
iSeries

OS/400 PASE

Version 5 Release 3

ERserver

���

iSeries

OS/400 PASE

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 51.

Fifth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722-SS1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not

run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|

Contents

OS/400 PASE 1

What’s new for V5R3 1

How to see what’s new or changed 3

Print this topic 3

Get started with OS/400 PASE 3

What is OS/400 PASE? 4

When is OS/400 PASE a useful option for

application development? 5

Install OS/400 PASE 6

Plan for OS/400 PASE 6

Prepare programs to run in OS/400 PASE 8

Analyze your program’s compatibility with

OS/400 PASE 8

Compile your AIX source 9

Copy the OS/400 PASE program to your iSeries

server 13

Customize OS/400 PASE programs to use

OS/400 functions 15

Use OS/400 PASE programs in the OS/400

environment 17

Run OS/400 PASE programs and procedures . . 17

Call OS/400 programs and procedures from your

OS/400 PASE programs 22

How OS/400 PASE programs interact with

OS/400 33

Debug your OS/400 PASE programs 47

Optimize performance 47

Examples 48

Code disclaimer information 48

Related information for OS/400 PASE 48

Appendix. Notices 51

Trademarks 52

Terms and conditions for downloading and printing

publication 53

© Copyright IBM Corp. 2000, 2005 iii

iv iSeries: OS/400 PASE

OS/400 PASE

OS/400® Portable Application Solutions Environment (OS/400 PASE) allows you to port AIX®

applications to the iSeries™ server with minimal effort. OS/400 PASE provides an integrated run-time

environment that allows you to run selected UNIX® applications without the complexity of managing a

UNIX system. OS/400 PASE also provides industry-standard and de facto-standard shells and utilities

that provide you with a powerful scripting environment.

To become more familiar with OS/400 PASE, see the following. You can also find information about

what’s new in this release and how you can print this topic.

 Get started with OS/400 PASE

Gives you an overview of the OS/400 Portable Application Solutions Environment, explains how and

when OS/400 PASE can be useful for you, and provides instructions for installing OS/400 PASE on

your iSeries server.

 Plan for OS/400 PASE

Discusses some of the technical requirements you need to consider before you begin using OS/400

PASE.

 Prepare programs to run in OS/400 PASE

Provides instructions for creating, compiling, and copying AIX programs that will run effectively in

OS/400 PASE.

 Use OS/400 PASE programs in the OS/400 environment

Discusses how you can run OS/400 PASE in the OS/400 environment, how you can call OS/400

programs and ILE procedures from within your OS/400 PASE programs, and how OS/400 PASE

programs interact with OS/400 functions such as security, messaging, database, communications,

work management, printing, and the integrated language environment (ILE).

 Debug OS/400 PASE

Provides information about debugging tools you can use to identify and fix problems in your

applications.

 Optimize performance

Provides information about ways that you can make your applications run more efficiently.

 Examples

Provides links to each of the examples in this information and a code example disclaimer that you

should read before you use the examples.

 Related information about OS/400 PASE

Shows you where you can go in the iSeries Information Center for detailed information about OS/400

PASE APIs, libraries, and utilities. Provides links to additional information outside of the Information

Center about OS/400 PASE and AIX.

What’s new for V5R3

This page highlights changes to the OS/400 PASE product for V5R3.

v OS/400 PASE for V5R3M0 is derived from AIX 5.2 (versus AIX 5.1 for OS/400 PASE V5R1M0)

v The following compiler products announced support to run on OS/400 PASE (for versions V5R2M0

and V5R3M0):

– IBM® VisualAge® C++ Professional for AIX, Version 6.0

– IBM C for AIX, Version 6.0

– IBM XL Fortran for AIX, Version 8.1.1
v OS/400 option 13 (System Openness Includes) also added support (in V5R2 and V5R3) for header files

that are needed to compile OS/400 PASE C and C++ programs.

© Copyright IBM Corp. 2000, 2005 1

rzalfwhatsnew.htm
rzalfmstpdf.htm
rzalfinstcomp.htm

v The following utilities are new or changed:

– df (Reports information about space on file systems)

– idlj (Run the QShell idlj command, to run the IDL-to-Java compiler)

– orbd (Run the QShell orbd command, to run the Java™ Object Request Broker Daemon)

– servertool (Run the QShell servertool command, to run the Java IDL Server Tool)

– Changes to the OS/400 QP0ZCALL API and CL CALL command increase the number of arguments

that can be passed to an ILE or OPM utility program invoked by OS/400 PASE shell scripts qsh,

qsh_inout, or qsh_out
v The following libraries were added:

– libnsl.a: Transport Independent Remote Procedure Call (TI-RPC)

– libtli.a: Transport Library Interface

– libxti.a: X/OPEN(TM) Transport Library Interface
v More specific error messages are sent from the Qp2RunPase API and the QP2SHELL and QP2TERM

programs when the arguments are not valid (for example, path not found, not authorized, not a valid

executable object).

v The OS/400 PASE loader implementation is derived from the 64-bit AIX kernel, providing improved

performance and adding support for functions such as unloading 64-bit shared libraries. Runtime

interfaces (such as sysconf and _system_configuration) are updated to reflect a 64-bit kernel.

v New or changed OS/400 PASE runtime functions:

– _GETTS64 (Get 64-bit Teraspace Address for OS/400 PASE address)

– _GETTS64_SPP (Get 64-bit Teraspace Address from Space Pointer)

– _GETTS64M (Get Multiple 64-bit Teraspace Addressses)

– _ILECALLX adds ARG_MEMTS64 and ARG_TS64PTR support

– _ILELOADX (64-bit ILE activation mark support)

– _ILESYMX (64-bit ILE activation mark support)

– _PGMCALL support for more arguments and ASCII-to-EBCDIC string conversion support

– _SETSPP_TS64 (Set Space Pointer to 64-bit Teraspace Address)

– _SETSPPM (Set Multiple Space Pointers)

– fork and f_fork support for PASE_FORK_JOBNAME environment variable

– fork400 and f_fork400 (specify job name and resource identifier)

– getgrent (get group entry)

– getrpid (get real process identifier)

– getpwent (get password/user entry)

– mntctl (to retrieve attributes of mounted file system)

– Qp2setenv_ile (to set ILE environment variables)
v New or changed (ILE) APIs for OS/400 PASE:

– The QP2SHELL, QP2SHELL2, and QP2TERM programs now default the PASE_TZ environment

variable to match the OS/400 TIMZON job attribute (time zone support)

– QP2SHELL, QP2SHELL2, and Qp2RunPase now check ILE environment variable

QIBM_PASE_FLUSH_STDIO to determine whether to flush standard output (stdout and stderr)

when not using integrated file system descriptors (when QIBM_USE_DESCRIPTOR_STDIO is unset)

– Support on the Qp2RunPase API to fill a specific named symbol with arbitrary data) was dropped.

The second argument for Qp2RunPase (symbolName) now must be a null pointer. OS/400 PASE

programs can call ILE and OPM code (using _ILECALL and _PGMCALL) with by-address

arguments to retrieve inputs that cannot be expressed as null-terminated arguments or environment

variable character strings.
v No job start messages are written in the job log or QHST for fork jobs, and a job completion message is

produced only if a job ends abnormally.

2 iSeries: OS/400 PASE

v OS/400 PASE runtime now relies on the system clock to keep track of coordinated universal time

(UTC), so time zone changes are reflected immediately (instead of being delayed until the Qp2RunPase

API first runs after the change).

v OS/400 PASE now supports UTF-16 encoding for internal system support interfaces (for example, file

systems) that were previously restricted to UCS-2.

v Support for zombie processes was added (per the UNIX standard).

v New locales were added.

How to see what’s new or changed

To help you see where technical changes have been made, this information uses:

v The

image to mark where new or changed information begins.

v The

image to mark where new or changed information ends.

The PDF version of this information shows new or changed information with vertical bars along the

margin.

To find other information about what’s new or changed this release, see the Memo to Users.

Print this topic

To view or download the PDF version of this document, select OS/400 PASE (about 282 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

v Right-click the PDF in your browser (right-click the link above).

v Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using

Netscape Communicator.

v Navigate to the directory in which you would like to save the PDF.

v Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html)

.

Get started with OS/400 PASE

Cross-platform application development and deployment are crucial components of any effective business

computing environment. Equally important are the ease of use and integration of functions that your

system offers: the hallmarks of the iSeries and AS/400e™ servers. As your business moves into an

increasingly open computing environment, you are likely finding that achieving these often divergent

goals can be difficult, time-consuming, and expensive. For instance, you might want the benefit of a

familiar application that runs on and makes use of the capabilities of the AIX operating system, but you

do not want the added burden of managing both AIX and OS/400 operating systems.

This is where OS/400 Portable Application Solutions Environment (OS/400 PASE) helps. OS/400 PASE

lets you run many of your AIX application binaries on OS/400 with little or no change, and effectively

expands your platform solution portfolio.

See the following topics to learn more about OS/400 PASE:

 What is OS/400 PASE?

OS/400 PASE 3

rzalf.pdf
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

When is OS/400 PASE a useful option for application development?

 Install OS/400 PASE

What is OS/400 PASE?

OS/400 Portable Application Solutions Environment (OS/400 PASE) is an integrated runtime

environment for AIX applications running on OS/400. It supports the Application Binary Interface (ABI)

of AIX, and provides a broad subset of the support provided by AIX shared libraries, shells, and utilities.

OS/400 PASE supports the direct processing of PowerPC® machine instructions, so it does not have the

drawbacks of an environment that only emulates the machine instructions.

OS/400 PASE applications:

v Can be written in C, C++, Fortran, or PowerPC assembler

v Use the same binary executable format as AIX PowerPC applications

v Run in an OS/400 job

v Use OS/400 system functions such as file systems, security, and sockets

Keep in mind that OS/400 PASE is not a UNIX operating system on OS/400. OS/400 PASE is designed to

run AIX programs on OS/400 with little or no change. Programs from any other UNIX-based

environment need to be written such that they could be compiled on AIX as the first step toward running

in OS/400 PASE.

The OS/400 PASE integrated run-time runs on the Licensed Internal Code kernel on the iSeries server.

