@server
iISeries
WebSphere®® Development Studio
ILE RPG Reference

Version 5

SC09-2508-05

@server
iISeries
WebSphere®® Development Studio
ILE RPG Reference

Version 5

SC09-2508-05

H OHHFHFEH OH

Note!
Before using this information and the product it supports, be sure to read the general information
under ["Notices” on page 795,

Sixth Edition (May 2004)

This edition applies to Version 5, Release 3, Modification Level 0, of IBM® WebSphere Development Studio for
iSeries (5722-WDS), ILE RPG compiler, and to all subsequent releases and modifications until otherwise indicated in
new editions. This edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC09-2508-04.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue

Markham, Ontario, Canada L6G 1C7

You can also send your comments by FAX, or you can send your comments electronically to IBM. See “How to
Send Your Comments” for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Reference

Who Should Use This Reference
Prerequisite and Related Information .
How to Send Your Comments .
What's New . .

Changes to this Guide Smce V5R1
What's New This Release? .
What's New in V5R2? .

What's New in V5R1? .

What's New in V4R4?

What's New in V4R2? .

What's New in V3R77? .

What's New in V3R6/ V3R27

. Xi
. xi
it
. xii
. Xii
. Xiii
. xiii
. xvii
. XX
. XXV
. XXiX

. Xxxiii
. XXXVIl

Part 1. RPG IV Concepts

Chapter 1. Symbolic Names and
Reserved Words .
Symbolic Names .

Array Names . . .

Conditional Compile Names .

Data Structure Names

EXCEPT Names

Field Names

KLIST Names .

Labels .

Named Constants.

PLIST Names .

Prototype Names .

Record Names.

Subroutine Names

Table Names
RPG IV Words with Specral Functlons/ Reserved
Words
User Date Spec1a1 Words

Rules for User Date .
PAGE, PAGE1-PAGE7 .

Rules for PAGE, PAGE1- PAGE7

Chapter 2. Compiler Directives
/FREE... /END-FREE (Positions 7-11).
/TITLE (Positions 7-12)
/EJECT (Positions 7-12)
/SPACE (Positions 7-12) .
/COPY or /INCLUDE.
Results of the /COPY or / INCLUDE durmg
Compile
Nested /COPY or / INCLUDE

Using /COPY, /INCLUDE in Source Files w1th

Embedded SQL .

Conditional Compilation Dlrectlves
Defining Conditions
Predefined Conditions.
Condition Expressions.

© Copyright IBM Corp. 1994, 2004

1

G U1 O U1 O s s s e W W

00NN G

11
11
.11
.11
.12
.12

.14
.14

.14
. 15
.15
. 16
.17

Testing Conditions .
The /EOF Directive

Handling of Directives by the RPG Preprocessor

Chapter 3. Program Cycle

General RPG IV Program Cycle.

Detailed RPG IV Program Cycle .o
Detailed RPG IV Object Program Cycle .
Initialization Subroutine .

Ending a Program without a Prrmary Flle .

Program Control of File Processing

Chapter 4. RPG IV Indicators
Indicators Defined on RPG IV Specifications
Overflow Indicators o
Record Identifying Indlcators
Control Level Indicators (L1-L9)
Field Indicators .
Resulting Indicators

Indicators Not Defined on the RPG IV Spec1f1cat10ns

4
. 48
. 49
. 49
. 50
. 50
. 52
. 53
. 54
. 57
. 57
. 60
. 60
. 60
. 61
. 62

External Indicators .
Internal Indicators .
Return Indicator (RT) .
Using Indicators.
File Conditioning
Field Record Relation Indlcators
Function Key Indicators .
Halt Indicators (H1-H9) .
Indicators Conditioning Calculations .
Indicators Used in Expressions .
Indicators Conditioning Output
Indicators Referred to As Data .
*IN .
*INxx
Additional Rules
Summary of Indicators

Chapter 5. File and Program
Exception/Errors
File Exception/Errors . .
File Information Data Structure
File Exception/Error Subroutine (INFSR)
Program Exception/Errors .o
Program Status Data Structure .
Program Exception/Error Subroutine.

Chapter 6. Procedures and
subprocedures
Subprocedure Definition . .
Procedure Interface Definition .
Return Values
Scope of Definitions
Subprocedure Calculations
NOMAIN Module.

.17

.19
20

.21
.21
.22
.24
. 28
. 30
.31

. 35
.35
.35
. 36
.37
.45

. 46
47

. 65
. 65
. 65
.79
. 82
. 83
.91

. 93
. 94
.95
. 96
. 96
.97

. 100

iii

Mixing Main Procedures and Exported

Subprocedures . . 100
Implicit Opening of Flles and Locklng of Data
Areas . . 100
Implicit Closmg of Flles and Unlocklng of Data
Areas . B (0
Initialization of Global Data . 101
Possible Problems . . 101
Recommendations . . . 101
Subprocedures and Subroutrnes . 101
Chapter 7. General File
Considerations. . 103
Primary/Secondary Multi-file Processmg . 103
Multi-file Processing with No Match Fields . 103
Multi-file Processing with Match Fields. . 103
File Translation . e 111
Specifying File Translatlon . . 112
Translating One File or All Files . . 112
Translating More Than One File . . 113
Part 2. Definitions 115
Chapter 8. Defining Data and
Prototypes 117
General Considerations . . 117
Scope of Definitions . . 118
Storage of Definitions. . 119
Standalone Fields . . 119
Variable Initialization . . 120
Constants . 120
Literals . 121
Named Constants . . 125
Figurative Constants . . 126
Data Structures. . 128
Qualifying Data Structure Names . 129
Array Data Structures . . 129
Defining Data Structure Parameters in a
Prototype or Procedure Interface . . 130
Defining Data Structure Subfields . 130
Special Data Structures . . 132
Data Structure Examples . 134
Prototypes and Parameters . . 145
Prototypes . 145
Prototyped Parameters . 146
Procedure Interface . 148
Chapter 9. Using Arrays and Tables 151
Arrays. . 151
Array Name and Index . . 152
The Essential Array Spec1f1cat10ns . 152
Coding a Run-Time Array . . 152
Loading a Run-Time Array . . 152
Coding a Compile-Time Array. . 154
Loading a Compile-Time Array . 154
Coding a Prerun-Time Array . . 156
Example of Coding Arrays . . 156
Loading a Prerun-Time Array 157
Sequence Checking for Character Arrays . . 157

iV ILE RPG Reference

Initializing Arrays .
Run-Time Arrays . . .
Compile-Time and Prerun—Tlme Arrays.
Defining Related Arrays.
Searching Arrays .
Searching an Array W1thout an Index
Searching an Array with an Index
Using Arrays
Specifying an Array in Calculatlons
Sorting Arrays . .
Sorting using part of the array as a key
Array Output .
Editing Entire Arrays. .
Using Dynamically-Sized Arrays
Tables . .
LOOKUP w1th One Table
LOOKUP with Two Tables .

Specifying the Table Element Found in a

LOOKUP Operation .

Chapter 10. Data Types and Data
Formats.
Internal and External Formats
Internal Format.
External Format
Character Data Type .
Character Format .
Indicator Format
Graphic Format
UCS-2 Format .

Variable-Length Character Graphlc and UCS 2

Formats .

Conversion between Character Graphlc and

UCS-2 Data . .

Alternate Collating Sequence .
Numeric Data Type

Binary Format .

Float Format

Integer Format . .

Packed-Decimal Format .

Unsigned Format .

Zoned-Decimal Format .

Considerations for Using Numeric Formats

Representation of Numeric Formats .
Date Data Type.
Separators
Initialization.
Time Data Type
Separators
Initialization.
*JOBRUN. .
Timestamp Data Type
Separators
Initialization.
Object Data Type . . .
Where You Can Spec1fy an Ob]ect F1eld
Basing Pointer Data Type .
Setting a Basing Pointer .
Examples. .
Procedure Pointer Data Type .
Database Null Value Support .

. 158
. 158
. 158
. 159
. 160
. 161
. 16l
. 162
. 162
. 163
. 164
. 164
. 164
. 165
. 166
. 166
. 166

. 167

. 169
. 169
. 170
. 170
. 172
. 172
. 172
. 173
. 174

. 175

. 183
. 184
. 186
. 186
. 187
. 189
. 189
. 190
. 191
. 192
. 193
. 195
. 197
. 197
. 198
. 199
. 199
. 199
. 199
. 199
. 200
. 200
. 200
. 201
. 203
. 204
. 208
. 209

User Controlled Support for Null-Capable Fields

and Key Fields . . .210
Input-Only Support for Null Capable Flelds . . 216
ALWNULL(*NO) . . . 217
Error Handling for Database Data Mappmg Errors 217
Chapter 11. Edltlng Numeric Fields 219
Edit Codes . . 220
Simple Edit Codes . 220
Combination Edit Codes. . 220
User-Defined Edit Codes . 222
Editing Considerations . . 222
Summary of Edit Codes . . 222
Edit Words . . 225
How to Code an Edrt Word . 226
Parts of an Edit Word . . . 226
Summary of Coding Rules for Edlt Words. . 230
Editing Externally Described Files . 231
Part 3. Specifications . 233
Chapter 12. About Specifications . . 235
RPG IV Specification Types. . 235
Main Source Section Specifications . 236
Subprocedure Specifications . 237
Program Data . . 237
Common Entries . . 238
Syntax of Keywords . . 238
Continuation Rules . 239
Chapter 13. Control Specifications 245
Using a Data Area as a Control Specification . . 245
Control-Specification Statement . 245
Position 6 (Form Type) . . 246
Positions 7-80 (Keywords) . . 246
Control-Specification Keywords . 246
ACTGRP(*NEW | *CALLER |
‘activation-group-name’). . . 247
ALTSEQ{(*NONE | *SRC | *EXT) . 247
ALWNULL(*NO | *INPUTONLY | *USRCTL) 247
AUT(*LIBRCRTAUT | *ALL | *CHANGE |
*USE | *EXCLUDE | ’authorization-list-name’) . 248
BNDDIR(’binding-directory-name’
{binding-directory-name’...}) . . . 249
CCSID(*GRAPH : parameter | *UCS2 number
| *CHAR : *JOBRUN) oL 249
COPYNEST(number) . . 250
COPYRIGHT(copyright strmg) . 250
CURSYM('sym”) . . 251
CVTOPT(*{NO} DATETIME *{NO}GRAPHIC
*{NO}VARCHAR *{NO}VARGRAPHIC) . 251
DATEDIT (fmt{separator}) . 252
DATEMT (fmt{separator}) . 252
DEBUG{(*NO | *YES)} . . 252
DECEDIT(*JOBRUN | ‘value’) . 253
DECPREC(30131163). . 253
DFTACTGRP(*YES | *NO) . . 254
DFTNAME(rpg_name) . 254
ENBPFRCOL(*PEP | *ENTRYEXIT | *FULL) 254
EXPROPTS(*MAXDIGITS | *RESDECPOS) . 255

EXTBININT{(*NO | *YES)} .

FIXNBR(*{NO}ZONED {NO}INPUTPACKED)

FLTDIV{(*NO | *YES)} .
FORMSALIGN{(*NO | *YES)}.
FTRANS{(*NONE | *SRC)}.
GENLVL(number) .

INDENT(*NONE | Character—value)
INTPREC(10 | 20). e
LANGID(*JOBRUN | *JOB |
‘language-identifier”) .

NOMAIN

OPENOPT (*NOINZOFL | *INZOFL)
OPTIMIZE(*NONE | *BASIC | *FULL)

OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL

*INOJSHOWCPY *{NO}JEXPDDS *{NO}EXT
*{NOJSHOWSKP) {NO}SRCSTMT)
*NOJDEBUGIO) . . .
PRFDTA(*NOCOL | *COL)

SRTSEQ(*HEX | *JOB | *JOBRUN |
*LANGIDUNQ | *LANGIDSHR |
‘sort-table-name’) .

TEXT(*SRCMBRTXT | >‘BLANK I ’descr1ptron)

THREAD*SERIALIZE) .
TIMEMT (fmt{separator}).
TRUNCNBR(*YES | *NO) .
USRPRF(*USER | *OWNER) .

Chapter 14. File Description
Specifications . .
File Description Specification Statement

File-Description Keyword Continuation Line
Position 6 (Form Type) .

Positions 7-16 (File Name) .

Position 17 (File Type) .

Position 18 (File Designation) .

Position 19 (End of File).

Position 20 (File Addition) .

Position 21 (Sequence)

Position 22 (File Format)

Positions 23-27 (Record Length)

Position 28 (Limits Processing) .
Positions 29-33 (Length of Key or Record
Address) . .
Position 34 (Record Address Type)
Position 35 (File Organization).

Positions 36-42 (Device) .

Position 43 (Reserved) .

Positions 44-80 (Keywords).

File-Description Keywords .

BLOCK(*YES I*NO) .
COMMIT{(rpg_name)}
DATFMT(format{separator})
DEVID(fieldname). .
EXTFILE(filename)
EXTIND(*INUx)
EXTMBR(membername) .
FORMLEN(number) .
FORMOFL(number) . .o
IGNORE(recformat{:recformat...}) .
INCLUDE(recformat{:recformat...})
INDDS(data_structure_name) .

Contents

. 255
255

. 256
. 256
. 256
. 257
. 257
. 257

. 257
. 258
. 258
. 258

. 259
. 260

. 260
261

. 261
. 262
. 262
. 262

. 263
. 263

263

. 264
. 264
. 265
. 265
. 266
. 267
. 268
. 268
. 269
. 269

. 270
. 270
. 272
. 273
. 274
. 274
. 274
. 274
. 275
. 275
. 276
. 276
. 277
. 277
. 277
. 278
. 278
. 278
. 278

A\

INFDS(DSname)279 INZ{(initial value)}307

INFSR(SUBRname)279 LIKE(name) S ... L0309
KEYLOC(number). . . Lo ... 279 LIKEDS(data_. structure name) .o . 310
MAXDEV(*ONLY | *FILE) L. ... L279 # LIKEREC (intrecname: *ALLI*INPUTI*OUTPUT
OFLIND(indicator)280 # *KEY})31
PASS(*NOIND). . . . L.280 NOOPT B 1 1]
PGMNAME(program_: name) 280 OCCURS(numeric_ constant) PG ¥ VA
PLIST(Plist_name). . . L0281 OPDESC 313
PREFIX(prefix{:nbr_of_char replaced}) L. 281 OPTIONS(*NOPASS *OMIT *VARSIZE *STRING
PRTCTL(data_struct{:*COMPAT}).282 *TRIM *RIGHTADJ)34
RAFDATA(filename)283 OVERLAY (namef{:pos | *NEXT}) L. L322
RECNO(fieldname)28 PACKEVEN. . . . G 2
RENAME(Ext_format:Int format)283 PERRCD(numeric_ constant) .o ... 324
SAVEDS(DSname).284 PREFIX(prefix{:nbr_of_char replaced}) ... 324
SAVEIND(number)284 PROCPTR325
SFILE(recformat:rrnfield) 284 QUALIFIED.32
SLN(number)28 STATIC32
TIMFMT(format{separator})28 TIMEMT (format{ separator}) L. ... 326
USROPN. 285 TOFILE(file_name)326
File Types and Processmg Methods28 VALUE32
VARYING327
Chapter 15. Definition Specifications 287 Summary According to Def1n1t10n Specrflcatlon
Definition Specification Statement 287 Typeo 0327
Definition Specification Keyword Contrnuatlon
Line 288 Chapter 16. Input Specifications . . . 331
Definition Spec1f1cat10n Contmued Name Llne 288 Input Specification Statement331
Position 6 (Form Type)288 Program Described331
Positions 7-21 (Name) 288 Externally Described331
Position 22 (External Description) 289 Program Described Files.332
Position 23 (Type of Data Structure) 289 Position 6 (Form Type)332
Positions 24-25 (Definition Type) 290 Record Identification Entries 332
Positions 26-32 (From Position)290 Positions 7-16 (File Name) . . . L. 2332
Positions 33-39 (To Position / Length) ... 291 Positions 16-18 (Logical Relatlonshlp) 332
Position 40 (Internal Data Type) 292 Positions 17-18 (Sequence) 333
Positions 41-42 (Decimal Positions) 293 Position 19 (Number).333
Position 43 (Reserved)293 Position 20 (Option) . . . 334
Positions 44-80 (Keywords).293 Positions 21-22 (Record Identlfylng Indlcator or
Definition-Specification Keywords 293) I . 334
ALIGN2% Positions 23 46 (Record Identrfrcatron Codes) 335
ALT(array_name)2% Field Description Entries337
ALTSEQ(*NONE)2% Position 6 (Form Type)338
ASCEND. . . . L. .. .29 Positions 7-30 (Reserved) 338
BASED(basing - pomter name) L. .. .29 Positions 31-34 (Data Attributes) 338
CCSID(number | *DFT).29 Position 35 (Date/Time Separator) 338
CLASS(*JAVA:class-name)29 Position 36 (Data Format) 338
CONST{(constant)}29 Positions 37-46 (Field Location) 339
CTDATA. . . . Lo 297 Positions 47-48 (Decimal Positions) 340
DATFMT (format{ separator}) Lo 297 Positions 49-62 (Field Name) 340
DESCEND297 Positions 63-64 (Control Level) 340
DIM(numeric_constant)298 Positions 65-66 (Matching Fields). 341
DTAARA{(*VAR:)data_area_name} 298 Positions 67-68 (Field Record Relation) 341
EXPORT{(external_name)} 300 Positions 69-74 (Field Indicators) 342
EXTFLD(field_name).300 Externally Described Files342
EXTEMT(code) 301 Position 6 (Form Type)342
EXTNAME(file-namef: format—name}{ *ALLI Record Identification Entries 343
*INPUT | *OUTPUT I *KEY}).301 Positions 7-16 (Record Name) 343
EXTPGM(name)302 Positions 17-20 (Reserved)343
EXTPROC({*CL | *CWIDEN | *CNOWIDENI Positions 21-22 (Record Identifying Indlcator) 343
{*JAVA:class-name:}jname) 302 Positions 23-80 (Reserved) 343
FROMFILE(file_name)306 Field Description Entries343
IMPORT{(external_name)}307 Positions 7-20 (Reserved) 344

Vi ILE RPG Reference

Positions 21-30 (External Field Name) .
Positions 31-48 (Reserved) .

Positions 49-62 (Field Name)

Positions 63-64 (Control Level)
Positions 65-66 (Matching Fields) .
Positions 67-68 (Reserved) .

Positions 69-74 (Field Indicators) .
Positions 75-80 (Reserved) .

Chapter 17. Calculation Specifications
Traditional Syntax .

Calculation Spec1f1cat10n Extended Factor-Z

Continuation Line .

Position 6 (Form Type)

Positions 7-8 (Control Level)

Positions 9-11 (Indicators)

Positions 12-25 (Factor 1) . .

Positions 26-35 (Operation and Extender) .

Positions 36-49 (Factor 2) .

Positions 50-63 (Result Field) .

Positions 64-68 (Field Length) .

Positions 69-70 (Decimal Positions) .

Positions 71-76 (Resulting Indicators)
Extended Factor 2 Syntax R

Positions 7-8 (Control Level)

Positions 9-11 (Indicators)

Positions 12-25 (Factor 1) .

Positions 26-35 (Operation and Extender) .

Positions 36-80 (Extended Factor 2) .
Free-Form Syntax .

Positions 8-80 (Free- form Operatrons)

Chapter 18. Output Specifications

Output Specification Statement
Program Described
Externally Described .

Program Described Files.

Position 6 (Form Type) . .

Record Identification and Control Entrles .
Positions 7-16 (File Name) . .
Positions 16-18 (Logical Relat10nsh1p)
Position 17 (Type) .

Positions 18-20 (Record Addltlon / Deletlon)
Position 18 (Fetch Overflow /Release)
Positions 21-29 (Output Conditioning Indlcators)
Positions 30-39 (EXCEPT Name) .

Positions 40-51 (Space and Skip) .
Positions 40-42 (Space Before) .

Positions 43-45 (Space After)

Positions 46-48 (Skip Before)

Positions 49-51 (Skip After).

Field Description and Control Entries
Positions 21-29 (Output Indicators) .
Positions 30-43 (Field Name)

Position 44 (Edit Codes) .

Position 45 (Blank After)

Positions 47-51 (End Position) .

Position 52 (Data Format)

Positions 53-80 (Constant, Edit Word Data
Attributes, Format Name) .

. 344
. 344
. 344
. 344
. 344
. 345
. 345
. 345

347

. 347

. 348
. 348
. 348
. 350
. 350
. 350
. 351
. 352
. 352
. 352
. 352
. 353
. 353
. 353
. 353
. 354
. 354
. 355
. 356

. 357
. 357
. 357
. 357
. 358
. 358
. 358
. 358
. 358
. 359
. 359

. 360
360

. 361
. 362
. 363
. 363
. 363
. 363
. 363
. 363
. 364
. 365
. 365
. 366
. 367

. 368

Externally Described Files . . 369
Position 6 (Form Type) . . 369
Record Identification and Control Entrles . . 369
Positions 7-16 (Record Name) . - . 369
Positions 16-18 (Logical Relatlonshlp) . . 369
Position 17 (Type) . .o . 370
Position 18 (Release) . . 370
Positions 18-20 (Record Addltlon) . 370
Positions 21-29 (Output Indicators) . . 370
Positions 30-39 (EXCEPT Name) . . 370
Field Description and Control Entries . 370
Positions 21-29 (Output Indicators) . . 370
Positions 30-43 (Field Name) . 370
Position 45 (Blank After) . 371
Chapter 19. Procedure Specifications 373
Procedure Specification Statement . . 373
Procedure Specification Keyword Contmuatlon
Line . 373
Procedure Spec1f1cat10n Contmued Narne Lrne 374
Position 6 (Form Type) . . 374
Positions 7-21 (Name) . 374
Position 24 (Begin/End Procedure) . 374
Positions 44-80 (Keywords). . 375
Procedure-Specification Keywords . 375
EXPORT . . 375
Part 4. Operations, Expressions,
and Functions 377
Chapter 20. Operatlons . 379
Operation Codes . 379
Built-in Functions . . 386
Arithmetic Operations . 390
Ensuring Accuracy . . 392
Performance Considerations . 392
Integer and Unsigned Arithmetic. . 392
Arithmetic Operations Examples . . 393
Array Operations . . 393
Bit Operations . . 394
Branching Operations . 395
Call Operations. . 395
Prototyped Calls . 396
Operational Descriptors . . 397
Parsing Program Names on a Call . 397
Parsing System Built-In Names . 399
Value of *ROUTINE . . 399
Compare Operations . . 400
Conversion Operations . . 402
Data-Area Operations . 402
Date Operations . 404
Unexpected Results . 405
Declarative Operations . . 406
Error-Handling Operations . . 407
File Operations . . 408
Keys for File Operatlons . 410
Indicator-Setting Operations . 410
Information Operations . . 411
Initialization Operations . .41
Memory Management Operatlons . 412
Contents ~ Vii

HHHFHH

Message Operation

Move Operations . .
Moving Character, Graph1c, UCS 2 and
Numeric Data . .
Moving Date-Time Data

Move Zone Operations .

Result Operations .

Size Operations.

String Operations .

Structured Programming Operatlons

Subroutine Operations
Coding Subroutines

Test Operations.

Chapter 21. Expressions
General Expression Rules
Expression Operands .
Expression Operators.
Operation Precedence

Data Types .

Data Types Supported by Express1on Operands

Format of Numeric Intermediate Results
Precision Rules for Numeric Operations
Using the Default Precision Rules
Precision of Intermediate Results .
Example of Default Precision Rules .

Using the "Result Decimal Position” Precision

Rules .

Example of ”Result Dec1mal Pos1t1on Precision

Rules . .
Short Circuit Evaluatlon
Order of Evaluation .

Chapter 22. Built-in Functions
%ABS (Absolute Value of Expression) .
%ADDR (Get Address of Variable)
%ALLOC (Allocate Storage) .
%BITAND (Bitwise AND Operat1on)
%BITNOT (Invert Bits) . .
%BITOR (Bitwise OR Operation) .

%BITXOR (Bitwise Exclusive-OR Operatron)

Examples of Bit Operations.
%CHAR (Convert to Character Data)
%CHECK (Check Characters) .
%CHECKR (Check Reverse)
%DATE (Convert to Date) .
%DAYS (Number of Days) . .
%DEC (Convert to Packed Decimal Format)
Numeric or character expression .
Date, time or timestamp expression .

%DECH (Convert to Packed Decimal Format w1th

Half Adjust).
%DECH Examples

%DECPOS (Get Number of Dec1mal Pos1t10ns) .
%DIFF (Difference Between Two Date, Time, or

Timestamp Values)

%DIV (Return Integer Port1on of Quotlent)
%EDITC (Edit Value Using an Editcode)
%EDITFLT (Convert to Float External
Representation).

viii ILE RPG Reference

. 413
. 413

. 414
. 416
. 419
. 420
. 420
. 420
. 422
. 425
. 425
. 428

. 429
. 430
. 431
. 431
. 433
. 434

434

. 438
. 438
. 439
. 440
. 440

. 442

. 443
. 444
. 444

. 445
. 445
. 446
. 448
. 449
. 450
. 451
. 452
. 453
. 456
. 458
. 460
. 462
. 463
. 464
. 464

. 464

. 466
. 466
. 468

. 469
. 472
. 473

. 476

%EDITW (Edit Value Using an Editword) .
%ELEM (Get Number of Elements) .

%EOF (Return End or Beginning of File Cond1t1on)

%EQUAL (Return Exact Match Condition)
%ERROR (Return Error Condition) .
%FIELDS (Fields to update) .
%FLOAT (Convert to Floating Format)
%FOUND (Return Found Condition)
%GRAPH (Convert to Graphic Value) .
%HOURS (Number of Hours) .

%INT (Convert to Integer Format)

%INTH (Convert to Integer Format w1th Half

Adjust)

%KDS (Search Arguments in Data Structure)

%LEN (Get or Set Length) .
%LEN Used for its Value .
%LEN Used to Set the Length of
Variable-Length Fields

%LOOKUPxx (Look Up an Array Element)

Sequenced arrays that are not in the correct

sequence . .
%MINUTES (Number of Mmutes)
%MONTHS (Number of Months).
%MSECONDS (Number of Mlcroseconds)
%NULLIND (Query or Set Null Indicator).

%OCCUR (Set/Get Occurrence of a Data Structure)
. 504
. 505
. 505
. 507
. 509
. 510
. 511
. 513
. 515
. 516
. 517
. 519
. 520
. 523
. 523
. 524
. 525

%OPEN (Return File Open Condition) .

%PADDR (Get Procedure Address) .
%PADDR Used with a Prototype . .

%PARMS (Return Number of Parameters).

%REALLOC (Reallocate Storage) .

%REM (Return Integer Remainder) .

%REPLACE (Replace Character String) .

%SCAN (Scan for Characters) . .

%SECONDS (Number of Seconds)

%SHTDN (Shut Down) .

%SIZE (Get Size in Bytes) .

%SQRT (Square Root of Expressron)

%STATUS (Return File or Program Status).

%STR (Get or Store Null-Terminated String) .
%STR Used to Get Null-Terminated String
%STR Used to Store Null-Terminated String .

%SUBARR (Set/Get Portion of an Array) .

%SUBDT (Extract a Portion of a Date, Time, or

Timestamp) .
%SUBST (Get Substr1ng) .
%SUBST Used for its Value.

%SUBST Used as the Result of an A551gnment
%THIS (Return Class Instance for Native Method)

%TIME (Convert to Time) . .
%TIMESTAMP (Convert to T1mestamp)
%TLOOKUPxx (Look Up a Table Element)
%TRIM (Trim Characters at Edges) .
%TRIML (Trim Leading Characters) .
%TRIMR (Trim Trailing Characters) .
%UCS2 (Convert to UCS-2 Value)

%UNS (Convert to Unsigned Format) .

%UNSH (Convert to Unsigned Format w1th

Half Adjust).
%XFOOT (Sum Array Expressron Elements)
%XLATE (Translate) . e

. 477
. 478

479

. 481
. 483
. 484
. 485
. 486
. 488
. 490
. 491

. 491
. 493
. 494
. 494

. 495
. 497

. 498
. 499
. 500
. 501
. 502

503

. 528
. 529
. 529

529
531

. 532
. 533
. 534
. 536
. 538
. 539
. 540
. 541

. 541
. 543
. 544

%YEARS (Number of Years)

Chapter 23. Operatlon Codes
ACQ (Acquire) .
ADD (Add) .
ADDDUR (Add Duratlon)
ALLOC (Allocate Storage) .
ANDxx (And) . .
BEGSR (Beginning of Subroutme)
BITOFF (Set Bits Off) .
BITON (Set Bits On) .
CABxx (Compare and Branch)
CALL (Call a Program) . .
CALLB (Call a Bound Procedure) .
CALLP (Call a Prototyped Procedure or Program)
CASxx (Conditionally Invoke Subroutine) .
CAT (Concatenate Two Strings)
CHAIN (Random Retrieval from a Flle)
CHECK (Check Characters) .o
CHECKR (Check Reverse) .
CLEAR (Clear) .

Clearing Variables .

Clearing Record Formats

CLEAR Examples .
CLOSE (Close Files) .
COMMIT (Commit) .
COMP (Compare) . .
DEALLOC (Free Storage)
DEFINE (Field Definition) .

*LIKE DEFINE .

*DTAARA DEFINE
DELETE (Delete Record)
DIV (Divide)
DO (Do) .
DOU (Do Until)
DOUxx (Do Until).
DOW (Do While) .
DOWxx (Do While)
DSPLY (Display Message) .
DUMP (Program Dump)
ELSE (Else) . .
ELSEIF (Else If).
ENDyy (End a Structured Group)
ENDSR (End of Subroutine)
EVAL (Evaluate expression)
EVALR (Evaluate expression, right ad]ust)
EXCEPT (Calculation Time Output) .
EXFMT (Write/Then Read Format) .
EXSR (Invoke Subroutine) .
EXTRCT (Extract Date/Time/ Tlmestamp)
FEOD (Force End of Data) . .o
FOR (For) .
FORCE (Force a Certam Flle to Be Read Next
Cycle) . .
GOTO (Go To) .
IF (If) .
TFxx (If)
IN (Retrieve a Data Area)
ITER (Iterate)
KFLD (Define Parts of a Key)
KLIST (Define a Composite Key) .

. 545

. 547
. 548
. 549
. 550
. 552
. 553
. 554
. 555
. 557
. 559
. 561

. 562
563

. 568
. 570
. 573
. 576
. 579
. 582
. 582
. 582
. 583
. 586
. 587
. 588
. 589
. 591
. 591
. 593
. 595
. 597
. 598
. 600
. 601
. 603
. 604
. 606
. 609
. 611
. 612
. 613
. 615
. 616
. 618
. 619
. 621
. 623
. 624
. 626
. 627

. 630
. 631
. 633
. 634
. 636
. 638
. 640
. 641

LEAVE (Leave a Do/For Group) .
LEAVESR (Leave a Subroutine)
LOOKUP (Look Up a Table or Array Element)
MHHZO (Move High to High Zone) .
MHLZO (Move High to Low Zone) .
MLHZO (Move Low to High Zone) .
MLLZO (Move Low to Low Zone) .
MONITOR (Begin a Monitor Group)
MOVE (Move) . .
MOVEA (Move Array)
Character, graphic, and UCS 2 MOVEA
Operations o
Numeric MOVEA Operatlons .
General MOVEA Operations
MOVEL (Move Left) .
MULT (Multiply) .
MVR (Move Remainder)
NEXT (Next)
OCCUR (Set/Get Occurrence of a Data Structure)
ON-ERROR (On Error) . . e
OPEN (Open File for Processmg)
ORxx (Or) .o .
OTHER (Otherwise Select)
OUT (Write a Data Area)
PARM (Identify Parameters)
PLIST (Identify a Parameter List).
POST (Post) . .o
READ (Read a Record)
READC (Read Next Changed Record)
READE (Read Equal Key) .
READP (Read Prior Record)
READPE (Read Prior Equal)
REALLOC (Reallocate Storage with New Length)
REL (Release) Lo . .
RESET (Reset) .
Resetting Variables
Resetting Record Formats
Additional Considerations .
RESET Examples . .
RETURN (Return to Caller)
ROLBK (Roll Back)
SCAN (Scan String)
SELECT (Begin a Select Group)
SETGT (Set Greater Than) .
SETLL (Set Lower Limit)
SETOFF (Set Indicator Off) .
SETON (Set Indicator On) .
SHTDN (Shut Down).
SORTA (Sort an Array) .
SQRT (Square Root) .
SUB (Subtract) . .
SUBDUR (Subtract Duratlon)
Subtract a duration
Calculate a duration .
Possible error situations .
SUBDUR Examples
SUBST (Substring).
TAG (Tag) .
TEST (Test Date/ Tlme/ Tlmestamp)
TESTB (Test Bit) .o
TESTN (Test Numeric)

Contents

. 643
. 645
. 646
. 649
. 650
. 651
. 652
. 653
. 655
. 669

. 669
. 669
. 670
. 676
. 686
. 687
. 688

689

. 693
. 694
. 696
. 697
. 699
. 700
. 703
. 705
. 707
. 710
. 712
. 715
. 717

720

. 721
. 722
. 722
. 723
. 723
. 724
. 729
. 732
. 733
. 736
. 738
. 742
. 746
. 747
. 748
. 749
. 751
. 752
. 753
. 753
. 754
. 755
. 755
. 756
. 759
. 760
. 762
. 765

ix

TESTZ (Test Zone). . 767
TIME (Retrieve Time and Date) . . . 768
UNLOCK (Unlock a Data Area or Release a
Record) .o e . 770
Unlocking data areas . . 770
Releasing record locks .o .77
UPDATE (Modify Existing Record) . . 772
WHEN (When True Then Select) . . 774
WHENXxx (When True Then Select) . . 775
WRITE (Create New Records) 778
XFOOT (Summing the Elements of an Array). . 780
XLATE (Translate) . Ce e . 781
Z-ADD (Zero and Add) . . 783
Z-SUB (Zero and Subtract) . . 784
Part 5. Appendixes . 785

X ILE RPG Reference

Appendix A. RPG IV Restrictions .

Appendix B. EBCDIC Collating
Sequence .

Bibliography.

Notices
Programming Interface Informatlon
Trademarks and Service Marks

Index .

. 787

. 789

. 793

. 795
. 796
. 796

. 799

About This Reference

This reference provides information about the RPG IV language as it is
implemented using the ILE RPG compiler with the Operating System/400®
(OS/400®) operating system.

This reference covers:

* Basics of RPG IV:
- [RPG 1V character set]
- [RPG 1V reserved words|
— [Compiler directives
- [RPG 1V program cycle]
— [Indicator

rror Handling

ubprocedures|

[

¢ Definitions:

— [Defining Data and Prototypes|

- IData types and Data formats|
* RPG IV specifications:
ontro

ile descriptio

|
@)
O
O 4
= 1=

Definition

alculation

rocedure)

* Ways to manipulate data or devices:

— [Built-in Functions|

— [Expressions
— Operation Codes

Who Should Use This Reference

This reference is for programmers who are familiar with the RPG IV programming
language.

This reference provides a detailed description of the RPG IV language. It does not
provide information on how to use the ILE RPG compiler or how to convert RPG
III programs to ILE RPG. For information on those subjects, see the WebSphere
Development Studio: ILE RPG Programmer’s Guide, SC09-2507-04.

Before using this reference, you should

* Know how to use applicable OS/400 menus and displays or Control Language
(CL) commands.

* Have a firm understanding of Integrated Language Environment® as described
in detail in the ILE Concepts, SC41-5606-06.

© Copyright IBM Corp. 1994, 2004 xi

HHHH

H

Prerequisite and Related Information

Use the iSeries Information Center as your starting point for looking up iSeries and
AS/400e technical information. You can access the Information Center in two ways:
¢ From the following Web site:

http://www.ibm.com/eserver/iseries/infocenter
e From CD-ROMs that ship with your Operating System /400 order:

iSeries Information Center, SK3T-4091-02. This package also includes the PDF
versions of iSeries manuals, iSeries Information Center: Supplemental Manuals,
SK3T-4092-01, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java ", TCP/IP, Web serving, and secured networks. It also includes
links to related IBM® Redbooks and Internet links to other IBM Web sites such as
the Technical Studio and the IBM home page.

For a list of related publications, see the [“Bibliography” on page 793

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and
high-quality information. IBM welcomes any comments about this book or any
other iSeries documentation.

* If you prefer to send comments by mail, use the the following address:
IBM Canada Ltd. Laboratory
Information Development

8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

If you are mailing a readers’ comment form from a country other than the
United States, you can give the form to the local IBM branch office or IBM
representative for postage-paid mailing.

* If you prefer to send comments by FAX, use this number: 1-845-491-7727
 If you prefer to send comments electronically, use one of these e-mail addresses:
— Comments on books:
toreador@ca.ibm.com
— Comments on the iSeries Information Center:
RCHINFOC®@us.ibm.com

Be sure to include the following:

¢ The name of the book.

* The publication number of the book.

* The page number or topic to which your comment applies.

What's New

xii

ILE RPG Reference

There have been several releases of RPG IV since the first V3R1 release. The
following is a list of enhancements made for each release since V3R1 up to the
current release:

+ [“What's New This Release?” on page xiiil
* [“What's New in V5R2?” on page xviil

* |"What's New in V5R1?” on page xx|

* [“What's New in V4R4?” on page xxv|

* [“What's New in V4R2?” on page xxix|

* [“What's New in V3R7?” on page xxxiii|

+ [“What's New in V3R6/V3R2?” on page xxxviil

You can use this section to link to and learn about new RPG IV functions.

Note: The information for this product is up-to-date with the V5R3 release of RPG
IV. If you are using a previous release of the compiler, you will need to
determine what functions are supported on your system. For example, if
you are using a V5R1 system, the functions new to the V5R3 release will not
be supported.

Changes to this Guide Since V5R1

This V5R3 guide, WebSphere Development Studio: ILE RPG Programmer’s Guide,
5C09-2507-05 differs in many places from the V5R2 guide, SC09-2507-04, and the
V5R1 guide, SC09-2507-03. Most of the changes are related to the enhancements
that have been made since previous releases; others reflect minor technical
corrections. To assist you in using this manual, technical changes and
enhancements are noted in the margins:

* Changes made in V5R3 are marked with a vertical bar ().
¢ Changes made in V5R2 are marked with a pound sign (#).

Note: Many of the examples included in this guide have been modified to
"free-form”, rather than "traditional” coding style. These changed examples
have not been marked with a vertical bar. See WebSphere Development Studio:
ILE RPG Reference for detailed explanation of the differences between the
two coding styles.

| What's New This Release?

The following list describes the enhancements made to ILE RPG in V5R3:
* New builtin function %SUBARR:

New builtin function %SUBARR allows assignment to a sub-array or returning a
sub-array as a value.

Along with the existing %LOOKUP builtin function, this enhancements enables
the implementation of dynamically sized arrays with a varying number of
elements.

%SUBARR(array : start) specifies array elements array(start) to the end of the
array

%SUBARR(array : start : num) specifies array elements array(start) to array(start
+ num - 1)

Example:

// Copy part of an array to another array:
resultArr = %subarr(arrayl:start:num);

// Copy part of an array to part of another array:
%subarr(Arrayl:x:y) = %subarr(Array2:m:n);

// Sort part of an array

sorta %subarr(Array3:x:y);

// Sum part of an array
sum = %xfoot (%subarr(Arrayd:x:y));

About This Reference Xiii

Changes to this Guide Since V5R1

xiv

ILE RPG Reference

* The SORTA operation code is enhanced to allow sorting of partial arrays.

When %SUBARR is specified in factor 2, the sort only affects the partial array
indicated by the %SUBARR builtin function.

Direct conversion of date/time/timestamp to numeric, using %DEC:

%DEC is enhanced to allow the first parameter to be a date, time or timestamp,
and the optional second parameter to specify the format of the resulting numeric
value.

Example:
D numDdMmYy s 6p 0
D date s d datfmt (*jul)

date = D'2003-08-21";

numDdMmYy = %dec(date : *dmy);

// now numDdMmYy = 210803
Control specification CCSID(*CHAR : *JOBRUN) for correct conversion of
character data at runtime:

The Control specification CCSID keyword is enhanced to allow a first parameter
of *CHAR. When the first parameter is *CHAR, the second parameter must be
*JOBRUN. CCSID(*CHAR : *JOBRUN) controls the way character data is
converted to UCS-2 at runtime. When CCSID(*CHAR:*JOBRUN) is specified,
character data will be assumed to be in the job CCSID; when CCSID(*CHAR :
*JOBRUN) is not specified, character data will be assumed to be in the
mixed-byte CCSID related to the job CCSID.

Second parameter for %TRIM, %TRIMR and %TRIML indicating what
characters to trim:

%TRIM is enhanced to allow an optional second parameter giving the list of
characters to be trimmed.

Example:

trimchars = "*-.';

data = '#*xa-b-c-.'

result = %trim(data : trimchars);

// now result = 'a-b-c'. All * - and . were trimmed from the ends of the data
New prototype option OPTIONS(*TRIM) to pass a trimmed parameter:

When OPTIONS(*TRIM) is specified on a prototyped parameter, the data that is
passed be trimmed of leading and trailing blanks. OPTIONS(*TRIM) is valid for
character, UCS-2 and graphic parameters defined with CONST or VALUE. It is
also valid for pointer parameters defined with OPTIONS(*STRING). With
OPTIONS(*STRING : *TRIM), the passed data will be trimmed even if a pointer
is passed on the call.

Example:
D proc pr
D parml 5a const options(*trim)
D parm2 5a const options(xtrim : *rightadj)
D parm3 5a const varying options(*trim)
D parmd * value options(*string : *trim)
D parm5 * value options(*string : *trim)
D ptr S *
D data s 10a
D f1dl s 5a
/free
data = ' rst ' + x'00';
ptr = %addr(data);
proc (' xyz ' : ' @#$ ' : ' 123 ' : ' abc ' : ptr);

// the called procedure receives the following parameters
// parml = 'xyz

Changes to this Guide Since V5R1

// parm2 = ' @#$'
// parm3 = '123'
// parm4 = a pointer to 'abc.' (where . is x'00"')

// parm5 = a pointer to 'rst.' (where . is x'00')
* Support for 63 digit packed and zoned decimal values

Packed and zoned data can be defined with up to 63 digits and 63 decimal
positions. The previous limit was 31 digits.

* Relaxation of the rules for using a result data structure for I/O to
externally-described files and record formats

— The result data structure for I/O to a record format may be an
externally-described data structure.

— A data structure may be specified in the result field for I/O to an
externally-described file name for operation codes CHAIN, READ, READE,
READP and READPE.

Examples:

1. The following program writes to a record format using from an
externally-described data structure.

Foutfile 0 e k disk
D outrecDs e ds extname (outfile) prefix(0)
/free

0_FLD1 = 'ABCDE';

0_FLD2 = 7;

write outrec outrecDs;
*inlr = *on;
/end-free
2. The following program reads from a multi-format logical file into data
structure INPUT which contains two overlapping subfields holding the fields
of the respective record formats.

Flog if e k disk infds (infds)

D infds ds

D recname 261 270

D input ds qualified

D recl likerec(recl) overlay(input)
D rec2 likerec(rec2) overlay(input)
/free

read log input;
dow not %eof(log);
dsply recname;
if recname = 'REC1';
// handle recl
elseif recname = 'REC2';
// handle rec2
endif;
read log input;
enddo;
*inlr = *on;
/end-free
* Support for new environment variables for use with RPG programs calling

Java methods

- QIBM_RPG_JAVA_PROPERTIES allows RPG users to explicitly set the java
properties used to start the JVM

This environment variable must be set before any RPG program calls a Java
method in a job.

This environment variable has contains Java options, separated and
terminated by some character that does not appear in any of the option
strings. Semicolon is usually a good choice.

Examples:

About This Reference XV

Changes to this Guide Since V5R1

xvi

ILE RPG Reference

1. Specifying only one option: If the system’s default JDK is 1.3, and you
want your RPG programs to use JDK 1.4, set environment variable
QIBM_RPG_JAVA_PROPERTIES to

'-Djava.version=1.4;"'

Note that even with just one option, a terminating character is required. This
example uses the semicolon.

2. Specifying more than one option: If you also want to set the 0s400.stdout
option to a different value than the default, you could set the environment
variable to the following value:

'-Djava.version=1.4!-Dos400.stdout=file:mystdout.txt!"'

This example uses the exclamation mark as the separator/terminator. Note:
This support is also available in V5R1 and V5R2 with PTFs. V5R1: SI10069,
V5R2: S110101.

— QIBM_RPG_JAVA_EXCP_TRACE allows RPG users to get the exception
trace when an RPG call to a Java method ends with an exception

This environment variable can be set, changed, or removed at any time.

If this environment variable contains the value "Y’, then when a Java
exception occurs during a Java method call from RPG, or a called Java
method throws an exception to its caller, the Java trace for the exception will
be printed. By default, it will be printed to the screen, and may not be
possible to read. To get it printed to a file, set the Java option 0s400.stderr.
(This would have to be done in a new job; it could be done by setting the
QIBM_RPG_JAVA_PROPERTIES environment variable to

'-Dos400.stderr=file:stderr.txt;’'

* An RPG preprocessor enabling the SQL preprocessor to handle conditional
compilation and nested /COPY

When the RPG compiler is called with a value other than *NONE for parameter
PPGENOPT, it will behave as an RPG preprocessor. It will generate a new
source file rather than generating a program. The new source file will contain
the original source lines that are accepted by the conditional compilation
directives such as /DEFINE and /IF. It will also have the source lines from files
included by /COPY statements, and optionally it will have the source lines
included by /INCLUDE statements. The new source file will have the comments
from the original source file if PPGENOPT(*DFT) or
PPGENOPT(*NORMVCOMMENT) is specified. When the SQL precompiler is
called with a value other than *NONE for new parameter RPGPPOPT, the
precompiler will use this RPG preprocessor to handle /COPY, the conditional
compilation directives and possibly the /INCLUDE directive. This will allow
SQLRPGLE source to have nested /COPY statements, and conditionally used
statements.

Table 1. Changed Language Elements Since V5R1

Language Unit Element Description
Control specification CCSID(*GRAPH:parameter| | Can now take a first
keywords *UCS2:number | parameter of *CHAR, with a

*CHAR:*JOBRUN) second parameter of
*JOBRUN, to control how
character data is treated at
runtime.

+ ¥+t *xx*x ¥r - -—- - - " - - —_-_——-— " - -"--—"—-—fffr - T Y T Y T T T

Changes to this Guide Since V5R1

Table 1. Changed Language Elements Since V5R1 (continued)

Built-in Functions

%DEC(expression {format})

Can now take a parameter of
type Date, Time or
Timestamp

%TRIM(expression:expression

Can now take a second
parameter indicating the set
of characters to be trimmed

Definition Specification
Keywords

OPTIONS(*TRIM)

Indicates that blanks are to
be trimmed from passed
parameters

Definition Specifications

Length and decimal place
entries

The length and number of
decimal places can be 63 for
packed and zoned fields.

Input specifications

Length entry

The length can be 32 for
packed fields and 63 for
zoned fields.

Decimal place entry

The number of decimal
places can be 63 for packed
and zoned fields.

Calculation specifications

Length and decimal place
entries

The length and number of
decimal places can be 63 for
packed and zoned fields.

CHAIN, READ, READE,
READP, AND READPE
operations

Allow a data structure to be
specified in the result field
when Factor 2 is the name of
an externally-described file.

CHAIN, READ, READC,
READE, READP, READPE,
WRITE, UPDATE operations

Allow an
externally-described data
structure to be specified in
the result field when Factor 2
is the name of an
externally-described record
format.

SORTA operation

Now has an extended Factor
2, allowing %SUBARR to be
specified.

Table 2. New Language Elements Since V5R1

Language Unit

Element

Description

Built-in Functions

%SUBARR (array:starting
element {:number of
elements})

Returns a section of the
array, or allows a section of
the array to be modified.

What's New in V5R2?

The following list describes the enhancements made to ILE RPG in V5R2:
* Conversion from character to numeric

Built-in functions %DEC, %DECH, %INT, %INTH, %UNS, %UNSH and
%FLOAT are enhanced to allow character parameters. For example,
%DEC(’-12345.67" : 7 : 2) returns the numeric value -12345.67.

* Bitwise logical built-in functions

About This Reference XVil

HH FEHFHH HF HFH

H HH OH HEHF OH OHEHHF O HEHHF O O HEH O HEHHHE O HEHFHERE R HF OHEH O HFHEHE HE HH

Changes to this Guide Since V5R1

%BITAND, %BITOR, %BITXOR and %BITNOT allow direct bit manipulation
within RPG expressions.

* Complex data structures

Data structure definition is enhanced to allow arrays of data structures and
subfields of data structures defined with LIKEDS that are themselves data
structures. This allows the coding of complex structures such as arrays of arrays,
or arrays of structures containing subarrays of structures.

Example: family(f).child(i).hobbyInfo.pets(p).type = 'dog';
family(f).child(i).hobbyInfo.pets(p).name = 'Spot';

In addition, data structures can be defined the same as a record format, using
the new LIKEREC keyword.

* Enhanced externally-described data structures

Externally-described data structures can hold the programmer’s choice of input,
output, both, key or all fields. Currently, externally-described data structures can
only hold input fields.

* Enhancments to keyed I/0

Programmers can specify search arguments in keyed Input/Output operations in
/FREE calculations in two new ways:

1. By specifying the search arguments (which can be expressions) in a list.
2. By specifying a data structure which contains the search arguments.

Examples: D custkeyDS e ds extname(custfile:xkey)
/free
CHAIN (keyA : keyB : key3) custrec;
CHAIN %KDS(custkeyDS) custrec;

* Data-structure result for externally-described files

A data structure can be specified in the result field when using I/O operations
for externally-described files. This was available only for program-described files
prior to V5R2. Using a data structure can improve performance if there are
many fields in the file.

* UPDATE operation to update only selected fields

A list of fields to be updated can be specified with an UPDATE operation. Tthis
could only be done by using exception output prior to V5R2.

Example: update record %fields(salary:status).
31 digit support

Supports packed and zoned numeric data with up to 31 digits and decimal
places. This is the maximum length supported by DDS. Only 30 digits and
decimal places were supported prior to V5R2.

* Performance option for FEOD

The FEOD operation is enhanced by supporting an extender N which indicates
that the operation should simply write out the blocked buffers locally, without
forcing a costly write to disk.

e Enhanced data area access

The DTAARA keyword is enhanced to allow the name and library of the data
area to be determined at runtime

* New assignment operators

The new assignment operators +=, -=, *=, /=, **= allow a variable to be modified
based on its old value in a more concise manner.

Example: totals(current_customer) += count;

Xviil ILE RPG Reference

HHHF OH OH O HFHHF OFHH OHH OHHHF OHH OHFHF OHHH OH OH OHHHE R OHE OH OH OH OH OB OH H O HHFHEHEHH OHEREHR

Changes to this Guide Since V5R1

This statement adds "count” to the value currently in "totals(current_customer)”
without having to code "totals(current_customer)” twice.

e IFS source files

The ILE RPG compiler can compile both main source files and /COPY files from
the IFS. The /COPY and /INCLUDE directives are enhanced to support IFS file

names.

¢ Program Call Markup Language (PCML) generation

The ILE RPG compiler will generate an IFS file containing the PCML,
representing the parameters to the program (CRTBNDRPG) or to the exported

procedures (CRTRPGMOD).

Table 3. Changed Language Elements Since V5R1

Language Unit Element Description
Built-in functions expression) Can now take parameters of type character.
[%sDECH]expression)
%FLOAT[expression)
expression)
%INTH|expression)
expression)
%UNSH|expression)
Definition DTAARA[{*VAR:}data-area-name) The data area name can be a name, a character literal
specification specifying '"LIBRARY/NAME’ or a character variable
keywords which will determine the actual data area at runtime.
DIM Allowed for data structure specifications.
IKED Allowed for subfield specifications.
EXTNAMEfilename{:extrecname} The optional "type” parameter controls which type of
{*ALL [*INPUT | *OUTPUT | *KEY} field is extracted for the externally-described data
) structure.
Definition Length and decimal place entries The length and number of decimal places can be 31 for
Specifications packed and zoned fields.

Operation codes

CHAIN| [DELETHREADE} [READPE}
SETGT|(SETLL]

In free-form operations, Factor 1 can be a list of key
values.

CHAIN] [READ} [READC] [READE}
READP) [READPE [UPDATE] [WRITH|

When used with externally-described files or record
formats, a data structure may be specified in the result
field.

PDATH In free-form calculations, the final argument can contain
a list of the fields to be updated.
FEOD) Operation extender N is allowed. This indicates that the

unwritten buffers must be made available to the
database, but not necessarily be written to disk.

Calculation
specifications

Length and decimal place entries

The length and number of decimal places can be 31 for
packed and zoned fields.

Table 4. New Language Elements Since V5R1

Language Unit

Element

Description

Expressions

Assignment Operators += -=

*%—

*= /:

When these assignment operators are used, the
target of the operation is also the first operand of
the operation.

About This Reference XiX

H OHHHHH OKEH OHH OHEH OHH OFEH OHH OEHHF R K

Changes to this Guide Since V5R1

Table 4. New Language Elements Since V5R1 (continued)

Language Unit

Element Description

Control Specification
Keywords

[IDECPREC(30 | 31)] Controls the precision of decimal intermediate

values for presentation, for example, for %EDITC
and %EDITW

Definition specification
keywords

IKERE(J(intrecname{:*ALL | Defines a data structure whose subfields are the
*INPUT I *OUTPUT | *KEY}) same as a record format.

Built-in functions

%BITAND{expression : expression) Returns a result whose bits are on if the

corresponding bits of the operands are both on.

%BITNOT][expression) Returns a result whose bits are the inverse of the

bits in the argument.

%BITOR|expression : expression) Returns a result whose bits are on if either of the

corresponding bits of the operands is on.

%BITXOR[expression : expression) Returns a result whose bits are on if exactly one

of the corresponding bits of the operands is on.

%FIELDS(name{:name...}) Used in free-form "UPDATE to specify the fields

to be updated.

data structure) Used in free-form keyed operation codes CHAIN,

SETLL, SETGT, READE and READPE, to indicate
that the keys for the operation are in the data
structure.

What's New in V5R17?

The ILE RPG compiler is part of the IBM WebSphere Development Studio product,
which now includes the C/C++ and COBOL compilers, and the Application
Development ToolSet tools.

XX ILE RPG Reference

The major enhancements to RPG IV since V4R4 are easier interfacing with Java,
new built-in functions, free form calculation specifications, control of which file is
opened, qualified subfield names, and enhanced error handling.

The following list describes these enhancements:

* Improved support for calls between Java and ILE RPG using the Java Native
Interface (JNI):

A new data type: Object
A new definition specification keyword: CLASS

The LIKE definition specification keyword has been extended to support
objects.

The EXTPROC definition specification keyword has been extended to support
Java procedures.

New status codes.

¢ New built-in functions:

Functions for converting a number into a duration that can be used in
arithmetic expressions: %MSECONDS, %SECONDS, %MINUTES, %HOURS,
%DAYS, %MONTHS, and %YEARS.

The %DIFF function, for subtracting one date, time, or timestamp value from
another.

Functions for converting a character string (or date or timestamp) into a date,
time, or timestamp: %DATE, %TIME, and %TIMESTAMP.

Changes to this Guide Since V5R1

— The %SUBDT function, for extracting a subset of a date, time, or timestamp.

— Functions for allocating or reallocating storage: %ALLOC and %REALLOC.

— Functions for finding an element in an array: %LOOKUP, %LOOKUPGT,
%LOOKUPGE, %LOOKUPLT, and %LOOKUPLE.

— Functions for finding an element in a table: %TLOOKUP, %TLOOKUPGT,
%TLOOKUPGE, %TLOOKUPLT, and %TLOOKUPLE.

— Functions for verifying that a string contains only specified characters (or
finding the first or last exception to this rule): %CHECK and %CHECKR

— The %XLATE function, for translating a string based on a list of
from-characters and to-characters.

— The %OCCUR function, for getting or setting the current occurrence in a
multiple-occurrence data structure.

— The %SHTDN function, for determining if the operator has requested
shutdown.

— The %SQRT function, for calculating the square root of a number.

A new free-form syntax for calculation specifications. A block of free-form
calculation specifcations is delimited by the compiler directives /FREE and
/END-FREE

You can specify the EXTFILE and EXTMBR keywords on the file specification to
control which external file is used when a file is opened.

Support for qualified names in data structures:

— A new definition specification keyword: QUALIFIED. This keyword specifies
that subfield names will be qualified with the data structure name.

— A new definition specification keyword: LIKEDS. This keyword specifies that
subfields are replicated from another data structure. The subfield names will
be qualified with the new data structure name. LIKEDS is allowed for
prototyped parameters; it allows the parameter’s subfields to be used directly
in the called procedure.

— The INZ definition specification keyword has been extended to allow a data
structure to be initialized based on its parent data structure.

Enhanced error handling:

— Three new operation codes (MONITOR, ON-ERROR, and ENDMON) allow

you to define a group of operations with conditional error handling based on
the status code.

Other enhancements have been made to this release as well. These include:

You can specify parentheses on a procedure call that has no parameters.

You can specify that a procedure uses ILE C or ILE CL calling conventions, on
the EXTPROC definition specification keyword.

The following /DEFINE names are predefined: *VnRnMn, *ILERPG,
*CRTBNDRPG, and *CRTRPGMOD.

The search string in a %SCAN operation can now be longer than string being
searched. (The string will not be found, but this will no longer generate an error
condition.)

The parameter to the DIM, OCCURS, and PERRCD keywords no longer needs
to be previously defined.

The %PADDR built-in function can now take either a prototype name or an
entry point name as its argument.

A new operation code, ELSEIF, combines the ELSE and IF operation codes
without requiring an additional ENDIFE.

About This Reference XXi

Changes to this Guide Since V5R1

¢ The DUMP operation code now supports the A extender, which means that a
dump is always produced - even if DEBUG(*NO) was specified.

* A new directive, /INCLUDE, is equivalent to /COPY except that /INCLUDE is
not expanded by the SQL preprocessor. Included files cannot contain embedded
SQL or host variables.

* The OFLIND file-specification keyword can now take any indicator, including a
named indicator, as an argument.

e The LICOPT (licensed internal code options) keyword is now available on the
CRTRPGMOD and CRTBNDRPG commands.

* The PREFIX file description keyword can now take an uppercase character literal
as an argument. The literal can end in a period, which allows the file to be used
with qualified subfields.

* The PREFIX definition specification keyword can also take an uppercase
character literal as an argument. This literal cannot end in a period.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 5. Changed Language Elements Since V4R4

Language Unit Element Description
Built-in functions expression{:format}) The optional second parameter specifies the

desired format for a date, time, or timestamp. The
result uses the format and separators of the
specified format, not the format and separators of
the input.

%PADDR|prototype-name) This function can now take either a prototype

name or an entry point name as its argument.

Definition specification XTPROC[*JAVA:class-name:proc- Specifies that a Java method is called.
keywords name)

XTPROC[*CL:proc-name) Specifies a procedure that uses ILE CL
conventions for return values.
XTPROC[*CWIDEN:proc-name) Specifies a procedure that uses ILE C conventions

with parameter widening.

XTPROC[*CNOWIDEN:proc-name) | Specifies a procedure that uses ILE C conventions
without parameter widening.

*LIKEDS) Specifies that a data structure defined with the
LIKEDS keyword inherits the initialization from
its parent data structure.

object-name) Specifies that an object has the same class as
another object.

[PREFIX|character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

File specification OFLIND[name) This keyword can now take any named indicator
keywords as a parameter.

[PREFIX|character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

Operation codes [DUMP (A)| This operation code can now take the A extender,
which causes a dump to be produced even if
DEBUG(*NO) was specified.

xxil ILE RPG Reference

Table 6. New Language Elements Since V4R4

Changes to this Guide Since V5R1

Language Unit

Element

Description

Data types

Object

Used for Java objects

Compiler directives

[/FREE ... /END-FREH

The /FREE... /END-FREE compiler directives
denote a free-form calculation specifications block.

/INCLUD

Equivalent to /COPY, except that it is not
expanded by the SQL preprocessor. Can be used
to inlcude nested files that are within the copied
file. The copied file cannot have embedded SQIL
or host variables.

Definition specification
keywords

*JAVA:class-name)

Specifies the class for an object.

IKEDS(dsname Specifies that a data structure, prototyped
P P YP
parameter, or return value inherits the subfields of
another data strucutre.
. D Specifies that the subfield names in a data

structure are qualified with the data structure
name.

File specification
keywords

XTFILE[filename)

Specifies which file is opened. The value can be a
literal or a variable. The default file name is the
name specified in position 7 of the file
specification. The default library is *LIBL.

XTMBR[{membername)

Specifies which member is opened. The value can
be a literal or a variable. The default is *FIRST.

About This Reference ~ xxiii

Changes to this Guide Since V5R1

Table 6. New Language Elements Since V4R4 (continued)

Language Unit

Element

Description

Built-in functions

% ALLOC[num)

Allocates the specified amount of storage.

%CHECK]|comparator:base{:start})

Finds the first character in the base string that is
not in the comparator.

%CHECKR|comparator:base{:start})

Finds the last character in the base string that is
not in the comparator.

%DATE[expression{:date-format})

Converts the expression to a date.

FDAY ey

Converts the number to a duration, in days.

opl:op2:unit)

Calculates the difference (duration) between two
date, time, or timestamp values in the specified
units.

%oHOURS[num)

Converts the number to a duration, in hours.

%LOOKUPxx{arg:array{:startindex

{mumelems}})

Finds the specified argument, or the specified
type of near-match, in the specified array.

%eMINUTES(num)

Converts the number to a duration, in minutes.

%MONTHS(num)

Converts the number to a duration, in months.

%MSECONDS[num)

Converts the number to a duration, in
microseconds.

%OCCUR|dsn-name)

Sets or gets the current position of a
multiple-occurrence data structure.

%REALLO([(pointer:number)

Reallocates the specified amount of storage for the
specified pointer.

%SECONDS(num)

Converts the number to a duration, in seconds.

Checks if the system operator has requested
shutdown.

(numeric-expression)

Calculates the square root of the specified
number.

%SUBDT|value:unit)

Extracts the specified portion of a date, time, or
timestamp value.

Returns an Object value that contains a reference
to the class instance on whose behalf the native
method is being called.

% TIME|expression{:time-format})

Converts the expression to a time.

% TIMESTAMP[expression

{*ISO 1 *ISO0})

Converts the expression to a timestamp.

% TLOOKUP[arg:search-table

{:alt-table})

Finds the specified argument, or the specified
type of near-match, in the specified table.

% XLATE(from:to:string|:startpos})

Translates the specified string, based on the
from-string and to-string.

% YEARS[num)

Converts the number to a duration, in years.

XXiv ILE RPG Reference

Changes to this Guide Since V5R1

Table 6. New Language Elements Since V4R4 (continued)

Language Unit

Operation codes

Element Description
MONITO Begins a group of operations with conditional
error handling.
ON-ERRO Performs conditional error handling, based on the
status code.
NDMO Ends a group of operations with conditional error
handling.
LSEI Equivalent to an ELSE operation code followed by

an IF operation code.

CRTBNDRPG and

CRTRPGMOD keywords

LICOPT(options) Specifies Licensed Internal Code options.

What's New in V4R47?

The major enhancements to RPG IV since V4R2 are the support for running ILE
RPG modules safely in a threaded environment, the new 3-digit and 20-digit
signed and unsigned integer data types, and support for a new Universal
Character Set Version 2 (UCS-2) data type and for conversion between UCS-2 fields
and graphic or single-byte character fields.

The following list describes these enhancements:

¢ Support for calling ILE RPG procedures from a threaded application, such as
Domino " or Java' .

The new control specification keyword THREAD(*SERIALIZE) identifies
modules that are enabled to run in a multithreaded environment. Access to
procedures in the module is serialized.

* Support for new 1-byte and 8-byte integer data types: 31 and 201 signed integer,
and 3U and 20U unsigned integer

These new integer data types provide you with a greater range of integer
values and can also improve performance of integer computations, taking full
advantage of the 64-bit AS/400 RISC processor.

The new 3U type allows you to more easily communicate with ILE C
procedures that have single-byte character (char) return types and parameters
passed by value.

The new INTPREC control specification keyword allows you to specify
20-digit precision for intermediate values of integer and unsigned binary
arithmetic operations in expressions.

Built-in functions %DIV and %REM have been added to support integer
division and remainder operations.

* Support for new Universal Character Set Version 2 (UCS-2) or Unicode data type

The UCS-2 (Unicode) character set can encode the characters for many written
languages. The field is a character field whose characters are two bytes long.

By adding support for Unicode, a single application can now be developed
for a multinational corporation, minimizing the necessity to perform code
page conversion. The use of Unicode permits the processing of characters in
multiple scripts without loss of integrity.

Support for conversions between UCS-2 fields and graphic or single-byte
character fields using the MOVE and MOVEL operations, and the new
%UCS2 and %GRAPH built-in functions.

About This Reference XXV

Changes to this Guide Since V5R1

XXV1

ILE RPG Reference

— Support for conversions between UCS-2 fields or graphic fields with different
Coded Character Set Identifiers (CCSIDs) using the EVAL, MOVE, and
MOVEL operations, and the new %UCS2 built-in function.

Other enhancements have been made to this release as well. These include:

* New parameters for the OPTION control specification keyword and on the
create commands:

— *SRCSTMT allows you to assign statement numbers for debugging from the
source IDs and SEU sequence numbers in the compiler listing. (The statement
number is used to identify errors in the compiler listing by the debugger, and
to identify the statement where a run-time error occurs.) *“NOSRCSTMT
specifies that statement numbers are associated with the Line Numbers of the
listing and the numbers are assigned sequentially.

— Now you can choose not to generate breakpoints for input and output
specifications in the debug view with *NODEBUGIO. If this option is
selected, a STEP on a READ statement in the debugger will step to the next
calculation, rather than stepping through the input specifications.

* New special words for the INZ definition specification keyword:

— INZ(*EXTDEFT) allows you to use the default values in the DDS for
initializing externally described data structure subfields.
— Character variables initialized by INZ(*USER) are initialized to the name of
the current user profile.
¢ The new %XFOOT built-in function sums all elements of a specified array
expression.
* The new EVALR operation code evaluates expressions and assigns the result to a
fixed-length character or graphic result. The assignment right-adjusts the data
within the result.

* The new FOR operation code performs an iterative loop and allows free-form
expressions for the initial, increment, and limit values.

* The new LEAVESR operation code can be used to exit from any point within a
subroutine.

¢ The new *NEXT parameter on the OVERLAY (name:*NEXT) keyword indicates
that a subfield overlays another subfield at the next available position.

* The new *START and *END values for the SETLL operation code position to the
beginning or end of the file.

* The ability to use hexadecimal literals with integer and unsigned integer fields
in initialization and free-form operations, such as EVAL, IF, etc.

* New control specification keyword OPENOPT{(*NOINZOFL | *INZOFL)} to
indicate whether the overflow indicators should be reset to *OFF when a file is
opened.

* Ability to tolerate pointers in teraspace — a memory model that allows more
than 16 megabytes of contiguous storage in one allocation.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 7. Changed Language Elements Since V4R2

Changes to this Guide Since V5R1

Language Unit

Element

Description

Control *{NO}SRCSTMT) *SRCSTMT allows you to request that
specification the compiler use SEU sequence
keywords numbers and source IDs when
generating statement numbers for
debugging. Otherwise, statement
numbers are associated with the Line
Numbers of the listing and the
numbers are assigned sequentially.
[OPTIONJ*{NOJDEBUGIO) | *NO}DEBUGIO, determines if
breakpoints are generated for input
and output specifications.
Definition [[NZ[*EXTDFT) All externally described data structure
specification subfields can now be initialized to the
keywords default values specified in the DDS.
*USER) Any character field or subfield can be
initialized to the name of the current
user profile.
name:*NEXT) The special value *NEXT indicates that
the subfield is to be positioned at the
next available position within the
overlayed field.
[OPTIONS(*NOPASS *OMIT | The new OPTIONS(*RIGHTAD])
*VARSIZE *STRING specified on a value or constant
*RIGHTAD]) parameter in a function prototype
indicates that the character, graphic, or
UCS-2 value passed as a parameter is
to be right adjusted before being
passed on the procedure call.
Definition 3 and 20 digits allowed for I | Added to the list of allowed values for
specification and U data types internal data types to support 1-byte
(To and 8-byte finteger| and [unsigned| data.
Position/Length)

I|Internal data type|

C {UCS2 fixed of]

[variable-length format)

Added to the list of allowed internal
data types on the definition
specifications. The UCS-2 (Unicode)
character set can encode the characters
for many written languages. The field
is a whose characters

are two bytes long.

Data format

C ‘UCS-2 fixed oﬂ

[variable-length format)

outpuf| specifications for program

UCS-2 format added to the list of
allowed data formats on the and

described files.

Command
parameter

OPTION

*NOSRCSTMT, *SRCSTMT,
*NODEBUGIO, and *DEBUGIO have
been added to the OPTION parameter
on the CRTBNDRPG and
CRTRPGMOD commands.

About This Reference XXVil

Changes to this Guide Since V5R1

XXViii

Table 8. New Language Elements Since V4R2

Language Unit

Element

Description

Control *GRAPH: *IGNORE | |Sets the default graphic CCSID for the

specification *SRC | number) module. This setting is used for

keywords literals, compile-time data and
program-described input and output
fields and definitions. The default is
*IGNORE.

*UCSZ: number) Sets the default UCS-2 CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
13488.

[INTPRE(}(10 | 20) Specifies the decimal precision of
integer and unsigned intermediate
values in binary arithmetic operations
in expressions. The default,
INTPREC(10), indicates that 10-digit
precision is to be used.

(*NOINZOFL | Indicates whether the overflow

*INZOFL)} indicators should be reset to *OFF
when a file is opened.

*SERIALIZE) Indicates that the module is enabled to
run in a multithreaded environment.
Access to the procedures in the
module is to be serialized.

Definition number | *DFT) Sets the graphic and UCS-2 CCSID for
specification the definition.
keywords

Built-in functions

BeDIV{r:mm)

Performs integer division on the two
operands n and m; the result is the
integer portion of n/m. The operands
must be numeric values with zero
decimal positions.

char-expr |

graph-expr | UCS2-expr {:
ccsid})

Converts to graphic data from
single-byte character, graphic, or
UCS-2 data.

FREM e

Performs the integer remainder
operation on two operands n and m;
the result is the remainder of n/m. The
operands must be numeric values with
zero decimal positions.

%UCS2|char-expr |
graph-expr | UCS2-expr {:

cesid})

Converts to UCS-2 data from
single-byte character, graphic, or
UCS-2 data.

%XFOOT|array-expr)

Produces the sum of all the elements
in the specified numeric array
expression.

ILE RPG Reference

Changes to this Guide Since V5R1

Table 8. New Language Elements Since V4R2 (continued)

Language Unit Element Description
Operation codes EVALR| Evaluates an assignment statement of
the form result=expression. The result
will be right-justified.
Begins a group of operations and

indicates the number of times the
group is to be processed. The initial,
increment, and limit values can be
free-form expressions.

ENDFO ENDFOR ends a group of operations
started by a FOR operation.

[LEAVESR| Used to exit from anywhere within a
subroutine.

What's New in V4R2?

The major enhancements to RPG IV since V3R7 are the support for variable-length
fields, several enhancements relating to indicators, and the ability to specify
compile options on the control specifications. These further improve the RPG
product for integration with the OS/400 operating system and ILE interlanguage
communication.

The following list describes these enhancements:

Support for variable-length fields

This enhancement provides full support for variable-length character and
graphic fields. Using variable-length fields can simplify many string handling
tasks.

Ability to use your own data structure for INDARA indicators

Users can now access logical data areas and associate an indicator data structure
with each WORKSTN and PRINTER file that uses INDARA, instead of using the
*IN array for communicating values to data management.

Ability to use built-in functions instead of result indicators

Built-in functions %EOF, %EQUAL, %FOUND, and %OPEN have been added to
query the results of input/output operations. Built-in functions %ERROR and
%STATUS, and the operation code extender 'E” have been added for error
handling.

Compile options on the control specification

Compile options, specified through the CRTBNDRPG and CRTRPGMOD

commands, can now be specified through the control specification keywords.
These compile options will be used on every compile of the program.

In addition, the following new function has been added:

Support for import and export of procedures and variables with mixed case
names

Ability to dynamically set the DECEDIT value at runtime

Built-in functions %CHAR and %REPLACE have been added to make string
manipulation easier

New support for externally defined *CMDY, *CDMY, and *LONGJUL date data
formats

An extended range for century date formats

About This Reference XXiX

Changes to this Guide Since V5R1

* Ability to define indicator variables

* Ability to specify the current data structure name as the parameter for the
OVERLAY keyword

* New status code 115 has been added to indicate variable-length field errors

* Support for application profiling

* Ability to handle packed-decimal data that is not valid when it is retrieved from
files using FIXNBR(*INPUTPACKED)

* Ability to specify the BNDDIR command parameter on the CRTRPGMOD

command.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 9. Changed Language Elements Since V3R7

Language Unit Element Description

Control DECEDIT[*JOBRUN | The decimal edit value can now be
specification ‘value’) determined dynamically at runtime
keywords from the job or system value.
Definition DTAARA|{(data_area_name)} | Users can now access logical data
specification areas.

keywords

EXPORT]| {(external_name)}

The external name of the variable
being exported can now be specified as
a parameter for this keyword.

format

IMPORT]| {(external_name)} The external name of the variable
being imported can now be specified
as a parameter for this keyword.

OVERLAY[name{:pos}) The name parameter can now be the
name of the current data structure.

Extended century (cyy/mm/dd) The valid values for the century

character ‘¢’ are now:

¢! Years
0 1900-1999
1 2000-2099
9 2800-2899

[Internal data type|

N (Indicator format)

Added to the list of allowed internal
data types on the definition

specifications. Defines|character datalin

the indicator format.

Data format

N (Indicator format|

Indicator format added to the list of
allowed data formats on the and

outpuf| specifications for program

described files.

Data Attribute

*VAR

Added to the list of allowed data
attributes on the and
specifications for program described
files. It is used to specify
variable-length fields.

XXX ILE RPG Reference

Changes to this Guide Since V5R1

Table 9. Changed Language Elements Since V3R7 (continued)

Language Unit Element Description
Command FIXNBR The *INPUTPACKED parameter has
parameter been added to handle packed-decimal

data that is not valid.

Table 10. New Language Elements Since V3R7

Language Unit

New

Description

Control
specification
keywords

ACTGRP(*NEW | *CALLER

| “activation- group-name”)

The ACTGRP keyword allows you to
specify the activation group the
program is associated with when it is
called.

ALWNULL(*NO |

*INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how
you will use records containing
null-capable fields from externally
described database files.

[AUTJ*LIBRCRTAUT | *ALL
| *CHANGE | *USE |
*EXCLUDE |
’authorization-list-name”)

The AUT keyword specifies the
authority given to users who do not
have specific authority to the object,
who are not on the authorization list,
and whose user group has no specific
authority to the object.

BNDDIR(‘binding
-directory-name’ {:’binding-
directory-name’...})

The BNDDIR keyword specifies the list
of binding directories that are used in
symbol resolution.

*(NOJDATETIME
*INOJGRAPHIC
*(NOJVARCHAR
*(NO}VARGRAPHIC)

The CVTOPT keyword is used to
determine how the ILE RPG compiler
handles date, time, timestamp, graphic
data types, and variable-length data
types that are retrieved from externally
described database files.

DETACTGRP(*YES | *NO)

The DFTACTGRP keyword specifies
the activation group in which the
created program will run when it is
called.

ENBPFRCOL{*PEP |

*ENTRYEXIT | *FULL)

The ENBPFRCOL keyword specifies
whether performance collection is
enabled.

FIXNBR(*{NO}ZONED

The FIXNBR keyword specifies

*(INOJINPUTPACKED) whether decimal data that is not valid
is fixed by the compiler.

GENLVL[number) The GENLVL keyword controls the
creation of the object.

INDENT(*NONE | The INDENT keyword specifies

‘character-value’)

whether structured operations should
be indented in the source listing for
enhanced readability.

[LANGID|*JOBRUN | *JOB |

"language-identifier”)

The LANGID keyword indicates which
language identifier is to be used when
the sort sequence is *LANGIDUNQ or
*LANGIDSHR.

About This Reference XXX1

Changes to this Guide Since V5R1

xxxii

Table 10. New Language Elements Since V3R7 (continued)

Language Unit

New

Description

OPTIMIZE[*NONE | *BASIC
[*FULL)

The OPTIMIZE keyword specifies the
level of optimization, if any, of the
object.

OPTION[*{NO}XREF

*{INOJGEN *{NOJSECLVL
*INOJSHOWCPY
*{NOJEXPDDS *{NOJEXT
*{INOJSHOWSKP)

The OPTION keyword specifies the
options to use when the source
member is compiled.

*NOCOL | *COL)

The PRFDTA keyword specifies
whether the collection of profiling data
is enabled.

|SRTSE£j*HEX | *JOB |

*JOBRUN | *LANGIDUNQ
| *LANGIDSHR |
’sort-table-name”)

The SRTSEQ keyword specifies the
sort sequence table that is to be used
in the ILE RPG source program.

TEXT[*SRCMBRTXT |

*BLANK | ’"description”)

The TEXT keyword allows you to
enter text that briefly describes the
object and its function.

TRUNCNBRI(*YES | *NO)

The TRUNCNBR keyword specifies if
the truncated value is moved to the
result field or if an error is generated
when numeric overflow occurs while
running the object.

USRPRH(*USER | *OWNER)

The USRPRF keyword specifies the
user profile that will run the created
program object.

File Description

INDD:!

The INDDS keyword lets you associate
a name with the

Specification data_structure_name)

keywords INDARA indicators for a workstation
or printer file.

Definition Defines variable-length fields when

specification specified on [character data|or [graphid

keywords [datal

Built-in functions

%CHAR|(graphic, date, time

or timestamp expression)

Returns the value in a character data
type.

file name}

Returns '1” if the most recent file input
operation or write to a subfile (for a
particular file, if specified) ended in an
end-of-file or beginning-of-file
condition; otherwise, it returns '0’.

%EQUAL{file name}

Returns "1” if the most recent SETLL
(for a particular file, if specified) or
LOOKUP operation found an exact
match; otherwise, it returns '0’.

%ERRO

Returns "1” if the most recent operation
code with extender "E’ specified
resulted in an error; otherwise, it
returns "0’

ILE RPG Reference

Changes to this Guide Since V5R1

Table 10. New Language Elements Since V3R7 (continued)

Language Unit New Description

%FOUNDJfile name} Returns '1” if the most recent relevant
operation (for a particular file, if
specified) found a record (CHAIN,
DELETE, SETGT, SETLL), an element
(LOOKUP), or a match (CHECK,
CHECKR and SCAN); otherwise, it
returns '0’.

file name) Returns "1’ if the specified file is open

and ‘0" if the specified file is closed.

%REPLACE([replacement

string: source string {:start
position {:source length to
replace}})

Returns the string produced by
inserting a replacement string into a
source string, starting at the start
position and replacing the specified
number of characters.

