.

An object referring to another object may be dependent on the location of that
object (even though *LIBL can be specified for the location of the object). Therefore,
if you move an object, you should change any references to it in other objects. The
following lists examples of objects that refer to other objects:

* Subsystem descriptions refer to job queues, classes, message queues, and
programs.

* Command definitions refer to programs, message files, help panel groups, and
source files that are containing REXX procedures.

* Device files refer to output queues.

* Device descriptions refer to translation tables.

* Job descriptions refer to job queues and output queues.
* Database files refer to other database files.

* Logical files refer to physical files or format selections.

 User profiles refer to programs, menus, job descriptions, message queues, and
output queues.

* CL programs refer to display files, data areas, and other programs.
* Display files refer to database files.
* Printer files refer to output queues.

Note: You should be careful when moving objects from the system library QSYS.
These objects are necessary for the system to perform effectively and the
system must be able to find the objects. This is also true for some of the
objects in the general-purpose library QGPL, particularly for job and output
queues.

The MOVOBJ command moves only one object at a time.

Creating Duplicate Objects

You can use the Create Duplicate Object (CRTDUPOBJ) command to create a copy
of an existing object. The duplicate object has the same object type and
authorization as the original object and is created into the same auxiliary storage
pool (ASP) as the original object. The user who issues the command owns the
duplicate object.

Notes:

1. If you create a duplicate object of a journaled file, the duplicate object (file) will
not have journaling active. However, you can select this object for journaling
later. If you create a duplicate object and the object (file) has no members, the
last used date field is blank and the count for number of days used is zero.

You can duplicate an object if you have object management and use authority for
the object, use and add authority for the library in which the duplicate object is to
be placed, use authority for the library in which the original object exists, and add
authority for the process user profile.

To duplicate an authorization list, you must have authorization list management

authority for the object and both add and object operational authority for library
QSYS.

Chapter 4. Objects and Libraries 133



Only the definitions of job queues, message queues, output queues and data
queues are duplicated. Job queues and output queues cannot be duplicated into
the temporary library (QTEMP). For a physical file or a save file, you can specify
whether the data in the file is also to be duplicated.

The following objects cannot be duplicated:

* Class-of-service descriptions (*COSD)

* Cluster resource group (*CRG)

* Configuration lists (*CFGL)

* Connection lists (*CNNL)

* Controller descriptions (*CTLD)

* Data dictionaries (*DTADCT)

* Device descriptions (*DEVD)

* Data queues (*DTAQ)

* Documents (*DOC)

 Edit descriptions (*EDTD)

* Exit registration (*EXITRG)

» Folders (*FLR)

* DBCS font tables (*IGCTBL)

* Image catalog (*IMGCLG)

¢ Internet Packet Exchange Description (*IPXD)
* Job schedules (*JOBSCD)

* Journals (*JRN)

* Journal receivers (*JRNRCV)

* Libraries (*LIB)

* Line descriptions (*LIND)

* Mode descriptions (*MODD)

* Network interface descriptions (*NWID)

* Network server descriptions (*NWSD)

* Reference code translation tables (*RCT)

* Server storage (*SVISTG)

* Spelling aid dictionaries (*SPADCT)

* SQL packages (*SQLPKG)

* System/36 machine descriptions (*S36)

* System operator message queue (QSYSOPR)
* System history log (QHST)

* Time zone description (*TIMZON)

* User-defined SQL type (*SQLUDT)

* User profiles (*USRPRF)

e User queues. (*USRQ)

In some cases, you may want to duplicate only some of the data in a file by
following the CRTDUPOB] command with a CPYF command that specifies the

selection values.

The following command creates a duplicate copy of the order header physical file,
and duplicates the data in the file:

134 CL Programming V5R3



CRTDUPOBJ OBJ(ORDHDRP) FROMLIB(DSTPRODLIB) OBJTYPE(*FILE) +
TOLIB(DISTLIB2) NEWOBJ(*SAME) DATA(%YES)

When you create a duplicate object, you should consider the consequences of
creating a duplicate of an object that refers to another object. Many objects refer to
other objects by name, and many of these references are qualified by a specific
library name. Therefore, the duplicate object could contain a reference to an object
that exists in a library different from the one in which the duplicate object resides.
For all object types other than files, references to other objects are duplicated in the
duplicate object. For files, the duplicate objects share the formats of the original
file.

Any physical files which exist in the from-library, and on which a logical file is
based, must also exist in the to-library. The record format name and record level ID
of the physical files in the to- and from-libraries are compared; if the physical files
do not match, the logical file is not duplicated.

If a logical file uses a format selection that exists in the from-library, it is assumed
that the format selection also exists in the to-library.

Renaming Objects

You can use the Rename Object (RNMOBJ) command to rename objects. However,
you can rename an object only if you have object management authority for the
object and update and execute authority for the library containing the object.

To rename an authorization list, you must have authorization list management
authority, and both update and read authority for library QSYS.

The following objects cannot be renamed:

* Class-of-service descriptions (*COSD)

* Cluster resource group (*CRG)

* Data dictionaries (*DTADCT)

* DBCS font tables (*IGCTBL)

* Display station message queues (*MSGQ)
* Documents (*DOC)

* Exit Registration (*EXITRG)

* Folders (*FLR)

* Job schedules (*JOBSCD)

* Journals (*JRN)

* Journal receivers (*JRNRCV)

* Mode descriptions (*MODD)

* Network Server Description (*NWSD)

* SQL packages (*SQLPKG)

¢ System/36 machine descriptions (*S36)

* The system history log (QHST)

* The system library, QSYS, and the temporary library, QTEMP
¢ The system operator message queue (QSYSOPR)
* Time zone description (*TIMZON)

¢ User-defined SQL type (*SQLUDT)

* User profiles (*USRPRF)

Chapter 4. Objects and Libraries 135



Also, you cannot rename an output queue unless it is empty. You should not
rename IBM-supplied commands because the licensed programs also use
IBM-supplied commands.

To rename an object, you must specify the current name of the object, the name to
which the object is to be renamed, and the object type.

The following RNMOB] command renames the object ORDERL to ORDFILL:
RNMOBJ ~ OBJ(QGPL/ORDERL) OBJTYPE(*FILE)  NEWOBJ(ORDFILL)

You cannot specify a qualified name for the new object name because the object
remains in the same library. If the object you want to rename is in use when you
issue the RNMOB] command, the command runs, but does not rename the object.
As a result, the system sends you a message.

When you rename objects, you should be careful not to rename objects that other
objects depend on. For example, CL programs depend on the command definitions
of the commands used in the program to be named the same at run time as they
were at compile time. Therefore, if the command definition is renamed in between
these two times, the program cannot be run because the commands will not be
found. Similarly, any application program you write depends on certain objects
being named the same at both times.

You cannot rename a library that contains a journal, journal receiver, data
dictionary, cluster resource group, or SQL package.

An object referring to another object may be dependent on the object and library
names (even though *LIBL can be specified for the library name). Therefore, if you
rename an object, you should change any references to it in other objects. See
[‘Moving Objects from One Library to Another” on page 131| for a list of objects
that refer to other objects.

If you rename a physical or logical file, the members in the file are not renamed.
However, you can use the Rename Member (RNMM) command to rename a
physical or logical file member.

Note: You should be careful when renaming objects in the system library QSYS.
These objects are necessary for the system to perform effectively and the
system must be able to find the objects. This is also true for some of the
objects in the general-purpose library QGPL.

Compressing or Decompressing Objects

You can use the Compress Object (CPROBJ) command to compress selected objects
in order to save disk space on the system or you can use the Decompress Object
(DCPOB]J) command to decompress objects that have been compressed. The object
types that are supported for compression and decompression are *PGM, *SRVPGM,
*MODULE, *PNLGRP, *MENU (only UIM menus), and *FILE (only display files or
print files). Database files are not allowed to be compressed. Customer objects, as
well as OS/400-supplied objects, may be compressed or decompressed. To see or
retrieve the compression status of an object, use the Display Object Description
(DSPOBJD) command (*FULL display), or the Retrieve Object Description
(RTVOBJD) command.

136 CL Programming V5R3



Compression of Objects

Object types, *PGM, *SRVPGM, *MODULE, *PNLGRP, *MENU, and *FILE (display
and print files only) can be compressed or decompressed using the CPROB]J or
DCPOBJ commands. Objects can be compressed only when both of the following
are true:

If the system can obtain an exclusive lock on the object.
When the compressed size saves disk space.

The following restrictions apply to the compression of objects:

Programs created before Version 1 Release 3 of the operating system cannot be
compressed.

Programs, service programs, or modules created before Version 3 Release 6 of
the operating system that have not been translated again cannot be compressed.
Programs in IBM-supplied libraries QSYS and QSSP cannot be compressed
unless the paging pool value of the program is *BASE. Use the Display Program
(DSPPGM) command to see the paging pool value of a program. Programs in
libraries other than QSYS and QSSP can be compressed regardless of their
paging pool value.

Only menus with the attribute UIM can be compressed.

Only files with attributes DSPF and PRTF can be compressed.

The system must be in restricted state (all subsystems ended) in order to
compress program objects in system libraries.

The program must not be running in the system when it is compressed, or the
program will end abnormally.

Compression runs much faster if you use multiple jobs in nonrestricted state as
shown in the following table:

Table 5. Compressing Objects using Multiple Jobs

Object Type IBM-supplied User-supplied
*FILE Job 3: QSYS Job 7: USRLIB1
*MENU Job 2: QSYS Job 8: USRLIB1
*MODULE Not applicable Job 10: USRLIB1
*PGM Restricted State Only Job 5: USRLIB1
*PNLGRP Job 1: QSYS Job 4: QHLPSYS Job 6: USRLIB1
*SRVPGM Job 11: QSYS Job 9: USRLIB1

Temporarily Decompressed Objects

Compressed objects are temporarily decompressed automatically by the system
when used. A temporarily decompressed object will remain temporarily
decompressed until:

* An IPL of the system. This causes the temporarily decompressed object to be

deleted (the compressed object remains).

* A Reclaim Temporary Storage (RCLTMPSTG) command is used to reclaim

temporarily decompressed objects. This causes temporarily decompressed objects
to be deleted (the compressed objects remain) if the objects have not been used
for a specified number of days.

* The temporarily decompressed object is used more than 2 days or more than 5

times on the same IPL, in which case it is permanently decompressed.

Chapter 4. Objects and Libraries 137



¢ A DCPOBJ command is used to decompress the object, in which case it is
permanently decompressed.

* The system has an exclusive lock on the object.

Notes:

1. Objects of the type *PGM, *SRVPGM, or *MODULE cannot be temporarily
decompressed. If you call a compressed program or debug the program, it is
automatically permanently decompressed.

2. Compressed file objects, when opened, are automatically decompressed.

3. If the description of a compressed file is retrieved, the file is temporarily
decompressed. Two examples of retrieving a file are:

 Using the Display File Field Description (DSPFFD) command to display field
level information of a file.

* Using the Declare File (DCLF) command to declare a file.

Automatic Decompression of Objects

Compressed objects shipped in the OS/400 or other IBM licensed programs are
decompressed by the system after the licensed programs are installed. The
decompression occurs only when sufficient storage is available on the system.

System jobs called QDCPOB]Jx are automatically started by the system to
decompress objects.

The number of QDCPOB]J jobs is based on number of processors + 1. The jobs are
system jobs running at priority 60 which can’t be changed, ended or held by the
user. A QDCPOBJx job may be in one of the following statuses, which are from the
Work Active Job (WRKACTJOB) command:

* RUN (running): The job is actively decompressing objects.

* EVTW (event wait): The job is not actively decompressing objects. The job is
active in case more objects need to decompressed (i.e. additional licensed
programs are installed).

e DLYW (delay wait): The job is temporarily halted. The following situations could
cause the QDCPOB]Jx jobs to halt:

— The system is running in restricted state (i.e. ENDSYS or ENDSBS *ALL was
executed)

— A licensed program was just installed from the "Work with Licensed
Programs” display. The job is in a delay wait state for a maximum of 15
minutes prior to starting to decompress objects.

* LCKW (lock wait): The job is waiting for an internal lock. Typically, this occurs
when one QDCPOB] job is in DLYW state.

The following storage requirements apply if the operating system was installed
over an existing operating system:

* The system must have greater than 250 megabytes of unused storage for the
QDCPOB]Jx jobs to start.

* On a system with available storage of greater than 750MB, the jobs are
submitted to decompress all system objects just installed.

* On a system with available storage of less than 250MB, jobs are not submitted,
and the objects are decompressed as they are used.

* On a system with available storage between 250MB and 750MB, only
frequently-used objects are automatically decompressed.

138 CL Programming V5R3



Frequently-used objects are objects that have been used at least five times and the
last use was within the last 14 days. The remaining low-use objects remain
compressed.

The system must have greater than 1000MB of unused storage if the operating
system is installed on a system that has been initialized using options 2, Install
Licensed Internal Code and Initialize the system, from the Install Licensed Internal
Code (LIC) display.

If QDCPOB]Jx jobs are active at the last system termination, the jobs are started
again at the time of the next IPL.

Deleting Objects

To delete an object, you can use a delete (DLTxxx) command for that type of object
or you can use the delete option on the Work with Objects display (shown from
the Work with Libraries (WRKLIB) display). To delete an object, you must have
object existence authority to the object and execute authority to the library. Only
the owner of an authorization list, or a user with *ALLOB]J special authority, can
delete the authorization list.

When you delete an object, you must be sure no one else needs the object or is
using the object. Generally, if someone is using an object, it cannot be deleted.
However, programs can be deleted unless you use the Allocate Object (ALCOB]J)
command to allocate the program before it is called.

Some create commands, such as commands that are used to create programs,
commands, and device files, have a REPLACE option. This option allows users to
continue using the old version of a previously replaced object. The system stores
the old versions of these re-created objects in library QRPLOB].

You should be careful of deleting objects that exist in the system libraries. These
objects are necessary for the system to perform properly.

On most delete commands, you can specify a generic name in place of an object
name. Before using a generic delete, you may want to specify the generic name by
using the DSPOBJD command to verify that the generic delete will delete only the
objects you want to delete. See[“Using Generic Object Names” on page 109| for
more information on specifying objects generically.

For information about deleting libraries, see [‘Deleting and Clearing Libraries” on|
-ae 115,

Allocating Resources

Objects are allocated on the system to guarantee integrity and to promote the
highest possible degree of concurrency. An object is protected even though several
operations may be performed on it at the same time. For example, an object is
allocated so that two users can read the object at the same time or one user can
only read the object while another can read and update the same object.

0OS/400 allocates objects by the function being performed on the object. For
example:

 If a user is displaying or dumping an object, another user can read the object.

Chapter 4. Objects and Libraries 139



 If a user is changing, deleting, renaming, or moving an object, no one else can
use the object.

* If a user is saving an object, someone else can read the object, but not update or
delete it; if a user is restoring the object, no one else can read or update the
object.

* If a user is opening a database file for input, another user can read the file. If a
user is opening a database file for output, another user can update the file.

* If a user is opening a device file, another user can only read the file.

Generally, objects are allocated on demand; that is, when a job step needs an
object, it allocates the object, uses the object, and deallocates the object so another
job can use it. The first job that requests the object is allocated the object. In your
program, you can handle the exceptions that occur if an object cannot be allocated
by your request. (See [Chapter 7| and |[Chapter 8 for more information on monitoring
for messages or your high-level language reference manual for information on
handling exceptions.)

Sometimes you want to allocate an object for a job before the job needs the object,
to ensure its availability so a function that has only partially completed would not
have to wait for an object. This is called preallocating an object. You can preallocate
objects using the Allocate Object (ALCOB]) command.

Objects are allocated on the basis of their intended use (read or update) and
whether they can be shared (used by more than one job). The file and member are
always allocated *SHRRD and the file data is allocated with the level of lock
specified with the lock state. A lock state identifies the use of the object and
whether it is shared. The five lock states are (parameter values given in
parentheses):

¢ Exclusive (*EXCL). The object is reserved for the exclusive use of the requesting
job; no other jobs can use the object. However, if the object is already allocated
to another job, your job cannot get exclusive use of the object. This lock state is
appropriate when a user does not want any other user to have access to the
object until the function being performed is complete.

* Exclusive allow read (*EXCLRD). The object is allocated to the job that requested
it, but other jobs can read the object. This lock is appropriate when a user wants
to prevent other users from performing any operation other than a read.

¢ Shared for update (*SHRUPD). The object can be shared either for update or
read with another job. That is, another user can request either a shared-for-read
lock state or a shared-for-update lock state for the same object. This lock state is
appropriate when a user intends to change an object but wants to allow other
users to read or change the same object.

 Shared no update (*SHRNUP). The object can be shared with another job if the
job requests either a shared-no-update lock state, or a shared-for-read lock state.
This lock state is appropriate when a user does not intend to change an object
but wants to ensure that no other user changes the object.

¢ Shared for read (*SHRRD). The object can be shared with another job if the user
does not request exclusive use of the object. That is, another user can request an
exclusive-allow-read, shared-for-update, shared-for-read, or shared-no-update
lock state.

Note: The allocation of a library does not restrict the operations that can be

performed on the objects within the library. That is, if one job places an
exclusive-allow-read or shared-for-update lock state on a library, other jobs

140 cCL Programming V5R3



can no longer place objects in or remove objects from the library; however,
the other jobs can still update objects within the library.

The following table shows the valid lock state combinations for an object:

Table 6. Valid Lock State Combinations

If One Job Obtains This Lock State: Another Job Can Obtain This Lock State:
*EXCL None

*EXCLRD *SHRRD

*SHRUPD *SHRUPD or *SHRRD

*SHRNUP *SHRNUP or *SHRRD

*SHRRD *EXCLRD, *SHRUPD, *SHRNUP, or *SHRRD

You can specify all five lock states (*EXCL, *EXCLRD, SHRUPD, SHRNUP, and
SHRRD) for most object types. this does not apply to all object types. Object types
that cannot have all five lock states specified are listed in the following table with
valid lock states for the object type:

Table 7. Valid Lock States for Specific Object Types

Object Type *EXCL *EXCLRD *SHRUPD *SHRNUP |*SHRRD
Device X

description

Library X X X X
Message queue X X
Panel group X X

Program X X X
Subsystem X

description

To allocate an object, you must have object existence authority, object management
authority, or operational authority for the object. Allocated objects are
automatically deallocated at the end of a routing step. To deallocate an object at
any other time, use the Deallocate Object (DLCOB]J) command.

You can allocate a program before it is called to protect it from being deleted. To
prevent a program from running in different jobs at the same time, an exclusive
lock must be placed on the program in each job before the program is called in any
job.

You cannot use the ALCOBJ or DLCOBJ commands to allocate an APPC device
description.

The following example is a batch job that needs two files members for updating.
Members from either file can be read by another program while being updated,
but no other programs can update these members while this job is running. The
first member of each file is preallocated with an exclusive-allow-read lock state.
//J0B  JOBD(ORDER)

ALCOBJ OBJ((FILEA *FILE *EXCLRD) (FILEB *FILE *EXCLRD))

CALL PROGX
//ENDJOB

Chapter 4. Objects and Libraries 141



Objects that are allocated to you should be deallocated as soon as you are finished
using them because other users may need those objects. However, allocated objects
are automatically deallocated at the end of the routing step.

If the first members of FILEA and FILEB had not been preallocated, the
exclusive-allow-read restriction would not have been in effect. When you are using
files, you may want to preallocate them so that you are assured they are not
changing while you are using them.

Note: If a single object has been allocated more than once (by more than one
allocate command), a single DLCOBJ] command will not completely
deallocate that object. One deallocate command is required for each allocate
command.

It is not an error if the DLCOBJ command is issued against an object where you do
not have a lock or do not have the specific lock state requested to be allocated.

You can change the lock state of an object, as the following example shows:

PGM
ALCOBJ OBJ((FILEX *FILE *EXCL)) WAIT(0)
CALL PGMA

ALCOBJ OBJ((FILEX *FILE *EXCLRD))
DLCOBJ OBJ((FILEX *FILE *EXCL))
CALL PGMB

DLCOBJ O0BJ((FILEX *FILE *EXCLRD))
ENDPGM

File FILEX is allocated exclusively for PGMA, but FILEX is allocated as
exclusive-allow-read for PGMB.

You can use record locks to allocate data records within a file. You can also use the
WAITFILE parameter on a Create File command to specify how long your program
is to wait for that file before a time-out occurs.

The WAITRCD parameter on a Create File command specifies how long to wait for
a record lock. The DFTWAIT parameter on the Create Class (CRTCLS) command
specifies how long to wait for other objects. For a discussion of the WAITRCD

parameter, see the [Backup and Recoveryl@‘ book.

Displaying the Lock States for Objects

You can use the Work with Object Locks (WRKOBJLCK) command or the Work
with Job (WRKJOB) command to display the lock states for objects.