The system provides integration of many common OS/400 functions across OS/400 PASE and other

runtime environments (including ILE and Java). OS/400 PASE implements a broad subset of AIX system

calls. System support for OS/400 PASE enforces system security and integrity by controlling what

memory an OS/400 PASE program can access and restricting it to use only unprivileged machine

instructions.

Rapid application deployment with minimal effort

In many cases, your AIX programs may run in OS/400 PASE with little or no change. The level of AIX

programming skills you need varies depending on the design of your AIX program. In addition, by

providing additional OS/400 application integration in your program design (for instance, with CL

commands), you can minimize configuration concerns for your application users.

OS/400 PASE adds another porting option for solutions developers who want to share in the success of

the OS/400 marketplace. By providing a means to cut porting time significantly, OS/400 PASE can

improve the time to market and return on investment for solutions developers.

A broad subset of AIX technology on OS/400

OS/400 PASE implements an application run-time that is based on a broad subset of AIX technology,

including:

v Standard C and C++ runtime (both threadsafe and non-threadsafe)

v Fortran runtime (both threadsafe and non-threadsafe)

v pthreads threading package

v iconv services for data conversion

v Berkeley Software Distributions (BSD) equivalent support

v X Window System client support with Motif widget set

v Pseudo terminal (PTY) support

4 iSeries: OS/400 PASE

Applications are developed and compiled on an AIX workstation running a level of AIX that is

compatible with a level supported by OS/400 PASE, and then run on OS/400.

Alternatively, you can install one of the supported compiler products in the OS/400 PASE environment to

develop, compile, build, and run your applications completely within OS/400 PASE. See Compile your

AIX source for details.

OS/400 PASE also includes the Korn, Bourne, and C shells and nearly 200 utilities that provide a

powerful scripting environment. See OS/400 PASE Shells and Utilities for more information.

OS/400 PASE uses IBM investment in a common processor technology for the AIX and OS/400 operating

systems. The PowerPC processor switches from OS/400 mode into AIX mode to run an application in the

OS/400 PASE runtime.

Applications running in OS/400 PASE are integrated with the OS/400 Integrated File System and DB2

Universal Database™ for iSeries. They can call (and be called by) Java and Integrated Language

Environment® (ILE) applications. In general, they can take advantage of all aspects of the OS/400

operations environment, such as security, message handling, communication, and backup and recovery.

At the same time, they take advantage of application interfaces that are derived from AIX interfaces.

When is OS/400 PASE a useful option for application development?

OS/400 PASE provides considerable flexibility when you are deciding how to port your AIX applications

to the iSeries server. Of course, OS/400 PASE is only one option of several from which you can choose.

API analysis

Your starting point for determining whether an application is suitable for OS/400 PASE is an analysis of

the application: the APIs, libraries, and utilities that it uses and how effectively it will run on OS/400.

The IBM PartnerWorld®

team offers help in this area with the API Analysis Tool

, a free porting

assessment tool that analyzes your application and describes potential stumbling blocks. For more

information on how the analysis tool fits into the procedures for porting applications to OS/400 PASE,

see Prepare programs to run in OS/400 PASE.

Characteristics of a potential OS/400 PASE application

Here are some useful guidelines that you might consider when making the decision whether or not to

use OS/400 PASE:

v Is the AIX application highly compute-intensive? OS/400 PASE provides a good environment for

running computation-intensive applications on iSeries servers by providing highly optimized math

libraries.

v Does the application rely heavily on functions that are supported only in OS/400 PASE (or only

partially supported in ILE), such as fork(), X Window System, or pseudo-terminal (PTY) support?

OS/400 PASE provides support for fork() and exec(), which do not currently exist on the OS/400

system (except through spawn(), which incorporates the fork() function with the exec() function).

v Does the application use a complicated AIX-based build process or testing environment? OS/400

PASE lets you use AIX-based build processes, which are especially useful when you have an existing,

complicated process that is not readily transferred onto a new platform.

v Does the application have dependencies on an ASCII character set? OS/400 PASE provides good

support for applications with these needs.

v Does the application do a lot of pointer manipulation, or does it convert (cast) integers to pointers?

OS/400 PASE supports both 32-bit and 64-bit AIX addressing models with low performance cost and

the ability to convert integers to pointers.

When OS/400 PASE might not be the best solution

OS/400 PASE 5

http://www.ibm.com/servers/eserver/iseries/developer/index.html
http://www.ibm.com/servers/enable/site/porting/iseries/overview/apitool.html

OS/400 PASE is generally not a good choice for code that provides a large number of callable interfaces

that must be called from ILE and that has any of the following characteristics:

v Code that needs higher performance call and return than provided by either starting or ending OS/400

PASE on each call or by calling an OS/400 PASE procedure in an already-active OS/400 PASE program

(using the Qp2CallPase API).

v Code that needs to share memory or namespace between an ILE caller and the library code. An

OS/400 PASE program does not implicitly share memory or namespace with ILE code that called it.

(However, ILE code that is called from OS/400 PASE can share or use OS/400 PASE memory.)

Install OS/400 PASE

OS/400 PASE is available free of charge on all iSeries servers. It is recommended that you install OS/400

PASE; some system software, such as the enhanced domain name server (DNS) server and the ILE C++

compiler, requires OS/400 PASE support.

To install OS/400 PASE on your server:

1. On an OS/400 command line, enter GO LICPGM.

2. Select 11. Install licensed program.

3. Select option 33 (5722SS1 - Portable Application Solutions Environment).

4. (Optional) Install additional locales. The OS/400 PASE product installs only the locale objects that are

associated with the language features that you have installed on OS/400. If you need locales that are

not included with the language features on your server, you may need to order and install additional

OS/400 language features. See OS/400 PASE Globalization and OS/400 PASE locales for more

information.

Licensing note for software developers who are porting an application to OS/400 PASE:

OS/400 PASE provides a subset of the AIX run-time libraries on the OS/400 system. The OS/400 license

authorizes you to use any library code shipped with OS/400. This license does not imply a license to AIX

libraries that were not shipped with OS/400 PASE. All AIX products are separately licensed by IBM.

As you begin porting your own applications to OS/400 PASE, you may find that your application has

dependencies on AIX libraries that were not shipped with OS/400 PASE. Before porting these libraries to

the OS/400 system, you should determine which software product provided those libraries and examine

the terms and conditions of the license agreement for that software product. It may be necessary to work

with IBM or a third party to port additional middleware dependencies to the OS/400 system. You should

investigate every licensing agreement involved with the code you are porting before you start porting. If

you need to find out about license agreements in place against libraries that you believe belong to IBM,

contact your IBM marketing representative, one of the IBM porting centers, the Custom Technology

Center in Rochester, or PartnerWorld for Developers.

Plan for OS/400 PASE

OS/400 PASE provides an AIX run-time environment on OS/400 that lets you port your AIX applications

to the iSeries server with minimal effort. In fact, many AIX programs run in OS/400 PASE with no

change. This is because OS/400 PASE supplies many of the same shared libraries that are available on

AIX, and it provides a broad subset of AIX utilities that run directly on the iSeries PowerPC processor in

the same way that they run on the pSeries® AIX PowerPC processor.

Some points to keep in mind as you begin to work with OS/400 PASE:

v There is a correlation between the target release of an AIX binary and the release of OS/400 PASE

where the binary will run.

If you compile your OS/400 PASE applications on AIX, the application binary created on AIX needs to

be compatible with the version of OS/400 PASE that you want to the application to run in. The

6 iSeries: OS/400 PASE

|
|

following table shows which AIX binary versions are compatible with different versions of OS/400

PASE. For example, a 32-bit application created for AIX release 5.1 will run on OS/400 PASE V5R3 or

V5R2, but not on OS/400 PASE V5R1 or V4R5. Similarly, a 64-bit application created for AIX release 4.3

will run on OS/400 PASE V5R1, but not on OS/400 PASE V5R3, V5R2, or V4R5.

 AIX release OS/400 V4R5 OS/400 V5R1 OS/400 V5R2 OS/400 V5R3

4.2 (32-bit) X X X X

4.3 (32-bit) X X X X

4.3 (64-bit) - X - -

5.1 (32- or 64-bit) - - X X

5.2 (32- or 64-bit) - - - X

v OS/400 PASE does not provide the AIX kernel on OS/400.

Instead, any low-level system functions that are needed by a shared library are routed to the OS/400

kernel or to the integrated OS/400 functions. In this regard, OS/400 PASE bridges the gap across the

AIX and OS/400 platforms: your code uses the same syntax for the APIs in the shared libraries as you

would find on AIX, but your OS/400 PASE program runs within an OS/400 job and is managed by

OS/400 just like any other OS/400 job.

v In most cases, the APIs you call in OS/400 PASE behave in exactly the same manner as they do on

AIX.

Some APIs, however, may behave differently in OS/400 PASE, or may not be supported in OS/400

PASE. Because of this, your plan for preparing OS/400 PASE programs should begin with a thorough

code analysis using the API Analysis Tool. This tool gives you a comprehensive summary of the types

of program modifications you need to consider in porting your AIX application to OS/400 PASE.

v Consider some of the differences that exist between the AIX and OS/400 platforms:

– AIX is generally case-sensitive, but certain OS/400 file systems are not.

– AIX generally uses ASCII for data encoding, but OS/400 generally uses EBCDIC. This will be a

consideration if you want to manage the details of calling Integrated Language Environment (ILE)

code from your OS/400 PASE program. For example, you must explicitly code OS/400 PASE

programs to handle character encoding conversions on strings when you make calls from OS/400

PASE to arbitrary ILE procedures. OS/400 PASE run-time support includes the iconv_open(),

iconv(), and iconv_close() functions for character encoding conversion.

Note: OS/400 PASE and ILE have independent implementations of iconv() interfaces, each with its

own translation tables. The translations supported by OS/400 PASE iconv() support can be

modified and extended by users because they are stored as bytestream files in the integrated

file system.

– AIX applications expect that lines (for example, in files and shell scripts) will end with a line feed

(LF), but personal computer (PC) software OS/400 software typically end lines with a carriage

return and line feed (CRLF).