%STATUS(file name} If no program or file error occurred
since the most recent operation code
with extender 'E’ specified, it returns 0.
If an error occurred, it returns the most
recent value set for any program or file
status. If a file is specified, the value
returned is the most recent status for
that file.
. E Allows for Ierrorhm using the
[%ERROR| and [%STATUS| built-in
functions on the CALLP operation and
all operations that allow error
indicators.
New century (cmm/dd/yy) To be used by the MOVE, MOVEL,
formats and TEST operations.
(cdd/mm/yy) To be used by the MOVE, MOVEL,
and TEST operations.
New 4-digit year [FLONGJUL|(yyyy/ddd) To be used by the MOVE, MOVEL,
format and TEST operations.
Command PRFDTA The PRFDTA parameter specifies
parameters whether the collection of profiling data
is enabled.
BNDDIR The BNDDIR parameter was

previously only allowed on the
CRTBNDRPG command and not on
the CRTRPGMOD command, now it is
allowed on both commands.

What's New in V3R77?

The major enhancements to RPG IV since V3R6 are the new support for database
null fields, and the ability to better control the precision of intermediate results in
expressions. Other enhancements include the addition of a floating point data type
and support for null-terminated strings. These further improve the RPG product
for integration with the OS/400 operating system and ILE interlanguage
communication. This means greater flexibility for developing applications.

About This Reference Xxxiii

Changes to this Guide Since V5R1

XXXiv

The following is a list of these enhancements including a number of new built-in
functions and usability enhancements:

ILE RPG Reference

Support for database null fields

This enhancement allows users to process database files which contain
null-capable fields, by allowing these fields to be tested for null and set to null.

Expression intermediate result precision

A new control specification keyword and new operation code extenders on
free-form expression specifications allow the user better control over the
precision of intermediate results.

New floating point data type

The new floating point data type has a much larger range of values than other
data types. The addition of this data type will improve integration with the
0S/400 database and improve interlanguage communication in an ILE
environment, specifically with the C and C++ languages.

Support for null terminated strings

The new support for null terminated strings improves interlanguage
communication. It allows users full control over null terminated data by
allowing users to define and process null terminated strings, and to conveniently
pass character data as parameters to procedures which expect null terminated
strings.

Pointer addition and subtraction

Free-form expressions have been enhanced to allow adding an offset to a
pointer, subtracting an offset from a pointer, and determining the difference
between two pointers.

Support for long names

Names longer than 10 characters have been added to the RPG language.
Anything defined on the definition or procedure specifications can have a long
name and these names can be used anywhere where they fit within the bounds
of an entry. In addition, names referenced on any free-form specification may be
continued over multiple lines.

New built-in functions

A number of new built-in functions have been added to the language which
improve the following language facilities:

- editing (%EDITW, %EDITC, %EDITFLT)

— scanning strings (%SCAN)

— type conversions (%INT, %FLOAT, %DEC, %UNS)

— type conversions with half-adjust (%INTH, %DECH, %UNSH)

— precision of intermediate results for decimal expressions (%DEC)

— length and decimals of variables and expressions (%LEN, %DECPOS)
— absolute value (%ABS)

— set and test null-capable fields (%NULLIND)

— handle null terminated strings (%STR)

Conditional compilation

RPG IV has been extended to support conditional compilation. This support will
include the following;:

— defining conditions (/DEFINE, /UNDEFINE),
— testing conditions (/IF, /ELSEIF, /ELSE, /ENDIF)
— stop reading current source file (/EOF)

Changes to this Guide Since V5R1

— anew command option (DEFINE) to define up to 32 conditions on the
CRTBNDRPG and CRTRPGMOD commands.

* Date enhancements
Several enhancements have been made to improve date handling operations.
The TIME operation code is extended to support Date, Time or Timestamp fields
in the result field. Moving dates or times from and to character fields no longer
requires separator characters. Moving UDATE and *DATE fields no longer
requires a format code to be specified. Date fields can be initialized to the
system (*SYS) or job (*JOB) date on the definition specifications.

* Character comparisons with alternate collating sequence
Specific character variables can be defined so that the alternate collating
sequence is not used in comparisons.

¢ Nested /COPY members
You can now nest /COPY directives. That is, a /COPY member may contain one
(or more) /COPY directives which can contain further /COPY directives and so
on.

* Storage management
You can now use the new storage management operation codes to allocate,
reallocate and deallocate storage dynamically.

 Status codes for storage management and float underflow errors.
Two status codes 425 and 426 have been added to indicate storage management

errors. Status code 104 was added to indicate that an intermediate float result is
too small.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 11. Changed Language Elements Since V3R6

Language Unit Element Description
Definition ALIGN| ALIGN can now be used to align float
specification subfields along with the previously
keywords supported integer and unsigned
alignment.
OPTIONS(*NOPASS *OMIT | The *STRING option allows you to
*VARSIZE *STRING) pass a character value as a
null-terminated string.
[Record address F (Float format) Added to the list of allowed record
type address types on the file description

specifications. Signals float processing
for a program described file.

[Internal data typel |F (Float format) Added to the list of allowed internal

data types on the definition
specifications. Defines a floating point
standalone field, parameter, or data
structure subfield.

Data format F (Float format) Added to the list of allowed data

formats on the [input|and foutput|
specifications for program described
files.

About This Reference XXXV

Changes to this Guide Since V5R1

XXXV1

Table 12. New Language Elements Since V3R6

Language Unit

New

Description

Control COPYNEST|"1-2048") Specifies the maximum depth for
specification nesting of /COPY directives.
keywords
EXPROPTS[*MAXDIGITS | | Expression options for type of
*RESDECPOS) precision (default or "Result Decimal
Position” precision rules)
FLTDIV{(*NO | *YES)} Indicates that all divide operations in
expressions are computed in floating
point.
Definition [ALTSEQ[*NONE) Forces the normal collating sequence to
specification be used for character comparison even
keywords when an alternate collating sequence is

specified.

Built-in functions

%AB

Returns the absolute value of the
numeric expression specified as the
parameter.

%DE(& |%DECH|

Converts the value of the numeric
expression to decimal (packed) format
with the number of digits and decimal
positions specified as parameters.
%DECH is the same as %DEC, but
with a half adjust applied.

%DECPOS,

Returns the number of decimal
positions of the numeric variable or
expression. The value returned is a
constant, and may be used where a
constant is expected.

o

JoEDITC

This function returns a character result
representing the numeric value edited
according to the edit code.

%EDITFLT]

Converts the value of the numeric
expression to the character external
display representation of float.

X
[es!
9
—
=

This function returns a character result
representing the numeric value edited
according to the edit word.

%FLOA Converts the value of the numeric
expression to float format.

%INT] & [70INTH] Converts the value of the numeric
expression to integer. Any decimal
digits are truncated with %INT and
rounded with %INTH.

%LE Returns the number of digits or
characters of the variable expression.

%NULLIND Used to query or set the null indicator
for null-capable fields.

%SCA Returns the first position of the search

argument in the source string, or 0 if it
was not found.

ILE RPG Reference

Changes to this Guide Since V5R1

Table 12. New Language Elements Since V3R6 (continued)

Language Unit New Description
Used to create or use null-terminated

strings, which are very commonly
used in C and C++ applications.

[%UNS| & [%UNSH| Converts the value of the numeric
expression to unsigned format. Any
decimal digits are truncated with
%UNS and rounded with %UNSH.

[Operation codg N Sets pointer to *NULL after successful
DEALLOC]

M Default
R No intermediate value will have fewer
decimal positions than the result
"Result Decimal Position”
rules)
[Operation codes| |ALLOd Used to allocate storage dynamically.
DEALLOC Used to deallocate storage
dynamically.
REALLOC] Used to reallocate storage dynamically.

What's New in V3R6/V3R2?

The major enhancement to RPG IV since V3R1 is the ability to code a module with
more than one procedure. What does this mean? In a nutshell, it means that you
can code an module with one or more prototyped procedures, where the
procedures can have return values and run without the use of the RPG cycle.

Writing a module with multiple procedures enhances the kind of applications you
can create. Any application consists of a series of logical units that are conceived to
accomplish a particular task. In order to develop applications with the greatest
flexibility, it is important that each logical unit be as independent as possible.
Independent units are:

* Easier to write from the point of view of doing a specific task.

* Less likely to change any data objects other than the ones it is designed to
change.

* Easier to debug because the logic and data items are more localized.

* Maintained more readily since it is easier to isolate the part of the application
that needs changing.

The main benefit of coding a module with multiple procedures is greater control
and better efficiency in coding a modular application. This benefit is realized in
several ways. You can now:

* Call procedures and programs by using the same call operation and syntax.
* Define a prototype to provide a check at compile time of the call interface.
 Pass parameters by value or by reference.

* Define a procedure that will return a value and call the procedure within an
expression.

¢ Limit access to data items by defining local definitions of variables.
¢ Code a module that does not make use of the cycle.

About This Reference XXXVii

Changes to this Guide Since V5R1

Call a procedure recursively.

The run-time behavior of the main procedure in a module is the same as that of a
V3R1 procedure. The run-time behavior of any subsequent procedures differs
somewhat from a V3R1 program, most notably in the areas of procedure end and
exception handling. These differences arise because there is no cycle code that is
generated for these procedures.

Other enhancements have been made to for this release as well. These include:

Support for two new integer data types: signed integer (I), and unsigned integer
®)

The use of the integer data types provides you with a greater range of values
than the binary data type. Integer data types can also improve performance of
integer computations.

*CYMD support for the MOVE, MOVEL, and TEST operations

You can now use the *CYMD date format in certain operations to work with
system values that are already in this data format.

Ability to copyright your programs and modules by using the COPYRIGHT
keyword on the control specification

The copyright information that is specified using this keyword becomes part of
the DSPMOD, DSPPGM, or DSPSRVPGM information.

User control of record blocking using keyword BLOCK

You can request record blocking of DISK or SEQ files to be done even when
SETLL, SETGT, or CHAIN operations are used on the file. You can also request
that blocking not be done. Use of blocking in these cases may significantly
improve runtime performance.

Improved PREFIX capability

Changes to the PREFIX keyword for either file-description and definition
specifications allow you to replace characters in the existing field name with the
prefix string.

Status codes for trigger program errors

Two status codes 1223 and 1224 have been added to indicate trigger program
eITorS.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 13. Changed Language Elements Since V3R1

Language Unit Element Description
File description PREFIX|prefix_string Allows prefixing of string to a field
specification {inbr_of_char_ replaced}) name or a partial rename of the field
keywords name
Definition CONST[{(constant)} Specifies the value of a named
specification constant, or indicates that a prototyped
keywords parameter that is passed by reference
has a constant value
PREFIX|prefix_string Allows prefixing of string to a field
{inbr_of_char_ replaced}) name or a partial rename of the field
name
|Operation codes| |RETURN| Returns control to the caller, and

returns a value, if specified

XXXViii ILE RPG Reference

Changes to this Guide Since V5R1

Table 14. New Language Elements Since V3R1

Language Unit

New

Description

Control
specification
keywords

COPYRIGHT][copyright

string’)

Allows you to associate copyright
information with modules and
programs

EXTBININT|(*NO | *YES)}

Specifies that binary fields in
externally-described files be assigned
an integer format during program
processing

NOMAIN

Indicates that the module has only
subprocedures

File description

BLOCKJ*YES [*NO)

Allows you to control whether record

specification blocking occurs (assuming other
keywords conditions are met)

Definition ALIG Specifies whether integer or unsigned
specification fields should be aligned

keywords

EXTPGM[name)

Indicates the external name of the

prototyped program

EXTPROC|[name)

Indicates the external name of the
prototyped procedure

Indicates whether operational
descriptors are to be passed for the
prototyped bound call

OPTIONS(*NOPASS *OMIT

*VARSIZE)

Specifies various options for
prototyped parameters

STATIC Specifies that the local variable is to
use static storage
VALUE Specifies that the prototyped
parameter is to be passed by value
Built-in functions |[%PARM Returns the number of parameters
passed on a call
[Operation codes| |CALLP| Calls a prototyped program or

procedure

[Specification type|

[Procedure specification|

Signals the beginning and end of a
subprocedure definition

PR Signals the beginning of a prototype
definition
PI Signals the beginning of a procedure

interface definition

blank in positions 24-25

Defines a prototyped parameter

About This Reference

XXX1X

Changes to this Guide Since V5R1

xl ILE RPG Reference

Part 1. RPG IV Concepts

This section describes some of the basics of RPG IV:

Symbolic names

Compiler directives

RPG 1V program cycle
Indicators

Error Handling
Subprocedures

General file considerations

© Copyright IBM Corp. 1994, 2004

2 ILE RPG Reference

Chapter 1. Symbolic Names and Reserved Words

The valid character set for the RPG IV language consists of:

The letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

RPG IV accepts lowercase letters in symbolic names but translates them to
uppercase during compilation

The numbers 0123456789
The characters + - * ,. " & / $#: @ _><=()%
The blank character

Note: The $, #, and @ may appear as different symbols on some codepages. For

more information, see the iSeries Information Center globalization topic.

Symbolic Names

A symbolic name is a name that uniquely identifies a specific entity in a program
or procedure. In the RPG IV language, symbolic names are used for the following;:

Arrays (see [“Array Names” on page 4)

Conditional compile names (see [“Conditional Compile Names” on page 4)

Data structures (see|“Data Structure Names” on page 4)

Exception output records (see [“EXCEPT Names” on page 4)

Fields (see [‘Field Names” on page 4)
Key field lists (see [’KLIST Names” on page 4)
Labels (see [“Labels” on page 4)

Named constants (see ["Named Constants” on page 125)

Parameter lists (see ["'PLIST Names” on page 5)

Prototype names (see [‘Prototype Names” on page 5)

Record names (see|[“Record Names” on page 5)

Subroutines (see [’Subroutine Names” on page 5)

Tables (see [“Table Names” on page 5).

The following rules apply to all symbolic names except for deviations noted in the
description of each symbolic name:

© Copyright IBM Corp. 1994, 2004

The first character of the name must be alphabetic. This includes the characters
$, #, and @.

The remaining characters must be alphabetic or numeric. This includes the
underscore (_).

The name must be left-adjusted in the entry on the specification form except in
fields which allow the name to float (definition specification, keyword fields,
and the extended factor 2 field).

A symbolic name cannot be an RPG IV reserved word.

A symbolic name can be from 1 to 4096 characters. The practical limits are
determined by the size of the entry used for defining the name. A name that is
up to 15 characters can be specified in the Name entry of the definition or
procedure specification. For names longer than 15 characters, use a continuation
specification. For more information, see [Chapter 12, “About Specifications,” on|

H H R

Symbolic Names

* A symbolic name must be unique within the procedure in which it is defined.

Array Names

The following additional rule applies to array names:

* An array name in a standalone field cannot begin with the letters TAB. Array
names may begin with TAB if they are either prototyped parameters or data
structures defined with the DIM keyword.

Conditional Compile Names

The symbolic names used for conditional compilation have no relationship to other
symbolic names. For example, if you define a file called MYFILE, you may later
use /DEFINE to define condition name MYFILE, and you may also use
/UNDEFINE to remove condition name MYFILE. This has no effect on the file
name MYFILE.

Conditional compile names can be up to 50 characters long.

Data Structure Names

A data structure is an area in storage and is considered to be a character field.

EXCEPT Names

An EXCEPT name is a symbolic name assigned to an exception output record. The
following additional rule applies to EXCEPT names:

¢ The same EXCEPT name can be assigned to more than one output record.

Field Names
The following additional rules apply to field names:

* A field name can be defined more than once if each definition using that name
has the same data type, the same length, and the same number of decimal
positions. All definitions using the same name refer to a single field (that is, the
same area in storage). However, it can be defined only once on the definition
specification.

* A field can be defined as a data structure subfield only once unless the data
structure is qualified (defined with QUALIFIED or LIKEDS). In this case, when
the subfield is used, it must be qualified (specified in the form
dsname.subfieldname).

* A subfield name cannot be specified as the result field on an *ENTRY PLIST
parameter.

KLIST Names

A KLIST name is a symbolic name assigned to a list of key fields.

Labels

A label is a symbolic name that identifies a specific location in a program (for
example, the name assigned to a TAG or ENDSR operation).

Named Constants

A named constant is a symbolic name assigned to a constant.

4 ILE RPG Reference

Symbolic Names

PLIST Names

A PLIST name is a symbolic name assigned to a list of parameters.

Prototype Names

A prototype name is a symbolic name assigned to a prototype definition. This
name must be used when calling a prototyped procedure or program.

Record Names

A record name is a symbolic name assigned to a record format in an externally
described file. The following additional rules apply to record names in an RPG IV
program:

* A record name can exist in only one file in the program.

Note: See['RENAME(Ext_format:Int_format)” on page 283|for information on how
to overcome this limitation.

Subroutine Names
The name is defined in factor 1 of the BEGSR (begin subroutine) operation.

Table Names
The following additional rules apply to table names:
* A table name can contain from 3 to 10 characters.
* A table name must begin with the letters TAB.

* A table cannot be defined in a subprocedure.

RPG IV Words with Special Functions/Reserved Words

The RPG IV reserved words listed below have special functions within a program.

* The following reserved words allow you to access the job date, or a portion of it,
to be used in the program:

UDATE
*DATE
UMONTH
*MONTH
UYEAR
*YEAR
UDAY
*DAY

* The following reserved words can be used for numbering the pages of a report,
for record sequence numbering, or to sequentially number output fields:

PAGE
PAGE1-PAGE7

Figurative constants|are implied literals that allow specifications without
referring to length:

*BLANK/*BLANKS
*ZERO/*ZEROS
*HIVAL

*LOVAL

Chapter 1. Symbolic Names and Reserved Words 5

RPG IV Words with Special Functions/Reserved Words

*NULL

*ON

*OFF
*ALLX'x1..”
*ALLG 0K1K2i’
*ALL'X.

* The following reserved words are used for positioning database files. *START
positions to beginning of file and *END positions to end of file.

*END
*START
* The following reserved words allow RPG IV indicators to be referred to as data:
*IN
*INxx
* The following are special words used with date and time:
*CDMY
*CMDY
*CYMD
*DMY
*EUR
*HMS
*ISO
*JIS
*JOB
*JOBRUN
*JUL
*LONGJUL
*MDY
*SYS
*USA
*YMD
* The following are special words used with translation:
*ALTSEQ
*EQUATE
*FILE
*FTRANS

* *PLACE allows repetitive placement of fields in an output record. (See
[“*PLACE” on page 364 for more information.)

e *ALL allows all fields that are defined for an externally described file to be
written on output. (See |”Rules for Figurative Constants” on page 127| for more
information on *ALL)

* The following are special words used within expressions:
AND
NOT
OR

6 ILE RPG Reference

RPG IV Words with Special Functions/Reserved Words

Note: NOT can only be used within expressions. It cannot be used as a name
anywhere in the source.

¢ The following are special words used with parameter passing;:
*NOPASS
*OMIT
*RIGHTAD]
*STRING
*TRIM
*VARSIZE

User Date Special Words

The user date special words (UDATE, *DATE, UMONTH, *MONTH, UDAY, *DAY,
UYEAR, *YEAR) allow the programmer to supply a date for the program at run
time. The user date special words access the job date that is specified in the job
description. The user dates can be written out at output time; UDATE and *DATE
can be written out using the Y edit code in the format specified by the control
specification.

(For a description of the job date, see theWork Management manual.)

Rules for User Date
Remember the following rules when using the user date:

* UDATE, when specified in positions 30 through 43 of the output specifications,
prints a 6-character numeric date field. *DATE, when similarly specified, prints
an 8-character (4-digit year portion) numeric date field. These special words can
be used in three different date formats:

Month/day/year
Year/month/day
Day/month/year

Use the DATEDIT| keyword on the control specification to specify the date
formats of UDATE and *DATE:

DATEDIT UDATE format *DATE format

*MDY *MDY *USA (mmddyyyy)
*DMY *DMY *EUR (ddmmyyyy)
*YMD *YMD *ISO (yyyymmdd)

Note that the DATEDIT keyword also controls the format of the Y edit code.

If this keyword is not specified, the default is *MDY.

 For an interactive job or batch program, the user date special words are set to
the value of the job date when the program starts running in the system. The
value of the user date special words are not updated during program
processing, even if the program runs past midnight or if the job date is changed.
Use the TIME operation code to obtain the time and date while the program is
running.

« UMONTH, *MONTH, UDAY, *DAY, and UYEAR when specified in positions 30
through 43 of the output specifications, print a 2-position numeric date field.
*YEAR can be used to print a 4-position numeric date field. Use UMONTH or

Chapter 1. Symbolic Names and Reserved Words 7

User Date Special Words

*MONTH to print the month only, UDAY or *DAY to print the day only, and
UYEAR or *YEAR to print the year only.

* UDATE and *DATE can be edited when they are written if the Y edit code is
specified in position 44 of the output specifications. The
[“DATEDIT(fmt{separator})” on page 252 keyword on the control specification
determines the format and the separator character to be inserted; for example,
12/31/88, 31.12.88., 12/31/1988.

* UMONTH, *MONTH, UDAY, *DAY, UYEAR and *YEAR cannot be edited by the
Y edit code in position 44 of the output specifications.

* The user date fields cannot be modified. This means they cannot be used:
— In the result field of calculations
— As factor 1 of PARM operations
— As the factor 2 index of LOOKUP operations
— With blank after in output specifications
- As input fields

* The user date special words can be used in factor 1 or factor 2 of the calculation
specifications for operation codes that use numeric fields.

* User date fields are not date data type fields but are numeric fields.

PAGE, PAGE1-PAGEY

8

PAGE is used to number the pages of a report, to serially number the output
records in a file, or to sequentially number output fields. It does not cause a page
eject.

The eight possible PAGE fields (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGES5,
PAGES6, and PAGE?) may be needed for numbering different types of output pages
or for numbering pages for different printer files.

PAGE fields can be specified in positions 30 through 43 of the output specifications
or in the input or calculation specifications.

Rules for PAGE, PAGE1-PAGE7

ILE RPG Reference

Remember the following rules when using the PAGE fields:

* When a PAGE field is specified in the output specifications, without being
defined elsewhere, it is assumed to be a four-digit, numeric field with zero
decimal positions.

* Page numbering, unless otherwise specified, starts with 0001; and 1 is
automatically added for each new page.

* To start at a page number other than 1, set the value of the PAGE field to one
less than the starting page number. For example, if numbering starts with 24,
enter a 23 in the PAGE field. The PAGE field can be of any length but must have
zero decimal positions (see [Figure 1 on page 9).

* Page numbering can be restarted at any point in a job. The following methods
can be used to reset the PAGE field:

— Specify blank-after (position 45 of the output specifications).
— Specify the PAGE field as the result field of an operation in the calculation
specifications.

— Specify an output indicator in the output field specifications (see
H

). When the output indicator is on, the PAGE field will be reset to 1.

PAGE, PAGE1-PAGE7

Output indicators cannot be used to control the printing of a PAGE field,
because a PAGE field is always written.

- Specify the PAGE field as an input field as shown in

* Leading zeros are automatically suppressed (Z edit code is assumed) when a
PAGE field is printed unless an edit code, edit word, or data format (P/B/L/R
in position 52) has been specified. Editing and the data format override the
suppression of leading zeros. When the PAGE field is defined in input and
calculation specifications, it is treated as a field name in the output specifications
and zero suppression is not automatic.

IFiTename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. v v v v e v in it iieiieiaenennnnnns

PP Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
IINPUT PG 50 1 CP
I 2 5 OPAGE

Figure 1. Page Record Description

OFilename++DF..NOINO2NO3Excnam++++B++A++Sh+Sa+t.vvieiiie i ennnn.
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0* When indicator 15 is on, the PAGE field is set to zero and 1 is

0* added before the field is printed. When indicator 15 is off, 1

0* is added to the contents of the PAGE field before it is printed.
OPRINT H L1 01

0 15 PAGE 1 75

Figure 2. Resetting the PAGE Fields to Zero

Chapter 1. Symbolic Names and Reserved Words 9

PAGE, PAGE1-PAGE7

10 ILE RPG Reference

Chapter 2. Compiler Directives

The compiler directive statements /FREE... /END-FREE denote a free-form
calculation specification block. The compiler directive statements /TITLE, /EJECT,
/SPACE, /COPY, and /INCLUDE allow you to specify heading information for
the compiler listing, to control the spacing of the compiler listing, and to insert
records from other file members during a compile. The conditional compilation
directive statements /DEFINE, /UNDEFINE, /IF, /ELSEIF, /ELSE, /ENDIF, and
/EQOF allow you to select or omit source records. The compiler directive statements
must precede any compile-time array or table records, translation records, and
alternate collating sequence records (that is, ** records).

/IFREE... [END-FREE (Positions 7-11)

Positions Entry
7-11 /FREE or /END-FREE
12-80 Blank

The /FREE compiler directive specifies the beginning of a free-form calculation
specifications block. /END-FREE specifies the end of the block. Positions 12
through 80 must be blank. The remaining positions may be used for comments.
See ["Free-Form Syntax” on page 355 for information on using free-form
statements.

ITITLE (Positions 7-12)

Use the compiler directive /TITLE to specify heading information (such as security
classification or titles) that is to appear at the top of each page of the compiler
listing. The following entries are used for /TITLE:

Positions Entry

7-12 /TITLE

13 Blank

14-100 Title information

A program can contain more than one /TITLE statement. Each /TITLE statement
provides heading information for the compiler listing until another /TITLE
statement is encountered. A /TITLE statement must be the first RPG specification
encountered to print information on the first page of the compiler listing. The
information specified by the /TITLE statement is printed in addition to compiler
heading information.

The /TITLE statement causes a skip to the next page before the title is printed. The
/TITLE statement is not printed on the compiler listing.

/EJECT (Positions 7-12)

Positions Entry
7-12 /EJECT

© Copyright IBM Corp. 1994, 2004 11

/[EJECT (Positions 7-12)

13-49 Blank
50-100 Comments

Enter /EJECT in positions 7 through 12 to indicate that subsequent specifications
are to begin on a new page of the compiler listing. Positions 13 through 49 of the
/EJECT statement must be blank. The remaining positions may be used for
comments. If the spool file is already at the top of a new page, /EJECT will not
advance to a new page. /EJECT is not printed on the compiler listing.

ISPACE (Positions 7-12)

Use the compiler directive /SPACE to control line spacing within the source
section of the compiler listing. The following entries are used for /SPACE:

Positions Entry

7-12 /SPACE

13 Blank

14-16 A positive integer value from 1 through 112 that defines the

number of lines to space on the compiler listing. The number must
be left-adjusted.

17-49 Blank
50-100 Comments

If the number specified in positions 14 through 16 is greater 112, 112 will be used

as the /SPACE value. If the number specified in positions 14 through 16 is greater
than the number of lines remaining on the current page, subsequent specifications
begin at the top of the next page.

/SPACE is not printed on the compiler listing, but is replaced by the specified line
spacing. The line spacing caused by /SPACE is in addition to the two lines that are
skipped between specification types.

/COPY or /INCLUDE

12

ILE RPG Reference

The /COPY and /INCLUDE directives have the same purpose and the same
syntax, but are handled differently by the SQL precompiler. If your program does
not have embedded SQL, you can freely choose which directive to use. If your
program has embedded SQL, see|“Using /COPY, /INCLUDE in Source Files with|
[Embedded SQL” on page 14| for information about which directive to use.

The /COPY and /INCLUDE compiler directives cause records from other files to
be inserted, at the point where the directive occurs, with the file being compiled.
The inserted files may contain any valid specification including /COPY and
/INCLUDE up to the maximum nesting depth specified by the COPYNEST
keyword (32 when not specified).

/COPY and /INCLUDE files can be either physical files or IFS files. To specify a

physmal file, code your /COPY and /INCLUDE statement in the following way :
/COPY or /INCLUDE followed by exactly one space followed by the file name
or path

* when specifying a physical file, the library, file, and member name, can be in
one of these formats:

HH OHFHH OHH HH

HHEFEHHHHHH

/COPY or /INCLUDE

Tibraryname/filename,membername

filename,membername

membername

— A member name must be specified.

— If a file name is not specified, QRPGLESRC is assumed.

— If a library is not specified, the library list is searched for the file. All
occurrences of the specified source file in the library list are searched for the
member until it is located or the search is complete.

If a library is specified, a file name must also be specified.
. When specifying an IFS (Integrated File System) file, the path can be either
absolute (beginning with /) or relative.

— The path can be enclosed in single or double quotes. If the path contains
blanks, it must be enclosed in quotes.

— If the path does not end with a suffix (for example ".txt"), the compiler will
search for the file as named, and also for files with suffixes of ".rpgle” or
".rpgleinc”.

— See the WebSphere Development Studio: ILE RPG Programmer’s Guidefor
information on using IFS /COPY files.

* Optionally, at least one space and a comment.

/COPY members are considered fixed-form by default, even if the /COPY
directive is coded within a free-form group. If the /COPY member will contain
free-form specifications, these must be delimited with /FREE and /END-FREE
directives.

— TIP
To facilitate application maintenance, you may want to place the prototypes
of exported procedures in a separate source member. If you do, be sure to
place a /COPY or /INCLUDE directive for that member in both the module
containing the exported procedure and any modules that contain calls to the
exported procedure.

shows some examples of the /COPY and /INCLUDE directive statements.

c/copy MBR1 [

I/INCLUDE SRCFIL,MBR2 E

0/COPY SRCLIB/SRCFIL,MBR3

0/INCLUDE "SRCLIB!"/"SRC>3","MBR-=3" ﬂ
0/COPY /dirl/dir2/file.rpg H

0/CoPY /dirl/dir2/file @

0/COPY dirl/dir2/file.rpg

0/COPY "ifs file containing blanks" [EJ

0/COPY 'ifs file containing blanks' H

Figure 3. Examples of the /COPY and /INCLUDE Compiler Directive Statements

Chapter 2. Compiler Directives 13

HH OHFHH HHHHHF

H OHH OH OH

/COPY or /INCLUDE

14

Copies from member MBR1 in source file QRPGLESRC. The current library
list is used to search for file QRPGLESRC. If the file is not found in the
library list, the search will proceed to the IFS, looking for file MBR1,
MBR1.rpgle or MBR1.rpgleinc in the include search path. See the
WebSphere Development Studio: ILE RPG Programmer’s Guide,
S5C09-2507-04 for information on using IFS source files.

2] Copies from member MBR?2 in file SRCFIL. The current library list is used
to search for file SRCFIL. Note that the comma is used to separate the file
name from the member name. If the file is not found in the library list, the
search will proceed to the IFS, looking for file SRCFIL, MBR1 in the
include search path, possibly with the .rpgle or .rpgleinc suffixes.

Copies from member MBR3 in file SRCFIL in library SRCLIB or from the
IFS file SRCFIL, MBR3 in directory SRCLIB.

Copies from member "MBR-3" in file "SRC>3" in library "SRCLIB!"
Copies from the IFS file file.rpg in directory /dirl/dir2.
Copies from file, or file.rpgleinc or file.rpgle in directory /dirl/dir2

(oo~ R

Copies from the IFS file file.rpg in directory dirl/dir2, searching for
directory dirl/dir2 using the IFS search path.

Copies from a file whose name contains blanks.

Results of the /COPY or /INCLUDE during Compile

During compilation, the specified file members are merged into the program at the
point where the [/ COPY|or [/INCLUDE| statement occurs. All members will appear
in the COPY member table.

Nested /COPY or /INCLUDE

Nesting of /COPY and /INCLUDE directives is allowed. A /COPY or /INCLUDE
member may contain one or more /COPY or /INCLUDE directives (which in turn
may contain further /COPY or /INCLUDE directives and so on). The maximum
depth to which nesting can occur can be set using the COPYNEST control
specification keyword. The default maximum depth is 32.

— TIP
You must ensure that your nested /COPY or /INCLUDE files do not include
each other infinitely. Use conditional compilation directives at the beginning
of your /COPY or /INCLUDE files to prevent the source lines from being
used more than once.

For an example of how to prevent multiple inclusion, see [Figure 4 on page 19}

Using /COPY, /INCLUDE in Source Files with Embedded SQL

ILE RPG Reference

The /COPY and /INCLUDE directives are identical except that they are handled
differently by the SQL precompiler.

The way the /COPY and /INCLUDE directives are handled by the SQL
precompiler is different depending on the RPG preprocessor options parameter
(RPGPPOPT) specified on the CRTSQLRPGI command. Refer to "Coding SQL

/COPY or /INCLUDE

statements in ILE RPG for iSeries applications” in the Embedded SQL
Programming topic or the CRTSQLRPGI command in the CL topic for more
information.

Conditional Compilation Directives

The conditional compilation directive statements allow you to conditionally include
or exclude sections of source code from the compile.

* Condition-names can be added or removed from a list of currently defined
conditions using the defining condition directives |/ DEFINE| and |/ UNDEFINEl

* Condition expressions |DEFINED(condition-name)| and |§OT‘
DEFINED(condition-name)| are used within testing condition /IF groups.
¢ Testing condition directives, [/ ELSEIF| [/ELSH and |[/ENDIF control which

source lines are to be read by the compiler.

* The|/EOH directive tells the compiler to ignore the rest of the source lines in the
current source member.

Defining Conditions

Condition-names can be added to or removed from a list of currently defined
conditions using the defining condition directives /DEFINE and /UNDEFINE.

/IDEFINE (Positions 7-13)

The /DEFINE compiler directive defines conditions for conditional compilation.
The entries in the condition-name area are free-format (do not have to be left
justified). The following entries are used for /DEFINE:

Positions Entry

7-13 /DEFINE

14 Blank

15 - 80 condition-name
81 - 100 Comments

The /DEFINE directive adds a condition-name to the list of currently defined
conditions. A subsequent /IF DEFINED(condition-name) would be true. A
subsequent /IF NOT DEFINED(condition-name) would be false.

Note: The command parameter DEFINE can be used to predefine up to 32
conditions on the CRTBNDRPG and CRTRPGMOD commands.

/UNDEFINE (Positions 7-15)
Use the /UNDEFINE directive to indicate that a condition is no longer defined.
The entries in the condition-name area are free-format (do not have to be left

justified).

Positions Entry

7-15 /UNDEFINE
16 Blank

17 - 80 condition-name
81 - 100 Comments

Chapter 2. Compiler Directives 15

Conditional Compilation Directives

The /UNDEFINE directive removes a condition-name from the list of currently
defined conditions. A subsequent /IF DEFINED(condtion-name) would be false. A
subsequent /IF NOT DEFINED(condition-name) would be true.

Note: Any conditions specified on the DEFINE parameter will be considered to be
defined when processing /IF and /ELSEIF directives. These conditions can
be removed using the /UNDEFINE directive.

Predefined Conditions

Several conditions are defined for you by the RPG compiler. These conditions
cannot be used with /DEFINE or /UNDEFINE. They can only be used with /IF
and /ELSEIF.

Conditions Relating to the Environment

*ILERPG This condition is defined if your program is being compiled by the
ILE RPG IV compiler (the compiler described in this document).
* This module is to be defined on different platforms. With
* the ILE RPG compiler, the BNDDIR keyword is used to
* indicate where procedures can be found. With a different
* compiler, the BNDDIR keyword might not be valid.
/IF DEFINED (*ILERPG)
H BNDDIR('QC2LE')
/ENDIF

To learn what conditions are available with another version of the
RPG IV compiler, consult the reference for the compiler. For
example, for VisualAge RPG see VisualAge RPG Language Reference,
SC09-2451-04.

Conditions Relating to the Command Being Used

*CRTBNDRPG
This condition is defined if your program is being compiled by the
CRTBNDRPG command, which creates a program.
/IF DEFINED(*CRTBNDRPG)

H DFTACTGRP (+NO)
/ENDIF

*CRTRPGMOD
This condition is defined if your program is being compiled by the
CRTRPGMOD command, which creates a module.

This code might appear in a generic Control specification
contained in a /COPY file. The module that contains the
main procedure would define condition THIS IS MAIN before
coding the /COPY directive.

* %k ok *

*

If the CRTRPGMOD command is not being used, or if
THIS_IS_MAIN is defined, the NOMAIN keyword will not
* be used in this Control specification.

*

/IF DEFINED(*CRTRPGMOD)

/IF NOT DEFINED(THIS_IS_MAIN)
H NOMAIN

/ENDIF

/ENDIF

Conditions Relating to the Target Release

*VxRxMx This condition is defined if your program is being compiled for a

16 ILE RPG Reference

Conditional Compilation Directives

version that is greater than or equal to the release in the condition,
starting with *V4R4MO (Version 4 Release 4 Modification 0).

Use this condition if you will run the same program on different
target releases, and want to take advantage of features that are not
available in every release. Support for this condition is available
starting with *V4R4MO0 systems with the appropriate PTF installed.

/IF DEFINED(*V5R1MO)
* Specify code that is valid in V5RIMO and subsequent releases
I/INCLUDE SRCFIL,MBR2

/ELSE
* Specify code that is available in V4R4MO

I/COPY SRCFIL,MBR2

/ENDIF

Condition Expressions
A condition expression has one of the following forms:
* DEFINED(condition-name)
* NOT DEFINED(condition-name)

The condition expression is free-format but cannot be continued to the next line.

Testing Conditions

Conditions are tested using /IF groups, consisting of an /IF directive, followed by
zero or more /ELSEIF directives, followed optionally by an /ELSE directive,
followed by an /ENDIF directive.

Any source lines except compile-time data, are valid between the directives of an
/IF group. This includes nested /IF groups.

Note: There is no practical limit to the nesting level of /IF groups.

/IF Condition-Expression (Positions 7-9)
The /IF compiler directive is used to test a condition expression for conditional
compilation. The following entries are used for /IF:

Positions Entry

7-9 A

10 Blank

11 - 80 |Condition expression|
81 - 100 Comments

If the condition expression is true, source lines following the /IF directive are
selected to be read by the compiler. Otherwse, lines are excluded until the next
/ELSEIF, /ELSE or /ENDIF in the same /IF group.

/ELSEIF Condition-Expression (Positions 7-13)

The /ELSEIF compiler directive is used to test a condition expression within an
/IF or /ELSEIF group. The following entries are used for /ELSEIF:

Positions Entry

Chapter 2. Compiler Directives 17

Conditional Compilation Directives

18

ILE RPG Reference

7-13 /ELSEIF

14 Blank

15 - 80 [Condition expression|
81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, and the condition expression is
true, then source lines following the /ELSEIF directive are selected to be read.
Otherwise, lines are excluded until the next /ELSEIF, /ELSE or /JENDIF in the
same /IF group is encountered.

/ELSE (Positions 7-11)

The /ELSE compiler directive is used to unconditionally select source lines to be
read following a failed /IF or /ELSEIF test. The following entries are used for
/ELSE:

Positions Entry
7-11 /ELSE

12 - 80 Blank

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, source lines are selected until the
next /ENDIF.

If the previous /IF or /ELSEIF was satisfied, source lines are excluded until the
next /ENDIFE.

/IENDIF (Positions 7-12)
The /ENDIF compiler directive is used to end the most recent /IF, /ELSEIF or

/ELSE group. The following entries are used for /ENDIF:

Positions Entry
7-12 /ENDIF
13 - 80 Blank

81 - 100 Comments

Following the /ENDIF directive, if the matching /IF directive was a selected line,
lines are unconditionally selected. Otherwise, the entire /IF group was not
selected, so lines continue to be not selected.

Rules for Testing Conditions

* /ELSEIF, and /ELSE are not valid outside an /IF group.

* An /IF group can contain at most one /ELSE directive. An /ELSEIF directive
cannot follow an /ELSE directive.

* /ENDIF is not valid outside an /IF, /ELSEIF or /ELSE group.

¢ Every /IF must be matched by a subsequent /ENDIF.

* All the directives associated with any one /IF group must be in the same source
file. It is not valid to have /IF in one file and the matching /ENDIF in another,

even if the second file is in a nested /COPY. However, a complete /IF group can
be in a nested /COPY.

Conditional Compilation Directives

The /EOF Directive

The /EOF directive tells the compiler to ignore the rest of the source lines in the
current source member.

/IEOF (Positions 7-10)

The /EOF compiler directive is used to indicate that the compiler should consider
that end-of-file has been reached for the current source file. The following entries
are used for /EOF:

Positions Entry
7-10 /EOF
11 - 80 Blank
81 - 100 Comments

/EOF will end any active /IF group that became active during the reading of the
current source member. If the /EOF was in a /COPY file, then any conditions that
that were active when the /COPY directive was read will still be active.

Note: If excluded lines are being printed on the listing, the source lines will
continue to be read and listed after /EOF, but the content of the lines will be
completely ignored by the compiler. No diagnostic messages will ever be
issued after /EOF.

TIP
Using the /EOF directive will enhance compile-time performance when an
entire /COPY member is to be used only once, but may be copied in multiple
times. (This is not true if excluded lines are being printed).

The following is an example of the /EOF directive.

/IF DEFINED(READ_XYZ)

/COPY XYZ

/ENDIF 2]

e

/IF DEFINED(XYZ_COPIED)
/EOF

JELSE

/DEFINE XYZ_COPIED

/ENDIF

Figure 4. /EOF Directive

The first time this /COPY member is read, XYZ_COPIED will not be defined, so
the /EOF will not be considered.

The second time this member is read, XYZ_COPIED is defined, so the /EOF is
processed. The /IF DEFINED(XYZ_COPIED) ([H]) is considered ended, and the

Chapter 2. Compiler Directives 19

ILE RPG Reference

Conditional Compilation Directives

file is closed. However, the /IF DEFINED(READ_XYZ) (|Jf}) from the main source
member is still active until its own /ENDIF () is reached.

Handling of Directives by the RPG Preprocessor

The handling of compiler directives by the RPG preprocessor depends on the
options specified on the PPGENOPT parameter on the compile command. There
are several actions the preprocessor can take on a particular directive:

* The directive may be kept in the generated source file (indicated by "keep” in
the table below)

¢ The directive may be removed from the generated source file (indicated by
"remove” in the table below)

* The directive may be kept in the generated source file, but as a comment
(indicated by "comment” in the table below)

In general, with option *RMVCOMMENT, only the directives neccessary for
successful compilation are output to the generated source file. With option
NORMVCOMMENT, the directives not necessary for successful compilation of the
generated source file are converted into comments.

The following table summarizes how each directive is handled by the preprocessor
for the various PPGENOPT parameter values:

*RMVCOMMENT *NORMVCOMMENT

Directive *EXPINCLUDE | *NOEXPINCLUDEEXPINCLUDE | *NOEXPINCLUD
/COPY remove remove comment comment
/DEFINE remove keep comment keep
/EJECT remove remove keep keep
/ELSE remove remove comment comment
/ELSEIF remove remove comment comment
/END-EXEC keep keep keep keep
/END-FREE keep keep keep keep
/ENDIF remove remove comment comment
/EOF remove remove comment comment
/EXEC keep keep keep keep
/FREE keep keep keep keep

as remove remove comment comment
/INCLUDE remove keep comment keep
/SPACE remove remove keep keep
/TITLE remove remove keep keep
/UNDEFINE remove keep comment keep

Chapter 3. Program Cycle

The ILE RPG compiler supplies part of the logic for an RPG program. The logic
the compiler supplies is called the program cycle or logic cycle. The program cycle is
a series of ordered steps that the main procedure goes through for each record
read.

The information that you code on RPG IV specifications in your source program
need not explicitly specify when records should be read or written. The ILE RPG
compiler can supply the logical order for these operations when your source
program is compiled. Depending on the specifications you code, your program
may or may not use each step in the cycle.

Primary (identified by a P in position 18 of the file description specifications) and
secondary (identified by an S in position 18 of the file description specifications)
files indicate input is controlled by the program cycle. A full procedural file
(identified by an F in position 18 of the file description specifications) indicates
that input is controlled by program-specified calculation operations (for example,
READ and CHAIN).

To control the cycle, you can have:
* One primary file and, optionally, one or more secondary files
* Only full procedural files

* A combination of one primary file, optional secondary files, and one or more full
procedural files in which some of the input is controlled by the cycle, and other
input is controlled by the program.

* No files (for example, input can come from a parameter list or a data area data
structure).

Note: No cycle code is generated for a module when NOMAIN is specified on the
control specification.

General RPG IV Program Cycle

[Figure 5 on page 22| shows the specific steps in the general flow of the RPG IV
program cycle. A program cycle begins with step 1 and continues through step 7,
then begins again with step 1.

The first and last time a program goes through the RPG IV cycle differ somewhat
from the normal cycle. Before the first record is read the first time through the
cycle, the program resolves any parameters passed to it, writes the records
conditioned by the 1P (first page) indicator, does file and data initialization, and
processes any heading or detail output operations having no conditioning
indicators or all negative conditioning indicators. For example, heading lines
printed before the first record is read might consist of constant or page heading
information or fields for reserved words, such as PAGE and *DATE. In addition,
the program bypasses total calculations and total output steps on the first cycle.

During the last time a program goes through the cycle, when no more records are

available, the LR (last record) indicator and L1 through L9 (control level) indicators
are set on, and file and data area cleanup is done.

© Copyright IBM Corp. 1994, 2004 21

General RPG IV Program Cycle

“4’

Write Get inout Perform
heading and —» P F——> total E—
S record .
detail lines calculations

Perform
detail
calculations

No Write
< Move fields D E— total
output

End of
program

Figure 5. RPG IV Program Logic Cycle

=

All heading and detail lines (H or D in position 17 of the output
specifications) are processed.

The next input record is read and the record identifying and control level
indicators are set on.

Total calculations are processed. They are conditioned by an L1 through L9
or LR indicator, or an LO entry.

All total output lines are processed. (identified by a T in position 17 of the
output specifications).

It is determined if the LR indicator is on. If it is on, the program is ended.

The fields of the selected input records are moved from the record to a
processing area. Field indicators are set on.

All detail calculations are processed (those not conditioned by control level
indicators in positions 7 and 8 of the calculation specifications) on the data
from the record read at the beginning of the cycle.

Detailed RPG IV Program Cycle

In [“General RPG IV Program Cycle” on page 21/ the basic RPG IV Logic Cycle was

introduced. The following figures provide a detailed explanation of the RPG IV
Logic Cycle.

22 ILE RPG Reference

(1]

@ Setof RTindicator
@ Parametersresolved

First
time program
called

No

Move resultfield
tofactor 1 for
*ENTRY PLIST

*INIT
Perform programiinitialization:

® Runprograminitialization

@ Performdata structure and
subfield initialization

@ Retrieve externalindicators
(U1 through U8) and user
date fields

® Openfiles

@ Load dataareadata
structures, arrays, and tables

® Move resultfield to factor 1
for *ENTRY PLIST

@ Runinitialization subroutine,
*INZSR, if specified

@ Store data structures and

variables for RESET operation

4 BE

Perform heading and detail
® output
Perform fetch overflow lines
Setoff firstpage
indicators (1P)

*GETIN

Any
H1through H9
indicators
on

indicator

Issue message
torequester

)

No

(5 B

Response
cancel

Cancel No

with dump

Issue dump

Detailed RPG IV Program Cycle

Set of record identifying and
L1 through L9indicators

No
m RT
on
No
i
Primary file
Yes
15

Yes Seton
L1throughL9
Yes Move factor2to

resultfield for
*ENTRY PLIST

Returnto caller

@ Onfirstcycle, retrieve first
record from primary file and
and from each secondary
fileinprogram

@ Onothercycles, retrieve
input record from last file
processed, if required

Endoffile

Yes

Matchfields
specified

Figure 6. Detailed RPG IV Object Program Cycle (Part 1 of 2)

Determine record
type and sequence

No

Yes

Undefined
record type or sequ-
ence error,

RPG exception/error
handling routine

Initialize to process
the forced file

=RPG routine
(for detailedinformation
seethe descriptions that
follow this picture).

Chapter 3. Program Cycle

Detailed RPG IV Program Cycle

m Should m Seton LRindicator m @. ——
LR indicator Yes [andallcontrollevel | Overflow OFL h

be seton indicators indicator Overflow |

(L1 through L9) L. foutine _ +

Setonrecord identifying L
indicator for record selected SetMRindicator

on or off

No
Control break

® Make data available
from last record read

® Setfield indicators
on or off

@ Setonappropriate
control level indicators
(L1 through L9)

@® Save controlfields

Look-ahead

Look-ahead |
fields specified |

routine

Should
totals be
executed

*DETC

Perform detail calculations

¢

No Ed ‘TeErm

m ® Writelocked data

area structures
Reset external
on? ® indicators

|

*TOTC
Perform total calculations

*TOTL
Perform total output

Ye
Haltindicators es

-

)
g
»

Ed [-cancL

® Closefiles

No ® UnlockotherData
areas locked by
the program

Halt
Indicators

Yes

Move factor
2toparms

I

Setreturncode. If <
abnormaltermination,
issue escape message

Note: -—-— = RPGroutine (fordetailed
information, see the descriptions
thatfollow this figure).

Return
tocaller

Figure 6. Detailed RPG IV Object Program Cycle (Part 2 of 2)

Detailed RPG IV Object Program Cycle

[Figure 6 on page 23| shows the specific steps in the detailed flow of the RPG IV
program cycle. The item numbers in the following description refer to the numbers
in the figure. Routines are flowcharted in [Figure 9 on page 33 and in

24 ILE RPG Reference

[coll

B E B B B8

Detailed RPG IV Program Cycle

The RT indicator is set off. If *(ENTRY PLIST is specified the parameters are
resolved.

RPG IV checks for the first invocation of the program. If it is the first
invocation, program initialization continues. If not, it moves the result field
to factor 1 in the PARM statements in *YENTRY PLIST and branches to step
5.

The program is initialized at *INIT in the cycle. This process includes:
performing data structure and subfield initialization, setting user date
fields; opening files; loading all data area data structures, arrays and tables;
moving the result field to factor 1 in the PARM statements in *ENTRY
PLIST; running the initialization subroutine *INZSR; and storing the
structures and variables for the RESET operation. Files are opened in
reverse order of their specification on the File Description Specifications.

Heading and detail lines (identified by an H or D in position 17 of the
output specifications) are written before the first record is read. Heading
and detail lines are always processed at the same time. If conditioning
indicators are specified, the proper indicator setting must be satisfied. If
fetch overflow logic is specified and the overflow indicator is on, the
appropriate overflow lines are written. File translation, if specified, is done
for heading and detail lines and overflow output. This step is the return
point in the program if factor 2 of an ENDSR operation contains the value
*DETL.

The halt indicators (H1 through H9) are tested. If all the halt indicators are
off, the program branches to step 8. Halt indicators can be set on anytime
during the program. This step is the return point in the program if factor 2
of an ENDSR operation contains the value *GETIN.

a. If any halt indicators are on, a message is issued to the user.

b. If the response is to continue, the halt indicator is set off, and the
program returns to step 5. If the response is to cancel, the program
goes to step 6.

If the response is to cancel with a dump, the program goes to step 7;
otherwise, the program branches to step 36.

The program issues a dump and branches to step 36 (abnormal ending).

All record identifying, 1P (first page), and control level (L1 through L9)
indicators are set off. All overflow indicators (OA through OG, OV) are set
off unless they have been set on during preceding detail calculations or
detail output. Any other indicators that are on remain on.

If the LR (last record) indicator is on, the program continues with step 10.
If it is not on, the program branches to step 11.

The appropriate control level (L1 through L9) indicators are set on and the
program branches to step 29.

If the RT indicator is on, the program continues with step 12; otherwise,
the program branches to step 14.

Factor 2 is moved to the result field for the parameters of the *“ENTRY
PLIST.

If the RT indicator is on (return code set to 0), the program returns to the
caller.

Chapter 3. Program Cycle 25

Detailed RPG IV Program Cycle

26

ILE RPG Reference

If a primary file is present in the program, the program continues with
step 15; otherwise, the program branches to step 29.

During the first program cycle, the first record from the primary file and
from each secondary file in the program is read. File translation is done on
the input records. In other program cycles, a record is read from the last
file processed. If this file is processed by a record address file, the data in
the record address file defines the record to be retrieved. If lookahead
fields are specified in the last record processed, the record may already be
in storage; therefore, no read may be done at this time.

If end of file has occurred on the file just read, the program branches to
step 20. Otherwise, the program continues with step 17.

If a record has been read from the file, the record type and record sequence
(positions 17 through 20 of the input specifications) are determined.

It is determined whether the record type is defined in the program, and if
the record sequence is correct. If the record type is undefined or the record
sequence is incorrect, the program continues with step 19; otherwise, the
program branches to step 20.

The RPG IV exception/error handling routine receives control.

It is determined whether a FORCE operation was processed on the
previous cycle. If a FORCE operation was processed, the program selects
that file for processing (step 21) and branches around the processing for
match fields (steps 22 and 23). The branch is processed because all records
processed with a FORCE operation are processed with the matching record
(MR) indicator off.

If FORCE was issued on the previous cycle, the program selects the forced
file for processing after saving any match fields from the file just read. If
the file forced is at end of file, normal primary/secondary multifile logic
selects the next record for processing and the program branches to step 24.

If match fields are specified, the program continues with step 23;
otherwise, the program branches to step 24.

The match fields routine receives control. (For detailed information on the
match fields routine, see ["Match Fields Routine” on page 29))

The LR (last record) indicator is set on when all records are processed from
the files that have an E specified in position 19 of the file description
specifications and all matching secondary records have been processed. If
the LR indicator is not set on, processing continues with step 26.

The LR (last record) indicator is set on and all control level (L1 through L9)
indicators, and processing continues with step 29.

The record identifying indicator is set on for the record selected for
processing.

It is determined whether the record selected for processing caused a
control break. A control break occurs when the value in the control fields
of the record being processed differs from the value of the control fields of
the last record processed. If a control break has not occurred, the program
branches to step 29.

When a control break occurs, the appropriate control level indicator (L1
through L9) is set on. All lower level control indicators are set on. The
program saves the contents of the control fields for the next comparison.

w
w

w
(<))

w
~N

iy K2V
oo

Detailed RPG IV Program Cycle

It is determined whether the total-time calculations and total-time output
should be done. Totals are always processed when the LR indicator is on.
If no control level is specified on the input specifications, totals are
bypassed on the first cycle and after the first cycle, totals are processed on
every cycle. If control levels are specified on the input specifications, totals
are bypassed until after the first record containing control fields has been
processed.

All total calculations conditioned by a control level entry (positions 7 and 8
of the calculation specifications). are processed. This step is the return
point in the program if factor 2 of an ENDSR operation contains the value
*TOTC.

All total output is processed. If fetch overflow logic is specified and the
overflow indicator (OA through OG, OV) associated with the file is on, the
overflow lines are written. File translation, if specified, is done for all total
output and overflow lines. This step is the return point in the program if
factor 2 of an ENDSR operation contains the value *TOTL.

If LR is on, the program continues with step 33; otherwise, the program
branches to step 41.

The halt indicators (H1 through H9) are tested. If any halt indicators are
on, the program branches to step 36 (abnormal ending). If the halt
indicators are off, the program continues with step 34. If the RETURN
operation code is used in calculations, the program branches to step 33
after processing of that operation.

If LR is on, the program continues with step 35. If it is not on, the program
branches to step 38.

RPG IV program writes all arrays or tables for which the TOFILE keyword
has been specified on the definition specification and writes all locked data
area data structures. Output arrays and tables are translated, if necessary.

All open files are closed. The RPG IV program also unlocks all data areas
that have been locked but not unlocked by the program. If factor 2 of an
ENDSR operation contains the value *CANCL, this step is the return point.

The halt indicators (H1 through H9) are tested. If any halt indicators are
on, the program branches to step 39 (abnormal ending). If the halt
indicators are off, the program continues with step 38.

The factor 2 fields are moved to the result fields on the PARMs of the
*ENTRY PLIST.

The return code is set. 1 = LR on, 2 = error, 3 = halt.

Control is returned to the caller.

Note: Steps 32 through 40 constitute the normal ending routine. For an abnormal

ending, steps 34 through 35 are bypassed.

It is determined whether any overflow indicators (OA through OG OV) are
on. If an overflow indicator is on, the program continues with step 42;
otherwise, the program branches to step 43.

The overflow routine receives control. (For detailed information on the
overflow routine, see [‘Overflow Routine” on page 29)) This step is the
return point in the program if factor 2 of an ENDSR operation contains the
value *OFL.

The MR indicator is set on and remains on for the complete cycle that

Chapter 3. Program Cycle 27

Detailed RPG IV Program Cycle

28

processes the matching record if this is a multifile program and if the
record to be processed is a matching record. Otherwise, the MR indicator is
set off.

Data from the last record read is made available for processing. Field
indicators are set on, if specified.

If lookahead fields are specified, the program continues with step 46;
otherwise, the program branches to step 47.

The lookahead routine receives control. (For detailed information on the
lookahead routine, see [“Lookahead Routine” on page 30))

E
~N

Detail calculations are processed. This step is the return point in the
program if factor 2 of an ENDSR operation contains the value *DETC. The
program branches to step 4.

Initialization Subroutine

ILE RPG Reference

Refer to[Figure 6 on page 23| to see a detailed explanation of the RPG IV
initialization subroutine.

The initialization subroutine allows you to process calculation specifications before
1P output. A specific subroutine that is to be run at program initialization time can
be defined by specifying *INZSR in factor 1 of the subroutine’s BEGSR operation.
Only one subroutine can be defined as an initialization subroutine. It is called at
the end of the program initialization step of the program cycle (that is, after data
structures and subfields are initialized, external indicators and user data fields are
retrieved, files are opened, data area data structures, arrays, and tables are loaded,
and PARM result fields moved to factor 1 for *ENTRY PLIST). *INZSR may not be
specified as a file/program error/exception subroutine.

If a program ends with LR off, the initialization subroutine does not automatically
run during the next invocation of that program because the subroutine is part of
the initialization step of the program. However, if the initialization subroutine does
not complete before an exit is made from the program with LR off, the
initialization subroutine will be re-run at the next invocation of that program.

The initialization subroutine is like any other subroutine in the program, other
than being called at program initialization time. It may be called using the EXSR or
CASxx operations, and it may call other subroutines or other programs. Any
operation that is valid in a subroutine is valid in the initialization subroutine, with
the exception of the RESET operation. This is because the value used to reset a
variable is not defined until after the initialization subroutine is run.

Any changes made to a variable during the initialization subroutine affect the
value that the variable is set to on a subsequent RESET operation. Default values
can be defined for fields in record formats by, for example, setting them in the
initialization subroutine and then using RESET against the record format whenever
the default values are to be used. The initialization subroutine can also retrieve
information such as the current time for 1P output.

There is no *INZSR associated with subprocedures. If a subprocedure is the first
procedure called in a module, the *INZSR of the main procedure will not be run,
although other initialization of global data will be done. The *INZSR of the main
procedure will be run when the main procedure is called.

Detailed RPG IV Program Cycle

Match fields
routine

Multifile
processing

Look-ahead
routine

Overflow
routine

n Line :
Yes Retrive next
Determine the .tﬁ“t out n record for
file to be processed Wwith previous this file
fetch
__________ 1 Pert E

i RPGexeption/ ! eriorm Extractthe

Match fields errorh an%lin g ! overflow look-ahead
sequence error i ! output fields

B 1w~ @ T '
Move the match Return Return
fieldstothe

match field hold area

Figure 7. Detail Flow of RPG IV Match Fields, Overflow, and Lookahead Routines

Match Fields Routine
shows the specific steps in the RPG IV match fields routine. The item
numbers in the following descriptions refer to the numbers in the figure.

If multifile processing is being used, processing continues with step 2;
otherwise, the program branches to step 3.

2| The value of the match fields in the hold area is tested to determine which
file is to be processed next.

H The RPG IV program extracts the match fields from the match files and
processes sequence checking. If the match fields are in sequence, the
program branches to step 5.

4] If the match fields are not in sequence, the RPG IV exception/error
handling routine receives control.

5 The match fields are moved to the hold area for that file. A hold area is
provided for each file that has match fields. The next record is selected for
processing based on the value in the match fields.

Overflow Routine
shows the specific steps in the RPG IV overflow routine. The item

numbers in the following descriptions refer to the numbers in the figure.

The RPG IV program determines whether the overflow lines were written
previously using the fetch overflow logic (step 30 in [Figure 6 on page 23).
If the overflow lines were written previously, the program branches to the
specified return point; otherwise, processing continues with step 2.

2] All output lines conditioned with an overflow indicator are tested and
written to the conditioned overflow lines.

The fetch overflow routine allows you to alter the basic RPG IV overflow logic to
prevent printing over the perforation and to let you use as much of the page as

possible. During the regular program cycle, the RPG IV program checks only once,

Chapter 3. Program Cycle 29

Detailed RPG IV Program Cycle

immediately after total output, to see if the overflow indicator is on. When the
fetch overflow function is specified, the RPG IV program checks overflow on each
line for which fetch overflow is specified.

Specify fetch overflow with an F in position 18 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to
determine whether the line is to be written. If the line is to be written and an F is
specified in position 18, the RPG IV program tests to determine whether the
overflow indicator is on. If the overflow indicator is on, the overflow routine is
fetched and the following operations occur:

* Only the overflow lines for the file with the fetch specified are checked for
output.

* All total lines conditioned by the overflow indicator are written.

* Forms advance to a new page when a skip to a line number less than the line
number the printer is currently on is specified in a line conditioned by an
overflow indicator.

* Heading, detail, and exception lines conditioned by the overflow indicator are
written.

¢ The line that fetched the overflow routine is written.
* Any detail and total lines left to be written for that program cycle are written.

Position 18 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an
overflow indicator is specified in positions 21 through 29 of the same specification
line. If this occurs, the overflow routine is not fetched.

Use the fetch overflow routine when there is not enough space left on the page to
print the remaining detail, total, exception, and heading lines conditioned by the
overflow indicator. To determine when to fetch the overflow routine, study all
possible overflow situations. By counting lines and spaces, you can calculate what
happens if overflow occurs on each detail, total, and exception line.

Lookahead Routine
[Figure 7 on page 29 shows the specific steps in the RPG IV lookahead routine. The
item numbers in the following descriptions refer to the numbers in the figure.

The next record for the file being processed is read. However, if the file is a
combined or update file (identified by a C or U, respectively, in position 17
of the file description specifications), the lookahead fields from the current
record being processed is extracted.

2 | The lookahead fields are extracted.

Ending a Program without a Primary File

If your program does not contain a primary file, you must specify a way for the
program to end:

* By setting the LR indicator on
* By setting the RT indicator on
* By setting an H1 through H9 indicator on
* By specifying the RETURN operation code

30 ILE RPG Reference

Detailed RPG IV Program Cycle

The LR, RT, H1 through H9 indicators, and the RETURN operation code, can be
used in conjunction with each other.

Program Control of File Processing

Specify a full procedural file (F in position 18 of the file description specifications)
to control all or partial input of a program. A full procedural file indicates that
input is controlled by program-specified calculation operations (for example,
READ, CHAIN). When both full procedural files and a primary file (P in position
18 of the file description specifications) are specified in a program, some of the
input is controlled by the program, and other input is controlled by the cycle. The
program cycle exists when a full procedural file is specified; however, file
processing occurs at detail or total calculation time for the full procedural file.

The file operation codes can be used for program control of input. These file
operation codes are discussed in [“File Operations” on page 408.|

Chapter 3. Program Cycle 31

Detailed RPG IV Program Cycle

START
[J i [J

® Performs heading i

. operations. Performs
e Performs detail detail output operations.
calcul'atlo'ns.' Sets If overflow line has been

resulting indicators. reached, sets on overflow
o indicator.

Moves data from record selected at
beginning of cycle into processing area.

Sets off control level
indicators. Sets off record
identifying indicators.

Overflow indicator on? Yes, performs
overflow operations.

Reads a record. ®

End-of-file? Yes, sets on
control level and LR indicators
and skips to perform total
calculations.

LR indicator on? Yes, end of
program has been reached.

Sets on record identifying indicators
for the record just read. L

Performs total output operations.
PS If overflow line has been reached,
sets on overflow indicator.

Change in control fields?
Yes, sets on control level ®
indicators.

[] .
Performs total calculations.

Sets resulting indicators. Note: The boxed steps

are bypassed when no
primary file exists;

that is, when the
programmer controls
all the input operations.

Figure 8. Programmer Control of Input Operation within the Program-Cycle

32 ILE RPG Reference

Detailed RPG IV Program Cycle

Process next
sequential instruction

Exception/Error?

n Set up fileinformation
orprogram status data
structure if coded

Yes Setonindicator and
process next
sequential instruction

Errorindicator
coded on operation?

IE Control passes to INFSR
or *PSSR subroutine

INFSRor*PSSR
subroutine present?

Return point specified?

No

l Return to specified point

Status code
1121-1126
present?

Yes Resume current
operation

Percolate exception to
caller of this procedure
See text formore
information on the next point
inthis procedure.

Exceptionis
Function Check

E Issue message
torequester

Response cancel ?

Continue procedure

Issue Dump

[

Close Files
Unlock Data Areas

[

Setprocedure so
thatitcan be called again

[

m Setreturn code and
percolate Function Check

Figure 9. Detail Flow of RPG IV Exception/Error Handling Routine
RPG IV Exception/Error Handling Routine

shows the specific steps in the RPG IV exception/error handling routine.
The item numbers in the following description refer to the numbers in the figure.

Chapter 3. Program Cycle 33

Detailed RPG IV Program Cycle

34

ILE RPG Reference

2]

=

BEEEEEE B

=
(3,

Set up the file information or procedure status data structure, if specified,
with status information.

If the exception/error occurred on an operation code that has an indicator
specified in positions 73 and 74, the indicator is set on, and control returns
to the next sequential instruction in the calculations.

If the appropriate exception/error subroutine (INFSR or *PSSR) is present
in the procedure, the procedure branches to step 13; otherwise, the
procedure continues with step 4.

If the Status code is 1121-1126 (see [“File Status Codes” on page 77)), control
returns to the current instruction in the calculations. If not, the procedure
continues with step 5.

If the exception is a function check, the procedure continues with step 6. If
not, it branches to step 15.

An inquiry message is issued to the requester. For an interactive job, the
message goes to the requester. For a batch job, the message goes to
QSYSOPR. If QSYSOPR is not in break mode, a default response is issued.

If the user’s response is to cancel the procedure, the procedure continues
with step 8. If not, the procedure continues.

If the user’s response is to cancel with a dump, the procedure continues
with step 9. If not, the procedure branches to step 10.

A dump is issued.

All files are closed and data areas are unlocked

The procedure is set so that it can be called again.

The return code is set and the function check is percolated.

Control passes to the exception/error subroutine (INFSR or *PSSR).

If a return point is specified in factor 2 of the ENDSR operation for the
exception/error subroutine, the procedure goes to the specified return
point. If a return point is not specified, the procedure goes to step 4. If a
field name is specified in factor 2 of the ENDSR operation and the content
is not one of the RPG IV-defined return points (such as *GETIN or *DETC),
the procedure goes to step 6. No error is indicated, and the original error is
handled as though the factor 2 entry were blank.

If no invocation handles the exception, then it is promoted to function
check and the procedure branches to step 5. Otherwise, depending on the
action taken by the handler, control resumes in this procedure either at
step 10 or at the next machine instruction after the point at which the
exception occurred.

Chapter 4. RPG IV Indicators

An indicator is a one byte character field which contains either '1” (on) or ‘0" (off).
It is generally used to indicate the result of an operation or to condition (control)
the processing of an operation.

The indicator format can be specified on the definition specifications to define
indicator variables. For a description of how to define character data in the

indicator format, see|“Character Format” on page 172 and [“Position 40 (Internall
ata Type)” on page 292.|This chapter describes a special set of predefined RPG IV

indicators (*INxx).

RPG 1V indicators are defined either by an entry on a specification or by the RPG
IV program itself. The positions on the specification in which you define the
indicator determine how the indicator is used. An indicator that has been defined
can then be used to condition calculation and output operations.

The RPG IV program sets and resets certain indicators at specific times during the
program cycle. In addition, the state of most indicators can be changed by
calculation operations. All indicators except MR, 1P, KA through KN, and KP
through KY can be set on with the SETON operation code; all indicators except
MR and 1P can be set off with the SETOFF operation code.

This chapter is divided into the following topics:
* |[Indicators defined on the RPG IV specifications]
* |[Indicators not defined on the RPG IV specifications|

+ |Using indicators|

+ |Indicators referred to as datal

Indicators Defined on RPG IV Specifications

You can specify the following indicators on the RPG IV specifications:

* [Overflow indicator| (the OFLIND keyword on the file description specifications).

* [Record identifying indicator] (positions 21 and 22 of the input specifications).

* [Control level indicator| (positions 63 and 64 of the input specifications).

. (positions 69 through 74 of the input specifications).

* [Resulting indicator]| (positions 71 through 76 of the calculation specifications).

e *IN array, *IN(xx) array element or *INxx field (See |”Indicators Referred to Asl
[Data” on page 60| for a description of how an indicator is defined when used
with one of these reserved words.).

The defined indicator can then be used to condition operations in the program.

Overflow Indicators

An overflow indicator is defined by the OFLIND keyword on the file description
specifications. It is set on when the last line on a page has been printed or passed.
Valid indicators are *INOA through *INOG, *INOV, and *INO1 through *IN99. A
defined overflow indicator can then be used to condition calculation and output
operations. A description of the overflow indicator and fetch overflow logic is
given in [‘Overflow Routine” on page 29

© Copyright IBM Corp. 1994, 2004 35

Indicators Defined on RPG IV Specifications

36

Record Identifying Indicators

ILE RPG Reference

A record identifying indicator is defined by an entry in positions 21 and 22 of the
input specifications and is set on when the corresponding record type is selected
for processing. That indicator can then be used to condition certain calculation and
output operations. Record identifying indicators do not have to be assigned in any
particular order.

The valid record identifying indicators are:
* 0199

* HI1-H9

+ L1-L9

* LR

+ U1-U8

* RT

For an externally described file, a record identifying indicator is optional, but, if
you specify it, it follows the same rules as for a program described file.

Generally, the indicators 01 through 99 are used as record identifying indicators.
However, the control level indicators (L1 through L9) and the last record indicator
(LR) can be used. If L1 through L9 are specified as record identifying indicators,
lower level indicators are not set on.

When you select a record type for processing, the corresponding record identifying
indicator is set on. All other record identifying indicators are off except when a file
operation code is used at detail and total calculation time to retrieve records from a
file (see below). The record identifying indicator is set on after the record is
selected, but before the input fields are moved to the input area. The record
identifying indicator for the new record is on during total time for the old record;
therefore, calculations processed at total time using the fields of the old record
cannot be conditioned by the record identifying indicator of the old record. You
can set the indicators off at any time in the program cycle; they are set off before
the next primary or secondary record is selected.

If you use a file operation code on the calculation specifications to retrieve a
record, the record identifying indicator is set on as soon as the record is retrieved
from the file. The record identifying indicator is not set off until the appropriate
point in the RPG IV cycle. (See|Figure 8 on page 32}) Therefore, it is possible to
have several record identifying indicators for the same file, as well as
record-not-found indicators, set on concurrently if several operations are issued to
the same file within the same RPG IV program cycle.

Rules for Assigning Record Identifying Indicators
When you assign record identifying indicators to records in a program described
file, remember the following:

* You can assign the same indicator to two or more different record types if the
same operation is to be processed on all record types. To do this, you specify the
record identifying indicator in positions 21 and 22, and specify the record
identification codes for the various record types in an OR relationship.

* You can associate a record identifying indicator with an AND relationship, but it
must appear on the first line of the group. Record identifying indicators cannot
be specified on AND lines.

Indicators Defined on RPG IV Specifications

* An undefined record (a record in a program described file that was not
described by a record identification code in positions 23 through 46) causes the
program to halt.

* A record identifying indicator can be specified as a record identifying indicator
for another record type, as a field indicator, or as a resulting indicator. No
diagnostic message is issued, but this use of indicators may cause erroneous
results.

When you assign record identifying indicators to records in an externally described
file, remember the following:

¢ AND/OR relationships cannot be used with record format names; however, the
same record identifying indicator can be assigned to more than one record.

* The record format name, rather than the file name, must be specified in
positions 7 through 16.

For an example of record identifying indicators, see

IFiTename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. v vv e v in it iieiieiieiieineenns
AU Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...

IxRecord identifying indicator 01 is set on if the record read
Ixcontains an S in position 1 or an A in position 1.

IINPUT1 NS 01 1CS

I OR 1CA

I 1 25 FLD1

* Record identifying indicator 02 is set on if the record read
* contains XYZA in positions 1 through 4.

I NS 02 1 CX 2 CY 3 Cz

I AND 4 CA

I 1 15 FLDA
I 16 20 FLDB

* Record identifying indicator 95 is set on if any record read

* does not meet the requirements for record identifying indicators
* 01 or 02.

I NS 95

*

* For an externally described file, record identifying indicator 10
* is set on if the ITMREC record is read and record identifying

* indicator 20 is set on if the SLSREC or COMREC records are read.

IITMREC 10
ISLSREC 20
ICOMREC 20

Figure 10. Examples of Record Identifying Indicators

Control Level Indicators (L1-L9)

A control level indicator is defined by an entry in positions 63 and 64 of the input
specifications, designating an input field as a control field. It can then be used to
condition calculation and output operations. The valid control level indicator
entries are L1 through L9.

A control level indicator designates an input field as a control field. When a control
field is read, the data in the control field is compared with the data in the same
control field from the previous record. If the data differs, a control break occurs,
and the control level indicator assigned to the control field is set on. You can then
use control level indicators to condition operations that are to be processed only

Chapter 4. RPG IV Indicators 37

Indicators Defined on RPG IV Specifications

38

ILE RPG Reference

when all records with the same information in the control field have been read.
Because the indicators stay on for both total time and the first detail time, they can
also be used to condition total printing (last record of a control group) or detail
printing (first record in a control group). Control level indicators are set off before
the next record is read.

A control break can occur after the first record containing a control field is read.
The control fields in this record are compared to an area in storage that contains
hexadecimal zeros. Because fields from two different records are not being
compared, total calculations and total output operations are bypassed for this
cycle.

Control level indicators are ranked in order of importance with L1 being the lowest
and L9 the highest. All lower level indicators are set on when a higher level
indicator is set on as the result of a control break. However, the lower level
indicators can be used in the program only if they have been defined. For example,
if L8 is set on by a control break, L1 through L7 are also set on. The LR (last
record) indicator is set on when the input files are at end of file. LR is considered
the highest level indicator and forces L1 through L9 to be set on.

You can also define control level indicators as record identifying or resulting
indicators. When you use them in this manner, the status of the lower level
indicators is not changed when a higher level indicator is set on. For example, if
L3 is used as a resulting indicator, the status of L2 and L1 would not change if L3
is set on.

The importance of a control field in relation to other fields determines how you
assign control level indicators. For example, data that demands a subtotal should
have a lower control level indicator than data that needs a final total. A control
field containing department numbers should have a higher control level indicator
than a control field containing employee numbers if employees are to be grouped
within departments (see [Figure 11 on page 40).

Rules for Control Level Indicators
When you assign control level indicators, remember the following:

* You can specify control fields only for primary or secondary files.

* You cannot specify control fields for full procedural files; numeric input fields of
type binary, integer, unsigned or float; or look-ahead fields.

* You cannot use control level indicators when an array name is specified in
positions 49 through 62 of the input specifications; however, you can use control
level indicators with an array element. Control level indicators are not allowed
for null-capable fields.

* Control level compare operations are processed for records in the order in which
they are found, regardless of the file from which they come.

* If you use the same control level indicator in different record types or in
different files, the control fields associated with that control level indicator must
be the same length (see [Figure 11 on page 40)) except for date, time, and
timestamp fields which need only match in type (that is, they can be different
formats).

* The control level indicator field length is the length of a control level indicator
in a record. For example, if L1 has a field length of 10 bytes in a record, the
control level indicator field length for L1 is 10 positions.

The control level indicator field length for split control fields is the sum of the
lengths of all fields associated with a control level indicator in a record. If L2 has

Indicators Defined on RPG IV Specifications

a split control field consisting of 3 fields of length: 12 bytes, 2 bytes and 4 bytes;
then the control level indicator field length for L2 is 18 positions.

If multiple records use the same control level indicator, then the control level
indicator field length is the length of only one record, not the sum of all the
lengths of the records.

Within a program, the sum of the control level indicator field lengths of all
control level indicators cannot exceed 256 positions.

* Record positions in control fields assigned different control level indicators can
overlap in the same record type (see [Figure 12 on page 40). For record types that
require control or match fields, the total length of the control or match field
must be less than or equal to 256. For example, in [Figure 12 on page 40}, 15
positions have been assigned to control levels.

* Field names are ignored in control level operations. Therefore, fields from
different record types that have been assigned the same control level indicator
can have the same name.

* Control levels need not be written in any sequence. An L2 entry can appear
before L1. All lower level indicators need not be assigned.

e If different record types in a file do not have the same number of control fields,
unwanted control breaks can occur.

[Figure 13 on page 41| shows an example of how to avoid unwanted control breaks.

Chapter 4. RPG IV Indicators 39

Indicators Defined on RPG IV Specifications

40

ILE RPG Reference

LTI S L AP L P ST e FTTT Y IR TR ST TR AR AR
Ax EMPLOYEE MASTER FILE -- EMPMSTL

A R EMPREC PFILE (EMPMSTL)
A EMPLNO 6

A DEPT 3

A DIVSON 1

A*

Ax (ADDITIONAL FIELDS)

A*

A R EMPTIM PFILE (EMPMSTP)
A EMPLNO 6

A DEPT 3

A DIVSON 1

A*

A* (ADDITIONAL FIELDS)

IFilename++SqNORiPOS1+NCCPOS2+NCCPOS3+NCC. v v vt vt et e e et eeieeeneenannns
AP Fmt+SPFrom+To+++DcField+++++++++L1IMIFrPIMnZr. ...

*
* In this example, control level indicators are defined for three
* fields. The names of the control fields (DIVSON, DEPT, EMPLNO)
* give an indication of their relative importance.

* The division (DIVSON) is the most important group.

* It is given the highest control level indicator used (L3).

% The department (DEPT) ranks below the division;

* L2 is assigned to it. The employee field (EMPLNO) has

* the lowest control level indicator (L1) assigned to it.

*

E

IEMPREC 10

I EMPLNO L1

I DIVSON L3

I DEPT L2

*

* The same control level indicators can be used for different record
* types. However, the control fields having the same indicators must
* be the same Tength. For records in an externally described file,
* the field attributes are defined in the external description.

*

IEMPTIM 20

I EMPLNO L1

I DEPT L2

I DIVSON L3

Figure 11. Control Level Indicators (Two Record Types)

Control Field 1

,-‘
12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
—

Control Field 2

A total of 15 positions has been
assigned to these control levels.

Figure 12. Overlapping Control Fields

Indicators Defined on RPG IV Specifications

(L2) (L2) (L1)
Salesman Salesman Salesman | Numb. A
Number Name Number tem Number mount
1 2 3 15 1 3 5 6 8
Salesman Record Iltem Record
Figure 13. How to Avoid Unwanted Control Breaks (Part 1 of 4)
. I RSP . RPN DU SR PPN, DU AP e DU AP AR
IFiTename++SqNORiPOS1+NCCPOS2+NCCPOS3+NCC. oo v v vt ii it iieii e iieiie e
P Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
ISALES 01
I 1 2 L2FLD L2
I 3 15 NAME
IITEM 02
I 1 2 L2FLD L2
I 3 5 L1FLD L1
I 6 8 AMT

CLON®1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
* Indicator 11 is set on when the salesman record is read.

cC o1 SETON 11
*

* Indicator 11 is set off when the item record is read.