The WRKOBJLCK command displays all the lock state requests in the system for a
specified object. It displays both the held locks and the locks being waited for. For
a database file, the WRKOBJLCK command displays the locks at the file level (the
object level) but not at the record level. For example, if a database file is open for
update, the lock on the file is displayed, but the lock on any records within the file
is not. Locks on database file members can also be displayed using the
WRKOBJLCK command.

If you use the WRKJOB command, you can select the locks option on the Display
Job menu. This option displays all the lock state requests outstanding for the
specified active job, the locks being held by the job, and the locks for which the job
is waiting. However, if a job is waiting for a database record lock, this does not
appear on the object locks display.

142 cCL Programming V5R3



The following command displays all the lock state requests in the system for the

logical file ORDFILL:

WRKOBJLCK OBJ(QGPL/ORDFILL) OBJTYPE(*FILE)

The resulting display is:

/ N
Work with Object Locks
System: SYSTEMO1
Object:  ORDFILL Library:  QGPL Type:  *FILE-LGL
Type options, press Enter.
4=End job  5=Work with job  8=Work with job Tocks
Opt Job User Lock Status Scope Thread
WORKST0O4 QSECOFR *SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0OB
*SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0OB
*SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0B
*SHRRD HELD *J0B
More...
\F3=Ex1't F5=Refresh  F6=Work with member locks F12=Cancel )
Chapter 4. Objects and Libraries 143



144 cCL Programming V5R3



Chapter 5. Working with Objects in CL Procedures and
Programs

Accessing Objects in CL Programs

Rules that refer to objects in CL program commands and procedures are the same
as objects in commands that are processed individually (not within a program).
Object names can be either qualified or unqualified. Locate an unqualified object
name through a search of the library list.

Most objects referred to in CL procedures and programs are not accessed until the
command referring to them is run. To qualify the name (library/name)of an object, it
must be in the specified library when the command that refers to it runs. However,
the object does not have to be in that library at the creation of the program. This
means that most objects can be qualified in CL source statements that are simply
based only on their run—time location. [“Exceptions: Accessing Command)
[Definitions, Files, and Procedures” on page 146|discusses the exceptions.

You can avoid this run—time consideration for all objects if you do not qualify
object names on CL source statements, but refer to the library list (*LIBL/name)
instead. If you refer to the library list at compile time, the object can be in any
library on the library list at command run time. This is possible providing you do
not have duplicate-name objects in different libraries. If you use the library list,
you can move the object to a different library between procedure creation and
command processing.

Objects do not need to exist until the command that refers to them runs. Because
of this, the CL program successfully compiles even though program PAYROLL
does not exist at compile time:

PGM /*TEST=*/
DCL...
MONMSG. . .

éALL PGM(QGPL/PAYROLL)

ENDPGM

In fact, PAYROLL does not have to exist when activating the program TEST, but
only when running the CALL command. This creates the called program within
the calling program immediately prior to the CALL command:

PGM /*TEST*/
DCL...

MONMSG

CRTCLPGM PGM(QGPL/PAYROLL)
CALL PGM(QGPL/PAYROLL)

© Copyright IBM Corp. 1997, 2004 145



ENDPGM

Note that for create commands, such as (CRTCLPGM) or (CRTDTAARA), the
object that is accessed at compile or run time is the create command definition, not
the created object. If you are using a create command, the create command
definition must be in the library that is used to qualify the command at compile
time. (Alternately, it must be in a library on the library list if you used *LIBL.)

Exceptions: Accessing Command Definitions, Files, and
Procedures

Two requirements exist for creating a CL program from source statements that
refer to command definitions or files.

* The objects must exist at creation time of the program.
* The objects must exist when the command that refers to them runs.

This means that if you use the Declare File (DCLF) command, you must create the
file before creating a program that refers to the file.

Accessing Command Definitions

Access to the command definitions occurs during program creation time and at
command run time. To allow for syntax checking, the command must exist during
the creation of a program that uses it. If it is qualified at creation time, the
command needs to exist in the library referred to during creation, and in the same
library when processed. If it is not library-qualified, it must be in some library on
the library list during creation time and at run time.

The command name should be qualified in the program:

* When the command’s definition will not be accessible through the library list
while the program is running.

* When multiple command definitions exist with the same name if expecting a
specific instance of the command at run time.

The name of the command must be the same when the program runs as when the
system created it. An error occurs if the command name changes after creating a
program that refers to that command. This is because the program cannot find the
command when it runs. However, if a default changes for a parameter on a
command, the new default is used when that command runs. For more detail on
attributes that you may change on a command without having to re-create the
command, see the Change Command (CHGCMD) command description in the CL
topic of the Programming category in the iSeries Information Center.

Accessing Files

The compiler accesses files when compiling a program module that has a Declare
File (DCLF) command. The file must exist when compiling a CL module or OPM
program that uses it. The file does not have to exist when creating a program or
service program that uses the module.

Enter Data Description Specifications (DDS) into a source file before creating it.
The DDS describes the record formats and the fields within the records.
Additionally, the system compiles this information to create the file object through
the Create Display File (CRTDSPF) command.

146 cCL Programming V5R3



Note: You can create other types of files from DDS, and each type has its own
command: Create Physical File (CRTPF) and Create Logical File (CRTLF) are
two that create files that you can use in CL programs and procedures.

The fields that are described in the DDS can be input or output fields (or both).
The system declares the fields in the CL program or procedure as variables when it
compiles a program or module. The program manipulates data from display
through these variables.

If you do not use DDS to create a physical file, the system declares a CL variable
to contain the entire record. This variable has the same name as the file, and its
length is the same as the record length of the file.

CL programs and procedures cannot manipulate data in any types of files other
than display files and database files, except with specific CL commands.

Deletion of the DDS after creating the file is possible but not recommended. You
can delete the file after the system compiles the CL program or module that refers
to the file. This is true provided the file exists when the command referring to it,
such as a Receive File (RCVF), is processed in the program.

The rules on qualified names that are described here for command definitions also

apply to files. For more details on files, see [“Working with Files in CL Procedures”]

Accessing Procedures

A procedure that is specified by Call Bound Procedure (CALLPRC), does not have
to exist at the time a module that refers to it is created. The system requires the
existence of the procedure in order to create a program or service program that
uses the procedure. The called procedure may be:

e In a module that is specified on the MODULE parameter on the Create Program
(CRTPGM) or CRTSRVPGM command.

* In a service program that is specified on the BNDSRVPGM parameter. The
service program must be available at run time.

* In a service program or module that is listed in a binding directory that is
specified on the BNDDIR parameter of the CRTPGM command or CRTSRVPGM
command. The binding directory and modules do not have to be available at
run time.

Checking for the Existence of an Object

Before attempting to use an object in a program, check to determine if the object
exists and if you have the authority to use it. This is useful when a function uses
more than one object at one time.

To check for the existence of an object, use the Check Object (CHKOBJ) command.
You can use this command at any place in a procedure or program. The CHKOB]J
command has the following format:

CHKOBJ 0BJ(Tlibrary-name/object-name) OBJTYPE(object-type)
Other optional parameters allow object authorization verification. If you are

checking for authorization and intend to open a file, you should check for both
operational and data authority.

Chapter 5. Working with Objects in CL Procedures and Programs 147



When this command runs, the system sends messages to the program or procedure
to report the result of the object check. You can monitor for these messages and
handle them as you wish. For example:

CHKOBJ OBJ(OELIB/PGMA) OBJTYPE(*PGM)

MONMSG MSGID(CPF9801) EXEC(GOTO NOTFOUND)
CALL OELIB/PGMA

NOTFOUND: CALL FIX001 /*PGMA Not Found Routinex/
ENDPGM

In this example, the MONMSG command checks only for the object-not-found
escape message. For a list of all the messages which the CHKOBJ] command may
send see the online help information for the CHKOB] command. |”Using the|
Monitor Message (MONMSG) Command” on page 50)[Chapter 7} and [Chapter §
contain additional information about monitoring for messages.

The CHKOBJ command does not allocate an object. For many application uses the
check for existence is not an adequate function, the application should allocate the
object. The Allocate Object (ALCOBJ) command provides both an existence check
and allocation.

Use the Check Tape (CHKTAP) or Check Diskette (CHKDKT) command to ensure
that a specific tape or diskette is placed on the drive and ready. These commands
also provide an escape message that you can monitor for in your CL program.

Working with Files in CL Procedures

Two types of files are supported in CL procedures and programs, display files, and
database files. You can send a display to a workstation and receive input from the
workstation for use in the procedure or program, or you can read data from a
database file for use in the procedure or program.

Note: Database files are made available for use within the CL procedure or
program through the DCLF and RCVF commands.

To use a file in a CL procedure or program, you must:

* Format the display or database record, identifying fields and conditions which
you enter as DDS source. The use of DDS is not required for a database file.

* Create the file using the Create Display File (CRTDSPF) command, Create
Physical File (CRTPF) command, or Create Logical File (CRTLF) command.
Subfiles (except for message subfiles) are not supported by CL procedures and
programs.

* For database files, add a member to the file using the Add Physical File Member
(ADDPFM) command or Add Logical File Member (ADDLEM) command. This
is not required if a member was added by the CRTPF or CRTLF commands. The
file must have a member when the procedure or program is processed, but does
not need to have a member when the procedure or program is created.

* Refer to the file in the CL procedure using the DCLF command, and refer to the
record format on the appropriate data manipulation CL commands in your CL
source.

* Create the CL module.

* Create the program or service program.

148 cCL Programming V5R3



Up to five display or database files can be referred to in a CL procedure. The
support for database files and display files is similar as the same commands are
used. However, there are a few differences, which are described here.

* The following statements apply only to database files used with CL procedures
and programs:

— Only database files with a single record format may be used by a CL
procedure or program.

— The files may be either physical or logical files, and a logical file may be
defined over multiple physical file members.

— Only input operations, with the RCVF command, are allowed. The WAIT and
DEV parameters on the RCVF command are not allowed for database files. In
addition, the SNDF, SNDRCVF, and ENDRCV commands are not allowed for
database files.

— DDS is not required to create a physical file which is referred to in a CL
procedure or program. If DDS is not used to create a physical file, the file has
a record format with the same name as the file, and there is one field in the
record format with the same name as the file, and with the same length as the
record length of the file (RCDLEN parameter of the CRTPF command).

— The file need not have a member when it is created for the module or
program. It must, however, have a member when the file is processed by the
program.

— The file is opened for input only when the first RCVF command is processed.
The file must exist and have a member at that time.

— The file remains open until the procedure or OPM program returns or when
the end of file is reached. When end of file is reached, message CPF0864 is
sent to the CL procedure or program, and additional operations are not
allowed for the file. The procedure or program should monitor for this
message and take appropriate action when end of file is reached.

* The following statements apply only to display files used with CL procedures
and programs:

- Display files may have up to 99 record formats.

— All data manipulation commands (SNDF, SNDRCVE, RCVF, ENDRCV and
WAIT) are allowed for display files.

— The display file must be defined with the DDS.

— The display file is opened for both input and output when the first SNDEF,
SNDRCVFE, or RCVF command is processed. The file remains open until the
procedure or OPM program returns.

Note: The open does not occur for both types of files until the first send or receive
occurs. Because of this, the file to be used can be created during the
procedure or program and an override can be performed before the first
send or receive. However, the file must exist before the module or program
is compiled.

The format for the display is identified as a record format in DDS. Each record
format may contain fields (input, output, and input/output), conditions/indicators,
and constants. Several record formats can be entered in one display file. The
display file name, record format name, and field names should be unique, because

Chapter 5. Working with Objects in CL Procedures and Programs 149



other HLLs may require it, even though CL procedures and programs do not.
Display Display File DSPFILE
RCDFMT1

Fieldl Keyword
Field2 Constant

A

RCDFMT?2
Display Field3
Field4

A

RBAFN504-0

You can use the methods discussed in the|Application Display Programmingl@
book or the Screen Design Aid (SDA) to enter DDS source for records and fields in
the display file. See the

A CL procedure or program can use several commands, called data manipulation
commands. These commands let you refer to a display file to send data to and
receive data from device displays. These commands also allows you to refer to a
database file to read records from a database file. These commands are:

* Declare File (DCLF). Defines a display or database file to be used in a procedure
or program. The fields in the file are automatically declared as variables for use
in the procedure or program.

* Send File (SNDF). Sends data to the display.

* Receive File (RCVEF). Receives data from the display or database.

* Send/Receive File (SNDRCVF). Sends data to the display; then asks for input
and, optionally, receives data from the display.

* Override with Display File (OVRDSPF). Allows a run-time override of a file
used by a procedure or program with a display file.

* Opverride with Database File (OVRDBF). Allows a run-time override of a file
used by a procedure or program with a database file.

These commands let a running program communicate with a device display using
the display functions provided by DDS, and to read records from a database file.
DDS provides functions for writing menus and performing basic
application-oriented data requests that are characteristic of many CL applications.

CL Program DSPFILE Display
PGM (F% RCDFMT (A)
DCLF DSPFILE > >

M
SNDF RCDFMT(A) T
(A)
DDS

RBAFN505-0

The fields on the display or in the record are identified in the DDS for the file. In
order for the CL procedure or program to use the fields, the file must be referred
to in the CL procedure or program by the DCLF command. This reference causes
the fields and indicators in the file to be declared automatically in your procedure

150 CL Programming V5R3



or program as variables. You can use these variables in any way in CL commands;
however, their primary purpose is to send information to and receive information
from a display. The DCLF command is not used at run time.

The format of the display and the options for the fields are specified in the device
file and controlled through the use of indicators. Up to 99 indicator values can be
used with DDS and CL support. Indicator variables are declared in your CL
procedure or program in the form of logical variables with names &INO1 through
&IN99 for each indicator that appears in the device file record formats referred to
on the DCLF command. Indicators let you display fields and control data
management display functions, and provide response information to your
procedure or program from the device display. Indicators are not used with
database files.

Referring to Files in a CL Procedure

Files are accessed during compiling of DCLF commands when CL modules and
programs are created so that variables can be declared for each field in the file.

If you have qualified the name of the file at compile time, the file must be in that
library at run time. If you have used the library list at compile time, the file must
be in a library on the library list at run time.

Opening and Closing Files in a CL Procedure

When you use CL support, the file referred to is implicitly opened when you do
your first send, receive, or send/receive operation. An opened display file remains
open until the procedure or OPM program in which it was opened returns or
transfers control. An opened database file is closed when end of file is reached, or
when the procedure or OPM program in which it was opened returns or transfers
control. Once a database file has been closed, it cannot be opened again during the
same call of the procedure or OPM program.

When a database file opens, the first member in the file will open, unless you
previously used an OVRDBF command to specify a different member (MBR
parameter). If a procedure or OPM program ends because of an error, the files
close. A file remains open until the procedure or OPM program in which that file
was opened ends. Because of this, you have an easy way to share open data paths
between running procedures and programs. You can open a file in one procedure
or program. Then the file can share its open data path with another procedure or
program under either of the following conditions:

* The file was created with or has been changed to have the SHARE(*YES)
attribute.

* An override for that file by specifying SHARE(*YES) is in effect.

You can share files in this way between any two procedures or programs. Use
online help for a detailed description of the function available when the system
shares open data paths. Additionally, IBM provides a description of the SHARE
parameter on the CRTDSPF, CRTPF, and CRTLF commands online. Refer to the CL
section of the Programming category in the iSeries Information Center. A display
file opened in a CL procedure or OPM program always opens for both input and
output. A database file opened in a CL procedure or OPM program opens for input
only.

Do not specify LVL(*CALLER) on the Reclaim Resources (RCLRSC) command in
CL procedures and programs using files. If you specified LVL(*CALLER), all files

Chapter 5. Working with Objects in CL Procedures and Programs 151



opened by the procedure or OPM program would be immediately closed, and any
attempt to access the file would end abnormally.

Declaring a File

The Declare File (DCLF) command is used to declare a display or database file to

your CL procedure or program. The DCLF command cannot be used to declare

files such as tape, printer, and mixed files. You can declare up to five files in a CL

procedure or OPM program. The DCLF command has the following parameters:
DCLF  FILE(library-name/file-name)

RCDFMT (record-format-names)
OPNID(open_id_name)

Note that the file must exist before the module or program is compiled.

If you are using a display file in your procedure or program, you may have to
specify input and output fields in your DDS. These fields are handled as variables
in the procedure or program. When processing a DCLF command, the CL compiler
declares CL variables for each field and option indicator in each record format in
the file. For a field, the CL variable name is the field name preceded by an
ampersand (&). For an option indicator, the CL variable name is the indicator that
is preceded by &IN.

You use the open file identifier (OPNID) parameter to uniquely identify an
instance of a declared file so that multiple files can be declared. If you use the
OPNID parameter, then for a field, the CL variable name is the field name
preceded by an ampersand (&), the OPNID value, and an underscore (_). For an
option indicator, the CL variable name is the indicator preceded by an ampersand
(&), the OPNID value, an underscore, and “IN”.

For example, if a field named INPUT and indicator 10 are defined in DDS, the
DCLF command automatically declares them as &INPUT and &IN10. This
declaration is performed when the CL module or program is compiled. Up to 50
record format names can be specified on one command, but none can be variables.
Only one record format may be specified for a database file.

If the following DDS were used to create display file CNTRLDSP in library
MCGANN:

A R MASTER

A CA01(01 'F1 RESPONSE')
A TEXT 300 2 4

A RESPONSE 15 1 8 4 BLINK

A

A

Three variables, &IN01, &TEXT, and &RESPONSE, would be available from the
display file. In a CL procedure referring to this display file, you would enter only
the DCLF source statement:

DCLF MCGANN/CNTRLDSP

The compiler will expand this statement to individually declare all display file
variables. The expanded declaration in the compiler list looks like this:

152  CL Programming V5R3



00500~ DCLF(MCGANN/CNTRLDSP)
04/02/03
QUALIFIED FILE NAME - MCGANN/CNTRLDSP
RECORD FORMAT NAME - MASTER

CL VARIABLE TYPE LENGTH PRECISION (IF =*DEC)
&INO1 *LGL 1
&TEXT *CHAR 300
&RESPONSE *CHAR 15

If the DCLF source statement includes an OPNID parameter:
DCLF MCGANN/CNTRLDSP OPNID(OPENIDI)
The expanded declaration in the compiler list will look like this:

00500- DCLF FILE(MCGANN/CNTRLDSP) OPNID(OPENID1) 04/02/03
QUALIFIED FILE NAME - MCGANN/CNTRLDSP
RECORD FORMAT NAME - MASTER

CL VARIABLE TYPE LENGTH PRECISION TEXT
&0OPENID1_INO1 *LGL 1
&0PENID1 TEXT *CHAR 300
&0PENID1_RESPONSE *CHAR 15

Sending and Receiving Data with a Display File

The only commands you can use with a display file to send or receive data in CL
procedures and programs are the SNDF, RCVE, and SNDRCVF commands.

The system formats the content of the variables associated with the output or
output/input fields in the record format when you run a SNDF command.
Additionally the system sends it to the display device. This is similar to when you
run a RCVF command. The values of the fields associated with input or
output/input fields in the record format on the display are placed in the
corresponding CL variables.

The SNDRCVF command sends the contents of the CL variables to the display. The
command then performs the equivalent of a RCVF command to obtain the updated
fields from the display. Note that CL does not support zoned decimal numbers.
Consequently, fields in the display file that are defined as zoned decimal, cause
*DEC fields to be defined in the CL procedure or program. *DEC fields are
internally supported as packed decimal, and the CL commands convert the packed
and zoned data types as required. Fields that overlap in the display file because of
coincident display positions result in separately defined CL variables that do not
overlap. You cannot use record formats that contain floating point data in a CL
procedure or program.

Note: If a SNDRCVF or RCVF command for a workstation indicates WAIT(*NO),
then the system uses the WAIT command to receive data. The same is true if
a SNDF command is issued using a record format containing the INVITE
DDS keyword.

Chapter 5. Working with Objects in CL Procedures and Programs 153



Except for message subfiles, any attempt to send or receive subfile records causes
run-time errors. Most other functions specified for display files in DDS are
available; some functions (such as using variable starting line numbers) are not.
For more information on messages and subfiles in CL procedures and programs,

The following example shows the steps required to create a typical operator menu
and to send and receive data using the SNDRCVF command. The menu looks like

this:
~
Operator Menu
1. Accounts Payable
2. Accounts Receivable
90. Signoff
Option:
o J

First, enter the following DDS source. The record format is MENU, and OPTION is
an input-capable field. The OPTION field uses DSPATR(MDT). This causes the
system to check this field for valid values even if the operator does not enter
anything.

1 2'Operator Menu'
3 4'1. Accounts Payable'
5 4'2. Accounts Receivable'
5 4'90. Signoff'
7 2'Option'
OPTION 2Y 01 + 2VALUES(1 2 90) DSPATR(MDT)

S>> > > > > >

Enter the CRTDSPF command to create the display file. In CL programming, the
display file name (INTMENU) can be the same as the record format name
(MENU), though this is not true for some other languages, like RPG for OS/400.