– Some of the scripts and programs you use on AIX might use hardcoded paths to standard utilities,

and you might need to modify the path to reflect the paths you will be using in OS/400 PASE. See

Analyze your program’s compatibility with OS/400 PASE for more information.
OS/400 PASE automatically handles some of these issues. For example, when you use the OS/400

PASE run-time service that the system provides (including any system call or run-time function in a

shared library shipped with OS/400 option 33), OS/400 PASE performs ASCII-to-EBCDIC conversions

as needed, although generally no conversions are done for data that is read or written to a file

descriptor (bytestream file or socket).

You can use other low-level functions such as _ILECALL to extend the functionality of your OS/400

PASE program with calls to ILE functions and APIs, but as mentioned above you may need to handle

data conversion. Also, coding these extensions into your program will require the use of additional

header and export files.

OS/400 PASE 7

|
|
|
|

||||||

|||||

|||||

|||||

|||||

|||||
|

|
|
|

rzalfanalysistool.htm

Prepare programs to run in OS/400 PASE

The steps you need to take to prepare AIX programs that run effectively on OS/400 vary with the nature

of your program and whether or not you need to use OS/400-unique interfaces and functions.

If you are attempting to port a UNIX application to OS/400 PASE, you must first ensure that the

application will compile using an AIX compiler. In some cases, you will need to modify your UNIX

program to achieve this requirement.

To prepare your programs for OS/400 PASE

See the following topics to prepare your programs for use in OS/400 PASE:

 Analyze your program

The first step in this process is recommended in all cases. Use the API Analysis Tool to obtain an

in-depth report on the APIs that your program uses, and how you can expect them to perform in

OS/400 PASE.

 Compile your AIX source program

After you have determined your program’s suitability as an OS/400 PASE program, and you have

made any modifications it might require to run in OS/400 PASE, compile the source. (If your analysis

of the AIX program shows that no changes are necessary to run in OS/400 PASE, you do not need to

recompile the program.)

You use an AIX system to compile OS/400 PASE programs, or you can optionally install one of the

supported AIX compiler products on OS/400 PASE to compile your programs in the OS/400 PASE

environment.

 Copy your program to your iSeries server

If you compiled your OS/400 PASE program on your AIX system, copy the binary file to your iSeries

server.

 Customize your AIX application to use OS/400 interfaces (optional)

If you want to customize your AIX application to use OS/400-unique interfaces and you are

compiling your application on AIX, you must copy one or more OS/400 header or export files to your

AIX system before you compile your OS/400 PASE program.

Analyze your program’s compatibility with OS/400 PASE

The first step in an assessment of the portability of a UNIX C application to the iSeries server involves

the analysis of the interfaces that are used in your application. This API analysis identifies those

interfaces that are used within the application that are not industry standard and not supported on

OS/400. It also identifies the interfaces that are standard compliant but supported differently because of

the different architecture of OS/400 compared to UNIX machines.

The API Analysis Tool

consists of front-end and back-end processes. The front-end process scans the

compiled application to extract the interfaces (external functions and data) that are used by the

application, and generates a list of all those interfaces. The back-end process takes this list of interfaces as

input and compares the interfaces with a database of typical system APIs and their support.

The front-end process of the API analysis tool is a UNIX shell script. It uses the nm or dump command to

find symbol information from the external symbol table of the application.

Binaries that have been stripped of symbols may contain enough dynamic binding information for the

tool to analyze. Statically bound binaries remove the library interfaces from the analysis but still expose

system call dependencies for analysis.

Additional analysis to perform before you compile

8 iSeries: OS/400 PASE

|
|
|

http://www.ibm.com/servers/enable/site/porting/iseries/overview/apitool.html

In addition to the information you gather from the API analysis tool, you should also gather the

following information:

v Obtain a list of libraries used by your application

The analysis tool gives you feedback on some of the standard APIs that your application uses, but it

does not look for many common API sets. A library analysis helps identify some of the middleware

APIs that your application uses. You can run the following command against each of your commands

and shared objects to get a list of libraries required by your application:

 dump -H binary_name

v Check your code for hardcoded path names

If you run programs that change credentials or want your programs or scripts to run even when the

OS/400 PASE environment variable PASE_EXEC_QOPENSYS=N, you might need to change hardcoded

path names.

Because /usr/bin/ksh is an absolute path (starting at the root), if it is not found or if it is not a

bytestream file, OS/400 PASE searches the /QOpenSys file system for path name

/QOpenSys/usr/bin/ksh. QShell utility programs are not bytestream files, so OS/400 PASE searches the

/QOpenSys file system even when the original (absolute) path is a symbolic link to a QShell utility

program, such as /usr/bin/sh.

Compile your AIX source

When your program uses AIX interfaces only, you compile with any required AIX headers and link with

AIX libraries to prepare binaries for OS/400 PASE. Keep in mind that OS/400 PASE does not support

applications that are statically bound with AIX system-supplied shared libraries.

OS/400 PASE programs are structurally identical to AIX programs for PowerPC.

OS/400 PASE Option 33 does not include a compiler. You use an AIX system to compile OS/400 PASE

programs, or you can optionally install one of the AIX compiler products that support installation in

OS/400 PASE to compile your programs in the OS/400 PASE environment.

Using AIX compilers on the pSeries server

You can build OS/400 PASE programs using any AIX compiler and linker that generates output that is

compatible with the AIX Application Binary Interface (ABI) for PowerPC. OS/400 PASE provides

instruction emulation support for binaries that use POWER™ architecture instructions that do not exist in

PowerPC (except for cache-management POWER instructions).

Using AIX compilers in OS/400 PASE

OS/400 PASE supports the installation of the following separately-available AIX compilers in the OS/400

PASE environment:

v IBM VisualAge C++ Professional for AIX, Version 6 (5765-F56). (This product includes the IBM C for

AIX compiler.)

v IBM C for AIX, Version 6 (5765-F57)

v IBM XL Fortran for AIX (5765-F70), Version 8.1.1 or later

Using these products, you can develop, compile, build, and run your AIX applications entirely within the

OS/400 PASE environment on your iSeries server.

For more information about obtaining and installing these products, see “Install AIX compilers on

OS/400 PASE” on page 11

Development tools

OS/400 PASE 9

|
|
|

|

|
|

Many development tools that you use on AIX (for example, ld, ar, make, yacc) are included with OS/400

PASE. See the OS/400 PASE Shells and Utilities topic for details. Many AIX tools from other sources (for

instance, the open-source tool gcc) can also work in OS/400 PASE.

The iSeries Tools for Developers PRPQ (5799-PTL) also contains a wide array of tools to aid in the

development, building, and porting of iSeries applications. For more information about this PRPQ, see

the Porting - iSeries Tools for developers

Web site.

Compiler notes for handling of pointers

v The xlc compiler provides limited support for 16-byte alignment (for type long double) by using the

combination of -qlngdbl128 and -qalign=natural. Type ILEpointer requires these compiler options to

ensure that MI pointers are 16-byte aligned within structures. Using option -qldbl128 forces type long

double to be a 128-bit type that requires use of libc128.a to handle operations like printf for long

double fields.

An easy way to get option -qlngdbl128 and link with libc128.a is to use the xlc128 command instead

of the xlc command.

v The xlc/xlC compiler currently does not provide a way to force 16-byte alignment for static or

automatic variables. The compiler only guarantees relative alignment for 128-bit long double fields

within structures. The OS/400 PASE version of malloc always provides 16-byte aligned storage, and

you can arrange 16-byte alignment of stack storage.

v Header file as400_types.h also relies on type long long to be a 64-bit integer. xlc compiler option

-qlonglong ensures this geometry (which is not the default for all commands that run the xlc

compiler).

Examples

The following examples are intended for use when you are compiling your OS/400 PASE programs on an

AIX system. If you are using a compiler installed in OS/400 PASE to compile your programs, you would

not need to specify compiler options for the locations of OS/400-unique header files or OS/400-unique

exports, since these files would be found in their default path locations of /usr/include/ and /usr/lib/

on an OS/400 system.

Example 1: The following command on an AIX system creates an OS/400 PASE program named testpgm

that can use OS/400-unique interfaces exported by libc.a:

xlc -o testpgm -qldbl128 -qlonglong -qalign=natural

 -bI:/mydir/as400_libc.exp testpgm.c

This example assumes that the OS/400-unique header files are copied to the AIX directory /usr/include

and that the OS/400-unique exports files are copied to AIX directory /mydir.

Example 2: The following example assumes OS/400-unique headers and export files are in /pase/lib:

xlc -o as400_test -qldbl128 -qlonglong -qalign=natural -H16

 -l c128

 -I /pase/lib

 -bI:/pase/lib/as400_libc.exp as400_test.c

Example 3: The following example builds the same program as example 2 with the same options;

however, the xlc_r command is used for a multithreaded program to ensure the compiled application

links with threadsafe run-time libraries:

xlc_r -o as400_test -qldbl128 -qlonglong -qalign=natural -H16

 -l c128

 -I /pase/lib

 -bI:/pase/lib/as400_libc.exp as400_test.c

10 iSeries: OS/400 PASE

http://www.ibm.com/servers/enable/site/porting/tools/

In the examples, if you are using OS/400 PASE support for DB2® UDB for iSeries Call Level Interfaces

(CLI), you would also need to specify -bI:/pase/include/libdb400.exp on your build command.

The -bI directive tells the compiler to pass the parameter to the ld command. The directive specifies an

export file containing exported symbols from a library to be imported by the application.

Install AIX compilers on OS/400 PASE

You can install either of the following separately-available AIX compilers in the OS/400 PASE

environment:

v IBM VisualAge C++ Professional for AIX, Version 6 (5765-F56). (This product includes the IBM C for

AIX compiler.)

v IBM C for AIX, Version 6 (5765-F57)

v IBM XL Fortran for AIX (5765-F70), Version 8.1.1 or later

These products let you develop, compile, build, and run your AIX applications entirely within the

OS/400 PASE environment on your iSeries server. For information about ordering and installing these

products, see the Enablement roadmaps & resources

Web site. The installation instructions

documented on that Web site are included below.

Installing the AIX compilers

OS/400 PASE does not support the AIX smit or installp utilities typically used to install applications on

an AIX system. Installation of the VisualAge C++ Professional or C for AIX products is accomplished

through a ″non-default installation″ script included on the respective compiler’s installation media.