* This allows the normal L1 control break to occur.

*

cC 02 SETOFF 11
C 02AMT ADD L1TOT L1TOT 50
CL1 L1TOT ADD L2TOT L2TOT 50
CL2 L2TOT ADD LRTOT LRTOT 50

*

Figure 13. How to Avoid Unwanted Control Breaks (Part 2 of 4)

Chapter 4. RPG IV Indicators

41

Indicators Defined on RPG IV Specifications

OFilename++DF. .NOINO2NO3Excnam++++B++A++Sh+Sa+. ... vvieiiei i inenenen..

[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
OPRINTER D 01 11

0 L2FLD 5

0 NAME 25

0 D 02 1

0 L1FLD 15

0 AMT Y4 15

*

* When the next item record causes an L1 control break, no total
* output is printed if indicator 11 is on. Detail calculations
* are then processed for the item record.

*

OFilename++DF. .NOINO2NO3Excnam++++B++A++Sh+Sa+. ... cviiiiiinrnecennnnanns

(1 NO1NO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
0 T LIN11 1

0 L1TOT ZB 25

0 27 'x'

0 T L2 1

0 L2TOT ZB 25

0 28 'xx!

0 T LR 1

0 LRTOT ZB 25

Figure 13. How to Avoid Unwanted Control Breaks (Part 3 of 4)

01 JOHN SMITH . Unwanted 01 JOHN SMITH
control
100 3 break 100 3
100 2 100 2
5 * 5 *
101 4 101 4
4 * 4 *
9 *k 9 *%
02 JANE DOE . Unwanted 02 JANE DOE
control
100 6 break 100 6
100 2 100 2
8 * 8
101 3 101 3
3 3
11 * 11 *
20 20
Output Showing Unwanted Control Level Break Corrected Output

Figure 13. How to Avoid Unwanted Control Breaks (Part 4 of 4)

Different record types normally contain the same number of control fields.
However, some applications require a different number of control fields in some
records.

42 ILE RPG Reference

Indicators Defined on RPG IV Specifications

The salesman records contain only the L2 control field. The item records contain
both L1 and L2 control fields. With normal RPG IV coding, an unwanted control
break is created by the first item record following the salesman record. This is
recognized by an L1 control break immediately following the salesman record and
results in an asterisk being printed on the line below the salesman record.

* Numeric control fields are compared in zoned decimal format. Packed numeric
input fields lengths can be determined by the formula:

d=2n-1

Where d = number of digits in the field and n = length of the input field. The
number of digits in a packed numeric field is always odd; therefore, when a
packed numeric field is compared with a zoned decimal numeric field, the
zoned field must have an odd length.

* When numeric control fields with decimal positions are compared to determine
whether a control break has occurred, they are always treated as if they had no
decimal positions. For instance, 3.46 is considered equal to 346.

* If you specify a field as numeric, only the positive numeric value determines
whether a control break has occurred; that is, a field is always considered to be
positive. For example, -5 is considered equal to +5.

* Date and time fields are converted to *ISO format before being compared
* Graphic data is compared by hexadecimal value

Split Control Field

A split control field is formed when you assign more than one field in an input
record the same control level indicator. For a program described file, the fields that
have the same control level indicator are combined by the program in the order
specified in the input specifications and treated as a single control field (see
. The first field defined is placed in the high-order (leftmost) position of
the control field, and the last field defined is placed in the low-order (rightmost)
position of the control field.

IFiTename++SqNORiPos1+NCCPOS2+NCCPOS3+NCC. o v v evriiiii it nnnnn,

AP Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
IMASTER 01

I 28 31 CUSNO L4

I 15 20 ACCTNO L4

I 50 52 REGNO L4

Figure 14. Split Control Fields

For an externally described file, fields that have the same control level indicator are
combined in the order in which the fields are described in the data description
specifications (DDS), not in the order in which the fields are specified on the input
specifications. For example, if these fields are specified in DDS in the following
order:

« EMPNO
« DPTNO
* REGNO

and if these fields are specified with the same control level indicator in the
following order on the input specifications:

* REGNO L3
« DPTNO L3

Chapter 4. RPG IV Indicators 43

Indicators Defined on RPG IV Specifications

44

ILE RPG Reference

« EMPNO L3

the fields are combined in the following order to form a split control field: EMPNO
DPTNO REGNO.

Some special rules for split control fields are:

 For one control level indicator, you can split a field in some record types and not
in others if the field names are different. However, the length of the field,
whether split or not, must be the same in all record types.

* You can vary the length of the portions of a split control field for different
record types if the field names are different. However, the total length of the
portions must always be the same.

* A split control field can be made up of a combination of packed decimal fields
and zoned decimal fields so long as the field lengths (in digits or characters) are
the same.

* You must assign all portions of a split control field in one record type the same
field record relation indicator and it must be defined on consecutive specification
lines.

* When a split control field contains a date, time, or timestamp field than all fields
in the split control field must be of the same type.

shows examples of the preceding rules.

IFilename++SqNORiPosS1+NCCPOS2+NCCPOS3+NCC. o vv v e vviiiie it nnnnn,

AP Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
IDISK BC 91 95 C1

I OR 92 95 C2

I OR 93 95 C3

I

* ATl portions of the split control field must be assigned the same
* control level indicator and all must have the same field record
* relation entry.

I 1 5 FLD1A L1
I 46 50 FLD1B L1
I 11 13 FLDA L2
I 51 60 FLD2A L3
I 31 40 FLD2B L3
I 71 75 FLD3A L4 92
I 26 27 FLD3B L4 92
I 41 45 FLD3C L4 92
I 61 70 FLDB 92
I 21 25 FLDC 92
I 6 10 FLD3D L4 93
I 14 20 FLD3E L4 93

Figure 15. Split Control Fields—Special Rules

The record identified by a "1” in position 95 has two split control fields:
1. FLD1A and FLD1B
2. FLD2A and FLD2B

The record identified with a "2 in position 95 has three split control fields:
1. FLDIA and FLD1B

2. FLD2A and FLD2B

3. FLD3A, FLD3B, and FLD3C

Indicators Defined on RPG IV Specifications

The third record type, identified by the 3 in position 95, also has three split control
fields:

1. FLDI1A and FLD1B
2. FLD2A and FLD2B
3. FLD3D and FLD3E

Field Indicators

A field indicator is defined by an entry in positions 69 and 70, 71 and 72, or 73 and
74 of the input specifications. The valid field indicators are:

* 01-99
* HI1-H9
- Ul1-U8
e RT

You can use a field indicator to determine if the specified field or array element is
greater than zero, less than zero, zero, or blank. Positions 69 through 72 are valid
for numeric fields only; positions 73 and 74 are valid for numeric or character
fields. An indicator specified in positions 69 and 70 is set on when the numeric
input field is greater than zero; an indicator specified in positions 71 and 72 is set
on when the numeric input field is less than zero; and an indicator specified in
positions 73 and 74 is set on when the numeric input field is zero or when the
character input field is blank. You can then use the field indicator to condition
calculation or output operations.

A field indicator is set on when the data for the field or array element is extracted
from the record and the condition it represents is present in the input record. This
field indicator remains on until another record of the same type is read and the
condition it represents is not present in the input record, or until the indicator is
set off as the result of a calculation.

You can use halt indicators (H1 through H9) as field indicators to check for an
error condition in the field or array element as it is read into the program.

Rules for Assigning Field Indicators

When you assign field indicators, remember the following:

* Indicators for plus, minus, zero, or blank are set off at the beginning of the
program. They are not set on until the condition (plus, minus, zero, or blank) is
satisfied by the field being tested on the record just read.

* Field indicators cannot be used with entire arrays or with look-ahead fields.
However, an entry can be made for an array element. Field indicators are
allowed for null-capable fields only if ALWNULL(*USRCTL) is used.

* A numeric input field can be assigned two or three field indicators. However,
only the indicator that signals the result of the test on that field is set on; the
others are set off.

e If the same field indicator is assigned to fields in different record types, its state
(on or off) is always based on the last record type selected.

* When different field indicators are assigned to fields in different record types, a
field indicator remains on until another record of that type is read. Similarly, a
field indicator assigned to more than one field within a single record type
always reflects the status of the last field defined.

* The same field indicator can be specified as a field indicator on another input
specification, as a resulting indicator, as a record identifying indicator, or as a

Chapter 4. RPG 1V Indicators 45

Indicators Defined on RPG IV Specifications

46

field record relation indicator. No diagnostic message is issued, but this use of
indicators could cause erroneous results, especially when match fields or level
control is involved.

* If the same indicator is specified in all three positions, the indicator is always set
on when the record containing this field is selected.

Resulting Indicators

ILE RPG Reference

Resulting indicators are used by calculation specifications in the traditional format
(C specifications). They are not used by free-form calculation specifications. For
most operation codes, in either traditional format or free-form, you can use built-in
functions instead of resulting indicators. For more information, see
[Functions” on page 386

A resulting indicator is defined by an entry in positions 71 through 76 of the
calculation specifications. The purpose of the resulting indicators depends on the
operation code specified in positions 26 through 35. (See the individual operation
code in [Chapter 23, “Operation Codes,” on page 547|for a description of the
purpose of the resulting indicators.) For example, resulting indicators can be used
to test the result field after an arithmetic operation, to identify a record-not-found
condition, to indicate an exception/error condition for a file operation, or to
indicate an end-of-file condition.

The valid resulting indicators are:

* 01-99

* HI1-H9

+ OA-OG, OV

+ L1-L9

* LR

« U1-U8

* KA-KN, KP-KY (valid only with SETOFF)
* RT

You can specify resulting indicators in three places (positions 71-72, 73-74, and
75-76) of the calculation specifications. The positions in which the resulting
indicator is defined determine the condition to be tested.

In most cases, when a calculation is processed, the resulting indicators are set off,
and, if the condition specified by a resulting indicator is satisfied, that indicator is
set on. However, there some exceptions to this rule, notably ['LOOKUP (Look Up al
[Table or Array Element)” on page 646|”SETOFF (Set Indicator Off)” on page 746
and [“SETON (Set Indicator On)” on page 747 A resulting indicator can be used as
a conditioning indicator on the same calculation line or in other calculations or
output operations. When you use it on the same line, the prior setting of the

indicator determines whether or not the calculation is processed. If it is processed,
the result field is tested and the current setting of the indicator is determined (see

IFigure 16 on page 47[).

Rules for Assigning Resulting Indicators
When assigning resulting indicators, remember the following:

* Resulting indicators cannot be used when the result field refers to an entire
array.

* If the same indicator is used to test the result of more than one operation, the
last operation processed determines the setting of the indicator.

Indicators Defined on RPG IV Specifications

* When L1 through L9 indicators are used as resulting indicators and are set on,
lower level indicators are not set on. For example, if L8 is set on, L1 through L7
are not set on.

» If H1 through H9 indicators are set on when used as resulting indicators, the
program halts unless the halt indicator is set off prior to being checked in the
program cycle. (See [Chapter 3, “Program Cycle,” on page 21).

* The same indicator can be used to test for more than one condition depending
on the operation specified.

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
*

* Two resulting indicators are used to test for the different

* conditions in a subtraction operation. These indicators are

* used to condition the calculations that must be processed for

%= a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)
* are greater than 40 and is then used to condition all operations
* necessary to find overtime pay. If Indicator 20 is not on

% (the employee worked 40 or more hours), regular pay based on a

* 40-hour week is calculated.

*

(s HRSWKD SUB 40 OVERTM 3 01020
*

C N20OPAYRAT MULT (H) 40 PAY 6 2

C 100VERTM MULT (H) OVRRAT OVRPAY 6 2

C 100VRPAY ADD PAY PAY

= If indicator 20 is on (employee worked Tess than 40 hours), pay
* based on less than a 40-hour week is calculated.
C 20PAYRAT MULT (H) HRSWKD PAY

Figure 16. Resulting Indicators Used to Condition Operations

Indicators Not Defined on the RPG IV Specifications

Not all indicators that can be used as conditioning indicators in an RPG IV
program are defined on the specification forms. External indicators (Ul through
U8) are defined by a CL command or by a previous RPG IV program. Internal
indicators (1P, LR, MR, and RT) are defined by the RPG IV program cycle itself.

External Indicators

The external indicators are Ul through US8. These indicators can be set in a CL
program or in an RPG IV program. In a CL program, they can be set by the SWS
(switch-setting) parameter on the CL commands CHGJOB (Change Job) or
CRTJOBD (Create Job Description). In an RPG IV program, they can be set as a
resulting indicator or field indicator.

The status of the external indicators can be changed in the program by specifying
them as resulting indicators on the calculation specifications or as field indicators
on the input specifications. However, changing the status of the OS/400 job
switches with a CL program during processing of an RPG IV program has no
effect on the copy of the external indicators used by the RPG IV program. Setting
the external indicators on or off in the program has no effect on file operations.
File operations function according to the status of the Ul through U8 indicators
when the program is initialized. However, when a program ends normally with LR
on, the external indicators are copied back into storage, and their status reflects

Chapter 4. RPG IV Indicators 47

Indicators Not Defined on the RPG IV Specifications

48

their last status in the RPG IV program. The current status of the external
indicators can then be used by other programs.

Note: When using ['RETURN (Return to Caller)” on page 729 with the LR
indicator off, you are specifying a return without an end and, as a result, no
external indicators are updated.

Internal Indicators

ILE RPG Reference

Internal indicators include:

* First page indicator

* Last record indicator

* Matching record indicator
* Return Indicator.

First Page Indicator (1P)

The first page (1P) indicator is set on by the RPG IV program when the program
starts running and is set off by the RPG IV program after detail time output. The
first record will be processed after detail time output. The 1P indicator can be used
to condition heading or detail records that are to be written at 1P time. Do not use
the 1P indicator in any of the following ways:

* To condition output fields that require data from input records; this is because
the input data will not be available.

* To condition total or exception output lines

* In an AND relationship with control level indicators

* As a resulting indicator

* When NOMAIN is specified on a control specification

Last Record Indicator (LR)

In a program that contains a primary file, the last record indicator (LR) is set on
after the last record from a primary/secondary file has been processed, or it can be
set on by the programmer.

The LR indicator can be used to condition calculation and output operations that
are to be done at the end of the program. When the LR indicator is set on, all other
control level indicators (L1 through L9) are also set on. If any of the indicators L1
through L9 have not been defined as control level indicators, as record identifying
indicators, as resulting indicators, or by *INxx, the indicators are set on when LR is
set on, but they cannot be used in other specifications.

In a program that does not contain a primary file, you can set the LR indicator on
as one method to end the program. (For more information on how to end a
program without a primary file, see |Chapter 3, “Program Cycle,” on page 21.) To
set the LR indicator on, you can specify the LR indicator as a record identifying
indicator or a resulting indicator. If LR is set on during detail calculations, all other
control level indicators are set on at the beginning of the next cycle. LR and the
record identifying indicators are both on throughout the remainder of the detail
cycle, but the record identifying indicators are set off before LR total time.

Matching Record Indicator (MR)

The matching record indicator (MR) is associated with the matching field entries
M1 through M9. It can only be used in a program when Match Fields are defined
in the primary and at least one secondary file.

Indicators Not Defined on the RPG IV Specifications

The MR indicator is set on when all the matching fields in a record of a secondary
file match all the matching fields of a record in the primary file. It remains on
during the complete processing of primary and secondary records. It is set off
when all total calculations, total output, and overflow for the records have been
processed.

At detail time, MR always indicates the matching status of the record just selected
for processing; at total time, it reflects the matching status of the previous record. If
all primary file records match all secondary file records, the MR indicator is always
on.

Use the MR indicator as a field record relation indicator, or as a conditioning
indicator in the calculation specifications or output specifications to indicate
operations that are to be processed only when records match. The MR indicator
cannot be specified as a resulting indicator.

For more information on Match Fields and multi-file processing, see [Chapter 7,
[“General File Considerations,” on page 103/

Return Indicator (RT)

You can use the return indicator (RT) to indicate to the internal RPG IV logic that
control should be returned to the calling program. The test to determine if RT is on
is made after the test for the status of LR and before the next record is read. If RT
is on, control returns to the calling program. RT is set off when the program is
called again.

Because the status of the RT indicator is checked after the halt indicators (H1
through H9) and LR indicator are tested, the status of the halt indicators or the LR
indicator takes precedence over the status of the RT indicator. If both a halt
indicator and the RT indicator are on, the halt indicator takes precedence. If both
the LR indicator and RT indicator are on, the program ends normally.

RT can be set on as a record identifying indicator, a resulting indicator, or a field
indicator. It can then be used as a conditioning indicator for calculation or output
operations.

For a description of how RT can be used to return control to the calling program,
see the chapter on calling programs in the WebSphere Development Studio: ILE RPG
Programmer’s Guide.

Using Indicators

Indicators that you have defined as overflow indicators, control level indicators,
record identifying indicators, field indicators, resulting indicators, *IN, *IN(xx),
*INxx, or those that are defined by the RPG IV language can be used to condition
files, calculation operations, or output operations. An indicator must be defined
before it can be used as a conditioning indicator. The status (on or off) of an
indicator is not affected when it is used as a conditioning indicator. The status can
be changed only by defining the indicator to represent a certain condition.

Note: Indicators that control the cycle function solely as conditioning indicators
when used in a NOMAIN module; or in a subprocedure that is active, but
where the main procedure of the module is not. Indicators that control the
cycle include: LR, RT, H1-H9, and control level indicators.

Chapter 4. RPG IV Indicators 49

Using Indicators

50

File Conditioning

The file conditioning indicators are specified by the EXTIND keyword on the file
description specifications. Only the external indicators Ul through U8 are valid for
file conditioning. (The USROPN keyword can be used to specify that no implicit
OPEN should be done.)

If the external indicator specified is off when the program is called, the file is not
opened and no data transfer to or from the file will occur when the program is
running. Primary and secondary input files are processed as if they were at
end-of-file. The end-of-file indicator is set on for all READ operations to that file.
Input, calculation, and output specifications for the file need not be conditioned by
the external indicator.

Rules for File Conditioning
When you condition files, remember the following:

* A file conditioning entry can be made for input, output, update, or combined
files.

* A file conditioning entry cannot be made for table or array input.

e Output files for tables can be conditioned by U1 through US. If the indicator is
off, the table is not written.

* A record address file can be conditioned by Ul through U8, but the file
processed by the record address file cannot be conditioned by U1l through US.

* If the indicator conditioning a primary file with matching records is off, the MR
indicator is not set on.

* Input does not occur for an input, an update, or a combined file if the indicator
conditioning the file is off. Any indicators defined on the associated Input
specifications in positions 63-74 will be processed as usual using the existing
values in the input fields.

* Data transfer to the file does not occur for an output, an update, or a combined
file if the indicator conditioning the file is off. Any conditioning indicators,
numeric editing, or blank after that are defined on the output specifications for
these files will be processed as usual.

e If the indicator conditioning an input, an update, or a combined file is off, the
file is considered to be at end of file. All defined resulting indicators are set off
at the beginning of each specified I/O operation. The end-of-file indicator is set
on for READ, READC, READE, READPE, and READP operations. CHAIN,
EXFMT, SETGT, SETLL, and UNLOCK operations are ignored and all defined
resulting indicators remain set off.

Field Record Relation Indicators

ILE RPG Reference

Field record relation indicators are specified in positions 67 and 68 of the input
specifications. The valid field record relation indicators are:

* 01-99
* H1-H9
* MR

e RT

* L1-L9
- Ul-U8

Field record relation indicators cannot be specified for externally described files.

Using Indicators

You use field record relation indicators to associate fields with a particular record
type when that record type is one of several in an OR relationship. The field
described on the specification line is available for input only if the indicator
specified in the field record relation entry is on or if the entry is blank. If the entry
is blank, the field is common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators

You can use a record identifying indicator (01 through 99) in positions 67 and 68 to
relate a field to a particular record type. When several record types are specified in
an OR relationship, all fields that do not have a field record relation indicator in
positions 67 and 68 are associated with all record types in the OR relationship. To
relate a field to just one record type, you enter the record identifying indicator
assigned to that record type in positions 67 and 68 (see|Figure 17 on page 52).

An indicator (01 through 99) that is not a record identifying indicator can also be
used in positions 67 and 68 to condition movement of the field from the input area
to the input fields.

Control fields, which you define with an L1 through L9 indicator in positions 63
and 64 of the input specifications, and match fields, which are specified by a match
value (M1 through M9) in positions 65 and 66 of the input specifications, can also
be related to a particular record type in an OR relationship if a field record relation
indicator is specified. Control fields or match fields in the OR relationship that do
not have a field record relation indicator are used with all record types in the OR
relationship.

If two control fields have the same control level indicator or two match fields have
the same matching level value, a field record relation indicator can be assigned to
just one of the match fields. In this case, only the field with the field record
relation indicator is used when that indicator is on. If none of the field record
relation indicators are on for that control field or match field, the field without a
field record relation indicator is used. Control fields and match fields can only
have entries of 01 through 99 or H1 through H9 in positions 67 and 68.

You can use positions 67 and 68 to specify that the program accepts and uses data
from a particular field only when a certain condition occurs (for example, when
records match, when a control break occurs, or when an external indicator is on).
You can indicate the conditions under which the program accepts data from a field
by specifying indicators L1 through L9, MR, or U1l through U8 in positions 67 and
68. Data from the field named in positions 49 through 62 is accepted only when
the field record relation indicator is on.

External indicators are primarily used when file conditioning is specified with the
[“EXTIND(*INUX)” on page 277 keyword on the file description specifications.
However, they can be used even though file conditioning is not specified.

A halt indicator (H1 through H9) in positions 67 and 68 relates a field to a record
that is in an OR relationship and also has a halt indicator specified in positions 21
and 22.

Remember the following points when you use field record relation indicators:

* Control level (positions 63 and 64) and matching fields (positions 65 and 66)
with the same field record relation indicator must be grouped together.

* Fields used for control level (positions 63 and 64) and matching field entries
(positions 65 and 66) without a field record relation indicator must appear before
those used with a field record relation indicator.

Chapter 4. RPG IV Indicators 51

Using Indicators

* Control level (positions 63 and 64) and matching fields (positions 65 and 66)
with a field record relation indicator (positions 67 and 68) take precedence, when
the indicator is on, over control level and matching fields of the same level
without an indicator.

* Field record relations (positions 67 and 68) for matching and control level fields
(positions 63 through 66) must be specified with record identifying indicators (01
through 99 or H1 through H9) from the main specification line or an OR relation
line to which the matching field refers. If multiple record types are specified in
an OR relationship, an indicator that specifies the field relation can be used to
relate matching and control level fields to the pertinent record type.

* Noncontrol level (positions 63 and 64) and matching field (positions 65 and 66)
specifications can be interspersed with groups of field record relation entries
(positions 67 and 68).

* The MR indicator can be used as a field record relation indicator to reduce
processing time when certain fields of an input record are required only when a
matching condition exists.

* The number of control levels (L1 through L9) specified for different record types
in the OR relationship can differ. There can be no control level for certain record
types and a number of control levels for other record types.

* If all matching fields (positions 65 and 66) are specified with field record relation
indicators (positions 67 and 68), each field record relation indicator must have a
complete set of matching fields associated with it.

* If one matching field is specified without a field record relation indicator, a
complete set of matching fields must be specified for the fields without a field
record relation indicator.

IFilename++SqNORiPosS1+NCCPOS2+NCCPOS3+NCC. v v v v vviiiiii i nnnnnn

AP Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
IREPORT AA 14 1¢5

I OR 16 1C6

I 20 30 FLDB

I 2 10 FLDA 07

*

* Indicator 07 was specified elsewhere in the program.

*
I 40 50 FLDC 14
I 60 70 FLDD 16

Figure 17. Field Record Relation

The file contains two different types of records, one identified by a 5 in position 1
and the other by a 6 in position 1. The FLDC field is related by record identifying
indicator 14 to the record type identified by a 5 in position 1. The FLDD field is
related to the record type having a 6 in position 1 by record identifying indicator
16. This means that FLDC is found on only one type of record (that identified by a
5 in position 1) and FLDD is found only on the other type. FLDA is conditioned by
indicator 07, which was previously defined elsewhere in the program. FLDB is
found on both record types because it is not related to any one type by a record
identifying indicator.

Function Key Indicators

You can use function key indicators in a program that contains a WORKSTN
device if the associated function keys are specified in data description
specifications (DDS). Function keys are specified in DDS with the CFxx or CAxx

52 ILE RPG Reference

Using Indicators

keyword. For an example of using function key indicators with a WORKSTN file,
see the WORKSTN chapter in the WebSphere Development Studio: ILE RPG
Programmer’s Guide.

Function Key Corresponding Function Key Corresponding
Indicator Function Key Indicator Function Key
KA 1 KM 13

KB 2 KN 14

KC 3 KP 15

KD 4 KQ 16

KE 5 KR 17

KF 6 KS 18

KG 7 KT 19

KH 8 KU 20

KI 9 KV 21

KJ 10 KW 22

KK 11 KX 23

KL 12 KY 24

The function key indicators correspond to function keys 1 through 24. Function
key indicator KA corresponds to function key 1, KB to function key 2 ... KY to
function key 24.

Function key indicators that are set on can then be used to condition calculation or
output operations. Function key indicators can be set off by the SETOFF operation.

Halt Indicators (H1-H9)

You can use the halt indicators (H1 through H9) to indicate errors that occur
during the running of a program. The halt indicators can be set on as record
identifying indicators, field indicators, or resulting indicators.

The halt indicators are tested at the *GETIN step of the RPG IV cycle (see
(Chapter 3, “Program Cycle,” on page 21). If a halt indicator is on, a message is
issued to the user. The following responses are valid:

* Set off the halt indicator and continue the program.
* Issue a dump and end the program.
* End the program with no dump.

If a halt indicator is on when a RETURN operation inside a main procedure is
processed, or when the LR indicator is on, the called program ends abnormally.
The calling program is informed that the called program ended with a halt
indicator on.

Note: If the keyword NOMALIN is specified on a control specification, then any
halt indicators are ignored except as conditioning indicators.

For a detailed description of the steps that occur when a halt indicator is on, see
the detailed flowchart of the RPG IV cycle in [Chapter 3, “Program Cycle,” on page|

Chapter 4. RPG IV Indicators 53

Using Indicators

54

Indicators Conditioning Calculations

ILE RPG Reference

Calculation specifications in the traditional format (C specifications) can include
conditioning indicators in positions 7 and 8, and positions 9 through 11.
Conditioning indicators are not used by free-form calculation specifications.

Indicators that specify the conditions under which a calculation is performed are
defined elsewhere in the program.

Positions 7 and 8
You can specify control level indicators (L1 through L9 and LR) in positions 7 and
8 of the calculation specifications.

If positions 7 and 8 are blank, the calculation is processed at detail time, is a
statement within a subroutine, or is a declarative statement. If indicators L1
through L9 are specified, the calculation is processed at total time only when the
specified indicator is on. If the LR indicator is specified, the calculation is
processed during the last total time.

Note: An LO entry can be used to indicate that the calculation is a total calculation
that is to be processed on every program cycle.

Positions 9-11

You can use positions 9 through 11 of the calculation specifications to specify
indicators that control the conditions under which an operation is processed. You
can specify N is position 9 to indicate that the indicator should be tested for the
value of off ('0") The valid entries for positions 10 through 11 are:

* 0199

* HI1-H9

* MR

*« OA-OG, OV

* L1-L9

* LR

- Ul-U8

* KA-KN, KP-KY
e RT

Any indicator that you use in positions 9 through 11 must be previously defined as
one of the following types of indicators:

. %erﬂow indicators (file description specifications [“OFLIND(indicator)” on page
280

* Record identifying indicators (input specifications, positions 21 and 22)

* Control level indicators (input specifications, positions 63 and 64)

* Field indicators (input specifications, positions 69 through 74)

* Resulting indicators (calculation specifications, positions 71 through 76)
* External indicators

¢ Indicators are set on, such as LR and MR

* *IN array, *IN(xx) array element, or *INxx field (see|”Indicators Referred to Asl
[Data” on page 60| for a description of how an indicator is defined when used
with one of these reserved words).

If the indicator must be off to condition the operation, place an N in positions 9.
The indicators in grouped AND/OR lines, plus the control level indicators (if

Using Indicators

specified in positions 7 and 8), must all be exactly as specified before the operation

is done as in |Figure 18

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
*

C 25
CAN L1 SUB TOTAL TOTAL (A
cL2 10

CANNL3TOTAL MULT 05 SLSTAX B

*

Figure 18. Conditioning Operations (Control Level Indicators)

Assume that indicator 25 represents a record type and that a control level 2 break
occurred when record type 25 was read. L1 and L2 are both on. All operations
conditioned by the control level indicators in positions 7 and 8 are done before
operations conditioned by control level indicators in positions 9 through 11.
Therefore, the operation in [[J occurs before the operation in [[J. The operation in
[} is done on the first record of the new control group indicated by 25, whereas
the operation in [is a total operation done for all records of the previous control

group.

The operation in [f] can be done when the L2 indicator is on provided the other
conditions are met: Indicator 10 must be on; the L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control level 2
break occurs. These two indicators are used together because this operation is not
to be done when a control level 3 break occurs, even though L2 is also on.

Some special considerations you should know when using conditioning indicators
in positions 9 through 11 are as follows:

* With externally described work station files, the conditioning indicators on the
calculation specifications must be either defined in the RPG program or be
defined in the DDS source for the workstation file.

* With program described workstation files, the indicators used for the
workstation file are unknown at compile time of the RPG program. Thus
indicators 01-99 are assumed to be declared and they can be used to condition
the calculation specifications without defining them.

* Halt indicators can be used to end the program or to prevent the operation from
being processed when a specified error condition is found in the input data or in
another calculation. Using a halt indicator is necessary because the record that
causes the halt is completely processed before the program stops. Therefore, if
the operation is processed on an error condition, the results are in error. A halt
indicator can also be used to condition an operation that is to be done only
when an error occurs.

* If LR is specified in positions 9 through 11, the calculation is done after the last
record has been processed or after LR is set on.

* If a control level indicator is used in positions 9 through 11 and positions 7 and
8 are not used (detail time), the operation conditioned by the indicator is done
only on the record that causes a control break or any higher level control break.

* If a control level indicator is specified in positions 7 and 8 (total time) and MR is
specified in positions 9 through 11, MR indicates the matching condition of the
previous record and not the one just read that caused the control break. After all

Chapter 4. RPG IV Indicators 55

Using Indicators

56

ILE RPG Reference

operations conditioned by control level indicators in positions 7 and 8 are done,
MR then indicates the matching condition of the record just read.

* If positions 7 and 8 and positions 9 through 11 are blank, the calculation
specified on the line is done at detail calculation time.

[Figure 19| and [Figure 20 show examples of conditioning indicators.

IFiTenameSgNORiPos1INCCPos2NCCPos3NCC.PFromTo++DField+L1IM1FrPIMnZr. . . *
P Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...

Field indicators can be used to condition operations. Assume the
program is to find weekly earnings including overtime. The over-
time field is checked to determine if overtime was entered.

If the employee has worked overtime, the field is positive and -
indicator 10 is set on. In all cases the weekly regular wage

is calculated. However, overtime pay is added only if

indicator 10 is on.

ECE T

*

ITIME AB 01

I 1 7 EMPLNO

I 8 10 OOVERTM 10
I 15 20 2RATE

I 21 25 2RATEOT

CLONO1Factorl+++++++Opcode (E) +Extended-factor2+++++++ttttttttttttttttttt
*

* Field indicator 10 was assigned on the input specifications.

* It is used here to condition calculation operations.
*

EVAL (H) PAY
10 EVAL (H) PAY

RATE * 40
PAY + (OVERTM * RATEOT)

c
c

Figure 19. Conditioning Operations (Field Indicators)

IFiTename++SqNORiP0oS1+NCCPOS2+NCCPOS3+NCC. v v v et ittt iieiieiieiaeeneenns
PP Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...

*

* A record identifying indicator is used to condition an operation.
* When a record is read with a T in position 1, the 01 indicator is
* set on. If this indicator is on, the field named SAVE is added

* to SUM. When a record without T in position 1 is read, the 02

* indicator is set on. The subtract operation, conditioned by 02,
* then performed instead of the add operation.

*
F

IFILE AA 01 1CT

I OR 02 INCT

I 10 15 2SAVE
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .

L
*
* Record identifying indicators 01 and 02 are assigned on the input
* specifications. They are used here to condition calculation

* operations.

*

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. .
cC o1 ADD SAVE SUM 8 2

C 02 SUB SAVE SUM 82

Figure 20. Conditioning Operations (Record Identifying Indicators)

Using Indicators

Indicators Used in Expressions

Indicators can be used as booleans in expressions in the extended factor 2 field of
the calculation specification. They must be referred to as data (that is, using *IN or
*INxx). The following examples demonstrate this.

CLONO1Factorl+++++++Opcode (E) +Extended-factor2+++++++ttttttttttttttttttt
* In these examples, the IF structure is performed only if 01 is on.
* *INO1 is treated as a boolean with a value of on or off.

* In the first example, the value of the indicator ('0' or '1') is

* checked.

c IF *INO1

* In the second example, the logical expression B < A is evaluated.
* If true, 01 is set on. If false 01 is set off. This is analogous
* to using COMP with A and B and placing 01 in the appropriate

* resulting indicator position.

(8 EVAL *INO1 = B < A

Figure 21. Indicators Used in Expressions

See the expressions chapter and the operation codes chapter in this document for
more examples and further details.

Indicators Conditioning Output

Indicators that you use to specify the conditions under which an output record or
an output field is written must be previously defined in the program. Indicators to
condition output are specified in positions 21 through 29. All indicators are valid
for conditioning output.

The indicators you use to condition output must be previously defined as one of
the following types of indicators:

* Opverflow indicators (file description specifications, [“OFLIND(indicator)” on pagel
280)

* Record identifying indicators (input specifications, positions 21 and 22)

 Control level indicators (input specifications, positions 63 and 64)

* Field indicators (input specifications, positions 69 through 74)

* Resulting indicators (calculation specifications, positions 71 through 76)
* Indicators set by the RPG IV program such as 1P and LR

* External indicators set prior to or during program processing

* *IN array, *IN(xx) array element, or *INxx field (see|”Indicators Referred to Aq
[Data” on page 60| for a description of how an indicator is defined when used
with one of these reserved words).

If an indicator is to condition an entire record, you enter the indicator on the line
that specifies the record type (see [Figure 22 on page 59). If an indicator is to
condition when a field is to be written, you enter the indicator on the same line as
the field name (see [Figure 22 on page 59).

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that type of record is checked for
output. If you specify conditioning indicators, one indicator can be entered in each
of the three separate output indicator fields (positions 22 and 23, 25 and 26, and 28
and 29). If these indicators are on, the output operation is done. An N in the

Chapter 4. RPG IV Indicators 57

Using Indicators

58

ILE RPG Reference

position preceding each indicator (positions 21, 24, or 27) means that the output
operation is done only if the indicator is not on (a negative indicator). No output
line should be conditioned by all negative indicators; at least one of the indicators
should be positive. If all negative indicators condition a heading or detail
operation, the operation is done at the beginning of the program cycle when the
first page (1P) lines are written.

You can specify output indicators in an AND/OR relationship by specifying
AND/OR in positions 16 through 18. An unlimited number of AND/OR lines can
be used. AND/OR lines can be used to condition output records, but they cannot
be used to condition fields. However, you can condition a field with more than
three indicators by using the EVAL operation in calculations. The following
example illustrates this.

CLONO1Factorl+++++++Opcode (E) +Extended-factor2+++++++ttttttttttttttttttt
* Indicator 20 is set on only if indicators 10, 12, 14,16, and 18
% are set on.

C EVAL *IN20 = *IN10 AND *IN12 AND *IN14

C AND *IN16 AND *IN18
OFilename++DAddANOINOZNOEXCNAMt+++. o vttt e ie i ieeneeeneneneenenanenns
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

* QUTFIELD is conditioned by indicator 20, which effectively
* means it is conditioned by all the indicators in the EVAL
* operation.

OPRINTER E

0 20 OUTFIELD

Other special considerations you should know about for output indicators are as
follows:

* The first page indicator (1P) allows output on the first cycle before the primary
file read, such as printing on the first page. The line conditioned by the 1P
indicator must contain constant information used as headings or fields for
reserved words such as PAGE and UDATE. The constant information is specified
in the output specifications in positions 53 through 80. If 1P is used in an OR
relationship with an overflow indicator, the information is printed on every page
(see [Figure 23 on page 59). Use the 1P indicator only with heading or detail
output lines. It cannot be used to condition total or exception output lines or
should not be used in an AND relationship with control level indicators.

* If certain error conditions occur, you might not want output operation
processed. Use halt indicators to prevent the data that caused the error from
being used (see |[Figure 24 on page 60).

* To condition certain output records on external conditions, use external
indicators to condition those records.

See the Printer File section in the WebSphere Development Studio: ILE RPG
Programmer’s Guide for a discussion of the considerations that apply to assigning
overflow indicators on the output specifications.

Using Indicators

*
* One indicator is used to condition an entire Tine of printing.

* When 44 is on, the fields named INVOIC, AMOUNT, CUSTR, and SALSMN
* are all printed.

OPRINT D 44 1

0 INVOIC 10

0 AMOUNT 18

0 CUSTR 65

0 SALSMN 85

*

* A control Tevel indicator is used to condition when a field should
* be printed. When indicator 44 is on, fields INVOIC, AMOUNT, and
* CUSTR are always printed. However, SALSMN is printed for the

* first record of a new control group only if 44 and L1 are on.

*

OPRINT D 44 1

0 INVOIC 10
0 AMOUNT 18
0 CUSTR 65
0 L1 SALSMN 85

Figure 22. Output Indicators

I P e TR TR TR I TR R T IR R IR TR T AT IR T IR T A
OFilename++DF..NOINO2NO3Excnam++++B++A++Sh+Sa+t. ... vvieiiiei i ennn..
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat

*
* The 1P indicator is used when headings are to be printed
* on the first page only.

*

OPRINT H 1p 3

0 8 '"ACCOUNT'

*
* The 1P indicator and an overflow indicator can be used to print
*

headings on every page.
*

OPRINT H 1p 31
0 OR OF
0 8 '"ACCOUNT'

Figure 23. 1P Indicator

Chapter 4. RPG IV Indicators 59

Indicators Referred to As Data

IFiTename++SqNORiP0oS1+NCCPOS2+NCCPOS3HNCC. v v vt it iieiieinernernnnnannns
Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...

*
%« When an error condition (zero in FIELDB) is found, the halt
* indicator is set on.

*

IDISK AA 01
I 1 3 FIELDA L1
I 4 8 OFIELDB H1

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
*

* When H1 is on, all calculations are bypassed.
*

C H1 GOTO END

C :

c Calculations

C :

(s END TAG
OFilename++DF. .NOINOZNO3Excnam++++B++A++Sh+Sa+. ... vviiiiieinin e nnnn.
[0 NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat
*

* FIELDA and FIELDB are printed only if H1 is not on.

* Use this general format when you do not want information that

* is in error to be printed.

*

OPRINT H L1 6 201

0 50 "HEADING'

0 D 01NH1 10

0 FIELDA 5

0 FIELDB 4 15

Figure 24. Preventing Fields from Printing

Indicators Referred to As Data

60

*IN

*INXX

ILE RPG Reference

An alternative method of referring to and manipulating RPG IV indicators is
provided by the RPG IV reserved words *IN and *INxx.

The array *IN is a predefined array of 99 one-position, character elements
representing the indicators 01 through 99. The elements of the array should contain
only the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN(xx) variable-index array element as a
field in an input record, as a result field, or as factor 1 in a PARM operation
defines indicators 01 through 99 for use in the program.

The operations or references valid for an array of single character elements are
valid with the array *IN except that the array *IN cannot be specified as a subfield
in a data structure, or as a result field of a PARM operation.

The field *INxx is a predefined one-position character field where xx represents
any one of the RPG IV indicators except 1P or MR.

The specification of the *INxx field or the *IN(n) fixed-index array element (where
n=1-99) as a field in an input record, as a result field, or as factor 1 in a PARM
operation defines the corresponding indicator for use in the program.

Indicators Referred to As Data

You can specify the field *INxx wherever a one-position character field is valid
except that *INxx cannot be specified as a subfield in a data structure, as the result
field of a PARM operation, or in a SORTA operation.

Additional Rules

Remember the following rules when you are working with the array *IN, the array

element *IN(xx) or the field *INxx:

* Moving a character '0' (zero) or *OFF to any of these fields sets the
corresponding indicator off.

* Moving a character '1' (one) or *ON to any of these fields sets the corresponding
indicator on.

* Do not move any value, other than '0' (zero) or '1' (one), to *INxx. Any
subsequent normal RPG 1V indicator tests may yield unpredictable results.

* If you take the address of *IN, *INO1 - *IN99, or *IN(index), indicators *INO1 to
*IN99 will be defined. If you take the address of any other indicator, such as
*INLR or *INL1, only that indicator will be defined.

See for some examples of indicators referred to as data.

R IO AP/ SA. PUPIPIR DD ST TIPS, DUPEPIIE PR ¢ DUPRPPE RPN AN
CLONO1Factorl+++++++0pcode (E)+Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
*

* When this program is called, a single parameter is passed to

* control some logic in the program. The parameter sets the value

* of indicator 50. The parameter must be passed with a character

* value of 1 or 0.

*

(8 *ENTRY PLIST

C *IN50 PARM SWITCH 1

*

*

* Subroutine SUB1 uses indicators 61 through 68. Before the

* subroutine is processed, the status of these indicators used in

* the mainline program is saved. (Assume that the indicators are

* set off in the beginning of the subroutine.) After the subroutine
* is processed, the indicators are returned to their original state.
*

*

c MOVEA *IN(61) SAV8 8

(s EXSR SUB1

(8 MOVEA SAV8 *IN(61)

*

* A code field (CODE) contains a numeric value of 1 to 5 and is

* used to set indicators 71 through 75. The five indicators are set
= off. Field X is calculated as 70 plus the CODE field. Field X is
* then used as the index into the array *IN. Different subroutines
* are then used based on the status of indicators 71 through 75.

*

(8 MOVEA '00000" *IN(71)

c 70 ADD CODE X 30

(8 MOVE *ON *IN(X)

c 71 EXSR CODE1

c 72 EXSR CODE2

c 73 EXSR CODE3

cC 74 EXSR CODE4

cC 75 EXSR CODE5

Figure 25. Examples of Indicators Referred to as Data

Chapter 4. RPG IV Indicators 61

Summary of Indicators

Summary of Indicators

[Table 15 and [Table 16 on page 63 show summaries of where RPG IV indicators are
defined, what the valid entries are, where the indicators are used, and when the
indicators are set on and off. indicates the primary condition that causes
each type of indicator to be set on and set off by the RPG IV program.
[Key Indicators” on page 52 lists the function key indicators and the corresponding
function keys.

Table 15. Indicator Entries and Uses

OA-OG KA-KN
Where Defined/Used 01-99 1P | H1-H9 | L1-L9 | LR | MR ov U1-U8 | KP-KY | RT

Overflow indicator, file X X
description
specifications, OFLIND
keyword

Record identifying X X X X X X
indicator input
specifications, positions
21-22

User Control level, input X
Defined |specifications, positions
63-64

Field level, input X X X X
specifications, positions
69-74

Resulting indicator, X X X X X! X X2 X
calculation
specifications, positions
71-76

RPG Internal Indicator X X X X

Defined | External Indicator X

File conditioning, file X
description
specifications

File record relation, X X X X X X
input specifications
67-68°

Control level, X X
calculation

Used specifications, positions
7-8

Conditioning X X X X X X X X X
indicators, calculation
specifications, positions
9-11

Output indicators, X x* X X X | X X X X X
output specifications,
positions 21-29

62 ILE RPG Reference

Table 15. Indicator Entries and Uses (continued)

Summary of Indicators

Where Defined/Used

01-99 1P | H1-H9 | L1-L9

OA-OG
ov

KA-KN

LR | MR U1-U8 | KP-KY | RT

Notes:

1. The overflow indicator must be defined on the file description specification first.
2. KA through KN and KP through KY can be used as resulting indicators only with the SETOFF operation.
3. Only a record identifying indicator from a main or OR record can be used to condition a control or match field.

L1 or L9 cannot be used to condition a control or match field.

4. The 1P indicator is allowed only on heading and detail lines.

Table 16. When Indicators Are Set On and Off by the RPG IV Logic Cycle

Type of Indicator

Set On

Set Off

Overflow

When printing on or spacing or skipping
past the overflow line.

OA-OG, OV: After the following heading
and detail lines are completed,

or after the file is opened unless

the H-specification keyword
OPENOPT(*NOINZOFL) is used.

01-99: By the user.

Record identifying

When specified primary / secondary record
has been read and before total calculations
are processed; immediately after record is
read from a full procedural file.

Before the next primary/secondary record is
read during the next processing cycle.

Control level

When the value in a control field changes.
All lower level indicators are also set on.

At end of following detail cycle.

Field indicator

By blank or zero in specified fields, by plus
in specified field, or by minus in specified
field.

Before this field status is to be tested the
next time.

Resulting

When the calculation is processed and the

condition that the indicator represents is met.

The next time a calculation is processed for
which the same indicator is specified as a
resulting indicator and the specified
condition is not met.

Function key

When the corresponding function key is
pressed for WORKSTN files and at
subsequent reads to associated subfiles.

By SETOFF or move fields logic for a
WORKSTN file.

External U1-U8

By CL command prior to beginning the
program, or when used as a resulting or a
field indicator.

By CL command prior to beginning the
program, or when used as a resulting or
when used as a resulting or a field indicator.

H1-H9 As specified by programmer. When the continue option is selected as a
response to a message, or by the
programmer.

RT As specified by programmer. When the program is called again.

Internal Indicators 1P

At beginning of processing before any input
records are read.

Before the first record is read.

LR After processing the last primary/secondary | At the beginning of processing, or by the
record of the last file or by the programmer. |programmer.
MR If the match field contents of the record of a | When all total calculations and output are

secondary file correspond to the match field
contents of a record in the primary file.

completed for the last record of the matching
group.

Chapter 4. RPG IV Indicators 63

Summary of Indicators

64 ILE RPG Reference

Chapter 5. File and Program Exception/Errors

RPG categorizes exception/errors into two classes: and . Information

on file and program exception/errors is made available to an RPG IV program
using file information data structures and program status data structures,
respectively. File and Program exception/error subroutines may be specified to
handle these types of exception/errors.

File Exception/Errors

Some examples of file exception/errors are: undefined record type, an error in
trigger program, an I/O operation to a closed file, a device error, and an
array/table load sequence error. They can be handled in one of the following
ways:

* The operation code extender 'E’ can be specified. When specified, before the
operation begins, this extender sets the %ERROR and %STATUS built-in
functions to return zero. If an exception/error occurs during the operation, then
after the operation %ERROR returns '1” and %STATUS returns the file status.
The optional file information data structure is updated with the exception/error
information. You can determine the action to be taken by testing %ERROR and
%STATUS.

* An indicator can be specified in positions 73 and 74 of the calculation
specifications for an operation code. This indicator is set on if an exception/error
occurs during the processing of the specified operation. The optional
[information data structure|is updated with the exception/error information. You
can determine the action to be taken by testing the indicator.

ON-ERROR groups can be used to handle errors for statements processed within
a MONITOR block. If an error occurs when a statement is processed, control
passes to the appropriate ON-ERROR group.

* You can create a user-defined ILE exception handler that will take control when
an exception occurs. For more information, see WebSphere Development Studio: ILE
RPG Programmer’s Guide.

+ Alfile exception/error subroutine|can be specified. The subroutine is defined by
the INFSR keyword on a file description specification with the name of the
subroutine that is to receive the control. Information regarding the file
exception/error is made available through a file information data structure that
is specified with the INFDS keyword on the file description specification. You
can also use the %STATUS built-in function, which returns the most recent value
set for the program or file status. If a file is specified, %STATUS returns the
value contained in the INFDS *STATUS field for the specified file.

e If the indicator, 'E” extender, MONITOR block, or file exception/error subroutine
is not present, any file exception/errors are handled by the RPG IV default error
handler.

File Information Data Structure

A file information data structure (INFDS) can be defined for each file to make file
exception/error and file feedback information available to the program. The file
information data structure, which must be unique for each file, must be defined in
the main source section. The same INFDS is used by all procedures using the files.

The INFDS contains the following feedback information:

© Copyright IBM Corp. 1994, 2004 65

File Exception/Errors

* [File Feedback|(length is 80)

* [Open Feedback (length is 160)

* [Input/Output Feedback (length is 126)

* |Device Specific Feedback| (length is variable)
* |Get Attributes Feedbackl (length is variable)

Note: The get attributes feedback uses the same positions in the INFDS as the
input/output feedback and device specific feedback. This means that if you
have a get attributes feedback, you cannot have input/output feedback or
device feedback, and vice versa.

The length of the INFDS depends on what fields you have declared in your
INFDS. The minimum length of the INFDS is 80.

File Feedback Information

The file feedback information starts in position 1 and ends in position 80 in the file
information data structure. The file feedback information contains data about the
file which is specific to RPG. This includes information about the error/exception
that identifies:

e The name of the file for which the exception/error occurred

* The record being processed when the exception/error occurred or the record
that caused the exception/error

* The last operation being processed when the exception/error occurred

* Thelstatus codd

* The RPG IV routine in which the exception/error occurred.

The fields from position 1 to position 66 in the file feedback section of the INFDS
are always provided and updated even if INFDS is not specified in the program.
The fields from position 67 to position 80 of the file feedback section of the INFDS
are only updated after a POST operation to a specific device.

If INFDS is not specified, the information in the file feedback section of the INFDS
can be output using the DUMP operation. For more information see
[(Program Dump)” on page 609.|

Overwriting the file feedback section of the INFDS may cause unexpected results
in subsequent error handling and is not recommended.

The location of some of the more commonly used subfields in the file feedback
section of the INFDS is defined by special keywords. The contents of the file
feedback section of the INFDS along with the special keywords and their
descriptions can be found in the following tables:

Table 17. Contents of the File Feedback Information Available in the File Information Data Structure (INFDS)

From To
(Pos. (Pos.
26-32) 33-39) |Format Length |Keyword Information
1 8 Character 8 *FILE The first 8 characters of the file name.
9 9 Character 1 Open indication (1 = open).
10 10 Character 1 End of file (1 = end of file)
11 15 Zoned decimal 5,0 *STATUS Status code. For a description of these codes, see
|“File Status Codes” on page 77

66 ILE RPG Reference

File Exception/Errors

Table 17. Contents of the File Feedback Information Available in the File Information Data Structure

(INFDS) (continued)

From
(Pos.
26-32)

To
(Pos.
33-39)

Format

Length

Keyword

Information

16

21

Character

*OPCODE

Operation code The first five positions
(left-adjusted) specify the type of operation by using
the character representation of the calculation
operation codes. For example, if a READE was
being processed, READE is placed in the leftmost
five positions. If the operation was an implicit
operation (for example, a primary file read or
update on the output specifications), the equivalent
operation code is generated (such as READ or
UPDAT) and placed in location *OPCODE.
Operation codes which have 6 letter names will be
shortened to 5 letters.

DELETE
DELET

EXCEPT
EXCPT

READPE
REDPE

UNLOCK
UNLCK

UPDATE

UPDAT
The remaining position contains one of the
following:

F The last operation was specified for a file
name.

R The last operation was specified for a
record.

I The last operation was an implicit file
operation.

22

29

Character

*ROUTINE

First 8 characters of the name of the routine
(including a subprocedure) in which the file
operation was done.

30

37

Character

If OPTION(*NOSRCSTMT) is specified, this is the
source listing line number of the file operation. If
OPTION(*SRCSTMT) is specified, this is the source
listing statement number of the file operation. The
full statement number is included when it applies
to the root source member. If the statement number
is greater than 6 digits, that is, it includes a source
ID other than zero, the first 2 positions of the 8-byte
feedback area will have a "+ " indicating that the
rest of the statement number is stored in positions
53-54.

38

42

Zoned decimal

5,0

User-specified reason for error on SPECIAL file.

Chapter 5. File and Program Exception/Errors 67

File Exception/Errors

Table 17. Contents of the File Feedback Information Available in the File Information Data Structure

(INFDS) (continued)

From To
(Pos. (Pos.
26-32) 33-39) |Format Length |Keyword Information
38 45 Character 8 *RECORD For a program described file the record identifying
indicator is placed left-adjusted in the field; the
remaining six positions are filled with blanks. For
an externally described file, the first 8 characters of
the name of the record being processed when the
exception/error occurred.
46 52 Character 7 Machine or system message number.
53 66 Character 14 Unused.
77 78 Binary 2 Source Id matching the statement number from
positions 30-37.

Table 18. Contents of the File Feedback Information Available in

the File-Information Data Structure (INFDS) Valid

after a POST
From To
(Pos. (Pos.
26-32) 33-39) |Format Length |Keyword Information

67 70 Zoned decimal 4,0 *SIZE Screen size (product of the number of rows and the
number of columns on the device screen).

71 72 Zoned decimal |2,0 *INP The display’s keyboard type. Set to 00 if the
keyboard is alphanumeric or katakana. Set to 10 if
the keyboard is ideographic.

73 74 Zoned decimal |2,0 *OUT The display type. Set to 00 if the display is
alphanumeric or katakana. Set to 10 if the display is
ideographic. Set to 20 if the display is DBCS.

75 76 Zoned decimal 2,0 *MODE Always set to 00.

INFDS File Feedback Example: To specify an INFDS which contains fields in the
file feedback section, you can make the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Specify special keywords left-adjusted, in the FROM field (positions 26-32) on
the definition specification, or specify the positions of the fields in the FROM
field (position 26-32) and the TO field (position 33-39).

68 ILE RPG Reference

File Exception/Errors

FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords+++tttttttttttttttttttttttttComments++++tttst

FMYFILE

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++tttttttttttttt+++++Comment s++++++++++

DFILEFBK

D

(= — I — B — i — B — B — i — i —) — i — B — i — |

FILE
OPEN_IND
EOF_IND
STATUS
OPCODE
ROUTINE
LIST_NUM
SPCL_STAT
RECORD
MSGID
SCREEN
NLS_IN
NLS_OUT
NLS_MODE

DISK INFDS (FILEFBK)

*FILE * File name
9 9N * File open?
10 10N * File at eof?
*STATUS * Status code
*0PCODE * Last opcode
*ROUTINE * RPG Routine
30 37 * Listing line
38 42S 0 * SPECIAL status
*RECORD * Record name
46 52 * Error MSGID
*SIZE * Screen size
*INP * NLS Input?
*0UT * NLS Output?
*MODE * NLS Mode?

Figure 26. Example of Coding an INFDS with File Feedback Information

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Open Feedback Information
Positions 81 through 240 in the file information data structure contain open

feedback information. The contents of the file open feedback area are copied by
RPG to the open feedback section of the INFDS whenever the file associated with
the INFDS is opened. This includes members opened as a result of a read
operation on a multi-member processed file.

A description of the contents of the open feedback area, and what file types the
fields are valid for, can be found in the iSeries Information Center.

INFDS Open Feedback Example: To specify an INFDS which contains fields in
the open feedback section, you can make the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in the iSeries Information Center database and file systems
category to determine which fields you wish to include in the INFDS. To
calculate the From and To positions (positions 26 through 32 and 33 through 39
of the definition specifications) that specify the subfields of the open feedback
section of the INFDS, use the Offset, Data Type, and Length given in the
Information Center and do the following calculations:

From = 81 + Offset

To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for overflow line number of a printer file, the Information Center

gives:
O0ffset = 107
Data Type is binary
Length = 2
Therefore,

From = 81 + 107 = 188,
To =188 - 1 + 2 = 189.
See subfield OVERFLOW in example below

Chapter 5. File and Program Exception/Errors 69

File Exception/Errors

FFilename++IPEASFR1en+LK1en+AIDevice+.Keywords++++++++tttttttttttttttt+t+++Comment s++++++++++

FMYFILE 0 F 132 PRINTER INFDS(OPNFBK)

DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords+++++++++ttttttttttttttt+++++-Comment s++++++++++
DOPNFBK DS

D ODP_TYPE 81 82 * ODP Type

D FILE_NAME 83 92 * File name

D LIBRARY 93 102 * Library name

D SPOOL_FILE 103 112 * Spool file name
D SPOOL_LIB 113 122 * Spool file 1ib
D SPOOL_NUM 123 1241 0 * Spool file num
D RCD_LEN 125 1261 0 * Max record len
D KEY_LEN 127 1281 0 * Max key len

D MEMBER 129 138 * Member name

D TYPE 147 1481 0 * File type

D ROWS 152 1531 0 * Num PRT/DSP rows
D COLUMNS 154 1551 0 * Num PRT/DSP cols
D NUM_RCDS 156 1591 0 * Num of records
D ACC_TYPE 160 161 * Access type

D DUP_KEY 162 162 * Duplicate key?
D SRC_FILE 163 163 * Source file?

D VOL_OFF 184 185I 0 * Vol Tabel offset
D BLK_RCDS 186 1871 0 * Max rcds in blk
D OVERFLOW 188 189I 0 * Overflow line

D BLK_INCR 190 1911 0 * Blk increment

D FLAGS1 196 196 * Misc flags

D REQUESTER 197 206 * Requester name
D OPEN_COUNT 207 208I 0 * Open count

D BASED_MBRS 211 2121 0 * Num based mbrs
D FLAGS2 213 213 * Misc flags

D OPEN_ID 214 215 * Open identifier
D RCDFMT_LEN 216 2171 0 * Max rcd fmt Ten
D CCSID 218 2191 0 * Database CCSID
D FLAGS3 220 220 * Misc flags

D NUM_DEVS 227 2281 0 * Num devs defined

Figure 27. Example of Coding an INFDS with Open Feedback Information

70

ILE RPG Reference

Input/Output Feedback Information

Positions 241 through 366 in the file information data structure are used for
input/output feedback information. The contents of the file common input/output
feedback area are copied by RPG to the input/output feedback section of the
INFDS:

» If a POST for any file with factor 1 blank has been specified anywhere in your
program:
— only after a POST for the file.

* If a POST for any file with factor 1 blank has not been specified anywhere in
your program:
— after each I/O operation, if is not active for the file.

— after the I/O request to data management to get or put a block of data, if
blocking is active for the file.

For more information see ["POST (Post)” on page 705

A description of the contents of the input/output feedback area can be found in
the Information Center.

INFDS Input/Output Feedback Example: To specify an INFDS which contains
fields in the input/output feedback section, you can make the following entries:

File Exception/Errors

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the input/output feedback section of the INFDS, use the Offset,
Data Type, and Length given in the Information Center and do the following
calculations:

From = 241 + Offset

To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device class of a file, the Information Center gives:

O0ffset = 30
Data Type is character
Length = 2

Therefore,

From = 241 + 30 = 271,
To =271 -1+ 2= 272.
See subfield DEV_CLASS in example below

FFilename++IPEASFRTen+LK1en+AIDevice+. Keywords++t+tttttttttttttttttttttt++COmMMment s+ttt

FMYFILE

IF

DISK INFDS (MYIOFBK)

DName+++++++++++ETDsFrom+++To/L+++1Dc. Keywords++++++++ttttttttttttttttt++++Comment s++++++++++
DMYIOFBK

D

D
D
D
D
D
D
D
D
D

WRITE_CNT
READ_CNT
WRTRD_CNT
OTHER_CNT
OPERATION
I10_RCD_FMT
DEV_CLASS
10_PGM_DEV
I10_RCD_LEN

* 241-242 not used
243 2461 0 * Write count
247 250I 0 * Read count
251 2541 0 * Write/read count
255 2581 0 * Other I/0 count
260 260 * Cuurent operation
261 270 * Rcd format name
271 272 * Device class
273 282 * Pgm device name
283 2861 0 * Red Ten of I/0

Figure 28. Example of Coding an INFDS with Input/Output Feedback Information

Device Specific Feedback Information

The device specific feedback information in the file information data structure
starts at position 367 in the INFDS, and contains input/output feedback
information specific to a device.

The length of the INFDS when device specific feedback information is required,
depends on two factors: the device type of the file, and on whether DISK files are
keyed or not. The minimum length is 528; but some files require a longer INFDS.

* For WORKSTN files, the INFDS is long enough to hold the device-specific
feedback information for any type of display or ICF file starting at position 241.
For example, if the longest device-specific feedback information requires 390
bytes, the INFDS for WORKSTN files is 630 bytes long (240+390=630).

* For externally described DISK files, the INFDS is at least long enough to hold
the longest key in the file beginning at position 401.

Chapter 5. File and Program Exception/Errors 71

File Exception/Errors

72

ILE RPG Reference

More information on the contents and length of the device feedback for database
file, printer files, ICF and display files can be found in the iSeries Information
Center database and file systems category.

The contents of the device specific input/output feedback area of the file are
copied by RPG to the device specific feedback section of the INFDS:

 If a POST for any file with factor 1 blank has been specified anywhere in your
program:

— only after a POST for the file.

 If a POST for any file with factor 1 blank has not been specified anywhere in
your program:

— after each 1I/0O operation, if is not active for the file.
— after the I/O request to data management to get or put a block of data, if
blocking is active for the file.
Notes:
1. After each keyed input operation, only the key fields will be updated.

2. After each non-keyed input operation, only the relative record number will be
updated.

For more information see [“POST (Post)” on page 705.

INFDS Device Specific Feedback Examples: To specify an INFDS which contains
fields in the device-specific feedback section, you can make the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the input/output feedback section of the INFDS, use the Offset,
Data Type, and Length given in the Information Center and do the following
calculations:

From = 367 + Offset

To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for relative record number of a data base file, the Information
Center gives:

0ffset = 30

Data Type is binary

Length = 4
Therefore,

From = 367 + 30 = 397,
To =397 - 1 + 4 = 400.
See subfield DB_RRN in DBFBK data structure in example below

File Exception/Errors

FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords+++ttttttttttttttttttttttttttComment s+ttt
FMYFILE 0 F 132 PRINTER INFDS(PRTFBK)

DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords+++++++++tt+ttttttt+t++H+++++-Comment s++++++++++
DPRTFBK DS

D CUR_LINE 367 368I 0 * Current Tine num
D CUR_PAGE 369 3721 0 * Current page cnt
* If the first bit of PRT_FLAGS is on, the spooled file has been

* deleted. Use TESTB X'80' or TESTB '0' to test this bit.

D PRT_FLAGS 373 373
D PRT_MAJOR 401 402 * Major ret code
D PRT_MINOR 403 404 * Minor ret code

Figure 29. Example of Coding an INFDS with Printer Specific Feedback Information

FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++++t+tttttttt+t++t++++++Comments++++++++++

FMYFILE IF E DISK INFDS (DBFBK)
DName+++++++++++ETDSFrom+++To/ L+++1Dc. Keywords++++++++rttttttttttttttttttt++Comment s++++++++++

DDBFBK DS

D FDBK_SIZE 367 3701 0 * Size of DB fdbk
D JOIN_BITS 371 3741 0 * JFILE bits

D LOCK_RCDS 377 3781 0 * Nbr locked rcds
D POS_BITS 385 385 * File pos bits

D DLT_BITS 384 384 * Red deleted bits
D NUM_KEYS 387 388I 0 * Num keys (bin)

D KEY_LEN 393 3941 0 * Key length

D MBR_NUM 395 3961 0 * Member number

D DB_RRN 397 400I 0 * Relative-rcd-num
D KEY 401 2400 * Key value (max
D * size 2000)

Figure 30. Example of Coding an INFDS with Database Specific Feedback Information

FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords+++++++tt+tttttttttt+tt+++++Comments++++++++++
FMYFILE CF E WORKSTN INFDS (ICFFBK)

DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords+++++++++ttttttttttttttt+++++-Comment s++++++++++
DICFFBK DS

D ICF_AID 369 369 * AID hyte

D ICF_LEN 372 3751 0 * Actual data Ten
D ICF_MAJOR 401 402 * Major ret code
D ICF_MINOR 403 404 * Minor ret code
D SNA_SENSE 405 412 * SNA sense rc

D SAFE_IND 413 413 * Safe indicator
D RQSWRT 415 415 * Request write
D RMT_FMT 416 425 * Remote rcd fmt
D ICF_MODE 430 437 * Mode name

Figure 31. Example of Coding an INFDS with ICF Specific Feedback Information

Chapter 5. File and Program Exception/Errors

73

File Exception/Errors

FFilename++IPEASFRTen+LKlen+AIDevice+.Keywords+++++ttttttttttttttttttttttComments++ttt++

FMYFILE CF E

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++++tttttttttttttt+++++Comment s++++++++++

DDSPFBK

D

(=B — I — I — i — i — B — i — i —) —]

DSP_FLAG1
DSP_AID
CURSOR
DATA_LEN
SF_RRN
MIN_RRN
NUM_RCDS
ACT_CURS

DSP_MAJOR
DSP_MINOR

WORKSTN INFDS (DSPFBK)

367 368 * Display flags
369 369 * AID byte
370 371 * Cursor Tocation
372 3751 0 * Actual data len
376 3771 0 * Subfile rrn
378 3791 0 * Subfile min rrn
380 3811 0 * Subfile num rcds
382 383 * Active window

* cursor location
401 402 * Major ret code
403 404 * Minor ret code

Figure 32. Example of Coding an INFDS with Display Specific Feedback Information

74

ILE RPG Reference

Get Attributes Feedback Information

The get attributes feedback information in the file information data structure starts
at position 241 in the INFDS, and contains information about a display device or
ICF session (a device associated with a WORKSTN file). The end position of the
get attributes feedback information depends on the length of the data returned by
a get attributes data management operation. The get attributes data management
operation is performed when a POST with a program device specified for factor 1
is used.

More information about the contents and the length of the get attributes data can
be found in the Information Center.

INFDS Get Attributes Feedback Example: To specify an INFDS which contains
fields in the get attributes feedback section, you can make the following entries:

* Specify the INFDS keyword on the file description specification with the name
of the file information data structure

* Specify the file information data structure and the subfields you wish to use on
a definition specification.

* Use information in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the get attributes feedback section of the INFDS, use the Offset, Data
Type, and Length given in the Information Center and do the following
calculations:

From = 241 + Offset

To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device type of a file, the Information Center gives:

Offset = 31
Data Type is character
Length = 6

Therefore,

From = 241 + 31 = 272,
To =272 -1+6=277.
See subfield DEV_TYPE in example below

File Exception/Errors

FFilename++IPEASFRTen+LK1en+AIDevice+.Keywords+++ttttttttttttttttttttttttttComments++++tttst

FMYFILE

CF

WORKSTN INFDS (DSPATRFBK)

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++tttttttttttttt+++++Comment s++++++++++
DDSPATRFBK

D

(=B — i — B — I — B — i — i — i — B — i — i — i — i — i — i — il — i —

[— R — i — i — I — B — B — i — i — i — B — i — i — i — i —) — |

PGM_DEV
DEV_DSC
USER_ID
DEV_CLASS
DEV_TYPE
REQ_DEV
ACQ_STAT
INV_STAT
DATA_AVAIL
NUM_ROWS
NUM_COLS
BLINK
LINE_STAT
DSP_LOC
DSP_TYPE
KBD_TYPE
CTL_INFO
COLOR_DSP
GRID_DSP

* The following fields

ISDN_LEN
ISDN_TYPE
ISDN_PLAN
ISDN_NUM
ISDN_SLEN

ISDN_STYPE

ISDN_SNUM
ISDN_CON
ISDN_RLEN
ISDN_RNUM
ISDN_ELEN
ISDN_ETYPE
ISDN_ENUM
ISDN_XTYPE

241 250
251 260
261 270
271 271
272 277
278 278
279 279
280 280
281 281
282 2831 0
284 2851 0
286 286
287 287
288 288
289 289
290 290
342 342
343 343
344 344
apply to ISDN.
385 3861 0
387 388
389 390
391 430
435 4361 0
437 438
439 478
480 480
481 4821 0
483 514
519 520
521 521
522 561
566 566

F ok k% ok ok ok H ¥ Sk ok F X F Ok F * F F

* Ok Ok Sk ok F ¥ F Sk F F X F * *

Program device
Dev description
User ID

Device class
Device type
Requester?
Acquire status
Invite status
Data available
Number of rows
Number of cols
Allow blink?
Online/offline?
Display location
Display type
Keyboard type
Controller info
Color capable?
Grid Tine dsp?

Rmt number len

Rmt number type

Rmt number plan

Rmt number

Rmt sub-address
Tength

Rmt sub-address
type

Rmt sub-address

Connection

Rmt address len

Rmt address

Extension len

Extension type

Extension num

X.25 call type

Figure 33. Example of Coding an INFDS with Display file Get Attributes Feedback Information

Chapter 5. File and Program Exception/Errors

75

File Exception/Errors

FFilename++IPEASFRTen+LKlen+AIDevice+.Keywords++++++ttttttttttttttttttttttComments+tttt++

FMYFILE CF E WORKSTN INFDS (ICFATRFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++++tttttttttttttt+++++Comment s++++++++++

DICFATRFBK DS

D PGM_DEV 241 250 * Program device
D DEV_DSC 251 260 * Dev description
D USER_ID 261 270 * User ID

D DEV_CLASS 271 271 * Device class

D DEV_TYPE 272 272 * Device type

D REQ_DEV 278 278 * Requester?

D ACQ_STAT 279 279 * Acquire status
D INV_STAT 280 280 * Invite status
D DATA_AVAIL 281 281 * Data available
D SES_STAT 291 291 * Session status
D SYNC_LVL 292 292 * Synch level

D CONV_TYPE 293 293 * Conversation typ
D RMT_LOC 294 301 * Remote location
D LCL_LU 302 309 * Local LU name
D LCL_NETID 310 317 * Local net ID

D RMT_LU 318 325 * Remote LU

D RMT_NETID 326 333 * Remote net ID
D APPC_MODE 334 341 * APPC Mode

D LU6_STATE 345 345 * LU6 conv state
D LU6_COR 346 353 * LU6 conv

D * correlator

* The following fields apply to ISDN.

D ISDN_LEN 385 386I 0 * Rmt number Ten
D ISDN_TYPE 387 388 * Rmt number type
D ISDN_PLAN 389 390 * Rmt number plan
D ISDN_NUM 391 430 * Rmt number

D ISDN_SLEN 435 4361 0 * sub-addr len

D ISDN_STYPE 437 438 * sub-addr type
D ISDN_SNUM 439 478 * Rmt sub-address
D ISDN_CON 480 480 * Connection

D ISDN_RLEN 481 4821 0 * Rmt address len
D ISDN_RNUM 483 514 * Rmt address

D ISDN_ELEN 519 520 * Extension len
D ISDN_ETYPE 521 521 * Extension type
D ISDN_ENUM 522 561 * Extension num
D ISDN_XTYPE 566 566 * X.25 call type

* The following information is available only when program was started
* as result of a received program start request. (P_ stands for protected)

D TRAN_PGM 567 630 * Trans pgm name
D P_LUWIDLN 631 631 * LUWID f1d len

D P_LUNAMELN 632 632 * LU-NAME len

D P_LUNAME 633 649 * LU-NAME

D P_LUWIDIN 650 655 * LUWID instance
D P_LUWIDSEQ 656 6571 0 * LUWID seq num

* The following information is available only when a protected conversation
* is started on a remote system. (U_ stands for unprotected)

D U_LUWIDLN 658 658 * LUWID f1d len

D U_LUNAMELN 659 659 * LU-NAME Ten

D U_LUNAME 660 676 * LU-NAME

D U_LUWIDIN 677 682 * LUWID instance
D U_LUWIDSEQ 683 684I 0 * LUWID seq num

Figure 34. Example of Coding an INFDS with ICF file Get Attributes Feedback Information

Blocking Considerations
The fields of the input/output specific feedback in the INFDS and in most cases
the fields of the device specific feedback information section of the INFDS, are not

76 ILE RPG Reference

Table 19. Normal Codes

File Exception/Errors

updated for each operation to the file in which the records are blocked and
unblocked. The feedback information is updated only when a block of records is
transferred between an RPG program and the OS/400 system. However, if you are
doing blocked input on a data base file, the relative record number and the key
value in the data base feedback section of the INFDS are updated:

* On every input/output operation, if a POST for any file with factor 1 blank has
not been specified anywhere in your program.

* Only after a POST for the file, if a POST for any file with factor 1 blank has been
specified anywhere in your program.

You can obtain valid updated feedback information by using the CL command
OVRDBEF (Override with Database File) with SEQONLY (*NO) specified. If you use
a file override command, the ILE RPG compiler does not block or unblock the
records in the file.

For more information on blocking and unblocking of records in RPG see WebSphere
Development Studio: ILE RPG Programmer’s Guide.

File Status Codes
Any code placed in the subfield location *STATUS that is greater than 99 is

considered to be an exception/error condition. When the status code is greater
than 99; the error indicator — if specified in positions 73 and 74 — is set on, or the
%ERROR built-in function — if the "E” extender is specified — is set to return '1’;
otherwise, the file exception/error subroutine receives control. Location *STATUS is
updated after every file operation.

You can use the %STATUS built-in function to get information on exception/errors.
It returns the most recent value set for the program or file status. If a file is
specified, %STATUS returns the value contained in the INFDS *STATUS field for
the specified file.

The codes in the following tables are placed in the subfield location *STATUS for
the file information data structure:

Code Device' RC? Condition

00000 No exception/error.

00002 W n/a Function key used to end display.

00011 W,D,SQ 11xx End of file on a read (input).

00012 W,D,SQ n/a No-record-found condition on a CHAIN, SETLL, and SETGT
operations.

00013 w n/a Subfile is full on WRITE operation.

Note: '“Device” refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files. *The formula mmnn is used to described major/minor return codes: mm
is the major and nn the minor.

Table 20. Exception/Error Codes

Code Device' RC? Condition
01011 W,D,SQ n/a Undefined record type (input record does not match record
identifying indicator).

Chapter 5. File and Program Exception/Errors 77

File Exception/Errors

Table 20. Exception/Error Codes (continued)

Code Device’ RC? Condition

01021 W,D,SQ n/a Tried to write a record that already exists (file being used has
unique keys and key is duplicate, or attempted to write
duplicate relative record number to a subfile).

01022 D n/a Referential constraint error detected on file member.

01023 D,SQ n/a Error in trigger program before file operation performed.

01024 D,SQ n/a Error in trigger program after file operation performed.

01031 W,D,SQ n/a Match field out of sequence.

01041 n/a n/a Array/table load sequence error.

01042 n/a n/a Array/table load sequence error. Alternate collating sequence
used.

01051 n/a n/a Excess entries in array/table file.

01071 W,D,SQ n/a Numeric sequence error.

01121* W n/a No indicator on the DDS keyword for Print key.

01122* W n/a No indicator on the DDS keyword for Roll Up key.

01123* w n/a No indicator on the DDS keyword for Roll Down key.

01124* Y n/a No indicator on the DDS keyword for Clear key.

01125* W n/a No indicator on the DDS keyword for Help key.

01126* W n/a No indicator on the DDS keyword for Home key.

01201 w 34xx Record mismatch detected on input.

01211 all n/a I/0O operation to a closed file.

01215 all n/a OPEN issued to a file already opened.

01216> all yes Error on an implicit OPEN/CLOSE operation.

01217° all yes Error on an explicit OPEN/CLOSE operation.

01218 D,SQ n/a Record already locked.

01221 D,SQ n/a Update operation attempted without a prior read.

01222 D,SQ n/a Record cannot be allocated due to referential constraint error

01231 SP n/a Error on SPECIAL file.

01235 P n/a Error in PRTCTL space or skip entries.

01241 D,SQ n/a Record number not found. (Record number specified in record
address file is not present in file being processed.)

01251 W 80xx 81xx Permanent I/O error occurred.

01255 W 82xx 83xx Session or device error occurred. Recovery may be possible.

01261 Y n/a Attempt to exceed maximum number of acquired devices.

01271 w n/a Attempt to acquire unavailable device

01281 W n/a Operation to unacquired device.

01282 w 0309 Job ending with controlled option.

01284 W n/a Unable to acquire second device for single device file

01285 w 0800 Attempt to acquire a device already acquired.

01286 W n/a Attempt to open shared file with SAVDS or IND options.

01287 w n/a Response indicators overlap IND indicators.

01299 W,D,SQ yes Other 1/0 error detected.

78 ILE RPG Reference

File Exception/Errors

Table 20. Exception/Error Codes (continued)

Code Device' RC? Condition
01331 0310 Wait time exceeded for READ from WORKSTN file.
Notes:

1. “Device” refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files.

2. The formula mmnn is used to described major/minor return codes: mm is the major and nn the minor.

3. Any errors that occur during an open or close operation will result in a *STATUS value of 1216 or 1217
regardless of the major/minor return code value.

4. See[Figure 9 on page 33|for special handling.

The following table shows the major/minor return code to *STATUS value
mapping for errors that occur to AS/400 programs using WORKSTN files only. See
the Information Center for more information on major/minor return codes.

Major Minor *STATUS

00,02 all 00000

03 all (except 09,10) 00000

03 09 01282

03 10 01331

04 all 01299

08 all 01285"

11 all 00011

34 all 01201

80,81 all 01251

82,83 all 01255

Notes:

1. The return code field will not be updated for a *STATUS value of 1285, 1261, or 1281
because these conditions are detected before calling data management. To monitor for
these errors, you must check for the *STATUS value and not for the corresponding
major/minor return code value.

File Exception/Error Subroutine (INFSR)

To identify the user-written RPG IV subroutine that may receive control following
file exception/errors, specify the INFSR keyword on the File Description
specification with the name of the subroutine that receives control when
exception/errors occur on this file. The subroutine name can be *PSSR, which
indicates that the [program exception/error subroutind is given control for the
exception/errors on this file.

A file exception/error subroutine (INFSR) receives control when an
exception/error occurs on an implicit (primary or secondary) file operation or on
an explicit file operation that does not have an indicator specified in positions 73
and 74,does not have an (E) extender, and is not in the monitor block of a
MONITOR group that can handle the error.. The file exception/error subroutine
can also be run by the EXSR operation code. Any of the RPG IV operations can be
used in the file exception/error subroutine. Factor 1 of the BEGSR operation and

Chapter 5. File and Program Exception/Errors 79

File Exception/Errors

factor 2 of the EXSR operation must contain the name of the subroutine that
receives control (same name as specified with the INFSR keyword on the file
description specifications).

Note: The INFSR keyword cannot be specified if the keyword NOMAIN is
specified on the control specification, or if the file is to be accessed by a
subprocedure.

The ENDSR operation must be the last specification for the file exception/error

subroutine and should be specified as follows:

Position
Entry

6 C

7-11 Blank

12-25 Can contain a label that is used in a GOTO specification within the
subroutine.

26-35 ENDSR

36-49 Optional entry to designate where control is to be returned following
processing of the subroutine. The entry must be a 6-position character
field, literal, or array element whose value specifies one of the following
return points.

Note: If the return points are specified as literals, they must be enclosed in
apostrophes. If they are specified as named constants, the constants
must be character and must contain only the return point with no
leading blanks. If they are specified in fields or array elements, the
value must be left-adjusted in the field or array element.