The display file could also be created using the Screen Design Aid (SDA) utility.
Next, enter the CL source to run the menu.

The CL source for this menu is:

PGM /* OPERATOR MENU */
DCLF INTMENU
BEGIN:  SNDRCVF RCDFMT (MENU)
IF COND(80PTION *EQ 1) THEN(CALL ACTSPAYMNU)
IF COND(&PTION *EQ 2) THEN(CALL ACTSRCVMNU)
IF COND(&OPTION *EQ 90) THEN(SIGNOFF)
GOTO BEGIN
ENDPGM

When this source is compiled, the DCLF command automatically declares the
input field OPTION in the procedure as a CL variable.

The SNDRCVF command defaults to WAIT(*YES); that is, the program waits until
input is received by the program.

154 CL Programming V5R3



Writing a CL Program to Control a Menu

The following example shows how a CL procedure can be written to display and

control a menu. See the|Application Display Programmingr% book for another
method of creating and controlling menus.

This example shows a CL procedure, ORD040C, that controls the displaying of the
order department general menu and determines which HLL procedure to call
based on the option selected from the menu. The procedure shows the menu at the
display station.

The order department general menu looks like this:

Order Dept General Menu

1 Inquire into customer file

2 Inquire into item file

3 Customer name search

4 Inquire into orders for a customer
5 Inquire into an existing order
6 Order entry
98 End of menu

Option:

- /

The DDS for the display file ORD040C looks like this:

A

A

A R MENU TEXT('General Menu')

A 1 2'Order Dept General Menu'

A 3 3'1 Inquire into customer file'

A 4 3'2 Inquire into item file'

A 5 3'3 Customer name search'

A 6 3'4 Inquire into orders for a custom+
A er'

A 7 3'5 Inquire into existing order'

A 8 3'6 Order Entry'

A 9 2'98 End of menu'

A 11 2'Option'

A RESP 2Y001 11 10VALUES(1 2 3 4 5 6 98)

A DSPATR (MDT)

A
A

The source procedure for ORD040C looks like this:

PGM /* ORDO40OC Order Dept General Menu »*/
DCLF FILE(ORDO40OCD)

START: SNDRCVF RCDFMT (MENU)
SELECT

Chapter 5. Working with Objects in CL Procedures and Programs 155



WHEN (&RESP=1) THEN(CALLPRC CUS210) /+* Customer inquiry =/
WHEN (&RESP=2) THEN(CALLPRC ITM210) /* Item inquiry */
WHEN (&RESP=3) THEN(CALLPRC CUS220) /* Cust name search =/
WHEN (&RESP=4) THEN(CALLPRC ORD215) /* Orders by cust «/
WHEN (&RESP=5) THEN(CALLPRC ORD220) /* Existing order =/

WHEN (&RESP=6) THEN(CALLPRC ORD410C) /* Order entry */
WHEN (&RESP=98) THEN(RETURN) /* End of Menu */
ENDSELECT
GOTO START
ENDPGM

The DCLF command indicates which file contains the field attributes the system
needs to format the order department general menu when the SNDRCVF
command is processed. The system automatically declares a variable for each field
in the record format in the specified file if that record format is used in an SNDF,
RCVEF, or SNDRCVF command. The variable name for each field automatically
declared is an ampersand (&) followed by the field name. For example, the
variable name of the response field RESP in ORD040C is &RESP.

Other notes on the operation of this menu:
The SNDRCVF command is used to send the menu to the display and to
receive the option selected from the display.
If the option selected from the menu is 98, ORD040C returns to the procedure
that called it.
The ELSE statements are necessary to process the responses as mutually
exclusive alternatives.

Note: This menu is run using the CALL command. See the [Application Display]|

Q" book for a discussion of those menus run using the GO

command.

Overriding Display Files in a CL Procedure

You can use the Override with Display File (OVRDSPF) command to replace the
display file named in a CL procedure or program or to change certain parameters
of the existing display file. This may be especially useful for files that have been
renamed or moved since the module or program was compiled.

The initial parameters of the OVRDSPF command are:

OVRDSPF  FILE(overridden-file-name) TOFILE(new-file-name)
DEV(device-name)

The OVRDSPF command is valid for a file referred to by a CL procedure or
program only if the file specified on the DCLF command was a display file when
the module or program was created. The file used when the program is run must
be of the same type as the file referred to when the module or program was
created.

You must run the OVRDSPF command before opening the file that is being
overridden. An open is caused by the first use of a send or receive command. The
system overrides the file on finding any of the following conditions:

* A procedure or program that contains the OVRDSPF command opens the file.

* The file opens in another procedure which transfers control by using the
CALLPRC command.

* The file opens in another program which transfers control by using the CALL
command.

156 CL Programming V5R3



When you override to a different file, only those record format names referred to
on the SNDF, RCVF, or SNDRCVF command need to be in the overriding file. In
the following illustration, display file FILEY does not need record format TWO or

THREE.
Display Files CL Program
MCGANN/FILEX

RCDFMT ONE | PGM

Field 1 DCLF MCGANN/FILEX

RCDFMT TWO

Field 2 .

RCDFMT THREE .

Field 3 | OVRDSPF FILE(FILEX) TOFILE(FILEY)
MCGANN/FILEY .
RCDEMT ONE SNDF RCDFMT (ONE)
Field 1

ENDPGM

RBAFN531-0

You should make sure that the record format referred to names of the original file
and the overriding files have the same field definitions and indicator names in the
same order. You may get unexpected results if you specify LVLCHK(*NO).

Another consideration has to do with the DEV parameter on the SNDF, RCVEF, and
SNDRCVF commands when an OVRDSPF command is applied. If *FILE is
specified on the DEV parameter of the RCVE, SNDF, or SNDRCVF command, the
system automatically directs the operation to the correct device for the overridden
file. If a specific device is specified on the DEV keyword of the RCVE, SNDEF, or
SNDRCVF command, one of the following may occur:

* If a single device display file is being used, an error will occur if the display file
is overridden to a device other than the one specified on the RCVF, SNDEF, or
SNDRCVF command.

e If a multiple device display file is being used, an error will occur if the device
specified on the RCVE, SNDF, or SNDRCVF command is not among those
specified on the OVRDSPF command.

Working with Multiple Device Display Files

The normal mode of operation on a system is for the workstation user to sign on
and become the requester for an interactive job. Many users can do this at the
same time, because each will use a logical copy of the procedure, including the
display file in the procedure. Each requester calls a separate job in this kind of use.
This is not considered to be multiple device display use.

A multiple device display configuration occurs when a single job called by one
requester communicates with multiple display stations through one display file.
While only one display file can be handled by a CL procedure, the display file, or
different record formats within it, can be sent to several device displays.
Commands used primarily with multiple device display files are:

Chapter 5. Working with Objects in CL Procedures and Programs 157



* End Receive (ENDRCYV). This command cancels requests for input that have not
been satisfied.

* Wait (WAIT). Accepts input from any device display from which user data was
requested by one or more previous RCVF or SNDRCVF commands when
WAIT(*NO) was specified on the command, or by one or more previous SNDF
commands to a record format containing the INVITE DDS keyword.

If you use a multiple device display file, the device names must be specified on the
DEV parameter on the CRTDSPF command when the display file is created, on the
CHGDSPF command when the display file is changed, or on an override
command, and the number of devices must be less than or equal to the number
specified on the MAXDEV parameter on the CRTDSPF command.

Multiple device display configurations affect the SNDRCVF and the RCVF
commands and you may need to use the WAIT or ENDRCV commands. When an
RCVF or SNDRCVF command is used with multiple display devices, the default
value WAIT(*YES) prevents further processing until an input-capable field is
returned to the program from the device named on the DEV parameter. Because
the response may be delayed, it is sometimes useful to specify WAIT(*NO), thus
letting your procedure or program continue running other commands before the
receive operation is satisfied.

If you use an RCVF or SNDRCVF command and specify WAIT(*NO), the CL
procedure or program continues running until a WAIT command is processed.

Using a SNDF command with a record format which has the DDS INVITE
keyword is equivalent to using a SNDRCVF command with WAIT(*NO) specified.
The DDS INVITE keyword is ignored for SNDRCVF and RCVF commands.

The WAIT command must be issued to access a data record. If no data is available,
processing is suspended until data is received from a device display or until the
time limit specified in the WAITRCD parameter for the display file on the
CRTDSPFE, CHGDSPF, or OVRDSPF commands has passed. If the time limit passes,
message CPF0889 is issued.

The WAIT will also be satisfied by the job being canceled with the controlled
option on the ENDJOB, ENDSYS, PWRDWNSYS, and ENDSBS commands. In this
case, message CPF0888 is issued and no data is returned. If a WAIT command is
issued without a preceding receive request (such as RCVF ... WAIT(*NO)), a
processing error occurs.

158 CL Programming V5R3



A typical multiple device display configuration (with code) might look like this:

DSPFILE WS2
SNDF DEV(WS2) RCDFMT(1) |
RCVFDEV (WS2) RCDFMT(1) WAIT(*YES) < FMT 1 » T
SNDRCVF DEV(WS1) RCDFMT(2) WAIT (*NO)T WS1
CALLPROGA EMT 2 R
WAIT

RBAFN506-0

In the above example, the first two commands show a typical sequence in which
the default is taken; processing waits for the receive operation from WS2 to
complete. Because WS2 is specified on the DEV parameter, the RCVF command
does not run until WS2 responds, even if prior outstanding requests (not shown)
from other stations are satisfied.

The SNDRCVF command, however, has WAIT(*NO) specified and so does not wait
for a response from WS1. Instead, processing continues and PROGA is called.
Processing then stops at the WAIT command until an outstanding request is
satisfied by a workstation, or until the function reaches time-out.

The WAIT command has the following format:
WAIT DEV(CL-variable-name)

If the DEV parameter is specified, the CL variable name is the name of the device
that responded. (The default is *NONE.) If there are several receive requests (such
as RCVE. . . WAIT(*NO)), this variable takes the name of the first device to
respond after the WAIT command is encountered and processing continues. The
data received is placed in the variable associated with the field in the device
display.

A RCVF command with WAIT(*YES) specified can be used to wait for data from a
specific device. The same record format name must be specified for both the
operation that started the receive request and the RCVF command.

In some cases, several receive requests are outstanding, but processing cannot
proceed further without a reply from a specific device display. In the following
example, three commands specify WAIT(*NO), but processing cannot continue at
label LOOP until WS3 replies:

PGM

SNDF DEV(WS1) RCDFMT(ONE)

SNDF DEV(WS2) RCDFMT(TWO)

SNDRCVF DEV(WS3) RCDFMT(THREE) WAIT(*NO)
RCVF DEV(WS2) RCDFMT(TWO) WAIT(*NO)

RCVF DEV(WS1) RCDFMT(ONE) WAIT(*NO)
CALL...

Chapter 5. Working with Objects in CL Procedures and Programs 159



CALL...

RCVF DEV(WS3) RCDFMT(THREE) WAIT(*YES)
LOOP:  WAIT DEV(&WSNAME)
MONMSG CPFO882 EXEC(GOTO REPLY)

GOTO LOOP
REPLY:  CALL...

ENDPGM

CL procedures and programs also support the ENDRCV command, which lets you
cancel a request for input that has not yet been satisfied. A SNDF or SNDRCVF
command will also cancel a request for input that has not yet been satisfied.
However, if the data was available at the time the SNDF or SNDRCVF command
was processed, message CPF0887 is sent. In this case the data must be received
with the WAIT command or RCVF command, or the request must be explicitly
canceled with a ENDRCV command before the SNDF or SNDRCVF command can
be processed.

Receiving Data from a Database File

The only command you can use to receive data from a database file is the RCVF
command.

When you run a RCVF command, the next record on the file’s access path is read,
and the values of the fields defined in the database record format are placed in the
corresponding CL variables. Note that CL does not support zoned decimal or
binary numbers. Consequently, fields in the database file defined as zoned decimal
or binary cause *DEC fields to be defined in the CL procedure or program. *DEC
fields are internally supported as packed decimal, and the RCVF command
performs the conversion from zoned decimal and binary to packed decimal as
required. Database files which contain floating point data cannot be used in a CL
procedure or program.

When the end of file is reached, message CPF0864 is sent to the procedure or OPM
program. The CL variables declared for the record format are not changed by the
processing of the RCVF command when this message is sent. You should monitor
for this message and perform the appropriate action for end of file. If you attempt
to run additional RCVF commands after end of file has been reached, message
CPF0864 is sent again.

Overriding Database Files in a CL Procedure or Program

You can use the Override with Database File (OVRDBF) command to replace the
database file named in a CL procedure or program or to change certain parameters
of the existing database file. This may be especially useful for files that have been
renamed or moved since the procedure or program was created. It can also be
used to access a file member other than the first member.

The initial parameters of the OVRDBF command are:

OVRDBF FILE(overridden-file-name) TOFILE(new-file-name)
MBR (member-name)

160 CL Programming V5R3



The OVRDBF command is valid for a file referred to by a CL procedure or
program only if the file specified in the DCLF command was a database file when
the module or program was created. The file used when the program was
processed must be of the same type as the file referred to when the module or
program was created.

The OVRDBF command must be processed before the file to be overridden is
opened for use (an open occurs by the first use of the RCVF command). The file is
overridden if it is opened in the procedure or OPM program containing the
OVRDBF command, or if it is opened in another program to which control is
transferred by the CALL command, or if it is opened in another procedure to
which control is transferred using the CALLPRC command.

When you override to a different file, the overriding file must have only one
record format. A logical file which has multiple record formats defined in DDS
may be used if it is defined over only one physical file member. A logical file
which has only one record format defined in the DDS may be defined over more
than one physical file member. The name of the format does not have to be the
same as the format name referred to when the program was created. You should
ensure that the format of the data in the overriding file is the same as in the
original file. You may get unexpected results if you specify LVLCHK(*NO).

Referring to Output Files from Display Commands

A number of the IBM display commands allow you to place the output from the
command into a database file (OUTFILE parameter). The data in this file can be
received directly into a CL procedure or program and processed.

The following CL procedure accepts two parameters, a user name and a library
name. The procedure determines the names of all programs, files, and data areas in
the library and grants normal authority to the specified users.
PGM PARM(&USER &LIB)
DCL &USER =CHAR 10
DCL &LIB *CHAR 10
(1) DCLF QSYS/QADSPOBJ
(2) DSPOBJD OBJ(&LIB/*ALL) OBJTYPE(*FILE #PGM *DTAARA) +
OUTPUT (*OUTFILE) OUTFILE(QTEMP/DSPOBJD)
(3) OVRDBF QADSPOBJ TOFILE(QTEMP/DSPOBJD)
(4) READ: RCVF
(5) MONMSG CPFO864 EXEC(RETURN) /+ EXIT WHEN END OF FILE REACHED =/
(6) GRTOBJAUT 0BJ(&ODLBNM/&0DOBNM) OBJTYPE(&ODOBTP) +
USER(&USER) AUT (*CHANGE)
GOTO READ /*GO BACK FOR NEXT RECORDx/
ENDPGM

® The declared file, QADSPOB]J in QSYS, is the IBM-supplied file that is used
by the DSPOBJD command. This file is the primary file which is referred to
by the command when creating the output file. It is referred to by the CL
compiler to determine the format of the records and to declare variables
for the fields in the record format.

(2) The DSPOBJD command creates a file named DSPOBJD in library QTEMP.
This file has the same format as file QADSPOB].

3) The OVRDBF command overrides the declared file (QADSPOB]J) to the file
created by the DSPOBJD command.

4) The RCVF command reads a record from the DSPOBJD file. The values of
the fields in the record are copied into the corresponding CL variables,
which were implicitly declared by the DCLF command. Because the

Chapter 5. Working with Objects in CL Procedures and Programs 161



(5)

(6)

162 CL Programming V5R3

OVRDBF command was used, the file QTEMP/DSPOBJD is read instead of
QSYS/QADSPOB]J (the file QSYS/QADSPOB]J is not read).

Message CPF(0864 is monitored. This indicates that the end of file has been
reached, so the procedure returns control to the calling procedure.

The GRTOBJAUT command is processed, using the variables for object
name, library name and object type, which were read by the RCVF
command.



Chapter 6. Advanced Programming Topics

This chapter introduces more advanced programming topics, including:

* Special functions that can be called from high-level language programs
(including CL programs)
* Using prompting and the Programmer Menu to enter program source

See the CL section of the Programming category of the iSeries Information Center
for information on advanced function command processing.

Several sample programs are included at the end of the chapter.

Using the QCAPCMD Program

The Process Commands (QCAPCMD) API performs command analyzer processing
on command strings. You can use this API to do the following:

* Check the syntax of a command string prior to running it.

* Prompt the command and receive the changed command string.
* Use a command from a high-level language.

 Display the help for a command.

See the APIs section of the Programming category of the iSeries Information Center
for information on the QCAPCMD API.

Using the QCMDEXC Program

Execute Command (QCMDEXC) is an IBM-supplied program that runs a single
command. This command is used to activate another command:

* From within a high-level language (HLL) program.
¢ From within a CL procedure.

* From a program where it is not known at compile time what command is to be
run or what parameters are to be used.

The QCMDEXC program is called from within the HLL or CL procedure or
program. The command that is to be run is passed as a parameter on the CALL
command.

CL or HLL program QCMDEXC
» PGM(PARM1 PARM2)

CALL QCMDEXC(PARM1 PARM2)

RETURN

A

RBAFN558-0

After the command runs, control returns to your HLL or CL procedure or program.

© Copyright IBM Corp. 1997, 2004 163



The command runs as if it was not in a program. Therefore, variables cannot be
used on the command because values cannot be returned by the command to CL
variables. Additionally, commands that can only be used in CL procedures or
programs cannot be run by the QCMDEXC program. The format of the call to the
QCMDEXC program is the following:

CALL PGM(QCMDEXC) PARM(command command-length)

Enter the command you wish to run as a character string on the first parameter.
You must specify the command library.

CALL PGM(QCMDEXC ) PARM('QSYS/CRTLIB LIB(TEST)' 22)

Remember that you must enclose the command in apostrophes if it contains
blanks. The maximum length of the character string is 6000 characters; never count
the delimiters (the apostrophes ) as part of the string. The length that is specified
as the second value on the PARM parameter is the length of the character string
that is passed as the command. Length must be a packed decimal value of length
15 with 5 decimal positions.

Thus, to replace a library list, the call to the QCMDEXC program would look like
this:

CALL PGM(QCMDEXC) PARM('CHGLIBL LIBL(QGPL NEWLIB QTEMP)' 31)

It is possible to code this statement into the HLL or CL program to replace the
library list when the program runs. The QCMDEXC program does not provide

run-time flexibility when used this way.

Providing run-time flexibility is accomplished by:
1. Substituting variables for the constants in the parameter list, and
2. Specifying the values for the variables in the call to the HLL or CL program.

For instance:

CALL PGM(PGMA) PARM('ADDLIBLE LIB(MYLIB)' 19)

PGM PARM(&STRING &LENGTH) /* PGMA */
DCL &STRING *CHAR LEN(3000)
DCL &LENGTH *DEC LEN(15 5)

——» QCMDEXC

('3ALL PGM(QCMDEXC) PARM(&STRING &LENGTH)

. éHGLIBL...
END .

RBAFN500-0

Figure 2. Example of Call PGM

The command length, passed to the QCMDEXC program on the second parameter,
is the maximum length of the passed command string. Should the command string
be passed as a quoted string, the command length is exactly the length of the
quoted string. Should the command string be passed in a variable, the command

164 CL Programming V5R3



length is the length of the CL variable. It is not necessary to reduce the command
length to the actual length of the command string in the variable, although it is
permissible to do so.

Not all commands can be run using the QCMDEXC program. The command
passed on a call to the QCMDEXC program must be valid within the current
environment (interactive or batch) in which the call is being made. The command
cannot be one of the following;:

* An input stream control command (BCHJOB, ENDBCHJOB, and DATA)
e A command that can be used only in a CL program

Refer to the command documentation in the CL section of the Programming
category in the iSeries Information Center for information to help you determine if
you can pass a CL command on a call to the QCMDEXC program. To find the
environments in which you can run the command, look at the "Where allowed to
run’ value located at the beginning of the Information Center documentation file
for the CL command. You can also use the Display Command (DSPCMD)
command to see where the command can be used.

You can precede the CL command with a question mark (?) to request prompting
or use selective prompting when you call QCMDEXC in an interactive job.

If an error is detected while a command is being processed through the

QCMDEXC program, an escape message is sent. You can monitor for this escape

message in your CL procedure or program using the Monitor Message (MONMSG)
h

command. For more information about monitoring for messages, see|Chapter 7| and

If a syntax error is detected, message CPF0006 is sent. If an error is detected
during the processing of a command, any escape message sent by the command is
returned by the QCMDEXC program. You monitor for messages from commands
run through the QCMDEXC program in the same way you monitor for messages
from commands contained in CL procedures and programs.

See the appropriate high level languagereference book for information on how
high level language programs handle errors on calls.