The following steps will install the VisualAge C++ Professional for AIX V6.0 or C for AIX product on

iSeries OS/400 PASE:

1. Verify you have the necessary prerequisites. In addition to the compiler installation media (5765-F56

for VisualAge C++ Professional for AIX or 5765-F57 for C for AIX), you will also need the following

installed on your iSeries server to successfully install and use the compiler:

v 5722SS1 Option 33 - OS/400 PASE itself

v 5722SS1 Option 13 - System Openness Includes, containing the compiler header files found in the

/usr/include integrated file system directory

v Perl. The compiler installation scripts require Perl. Here are two ways to install Perl:

– 5799PTL - iSeries Tools for Developers PRPQ. Perl (along with many other useful development

tools) is included in the separately available iSeries Tools For Developers PRPQ.

– http://www.cpan.org/ports/#os400 - A Perl Port binary distribution for OS/400 PASE
2. Insert the compiler product installation CD into the iSeries CDROM device.

3. Sign on to OS/400 with a user profile that has *ALLOBJ authority. The compiler product files will be

owned by this user profile.

4. Start an interactive OS/400 PASE terminal session by entering this CL command:

call qp2term

5. Restore the appropriate compiler installation script by entering these commands:

v For VisualAge C++ Professional for AIX:

cd / restore -qf /QOPT/CDROM/USR/SYS/INST.IMA/VACPP.NDI ./usr/vacpp/bin/vacppndi

v For C for AIX:

cd / restore -qf /QOPT/CDROM/USR/SYS/INST.IMA/VAC.NDI ./usr/vac/bin/vacndi

v For XL Fortran for AIX:

cd / restore -qf /QOPT/CDROM/USR/SYS/INST.IMA/XLF.NDI

6. Run the installation script to install the compiler. The destination directory for the compiler is

specified by the -b option in the command. The recommended directory names for the compilers are

OS/400 PASE 11

|
|
|

|
|

|

|

|
|

|
|

|

|
|
|

|
|

|
|
|

|

|
|

|

|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

http://www.ibm.com/servers/enable/site/porting/index.html

used in the commands below. If you choose a different directory, note that the directory should be in

the /QOpenSys tree (to allow for case-sensitive file names):

v For VisualAge C++ Professional for AIX (enter as one long command):

/QIBM/ProdData/DeveloperTools/pase/bin/perl /usr/vacpp/bin/vacppndi -i

 -d /QOPT/CDROM/USR/SYS/INST.IMA -b /QOpenSys/vac600

v For C for AIX (again, one long command):

/QIBM/ProdData/DeveloperTools/pase/bin/perl /usr/vac/bin/vacndi -i

 -d /QOPT/CDROM/USR/SYS/INST.IMA -b /QOpenSys/vac600

v For XL Fortran for AIX (again, one long command):

/QIBM/ProdData/DeveloperTools/pase/bin/perl /usr/xlf/bin/xlfndi -i -d

/QOPT/CDROM/USR/SYS/INST.IMA -b /QOpenSys/xlf811

7. The compiler is now installed for use in OS/400 PASE.

The VisualAge C++ Professional for AIX compiler commands such as xlC can be found in directory

/QOpenSys/vac600/usr/vacpp/bin/ You might want to add this directory to your $PATH environment

variable.

The VisualAge C++ Professional for AIX compiler documentation can be found in Adobe Acrobat format

in directory /QOpenSys/vac600/usr/vacpp/pdf/en_US/

The C for AIX compiler commands such as xlc and cc can be found in directory

/QOpenSys/vac600/usr/vac/bin/. You might want to add this directory to your $PATH environment

variable.

The C for AIX compiler documentation can be found in Adobe Acrobat format in directory

/QOpenSys/vac600/usr/vac/pdf/en_US/.

The XL Fortran for AIX compiler commands such as xlf can be found in directory

/QOpenSys/xlf811/usr/bin/. You might want to add this directory to your $PATH environment variable.

The XL Fortran for AIX compiler documentation can be found in Adobe Acrobat format in directory

/QOpenSys/xlf811/usr/share/man/info/en_US/xlf/pdf/.

PTF update instructions

Installation of program temporary fixes (PTFs) for the VisualAge C++ Professional or C for AIX products

is accomplished using the same ″non-default installation″ script that is used for the initial compiler

installation. The following steps will install PTFs for the VisualAge C++ Professional for AIX V6.0 or C

for AIX product on iSeries OS/400 PASE. Before installing the PTFs, you must have already installed the

compiler(s) using the steps described above.

1. Obtain the PTF package files to be installed. You can download compressed TAR images of the

compiler PTF packages from the support downloads section of the AIX VisualAge C++ web site.

2. Uncompress and then untar the PTF package files. If you have downloaded the compressed TAR

images to the /QOpenSys/vacptf/ directory, you can use these commands from a QP2TERM command

line to do this:

cd /QOpenSys/ptf

uncompress <filename.tar.Z>

tar -xvf <filename.tar>

3. Create a file containing a list of the PTF packages to be installed. Use these commands from a

QP2TERM command line to do this:

cd /QOpenSys/ptf

ls *.bff > ptflist.txt

4. Run the installation script to install the PTF’s Based on the compiler you are updating, enter one of

the following commands from the QP2TERM command line:

12 iSeries: OS/400 PASE

|
|

|

|
|

|

|
|

|

|
|

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

v For VisualAge C++ Professional for AIX (enter as one long command):

/QIBM/ProdData/DeveloperTools/pase/bin/perl /usr/vacpp/bin/vacppndi

-d /QOpenSys/ptf -b /QOpenSys/vac600 -u /QOpenSys/ptf/ptflist.txt

v For C for AIX (again, one long command):

/QIBM/ProdData/DeveloperTools/pase/bin/perl /usr/vac/bin/vacndi

-d /QOpenSys/ptf -b /QOpenSys/vac600 -u /QOpenSys/ptf/ptflist.txt

v For XL Fortran for AIX (again, one long command):

/QIBM/ProdData/DeveloperTools/pase/bin/perl /usr/xlf/bin/xlfndi

-d /QOpenSys/ptf -b /QOpenSys/xlf811 -u /QOpenSys/ptf/ptflist.txt

The installation script creates a compressed TAR backup of the compiler files that existed prior to the

PTF update. If you use the directories as shown in these instructions, this file will be named

/QOpenSys/vac600.backup.tar.Z. If a problem is encountered with the installation of the PTF update

or the PTF update itself, you can restore from this backup to uninstall the PTF update.

Copy the OS/400 PASE program to your iSeries server

Copy AIX binaries that you want to run in OS/400 PASE into the integrated file system. All of the file

systems that are available in the integrated file system are available within OS/400 PASE. For more

information about the integrated file system, see the Integrated file system topic.

When you move files across platforms, be aware of the following differences that can create problems for

you:

v Case sensitivity: If your application is sensitive to mixed case, move it into the /QOpenSys file system,

or into a user-defined file system that has been created as case-sensitive.

v Line terminating characters: AIX and OS/400 use different line terminating characters in text files (for

example, in files and shell scripts).

Transferring files

You can use any of the following methods for transferring your OS/400 PASE program and related files

to and from your iSeries server:

v Copy programs using File Transfer Protocol (FTP)

v Copy programs using Server Message Block (SMB)

v Copy programs using remote file systems

Copy programs using File Transfer Protocol (FTP)

You can use the OS/400 FTP daemon and client to transfer a file into or out of the OS/400 integrated file

system. Transfer your files in binary mode. Use the FTP subcommand binary to set this mode.

You must use naming format 1 (the NAMEFMT 1 subcommand of the OS/400 FTP command) when placing

files into the integrated file system. This format allows the use of UNIX path names, and transfers the

files into stream files. To enter into naming format 1, you can either:

v Change the directory using UNIX path names. This automatically puts the session into name format 1.

Using this method, the first directory is prefaced by a slash (/). For example:

 cd /QOpenSys/usr/bin

v Use the FTP subcommand quote site namefmt 1 for a remote client, or use namefmt 1 as a local client.

For more information about FTP, see the FTP topic.

Copy programs using Server Message Block (SMB)

OS/400 supports SMB client and server components. With NetServer™ configured and running, OS/400

PASE has access to SMB servers in the network through the /QNTC file system. On a UNIX platform, a

OS/400 PASE 13

|

|
|

|

|
|

|

|
|

|
|
|
|

SAMBA server is required to provide the same service. Installing a configured and operational UNIX

system, such as AIX, can make directories and files available to OS/400 PASE.

Copy programs using remote file systems

OS/400 lets you mount Network File System (NFS) file systems to a mount point in the integrated file

system file space. AIX supports NFS, as well as Distributed File System (DFS™) and Andrew File System

(AFS®) (using DFS-to-NFS and AFS-to-NFS translators) so that these file systems can be exported and

mounted by OS/400. This, in turn, lets OS/400 PASE applications use these file systems. Security

authorization is validated through the OS/400 user profile’s user ID number and group ID number for

the directory path or file being accessed. You will want to ensure that a user profile that is intended to be

the same person across multiple platforms has the same user ID on all of the systems.

OS/400 is best used as an NFS server. In this case, you would mount from your AIX system onto a

directory in the OS/400 integrated file system, and AIX would write programs directly onto OS/400

when they build.

Note: OS/400 NFS is currently not supported in multithreaded applications.

Case sensitivity

UNIX system interfaces generally differentiate between uppercase and lowercase letters. On OS/400, that

is not always the case. You should be aware of several situations in particular where case sensitivity may

cause complications with existing code.

Case sensitivity on a directory or file basis depends on the file system you are using on OS/400. The

/QOpenSys file system is case sensitive, and you can create a user-defined file system (UDFS) that is case

sensitive. For information about the characteristics of the various file systems, see the File system

comparison topic.

Examples

Following are some examples of problems stemming from case sensitivity that you may encounter.

Example 1: In these examples, the shell does a character comparison of the generic name prefix against

what is returned by readdir(). However, the QSYS.LIB file system returns directory entries in uppercase,

so none of the entries matches the lowercase generic name prefix.

$ ls -d /qsys.lib/v4r5m0.lib/qwobj*

/qsys.lib/v4r5m0.lib/qwobj* not found

$ ls -d /qsys.lib/v4r5m0.lib/QWOBJ*

/qsys.lib/v4r5m0.lib/QWOBJ.FILE

Example 2: This example is similar to the first example except that, in this case, the find utility is doing

the comparison, and not the shell.