*DETL
Continue at the beginning of detail lines.

*GETIN
Continue at the get input record routine.

*TOTC
Continue at the beginning of total calculations.

*TOTL
Continue at the beginning of total lines.

*OFL Continue at the beginning of overflow lines.

*DETC
Continue at the beginning of detail calculations.

*CANCL
Cancel the processing of the program.

Blanks Return control to the RPG IV default error handler. This applies
when factor 2 is a value of blanks and when factor 2 is not
specified. If the subroutine was called by the EXSR operation and
factor 2 is blank, control returns to the next sequential instruction.
Blanks are only valid at runtime.

50-76 Blank.

Remember the following when specifying the file exception/error subroutine:

80 ILE RPG Reference

File Exception/Errors

* The programmer can explicitly call the file exception/error subroutine by
specifying the name of the subroutine in factor 2 of the EXSR operation.

 After the ENDSR operation of the file exception/error subroutine is run, the
RPG 1V language resets the field or array element specified in factor 2 to blanks.
Thus, if the programmer does not place a value in this field during the
processing of the subroutine, the RPG IV default error handler receives control
following processing of the subroutine unless the subroutine was called by the
EXSR operation. Because factor 2 is set to blanks, the programmer can specify
the return point within the subroutine that is best suited for the exception/error
that occurred. If the subroutine was called by the EXSR operation and factor 2 of
the ENDSR operation is blank, control returns to the next sequential instruction
following the EXSR operation. A file exception/error subroutine can handle
errors in more than one file.

* If a file exception/error occurs during the start or end of a program, control
passes to the RPG 1V default error handler, and not to the user-written file
exception/error or subroutine (INFSR).

* Because the file exception/error subroutine may receive control whenever a file
exception/error occurs, an exception/error could occur while the subroutine is
running if an I/O operation is processed on the file in error. If an
exception/error occurs on the file already in error while the subroutine is
running, the subroutine is called again; this will result in a program loop unless
the programmer codes the subroutine to avoid this problem. One way to avoid
such a program loop is to set a first-time switch in the subroutine. If it is not the
first time through the subroutine, set on a halt indicator and issue the RETURN
operation as follows:

Chapter 5. File and Program Exception/Errors 81

File Exception/Errors

CLONO1Factorl+++++++0Opcode (E)+Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .

C+ If INFSR is already handling the error, exit.

c ERRRTN BEGSR

c SW IFEQ 1

c SETON H1
c RETURN

C* Otherwise, flag the error handler.

c ELSE

c MOVE '1' SW
c

c

c

c ENDIF

C* End error processing.
c MOVE '0' SW

c ENDSR

Figure 35. Setting a First-time Switch

Note: It may not be possible to continue processing the file after an I/O error has
occurred. To continue, it may be necessary to issue a CLOSE operation and
then an OPEN operation to the file.

Program Exception/Errors

82

ILE RPG Reference

Some examples of program exception/errors are: division by zero, SQRT of a
negative number, invalid array index, error on a CALL, error return from called
program, and start position or length out of range for a string operation. They can
be handled in one of the following ways:

* The operation code extender "E’ can be specified for some operation codes.
When specified, before the operation begins, this extender sets the %ERROR and
%STATUS built-in functions to return zero. If an exception/error occurs during
the operation, then after the operation %ERROR returns 1" and %STATUS
returns the program status. The optional program status data structure is
updated with the exception/error information. You can determine the action to
be taken by testing %ERROR and %STATUS.

* An indicator can be specified in positions 73 and 74 of the calculation
specifications for some operation codes. This indicator is set on if an
exception/error occurs during the processing of the specified operation. The
optional [program status data structure|is updated with the exception/error
information. You can determine the action to be taken by testing the indicator.

Program Exception/Errors

* ON-ERROR groups can be used to handle errors for statements processed within
a MONITOR block. If an error occurs when a statement is processed, control
passes to the appropriate ON-ERROR group.

* You can create a user-defined ILE exception handler that will take control when
an exception occurs. For more information, see WebSphere Development Studio: ILE
RPG Programmer’s Guide.

* Alprogram exception/error subroutine can be specified. You enter *PSSR in
factor 1 of a BEGSR operation to specify this subroutine. Information regarding
the program exception/error is made available through a program status data
structure that is specified with an S in position 23 of the data structure statement
on the definition specifications. You can also use the %STATUS built-in function,
which returns the most recent value set for the program or file status.

* If the indicator, 'E” extender, monitor block, or program exception/error
subroutine is not present, program exception/errors are handled by the RPG IV
default error handler.

Program Status Data Structure

A program status data structure (PSDS) can be defined to make program
exception/error information available to an RPG IV program. The PSDS must be
defined in the main source section; therefore, there is only one PSDS per module.

A data structure is defined as a PSDS by an S in position 23 of the data structure
statement. A PSDS contains predefined subfields that provide you with information
about the program exception/error that occurred. The location of the subfields in
the PSDS is defined by special keywords or by predefined From and To positions.
In order to access the subfields, you assign a name to each subfield. The keywords
must be specified, left-adjusted in positions 26 through 39.

Information from the PSDS is also provided in a formatted dump. However, a
formatted dump might not contain information for fields in the PSDS if the PSDS
is not coded, or the length of the PSDS does not include those fields. For example,
if the PSDS is only 275 bytes long, the time and date or program running will
appear as *N/A*. in the dump, since this information starts at byte 276. For more
information see ["DUMP (Program Dump)” on page 609,

TIP
Call performance with LR on will be greatly improved by having no PSDS, or
a PSDS no longer than 80 bytes, since some of the information to fill the
PSDS after 80 bytes is costly to obtain.

able 21| provides the layout of the subfields of the data structure and the
predefined From and To positions of its subfields that can be used to access
information in this data structure.

Table 21. Contents of the Program Status Data Structure

From To
(Pos. (Pos.
26-32) 33-39) |Format Length | Keyword Information
1 10 Character 10 *PROC Name of the main procedure, if there is one;

otherwise, the name associated with the main
source section.

Chapter 5. File and Program Exception/Errors 83

Program Exception/Errors

Table 21. Contents of the Program Status Data Structure (continued)

From
(Pos.

26-32)

To
(Pos.

33-39)

Format

Length

Keyword

Information

11

15

Zoned decimal

5,0

*STATUS

Status code. For a description of these codes, see
|“Program Status Codes” on page 87/

16

20

Zoned decimal

Previous status code.

21

28

Character

RPG IV source listing line number or statement
number. The source listing line number is replaced
by the source listing statement number if
OPTION(*SRCSTMT) is specified instead of
OPTION(*NOSRCSTMT). The full statement
number is included when it applies to the root
source member. If the statement number is greater
than 6 digits (that is, it includes a source ID other
than zero), the first 2 positions of the 8-byte
feedback area will have a "+ " indicating that the
rest of statement number is stored in positions
354-355.

29

36

Character

*ROUTINE

Name of the RPG IV routine in which the exception
or error occurred. This subfield is updated at the
beginning of an RPG IV routine or after a program
call only when the *STATUS subfield is updated
with a nonzero value. The following names identify
the routines:

*INIT Program initialization
*DETL Detail lines

*GETIN
Get input record

*TOTC Total calculations
*TOTL Total lines
*DETC Detail calculations
*OFL Overflow lines

*TERM
Program ending

*ROUTINE
Name of program or procedure called (first
8 characters).
Note: *ROUTINE is not valid unless you use the
normal RPG IV cycle. Logic that takes the program
out of the normal RPG IV cycle may cause
*ROUTINE to reflect an incorrect value.

37

39

Zoned decimal

3,0

*PARMS

Number of parameters passed to this program from
a calling program. The value is the same as that
returned by %PARMS. If no information is
available, -1 is returned.

40

42

Character

Exception type (CPF for a OS/400 system exception
or MCH for a machine exception).

84 ILE RPG Reference

Program Exception/Errors

Table 21. Contents of the Program Status Data Structure (continued)

From
(Pos.

26-32)

To
(Pos.

33-39)

Format

Length

Keyword

Information

43

46

Character

Exception number. For a CPF exception, this field
contains a CPF message number. For a machine
exception, it contains a machine exception number.

47

50

Character

Reserved

51

80

Character

30

Work area for messages. This area is only meant for
internal use by the ILE RPG compiler. The
organization of information will not always be
consistent. It can be displayed by the user.

81

90

Character

10

Name of library in which the program is located.

91

170

Character

80

Retrieved exception data. CPF messages are placed
in this subfield when location *STATUS contains
09999.

171

174

Character

Identification of the exception that caused RNX9001
exception to be signaled.

175

184

Character

10

Name of file on which the last file operation
occurred (updated only when an error occurs). This
information always contains the full file name.

185

190

Character

Unused.

191

198

Character

Date (*DATE format) the job entered the system. In
the case of batch jobs submitted for overnight
processing, those that run after midnight will carry
the next day’s date. This value is derived from the
job date, with the year expanded to the full four
years. The date represented by this value is the
same date represented by positions 270 - 275.

199

200

Zoned decimal

2,0

First 2 digits of a 4-digit year. The same as the first
2 digits of *YEAR. This field applies to the century
part of the date in positions 270 to 275. For
example, for the date 1999-06-27, UDATE would be
990627, and this century field would be 19. The
value in this field in conjunction with the value in
positions 270 - 275 has the combined information of
the value in positions 191 -198.

Note: This century field does not apply to the dates
in positions 276 to 281, or positions 288 to 293.

201

208

Character

Name of file on which the last file operation
occurred (updated only when an error occurs). This
file name will be truncated if a long file name is
used. See positions 175-184 for long file name
information.

Chapter 5. File and Program Exception/Errors 85

Program Exception/Errors

Table 21. Contents of the Program Status Data Structure (continued)

From
(Pos.

26-32)

To
(Pos.

33-39)

Format

Length

Keyword

Information

209

243

Character

35

Status information on the last file used. This
information includes the status code, the RPG IV
opcode, the RPG IV routine name, the source listing
line number or statement number, and record name.
It is updated only when an error occurs.

Note: The opcode name is in the same form as
*OPCODE in the INFDS The source listing line
number is replaced by the source listing statement
number if OPTION(*SRCSTMT) is specified instead
of OPTION(*NOSRCSTMT). The full statement
number is included when it applies to the root
source member. If the statement number is greater
than 6 digits (that is, it includes a source ID other
than zero), the first 2 positions of the 8-byte
feedback area will have a "+ " indicating that the
rest of statement number is stored in positions
356-357.

244

253

Character

10

Job name.

254

263

Character

10

User name from the user profile.

264

269

Zoned decimal

6,0

Job number.

270

275

Zoned decimal

6,0

Date (in UDATE format) the program started
running in the system (UDATE is derived from this
date). See [“User Date Special Words” on page 7|for
a description of UDATE. This is commonly known
as the ‘job date’. The date represented by this value
is the same date represented by positions 191 - 198.

276

281

Zoned decimal

6,0

Date of program running (the system date in
UDATE format). If the year part of this value is
between 40 and 99, the date is between 1940 and
1999. Otherwise the date is between 2000 and 2039.
The “century’ value in positions 199 - 200 does not
apply to this field.

282

287

Zoned decimal

6,0

Time (in the format hhmmss) of the program
running.

288

293

Character

Date (in UDATE format) the program was
compiled. If the year part of this value is between
40 and 99, the date is between 1940 and 1999.
Otherwise the date is between 2000 and 2039. The
‘century’ value in positions 199 - 200 does not apply
to this field.

294

299

Character

Time (in the format hhmmss) the program was
compiled.

300

303

Character

Level of the compiler.

304

313

Character

10

Source file name.

314

323

Character

10

Source library name.

324

333

Character

10

Source file member name.

334

343

Character

10

Program containing procedure.

86 ILE RPG Reference

Program Exception/Errors

Table 21. Contents of the Program Status Data Structure (continued)

From To
(Pos. (Pos.
26-32) 33-39) |Format Length | Keyword Information
344 353 | Character 10 Module containing procedure.
354 429 | Character 76 Unused.
354 355 | Binary 2 Source Id matching the statement number from
positions 21-28.
356 357 | Binary 2 Source Id matching the statement number from
positions 228-235.
358 367 |Character 10 Current user profile name.
368 429 | Character 62 Unused.

Program Status Codes

Any code placed in the subfield location *STATUS that is greater than 99 is
considered to be an exception/error condition. When the status code is greater
than 99; the error indicator — if specified in positions 73 and 74 — is set on, or the
%ERROR built-in function — if the 'E” extender is specified — is set to return '1’,
or control passes to the appropriate ON-ERROR group within a MONITOR block;
otherwise, the program exception/error subroutine receives control. Location
*STATUS is updated when an exception/error occurs.

The %STATUS built-in function returns the most recent value set for the program
or file status.

The following codes are placed in the subfield location *STATUS for the program
status data structure:

Normal Codes

Code Condition

00000 No exception/error occurred

00001 Called program returned with the LR indicator on.

00050 Conversion resulted in substitution.

Exception/Error Codes

Code Condition

00100 Value out of range for string operation

00101 Negative square root

00102 Divide by zero

00103 An intermediate result is not large enough to contain the result.

00104 Float underflow. An intermediate value is too small to be contained in the
intermediate result field.

00105 Invalid characters in character to numeric conversion functions.

00112 Invalid Date, Time or Timestamp value.

Chapter 5. File and Program Exception/Errors 87

Program Exception/Errors

00113 Date overflow or underflow. (For example, when the result of a Date
calculation results in a number greater than *HIVAL or less than *LOVAL.)

00114 Date mapping errors, where a Date is mapped from a 4-character year to a
2-character year, and the date range is not 1940-2039.

00115 Variable-length field has a current length that is not valid.

00120 Table or array out of sequence.

00121 Array index not valid

00122 OCCUR outside of range

00123 Reset attempted during initialization step of program

00202 Called program or procedure failed; halt indicator (H1 through H9) not on
00211 Error calling program or procedure

00222 Pointer or parameter error

00231 Called program or procedure returned with halt indicator on

00232 Halt indicator on in this program

00233 Halt indicator on when RETURN operation run

00299 RPG IV formatted dump failed

00301 Class or method not found for a method call, or error in method call.

00302 Error while converting a Java array to an RPG parameter on entry to a
Java native method.

00303 Error converting RPG parameter to Java array on exit from an RPG native
method.

00304 Error converting RPG parameter to Java array in preparation for a Java
method call.

00305 Error converting Java array to RPG parameter or return value after a Java
method.

00306 Error converting RPG return value to Java array.
00333 Error on DSPLY operation

00401 Data area specified on IN/OUT not found

00402 *PDA not valid for non-prestart job

00411 Data area type or length does not match

00412 Data area not locked for output

00413 Error on IN/OUT operation

00414 User not authorized to use data area

00415 User not authorized to change data area

00421 Error on UNLOCK operation

00425 Length requested for storage allocation is out of range
00426 Error encountered during storage management operation
00431 Data area previously locked by another program

00432 Data area locked by program in the same process

88 ILE RPG Reference

00450
00451
00501
00502
00802
00803
00804
00805
00907
00970

09998
09999

Program Exception/Errors

Character field not entirely enclosed by shift-out and shift-in characters
Conversion between two CCSIDs is not supported.

Failure to retrieve sort sequence.

Failure to convert sort sequence.

Commitment control not active.

Rollback operation failed.

Error occurred on COMMIT operation

Error occurred on ROLBK operation

Decimal data error (digit or sign not valid)

The level number of the compiler used to generate the program does not
agree with the level number of the RPG IV run-time subroutines.

Internal failure in ILE RPG compiler or in run-time subroutines

Program exception in system routine.

PSDS Example
To specify a PSDS in your program, you code the program status data structure
and the subfields you wish to use on a definition specification.

Chapter 5. File and Program Exception/Errors 89

Program Exception/Errors

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++ttttttttttttttt+++++Comment s++++++++++

DMYPSDS SDS

D PROC_NAME *PROC * Procedure name
D PGM_STATUS *STATUS * Status code

D PRV_STATUS 16 20S 0 * Previous status
D LINE_NUM 21 28 * Src list line num
D ROUTINE *ROUTINE * Routine name

D PARMS *PARMS * Num passed parms
D EXCP_TYPE 40 42 * Exception type
D EXCP_NUM 43 46 * Exception number
D PGM_LIB 81 90 * Program library
D EXCP_DATA 91 170 * Exception data
D EXCP_ID 171 174 * Exception Id

D DATE 191 198 * Date (*DATE fmt)
D YEAR 199 200S 0 * Year (*YEAR fmt)
D LAST_FILE 201 208 * Last file used
D FILE_INFO 209 243 * File error info
D JOB_NAME 244 253 * Job name

D USER 254 263 * User name

D JOB_NUM 264 269S 0 * Job number

D JOB_DATE 270 2755 0 * Date (UDATE fmt)
D RUN_DATE 276 2815 0 * Run date (UDATE)
D RUN_TIME 282 2875 0 * Run time (UDATE)
D CRT_DATE 288 293 * Create date

D CRT_TIME 294 299 * Create time

D CPL_LEVEL 300 303 * Compiler level

D SRC_FILE 304 313 * Source file

D SRC_LIB 314 323 * Source file 1ib
D SRC_MBR 324 333 * Source file mbr
D PROC_PGM 334 343 * Pgm Proc is in
D PROC_MOD 344 353 * Mod Proc is in

Figure 36. Example of Coding a PSDS

90 ILE RPG Reference

Program Exception/Errors

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Program Exception/Error Subroutine

To identify the user-written RPG IV subroutine that is to receive control when a
program exception/error occurs, specify *PSSR in factor 1 of the subroutine’s
BEGSR operation. If an indicator is not specified in positions 73 and 74 for the
operation code, or if the operation does not have an (E) extender, or if the
statement is not in a MONITOR block that can handle the error, or if an exception
occurs that is not expected for the operation code (that is, an array indexing error
during a SCAN operation), control is transferred to this subroutine when a
program exception/error occurs. In addition, the subroutine can also be called by
the EXSR operation. *PSSR can be specified on the INFSR keyword on the file
description specifications and receives control if a file exception/error occurs.

Any of the RPG IV operation codes can be used in the program exception/error
subroutine. The ENDSR operation must be the last specification for the subroutine,
and the factor 2 entry on the ENDSR operation specifies the return point following
the running of the subroutine. For a discussion of the valid entries for factor 2, see
[“File Exception/Error Subroutine (INFSR)” on page 79

Remember the following when specifying a program exception/error subroutine:

* You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of
the EXSR operation.

+ After the ENDSR operation of the *PSSR subroutine is run, the RPG IV language
resets the field, subfield, or array element specified in factor 2 to blanks. This
allows you to specify the return point within the subroutine that is best suited
for the exception/error that occurred. If factor 2 contains blanks at the end of
the subroutine, the RPG IV default error handler receives control; if the
subroutine was called by an EXSR or CASxx operation, control returns to the
next sequential instruction following the EXSR or ENDCS.

* Because the program exception/error subroutine may receive control whenever a
non-file exception/error occurs, an exception/error could occur while the
subroutine is running. If an exception/error occurs while the subroutine is
running, the subroutine is called again; this will result in a program loop unless
the programmer codes the subroutine to avoid this problem.

* If you have used the OPTIMIZE(*FULL) option on either the CRTBNDRPG or
the CRTRPGMOD command, you have to declare all fields that you refer to
during exception handling with the NOOPT keyword in the definition
specification for the field. This will ensure that when you run your program, the
fields referred to during exception handling will have current values.

e A *PSSR can be defined in a subprocedure, and each subprocedure can have its
own *PSSR. Note that the *PSSR in a subprocedure is local to that subprocedure.
If you want the subprocedures to share the same exception routine then you
should have each *PSSR call a shared procedure.

Chapter 5. File and Program Exception/Errors 91

Program Exception/Errors

92 ILE RPG Reference

Chapter 6. Procedures and subprocedures

A procedure is a routine that is called using a bound call. You can create two kinds
of procedures in RPG: a main procedure and a subprocedure.

A main procedure uses the RPG cycle. It is specified in the main source section.
You do not need to code anything special to define the main procedure; it consists
of everything before the first Procedure specification. The parameters for the main
procedure can be coded using a prototype and procedure interface in the global
Definition specifications, or using a *ENTRY PLIST in the main procedure’s
calculations.

Any procedure interface found in the global definitions is assumed to be the
procedure interface for the main procedure. The name is required for the
procedure interface for the main procedure, and the prototype with the matching
name must precede the procedure interface in the source.

The name of the main procedure must be the same as the name of the module
being created. You can either use this name for the prototype and procedure
interface, or specify this name in the EXTPROC keyword of the prototype. In the
following example, module CheckFile is created. The main procedure has three
parameters:

1. A file name (input)
2. A library name (input)
3. An indicator indicating whether the file was found (output)

/COPY file CHECKFILEC with the prototype for the main procedure:

D CheckFile PR

D file 10a const
D Tibrary 10a const
D found IN

Module CheckFile:
/COPY CHECKFILEC

D CheckFile PI

D file 16a const

D Tlibrary 10a const

D found IN

C . code using parameters file, library and found

Using a *ENTRY PLIST, you would define the parameters this way:

D file S 16a const

D Tibrary S 10a const

D found S IN

c *ENTRY PLIST

(8 PARM file

(W PARM Tibrary
C PARM found

C . code using parameters file, library and found

You can also use a prototype and procedure interface to define your main
procedure as a program. In this case, you would specify the EXTPGM keyword for
the prototype.

© Copyright IBM Corp. 1994, 2004 93

/COPY file CHECKFILEC with the prototype for the program:

D CheckFile PR extpgm('CHECKFILE")
D file 10a const

D Tibrary 10a const

D found 1IN

In the module source, the procedure interface would be defined the same way.

A subprocedure is a procedure specified after the main source section. It can only
be called using a bound call. Subprocedures differ from main procedures in several
respects, the main difference being that subprocedures do not (and cannot) use the
RPG cycle while running.

All subprocedures must have a corresponding prototype in the definition
specifications of the main source section. The prototype is used by the compiler to
call the program or procedure correctly, and to ensure that the caller passes the
correct parameters.

This chapter discusses the following aspects of subprocedures:

+ |“Subprocedure Definition”|
+ ["NOMAIN Module” on page 100|
* [“Mixing Main Procedures and Exported Subprocedures” on page 100|

* [“Subprocedures and Subroutines” on page 101|

Subprocedure Definition

94

ILE RPG Reference

Subprocedures are defined after the main source section. shows a
subprocedure, highlighting the different parts of it.

* Prototype for procedure FUNCTION

D FUNCTION PR 10I 0 1]
D TERM1 5I 0 VALUE
D TERM2 5I 0 VALUE
D TERM3 51 0 VALUE
P Function B A
g g g g g g g g g g g g g g g g g R R SR ——
* This procedure performs a function on the 3 numeric values
* passed to it as value parameters.
*
* This illustrates how a procedure interface is specified for a
* procedure and how values are returned from a procedure.
K o - - -
D Function PI 101 0
D Terml 5I 0 VALUE
D Term2 51 0 VALUE
D Term3 5I 0 VALUE
D Result S 10I 0 4]
/free
Result = Terml ** 2 *» 17
+ Term2 » 7 B
+ Term3;
return Result * 45 + 23;

/end-free
P E 6|

Figure 37. Example of a Subprocedure

Subprocedure Definition

A Prototype which specifies the name, return value if any, and parameters
if any.

2] A Begin-Procedure specification (B in position 24 of a procedure
specification)

A|Procedure-Interface definitionl which specifies the and

parameters, if any. The procedure interface must match the corresponding
prototype. The procedure-interface definition is optional if the
subprocedure does not return a value and does not have any parameters
that are passed to it.

4 Other definition specifications of variables, constants and prototypes
needed by the subprocedure. These definitions are definitions.
ﬂ Any calculation specifications, standard or free-form, needed to perform

the task of the procedure. The calculations may refer to both local and
lzlobal definitions| Any subroutines included within the subprocedure are
local. They cannot be used outside of the subprocedure. If the
subprocedure returns a value, then the subprocedure must contain a
RETURN operation.

6 An End-Procedure specification (E in position 24 of a procedure
specification)

Except for the procedure-interface definition, which may be placed anywhere
within the definition specifications, a subprocedure must be coded in the order
shown above.

No cycle code is generated for subprocedures. Consequently, you cannot code:
* Prerun-time and compile-time arrays and tables

e *DTAARA definitions

¢ Total calculations

The calculation specifications are processed only once and the procedure returns at
the end of the calculation specifications. See [“Subprocedure Calculations” on page|
for more information.

A subprocedure may be exported, meaning that procedures in other modules in
the program can call it. To indicate that it is to be exported, specify the keyword
EXPORT on the Procedure-Begin specification. If not specified, the subprocedure
can only be called from within the module.

Procedure Interface Definition

If a prototyped procedure has call parameters or a return value, then it must have
a procedure interface definition. A procedure interface definition is a repeat of the
prototype information within the definition of a procedure. It is used to declare the
entry parameters for the procedure and to ensure that the internal definition of the
procedure is consistent with the external definition (the prototype).

You specify a procedure interface by placing PI in the Definition-Type entry
(positions 24-25). Any parameter definitions, indicated by blanks in positions 24-25,
must immediately follow the PI specification. The procedure interface definition
ends with the first definition specification with non-blanks in positions 24-25 or by
a non-definition specification.

Chapter 6. Procedures and subprocedures 95

HHH OHHH

Subprocedure Definition

96

For more information on procedure interface definitions, see ["Procedure Interface”|

Return Values

A procedure that returns a value is essentially a user-defined function, similar to a
built-in function. To define a return value for a subprocedure, you must

1. Define the return value on both the prototype and procedure-interface
definitions of the subprocedure.

2. Code a RETURN operation with an expression in the extended-factor 2 field
that contains the value to be returned.

You define the length and the type of the return value on the procedure-interface
specification (the definition specification with PI in positions 24-25). The following
keywords are also allowed:

DATFMT(fmt)
The return value has the date format specified by the keyword.

DIM(N)
The return value is an array with N elements.

LIKE(name)
The return value is defined like the item specified by the keyword.

LIKEDS(name)
The return value is a data structure defined like the data structure
specified by the keyword.

LIKEREC(name{,type})
The return value is a data structure defined like the record name specified
by the keyword.

PROCPTR
The return value is a procedure pointer.

TIMFMT (fmt)
The return value has the time format specified by the keyword.

To return the value to the caller, you must code a RETURN operation with an
expression containing the return value. The expression in the extended-factor 2
field is subject to the same rules as an expression with EVAL. The actual returned
value has the same role as the left-hand side of the EVAL expression, while the
extended factor 2 of the RETURN operation has the same role as the right-hand
side. You must ensure that a RETURN operation is performed if the subprocedure
has a return value defined; otherwise an exception is issued to the caller of the
subprocedure.

Scope of Definitions

ILE RPG Reference

Any items defined within a subprocedure are local. If a local item is defined with
the same name as a global data item, then any references to that name inside the
subprocedure use the local definition.

However, keep in mind the following:

* Subroutine names and tag names are known only to the procedure in which
they are defined, even those defined in the main procedure.

Subprocedure Definition

 All fields specified on input and output specifications are global. When a
subprocedure uses input or output specifications (for example, while processing
a read operation), the global name is used even if there is a local variable of the

same name.

When using a global

KLIST or PLIST in a subprocedure some of the fields may

have the same names as local fields. If this occurs, the global field is used. This

may cause problems when setting up a KLIST or PLIST prior to using it.

For example, consider the following source.

* Main procedure definitions
D F1d1 S 1A
D F1d2 S 1A

* Define a global key field 1ist with 2 fields, F1dl and F1d2

c global k1 KLIST

C KFLD F1dl

C KFLD F1d2
* Subprocedure Section

P Subproc B

D F1d2 S 1A
* local_k1 has one global kfld (f1dl) and one Tocal (f1d2)

c local_kl KLIST

(8 KFLD F1dl

C KFLD F1d2

* Even though F1d2 is defined Tocally in the subprocedure,

* the global F1d2 is used by the global k1, since global KLISTs
* always use global fields. As a result, the assignment to the
* local F1d2 will NOT affect the CHAIN operation.

C EVAL F1d1 = 'A'
c EVAL F1d2 = 'B'
c global_k1 SETLL file

* Local KLISTs use global fields only when there is no local
* field of that name. Tocal_k1 uses the local F1d2 and so the
* assignment to the Tocal F1d2 WILL affect the CHAIN operation.

c EVAL F1d1 = 'A'
c EVAL F1d2 = 'B'
c local_kl SETLL file

P E

Figure 38. Scope of Key Fields Inside a Module

For more information on scope, see|“Scope of Definitions” on page 118

Subprocedure Calculations

No cycle code is generated for a subprocedure, and so you must code it differently
than a main procedure. The subprocedure ends when one of the following occurs:

* A RETURN operation is processed

* The last calculation in the body of the subprocedure is processed.

Ficure 39 on page 98

Figure 40 on page 99

shows the normal processing steps for a subprocedure.
shows the exception/error handling sequence.

Chapter 6. Procedures and subprocedures 97

Subprocedure Definition

«Initialize global variables
* Retrieve externalindicators
Yes (U1 through U8) and user date fields
*Openfiles
*Load dataareadata
structures, arrays, and tables

procedure (main
orsub) calledinthe
module since program
activation?

Non

¢ |fthereisno *INZSR, store
data structures and variables
for RESET operations E

Initialize
automatic variables

Firsttime
subprocedure
hasbeencalled?

¢ |nitialize static variables
® Store variables for RESET
operations onlocal variables

Return operation

Perform calculations once Setreturn value for caller

(ifthe subprocedure
returns avalue)

If subprocedure
returns avalue, was a

Yes (
Returnto caller

Signal exceptionto
caller (subprocedure
ends)

Figure 39. Normal Processing Sequence for a Subprocedure

Taking the "No” branch means that another procedure has already been
called since the program was activated. You should ensure that you do not
make any incorrect assumptions about the state of files, data areas, etc.,
since another procedure may have closed files, or unlocked data areas.

2] If an entry parameter to the main procedure is RESET anywhere in the
module, this will cause an exception. If it is possible that a subprocedure
will be called before the main procedure, it is not advised to RESET any
entry parameters for the main procedure.

98 ILE RPG Reference

Subprocedure Definition

Exception during
calculations

Program error Ye .
and subprocedure s Execute ‘PSSR
has *PSSR? subroutine

Percolate exception
(subprocedure ends)

Program continues
normally after RETURN
orGOTO

*PSSRreached
ENDSR?

Signal exception to
caller (subprocedure
ends)

Figure 40. Exception/Error Handling Sequence for a Subprocedure

Here are some points to consider when coding subprocedures:

* There is no *INZSR associated with subprocedures. Data is initialized (with
either INZ values or default values) when the subprocedure is first called, but
before the calculations begin.

Note also that if the subprocedure is the first procedure to be called in a module,
the *INZSR of the main procedure (if present) will not be run, although other
initialization of global data will be done. The *INZSR of the main procedure will
be run when the main procedure is called.

* When a subprocedure returns normally, the return value, if specified on the
prototype of the called program or procedure, is passed to the caller. Nothing
else occurs automatically. All files and data areas must be closed manually. Files
must be written out manually. You can set on indicators such as LR, but
program termination will not occur until the main procedure terminates.

* Exception handling within a subprocedure differs from a main procedure
primarily because there is no default exception handler for subprocedures and
so situations where the default handler would be called for a main procedure
correspond to abnormal end of the subprocedure. For example, Factor 2 of an
ENDSR operation for a *PSSR subroutine within a subprocedure must be blank.
A blank factor 2 in a main procedure would result in control being passed to the
default handler. In a subprocedure, if the ENDSR is reached, then the
subprocedure will end abnormally and RNX9001 will be signalled to the caller
of the subprocedure.

You can avoid abnormal termination either by coding a RETURN operation in
the *PSSR, or by coding a GOTO and label in the subprocedure to continue
processing.

* The *PSSR error subroutine is local to the subprocedure. Conversely, file errors
are global by definition, and so you cannot code an INFSR in a subprocedure,
nor can you use a file for which an INFSR is coded.

* Indicators that control the cycle function solely as conditioning indicators when
used in a NOMAIN module; or in a subprocedure that is active, but where the

main procedure of the module is not. Indicators that control the cycle include:
LR, RT, H1-H9, and control level indicators.

Chapter 6. Procedures and subprocedures 99

NOMAIN Module

NOMAIN Module

You can code one or more subprocedures in a module without coding a main
procedure. Such a module is called a NOMAIN module, since it requires the
specification of the NOMAIN keyword on the control specification. When there is
no main procedure, no cycle code is generated for the NOMAIN module.

TIP
You may want to consider making all your modules NOMAIN modules
except the ones that actually contain the program entry procedure for a
program. The lack of the cycle code will reduce the size of the program.

Since there is no main procedure, you are restricted in terms of what can be coded
in the main source section. Specifically, you cannot code specifications for

* Primary and secondary files

* Detail and total output

* Executable calculations (including an initialization subroutine)
* *ENTRY PLIST

Instead you would code in the main source section:
¢ Full-procedural files

¢ Input specifications

* Definition specifications

* Declarative calculations such as DEFINE, KFLD, KLIST, PARM, and PLIST (but
not *ENTRY PLIST)

* Exception output

Note: A module with NOMAIN specified will not have a program entry
procedure. Consequently you cannot use the CRTBNDRPG command to
compile the source.

Mixing Main Procedures and Exported Subprocedures

100

If a module contains both a main procedure and exported subprocedures, take
great care to ensure that the RPG cycle in the main procedure does not adversely
affect the global data, files, and data areas that the sub-procedures are using.

You must be aware of when files are opened and closed implicitly, when data areas
are locked and unlocked implicitly, and when global data is initialized or
re-initialized.

Implicit Opening of Files and Locking of Data Areas

ILE RPG Reference

UDS data areas and files that do not have the USROPN keyword are opened or
locked implicitly during module initialization and during main-procedure
initialization.

Module initialization occurs when the first procedure (either the main procedure or
a subprocedure) is called.

Mixing Procedures

Main procedure initialization occurs when the main procedure is called the first

time. It also occurs on subsequent calls if the main procedure ended abnormally or
with LR on.

Implicit Closing of Files and Unlocking of Data Areas

UDS data areas and files that do not have the USROPN keyword are closed or
unlocked implicitly during main procedure termination when the main procedure
ends abnormally or with LR on.

Initialization of Global Data

Data is initialized during module initialization and during main procedure
initialization.

Possible Problems

If module initialization occurs because a subprocedure is the first procedure to be
called, and main procedure initialization occurs later, errors can occur if files are
already open or data areas are already locked.

If a subprocedure calls the main procedure, global data may or may not be
reinitialized during the call, depending on the way the main procedure ended the
last time it was called. If the subprocedure is using any global data, this can cause
unexpected results.

Recommendations

Consider moving the main procedure logic into a subprocedure, and making the
module a NOMAIN module.

If you mix main procedures with exported subprocedures, ensure that your main
procedure is called first, before any subprocedures.

Do not allow main-procedure initialization to happen more than once, since this
would reinitialize your global data. The best way to prevent reinitialization is to
avoid using the LR indicator.

If you want to call your main procedure intermixed with your subprocedures, you
should declare all your files as USROPN and not use UDS data areas. Open files
and lock data areas as you need them, and close files and unlock data areas when
you no longer need them. You might consider having a subprocedure in the
module that will close any open files and unlock any locked data areas.

Subprocedures and Subroutines

A subprocedure is similar to a subroutine, except that a subprocedure offers the
following improvements:

* You can pass parameters to a subprocedure, even passing by value.

This means that the parameters used to communicate with subprocedures do not
have to be modifiable. Parameters that are passed by reference, as they are with
programs, must be modifiable, and so may be less reliable.

* The parameters passed to a subprocedure and those received by it are checked
at compile time for consistency. This helps to reduce run-time errors, which can
be more costly.

* You can use a subprocedure like a built-in function in an expression.

Chapter 6. Procedures and subprocedures 101

Subprocedures and Subroutines

102

ILE RPG Reference

When used in this way, they return a value to the caller. This basically allows
you to custom-define any operators you might need in an expression.

* Names defined in a subprocedure are not visible outside the subprocedure.

This means that there is less chance of the procedure inadvertently changing a
item that is shared by other procedures. Furthermore, the caller of the procedure
does not need to know as much about the items used inside the subprocedure.

* You can call the subprocedure from outside the module, if it is exported.
* You can call subprocedures recursively.

* Procedures are defined on a different specification type, namely, procedure
specifications. This different type helps you to immediately recognize that you
are dealing with a separate unit.

If you do not require the improvements offered by subprocedures, you may want
to use a subroutine because an EXSR operation is usually faster than a call to a
subprocedure.

Chapter 7. General File Considerations

This chapter contains a more detailed explanation of:
* Multi-file Processing

* Match fields

* Alternate collating sequence

* File translation.

Primary/Secondary Multi-file Processing

In an RPG IV program, the processing of a primary input file and one or more
secondary input files, with or without match fields, is termed multi-file processing.
Selection of records from more than one file based on the contents of match fields
is known as multi-file processing by matching records. Multi-file processing can be
used with externally described or program described input files that are designated
as primary/secondary files.

Multi-file Processing with No Match Fields

When no match fields are used in multi-file processing, records are selected from
one file at a time. When the records from one file are all processed, the records
from the next file are selected. The files are selected in this order:

1. Primary file, if specified

2. Secondary files in the order in which they are described on the file description
specifications.

Multi-file Processing with Match Fields

When match fields are used in multi-file processing, the program selects the
records for processing according to the contents of the match fields. At the
beginning of the first cycle, the program reads one record from every
primary/secondary input file and compares the match fields in the records. If the
records are in ascending order, the program selects the record with the lowest
match field. If the records are in descending order, the program selects the record
with the highest match field.

When a record is selected from a file, the program reads the next record from that
file. At the beginning of the next program cycle, the new record is compared with
the other records in the read area that are waiting for selection, and one record is

selected for processing.

Records without match fields can also be included in the files. Such records are
selected for processing before records with match fields. If two or more of the
records being compared have no match fields, selection of those records is
determined by the priority of the files from which the records came. The priority of
the files is:

1. Primary file, if specified

2. Secondary files in the order in which they are described on the file description
specifications.

When the primary file record matches one or more of the secondary records, the
MR (matching record) indicator is set on. The MR indicator is on for detail time

© Copyright IBM Corp. 1994, 2004 103

Primary/Secondary Multi-file Processing

104

ILE RPG Reference

processing of a matching record through the total time that follows the record. This
indicator can be used to condition calculation or output operations for the record
that is selected. When one of the matching records must be selected, the selection
is determined by the priority of the files from which the records came.

[Figure 7 on page 29| shows the logic flow of multi-file processing.

A program can be written where only one input file is defined with match fields

and no other input files have match fields. The files without the match fields are

then processed completely according to the previously mentioned priority of files.
The file with the match fields is processed last, and sequence checking occurs for
that file.

Assigning Match Field Values (M1-M9)
When assigning match field values (M1 through M9) to fields on the input
specifications in positions 65 and 66, consider the following:

* Sequence checking is done for all record types with match field specifications.
All match fields must be in the same order, either all ascending or all
descending. The contents of the fields to which M1 through M9 are assigned are
checked for correct sequence. An error in sequence causes the RPG IV
exception/error handling routine to receive control. When the program
continues processing, the next record from the same file is read.

* Not all files used in the program must have match fields. Not all record types

within one file must have match fields either. However, at least one record type
from two files must have match fields if files are ever to be matched.

¢ The same match field values must be specified for all record types that are used
in matching. See [Figure 41 on page 106

* Date, time, and timestamp match fields with the same match field values (M1
through M9) must be the same type (for example, all date) but can be different
formats.

* All character, graphic, or numeric match fields with the same match field values
(M1 through M9) should be the same length and type. If the match field
contains packed data, the zoned decimal length (two times packed length - 1) is
used as the length of the match field. It is valid to match a packed field in one
record against a zoned decimal field in another if the digit lengths are identical.
The length must always be odd because the length of a packed field is always
odd.

* Record positions of different match fields can overlap, but the total length of all
fields must not exceed 256 characters.

* If more than one match field is specified for a record type, all the fields are
combined and treated as one continuous field (see |[Figure 41 on page 106). The
fields are combined according to descending sequence (M9 to M1) of matching
field values.

* Match fields values cannot be repeated in a record.

* All match fields given the same matching field value (M1 through M9) are
considered numeric if any one of the match fields is described as numeric.

¢ When numeric fields having decimal positions are matched, they are treated as
if they had no decimal position. For instance 3.46 is considered equal to 346.

* Only the digit portions of numeric match fields are compared. Even though a
field is negative, it is considered to be positive because the sign of the numeric
field is ignored. Therefore, a -5 matches a +5.

* Date and time fields are converted to *ISO format for comparisons

* Graphic data is compared hexadecimally

Primary/Secondary Multi-file Processing

* Whenever more than one matching field value is used, all match fields must
match before the MR indicator is set on. For example, if match field values M1,
M2, and M3 are specified, all three fields from a primary record must match all
three match fields from a secondary record. A match on only the fields specified
biMl and M2 fields will not set the MR indicator on (see [Figure 41 on page]
106))

» UCS-2 fields cannot be used for matching fields.
* Matching fields cannot be used for lookahead fields, and arrays.

* Field names are ignored in matching record operations. Therefore, fields from
different record types that are assigned the same match level can have the same
name.

* If an alternate collating sequence or a file translation is defined for the program,
character fields are matched according to the alternate sequence specified.

* Null-capable fields, character fields defined with ALTSEQ(*NONE), and binary,
float, integer and unsigned fields (B, E, I, or U in position 36 of the input
specifications) cannot be assigned a match field value.

* Match fields that have no field record relation indicator must be described
before those that do. When the field record relation indicator is used with match
fields, the field record relation indicator should be the same as a record
identifying indicator for this file, and the match fields must be grouped
according to the field record relation indicator.

* When any match value (M1 through M9) is specified for a field without a field
record relation indicator, all match values used must be specified once without a
field record relation indicator. If all match fields are not common to all records, a
dummy match field should be used. Field record relation indicators are invalid
for externally described files. (see [Figure 42 on page 107).

* Match fields are independent of control level indicators (L1 through L9).

e If multi-file processing is specified and the LR indicator is set on, the program
bypasses the multi-file processing routine.

[Figure 41 on page 106|is an example of how match fields are specified.

Chapter 7. General File Considerations 105

Primary/Secondary Multi-file Processing

106

ILE RPG Reference

FFilename++IPEASFR1en+LK1en+AIDevice+.Keywords++++++t+tttttttttttttttttttt
* The files in this example are externally described (E in position

% 22) and are to be processed by keys (K in position 34).

FMASTER IP E K DISK

FWEEKLY IS E K DISK

Teveiiieinnnn, Ext-field+.................. Field+++++++++L1M1. .PIMnZr....
* MASTER FILE

IEMPMAS 01

I EMPLNO M1

I DIVSON M3

I DEPT M2

IDEPTMS 02

I EMPLNO M1

I DEPT M2

I DIVSON M3
* WEEKLY FILE

IWEEKRC 03

I EMPLNO M1

I DIVSON M3

I DEPT M2

Figure 41. Match Fields in Which All Values Match

Three files are used in matching records. All the files have three match fields
specified, and all use the same values (M1, M2, M3) to indicate which fields must
match. The MR indicator is set on only if all three match fields in either of the files
EMPMAS and DEPTMS are the same as all three fields from the WEEKRC file.

The three match fields in each file are combined and treated as one match field
organized in the following descending sequence:

DIVSON M3

DEPT M2

EMPLNO M1

The order in which the match fields are specified in the input specifications does
not affect the organization of the match fields.

Primary/Secondary Multi-file Processing

IFiTename++SqNORiTPOS1+NCCPOS2+NCCPOS3+NCC. v v v e e ie it iieineenernnnnnnnns

AR Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
IDISK AB 01 1cC1
I OR 02 1C2
I OR 03 1C3
I 1 10 OEMPNO M1
I 11 15 0DUMMY M2
I 11 15 ODEPT M202
I 16 20 ODEPT M203
M 1
EMPNO
\

\ \ Record Identifying Indicator 01
123456 7 89101112 13 14 15 16 17 18 19 20 21 22

M M 2
E DEPT

1
MPNO
| |

| | Record Identifying Indicator 02
123456 7 8 9101112 13 14 15 16 17 18 19 20 21 22

M 1 M 2

EMPNO DEPT
\

‘ ‘ Record Identifying Indicator 03

1234567 8 9101112 13 14 15 16 17 18 19 20 21 22

Figure 42. Match Fields with a Dummy M2 Field

Three different record types are found in the input file. All three contain a match
field in positions 1 through 10. Two of them have a second match field. Because
M1 is found on all record types, it can be specified without a field record relation
entry in positions 67 and 68. If one match value (M1 through M9) is specified
without field record relation entries, all match values must be specified once
without field record relation entries. Because the value M1 is specified without
field record relationship, an M2 value must also be specified once without field
record relationship. The M2 field is not on all record types; therefore a dummy M2
field must be specified next. The dummy field can be given any unique name, but
its specified length must be equal to the length of the true M2 field. The M2 field
is then related to the record types on which it is found by field record relation
entries.

Chapter 7. General File Considerations 107

Primary/Secondary Multi-file Processing

108

ILE RPG Reference

FFilename++IPEASFR1en+LK1en+AIDevice+.Keywords++++++t+tttttttttttttttttttt
FPRIMARY IPEA F 64 DISK
FFIRSTSEC IS A F 64 DISK
FSECSEC ISAF o4 DISK

IFiTename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. v v vv e vie it iieii e iieiaeineenns

AU Fmt+SPFrom+To+++DcField+++++++++L1IMIFrPIMnZr. ...
IPRIMARY AA 01 1CP 2NC

I 2 3 MATCH M1
*

I BB 02 1cCP 2¢C

I 2 3 NOM

*

IFIRSTSEC AB 03 1CS 2NC

I 2 3 MATCH M1
*

I BC 04 1CS 2C

I 2 3 NOM

*

ISECSEC AC 05 1CT 2NC

I 2 3 MATCH M1
*

I BD 06 1CT 2 C

I 2 3 NOM

Figure 43. Match Field Specifications for Three Disk Files

Processing Matching Records
Matching records for two or more files are processed in the following manner:

* Whenever a record from the primary file matches a record from the secondary
file, the primary file is processed first. Then the matching secondary file is
processed. The record identifying indicator that identifies the record type just
selected is on at the time the record is processed. This indicator is often used to
control the type of processing that takes place.

* Whenever records from ascending files do not match, the record having the
lowest match field content is processed first. Whenever records from descending
files do not match, the record having the highest match field content is
processed first.

* A record type that has no match field specification is processed immediately
after the record it follows. The MR indicator is off. If this record type is first in
the file, it is processed first even if it is not in the primary file.

* The matching of records makes it possible to enter data from primary records
into their matching secondary records because the primary record is processed
before the matching secondary record. However, the transfer of data from
secondary records to matching primary records can be done only when
look-ahead fields are specified.

[Figure 44 on page 109 through [Figure 45 on page 110] show how records from three
files are selected for processing.

Primary/Secondary Multi-file Processing

Primary File

First Secondary File

Second Secondary File

P|P|P|P|P|P|P|P|P
20 |20 | 40 | 50 60 | 80
1 2 5 6 11 12 13 17 22
No Match Field sTslsislsl s/ slsls
\—P 20 [30 | 30 | 60 70 | 80 | 80
3 7 8 9 18 19 21 23 24
Match Field TTT I T T (T T 71T
\—b 10 | 30 | 50 | 50 60 | 80 | 80
4 10 14 15 16 20 25 26

The records from the three disk files above are selected in the order indicated by the dark

numbers.

Figure 44. Normal Record Selection from Three Disk Files

Table 22. Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

1 PRIMARY 02 No match field specified

2 PRIMARY 02 No match field specified

3 FIRSTSEC 04 No match field specified

4 SECSEC 05 Second secondary low; no primary match
5 PRIMARY 01, MR Primary matches first secondary

6 PRIMARY 01, MR Primary matches first secondary

7 FIRSTSEC 03, MR First secondary matches primary

8 FIRSTSEC 03 First secondary low; no primary match
9 FIRSTSEC 03 First secondary low; no primary match
10 SECSEC 05 Second secondary low; no primary match
11 PRIMARY 01 Primary low; no secondary match

12 PRIMARY 01, MR Primary matches second secondary

13 PRIMARY 02 No match field specified

14 SECSEC 05, MR Second secondary matches primary

15 SECSEC 05, MR Second secondary matches primary

16 SECSEC 06 No match field specified

17 PRIMARY 01, MR Primary matches both secondary files
18 FIRSTSEC 03, MR First secondary matches primary

19 FIRSTSEC 04 No match field specified

20 SECSEC 05, MR Second secondary matches primary

21 FIRSTSEC 03 First secondary low; no primary match
22 PRIMARY 01, MR Primary matches both secondary files
23 FIRSTSEC 03, MR First secondary matches primary

24 FIRSTSEC 02, MR First secondary matches primary

Chapter 7. General File Considerations

109

Primary/Secondary Multi-file Processing

Table 22. Normal Record Selection from Three Disk Files (continued)

110

Cycle File Processed Indicators On Reason for Setting Indicator
25 SECSEC 05, MR Second secondary matches primary
26 SECSEC 05, MR Second secondary matches primary
STEP 1
i The first record from each file is read. The P and S
records have no match field, so they are processed
P S T 10 before the T record that has a match field. Because
the P record comes from the primary file, it is selected
for processing first.
STEP 2
i The next P record is read. It contains no match field
and comes from the primary file, so the new P record
P S T 10 is also selected for processing before the S record.
STEP 3
i The next P record has a match field. The S record
P 20 s T 10 has no match field, so it is selected for processing.
STEP 4
i The next S record is read. All three records have
match fields. Because the value in the match field
P 20 S 20 T 10 of the T record is lower than the value in the other
two, the T record is selected for processing.
STEP 5 . .
The next T record is read. The matching P and S
i records both have the low match field value, so
they are processed before the T record. Because
P 20 S 20 T 30

the matching P record comes from the primary file,
it is selected for processing first.

Figure 45. Normal Record Selection from Three Disk Files (Part 1 of 2)

ILE RPG Reference

File Translation

STEP 6
L The next P record is read. Because it contains the
same match field and comes from the primary file,
P 20 S 20 T 30 the new P record is selected instead of the S record.
STEP 7
L The next P record is read. The value of the match
field in the S record is the lowest of the three, so the
P 40 S 20 T 30 S record is selected for processing.
STEP 8
L The next S record is read. Because the Sand T
records have the lowest match field, they are
selected before the P record. Because the S record
P 40 S 30 T 30 comes from the first secondary file, it is selected for
processing before the T record.
STEP 9
L The next S record is read. Because it also has
P 40 S 30 T 30 the same match field as the S record just selected,
it too is selected before the T record.
STEP 10
i The next S record is read. The T record contains
the lowest match field value, and is selected for
P 40 S 60 T 30 processing.

Figure 45. Normal Record Selection from Three Disk Files (Part 2 of 2)

File Translation

The file translation function translates any of the 8-bit codes used for characters
into another 8-bit code. The use of file translation indicates one or both of the

following:

* A character code used in the input data must be translated into the system code.

* The output data must be translated from the system code into a different code.
The translation on input data occurs before any field selection has taken place.
The translation on output data occurs after any editing taken place.

Remember the following when specifying file translation:

* File translation can be specified for data in array or table files (T in position 18
of the file description specifications).

* File translation can be used with data in combined, input, or update files that
are translated at input and output time according to the file translation table
provided. If file translation is used to translate data in an update file, each
record must be written before the next record is read.

Chapter 7. General File Considerations 111

File Translation

* For any I/O operation that specifies a search argument in factor 1 (such as
CHAIN, READE, READPE, SETGT, or SETLL) for files accessed by keys, the
search argument is translated before the file is accessed.

* If file translation is specified for both a record address file and the file being
processed (if the file being processed is processed sequentially within limits), the
records in the record address file are first translated according to the file
translation specified for that file, and then the records in the file being processed
are translated according to the file translation specified for that file.

* File translation applies only on a single byte basis.
* Every byte in the input and output record is translated

Specifying File Translation

To specify file translation, use the FTRANS keyword on the control specification.
The translations must be transcribed into the correct record format for entry into
the system. These records, called the file translation table records, must precede
any alternate collating sequence records, or arrays and tables loaded at compile
time. They must be preceded by a record with **b (b = blank) in positions 1
through 3 or **FTRANS in positions 1 through 8. The remaining positions in this
record can be used for comments.

Translating One File or All Files

File translation table records must be formatted as follows:

Record

Position Entry

1-8 (to Enter *FILESHD (b represents a blank) to indicate that all files are to be

translate all | translated. Complete the file translation table record beginning with

files) positions 11 and 12. If *FILESbb is specified, no other file translation table
can be specified in the program.

1-8 (to Enter the name of the file to be translated. Complete the file translation

translate a table record beginning with positions 11 and 12. The *FILESbb entry is not
specific file) |made in positions 1 through 8 when a specific file is to be translated.

9-10 Blank

11-12 Enter the hexadecimal value of the character to be translated from on input
or to be translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the RPG IV
language works with. It will replace the character in positions 11 and 12 on
input and be replaced by the character in positions 11 and 12 on output.

15-18 All groups of four beginning with position 15 are used in the same manner
19-22 as positions 11 through 14. In the first two positions of a group, enter the
23-26 hexadecimal value of the character to be replaced. In the last two positions,

enter the hexadecimal value of the character that replaces it.
77-80

The first blank entry ends the record. There can be one or more records per file
translation table. When multiple records are required in order to define the table,
the same file name must be entered on all records. A change in file name is used to
separate multiple translation tables. An *FILES record causes all files, including
tables and arrays specified by a T in position 18 of the file description
specifications, to be translated by the same table.

112 ILE RPG Reference

File Translation

HKeywor‘ds++
* In this example all the files are translated

H FTRANS
FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++++tttttttttttttt
FFILE1l IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS

*FILES 81C182(C283C384C4

HKeywords++++++++tttttttttttttttttttttttttt bttt bttt bbbttt bbb+
* In this example different translate tables are used and
* FILE3 is not translated.

H FTRANS
FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++++t+tttttttttttt
FFILE1l IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS

FILE1 8182

FILE2 c1c2

FILE4 81C182C283C384C4

Translating More Than One File

If the same file translation table is needed for more than one file but not for all
files, two types of records must be specified. The first record type specifies the file
using the tables, and the second record type specifies the table. More than one
record for each of these record types can be specified. A change in file names is
used to separate multiple translation tables.

Specifying the Files

File translation table records must be formatted as follows:

Record

Position Entry

1-7 *EQUATE

8-10 Leave these positions blank.

11-80 Enter the name(s) of file(s) to be translated. If more than one file is to be
translated, the file names must be separated by commas.

Additional file names are associated with the table until a file name not followed
by a comma is encountered. A file name cannot be split between two records; a
comma following a file name must be on the same record as the file name. You can
create only one file translation table by using *EQUATE.

Specifying the Table

File translation table records must be formatted as follows:

Record
Position Entry
1-7 *EQUATE

Chapter 7. General File Considerations 113

File Translation

114

ILE RPG Reference

Record

Position Entry

8-10 Leave these positions blank.

11-12 Enter the hexadecimal value of the character to be translated from on
input or to be translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the RPG IV
language works with. It will replace the character in positions 11 and 12
on input and be replaced by the character in positions 11 and 12 on
output.

15-18 All groups of four beginning with position 15 are used the same way as

19-22 positions 11 through 14. In the first two positions of a group, enter the

23-26 hexadecimal value of the character to be replaced. In the last two

positions, enter the hexadecimal value of the character that replaces it.

77-80

The first blank record position ends the record. If the number of entries exceeds 80
positions, duplicate positions 1 through 10 on the next record and continue as
before with the translation pairs in positions 11 through 80. All table records for
one file must be kept together.

The records that describe the file translation tables must be preceded by a record
with **b (b = blank) in positions 1 through 3 or with **FTRANS. The remaining
positions in this record can be used for comments.

HKeywords++++tt bbbttt
* In this example several files are translated with the
* same translation table. FILE2 is not translated.

H FTRANS
FFilename++IPEASFR1en+LKTen+AIDevice+.Keywords++++++++++t+t++t++++++
FFILE1l IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS

*EQUATE FILE1,FILE3,FILE4
*EQUATE ~ 81C182C283(384C485C586C687C788C889CI8ACA8BCBECCCBDCDSECESF
*EQUATE ~ 91D192D2

Part 2. Definitions

This section provides information on the different types of definitions that can be
coded in your source. It describes:

* How to define
— Standalone fields, arrays, and tables
— Named constants
— Data structures and their subfields
- Prototypes
— Prototyped parameters
— Procedure interface
* Scope and storage of definitions as well as how to define each definition type.
¢ Data types and Data formats
* Editing numeric fields

For information on how to define files, see|Chapter 14, “File Description|
Specifications,” on page 263 and also the chapter on defining files in the WebSphere
Development Studio: ILE RPG Programmer’s Guide.

© Copyright IBM Corp. 1994, 2004 115

116 ILE RPG Reference

Chapter 8. Defining Data and Prototypes

ILE RPG allows you to define the following items:

e Data items such as data structures, data-structure subfields, standalone fields,
and named constants. Arrays and tables can be defined as either a data-structure
subfield or a standalone field.

* Prototypes, procedure interfaces, and prototyped parameters

This chapter presents information on the following topics:

* General considerations, including |definition types| [scope], and [storage]
* |Standalone fields
* [Constants

« |Data Structures|

+ |Prototypes, parameters, and procedure interfaces|

General Considerations

You define items by using definition specifications. Definitions can appear in two
places within a module or program: within the main source section and within a
subprocedure. (The main source section consists of the first set of H, F, D, I, C,
and O specifications in a module; it corresponds to the specifications found in a
standalone program or a main procedure.) Depending on where the definition
occurs, there are differences both in what can be defined and also the scope of the
definition. Specify the type of definition in positions 24 through 25, as follows:

Entry Definition Type

Blank A data structure subfield or parameter definition

C Named constant

DS Data structure

PI Procedure interface

PR Prototype

S Standalone field

Definitions of data structures, prototypes, and procedure interfaces end with the

first definition specification with non-blanks in positions 24-25, or with the first
specification that is not a definition specification.

© Copyright IBM Corp. 1994, 2004 117

General Considerations

118

K o o = = = = = *
* Global Definitions
K o = = = = = - *
D String S 6A INZ ('ABCDEF')
D Spcptr S *
D SpcSiz C 8
D DS1 DS O0CCURS(3)
D Fldl 5A INZ('ABCDE')
D Fildla 1A DIM(5) OVERLAY(F1d1)
D Fl1d2 5B 2 INZ(123.45)
D Switch PR
D Parm 1A
B L T T T T T T LT T *
* Local Definitions
e e e e e e e e e e e e e e e e e e e, e e e e e e e —————————— *
P Switch B
D Switch PI
D Parm 1A
* Define a Tocal variable.
D Local S 5A INZ('aaaaa')
P E

Figure 46. Sample Definitions

Scope of Definitions

ILE RPG Reference

Depending on where a definition occurs, it will have different scope. Scope refers
to the range of source lines where a name is known. There are two types of scope:
global and local, as shown in .

—*MODULE

—Main Procedure

Main <

Source

Section —>
Global
Scope

—Subprocedure 1

+— Local
<4 Scope

—Subprocedure 2

<+ Local
<+ Scope
i
w

Program Data - part of main source section

Figure 47. Scope of Definitions

In general, all items that are defined in the main source section are global, and
therefore, known throughout the module. Global definitions are definitions that
can be used by both the main procedure and any subprocedures within the
module. They can also be exported.

General Considerations

Items in a subprocedure, on the other hand, are local. Local definitions are
definitions that are known only inside that subprocedure. If an item is defined
with the same name as a global item, then any references to that name inside the
subprocedure will use the local definition.

However, note the following exceptions:

* Subroutine names and tag names are known only to the procedure in which
they are defined. This includes subroutine or tag names that defined in the main
procedure.

 All fields specified on input and output specifications are global. For example, if
a subprocedure does an operation using a record format, say a WRITE
operation, the global fields will be used even if there are local definitions with
the same names as the record format fields.

Sometimes you may have a mix of global and local definitions. For example,
KLISTs and PLISTs can be global or local. The fields associated with global KLISTs
and PLISTs contain only global fields. The fields associated with local KLISTs and
PLISTs can contain both global and local fields. For more information on the
behavior of KLISTs and KFLDs inside subprocedures, see [“Scope of Definitions” onl

Storage of Definitions

Local definitions use automatic storage. Automatic storage is storage that exists
only for the duration of the call to the procedure. Variables in automatic storage do
not save their values across calls.

Global definitions, on the other hand, use static storage. Static storage is storage
that has a constant location in memory for all calls of a program or procedure. It
keeps its value across calls.

Specify the STATIC keyword to indicate that a local field definition use static
storage, in which case it will keep its value on each call to the procedure. If the
keyword STATIC is specified, the item will be initialized at module initialization
time.

Static storage in the main procedure is subject to the RPG cycle, and so the value
changes on the next call if LR was on at the end of the last call. However, local
static variables will not get reinitialized because of LR in the main procedure.

— TIP
Using automatic storage reduces the amount of storage that is required at run
time by the program. The storage is reduced largely because automatic
storage is only allocated while the procedure is running. On the other hand,
all static storage associated with the program is allocated when the program
starts, even if no procedure using the static storage is ever called.

Standalone Fields

Standalone fields allow you to define individual work fields. A standalone field
has the following characteristics:

* It has a specifiable internal data type

* It may be defined as an array, table, or field

Chapter 8. Defining Data and Prototypes 119

Standalone Fields

* It is defined in terms of data length, not in terms of absolute byte positions.

For more information on standalone fields, see:

* |Chapter 9, “Using Arrays and Tables,” on page 151

+ |Chapter 10, “Data Types and Data Formats,” on page 169

“Definition-Specification Keywords” on page 293|

Variable Initialization

You can initialize data with the ["INZ{(initial value)}” on page 307 keyword on the
definition specification. Specify an initial value as a parameter on the INZ
keyword, or specify the keyword without a parameter and use the default initial
values. If the initialization is too complicated to express using the INZ keyword,
you can further initialize data in the initialization subroutine.

Default initial values for the various data types are described in [Chapter 10, “Data
Types and Data Formats,” on page 169.|See|[Chapter 9, “Using Arrays and Tables,”
on page 151| for information on initializing arrays.

To reinitialize data while the program is running, use the CLEAR and RESET
operations.

The CLEAR operation code sets a record format or variable (field, subfield,
indicator, data structure, array, or table) to its default value. All fields in a record
format, data structure, or array are cleared in the order in which they are declared.

The RESET operation code restores a variable to its reset value. The reset value for
a global variable is the value it had at the end of the initialization step in the RPG
IV cycle, after the initialization subroutine has been invoked.

You can use the initialization subroutine to assign initial values to a global variable
and then later use RESET to set the variable back to this value. This applies only to
the initialization subroutine when it is run automatically as a part of the
initialization step.

For local variables the reset value is the value of the variable when the
subprocedure was first called, but before the calculations begin.

Constants

120

ILE RPG Reference

[Literals|and [named constants|are types of constants. They can be specified in any
of the following places:

* In factor 1

* In factor 2

* In an extended factor 2 on the calculation specifications

* As parameters to keywords on the control specification

* As parameters to built-in functions

* In the Field Name, Constant, or Edit Word fields in the output specifications.
* As array indexes

* As the format name in a WORKSTN output specification

* With keywords on the definition specification.

Constants

Literals

A literal is a self-defining constant that can be referred to in a program. A literal
can belong to any of the RPG IV data types.

Character Literals

The following are the rules for specifying a character literal:

* Any combination of characters can be used in a character literal. This includes
DBCS characters. DBCS characters must be enclosed by shift-out and shift-in
characters and must be an even number of bytes. Embedded blanks are valid.

* A character literal with no characters between the apostrophes is allowed. See
[Figure 49 on page 125| for examples.

* Character literals must be enclosed in apostrophes ().

* An apostrophe required as part of a literal is represented by two apostrophes.
For example, the literal O’'CLOCK is coded as ‘O”CLOCK".

* Character literals are compatible only with character data.

* Indicator literals are one byte character literals which contain either "1’ (on) or "0’

(off).
Hexadecimal Literals

The following are the rules for specifying a hexadecimal literal:
* Hexadecimal literals take the form:
X'x1x2...xn'

where X'x1x2...xn' can only contain the characters A-F, a-f, and 0-9.
¢ The literal coded between the apostrophes must be of even length.
* Each pair of characters defines a single byte.

* Hexadecimal literals are allowed anywhere that character literals are supported
except as factor 2 of ENDSR and as edit words.

* Except when used in the bit operations BITON, BITOFF, and TESTB, a
hexadecimal literal has the same meaning as the corresponding character literal.
For the bit operations, factor 2 may contain a hexadecimal literal representing 1
byte. The rules and meaning are the same for hexadecimal literals as for
character fields.

* If the hexadecimal literal contains the hexadecimal value for a single quote, it
does not have to be specified twice, unlike character literals. For example, the
literal A'B is specified as 'A''B' but the hexadecimal version is X'C17DC2"' not
X'C17D7DC2".

* Normally, hexadecimal literals are compatible only with character data.
However, a hexadecimal literal that contains 16 or fewer hexadecimal digits can
be treated as an unsigned numeric value when it is used in a numeric
expression or when a numeric variable is initialized using the INZ keyword.

Numeric Literals

The following are the rules for specifying a numeric literal:

* A numeric literal consists of any combination of the digits 0 through 9. A
decimal point or a sign can be included.

¢ The sign (+ or -), if present, must be the leftmost character. An unsigned literal is
treated as a positive number.

Chapter 8. Defining Data and Prototypes 121

Constants

* Blanks cannot appear in a numeric literal.
* Numeric literals are not enclosed in apostrophes (’).

* Numeric literals are used in the same way as a numeric field, except that values
cannot be assigned to numeric literals.

¢ The decimal separator may be either a comma or a period

Numeric literals of the float format are specified differently. Float literals take the
form:

<mantissa>E<exponent>
Where

<mantissa> is a literal as described above with 1 to 16 digits
<exponent> is a literal with no decimal places, with a value
between -308 and +308
e Float literals do not have to be normalized. That is, the mantissa does not have
to be written with exactly one digit to the left of the decimal point. (The decimal
point does not even have to be specified.)

* Lower case e may be used instead of E.
* Either a period (") or a comma (’,’) may be used as the decimal point.

* Float literals are allowed anywhere that numeric constants are allowed except in
operations that do not allow float data type. For example, float literals are not
allowed in places where a numeric literal with zero decimal positions is
expected, such as an array index.

* Float literals follow the same continuation rules as for regular numeric literals.
The literal may be split at any point within the literal.

The following lists some examples of valid float literals:

1E1 =10

1.2e-1 = .12

-1234.9E0 = -1234.9

12e12 = 12000000000000

+67,89E+0003 = 67890 (the comma is the decimal point)

The following lists some examples of invalid float literals:

1.234E <--- no exponent

1.2e- <--- no exponent
-1234.9E+309 <--- exponent too big
12E-2345 <--- exponent too small
1.797693134862316e308 <--- value too big
179.7693134862316E306 <--- value too big
0.0000000001E-308 <--- value too small

Date Literals

Date literals take the form D’xx-xx-xx” where:
* D indicates that the literal is of type date

* Xxx-xx-xx is a valid date in the format specified on the control specification
(separator included)

* Xxx-xx-xx is enclosed by apostrophes

Time Literals

122 ILE RPG Reference

Constants

Time literals take the form T’xx:xx:xx” where:
* T indicates that the literal is of type time

e xx:xxx:xx is a valid time in the format specified on the control specification
(separator included)

e xx:xxx:xx is enclosed by apostrophes
Timestamp Literals

Timestamp literals take the form Z’yyyy-mm-dd-hh.mm.ss. mmmmmm’ where:
e Z indicates that the literal is of type timestamp

* yyyy-mm-dd is a valid date (year-month-day)

* hh.mm.ss.mmmmmm is a valid time (hours.minutes.seconds.microseconds)
e yyyy-mm-dd-hh.mm.ss. nmmmmm is enclosed by apostrophes

* Microseconds are optional and if not specified will default to zeros

Graphic Literals

Graphic literals take the form G’oK1K2i" where:
* G indicates that the literal is of type graphic
* 0 is a shift-out character

* K1K2 is an even number of bytes (possibly zero) and does not contain a shift-out
or shift-in character

 iis a shift-in character

* oK1K2i is enclosed by apostrophes
UCS-2 Literals

UCS-2 literals take the form U'Xxxx...Yyyy’ where:
* U indicates that the literal is of type UCS-2.

¢ Each UCS-2 literal requires four bytes per UCS-2 character in the literal. Each
four bytes of the literal represents one double-byte UCS-2 character.

» UCS-2 literals are compatible only with UCS-2 data.

UCS-2 literals are assumed to be in the default UCS-2 CCSID of the module.

Chapter 8. Defining Data and Prototypes 123

Constants

124 ILE RPG Reference

Example of Defining Literals

H DATFMT (*IS0)

+* Examples of literals used to initialize fields
DName+++++++++++ETDSFrom+++To/ L+++IDc . Keywords+++++++++ttttttttttttttttttttt
Dttt e e e i i Keywords++++t+ttttttttttttttttttttttt
D DateField D INZ(D'1988-09-03')

D NumField 5P 1 INZ(5.2)

D CharField 10A INZ('abcdefghij')

D UCS2Field 2C INZ(U'00610062')

* Even though the date field is defined with a 2-digit year, the

* initialization value must be defined with a 4-digit year, since

* all Titerals must be specified in date format specified

* on the control specification.

(T2 7 IV V]

D YmdDate S D INZ(D'2001-01-13')

D DATFMT (*YMD)

* Examples of Titerals used to define named constants

D DateConst c CONST(D'1988-09-03")
D NumConst C CONST(5.2)

D CharConst C CONST('abcdefghij"')

* Note that the CONST keyword is not required.
D Upper C 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

* Note that the Titeral may be continued on the next line
D Lower C 'abcdefghijklimn-
D opqrstuvwxyz'

* Examples of literals used in operations

C EVAL CharField = 'abc'

C IF NumField > 12

C EVAL DateField = D'1995-12-25"
C ENDIF

Figure 48. Defining named constants

Constants

Example of Using Literals with Zero Length

DName+++++++++++ETDSFrom+++T0/ L+++1DC . Keywords++++++++ttttttttttttttttttttet

Dttt e e e et Keywords++++t+++ttttttttttttttttttttt
* The following two definitions are equivalent:

D varfldl S 5 INZ VARYING

D varfld2 S 5 INZ('') VARYING

* Various fields used by the examples below:

D blanks S 10 INZ

D vblanks S 10 INZ (" ') VARYING

D fixfldl S 5 INZ('abcde')

* VGRAPHIC and VUCS2 are initialized with zero-length literals.
D vgraphic S 106G INZ(G'oi') VARYING

D vucs2 S 10C INZ(U'') VARYING

CLONO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LOEq++++
* The following statements do the same thing:

(8 eval varfldl = ''

C clear varfldl

* Moving '' to a variable-length field using MOVE(P) or MOVEL(P)

* sets the field to blanks up to the fields current length.

C move (p) v varfldl

C movel (p) "' varfldl

* Moving '' to a fixed-length field has no effect in the following
x examples: (The rightmost or leftmost O characters are changed.)
move " fixfldl
movel ' fixfldl

o0

* The following comparisons demonstrate how the shorter operand
* is padded with blanks:

C eval *in01 = (blanks = '')

* *in0l is '1'

(vblanks

C eval *in02
* *in02 is '1'

ll)

(eval *in03 = (varfld2 = blanks)

* *in03 is '1'

C eval *in04 = (varfld2

* xin04 is '1'

vblanks)

C eval *in05
* *in05 is '1'

(%1en(vgraphic)=0)

C eval *in06 = (%1en(vucs2)=0)

* *in06 is '1'

Figure 49. Character, Graphic, and UCS-2 Literals with Zero Length

Named Constants

You can give a name to a constant. This name represents a specific value which
cannot be changed when the program is running. Numeric named constants have
no predefined precision. Their actual precision is defined by the context that is
specified.

See [Figure 48 on page 124] for examples of defining named constants. The value of
the named constant is specified in the keyword section of the definition
specification. The presence of the keyword CONST is optional, however. For
example, to assign a value of ‘ab’ to a constant, you could specify either
CONST("ab’) or ‘ab’ in the keyword section.

Chapter 8. Defining Data and Prototypes 125

Constants

126

Figurative Constants

ILE RPG Reference

The figurative constants *BLANK/*BLANKS, *ZERO/*ZEROS, *HIVAL, *LOVAL,
*NULL, *ALL’x..’, *ALLG’0K1K2i’, *ALLU XxxxYyyy’, *ALLX’x1..", and *ON/*OFF
are implied literals that can be specified without a length, because the implied
length and decimal positions of a figurative constant are the same as those of the
associated field. (For exceptions, see the following section, [“Rules for Figurative]
IConstants” on page 127.)

Figurative constants can be specified in factor 1 and factor 2 of the calculation
specifications. The following shows the reserved words and implied values for
figurative constants:

Reserved Words
Implied Values

*BLANK/*BLANKS
All blanks. Valid only for character, graphic, or UCS-2 fields. The value for
character is * * (blank) or X'40', for graphic is X'4040', and for UCS-2 is
X'0020'.

*ZERO/*ZEROS

Character/numeric fields: All zeros. The value is ‘0" or X'FO'. For numeric
float fields: The value is ‘0 EO’.

*HIVAL
Character, graphic, or UCS-2 fields: The highest collating character for the
system (hexadecimal FFs). Numeric fields: The maximum value allowed
for the corresponding field (with a positive sign if applicable). For Float
fields: *HIVAL for 4-byte float = 3.402 823 5E38 (/x'7F7FFFFF’/) *HIVAL
for 8-byte float = 1.797 693 134 862 315 E308 (/x7FEFFFFFFFFFFFEF’ /)
Date, time and timestamp fields: See [“Date Data Type” on page 195 |
[“Time Data Type” on page 198 and [“Timestamp Data Type” on page 199
for *HIVAL values for date, time, and timestamp data.

*LOVAL
Character, graphic, or UCS-2 fields: The lowest collating character for the
system (hexadecimal zeros). Numeric fields: The minimum value allowed
(with a negative sign if applicable). For Float fields: *LOVAL for 4-byte
float = -3.402 823 5E38 (/x’FF7FFFFF’/) *LOVAL for 8-byte float = -1.797
693 134 862 315 E308 (/x'FFEFFFFFFFFFFFFF’ /) Date, time and timestamp
fields: See ['Date Data Type” on page 195/['Time Data Type” on page 19§
and [‘Timestamp Data Type” on page 199|for *LOVAL values for date,
time, and timestamp data.

*ALL'x..”
Character/numeric fields: Character string x . . is cyclically repeated to a
length equal to the associated field. If the field is a numeric field, all
characters within the string must be numeric (0 through 9). No sign or
decimal point can be specified when *ALL’x..” is used as a numeric
constant.

Note: You cannot use *ALL’x..” with numeric fields of float format.

Note: For numeric integer or unsigned fields, the value is never greater
than the maximum value allowed for the corresponding field. For
example, *ALL’95" represents the value 9595 if the corresponding
field is a 5-digit integer field, since 95959 is greater than the
maximum value allowed for a 5-digit signed integer.

Constants

*ALLG’0K1K2i’
Graphic fields: The graphic string K1K2 is cyclically repeated to a length
equal to the associated field.

*ALLU XxxxYyyy’
UCS-2 fields: A figurative constant of the form *ALLU XxxxYyyy” indicates
a literal of the form "XxxxYyyyXxxxYyyy...” with a length determined by
the length of the field associated with the *ALLU XxxxYyyy’ constant. Each
double-byte character in the constant is represented by four hexadecimal
digits. For example, *YALLU’0041" represents a string of repeated UCS-2
"A’s.

*ALLX'x1..”
Character fields: The hexadecimal literal X’x1..” is cyclically repeated to a
length equal to the associated field.

*NULL
A null value valid for basing pointers, procedure pointers, or objects.

*ON/*OFF
*ON is all ones (1" or X'F1'). *OFF is all zeros ("0’ or X'F(Q'). Both are only
valid for character fields.

Rules for Figurative Constants

Remember the following rules when using figurative constants:

* MOVE and MOVEL operations allow you to move a character figurative
constant to a numeric field. The figurative constant is first expanded as a zoned
numeric with the size of the numeric field, then converted to packed or binary
numeric if needed, and then stored in the target numeric field. The digit portion
of each character in the constant must be valid. If not, a decimal data error will
occur.

* Figurative constants are considered elementary items. Except for MOVEA,
figurative constants act like a field if used in conjunction with an array. For
example: MOVE *ALL’XYZ" ARR.

If ARR has 4-byte character elements, then each element will contain "XYZX".

* MOVEA is considered to be a special case. The constant is generated with a
length equal to the portion of the array specified. For example:

- MOVEA *BLANK ARR(X)
Beginning with element X, the remainder of ARR will contain blanks.
- MOVEA *ALL’XYZ’" ARR(X)
ARR has 4-byte character elements. Element boundaries are ignored, as is

always the case with character MOVEA operations. Beginning with element
X, the remainder of the array will contain "XYZXYZXYZ...".

Note that the results of MOVEA are different from those of the MOVE example
above.

 After figurative constants are set/reset to their appropriate length, their normal
collating sequence can be altered if an alternate collating sequence is specified.

¢ The move operations MOVE and MOVEL produce the same result when moving
the figurative constants *ALL’x.., *ALLG’0K1K2i’, and *ALLX’x1..". The string is
cyclically repeated character by character (starting on the left) until the length of
the associated field is the same as the length of the string.

* Figurative constants can be used in compare operations as long as one of the
factors is not a figurative constant.

Chapter 8. Defining Data and Prototypes 127

Constants

* The figurative constants, *BLANK/*BLANKS, are moved as zeros to a numeric
field in a MOVE operation.

Data Structures

128

ILE RPG Reference

The ILE RPG compiler allows you to define an area in storage and the layout of
the fields, called subfields, within the area. This area in storage is called a data
structure. You define a data structure by specifying DS in positions 24 through 25
on a definition specification.

You can use a data structure to:

* Define the same internal area multiple times using different data formats

* Define a data structure and its subfields in the same way a record is defined.
* Define multiple occurrences of a set of data.

* Group non-contiguous data into contiguous internal storage locations.

* Operate on all the subfields as a group using the name of the data structure.

¢ Operate on an individual subfield using its name.

In addition, there are four special data structures, each with a specific purpose:

* A data area data structure (identified by a U in position 23 of the definition
specification)

* A file information data structure (identified by the keyword [[NFDS|on a file
description specification)

* A program-status data structure (identified by an S in position 23 of the
definition specification)

* An indicator data structure (identified by the keyword on a file
description specification).

Data structures can be either program-described or externally described, except for
indicator data structures, which are program-described only. One data structure
can be defined like another using the LIKEDS keyword.

A program-described data structure is identified by a blank in position 22 of the
definition specification. The subfield definitions for a program-described data
structure must immediately follow the data structure definition.

An externally described data structure, identified by an E in position 22 of the
definition specification, has subfield descriptions contained in an externally
described file. At compile time, the ILE RPG compiler uses the external name to
locate and extract the external description of the data structure subfields. You
specify the name of the external file either in positions 7 through 21, or as a
parameter for the keyword EXTNAME .