Using the QCMDEXC Program with DBCS Data

You can use QCMDEXC to request double-byte character set (DBCS) input data to
be entered with a command. The command format used for QCMDEXC to prompt
double-byte data is:

CALL QCMDEXC ('command' command-length IGC)

The third parameter of the QCMDEXC program, IGC, instructs the system to
accept double-byte data. For example, the following CL program asks a user to
provide double-byte text for a message. Then the system sends the following
message:

PGM

CALL QCMDEXC ('?SNDMSG' 7 IGC)
ENDPGM

An explanation of the system message follows:

* The ? character instructs the system to present the command prompt for the
Send Message (SNDMSG) command.

Chapter 6. Advanced Programming Topics 165



e The value 7 is the length of the SNDMSG command plus the question mark.
* The value IGC allows you to request double-byte data.

The following display is shown after running the QCMDEXC program. You can

use double-byte conversion on this display:

- D
SEND MESSAGE (SNDMSG)

TYPE CHOICES, PRESS ENTER.

MESSAGE TEXT . . . . . . . . . . ..

TO USER PROFILE . . . . . . . . .. NAME, *SYSOPR, *ALLACT...

BOTTOM
F3=EXIT  F4=PROMPT  F5=REFRESH  F10=ADDITIONAL PARAMETERS F12=CANCEL
\\F13=HOW TO USE THIS DISPLAY  F24=MORE KEYS

Using the QCMDCHK Program

QCMDCHK is an IBM-supplied program that performs syntax checking for a
single command, and optionally prompts for the command. The command is not
run. If prompting is requested, the command string is returned to the calling
procedure or program with the updated values as entered through prompting. The
QCMDCHK program can be called from a CL procedure or program or an HLL
procedure or program.

Typical uses of QCMDCHK are:

* Prompt the user for a command and then store the command for later
processing.

* Determine the options the user specified.

* Log the processed command. First, prompt with QCMDCHK, run with
QCMDEXC, and then log the processed command.

The format of the call to QCMDCHK is:
CALL PGM(QCMDCHK) PARM(command command-length)

The first parameter passed to QCMDCHK is a character string containing the
command to be checked or prompted. If the first parameter is a variable and
prompting is requested, the command entered by the workstation user is placed in
the variable.

The second parameter is the maximum length of the command string being
passed. If the command string is passed as a quoted string, the command length is
exactly the length of the quoted string. If the command string is passed in a
variable, the command length is the length of the CL variable. The second
parameter must be a packed decimal value of length 15 with 5 decimal positions.

166 CL Programming V5R3



The QCMDCHK program performs syntax checking on the command string which
is passed to it. It verifies that all required parameters are coded, and that all
parameters have allowable values. It does not check for the processing
environment. That is, a command can be checked whether it is allowed in batch
only, interactive only, or only in a batch or interactive CL program. QCMDCHK
does not allow checking of command definition statements.

If a syntax error is detected on the command, message CPF0006 is sent. You can
monitor for this message to determine if an error occurred on the command.
Message CPF0006 is preceded by one or more diagnostic messages that identify the
error. In the following example, control is passed to the label ERROR within the
program, because the value 123 is not valid for the PGM parameter of the
CRTCLPGM command.

CALL QCMDCHK ('CRTCLPGM PGM(QGPL/123)"' 22)
MONMSG CPF0006 EXEC(GOTO ERROR)

You can request prompting for the command by either placing a question mark
before the command name or by placing selective prompt characters before one or
more keyword names in the command string.

If no errors are detected during checking and prompting for the command, the
updated command string is placed in the variable specified for the first parameter.
The prompt request characters are removed from the command string. This is
shown in the following example:

DCL &CMD =CHAR 2000

CAGVAR &CMD ' ?CRTCLPGM'
CALL QCMDCHK (&CMD 2000)

After the call to the QCMDCHK program is run, variable &CMD contains the
command string with all values entered through the prompter. This might be
something like:

CRTCLPGM PGM(PGMA) SRCFILE(TESTLIB/SOURCE) USRPRF (*OWNER)
Note that the question mark preceding the command name is removed.

When prompting is requested through the QCMDCHK program, the command
string should be passed in a CL variable. Otherwise, the updated command string
is not returned to your procedure or program. You must also be sure that the
variable for the command string is long enough to contain the updated command
string which is returned from the prompter. If it is not long enough, message
CPF0005 is sent, and the variable containing the command string is not changed.
Without selective prompting, the prompter only returns entries that were typed by
the user.

The length of the variable is determined by the value of the second parameter, and
not the actual length of the variable. In the following example, escape message
CPF0005 is sent because the specified length is too short to contain the updated
command, even though the variable was declared with an adequate length.

DCL &CMD *CHAR 2000

CHGVAR &CMD '?CRTCLPGM'
CALL QCMDCHK (&CMD 9)

Chapter 6. Advanced Programming Topics 167



If you press F3 or F12 to exit from the prompter while running QCMDCHK,
message CPF6801 is sent to the procedure or program that called QCMDCHK, and
the variable containing the command string is not changed.

If PASSATR(*YES) is specified on the PARM, ELEM, or QUAL command definition
statement, and the default value is changed using the CHGCMDDEFT command,
the default value is highlighted as though this was a user-specified value and not a
default value. If a default value of a changed PARM, ELEM, or QUAL command
definition statement is changed back to its original default value, the default value
will no longer be highlighted.

Using Message Subfiles in a CL Program or Procedure

In CL procedures and programs, message subfiles are the only type of subfiles
supported. To use subfile message support, run a SNDF or SNDRCVF command
using the subfile message control record. In the DDS, supply SFLPGMQ data and
always have SFLINZ active.

When you use message subfiles in CL procedures and programs, you must name a
procedure or program. You cannot specify an * for the SFLPGMQ keyword in DDS.
When you specify a procedure or OPM program name, all messages sent to that
procedure’s or program’s message queue are taken from the invocation message
queue and placed in the message subfile. All messages associated with the current
request are taken from the CALL message queue and placed in the message
subfile.

Message subfiles let a controlling procedure or program display one or more error
messages.

Allowing User Changes to CL Commands at Run Time

168

With most CL procedures and programs, the workstation user provides input to
the procedure or program by specifying parameter values passed to the procedure
or program or by typing into input-capable fields on a display prompt.

You can also prompt the workstation user for input to a CL procedure or program
in the following ways:

* If you enter a ? before the CL command in the CL procedure or program source,
the system displays a prompt for the CL command. Parameter values you have
already specified in your procedure or program are filled in and cannot be
changed by the workstation user. See["Using the OS/400 Prompter within a CL]
[Procedure or Program”|later in this section.

* If you call the QCMDEXC program and request selective prompting, the
system displays a prompt for a CL command, but you need not specify in the
CL program source which CL command is to be used at processing time. For
more information on the QCMDEXC program, see [“Using the QCMDEX(]
[Program” on page 163/

Using the 0S/400 Prompter within a CL Procedure or Program

You can request prompting within the interactive processing of a CL procedure or
program. For example, the following procedure can be compiled and run:

PGM

CL Programming V5R3



?DSPLIB

ENDPGM

In this case, the prompt for the Display Library (DSPLIB) command appears on the
display during processing of the program. Processing of the DSPLIB command
waits until you have entered values for required parameters and pressed the Enter
key.

Any values specified in the source procedure cannot be changed directly by the
operator (or user). For example:

PGM
?SNDMSG TOMSGQ(WSO1 WS02)

ENDPGM

When the procedure is called and the prompt for the Send Message (SNDMSG)
command appears, the operator (or user) can enter values on the MSG, MSGTYPE,
and RPYMSGQ parameters, but cannot alter the values on the TOMSGQ
parameter. For example, the operator (or user) cannot add WS03 or delete WS02.
See ["“QCMDEXC with Prompting in CL Procedures and Programs” on page 173|for
an exception to this restriction. The following restrictions apply to the use of the
prompter within a CL procedure at processing time:

* When the prompter is called from a CL procedure or program, you cannot enter
a variable name or an expression for a parameter value on the prompt.

* Prompting cannot be requested on a command embedded on an IF, ELSE, or
MONMSG command:

Correct Incorrect
IF (&A=5) THEN(DO) IF (&A=5) THEN(?SNDMSG)
?SNDMSG
ENDDO

* Prompting cannot be used for the following commands:

CALL CALLPRC CHGVAR COPYRIGHT
DCL DCLF DO DOFOR
DOUNTIL DOWHILE ELSE ENDDO
ENDPGM ENDRCV ENDSELECT GOTO

IF ITERATE LEAVE MONMSG
OTHERWISE PGM RCVF RETURN
SELECT SNDF SNDRCVF WAIT

WHEN

* Prompting cannot be used in batch jobs.

When you enter a prompting request (?) on a command in a CL source file
member, you may receive a diagnostic message on the command and still have a
successful compilation. In this case, you must examine the messages carefully to
see that the errors can be corrected by values entered through the prompt display
when the procedure or program runs.

Chapter 6. Advanced Programming Topics 169



You can prompt for all commands you are authorized to in any mode while in an
interactive environment except for the previously listed commands, which cannot
be prompted for during processing of a CL procedure or program. This allows you
to prompt for any command while at a workstation and reduces the need to refer
to the manuals that describe the various commands and their parameters.

If you press F3 or F12 to cancel the prompted command while running that
command, an escape message (CPF6801) is sent to the CL procedure or program.
You can monitor for this message using the MONMSG command in the CL
procedure or program.

When you prompt for a command, your procedure or program does not receive
the command string you entered. To achieve this, prompt using QCMDCHK, then
run the command using QCMDEXC. You can also use QCAPCMD to prompt and
run the command.

Selective Prompting for CL Commands

You can request to prompt for selected parameters within a command. This is
especially helpful when you are using some of the longer commands and do not
want to be prompted for certain parameters.

Selective prompting can be used during interactive prompting or entered as source
(in SEU) for use within a CL procedure or program. You can enter the source for
selective prompting with SEU but you cannot use selective prompting while
entering commands in SEU.

You can use selective prompting to:

* Select the parameters for which prompting is needed.
* Determine which parameters are protected.

* Omit parameters from the prompt.

The following restrictions apply to selective prompting:
* The command name or label must be preceded by a ? (question mark):
— When one or more of the selective prompt options is ?- (question mark,
minus).
— To avoid getting a CPF6805 message (a message that indicates a diagnostic
problem on the command although compilation is successful)

¢ Parameters can be specified by position but they cannot be preceded by selective
prompt characters.

* A parameter must be in keyword form to be selectively prompted for.

* Blanks cannot be entered between the selective prompt characters and the
keyword.

* Selective prompting is only applicable at a parameter level; that is, you cannot
specify particular keyword values within a list of values.

* ?-is not allowed in prompt override programs.
* If a parameter is required, the ?? selective prompt must be used.

You can tell that a parameter is required because the input slot is highlighted
when the command is prompted.

170 cL Programming V5R3



User-specified values are marked with a special symbol (>) in front of the values in
both selective and regular prompting. If a user-specified value on the parameter
prompt is not preceded by this symbol, the command default is passed to the
command processing program.

If PASSATR(*YES) is specified on the PARM, ELEM, or QUAL command definition
statement, and the default value is changed using the CHGCMDDEFT command,
the default value is shown as a user-specified value (using the > symbol) and not a
default value. If a default value of a changed PARM, ELEM, or QUAL command
definition statement is changed back to its original default value, the > symbol is
removed.

You can press F5 while you are using selective prompting to again display those
values initially shown on the display.

If a CL variable is used to specify a value for a parameter which is to be displayed
through selective prompting, you can change the value on the prompt, and the
changed value is used when the command is run. The value of the variable in the
procedure or program is not changed. If a CL procedure contains the following:

OVRDBF ?+FILE(FILEA) ??TOFILE(&FILENAME) ??MBR(MBR1)

the three parameters, FILE, TOFILE, and MBR is shown on the prompt display.
The value specified for the FILE parameter cannot be changed by you, but the
values for the TOFILE and MBR parameters can be changed. Assume that the CL
variable &FILENAME has a value of FILE1, and you change it to FILE2. When the
command is run, the value of FILE2 is used, but the value of &FILENAME is not
changed in the procedure. The following tables list the various selective prompting
characters and the resulting action.

Value Passed to
Value CPP if Nothing | Marked with >

You Enter Displayed Protected Specified Symbol
??KEYWORD () Default No Default No
??KEYWORD (VALUE) Value No Value Yes
?*KEYWORD () Default Yes Default No
?*KEYWORD (VALUE) Value Yes Value Yes
?<KEYWORD () Default No Default No
?<KEYWORD (VALUE) Value No Default No
?/KEYWORD () Default Yes Default No
?/KEYWORD (VALUE) Value Yes Default No
?-KEYWORD () None N/A Default N/A
?-KEYWORD (VALUE) None N/A Value N/A
?&KEYWORD () Default No Default No
?&KEYWORD (VALUE) Value No Default No
?%KEYWORD () Default Yes Default No
?%KEYWORD (VALUE) Value Yes Default No

Chapter 6. Advanced Programming Topics 171



Display Value When F5

You Enter Pressed or Blanked Out Description

??KEYWORD () Default Normal keyword prompt with
command default.

??KEYWORD (VALUE) Value Normal keyword prompt with

program specified default.

?*KEYWORD () Default Show protected prompt (as
information) where command
default is the only value used.

?+xKEYWORD (VALUE) Value Show protected prompt (as
information) where program
specified value is the only
value used. For example,
when a value should be
shown as information but not

changed.
?<KEYWORD() Default Normal keyword prompt with
command default.
?<KEYWORD (VALUE) Value Normal keyword prompt with
program specified default.
?/KEYWORD () Default Reserved for IBM use.
?/KEYWORD (VALUE) Value Reserved for IBM use.
?&KEYWORD () Default Normal keyword prompt with
command default.
?&KEYWORD (VALUE) Value Normal keyword prompt with

program specified default.

?%KEYWORD () Default Show protected prompt (as
information) where command
default is the only value used.

?%KEYWORD (VALUE) Value Show protected prompt (as
information) where program
specified value is the only
value used. For example,
when a value should be
shown as information but not
changed.

Selective prompting can be used with the QCMDEXC or QCMDCHK program. The
format of the call is:

CALL PGM(QCMDEXC or QCMDCHK) PARM(command command-length)

Following is a brief description of the selective prompting characters:

Selective Prompting Character Description
?? The parameter is displayed and input-capable.
7% The parameter is displayed but is not input-capable.

Any user-specified value is passed to the command
processing program.

?< The parameter is displayed and is input-capable, but
the command default is sent to the CPP unless the
value displayed on the parameter is changed.

172 cCL Programming V5R3



Selective Prompting Character Description

?/ Reserved for IBM use.

?— The parameter is not displayed. The specified value
(or default) is passed to the CPP. Not allowed in
prompt override programs.

7% The parameter is not displayed until F9=All
parameters is pressed. Once displayed, it is
input-capable. The command default is sent to the
CPP unless the value displayed on the parameter is
changed.

-~
o°

The parameter is not displayed until F9=All
parameters is pressed. Once displayed, it is not
input-capable. The command default is sent to the
CPP.

For a further discussion of QCMDEXC or QCMDCHK refer to |”Using the|
QCMDEXC Program” on page 163|and [“Using the QCMDCHK Program” on page]

166..|

QCMDEXC with Prompting in CL Procedures and Programs

The QCMDEXC program may be used to call the prompter. This use of
QCMDEXC with prompting in CL procedures and programs allows you to alter all
values on the command except the command name itself. This is more flexible
than direct use of the prompter, where you can only enter values not specified in
the source (see previous section). If the prompter is called directly with a
command such as:

?0VRDBF FILE(FILEX)

you can specify a value for any parameter except FILE. However, if the command
is called during processing of a program using the QCMDEXC program, such as:

CALL QCMDEXC PARM('?OVRDBF FILE(FILEX)' 19)

you can specify a value for any parameter, including FILE. In this example, FILEX
is the default.

Prompting with modifiable specified values may also be accomplished using
selective prompting as described earlier in this chapter. However, each keyword
must be explicitly selected. The prompter is called directly with a command such
as:

OVRDBF ??FILE(FILEX) ??TOFILE(*N) ??MBR(*N)

Using the Programmer Menu

The programmer menu can be called directly by calling the QPGMMENU
program, or by using the Start Programmer Menu (STRPGMMNU) command. You
can use the command to specify in advance the defaults that you use with the
programmer menu. In addition, the STRPGMMNU command also supports other
options that can be used to tailor the use of the programmer menu.

For a description of the STRPGMMNU command and its parameters, see the CL
section of the Programming category in the iSeries Information Center.

Chapter 6. Advanced Programming Topics 173



Uses of

the Start Programmer Menu (STRPGMMNU) Command

The Start Programmer Menu command can be used for the following:

Performing the same function as a call to QPGMMENU
Filling in the standard input fields

Four of the command parameters allow you to fill in the standard input fields at
the bottom of the menu. These parameters are the following:

— Source file

— Source library

— Object library

— Job description

The command may be used with one or more of the parameters that control the
initial values of the menu. You could design this as part of an initial program for
sign-on or for situations in which a user calls a specific user-written function. The
following example shows such a program, with a separate function for each

ap

plication area requiring different initial values.

PGM
CHGLIBL  LIBL(PGMR1 QGPL QTEMP)

LOOP:
STRPGMMNU SRCLIB(PGMR1) OBJLIB(PGMR1) JOBD(PGMR1)
MONMSG MSGID(CPF2320) EXEC(GOTO END) /* F3 or F12 to Teave menu =/
GOTO LOOP

END: ENDPGM

Controlling programmer menu options

The other parameters assist you in controlling the menu and its functions. For
example, you can specify ALWUSRCHG(*NO) to prevent a user from changing
the values that appear on the menu. This parameter should not be considered to
be a security feature because a user who is using the menu can call the
STRPGMMNU command and change the values in a separate call. (The user can
also start functions by using F10 to call the command entry display.) If the menu
is displayed by the STRPGMMNU command, you can prevent the user (by
authorization) from calling the QPGMMENU program directly, but you cannot
prevent the user from requesting another call of the STRPGMMNU command.

Adapting the menu create option

The EXITPGM and DLTOPT parameters allow you to provide your own support
for the menu create option (option 3). The system may call a user program when
you request option 3. IBM provides online information that discusses the
parameters and the parameter list that are passed to the user program. Refer to
the CL section of the Programming category in the iSeries Information Center.
The following describes some typical uses of the EXITPGM parameter.

The EXITPGM Parameter
The EXITPGM parameter can be used for the following purposes:

174 cCL Programming V5R3

To change the defaults used on the create commands submitted by option 3.

For example, if F4 (Prompt) is not used, the EXITPGM parameter could change
one or more of the create commands to specify your own default requirements.
If F4 is used, the EXITPGM parameter could submit the command as entered by
the programmer (with no parameters changed).

To change parameters regardless of the programmer’s use of F4.

This requires scanning the value of the &RQSDTA512 parameter (which is
passed to the exit program) to see if it had already been used and substituting
the required value.

To change other parameters on the SBMJOB command.



For example, the user parameter of the SBMJOB command could be changed to
specify the value of the job description instead of the value of *CURRENT. It is
also possible to retrieve the values of one or more job attributes by using the
RTVJOBA command, entering the attributes as specific values.

To enforce local programming conventions.

For example, if you have a naming standard that requires all physical files to be
named with 7 characters and end with a P, the exit program could reject any
attempt to use the CRTPF command with a name that did not follow this
standard.

Command Analyzer Exit Points

The exit program registration facility provides two exit points for the system.

The QIBM_QCA_CHG_COMMAND exit point can register one and only one
exit point for a specific command. The program specified for this exit point is
called by the command analyzer before it passes control to the prompter.

You can register up to ten exit programs for each command for the
QIBM_QCA_RTV_COMMAND exit point. The command analyzer calls these
exit programs after running the validity checking program (VCP) and before
running the command processing program (CPP) for the command.

See the APIs section of the Programming category in the iSeries Information Center
for a complete description of these exit points.

Application Programming for DBCS Data

Special considerations must be made when designing application programs to
process double-byte data or converting alphanumeric application programs to
double-byte programs.

Designing DBCS Application Programs

Design your application programs for processing double-byte data in the same
way you design application programs for processing alphanumeric data, with the
following additional considerations:

Identify double-byte data used in the database files, if any.
Design display and printer formats that can be used with double-byte data.

If needed, provide double-byte conversion as a means of entering data for
interactive applications. Use the DDS keyword for double-byte conversion
(IGCCNV) to specify DBCS conversion in display files.

Write double-byte error messages to be displayed by the program.

Specify extension character processing so that the system prints and displays all
double-byte data.

Determine which double-byte characters, if any, must be defined.|ADTS/400:

[Character Generator Utilityl@‘ describes how to define double-byte characters
for DBCS-supported countries.

Converting Alphanumeric Programs to Process DBCS Data

If an alphanumeric application program uses externally-described display files, you
can change that application program to a double-byte application program by
changing only the files. To convert an application program, do the following:

1.