$ find /qsys.lib/v4r5m0.lib/ -name ’qwobj*’ -print

$ find /qsys.lib/v4r5m0.lib/ -name ’QWOBJ*’ -print

/qsys.lib/v4r5m0.lib/QWOBJ.FILE

Example 3: The ps utility expects user names to be case-sensitive and therefore does not recognize a

match between the uppercase name specified for the -u option and lowercase names returned by the

OS/400 PASE run-time function getpwuid():

$ ps -uTIMMS -f

UID PID PPID C STIME TTY TIME CMD

$ ps -utimms -f

UID PID PPID C STIME TTY TIME CMD

timms 617 570 0 10:54:00 - 0:00 /QOpenSys/usr/bin/-sh -i

timms 660 617 0 11:14:56 - 0:00 ps -utimms -f

14 iSeries: OS/400 PASE

Line terminating characters in integrated file system files

The AIX applications that are the source for your OS/400 PASE programs expect that lines (for example,

in files and shell scripts) will end with a line feed (LF). However, PC software and typical OS/400

software often ends lines with a carriage return and line feed (CRLF).

CRLF used with FTP

One example of where this difference can cause problems is when you use FTP to transfer source files

and shell scripts from AIX to the iSeries. The FTP standard calls for data sent in text mode to use carriage

return and line feed (CRLF) at the end of a line. On AIX, the FTP utility strips the carriage return (CR)

when it processes an inbound file in text mode. OS/400 FTP always writes exactly what is presented in

the data stream and always retains CRLF for text mode, which causes problems with the OS/400 PASE

run-time and utilities.

Where possible, use binary mode transfer from a UNIX system to avoid this problem. Text files

transferred from personal computers will, in most cases, have CRLF delimiting lines in the file.

Transferring the files first to AIX will correct the problem. The following workaround is offered as a

means to strip the CR off of files in the current directory:

awk ’{ gsub(/\r$/, ""); print $0 }’ < oldfile > newfile

CRLF used with iSeries and PC editors

You can also experience problems when you edit your files or shell scripts with editors on your iSeries

server or with editors on your workstation (such as Windows® Notepad editor). These editors use CRLF

as a new line separator, and not the LF that OS/400 PASE expects.

Numerous editors are available (for instance, the ez editor) that do not use CRLF as new line separators.

See a listing of various iSeries tools for developers

.

Customize OS/400 PASE programs to use OS/400 functions

If you want your AIX application to take advantage of OS/400 functions that are not directly supported

by system-supplied OS/400 PASE shared libraries, you need to perform some additional steps to prepare

your application.

1. Code your AIX application to call any required OS/400 PASE run-time functions that coordinate your

access to the OS/400-unique functions.

2. If you are compiling your OS/400 PASE programs on an AIX system, perform the following steps

before you compile your customized application:

a. Copy required OS/400-unique header files to your AIX system

b. Copy required OS/400-unique export files to your AIX system

 For more information on how you integrate OS/400 PASE with OS/400 functions, see the following

topics:

 “Call OS/400 programs and procedures from your OS/400 PASE programs” on page 22

 “How OS/400 PASE programs interact with OS/400” on page 33

Copy header files

OS/400 PASE augments standard AIX runtime with header files for OS/400-unique support. These are

provided by OS/400 PASE and the OS/400 operating system.

Copy the header files from your iSeries server to an AIX machine in the header file search path.

You can copy them into the following AIX directory, or to any other directory on the header file search

path for your compiler.

OS/400 PASE 15

http://www.ibm.com/servers/enable/site/porting/tools/

/usr/include

If you use a directory other than /usr/include, you can add it to the header file search path with the -I

option on the AIX compiler command.

See Copy the OS/400 PASE program to your iSeries server for more information about copying files.

Copy OS/400 PASE header files

The OS/400 PASE header files are located in the following OS/400 directory:

/QOpenSys/QIBM/ProdData/OS400/PASE/include

OS/400 PASE provides the following header files:

 as400_protos.h OS/400 PASE to ILE. Provides miscellaneous OS/400-unique functions.

as400_types.h Unique OS/400 parameter types for calls to ILE

This header file declares type ILEpointer for 16-byte machine interface (MI) pointers,

which relies on type long double to be a 128-bit field.

Other types declared in as400_types.h rely on type long long to be a 64-bit integer. AIX

compilers must be run with options -qlngdbl128, -qalign=natural, and -qlonglong to

ensure proper size and alignment of types declared in as400_types.h.

os400msg.h Functions to send and receive OS/400 messages

Copy OS/400 header files

If you plan to access other OS/400 functions in your OS/400 PASE application, you might find it helpful

to copy to your development machine the header files for the OS/400 functions that you are using. Note

that generally you can not run an OS/400 program or procedure directly from an OS/400 PASE

application. See “Call OS/400 programs and procedures from your OS/400 PASE programs” on page 22

for more information.

OS/400-provided header files are located in the following directory:

/QIBM/include

If your application needs any of the OS/400 API header files, you must first convert them from EBCDIC

to ASCII before you copy the converted files to an AIX directory.

One way to convert an EBCDIC text file to ASCII is to use the OS/400 PASE Rfile utility.

The following example uses the OS/400 PASE Rfile utility to read OS/400 header file

/QIBM/include/qusec.h, convert the data to the OS/400 PASE CCSID, strip trailing blanks from each line,

and then write the result into bytestream file ascii_qusec.h:

Rfile -r /QIBM/include/qusec.h > ascii_qusec.h

Copy export files

Copy the export files from your iSeries server to an AIX directory.

The export files, located in the following OS/400 directory, are the recommended way to build your

applications that require access to OS/400-specific functions:

/QOpenSys/QIBM/ProdData/OS400/PASE/lib

You can copy these files to any AIX directory. Use the -bI: option on the AIX ld command (or compiler

command) to define symbols not found in the shared libraries on the AIX system.

16 iSeries: OS/400 PASE

|
|
|
|
|

OS/400 PASE provides the following export files.

 as400_libc.exp Export file for OS/400-unique functions in libc.a

The as400_libc.exp file defines all the exports from the OS/400 PASE version of libc.a that

are not exported by the AIX versions of those libraries.

libdb400.exp Export file for OS/400 database functions

The libdb400.exp file defines the exports from the OS/400 PASE libdb400.a library (DB2

UDB for iSeries Call Level Interfaces (CLI) support).

See Copy the OS/400 PASE program to your iSeries server for more information about copying files.

OS/400 PASE APIs for accessing OS/400 functions

OS/400 PASE provides a number of APIs for accessing ILE code and other OS/400 functions. Which ones

you use depends on how much preparation and structure building you want to do yourself as opposed

to how much you want the compiler to do for you. See OS/400 PASE APIs for details.

Use OS/400 PASE programs in the OS/400 environment

Your OS/400 PASE program can call other OS/400 programs running in your job, and other OS/400

programs can call procedures in your OS/400 PASE program. See the following topics for information

about how you incorporate OS/400 PASE programs into your computing environment:

 Run OS/400 PASE programs and procedures

Provides information and examples about starting an OS/400 PASE program in a job, and calling

OS/400 PASE procedures from your ILE programs.

 Call OS/400 programs and procedures from your OS/400 PASE programs

Provides information and examples for calling ILE procedures, OS/400 programs, and CL commands

from your OS/400 PASE programs.

 How OS/400 PASE programs interact with OS/400

Provides information about how OS/400 PASE programs use and interact with OS/400 functions.

Run OS/400 PASE programs and procedures

You can run your OS/400 PASE program in any of several ways:

v Within an OS/400 job

v From an OS/400 PASE interactive shell environment

v As a called program from an ILE procedure

When you run an OS/400 PASE program on OS/400, keep in mind that the OS/400 PASE environment

variables are independent of ILE environment variables. Setting a variable in one environment has no

effect on the other environment.Work with environment variables explains how the OS/400 PASE

environment interacts with the OS/400 environment.

ILE procedures that let you work with OS/400 PASE programs

OS/400 PASE provides a number of ILE procedure APIs that allow your ILE code to access OS/400 PASE

services (without special programming in your OS/400 PASE program):

v Qp2ptrsize

v Qp2jobCCSID

v Qp2paseCCSID

v Qp2errnop

v Qp2malloc

OS/400 PASE 17

v Qp2free

v Qp2dlopen

v Qp2dlsym

v Qp2dlclose

v Qp2dlerror

See OS/400 PASE ILE Procedure APIs for more information.

Attach to ILE threads

You can call a procedure in an OS/400 PASE program from ILE code that runs in a thread that was not

created by OS/400 PASE (for example, a Java thread or a thread created by ILE pthread_create).

Qp2CallPase automatically attaches the ILE thread to OS/400 PASE (creating corresponding OS/400

PASE pthread structures), but only if the OS/400 PASE environment variable PASE_THREAD_ATTACH

was set to Y when the OS/400 PASE program started.

Return results from OS/400 PASE to OS/400 programs

Using the OS/400 _RETURN() function, you can call an OS/400 PASE program and return results

without ending the OS/400 PASE environment. This allows you to start an OS/400 PASE program and

then call procedures in that program (using Qp2CallPase) after the QP2SHELL2 (but not QP2SHELL) or

Qp2RunPase API returns.

Programs and procedures for running OS/400 PASE programs

OS/400 PASE provides the following programs and procedures for running your OS/400 PASE programs:

 “Run an OS/400 PASE program with QP2SHELL()”

Use this OS/400 program to run an OS/400 PASE program in the job in which it is called.

 “Run an OS/400 PASE program with QP2TERM()” on page 19

Use this OS/400 program to run an OS/400 PASE program in an interactive shell environment.

 “Run an OS/400 PASE program from within OS/400 programs” on page 19

Call the Qp2RunPase() ILE procedure from within other ILE procedures to start and run an OS/400

PASE program.

 “Call an OS/400 PASE procedure from within OS/400 programs” on page 21

Call the Qp2CallPase() and Qp2CallPase2() ILE procedures from within other ILE procedures to run

an OS/400 PASE program in a job where the OS/400 PASE environment is already running.

 “Use OS/400 PASE native methods from Java” on page 22

Use OS/400 PASE native methods running in the OS/400 PASE environment in your Java programs.