Note: The data formats specified for the subfields in the external description are
used as the internal formats of the subfields by the compiler. This differs
from the way in which externally described files are treated.

An external subfield name can be renamed in the program using the keyword
EXTFLD. The keyword PREFIX can be used to add a prefix to the external subfield
names that have not been renamed with EXTFLD. Note that the data structure
subfields are not affected by the PREFIX keyword specified on a file-description
specification even if the file name is the same as the parameter specified in the
EXTNAME keyword when defining the data structure using an external file name.

HFHHFHFH HHFHFHFHH FEHHHFHEH R

HHHH

HHHHH

HFHHFH OFEH OH O HEHHF O OHFHH R

Data Structures

Additional subfields can be added to an externally described data structure by
specifying program-described subfields immediately after the list of external
subfields.

Qualifying Data Structure Names

The keyword QUALIFIED indicates that subfields of the data structure are
referenced using qualified notation. This permits access by specifying the data
structure name followed by a period and the subfield name, for example DS1.FLDI.
If the QUALIFIED keyword is not used, the subfield name remains unqualified, for
example FLD1. If QUALIFIED is used the subfield name can be specified by one of
the following:

* A "Simply Qualified Name" is a name of the form "A.B". Simply qualified
names are allowed as arguments to keywords on File and Definition
Specifications; in the Field-Name entries on Input and Output Specifications; and
in the Factor 1, Factor 2, and Result-Field entries on fixed-form calculation
specifications, i.e.dsname.subf. While spaces are permitted between elements of a
fully-qualified name, they are not permitted in simply qualified names.

¢ A "Fully Qualified Name" is a name with qualification and indexing to an
arbitrary number of levels, for example, "A(X).B.C(Z+17)". Fully qualified names
are allowed in any free-form calculation specifications, or in any
Extended-Factor-2 entry. This includes operations codes CLEAR and DSPLY
coded in free-form calculations.

In addition, arbitrary levels of indexing and qualification are allowed. For example,
a programmer could code:ds (x) .subf1l.s2.s3(y+1).s4 as an operand within an
expression. Please see ["QUALIFIED” on page 325 for further information on the
use of the QUALIFIED keyword.

Fully qualified names may be specified as the Result-Field operand for opcodes
CLEAR and DSPLY when coded in free-form calc specs. Expressions are allowed as
Factor 1 and Factor 2 operands for opcode DSPLY (coded in free-form calculation
specifications), however, if the operand is more complex than a fully qualified
name, the expression must be enclosed in parentheses.

Array Data Structures

An "Array Data Structure” is a data structures defined with keyword DIM. An
array data structure is like a multiple-occurrence data structure, except that the
index is explicitly specified, as with arrays.

Notes:

1. Keyword DIM is allowed for data structures defined as QUALIFIED.

2. When keyword DIM is coded for a data structure or LIKEDS subfield, array
keywords CTDATA, FROMFILE, and TOFILE are not allowed. In addition, the
following data structure keywords are not allowed for an array data structure:
+ DTAARA
* OCCURS.

3. For a data structure X defined with LIKEDS(Y), if data structure Y is defined
with keyword DIM, data structure X is not defined as an array data structure.

4. If X is a subfield in array data structure DS, then an array index must be
specified when referring to X in a qualified name. In addition, the array index
may not be *. Within a fully qualified name expression, an array index may
only be omitted (or * specified) for the right-most name.

Chapter 8. Defining Data and Prototypes 129

Data Structures

130

Defining Data Structure Parameters in a Prototype or
Procedure Interface

To define a prototyped parameter as a data structure, you must first define the
layout of the parameter by defining an ordinary data structure. Then, you can
define a prototyped parameter as a data structure by using the LIKEDS keyword.
To use the subfields of the parameter, specify the subfields qualified with
parameter name: dsparm.subfield. For example

* PartInfo is a data structure describing a part.
D PartInfo DS QUALIFIED
D Manufactr 4
D Drug 6
D Strength 3
D Count 3 0
* Procedure "Proc" has a parameter "Part" that is a data
* structure whose subfields are the same as the subfields
* in "PartInfo". When calling this procedure, it is best
* to pass a parameter that is also defined LIKEDS(PartInfo)
* (or pass "PartInfo" itself), but the compiler will allow
* you to pass any character field that has the correct
* length.
D Proc PR
D Part LIKEDS (PartInfo)
P Proc B
* The procedure interface also defines the parameter Part
* with keyword LIKEDS(PartInfo).
* This means the parameter is a data structure, and the subfields
* can be used by specifying them qualified with "Part.", for
* example "Part.Strength"
D Proc PI
D Part LIKEDS (PartInfo)
C IF Part.Strength > getMaxStrength (Part.Drug)
C CALLP PartError (Part : DRUG_STRENGTH_ERROR)
C ELSE
C EVAL Part.Count = Part.Count + 1
C ENDIF
P Proc E

Defining Data Structure Subfields

ILE RPG Reference

You define a subfield by specifying blanks in the Definition-Type entry (positions
24 through 25) of a definition specification. The subfield definition(s) must
immediately follow the data structure definition. The subfield definitions end when
a definition specification with a non-blank Definition-Type entry is encountered, or
when a different specification type is encountered.

The name of the subfield is entered in positions 7 through 21. To improve
readability of your source, you may want to indent the subfield names to show
visually that they are subfields.

If the data structure is defined with the QUALIFIED keyword, the subfield names
can be the same as other names within your program. The subfield names will be
qualified by the owning data structure when they are used.

You can also define a subfield like an existing item using the LIKE keyword. When
defined in this way, the subfield receives the length and data type of the item on

H OHH OHF OHHHH

Data Structures

which it is based. Similarly, you can use the LIKEDS keyword to define an entire
data structure like an existing item. See |Figure 117 on page 310| for an example
using the LIKE keyword.

The keyword LIKEDS is allowed on any subfield definition. When specified, the
subfield is defined to be a data structure, with its own set of subfields. If data
structure DS has subfield S1 which is defined like a data structure with a subfield
52, a programmer must refer to S2 using the expression DS.S1.S2.

Notes:
1. Keyword LIKEDS is allowed for subfields only within QUALIFIED data
structures.

2. Keywords DIM and LIKEDS are both allowed on the same subfield definition.

You can overlay the storage of a previously defined subfield with that of another
subfield using the OVERLAY keyword. The keyword is specified on the later
subfield definition. See [Figure 54 on page 13§ for an example using the OVERLAY
keyword.

Specifying Subfield Length
The length of a subfield may be specified using absolute (positional) or length
notation, or its length may be implied.

Absolute Specify a value in both the From-Position (positions 26 through 32)
and the To-Position/Length (positions 33 through 39) entries on the
definition specification.

Length Specify a value in the To-Position/Length (positions 33 through 39)
entry. The From-Position entry is blank.

Implied Length
If a subfield appears in the first parameter of one or more
keywords, the subfield can be defined without
specifying any type or length information. In this case, the type is
character and the length is determined by the overlaid subfields.

In addition, some data types, such as Pointers, Dates, Times and
Timestamps have a fixed length. For these types, the length is
implied, although it can be specified.

When using length notation, the subfield is positioned such that its starting
position is greater than the maximum To-Position of all previously defined
subfields. For examples of each notation, see [“Data Structure Examples” on page]

Aligning Data Structure Subfields

Alignment of subfields may be necessary. In some cases it is done automatically; in
others, it must be done manually.

For example, when defining subfields of type basing pointer or procedure pointer
using the length notation, the compiler will automatically perform padding if
necessary to ensure that the subfield is aligned properly.

When defining float, integer or unsigned subfields, alignment may be desired to
improve run-time performance. If the subfields are defined using length notation,
you can automatically align float, integer or unsigned subfields by specifying the
keyword ALIGN on the data structure definition. However, note the following
exceptions:

Chapter 8. Defining Data and Prototypes 131

HHHH H HH

H H H

Data Structures

132

* The ALIGN keyword is not allowed for a file information data structure or a
program status data structure.

* Subfields defined using the keyword OVERLAY are not aligned automatically,
even if the keyword ALIGN is specified for the data structure. In this case, you
must align the subfields manually.

Automatic alignment will align the fields on the following boundaries.

* 2 bytes for 5-digit integer or unsigned subfields

* 4 bytes for 10-digit integer or unsigned subfields or 4-byte float subfields
* 8 bytes for 20-digit integer or unsigned subfields

* 8 bytes for 8-byte float subfields

* 16 bytes for pointer subfields

If you are aligning fields manually, make sure that they are aligned on the same
boundaries. A start-position is on an n-byte boundary if ((position - 1) mod n) =
0. (The value of "x mod y” is the remainder after dividing x by y in integer
arithmetic. It is the same as the MVR value after X DIV Y.)

shows a sequence of bytes and identifies the different boundaries used

for alignment.

‘P f f

Figure 50. Boundaries for Data Alignment

Note the following about the above byte sequence:

* Position 1 is on a 16-byte boundary, since ((1-1) mod 16) = 0.
* Position 13 is on a 4-byte boundary, since ((13-1) mod 4) = 0.
* Position 7 is not on a 4-byte boundary, since ((7-1) mod 4) = 2.

Initialization of Nested Data Structures
The keyword INZ(*LIKEDS) is allowed on a LIKEDS subfield. The LIKEDS

subfield is initialized exactly the same as the corresponding data structure.

Keyword INZ is allowed on a LIKEDS subfield. All nested subfields of the LIKEDS
subfield are initialized to their default values. This also applies to more deeply
nested LIKEDS subfields, with the exception of nested LIKEDS subfields with
INZ(*LIKEDS) specified.

If keyword INZ is coded on a main data structure definition, keyword INZ is
implied on all subfields of the data structure without explicit initialization. This
includes LIKEDS subfields.

Special Data Structures

ILE RPG Reference

Special data structures include:

° |Data area data structures|
+ |File information data structures (INFDS)|
i |Program—status data structures|

Data Structures

* |Indicator data structures.|

Note that the above data structures cannot be defined in subprocedures.

Data Area Data Structure

A data area data structure, identified by a U in position 23 of the definition
specification, indicates to the compiler that it should read in and lock the data area
of the same name at program initialization and should write out and unlock the
same data area at the end of the program. Locking does not apply to the local data
area (see |”Loca1 Data Area (*LDA)”[). Data area data structures, as in all other data
structures, have the type character. A data area read into a data area data structure
must also be character. The data area and data area data structure must have the
same name unless you rename the data area within the ILE RPG program by using
the *DTAARA DEFINE operation code or the DTAARA keyword.

You can specify the data area operations (IN, OUT, and UNLOCK) for a data area
that is implicitly read in and written out. Before you use a data area data structure

with these operations, you must specify that data area data structure name in the
result field of the *“DTAARA DEFINE operation or with the DTAARA keyword.

A data area data structure cannot be specified in the result field of a PARM
operation in the *ENTRY PLIST.

Local Data Area (*LDA): If you specify blanks for the data area data structure
(positions 7 through 21 of the definition specification that contains a U in position
23), the compiler uses the local data area. To provide a name for the local data
area, use the *DTAARA DEFINE operation, with *LDA in factor 2 and the name in
the result field or DTAARA(*LDA) on the definition specification.

File Information Data Structure

You can specify a file information data structure (defined by the keyword
on a file description specifications) for each file in the program. This provides you
with status information on the file exception/error that occurred. The file
information data structure name must be unique for each file. A file information
data structure contains predefined subfields that provide information on the file
exception/error that occurred. For a discussion of file information data structures
and their subfields, see [‘File Information Data Structure” on page 65

Program-Status Data Structure

A program-status data structure, identified by an S in position 23 of the definition
specification, provides program exception/error information to the program. For a
discussion of program-status data structures and their predefined subfields, see
[‘Program Status Data Structure” on page 83.|

Indicator Data Structure

An indicator data structure is identified by the keyword on the file
description specifications. It is used to store conditioning and response indicators
passed to and from data management for a file. By default, the indicator data
structure is initialized to all zeros ('0’s).

The rules for defining the data structure are:

* It must not be externally described.

* It can only have fields of indicator format.

* It can be defined as a multiple occurrence data structure.

Chapter 8. Defining Data and Prototypes 133

Data Structures

134

Data Structure Examples

ILE RPG Reference

* %SIZE for the data structure will return 99. For a multiple occurrence data
structure, %SIZE(ds:*ALL) will return a multiple of 99. If a length is specified, it

must be 99.

* Subfields may contain arrays of indicators as long as the total length does not

exceed 99.

The following examples show various uses for data structures and how to define

them.

Example

Description

[Figure 51 on page 135|

Using a data structure to subdivide a field

"Figure 52 on page 136

Using a data structure to group fields

I|Figure 53 on page 137

Using keywords QUALIFIED, LIKEDS, and DIM with data
structures, and how to code fully-qualified subfields

[Figure 54 on page 138

Data structure with absolute and length notation

ilFigure 55 on page 138]

Rename and initialize an externally described data structure

IIFigure 56 on page 139

Using PREFIX to rename all fields in an external data
structure

[Figure 57 on page 139

Defining a multiple occurrence data structure

[Figure 58 on page 140|

Aligning data structure subfields

[[Figure 59 on page 141|

Defining a *LDA data area data structure

[[Figure 60 on page 142|

Using data area data structures (1)

[[Figure 61 on page 142

Using data area data structures (2)

[[Figure 62 on page 143|

Using an indicator data structure

ilFigure 63 on page 144]

Using a multiple-occurrence indicator data structure

Data Structures

£ R A TG JEPUPE Y SR U S T EPUPE UV AP DU -
DName+++++++++++ETDSsFrom+++To/ L+++1Dc . Keywords+++++++++ttttttttttttttttttttt
P Keywords++++++++++t+tttttttttttt+t++
*

* Use length notation to define the data structure subfields.

* You can refer to the entire data structure by using Partno, or by

* using the individual subfields Manufactr, Drug, Strength or Count.

*

D Partno DS

D Manufactr 4

D Drug 6

D Strength 3

D Count 3 0

D

O R U TSPUNN. BRI PR S NS TP PR . SEPRPE DU AR P <1
IFiTename++SqNORiP0OS1+NCCPOS2+NCCPOS3+NCC. v v vt et e e ieeieeieevenennnnnnnanns
Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr.

*
* Records in program described file FILEIN contain a field, Partno,
* which needs to be subdivided for processing in this program.

* To achieve this, the field Partno is described as a data structure
* using the above Definition specification

*

F

IFILEIN NS 01 1 CA 2 CB

I 3 18 Partno
1 19 29 Name

I 30 40 Patno

Figure 51. Using a Data structure to subdivide a field

Chapter 8. Defining Data and Prototypes

135

Data Structures

136

ILE RPG Reference

I R P G R Y SO O P TP ¢ B PO AR DR -
DName+++++++++++ETDSFrom+++To/ L+++IDc . Keywords++++++++++tttttttttttttttttttt
P Keywords++++++++++t+ttttttttt+tt++++
*

* When you use a data structure to group fields, fields from

* non-adjacent locations on the input record can be made to occupy

* adjacent internal Tocations. The area can then be referred to by

* the data structure name or individual subfield name.

*

D Partkey DS

D Location 4

D Partno 8

D Type 4

D

LI S A S R P S T TS O B Ty AP O -
IF11ename++SqNOR1Posl+NCCPosZ+NCCPos3+NCC
Fmt+SPFrom+To+++DcField+++++++++LIMIFrPTMnZr.

*
* Fields from program described file TRANSACTN need to be
*

compared to the field retrieved from an Item Master file
*

ITRANSACTN NS 01 1 Cl1 2 C2

I 3 10 Partno

I 11 16 0Quantity

I 17 20 Type

I 21 21 Code

I 22 25 Location

I

L P A TP RPN PR SR AP TP TP ¢ TEPRP DU AP PP -
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .

L
*
* Use the data structure name Partkey, to compare to the field
* Item_Nbr

*

C :

(8 Partkey IFEQ Item_Nbr 99
C :

C

Figure 52. Using a data structure to group fields

HHHHFHHFHFHFHHFH S HFHFH R FHFHH

Data Structures

D CustomerInfo DS QUALIFIED BASED(@)
D Name 20A
D Address 50A
D ProductInfo DS QUALIFIED BASED(@)
D Number 5A
D Description 20A
D Cost 9P 2
D SalesTransaction...
D DS QUALIFIED
D Buyer LIKEDS (CustomerInfo)
D Seller LIKEDS (CustomerInfo)
D NumProducts 10I 0
D Products LIKEDS (ProductInfo)
D DIM(10)
/free

TotalCost = 0;

for i = 1 to SalesTransation. Numproducts;

TotalCost = TotalCost + SalesTransaction.Products (i).Cost;
dsply SalesTransaction.Products (i).Cost;

endfor;

dsply ('Total cost is ' + %char(TotalCost));
/end-free

Figure 53. Using Keywords QUALIFIED, LIKEDS and DIM with data structures

Chapter 8. Defining Data and Prototypes 137

Data Structures

138

ILE RPG Reference

L3N R AR TG JEPIPE, Y SR NN NSRS UM ¢ BEPUPPE OV AR SR <
DName+++++++++++ETDSFrom+++To/ L+++IDc . Keywords++++++++++tttttttttttttttttttt

Dttt ittt e i et et et e e Keywords++++++++++t+tttttttttttt+t+++
*

* Define a program described data structure called FRED

* The data structure is composed of 5 fields:

% 1. An array with element length 10 and dimension 70(Fieldl)
* 2. A field of length 30 (Field2)

* 3/4. Divide Field2 in 2 equal length fields (Field3 and Field4)
* b, Define a binary field over the 3rd field

* Note the indentation to improve readability

*

*

* Absolute notation:

*

* The compiler will determine the array element length (Fieldl)
* by dividing the total length (700) by the dimension (70)

*

D FRED DS

D Fieldl 1 700 DIM(70)

D Field2 701 730

D Field3 701 715

D Field5 701 704B 2

D Field4 716 730

*

* Length notation:

*

* The OVERLAY keyword is used to subdivide Field2

*

D FRED DS

D Fieldl 10 DIM(70)

D Field2 30

D Field3 15 OVERLAY (Field2)

D Field5 4B 2 OVERLAY(Field3)

D Field4 15 OVERLAY (Field2:16)

Figure 54. Data structure with absolute and length notation

L3N R A T NS PR S U R DU RIS O A TR -1
DName+++++++++++ETDSsFrom+++To/ L+++IDc . Keywords+++++++++tttttttttttttttttttt
D e e Keywords++++++++t+tttttttttttttttt+++

Define an externally described data structure with internal name
FRED and external name EXTDS and rename field CUST to CUSTNAME
Initialize CUSTNAME to 'GEORGE' and PRICE to 1234.89.

Assign to subfield ITMARR the DIM keyword.

The ITMARR subfield is defined in the external description as a
100 byte character field. This divides the 100 byte character
field into 10 array elements, each 10 bytes long.

Using the DIM keyword on an externally described numeric subfield
should be done with caution, because it will divide the field into
array elements (similar to the way it does when absolute notation
is used for program described subfields).

% %k ok 3k X X % 3k 3k X X

Fred
CUSTNAME
PRICE
ITMARR

DS EXTNAME (EXTDS)
EXTFLD (CUST) INZ('GEORGE')
INZ(1234.89)

D
D
D
D DIM(10)

mmmm

Figure 55. Rename and initialize an externally described data structure

Data Structures

L R AN TG TP PR S RS RTUPE. PUPUR ¢ BEPUPIPE AP AR DO
DName+++++++++++ETDSsFrom+++To/ L+++1Dc . Keywords+++++++++ttttttttttttttttttttt

P Keywords++++++++++t+tttttttttttt++++
D

D extdsl E DS EXTNAME (CUSTDATA)

D PREFIX (CU_)

D Name E INZ ('Joe's Garage')

D Custnum E EXTFLD (NUMBER)

D

*

* The previous data structure will expand as follows:

* -- A1l externally described fields are included in the data
* structure

* -- Renamed subfields keep their new names

* -- Subfields that are not renamed are prefixed with the

* prefix string

*

* Expanded data structure:

*

EXTDS1 E DS
CU_NAME

m

D

D 20A EXTFLD (NAME)

D INZ ('Joe's Garage')
D CU_ADDR E 50A EXTFLD (ADDR)

D CUSTNUM E 9S0 EXTFLD (NUMBER)

D CU_SALESMN E 7P0 EXTFLD (SALESMN)

Figure 56. Using PREFIX to rename all fields in an external data structure

L3N R AN G TP RN SR RS RIS PUPUR ¢ BPUPIE AP AP DU s
DName+++++++++++ETDsFrom+++To/ L+++IDc. Keywords++++++++tttttttttttttttttttt

3PP Keywords+++++++++tttttttttttttttt++++
*

* Define a Multiple Occurrence data structure of 20 elements with:
* -- 3 fields of character 20

* -- A 4th field of character 10 which overlaps the 2nd

* field starting at the second position.

*

* Named constant 'Max_Occur' is used to define the number of

* occurrences.

*

* Absolute notation (using begin/end positions)

*

D Max_Occur c CONST(20)

D

DDataStruct DS OCCURS (Max_Occur)

D fieldl 1 20

D field2 21 40

D field2l 22 31

D field3 41 60

*

* Mixture of absolute and Tength notation
*

D DataStruct DS OCCURS (twenty)
D fieldl 20
D field2 20
D field2l 22 31
D field3 41 60

Figure 57. Defining a multiple occurrence data structure

Chapter 8. Defining Data and Prototypes

139

Data Structures

140

ILE RPG Reference

L3N R AR TG JEPIPE, Y SR NN NSRS UM ¢ BEPUPPE OV AR SR <
DName+++++++++++ETDSFrom+++To/ L+++IDc . Keywords++++++++++tttttttttttttttttttt

* Data structure with alignment:

D MyDS DS ALIGN

* Properly aligned subfields

* Integer subfields using absolute notation.

D Subfl 33 341 0

D Subf2 37 40I 0

* Integer subfields using length notation.

* Note that Subf3 will go directly after Subf2

* since positions 41-42 are on a 2-byte boundary.

* However, Subf4 must be placed in positions 45-48
* which is the next 4-byte boundary after 42.

D Subf3 51 0

D Subf4 10I 0

* Integer subfields using OVERLAY.

D Group 101 120A

D Subfé 5I 0 OVERLAY (Group: 3)
D Subf7 10I 0 OVERLAY (Group: 5)
D Subf8 5U 0 OVERLAY (Group: 9)

* Subfields that are not properly aligned:
* Integer subfields using absolute notation:

D SubfX1 10 111 0

D SubfX2 15 18I 0

* Integer subfields using OVERLAY:

D BadGroup 101 120A

D SubfX3 5I 0 OVERLAY (BadGroup: 2)

D SubfX4 10I 0 OVERLAY (BadGroup: 6)

D SubfX5 10U 0 OVERLAY (BadGroup: 11)

* Integer subfields using OVERLAY:

D WorseGroup 200 299A

D SubfX6 5I 0 OVERLAY (WorseGroup)

D SubfX7 10I 0 OVERLAY (WorseGroup: 3)

*

* The subfields receive warning messages for the following reasons:

* SubfXl - end position (11) is not a multiple of 2 for a 2 byte field.
* SubfX2 - end position (18) is not a multiple of 4 for a 4 byte field.
* SubfX3 - end position (103) is not a multiple of 2.

* SubfX4 - end position (109) is not a multiple of 4.

* SubfX5 - end position (114) is not a multiple of 4.

* SubfX6 - end position (201) is not a multiple of 2.

* SubfX7 - end position (205) is not a multiple of 4.

Figure 58. Aligning Data Structure Subfields

Data Structures

L R AN TG TP PR S RS RTUPE. PUPUR ¢ BEPUPIPE AP AR DO
DName+++++++++++ETDSsFrom+++To/ L+++1Dc . Keywords+++++++++ttttttttttttttttttttt
Dt i e e Keywords++++++++t+tttttttttttttttt+++

Define a data area data structure based on the *LDA.

*

*

*

* Example 1:
* A data area data structure with no name is based on the =*LDA.

* In this case, the DTAARA keyword does not have to be used.

*

D uDs

D SUBFLD 1 600A

L R A T TR U S OO RIS PUPUR c RPN AP AR U
DName+++++++++++ETDSFrom+++To/ L+++IDc. Keywords+++++++++ttttttttttttttttttttt
* Example 2:

* This data structure is explicitly based on the *LDA using

* the DTAARA keyword. Since it is not a data area data

* structure, it must be handled using IN and OUT operations.

*

D LDA_DS DS DTAARA (*LDA)

D SUBFLD 1 600A

c IN LDA_DS

c ouT LDA_DS

* | A O U RS SUPUIY SEPE DU SV AP - SISO A T -

DName+++++++++++ETDSFrom+++To/ L+++I1Dc . Keywords++++++++++tttttttttttttttttttt
* Example 3:

* This data structure is explicitly based on the *LDA using
* the DTAARA keyword. Since it is a data area data

* structure, it is read in during initialization and written
* out during termination. It can also be handled using IN

* and OUT operations, since the DTAARA keyword was used.

*

D LDA_DS ubns DTAARA (*LDA)

D SUBFLD 1 600A

C IN LDA_DS

(8 ouT LDA_DS

Figure 59. Defining a *LDA data area data structure

Chapter 8. Defining Data and Prototypes 141

Data Structures

142

ILE RPG Reference

L3N R AR TG JEPIPE, Y SR NN NSRS UM ¢ BEPUPPE OV AR SR <
HKeywords+++++++ttt bttt

H DFTNAME (Programl)

H

*

FFilename++IPEASF..... Looo.s A.Device+t.Keywords++++++t+tttttttttttttttttt
FSALESDTA IF E DISK

*

DName+++++++++++ETDsSFrom+++To/L+++IDC. Keywords+++++++tttttttttttttttttt++++
P Keywords++++++++++t+tttttttttttt++++
*

* This program uses a data area data structure to accumulate

* a series of totals. The data area subfields are then added

* to fields from the file SALESDTA.

D Totals ubns

D Tot_amount 82

D Tot_gross 10 2

D Tot_net 10 2

L B A T B B ETUTE- IS PO RS JOR AN ST
CLONOlFactor‘l+++++++0pcode(E)+FaCt0r‘2++++++++++++++++++++++++++++++++++++++
*

(s :

c EVAL Tot_amount = Tot_amount + amount

C EVAL Tot_gross = Tot_gross + gross

c EVAL Tot_net = Tot_net + net

Figure 60. Using data area data structures (program 1)

L R T R O T TS P < BT SR AR T -
HKeywords++

H DFTNAME(ProgramZ)

*,00 1 Lo+l AP . B T S PO SRR UV - NP D A U <
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
PP Keywords++++++++++t+ttttttttt+tt++++
*

* This program processes the totals accumulated in Programl.

* Program2 then uses the total in the subfields to do calculations.

*

D Totals ubns

D Tot_amount 82

D Tot_gross 10 2

D Tot_net 10 2

3N R AR UG IS AP S U, I DU BRI S A P -1
CLON01Factor1+++++++0pcode(E)+Factor2+++++++Resu1t++++++++Len++D+H1LoEq....
*

(8 :

C EVAL *IN91 = (Amount2 <> Tot_amount)

C EVAL *IN92 = (Gross2 <> Tot_gross)

C = (Net2 <> Tot_net)

(s

EVAL *IN93

Figure 61. Using data area data structures (program 2)

Data Structures

L A A G T P S D TR SO R R A I <
FFilename++IPEASFRLen+LK1en+AIDevice+.Keywords++++++t++tttttttttttttttttt
* Indicator data structure "DispInds" is associated to file "Disp".

FDisp CF E WORKSTN INDDS (DispInds)
DName+++++++++++ETDSFrom+++To/ L+++1DC. Keywords++++++++ttttttttttttttttttttet
Dttt ettt e i, Keywords+++++++++tttttttttttttttttt++

* This is the indicator data structure:
*

D DispInds DS

* Conditioning indicators for format "Query"
D ShowName 21 21N

* Response indicators for format "Query"

D Exit 3 3N

D Return 12 12N

D BlankNum 31 31N

* Conditioning indicators for format "DispSfICtl1"
D SFLDSPCTL 41 41N

D SFLDSP 42 42N

D SFLEND 43 43N

D SFLCLR 44 44N

CLONO1Factorl+++++++Opcode(E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ...
*

* Set indicators to display the subfile:

c EVAL SFLDSP = *ON
c EVAL SFLEND = *OFF
c EVAL SFLCLR = *OFF
c EXFMT DispSFLCTL

*
* Using indicator variables, we can write more readable programs:

(s EXFMT Query

C IF Exit or Return
C RETURN

C ENDIF

Figure 62. Using an indicator data structure

Chapter 8. Defining Data and Prototypes 143

Data Structures

144 ILE RPG Reference

LN R AN UG IEPIPE AT SR UL TP P RPN U AU DU -
FFilename++IPEASFRLen+LK1en+AIDevice+.Keywords++++++t+tttttttttttttttt+t
* Indicator data structure "ErrorInds" is associated to file "Disp".

FDisp CF E WORKSTN INDDS (ERRORINDS)
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++t+tttttttttttttttttttttt
Dttt e it et e et it Keywords++++++++t++tttttttttttttttt++
D @NameOk C 0

D @GNameNotFound C 1

D @NameNotValid C 2

D @NumErrors C 2

*

* Indicator data structure for ERRMSG:

*

D ERRORINDS DS OCCURS (@NumErrors)
* Indicators for ERRMSG:

D NotFound 1 IN

D NotValid 2 2N

*

* Indicators for QUERY:

D Exit 3 3N

D Refresh 5 5N

D Return 12 12N

*

* Prototype for GetName procedure (code not shown)
D GetName PR 10I 0

D Name 50A CONST

CLONO1Factorl+++++++0Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ...
*

C DOU Exit or Return
C EXFMT QUERY

* Check the response indicators

C SELECT

C WHEN Exit or Return
C RETURN

C WHEN Refresh

C RESET QUERY

C ITER

C ENDSL

* Check the name

c EVAL RC = GetName (Name)
*

* If it is not valid, display an error message
C IF RC <> @NameOk

C RC 0CCURS ErrorlInds

C EXFMT ERRMSG

C ENDIF

C ENDDO

C *INZSR BEGSR

*

* Initialize the occurrences of the ErrorInds data structure
C @NameNotFound OCCUR ErrorInds

C EVAL NotFound = '1'

C @NameNotValid OCCUR Errorlnds

C EVAL Notvalid = '1'

C ENDSR

Figure 63. Using a multiple-occurrence indicator data structure

Prototypes and Parameters

Prototypes and Parameters

The recommended way to call programs and procedures is to use prototyped calls,
since prototyped calls allow the compiler to check the call interface at compile
time. If you are coding a subprocedure, you will need to code a
procedure-interface definition to allow the compiler to match the call interface to
the subprocedure.

This section describes how to define each of these concepts:

. ”Prototypes"l

+ [“Prototyped Parameters” on page 146|

* |“Procedure Interface” on page 148)

Prototypes
A prototype is a definition of the call interface. It includes the following
information:
¢ Whether the call is bound (procedure) or dynamic (program)
* How to find the program or procedure (the external name)
¢ The number and nature of the parameters
* Which parameters must be passed, and which are optionally passed
* Whether operational descriptors should be passed

e The data type of the return value, if any (for a procedure)

A prototype must be included in the definition specifications of the program or
procedure that makes the call. The prototype is used by the compiler to call the
program or procedure correctly, and to ensure that the caller passes the correct
parameters.

The following rules apply to prototype definitions.

* A prototype name must be specified in positions 7-21. If the keyword EXTPGM
or EXTPROC is specified on the prototype definition, then any calls to the
program or procedure use the external name specified for that keyword. If
neither keyword is specified, then the external name is the prototype name, that
is, the name specified in positions 7-21 (in uppercase).

* Specify PR in the Definition-Type entry (positions 24-25). Any parameter
definitions must immediately follow the PR specification. The prototype
definition ends with the first definition specification with non-blanks in positions
24-25 or by a non-definition specification.

* Specify any of the following keywords as they pertain to the call interface:
EXTPROC(name)

The call will be a bound procedure call that uses the external
name specified by the keyword.

EXTPGM(name)
The call will be an external program call that uses the external
name specified by the keyword.

OPDESC Operational descriptors are to be passed with the parameters
that are described in the prototype.

* A return value (if any) is specified on the PR definition. Specify the length and
data type of the return value. In addition, you may specify the following
keywords for the return value:

Chapter 8. Defining Data and Prototypes 145

H* H H

Prototypes and Parameters

146

DATFMT (fmt)
The return value has the date format specified by the keyword.

DIM(N) The return value is an array or data structure with N elements.

LIKEDS(data_structure_name)
The returned value is a data structure. (You cannot refer to the
subfields of the return value when you call the procedure.)

LIKEREC(name{ type})
The returned value is a data structure defined like the specified
record format name.

Note: You cannot refer to the subfields of the return value when
you call the procedure.

LIKE(mame) The return value is defined like the item specified by the
keyword.

PROCPTR The return value is a procedure pointer.
TIMFMT(fmt) The return value has the time format specified by the keyword.

VARYING A character, graphic, or UCS-2 return value has a variable-length
format.

For information on these keywords, see [“Definition-Specification Keywords” on|
fpage 293 |[Figure 64 shows a prototype for a subprocedure CVTCHR that takes a
numeric input parameter and returns a character string. Note that there is no name
associated with the return value. For this reason, you cannot display its contents
when debugging the program.

* The returned value is the character representation of
* the input parameter NUM, left-justified and padded on
* the right with blanks.

D CVTCHR PR 31A

D NUM 31P 0 VALUE
* The following expression shows a call to CVTCHR. If
* variable rrn has the value 431, then after this EVAL,
* variable msg would have the value

* 'Record 431 was not found.'
C EVAL msg = 'Record '
C + %TRIMR(CVTCHR(RRN))
C + ' was not found '

Figure 64. Prototype for CVTCHR

If you are writing a prototype for an exported subprocedure or for a main
procedure, put the prototype in a /COPY file and copy the prototype into the
source file for both the callers and the module that defines the procedure. This
coding technique provides maximum parameter-checking benefits for both the
callers and the procedure itself, since they all use the same prototype.

Prototyped Parameters

ILE RPG Reference

If the prototyped call interface involves the passing of parameters then you must
define the parameter immediately following the PR specification. The following
keywords, which apply to defining the type, are allowed on the parameter
definition specifications:

ASCEND The array is in ascending sequence.

Prototypes and Parameters

DATFMT (fmt)
The date parameter has the format fmt.

DIM(N) The parameter is an array or data structure with N elements.
LIKE(mame) The parameter is defined like the item specified by the keyword.

LIKEREC(namef,type})
The parameter is a data structures whose subfields are the same as
the fields in the specified record format name.

LIKEDS(data_structure_name)
The parameter is a data structure whose subfields are the same as
the subfields identified in the LIKEDS keyword.

PROCPTR The parameter is a procedure pointer.
TIMFMT(fmt) The time parameter has the format fmt.

VARYING A character, graphic, or UCS-2 parameter has a variable-length
format.

For information on these keywords, see [“Definition-Specification Keywords” on|

The following keywords, which specify how the parameter should be passed, are
also allowed on the parameter definition specifications:

CONST
The parameter is passed by read-only reference. A parameter defined with
CONST must not be modified by the called program or procedure. This
parameter-passing method allows you to pass literals and expressions.

NOOPT
The parameter will not be optimized in the called program or procedure.

OPTIONS(optl { : opt2 { : opt3 { : optd { : opt5} } } })

Where optl ... opt5 can be *NOPASS, *OMIT, *VARSIZE, *STRING, *TRIM,
or *RIGHTAD]. For example, OPTIONS(*VARSIZE : *NOPASS).

Specifies the following parameter passing options:

*NOPASS
The parameter does not have to be passed. If a parameter has
OPTIONS(*NOPASS) specified, then all parameters following it
must also have OPTIONS(*NOPASS) specified.

*OMIT
The special value *OMIT may be passed for this reference
parameter.

*VARSIZE
The parameter may contain less data than is indicated on the
definition. This keyword is valid only for character parameters,
graphic parameters, UCS-2 parameters, or arrays passed by
reference. The called program or procedure must have some way
of determining the length of the passed parameter.

Note: When this keyword is omitted for fixed-length fields, the

parameter may only contain more or the same amount of
data as indicated on the definition; for variable-length fields,

Chapter 8. Defining Data and Prototypes 147

Prototypes and Parameters

148

the parameter must have the same declared maximum
length as indicated on the definition.

*STRING
Pass a character value as a null-terminated string. This keyword is
valid only for basing pointer parameters passed by value or by
read-only reference.

*TRIM
The parameter is trimmed before it is passed. This option is valid
for character, UCS-2 or graphic parameters passed by value or by

read-only reference. It is also valid for pointer parameters that
have OPTIONS(*STRING) coded.

Note: When a pointer parameter has OPTIONS(*STRING : *TRIM)
specified, the value will be trimmed even if a pointer is
passed directly. The null-terminated string that the pointer is
pointing to will be copied into a temporary, trimmed of
blanks, with a new null-terminator added at the end, and
the address of that temporary will be passed.

*RIGHTAD]
For a CONST or VALUE parameter, *RIGHTAD]J indicates that the
graphic, UCS-2, or character parameter value is to be right
adjusted.

— TIP
For the parameter passing options *NOPASS, *OMIT, and *VARSIZE,
it is up to the programmer of the procedure to ensure that these
options are handled. For example, if OPTIONS(*NOPASS) is coded
and you choose not to pass the parameter, the procedure must check
that the parameter was passed before it accesses it. The compiler will
not do any checking for this.

VALUE
The parameter is passed by value.

For information on the keywords listed above, see [“Definition-Specification|
[Keywords” on page 293 For more information on using prototyped parameters,
see the chapter on calling programs and procedures in the WebSphere Development
Studio: ILE RPG Programmer’s Guide.

Procedure Interface

ILE RPG Reference

If a prototyped program or procedure has call parameters or a return value, then a
procedure interface definition must be defined, either in the main source section
(for a main procedure) or in the subprocedure section. A procedure interface
definition repeats the prototype information within the definition of a procedure.
It is used to declare the entry parameters for the procedure and to ensure that the
internal definition of the procedure is consistent with the external definition (the

prototype).

The following rules apply to procedure interface definitions.

* The name of the procedure interface, specified in positions 7-21, is required for
the main procedure. It is optional for subprocedures. If specified, it must match
the name specified in positions 7-21 on the corresponding prototype definition.

Prototypes and Parameters

* Specify PI in the Definition-Type entry (positions 24-25). The procedure-interface
definition can be specified anywhere in the definition specifications. In the main
procedure, the procedure interface must be preceded by the prototype that it
refers to. A procedure interface is required in a subprocedure if the procedure
returns a value, or if it has any parameters; otherwise, it is optional.

e Any parameter definitions, indicated by blanks in positions 24-25, must
immediately follow the PI specification.

¢ Parameter names must be specified, although they do not have to match the
names specified on the prototype.

 All attributes of the parameters, including data type, length, and dimension,
must match exactly those on the corresponding prototype definition.

* To indicate that a parameter is a data structure, use the LIKEDS keyword to
define the parameter with the same subfields as another data structure.

* The keywords specified on the PI specification and the parameter specifications
must match those specified on the prototype.

— TIP
If a module contains calls to a prototyped program or procedure, then there
must be a prototype definition for each program and procedure that you
want to call. One way of minimizing the required coding is to store shared
prototypes in /COPY files.

If you provide prototyped programs or procedures to other users, be sure to
provide them with the prototypes (in /COPY files) as well.

Chapter 8. Defining Data and Prototypes 149

Prototypes and Parameters

150 ILE RPG Reference

Chapter 9. Using Arrays and Tables

Arrays and tables are both collections of data fields (elements) of the same:
* Field length
* Data type
— Character
— Numeric
— Data Structure
— Date
— Time
- Timestamp
— Graphic
- Basing Pointer
— Procedure Pointer
- UCS-2
* Format

e Number of decimal positions (if numeric)

Arrays and tables differ in that:

* You can refer to a specific array element by its position

* You cannot refer to specific table elements by their position
* An array name by itself refers to all elements in the array

+ A table name always refers to the element found in the last[“LOOKUP (Look Up|
[a Table or Array Element)” on page 646 operation

Note: You can define only run-time arrays in a subprocedure. Tables, prerun-time
arrays, and compile-time arrays are not supported. If you want to use a
pre-run array or compile-time array in a subprocedure, you must define it in
the main source section.

The next section describes how to code an array, how to specify the initial values
of the array elements, how to change the values of an array, and the special
considerations for using an array. The section after next describes the same
information for tables.

Arrays

There are three types of arrays:
 The run-time array is loaded by your program while it is running.

* The compile-time array is loaded when your program is created. The initial data
becomes a permanent part of your program.

* The prerun-time array is loaded from an array file when your program begins
running, before any input, calculation, or output operations are processed.

The essentials of defining and loading an array are described for a run-time array.
For defining and loading compile-time and prerun-time arrays you use these
essentials and some additional specifications.

© Copyright IBM Corp. 1994, 2004 151

Arrays

152

Array Name and Index

You refer to an entire array using the array name alone. You refer to the individual
elements of an array using (1) the array name, followed by (2) a left parenthesis,
followed by (3) an index, followed by (4) a right parenthesis -- for example:
AR(IND). The index indicates the position of the element within the array (starting
from 1) and is either a number or a field containing a number.

The following rules apply when you specify an array name and index:
* The array name must be a unique symbolic name.

¢ The index must be a numeric field or constant greater than zero and with zero
decimal positions

* If the array is specified within an expression in the extended factor 2 field, the
index may be an expression returning a numeric value with zero decimal
positions

* At run time, if your program refers to an array using an index with a value that
is zero, negative, or greater than the number of elements in the array, then the
error/exception routine takes control of your program.

The Essential Array Specifications

You define an array on a definition specification. Here are the essential

specifications for all arrays:

* Specify the array name in positions 7 through 21

* Specify the number of entries in the array using the DIM keyword

* Specify length, data format, and decimal positions as you would any scalar
fields. You may specify explicit From- and To-position entries (if defining a
subfield), or an explicit Length-entry; or you may define the array attributes
using the LIKE keyword; or the attributes may be specified elsewhere in the
program.

* If you need to specify a sort sequence, use the ASCEND or DESCEND
keywords.

shows an example of the essential array specifications.

Coding a Run-Time Array

If you make no further specifications beyond the essential array specifications, you
have defined a run-time array. Note that the keywords ALT, CTDATA, EXTEMT,
FROMEFILE, PERRCD, and TOFILE cannot be used for a run-time array.

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++ttttttttttttttt+
DARC S 3A DIM(12)

Figure 65. The Essential Array Specifications to Define a Run-Time Array

Loading a Run-Time Array

ILE RPG Reference

You can assign initial values for a run-time array using the INZ keyword on the
definition specification. You can also assign initial values for a run-time array
through input or calculation specifications. This second method may also be used
to put data into other types of arrays.

For example, you may use the calculation specifications for the MOVE operation to
put 0 in each element of an array (or in selected elements).

Arrays

Using the input specifications, you may fill an array with the data from a file. The
following sections provide more details on retrieving this data from the records of
a file.

Note: Date and time runtime data must be in the same format and use the same
separators as the date or time array being loaded.

Loading a Run-Time Array in One Source Record
If the array information is contained in one record, the information can occupy
consecutive positions in the record or it can be scattered throughout the record.

If the array elements are consecutive on the input record, the array can be loaded
with a single input specification. shows the specifications for loading an
array, INPARR, of six elements (12 characters each) from a single record from the
file ARRFILE.

DName+++++++++++ETDSFrom+++To/ L+++1DC . Keywords+++++++t+ttttttttttttttttttet

DINPARR S 12A DIM(6)
IFiTename++SqNORiTPoS1+NCCPOS2+NCCPOS3+NCC. v v v v e ie it it iieneennnnnnnns
AP Fmt+SPFrom+To+++DcField+++++++++LIMIFrPIMnZr. ...
IARRFILE AA 01

I 1 72 INPARR

Figure 66. Using a Run-Time Array with Consecutive Elements

If the array elements are scattered throughout the record, they can be defined and
loaded one at a time, with one element described on a specification line.
shows the specifications for loading an array, ARRX, of six elements with 12
characters each, from a single record from file ARRFILE; a blank separates each of
the elements from the others.

DName+++++++++++ETDSsFrom+++To/L+++1Dc. Keywords++++++++tttttttttttttttttttt
DARRX S 12A DIM(6)
IFiTename++SqNORiPoS1+NCCPOS2+NCCPOS3+NCC. v vt et ie it iieieeineenennannnn
Lo Fmt+SPFrom+To+++DcField+++++++++L1IMIFrPIMnZr. ...
IARRFILE AA 01

I 1 12 ARRX(1)

14 25 ARRX(2)
27 38 ARRX(3)
ARRX (4)
53 64 ARRX(5)
66 77 ARRX(6)

o
=]
(<]
(3]
=

Figure 67. Defining a Run-Time Array with Scattered Elements

Loading a Run-Time Array Using Multiple Source Records
If the array information is in more than one record, you may use various methods

to load the array. The method to use depends on the size of the array and whether
or not the array elements are consecutive in the input records. The ILE RPG
program processes one record at a time. Therefore the entire array is not processed
until all the records containing the array information are read and the information
is moved into the array fields. It may be necessary to suppress calculation and
output operations until the entire array is read into the program.

Chapter 9. Using Arrays and Tables 153

Arrays

154

Sequencing Run-Time Arrays

Run-time arrays are not sequence checked. If you process a SORTA (sort an array)
operation, the array is sorted into the sequence specified on the definition
specification (the ASCEND or DESCEND keywords) defining the array. If the
sequence is not specified, the array is sorted into ascending sequence. When the
high (positions 71 and 72 of the calculation specifications) or low (positions 73 and
74 of the calculation specifications) indicators are used in the LOOKUP operation,
the array sequence must be specified.

Coding a Compile-Time Array

A compile-time array is specified using the essential array specifications plus the

keyword CTDATA. In addition, on a definition specification you can specify:

* The number of array entries in an input record using the PERRCD keyword. If
the keyword is not specified, the number of entries defaults to 1.

* The external data format using the EXTFMT keyword. The only allowed values
are L (left-sign), R (right-sign), or S (zoned-decimal). The EXTEMT keyword is
not allowed for float compile-time arrays.

* A file to which the array is to be written when the program ends with LR on.
You specify this using the TOFILE keyword.

See [Figure 68 on page 155 for an example of a compile-time array.

Loading a Compile-Time Array

ILE RPG Reference

For a compile-time array, enter array source data into records in the program source
member. If you use the **ALTSEQ, **CTDATA, and *FTRANS keywords, the array
data may be entered in anywhere following the source records. If you do not use
those keywords, the array data must follow the source records, and any alternate
collating sequence or file translation records in the order in which the compile-time
arrays and tables were defined on the definition specifications. This data is loaded
into the array when the program is compiled. Until the program is recompiled
with new data, the array will always initially have the same values each time you
call the program unless the previous call ended with LR off.

Compile-time arrays can be described separately or in alternating format (with the
ALT keyword). Alternating format means that the elements of one array are
intermixed on the input record with elements of another array.

Rules for Array Source Records
The rules for array source records are:

* The first array entry for each record must begin in position 1.

* All elements must be the same length and follow each other with no intervening
spaces

¢ An entire record need not be filled with entries. If it is not, blanks or comments
can be included after the entries (see [Figure 68 on page 155).

e If the number of elements in the array as specified on the definition specification
is greater than the number of entries provided, the remaining elements are filled
with the default values for the data type specified.

Arrays

DName+++++++++++ETDSFrom+++T0/L+++IDC. Keywords+++++++++ttttttttt++
DARC S 3A DIM(12) PERRCD(5) CTDATA
**CTDATA ARC
48K16343J64044HComments can be placed here
12648A47349K346Comments can be placed here
50B125 Comments can be placed here

‘48K ‘ 163 ‘ 43J ‘ 640 ‘ 44H‘ 126 ‘ 48A ‘ 473 ‘ 49K ‘ 346 ‘ SOB‘ 125‘

This is the compile-time array, ARC.

Figure 68. Array Source Record with Comments

Each record, except the last, must contain the number of entries specified with
the PERRCD keyword on the definition specifications. In the last record, unused
entries must be blank and comments can be included after the unused entries.

Each entry must be contained entirely on one record. An entry cannot be split
between two records; therefore, the length of a single entry is limited to the
maximum length of 100 characters (size of source record). If arrays are used and
are described in alternating format, corresponding elements must be on the same
record; together they cannot exceed 100 characters.

For date and time compile-time arrays the data must be in the same format and
use the same separators as the date or time array being loaded.

Array data may be specified in one of two ways:

1. **CTDATA arrayname: The data for the array may be specified anywhere in
the compile-time data section.

2. *b: (b=blank) The data for the arrays must be specified in the same order in
which they are specified in the Definition specifications.

Only one of these techniques may be used in one program.

Arrays can be in ascending(ASCEND keyword), descending (DESCEND
keyword), or no sequence (no keyword specified).

For ascending or descending character arrays when ALTSEQ(*EXT) is specified
on the control specification, the alternate collating sequence is used for the
sequence checking. If the actual collating sequence is not known at compile time
(for example, if SRTSEQ(*JOBRUN) is specified on a control specification or as a
command parameter) the alternate collating sequence table will be retrieved at
runtime and the checking will occur during initialization at *INIT. Otherwise,
the checking will be done at compile time.

Graphic and UCS-2 arrays will be sorted by hexadecimal values, regardless of
the alternate collating sequence.

If L or R is specified on the EXTFMT keyword on the definition specification,
each element must include the sign (+ or -). An array with an element size of 2
with L specified would require 3 positions in the source data as shown in the
following example.

I R I T T, DA JUPEE. S S O RO, U (DU R
DName+++++++++++ETDSFrom+++To/ L+++1DcC . Keywords+++++++++ttttttttttt
D UPDATES 2 0 DIM(5) PERRCD(5) EXTFMT(L) CTDATA

*%CTDATA UDPATES
+37-38+52-63-49+51

Float compile-time data are specified in the source records as float or numeric
literals. Arrays defined as 4-byte float require 14 positions for each element;
arrays defined as 8-byte float require 23 positions for each element.

Chapter 9. Using Arrays and Tables 155

Arrays

156

Graphic data must be enclosed in shift-out and shift-in characters. If several
elements of graphic data are included in a single record (without intervening
nongraphic data) only one set of shift-out and shift-in characters is required for
the record. If a graphic array is defined in alternating format with a nongraphic
array, the shift-in and shift-out characters must surround the graphic data. If two
graphic arrays are defined in alternating format, only one set of shift-in and
shift-out characters is required for each record.

Coding a Prerun-Time Array

In addition to the essential array specifications, you can also code the following
specifications or keywords for prerun-time arrays.

On the definition specifications, you can specify

The name of the file with the array input data, using the FROMFILE keyword.

The name of a file to which the array is written at the end of the program, using
the TOFILE keyword.

The number of elements per input record, using the PERRCD keyword.
The external format of numeric array data using the EXTFMT keyword.
An alternating format using the ALT keyword.

Note: The integer or unsigned format cannot be specified for arrays defined with

more than ten digits.

On the file-description specifications, you can specify a T in position 18 for the file
with the array input data.

Example of Coding Arrays

[Figure 69 on page 157 shows the definition specifications required for two
prerun-time arrays, a compile-time array, and a run-time array.

ILE RPG Reference

Arrays

HKeywords+++tt bbbttt
H DATFMT(*USA) TIMFMT (*HMS)
Dxame+++++++++++ETDsFrom+++To/ L+++IDc. Keywords++++++++ttttttttttt
* Run-time array. ARI has 10 elements of type date. They are

* initialized to September 15, 1994. This is in month, day,

* year format using a slash as a separator as defined on the

* control specification.

DARI S D DIM(10) INZ(D'09/15/1994')

*

* Compile-time arrays in alternating format. Both arrays have

* eight elements (three elements per record). ARC is a character
* array of length 15, and ARD is a time array with a predefined

* length of 8.

DARC S 15 DIM(8) PERRCD(3)
D CTDATA
DARD S T DIM(8) ALT(ARC)

*

* Prerun-time array. ARE, which is to be read from file DISKIN,
* has 250 character elements (12 elements per record). Each

* element is five positions long. The size of each record

is 60 (5*12). The elements are arranged in ascending sequence.

*

DARE S 5A DIM(250) PERRCD(12) ASCEND

D FROMFILE (DISKIN)

*

* Prerun-time array specified as a combined file. ARH is written

* back to the same file from which it is read when the program

* ends normally with LR on. ARH has 250 character elements

* (12 elements per record). Each elements is five positions long.

* The elements are arranged in ascending sequence.

DARH S 5A DIM(250) PERRCD(12) ASCEND

D FROMFILE (DISKOUT)

D TOFILE(DISKOUT)
*xCTDATA ARC
Toronto 12:15:00Winnipeg 13:23:00Calgary 15:44:00
Sydney 17:24:30Edmonton 21:33:00Saskatoon 08:40:00
Regina 12:33:00Vancouver 13:20:00

Figure 69. Definition Specifications for Different Types of Arrays

Loading a Prerun-Time Array

For a prerun-time array, enter array input data into a file. The file must be a
sequential program described file. During initialization, but before any input,
calculation, or output operations are processed the array is loaded with initial
values from the file. By modifying this file, you can alter the array’s initial values
on the next call to the program, without recompiling the program. The file is read
in arrival sequence. The rules for prerun-time array data are the same as for
compile-time array data, except there are no restrictions on the length of each
record. See [“Rules for Array Source Records” on page 154)

Sequence Checking for Character Arrays

Sequence checking for character arrays that have not been defined with
ALTSEQ(*NONE) has two dependencies:

1. Whether the ALTSEQ control specification keyword has been specified, and if
so, how.

2. Whether the array is compile time or prerun time.

Chapter 9. Using Arrays and Tables 157

Arrays

The following table indicates when sequence checking occurs.

Control Specification | ALTSEQ Used for When Sequence When Sequence

Entry SORTA, LOOKUP Checked for Checked for Prerun
and Sequence Compile Time Array |Time Array
Checking

ALTSEQ(*NONE) No Compile time Run time

ALTSEQ(*SRC) No Compile time Run time

ALTSEQ(*EXT) Yes Compile time Run time

(known at compile

time)

ALTSEQ(*EXT) Yes Run time Run time

(known only at run

time)

Note: For compatibility with RPG III, SORTA and LOOKUP do not use the
alternate collating sequence with ALTSEQ(*SRC). If you want these
operations to be performed using the alternate collating sequence, you can
define a table on the system (object type *IBL), containing your alternate
sequence. Then you can change ALTSEQ(*SRC) to ALTSEQ(*EXT) on your
control specification and specify the name of your table on the SRTSEQ
keyword or parameter of the create command.

Initializing Arrays

158

Run-Time Arrays

To initialize each element in a run-time array to the same value, specify the INZ
keyword on the definition specification. If the array is defined as a data structure
subfield, the normal rules for data structure initialization overlap apply (the
initialization is done in the order that the fields are declared within the data
structure).

Compile-Time and Prerun-Time Arrays

ILE RPG Reference

The INZ keyword cannot be specified for a compile-time or prerun-time array,
because their initial values are assigned to them through other means
(compile-time data or data from an input file). If a compile-time or prerun-time
array appears in a globally initialized data structure, it is not included in the global
initialization.

Note: Compile-time arrays are initialized in the order in which the data is declared
after the program, and prerun-time arrays are initialized in the order of
declaration of their initialization files, regardless of the order in which these
arrays are declared in the data structure. Pre-run time arrays are initialized
after compile-time arrays.

If a subfield initialization overlaps a compile-time or prerun-time array, the
initialization of the array takes precedence; that is, the array is initialized after the
subfield, regardless of the order in which fields are declared within the data
structure.

Defining Related Arrays

Defining Related Arrays

You can load two compile-time arrays or two prerun-time arrays in alternating
format by using the ALT keyword on the definition of the alternating array. You
specify the name of the primary array as the parameter for the ALT keyword. The
records for storing the data for such arrays have the first element of the first array
followed by the first element of the second array, the second element of the first
array followed by the second element of the second array, the third element of the
first array followed by the third element of the second array, and so on.
Corresponding elements must appear on the same record. The PERRCD keyword
on the main array definition specifies the number of corresponding pairs per
record, each pair of elements counting as a single entry. You can specify EXTEMT
on both the main and alternating array.

shows two arrays, ARRA and ARRB, in alternating format.

ARRA ARRB
(Part Number) (Unit Cost)
345126 373
38A437 498
39K143 1297
40B125 93)
Arrays ARRA and ARRB can be described
41C023 3998 as two separate array files or as one
array file in alternating format.
42D893 87
43K823 349
44H111 697
45P673 898
46C732 47587

Figure 70. Arrays in Alternating and Nonalternating Format

The records for ARRA and ARRB look like the records below when described as
two separate array files.

This record contains ARRA entries in positions 1 through 60.

ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA | ARRA

Figure 71. Arrays Records for Two Separate Array Files

This record contains ARRB entries in positions 1 through 50.

Chapter 9. Using Arrays and Tables 159

Defining Related Arrays

Figure 72. Arrays Records for One Array File

The records for ARRA and ARRB look like the records below when described as
one array file in alternating format. The first record contains ARRA and ARRB
entries in alternating format in positions 1 through 55. The second record contains
ARRA and ARRB entries in alternating format in positions 1 through 55.

Figure 73. Arrays Records for One Array File in Alternating Format

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++ttttttttttttt

DARRA S 6A DIM(6) PERRCD(1) CTDATA
DARRB s 5 0 DIM(6) ALT(ARRA)
DARRGRAPHIC s 36 DIM(2) PERRCD(2) CTDATA
DARRC S 3A DIM(2) ALT(ARRGRAPHIC)
DARRGRAPH1 S 36 DIM(2) PERRCD(2) CTDATA
DARRGRAPH2 S 36 DIM(2) ALT(ARRGRAPH1)

#%CTDATA ARRA

345126 373

38A437 498

39K143 1297

40B125 93

41C023 3998

420893 87

**xCTDATA ARRGRAPHIC
oklk2k3iabcok4k5k6iabc
**xCTDATA ARRGRAPH1
oklk2k3k4k5k6klk2k3k4k5ke6 i

Searching Arrays

The following can be used to search arrays:

The LOOKUP operation code

The %LOOKUP built-in function
The %LOOKUPLT built-in function
The %LOOKUPLE built-in function
The %LOOKUPGT built-in function
The %LOOKUPGE built-in function

For more information about the LOOKUP operation code, see:

“Searching an Array with an Index” on page 161
“Searching an Array Without an Index” on page 161|
“LOOKUP (Look Up a Table or Array Element)” on page 646|

For more information about the %LOOKUPxx built-in functions, see

[“%LOOKUPxx (Look Up an Array Element)” on page 497.|

160 ILE RPG Reference

Searching Arrays

Searching an Array Without an Index

When searching an array without an index, use the status (on or off) of the
resulting indicators to determine whether a particular element is present in the
array. Searching an array without an index can be used for validity checking of
input data to determine if a field is in a list of array elements. Generally, an equal
LOOKUP is requested.

In factor 1 in the calculation specifications, specify the search argument (data for
which you want to find a match in the array named) and place the array name
factor 2.

In factor 2 specify the name of the array to be searched. At least one resulting
indicator must be specified. Entries must not be made in both high and low for the
same LOOKUP operation. The resulting indicators must not be specified in high or
low if the array is not in sequence (ASCEND or DESCEND keywords). Control
level and conditioning indicators (specified in positions 7 through 11) can also be
used. The result field cannot be used.

The search starts at the beginning of the array and ends at the end of the array or
when the conditions of the lookup are satisfied. Whenever an array element is
found that satisfies the type of search being made (equal, high, low), the resulting
indicator is set on.

shows an example of a LOOKUP on an array without an index.

FFilename++IPEASFRTen+LKlen+AIDevice+.Keywords+++t+ttttttttttttttttttttttt

FARRFILE IT F 5 DISK

F=*

DName+++++++++++ETDsFrom+++To/L+++1DC. Keywords+++++++ttttttttttttttttt+++
DDPTNOS S 55 0 DIM(50) FROMFILE (ARRFILE)

D*

CLONO1Factorl+++++++0pcode (E)+Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C* The LOOKUP operation is processed and, if an element of DPTNOS equal
Cx to the search argument (DPTNUM) is found, indicator 20 is set on.

C DPTNUM LOOKUP DPTNOS 20

Figure 74. LOOKUP Operation for an Array without an Index

ARRFILE, which contains department numbers, is defined in the file description
specifications as an input file (I in position 17) with an array file designation (T in
position 18). The file is program described (F in position 22), and each record is 5
positions in length (5 in position 27).

In the definition specifications, ARRFILE is defined as containing the array
DPTNOS. The array contains 50 entries (DIM(50)). Each entry is 5 positions in
length (positions 33-39) with zero decimal positions (positions 41-42). One
department number can be contained in each record (PERRCD defaults to 1).

Searching an Array with an Index

To find out which element satisfies a LOOKUP search, start the search at a
particular element in the array. To do this type of search, make the entries in the
calculation specifications as you would for an array without an index. However, in
factor 2, enter the name of the array to be searched, followed by a parenthesized
numeric field (with zero decimal positions) containing the number of the element
at which the search is to start. This numeric constant or field is called the index

Chapter 9. Using Arrays and Tables 161

Searching Arrays

because it points to a certain element in the array. The index is updated with the
element number which satisfied the search or is set to 0 if the search failed.

You can use a numeric constant as the index to test for the existence of an element
that satisfies the search starting at an element other than 1.

All other rules that apply to an array without an index apply to an array with an
index.

shows a LOOKUP on an array with an index.

FFilename++IPEASFRTen+LK1len+AIDevice+. Keywords+++++ttttttttttttttttttttttt

FARRFILE IT F 25 DISK

F*

DName+++++++++++ETDSFrom+++To/L+++IDc. Keywords++++++ttttttttttttttttttt++
DDPTNOS S 55 0 DIM(50) FROMFILE(ARRFILE)

DDPTDSC S 20A DIM(50) ALT(DPTNOS)

D*

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C+ The Z-ADD operation begins the LOOKUP at the first element in DPTNOS.
c Z-ADD 1 X 30

C+ At the end of a successful LOOKUP, when an element has been found

C* that contains an entry equal to the search argument DPTNUM,

C* indicator 20 is set on and the MOVE operation places the department
C* description, corresponding to the department number, into DPTNAM.

(8 DPTNUM LOOKUP DPTNOS (X) 20
C+ If an element is not found that is equal to the search argument,

C* element X of DPTDSC is moved to DPTNAM.

c IF NOT *IN20
c MOVE DPTDSC(X) DPTNAM 20
c ENDIF

Figure 75. LOOKUP Operation on an Array with an Index

This example shows the same array of department numbers, DPTNOS, as

However, an alternating array of department descriptions, DPTDSC,
is also defined. Each element in DPTDSC is 20 positions in length. If there is
insufficient data in the file to initialize the entire array, the remaining elements in
DPTNOS are filled with zeros and the remaining elements in DPTDSC are filled
with blanks.

Using Arrays

162

Arrays can be used in input, output, or calculation specifications.

Specifying an Array in Calculations

ILE RPG Reference

An entire array or individual elements in an array can be specified in calculation
specifications. You can process individual elements like fields.

A noncontiguous array defined with the OVERLAY keyword cannot be used with
the MOVEA operation or in the result field of a PARM operation.

To specify an entire array, use only the array name, which can be used as factor 1,
factor 2, or the result field. The following operations can be used with an array
name: ADD, Z-ADD, SUB, Z-SUB, MULT, DIV, SQRT, ADDDUR, SUBDUR, EVAL,

Using Arrays

EXTRCT, MOVE, MOVEL, MOVEA, MLLZO, MLHZO, MHLZO, MHHZO,
DEBUG, XFOOT, LOOKUP, SORTA, PARM, DEFINE, CLEAR, RESET, CHECK,
CHECKR, and SCAN.

Several other operations can be used with an array element only but not with the
array name alone. These operations include but are not limited to: BITON, BITOFE,
COMP, CABxx, TESTZ, TESTN, TESTB, MVR, DO, DOUxx, DOWxx, DOU, DOW,
IFxx, WHENxx, WHEN, IF, SUBST, and CAT.

When specified with an array name without an index or with an asterisk as the
index (for example, ARRAY or ARRAY(*)) certain operations are repeated for each
element in the array. These are ADD, Z-ADD, EVAL, SUB, Z-SUB, ADDDUR,
SUBDUR, EXTRCT, MULT, DIV, SQRT, MOVE, MOVEL, MLLZO, MLHZO,
MHLZO and MHHZO. The following rules apply to these operations when an
array name without an index is specified:

* When factors 1 and 2 and the result field are arrays with the same number of
elements, the operation uses the first element from every array, then the second
element from every array until all elements in the arrays are processed. If the
arrays do not have the same number of entries, the operation ends when the last
element of the array with the fewest elements has been processed. When factor 1
is not specified for the ADD, SUB, MULT, and DIV operations, factor 1 is
assumed to be the same as the result field.

* When one of the factors is a field, a literal, or a figurative constant and the other
factor and the result field are arrays, the operation is done once for every
element in the shorter array. The same field, literal, or figurative constant is used
in all of the operations.

* The result field must always be an array.

* If an operation code uses factor 2 only (for example, Z-ADD, Z-SUB, SQRT,
ADD, SUB, MULT, or DIV may not have factor 1 specified) and the result field is
an array, the operation is done once for every element in the array. The same
field or constant is used in all of the operations if factor 2 is not an array.

* Resulting indicators (positions 71 through 76) cannot be used because of the
number of operations being processed.

¢ In an EVAL expression, if any arrays on the right-hand side are specified

without an index, the left-hand side must also contain an array without an
index.

Note: When used in an EVAL operation %ADDR(arr) and %ADDR(arr(*)) do not
have the same meaning. See [“%ADDR (Get Address of Variable)” on page|

for more detail.

When coding an EVAL or a SORTA operation, built-in function %SUBARR(arr) can
be used to select a portion of the array to be used in the operation. See
[“%SUBARR (Set/Get Portion of an Array)” on page 525| for more detail.

Sorting Arrays

You can sort an array or a section of an array using the ['SORTA (Sort an Array)’|
operation code. The array is sorted into sequence (ascending or
descending), depending on the sequence specified for the array on the definition
specification.

Chapter 9. Using Arrays and Tables 163

Sorting Arrays

Sorting using part of the array as a key

You can use the OVERLAY keyword to overlay one array over another. For
example, you can have a base array which contains names and salaries and two
overlay arrays (one for the names and one for the salaries). You could then sort the
base array by either name or salary by sorting on the appropriate overlay array.

DName+++++++++++ETDSsFrom+++To/L+++1Dc. Keywords+++++++++tttttttttttttttttt
D DS

D Emp_Info 50 DIM(500) ASCEND

D Emp_Name 45 OVERLAY (Emp_Info:1)
D Emp_Salary 9P 2 OVERLAY (Emp_Info:46)
D

CLONO1Factorl+++++++Opcode (E)+Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
C

C+ The following SORTA sorts Emp_Info by employee name.

Cx The sequence of Emp_Name is used to determine the order of the

C+ elements of Emp_Info.

c SORTA Emp_Name

Cx The following SORTA sorts Emp_Info by employee salary

C+ The sequence of Emp_Salary is used to determine the order of the

Cx elements of Emp_Info.

c SORTA Emp_Salary

Figure 76. SORTA Operation with OVERLAY

Array Output

164

Entire arrays can be written out under ILE RPG control only at end of program
when the LR indicator is on. To indicate that an entire array is to be written out,
specify the name of the output file with the TOFILE keyword on the definition
specifications. This file must be described as a sequentially organized output or
combined file in the file description specifications. If the file is a combined file and
is externally described as a physical file, the information in the array at the end of
the program replaces the information read into the array at the start of the
program. Logical files may give unpredictable results.

If an entire array is to be written to an output record (using output specifications),
describe the array along with any other fields for the record:

* Positions 30 through 43 of the output specifications must contain the array name
used in the definition specifications.

* Positions 47 through 51 of the output specifications must contain the record
position where the last element of the array is to end. If an edit code is specified,
the end position must include blank positions and any extensions due to the edit
code (see “Editing Entire Arrays” listed next in this chapter).

Output indicators (positions 21 through 29) can be specified. Zero suppress
(position 44), blank-after (position 45), and data format (position 52) entries pertain
to every element in the array.

Editing Entire Arrays

ILE RPG Reference

When editing is specified for an entire array, all elements of the array are edited. If
different editing is required for various elements, refer to them individually.

When an edit code is specified for an entire array (position 44), two blanks are
automatically inserted between elements in the array: that is, there are blanks to

Array Output

the left of every element in the array except the first. When an edit word is
specified, the blanks are not inserted. The edit word must contain all the blanks to
be inserted.

Editing of entire arrays is only valid in output specifications, not with the %EDITC
or %EDITW built-in functions.

Using Dynamically-Sized Arrays

If you don’t know the number of elements you will need in an array until runtime,
you can define the array with the maximum size, and then use a subset of the
array in your program.

To do this, you use the|%SUBARR]builtin function to control which elements are
used when you want to work with all the elements of your array in one operation.
You can also use the [%LOOKUP| builtin function to search part of your array.

* Define the "names" array as large as you think it could grow

D names S 25A VARYING DIM(2000)

* Define a variable to keep track of the number of valid elements
D numNames S 10I 0 INZ(0)

* Define another array

D temp S 50A DIM(20)

Dp S 10I 0

/free

// set 3 elements in the names array

names (1) = 'Friendly';
names(2) = 'Rusty';
names(3) = 'Jerome';
names(4) = 'Tom';
names(5) = 'Jane';
numNames = 5;

// copy the current names to the temporary array
// Note: %subarr could also be used for temp, but
// it would not affect the number of elements
// copied to temp

temp = %subarr(names : 1 : numNames);

// change one of the temporary values, and then copy

// the changed part of the array back to the "names" array
temp(3) = 'Jerry’;

temp(4) = 'Harry';

// The number of elements actually assigned will be the
// minimum of the number of elements in any array or

// subarray in the expression. In this case, the

// available sizes are 2 for the "names" sub-array,

// and 18 for the "temp" subarray, from element 3

// to the end of the array.

%subarr(names : 3 : 2) = %subarr(temp : 3);

// sort the "names" array

sorta %subarr(names : 1 : numNames);

// search the "names" array
// Note: %SUBARR is not used with %LOOKUP. Instead,

// the start element and number of elements
// are specified in the third and fourth
/! parameters of %LOOKUP.

p = %lookup('Jane' : names : 1 : numNames);

Figure 77. Example using a dynamically-sized array

Chapter 9. Using Arrays and Tables 165

Tables

Tables
The explanation of arrays applies to tables except for the following differences:
Activity Differences
Defining A table name must be a unique symbolic name that begins with

the letters TAB.
Loading Tables can be loaded only at compilation time and prerun-time.

Using and Modifying table elements
Only one element of a table is active at one time. The table name is
used to refer to the active element. An index cannot be specified
for a table.

Searching The LOOKUP operation is specified differently for tables. Different
built-in functions are used for searching tables.

Note: You cannot define a table in a subprocedure.

The following can be used to search a table:
* The LOOKUP operation code

e The %TLOOKUP built-in function

* The %TLOOKUPLT built-in function

* The %TLOOKUPLE built-in function

* The %TLOOKUPGT built-in function

* The %TLOOKUPGE built-in function

For more information about the LOOKUP operation code, see:

+ ["LOOKUP with One Table”]

+ ["LOOKUP with Two Tables”|

+ ["LOOKUP (Look Up a Table or Array Element)” on page 646|

For more information about the % TLOOKUPxx built-in functions, see
[“%TLOOKUPxx (Look Up a Table Element)” on page 534.

LOOKUP with One Table

When a single table is searched, factor 1, factor 2, and at least one resulting
indicator must be specified. Conditioning indicators (specified in positions 7
through 11) can also be used.

Whenever a table element is found that satisfies the type of search being made
(equal, high, low), that table element is made the current element for the table. If
the search is not successful, the previous current element remains the current
element.

Before a first successful LOOKUP, the first element is the current element.

Resulting indicators reflect the result of the search. If the indicator is on, reflecting
a successful search, the element satisfying the search is the current element.

LOOKUP with Two Tables

When two tables are used in a search, only one is actually searched. When the
search condition (high, low, equal) is satisfied, the corresponding elements are
made available for use.

166 ILE RPG Reference

Tables

Factor 1 must contain the search argument, and factor 2 must contain the name of
the table to be searched. The result field must name the table from which data is
also made available for use. A resulting indicator must also be used. Control level
and conditioning indicators can be specified in positions 7 through 11, if needed.

The two tables used should have the same number of entries. If the table that is
searched contains more elements than the second table, it is possible to satisfy the
search condition. However, there might not be an element in the second table that
corresponds to the element found in the search table. Undesirable results can occur.

Note: If you specify a table name in an operation other than LOOKUP before a
successful LOOKUP occurs, the table is set to its first element.

CLONO1Factorl+++++++0pcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C* The LOOKUP operation searches TABEMP for an entry that is equal to

C* the contents of the field named EMPNUM. If an equal entry is

C+ found in TABEMP, indicator 09 is set on, and the TABEMP entry and

C* its related entry in TABPAY are made the current elements.

(EMPNUM LOOKUP TABEMP TABPAY 09
Cx If indicator 09 is set on, the contents of the field named

C* HRSWKD are multiplied by the value of the current element of

C+ TABPAY.

c IF *INO9

c HRSWKD MULT(H) TABPAY AMT 6 2
c ENDIF

Figure 78. Searching for an Equal Entry

Specifying the Table Element Found in a LOOKUP Operation

Whenever a table name is used in an operation other than LOOKUP, the table
name actually refers to the data retrieved by the last successful search. Therefore,
when the table name is specified in this fashion, elements from a table can be used
in calculation operations.

If the table is used as factor 1 in a LOOKUP operation, the current element is used
as the search argument. In this way an element from a table can itself become a
search argument.

The table can also be used as the result field in operations other than the LOOKUP
operation. In this case the value of the current element is changed by the
calculation specification. In this way the contents of the table can be modified by
calculation operations (see [Figure 79 on page 168).

Chapter 9. Using Arrays and Tables 167

Tables

168

ILE RPG Reference

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C ARGMNT LOOKUP TABLEA 20
Cx If element is found multiply by 1.5

Cx If the contents of the entire table before the MULT operation

C* were 1323.5, -7.8, and 113.4 and the value of ARGMNT is -7.8,

C* then the second element is the current element.

C+ After the MULT operation, the entire table now has the

Cx following value: 1323.5, -11.7, and 113.4.

C* Note that only the second element has changed since that was

C* the current element, set by the LOOKUP.

c IF *IN20
c TABLEA MULT 1.5 TABLEA
c ENDIF

Figure 79. Specifying the Table Element Found in LOOKUP Operations

Chapter 10. Data Types and Data Formats

This chapter describes the data types supported by RPG IV and their special
characteristics. The supported data types are:

+ |Character Format]

* |Numeric Data Type|

+ |Graphic Format]
* [UCS-2 Format]
+ |Date Data Type|
* |Time Data Type]

* [Timestamp Data Type|
« |Object Data Type]
+ |Basing Pointer Data Type|

+ [Procedure Pointer Data Type|

In addition, some of the data types allow different data formats. This chapter
describes the difference between internal and external data formats, describes each
format, and how to specify them.

Internal and External Formats

Numeric, character, date, time, and timestamp fields have an internal format that is
independent of the external format. The internal format is the way the data is
stored in the program. The external format is the way the data is stored in files.

You need to be aware of the internal format when:
* DPassing parameters by reference

* Opverlaying subfields in data structures

In addition, you may want to consider the internal format of numeric fields, when
the run-time performance of arithmetic operations is important. For more
information, see [“Performance Considerations” on page 392.|

There is a default internal and external format for numeric and date-time data
types. You can specify an internal format for a specific field on a definition
specification. Similarly, you can specify an external format for a program-described
field on the corresponding input or output specification.

For fields in an externally described file, the external data format is specified in the
data description specifications in position 35. You cannot change the external
format of externally described fields, with one exception. If you specify
EXTBININT on a control specification, any binary field with zero decimal positions
will be treated as having an integer external format.

For subfields in externally described data structures, the data formats specified in

the external description are used as the internal formats of the subfields by the
compiler.

© Copyright IBM Corp. 1994, 2004 169

Internal and External Formats

170

Internal Format

The default internal format for numeric standalone fields is packed-decimal. The
default internal format for numeric data structure subfields is zoned-decimal. To
specify a different internal format, specify the format desired in position 40 on the
definition specification for the field or subfield.

The default format for date, time, and timestamp fields is *ISO. In general, it is
recommended that you use the default ISO internal format, especially if you have
a mixture of external format types.

For date, time, and timestamp fields, you can use the DATFMT and TIMFMT
keywords on the control specification to change the default internal format, if
desired, for all date-time fields in the program. You can use the DATFMT or
TIMEMT keyword on a definition specification to override the default internal
format of an individual date-time field.

External Format

ILE RPG Reference

If you have numeric, character, or date-time fields in program-described files, you
can specify their external format.

The external format does not affect the way in which a field is processed.
However, you may be able to improve performance of arithmetic operations,
depending on the internal format specified. For more information, see
[“Performance Considerations” on page 392

The following table shows how to specify the external format of
program-described fields. For more information on each format type, see the
appropriate section in the remainder of this chapter.

Table 23. Entries and Locations for Specifying External Formats

Type of Field Specification Using
Input Input Position 36
Output Output Position 52
Array or Table Definition EXTEMT keyword

Specifying an External Format for a Numeric Field
For any of the fields in |, specify one of the following valid external

numeric formats:

Binary

Float

Integer

Left sign
Packed decimal
Right sign

Zoned decimal

c »w " =" -0 = T W

Unsigned

The default external format for float numeric data is called the external display
representation. The format for 4-byte float data is:

Internal and External Formats

+n.nnnnnnnkE+ee,
where + represents the sign (+ or -)
n represents digits in the mantissa
e represents digits in the exponent

The format for 8-byte float data is:
+n.nnnnnnnnnnnnnnnE+eee

Note that a 4-byte float value occupies 14 positions and an 8-byte float value
occupies 23 positions.

For numeric data other than float, the default external format is zoned decimal.
The external format for compile-time arrays and tables must be zoned-decimal,
left-sign or right-sign.

For float compile-time arrays and tables, the compile-time data is specified as
either a numeric literal or a float literal. Each element of a 4-byte float array
requires 14 positions in the source record; each element of an 8-byte float array
requires 23 positions.

Non-float numeric fields defined on input specifications, calculation specifications,
or output specifications with no corresponding definition on a definition
specification are stored internally in packed-decimal format.

Specifying an External Format for a Character, Graphic, or UCS-2
Field

For any of the input and output fields in [Table 23 on page 170} specify one of the
following valid external data formats:

A (valid for character and indicator data)
N (valid for character and indicator data)
G (valid for graphic data)

C (valid for UCS-2 data)

The EXTFMT keyword can be used to specify the data for an array or table in
UCS-2 format.

Specify the *VAR data attribute in positions 31-34 on an input specification and in
positions 53-80 on an output specification for variable-length character, graphic, or
UCS-2 data.