Create a duplicate copy of the source statements for the alphanumeric file you
want to change.

Chapter 6. Advanced Programming Topics 175



Change alphanumeric constants and literals to double-byte constants and
literals.

Change fields in the file to one of the following data types to enter DBCS data:
* DBCS-open (O) data type

¢ DBCS-only (J) data type

* DBCS-either (E) data

You do not have to change the length of the fields.

Store the converted display file in a separate library. Give the file the same
name as its alphanumeric version.

To use the converted file in a job, change the library list, using the Change
Library List (CHGLIBL) command, for the job in which the file is used. The
library in which the double-byte display file is stored is then checked before the
library in which the alphanumeric version of the file is stored.

Using DBCS Data in a CL Program

The following program shows the use of different keyboard shifts within a CL
program. Note how the double-byte data is used only as text values in this
program; the commands themselves are in alphanumeric characters.

When run, this program shows you how the different keyboard shifts for DDS
display files are used.

PGM

STA

DCLF IGCTEST

RT: CHGVAR &UTPUTA ' ABCDEFGHIJ'

CHGVAR &OUTPUTJ 'ABCD'
CHGVAR &BOTHJ "ABCD'
CHGVAR &OUTPUTE "EFGH!

CHGVAR 8OUTPUTO " )

LOOP:  SNDRCVF

IF &INO1 RETURN

CHGVAR &UTPUTA  &INPUTA
CHGVAR &OUTPUTJ  &INPUTJ
CHGVAR &0UTPUTE  &INPUTE
CHGVAR &BOTHE &INPUTE
CHGVAR &0UTPUTO  INPUTO

GOTO LOOP

ENDPGM RV3W197-0

176 cCL Programming V5R3



Sample CL Programs

The following sample programs demonstrate the flexibility, simplicity, and
versatility of CL programs. The following programs are described by their function
and probable user.

Note: Code generated by the ILE CL compiler in V4R3 and later releases is
threadsafe. However, many commands are not threadsafe. Therefore, do not
consider a CL procedure as threadsafe unless all the commands the CL
procedure uses are threadsafe. You can use the Display Command
(DSPCMD) command to determine if a command is threadsafe. For
additional information on threads, access the iSeries Information Center and
open the topics under the Programming category of information.

Initial Program for Setup (Programmer)

PGM

CHGLIBL LIBL(TESTLIB QGPL QTEMP)
CHGJOB OUTQ(WSPRTR)

TFRCTL QPGMMENU

ENDPGM

The test library is placed first on the library list, an output queue is selected for a
convenient printer, and the programmer menu is displayed.

Moving an Object from a Test Library to a Production Library
(Programmer)

PGM PARM(&0BJ &0BJTYPE &0OPER)
DCL &0BJ *CHAR LEN(10)
DCL &0BJTYPE *CHAR LEN(7)
DCL &0PER *CHAR LEN(1) /* R=Replace M=Move =*/
IF ((80PER *NE 'M') *AND (&PER *NE 'R')) THEN(DO)
SNDPGMMSG MSG('Operation code must be "R" or "M" ')
RETURN
ENDDO
IF ((&0BJTYPE *NE *PGM) *AND (&0BJTYPE *NE =FILE) *AND (&0BJTYPE +
*NE *DTAARA)) THEN(DO)
SNDPGMMSG MSG('Object' *BCAT &0BJ *BCAT ' must be *PGM, +
*FILE, or *DTAARA')
RETURN
ENDDO
CHKOBJ BLDLIB/&0BJ OBJTYPE (&0BJTYPE)
MONMSG MSGID(CPF9801) EXEC(DO)
SNDPGMMSG MSG('Object or object type does not exist +
in BLDLIB')
RETURN
ENDDO
IF (&PER *EQ 'M') THEN(DO)
MOVOBJ BLDLIB/&0BJ OBJTYPE(&OBJTYPE) TOLIB(PRODLIB)
MONMSG MSGID(CPF3208) EXEC(DO)
SNDPGMMSG MSG('Object' *BCAT &0BJ *BCAT ' +
already exists in PRODLIB')
RETURN
ENDDO
CHKOBJ PRODLIB/&0BJ OBJTYPE (&0BJTYPE)
MONMSG MSGID(CPF9801) EXEC(DO)
SNDPGMMSG MSG('Object or object type does not +
exist in PRODLIB')
RETURN

Chapter 6. Advanced Programming Topics 177



ENDDO
ENDDO
RETURN
ENDPGM

The object name, object type, and operation code are passed from another program
or procedure. Checks are performed to see that the operation code and object type
are correct, and that the object exists in the test library. The object is moved unless
it already exists in the production library. The move is then confirmed. More
commands can be added to grant additional authority to the object or to handle
additional exceptions and additional object types.

Saving Specific Objects in an Application (System Operator)

Example

PGM

SAVOBJ OBJ(FILE1 FILE2) LIB(LIBA) OBJTYPE(+FILE) DEV(TAPO1) +
CLEAR(*YES)

SAVOBJ O0BJ(DTAARAL) LIB(LIBA) OBJTYPE(+DTAARA) DEV(TAPO1)

SNDPGMMSG MSG('Save of daily backup of LIBA completed') +
MSGTYPE (*COMP)

ENDPGM

This program ensures consistent command entry for regularly repeated procedures.

Additional Save Object (SAVOB]J) commands can, of course, be added. However,
this program relies on the operator selecting the correct diskette or tape for each
periodic backup of each application. This can be controlled by assigning unique
names to each diskette or tape set for each save operation. If you want to save
your payroll files separately each week for four weeks, for instance, you might
name each diskette or tape differently and write the program to compare the name
of the diskette or tape against the correct name for that week.

Recovery from Abnormal End (System Operator)

PGM
DCL &SWITCH *CHAR LEN(1)
RTVSYSVAL SYSVAL(QABNORMSW) RTNVAR(&SWITCH)
IF (&SWITCH =EQ '1') THEN(DO) /*CALL RECOVERY PROGRAMSx/
SNDPGMMSG MSG('Recovery programs in process. +
Do not start subsystems until notified') +
MSGTYPE (*INFO) TOMSGQ(QSYSOPR)
CALL PGMA
CALL PGMB
SNDPGMMSG MSG('Recovery programs complete. +
Startup subsystems') +
MSGTYPE (*INFO) TOMSGQ(QSYSOPR)
RETURN
ENDDO
ENDPGM

Submitting a Job (System Operator)

PGM /*DAILYAC*/

SBMJOB JOB(DAILYACCRC) JOBD(ACCRC2) +
CMD(CALL ACCRC305 PARM(DAILY))

SNDPGMMSG MSG('Daily Accounts Receivable job DAILYACCRC +
submitted to batch') MSGTYPE(*COMP)

ENDPGM

178 cCL Programming V5R3



Instead of typing in all the parameters for submitting a job, the system operator
calls DAILYAC.

Timing Out While Waiting for Input from a Device Display

DCLF FILE(QGPL/MENU)
DOWHILE '1' /* DO FOREVER */
SNDRCVF DEV (+FILE) RCDFMT(MENUFMT) WAIT (*NO)
WAIT MONMSG MSGID(CPFO889) EXEC(SIGNOFF)
CHGVAR VAR(&IN99) VALUE('0')
IF COND(&INO1) THEN(ITERATE)
SELECT
WHEN (%0PTION *EQ '1') (CALL ORDENT) /* OPTION 1-ORDER ENTRY */
WHEN (R0PTION *EQ '2') (CALL ORDDSP) /* OPTION 2-ORDER DISPLAY =/
WHEN (80PTION *EQ '3') (CALL ORDCHG) /* OPTION 3-ORDER CHANGE */

WHEN (80PTION *EQ '4') (CALL ORDPRT) /# OPTION 4-ORDER PRINT */
WHEN (&OPTION *EQ '9') (SIGNOFF) /* OPTION 9-SIGNOFF */
OTHERWISE DO /* OPTION SELECTED NOT VALID =/
CHGVAR VAR(&IN99) VALUE('1")
ENDDO
ENDSELECT
ENDDO
ENDPGM

This program illustrates how to write a CL program using a display file that will
wait for a specified amount of time for the user to enter an option. If he does not,
the user is signed off.

The display file was created with the following command:

CRTDSPF FILE(MENU) SRCFILE(QGPL/QDDSSRC) SRCMBR(MENU) +
DEV (*REQUESTER) WAITRCD(60)

The display file will use the *REQUESTER device. When a WAIT command is
issued, it waits for the number of seconds (60) specified on the WAITRCD
keyword. The following is the DDS for the display file:

SEQNBR *... ... 1 ... ... 2 i el 3 ... ... 4 ... ... 5 cen aen 6 ver .. 7 een wun 8
0100 A PRINT CAO1(01)

0200 A R MENUFMT BLINK

0300 A TEXT('Order Entry Menu')

0400 A 1 31'Order Entry Menu'

0500 A 2 2'Select one of the following: !
0600 A 3 4'l. Enter Order'

0700 A 4 4'2. Display Order'

0800 A 5 4'3. Change Order'

0900 A 6 4'4. Print Order'

1000 A 7 4'9. Sign Off'

1100 A 23 2'Option:'

1200 A OPTION 1 12310

1300 A 99 ERRMSG('Invalid option selected.')

%% %% xx END OF SOURCE ## % » *

The program performs a SNDRCVF WAIT(*NO) to display the menu and request
an option from the user. Then it issues a WAIT command to accept an option from
the user. If the user enters a 1 through 4, the appropriate program is called. If the
user enters a 9, the SIGNOFF command is issued. If the user enters an option that
is not valid, the menu is displayed with an ‘OPTION SELECTED NOT VALID’
message. The user can then enter another valid option. If the user does not
respond within 60 seconds, the CPF0889 message is issued to the program and the
MONMSG command issues the SIGNOFF command.

Chapter 6. Advanced Programming Topics 179



A SNDF command using a record format containing the INVITE DDS keyword
could be used instead of the SNDRCVF WAIT(*NO). The function would be the

same.

Performing Date Arithmetic

/* Calculate new date from current system date. Pass negative x/
/* number to subtract, positive number to add */
/* */
/* The first parameter is a character 8 date in YYYYMMDD format */
/* or the special value *CURRENT */
/* */
/* The second parameter is a decimal value for the number of days */
/* to adjust the first parameter by */
/* */
/* Test cases: CALL CALCDATE (*CURRENT -5) */
/* CALL CALCDATE (*CURRENT 5) */
/% CALL CALCDATE ('20030225' -90) */
/* CALL CALCDATE ('30020228' 90) */
/* */
/* There is no error handling in this sample, so make sure the */
/* input dates are valid (that is, no 20031325). The valid date */
/* date range is Oct 14 1582 to Dec 31 9999 */
/* */

PGM PARM(&curdate &DAYSTOCHG)

DCL VAR(&CURDATE) TYPE(*CHAR) LEN(8)

DCL VAR (&DAYSTOCHG) TYPE(*DEC) LEN(15 5)

DCL VAR(&DATETIME) TYPE(*CHAR) LEN(17)

DCL VAR (&DATE) TYPE(*CHAR) LEN(8)

DCL VAR(&LILDATEINT) TYPE(*CHAR) LEN(4)

DCL VAR(&LILDATEDEC) TYPE(*DEC) LEN(10 0)

DCL VAR(&ERRCOD) TYPE(*CHAR) LEN(4) +

VALUE (X'00000000")

DCL VAR(&MSG) TYPE(*CHAR) LEN(50)

IF COND (&CURDATE = '+CURRENT') THEN(DO)

CALL PGM(QWCCVTDT) PARM('#CURRENT' ' ' 'sYYMD' +

&DATETIME &ERRCOD) /+* Get current system +
date and time in YYYYMMDD =/

CHGVAR VAR(&DATE) VALUE (%SST(&DATETIME 1 8)) /* Get +
just the date portion */

ENDDO

ELSE CMD(CHGVAR VAR(&DATE) VALUE (&CURDATE)) /* +
Use the date provided */

CALLPRC PRC(CEEDAYS) PARM(&DATE 'YYYYMMDD' +
&LILDATEINT *OMIT) /* Get Lilian date for +
current date */

CHGVAR VAR(&LILDATEDEC) VALUE(%BIN(&LILDATEINT)) /% +
Get Lilian date in decimal format */

CHGVAR VAR (&LILDATEDEC) VALUE(&LILDATEDEC + +
&DAYSTOCHG) /+* Adjust specified number +
of days */

CHGVAR VAR(%BIN(&LILDATEINT)) VALUE(&LILDATEDEC) /* +
Get Lilian date in integer format */

CALLPRC PRC(CEEDATE) PARM(&LILDATEINT 'YYYYMMDD' +

&DATE *OMIT) /* Return calculated date in +
YYYYMMDD format =*/

CHGVAR VAR (&MSG) VALUE('The new date is ' *CAT &DATE)

SNDPGMMSG  MSG (&MSG) TOPGMQ(*EXT)

ENDPGM

This program illustrates how to write a CL program that adds or subtracts a given
number of days for the current system date.

180 CL Programming V5R3



Retrieving Program Attributes

You can use the Display Program (DSPPGM) command to display the attributes of
a program. To retrieve some of the attributes (such as program type, source
member, text, creation date) into CL variables, you can use the Display Object
Description (DSPOBJD) command to build an output file. The system can then
read a CL procedure or program that uses the Declare File (DCLF) and Receive File
(RCVF) commands. To access other attributes of the DSPPGM command (such as
USRPRE), you can use the Retrieve program information API (QCLRPGMI).

Loading and Running an Application from Tape or Optical Media

The Load and Run Media Program (LODRUN) command allows the user to load
and run an application written by another user or a software vendor from tapes or
optical media supplied by the other user.

When the LODRUN command is run:

¢ The media is searched for the user-written program, which must be named
QINSTAPP. If tape is used, the tape is rewound first.

* If a QINSTAPP program already exists in the QTEMP library on the user’s
system, it is deleted.

* The QINSTAPP program is restored to the QTEMP library using the RSTOB]
command.

* Control of the system is passed to the QINSTAPP program. The QINSTAPP
program may be used, for example, to restore other applications to the user’s
system and run those applications.

Responsibilities of the Application Writer

The user supplying the QINSTAPP program is responsible for writing and
supporting it. The QINSTAPP program is not supplied by IBM*. The program can
be designed to accomplish many different tasks. For example, the program could:

* Restore and run other programs or applications
* Restore a library

* Delete another program or application

¢ Create specific environments

* Correct problems in existing applications

[Figure 3 on page 182/ shows an example of a QINSTAPP program. The program is
saved to a tape or optical media by the program writer and loaded on the system
using the LODRUN command. The LODRUN command passes control of the
system to the program, which then performs the tasks written into the program.

Chapter 6. Advanced Programming Topics 181



PGM PARM(&DEV) /* "Device" is only Parm allowed */
DCL VAR (&DEV) TYPE (*CHAR) LEN(10)
DCL VAR(&MODEL) TYPE(*CHAR) LEN(4)

/* Can check for appropriate model number, release level, and so on */
RTVSYSVAL  SYSVAL(QMODEL) RTNVAR (&MODEL)

IF (&MODEL *EQ 'xxxxx') THEN...
/* Install a library for new application (programs, data): */
RSTLIB SAVLIB(NEWAPP) DEV(&DEV) ENDOPT(*LEAVE) +
MBROPT (*ALL)
/* Install a command to start new application: */
RSTOBJ 0BJ(NEWAPP) SAVLIB(QGPL) DEV(&DEV) +
MBROPT (*ALL)
END: ENDPGM

Figure 3. Example of an Application Using the LODRUN Command

182  CL Programming V5R3



Chapter 7. Defining Messages

On the iSeries server, communication between procedures or programs, between
jobs, between users, and between users and procedures or programs occurs
through messages. A message can be predefined or immediate:

* A predefined message is created and exists outside the program that uses it.
Predefined messages are stored in message files and have a message number. An
example of a system predefined message is:

CPFO006 Errors occurred in command.

* An immediate message is created by the sender at the time it is sent. An
immediate message is not stored in a message file. An example of an immediate
message received at a display station is:

From . . . : QSYSOPR 06/12/94  10:50:54
System going down at 11:00; please sign off

Your system comes with an extensive set of predefined messages that allow
communication between programs within the system and between the system and
its users. Each licensed program you order has a message file that is stored in the
same library as the licensed program it applies to. For example, system messages
are stored in the file QCPFMSG in the library QSYS.

The system uniquely identifies each predefined message in a message file by a
7-character code and defines it by a message description. The message description
contains information, such as message text and message help text, severity level,
valid and default reply values, and various other attributes. See the Add Message
Description (ADDMSGD) command description in online help, or in the CL section
of the Programming category in the iSeries Information Center.

All messages that are sent or received in the system are transmitted through a
message queue. Messages that are issued in response to a direct request, such as a
command, are automatically displayed on the display from which the request was
made. For all other messages, the user, program or procedure must receive the
message from the queue or display it. There are several IBM-supplied message
queues in the system; these message queues are described later in this chapter (see
[‘Types of Message Queues” on page 201)).

The system also writes some of the messages that are issued to logs. A job log
contains information related to requests entered for a job, the history log contains
job, subsystem, and device status information. See ["Message Logging” on page 272|
for more information on logging.

You can create your own message files and message descriptions. By creating
predefined messages, you can use the same message in several procedures or
programs but define it only once. You can also change and translate predefined
messages into languages other than English (based on the user viewing the
messages) without affecting the procedures and programs that use them. If the
messages were defined in the procedure or program, the module or program
would have to be recompiled when you change the messages.

In addition to creating your own messages and message files, the system message
handling function allows you to:

© Copyright IBM Corp. 1997, 2004 183



Create and change message queues (Create Message Queue [CRTMSGQ)],
Change Message Queue [CHGMSGQ)], and Work with Message Queues
[WRKMSGQ] commands)

Create and change message files (Create Message File [CRTMSGF], Change
Message File [CHGMSGF] commands)

Add message descriptions (Add Message Description [ADDMSGD] command)

Change message descriptions (Change Message Description [CHGMSGD]
command)

Remove message descriptions (Remove Message Description [RMVMSGD]
command)

Send immediate messages (Send Message [SNDMSG], Send Break Message
[SNDBRKMSG], Send Program Message [SNDPGMMSG], and Send User
Message [SNDUSRMSG] commands)

Display messages and message descriptions (Display Messages [DSPMSG],
Display Message Description [DSPMSGD], Work with Messages [WRKMSG],
and Work with Message Descriptions [WRKMSGD] commands)

Use a CL procedure or program to:

— Send a message to a workstation user or the system operator (Send User
Message [SNDUSRMSG] command)

— Send a message to a message queue (Send Program Message [SNDPGMMSG]
command)

— Receive a message from a message queue (Receive Message [RCVMSG]
command)

— Send a reply for a message to a message queue (Send Reply [SNDRPY]
command)

— Retrieve a message from a message file (Retrieve Message [RTVMSG]
command)

— Remove a message from a message queue (Remove Message [RMVMSG]
command)

— Monitor for escape, notify, and status messages that are sent to a call message
queue (Monitor Message [MONMSG] command)

Use the system reply list to specify the replies for predefined inquiry messages
sent by a job (Add Reply List Entry [ADDRPYLE], Change Reply List Entry
[CHGRPYLE], Remove Reply List Entry [RMVRPYLE], and Work with Reply
List Entry [WRKRPYLE] commands)

When a message is sent, it is defined as one of the following types:

184 CL Programming V5R3

Informational (*INFO). A message that conveys information about the condition
of a function.

Inquiry (*INQ). A message that conveys information but also asks for a reply.

Notify (*NOTIFY). A message that describes a condition for which a procedure
or program requires corrective action or a reply from its calling procedure or
program. A procedure or program can monitor for the arrival of notify messages
from the programs or procedures it calls.

Reply (*RPY). A message that is a response to a received inquiry or notify
message.

Sender’s copy (*COPY). A copy of an inquiry or notify message that is kept by
the sender.

Request (*RQS). A message that requests a function from the receiving procedure
or program. (For example, a CL command is a request message.)



¢ Completion (*COMP). A message that conveys completion status of work.
* Diagnostic (*DIAG). A message about errors in the processing of a system
function, in an application program, or in input data.

 Status (*STATUS). A message that describes the status of the work done by a
procedure or program. A procedure or program can monitor for the arrival of
status messages from the program or procedure it calls. Status messages sent to
the external message queue (*EXT) are shown at the display station and can be
used to inform the display station user of an operation in progress.

* Escape (*ESCAPE). A message that describes a condition for which a procedure
or program must end abnormally. A procedure or program can monitor for the
arrival of escape messages from the program or procedure it calls or from the
machine. Control does not return to the sending program after an escape
message is sent.

This chapter describes:

* How to create your own message files

* How to add message descriptions to a message file
* Types of message queues

* How to create message queues

Creating a Message File

To create your own predefined messages, you must first create the message file
into which the messages are to be placed. Use the Create Message File (CRTMSGF)
command to create the message file. You then use the Add Message Description
(ADDMSGD) command to describe your messages and place them in the message
file.