Run an OS/400 PASE program with QP2SHELL()

You use the Run an OS/400 PASE Shell Program (QP2SHELL or QP2SHELL2) programs to run an

OS/400 PASE program from any OS/400 command line and within any high-level language program,

batch job, or interactive job. These programs run an OS/400 PASE program in the job that calls it. The

name of the OS/400 PASE program is passed as a parameter on the program. See the QP2SHELL() and

QP2SHELL2() description for details about how to use this program.

The QP2SHELL() program runs the OS/400 PASE program in a new activation group. The QP2SHELL2()

program runs in the caller’s activation group.

The following example runs the ls command from the OS/400 command line:

call qp2shell parm(’/QOpenSys/bin/ls’ ’/’)

Passing values into QP2SHELL() using CL variables

18 iSeries: OS/400 PASE

|
|

If you pass values into QP2SHELL() using CL variables, the variables must be null-terminated. For

example, you would need to code the above example in the following way:

PGM DCL VAR(&CMD) TYPE(*CHAR) LEN(20) VALUE(’/QOpenSys/bin/ls’)

DCL VAR(&PARM1) TYPE(*CHAR) LEN(10) VALUE(’/’)

DCL VAR(&NULL) TYPE(*CHAR) LEN(1) VALUE(X’00’)

 CHGVAR VAR(&CMD) VALUE(&CMD *TCAT &NULL)

 CHGVAR VAR(&PARM1) VALUE(&PARM1 *TCAT &NULL)

 CALL PGM(QP2SHELL) PARM(&CMD &PARM1)

ENDIT:

ENDPGM

Run an OS/400 PASE program with QP2TERM()

Start an OS/400 PASE interactive terminal session with the QP2TERM() program. The following

command writes the default Korn shell prompt (/QOpenSys/usr/bin/sh) to the screen:

call qp2term

From this prompt, you run an OS/400 PASE program in a separate batch job. QP2TERM() uses the

interactive job to display output and to accept input for files stdin, stdout, and stderr in the batch job.

The Korn shell is the default, but you can optionally specify the path name of any OS/400 PASE program

that you want to run, as well as any argument strings to pass to the program.

You can run any OS/400 PASE program and any of the utilities from the interactive session that you start

with QP2TERM(); stdout and stderr are written and scrolled in the terminal screen.

Run an OS/400 PASE program from within OS/400 programs

Use the Qp2RunPase() API to run an OS/400 PASE program. You specify the program name, argument

strings, and environment variables. See the Qp2RunPase() API description for details about how you use

it in your ILE programs.

The Qp2RunPase() API runs an OS/400 PASE program in the job where it is invoked. It loads an OS/400

PASE program (including any necessary shared libraries) and then transfers control to the program.

This API gives you more control over how OS/400 PASE runs than QP2SHELL() and QP2TERM().

See the example programs for an example of how you might use this API in your ILE programs.

Example: Run an OS/400 PASE program from within OS/400 programs: The following examples show

an ILE program that calls an OS/400 PASE program, and the OS/400 PASE program that is called by the

ILE program.

Example 1: An ILE program that calls an OS/400 PASE program

The following ILE program (see disclaimer) calls an OS/400 PASE program. Following this example is an

example of the OS/400 PASE code that this program calls.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

/* include file for QP2RunPase(). */

#include <qp2user.h>

OS/400 PASE 19

/**

 Sample:

 A simple ILE C program to invoke an OS/400

 PASE program using QP2RunPase() and

 passing one string parameter.

 Example compilation:

 CRTCMOD MODULE(MYLIB/SAMPLEILE) SRCFILE(MYLIB/QCSRC)

 CRTPGM PGM(MYLIB/SAMPLEILE)

**/

void main(int argc, char*argv[])

 {

 /* Path name of PASE program */

 char *PasePath = "/home/samplePASE";

 /* Return code from QP2RunPase() */

 int rc;

 /* The parameter to be passed to the

 OS/400 PASE program */

 char *PASE_parm = "My Parm";

 /* Argument list for OS/400 PASE program,

 which is a pointer to a list of pointers */

 char **arg_list;

 /* allocate the argument list */

 arg_list =(char**)malloc(3 * sizeof(*arg_list));

 /* set program name as first element. This is a UNIX convention */

 arg_list[0] = PasePath;

 /* set parameter as first element */

 arg_list[1] = PASE_parm;

 /* last element of argument list must always be null */

 arg_list[2] = 0;

 /* Call OS/400 PASE program. */

 rc = Qp2RunPase(PasePath, /* Path name */

 NULL, /* Symbol for calling to ILE, not used in this sample */

 NULL, /* Symbol data for ILE call, not used here */

 0, /* Symbol data length for ILE call, not used here */

 819, /* ASCII CCSID for OS/400 PASE */

 arg_list, /* Arguments for OS/400 PASE program */

 NULL); /* Environment variable list, not used in this sample */

 }

Example 2: The OS/400 PASE program that is called in the ILE program

The following OS/400 PASE program (see disclaimer) is called by the above ILE program.

#include <stdio.h>

/**

 Sample:

 A simple OS/400 PASE Program called from

 ILE using QP2RunPase() and accepting

 one string parameter.

 The ILE sample program expects this to be

 located at /home/samplePASE. Compile on

 AIX, then ftp to OS/400.

 To ftp use the commands:

 > binary

 > site namefmt 1

 > put samplePASE /home/samplePASE

**/

int main(int argc, char *argv[])

{

 /* Print out a greeting and the parameter passed in. Note argv[0] is the program

 name, so, argv[1] is the parameter */

20 iSeries: OS/400 PASE

printf("Hello from OS/400 PASE program %s. Parameter value is \"%s\".\n", argv[0], argv[1]);

 return 0;

}

Call an OS/400 PASE procedure from within OS/400 programs

The Qp2RunPase() API initially starts and runs an OS/400 PASE program in a job. It returns an error if

OS/400 PASE is already active in that job.

To call OS/400 PASE procedures in a job that is already running an OS/400 PASE program, you use the

Qp2CallPase() and Qp2CallPase2() APIs.

See the example program for an example of how to use the Qp2CallPase() API.

Example: Call an OS/400 PASE procedure from within OS/400 programs: The following ILE program

(see disclaimer) calls an OS/400 PASE procedure.

#include <stdio.h>

#include <qp2shell2.h>

#include <qp2user.h>

#define JOB_CCSID 0

int main(int argc, char *argv[])

{

 QP2_ptr64_t id;

 void *getpid_pase;

 const QP2_arg_type_t signature[] = { QP2_ARG_END };

 QP2_word_t result;

 /*

 * Call QP2SHELL2 to run the OS/400 PASE program

 * /usr/lib/start32, which starts OS/400 PASE in

 * 32-bit mode (and leaves it active on return)

 */

 QP2SHELL2("/usr/lib/start32");

 /*

 * Qp2dlopen opens the global name space (rather than

 * loading a new shared executable) when the first

 * argument is a null pointer. Qp2dlsym locates the

 * function descriptor for the OS/400 PASE getpid

 * subroutine (exported by shared library libc.a)

 */

 id = Qp2dlopen(NULL, QP2_RTLD_NOW, JOB_CCSID);

 getpid_pase = Qp2dlsym(id, "getpid", JOB_CCSID, NULL);

 /*

 * Call Qp2CallPase to run the OS/400 PASE getpid

 * function, and print the result. Use Qp2errnop

 * to find and print the OS/400 PASE errno if the

 * function result was -1

 */

 int rc = Qp2CallPase(getpid_pase,

 NULL, // no argument list

 signature,

 QP2_RESULT_WORD,

 &result)

 printf("OS/400 PASE getpid() = %i\n", result);

 if (result == -1)

 printf("OS/400 errno = %i\n", *Qp2errnop());

 /*

 * Close the Qp2dlopen instance, and then call

 * Qp2EndPase to end OS/400 PASE in this job

 */

OS/400 PASE 21

Qp2dlclose(id);

 Qp2EndPase();

 return 0;

}

Use OS/400 PASE native methods from Java

You can use OS/400 PASE native methods running in the OS/400 PASE environment from your Java

programs. Support for OS/400 PASE native methods includes full use of the native iSeries Java Native

Interface (JNI) from OS/400 PASE native methods and the ability to call OS/400 PASE native methods

from the native iSeries JVM.

See IBM OS/400 PASE native methods for Java for more information and examples.

Work with environment variables

OS/400 PASE environment variables are independent of ILE environment variables. Setting a variable in

one environment has no effect on the other environment. However, you can copy variables from ILE into

OS/400 PASE, depending on the method you use to run your OS/400 PASE program.

Environment variables in an interactive OS/400 PASE session

ILE environment variables are passed to OS/400 PASE only when it is started with QP2SHELL() and

QP2TERM(). Use the Work with Environment Variables (WRKENVVAR) command to change, add, or

delete environment variables as needed before starting OS/400 PASE.

Environment variables in a called OS/400 PASE session

When OS/400 PASE is started from a program call (with the Qp2RunPase() API), you have complete

control over the environment variables. You can pass environment variables that bear no relationship to

the ILE environment from which you called the OS/400 PASE program.

Copy environment variables to ILE before running a CL command

You can copy OS/400 PASE environment variables to the ILE environment before you run a CL

command using an option on the systemCL run-time function. This is also the default behavior of the

OS/400 PASE system utility.

See the OS/400 PASE Environment Variables topic for additional information.

Call OS/400 programs and procedures from your OS/400 PASE

programs

OS/400 PASE provides methods for calling ILE procedures, Java programs, OPM programs, OS/400 APIs,

and CL commands that give you integrated access to OS/400 functions.

General configuration requirements for OS/400 programs and procedures

When you make calls from the OS/400 PASE program environment to the OS/400 environment, you

should generally ensure that the OS/400 program is compiled with *CALLER for the activation group,

for the following reasons:

v Only code that runs in the activation group that started OS/400 PASE (called by the Qp2RunPase API)

can use ILE APIs such as Qp2CallPase to interact with the OS/400 PASE program.

v The ILE run-time might end the entire job (also ending OS/400 PASE) if it needs to destroy an

activation group in a multithreaded job (and all jobs created by OS/400 PASE fork are

multithread-capable). By using ACTGRP(*CALLER), you can prevent your job from ending before you

want it to end.