Specifying an External Format for a Date-Time Field

If you have date, time, and timestamp fields in program-described files, then you
must specify their external format. You can specify a default external format for all
date, time, and timestamp fields in a program-described file by using the DATFMT
and TIMFMT keywords on a file description specification. You can specify an
external format for a particular field as well. Specify the desired format in
positions 31-34 on an input specification. Specify the appropriate keyword and
format in positions 53-80 on an output specification.

For more information on each format type, see the appropriate section in the
remainder of this chapter.

Chapter 10. Data Types and Data Formats 171

Character, Graphic and UCS-2 Data

Character Data Type

172

The character data type represents character values and may have any of the
following formats:

A
N
G raphid
C CS-2

Character data may contain one or more single-byte or double-byte characters,
depending on the format specified. Character, graphic, and UCS-2 fields can also
have either a fixed or variable-length format. The following table summarizes the
different character data-type formats.

Character Data | Number of Bytes CCSID

Type

Character One or more single-byte characters | assumed to be the graphic CCSID
that are fixed or in length |related to the runtime job CCSID

Indicator One single-byte character that is | assumed to be the graphic CCSID
fixed in length related to the runtime job CCSID

Graphic One or more double-byte 65535 or a CCSID with the
characters that are fixed or EBCDIC double-byte encoding
in length scheme (x"1200")

UCs-2 One or more double-byte 13488 (UCS-2 version 2.0)
characters that are fixed or
in length

For information on the CCSIDs of character data, see [“Conversion between|
(Character, Graphic and UCS-2 Data” on page 183.|

Character Format

The fixed-length character format is one or more bytes long with a set length.

For information on the variable-length character format, see [‘Variable-Length|
(Character, Graphic and UCS-2 Formats” on page 175

You define a character field by specifying A in the Data-Type entry of the
appropriate specification. You can also define one using the LIKE keyword on the
definition specification where the parameter is a character field.

The default initialization value is blanks.

Indicator Format

ILE RPG Reference

The indicator format is a special type of character data. Indicators are all one byte
long and can only contain the character values ‘0" (off) and "1” (on). They are
generally used to indicate the result of an operation or to condition (control) the
processing of an operation. The default value of indicators is ‘0"

You define an indicator field by specifying N in the Data-Type entry of the
appropriate specification. You can also define an indicator field using the LIKE

Character, Graphic and UCS-2 Data

keyword on the definition specification where the parameter is an indicator field.
Indicator fields are also defined implicitly with the COMMIT keyword on the file
description specification.

A special set of predefined RPG IV indicators (*INxx) is also available. For a
description of these indicators, see [Chapter 4, “RPG IV Indicators,” on page 35/

The rules for defining indicator variables are:

* Indicators can be defined as standalone fields, subfields, prototyped parameters,
and procedure return values.

e If an indicator variable is defined as a prerun-time or compile-time array or
table, the initialization data must consist of only '0’s and "1’s.

Note: If an indicator contains a value other than ‘0’ or 1" at runtime, the results
are unpredictable.

¢ If the keyword INZ is specified, the value must be one of ‘0", *OFF, "1’, or *ON.
* The keyword VARYING cannot be specified for an indicator field.

The rules for using indicator variables are:

¢ The default initialization value for indicator fields is "0".

* Operation code CLEAR sets an indicator variable to "0".

* Blank-after function applied to an indicator variable sets it to '0".

* If an array of indicators is specified as the result of a MOVEA(P) operation, the
padding character is 0",

* Indicators are implicitly defined with ALTSEQ(*NONE). This means that the
alternate collating sequence is not used for comparisons involving indicators.

* Indicators may be used as key-fields where the external key is a character of
length 1.

Graphic Format

The graphic format is a character string where each character is represented by 2
bytes.

Fields defined as graphic data do not contain shift-out (SO) or shift-in (SI)

characters. The difference between single byte character and double byte graphic
data is shown in the following figure:

Chapter 10. Data Types and Data Formats 173

Character, Graphic and UCS-2 Data

174

1 byte 1 byte 1 byte 1 byte

Single-byte
‘ data
1 char 1 char 1 char 1 char
1 byte 1 byte 1 byte 1 byte
Graphic
‘ data

1 graphic char 1 graphic char
Figure 80. Comparing Single-byte and graphic data

The length of a graphic field, in bytes, is two times the number of graphic
characters in the field.

The fixed-length graphic format is a character string with a set length where each
character is represented by 2 bytes.

For information on the variable-length graphic format, see [“Variable-Length|
(Character, Graphic and UCS-2 Formats” on page 175

You define a graphic field by specifying G in the Data-Type entry of the
appropriate specification. You can also define one using the LIKE keyword on the
definition specification where the parameter is a graphic field.

The default initialization value for graphic data is X'4040'. The value of *HIVAL is
X'FFFF', and the value of *LOVAL is X'0000'".

UCS-2 Format

ILE RPG Reference

The Universal Character Set (UCS-2) format is a character string where each
character is represented by 2 bytes. This character set can encode the characters for
many written languages.

Fields defined as UCS-2 data do not contain shift-out (SO) or shift-in (SI)
characters.

The length of a UCS-2 field, in bytes, is two times the number of UCS-2 characters
in the field.

The fixed-length UCS-2 format is a character string with a set length where each
character is represented by 2 bytes.

For information on the variable-length UCS-2 format, see[“Variable-Length|
(Character, Graphic and UCS-2 Formats” on page 175

You define a UCS-2 field by specifying C in the Data-Type entry of the appropriate
specification. You can also define one using the LIKE keyword on the definition
specification where the parameter is a UCS-2 field.

The default initialization value for UCS-2 data is X'0020'. The value of *HIVAL is
X'FFFF', *LOVAL is X'0000', and the value of *BLANKS is X'0020".

Character, Graphic and UCS-2 Data

For more information on the UCS-2 format, see the iSeries Information Center
globalization topic.

Variable-Length Character, Graphic and UCS-2 Formats

Variable-length character fields have a declared maximum length and a current
length that can vary while a program is running. The length is measured in single
bytes for the character format and in double bytes for the graphic and UCS-2
formats. The storage allocated for variable-length character fields is 2 bytes longer
than the declared maximum length. The leftmost 2 bytes are an unsigned integer
field containing the current length in characters, graphic characters or UCS-2
characters. The actual character data starts at the third byte of the variable-length
field. shows how variable-length character fields are stored:

?gr';r;tﬂt character-data
UNS(5) CHAR(N)

!

N = declared maximum length
2 + N = total number of bytes
Figure 81. Character Fields with Variable-Length Format

shows how variable-length graphic fields are stored. UCS-2 fields are
stored similarly.

(I:g;rget?]t graphic-data

UNS(5) GRAPHIC(N)

!

N = declared maximum length = number of double bytes
2 + 2(N) = total number of bytes
Figure 82. Graphic Fields with Variable-Length Format

Note: Only the data up to and including the current length is significant.

You define a variable-length character data field by specifying A (character), G
(graphic), or C (UCS-2) and the [keyword VARYING on a definition specification. It
can also be defined using the LIKE keyword on a definition specification where the
parameter is a variable-length character field.

You can refer to external variable-length fields, on an finput| or putput| specification,
with the *VAR data attribute.

A variable-length field is initialized by default to have a current length of zero.

For examples of using variable-length fields, see:

« [“Using Variable-Length Fields” on page 178

* ["%LEN (Get or Set Length)” on page 494

* |"%CHAR (Convert to Character Data)” on page 456|

* [“%REPLACE (Replace Character String)” on page 511

Chapter 10. Data Types and Data Formats 175

Character, Graphic and UCS-2 Data

176

ILE RPG Reference

Rules for Variable-Length Character, Graphic, and UCS-2
Formats
The following rules apply when defining variable-length fields:

The declared length of the field can be from 1 to 65535 single-byte characters
and from 1 to 16383 double-byte graphic or UCS-2 characters.

The current length may be any value from 0 to the maximum declared length
for the field.

The field may be initialized using keyword INZ. The initial value is the exact
value specified and the initial length of the field is the length of the initial value.
The field is padded with blanks for initialization, but the blanks are not included
in the length.

In all cases except subfields defined using positional notation, the length entry
(positions 33-39 on the definition specifications) contains the maximum length of
the field not including the 2-byte length.

For subfields defined using positional notation, the length includes the 2-byte
length. As a result, a variable-length subfield may be 32769 single bytes long or
16384 double bytes long for an unnamed data structure.

The keyword VARYING cannot be specified for a data structure.

For variable-length prerun-time arrays, the initialization data in the file is stored
in variable format, including the 2-byte length prefix.

Since prerun-time array data is read from a file and files have a maximum
record length of 32766, variable-length prerun-time arrays have a maximum size
of 32764 single-byte characters, or 16382 double-byte graphic or UCS-2
characters.

A variable-length array or table may be defined with compile-time data. The
trailing blanks in the field of data are not significant. The length of the data is
the position of the last non-blank character in the field. This is different from
prerun-time initialization since the length prefix cannot be stored in
compile-time data.

*LIKE DEFINE cannot be used to define a field like a variable-length field.

The following is an example of defining variable-length character fields:

Character, Graphic and UCS-2 Data

L R AR . IV AP S . TP OO ¢ BEPUPPE OPR AE
DName+++++++++++ETDsSFrom+++To/L+++IDc. Functions+++++++tttttttttttttttt++++

* Standalone fields:

D var5 S 5A VARYING

D varl0 S 10A VARYING INZ('0123456789')

D max_len_a S 32767A VARYING

* Prerun-time array:

D arrl S 100A VARYING FROMFILE(dataf)

* Data structure subfields:

D dsl DS

* Subfield defined with Tength notation:

D sfl5 5A VARYING

D sf2_10 10A VARYING INZ('0123456789')

* Subfield defined using positional notation: A(5)VAR

D sf4 5 101 107A VARYING

* Subfields showing internal representation of varying:

D sf7_25 100A VARYING

D sf7_len 5I 0 OVERLAY(sf7_25:1)

D sf7_data 100A OVERLAY(sf7_25:3)

* Procedure prototype

D Replace PR 32765A VARYING

D String 32765A CONSTANT VARYING OPTIONS(*VARSIZE)
D FromStr 32765A CONSTANT VARYING OPTIONS (*VARSIZE)
D ToStr 32765A CONSTANT VARYING OPTIONS(*VARSIZE)
D StartPos 50 0 VALUE

D Replaced 5U O OPTIONS(*OMIT)

Figure 83. Defining Variable-Length Character and UCS-2 Fields

The following is an example of defining variable-length graphic and UCS-2 fields:

* Standalone fields:

D GRA20 S 20G VARYING

D MAX_LEN_G S 16383G VARYING

* Prerun-time array:

D ARR1 S 100G VARYING FROMFILE (DATAF)
* Data structure subfields:

D DS1 DS

* Subfield defined with Tength notation:

D SF3_20 20G VARYING

* Subfield defined using positional notation: G(10)VAR

D SF6_10 11 32G VARYING

D MAX_LEN_C S 16383C VARYING

D FLD1 S 5C INZ(%UCS2('ABCDE')) VARYING
D FLD2 S 2C INZ(U'01230123') VARYING

D FLD3 S 2C INZ(*HIVAL) VARYING

D DS_C DS

D SF3.20C 20C VARYING

* Subfield defined using positional notation: C(10)VAR

D SF_116 C 11 32C VARYING

Figure 84. Defining Variable-Length Graphic and UCS-2 Fields

Chapter 10. Data Types and Data Formats

177

Character, Graphic and UCS-2 Data

Using Variable-Length Fields

The length part of a variable-length field represents the current length of the field
measured in characters. For character fields, this length also represents the current
length in bytes. For double-byte fields (graphic and UCS-2), this represents the
length of the field in double bytes. For example, a UCS-2 field with a current
length of 3 is 3 double-byte characters long, and 6 bytes long.

The following sections describe how to best use variable-length fields and how the
current length changes when using different operation codes.

How the Length of the Field is Set: When a variable-length field is initialized
using INZ, the initial length is set to be the length of the initialization value. For
example, if a character field of length 10 is initialized to the value "ABC’, the initial
length is set to 3.

The EVAL operation changes the length of a variable-length target. For example, if
a character field of length 10 is assigned the value "XY’, the length is set to 2.

DName+++++++++++ETDSFrom+++To/ L+++IDc . Keywords+++++++++ttttttttttttttttttttt
D fid 10A VARYING

* It does not matter what length 'fld' has before the

* EVAL; after the EVAL, the Tength will be 2.
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ..
C EVAL fid = 'XY'

The DSPLY operation changes the length of a variable-length result field to the
length of the value entered by the user. For example, if the result field is a
character field of length 10, and the value entered by the user is 12345’, the length
of the field will be set to 5 by the DSPLY operation.

The CLEAR operation changes the length of a variable-length field to 0.

The PARM operation sets the length of the result field to the length of the field in
Factor 2, if specified.

Fixed form operations MOVE, MOVEL, CAT, SUBST and XLATE do not change
the length of variable-length result fields. For example, if the value XYZ’ is moved
using MOVE to a variable-length character field of length 10 whose current length
is 2, the length of the field will not change and the data will be truncated.

DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords+++++++t+tttttttttttttttttttt
D fid 10A VARYING

* Assume fld has a length of 2 before the MOVEL.

* After the first MOVEL, it will have a value of 'XY'
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+HiLoEq. ..

C MOVEL 'XYZ' f1d
* After the second MOVEL, it will have the value '1Y'
C MOVEL '1 fid

Note: The recommended use for MOVE and MOVEL, as opposed to EVAL, is for
changing the value of fields that you want to be temporarily fixed in length.

178 ILE RPG Reference

Character, Graphic and UCS-2 Data

An example is building a report with columns whose size may vary from
day to day, but whose size should be fixed for any given run of the
program.

When a field is read from a file (Input specifications), the length of a
variable-length field is set to the length of the input data.

The "Blank After” function of Output specifications sets the length of a
variable-length field to 0.

You can set the length of a variable-length field yourself using the %LEN builtin
function on the left-hand-side of an EVAL operation.

How the Length of the Field is Used: When a variable-length field is used for its
value, its current length is used. For the following example, assume "result’ is a
fixed length field with a length of 7.

L R A G T ST S O . SO R N A R <
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++tttttttttttttttttttt
D fid 10A VARYING

* For the following EVAL operation

* Value of 'fld' Length of 'fld' 'result’

¥ sececsssscscssess 2 cosssoosoosoosoanes $2SoSoooosses
* "ABC' 3 "ABCxxx '
* "A! 1 "AXXX !

* [} 0 IXXX 1

* "ABCDEFGHIJ' 10 'ABCDEFG'
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ..
C EVAL result = fld + "xxx'

* For the following MOVE operation, assume 'result'
* has the value '....... ' before the MOVE.

* Value of 'fld' Length of 'fld' 'result’

¥ mecccccccccmcms 00 GG e s s e e s e e e -
* "ABC' 3 ! .ABC'

* "A! 1 .. A

* " 0 RSP !

* "ABCDEFGHIJ' 10 'DEFGHIJ'

C MOVE f1d result

Why You Should Use Variable-Length Fields: Using variable-length fields for
temporary variables can improve the performance of string operations, as well as
making your code easier to read since you do not have to save the current length
of the field in another variable for %SUBST, or use %TRIM to ignore the extra
blanks.

If a subprocedure is meant to handle string data of different lengths, using
variable-length fields for parameters and return values of prototyped procedures
can enhance both the performance and readability of your calls and your
procedures. You will not need to pass any length parameters or use CEEDOD
within your subrocedure to get the actual length of the parameter.

CVTOPT(*VARCHAR) and CVTOPT(*VARGRAPHIC)

The ILE RPG compiler can internally define variable-length character, graphic, or
UCS-2 fields from an externally described file or data structure as fixed-length
character fields. Although converting variable-length character, graphic, and UCS-2
fields to fixed-length format is not necessary, CVTOPT remains in the language to
support programs written before variable-length fields were supported.

Chapter 10. Data Types and Data Formats 179

Character, Graphic and UCS-2 Data

180

ILE RPG Reference

You can convert variable-length fields by specifying *VARCHAR (for
variable-length character fields) or *VARGRAPHIC (for variable-length graphic or
UCS-2 fields) on the control specification keyword or command
parameter. When *VARCHAR or *VARGRAPHIC is not specified, or
*NOVARCHAR or *“NOVARGRAPHIC is specified, variable-length fields are not
converted to fixed-length character and can be used in your ILE RPG program as
variable-length.

The following conditions apply when *VARCHAR or *VARGRAPHIC is specified:

* If a variable-length field is extracted from an externally described file or an
externally described data structure, it is declared in an ILE RPG program as a
fixed-length character field.

* For single-byte character fields, the length of the declared ILE RPG field is the
length of the DDS field plus 2 bytes.

e For DBCS-graphic data fields, the length of the declared ILE RPG field is twice
the length of the DDS field plus 2 bytes.

* The two extra bytes in the ILE RPG field contain a unsigned integer number
which represents the current length of the variable-length field. shows
the ILE RPG field length of variable-length fields.

* For variable-length graphic fields defined as fixed-length character fields, the
length is double the number of graphic characters.

Single-byte character fields:

—»‘ length ‘ character-data ‘—»

UNS(5) CHAR(N)

!

N = declared length in DDS

2 + N = fieldlength

Graphic data type fields:

—»‘ length ‘ graphic-data ‘—»

UNS(5) CHAR(2(N))

!

N = declared length in DDS = number of double bytes
2 + 2(N) = fieldlength
Figure 85. ILE RPG Field Length of Converted Variable-Length Fields

* Your ILE RPG program can perform any valid character calculation operations
on the declared fixed-length field. However, because of the structure of the field,
the first two bytes of the field must contain valid unsigned integer data when
the field is written to a file. An I/O exception error will occur for an output
operation if the first two bytes of the field contain invalid field-length data.

e Control-level indicators, match field entries, and field indicators are not allowed
on an input specification if the input field is a variable-length field from an
externally described input file.

Character, Graphic and UCS-2 Data

Sequential-within-limits processing is not allowed when a file contains
variable-length key fields.

Keyed operations are not allowed when factor 1 of a keyed operation
corresponds to a variable-length key field in an externally described file.

If you choose to selectively output certain fields in a record and the
variable-length field is either not specified on the output specification or is
ignored in the ILE RPG program, the ILE RPG compiler will place a default
value in the output buffer of the newly added record. The default is 0 in the first
two bytes and blanks in all of the remaining bytes.

If you want to change converted variable-length fields, ensure that the current

field length is correct. One way to do this is:

1. Define a data structure with the variable-length field name as a subfield
name.

2. Define a 5-digit unsigned integer subfield overlaying the beginning of the
field, and define an N-byte character subfield overlaying the field starting at
position 3.

3. Update the field.

Alternatively, you can move another variable-length field left-aligned into the
field. An example of how to change a converted variable-length field in an ILE
RPG program follows.

Chapter 10. Data Types and Data Formats 181

Character, Graphic and UCS-2 Data

182

ILE RPG Reference

LN U R O PUPUPP UPUY: ST RPN PPN UV DUPPPE: P AR U
A*

A File MASTER contains a variable-length field

A*
AANOINO2NO3T.Name++++++R1en++TDpBLinPosFunctions+++++++++++++++t+++++
A*

A R REC
A FLDVAR 100 VARLEN
L2 I, RO/ U PUPE. O SO DTN, DUPIPIPR DU ; DUPE S AN
*
* Specify the CVTOPT(*VARCHAR) keyword on a control
* specification or compile the ILE RPG program with
% CVTOPT(*VARCHAR) on the command.
*
HKeywords+++++++tt bbbttt
*

H CVTOPT (*VARCHAR)

*

* Externally described file name is MASTER.

*
FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++++t+tttttttttttttttt+t

*

FMASTER UF E DISK

*

* FLDVAR is a variable-length field defined in DDS with
* a DDS length of 100. Notice that the RPG field length
* is 102.

*

DName+++++++++++ETDSFrom+++To/ L+++1Dc. Keywords+++++++tttttttttttttttttttet
*

D DS

D FLDVAR 1 102

D FLDLEN 5U 0 OVERLAY(FLDVAR:1)

D FLDCHR 100 OVERLAY (FLDVAR:3)

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
*

* A character value is moved to the field FLDCHR.

* After the CHECKR operation, FLDLEN has a value of 5.

c READ MASTER LR
c MOVEL 'SALES' FLDCHR

c v CHECKR FLDCHR FLDLEN

C NLR UPDATE REC

Figure 86. Converting a Variable-Length Character Field

If you would like to use a converted variable-length graphic field, you can code a
2-byte unsigned integer field to hold the length, and a graphic subfield of length N
to hold the data portion of the field.

Character, Graphic and UCS-2 Data

*

* Specify the CVTOPT(*VARGRAPHIC) keyword on a control

* specification or compile the ILE RPG program with

% CVTOPT(*VARGRAPHIC) on the command.

*

* The variable-length graphic field VGRAPH is declared in the

* DDS as length 3. This means the maximum length of the field

* is 3 double bytes, or 6 bytes. The total length of the field,

* counting the length portion, is 8 bytes.

*

DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++t+ttttttttttttttttt

*

D DS

DVGRAPH 8

D VLEN 4U 0 OVERLAY (VGRAPH:1)
D VDATA 3G OVERLAY(VGRAPH:3)

*

* Assume GRPH is a fixed-Tength graphic field of length 2

* double bytes. Copy GRPH into VGRAPH and set the length of

* VGRAPH to 2.

*
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. .
C*

C MOVEL GRPH VDATA
C Z-ADD 2 VLEN

Figure 87. Converting a Variable-Length Graphic Field

Conversion between Character, Graphic and UCS-2 Data

Note: If graphic CCSIDs are ignored (CCSID(*GRAPH:*IGNORE) was specified on
the control specification or CCSID(*GRAPH) was not specified at all),
graphic data is not considered to have a CCSID and conversions are not
supported between graphic data and UCS-2 data.

Character, graphic, and UCS-2 data can have different CCSIDs (Coded Character
Set IDs). Conversion between these data types depends on the CCSID of the data.

CCsSIDs of Data

The CCSID of character data is only considered when converting between
character and UCS-2 data or between character and graphic data (unless graphic
CCSIDs are being ignored).

When converting between character and graphic data, the CCSID of the character
data is assumed to be the graphic CCSID related to the job CCSID.

When converting between character and UCS-2 data, the CCSID of the character
data is assumed to be the mixed-byte CCSID related to the job CCSID.

The CCSID of UCS-2 data defaults to 13488. This default can be changed using the
CCSID(*UCS2) keyword on the Control specification. The CCSID for
program-described UCS-2 fields can be specified using the CCSID keyword on the
Definition specification. The CCSID for externally-described UCS-2 fields comes
from the external file.

Note: UCS-2 fields are defined in DDS by specifying a data type of G and a
CCSID of 13488.

Chapter 10. Data Types and Data Formats 183

Character, Graphic and UCS-2 Data

184

The CCSID of graphic data defaults to the value specified in the CCSID(*GRAPH)
keyword on the Control specification. The CCSID for program-described graphic
fields can be specified using the CCSID keyword on the Definition specification.
The CCSID for externally-described graphic fields comes from the external file.

Conversions

Conversion between character, graphic, and UCS-2 data is supported using the
MOVE and MOVEL operations and the %CHAR, %GRAPH, and %UCS2 built-in
functions.

Additionally, graphic data and UCS-2 data can be converted from one CCSID to
another using the conversion operations and built-in functions, and also using
EVAL and when passing prototyped parameters.

Otherwise, UCS-2 fields, character fields and graphic fields, and UCS-2 fields or
graphic fields with different CCSIDs cannot be mixed in the same operation or
built-in function.

Conversion between character and double-byte graphic fields consists of adding or
removing shift-out and shift-in bracketing and possibly performing CCSID
conversion on the graphic data.

Alternate Collating Sequence

ILE RPG Reference

The alternate collating sequence applies only to single-byte character data.

Each character is represented internally by a hexadecimal value, which governs the
order (ascending or descending sequence) of the characters and is known as the
normal collating sequence. The alternate collating sequence function can be used to
alter the normal collating sequence. This function also can be used to allow two or
more characters to be considered equal.

Changing the Collating Sequence

Using an alternate collating sequence means modifying the collating sequence for
character match fields (file selection) and character comparisons. You specify that
an alternate collating sequence will be used by specifying the ALTSEQ keyword on
the control specification. The calculation operations affected by the alternate
collating sequence are ANDxx, COMP, CABxx, CASxx, DOU, DOUxx, DOW,
DOWxx, IF, IFxx, ORxx, WHEN, and WHENXx. This does not apply to graphic or
UCS-2 compare operations. LOOKUP and SORTA are affected only if you specify
ALTSEQ(*EXT). The characters are not permanently changed by the alternate
collating sequence, but are temporarily altered until the matching field or character
compare operation is completed.

Use the ALTSEQ(*NONE) keyword on the definition specification for a variable to
indicate that when the variable is being compared with other character data, the
normal collating sequence should always be used even if an alternate collating
sequence was defined.

Changing the collating sequence does not affect the LOOKUP and SORTA
operations (unless you specify ALTSEQ(*EXT)) or the hexadecimal values assigned
to the figurative constants *HIVAL and *LOVAL. However, changing the collating
sequence can affect the order of the values of *HIVAL and *LOVAL in the collating
sequence. Therefore, if you specify an alternate collating sequence in your program
and thereby cause a change in the order of the values of *HIVAL and *LOVAL,
undesirable results may occur.

Character, Graphic and UCS-2 Data

Using an External Collating Sequence
To specify that the values in the SRTSEQ and LANGID command parameters or

control specification keywords should be used to determine the alternate collating
sequence, specify ALTSEQ(*EXT) on the control specification. For example, if
ALTSEQ(*EXT) is used, and SRTSEQ(*LANGIDSHR) and LANGID(*JOBRUN) are
specified, then when the program is run, the shared-weight table for the user
running the program will be used as the alternate collating sequence.

Since the LOOKUP and SORTA operations are affected by the alternate collating
sequence when ALTSEQ(*EXT) is specified, character compile-time arrays and
tables are sequence-checked using the alternate collating sequence. If the actual
collating sequence is not known until runtime, the array and table sequence cannot
be checked until runtime. This means that you could get a runtime error saying
that a compile-time array or table is out of sequence.

Pre-run arrays and tables are also sequence-checked using the alternate collating
sequence when ALTSEQ(*EXT) is specified.

Note: The preceding discussion does not apply for any arrays and tables defined
with ALTSEQ(*NONE) on the definition specification.

Specifying an Alternate Collating Sequence in Your Source

To specify that an alternate collating sequence is to be used, use the ALTSEQ(*SRC)
keyword on the control specification. If you use the *ALTSEQ, *CTDATA, and
*FTRANS keywords in the compile-time data section, the alternate-collating
sequence data may be entered anywhere following the source records. If you do
not use those keywords, the sequence data must follow the source records, and the
file translation records but precede any compile-time array data.

If a character is to be inserted between two consecutive characters, you must
specify every character that is altered by this insertion. For example, if the dollar
sign ($) is to be inserted between A and B, specify the changes for character B
onward.

See|Appendix B, “EBCDIC Collating Sequence,” on page 789|for the EBCDIC
character set.

Formatting the Alternate Collating Sequence Records
The changes to the collating sequence must be transcribed into the correct record

format so that they can be entered into the system. The alternate collating sequence
must be formatted as follows:

Record

Position Entry

1-6 ALTSEQ (This indicates to the system that the normal sequence is being
altered.)

7-10 Leave these positions blank.

11-12 Enter the hexadecimal value for the character whose normal sequence is
being changed.

13-14 Enter the hexadecimal value of the character replacing the character whose
normal sequence is being changed.

Chapter 10. Data Types and Data Formats 185

Character, Graphic and UCS-2 Data

Record

Position Entry

15-18 All groups of four beginning with position 15 are used in the same manner
19-22 as positions 11 through 14. In the first two positions of a group enter the
23-26 hexadecimal value of the character to be replaced. In the last two positions
enter the hexadecimal value of the character that replaces it.

77-80

The records that describe the alternate collating sequence must be preceded by a
record with **b (b = blank) in positions 1 through 3. The remaining positions in
this record can be used for comments.

HKe_yWOY‘dS++
H ALTSEQ(*SRC)

DFLD1 s 47 INZ('abcd')

DFLD2 s 4A INZ('ABCD')

*%

ALTSEQ 81C182C€283C384C4

Numeric Data Type

186

The numeric data type represents numeric values. Numeric data has one of the
following formats:

Binary Format
Float Forma
Integer Format

IPacked-Decimal Format|

[Unsigned Format|

N ¢ = = = =

[Zoned-Decimal Format|

The default initialization value for numeric fields is zero.

Binary Format

ILE RPG Reference

Binary format means that the sign (positive or negative) is in the leftmost bit of the
field and the numeric value is in the remaining bits of the field. Positive numbers
have a zero in the sign bit; negative numbers have a one in the sign bit and are in
twos complement form. A binary field can be from one to nine digits in length and
can be defined with decimal positions. If the length of the field is from one to four
digits, the compiler assumes a binary field length of 2 bytes. If the length of the
field is from five to nine digits, the compiler assumes a binary field length of 4
bytes.

Processing of a Program-Described Binary Input Field

Every input field read in binary format is assigned a field length (number of
digits) by the compiler. A length of 4 is assigned to a 2-byte binary field; a length
of 9 is assigned to a 4-byte binary field, if the field is not defined elsewhere in the
program. Because of these length restrictions, the highest decimal value that can be
assigned to a 2-byte binary field is 9999 and the highest decimal value that can be
assigned to a 4-byte binary field is 999 999 999. In general, a binary field of n digits
can have a maximum value of n 9s. This discussion assumes zero decimal
positions.

Numeric Data Type

Because a 2-byte field in binary format is converted by the compiler to a decimal
field with 1 to 4 digits, the input value may be too large. If it is, the leftmost digit
of the number is dropped. For example, if a four digit binary input field has a
binary value of hexadecimal 6000, the compiler converts this to 24 576 in decimal.
The 2 is dropped and the result is 4576. Similarly, the input value may be too large
for a 4-byte field in binary format. If the binary fields have zero (0) decimal
positions, then you can avoid this conversion problem by defining integer fields
instead of binary fields.

Note: Binary input fields cannot be defined as match or control fields.

Processing of an Externally Described Binary Input Field

The number of digits of a binary field is exactly the same as the length in the DDS
description. For example, if you define a binary field in your DDS specification as
having 7 digits and 0 decimal positions, the RPG IVcompiler handles the data like
this:

1. The field is defined as a 4-byte binary field in the input specification

2. A Packed(7,0) field is generated for the field in the RPG IV program.

If you want to retain the complete binary field information, redefine the field as a
binary subfield in a data structure or as a binary stand-alone field.

Note that an externally described binary field may have a value outside of the
range allowed by RPG 1V binary fields. If the externally described binary field has
zero (0) decimal positions then you can avoid this problem. To do so, you define
the externally described binary field on a definition specification and specify the
EXTBININT keyword on the control specification. This will change the external
format of the externally described field to that of a signed integer.

Float Format
The float format consists of two parts:
* the mantissa and

* the exponent.

The value of a floating-point field is the result of multiplying the mantissa by 10
raised to the power of the exponent. For example, if 1.2345 is the mantissa and 5 is
the exponent then the value of the floating-point field is:

1.2345 * (10 ** 5) = 123450

You define a floating-point field by specifying F in the data type entry of the
appropriate specification.

The decimal positions must be left blank. However, floating-point fields are
considered to have decimal positions. As a result, float variables may not be used
in any place where a numeric value without decimal places is required, such as an
array index, do loop index, etc.

The default initialization and CLEAR value for a floating point field is OEO.

The length of a floating point field is defined in terms of the number of bytes. It
must be specified as either 4 or 8 bytes. The range of values allowed for a
floating-point field are:

4-byte float (8 digits) -3.4028235E+38 to -1.1754944E-38, 0.0E+0,
+1.1754944E-38 to +3.4028235E+38

Chapter 10. Data Types and Data Formats 187

Numeric Data Type

8-byte float (16 digits) -1.797693134862315E+308 to -2.225073858507201E-
308, 0.0E+0, +2.225073858507201E-308 to
+1.797693134862315E+308

Note: Float variables conform to the IEEE standard as supported by the OS/400
operating system. Since float variables are intended to represent "scientific”
values, a numeric value stored in a float variable may not represent the
exact same value as it would in a packed variable. Float should not be used
when you need to represent numbers exactly to a specific number of
decimal places, such as monetary amounts.

External Display Representation of a Floating-Point Field
See ["Specifying an External Format for a Numeric Field” on page 170|for a general
description of external display representation.

The external display representation of float values applies for the following:
* Output of float data with Data-Format entry blank.
* Input of float data with Data-Format entry blank.

* External format of compile-time and prerun-time arrays and tables (when
keyword EXTEMT is omitted).

 Display and input of float values using operation code DSPLY.
* Output of float values on a dump listing.
* Result of built-in function %EDITFLT.

Output: When outputting float values, the external representation uses a format
similar to float literals, except that:

* Values are always written with the character E and the signs for both mantissa
and exponent.

* Values are either 14 or 23 characters long (for 4F and 8F respectively).

* Values are normalized. That is, the decimal point immediately follows the most
significant digit.

e The decimal separator character is either period or comma depending on the
parameter for Control Specification keyword DECEDIT.

Here are some examples of how float values are presented:

+1.2345678E-23

-8.2745739E+03

-5.722748027467392E-123

+1,2857638E+14 if DECEDIT(',') is specified

Input: When inputting float values, the value is specified just like a float literal.
The value does not have to be normalized or adjusted in the field. When float
values are defined as array/table initialization data, they are specified in fields
either 14 or 23 characters long (for 4F and 8F respectively).

Note the following about float fields:

* Alignment of float fields may be desired to improve the performance of
accessing float subfields. You can use the ALIGN keyword to align float
subfields defined on a definition specification. 4-byte float subfields are aligned

on a 4-byte boundary and 8-byte float subfields are aligned along a 8-byte
boundary. For more information on aligning float subfields, see|”ALIGN” o

188 ILE RPG Reference

Numeric Data Type

* Length adjustment is not allowed when the LIKE keyword is used to define a
field like a float field.

* Float input fields cannot be defined as match or control fields.

Integer Format
The integer format is similar to the binary format with two exceptions:
* The integer format allows the full range of binary values
* The number of decimal positions for an integer field is always zero.

You define an integer field by specifying I in the Data-Type entry of the
appropriate specification. You can also define an integer field using the LIKE
keyword on a definition specification where the parameter is an integer field.

The length of an integer field is defined in terms of number of digits; it can be 3, 5,
10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field takes
up 2 bytes of storage; a 10-digit field takes up 4 bytes; a 20-digit field takes up 8
bytes. The range of values allowed for an integer field depends on its length.

Field length Range of Allowed Values

3-digit integer -128 to 127

5-digit integer -32768 to 32767

10-digit integer -2147483648 to 2147483647

20-digit integer -9223372036854775808 to 9223372036854775807

Note the following about integer fields:

* Alignment of integer fields may be desired to improve the performance of
accessing integer subfields. You can use the ALIGN keyword to align integer
subfields defined on a definition specification.

2-byte integer subfields are aligned on a 2-byte boundary; 4-byte integer
subfields are aligned along a 4-byte boundary; 8-byte integer subfields are
aligned along an 8-byte boundary. For more information on aligning integer
subfields, see[”ALIGN” on page 294)

* If the LIKE keyword is used to define a field like an integer field, the Length
entry may contain a length adjustment in terms of number of digits. The
adjustment value must be such that the resulting number of digits for the field is
3, 5,10, or 20.

* Integer input fields cannot be defined as match or control fields.

Packed-Decimal Format

Packed-decimal format means that each byte of storage (except for the low order
byte) can contain two decimal numbers. The low-order byte contains one digit in
the leftmost portion and the sign (positive or negative) in the rightmost portion.
The standard signs are used: hexadecimal F for positive numbers and hexadecimal
D for negative numbers. The packed-decimal format looks like this:

Chapter 10. Data Types and Data Formats 189

Numeric Data Type

0O— 70— 7
\ \
Digit Digit | Digit ~ Sign
\ \
——_c—
Byte

Figure 88. Packed-Decimal Format

The sign portion of the low-order byte indicates whether the numeric value
represented in the digit portions is positive or negative. [Figure 90 on page 194]
shows what the decimal number 21544 looks like in packed-decimal format.

Determining the Digit Length of a Packed-Decimal Field
Use the following formula to find the length in digits of a packed-decimal field:

Number of digits = 2n - 1,
...where n = number of packed input record positions used.

This formula gives you the maximum number of digits you can represent in
packed-decimal format; the upper limit is 63.

Packed fields can be up to 32 bytes long. [Table 24 shows the packed equivalents
for zoned-decimal fields up to 63 digits long:

Table 24. Packed Equivalents for Zoned-Decimal Fields up to 63 Digits Long

Zoned-Decimal Number of Bytes

Length in Digits Used in Packed-Decimal Field
1 1

2,3 2

4,5 3

28, 29 15

30, 31 16

60, 61 31

62, 63 32

For example, an input field read in packed-decimal format has a length of five
bytes (as specified on the input or definition specifications). The number of digits
in this field equals 2(5) — 1 or 9. Therefore, when the field is used in the calculation
specifications, the result field must be nine positions long. The ['PACKEVEN" on|
keyword on the definition specification can be used to indicate which of
the two possible sizes you want when you specify a packed subfield using from
and to positions rather than number of digits.

Unsigned Format

The unsigned integer format is like the integer format except that the range of
values does not include negative numbers. You should use the unsigned format
only when non-negative integer data is expected.

190 ILE RPG Reference

Numeric Data Type

You define an unsigned field by specifying U in the Data-Type entry of the
appropriate specification. You can also define an unsigned field using the LIKE
keyword on the definition specification where the parameter is an unsigned field.

The length of an unsigned field is defined in terms of number of digits; it can be 3,
5, 10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field
takes up 2 bytes of storage; a 10-digit field takes up 4 bytes; a 20-digit field takes
up 8 bytes. The range of values allowed for an unsigned field depends on its

length.

Field length Range of Allowed Values
3-digit unsigned 0 to 255

5-digit unsigned 0 to 65535

10-digit unsigned 0 to 4294967295

20-digit unsigned 0 to 18446744073709551615

For other considerations regarding the use of unsigned fields, including
information on alignment, see [“Integer Format” on page 189.

Zoned-Decimal Format

Zoned-decimal format means that each byte of storage can contain one digit or one
character. In the zoned-decimal format, each byte of storage is divided into two
portions: a 4-bit zone portion and a 4-bit digit portion. The zoned-decimal format
looks like this:

0 =70 =7 0 7 0 7 0—7
\ \ \ \ \

Zone Digit | Zone Digit | Zone Digit | Zone Digit | Zone Digit
\ \ \ \ \
——_c—

Byte

Minus sign (hex D)

1101 =
1111 = Plussign (hexF)

Figure 89. Zoned-Decimal Format

The zone portion of the low-order byte indicates the sign (positive or negative) of
the decimal number. The standard signs are used: hexadecimal F for positive
numbers and hexadecimal D for negative numbers. In zoned-decimal format, each
digit in a decimal number includes a zone portion; however, only the low-order
zone portion serves as the sign. [Figure 90 on page 194 shows what the number
21544 looks like in zoned-decimal format.

You must consider the change in field length when coding the end position in
positions 40 through 43 of the Output specifications and the field is to be output in
packed format. To find the length of the field after it has been packed, use the
following formula:

Chapter 10. Data Types and Data Formats 191

Numeric Data Type

n
Field length= — + 1
2

... Where n = number of digits in the zoned decimal field.

(Any remainder from the division is ignored.)

You can specify an alternative sign format for zoned-decimal format. In the
alternative sign format, the numeric field is immediately preceded or followed by a
+ or — sign. A plus sign is a hexadecimal 4E, and a minus sign is a hexadecimal 60.

When an alternative sign format is specified, the field length (specified on the
input specification) must include an additional position for the sign. For example,
if a field is 5 digits long and the alternative sign format is specified, a field length
of 6 positions must be specified.

Considerations for Using Numeric Formats
Keep in mind the following when defining numeric fields:

* When coding the end position in positions 47 through 51 of the output
specifications, be sure to use the external format when calculating the number of
bytes to be occupied by the output field. For example, a packed field with 5
digits is stored in 3 bytes, but when output in zoned format, it requires 5 bytes.
When output in integer format, it only requires 2 bytes.

* If you move a character field to a zoned numeric, the sign of the character field
is fixed to zoned positive or zoned negative. The zoned portion of the other
bytes will be forced to 'F’. However, if the digit portion of one of the bytes in
the character field does not contain a valid digit a decimal data error will occur.

* When numeric fields are written out with no editing, the sign is not printed as a
separate character; the last digit of the number will include the sign. This can
produce surprising results; for example, when -625 is written out, the zoned
decimal value is X'F6F2D5" which appears as 62N.

Guidelines for Choosing the Numeric Format for a Field
You should specify the integer or unsigned format for fields when:

* Performance of arithmetic is important

With certain arithmetic operations, it may be important that the value used be
an integer. Some examples where performance may be improved include array
index computations and arguments for the built-in function %SUBST.

* Interacting with routines written in other languages that support an integer data
type, such as ILE C.

* Using fields in file feedback areas that are defined as integer and that may
contain values above 9999 or 999999999.

Packed, zoned, and binary formats should be specified for fields when:

* Using values that have implied decimal positions, such currency values
* Manipulating values having more than 19 digits

* Ensuring a specific number of digits for a field is important

Float format should be specified for fields when:

* The same variable is needed to hold very small and/or very large values that
cannot be represented in packed or zoned values.

192 ILE RPG Reference

Numeric Data Type

However, float format should not be used when more than 16 digits of precision
are needed.

Note: Overflow is more likely to occur with arithmetic operations performed using
the integer or unsigned format, especially when integer arithmetic occurs in
free-form expressions. This is because the intermediate results are kept in
integer or unsigned format rather than a temporary decimal field of
sufficient size.

Representation of Numeric Formats

[Figure 90 on page 194 shows what the decimal number 21544 looks like in various
formats.

Chapter 10. Data Types and Data Formats 193

Numeric Data Type

Packed Decimal Format

Positive Sign
2 1 5 4 4 l

0010 0001 | 0101 0100 | 0100 1111

3 bytes

A
A\ 4

Zoned Decimal Format

Zone Zone Zone Zone Positive Sign
2 S T

1111 0010 = 1111 0001 1111 0101 1111 0100 | 1111 0100

< 5 bytes

v

Binary Format

16384

+ 4096

+ 1024

Positive + 32
Sign ’— + 8
l 21544

0000 0000 0000 o00OOO oO101 0100 | 0010 1000

< 4 bytes

v

Integer (Signed) Format

16384
+ 4096
Positive + 1024
Sign + 32
l| ’— + 8
21544
0101 0100 0010 1000
4——2bytes ——m—p
Unsigned Format

16384
+ 4096
+ 1024
+ 32
(————— + 8
21544

0101 0100 0010 1000

“«—— Obytess— »

Figure 90. Representation of the Number 21544 in each of the Numeric Formats

Note the following about the representations in the figure.

194 ILE RPG Reference

Numeric Data Type

 To obtain the numeric value of a positive binary or integer number, unsigned
number, add the values of the bits that are on (1), but do not include the sign bit
(if present). For an unsigned number, add the values of the bits that are on,
including the leftmost bit.

* The value 21544 cannot be represented in a 2-byte binary field even though it
only uses bits in the low-order two bytes. A 2-byte binary field can only hold up
to 4 digits, and 21544 has 5 digits.

shows the number -21544 in integer format.

Negative Sign

101010111101 1000O0

—g 2bytes —

Figure 91. Integer Representation of the Number -21544

Date Data Type

Date fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all date data.

Date constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Also, dates used for I/O operations
such as input fields, output fields or key fields are also converted (if required) to
the necessary format for the operation.

The default internal format for date variables is *ISO. This default internal format
can be overridden globally by the control specification keyword DATFMT and
individually by the definition specification keyword DATFMT.

The hierarchy used when determining the internal date format and separator for a
date field is

1. From the DATFMT keyword specified on the definition specification

2. From the DATFMT keyword specified on the control specification

3. *ISO

There are three kinds of date data formats, depending on the range of years that
can be represented. This leads to the possibility of a date overflow or underflow
condition occurring when the result of an operation is a date outside the valid
range for the target field. The formats and ranges are as follows:

Number of Digits in Year Range of Years
2 (*YMD, *DMY, *MDY, *JUL) 1940 to 2039
3 (*CYMD, *CDMY, *CMDY) 1900 to 2899
4 (*ISO, *USA, *EUR, *JIS, *LONG]JUL) 0001 to 9999

[Table 25 on page 196|lists the RPG-defined formats for date data and their
separators.

For examples on how to code date fields, see the examples in:

Chapter 10. Data Types and Data Formats 195

Date Data Type

« |"Date Operations” on page 404

* [“Moving Date-Time Data” on page 416

 |”ADDDUR (Add Duration)” on page 550|

* ["'MOVE (Move)” on page 655

* |“EXTRCT (Extract Date/Time/Timestamp)” on page 624]

+ [“SUBDUR (Subtract Duration)” on page 753

* [“TEST (Test Date/Time/Timestamp)” on page 760

Table 25. RPG-defined date formats and separators for Date data type

Format Description Format (Default Valid Separators Length Example

Name Separator)

2-Digit Year Formats

*MDY Month/Day/ Year mm/dd/yy /- & 8 01/15/96

*DMY Day/Month/Year dd/mm/yy /- & 8 15/01/96

*YMD Year/Month/Day yy/mm/dd /- & 8 96/01/15

*JUL Julian yy/ddd /- & 6 96/015

4-Digit Year Formats

*ISO International Standards yyyy-mm-dd - 10 1996-01-15
Organization

*USA IBM USA Standard mm/dd/yyyy / 10 01/15/1996

*EUR IBM European Standard | dd.mm.yyyy 10 15.01.1996

*JIS Japanese Industrial yyyy-mm-dd - 10 1996-01-15
Standard Christian Era

lists the *LOVAL, *HIVAL, and default values for all the RPG-defined date

formats.
Table 26. Date Values
Format name | Description | *LOVAL | *HIVAL | Default Value
2-Digit Year Formats
*MDY Month/Day/ Year 01/01/40 12/31/39 01/01/40
*DMY Day/Month/ Year 01/01/40 31/12/39 01/01/40
*YMD Year/Month/Day 40/01/01 39/12/31 40/01/01
*JUL Julian 40/001 39/365 40/001
4-Digit Year Formats
*ISO International Standards 0001-01-01 9999-12-31 0001-01-01
Organization
*USA IBM USA Standard 01/01/0001 12/31/9999 01/01/0001
*EUR IBM European Standard 01.01.0001 31.12.9999 01.01.0001
*JIS Japanese Industrial Standard 0001-01-01 9999-12-31 0001-01-01
Christian Era

196

Several formats are also supported for fields used by the MOVE, MOVEL, and
TEST operations only. This support is provided for compatibility with externally
defined values that are already in a 3-digit year format and the 4-digit year
*LONG]JUL format. It also applies to the 2-digit year formats when *JOBRUN is

specified.

ILE RPG Reference

Date Data Type

*JOBRUN should be used when the field which it is describing is known to have
the attributes from the job. For instance, a 12-digit numeric result of a TIME
operation will be in the job date format.

lists the valid externally defined date formats that can be used in Factor 1
of a MOVE, MOVEL, and TEST operation.

Table 27. Externally defined date formats and separators

Format Name Description Format (Default Valid Length |Example
Separator) Separators

2-Digit Year Formats

*JOBRUN" Determined at runtime from the DATFMT, or DATSEP job values.

3-Digit Year Formats®

*CYMD Century cyy/mm/dd /- & 9 101/04/25
Year/Month/Day

*CMDY Century cmm/dd/yy /- & 9 104/25/01
Month/Day/ Year

*CDMY Century cdd/mm/yy /- & 9 125/04/01
Day/Month/Year

4-Digit Year Formats

*LONGJUL Long Julian yyyy/ddd /-, & 8 2001/115

Notes:

1. *JOBRUN is valid only for character or numeric dates with a 2-digit year since the run-time job attribute for
DATEFMT can only be *MDY, *YMD, *DMY or *JUL.

2. Valid values for the century character 'c” are:

'c' Years
0 1900-1999
1 2000-2099
9 2800-2899
Separators

When coding a date format on a MOVE, MOVEL or TEST operation, separators are
optional for character fields. To indicate that there are no separators, specify the
format followed by a zero. For more information on how to code date formats
without separators see [“MOVE (Move)” on page 655 |"MOVEL (Move Left)” on|
page 676/ and [“TEST (Test Date/Time /Timestamp)” on page 760.]

Initialization

To initialize the Date field to the system date at runtime, specify INZ(*SYS) on the
definition specification. To initialize the Date field to the job date at runtime,
specify INZ(*JOB) on the definition specification. *SYS or *JOB cannot be used with
a field that is exported. The Date field can also be initialized to a literal, named
constant or figurative constant.

Note: Runtime initialization takes place after static intitialization.

Chapter 10. Data Types and Data Formats 197

Time Data Type

Time Data Type

Time fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all time data.

Time constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Also, times used for I/O operations
such as input fields, output fields or key fields are also converted (if required) to
the necessary format for the operation.

The default internal format for time variables is *ISO. This default internal format
can be overridden globally by the control specification keyword TIMFMT and
individually by the definition specification keyword TIMEMT.

The hierarchy used when determining the internal time format and separator for a
time field is

1. From the TIMFMT keyword specified on the definition specification
2. From the TIMFMT keyword specified on the control specification
3. *ISO

For examples on how to code time fields, see the examples in:

+ |[“Date Operations” on page 404

+ [“Moving Date-Time Data” on page 416
 [“ADDDUR (Add Duration)” on page 550|

+ ["'MOVE (Move)” on page 655|

+ [“SUBDUR (Subtract Duration)” on page 753|

s |“TEST (Test Date/Time/Timestamp)” on page 760

shows the time formats supported and their separators.

Table 28. Time formats and separators for Time data type

RPG Description Format (Default | Valid Length |Example

Format Separator) Separators

Name

*HMS Hours:Minutes:Seconds hh:mm:ss L, & 8 14:00:00

*ISO International Standards Organization hh.mm.ss . 8 14.00.00

*USA IBM USA Standard. AM and PM can be hh:mm AM or |: 8 02:00 PM
any mix of upper and lower case. hh:mm PM

*EUR IBM European Standard hh.mm.ss . 8 14.00.00

*JIS Japanese Industrial Standard Christian Era | hh:mm:ss : 8 14:00:00

Table 29. Time Values

lists the *LOVAL, *HIVAL, and default values for all the time formats.

RPG Format Description *LOVAL *HIVAL Default Value
Name
*HMS Hours:Minutes:Seconds 00:00:00 24:00:00 00:00:00
*ISO International Standards Organization 00.00.00 24.00.00 00.00.00
*USA IBM USA Standard. AM and PM can be any 00:00 AM 12:00 AM 00:00 AM
mix of upper and lower case.

198

ILE RPG Reference

Time Data Type

Table 29. Time Values (continued)

RPG Format Description *LOVAL *HIVAL Default Value
Name
*EUR IBM European Standard 00.00.00 24.00.00 00.00.00
*1S Japanese Industrial Standard Christian Era 00:00:00 24:00:00 00:00:00
Separators
When coding a time format on a MOVE, MOVEL or TEST operation, separators
are optional for character fields. To indicate that there are no separators, specify the
format followed by a zero. For more information on how to code time formats
without separators see ["MOVE (Move)” on page 655,
Initialization
To initialize the Time field to the system time at runtime, specify INZ(*SYS) on the
definition specification. *SYS cannot be used with a field that is exported. The Time
field can also be initialized at runtime to a literal, named constant or figurative
constant.
Note: Runtime initialization takes place after static intitialization.
*JOBRUN

A special value of *JOBRUN can be used in Factor 1 of a MOVE, MOVEL or TEST
operation. This indicates that the separator of the field being described is based on
the run-time job attributes, TIMSEP.

Timestamp Data Type

Timestamp fields have a predetermined size and format. They can be defined on
the definition specification. Timestamp data must be in the format

yyyy-mm-dd-hh.mm.ss.mmmmmm (length 26).

Microseconds (.mmmmmm) are optional for timestamp literals and if not provided
will be padded on the right with zeros. Leading zeros are required for all
timestamp data.

The default initialization value for a timestamp is midnight of January 1, 0001
(0001-01-01-00.00.00.000000). The *HIVAL value for a timestamp is
9999-12-31-24.00.00.000000. The *LOVAL value for timestamp is
0001-01-01-00.00.00.000000.

For examples on how to code timestamp fields, see the examples in

+ |[“Date Operations” on page 404

+ [“Moving Date-Time Data” on page 416

+ ["ADDDUR (Add Duration)” on page 550|

+ ["'MOVE (Move)” on page 655|

« [“SUBDUR (Subtract Duration)” on page 753

Separators

When coding the timestamp format on a MOVE, MOVEL or TEST operation,
separators are optional for character fields. To indicate that there are no separators,

Chapter 10. Data Types and Data Formats 199

Timestamp Data Type

specify *ISO0. For an example of how *ISO is used without separators see
[(Test Date/Time/Timestamp)” on page 760

Initialization

To initialize the Timestamp field to the system date at runtime, specify INZ(*SYS)
on the definition specification. *SYS cannot be used with a field that is exported.
The Timestamp field can also be initialized at runtime to a literal, named constant
or figurative constant.

Note: Runtime initialization takes place after static intitialization.

Object Data Type

The object data type allows you to define a Java object. You specify the object data
type as follows:

* Variable MyString is a Java String object.
D MyString S 0 CLASS(*JAVA
D :'java.lang.String')

or as follows:

D bdcreate PR 0 EXTPROC(*JAVA
D :'java.math.BigDecimal’
D :*CONSTRUCTOR)

In position 40, you specify data type O. In the keyword section, you specify the
CLASS keyword to indicate the class of the object. Specify *JAVA for the
environment, and the class name.

If the object is the return type of a Java constructor, the class of the returned object
is the same as the class of the method so you do not specify the CLASS keyword.
Instead, you specify the EXTPROC keyword with environment *JAVA, the class
name, and procedure name *CONSTRUCTOR.

An object cannot be based. It also cannot be a subfield of a data structure.

If an object is an array or table, it must be loaded at runtime. Pre-run and
compile-time arrays and tables of type Object are not allowed.

Every object is initialized to *NULL, which means that the object is not associated
with an instance of its class.

To change the contents of an object, you must use method calls. You cannot
directly access the storage used by the object.

Classes are resolved at runtime. The compiler does not check that a class exists or
that it is compatible with other objects.

Where You Can Specify an Object Field

You can use an object field in the following situations:

Free-Form Evaluation
You can use the EVAL operation to assign one Object item (field or
prototyped procedure) to a field of type Object.

200 ILE RPG Reference

Object Data Type

Free-Form Comparison

You can compare one object to another object. You can specify any
comparison, but only the following comparisons are meaningful:

* Equality or inequality with another object. Two objects are equal only if

they represent exactly the same object. Two different objects with the

same value are not equal.

If you want to test for equality of the value of two objects, use the Java

‘equals’ method as follows:

D objectEquals PR N EXTPROC(*JAVA

D : 'java.lang.Object'
D : 'equals')

C IF objectEquals (objl : obj2)

C

C ENDIF

* Equality or inequality with *NULL. An object is equal to *NULL if it is

not associated with a particular instance of its class.

Free-Form Call Parameter
You can code an object as a parameter in a call operation if the parameter

in the prototype is an object.

Notes:
1. Objects are not valid as input or output fields.
2. Assignment validity is not checked. For example, RPG would allow you to
assign an object of class Number to an object variable defined with class String.
If this was not correct, a Java error would occur when you tried to use the
String variable.
D Obj S 0 CLASS(*JAVA
D :'java.lang.0Object')
D Str S 0 CLASS(*JAVA
D :'java.lang.String')
D Num S 0 CLASS(*JAVA
D :'java.math.BigDecimal')

c
c

* Since all Java classes are subclasses of class 'java.lang.Object',

* any object can be assigned to a variable of this class.
* The following two assignments are valid.
EVAL Obj = Str
EVAL Obj = Num
* However, it would probably not be valid to assign Str to Num.

Figure 92. Object Data Type Example

Basing Pointer Data Type

Basing pointers are used to locate the storage for based variables. The storage is
accessed by defining a field, array, or data structure as based on a particular basing
pointer variable and setting the basing pointer variable to point to the required

storage location.

For example, consider the based variable MY_FIELD, a character field of length 5,
which is based on the pointer PTR1. The based variable does not have a fixed
location in storage. You must use a pointer to indicate the current location of the

storage for the variable.

Chapter 10. Data Types and Data Formats 201

Basing Pointer Data Type

202

ILE RPG Reference

Suppose that the following is the layout of some area of storage:
If we set pointer PTR1 to point to the G,

the pointer is moved to point to the ’J’, the value of MY_FIELD becomes 'JKLMN':
If MY_FIELD is now changed by an EVAL statement to 'HELLO’, the storage

Use the BASED keyword on the definition specification (see
[‘BASED(basing_pointer_name)” on page 295) to define a basing pointer for a field.
Basing pointers have the same scope as the based field.

The length of the basing pointer field must be 16 bytes long and must be aligned
on a 16 byte boundary. This requirement for boundary alignment can cause a
pointer subfield of a data structure not to follow the preceding field directly, and
can cause multiple occurrence data structures to have non-contiguous occurrences.
For more information on the alignment of subfields, see [‘Aligning Data Structure|
[Subfields” on page 131

The default initialization value for basing pointers is *“NULL.

Note: When coding basing pointers, you must be sure that you set the pointer to
storage that is large enough and of the correct type for the based field.
[Figure 97 on page 208|shows some examples of how ot to code basing
pointers.

Note: You can add or subtract an offset from a pointer in an expression, for
example EVAL ptr = ptr + offset. When doing pointer arithmetic be aware
that it is your responsibility to ensure that you are still pointing within the
storage of the item you are pointing to. In most cases no exception will be
issued if you point before or after the item.

When subtracting two pointers to determine the offset between them, the
pointers must be pointing to the same space, or the same type of storage.
For example, you can subtract two pointers in static storage, or two pointers
in automatic storage, or two pointers within the same user space.

Basing Pointer Data Type

Note: When a data structure contains a pointer, and the data structure is copied to
a character field, or to another data structure that does not have a pointer
subfield defined, the pointer information may be lost in the copied value.
The actual 16-byte value of the pointer will be copied, but there is extra
information in the system that indicates that the 16-byte area contains a
pointer; that extra information may not be set in the copied value.

If the copied value is copied back to the original value, the pointer may be
lost in the original value.

Passing a data structure containing pointers as a prototyped parameter by
read-only reference (CONST keyword) or by value (VALUE keyword) may
lose pointer information in the received parameter, if the parameter is
prototyped as a character value rather than using the LIKEDS keyword. A
similar problem can occur when returning a data structure containing a
pointer.

Setting a Basing Pointer

You set or change the location of the based variable by setting or changing the
basing pointer in one of the following ways:

¢ Initializing with INZ(%ADDR(FLD)) where FLD is a non-based variable
* Assigning the pointer to the result of %ADDR(X) where X is any variable
* Assigning the pointer to the value of another pointer

+ Using ALLOC or REALLOC (see ["ALLOC (Allocate Storage)” on page 552,
[“REALLOC (Reallocate Storage with New Length)” on page 720 /and the
WebSphere Development Studio: ILE RPG Programmer’s Guide for examples)

* Moving the pointer forward or backward in storage using pointer arithmetic:
EVAL PTR = PTR + offset

("offset” is the distance in bytes that the pointer is moved)

Chapter 10. Data Types and Data Formats 203

Basing Pointer Data Type

204

Examples

ILE RPG Reference

L T A T T R S P R T RPN P A PR <
DName+++++++++++ETDsSFrom+++To/L+++1Dc. Keywords++++++++ttttttttttttttttttttt
*

* Define a based data structure, array and field.

* If PTR1 is not defined, it will be implicitly defined

* by the compiler.

*

* Note that before these based fields or structures can be used,
* the basing pointer must be set to point to the correct storage
* Tocation.

*

D DShased DS BASED (PTR1)

D Fieldl 1 16A

D Field2 2

D

D ARRAY S 20A DIM(12) BASED(PRT2)

D

D Temp_f1d S * BASED (PRT3)

D

D PTR2 S * INZ

D PTR3 S * INZ (*NULL)

Figure 93. Defining based structures and fields

The following shows how you can add and subtract offsets from pointers and also
determine the difference in offsets between two pointers.

Basing Pointer Data Type

L R A T L AV SRS NN, SIS DU R O AR TS -
DName+++++++++++ETDSsFrom+++To/ L+++1Dc . Keywords+++++++++ttttttttttttttttttttt

AU PP Keywords+++++t+tttttttttttttttttttttt
*

D P1 S *

D P2 3 *

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
CLONO1++++++++++++++0pcode (E) +Extended Factor 2++++++++tttttttttttttttttttt
*

* Allocate 20 bytes of storage for pointer PIL.

(s ALLOC 20 P1

* Initialize the storage to 'abcdefghij'

c EVAL %STR(P1:20) = 'abcdefghij'

* Set P2 to point to the 9th byte of this storage.

c EVAL P2 =P1 +8

* Show that P2 is pointing at 'i'. %STR returns the data that
* the pointer is pointing to up to but not incuding the first
* null-terminator x'00' that it finds, but it only searches for
* the given Tength, which is 1 in this case.

c EVAL Result = %STR(P2:1)

c DSPLY Result 1
* Set P2 to point to the previous byte

(EVAL P2 =P2 -1

* Show that P2 is pointing at 'h'

(8 EVAL Result = %STR(P2:1)

c DSPLY Result

* Find out how far P1 and P2 are apart. (7 bytes)

c EVAL Diff = P2 - P1

c DSPLY Diff 50
* Free Pl's storage

(s DEALLOC Pl

(s RETURN

Figure 94. Pointer Arithmetic

shows how to obtain the number of days in Julian format, if the Julian
date is required.

HKeywords+++++++tt bttt
H DATFMT (*JUL)
DName+++++++++++ETDsFrom+++To/ L+++IDc. Keywords+++++++++ttttttttttttttttttt

Dt e e Keywords+++++++tttttttttttttttttttt+
*

D JulDate S D INZ(D'95/177')

D DATFMT (*JUL)

D JulDS DS BASED (Ju1PTR)

D Jul_yy 2. 0

D Jul_sep 1

D Jul_ddd 3 0

D JulDay S 3 0

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
CLONO1++++++++++++++0pcode (E) +Extended Factor 2++++++++tttttttttttttttttttt
*
* Set the basing pointer for the structure overlaying the
* Julian date.

(s EVAL JuTPTR = %ADDR(JulDate)
* Extract the day portion of the Julian date
c EVAL JulDay = Jul_ddd

Figure 95. Obtaining a Julian Date

Chapter 10. Data Types and Data Formats 205

Basing Pointer Data Type

illustrates the use of pointers, based structures and system APIs. This
program does the following:

1. Receives the Library and File name you wish to process

Creates a User space using the QUSCRTUS API

Calls an API (QUSLMBR) to list the members in the requested file
Gets a pointer to the User space using the QUSPTRUS API

Displays a message with the number of members and the name of the first and
last member in the file

a s~ DN

L R T R O T TS P ¢ BT D AR T -
DName+++++++++++ETDsFrom+++To/ L+++IDc. Keywords+++++++++ttttttttttttttttttt

Dttt ittt et i ettt ittt e Keywords++++++++t+ttttttttttttttttt++
*

D SPACENAME DS

D 10 INZ('LISTSPACE')

D 10 INZ('QTEMP')

D ATTRIBUTE S 10 INZ('LSTMBR')

D INIT_SIZE S 9B 0 INZ(9999999)

D AUTHORITY S 10 INZ (' *CHANGE"')

D TEXT S 50 INZ('File member space')
D SPACE DS BASED (PTR)

D SP1 32767

*

* ARR is used with OFFSET to access the beginning of the
* member information in SP1
*

D ARR 1 OVERLAY (SP1) DIM(32767)

*

* OFFSET is pointing to start of the member information in SP1
*

D OFFSET 9B 0 OVERLAY(SP1:125)

*

* Size has number of member names retrieved
*

D SIZE 9B O OVERLAY(SP1:133)

D MBRPTR S *

D MBRARR S 10 BASED(MBRPTR) DIM(32767)
D PTR S *

D FILE_LIB S 20

D FILE S 10

D LIB S 10

D WHICHMBR S 10 INZ('*ALL "

D OVERRIDE S 1 INZ('1')

D FIRST_LAST S 50 INZ(' MEMBERS, +
D FIRST = , +
D LAST = "

D IGNERR DS

D 98 0 INZ(15)

D 9B 0

D 7A

Figure 96. Example of using pointers and based structures with an API (Part 1 of 2)

206 ILE RPG Reference

Basing Pointer Data Type

L R AN TG TP PR S RS RTUPE. PUPUR ¢ BEPUPIPE AP AR DO
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
CLONQ1++++++++++++++0pcode (E) +Extended Factor 2++++++++tttttttttttttttttttt
*

* Receive file and Tibrary you want to process
*

c *ENTRY PLIST
c FILE PARM FILEPARM 10
c LIB PARM LIBPARM 10

*

* Delete the user space if it exists
*

c CALL 'QUSDLTUS' 10
c PARM SPACENAME
c PARM IGNERR

*

* Create the user space
*

c CALL 'QUSCRTUS'

c PARM SPACENAME

c PARM ATTRIBUTE

c PARM INIT_SIZE

c PARM v INIT_VALUE 1
c PARM AUTHORITY

c PARM TEXT

*

* Call the API to 1ist the members in the requested file

*

c CALL 'QUSLMBR'

c PARM SPACENAME

c PARM 'MBRLO160" MBR_LIST 8
c PARM FILE_LIB

c PARM WHICHMBR

c PARM OVERRIDE

*

* Get a pointer to the user-space
*

C CALL "QUSPTRUS'

(PARM SPACENAME

C PARM PTR

*

* Set the basing pointer for the member array

* MBRARR now overlays ARR starting at the beginning of

* the member information.

*

C EVAL MBRPTR = %ADDR(ARR(OFFSET))

(MOVE SIZE CHARSIZE 3

C EVAL %SUBST(FIRST_LAST:1:3) = CHARSIZE
(8 EVAL %SUBST (FIRST_LAST:23:10) = MBRARR(1)
C EVAL %SUBST (FIRST_LAST:41:10) = MBRARR(SIZE)
(FIRST_LAST DSPLY

C EVAL *INLR = '1'

Figure 96. Example of using pointers and based structures with an API (Part 2 of 2)

When coding basing pointers, make sure that the pointer is set to storage that is
large enough and of the correct type for the based field. [Figure 97 on page 208]
shows some examples of how not to code basing pointers.

Chapter 10. Data Types and Data Formats 207

Procedure Pointer Data Type

DName+++++++++++ETDsSFrom+++To/L+++1Dc. Keywords+++++++tttttttttttttttttttttt

Y Keywords++++++++t+tttttttttttttttt++
*

D chrl0 S 10a based(ptrl)

D charl00 S 100a based(ptrl)

D pl S 5p 0 based(ptrl)

CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq. ...
CLONO1++++++++++++++0pcode (E) +Extended Factor 2++++++++tttttttttttttttttttt
*

*

* Set ptrl to the address of pl, a numeric field

* Set chrl® (which is based on ptrl) to 'abc'

* The data written to pl will be unreliable because of the data
* type incompatibility.

*

c EVAL ptrl = %addr(pl)
(s EVAL chrl0 = 'abc'
*
* Set ptrl to the address of chrlO, a 10-byte field.
* Set chrl00, a 100-byte field, all to 'x'
* 10 bytes are written to chrlO, and 90 bytes are written in other
* storage, the Tocation being unknown.
*
c EVAL ptrl = %addr(chrl0)
c EVAL chrl00 = *all'x'

Figure 97. How Not to Code Basing Pointers

Procedure Pointer Data Type

208

ILE RPG Reference

Procedure pointers are used to point to procedures or functions. A procedure
pointer points to an entry point that is bound into the program. Procedure pointers
are defined on the definition specification.

The length of the procedure pointer field must be 16 bytes long and must be
aligned on a 16 byte boundary. This requirement for boundary alignment can cause
a pointer subfield of a data structure not to follow the preceding field directly, and
can cause multiple occurrence data structures to have non-contiguous occurrences.
For more information on the alignment of subfields, see [“Aliening Data Structure]
Subfields” on page 131

The default initialization value for procedure pointers is *NULL.

Examples

Database Null Value Support

L A A G T P S D TR SO R R A I <
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++ttttttttttttttttttttt
*
* Define a basing pointer field and initialize to the address of the

* data structure My Struct.
*

D My_Struct DS

D My_array 10 DIM(50)

D

D Ptrl S 16* INZ (%ADDR(My_Struct))

*

* Or equivalently, defaults to length 16 if Tength not defined

*

D Ptrl S * INZ(%ADDR(My_Struct))

*

* Define a procedure pointer field and initialize to NULL
*

D Ptrl S 16* PROCPTR INZ(*NULL)

*

* Define a procedure pointer field and initialize to the address
* of the procedure My Proc.

*

D Ptrl S 16* PROCPTR INZ(%PADDR(My_Proc))
*
* Define pointers in a multiple occurrence data structure and map out

* the storage.
*

DData$S DS 0CCURS (2)
D ptrl *

D ptr2

D Switch 1A

» Storage map would be:

* DataS

X ptr1 16 bytes
* ptr2 16 bytes
* Switch 1 byte
* Pad 15 bytes
* ptri 16 bytes
* ptr2 16 bytes
* v Switch 1 byte

Figure 98. Defining pointers

Database Null Value Support

In an ILE RPG program, you can select one of three different ways of handling
null-capable fields from an externally described database file. This depends on
how the|]ALWNULL keyword|on a control specification is used (ALWNULL can
also be specified as a command parameter):

Chapter 10. Data Types and Data Formats 209

Database Null Value Support

210

1. [ALWNULL(*USRCTL) - read, write, update, and delete records with null values
and retrieve and position-to records with null keys.

2. |[ALWNULL(*INPUTONLY)| - read records with null values to access the data in
the null fields

3. [ALWNULL(*NO)| - do not process records with null values

Note: For a program-described file, a null value in the record always causes a data
mapping error, regardless of the value specified on the ALWNULL keyword.

User Controlled Support for Null-Capable Fields and Key

Fields

ILE RPG Reference

When an externally described file contains null-capable fields and the
ALWNULL(*USRCTL) keyword is specified on a control specification, you can do
the following:

Read| [write, update, and delete|records with null values from externally
described database files.

* Retrieve and position-to records with null keys using [keyed operations, by
specifying an indicator in factor 2 of the KFLD associated with the field.
e Determine whether a null-capable field is actually null using the [YoNULLIND

[built-in function| on the right-hand-side of an expression.

* Set a null-capable field to be null for output or update using the [JoNULLIND
[built-in function| on the left-hand-side of an expression.

You are responsible for ensuring that fields containing null values are used
correctly within the program. For example, if you use a null-capable field as factor
2 of a MOVE operation, you should first check if it is null before you do the
MOVE, otherwise you may corrupt your result field value. You should also be
careful when outputting a null-capable field to a file that does not have the field
defined as null-capable, for example a WORKSTN or PRINTER file, or a
program-described file.

Note: The value of the null indicator for a null-capable field is only considered for
these operations: input, output and file-positioning. Here are some examples
of operations where the the null indicator is not taken into consideration:

¢ DSPLY of a null-capable field shows the contents of the field even if the
null indicator is on.

¢ If you move a null-capable field to another null-capable field, and the
factor 2 field has the null indicator on, the the result field will get the data
from the factor 2 field. The corresponding null indicator for the result
field will not be set on.

¢ Comparison operations, including SORTA and LOOKUP, with null
capable fields do not consider the null indicators.

A field is considered null-capable if it is null-capable in any externally described
database record and is not defined as a constant in the program.

When a field is considered null-capable in an RPG program, a null indicator is
associated with the field. Note the following;:

* If the field is a multiple-occurrence data structure or a table, an array of null
indicators will be associated with the field. Each null indicator corresponds to an
occurrence of the data structure or element of the table.

Database Null Value Support

* If the field is an array element, the entire array will be considered null-capable.
An array of null indicators will be associated with the array, each null indicator
corresponds to an array element.

* If the field is an element of an array subfield of a multiple-occurrence data
structure, an array of null indicators will be associated with the array for each
occurrence of the data structure.

Null indicators are initialized to zeros during program initialization and thus
null-capable fields do not contain null values when the program starts execution.

Null-capable fields in externally-described data structures
If the file used for an externally described data structure has null-capable fields

defined, the matching RPG subfields are defined to be null-capable. Similarly, if a
record format has null-capable fields, a data structure defined with LIKEREC will
have null-capable subfields. When a data structure has null-capable subfields,
another data structure defined like that data structure using LIKEDS will also have
null-capable subfields. However, using the LIKE keyword to define one field like
another null-capable field does not cause the new field to be null-capable.

Input of Null-Capable Fields
For a field that is null-capable in the RPG program, the following will apply on
input, for DISK, SEQ, WORKSTN and SPECIAL files:

* When a null-capable field is read from an externally described file, the null
indicator for the field is set on if the field is null in the record. Otherwise, the
null indicator is set off.

* If field indicators are specified and the null-capable field is null, all the field
indicators will be set off.

* If a field is defined as null-capable in one file, and not null-capable in another,
then the field will be considered null-capable in the RPG program. However,
when you read the second file, the null indicator associated with the field will
always be set off.

* An input operation from a program-described file using a data structure in the
result field does not affect the null indicator associated with the data structure or
any of its subfields.

* Reading null-capable fields using input specifications for program-described files
always sets off the associated null indicators.

¢ If null-capable fields are not selected to be read due to a field-record-relation
indicator, the associated null indicator will not be changed.

* When a record format or file with null-capable fields is used on an input
operation (READ, READP, READE, READPE, CHAIN) and a data structure is
coded in the result field, the values of %NULLIND for null-capable data
structure subfields will be changed by the operation. The values of %NULLIND
will not be set for the input fields for the file, unless the input fields happen to
be the subfields used in the input operation.

Null-capable fields cannot be used as match fields or control-level fields.

Output of Null-Capable Fields

When a null-capable field is written (output or update) to an externally described
file, a null value is written out if the null indicator for the field is on at the time of
the operation.

When a null-capable field is output to or updated in an externally described
database file, then if the field is null, the value placed in the buffer will be ignored
by data management.

Chapter 10. Data Types and Data Formats 211

Database Null Value Support

212

ILE RPG Reference

Note: Fields that have the null indicator on at the time of output have the data
moved to the buffer. This means that errors such as decimal-data error, or
basing pointer not set, will occur even if the null indicator for the field is on.

During an output operation to an externally described database file, if the file
contains fields that are considered null-capable in the program but not null-capable
in the file, the null indicators associated with those null-capable fields will not be
used.

When a record format with null-capable fields is used on a WRITE or UPDATE
operation, and a data structure is coded in the result field, the null attributes of the
data structure subfields will be used to set the null-byte-map for the output or
update record.

When a record format with null-capable fields is used on an UPDATE operation
with %FIELDS, then the null-byte-map information will be taken from the null
attributes of the specified fields.

[Figure 99 on page 213/ shows how to read, write and update records with null
values when the ALWNULL(*USRCTL) option is used.

Database Null Value Support

Specify the ALWNULL(*USRCTL) keyword on a control
specification or compile the ILE RPG program with ALWNULL(*USRCTL)
on the command.

* ok F X X

*
HKeywords+++++++tttttttttttttttttttttt bttt bbbt bbb
*H ALWNULL (*USRCTL)

*

* DISKFILE contains a record REC which has 2 fields: FLD1 and FLD2

* Both FLD1 and FLD2 are null-capable.

*

FDISKFILE UF A E DISK

*

* Read the first record.

* Update the record with new values for any fields which are not
* null.

C READ REC 10
C IF NOT %NULLIND(F1d1)

C MOVE 'FLD1' F1dl

(8 ENDIF

(IF NOT %NULLIND(F1d2)

C MOVE 'FLD2' F1d2

C ENDIF

C UPDATE REC

*

* Read another record.

* Update the record so that all fields are null.

* There is no need to set the values of the fields because they

* would be ignored.

(s READ REC 10
C EVAL %NULLIND(F1d1) = *ON

C EVAL %NULLIND(F1d2) = =ON

(8 UPDATE REC

*

* Write a new record where F1d 1 is null and F1d 2 is not null.
*

C EVAL %NULLIND(F1d1) = =ON
C EVAL %NULLIND(F1d2) = *OFF
C EVAL F1d2 = 'New value'

C WRITE REC

Figure 99. Input and output of null-capable fields

Keyed Operations

If you have a null-capable key field, you can search for records containing null
values by specifying an indicator in factor 2 of the KFLD operation and setting that
indicator on before the keyed input operation. If you do not want a null key to be
selected, you set the indicator off.

When a record format with null-capable key fields is used on a CHAIN, SETLL,
READE, or READPE operation, and a %KDS data structure is used to specify the
keys, then the null-key-byte-map information will be taken from the null attributes
of the subfields in the data structure specified as the argument of %KDS.

When a record format with null-capable key fields is used on a CHAIN, SETLL,
READE, or READPE operation, and a list of keyfields is used, then the
null-key-byte-map information will be taken from the null attributes of the
specified keys.

Chapter 10. Data Types and Data Formats 213

Database Null Value Support

214

ILE RPG Reference

[Figure 100]and |[Figure 101 on page 215|illustrate how keyed operations are used to
position and retrieve records with null keys.

// Assume Filel below contains a record Recl with a composite key
// made up of three key fields: Keyl, Key2, and Key3. Key2 and Key3
// are null-capable. Keyl is not null-capable.
// Each key field is two characters Tong.
. A R G DUPRPE DUPY. SUPPE STSPUPIE. DU U o DA PRy AR
FFilename++IPEASFR1en+LKlen+AIDevice+.Keywords++++++++++tttt+ttttttttt++t
FFilel IF E DISK
// Define two data structures with the keys for the file
// Subfields Key2 and Key3 of both data structures will be
// null-capable.
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++t++tttttttttttttt
D Keys DS LIKEREC (Recl : *KEY)
D OtherKeys DS LIKEDS (keys)
// Define a data structure with the input fields of the file
// Subfields Key2 and Key3 of the data structures will be
// null-capable.
D FilelFlds DS LIKEREC(Recl : *INPUT)
/free
// The null indicator for Keys.Key2 is ON and the
// null indicator for Keys.Key3 is OFF, for the
// SETLL operation below. Filel will be positioned
// at the next record that has a key that is equal
// to or greater than 'AA??CC' (where ?? is used
// in this example to indicate NULL)

// Because %NULLIND(Keys.Key2) is ON, the actual content
// in the search argument Keys.Key2 will be ignored.

// If a record exists in Filel with 'AA' in Keyl, a null
// Key2, and 'CC' in Key3, %EQUAL(Filel) will be true.

Keys.Keyl = 'AA';
Keys.Key3 = 'CC';
%NULLIND (Keys.Key2) = *ON;
%NULLIND (Keys.Key3) = *OFF;

SETLL %KDS(Keys) Recl;

// The CHAIN operation below will retrieve a record

// with 'JJ' in Keyl, 'KK' in Key2, and a null Key3.