On the CRTMSGF command, you can specify the maximum size in K bytes on the
SIZE parameter. The following formula can be used to determine the maximum:

S+ (I xN)

where:

S Is the initial amount of storage

I Is the amount of storage to add each time
N Is the number of times to add storage

The defaults for S, I, and N are 10, 2, and *NOMAX, respectively.

For example, you specify S as 5, I as 1, and N as 2. When the file reaches the initial
storage amount of 5K, the system automatically adds another 1K to the initial
storage. The amount added (1K) can be added to the storage two times to make
the total maximum of 7K. If you specify *NOMAX as N, the maximum size of the
message file is 16M.

When you specify a maximum size for a message file and the message file
becomes full, you cannot change the size of the message file. You then need to
create another message file and re-create the messages in the new file. The Merge
Message File (MRGMSGF) command can be used to copy message descriptions
from one message file to another. Since you will want to avoid this step, it is
important to calculate the size needed for your message file when you create it, or
specify *NOMAX.

Chapter 7. Defining Messages 185



Message Files in Independent ASPs

Message files can be created in an independent auxiliary storage pool (ASP), but it
is not recommended because the independent ASP can be taken offline. This would
prevent messages in job logs and message queues from being displayed correctly if
the independent ASP is offline.

Determining the Size of a Message File

You can determine the size of a message by using the following formula. (The
ADDMSGD command parameters are given in parentheses.)

* Message index equals 42 bytes base plus the length of the message.
* Message text (MSG) equals 16 bytes base plus the length of the message.

* Message online help information (SECLVL), if any, equals 16 bytes base plus the
length of the message help.

* Formats (FMT), if any, equal 14 bytes plus (3 x number of FMTS).
* Type and length (TYPE and LEN) equal 48 bytes.

* Special value (SPCVAL) equals 2 plus (64 x number of SPCVALSs).
* Values (VALUES) equal 32 x (number of VALUES).

* Range (RANGE) equals 64 bytes.

* Relation (REL) equals the length of the relation.

* Default (DFT) equals the length of the default reply.

* Default program, log problem, and dump list (DFTPBM, LOGPRB, DMPLST)
equal 35 plus (2 x number in DMPLST).

* ALROPT equals 12 bytes.

The smallest possible entry in a message file is 59 bytes and the largest possible
entry is 5764 bytes. The following table describes the largest possible entry:

Message index 42 bytes
Message text 148 bytes
Message help text 3016 bytes
99 formats 311 bytes
Type and length 48 bytes
20 special values 1282 bytes
20 values 640 bytes
Default reply value 32 bytes
Default program and dump list 233 bytes
Alert option 12 bytes

In the following example, the CRTMSGF command creates the message file
USRMSG:

CRTMSGF ~ MSGF(QGPL/USRMSG) +
TEXT('Message file for user-created messages')

If you are creating a message file to be used with the DSPLY operation code in
RPG for OS/400, the message file must be named QUSERMSG.

186 CL Programming V5R3



Adding Messages to a File

You use the Add Message Description (ADDMSGD) command to describe your
predefined messages and to add them to the message file you created. On the
ADDMSGD command, you specify the message identifier, the name of the message
file into which the message is to be placed, and the message description. In the
message description, you can specify:

* Message text (required) with optional substitution variables
* Message help text with optional substitution variables
* Severity code

¢ Description of the format of the message data to be used for the substitution
variables

* Validity checking values for a reply

* Default value for a reply

* Default message handling action for escape messages
* Creation level

 Alert options

* Entry in the error log

* Coded Character Set ID (CCSID)

Each of the items that can be contained in the message description is described in
more detail on the following pages.

The following commands are also available for use with message descriptions:

Change Message Description (CHGMSGD)
Changes a message description.

Display Message Description (DSPMSGD)
Displays a message description. (A range of message identifiers can be
specified in this command.)

Remove Message Description (RMVMSGD)
Removes a message description from a message file.

Retrieve Message (RTVMSG)
Retrieves a message from a message file.

Merge Message File (MRGMSGF)
Merges messages from one message file into another message file.

Work with Message Descriptions (WRKMSGD)
Displays a list of messages in a file and allows you to add, change, or
delete message descriptions.

Assigning a Message Identifier

The message identifier you specify on the ADDMSGD command is used to refer to
the message and is the name of the message description. The message identifier
must be 7 characters:

pppmmnn

where ppp is the product or application code, mm is the numeric group code, and nn
is the numeric subtype code. The number specified as mmnn can be used to further
divide a set of product or application messages. Numeric group and subtype codes
consist of decimal numbers 0 through 9 and the characters A through E

Chapter 7. Defining Messages 187



For example:
CPF1234

is message 1234 of CPE

When you create your own messages, using the letter U as the first character in the
product code is a good way to distinguish your messages from system messages.
For example:

USR3567

The first character of the code must be alphabetic, the second and third characters
can be alphanumeric; the group code and the subtype code must consist of decimal
numbers 0 through 9 and the characters A through F. Note that although this range
can be called a set of hexadecimal numbers, any sorting of the message numerics
treats A through F as characters.

For example, when displaying a range of message descriptions, CPFA00O precedes
CPF1000.

You should use care in using a numeric subtype code of 00 in the message
identifier. If you use a numeric subtype code of 00 for a message that can be sent
as an escape, notify, or status message and that can, therefore, be monitored, a
subtype code of 00 in the Monitor Message (MONMSG) command causes all
messages in the numeric group to be monitored. See [“Monitoring for Messages in|
la CL Program or Procedure” on page 239| for more information.

Defining Messages and Message Help

You can define two levels of messages on the ADDMSGD command. The text of
the message is required and should identify the condition that caused the message
to be issued. Message help is optional and should explain the condition further or
explain the corrective action to be taken. To get message help, the display station
user must move the cursor to the message line and press the Help key when the
message is displayed. Message help can be formatted for the display station using
three format control characters. These characters may be used to make the message
help (usually online help information) more readable for the user.

Each of the three format control characters must be followed by a blank to separate
them from the message text.

&Nb (where b is a blank)
Forces the text to a new line (column 2). If the text is longer than one line,
the next lines are indented to column 4 until the end of the text or until
another format control character is found.

&Pb (where b is a blank)
Forces the text to a new line, indented to column 6. If the text is longer
than one line, the next lines start in column 4 until the end of the text or
until another format control character is found.

&Bb (where b is a blank)
Forces the text to a new line, starting in column 4. If the text is longer than
one line, the next lines are indented to column 6 until the end of the text
or until another format control character is found.

188 CL Programming V5R3



Assigning a Severity Code

The severity code you assign to a message on the ADDMSGD command indicates
how important the message is. The higher the severity code the more serious the
condition is. The following lists the severity codes you can use and their meanings.
(These severity codes and their meanings are consistent with the severity codes
assigned to IBM-predefined messages.)

00: Information. For information purposes only; no error was detected and no reply
is needed. The message could indicate that a function is in progress or that a
function has completed successfully.

10: Warning. A potential error condition exists. The procedure or program may
have taken a default, such as supplying missing input. The results of the operation
are assumed to be successful.

20: Error. An error has been detected, but it is one for which automatic recovery
procedures probably were applied; processing has continued. A default may have
been taken to replace erroneous input. The results of the operation may not be
valid. The function may have been only partially completed; for example, some
items in a list processed correctly while others failed.

30: Severe error. The error detected is too severe for automatic recovery, and no
defaults are possible. If the error was in source data, the entire input record was
skipped. If the error occurred during procedure or program processing, it leads to
an abnormal end of the procedure or program (severity 40). The results of the
operation are not valid.

40: Abnormal end of procedure or function. The operation has ended, possibly because
the procedure or program was unable to handle data that was not valid, or
possibly because the user has canceled it.

50: Abnormal end of job. The job was ended or was not started. A routing step may
have ended abnormally or failed to start, a job-level function may not have been
performed as required, or the job may have been canceled.

60: System status. Issued only to the system operator. It gives either the status of or
a warning about a device, a subsystem, or the system.

70: Device integrity. Issued only to the system operator. It indicates that a device is
malfunctioning or in some way is no longer operational. The user may be able to
recover from the failure, or the assistance of a service representative may be
required.

80: System alert. A message with a severity code of 80 is issued for immediate
messages. It also warns of a condition that, although not severe enough to stop the

system now, could become more severe unless preventive measures are taken.

90: System integrity. Issued only to the system operator. It describes a condition that
renders either a subsystem or the system inoperative.

99: Action. Some manual action is required, such as entering a reply, changing
printer forms, or replacing diskettes.

For a detailed discussion of the SEV parameter, see the CL section of the
Programming category in the iSeries Information Center.

Chapter 7. Defining Messages 189



Defining Substitution Variables
On the FMT parameter on the ADDMSGD command, you can specify substitution
variables for either first- or second-level messages. For example:
File &1 not found

contains the substitution variable &1. When the message is displayed or retrieved,
the variable &1 is replaced with the name of the file that could not be found. This
name is supplied by the sender of the message. For example:

File ORDHDRP not found

Compare this to:
File not found

Substitution variables can make your message more specific and more meaningful.

The substitution variable must begin with & (ampersand) and be followed by n,
where n is any number from 1 through 99. For example, for the message:

File &1 not found

the substitution variable is defined as:
FMT ((*CHAR 10))

When you assign numbers to substitution variables, you must begin with the
number 1 and use the numbers consecutively. For example, &1, &2, &3, and so on.
However, you do not have to use all the substitution variables defined for a
message description in the message that is sent.

For example, the message:
File &3 not available

is valid even though &1 and &2 are not used in the messages. However, to do this,
you must define &1, &2, and &3 on the FMT parameter of the ADDMSGD
command. For the preceding message, the FMT parameter could be:

FMT((*CHAR 10) (*CHAR 2) (*CHAR 10))

where the first value describes &1, the second &2, and the third &3. The
description for &1 and &2 must be present if &3 is used. In addition, when this
message is sent, the MSGDTA parameter on the Send Program Message
(SNDPGMMSG) command should include all the data described on the FMT
parameter. To send the preceding message, the MSGDTA parameter should be at
least 22 characters long.

For the preceding message, you could also specify the FMT parameter as:
FMT((*CHAR 0) (*CHAR 0) (*CHAR 10))

Because &1 and &2 are not used in the message, they can be described with a
length of 0. Then no message data needs to be sent. (The MSGDTA parameter on
the SNDPGMMSG command needs to be only 10 characters long in this case.)

An example of using &3 in the message and including &1 and &2 in the FMT
parameter is when &1 and &2 are specified on the DMPLST parameter. (The
DMPLST parameter specifies that the data is to be dumped when this message is
sent as an escape message to a program that is not monitoring for it.)

190 CL Programming V5R3



The substitution variables do not have to be specified in the message in the same
order in which they are defined in the FMT parameter. For example, three values
can be defined in the FMT parameter as:

FMT ((*CHAR 10) (*CHAR 10) (*CHAR 7))

The substitution variables can be used in the message as follows:
Object &1 of type &3 in Tibrary &2 is not available

If this message is sent in a CL procedure or program, you can concatenate the
values used for the message data such as:

SNDPGMMSG ..... MSGDTA(&0BJ *CAT &LIB *CAT &0BJTYPE)

You must specify the format of the message data field for the substitution variable
by specifying data type and, optionally, length on the ADDMSGD command. The
valid data types for message data fields are:

* Quoted character string (*QTDCHAR). A string of character data to be enclosed
in apostrophes. Preceding and trailing blanks are not deleted. If length is not
specified in the message description, the sender determines the length of the
field.

* Character string (*CHAR). A string of character data not to be enclosed in
apostrophes. Trailing blanks are deleted. If length is not specified in the message
description, the sender determines the length of the field.

* Convertible character string (*CCHAR). A string of character data not to be
enclosed in apostrophes. Trailing blanks are deleted. The length is always
determined by the sender. If data of this type is sent to a message queue that
has a CCSID tag other then 65535 or 65534, the data is converted from the
CCSID of the message data to the CCSID of the message queue. Conversions can
also occur on data of this type when the data is obtained from the message
queue using a receive or display function. See the Globalization topic in the
Programming category of the iSeries Information Center for more information
on the use of message handlers with CCSIDs.

* Hexadecimal (*HEX). A string to be preceded by the character X and enclosed in
apostrophes; each byte of the string is to be converted into two hexadecimal
characters (0 through 9 and A through F). If length is not specified in the
message description, the sender determines the length of the field.

* Binary (*BIN). A binary integer (either 2, 4, or 8 bytes long) formatted as a
signed decimal integer. Unless provided a specified length, the system will
assume that the binary integer is 2.

* Unsigned binary (*UBIN). An unsigned binary integer (either 2, 4 or 8 bytes
long) formatted as an unsigned decimal integer. Unless provided a specified
length, the system will assume that the binary integer is 2.

¢ Decimal (*DEC). A packed decimal number to be formatted as a signed decimal
number with a decimal point. Length must be specified; decimal positions
default to 0.

¢ System pointer (*SYP). A 16-byte pointer to a system object. In a message or
message help, the 10-character name of the object is formatted the same as the
*CHAR type data.

* Space pointer (*SPP). A 16-byte pointer to a program object. In a dump, the data
in the object is formatted the same as the *HEX type data. *SPP cannot be used
as substitution text in a message; it can only be used as part of the DMPLST
parameter on the ADDMSGD command.

Chapter 7. Defining Messages 191



The following data types are valid only in IBM-supplied message descriptions and
should not be used for other messages:

* Time interval (*ITV). An 8-byte time interval that contains the time to the nearest
whole second for various wait time out conditions.

* Date and time stamp (*DTS). An 8-byte system date and time stamp for which
the date is to be formatted as specified in the QDATFMT and QDATSEP system
values and the time is to be formatted as hh:mm:ss.

Specifying Validity Checking for Replies
On the ADDMSGD command, you can specify the type of reply that is valid for an
inquiry or notify message. You can specify (parameters are given in parentheses):
* Type of reply (TYPE)

Decimal (*DEC)

Character (*CHAR)

Alphabetic (*ALPHA)

— Name (*NAME)
* Maximum length of reply (LEN)

— For decimal, 15 digits (9 decimal positions)
— For character and alphabetic, 32 characters

— For name, 10 characters

Note: If you do not specify any validity checking (VALUES, RANGE, REL,
SPCVAL, DFT), the maximum length of a reply is 132 characters for types
*CHAR and *ALPHA.

* Values that can be used for the reply

A list of values (VALUES)

— Alist of special values (SPCVAL)

A range of values (RANGE)

A simple relationship that the reply value must meet (REL)

Note: The special values are values that can be accepted but that do not satisfy
any other validity checking values.

When a display station user enters a reply to a message, the keyboard is in lower
shift which causes lowercase characters to be entered. If your program needs the
reply to be in uppercase characters, you can do one of the following;:

* Use the SNDUSRMSG command which supports a translation table option
which defaults to converting lowercase to uppercase.

* Require the display station user to enter uppercase characters by specifying only
uppercase characters for the VALUES parameter.

* Specify the VALUES parameter as uppercase and use the SPCVAL parameter to
convert the corresponding lowercase characters to uppercase.

* Use TYPE(*NAME) if the characters to be entered are all letters (A-Z). The
characters are converted to uppercase before being checked.

Sending an Immediate Message and Handling a Reply
In this example, the procedure does the following;:
* Sends an immediate inquiry message to QSYSOPR
* Requests a reply of yes or no (Y or N)

192  CL Programming V5R3



* Ensures that a valid reply has been entered
* Does a time-out if the operator does not reply within 120 seconds

PGM
DCL &MSGKEY *CHAR LEN(4)
DCL &MSGRPY *CHAR LEN(1)
SNDMSG: SNDPGMMSG  MSG('.... Reply Y or N') TOMSGQ(QSYSOPR) +

MSGTYPE (*INQ) KEYVAR (&MSGKEY)
RCVMSG MSGTYPE (*RPY) MSGKEY (8MSGKEY) WAIT(120) +

MSG (&MSGRPY)
IF ((8MSGRPY *EQ 'Y') *OR (&MSGRPY *EQ 'y')) DO
GOTO END
ENDDO /* Reply of Y */
IF ((&MSGRPY *EQ 'N') *OR (&MSGRPY *EQ 'n')) DO
GOTO END
ENDDO /* Reply of N %/
IF (&MSGRPY *NE ' ') DO
SNDPGMMSG  MSG('Reply was not Y or N, try again') +
TOMSGQ(QSYSOPR)
GOTO SNDMSG
ENDDO /* Reply not valid */

/* Timeout occurred */
SNDPGMMSG  MSG('No reply from the previous message +
was received in 120 seconds and a 'Y'' +
value was assumed') TOMSGQ(QSYSOPR)

END: ENDPGM

The SNDUSRMSG command cannot be used instead in this procedure because it
does not support a time-out option (SNDUSRMSG waits until it receives a reply or
until the job is canceled).

The SNDPGMMSG command sends the message and specifies the KEYVAR
parameter. This returns a message reference key, which uniquely identifies this
message so that the reply can be properly matched with the RCVMSG command.
The KEYVAR value must be defined as a character field length of 4.

The RCVMSG command specifies the message reference key value from the
SNDPGMMSG command for the MSGKEY parameter to receive the specific
message. The reply is passed back into the MSG parameter. The WAIT parameter
specifies how long to wait for a reply before timing out.

When the reply is received, the procedure logic checks for an upper or lower case
value of the Y or N. Normally the value is entered by the operator as a lower case
value. If the operator enters a non-blank value other than Y or N, the procedure
sends a different message and then repeats the inquiry message.

If the operator had entered a blank, no reply is sent to the procedure. If a blank is
returned to the procedure, the time out occurred (the operator did not reply). The
procedure sends a message to the system operator stating that a reply was not
received and the default was assumed (the "Y”” value is shown as "Y’ in the
message queue). Because the assumed value of 'Y’ is not displayed as the reply,
you cannot determine when looking at a message queue whether the message
should be answered or has already timed out. The procedure does not remove a
message from the message queue once it has been sent. The second message
should minimize this concern and provides an audit trail for what has occurred.

Chapter 7. Defining Messages 193



If the time out has already occurred and the operator replies to the message, the
reply is ignored. The operator receives no indication that the reply has been
ignored.

Sending Immediate Messages with Double-Byte Characters
To send an immediate message with double-byte text, limit the text to 37
double-byte characters plus the shift control characters. The limited size of the
message ensures it is properly displayed.

Defining Default Values for Replies

The ADDMSGD command allows you to specify a default value for a reply to your
message. A default reply must meet the same validity checking values as the other
replies for the message or be specified as a special value in the message
description. A default value is used when a user has indicated (using the
CHGMSGQ command) that default replies should be issued for all inquiry
messages sent to the user’s message queue. Default replies are also sent when the
unanswered inquiry messages are deleted. For example, the workstation user uses
the DSPMSG command to display messages, and removes unanswered inquiry
messages by pressing either F13 to delete all the messages or F11 to delete a
particular message.

Default replies are also used when the job attribute of INQMSGRPY is set to *DFT
and may be used if set to *SYSRPYL option. You can use the system reply list to
change the default reply.

Default replies are also used on the Display Program Messages screen (which
shows messages that are sent to *EXT). The sending of the default reply occurs
during either of the two following conditions:

e The Display Program Messages screen appears showing an unanswered inquiry
message and the user presses Enter (to continue) without typing any reply.

* The user pressed the F3 key to exit the Display Program Messages display.

Specifying Default Message Handling for Escape Messages

For each message you create that can be sent as an escape message, you can set up
a default message handling action to be used if the message, when sent, is not
handled any other way.

Default message handling actions can consist of:

* Default program name. A program to be called that takes default action to
handle a message. The following parameters are passed to the default program:

— Call message queue name. This parameter is a structure that consists of many
fields that identify where the system sent the message. For information about
default message handling exit programs and details on the fields in the
parameter, refer to Message Handling APIs in the APIs section of
theProgramming category in the iSeries Information Center

— Message reference key (4 characters). The message reference key of the escape
message on the call message queue.

* Dump list. A list of message data field numbers (the same numbers as the
substitution variables) that indicate which objects are to be dumped.

In addition, you can dump any of the following:
— The data areas for the job

194 CL Programming V5R3



— An internal machine data structure of a job

- Ajob
Specifying a dump list for a job is equivalent to specifying the Display Job
(DSPJOB) command with the parameters JOB(*) OUTPUT (*PRINT).

If you do not specify default actions in message descriptions, you will get a dump
of the job (as if DSPJOB JOB(*) OUTPUT (*PRINT) was specified).

The default action specified in a message is taken only after the message
percolation action is completed without the escape message being handled. See
[“Default Handling” on page 244| for more information on handling defaults.

Example of a Default Program

The following program is a sample default program that could be used when a
diagnostic message is sent followed by an escape message. This program could be
an OPM CL program or an ILE program that has this single CL procedure.