22 iSeries: OS/400 PASE

|

|
|
|
|

|

You can avoid problems with running in a multithread-capable job by using the systemCL run-time

function to run a CL command (including the CALL command) in a separate job that is not

multithread-capable.

To make calls from the OS/400 PASE environment

The following topics provide instructions and examples for making calls from the OS/400 PASE

environment:

 Call ILE procedures

Before you can call ILE procedures from OS/400 PASE, you need to make sure that your ILE

procedures are set up to handle calls from OS/400 PASE programs. You also need to set up the

program variables and structures in your compiled AIX program.

 Call OS/400 programs

You can call OS/400 programs from within your OS/400 PASE program.

 Run OS/400 commands

You can run CL commands from within your OS/400 PASE program.

Call ILE procedures

When you call ILE procedures from your OS/400 PASE programs, you should first prepare the procedure

by enabling it for teraspace, converting text to the appropriate CCSID, and setting up variables and

structures.

Enable ILE procedures for teraspace

All ILE modules that you call from OS/400 PASE must be compiled with the teraspace option set to

*YES. If your ILE modules are not compiled in this way, you will receive the MCH4433 error message

(Invalid storage model for target program &2) in the job log for your OS/400 PASE application. See

the ILE Concepts

book for more information.

Convert text to appropriate CCSID

Text being passed between ILE and OS/400 PASE may need to be converted to the appropriate CCSIDs

before being passed. Not doing such conversions will cause your character variables to contain

undecipherable values.

Set up variables and structures

To make calls to ILE from your OS/400 PASE programs, you need to set up variables and structures. You

must ensure that the required header files are copied to your AIX system, and you must set up a

signature, a result type, and an argument list variable.

v Header files: Your OS/400 PASE program should include the header files as400_types.h and

as400_protos.h to make calls to ILE. The as400_type.h header file contains the definition of the types

used for OS/400-unique interfaces.

v Signature: The signature structure contains a description of the sequence and types of arguments

passed between OS/400 PASE and ILE. The encoding for the types mandated by the ILE procedure

you are calling can be found in the as400_types.h header file. If a signature contains fixed-point

arguments shorter than 4 bytes or floating point arguments shorter than 8 bytes, your ILE C code

needs to be compiled with the following pragma:

#pragma argument(ileProcedureName, nowiden)

Without this pragma, standard C linking for ILE requires 1-byte and 2-byte integer arguments to be

widened to 4 bytes and requires 4-byte floating-point arguments to be widened to 8 bytes.

v Result type: The result type is straightforward and works much like a return type in C.

OS/400 PASE 23

v Argument list: The argument list must be a structure with the correct sequence of fields with types

specified by entries in the signature array. You can use the size_ILEarglist() and build_ILEarglist() APIs

to dynamically build the argument list based on the signature.

To call ILE procedures from your OS/400 PASE programs, make the following API calls in your code:

1. Load the bound program into the ILE activation group that is associated with the procedure that

started OS/400 PASE. You use the _ILELOAD() API to do this. This step may be unnecessary if the

bound program is already active in the activation group that started OS/400 PASE. In this case, you

can proceed to the _ILESYM step, using a value of zero for the activation mark parameter to search

all symbols in all active bound programs in the current activation group.

2. Find the exported symbol in the activation of the ILE bound program and return a 16-byte tagged

pointer to the data or procedure for the symbol. You use the _ILESYM() API to do this.

3. Call the ILE procedure to transfer control from your OS/400 PASE program to the ILE procedure. You

use the _ILECALL() or _ILECALLX() API to do this.

See Examples: Call ILE procedures for examples that illustrate the process for making calls to ILE

procedures from OS/400 PASE.

Examples: Call ILE procedures: The following code examples (see disclaimer) show OS/400 PASE code

making a call to an ILE procedure that is part of a service program, and the compiler commands that

create the programs. Within the examples, there are two UNIX procedures. Each procedure demonstrates

different ways of working with an ILE procedure, but both procedures call the same ILE procedure. The

first procedure demonstrates building your data structures for the _ILECALL API using OS/400

PASE-provided methods. The second procedure then builds the argument list manually.

Example 1: OS/400 PASE C code

Interspersed in the following example code are comments that explain the code. Make sure to read these

comments as you enter or review the example.

/* Name: PASEtoILE.c

 *

 * You must use compiler options -qalign=natural and -qldbl128

 * to force relative 16-byte alignment of type long double

 * (used inside type ILEpointer)

 *

 */

#include <stdlib.h>

#include <malloc.h>

#include <sys/types.h>

#include <stdio.h>

#include "as400_types.h"

#include "as400_protos.h"

/*

 * init_pid saves the process id (PID) of the process that

 * extracted the ILEpointer addressed by ILEtarget.

 * init_pid is initialized to a value that is not a

 * valid PID to force initialization on the first

 * reference after the exec() of this program

 *

 * If your code uses pthread interfaces, you can

 * alternatively provide a handler registered using

 * pthread_atfork() to re-initialize ILE procedure

 * pointers in the child process and use a pointer or

 * flag in static storage to force reinitialization

 * after exec()

 */

pid_t init_pid = -1;

ILEpointer*ILEtarget; /* pointer to ILE procedure */

24 iSeries: OS/400 PASE

/*

 * ROUND_QUAD finds a 16-byte aligned memory

 * location at or beyond a specified address

 */

#define ROUND_QUAD(x) (((size_t)(x) + 0xf) & ~0xf)

/*

 * do_init loads an ILE service program and extracts an

 * ILE pointer to a procedure that is exported by that

 * service program.

 */

void do_init()

{

 static char ILEtarget_buf[sizeof(ILEpointer) + 15];

 int actmark;

 int rc;

 /* _ILELOAD() loads the service program */

 actmark = _ILELOAD("SHUPE/ILEPASE", ILELOAD_LIBOBJ);

 if (actmark == -1)

 abort();

 /*

 * xlc does not guarantee 16-byte alignment for

 * static variables of any type, so we find an

 * aligned area in an oversized buffer. _ILESYM()

 * extracts an ILE procedure pointer from the

 * service program activation

 */

 ILEtarget = (ILEpointer*)ROUND_QUAD(ILEtarget_buf);

 rc = _ILESYM(ILEtarget, actmark, "ileProcedure");

 if (rc == -1)

 abort();

 /*

 * Save the current PID in static storage so we

 * can determine when to re-initialize (after fork)

 */

 init_pid = getpid();

}

/*

 * "aggregate" is an example of a structure or union

 * data type that is passed as a by-value argument.

 */

typedef struct {

 char filler[5];

} aggregate;

/*

 * "result_type" and "signature" define the function

 * result type and the sequence and type of all

 * arguments needed for the ILE procedure identified

 * by ILEtarget

 *

 * NOTE: The fact that this argument list contains

 * fixed-point arguments shorter than 4 bytes or

 * floating-point arguments shorter than 8 bytes

 * implies that the target ILE C procedure is compiled

 * with #pragma argument(ileProcedureName, nowiden)

 *

 * Without this pragma, standard C linkage for ILE

 * requires 1-byte and 2-byte integer arguments to be

OS/400 PASE 25

* widened to 4-bytes and requires 4-byte floating-point

 * arguments to be widened to 8-bytes

 */

static result_type_tresult_type = RESULT_INT32;

static arg_type_tsignature[] =

{

 ARG_INT32,

 ARG_MEMPTR,

 ARG_FLOAT64,

 ARG_UINT8, /* requires #pragma nowiden in ILE code */

 sizeof(aggregate),

 ARG_INT16,

 ARG_END

};

/*

 * wrapper_1 accepts the same arguments and returns

 * the same result as the ILE procedure it calls. This

 * example does not require a customized or declared structure

 * for the ILE argument list. This wrapper uses malloc

 * to obtain storage. If an exception or signal occurs,

 * the storage may not be freed. If your program needs

 * to prevent such a storage leak, a signal handler

 * must be built to handle it, or you can use the methods

 * in wrapper_2.

 */

int wrapper_1(int arg1, void *arg2, double arg3,

 char arg4, aggregate arg5, short arg6)

{

 int result;

 /*

 * xlc does not guarantee 16-byte alignment for

 * automatic (stack) variables of any type, but

 * PASE malloc() always returns 16-byte aligned storage.

 * size_ILEarglist() determines how much storage is

 * needed, based on entries in the signature array

 */

 ILEarglist_base *ILEarglist;

 ILEarglist = (ILEarglist_base*)malloc(size_ILEarglist(signature));

 /*

 * build_ILEarglist() copies argument values into the ILE

 * argument list buffer, based on entries in the signature

 * array.

 */

 build_ILEarglist(ILEarglist,

 &arg1,

 signature);

 /*

 * Use a saved PID value to check if the ILE pointer

 * is set. ILE procedure pointers inherited by the

 * child process of a fork() are not usable because

 * they point to an ILE activation group in the parent

 * process

 */

 if (getpid() != init_pid)

 do_init();

 /*

 * _ILECALL calls the ILE procedure. If an exception or signal

 * occurs, the heap allocation is orphaned (storage leak)

 */

 _ILECALL(ILEtarget,

 ILEarglist,

 signature,

 result_type);

26 iSeries: OS/400 PASE

result = ILEarglist->result.s_int32.r_int32;

 if (result == 1) {

 printf("The results of the simple wrapper is: %s\n", (char *)arg2);

 }

 else if (result == 0) printf("ILE received other than 1 or 2 for version.\n");

 else printf("The db file never opened.\n");

 free(ILEarglist);

 return result;

}

/*

 * ILEarglistSt defines the structure of the ILE argument list.