// Since %NULLIND(OtherKeys.Key3) is ON, the value of
// 'XX' in OtherKeys.Key3 will not be used. This means
// that if Filel actually has a record with a key

// "JJIKKXX', that record will not be retrieved.

OtherKeys.Key3 = "XX';

%NULLIND (Keys.Key3) = *ON;

CHAIN ('JJ' : 'KK' : OtherKeys.Key3) Recl;

// The CHAIN operation below uses a partial key as the
// search argument. It will retrieve a record with 'NN'
// in Keyl, a null key2, and any value including a null
// value in Key3. The record is retrieved into the

// FilelFlds data structure, which will cause the

// null flags for FilelFlds.Key2 and FilelFlds.Key3

// to be changed by the operation (if the CHAIN

// finds a record).

Keys.Keyl = 'NN';

%NULLIND (Keys.Key2) = ON;
CHAIN %KDS(Keys : 2) Recl FilelFlds;

Figure 100. Example of handling null-capable key fields

Database Null Value Support

* Using the same file as the previous example, define two
* key lists, one containing three keys and one containing

* two keys.
CLONO1Factorl+++++++Opcode (E) +Factor2+++++++Resul t++++++++Len++D+Hi LoEq.
C Full_Ki1 KLIST
C KFLD Keyl
C KFLD *INO2 Key2
C KFLD *INO3 Key3
C Partial_KIl KLIST
C KFLD Keyl
C KFLD *INO5 Key2
*
* *INO2 is ON and *INO3 is OFF for the SETLL operation below.
* Filel will be positioned at the next record that has a key
* that is equal to or greater than 'AA??CC' (where ?? is used
% in this example to indicate NULL)
*
* Because *INO2 is ON, the actual content in the search argument
* for Key2 will be ignored.
*
* If a record exists in Filel with 'AA' in Keyl, a null Key2, and
= 'CC' in Key3, indicator 90 (the Eq indicator) will be set ON.
*
C MOVE 'AA’ Keyl
C MOVE 'cc’ Key3
C EVAL *INO2 = '1'
C EVAL *INO3 = '0'
C Full_Ki1 SETLL Recl 90

Figure 101. Example of handling null key fields with KLIST (Part 1 of 2)

Chapter 10. Data Types and Data Formats 215

Database Null Value Support

216

The CHAIN operation below will retrieve a record with 'JJ' in Keyl,
'"KK' in Key2, and a null Key3. Again, because *INO3 is ON, even
if the programmer had moved some value (say 'XX') into the search
argument for Key3, 'XX' will not be used. This means if Filel
actually has a record with a key 'JJKKXX', that record will not

be retrieved.

L I R

MOVE ‘33! Keyl
MOVE KK Key2
EVAL *INO2 = '0'
EVAL *INO3 = '1'
Full_Ki1 CHAIN Recl 80

OOOO0O

The CHAIN operation below uses a partial key as the search argument.
It will retrieve a record with 'NN' in Keyl, a null key2, and any
value including a null value in Key3.

In the database, the NULL value occupies the highest position in
the collating sequence. Assume the keys in Filel are in ascending
sequence. If Filel has a record with 'NN??xx' as key (where ??
means NULL and xx means any value other than NULL), that record
will be retrieved. If such a record does not exist in Filel, but
Filel has a record with 'NN????' as key, the 'NN????' record will
be retrieved. The null flags for Key2 and Key3 will be set ON

as a result.

R R R R R R N

MOVE 'NN' Keyl
SETON 05
C Partial_KI CHAIN Recl 70

[z Nz]

Figure 101. Example of handling null key fields with KLIST (Part 2 of 2)

Input-Only Support for Null-Capable Fields

ILE RPG Reference

When an externally described input-only file contains null-capable fields and the
ALWNULLCINPUTONLY) keyword is specified on a control specification, the
following conditions apply:

* When a record is retrieved from a database file and there are some fields
containing null values in the record, database default values for the null-capable
fields will be placed into those fields containing null values. The default value
will be the user defined DDS defaults or system defaults.

* You will not be able to determine whether any given field in the record has a
null value.

* Control-level indicators, match-field entries and field indicators are not allowed
on an input specification if the input field is a null-capable field from an
externally described input-only file.

* Keyed operations are not allowed when factor 1 of a keyed input calculation
operation corresponds to a null-capable key field in an externally described
input-only file.

Note: The same conditions apply for *INPUTONLY or *YES when specified on the
ALWNULL command parameter.

Database Null Value Support

ALWNULL (*NO)

When an externally described file contains null-capable fields and the

ALWNULL(*NO) keyword is specified on a control specification, the following

conditions apply:

* A record containing null values retrieved from a file will cause a data mapping
error and an error message will be issued.

* Data in the record is not accessible and none of the fields in the record can be
updated with the values from the input record containing null values.

* With this option, you cannot place null values in null-capable fields for updating
or adding a record. If you want to place null values in null-capable fields, use
the ALWNULL(*USRCTL) option.

Error Handling for Database Data Mapping Errors

For any input or output operation, a data mapping error will cause a severe error
message to be issued. For blocked output, if one or more of the records in the
block contains data mapping errors and the file is closed before reaching the end
of the block, a severe error message is issued and a system dump is created.

Chapter 10. Data Types and Data Formats 217

Error Handling for Database Data Mapping Errors

218 ILE RPG Reference

Chapter 11. Editing Numeric Fields

Editing provides a means of:

* Punctuating numeric fields, including the printing of currency symbols, commas,
periods, minus sign, and floating minus

* Moving a field sign from the rightmost digit to the end of the field
* Blanking zero fields

* Managing spacing in arrays

* Editing numeric values containing dates

* Floating a currency symbol

¢ Filling a print field with asterisks

This chapter applies only to non-float numeric fields. To output float fields in the
external display representation, specify blank in position 52 of the output
specification. To obtain the external display representation of a float value in
calculations, use the %EDITFLT built-in function.

A field can be edited by edit codes, or edit words. You can print fields in edited
format using output specifications or you can obtain the edited value of the field
in calulation specifications using the built-in functions %EDITC (edit code) and
%EDITW (edit word).

When you print fields that are not edited, the fields are printed as follows:
* Float fields are printed in the external display representation.
* Other numeric fields are printed in zoned numeric representation.

The following examples show why you may want to edit numeric output fields.

Type of Field Field in the Printing of Unedited |Printing of Edited
Computer Field Field

Alphanumeric JOHN T SMITH JOHN T SMITH JOHN T SMITH

Numeric 0047652 0047652 47652

(positive)

Numeric 004765K 004765K 47652-

(negative)

The unedited alphanumeric field and the unedited positive numeric field are easy
to read when printed, but the unedited negative numeric field is confusing because
it contains a K, which is not numeric. The K is a combination of the digit 2 and the
negative sign for the field. They are combined so that one of the positions of the
field does not have to be set aside for the sign. The combination is convenient for
storing the field in the computer, but it makes the output hard to read. Therefore,
to improve the readability of the printed output, numeric fields should be edited
before they are printed.

© Copyright IBM Corp. 1994, 2004 219

Edit Codes

Edit Codes

220

Edit codes provide a means of editing numeric fields according to a predefined
pattern. They are divided into three categories: simple (X, Y, Z), combination (1
through 4, A through D, | through Q), and user-defined (5 through 9). In output
specifications, you enter the edit code in position 44 of the field to be edited. In
calculation specifications, you specify the edit code as the second parameter of the
%EDITC built-in function.

Simple Edit Codes

You can use simple edit codes to edit numeric fields without having to specify any
punctuation. These codes and their functions are:

¢ The X edit code ensures a hexadecimal F sign for positive fields. However,
because the system does this, you normally do not have to specify this code.
Leading zeros are not suppressed. The X edit code does not modify negative
numbers.

* The Y edit code is normally used to edit a 3- to 9-digit date field. It suppresses
the leftmost zeros of date fields, up to but not including the digit preceding the
first separator. Slashes are inserted to separate the day, month, and year. The
“DATEDIT(fmt{separator})” on page 252 and [“DECEDIT(*JOBRUN | "value’)’]
on page 253| keywords on the control specification can be used to alter edit
formats.

Note: The Y edit code is not valid for *YEAR, *MONTH, and *DAY.

* The Z edit code removes the sign (plus or minus) from and suppresses the
leading zeros of a numeric field. The decimal point is not placed in the field.

Combination Edit Codes

ILE RPG Reference

The combination edit codes (1 through 4, A through D, J through Q) punctuate a
numeric field.

The DECEDIT keyword on the control specification determines what character is
used for the decimal separator and whether leading zeros are suppressed. The
decimal position of the source field determines whether and where a decimal point
is placed. If decimal positions are specified for the source field and the zero
balance is to be suppressed, the decimal separator is included only if the field is
not zero. If a zero balance is to be suppressed, a zero field is output as blanks.

When a zero balance is not to be suppressed and the field is equal to zero, either
of the following is output:

* A decimal separator followed by n zeros, where n is the number of decimal
places in the field

* A zero in the units position of a field if no decimal places are specified.

You can use a floating currency symbol or asterisk protection with any of the 12
combination edit codes. The floating currency symbol appears to the left of the first
significant digit. The floating currency symbol does not print on a zero balance
when an edit code is used that suppresses the zero balance. The currency symbol
does not appear on a zero balance when an edit code is used that suppresses the
zero balance.

The currency symbol for the program is a dollar sign ($) unless a currency symbol
is specified with the CURSYM keyword on the control specification.

Edit Codes

To specify a floating currency symbol in output specifications, code the currency
symbol in positions 53-55 as well as an edit code in position 44 for the field to be
edited.

For built-in function %EDITC, you specify a floating currency symbol in the third
parameter. To use the currency symbol for the program, specify *CURSYM. To use
another currency symbol, specify a character constant of length 1.

Asterisk protection causes an asterisk to replace each zero suppressed. A complete
field of asterisks replaces the fiield on a zero balance source field. To specify
asterisk protection in output specifications, code an asterisk constant in positions
53 through 55 of the output specifications, along with an edit code. To specify
asterisk protection using the built-in function %EDITC, specify *ASTFILL as the
third parameter.

Asterisk fill and the floating currency symbol cannot be used with the simple (X, Y,
Z) or with the user-defined (5 through 9) edit codes.

A currency symbol can appear before the asterisk fill (fixed currency symbol). You

can do this in output specifications with the following coding;:

1. Place a currency symbol constant in position 53 of the first output specification.
The end position specified in positions 47-51 should be one space before the
beginning of the edited field.

2. In the second output specification, place the edit field in positions 30-43, an edit
code in position 44, end position of the edit field in positions 47-51, and "*’ in
positions 53-55.

You can do this using the %EDITC built-in function by concatenating the currency
symbol to the %EDITC result.

C EVAL X = "'$" + %EDITC(N: 'A' : *ASTFILL)

In output specifications, when an edit code is used to print an entire array, two
blanks precede each element of the array (except the first element).

Note: You cannot edit an array using the %EDITC built-in function.

able 30) summarizes the functions of the combination edit codes. The codes edit
the field in the format listed on the left. A negative field can be punctuated with
no sign, CR, a minus sign (-), or a floating minus sign as shown on the top of the
figure.

Table 30. Combination Edit Codes

Negative Balance Indicator

Prints with | Prints Zero | No Sign CR - Floating
Grouping Balance Minus
Separator

Yes Yes 1 A] N
Yes No 2 B K 0
No Yes 3 C L P
No No 4 D M Q

Chapter 11. Editing Numeric Fields 221

Edit Codes

Table 31. Edit Codes

User-Defined Edit Codes

IBM has predefined edit codes 5 through 9. You can use them as they are, or you
can delete them and create your own. For a description of the IBM-supplied edit
codes, see the iSeries Information Center programming category.

The user-defined edit codes allow you to handle common editing problems that
would otherwise require the use of an edit word. Instead of the repetitive coding
of the same edit word, a user-defined edit code can be used. These codes are
system defined by the CL command CRTEDTD (Create Edit Description).

When you edit a field defined to have decimal places, be sure to use an edit word
that has an editing mask for both the fractional and integer portions of the field.
Remember that when a user-defined edit code is specified in a program, any
system changes made to that user-defined edit code are not reflected until the
program is recompiled. For further information on CRTEDTD, see the iSeries
Information Center programming category.

Editing Considerations

Remember the following when you specify any of the edit codes:

* Edit fields of a non-printer file with caution. If you do edit fields of a
non-printer file, be aware of the contents of the edited fields and the effects of
any operations you do on them. For example, if you use the file as input, the
fields written out with editing must be considered character fields, not numeric
fields.

* Consideration should be given to data added by the edit operation. The amount
of punctuation added increases the overall length of the edited value. If these
added characters are not considered when editing in output specifications, the
output fields may overlap.

* The end position specified for output is the end position of the edited field. For
example, if any of the edit codes] through M are specified, the end position is
the position of the minus sign (or blank if the field is positive).

* The compiler assigns a character position for the sign even for unsigned numeric
fields.

Summary of Edit Codes

summarizes the edit codes and the options they provide. A simplified
version of this table is printed above positions 45 through 70 on the output
specifications. [Table 32 on page 224] shows how fields look after they are edited.

[Table 33 on page 225|shows the effect that the different edit codes have on the
same field with a specified end position for output.

DECEDIT Keyword Parameter
Edit Commas Decimal Sign for " ") 0,/ 0. Zero Suppress
Code Point Negative
Balance

1 Yes Yes No Sign .00 or 0 ,00 0or 0 0,00 or O 0.00 or O Yes

2 Yes Yes No Sign Blanks Blanks Blanks Blanks Yes

3 Yes No Sign .00 or 0 ,00 or 0 0,00 or O 0.00 or O Yes

4 Yes No Sign Blanks Blanks Blanks Blanks Yes
222 ILE RPG Reference

Edit Codes

Table 31. Edit Codes (continued)

DECEDIT Keyword Parameter
Edit Commas Decimal Sign for ’.’ 'l 0,/ 0. Zero Suppress
Code Point Negative
Balance
59
A Yes Yes CR .00 or 0 ,00 or 0 0,00 or 0 0.00 or O Yes
B Yes Yes CR Blanks Blanks Blanks Blanks Yes
C Yes CR .00 or 0 ,00 0r 0 0,00 or 0 0.00 or 0 Yes
D Yes CR Blanks Blanks Blanks Blanks Yes
] Yes Yes - (minus) .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes
K Yes Yes - (minus) Blanks Blanks Blanks Blanks Yes
L Yes - (minus) .00 or 0 ,00 0r 0 0,00 or 0 0.00 or 0 Yes
M Yes - (minus) Blanks Blanks Blanks Blanks Yes
N Yes Yes - (floating .00 or 0 ,00 0r 0 0,00 or 0 0.00 or 0 Yes
minus)
(@) Yes Yes - (floating Blanks Blanks Blanks Blanks Yes
minus)
P Yes - (floating .00 or 0 ,00 or 0 0,00 or 0 0.00 or O Yes
minus)
Q Yes - (floating Blanks Blanks Blanks Blanks Yes
minus)
X2
Y? Yes
74 Yes
Notes:

1. These are the user-defined edit codes.

2. The X edit code ensures a hexadecimal F sign for positive values. Because the system does this for you, normally
you do not have to specify this code.

3. The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following
pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn

nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn

nnnn/nn/nn

nnnnn/nn/nn

The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

Chapter 11. Editing Numeric Fields 223

Edit Codes

Table 32. Examples of Edit Code Usage

pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nn
nnn/nn/nn
nnnn/nn/nn
nnnnn/nn/nn

numeric fiel

nn Format
nn Format
Format
Format

d.

1. These edit codes are user-defined.

used with M, D or blank in position 19
used with M, D or blank in position 19
used with Y in position 19
used with Y in position 19

Positive Positive Negative Negative Zero Zero
Number- Number- Number- Number- Balance- Balance-
Two No Three No Two No

Edit Decimal Decimal Decimal Decimal Decimal Decimal

Codes Positions Positions Positions Positions Positions Positions

Unedited 1234567 1234567 00012b° 00012b° 000000 000000

1 12,345.67 1,234,567 120 120 .00 0

2 12,345.67 1,234,567 120 120

3 12345.67 1234567 120 120 .00 0

4 12345.67 1234567 120 120

59!

A 12,345.67 1,234,567 .120CR 120CR .00 0

B 12.345.67 1,234,567 .120CR 120CR

C 12345.67 1234567 .120CR 120CR .00 0

D 12345.67 1234567 120CR 120CR

J 12,345.67 1,234,567 .120- 120- .00 0

K 12,345,67 1,234,567 .120- 120-

L 12345.67 1234567 .120- 120- .00 0

M 12345.67 1234567 .120- 120-

N 12,345.67 1,234,567 -.120 -120 .00 0

@) 12,345,67 1,234,567 -.120 -120

P 12345.67 1234567 -.120 -120 .00 0

Q 12345.67 1234567 -.120 -120

X? 1234567 1234567 00012b° 00012b° 000000 000000

Y? 0/01/20 0/01/20 0/00/00 0/00/00

z7* 1234567 1234567 120 120

Notes:

2. The X edit code ensures a hex F sign for positive values. Because the system does this for you, normally you do
not have to specify this code.

3. The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following

4. The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros of a

5. The b represents a blank. This may occur if a negative zero does not correspond to a printable character.

224 ILE RPG Reference

Edit Codes

Table 33. Effects of Edit Codes on End Position

Negative Number, 2 Decimal Positions. End Position Specified

as 10.

Output Print Positions
Edit Code 3 4 5 6 7 8 9 10 11
Unedited 0 0 4 1 K
1 4 1 2
2 4 1 2
3 4 1 2
4 4 1 2
5-92
A 4 1 2 C R
B 4 1 2 C R
C 4 1 2 C R
D 4 1 2 C R
J 4 1 2 -
K 4 1 2 -
L 4 1 2 -
M 4 1 2 -
N - 4 1 2
@) - 4 1 2
P - 4 1 2
Q - 4 1 2
X 0 0 4 1 K!
Y 0 / 4 1 / 2
Z 4 1 2
Notes:

1. Krepresents a negative 2.

2. These are user-defined edit codes.

Edit Words

If you have editing requirements that cannot be met by using the edit codes
described above, you can use an edit word. An edit word is a character literal or a
named constant specified in positions 53 - 80 of the output specification. It
describes the editing pattern for an numeric and allows you to directly specify:

* Blank spaces

¢ Commas and decimal points, and their position

* Suppression of unwanted zeros

* Leading asterisks

¢ The currency symbol, and its position

* Addition of constant characters

¢ Output of the negative sign, or CR, as a negative indicator.

Chapter 11. Editing Numeric Fields 225

Edit Words

226

The edit word is used as a template, which the system applies to the source data
to produce the output.

The edit word may be specified directly on an output specification or may be
specified as a named constant with a named constant name appearing in the edit
word field of the output specification. You can obtain the edited value of the field
in calulation specifications using the built-in function %EDITW (edit word).

Edit words are limited to 115 characters.

How to Code an Edit Word

To output using an edit word, code the output specifications as shown below:

Position
Entry

21-29 Can contain conditioning indicators.

30-43 Contains the name of the numeric field from which the data that is to be
edited is taken.

44 Edit code. Must be blank, if you are using an edit word to edit the source
data.
45 A “B” in this position indicates that the source data is to be set to zero or

blanks after it has been edited and output. Otherwise the source data
remains unchanged.

47-51 Identifies the end (rightmost) position of the field in the output record.

53-80 Edit word. Can be up to 26 characters long and must be enclosed by
apostrophes, unless it is a named constant. Enter the leading apostrophe,
or begin the named constant name in column 53. The edit word, unless a
named constant, must begin in column 54.

To edit using an edit word in calculation specifications, use built-in function
%EDITW, specifying the value to be edited as the first parameter, and the edit
word as the second parameter.

Parts of an Edit Word

ILE RPG Reference

An edit word consists of three parts: the body, the status, and the expansion. The
following shows the three parts of an edit word:

EDIT WORD
b

Body Status Expansion
Figure 102. Parts of an Edit Word

The body is the space for the digits transferred from the source data field to the
edited result. The body begins at the leftmost position of the edit word. The
number of blanks (plus one zero or an asterisk) in the edit word body must be
equal to or greater than the number of digits of the source data field to be edited.
The body ends with the rightmost character that can be replaced by a digit.

Edit Words

The status defines a space to allow for a negative indicator, either the two letters
CR or a minus sign (-). The negative indicator specified is output only if the source
data is negative. All characters in the edit word between the last replaceable
character (blank, zero suppression character) and the negative indicator are also
output with the negative indicator only if the source data is negative; if the source
data is positive, these status positions are replaced by blanks. Edit words without
the CR or - indicators have no status positions.

The status must be entered after the last blank in the edit word. If more than one
CR follows the last blank, only the first CR is treated as a status; the remaining
CRs are treated as constants. For the minus sign to be considered as a status, it
must be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered after the
status. Ampersands are replaced by blank spaces in the output; constants are
output as is. If status is not specified, the expansion follows the body.

Forming the Body of an Edit Word
The following characters have special meanings when used in the body of an edit
word:

Blank: Blank is replaced with the character from the corresponding position of
the value to be edited. A blank position is referred to as a digit position.

Decimals and Commas: Decimals and commas are in the same relative position
in the edited output field as they are in the edit word unless they appear to the left
of the first significant digit in the edit word. In that case, they are blanked out or
replaced by an asterisk.

In the following examples below, all the leading zeros will be suppressed (default)
and the decimal point will not appear unless there is a significant digit to its left.

Edit Word Source Data Appears in Edited Result as:
'‘bbbbbbb' 0000072 bbbbb72

‘bbbbbbb.bb' 000000012 bbbbbbbb12

'‘bbbbbbb.bb' 000000123 bbbbbb1.23

Zeros: The first zero in the body of the edit word is interpreted as an
end-zero-suppression character. This zero is placed where zero suppression is to
end. Subsequent zeros put into the edit word are treated as constants (see

“Constants” below).

Any leading zeros in the source data are suppressed up to and including the
position of the end-zero-suppression character. Significant digits that would appear
in the end-zero-suppression character position, or to the left of it, are output.

Edit Word Source Data Appears in Edited Result as:
'‘bbb0bbbbbb’ 00000004 bbbb000004
"bbbObbbbbd' 012345 bbbb012345
'‘bbb0bbbbbb’ 012345678 bb12345678

If the leading zeros include, or extend to the right of, the end-zero-suppression

character position, that position is replaced with a blank. This means that if you

Chapter 11. Editing Numeric Fields

227

Edit Words

228

ILE RPG Reference

wish the same number of leading zeros to appear in the output as exist in the
source data, the edit word body must be wider than the source data.

Edit Word Source Data Appears in Edited Result as:
'0bbb’ 0156 b156
'0bbbb’ 0156 b0156

Constants (including commas and decimal point) that are placed to the right of the
end-zero-suppression character are output, even if there is no source data.
Constants to the left of the end-zero-suppression character are only output if the
source data has significant digits that would be placed to the left of these

constants.

Edit Word Source Data Appears in Edited Result as:
'bbbbbb0.bb’ 000000001 bbbbbbb.01

'‘bbbbbb0.bb' 000000000 bbbbbbb.00

'bbb,b0b.bb' 00000012 bbbbbb0.12

'bbb,b0b.bb' 00000123 bbbbbh1.23

'b0b,bbb.bb' 00000123 5b0,001.23

Asterisk: The first asterisk in the body of an edit word also ends zero
suppression. Subsequent asterisks put into the edit word are treated as constants
(see “Constants” below). Any zeros in the edit word following this asterisk are also
treated as constants. There can be only one end-zero-suppression character in an
edit word, and that character is the first asterisk or the first zero in the edit word.

If an asterisk is used as an end-zero-suppression character, all leading zeros that
are suppressed are replaced with asterisks in the output. Otherwise, the asterisk
suppresses leading zeros in the same way as described above for “Zeros”.

Edit Word Source Data Appears in Edited Result as:
"*bbbbbb.bb' 000000123 *Hbbbd1.23

'‘bbbbb*h.bb’ 000000000 xee0.00

'‘bbbbb*h.bh**' 000056342 *563.42**

Note that leading zeros appearing after the asterisk position are output as leading
zeros. Only the suppressed leading zeros, including the one in the asterisk
position, are replaced by asterisks.

Currency Symbol: A currency symbol followed directly by a first zero in the edit
word (end-zero-suppression character) is said to float. All leading zeros are
suppressed in the output and the currency symbol appears in the output
immediately to the left of the most significant digit.

Edit Word Source Data Appears in Edited Result as:
'bb,bbb,b$0.bb’ 000000012 bbbbbbbbb$.12
'bb, bbb, b$0.bb’ 000123456 bbbH$1,234.56

Edit Words

If the currency symbol is put into the first position of the edit word, then it will
always appear in that position in the output. This is called a fixed currency

symbol.

Edit Word Source Data Appears in Edited Result as:
'$b,bbb,bb0.bb’ 000123456 $bbbb1,234.56

'$bb,bbb,000.bb' 000000000 $bbbbbbHH00.00

'$b,bbb, *bb.bd' 000123456 $**4%1,234.56

A currency symbol anywhere else in the edit word and not immediately followed
by a zero end-suppression-character is treated as a constant (see “Constants”

below).

Ampersand: Causes a blank in the edited field. The example below might be used
to edit a telephone number. Note that the zero in the first position is required to

print the constant AREA.

Edit Word

Source Data

Appears in Edited Result as:

'0AREA&bHD&NO. &bbb-bbbb'

4165551212

HAREADH416bNO.b555-1212

Constants: All other characters entered into the body of the edit word are treated
as constants. If the source data is such that the output places significant digits or
leading zeros to the left of any constant, then that constant appears in the output.
Otherwise, the constant is suppressed in the output. Commas and the decimal

point follow the same rules as for constants. Notice in the examples below, that the
presence of the end-zero-suppression character as well as the number of significant
digits in the source data, influence the output of constants.

The following edit words could be used to print cheques. Note that the second

asterisk is treated as a constant, and that, in the third example, the constants
preceding the first significant digit are not output.

Edit Word Source Data Appears in Edited Result as:
'$bbbbbb*DOLLARS&DH&CTS' 000012345 $**+**123*DOLLARSH45HCTS
'$bbbbbb* DOLLARS&bH&CTS' 000000006 $reee*DOLLARSHO6HCTS
'$bbbbbbb&DOLLARS&bD&CTS' 000000006 $bbbbbbbbbbbbbbbbb6bCTS

A date could be edited by using either edit word:

Edit Word Source Data Appears in Edited Result as:
'bb/bb/bb' 010388 b1/03/88
'0bb/bb/bb’ 010389 b01/03/89

Note that any zeros or asterisks following the first occurrence of an edit word are
treated as constants. The same is true for - and CR:

Edit Word Source Data Appears in Edited Result as:
'vb0.6H000' 01234 512.34000
'bb*.bb000’ 01234 *12.34000

Chapter 11. Editing Numeric Fields

229

Edit Words

Forming the Status of an Edit Word
The following characters have special meanings when used in the status of an edit
word:

Ampersand: Causes a blank in the edited output field. An ampersand cannot be
placed in the edited output field.

CR or minus symbol: If the sign in the edited output is plus (+), these positions
are blanked out. If the sign in the edited output field is minus (-), these positions
remain undisturbed.

The following example adds a negative value indication. The minus sign will print
only when the value in the field is negative. A CR symbol fills the same function
as a minus sign.

Edit Word Source Data Appears in Edited Result as:
'bbbbbbb.bb-' 000000123- bbbbbb1.23-
'‘bbbbbbb.bb-' 000000123 bbbbbh1.23b

Constants between the last replaceable character and the - or CR symbol will print
only if the field is negative; otherwise, blanks will appear in these positions. Note
the use of ampersands to represent blanks:

Edit Word Source Data Appears in Edited Result as:
'b,bbb,bb0.bb&30&DAY&CR' 000000123- bbbbbbbbb1.23630bDAYHCR
'b,bbb,bb0.bb&30& DAY &CR' 000000123 bbbbbbbbb1.23bbbbbbbbbb

Formatting the Expansion of an Edit Word

The characters in the expansion portion of an edit word are always used. The
expansion cannot contain blanks. If a blank is required in the edited result, specify
an ampersand in the body of the edit word.

Constants may be added to appear with any value of the number:

Edit Word Source Data Appears in Edited Result as:
'b,bb0.bb&CR&NET' 000123- bbbb1.23bCRBNET
'b,bb0.bb&CR&NET' 000123 bbbb1.23bbbHNET

Note that the CR in the middle of a word may be detected as a negative field
value indication. If a word such as SECRET is required, use the coding in the
example below.

Edit Word Source Data Appears in Edited Result as:
'bb0.bb&SECRET' 12345- 123.45bSECRET
'bb0.bb&SECRET" 12345 123.45bbbbHET
'D50.bb&CR&&SECRET" 12345 123.45bbbbbSECRET

Summary of Coding Rules for Edit Words
The following rules apply to edit words in output specifications:
* Position 44 (edit codes) must be blank.

230 ILE RPG Reference

Edit Words

* Positions 30 through 43 (field name) must contain the name of a numeric field.

* An edit word must be enclosed in apostrophes, unless it is a named constant.
Enter the leading apostrophe or begin a named constant name in position 53.
The edit word itself must begin in position 54.

The following rules apply to edit words in general:

* The edit word can contain more digit positions (blanks plus the initial zero or
asterisk) than the field to be edited, but must not contain less. If there are more
digit positions in the edit word than there are digits in the field to be edited,
leading zeros are added to the field before editing.

* If leading zeros from the source data are desired, the edit word must contain
one more position than the field to be edited, and a zero must be placed in the
high-order position of the edit word.

* In the body of the edit word only blanks and the zero-suppression stop
characters (zero and asterisk) are counted as digit positions. The floating
currency symbol is not counted as a digit position.

* When the floating currency symbol is used, the sum of the number of blanks
and the zero-suppression stop character (digit positions) contained in the edit
word must be equal to or greater than the number of positions in the field to be
edited.

* Any zeros or asterisks following the leftmost zero or asterisk are treated as
constants; they are not replaceable characters.

* When editing an unsigned integer field, DB and CR are allowed and will always
print as blanks.

Editing Externally Described Files

To edit output for externally described files, place the edit codes in data
description specifications (DDS), instead of in RPG 1V specifications. See the iSeries
Information Center database and file systems category for information on how to
specify edit codes in the data description specifications. However, if an externally
described file, which has an edit code specified, is to be written out as a program
described output file, you must specify editing in the output specifications. In this
case, any edit codes in the data description specifications are ignored.

Chapter 11. Editing Numeric Fields 231

Editing Externally Described Files

232 ILE RPG Reference

Part 3. Specifications

This section describes the RPG IV specifications. First, information common to
several specifications, such as keyword syntax and continuation rules is described.
Next, the specifications are described in the order in which they must be entered in
your program. Each specification description lists all the fields on the specification
and explains all the possible entries.

© Copyright IBM Corp. 1994, 2004 233

234 ILE RPG Reference

Chapter 12. About Specifications

RPG 1V source is coded on a variety of specifications. Each specification has a
specific set of functions.

This reference contains a detailed description of the individual RPG IV
specifications. Each field and its possible entries are described.
[“Operations,” on page 379| describes the operation codes that are coded on the
calculation specification, which is described in [Chapter 17, “Calculation|
Specifications,” on page 347 |

RPG IV Specification Types

There are three groups of source records that may be coded in an RPG IV program:
the main source section, the subprocedure section, and the program data section.
The jmain source section| consists of the first set of H, E, D, I, C, and O
specifications in a module. If the keyword NOMAIN is not specified, it
corresponds to a standalone program or a main procedure. If NOMAIN is
specified, it does not contain a main procedure, and so it does not contain any
executable calculations. Every module requires a main source section
independently of whether subprocedures are coded.

The subprocedure section|contains specifications that define any subprocedures
coded within a module. The [program data section| contains source records with
data that is supplied at compile time.

The following illustration shows the types of source records that may be entered
into each group and their order.

Note
The RPG IV source must be entered into the system in the order shown. Any
of the specification types can be absent, but at least one from the main source
section must be present.

© Copyright IBM Corp. 1994, 2004 235

RPG IV Specification Types

Compile-Time Array and Table Data \4\
*% b
Alternate Collating Sequence Records \F\
*% b
File Translation records \F

*% 5§

Program Data

‘ Subprocedure

‘ @ Output
@ Calculation
o Input
‘@ Definition
G File Description

‘ ‘D Control

Main Source Section

Figure 103. Source Records and Their Order in an RPG IV Source Program

Main Source Section Specifications

[H| Control (Header) specifications provide information about program
generation and running of the compiled program. Refer to Cha;_ter 13]

[“Control Specifications,” on page 245| for a description of the entries on
this specification.

ﬂ File description specifications define all files in the program. Refer to
(Chapter 14, “File Description Specifications,” on page 263 for a description
of the entries on this specification.

D | Definition specifications define items used in your program. Arrays, tables,
data structures, subfields, constants, standalone fields, prototypes and their
parameters, and procedure interfaces and their parameters are defined on
this specification. Refer to [Chapter 15, “Definition Specifications,” on page|
for a description of the entries on this specification.

1] Input specifications describe records, and fields in the input files and

236 ILE RPG Reference

RPG IV Specification Types

indicate how the records and fields are used by the program. Refer to
[Chapter 16, “Input Specifications,” on page 331|for a description of the
entries on this specification.

Calculation specifications describe calculations to be done by the program
and indicate the order in which they are done. Calculation specifications
can control certain input and output operations. Refer to
[“Calculation Specifications,” on page 347] for a description of the entries on
this specification.

0 Output specifications describe the records and fields and indicate when
they are to be written by the program. Refer to [Chapter 18, “Output]
Specifications,” on page 357 for a description of the entries on this
specification.

Subprocedure Specifications

P Procedure specifications describe the procedure-interface definition of a
prototyped program or procedure. Refer to [Chapter 19, “Procedure]
Specifications,” on page 373 for a description of the entries on this
specification.

D] Definition specifications define items used in the prototyped procedure.
Procedure-interface definitions, entry parameters, and other local items are
defined on this specification. Refer to [Chapter 15, “Definition|
Specifications,” on page 287] for a description of the entries on this
specification.

Calculation specifications perform the logic of the prototyped procedure.
Refer to [Chapter 17, “Calculation Specifications,” on page 347 for a
description of the entries on this specification.

The RPG IV language consists of a mixture of position-dependent code and free
form code. Those specifications which support keywords (control, file description,
definition, and procedure) allow free format in the keyword fields. The calculation
specification allows free format with those operation codes which support an
extended-factor 2. Otherwise, RPG IV entries are position specific. To represent
this, each illustration of RPG IV code will be in listing format with a scale drawn
across the top.

Program Data

Source records with program data follow all source specifications. The first line of
the data section must start with **.

If desired, you can indicate the type of program data that follows the **, by
specifying any of these keywords as required: |“CTDATA” on page 297
“FTRANS{(*NONE | *SRC)}” on page 256 or[“ALTSEQ{(*NONE | *SRC | *EXT)}"|
on page 247 By associating the program data with the appropriate keyword, you
can place the groups of program data in any order after the source records.

The first entry for each input record must begin in position 1. The entire record
need not be filled with entries. Array elements associated with unused entries will
be initialized with the default value.

For more information on entering compile-time array records, see|“Rules for Array|
Source Records” on page 154.| For more information on file translation, see @'
[ranslation” on page 111]For more information on alternate collating sequences,
see [“Alternate Collating Sequence” on page 184

Chapter 12. About Specifications 237

Common Entries

Common Entries

238

The following entries are common to all RPG specifications preceding program
data:

* Positions 1-5 can be used for comments.
* Specification type (position 6). The following letter codes can be used:
Entry Specification Type

ontro

Definitio

alculatio

Output

& RIS Elle
@) e
g a

[¢)
w
(@)
=,
i)
o
o
5 |

ORI 0 I w R o v

rocedure

* Comment Statements

— Position 7 contains an asterisk (*). This will denote the line as a comment line
regardless of any other entry on the specification. In a free-form calculation
specification, you can use // for a comment. Any line on any fixed-form
specification that begins with // is considered a comment by the compiler.
The // can start in any position provided that positions 6 to the // characters
contain blanks.

— Positions 6 to 80 are blank.

* Positions 7 to 80 are blank and position 6 contains a valid specification. This is a

valid line, not a comment, and sequence rules are enforced.

Syntax of Keywords

Keywords may have no parameters, optional parameters, or required parameters.
The syntax for keywords is as follows:

ILE RPG Reference

Keyword(parameterl : parameter2)

where:

e Parameter(s) are enclosed in parentheses ().

Note: Parentheses should not be specified if there are no parameters.

* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:

Braces { } indicate optional parameters or optional elements of parameters.
An ellipsis (...) indicates that the parameter can be repeated.

A colon (:) separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.

A vertical bar () indicates that only one parameter may be specified for the
keyword.

A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Common Entries

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

Table 34. Examples of Keyword Notation

Notation Example of Notation Used |Description Example of Source
Entered
braces {} PRTCTL (data_struct Parameter data_struct is required and PRTCTL
{:*COMPAT}) parameter *COMPAT is optional. (data_structl)
braces {} TIME(format {separator}) Parameter format{separator} is required, but | TIME(*HMS&)
the {separator} part of the parameter is
optional.
colon (:) RENAME(Ext_format Parameters Ext_format and Int_format are RENAME (namekE:

:Int_format)

required.

namel)

ellipsis (...)

IGNORE(recformat

Parameter recformat is required and can be

IGNORE (recformatl:

{:recformat...}) specified more than once. recformat2:
recformat3)
vertical bar (1) |FLTDIV{(*NO | *YES)} Specify *NO or *YES or no parameters. FLTDIV
blank OPTIONS(*OMIT *NOPASS | One of *OMIT, *NOPASS, *VARSIZE, OPTIONS(*OMIT :

*VARSIZE *STRING *TRIM
*RIGHTADY)

*STRING, *TRIM, or *RIGHTADJ is required
and more than one parameter can be
optionally specified.

*NOPASS : *VARSIZE
: *TRIM :
*RIGHTAD]J)

Continuation Rules

The fields that may be continued are:

* The keywords field on the control specification

* The keywords field on the file description specification

* The keywords field on the definition specification

* The Extended factor-2 field on the calculation specification

¢ The constant/editword field on the output specification

¢ The Name field on the definition or the procedure specification

General rules for continuation are as follows:

* The continuation line must be a valid line for the specification being continued
(H, E, D, C, or O in position 6)

* No special characters should be used when continuing specifications across
multiple lines, except when a literal or name must be split. For example, the

following pairs are equivalent. In the first pair, the plus sign (+) is an operator,
even when it appears at the end of a line. In the second pair, the plus sign is a
continuation character.

C eval X=a+b
C eval X =a+
C b

C eval x = 'abc'
C eval x = 'ab+
C c'

Only blank lines, empty specification lines or comment lines are allowed
between continued lines

The continuation can occur after a complete token. Tokens are
— Names (for example, keywords, file names, field names)
— Parentheses

Chapter 12. About Specifications 239

Common Entries

240

ILE RPG Reference

— The separator character (:)

- Expression operators

— Built-in functions

— Special words

— Literals

A continuation can also occur within a literal

— For character, date, time, and timestamp literals

- A hyphen (-) indicates continuation is in the first available position in the
continued field

- A plus (+) indicates continuation with the first non-blank character in or
past the first position in the continued field

— For graphic literals
- Either the hyphen (-) or plus (+) can be used to indicate a continuation.

- Each segment of the literal must be enclosed by shift-out and shift-in
characters.

- When the a graphic literal is assembled, only the first shift-out and the last
shift-in character will be included.

- Regardless of which continuation character is used for a graphic literal, the
literal continues with the first character after the shift-out character on the
continuation line. Spaces preceding the shift-out character are ignored.

— For numeric literals
- No continuation character is used

- A numeric literal continues with a numeric character or decimal point on
the continuation line in the continued field

— For hexadecimal and UCS-2 literals
- Either a hyphen (-) or a plus (+) can be used to indicate a continuation
- The literal will be continued with the first non-blank character on the next
line
A continuation can also occur within a name in free-format entries

— In the name entry for Definition and Procedure specifications. For more
information on continuing names in the name entry, see [“Definition and|
[Procedure Specification Name Field” on page 243)

— In the keywords entry for File and Definition specifications.
— In the extended factor 2 entry of Calculation specifications.
You can split a qualified name at a period, as shown below:

C EVAL dataStructureWithALongName.

C subfieldWithAnotherLongName = 5

If a name is not split at a period, code an ellipsis (...) at the end of the partial
name, with no intervening blanks.

Example

Common Entries

L R AN TG TP PR S RS RTUPE. PUPUR ¢ BEPUPIPE AP AR DO
DName++++++++++++tttttttttttttttttttt e R
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords+++++++++ttttttttttttttttttt
D Keywords-cont+++++++tttttttttttttttt

* Define a 10 character field with a long name.

* The second definition is a pointer initialized to the address

* of the variable with the Tong name.

D QuiteLongFieldNameThatCannotAlwaysFitInOneLine...

D S 10A

D Ptr S * inz(%addr(QuiteLongFieldName...

D ThatCannotAlways...

D FitInOneLine))

D ShorterName S 5A

O R U TSPUNN. BRI PR S NS TP PR . SEPRPE DU AR P <1
CLONOlFact0r1+++++++0pc0de(E)+Extended—factor2+++++++++++++++++++++++++++++
C Extended-factor2-++++++++++++++++++++++++++++

* Use the Tong name in an expression
* Note that you can split the name wherever it is convenient.

c EVAL QuiteLongFieldName...

(8 ThatCannotAlwaysFitInOneLine = 'abc'
* You can split any name this way

C EVAL P...

(W tr = %addr(Shorter...

C Name)

Control Specification Keyword Field
The rule for continuation on the control specification is:

* The specification continues on or past position 7 of the next control specification
Example

T S S T R TR I O R S R ST A R
HKeywords+++++++++tttttttttttttttttttttttttttt bttt

H DATFMT(
H *MDY&
H)

File Description Specification Keyword Field
The rules for continuation on the file description specification are:

* The specification continues on or past position 44 of the next file description
specification
* Positions 7-43 of the continuation line must be blank

Example

R R T T T B T AN Uy
FFilename++IPEASFRTen+LKT1en+AIDevice+.Keywords+tttttttttttttttttttttttttttt
F oo Keywords+++++++tttttttttttttttttttttt
F EXTIND

F (

F *INU1

F)

Chapter 12. About Specifications 241

Common Entries

Definition Specification Keyword Field
The rules for continuation of keywords on the definition specification are:

* The specification continues on or past position 44 of the next Definition
specification dependent on the continuation character specified

e Positions 7-43 of the continuation line must be blank
Example

Ea T S T R O T T e N T L T .
DName+++++++++++ETDsSFrom+++To/L+++1Dc. Keywords++++++++tttttttttttttttttttttt

D Keywords-cont++++++ttttttttttttttttt
DMARY C CONST(

D 'Mary had a Tittle lamb, its -

* Only a comment or a completely blank line is allowed in here

D fleece was white as snow.'

D

% Numeric Titeral, continues with the first non blank in/past position 44
*

DNUMERIC C 12345

D 67

* Graphic named constant, must have shift-out in/past position 44

DGRAF C G'oAABBCCDDi+

D oEEFFGGi "'

Calculation Specification Extended Factor-2
The rules for continuation on the Calculation specification are:

* The specification continues on or past position 36 of the next calculation
specification
* Positions 7-35 of the continuation line must be blank

Example

L R T R S T TS P c B S A T -
CLONO1Factorl+++++++Opcode (E) +Extended-factor2+++++++ttttttttttttttttttttt

C Extended-factor2-++++++++++++++++++++++++++++
C EVAL MARY='Mary had a little lamb, its +

* Only a comment or a completely blank line is allowed in here

C fleece was white as snow.'

*

* Arithmetic expressions do not have continuation characters.

* The '+' sign below is the addition operator, not a continuation
* character.

C

C EVAL A = (BxD)/ C +

C 24

* The first use of '+' in this example is the concatenation
* operator. The second use is the character literal continuation.
EVAL ERRMSG = NAME +
' was not found +
in the file.'

OO0

Free-Form Calculation Specification
The rules for continuation on a free-form calculation specification are:

¢ The free-form line can be continued on the next line. The statement continues
until a semicolon is encountered.

Example

242 ILE RPG Reference

Common Entries

/FREE
time = hours * num_employees
+ overtime_saved;
/END-FREE

Output Specification Constant/Editword Field

The rules for continuation on the output specification are:

* The specification continues on or past position 53 of the next output
specification

* Positions 7-52 of the continuation line must be blank
Example

Ovevinnnnnnnn. NOINO2NO3Field+++++++++YB.End++PConstant/editword/DTformat+++
0 Continue Constant/editword+++
0 80 'Mary had a 1little lamb, its-

* Only a comment or a completely blank line is allowed in here
0 fleece was white as snow.'

Definition and Procedure Specification Name Field
The rules for continuation of the name on the definition and procedure

specifications are:

 Continuation rules apply for names longer than 15 characters. Any name (even
one with 15 characters or fewer) can be continued on multiple lines by coding
an ellipsis (...) at the end of the partial name.

* A name definition consists of the following parts:

1. Zero or more continued name lines. Continued name lines are identified as
having an ellipsis as the last non-blank characters in the entry. The name
must begin within positions 7 - 21 and may end anywhere up to position 77
(with an ellipsis ending in position 80). There cannot be blanks between the
start of the name and the ellipsis (...) characters. If any of these conditions is
not true, the line is considered to be a main definition line.

2. One main definition line containing name, definition attributes, and
keywords. If a continued name line is coded, the name entry of the main
definition line may be left blank.

3. Zero or more keyword continuation lines.

Example

Chapter 12. About Specifications 243

Common Entries

244

ILE RPG Reference

LN R AN UG IEPIPE AT SR UL TP P RPN U AU DU -
DName++++++++++t+tttttttttttttttttttttttttt bttt bttt bttt bbb+
DName+++++++++++ETDSFrom+++To/L+++IDC. Keywords+++++++t+tttttttttttttttttt++
D Keywords-cont+++++++tttttttttttttttt
Long name without continued name lines:
RatherLongName S 10A
Long name using 1 continued name line:
NameThatIsEvenLonger...
C 'This is the constant -
that the name represents.'
Long name using 1 continued name Tine:
NameThatIsSoLongItMustBe...
Continued S 10A
Compile-time arrays may have long names:
CompileTimeArrayContainingDataRepresentingTheNamesOfTheMonthsOf...
TheYearInGermanLanguage...
S 20A DIM(12) CTDATA PERRCD(1)
Long name using 3 continued name Tlines:
ThisNameIsSoMuchLongerThanThe...
PreviousNamesThatItMustBe...
ContinuedOnSeveralSpecs...
PR 10A
parm_1 10A VALUE

LONO1Factorl+++++++0Opcode (E) +Extended-factor2++++ttttttttttttttttttttttttt
Extended-factor2-++++++++++++++++tt+tt+++++++
Long names defined on calc spec:
LongTagName TAG
*LIKE DEFINE RatherLongNameQuiteLongName +5

¥ OO X OO F TCOUO0UDU0UO0 ¥ OO0 ¥ OO ¥ OO O *x O %

PName+++++++++++. B oot v et et e e e e e Keywords+++++++++++++++++++++++++++++
PContinuedName++++++++t+ttttttttttttttttttttttttttttttt bttt bbbttt
* Long name specified on Procedure spec:

P ThisNameIsSoMuchLongerThanThe...

P PreviousNamesThatItMustBe...

P ContinuedOnSeveralSpecs...

P B

D ThisNameIsSoMuchLongerThanThe...

D PreviousNamesThatItMustBe...

D ContinuedOnSeveralSpecs...

D PI 10A

D parm_1 10A VALUE

Chapter 13. Control Specifications

The fcontrol-specification statements) identified by an H in position 6, provide
information about generating and running programs. However, there are three
different ways in which this information can be provided to the compiler and the
compiler searches for this information in the following order:

1. A control specification included in your source
2. A named RPGLEHSPEC in *LIBL
3. A data area named DFTLEHSPEC in QRPGLE

Once one of these sources is found, the values are assigned and keywords that are
not specified are assigned their default values.

See the description of the individual entries for their default values.
Note: Compile-option keywords do not have default values. The keyword value is

initialized with the value you specify for the CRTBNDRPG or CRTRPGMOD
command.

TIP
The control specification keywords apply at the module level. This means
that if there is more than one procedure coded in a module, the values
specified in the control specification apply to all procedures.

Using a Data Area as a Control Specification

Use the CL command CRTDTAARA (Create Data Area) to create a data area
defined as type *CHAR. (See the iSeries Information Center programming category
for a description of the Create Data Area command.) Enter the keywords and their
possible parameters that are to be used in the Initial Value field of the command.

For example, to create an RPGLEHSPEC data area that will specify a default date
format of *YMD, and a default date separator /, you would enter:
CRTDTAARA DTAARA(MYLIB/RPGLEHSPEC)

TYPE (*CHAR)

LEN(80)

VALUE ('datfmt (*ymd) datedit(xymd/)"')

The data area can be whatever size is required to accommodate the keywords
specified. The entire length of the data area can only contain keywords.

Control-Specification Statement

The control specification consists solely of keywords. The keywords can be placed
anywhere between positions 7 and 80. Positions 81-100 can be used for comments.

© Copyright IBM Corp. 1994, 2004 245

Control-Specification Statement

I P U/ SN TEPIPE SO S ST JEPIPIE IR - SEPRPPE DU AIPE U - SIS DUPR - PR PR O}
HKeywords+++++++++++++++++++++++++++ttttttttttt R Commen t S HHHHHHHHHHH

Figure 104. Control-Specification Layout

The following is an example of a control specification.

R R o P TP D S O R PP s BV P AR DY -
HKeywords++++++ttttttttttttttttttttttttttttttttt bbbttt bbb bbbt
H ALTSEQ(*EXT) CURSYM('$') DATEDIT(*MDY) DATFMT(*MDY/) DEBUG(*YES)

H DECEDIT('.') FORMSALIGN(*YES) FTRANS(*SRC) DFTNAME (name)

H TIMFMT (*IS0)

H COPYRIGHT('(C) Copyright ABC Programming - 1995')

Position 6 (Form Type)

An H must appear in position 6 to identify this line as the control specification.

Positions 7-80 (Keywords)

The control-specification keywords are used to determine how the program will
deal with devices and how certain types of information will be represented.

The control-specification keywords also include compile-option keywords that
override the default or specified options on the CRTBNDRPG and CRTRPGMOD
commands. These keywords determine the compile options to be used on every
compile of the program.

Control-Specification Keywords

Control-specification keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword(parameterl : parameter?)

where:

* Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.
e An ellipsis (...) indicates that the parameter can be repeated.

* A colon (:) separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.

* A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

* A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

246 ILE RPG Reference

Control-Specification Keywords

If additional space is required for control-specification keywords, the keyword field
can be continued on subsequent lines. See |“Control-Specification Statement” on|
fpage 245 and [“Control Specification Keyword Field” on page 241 |

ACTGRP(*NEW | *CALLER | 'activation-group-name’)

The ACTGRP keyword allows you to specify the activation group the program is
associated with when it is called. If ACTGRP(*NEW) is specified, then the program
is activated into a new activation group. If ACTGRP(*CALLER) is specified, then
the program is activated into the caller’s activation group. If an
activation-group-name is specified, then that name is used when this program is
called.

If the ACTGRP keyword is not specified, then the value specified on the command
is used.

The ACTGRP keyword is valid only if the CRTBNDRPG command is used.

You cannot use the ACTGRP or BNDDIR keywords when creating a program with
DFTACTGRP(*YES).

Note: The name of the activation group created when the program is called will
have exactly the same case as the text entered for the activation-group-name.
The RCLACTGRP command does not allow lower-case text to be specified
for its ACTGRP parameter. If it is required to reclaim an activation group
individually using the RCLACTGRP command then do not enter lower-case
case text for the activation-group-name.

ALTSEQ{(*NONE | *SRC | *EXT)}

The ALTSEQ keyword indicates whether an alternate collating sequence is used, if
so, whether it is internal or external to the source. The following list shows what
happens for the different possible keyword and parameter combinations.

Keyword/Parameter
Collating Sequence Used

ALTSEQ not specified
Normal collating sequence

ALTSEQ(*NONE)
Normal collating sequence

ALTSEQ, no parameters
Alternate collating sequence specified in source

ALTSEQ(*SRC)
Alternate collating sequence specified in source

ALTSEQ(*EXT)
Alternate collating sequence specified by the SRTSEQ and LANGID
command parameters or keywords.

If ALTSEQ is not specified or specified with *NONE or *EXT, an alternate collating
sequence table must not be specified in the program.

ALWNULL(*NO | *INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how you will use records containing
null-capable fields from externally described database files.

Chapter 13. Control Specifications 247

Control-Specification Keywords

248

If ALWNULL(*NO) is specified, then you cannot process records with null-value
fields from externally described files. If you attempt to retrieve a record containing
null values, no data in the record will be accessible and a data-mapping error will
occur.

If ALWNULL(*INPUTONLY) is specified, then you can successfully read records
with null-capable fields containing null values from externally described input-only
database files. When a record containing null values is retrieved, no data-mapping
errors will occur and the database default values are placed into any fields that
contain null values. However, you cannot do any of the following;:

* Use null-capable key fields
* Create or update records containing null-capable fields

* Determine whether a null-capable field is actually null while the program is
running

* Set a null-capable field to be null.

If ALWNULL(*USRCTL) is specified, then you can read, write, and update records
with null values from externally described database files. Records with null keys
can be retrieved using keyed operations. You can determine whether a null-capable
field is actually null, and you can set a null-capable field to be null for output or
update. You are responsible for ensuring that fields containing null values are used
correctly.

If the ALWNULL keyword is not specified, then the value specified on the
command is used.

For more information, see [“Database Null Value Support” on page 209

AUT(*LIBRCRTAUT | *ALL | *CHANGE | *USE | *EXCLUDE |
'authorization-list-name’)

ILE RPG Reference

The AUT keyword specifies the authority given to users who do not have specific
authority to the object, who are not on the authorization list, and whose user
group has no specific authority to the object. The authority can be altered for all
users or for specified users after the object is created with the CL commands Grant
Object Authority (GRTOBJAUT) or Revoke Object Authority (RVKOBJAUT).

If AUT(*LIBRCRTAUT) is specified, then the public authority for the object is taken
from the CRTAUT keyword of the target library (the library that contains the
object). The value is determined when the object is created. If the CRTAUT value
for the library changes after the create, the new value will not affect any existing
objects.

If AUT(*ALL) is specified, then authority is provided for all operations on the
object, except those limited to the owner or controlled by authorization list
management authority. The user can control the object’s existence, specify this
security for it, change it, and perform basic functions on it, but cannot transfer its
ownership.

If AUT(*CHANGE) is specified, then it provides all data authority and the
authority to perform all operations on the object except those limited to the owner
or controlled by object authority and object management authority. The user can
change the object and perform basic functions on it.

Control-Specification Keywords

If AUT(*USE) is specified, then it provides object operational authority and read
authority; that is, authority for basic operations on the object. The user is
prevented from changing the object.

If AUT(*EXCLUDE) is specified, then it prevents the user from accessing the object.

The authorization-list-name is the name of an authorization list of users and
authorities to which the object is added. The object will be secured by this
authorization list, and the public authority for the object will be set to *AUTL. The
authorization list must exist on the system at compilation time.

If the AUT keyword is not specified, then the value specified on the command is
used.

BNDDIR('binding-directory-name’ {:’binding-directory-
name’...})

The BNDDIR keyword specifies the list of binding directories that are used in
symbol resolution.

A binding directory name can be qualified by a library name followed by a slash
delimiter ('library-name/binding-directory-name’). The library name is the name of
the library to be searched. If the library name is not specified, *LIBL is used to find
the binding directory name. When creating a program using CRTBNDRPG, the
library list is searched at the time of the compile. When creating a module using
CRTRPGMOD, the library list is searched when the module is used to create a
program or service program.

If BNDDIR is specified on both the control specification and on the command, all
binding directories are used for symbol resolution. The BNDDIR on the control
specification does not override the BNDDIR on the command.

If the BNDDIR keyword is not specified, then the value specified on the command
is used.

You cannot use the BNDDIR or ACTGRP command parameters or keywords when
creating a program with DFTACTGRP(*YES).

CCSID(*GRAPH : parameter | *UCS2 : number | *CHAR :
*JOBRUN)

CCSID(*GRAPH) and CCSID(*UCS2) set the default graphic (*GRAPH) and UCS-2
(*UCS2) CCSIDs for the module. These defaults are used for literals, compile-time
data, program-described input and output fields, and data definitions that do not
have the CCSID keyword coded.

CCSID(*CHAR) sets the CCSID used for the module’s character data at runtime.

CCSID(*GRAPH : *IGNORE | *SRC | number)
Sets the default graphic CCSID for the module. The possible values are:

*IGNORE
This is the default. No conversions are allowed between graphic and
UCS-2 fields in the module. The %GRAPH built-in function cannot be
used.

Chapter 13. Control Specifications 249

Control-Specification Keywords

250

*SRC
The graphic CCSID associated with the CCSID of the source file will be
used.

number
A graphic CCSID. A valid graphic CCSID is 65535 or a CCSID with the
EBCDIC double-byte encoding scheme (X"1200").

CCSID(*UCS2 : number)
Sets the default UCS-2 CCSID for the module. If this keyword is not
specified, the default UCS-2 CCSID is 13488.

number must be a UCS-2 CCSID. A valid UCS-2 CCSID has the UCS-2
encoding scheme (x’7200").

If CCSID(*GRAPH : *SRC) or CCSID(*GRAPH : number) is specified:

* Graphic and UCS-2 fields in externally-described data structures will use the
CCSID in the external file.

* Program-described graphic or UCS-2 fields will default to the graphic or UCS-2
CCSID of the module, respectively. This specification can be overridden by using
the CCSID(number) keyword on the definition of the field. (See [“CCSID(number]
[I *DFT)” on page 296))

* Program-described graphic or UCS-2 input and output fields and keys are
assumed to have the module’s default CCSID.

CCSID(*CHAR : *JOBRUN)
When CCSID(*CHAR:*JOBRUN) is specified, character data will be
assumed to be in the job CCSID at runtime. The character X’0E” will be
assumed to be a shift-out character only if the runtime job CCSID is a
mixed-byte CCSID.

When CCSID(*CHAR : *JOBRUN) is not specified, character data will be
assumed to be in the mixed-byte CCSID related to the job CCSID. If the
character X’0E’ appears in character data, it will be interpreted as a
shift-out character. This may cause incorrect results when character data is
converted to UCS-2 data.

Note: Specifying CCSID(*CHAR:*JOBRUN) does not change the behaviour
of the compiler with respect to character literals containing X’0E’.
When a character literal contains X'0E’, the compiler will always
treat it as a shift-out character, independent of the CCSID(*CHAR)
keyword.

COPYNEST(number)

The COPYNEST keyword specifies the maximum depth to which nesting can occur
for /COPY directives. The depth must be greater than or equal to 1 and less than
or equal to 2048. The default depth is 32.

COPYRIGHT(copyright string’)

ILE RPG Reference

The COPYRIGHT keyword provides copyright information that can be seen using
the DSPMOD, DSPPGM, or DSPSRVPGM commands. The copyright string is a
character literal with a maximum length of 256. The literal may be continued on a
continuation specification. (See [‘Continuation Rules” on page 239| for rules on
using continuation lines.) If the COPYRIGHT keyword is not specified, copyright
information is not added to the created module or program.

Control-Specification Keywords

— TIP
To see the copyright information for a module, use the command:

DSPMOD my1ib/mymod DETAIL(*COPYRIGHT)

For a program, use the DSPPGM command with DETAIL(*COPYRIGHT).
This information includes the copyright information from all modules bound
into the program.

Similarly, DSPSRVPGM DETAIL(*COPYRIGHT) gives the copyright
information for all modules in a service program.

CURSYM('sym’)
The CURSYM keyword specifies a character used as a currency symbol in editing.
The symbol must be a single character enclosed in quotes. Any character in the
RPG character set (see [Chapter 1, “Symbolic Names and Reserved Words,” on page|
EI) may be used except:

* 0 (zero)

* * (asterisk)

e , (comma)

* & (ampersand)
e . (period)

e — (minus sign)
C (letter C)

R (letter R)

* Blank

If the keyword is not specified, $ (dollar sign) will be used as the currency symbol.

CVTOPT(*{NO}DATETIME *{NO}GRAPHIC *{NO}VARCHAR
*NO}VARGRAPHIC)

The CVTOPT keyword is used to determine how the ILE RPG compiler handles
date, time, timestamp, graphic data types, and variable-length data types that are
retrieved from externally described database files.

You can specify any or all of the data types in any order. However, if a data type is
specified, the *NOxxxx parameter for the same data type cannot also be used, and
vice versa. For example, if you specify *GRAPHIC you cannot also specify
*NOGRAPHIC, and vice versa. Separate the parameters with a colon. A parameter
cannot be specified more than once.

Note: If the keyword CVTOPT does not contain a member from a pair, then the
value specified on the command for this particular data type will be used.
For example, if the keyword CVTOPT(*DATETIME : *NOVARCHAR :
*NOVARGRAPHIC) is specified on the Control specification, then for the
pair (*GRAPHIC, *NOGRAPHIC), whatever was specified implicitly or
explicitly on the command will be used.

If *DATETIME is specified, then date, time, and timestamp data types are declared
as fixed-length character fields.

Chapter 13. Control Specifications 251

Control-Specification Keywords

252

If *NODATETIME is specified, then date, time, and timestamp data types are not
converted.

If *GRAPHIC is specified, then double-byte character set (DBCS) graphic data
types are declared as fixed-length character fields.

If *NOGRAPHIC is specified, then double-byte character set (DBCS) graphic types
are not converted.

If *VARCHAR is specified, then variable-length character data types are declared
as fixed-length character fields.

If *NOVARCHAR is specified, then variable-length character data types are not
converted.

If *VARGRAPHIC is specified, then variable-length double-byte character set
(DBCS) graphic data types are declared as fixed-length character fields.

If *NOVARGRAPHIC is specified, then variable-length double-byte character set
(DBCS) graphic data types are not converted.

If the CVTOPT keyword is not specified, then the values specified on the
command are used.

DATEDIT(fmt{separator})

The DATEDIT keyword specifies the format of numeric fields when using the Y
edit code. The separator character is optional. The value (fmt) can be *DMY, *MDY,
or *YMD. The default separator is /. A separator character of & (ampersand) may
be used to specify a blank separator.

DATFMT (fmt{separator})

The DATFMT keyword specifies the internal date format for date literals and the
default internal format for date fields within the program. You can specify a
different internal date format for a particular field by specifying the format with
the DATFMT keyword on the definition specification for that field.

If the DATFMT keyword is not specified, the *ISO format is assumed. For more
information on internal formats, see [‘Internal and External Formats” on page 169.|
[Table 25 on page 196| describes the various date formats and their separators.

DEBUG{(*NO | *YES)}

ILE RPG Reference

The DEBUG keyword determines whether DUMP operations are performed and
whether unused externally described input fields are moved from the buffer
during input operations.

DUMP operations are performed if either DEBUG or DEBUG(*YES) is specified. If
this keyword is not specified or specified with *NO, DUMP operations are not
performed.

You can override this effect of DEBUG(*NO) by specifying operation extender A on
the DEBUG operation code. This operation extender means that a dump is always
performed, regardless of the value of the DEBUG keyword.

Control-Specification Keywords

Normally, externally described input fields are only read during input operations if
the field is otherwise used within the program. If DEBUG or DEBUG(*YES) is
specified, all externally described input fields will be entered even if they are not
used in the program.

DECEDIT(*JOBRUN | 'value’)

The DECEDIT keyword specifies the character used as the decimal point for edited
decimal numbers and whether or not leading zeros are printed.

If *JOBRUN is specified, the DECFMT value associated with the job at runtime is
used. The possible job decimal formats are listed in the following table:

Table 35. DECEDIT with *JOBRUN

— T H# # #

— *

Job Decimal Format |Decimal Point Print Leading Zeros |Edited Decimal
Number

blank period (.) No 123

I comma (,) No ,123

] comma (,) Yes 0,123

If a value is specified, then the edited decimal numbers are printed according to
the following possible values:

Table 36. DECEDIT with 'value’

"Value’ Decimal Point Print Leading Zeros |Edited Decimal
Number

" period (.) No 123

) comma (,) No ,123

0. period (.) Yes 0.123

0,/ comma (,) Yes 0,123

If DECEDIT is not specified, a period (.) is used for editing numeric values.

Note: Zeros to the right of a decimal point are always printed.

DECPREC(30|31/63)

Keyword DECPREC is used to specify the decimal precision of decimal (packed,
zoned, or binary) intermediate values in arithmetic operations in expressions.
Decimal intermediate values are always maintained in the proper precision, but
this keyword affects how decimal expressions are presented when used in
%EDITC, %EDITW, %CHAR, %LEN, and %DECPOS.

DECPREC(30)
The default decimal precision. It indicates that the maximum precision of
decimal values when used in the affected operations is 30 digits. However,
if at least one operand in the expression is a decimal variable with 31
digits, DECPREC(31) is assumed for that expression. If at least one
operand in the expression is a decimal variable with 32 or more digits,
DECPREC(63) is assumed for that expression.

DECPREC(31)
The maximum precision of decimal values when used in the affected

Chapter 13. Control Specifications 253

Control-Specification Keywords

254

operations is 31 digits. However, if at least one operand in the expression
is a decimal variable with 32 digits or more, DECPREC(63) is assumed for
that expression.

DECPREC(63)
The number of digits used in the affected operations is always computed
following the normal rules for decimal precision, which can be up to the
maximum of 63 digits.

DFTACTGRP(*YES | *NO)

The DFTACTGRP keyword specifies the activation group in which the created
program will run when it is called.

If *YES is specified, then this program will always run in the default activation
group, which is the activation group where all original program model (OPM)
programs are run. This allows ILE RPG programs to behave like OPM RPG
programs in the areas of file sharing, file scoping, RCLRSC, and handling of
unmonitored exceptions. ILE static binding is not available when a program is
created with DFTACTGRP(*YES). This means that you cannot use the BNDDIR or
ACTGRP command parameters or keywords when creating this program. In
addition, any call operation in your source must call a program and not a
procedure. DFTACTGRP(*YES) is useful when attempting to move an application
on a program-by-program basis to ILE RPG.

If *NO is specified, then the program is associated with the activation group
specified by the ACTGRP command parameter or keyword and static binding is
allowed. DFTACTGRP(*NO) is useful when you intend to take advantage of ILE
concepts; for example, running in a named activation group or binding to a service
program.

If the DFTACTGRP keyword is not specified, then the value specified on the
command is used.

The DFTACTGRP keyword is valid only if the CRTBNDRPG command is used.

DFTNAME(rpg_name)

The DFTNAME keyword specifies a default program or module name. When
*CTLSPEC is specified on the create command, the rpg_name is used as the
program or module name. If rpg_name is not specified, then the default name is
RPGPGM or RPGMOD for a program or module respectively. The RPG rules for
names (see [“Symbolic Names” on page 3) apply.

ENBPFRCOL(*PEP | *ENTRYEXIT | *FULL)

ILE RPG Reference

The ENBPFRCOL keyword specifies whether performance collection is enabled.

If *PEP is specified, then performance statistics are gathered on the entry and exit
of the program-entry procedure only. This applies to the actual program-entry
procedure for an object, not to the main procedure of the object within the object.

If *ENTRYEXIT is specified, then performance statistics are gathered on the entry
and exit of all procedures of the object.

If *FULL is specified, then performance statistics are gathered on entry and exit of
all procedures. Also, statistics are gathered before and after each call to an external
procedure.

Control-Specification Keywords

If the ENBPFRCOL keyword is not specified, then the value specified on the
command is used.

EXPROPTS(*MAXDIGITS | *RESDECPOS)

The EXPROPTS (expression options) keyword specifies the type of precision rules
to be used for an entire program. If not specified or specified with *MAXDIGITS,
the default precision rules apply. If EXPROPTS is specified, with *RESDECPOS, the
"Result Decimal Position” precision rules apply and force intermediate results in
expressions to have no fewer decimal positions than the result.

Note: Operation code extenders R and M are the same as
EXPROPTS(*RESDECPOS) and EXPROPTS(*MAXDIGITS) respectively, but
for single free-form expressions.

EXTBININT{(*NO | *YES)}

The EXTBININT keyword is used to process externally described fields with binary
external format and zero decimal positions as if they had an external integer
format. If not specified or specified with *NO, then an externally described binary
field is processed with an external binary format. If EXTBININT is specified,
optionally with *YES, then an externally described field is processed as follows:

DDS Definition RPG external format
B(n,0) where 1 =n =4 1(5)
B(n,0) where 5=n =<9 1(10)

By specifying the EXTBININT keyword, your program can make use of the full
range of DDS binary values available. (The range of DDS binary values is the same
as for signed integers: -32768 to 32767 for a 5-digit field or -2147483648 to
2147483647 for a 10-digit field.)

Note: When the keyword EXTBININT is specified, any externally described
subfields that are binary with zero decimal positions will be defined with an
internal integer format.

FIXNBR(*{NO}ZONED *NO}INPUTPACKED)

The FIXNBR keyword specifies whether decimal data that is not valid is fixed by
the compiler.

You can specify any or all of the data types in any order. However, if a decimal
data type is specified, the *NOxxxx parameter for the same data type cannot also
be used, and vice versa. For example, if you specify *ZONED you cannot also
specify *NOZONED, and vice versa. Separate the parameters with a colon. A
parameter cannot be specified more than once.

Note: If the keyword FIXNBR does not contain a member from a pair, then the
value specified on the command for this particular data type will be used.
For example, if the keyword FIXNBR(*NOINPUTPACKED) is specified on
the Control specification, then for the pair (*20NED, *NOZONED),
whatever was specified implicitly or explicitly on the command will be
used.

If *ZONED is specified, then zoned decimal data that is not valid will be fixed by
the compiler on the conversion to packed data. Blanks in numeric fields will be

treated as zeros. Each decimal digit will be checked for validity. If a decimal digit

Chapter 13. Control Specifications 255

Control-Specification Keywords

256

is not valid, it is replaced with zero. If a sign is not valid, the sign will be forced to
a positive sign code of hex 'F’. If the sign is valid, it will be changed to either a
positive sign hex 'F’ or a negative sign hex 'D’, as appropriate. If the resulting
packed data is not valid, it will not be fixed.

If *NOZONED is specified, then zoned decimal data is not fixed by the compiler
on the conversion to packed data and will result in decimal errors during runtime
if used.

If *INPUTPACKED is specified, then the internal variable will be set to zero if
packed decimal data that is not valid is encountered while processing input
specifications.

If *NOINPUTPACKED is specified, then decimal errors will occur if packed
decimal data that is not valid is encountered while processing input specifications.

If the FIXNBR keyword is not specified, then the values specified on the command
are used.

FLTDIV{(*NO | *YES)}

The FLTDIV keyword indicates that all divide operations within expressions are
computed in floating point and return a value of type float. If not specified or
specified with *NO, then divide operations are performed in packed-decimal
format (unless one of the two operands is already in float format).

If FLTDIV is specified, optionally with *YES, then all divide operations are
performed in float format (guaranteeing that the result always has 15 digits of
precision).

FORMSALIGN{(*NO | *YES)}

The FORMSALIGN keyword indicates that the first line of an output file
conditioned with the 1P indicator can be printed repeatedly, allowing you to align
the printer. If not specified or specified with *NO, no alignment will be performed.
If specified, optionally with *YES, first page forms alignment will occur.

Rules for Forms Alignment

* The records specified on Output Specifications for a file with a device entry for a
printer type device conditioned by the first page indicator (1P) may be written
as many times as desired. The line will print once. The operator will then have
the option to print the line again or continue with the rest of the program.

* All spacing and skipping specified will be performed each time the line is
printed.

* When the option to continue with the rest of the program is selected, the line
will not be reprinted.

¢ The function may be performed for all printer files.

* If a page field is specified, it will be incremented only the first time the line is
printed.

* When the continue option is selected, the line count will be the same as if the
function were performed only once when line counter is specified.

FTRANS{(*NONE | *SRC)}

ILE RPG Reference

The FTRANS keyword specifies whether file translation will occur. If specified,
optionally with *SRC, file translation will take place and the translate table must be

Control-Specification Keywords

specified in the program. If not specified or specified with *NONE, no file
translation will take place and the translate table must not be present.

GENLVL(number)

The GENLVL keyword controls the creation of the object. The object is created if all
errors encountered during compilation have a severity level less than or equal to
the generation severity level specified. The value must be between 0 and 20
inclusive. For errors greater than severity 20, the object will not be created.

If the GENLVL keyword is not specified, then the value specified on the command
is used.

INDENT(*NONE | 'character-value’)

The INDENT keyword specifies whether structured operations should be indented
in the source listing for enhanced readability. It also specifies the characters that
are used to mark the structured operation clauses.

Note: Any indentation that you request here will not be reflected in the listing
debug view that is created when you specify DBGVIEW (*LIST).

If *NONE is specified, structured operations will not be indented in the source
listing.

If character-value is specified, the source listing is indented for structured
operation clauses. Alignment of statements and clauses are marked using the
characters you choose. You can choose any character literal up to 2 characters in
length.

Note: The indentation may not appear as expected if there are errors in the source.

If the INDENT keyword is not specified, then the value specified on the command
is used.

INTPREC(10 | 20)

The INTPREC keyword is used to specify the decimal precision of integer and
unsigned intermediate values in binary arithmetic operations in expressions.
Integer and unsigned intermediate values are always maintained in 8-byte format.
This keyword affects only the way integer and unsigned intermediate values are
converted to decimal format when used in binary arithmetic operations (+, -, *, /).

INTPREC(10), the default, indicates a decimal precision of 10 digits for integer and
unsigned operations. However, if at least one operand in the expression is an
8-byte integer or unsigned field, the result of the expression has a decimal
precision of 20 digits regardless of the INTPREC value.

INTPREC(20) indicates that the decimal precision of integer and unsigned
operations is 20 digits.

LANGID(*JOBRUN | *JOB | 'language-identifier’)
The LANGID keyword indicates which language identifier is to be used when the
sort sequence is *LANGIDUNQ or *LANGIDSHR. The LANGID keyword is used
in conjunction with the SRTSEQ command parameter or keyword to select the sort
sequence table.

Chapter 13. Control Specifications 257

Control-Specification Keywords

258

If *JOBRUN is specified, then the LANGID value associated with the job when the
RPG object is executed is used.

If *JOB is specified, then the LANGID value associated with the job when the RPG
object is created is used.

A language identifier can be specified, for example, 'FRA’ for French and "DEU’ for
German.

If the LANGID keyword is not specified, then the value specified on the command
is used.

NOMAIN

The NOMAIN keyword indicates that there is no main procedure in this module.
It also means that the module in which it is coded cannot be an entry module.
Consequently, if NOMAIN is specified, then you cannot use the CRTBNDRPG
command to create a program. Instead you must either use the CRTPGM
command to bind the module with NOMAIN specified to another module that has
a program entry procedure or you must use the CRTSRVPGM command.

When NOMAIN is specified, only the *INIT portion of the cycle is generated for
the module. This means that the following types of specifications are not allowed:

* Primary and secondary files
* Detail and total output
* Executable calculations

OPENOPT (*NOINZOFL | *INZOFL)

For a program that has one or more printer files defined with an overflow
indicator (OA-OG or OV), the OPENOPT keyword specifies whether the overflow
indicator should be reset to *OFF when the file is opened. If the OPENOPT
keyword is specified, with *NOINZOFL, the overflow indicator will remain
unchanged when the associated printer file is opened. If not specified or specified
with *INZOFL, the overflow indicator will be set to *OFF when the associated
printer file is opened.

OPTIMIZE(*NONE | *BASIC | *FULL)

ILE RPG Reference

The OPTIMIZE keyword specifies the level of optimization, if any, of the object.

If *NONE is specified, then the generated code is not optimized. This is the fastest
in terms of translation time. It allows you to display and modify variables while in
debug mode.

If *BASIC is specified, it performs some optimization on the generated code. This
allows user variables to be displayed but not modified while the program is in
debug mode.

If *FULL is specified, then the most efficient code is generated. Translation time is
the longest. In debug mode, user variables may not be modified but may be
displayed, although the presented values may not be the current values.

If the OPTIMIZE keyword is not specified, then the value specified on the
command is used.

Control-Specification Keywords

OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL *{NO}SHOWCPY
* NO}EXPDDS *{NO}EXT *{NO}SHOWSKP) *NO}SRCSTMT)
*NO}DEBUGIO)

The OPTION keyword specifies the options to use when the source member is
compiled.

You can specify any or all of the options in any order. However, if a compile
option is specified, the *NOxxxx parameter for the same compile option cannot
also be used, and vice versa. For example, if you specify *XREF you cannot also
specify *NOXREEF, and vice versa. Separate the options with a colon. You cannot
specify an option more than once.

Note: If the keyword OPTION does not contain a member from a pair, then the
value specified on the command for this particular option will be used. For
example, if the keyword OPTION(*XREF : *NOGEN : *NOSECLVL :
*SHOWCPY) is specified on the Control specification, then for the pairs,
(*EXT, *NOEXT), (*EXPDDS, *NOEXPDDS) and (*SHOWSKEP,
*NOSHOWSKP), whatever was specified implicitly or explicitly on the
command will be used.

If *XREF is specified, a cross-reference listing is produced (when appropriate) for
the source member. *NOXREF indicates that a cross-reference listing is not
produced.

If *GEN is specified, a program object is created if the highest severity level
returned by the compiler does not exceed the severity specified in the GENLVL
option. *NOGEN does not create an object.

If *SECLVL is specified, second-level message text is printed on the line following
the first-level message text in the Message Summary section. *NOSECLVL does not
print second-level message text on the line following the first-level message text.

If *SHOWCPY is specified, the compiler listing shows source records of members
included by the /COPY compiler directive. *NOSHOWCPY does not show source
records of members included by the /COPY compiler directive.

If *EXPDDS is specified, the expansion of externally described files in the listing
and key field information is displayed. *NOEXPDDS does not show the expansion
of externally described files in the listing or key field information.

If *EXT is specified, the external procedures and fields referenced during the
compile are included on the listing. *NOEXT does not show the list of external
procedures and fields referenced during compile on the listing.

If *SHOWSKRP is specified, then all statements in the source part of the listing are
displayed, regardless of whether or not the compiler has skipped them.
*NOSHOWSKP does not show skipped statements in the source part of the listing.
The compiler skips statements as a result of /IF, /ELSEIF, or /ELSE directives.

If *SRCSTMT is specified, statement numbers for the listing are generated from the
source ID and SEU sequence numbers as follows:

stmt_num = source_ID * 1000000 + source_SEU_sequence_number

For example, the main source member has a source ID of 0. If the first line in the
source file has sequence number 000100, then the statement number for this

Chapter 13. Control Specifications 259

Control-Specification Keywords

260

specification would be 100. A line from a /COPY file member with source ID 27
and source sequence number 000100 would have statement number 27000100.
*NOSRCSTMT indicates that line numbers are assigned sequentially.