PGM PARM (&MSGQ &MRK)

DCL VAR(&MRK) TYPE(*CHAR) LEN(4)

DCL VAR(&MSGQ) TYPE(*CHAR) LEN(6381)

DCL VAR (&QNAME) TYPE(*CHAR) LEN(4096)

DCL VAR (&MODNAME) TYPE (*CHAR) LEN(10)

DCL VAR (&BPGMNAME) TYPE (*CHAR) LEN(10)

DCL VAR (&BLANKMRK) TYPE(*CHAR) LEN(4) VALUE(' ')
DCL VAR(&DIAGMRK) TYPE(*CHAR) LEN(4) VALUE(' ')
DCL VAR (&SAVEMRK) TYPE(*CHAR) LEN(4)

DCL VAR(&MSGID) TYPE(*CHAR) LEN(7)

DCL VAR(&MSGDTA) TYPE(*CHAR) LEN(100)

DCL VAR(&MSGF) TYPE(*CHAR) LEN(10)

DCL VAR (&MSGLIB) TYPE(*CHAR) LEN(10)

DCL VAR(&0OFFSET) TYPE(*DEC)

DCL VAR(&LENGTH) TYPE(*DEC)

/* Check for OPM program type */
IF (%SST(&MSGQ 277 1) *EQ '0') THEN(DO)

CHGVAR VAR(&QNAME) VALUE(%SST(&MSGQ 1 10))
CHGVAR VAR (&MODNAME) VALUE('*NONE")
CHGVAR VAR (&BPGMNAME) VALUE('*NONE")
ENDDO
ELSE DO
/* Not an OPM program; always use the long procedure name */
CHGVAR VAR(&0OFFSET) VALUE (%BIN(&MSGQ 281 4))
CHGVAR VAR(&LENGTH) VALUE (%BIN(&MSGQ 285 4))
CHGVAR VAR (&QNAME) VALUE (%SST(&MSGQ &OFFSET &LENGTH))
CHGVAR VAR (&MODNAME) VALUE (%SST(&MSGQ 11 10))
CHGVAR VAR (&BPGMNAME) VALUE (%SST(&MSGQ 1 10))
ENDDO
GETNEXTMSG: CHGVAR VAR (&SAVEMRK) VALUE (&DIAGMRK)
RCVMSG PGMQ(*SAME (&QNAME &MODNAME &BPGMNAME)) +
MSGTYPE (*DIAG) RMV(*NO) KEYVAR(&DIAGMRK)
IF (&DIAGMRK *NE &BLANKMRK) THEN(GOTO GETNEXTMSG)
ELSE IF (&SAVEMRK *NE ' ') THEN(DO)
/* If no diag message is sent, no message is sent to the previous program */
RCVMSG PGMQ (*SAME (&QNAME &MODNAME &BPGMNAME)) +
MSGKEY (&SAVEMRK) RMV(*NO) MSGDTA(&VSGDTA) +
MSGID(&MSGID) MSGF(&MSGF) MSGFLIB(&MSGLIB)
SNDPGMMSG  MSGID(&MSGID) MSGF (&MSGLIB/&MSGF) +
MSGDTA (&MSGDTA) TOPGMQ(*PRV (&QNAME +
&MODNAME &BPGMNAME) )
MSGTYPE (*ESCAPE)
ENDDO
ENDPGM

The program receives all the diagnostic messages in FIFO order. Then it sends the

last diagnostic message as an escape message to allow the previous program to
monitor for it.

Chapter 7. Defining Messages 195



Specifying the Alert Option

On the ADDMSGD command, you can specify an alert option to allow an alert to
be created for a message. A message, for which an alert can be created, can cause
an SNA alert to be created and sent to a problem management focal point. The
alert created for a message can be defined using the Add Alert Description
(ADDALRD) command. For more information about the OS/400 alerts support, see

the [DSNX Suppord # book.

Example of Describing a Message

In the following example, the ADDMSGD command creates a message to be used
in applications such as order entry. The message is issued when a customer
number entered on the display is not found. The message is:

Customer number &1 not found

The ADDMSGD command for this message is:

ADDMSGD  MSGID(USR4310) +
MSGF (QGPL/USRMSG) +
MSG('Customer number &1 not found') +
SECLVL('Change customer number') +
SEV(40) +
FMT ((*CHAR 8))

The message is added to the USRMSG file in the library QGPL.

You can use the DSPMSGD or WRKMSGD command to print or display message
descriptions.

The SECLVL parameter provides very simple text. To make this appear on the
Additional Message Information display, you specify SECLVL('message text'). The
text you specify on this parameter appears on the Additional Message Information
display when you press the Help key after placing the cursor on this message.

Defining Double-Byte Messages

To define a message with double-byte text, write a CL procedure or program using
the ADDMSGD command. The defined message is put into a message file and
then sent normally. When writing the program, do the following:

1. Make sure the source file containing the program is a double-byte file. Specify
IGCDTA(*YES) on the Create Source Physical File (CRTSRCPF) command.

2. Use the source entry utility (SEU) to enter the program. CL commands using
double-byte characters can only be entered through SEU. For this reason,
double-byte messages must be created in a CL program.

3. Limit the length of the message to 37 double-byte characters, so the complete
message can be displayed or printed.

When using the MONMSG command, also limit the Comparison Data
(CMPDATA) parameter to 6 double-byte characters.

4. If the double-byte message file replaces an alphanumeric message file (such as
files of translated messages to be sent only to double-byte display stations),
enter a command similar to the following to override the alphanumeric
message file:

OVRMSGF MSGF (QCPFMSG) TOMSGF (DBCSLIB/QCPFMSG)
Double-byte messages can be displayed only at double-byte display stations.

196 CL Programming V5R3



System Message File Searches

The system uses the following two steps when searches are performed to retrieve a
message from a message file:

1. The system processes any overrides that are in effect for the message file name.

See [“Overriding Message Files”| for more information.

2. If the message file name has not been overridden, the system searches for the
message file based on the message file name and library specified when the
message was used.

See [“Searching for a Message File”| for more information.

Searching for a Message File

When a message file has not been overridden, the message file name and library
specified (at the time the message file was sent) are used to search for the message
file from which the message description is retrieved.

When a message file name is overridden but the message identifier is not
contained in the overridden file, the message file name and library specified are
also used to search for the message file.

The system search depends on whether you specify the message file library as
either *CURLIB or *LIBL. The following describes the search path for *CURLIB and
*LIBL:

* Specify as *CURLIB or explicitly specify the message file library

The system searches for the message file named in the specified library or the
job’s current library (*CURLIB).

* Specify the message file library as *LIBL

The system searches for the message file named in the job’s library list (*LIBL).
The search stops after finding the first message file with the specified name.

If the message file is found, but does not contain a description for the message
identifier, the message attributes and text of message CPF2457 in QCPFMSG are
used in place of the missing message description.

If the message file was not found, the system attempts to retrieve the message
from the message file that was used at the time the message was sent.

Note: A message file may be found but cannot be accessed due to damage or an
authorization problem.

Overriding Message Files

You can override message files used in a procedure or program. The creation
(Override Message File command), deletion (Delete Override command), and
display (Display Override command) of message file overrides is similar to other
types of overrides. Here, however, only the name of the message file, not the
attributes, is overridden, and the rules for applying the overrides are slightly
different.

To override a message file, use the Override Message File (OVRMSGF) command.

The file overridden is specified in the MSGF parameter; the file overriding it is
specified in the TOMSGF parameter.

Chapter 7. Defining Messages 197



For example, to override QCPFMSG with a user message file named USRMSGE,
the following command would be used:

OVRMSGF MSGF(QCPFMSG) TOMSGF (USRMSGF)

When a predefined message is retrieved or displayed, the overriding file is
searched for a message description. If the message description is not found in that
file, the overridden file is searched.

There are several basic reasons to override message files:

* To provide changed default replies or dump lists. A message file can be created
with message descriptions for messages with changed default replies or dump
lists because those in the original message descriptions are not satisfactory. You
can establish several operating environments, each with different default replies.

* To change severity levels of the messages.
¢ To provide a default program.

* To change the text of a message. If the text is blank, it appears to the user as if
no message was sent. For example, you may not want the status message sent
by the Copy File (CPYF) command to appear to the user.

* To provide translation of messages into national languages. Message files written
in English can be overridden by message files written in other languages. (If all
messages are changed, use the library list for the job to change the order of the
message files instead of overriding the message files.)

Another way you can select the message file from which messages are to be
retrieved is by changing the order of the files in the library list for the job.
However, if you use this approach, the search for the message stops on the first
message file found that has the specified name. If the message is not in that file,
the search stops.

For example, assume that a message file named USRMSG is in library USRLIBI,
and another message file named USRMSG is in library USRLIB2. To use the

198 CL Programming V5R3



message file in USRLIB1, USRLIB1 should precede USRLIB2 in the library list:

Libraries
QSYS
Library List
0SYS I
QGPL A
QTEMP —
] QGPL
USRLIBI —
USRLIB2
QTEMP
USRLIBI
USRMSG
USRLIB2
US@MSG
RBAFN507-0

The system searches the first message file found with the correct name. If that file
does not contain the message, the search stops. However, if you use the OVRMSGF
command, the system searches the overriding file, and if the message is not there,
it searches the overridden file.

Example of Overriding a Message File
Assume that you want to change an IBM-supplied message for use in a job. For
example, suppose you want to change message CPC2191, which says:

Object XXX in YYY type *ZZZ deleted

to say:
Object XXX in YYY deleted

Specifics on how to describe the FMT parameter are provided by displaying the
detailed description of CPC2191.

First, you create a message file:
CRTMSGF MSGF (USRMSG/OVRCPF)

Chapter 7. Defining Messages 199



Then you use the message CPC2191 as a basis for your message and add it to the
message file:
ADDMSGD MSGID(CPC2191) MSGF(USRMSG/OVRCPF) +

MSG('Object &1 in &2 deleted') +
SEV(00) FMT((*CHAR 10) (*CHAR 10))

You then use the OVRMSGF command to override the message file when you run
the job:

OVRMSGF MSGF(QCPFMSG) TOMSGF (USRMSG/OVRCPF)

Libraries
Library List QSYS
QSYS > QCPFMSG
QGPL
QTEMP
USERLIB
USRMSG Q6PL
QTEMP
USERLI
The system searches
the overriding
message file (USRMSG)
for the message. If
the message is not in USRMSG
the overriding file, » OVRCPF
the system then
searches the overidden
file (QCPFMSG).
RBAFN537-0

If you want to change this message for use in all your jobs, you can use the
Change Message Description (CHGMSGD) command to change the message. Then
you do not have to override the system message file.

If you use the CHGMSGD command to change an IBM-supplied message, the
message will need to be changed again when a new release of the system is

200 CL Programming V5R3



installed. To change the message again, you can place any changes in an input
stream or a program that can be run at any time.

You can also override overriding files. For example, you can specify the following
OVRMSGF commands during a job.

OVRMSGF  MSGF(MSGFILE1) TOMSGF(MSGFILE2)
OVRMSGF  MSGF (MSGFILE2) TOMSGF (MSGFILE3)

First, file MSGFILE1 was overridden with MSGFILE2. Second, MSGFILE2 was
overridden with MSGFILE3. When a message is sent, the files are searched in this
order:

1. MSGFILE3
2. MSGFILE2
3. MSGFILE1

You can prevent message files from being overridden. To do so, you must specify
the SECURE parameter on the OVRMSGF command.

Types of Message Queues

All messages on the system are sent to a message queue. The system user or
program associated with the message queue receives the message from the queue.
Similarly, a reply to a message is sent back to the message queue of the user or
program requesting the reply.

The following diagrams show the message queues supplied by IBM. A message
queue is supplied for each display station (where DSP01 and DSP02 are display
station names) and each user profile (where BOB and RAY are user profile names):

DSPO1 DSP02 « .. | DSPxx
BOB RAY « o JOE
RBAFN560-0

Job message queues are supplied for each job running on the system. Each job is
given an external message queue (*EXT) and each call of an OPM program or ILE
procedure within the job has its own call message queue.

JOB1 J0B2 JOBx

*EXT *EXT *EXT External message queue
PROG1 PROC_A| * ** | PROGX Call message queues
PROC_1 PROGB PROC_Y

PROC_2 PROGC PROGZ

RBAFN561-0

Chapter 7. Defining Messages 201



Message queues are also supplied for the system history log (QHST) and the
system operator (QSYSOPR):

QHST QSYSOPR

RBAFN562-0

These message queues are used as follows:

* Workstation message queues are used for sending and receiving messages
between workstation users and between workstation users and the system
operator. The name of the queue is the same as the name of the workstation. The
queue is created by the system when the workstation is described to the system.

* User profile message queues can be used for communication between users.
User profile message queues are automatically created in library QUSRSYS when
the user profile is created.

* Job message queues are used for receiving requests to be processed (such as
commands) and for sending messages that result from processing the requests;
the messages are sent to the requester of the job. Job message queues exist for
each job and only exist for the life of the job. Job message queues consist of an
external message queue (*EXT) and a set of call stack entry message queues. See
[“Job Message Queues” on page 206 for more information.

* System operator message queue (QSYSOPR) is used for receiving and replying
to messages from the system, display station users, and application programs.

* The history log message queue is used for sending information to the history
log (QHST) from any job in the system.

In addition to these message queues, you can create your own user message
queues for sending messages to system users and between application programs.

Creating or Changing a Message Queue

To create your own user message queues, you use the Create Message Queue
(CRTMSGQ) command. In addition, you also use the Change Message Queue
(CHGMSGQ) command to change the following attributes of your message queue.

The attributes of a message queue are:

* Whether changes to the message queue must be written immediately to the disk.
Writing the changes immediately to the disk ensures that no messages are lost in
cases like a system failure. Note that this will cause a decrease in system
performance.

* The method of delivery for messages arriving at a message queue. When a
message queue is created, the method of delivery is defined as hold delivery.
When a display station is signed on, the user’s message queue is set to the
mode specified in the user profile. The types of delivery you can specify on
the CHGMSGQ command are:

— Break delivery. A job is interrupted and a program is called to deliver the
message. If a user program is not specified on the CHGMSGQ command
that requests break delivery, or if *SAME is specified, the Display Message
(DSPMSG) command automatically displays the message. Break messages
for a job can be controlled with the BRKMSG parameter on the CHGJOB
command.

202 CL Programming V5R3



— Notify delivery. Adisplay station user is notified by means of the
Attention light or audible alarm (or by both) that a message is on the
queue. The display station user can view the message by using the
DSPMSG command.

— Hold delivery. The message queue holds the messages until the
display station user requests them with the DSPMSG command.

— Default delivery. All messages are ignored, and any messages
requiring a reply are sent the default reply for the message.

* How to handle messages for break delivery.

— Automatically run the DSPMSG command. For an interactive job, the
messages are displayed at the display station if the severity code is high
enough. For a batch job, the messages are listed to a spooled printer file if
the severity code is high enough.

— Call a break-handling program to handle the messages. You must use the
CHGMSGQ command to specify the called program and to set the method
of delivery to break mode. You can specify whether other jobs can reply to
inquiry messages on the queue while it is in break mode with a
break-handling program.

* The severity code for filtering messages for break and notify delivery.
Messages with severity equal to or greater than the minimum severity code
specified are displayed. When the queue is created, the minimum severity
code is set to 00. To change the minimum severity code, you must use the
CHGMSGQ command.

When the DSPMSG command is used to display messages on the message
queue, the severity code filter (SEV) parameter can be used to filter the
messages shown. This filter is used rather than the severity filter specified
for the message queue at creation time. To use this filter, specify DSPMSG
SEV(*MSGQ). You can use the DSPMSG command to determine the current
severity code used for filtering break and notify messages. The code is
displayed on the heading line of the message display.

* Coded character set identifier (CCSID) associated with the message
queue. Messages sent to this queue are converted to this CCSID. No
conversions occur if the message queue CCSID is 65534 or 65535. If the
message queue CCSID is 65534, each message contains its own CCSID
which is established by the sender.
 Allow alerts for standard message queues. Allow alerts specifies if the

queue being created allows alerts to be generated from alert messages
that are sent to it.

* Action to take when the message queue becomes full. You cannot
change this attribute for message queue QHST; QHST sends CPF2460
when it is full. IBM ships QSYSOPR with this attribute that is
originally set to wrap.

— Send CPF2460 (Message queue cannot be extended) to the program
or user that sends a message to the full queue.

— Wrap the queue. Wrapping will remove messages on the queue to
make space for a new message that is sent to the queue.

Note: When a workstation device description is created, the system
establishes a message queue for the device to receive all action
messages for the device. For workstation printers, tape drives, and
APPC devices, the MSGQ parameter can be used to specify a
message queue when creating a device description. If no message
queue is specified for these devices, the default,

Chapter 7. Defining Messages 203



QSYSOPR, is used as the message queue. All other devices are
assigned to the QSYSOPR message queue when they are created.

The message queue defined in your user profile is known as a user
message queue. When you sign on the system using your profile, the
user message queue is put into the delivery mode specified in your user
profile.

If your user message queue is in break or notify delivery mode while you
are signed on a display station and then you sign on another display
station, the user message queue will not change the delivery mode for
the new sign on. User message queues (along with workstation message
queues and the QSYSOPR message queue) cannot have their delivery
mode changed by a job when the message queue is in break or notify
delivery mode for a different job.

When you sign off the display station, or the job ends unexpectedly, the
user message queue delivery mode is changed to hold mode, if the
delivery mode of the user message queue is break or notify for this job.
The user message queue delivery mode is also changed from break or
notify mode to hold mode when you transfer to an alternative job. You
can do this using the Transfer Secondary Job (TFRSECJOB) command or
by pressing the System Request key and specifying option 1 on the
System Request menu.

After transferring to an alternative job, you sign on using your user
profile. Your user message queue is put into the delivery mode specified
in your user profile. This allows the user message queue to transfer to
the alternative job. You are then able to transfer back and forth between
these two jobs and have your user message queue follow you.

However, if after transferring to an alternative job, you sign on using a
user profile other than your own, the user message queue for the job
from which you transferred is left in hold delivery mode. The user
message queue for the user profile you signed on with is put in the
delivery mode specified in that user profile. Because of this, your user
message queue could be put into break or notify delivery mode by
another user. If another user still has your user message queue in that
delivery mode when you transfer back to the first job, your user message
queue delivery mode cannot be changed back to the original delivery
mode.

The QSYSOPR message queue is the message queue for the system
operator, unless it has been changed. The above situation can occur for a
system operator as well.

Messa in Independent ASPs
See the [[ndependent ASPs|article for details about the independent ASPs.

It is recommended that message queues in independent ASPs should not be put
into break mode. When a message queue is in break mode, the break program will
not be called if the message queue is not in the thread’s library name space when a
message is sent to the message queue. The libraries in the independent ASPs in the
thread’s ASP group plus the libraries in the system ASP (ASP number 1) and basic
user ASPs (ASP numbers 2-32) form the library name space for the thread.

204 CL Programming V5R3



When sending an inquiry message to a message queue, the to message queue and
the reply message queue both should be either in the system ASP or in the same
independent ASP, otherwise the reply may not be sent to the reply message queue
if either message queue was taken offline.

Messages cannot be received in these situations:

* from a message queue with a wait time, in an independent ASP that is varied
off

* as a reply to an inquiry message sent to a message queue, in an independent
ASP that is varied off

A break handing program will not be able to change the library name space for the
thread.

Break-Handling Program

A break-handling program is called whenever a message of equal or higher
severity than the severity code filter arrives on a message queue that is in break
delivery mode. To request a break-handling program, you must specify the name
of the program and break delivery on the same CHGMSGQ command. The
message handling program must receive the message with the Receive Message
(RCVMSG) command so the message is marked as handled and the program is not
called again. For more information on receiving messages and break handling
programs, see [Chapter 8, “Working with Messages.”|

Note: This program cannot open a display file if the interrupted program is
waiting for input data from the device display.

You can use the system reply list to specify that the system issue the reply to
specified predefined inquiry messages so that the display station user does not
need to reply. See|“Using the System Reply List” on page 269 for more
information.

Example of Changing the Delivery Mode

When the system is started, it puts the QSYSOPR message queue in break delivery
when the controlling subsystem is started. However, if the system operator signs
off, the message queue is put in hold delivery. When the system operator signs on
again, QSYSOPR is placed in the mode specified in the QSYSOPR user profile.

The following procedure in a CL initial program can be used to place the
QSYSOPR message queue in break mode. Initial programs can use similar
procedures to monitor message queues other than the one specified in a user’s own
user profile.

PGM /* Procedure to place a msg queue in break mode */

CHGMSGQ QSYSOPR DLVRY (*BREAK) SEV(50)

MONMSG ~ MSGID(CPFOO00) EXEC(SNDPGMMSG MSG('Unable to put QSYSOPR +

message queue in *BREAK mode') TOPGMQ(*EXT))
ENDPGM

The procedure attempts to set the QSYSOPR message queue to break delivery with
a severity level of 50. If this is unsuccessful, a message is sent to the external job
message queue (*EXT). When the program which contains this procedure ends, the
initial menu is displayed. A severity level of 50 is used to decrease the number of
break messages that interrupts the workstation user. A common reason for failure
is when another user has QSYSOPR in break mode already:.

Chapter 7. Defining Messages 205



Job Message Queues

Job message queues are created for each job on the system to handle all the
message requirements of the job. Job message queues for a single job consist of an
external message queue (*EXT) and a set of call message queues. A call message
queue is assigned to each ILE procedure and OPM program that is called within
the job. In addition, a job log is created for each job. A job log is a logical queue
which maintains all messages sent within a job in chronological order. You may
send messages to the *EXT queue or to a call message queue. You do not send
messages to the job log. Rather a message sent to either *EXT or a call message
queue is also logically added to the job log by the system.

The external message queue (*EXT) is used to communicate with the external
requester (such as a display station user) of the job. Messages (except status
messages) sent to the external message queue of a job are also placed on the job
log (see [“Job Log” on page 272 for more information).

If an informational, inquiry, or notify message is sent to the external message
queue for an interactive job, the message is displayed on the Display Program
Messages display. Additionally, the procedure waits for a reply to inquiry or notify
messages from the display station user. Should the user not enter a reply and press
the Enter key or F3 (Exit), the default message reply is returned to the sender of
the message. If there is no default message reply, *N is sent. If you send an inquiry
or notify message to the external message queue for a batch job, the system sends
the default reply back to you. If there is no default message reply, *N is the reply.
The system reply list may override the displaying of inquiries or the sending of
default replies to inquiries to *EXT.

If a status message is sent to the external message queue of an interactive job, the
message is displayed on the message line of the display station. You can use status
messages like this to inform the display station user of the progress of a
long-running operation. For example, the system sends status messages when
running the CPYF command if you copy a file with several members.

Note: When your application completes the long-running operation, you must

send another message to clear the message line at the display. You can use
message CPI9801, which is a blank message, for this purpose. For example:

PGM
SNDPGMMSG  MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA('Status 1') +

TOPGMQ(*EXT)  MSGTYPE(*STATUS)

SNDPGMMSG  MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA('Status 2') +
TOPGMQ(*EXT)  MSGTYPE(*STATUS)

SNDPGMMSG  MSGID(CPI9801) MSGF(QCPFMSG) TOPGMQ(*EXT) +
MSGTYPE (*STATUS)

ENDPGM

206 CL Programming V5R3



A call message queue is used to send messages between one program or procedure
and another program or procedure. As long as a program or procedure is on the
call stack (has not returned yet) its call message queue is active and messages can
be sent to that program or procedure. Once the program or procedure returns, its
call message queue no longer exists and messages can no longer be sent to it.
Message types which can be sent to a call message queue include informational,
request, completion, diagnostic, status, escape, and notify.

The call message queue for an OPM program or ILE procedure is created when
that program or procedure is called. The call message queue is exclusively
associated only with the call stack entry in which the program or procedure is
running. A call message queue is identified indirectly by identifying the call stack
entry. A call stack entry is identified by the name of the program or procedure that
is running in that call stack entry.

In the case of an OPM program, the associated call stack entry is identified by the
(up to) 10 character program name. In the case of an ILE procedure, the associated
call stack entry is identified by a three part name which consists of the (up to) 256
character procedure name, the (up to) 10 character module name, and the (up to)
10 character program name. The module name is the name of the module into
which the procedure was compiled. The ILE program name is the name of the ILE
program into which the module was bound.

When identifying the call stack entry for an ILE procedure, it is sufficient to specify
only the procedure name. If the procedure name by itself does not uniquely
identify the call stack entry, the module name or the ILE program name can also
be specified. If, at the time a message is sent, a program or procedure is on the call
stack more than once, the name specified will identify the most recently called
occurrence of that program or procedure.

There are other methods to identify a call stack entry. These methods are discussed
in detail in [“Call Stack Entry Identification on SNDPGMMSG” on page 218|

If an OPM or ILE program is compiled and then replaced while it is on the call
stack, care must be taken when the program name is used to reference a call stack
entry. For call stack entries that are earlier on the stack than the point at which the
replace operation was done, the name reference will resolved to the replaced object
which now exists in QRPLOBJ. These name references are valid as long as the
replaced object continues to exist in the QRPLOB] library. For entries on the stack
that are more recent then the point at which the replace operation was done, the
name reference is for the new version of the program. Because of the manner in
which the version to use is determined, you should not place a program directly in
the library QRPLOB]J. This library should be used exclusively for the replaced
version of a program. A name reference to a program that you place directly into
QRPLOBJ will fail.

If a program object is removed or renamed while an occurrence of it is on the call
stack, any name reference to the removed program or any name reference using
the old name will fail. For ILE procedures, if you are using only the procedure and
module name for a reference, renaming the program will not impact the name
reference. If you are also using the ILE program name, the name reference will fail.

A message queue for a call stack entry of a program or procedure is no longer
available when the program or procedure ends. A message that was on the
associated call message queue can only be referenced at that point by using the
message reference key of the message.

Chapter 7. Defining Messages 207



For example, assume that procedure A calls procedure B which calls procedure C.
Procedure C sends a message to procedure B and ends. The message is available to
procedure B. However, when procedure B ends, its call message queue is no longer
available. As a result, you cannot access procedure B by using procedure A, even
though the message appears in the job log. Procedure A cannot access messages
that are sent to Procedure B unless Procedure A has the message reference key to
that message.

Procedure A

CALLPRC B ]

Procedure B <*—

CALLPRC —
External message queue

CRETURN Procedure A call message queue

Procedure B call message queue

Procedure C <—

SNDPGMMSG
RETURN

Procedure C call message queue

RBAFN508-0

If procedure A needs to delete specific messages, you could do the following:
* Have procedure C send specific messages to procedure A
* Have procedure B resend the messages to procedure A

The following figure shows the relationship of procedure calls, the job message
queue, and the call stack entry queues. A connecting line () indicates which
message queue is associated with which call of a procedure.

Procedure Stack Job Message Queue

* k k kP
Procedure A 1 External message queue
Procedure B — | Procedure A call message queue
Procedure C .ok oxw g Procedure B call message queue
Procedure D Procedure D call message queue
Procedure B — Procedure B call message queue
Procedure C I "

* * * * = Messages sent to Caller
RBAFN532-0

In the preceding figure, procedure B has two call stack entry queues, one for each
call of the procedure. There are no message queues for procedure C because no
messages were sent to procedure C. When procedure C sends a message to
procedure B, the message goes to the call stack entry queue for the last call of
procedure B.

Note: When you are using the command entry display, you can display all the
messages sent to the job message queue by pressing F10 (Include detailed
messages). Once the messages are displayed, you can roll through them
using one of the roll keys.

208 CL Programming V5R3



You can also display the messages for a job by using the Display Job Log
(DSPJOBLOG) command.

Chapter 7. Defining Messages 209



210 cL Programming V5R3



Chapter 8. Working with Messages

This chapter discusses some of the ways that messages can be used to
communicate between users and programs. Messages can be sent:

* From one system user to another system user, even if the receiver of the
messages is not currently using the system

* From one OPM program or ILE procedure to another OPM program or ILE
procedure

* From a program or procedure to a system user, even if the receiver of the
messages is not currently using the system

Interactive system users can send only immediate messages and replies.

OPM programs or ILE procedures can send immediate messages or predefined
messages with user-defined data. In addition, programs or procedures can:

* Receive messages

* Retrieve a message description from a message file and place it into a program
variable

* Remove messages from a message queue
* Monitor for messages

Sending Messages to a System User

Several commands can be used to send messages to system users:
* Send Message (SNDMSG)

* Send Break Message (SNDBRKMSG)

* Send Program Message (SNDPGMMSG)

* Send User Message (SNDUSRMSG)

SNDPGMMSG and SNDUSRMSG can only be used in batch or interactive OPM
programs or ILE procedures. These commands cannot be entered on a command
line. The SNDMSG command sends an informational or inquiry message to the
system operator message queue (QSYSOPR), a display station message queue, or a
user message queue. You can send an informational message to more than one
message queue at a time. But you can send an inquiry message to only one
message queue at a time. The message is delivered by the delivery type specified
for the message queue. The message does not interrupt the user unless the
message queue is in break mode.

The following SNDMSG command is sent by a display station user to the system
operator:

SNDMSG ~ MSG('Mount tape on device TAP1') TOUSR(*SYSOPR)

The SNDBRKMSG command sends an immediate message from a workstation, a
program, or a job to one or more display stations to be delivered in the break
mode regardless of what delivery mode the receiver’s message queue is set to. This
command can be used to send a message only to display station message queues.
You should use the SNDBRKMSG command when sending any message that
requires the immediate attention of a display station user. You cannot ensure the

© Copyright IBM Corp. 1997, 2004 211



message will cause a break, because each job has control by using the BRKMSG
parameter on the Change Job (CHGJOB) command.

If you send an inquiry message, you can specify that the reply be sent to a
message queue other than that of your display station.

The following SNDBRKMSG command is sent by the system operator to all the
display station message queues:

SNDBRKMSG MSG('System going down in 15 minutes')
TOMSGQ (*ALLWS)

The disadvantage of sending this message is that it is sent to all users, not just
those users who are active at the time the message is sent.

Sending Messages from a CL Program

Use the Send Program Message (SNDPGMMSG) command or the Send User
Message (SNDUSRMSG) command to send a message from a CL procedure or
program.

Using the SNDPGMMSG command, you can send the following types of messages:
* Informational

* Inquiry

* Completion

* Diagnostic

* Request

* Escape

* Status

* Notify

You can send messages from a CL procedure or program to the following types of
queues:

+ External message queue of the requester of the job (see [Job Message Queues’]
on page 206}

* Call message queue of a program or procedure called by the job (see
[Message Queues” on page 206)

* System operator message queue
* Workstation message queue
* User message queue

To send a message from a procedure or program, you can specify the following on
the SNDPGMMSG command:

* Message identifier or an immediate message. The message identifier is the name
of the message description for a predefined message.

* Message file. The name of the message file containing the message description
when a predefined message is sent.

* Message data fields. If a predefined message is sent, these fields contain the
values for the substitution variables in the message. The format of each field
must be described in the message description. If an immediate message is sent,
there are no message data fields.

* Message queue or user to receive the message.

212 CL Programming V5R3



* Message type. The following indicates which types of messages can be sent to
which types of queues (V = valid).

Table 8. Valid Message Types for Message Queue Types

Message Message Queue Type

Type External Call QSYSOPR WorkStation User
Informational | V \Y% \Y% \% \%
Inquiry \Y \% \% \%
Completion |V \Y% \Y% A% A%
Diagnostic Vv \% \% \% \%
Request \Y% \%

Escape \%

Status A% \%

Notify \% \%

* Coded character set identifier (CCSID). Specifies the coded character set
identifier (CCSID) that the supplied message or message data is in.

* Reply message queue. The name of the message queue that receives the reply to
an inquiry message. By default, the reply is sent to the call message queue of the
procedure or program that sent the inquiry message.

* Key variable name. The name of the CL variable to contain the message
reference key for a message.

To send the message created in [“Example of Describing a Message” on page 196
you would use the following command:
SNDPGMMSG ~ MSGID(USR4310) MSGF(QGPL/USRMSG) +

MSGDTA(&CUSNO) TOPGMQ(*EXT) +
MSGTYPE (*INFO)

The substitution variable for the message is the customer number. Because the
customer number varies, you cannot specify the exact customer number in the
message. Instead, declare a CL variable in the CL procedure or program for the
customer number (&CUSNO). Then specify this variable as the message data field.
When the message is sent, the current value of the variable is passed in the
message:

Customer number 35500 not found

In addition, you do not always know which display station is using the procedure
or program, so you cannot specify the exact display station message queue that the
message is to be sent to (TOPGMQ parameter); therefore, you specify the external
message queue *EXT.

Messages

Inquiry and Informational Messages
Using the SNDUSRMSG command, you can send an inquiry message or an

informational message to a display station user, the system operator, or a
user-defined message queue. If you use the SNDUSRMSG command to send an
inquiry message to the user, the procedure or program waits for a response from
the user. The message can be either an immediate message or a predefined
message. For an interactive job, the message is sent to the display station operator
by default. For a batch job, the message is sent to the system operator by default.

Chapter 8. Working with Messages 213



To send a message from a procedure or program using the SNDUSRMSG
command, you can specify the following on the SNDUSRMSG command:

* Message identifier or an immediate message. The message identifier is the name
of the message description for a predefined message.

* Message file. The name of the message file containing the message description
when a predefined message is sent.

* Message data fields. If a predefined message is sent, these fields contain the
value for the substitution variables in the message. The format of each field
must be described in the message description. If an immediate message is sent,
there are no message data fields.

* Valid replies to an inquiry message.

* Default reply value to an inquiry message.

* Message type.

* Message queue to which the message is to be sent.

* Message reply. A CL variable, if any, that is to contain the reply received in
response to an inquiry message.

* Translation table. The translation table to be used, if any, to translate the reply
value. This is normally used for translating lowercase to uppercase.

* Coded character set identifier (CCSID). Specifies the coded character set
identifier (CCSID) that the supplied message or message data is in.

Completion and Diagnostic Messages
Using the SNDPGMMSG command, you can send diagnostic and completion

messages. You can send these message types to any message queue from your CL
procedure or program. Diagnostic messages tell the calling program or procedure
about errors detected by the CL procedure or program. Completion messages tell
the results of work done by the CL procedure or program.

Normally, an escape message is sent to the message queue of the calling program
or procedure to tell the caller what the problem was or that diagnostic messages
were also sent. For a completion message, an escape message is usually not sent
because the requested function was performed.

For an example of sending a completion message, assume that the system operator
uses the system operator menu to call a CL program SAVPAY to save certain
objects. The CL program contains only the following procedure which saves the
objects and then issues the following completion message:

PGM

SAVOBJ OBJ(PAY1 PAY2) LIB(PAYROLL) CLEAR(*YES)

SNDPGMMSG MSG('Payroll objects have been saved') MSGTYPE(*COMP)
ENDPGM

If the SAVOB] command fails, the CL procedure function checks and the system
operator has to display the detailed messages to locate the specific escape message
explaining the reason for the failure as described later in this chapter. If the
SAVOB] command completes successfully, the completion message is sent to the
call message queue associated with the program that displays the system operator
menu.

One of the advantages of completion messages is their consistency with
IBM-supplied commands. Many IBM commands send completion messages
indicating successful completion. Seeing the type of message sent to the job log can
assist in problem analysis.

214 cCL Programming V5R3



Status Messages
You can send status messages from your CL procedure or program, using the

SNDPGMMSG command, to a call message queue or to the external message
queue (*EXT) for the job. When a status message is sent to a call message queue,
the receiving program or procedure can monitor for the arrival of the status
message and can handle the condition it describes. If the receiving program or
procedure does not monitor for the message, control returns to the sender to

resume processing. See|[“Monitoring for Messages in a CL Program or Procedure”
on page 239,

Escape and Notify Messages

You can send escape messages from your CL procedure or program to the call
message queue of the calling program or procedure with the SNDPGMMSG
command. An escape message tells the caller that the procedure or program ended
abnormally and why. The caller can monitor for the arrival of the escape message
and handle the condition it describes. When the caller handles the condition,
control does not return to the sender of an escape message.

If the caller is another procedure within the same program, the program itself does
not end. The procedure to which the escape message was sent is allowed to
continue. If the escape message was sent to the caller of the program itself, then all
active procedures within the program are ended immediately. As a result, the
program cannot continue to run. If the caller does not monitor for an escape
message, default system action is taken.

You can send notify messages from a CL procedure or program to the message
queue of the calling program or procedure or to the external message queue. A
notify message tells the caller about a condition under which processing can
continue. The calling program or procedure can monitor for the arrival of the
notify message and handle the condition it describes. If the caller is an Integrated
Language Environment procedure, it can perform the following functions:

* It can handle the condition.

* It can send a reply back to the caller.

* It can allow the sending procedure to continue processing.

If the caller is an OPM program and is not monitoring for the message, the sender
receives a default reply. If the caller is an ILE procedure, then the message
percolates to the control boundary. When finding no monitor, the system returns a

default reply to the sender. The sender then resumes processing. See
ffor Messages in a CL Program or Procedure” on page 239

Immediate messages are not allowed as escape and notify messages. The system
has defined the message CPF9898, which can be used for immediate escape and
notify messages in application programs. For example:

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA('Error condition') +
MSGTYPE (*ESCAPE)

Examples of Sending Messages

Example 1: The following CL procedure allows the display station user to submit a
job by calling a CL program which contains this procedure instead of entering the
Submit Job (SBMJOB) command. The procedure sends a completion message when
the job has been submitted.

PGM

SBMJOB JOB(WKLYPAY) JOBD(USERA) RQSDTA('CALL WKLY PARM(PAY1)')

SNDPGMMSG MSG('WKLYPAY job submitted') MSGTYPE(*COMP)
ENDPGM

Chapter 8. Working with Messages 215



Example 2: The following CL procedure changes a message based on a parameter
received from a program that is called from within the this procedure. The
message is then sent by the CL procedure as a completion message. (The RCDCNT
field is defined as characters in PGMA..)
PGM
DCL &RCDCNT TYPE(*CHAR) LEN(3)
CALL PGMA PARM(&RCDCNT)
SNDPGMMSG MSG('PGMA completed' *BCAT &RCDCNT *BCAT +

'records processed') MSGTYPE(*COMP)
ENDPGM

Example 3: The following procedure sends a message requesting the system
operator to load a special form. The Receive Message (RCVMSG) command waits
for the reply. The system operator must enter at least 1 character as a reply to the
inquiry message, but the procedure does not use the reply value.

PGM

DCL &MSGKEY TYPE(*CHAR) LEN(4)

SNDPGMMSG ~ MSG('Load special form') TOUSR(*SYSOPR) +

KEYVAR (&MSGKEY) MSGTYPE (*INQ)
RCVMSG MSGTYPE(*RPY) MSGKEY (&MSGKEY) WAIT(120)

ENDPGM

The WAIT parameter must be specified on the RCVMSG command so that the
procedure waits for the reply. If the WAIT parameter is not specified, the
procedure continues with the instruction following the RCVMSG command,
without receiving the reply. The MSGKEY parameter is used in the RCVMSG
command to allow the procedure to receive the reply to a specific message. The
variable &MSGKEY in the SNDPGMMSG command is returned to the procedure
for use in the RCVMSG command.

Example 4: The following procedure sends a message to the system operator when
it is run in batch mode or to the display station operator when it is run from a
display station. The procedure accepts either an uppercase or lowercase Y or N.
(The lowercase values are translated to uppercase by the translation table (TRNTBL
parameter) to make program logic easier.) If the value entered is not one of these
four, the operator is issued a message indicating the reply is not valid.

PGM
DCL &REPLY *CHAR LEN(1)

SNDUSRMSG MSG('Update YTD Information Y or N') VALUES(Y N) +
MSGRPY (&REPLY)

IF (&REPLY *EQ Y)

DO

ENDDO
ELSE
DO

ENDDO

ENDPGM

216 cCL Programming V5R3



Example 5: The following procedure uses the message CPF9898 to send an escape

message. The text of the message is 'Procedure detected failure'. Immediate
messages are not allowed as escape messages so message CPF9898 can be used
with the message as message data.

PGM

SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGTYPE (*ESCAPE)
MSGDTA('Procedure detected failure')

ENDPGM

Example 6: The following procedure allows the system operator to send a message

to several display stations. When the system operator calls the program, this
procedure, contained within the called program, displays a prompt which the
system operator can enter the type of message to be sent and the text for the
message. The procedure concatenates the date, time, and text of the message.

PGM

DCLF WSMSGD

DCL &MSG TYPE(*CHAR) LEN(150)

DCL &HOUR TYPE (*CHAR) LEN(2)

DCL &MINUTE TYPE(*CHAR) LEN(2)

DCL &MONTH TYPE(*CHAR) LEN(2)

DCL &DAY TYPE(*CHAR) LEN(2)

DCL &WORKHR TYPE(*DEC) LEN(2 0)

SNDRCVF RCDFMT (PROMPT)

IF &IN91 RETURN /* Request was ended =*/

RTVSYSVAL QMONTH RTNVAR(&MONTH)

RTVSYSVAL QDAY RTNVAR(&DAY)

RTVSYSVAL QHOUR RTNVAR(&HOUR)

IF (&HOUR *GT '12') DO

CHGVAR &WORKHR &HOUR

CHGVAR &WORKHR (&WORKHR - 12)

CHGVAR &HOUR &WORKHR /* Change from military time */

ENDDO

RTVSYSVAL QMINUTE RTNVAR(&MINUTE)

CHGVAR &MSG ('From Sys Opr ' *CAT &MONTH *CAT '/' +
*CAT &DAY +
*BCAT &HOUR *CAT ':' *=CAT &MINUTE +
*BCAT &TEXT)

IF (&TYPE +EQ 'B')