If *DEBUGIO is specified, breakpoints are generated for all input and output
specifications. *NODEBUGIO indicates that no breakpoints are to be generated for
these specifications.

If the OPTION keyword is not specified, then the values specified on the
command are used.

PRFDTA(*NOCOL | *COL)

The PRFDTA keyword specifies whether the collection of profiling data is enabled.

If *NOCOL is specified, the collection of profiling data is not enabled for this
object.

If *COL is specified, the collection of profiling is enabled for this object. *COL can
be specified only when the optimization level of the object is *FULL.

If the PRFDTA keyword is not specified, then the value specified on the command
is used.

SRTSEQ(*HEX | *JOB | *JOBRUN | *LANGIDUNQ |
*LANGIDSHR | 'sort-table-name’)

ILE RPG Reference

The SRTSEQ keyword specifies the sort sequence table that is to be used in the ILE
RPG source program.

If *HEX is specified, no sort sequence table is used.

If *JOB is specified, the SRTSEQ value for the job when the *PGM is created is
used.

If *JOBRUN is specified, the SRTSEQ value for the job when the *PGM is run is
used.

If *LANGIDUNQ is specified, a unique-weight table is used. This special value is
used in conjunction with the LANGID command parameter or keyword to
determine the proper sort sequence table.

If *LANGIDSHR is specified, a shared-weight table is used. This special value is
used in conjunction with the LANGID command parameter or keyword to
determine the proper sort sequence table.

A sort table name can be specified to indicate the name of the sort sequence table
to be used with the object. It can also be qualified by a library name followed by a
slash delimiter ('library-name/sort-table-name’). The library-name is the name of
the library to be searched. If a library name is not specified, *LIBL is used to find
the sort table name.

If you want to use the SRTSEQ and LANGID parameters to determine the
alternate collating sequence, you must also specify ALTSEQ(*EXT) on the control
specification.

Control-Specification Keywords

If the SRTSEQ keyword is not specified, then the value specified on the command
is used.

TEXT(*SRCMBRTXT | *BLANK | 'description’)

The TEXT keyword allows you to enter text that briefly describes the object and its
function. The text is used when creating the object and appears when object
information is displayed.

If *SRCMBRTXT is specified, the text of the source member is used.
If *BLANK is specified, no text will appear.

If a literal is specified, it can be a maximum of 50 characters and must be enclosed
in apostrophes. (The apostrophes are not part of the 50-character string.)

If the TEXT keyword is not specified, then the value specified on the command is
used.

THREAD(*SERIALIZE)

The THREAD(*SERIALIZE) keyword indicates that the ILE RPG module created
may run in a multithreaded environment, safely. Access to the procedures in the
module is serialized. When called in a multithreaded environment, any code
within the module can be used by at most one thread at a time.

Normally, running an application in multiple threads can improve the performance
of the application. In the case of ILE RPG, this is not true in general. In fact, the
performance of a multithreaded application could be worse than that of a
single-thread version when the thread-safety is achieved by serialization of the
procedures at the module level.

Running ILE RPG procedures in a multithreaded environment is only
recommended when required by other aspects of the application (for example,
when writing a Domino exit program or when calling a short-running RPG
procedure from Java). For long-running RPG programs called from Java, we
recommend using a separate process for the RPG program.

For a list of system functions that are not allowed or supported in a multithreaded
environment, refer to the Multithreaded Applications document under the
Programming topic at the following URL:

http://www.as400.ibm.com/infocenter/

You cannot use the following in a thread-safe program:
* *INUx indicators

* External indicators (*INUT1 - *INUS8)

e The LR indicator for the CALL or CALLB operation

When using the THREAD(*SERIALIZE) keyword, remember the following:

* It is up to the programmer to ensure that storage that is shared across modules
is used in a thread-safe manner. This includes:

— Storage explicitly shared by being exported and imported.

— Storage shared because a procedure saves the address of a parameter or a
pointer parameter, or allocated storage, and uses it on a subsequent call.

Chapter 13. Control Specifications 261

Control-Specification Keywords

262

* If shared files are used by more than one language (RPG and C, or RPG and
COBOL), ensure that only one language is accessing the file at one time.

TIMFMT (fmt{separator})

The TIMFMT keyword specifies the internal time format for time literals and the
default internal format for time fields within the program. You can specify a
different internal time format for a particular field by specifying the format with
the TIMFMT keyword on the definition specification for that field.

If the TIMFMT keyword is not specified the *ISO format is assumed. For more
information on internal formats, see [“Internal and External Formats” on page 169

[Table 28 on page 198 shows the time formats supported and their separators.

TRUNCNBR(*YES | *NO)

The TRUNCNBR keyword specifies if the truncated value is moved to the result
field or if an error is generated when numeric overflow occurs while running the
object.

Note: The TRUNCNBR option does not apply to calculations performed within
expressions. (Expressions are found in the Extended-Factor 2 field.) If
overflow occurs for these calculations, an error will always occur.

If *YES is specified, numeric overflow is ignored and the truncated value is moved
to the result field.

If *NO is specified, a run-time error is generated when numeric overflow is
detected.

If the TRUNCNBR keyword is not specified, then the value specified on the
command is used.

USRPRF(*USER | *OWNER)

ILE RPG Reference

The USRPRF keyword specifies the user profile that will run the created program
object. The profile of the program owner or the program user is used to run the
program and to control which objects can be used by the program (including the
authority the program has for each object). This keyword is not updated if the
program already exists.

If *USER is specified, the user profile of the program’s user will run the created
program object.

If *OWNER is specified, the user profiles of both the program’s user and owner
will run the created program object. The collective set of object authority in both
user profiles is used to find and access objects while the program is running. Any
objects created during the program are owned by the program’s user.

If the USRPRF keyword is not specified, then the value specified on the command
is used.

The USRPRF keyword is valid only if the CRTBNDRPG command is used.

Chapter 14. File Description Specifications

[File description specifications|identify each file used by a program. Each file in a
program must have a corresponding file description specification statement.

A file can be either program-described or externally described. In
program-described files, record and field descriptions are included within the RPG
program (using input and output specifications). Externally described files have
their record and field descriptions defined externally using DDS, DSU, IDDU, or
SQL commands. (DSU is part of the CODE/400 product.)

The following limitations apply per program:

* Only one primary file can be specified. The presence of a primary file is not
required.

* Only one record-address file.
¢ A maximum of eight PRINTER files.

e There is no limit for the maximum number of files allowed.

File Description Specification Statement

The general layout for the file description specification is as follows:
¢ the file description specification type (F) is entered in position 6

* the non-commentary part of the specification extends from position 7 to position
80

— the fixed-format entries extend from positions 7 to 42

— the [keyword entries|extend from positions 44 to 80

* the comments section of the specification extends from position 81 to position
100

L R T R T T T R T A R B T (¢]
FFilename++IPEASFRTen+LKlen+AIDevice+.Keywords+++++++ttttttttsttttttttttrrtComments++++++tttis

Figure 105. File Description Specification Layout

File-Description Keyword Continuation Line

If additional space is required for keywords, the keywords field can be continued
on subsequent lines as follows:

* position 6 of the continuation line must contain an F
* positions 7 to 43 of the continuation line must be blank

* the specification continues on or past position 44

T S T T T o R A T T O B T (]

Figure 106. File-Description Keyword Continuation Line Layout

© Copyright IBM Corp. 1994, 2004 263

File Description Specification Statement

264

Position 6 (Form Type)

An F must be entered in this position for file description specifications.

Positions 7-16 (File Name)

ILE RPG Reference

Entry Explanation

A valid file name
Every file used in a program must have a unique name. The file
name can be from 1 to 10 characters long, and must begin in
position 7.

At compile time:

* If the file is program-described, the file named in position 7 does not need to
exist.
* If the file is externally-described, the file named in position 7 must exist but you

can use an OS/400 system override command to associate the name to a file
defined to the OS/400 system.

At run time:

 If you use the EXTFILE keyword, the EXTMBR keyword, or both, RPG will open
the file named in these keywords.

* Otherwise, RPG will open the file named in position 7. This file (or an
overridden file) must exist when the file is opened.

* If an OS/400 system override command has been used for the file that RPG
opens, that override will take effect and the actual file opened will depend on
the override. See the [“EXTFILE(filename)” on page 276| keyword for more
information about how overrides interact with this keyword.

When files that are not defined by the USROPN keyword are opened at run time,
they are opened in the reverse order to that specified in the file description
specifications. The RPG IV device name defines the operations that can be
processed on the associated file.

Program-Described File
For program-described files, the file name entered in positions 7 through 16 must
also be entered on:

* Input specifications if the file is a primary, secondary, or full procedural file

* Output specifications or an output calculation operation line if the file is an
output, update, or combined file, or if file addition is specified for the file

* Definition specifications if the file is a table or array file.

* Calculation specifications if the file name is required for the operation code
specified

Externally-Described File
For externally described files, the file name entered in positions 7 through 16 is the

name used to locate the record descriptions for the file. The following rules apply
to externally described files:

* Input and output specifications for externally described files are optional. They
are required only if you are adding RPG IV functions, such as control fields or
record identifying indicators, to the external description retrieved.

* When an external description is retrieved, the record definition can be referred
to by its record format name on the input, output, or calculation specifications.

* A record format name must be a unique symbolic name.

File Description Specification Statement

¢ RPG IV does not support an externally described logical file with two record
formats of the same name. However, such a file can be accessed if it is program
described.

Position 17 (File Type)
Entry Explanation
I [nput file
(0] Outp e

v

C Combined (input/output) filel

Input Files
An input file is one from which a program reads information. It can contain data

records, arrays, or tables, or it can be a record-address file.

Output Files

An output file is a file to which information is written.

Update Files
An update file is an input file whose records can be read and updated. Updating

alters the data in one or more fields of any record contained in the file and writes
that record back to the same file from which it was read. If records are to be
deleted, the file must be specified as an update file.

Combined Files
A combined file is both an input file and an output file. When a combined file is

processed, the output record contains only the data represented by the fields in the
output record. This differs from an update file, where the output record contains
the input record modified by the fields in the output record.

A combined file is valid for a SPECIAL or WORKSTN file. A combined file is also
valid for a DISK or SEQ file if position 18 contains T (an array or table
replacement file).

Position 18 (File Designation)
Entry Explanation

Blank
P

Secondary file|
[Record address fil¢]
|Array or table file
[Full procedural file|

moH R »

You cannot specify P, S, or R if the keyword NOMAIN is specified on a control
specification.

Primary File

When several files are processed by cycle processing, one must be designated as
the primary file. In multi-file processing, processing of the primary file takes
precedence. Only one primary file is allowed per program.

Chapter 14. File Description Specifications 265

File Description Specification Statement

266

Secondary File

When more than one file is processed by the RPG cycle, the additional files are
specified as secondary files. Secondary files must be input capable (input, update,
or combined file type). The processing of secondary files is determined by the
order in which they are specified in the file description specifications and by the
rules of multi-file logic.

Record Address File (RAF)

A record-address file is a sequentially organized file used to select records from
another file. Only one file in a program can be specified as a record-address file.
This file is described on the file description specification and not on the input
specifications. A record-address file must be program-described; however, a
record-address file can be used to process a program described file or an externally
described file.

The file processed by the record-address file must be a primary, secondary, or
full-procedural file, and must also be specified as the parameter to the RAFDATA
keyword on the file description specification of the record-address file.

You cannot specify a record-address file for the device SPECIAL.
UCS-2 fields are not allowed as the record address type for record address files.

A record-address file that contains relative-record numbers must also have a T
specified in position 35 and an F in position 22.

Array or Table File

Array and table files specified by a T in position 18 are loaded at program
initialization time. The array or table file can be input or combined. Leave this
entry blank for array or table output files. You cannot specify SPECIAL as the
device for array and table input files. You cannot specify an externally described
file as an array or table file.

If T is specified in position 18, you can specify a file type of combined (C in
position 17) for a DISK or SEQ file. A file type of combined allows an array or
table file to be read from or written to the same file (an array or table replacement
file). In addition to a C in position 17, the filename in positions 7-16 must also be
specified as the parameter to the TOFILE keyword on the definition specification.

Full Procedural File

A full procedural file is not processed by the RPG cycle: input is controlled by
calculation operations. [File operation codes|such as CHAIN or READ are used to
do input functions.

Position 19 (End of File)

ILE RPG Reference

Entry Explanation

E All records from the file must be processed before the program can end.
This entry is not valid for files processed by a record-address file.

All records from all files which use this option must be processed before
the LR indicator is set on by the RPG cycle to end the program.

Blank If position 19 is blank for all files, all records from all files must be
processed before end of program (LR) can occur. If position 19 is not blank
for all files, all records from this file may or may not be processed before
end of program occurs in multi-file processing.

File Description Specification Statement

Use position 19 to indicate whether the program can end before all records from
the file are processed. An E in position 19 applies only to input, update, or
combined files specified as primary, secondary, or record-address files.

If the records from all primary and secondary files must be processed, position 19
must be blank for all files or must contain E’s for all files. For multiple input files,
the end-of-program (LR) condition occurs when all input files for which an E is
specified in position 19 have been processed. If position 19 is blank for all files, the
end-of-program condition occurs when all input files have been processed.

When match fields are specified for two or more files and an E is specified in
position 19 for one or more files, the LR indicator is set on after:

* The end-of-file condition occurs for the last file with an E specified in position

19.

* The program has processed all the records in other files that match the last
record processed from the primary file.

* The program has processed the records in those files without match fields up to
the next record with non-matching match fields.

When no file or only one file contains match field specifications, no records of

other files are processed after end of file occurs on all files for which an E is
specified in position 19.

Position 20 (File Addition)

Position 20 indicates whether records are to be added to an input or update file.
For output files, this entry is ignored.

Entry Explanation

Blank No records can be added to an input or update file (I or U in position 17).

A Records are added to an input or update file when positions 18 through 20
of the output record specifications for the file contain "ADD", or when the
WRITE operation code is used in the calculation specification.

See [Iable 37|for the relationship between position 17 and position 20 of the file

description specifications and positions 18 through 20 of the output specifications.

Table 37. Processing Functions for Files

Specification

File Description Output
Function Position 17 Position 20 Positions 18-20
Create new file’ (@) Blank Blank
or O A ADD
Add records to existing file
Process file 1 Blank Blank
Process file and add records to the existing |I A ADD
file
Process file and update the records (update |U Blank Blank
or delete)
Process file and add new records to an U A ADD
existing file
Process file and delete an existing record U Blank DEL
from the file

Chapter 14. File Description Specifications

267

File Description Specification Statement

Table 37. Processing Functions for Files (continued)

Function

Specification
File Description Output
Position 17 Position 20 Positions 18-20

Note: Within RPG, the term create a new file means to add records to a newly created file. Thus, the first two entries
in this table perform the identical function. Both are listed to show that there are two ways to specify that function.

Position 21 (Sequence)

Entry Explanation
A or blank Match fields are in ascending sequence.
D Match fields are in descending sequence.

Position 21 specifies the sequence of input fields used with the match fields
specification (positions 65 and 66 of the input specifications). Position 21 applies
only to input, update, or combined files used as primary or secondary files. Use
positions 65 and 66 of the input specifications to identify the fields containing the
sequence information.

If more than one input file with match fields is specified in the program, a
sequence entry in position 21 can be used to check the sequence of the match fields
and to process the file using the matching record technique. The sequence need
only be specified for the first file with match fields specified. If sequence is
specified for other files, the sequence specified must be the same; otherwise, the
sequence specified for the first file is assumed.

If only one input file with match fields is specified in the program, a sequence
entry in position 21 can be used to check fields of that file to ensure that the file is
in sequence. By entering one of the codes M1 through M9 in positions 65 and 66 of
the input specifications, and by entering an A, blank, or D in position 21, you
specify sequence checking of these fields.

Sequence checking is required when match fields are used in the records from the
file. When a record from a matching input file is found to be out of sequence, the
RPG IV exception/error handling routine is given control.

Position 22 (File Format)

268 ILE RPG Reference

Entry Explanation
F [Program-described fil¢|
E [Externally described file|

An F in position 22 indicates that the records for the file are described within the
program on input/output specifications (except for array/table files and
record-address files).

An E in position 22 indicates that the record descriptions for the file are external to
the RPG IV source program. The compiler obtains these descriptions at compilation
time and includes them in the source program.

File Description Specification Statement

Positions 23-27 (Record Length)

Use positions 23 through 27 to indicate the length of the logical records contained
in a program-described file. The maximum record size that can be specified is
32766; however, record-size constraints of any device may override this value. This
entry must be blank for externally described files.

If the file being defined is a record-address file and the record length specified is 3,
it is assumed that each record in the file consists of a 3-byte binary field for the
relative-record numbers starting at offset 0. If the record length is 4 or greater, each
relative-record number in the record-address file is assumed to be a 4-byte field
starting at offset 1. If the record length is left blank, the actual record length is
retrieved at run time to determine how to handle the record-address file.

If the file opened at run time has a primary record length of 3, then 3-byte
relative-record numbers (one per record) are assumed; otherwise, 4-byte
relative-record numbers are assumed. This support can be used to allow ILE RPG
programs to use System/36 " environment SORT files as record-address files.

Table 38. Valid Combinations for a Record Address File containing Relative Record
Numbers (RAFRRN)

Record Length RAF Length Type of Support

Positions 23-27 Positions 29-33

Blank Blank Support determined at run time.
3 3 System /36 support.

>=4 4 Native support.

Position 28 (Limits Processing)
Entry Explanation

L Sequential-within-limits processing by a record-address file

Blank Sequential or random processing

Use position 28 to indicate whether the file is processed by a record-address file
that contains limits records.

A record-address file used for limits processing contains records that consist of
upper and lower limits. Each record contains a set of limits that consists of the
lowest record key and the highest record key from the segment of the file to be
processed. Limits processing can be used for keyed files specified as primary,
secondary, or full procedural files.

The L entry in position 28 is valid only if the file is processed by a record-address
file containing limits records. Random and sequential processing of files is implied
by a combination of positions 18 and 34 of the file description specifications, and
by the calculation operation specified.

The operation codes ['SETLL (Set Lower Limit)” on page 742 and ["SETGT (Set]
[Greater Than)” on page 738|can be used to position a file; however, the use of
these operation codes does not require an L in this position.

For more information on limits processing, refer to the WebSphere Development
Studio: ILE RPG Programmer’s Guide.

Chapter 14. File Description Specifications 269

File Description Specification Statement

270

Positions 29-33 (Length of Key or Record Address)

Entry
1-2000

Blank

Explanation

The number of positions required for the key field in a program
described file or the length of the entries in the record-address file
(which must be a program-described file).

If the program-described file being defined uses keys for record
identification, enter the number of positions occupied by each
record key. This entry is required for indexed files.

If the keys are packed, the key field length should be the packed
length; this is the number of digits in DDS divided by 2 plus 1 and
ignoring any fractions.

If the file being defined is a record-address file, enter the number
of positions that each entry in the record-address file occupies.

If the keys are graphic, the key field length should be specified in
bytes (for example, 3 graphic characters requires 6 bytes).

These positions must be blank for externally described files. (The
key length is specified in the external description.) For a
program-described file, a blank entry indicates that keys are not
used. Positions 29-33 can also be blank for a record-address file
with a blank in positions 23-27 (record length).

Position 34 (Record Address Type)

ILE RPG Reference

Entry
Blank

Explanation

[Relative record numbers are used to process the file.

Records are read consecutively.
Record address file contains relative-record numbers.

For limits processing, the record-address type (position 34) is the same as
the type of the file being processed.

(valid only for program-described files specified as indexed

files or as a record-address-limits file).
(valid only for program-described files specified as indexed

files or as a record-address-limits file).

(valid only for program-described files specified as indexed

files or as a record-address-limits file).

are used to process the file. This entry is valid only for

externally described files.

are used to process the file. This entry is valid only for
program-described files specified as indexed files or as a

record-address-limits file.

are used to process the file. This entry is valid only for

program-described files specified as indexed files or as a
record-address-limits file.

[Timestamp Keys|are used to process the file. This entry is valid only for
program-described files specified as indexed files or as a
record-address-limits file.

File Description Specification Statement

F (valid only for program-described files specified as indexed files

or as a record-address-limits file).

UCS-2 fields are not allowed as the record address type for program described
indexed files or record address files.

Blank=Non-keyed Processing
A blank indicates that the file is processed without the use of keys, that the

record-address file contains relative-record numbers (a T in position 35), or that the
keys in a record-address-limits file are in the same format as the keys in the file
being processed.

A file processed without keys can be processed consecutively or randomly by
relative-record number.

Input processing by relative-record number is determined by a blank in position 34
and by the use of the CHAIN, SETLL, or SETGT operation code. Output
processing by relative-record number is determined by a blank in position 34 and
by the use of the RECNO keyword on the file description specifications.

A=Character Keys

The indexed file (I in position 35) defined on this line is processed by
character-record keys. (A numeric field used as the search argument is converted to
zoned decimal before chaining.) The A entry must agree with the data format of
the field identified as the key field (length in positions 29 to 33 and starting
position specified as the parameter to the KEYLOC keyword).

The record-address-limits file (R in position 18) defined on this line contains
character keys. The file being processed by this record address file can have an A,
P, or K in position 34.

P=Packed Keys

The indexed file (I in position 35) defined on this line is processed by
packed-decimal-numeric keys. The P entry must agree with the data format of the
field identified as the key field (length in positions 29 to 33 and starting position
specified as the parameter to the KEYLOC keyword).

The record-address-limits file defined on this line contains record keys in packed
decimal format. The file being processed by this record address file can have an A,
P, or K in position 34.

G=Graphic Keys

The indexed file (I in position 35) defined on this line is processed by graphic keys.
Since each graphic character requires two bytes, the key length must be an even
number. The record-address file which is used to process this indexed file must
also have a ‘G’ specified in position 34 of its file description specification, and its
key length must also be the same as the indexed file’s key length (positions 29-33).

K=Key

A K entry indicates that the externally described file is processed on the
assumption that the access path is built on key values. If the processing is random,
key values are used to identify the records.

If this position is blank for a keyed file, the records are retrieved in arrival
sequence.

Chapter 14. File Description Specifications 271

File Description Specification Statement

272

D=Date Keys

The indexed file (I in position 35) defined on this line is processed by date keys.
The D entry must agree with the data format of the field identified as the key field
(length in positions 29 to 33 and starting position specified as the parameter to the
KEYLOC keyword).

The hierarchy used when determining the format and separator for the date key is:
1. From the DATFMT keyword specified on the file description specification

2. From the DATFMT keyword specified in the control specification

3. *ISO

T=Time Keys

The indexed file (I in position 35) defined on this line is processed by time keys.
The T entry must agree with the data format of the field identified as the key field
(length in positions 29 to 33 and starting position specified as the parameter to the
KEYLOC keyword).

The hierarchy used when determining the format and separator for the time key is:
1. From the TIMFMT keyword specified on the file description specification

2. From the TIMFMT keyword specified in the control specification

3. *IsO

Z=Timestamp Keys

The indexed file (I in position 35) defined on this line is processed by timestamp
keys. The Z entry must agree with the data format of the field identified as the key
field (length in positions 29 to 33 and starting position specified as the parameter
to the KEYLOC keyword).

F=Float Keys

The indexed file (I in position 35) defined on this line is processed by float keys.
The Length-of-Key entry (positions 29-33) must contain a value of either 4 or 8 for
a float key. When a file contains a float key, any type of numeric variable or literal
may be specified as a key on keyed input/output operations. For a non-float
record address type, you cannot have a float search argument.

For more information on record address type, refer to the WebSphere Development
Studio: ILE RPG Programmer’s Guide.

Position 35 (File Organization)

ILE RPG Reference

Entry Explanation

Blank The program-described file is [processed without keys| or the file is
externally described.

I [ndexed file| (valid only for program-described files).

T [Record address fild that contains relative-record numbers (valid only for
program-described files).

Use position 35 to identify the organization of program described files.

Blank=Non-keyed Program-Described File

A program-described file that is processed without keys can be processed:
* Randomly by relative-record numbers, positions 28 and 34 must be blank.
* Entry Sequence, positions 28 and 34 must be blank.

File Description Specification Statement

* As a record-address file, position 28 must be blank.

I=Indexed File
An indexed file can be processed:

* Randomly or sequentially by key

* By a record-address file (sequentially within limits). must contain an
L.

T=Record Address File

A record-address file (indicated by an R in position 18) that contains relative-record
numbers must be identified by a T in position 35. (A record-address file must be
program described.) Each record retrieved from the file being processed is based
on the relative record number in the record-address file. (Relative record numbers
cannot be used for a record-address-limits file.)

Each relative-record number in the record-address file is a 4-byte binary field;
therefore, each 4-byte unit of a record-address file contains a relative-record
number. A minus one (-1 or hexadecimal FFFFFFFF) relative-record number value
causes the record to be skipped. End of file occurs when all record-address file
records have been processed.

For more information on how to handle record-address files, see the WebSphere
Development Studio: ILE RPG Programmer’s Guide.

Positions 36-42 (Device)

Entry Explanation

PRINTER File is a printer file, a file with control characters that can be sent
to a printer.

DISK File is a disk file. This device supports sequential and random
read/write functions. These files can be accessed on a remote
system by Distributed Data Management (DDM).

WORKSTN File is a workstation file. Input/output is through a display or ICF
file.

SPECIAL This is a special file. Input or output is on a device that is accessed
by a user-supplied program. The name of the program must be
specified as the parameter for the PGMNAME keyword. A
parameter list is created for use with this program, including an
option code parameter and a status code parameter. The file must
be a fixed unblocked format. See ["PLIST(Plist_name)” on page 281
and ["'PGMNAME(program_name)” on page 280| for more
information.

SEQ File is a sequentially organized file. The actual device is specified
in a CL command or in the file description, which is accessed by
the file name.

Use positions 36 through 42 to specify the RPG IV device name to be associated
with the file. The RPG IV device name defines the ILE RPG functions that can be
done on the associated file. Certain functions are valid only for a specific ILE RPG
device name (such as the EXFMT operation for WORKSTN). The file name
specified in positions 7 through 16 can be overridden at run time, allowing you to
change the input/output device used in the program.

Note that the RPG IV device names are not the same as the system device names.

Chapter 14. File Description Specifications 273

File Description Specification Statement

Position 43 (Reserved)

Position 43 must be blank.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for file-description-specification keywords.
Keywords are used to provide additional information about the file being defined.

File-Description Keywords

274

File-Description keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword(parameterl : parameter2)

where:
* Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.
e An ellipsis (...) indicates that the parameter can be repeated.

* A colon () separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.

* A vertical bar () indicates that only one parameter may be specified for the
keyword.

* A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for file-description keywords, the keyword field can
be continued on subsequent lines. See [“File-Description Keyword Continuation|
[Line” on page 263|and [“File Description Specification Keyword Field” on page 241

BLOCK(*YES [*NO)

ILE RPG Reference

The BLOCK keyword controls the blocking of records associated with the file. The
keyword is valid only for DISK or SEQ files.

If this keyword is not specified, the RPG compiler unblocks input records and
blocks output records to improve run-time performance in SEQ or DISK files when
the following conditions are met:

1. The file is program-described or, if externally described, it has only one record
format.

2. Keyword RECNO is not used in the file description specification.

Note: If RECNO is used, the ILE RPG compiler will not allow record blocking.
However, if the file is an input file and RECNO is used, Data

File-Description Keywords

Management may still block records if fast sequential access is set. This
means that updated records might not be seen right away.

3. One of the following is true:
a. The file is an output file.
b. If the file is a combined file, then it is an array or table file.

C. The file is an input-only file; it is not a record-address file or processed by a
record-address file; and none of the following operations are used on the
file: READE, READPE, SETGT, SETLL, and CHAIN. (If any READE or
READPE operations are used, no record blocking will occur for the input
file. If any SETGT, SETLL, or CHAIN operations are used, no record
blocking will occur unless the BLOCK(*YES) keyword is specified for the
input file.)

If BLOCK(*YES) is specified, record blocking occurs as described above except that
the operations SETLL, SETGT, and CHAIN can be used with an input file and
blocking will still occur (see condition 3c above). To prevent the blocking of
records, BLOCK(*NO) can be specified. Then no record blocking is done by the
compiler.

COMMIT{(rpg_name)}

The COMMIT keyword allows the processing files under commitment control. An
optional parameter, rpg_name, may be specified. The parameter is implicitly
defined as a field of type indicator (that is, a character field of length one), and is
initialized by RPG to "0".

By specifying the optional parameter, you can control at run time whether to
enable commitment control. If the parameter contains a '1’, the file will be opened
with the COMMIT indication on, otherwise the file will be opened without
COMMIT. The parameter must be set prior to opening the file. If the file is opened
at program initialization, the COMMIT parameter can be passed as a call
parameter or defined as an external indicator. If the file is opened explicitly, using
the OPEN operation in the calculation specifications, the parameter can be set prior
to the OPEN operation.

Use the COMMIT and ROLBK operation codes to group changes to this file and
other files currently under commitment control so that changes all happen
together, or do not happen at all.

Note: If the file is already open with a shared open data path, the value for
commitment control must match the value for the previous OPEN operation.

DATFMT (format{separator})

The DATFMT keyword allows the specification of a default external date format
and a default separator (which is optional) for all date fields in the
program-described file. If the file on which this keyword is specified is indexed
and the key field is a date, then this also provides the default external format for
the key field.

For a Record-Address file this specifies the external date format of date limits keys
read from the record-address file.

Chapter 14. File Description Specifications 275

File-Description Keywords

276

You can specify a different external format for individual input or output date
fields in the file by specifying a date format/separator for the field on the
corresponding input specification (positions 31-35) or output specification
(positions 53-57).

See ITable 25 on page 196| for valid formats and separators. For more information
on external formats, see [“Internal and External Formats” on page 169,

DEVID(fieldname)

The DEVID keyword specifies the name of the program device that supplied the
record processed in the file. The field is updated each time a record is read from a
file. Also, you may move a program device name into this field to direct an output
or device-specific input operation (other than a READ-by-file-name or an implicit
cycle read) to a different device.

The fieldname is implicitly defined as a 10-character alphanumeric field. The
device name specified in the field must be left-justified and padded with blanks.
Initially, the field is blank. A blank field indicates the requester device. If the
requester device is not acquired for your file, you must not use a blank field.

The DEVID field is maintained for each call to a program. If you call program B
from within program A, the DEVID field for program A is not affected. Program B
uses a separate DEVID field. When you return to program A, its DEVID field has
the same value as it had before you called program B. If program B needs to know
which devices are acquired to program A, program A must pass this information
(as a parameter list) when it calls program B.

If the DEVID keyword is specified but not the MAXDEV keyword, the program
assumes a multiple device file (MAXDEV with a parameter of *FILE).

To determine the name of the requester device, you may look in the appropriate
area of the file information data structure (see [“File Information Data Structure” on|

. Or, you may process an input or output operation where the fieldname

contains blanks. After the operation, the fieldname has the name of the requester
device.

EXTFILE(filename)

ILE RPG Reference

The EXTFILE keyword specifies which file, in which library, is opened. The value
can be a literal or a variable. You can specify the value in any of the following
forms:

filename
Tibname/filename
*IBL/filename

Notes:
1. You cannot specify *CURLIB as the library name.
2. If you specify a file name without a library name, *LIBL is used.

3. The name must be in the correct case. For example, if you specify
EXTFILE(filename) and variable filename has the value 'qtemp/myfile’, the file
will not be found. Instead, it should have the value 'QTEMP/MYFILE'.

4. This keyword is not used to find an externally-described file at compile time.

5. If a variable name is used, it must be set before the file is opened. For files that
are opened automatically during the initialization part of the cycle, the variable
must be set in one of the following ways:

File-Description Keywords

* Using the INZ keyword on the D specification
* DPassing the value in as an entry parameter

* Using a program-global variable that is set by another module.

If you have specified an override for the file that RPG will open, that override will
be in effect. In the following code, for the file named INPUT within the RPG
program, the file that is opened at runtime depends on the value of the filename
field.

Finput if f 10 disk extfile(filename)

If the filename field has the value MYLIB/MYFILE at runtime, RPG will open the
file MYLIB/MYFILE. If the command OVRDBF MYFILE OTHERLIB/OTHERFILE
has been used, the actual file opened will be OTHERLIB/OTHERFILE. Note that
any overrides for the name INPUT will be ignored, since INPUT is only the name
used within the RPG source member.

EXTIND(*INUX)

The EXTIND keyword indicates whether the file is used in the program depending
on the value of the external indicator.

EXTIND lets the programmer control the operation of input, output, update, and
combined files at run time. If the specified indicator is on at program initialization,
the file is opened. If the indicator is not on, the file is not opened and is ignored
during processing. The *INU1 through *INUS8 indicators can be set as follows:

¢ By the OS/400 control language.
* When used as a resulting indicator for a calculation operation or as field

indicators on the input specifications. Setting the *INU1 through *INUS8
indicators in this manner has no effect on file conditioning.

See also[“USROPN” on page 285

EXTMBR(membername)

The EXTMBR keyword specifies which member of the file is opened. You can
specify a member name, '*ALL', or '*FIRST'. Note that *ALL’ and "*FIRST’ must
be specified in quotes, since they are member "names”, not RPG special words. The
value can be a literal or a variable. The default is '*FIRST'.

The name must be in the correct case. For example, if you specify EXTMBR (mbrname)
and variable mbrname has the value 'mbrl', the member will not be found. Instead,
it should have the value 'MBR1'.

If a variable name is used, it must be set before the file is opened. For files that are
opened automatically during the initialization part of the cycle, the variable must
be set in one of the following ways:

* Using the INZ keyword on the D specification
* Passing the value in as an entry parameter

* Using a program-global variable that is set by another module.

FORMLEN(number)

The FORMLEN keyword specifies the form length of a PRINTER file. The form
length must be greater than or equal to 1 and less than or equal to 255. The
parameter specifies the exact number of lines available on the form or page to be
used.

Chapter 14. File Description Specifications 277

File-Description Keywords

278

Changing the form length does not require recompiling the program. You can
override the number parameter of FORMLEN by specifying a new value for the
PAGSIZE parameter of the Override With Printer File (OVRPRTF) command.

When the FORMLEN keyword is specified, the FORMOFL keyword must also be
specified.

FORMOFL (number)

The FORMOFL keyword specifies the overflow line number that will set on the
overflow indicator. The overflow line number must be less than or equal to the
form length. When the line that is specified as the overflow line is printed, the

overflow indicator is set on.

Changing the overflow line does not require recompiling the program. You can
override the number parameter of FORMOFL by specifying a new value for the
OVRFLW parameter of the Override With Printer File (OVRPRTF) command.

When the FORMOFL keyword is specified, the FORMLEN keyword must also be
specified.

IGNORE(recformat{:recformat...})

The IGNORE keyword allows a record format from an externally described file to
be ignored. The external name of the record format to be ignored is specified as
the parameter recformat. One or more record formats can be specified, separated
by colons (:). The program runs as if the specified record format(s) did not exist.
All other record formats contained in the file will be included.

When the IGNORE keyword is specified for a file, the INCLUDE keyword cannot
be specified.

INCLUDE(recformat{:recformat...})

The INCLUDE keyword specifies those record format names that are to be
included; all other record formats contained in the file will be ignored. For
WORKSTN files, the record formats specified using the SFILE keyword are also
included in the program, they need not be specified twice. Multiple record formats
can be specified, separated by colons (:).

When the INCLUDE keyword is specified for a file, the IGNORE keyword cannot
be specified.

INDDS(data_structure_name)

ILE RPG Reference

The INDDS keyword lets you associate a data structure name with the INDARA
indicators for a workstation or printer file. This data structure contains the
conditioning and response indicators passed to and from data management for the
file, and is called an indicator data structure.

Rules:

* This keyword is allowed only for externally described PRINTER files and
externally and program-described WORKSTN files.

 For a program-described file, the PASS(*NOIND) keyword must not be specified
with the INDDS keyword.

* The same data structure name may be associated with more than one file.

File-Description Keywords

e The data structure name must be defined as a data structure on the definition
specifications and can be a multiple-occurrence data structure.

* The length of the[indicator data structurd is always 99.

* The indicator data structure is initialized by default to all zeros ('0’s).
¢ The SAVEIND keyword cannot be specified with this keyword.

If this keyword is not specified, the *IN array is used to communicate indicator
values for all files defined with the DDS keyword INDARA.

For additional information on indicator data structures, see [“Special Data

Structures” on page 132/

INFDS(DSnhame)

The INFDS keyword lets you define and name a data structure to contain the
feedback information associated with the file. The data structure name is specified
as the parameter for INFDS. If INFDS is specified for more than one file, each
associated data structure must have a unique name. An INFDS can only be defined
in the main source section.

For additional information on file information data structures, see
[[nformation Data Structure” on page 65.

INFSR(SUBRname)

The INFSR keyword identifies the file exception/error subroutine that may receive
control following file exception/errors. The subroutine name may be *PSSR, which
indicates the user-defined program exception/error subroutine is to be given
control for errors on this file.

The INFSR keyword cannot be specified if the file is to be accessed by a
subprocedure, or if NOMAIN is specified on the control specification.

KEYLOC(number)

The KEYLOC keyword specifies the record position in which the key field for a
program-described indexed-file begins. The parameter must be between 1 and
32766.

The key field of a record contains the information that identifies the record. The
key field must be in the same location in all records in the file.

MAXDEV(*ONLY | *FILE)

The MAXDEV keyword specifies the maximum number of devices defined for the
WORKSTN file. The default, *ONLY, indicates a single device file. If *FILE is
specified, the maximum number of devices (defined for the WORKSTN file on the
create-file command) is retrieved at file open, and SAVEIND and SAVEDS space
allocation will be done at run time.

With a shared file, the MAXDEYV value is not used to restrict the number of
acquired devices.

When you specify DEVID, SAVEIND, or SAVEDS but not MAXDEYV, the program

assumes the default of a multiple device file (MAXDEV with a parameter of
*FILE).

Chapter 14. File Description Specifications 279

File-Description Keywords

OFLIND(indicator)

The OFLIND keyword specifies an overflow indicator to condition which lines in
the PRINTER file will be printed when overflow occurs. This entry is valid only
for a PRINTER device. Default overflow processing (that is, automatic page eject at
overflow) is done if the OFLIND keyword is not specified.

Valid Parameters:

*INOA-*INOG, *INOV:
Specified overflow indicator conditions the lines to be printed when
overflow occurs on a program described printer file.

*INO01-*IN99:
Set on when a line is printed on the overflow line, or the overflow line is
reached or passed during a space or skip operation.

name: The name of a variable that is defined with type indicator and is not an
array. This indicator is set on when the overflow line is reached and the
program must handle the overflow condition.

The behavior is the same as for indicators *IN01 to *IN99.

Note: Indicators *INOA through *INOG, and *INOV are not valid for externally
described files.

Only one overflow indicator can be assigned to a file. If more than one PRINTER
file in a program is assigned an overflow indicator, that indicator must be unique
for each file.

PASS(*NOIND)

The PASS keyword determines whether indicators are passed under programmer
control or based on the DDS keyword INDARA. This keyword can only be
specified for program-described files. To indicate that you are taking responsibility
for passing indicators on input and output, specify PASS(*NOIND) on the file
description specification of the corresponding program-described WORKSTN file.

When PASS(*NOIND) is specified, the ILE RPG compiler does not pass indicators
to data management on output, nor does it receive them on input. Instead you
pass indicators by describing them as fields (in the form *INxx, *IN(xx), or *IN) in
the input or output record. They must be specified in the sequence required by the
data description specifications (DDS). You can use the DDS listing to determine
this sequence.

If this keyword is not specified, the compiler assumes that INDARA was specified
in the DDS.

Note: If the file has the INDARA keyword specified in the DDS, you must not
specify PASS(*NOIND). If it does not, you must specify PASS(*NOIND).

PGMNAME(program_name)

The PGMNAME keyword identifies the program that is to handle the support for
the special I/O device (indicated by a Device-Entry of SPECIAL).

Note: The parameter must be a valid program name and not a bound procedure
name.

280 ILE RPG Reference

File-Description Keywords

See [“Positions 36-42 (Device)” on page 273 and ["PLIST(Plist_name)”| for more
information.

PLIST(Plist_name)

The PLIST keyword identifies the name of the parameter list to be passed to the
program for the SPECIAL file. The parameters identified by this entry are added to
the end of the parameter list passed by the program. (The program is specified
using the PGMNAME keyword, see ['PGMNAME(program_name)” on page 280.)
This keyword can only be specified when the Device-Entry (positions 36 to 42) in
the file description line is SPECIAL.

PREFIX(prefix{:nbr_of_char_replaced})

The PREFIX keyword is used to partially rename the fields in an externally
described file. The character string or character literal specified is prefixed to the
names of all fields defined in all records of the file specified in positions 7-16. In
addition, you can optionally specify a numeric value to indicate the number of
characters, if any, in the existing name to be replaced. If the 'nbr_of_char_replaced’
is not specified, then the string is attached to the beginning of the name.

If the 'nbr_of_char_replaced’ is specified, it must be a numeric constant containing
a value between 0 and 9 with no decimal places. For example, the specification
PREFIX(YE:3) would change the field name "YTDTOTAL’ to "YETOTAL'".
Specifying a value of zero is the same as not specifying nbr_of_char_replaced” at
all.

Rules:

* To explicitly rename a field on an Input specification when the PREFIX
keyword has been specified for a file you must choose the correct field name to
specify for the External Field Name (positions 21 - 30) of the Input specification.
The name specified depends on whether the prefixed name has been used prior
to the rename specification.

— If there has been a prior reference made to the prefixed name, the prefixed
name must be specified.

— If there has not been a prior reference made to the prefixed name, the external
name of the input field must be specified.

Once the rename operation has been coded then the new name must be used to
reference the input field. For more information, see [External Field Name| of the
Input specification.

* The total length of the name after applying the prefix must not exceed the
maximum length of an RPG field name.

¢ The number of characters in the name to be prefixed must not be less than or
equal to the value represented by the 'nbr_of_char_replaced” parameter. That is,
after applying the prefix, the resulting name must not be the same as the prefix
string.

e If the prefix is a character literal, it can end in a period. In this case, the field
names must all be subfields of the same qualified data structure.

¢ If the prefix is a character literal, it must be uppercase.
Examples:

The following example uses prefix ‘"MYDS.” to associate the fields in MYFILE with
the subfields of qualified data structure MYDS.

Chapter 14. File Description Specifications 281

File-Description Keywords

282

Fmyfile if e disk prefix('MYDS.')
D myds e ds qualified extname(myfile)

The next example uses prefix 'MYDS.F2":3 to associate the fields in MYFILE with
the subfields of qualified data structure MYDS. The subfields themselves are
further prefixed by replacing the first three characters with "F2’. The fields used by
this file will be MYDS2.F2FLD1 and MYDS2.F2FLD2. (Data structure MYDS2 must
be defined with a similar prefix. However, it is not exactly the same, since it does
not include the data structure name.)

A R REC

A ACRFLD1 10A

A ACRFLD2 55 0

Fmyfile2 if e disk prefix('MYDS2.F2"':3)

D myds2 e ds qualified extname(myfile)
D prefix('F2':3)

PRTCTL(data_struct{:*COMPAT})

ILE RPG Reference

The PRTCTL keyword specifies the use of dynamic printer control. The data
structure specified as the parameter data_struct refers to the forms control
information and line count value. The PRTCTL keyword is valid only for a
program described file.

The optional parameter *COMPAT indicates that the data structure layout is
compatible with RPG III. The default, *COMPAT not specified, will require the use
of the extended length data structure.

Extended Length PRTCTL Data Structure
A minimum of 15 bytes is required for this data structure. Layout of the PRTCTL
data structure is as follows:

Data Structure Positions
Subfield Contents

1-3 A three-position character field that contains the space-before value (valid
entries: blank or 0-255)

4-6 A three-position character field that contains the space-after value (valid
entries: blank or 0-255)

7-9 A three-position character field that contains the skip-before value (valid
entries: blank or 1-255)

10-12 A three-position character field that contains the skip-after value (valid
entries: blank or 1-255)

13-15 A three-digit numeric (zoned decimal) field with zero decimal positions
that contains the current line count value.

*COMPAT PRTCTL Data Structure

Data Structure Positions
Subfield Contents

1 A one-position character field that contains the space-before value (valid
entries: blank or 0-3)

2 A one-position character field that contains the space-after value (valid
entries: blank or 0-3)

3-4 A two-position character field that contains the skip-before value (valid
entries: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

File-Description Keywords

5-6 A two-position character field that contains the skip-after value (valid
entries: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

7-9 A three-digit numeric (zoned decimal) field with zero decimal positions
that contains the current line count value.

The values contained in the first four subfields of the extended length data
structure are the same as those allowed in positions 40 through 51 (space and skip
entries) of the output specifications. If the space and skip entries (positions 40
through 51) of the output specifications are blank, and if subfields 1 through 4 are
also blank, the default is to space 1 after. If the PRTCTL option is specified, it is
used only for the output records that have blanks in positions 40 through 51. You
can control the space and skip value (subfields 1 through 4) for the PRINTER file
by changing the values in these subfields while the program is running.

Subfield 5 contains the current line count value. The ILE RPG compiler does not
initialize subfield 5 until after the first output line is printed. The compiler then
changes subfield 5 after each output operation to the file.

RAFDATA(filename)

The RAFDATA keyword identifies the name of the input or update file that
contains the data records to be processed for a Record Address File (RAF) (an R in
position 18). See [“Record Address File (RAF)” on page 266 for further information.

RECNO(fieldname)

The RECNO keyword specifies that a DISK file is to be processed by
relative-record number. The RECNO keyword must be specified for output files
processed by relative-record number, output files that are referenced by a random
WRITE calculation operation, or output files that are used with ADD on the output
specifications.

The RECNO keyword can be specified for input/update files. The relative-record
number of the record retrieved is placed in the ’fieldname’, for all operations that
reposition the file (such as READ, SETLL, or OPEN). It must be defined as numeric
with zero decimal positions. The field length must be sufficient to contain the
longest record number for the file.

The compiler will not open a SEQ or DISK file for blocking or unblocking records
if the RECNO keyword is specified for the file. Note that the keywords RECNO
and BLOCK(*YES) cannot be specified for the same file.

Note: When the RECNO keyword is specified for input or update files with
file-addition ("A’ in position 20), the value of the fieldname parameter must
refer to a relative-record number of a deleted record, for the output
operation to be successful.

RENAME(Ext_format:Int_format)

The RENAME keyword allows you to rename record formats in an externally
described file. The external name of the record format that is to be renamed is
entered as the Ext_format parameter. The Int_format parameter is the name of the
record as it is used in the program. The external name is replaced by this name in
the program.

To rename all fields by adding a prefix, use the PREFIX keyword.

Chapter 14. File Description Specifications 283

File-Description Keywords

284

SAVEDS(DSname)

The SAVEDS keyword allows the specification of the data structure saved and
restored for each device. Before an input operation, the data structure for the
device operation is saved. After the input operation, the data structure for the
device associated with this current input operation is restored. This data structure
cannot be a data area data structure, file information data structure, or program
status data structure, and it cannot contain a compile-time array or prerun-time
array.

If the SAVEDS keyword is not specified, no saving and restoring is done. SAVEDS
must not be specified for shared files.

When you specify SAVEDS but not MAXDEYV, the ILE RPG program assumes a
multiple device file (MAXDEV with a parameter of *FILE).

SAVEIND(number)

The SAVEIND keyword specifies the number of indicators that are to be saved and
restored for each device attached to a mixed or multiple device file. Before an
input operation, the indicators for the device associated with the previous input or
output operation are saved. After the input operation, the indicators for the device
associated with this current input operation are restored.

Specify a number from 1 through 99, as the parameter to the SAVEIND keyword.
No indicators are saved and restored if the SAVEIND keyword is not specified, or
if the MAXDEV keyword is not specified or specified with the parameter *ONLY.

If you specified the DDS keyword INDARA, the number you specify for the
SAVEIND keyword must be less than any response indicator you use in your DDS.
For example, if you specify INDARA and CF01(55) in your DDS, the maximum
value for the SAVEIND keyword is 54. The SAVEIND keyword must not be used
with shared files.

The INDDS keyword cannot be specified with this keyword.

When you specify the SAVEIND keyword but not the MAXDEV keyword, the ILE
RPG program assumes a multiple device file.

SFILE(recformat:rrnfield)

ILE RPG Reference

The SFILE keyword is used to define internally the subfiles that are specified in an
externally described WORKSTN file. The recformat parameter identifies the RPG
IV name of the record format to be processed as a subfile. The rrnfield parameter
identifies the name of the relative-record number field for this subfile. You must
specify an SFILE keyword for each subfile in the DDS.

The relative-record number of any record retrieved by a READC or CHAIN
operation is placed into the field identified by the rrnfield parameter. This field is
also used to specify the record number that RPG IV uses for a WRITE operation to
the subfile or for output operations that use ADD. The field name specified as the
rrnfield parameter must be defined as numeric with zero decimal positions. The
field must have enough positions to contain the largest record number for the file.
(See the SFLSIZ keyword in the iSeries Information Center database and file
systems category.)

File-Description Keywords

Relative record number processing is implicitly defined as part of the SFILE
definition. If multiple subfiles are defined, each subfile requires the specification of
the SFILE keyword.

Do not use the SFILE keyword with the SLN keyword.

SLN(number)

The SLN (Start Line Number) keyword determines where a record format is
written to a display file. The main file description line must contain WORKSTN in
positions 36 through 42 and a C or O in positions 17. The DDS for the file must
specify the keyword SLNO(*VAR) for one or more record formats. When you
specify the SLN keyword, the parameter will automatically be defined in the
program as a numeric field with length of 2 and with 0 decimal positions.

Do not use the SLN keyword with the SFILE keyword.

TIMFMT (format{separator})

The TIMFMT keyword allows the specification of a default external time format
and a default separator (which is optional) for all time fields in the
program-described file. If the file on which this keyword is specified is indexed
and the key field is a time, then the time format specified also provides the default
external format for the key field.

For a Record-Address file this specifies the external time format of time limits keys
read from the record-address file.

You can specify a different external format for individual input or output time
fields in the file by specifying a time format/separator for the field on the
corresponding input specification (positions 31-35) or output specification
(positions 53-57).

See [Table 28 on page 198| for valid format and separators. For more information on
external formats, see|“Internal and External Formats” on page 169

USROPN

The USROPN keyword causes the file not to be opened at program initialization.
This gives the programmer control of the file’s first open. The file must be
explicitly opened using the OPEN operation in the calculation specifications. This
keyword is not valid for input files designated as primary, secondary, table, or
record-address files, or for output files conditioned by the 1P (first page) indicator.

The USROPN keyword is required for programmer control of only the first file
opening. For example, if a file is opened and later closed by the CLOSE operation,
the programmer can reopen the file (using the OPEN operation) without having
specified the USROPN keyword on the file description specification.

See also ["EXTIND(*INUx)” on page 277 |

File Types and

Processing Methods

[Table 39 on page 286| shows the valid entries for positions 28, 34, and 35 of the file
description specifications for the various file types and processing methods. The
methods of disk file processing include:

* Relative-record-number processing

Chapter 14. File Description Specifications 285

File Types and Processing Methods

* Consecutive processing

* Sequential-by-key processing

* Random-by-key processing

* Sequential-within-limits processing.

Table 39. Processing Methods for DISK Files

Access Method Opcode Position 28 Position 34 Position 35 Explanation
Random RRN CHAIN Blank Blank Blank Access by physical
order of records
Sequential Key READ Blank Blank I Access by key
READE sequentially
READP
READPE
cycle
Sequential Within Limits | READ L APG DT |I Access by key
READE Z,orF sequentially
READP controlled by record-
READPE address-limits file
cycle
Sequential RRN READ cycle |Blank Blank T Access sequentially
restricted to RRN
numbers in
record-address file

For further information on the various file processing methods, see the section
entitled "Methods for Processing Disk Files”, in the chapter "Accessing Database
Files” in the WebSphere Development Studio: ILE RPG Programmer’s Guide.

286 ILE RPG Reference

Chapter 15. Definition Specifications

[Definition specificationg can be used to define:

* Standalone fields

* Named constants

* Data structures and their subfields
* Prototypes

* Procedure interface

* Prototyped parameters

For more information on data structures, constants, prototypes, and procedure
interfaces, see also |Chapter 8, “Defining Data and Prototypes,” on page 117| For
more information on data types and data formats, see also [Chapter 10, “Data Types|
land Data Formats,” on page 169

Arrays and tables can be defined as either a data-structure subfield or a standalone
field. For additional information on defining and using arrays and tables, see also
(Chapter 9, “Using Arrays and Tables,” on page 151

Definition specifications can appear in two places within a module or program: in
the main source section and in a subprocedure. Within the main source section,
you define all global definitions. Within a subprocedure, you define the procedure
interface and its parameters as required by the prototype. You also define any local
data items that are needed by the prototyped procedure when it is processed. Any
definitions within a prototyped procedure are local. They are not known to any
other procedures (including the main procedure). For more information on scope,
see [“Scope of Definitions” on page 96.

A built-in function (BIF) can be used in the keyword field as a parameter to a
keyword. It is allowed on the definition specification only if the values of all
arguments are known at compile time. When specified as parameters for the
definition specification keywords DIM, OCCURS, OVERLAY, and PERRCD, all
arguments for a BIF must be defined earlier in the program. For further
information on using built-in functions, see [“Built-in Functions” on page 386,

Definition Specification Statement

The general layout for the definition specification is as follows:
* The definition specification type (D) is entered in position 6

* The non-commentary part of the specification extends from position 7 to
position 80

— The fixed-format entries extend from positions 7 to 42
— The keyword entries extend from positions 44 to 80

* The comments section of the specification extends from position 81 to position
100.

© Copyright IBM Corp. 1994, 2004 287

Definition Specification Statement

I P U/ SN TEPIPE SO S ST JEPIPIE IR - SEPRPPE DU AIPE U - SIS DUPR - PR PR O}
DName+++++++++++ETDsFrom+++To/L+++IDc. Keywords++++++++++++++++++++++H++HH++Comment s+H+++++H+H+H+++

Figure 107. Definition Specification Layout

Definition Specification Keyword Continuation Line

If additional space is required for the keywords field can be continued
on subsequent lines as follows:

e Position 6 of the continuation line must contain a D
e Positions 7 to 43 of the continuation line must be blank
* The specification continues on or past position 44

L T A T T T T T O TR A e« R T R O (]

Figure 108. Definition Specification Keyword Continuation Line Layout

Definition Specification Continued Name Line

A name that is up to 15 characters long can be specified in the of the
definition specification without requiring continuation. Any name (even one with
15 characters or fewer) can be continued on multiple lines by coding an ellipsis (...)
at the end of the partial name. A name definition consists of the following parts:

1. Zero or more continued name lines. Continued name lines are identified as
having an ellipsis as the last non-blank character in the entry. The name must
begin within positions 7 to 21 and may end anywhere up to position 77 (with
an ellipsis ending in position 80). There cannot be blanks between the start of
the name and the ellipsis character. If any of these conditions is not true, the
line is parsed as a main definition line.

2. One main definition line, containing a name, definition attributes, and
keywords. If a continued name line is coded, the Name entry of the main
definition line may be left blank.

3. Zero or more keyword continuation lines.

L R A . R T R T R Py N IR - U U

R S (]
DContinuedName+++++++++++++++++++++Ht+tt+++HH++HHHHHHHH R Comment s HH++HH+++HHH++

Figure 109. Definition Specification Continued Name Line Layout

Position 6 (Form Type)

Enter a D in this position for definition specifications.

Positions 7-21 (Name)
Entry Explanation

Name The name of the item being defined.

Blank Specifies filler fields in data-structure subfield definitions, or an unnamed
data structure in data-structure definitions.

288 ILE RPG Reference

Definition Specification Statement

The normal rules for RPG IV symbolic names apply; reserved words cannot be
used (see|“Symbolic Names” on page 3). The name can begin in any position in
the space provided. Thus, indenting can be used to indicate the shape of data in
data structures.

For continued name lines, a name is specified in positions 7 through 80 of the
continued name lines and positions 7 through 21 of the main definition line. As
with the traditional definition of names, case of the characters is not significant.

For an externally described subfield, a name specified here replaces the
external-subfield name specified on the EXTFLD keyword.

For a prototype parameter definition, the name entry is optional. If a name is
specified, the name is ignored. (A prototype parameter is a definition specification
with blanks in positions 24-25 that follows a PR specification or another prototype
parameter definition.)

— TIP
If you are defining a prototype and the name specified in positions 7-21
cannot serve as the external name of the procedure, use the EXTPROC
keyword to specify the valid external name. For example, the external name
may be required to be in lower case, because you are defining a prototype for
a procedure written in ILE C.

Position 22 (External Description)

This position is used to identify a data structure or data-structure subfield as
externally described. If a data structure or subfield is not being defined on this
specification, then this field must be left blank.

Entry Explanation for Data Structures

E Identifies a data structure as externally described: subfield definitions are
defined externally. If the EXTNAME keyword is not specified, positions
7-21 must contain the name of the externally described file containing the
data structure definition.

Blank Program described: subfield definitions for this data structure follow this
specification.

Entry Explanation for Subfields

E Identifies a data-structure subfield as externally described. The
specification of an externally described subfield is necessary only when
keywords such as EXTFLD and INZ are used.

Blank Program described: the data-structure subfield is defined on this
specification line.

Position 23 (Type of Data Structure)

This entry is used to identify the type of data structure being defined. If a data
structure is not being defined, this entry must be left blank.

Entry Explanation

Chapter 15. Definition Specifications 289

HH OH OH OHHHFH

Definition Specification Statement

Blank The data structure being defined is not a program status or data-area data
structure; or a data structure is not being defined on this specification

S Program status data structure. Only one data structure may be designated
as the program status data structure.

U Data-area data structure.
RPG 1V retrieves the data area at initialization and rewrites it at end of

program.

* If the DTAARA keyword is specified, the parameter to the DTAARA
keyword is used as the name of the external data area. If the name is a
variable, the value must be set before the program begins. This can be
done by:

— DPassing the variable as a parameter.
- Explicitly initializing the variable with the INZ keyword.

— Sharing the variable with another module using the IMPORT and
EXPORT |keywords, and ensuring the value is set prior to the call.

* If the DTAARA keyword is not specified, the name in positions 7-21 is
used as the name of the external data area.

 If a name is not specified either by the DTAARA keyword, or by
positions 7-21, *LDA (the local data area) is used as the name of the
external data area.

Positions 24-25 (Definition Type)
Entry Explanation

Blank The specification defines either a data structure subfield or a parameter
within a prototype or procedure interface definition.

C The specification defines a constant. Position 25 must be blank.

DS The specification defines a data structure.

PR The specification defines a prototype and the return value, if any.

PI The specification defines a procedure interface, and the return value if any.
S The specification defines a standalone field, array or table. Position 25

must be blank.

Definitions of data structures, prototypes, and procedure interfaces end with the
first definition specification with non-blanks in positions 24-25, or with the first
specification that is not a definition specification.

For a list of valid keywords, grouped according to type of definition, please refer
to [Table 41 on page 327

Positions 26-32 (From Position)

Positions 26-32 may only contain an entry if the location of a subfield within a
data structure is being defined.

Entry Explanation

Blank A blank FROM position indicates that the value in the
TO/LENGTH field specifies the length of the subfield, or that a
subfield is not being defined on this specification line.

nnnnnnn Absolute starting position of the subfield within a data structure.

290 ILE RPG Reference

Definition Specification Statement

The value specified must be from 1 to 65535 for a named data
structure (and from 1 to 9999999 for an unnamed data structure),
and right-justified in these positions.

Reserved Words

Reserved words for the program status data structure or for a file
information data structure are allowed (left-justified) in the
FROM-TO/LENGTH fields (positions 26-39). These special
reserved words define the location of the subfields in the data
structures. Reserved words for the program status data structure
are *STATUS, *PROC, *PARM, and *ROUTINE. Reserved words for
the file information data structure (INFDS) are *FILE, *RECORD,
*OPCODE, *STATUS, and *ROUTINE.

Positions 33-39 (To Position / Length)
Entry Explanation
Blank If positions 33-39 are blank:

nnnnnnn

a named constant is being defined on this specification line, or

the standalone field, parameter, or subfield is being defined LIKE
another field, or

the standalone field, parameter, or subfield is of a type where a length is
implied, or

the subfield’s attributes are defined elsewhere, or

a data structure is being defined. The length of the data structure is the

maximum value of the subfield To-Positions. The data structure may be
defined using the LIKEDS or LIKEREC keyword.

Positions 33-39 may contain a (right-justified) numeric value, from 1 to
65535 for a named data structure (and from 1 to 9999999 for an unnamed
data structure), as follows:

If the From field (position 26-32) contains a numeric value, then a
numeric value in this field specifies the absolute end position of the
subfield within a data structure.

If the From field is blank, a numeric value in this field specifies :

— the length of the entire data structure, or

— the length of the standalone field, or

— the length of the parameter, or

— the length of the subfield. Within the data structure, this subfield is
positioned such that its starting position is greater than the maximum
to-position of all previously defined subfields in the data structure.

Padding is inserted if the subfield is defined with type basing pointer
or procedure pointer to ensure that the subfield is aligned properly.

Notes:

1. For graphic or UCS-2 fields, the number specified here is the number
of graphic or UCS-2 characters, NOT the number of bytes (1 graphic
or UCS-2 character = 2 bytes). For numeric fields, the number
specified here is the number of digits (for packed and zoned numeric
fields: 1-63; for binary numeric fields: 1-9; for integer and unsigned
numeric fields: 3, 5, 10, or 20;).

2. For float numeric fields the number specified is the number of bytes,
NOT the number of digits (4 or 8 bytes).

Chapter 15. Definition Specifications 291

Definition Specification Statement

292

+ | -nnnnn

This entry is valid for standalone fields or subfields defined using the
LIKE keyword. The length of the standalone field or subfield being defined
on this specification line is determined by adding or subtracting the value
entered in these positions to the length of the field specified as the
parameter to the LIKE keyword.

Notes:

1. For graphic or UCS-2 fields, the number specified here is the number of
graphic or UCS-2 characters, NOT the number of bytes (1 graphic or
UCS-2 character = 2 bytes). For numeric fields, the number specified
here is the number of digits.

2. For float fields, the entry must be blank or +0. The size of a float field
cannot be changed as with other numerics.

Reserved Words

If positions 26-32 are used to enter special reserved words, this field
becomes an extension of the previous one, creating one large field
(positions 26-39). This allows for reserved words, with names longer than 7
characters in length, to extend into this field. See [“Positions 26-32 (From|
[Position)” on page 290, Reserved Words’.

Position 40 (Internal Data Type)

This entry allows you to specify how a standalone field, parameter, or
data-structure subfield is stored internally. This entry pertains strictly to the
internal representation of the data item being defined, regardless of how the data
item is stored externally (that is, if it is stored externally). To define variable-length
character, graphic, and UCS-2 formats, you must specify the keyword VARYING;
otherwise, the format will be fixed length.

ILE RPG Reference

Entry Explanation
Blank When the LIKE keyword is not specified:

= o0z ~" O ™mmQOOHOw

¢ If the decimal positions entry is blank, then the item is defined as
character

* If the decimal positions entry is not blank, then the item is defined as
packed numeric if it is a standalone field or parameter; or as zoned
numeric if it is a subfield.

Note: The entry must be blank whenever the LIKE, LIKEDS and LIKEREC
keywords are specified.

Character (Fixed or Variable-length format)

Numeric (Binary format)

UCS-2 (Fixed or Variable-length format)

Date

Numeric (Float format)

Graphic (Fixed or Variable-length format)

Numeric (Integer format)

Character (Indicator format)

Object

Numeric (Packed decimal format)

Definition Specification Statement

Numeric (Zoned format)
Time

Numeric (Unsigned format)

N ¢ 4 »

Timestamp

*

Basing pointer or procedure pointer

Positions 41-42 (Decimal Positions)

Positions 41-42 are used to indicate the number of decimal positions in a numeric
subfield or standalone field. If the field is non-float numeric, there must always be
an entry in these positions. If there are no decimal positions enter a zero (0) in
position 42. For example, an integer or unsigned field (type I or U in position 40)
requires a zero for this entry.

Entry Explanation

Blank The value is not numeric (unless it is a float field) or has been defined
with the LIKE keyword.

0-63 Decimal positions: the number of positions to the right of the decimal in a
numeric field.

This entry can only be supplied in combination with the TO/Length field. If the
TO/Length field is blank, the value of this entry is defined somewhere else in the
program (for example, through an externally described data base file).

Position 43 (Reserved)
Position 43 must be blank.

Positions 44-80 (Keywords)

Positions 44 to 80 are provided for definition specification keywords. Keywords are
used to describe and define data and its attributes. Use this area to specify any
keywords necessary to fully define the field.

Definition-Specification Keywords

Definition-specification keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword (parameterl : parameter2)

where:
* Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
* Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:

* Braces { } indicate optional parameters or optional elements of parameters.
e An ellipsis (...) indicates that the parameter can be repeated.

¢ A colon (:) separates parameters and indicates that more than one may be
specified. All parameters separated by a colon are required unless they are
enclosed in braces.

Chapter 15. Definition Specifications 293

Definition-Specification Keywords

294

ALIGN

* A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

* A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for definition-specification keywords, the keyword
field can be continued on subsequent lines. See [“Definition Specification Keyword|

Continuation Line” on page 288|and |“Definition Specification Keyword Field” on|

page 242.|

The ALIGN keyword is used to align float, integer, and unsigned subfields. When
ALIGN is specified, 2-byte subfields are aligned on a 2-byte boundary, 4-byte
subfields are aligned on a 4-byte boundary and 8-byte subfields are aligned on an
8-byte boundary. Alignment may be desired to improve performance when
accessing float, integer, or unsigned subfields.

Specify ALIGN on the data structure definition. However, you cannot specify
ALIGN for either the file information data structure (INFDS) or the program status
data structure (PSDS).

Alignment occurs only to data structure subfields defined with length notation and
without the keyword OVERLAY. A diagnostic message is issued if subfields that
are defined either with absolute notation or using the OVERLAY keyword are not
properly aligned.

Pointer subfields are always aligned on a 16-byte boundary whether or not ALIGN
is specified.

See [“Aligning Data Structure Subfields” on page 131|for more information.

ALT(array_name)

The ALT keyword is used to indicate that the compile-time or pre-runtime array or
table is in alternating format.

The array defined with the ALT keyword is the alternating array and the array
name specified as the parameter is the main array. The alternate array definition
may precede or follow the main array definition.

The keywords on the main array define the loading for both arrays. The
initialization data is in alternating order, beginning with the main array, as follows:
main/alt/main/alt/...

In the alternate array definition, the PERRCD, FROMFILE, TOFILE, and CTDATA
keywords are not valid.

ALTSEQ(*NONE)

ILE RPG Reference

When the ALTSEQ(*NONE) keyword is specified, the alternate collating sequence
will not be used for comparisons involving this field, even when the ALTSEQ
keyword is specified on the control specification. ALTSEQ(*NONE) on Data

Definition-Specification Keywords

Definition specifications will be meaningful only if one of ALTSEQ, ALTSEQ(*SRC)
or ALTSEQ(*EXT) is coded in the control specifications. It is ignored if this is not
true.

ALTSEQ(*NONE) is a valid keyword for:

* Character standalone fields

* Character arrays

* Character tables

¢ Character subfields

* Data structures

* Character return values on Procedure Interface or Prototype definitions

* Character Prototyped Parameters

ASCEND

The ASCEND keyword is used to describe the sequence of the data in any of the
following:

e An array
* A table loaded at prerun-time or compile time
* A prototyped parameter

See also ['DESCEND” on page 297

Ascending sequence means that the array or table entries must start with the
lowest data entry (according to the collating sequence) and go to the highest. Items
with equal value are allowed.

A prerun-time array or table is checked for the specified sequence at the time the
array or table is loaded with data. If the array or table is out of sequence, control
passes to the RPG 1V exception/error handling routine. A run-time array (loaded
by input and/or calculation specifications) is not sequence checked.

When ALTSEQ(*EXT) is specified, the alternate collating sequence is used when
checking the sequence of compile-time arrays or tables. If the alternate sequence is
not known until run-time, the sequence is checked at run-time; if the array or table
is out of sequence, control passes to the RPG IV exception/error handling routine.

A sequence (ascending or descending) must be specified if the LOOKUP operation,
%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table
for an entry to determine whether the entry is high or low compared to the search
argument.

If the SORTA operation code is used with an array, and no sequence is specified,
an ascending sequence is assumed.

BASED(basing_pointer_name)

When the BASED keyword is specified for a data structure or standalone field, a
basing pointer is created using the name specified as the keyword parameter. This
basing pointer holds the address (storage location) of the based data structure or
standalone field being defined. In other words, the name specified in positions 7-21
is used to refer to the data stored at the location contained in the basing pointer.

Chapter 15. Definition Specifications 295

Definition-Specification Keywords

296

Note: Before the based data structure or standalone field can be used, the basing
pointer must be assigned a valid address.

If an array is defined as a based standalone field it must be a run-time array.

If a based field is defined within a subprocedure, then both the field and the
basing pointer are local.

CCSID(number | *DFT)

This keyword sets the CCSID for graphic and UCS-2 definitions.

number must be an integer between 0 and 65535. It must be a valid graphic or
UCS-2 CCSID value. A valid graphic CCSID is 65535 or a CCSID with the EBCDIC
double-byte encoding scheme (X"1200"). A valid UCS-2 CCSID has the UCS-2
encoding scheme (x'7200").

For program-described fields, CCSID(number) overrides the defaults set on the
control specification with the CCSID(*GRAPH: *SRC), CCSID(*GRAPH: number),
or CCSID(*UCS2: number) keyword.

CCSID(*DFT) indicates that the default CCSID for the module is to be used. This is
useful when the LIKE keyword is used since the new field would otherwise inherit
the CCSID of the source field.

If the keyword is not specified, the default graphic or UCS-2 CCSID of the module
is assumed. (This keyword is not allowed for graphic fields when CCSID(*GRAPH
: *IGNORE) is specified or assumed).

If this keyword is not specified and the LIKE keyword is specified, the new field
will have the same CCSID as the LIKE field.

CLASS(*JAVA:class-name)

This keyword indicates the class for an object definition.

class-name must be a constant character value.

CONST{(constant)}

ILE RPG Reference

The CONST keyword is used
* To specify the value of a named constant

* To indicate that a parameter passed by reference is read-only.

When specifying the value of a named constant, the CONST keyword itself is
optional. That is, the constant value can be specified with or without the CONST
keyword.

The parameter must be a literal, figurative constant, or built-in-function. The
constant may be continued on subsequent lines by adhering to the appropriate
continuation rules (see ['Continuation Rules” on page 239| for further details).

If a named constant is used as a parameter for the keywords DIM, OCCURS,
PERRCD, or OVERLAY, the named constant must be defined prior to its use.

H H H

Definition-Specification Keywords

When specifying a read-only reference parameter, you specify the keyword CONST
on the definition specification of the parameter definition on both the prototype
and procedure interface. No parameter to the keyword is allowed.

When the keyword CONST is specified, the compiler may copy the parameter to a
temporary and pass the address of the temporary. Some conditions that would
cause this are: the passed parameter is an expression or the passed parameter has a
different format.

— Attention!
Do not use this keyword on a prototype definition unless you are sure that
the parameter will not be changed by the called program or procedure.

If the called program or procedure is compiled using a procedure interface
with the same prototype, you do not have to worry about this, since the
compiler will check this for you.

Although a CONST parameter cannot be changed by statements within the
procedure, the value may be changed as a result of statements outside of the
procedure, or by directly referencing a global variable.

Passing a parameter by constant value has the same advantages as passing by
value. In particular, it allows you to pass literals and expressions.

CTDATA

The CTDATA keyword indicates that the array or table is loaded using
compile-time data. The data is specified at the end of the program following the **
or *CTDATA (array/table name) specification.

When an array or table is loaded at compilation time, it is compiled along with the
source program and included in the program. Such an array or table does not need
to be loaded separately every time the program is run.

DATFMT(format{separator})

The DATFMT keyword specifies the internal date format, and optionally the
separator character, for any of these items of type Date: standalone field;
data-structure subfield; prototyped parameter; or return value on a prototype or
procedure-interface definition. This keyword will be automatically generated for an
externally described data structure subfield of type Date and determined at
compile time.

If DATFMT is not specified, the Date field will have the date format and separator
as specified by the DATEMT keyword on the control specification, if present. If
none is specified on the control specification, then it will have *ISO format.

See [Table 25 on page 196| for valid formats and separators. For more information
on internal formats, see [‘Internal and External Formats” on page 169,

DESCEND

The DESCEND keyword describes the sequence of the data in any of the
following:

* An array

Chapter 15. Definition Specifications 297

H R HH

Definition-Specification Keywords

298

* A table loaded at prerun-time or compile time
* A prototyped parameter

See also ["ASCEND” on page 295.|

Descending sequence means that the array or table entries must start with the
highest data entry (according to the collating sequence) and go to the lowest. Items
with equal value are allowed.

A prerun-time array or table is checked for the specified sequence at the time the
array or table is loaded with data. If the array or table is out of sequence, control
passes to the RPG IV exception/error handling routine. A run-time array (loaded
by input and/or calculation specifications) is not sequence checked.

When ALTSEQ(*EXT) is specified, the alternate collating sequence is used when
checking the sequence of compile-time arrays or tables. If the alternate sequence is
not known until run-time, the sequence is checked at run-time; if the array or table
is out of sequence, control passes to the RPG IV exception/error handling routine.

A sequence (ascending or descending) must be specified if the LOOKUP operation,
%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table
for an entry to determine whether the entry is high or low compared to the search
argument.

If the SORTA operation code is used with an array, and no sequence is specified,
an ascending sequence is assumed.

DIM(numeric_constant)

The DIM keyword defines the number of elements in an array, table, a prototyped
parameter, array data structure, or a return value on a prototype or
procedure-interface definition.

The numeric constant must have zero (0) decimal positions. It can be a literal, a
named constant or a built-in function.

The constant value does not need to be known at the time the keyword is
processed, but the value must be known at compile-time.

When DIM is specified on a data structure definition, the data structure must be a
qualified data structure, and subfields must be referenced as fully qualified names,
ie. "dsname(x).subf”. Other array keywords, such as CTDATA, FROMFILE,
TOFILE, and PERRCD are not allowed with an array data structure definition.

DTAARA{(*VAR:)data_area_name}

ILE RPG Reference

The DTAARA keyword is used to associate a standalone field, data structure,
data-structure subfield or data-area data structure with an external data area. The
DTAARA keyword has the same function as the “DTAARA DEFINE operation code
(see ["*DTAARA DEFINE” on page 593).

You can create three kinds of data areas:
* *CHAR Character

e *DEC Numeric

* *LGL Logical

HFHHFHFH H HF O OHHFEHFH OH OHE HH HoHHHHHHH

HEHE H H R

H*

Definition-Specification Keywords

You can also create a DDM data area (type *DDM) that points to a data area on a
remote system of one of the three types above.

Only character and numeric types (excluding float numeric) are allowed to be
associated with data areas. The actual data area on the system must be of the same
type as the field in the program, with the same length and decimal positions.
Indicator fields can be associated with either a logical data area or a character data
area. If you want to store other types in a data area, you can use a data structure
for the data area, and code the subfields of any type, except pointers. Pointers
cannot be stored in data areas.

If data_area_name is not specified, then the name specified in positions 7-21 is also
the name of the external data area. If neither the parameter nor the data-structure
name is specified, then the default is *LDA.

If *VAR is not specified, the data_area_name parameter can be either a name or a
literal. If a name is specified, the name of the parameter of DTAARA is used as the
name of the data area. For example, DTAARA(MYDTA) means that the data area
*LIBL/MYDTA will be used at runtime. It must be a valid data area name,
including *LDA (for the local data area) and *PDA (for the program initialization
parameters data area). If a literal is specified, the value of the literal is used as the
name of the data area. For example, DTAARA('LIB/DTA’) will use data area DTA
in library LIB, at runtime.

If *VAR is specified, the value of data_area_name is used as the data area name.
This value can be:

* A named constant whose value is the name of the data area.

e A character variable that will hold the name of the data area at runtime.

You can specify the value in any of the following forms:

dtaaraname
libname/dtaaraname
*LIBL/dtaaraname

Notes:
1. You cannot specify *CURLIB as the library name.
2. 1If you specify a data area name without a library name, *LIBL is used.

3. The name must be in the correct case. For example, if you specify
DTAARA(*VAR:dtaname) and variable dtaname has the value ‘qtemp/mydta’,
the data area will not be found. Instead, it should have the value
'"QTEMP/MYDTA'".

— Attention!
If DTAARA(*VAR) keyword is used with a UDS data area, and the name is a
variable, then this variable must have the value set before the program starts.
This can be done by initializing the variable, passing the variable as an entry
parameter, or sharing the variable with another program through the
IMPORT and EXPORT keywords.

When the DTAARA keyword is specified, the IN, OUT, and UNLOCK operation
codes can be used on the data area.

Chapter 15. Definition Specifications 299

Definition-Specification Keywords

300

EXPORT{(external _name)}

The specification of the EXPORT keyword allows a globally defined data structure
or standalone field defined within a module to be used by another module in the
program. The storage for the data item is allocated in the module containing the
EXPORT definition. The external_name parameter, if specified, must be a character
literal or constant.

The EXPORT keyword on the definition specification is used to export data items
and cannot be used to export procedure names. To export a procedure name, use
the EXPORT keyword on the procedure specification.

Note: The initialization for the storage occurs when the program entry procedure
(of the program containing the module) is first called. RPG IV will not do
any further initialization on this storage, even if the procedure ended with
LR on, or ended abnormally on the previous call.

The following restrictions apply when EXPORT is specified:
* Only one module may define the data item as exported

* You cannot export a field that is specified in the Result-Field entry of a PARM in
the *ENTRY PLIST

* Unnamed data structures cannot be exported

* BASED data items cannot be exported

¢ The same external field name cannot be specified more than once per module
and also cannot be used as an external procedure name

e IMPORT and EXPORT cannot both be specified for the same data item.

For a multiple-occurrence data structure or table, each module will contain its own
copy of the occurrence number or table index. An OCCUR or LOOKUP operation
in any module will have only a local impact since the occurrence number or index
is local to each module.

See also ['IMPORT{(external_name)}” on page 307

— TIP
The keywords IMPORT and EXPORT allow you to define a "hidden” interface
between modules. As a result, use of these keywords should be limited only
to those data items which are global throughout the application. It is also
suggested that this global data be limited to things like global attributes
which are set once and never modified elsewhere.

EXTFLD(field _name)

ILE RPG Reference

The EXTFLD keyword is used to rename a subfield in an externally described data
structure. Enter the external name of the subfield as the parameter to the EXTFLD
keyword, and specify the name to be used in the program in the Name field
(positions 7-21).

The keyword is optional. If not specified, the name extracted from the external
definition is used as the data-structure subfield name.

If the PREFIX keyword is specified for the data structure, the prefix will not be
applied to fields renamed with EXTFLD.

Definition-Specification Keywords

EXTFMT(code)

The EXTFMT keyword is used to specify the external data type for compile-time
and prerun-time numeric arrays and tables. The external data type is the format of
the data in the records in the file. This entry has no effect on the format used for
internal processing (internal data type) of the array or table in the program.

Note: The values specified for E