 * xlc provides 16-byte (relative) alignment of ILEpointer

 * member fields because ILEpointer contains a 128-bit long

 * double member. Explicit pad fields are only needed in

 * front of structure and union types that do not naturally

 * fall on ILE-mandated boundaries

 */

typedef struct {

 ILEarglist_base base;

 int32 arg1;

 /* implicit 12-byte pad provided by compiler */

 ILEpointer arg2;

 float64 arg3;

 uint8 arg4;

 char filler[7]; /* pad to 8-byte alignment */

 aggregate arg5; /* 5-byte aggregate (8-byte align) */

 /* implicit 1-byte pad provided by compiler */

 int16 arg6;

} ILEarglistSt;

/*

 * wrapper_2 accepts the same arguments and returns

 * the same result as the ILE procedure it calls. This

 * method uses a customized or declared structure for the

 * ILE argument list to improve execution efficiency and

 * avoid heap storage leaks if an exception or signal occurs

 */

int wrapper_2(int arg1, void *arg2, double arg3,

 char arg4, aggregate arg5, short arg6)

{

 /*

 * xlc does not guarantee 16-byte alignment for

 * automatic (stack) variables of any type, so we

 * find an aligned area in an oversized buffer

 */

 char ILEarglist_buf[sizeof(ILEarglistSt) + 15];

 ILEarglistSt *ILEarglist = (ILEarglistSt*)ROUND_QUAD(ILEarglist_buf);

 /*

 * Assignment statements are faster than calling

 * build_ILEarglist()

 */

 ILEarglist->arg1 = arg1;

 ILEarglist->arg2.s.addr = (address64_t)arg2;

 ILEarglist->arg3 = arg3;

 ILEarglist->arg4 = arg4;

 ILEarglist->arg5 = arg5;

 ILEarglist->arg6 = arg6;

 /*

 * Use a saved PID value to check if the ILE pointer

 * is set. ILE procedure pointers inherited by the

 * child process of a fork() are not usable because

 * they point to an ILE activation group in the parent

 * process

 */

 if (getpid() != init_pid)

 do_init();

OS/400 PASE 27

/*

 * _ILECALL calls the ILE procedure. The stack may

 * be unwound, but no heap storage is orphaned if

 * an exception or signal occurs

 */

 _ILECALL(ILEtarget,

 &ILEarglist->base,

 signature,

 result_type);

 if (ILEarglist->base.result.s_int32.r_int32 == 1)

 printf("The results of best_wrapper function is: %s\n", arg2);

 else if (ILEarglist->base.result.s_int32.r_int32 == 0)

 printf("ILE received other than 1 or 2 for version.\n");

 else printf("The db file never opened.\n");

 return ILEarglist->base.result.s_int32.r_int32;

 }

 void main () {

 int version,

 result2;

 char dbText[25];

 double dblNumber = 5.999;

 char justChar = ’a’;

 short shrtNumber = 3;

 aggregate agg;

 strcpy(dbText, "none");

 for (version =1; version <= 2; version

 ++) {if(version="=" 1) {

 result2="simple_wrapper(version," dbText, dblNumber, justChar, agg, shrtNumber);

 } else {

 result2="best_wrapper(version," dbText, dblNumber, justChar, agg, shrtNumber);

 }

 }

}

Example 2: ILE C code

You now write the ILE C code for this example on your OS/400 system. You need a source physical file

in your library in which to write the code. Again, in the ILE example, comments are interspersed. These

comments are critical to understanding the code. You should review them as you enter or review the

source.

#include <stdio.h>

#include <math.h>

#include <recio.h>

#include <iconv.h>

#include <string.h>

#include <stdlib.h>

#include <errno.h>

typedef struct {

 char filler[5];

} aggregate;

#pragma mapinc("datafile","SHUPE/PASEDATA(*all)","both",,,"")

#include "datafile"

#pragma argument(ileProcedure, nowiden) /* not necessary */

/*

 * The arguments and function result for this ILE procedure

 * must be equivalent to the values presented to _ILECALL

 * function in the OS/400 PASE program

 */

int ileProcedure(int arg1,

 char *arg2,

 double arg3,

28 iSeries: OS/400 PASE

char arg4[2],

 aggregate arg5,

 short arg6)

{

 char fromcode[33];

 char tocode[33];

 iconv_t cd; /* conversion descriptor */

 char *src;

 char *tgt;

 size_t srcLen;

 size_t tgtLen;

 int result;

 /*

 * Open a conversion descriptor to convert CCSID 37

 * (EBCDIC) to CCSID 819 (ASCII), that is used for

 * any character data returned to the caller

 */

 memset(fromcode, 0, sizeof(fromcode));

 strcpy(fromcode, "IBMCCSID000370000000");

 memset(tocode, 0, sizeof(tocode));

 strcpy(tocode, "IBMCCSID00819");

 cd = iconv_open(tocode, fromcode);

 if (cd.return_value == -1)

 {

 printf("iconv_open failed\n");

 return -1;

 }

 /*

 * If arg1 equals one, return constant text (converted

 * to ASCII) in the buffer addressed by arg2. For any

 * other arg1 value, open a file and read some text,

 * then return that text (converted to ASCII) in the

 * buffer addressed by arg2

 */

 if (arg1 == 1)

 {

 src = "Sample 1 output text";

 srcLen = strlen(src) + 1;

 tgt = arg2; /* iconv output to arg2 buffer */

 tgtLen = srcLen;

 iconv(cd, &src, &srcLen, &tgt, &tgtLen);

 result = 1;

 }

 else

 {

 FILE *fp;

 fp = fopen("SHUPE/PASEDATA", "r");

 if (!fp) /* if file open error */

 {

 printf("fopen(\"SHUPE/PASEDATA\", \"r\") failed, "

 "errno = %i\n", errno);

 result = 2;

 }

 else

 {

 char buf[25];

 char *string;

 errno = 0;

 string = fgets(buf, sizeof(buf), fp);

 if (!string)

 {

 printf("fgets() EOF or error, errno = %i\n", errno);

 buf[0] = 0; /* null-terminate empty buffer */

 }

 src = buf;

OS/400 PASE 29

srcLen = strlen(buf) + 1;

 tgt = arg2; /* iconv output to arg2 buffer */

 tgtLen = srcLen;

 iconv(cd, &src, &srcLen, &tgt, &tgtLen);

 fclose(fp);

 }

 result = 1;

 }

 /*

 * Close the conversion descriptor, and return the

 * result value determined above

 */

 iconv_close(cd);

 return result;

}

Example 3: Compiler commands to create the programs

When you compile your OS/400 PASE program, you must use compiler options -qalign=natural and

-qldbl128 to force relative 16-byte alignment of type long double, which is used inside type ILEpointer.

This alignment is required by ILE in OS/400. For option -bI:, you should enter the path name in which

you saved as400_libc.exp:

xlc -o PASEtoILE -qldbl128 -qalign=natural

 -bI:/afs/rich.xyz.com/usr1/shupe/PASE/as400_libc.exp

 PASEtoILE.c

When you compile your ILE C module and service program, compile them with the teraspace option.

Otherwise, OS/400 PASE cannot interact with them.

CRTCMOD MODULE(MYLIB/MYMODULE)

 SRCFILE(MYLIB/SRCPF)

 TERASPACE(*YES *TSIFC)

CRTSRVPGM SRVPGM(MYLIB/MYSRVPGM)

 MODULE(MYLIB/MOMODULE)

Finally, you must compile your DDS and propagate at least one record of data:

CRTPF FILE(MYLIB/MYDATAFILE)

 SRCFILE(MYLIB/SRCDDSF)

 SRCMBR(MYMEMBERNAME)

Call OS/400 programs from OS/400 PASE

You can take advantage of existing OS/400 programs (*PGM objects) when you create your OS/400 PASE

applications. In addition, you can use the systemCL function to run the CL CALL command; see Run

OS/400 commands from OS/400 PASE for information and an example.

Use the _PGMCALL runtime function to call an OS/400 program from within your OS/400 PASE

program. This method provides for faster processing than the systemCL runtime function, but it does not

perform automatic conversion of character string arguments (unless you specify

PGMCALL_ASCII_STRINGS), and it does not give you the capability of calling the program in a different

job.

See Example: Call OS/400 programs from OS/400 PASE for an example of how you call commands in an

OS/400 PASE program using the _PGMCALL runtime function.

Example: Call OS/400 programs from OS/400 PASE: The following example (see disclaimer) shows how

you call programs in an OS/400 PASE program using the _PGMCALL run-time function:

30 iSeries: OS/400 PASE

Interspersed in the following example code are comments that explain the code. Make sure to read these

comments as you enter or review the example.

/* This example uses the OS/400 PASE _PGMCALL function to call the OS/400

API QSZRTVPR. The QSZRTVPR API is used to retrieve information about

OS/400 software product loads. Refer to the QSZRTVPR API documentation

for specific information regarding the input and output parameters needed

to call the API */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "as400_types.h"

#include "as400_protos.h"

int main(int argc, char * argv[])

{

 /* OS/400 API’s (including QSZRTVPR) typically expect character

 parameters to be in EBCDIC. However, character constants in

 OS/400 PASE programs are typically in ASCII. So, declare some

 CCSID 37 (EBCDIC) character parameter constants that will be

 needed to call QSZRTVPR */

 /* format[] is input parameter 3 to QSZRTVPR and is

 initialized to the text ’PRDR0100’ in EBCDIC */

 const char format[] =

 {0xd7, 0xd9, 0xc4, 0xd9, 0xf0, 0xf1, 0xf0, 0xf0};

 /* prodinfo[] is input parameter 4 to QSZRTVPR and is

 initialized to the text ’*OPSYS *CUR 0033*CODE ’ in EBCDIC

 This value indicates we want to check the code load for Option 33

 of the currently installed OS/400 release */

 const char prodinfo[] =

 {0x5c, 0xd6, 0xd7, 0xe2, 0xe8, 0xe2, 0x40, 0x5c, 0xc3,

 0xe4, 0xd9, 0x40, 0x40, 0xf0, 0xf0, 0xf3, 0xf3, 0x5c,

 0xc3, 0xd6, 0xc4, 0xc5, 0x40, 0x40, 0x40, 0x40, 0x40};

 /* installed will be compared with the "Load State" field of the

 information returned by QSZRTVPR and is initialized to the text

 ’90’ in EBCDIC */

 const char installed[] = {0xf9, 0xf0};

 /* rcvr is the output parameter 1 from QSZRTVPR */

 char rcvr[108];

 /* rcvrlen is input parameter 2 to QSZRTVPR */

 int rcvrlen = sizeof(rcvr);

 /* errcode is input parameter 5 to QSZRTVPR */

 struct {

 int bytes_provided;

 int bytes_available;

 char msgid[7];

 } errcode;

 /* qszrtvpr_pointer will contain the OS/400 16-byte tagged system

 pointer to QSZRTVPR */

 ILEpointer qszrtvpr_pointer;

 /* qszrtvpr_argv6 is the array of argument pointers to QSZRTVPR */

 void *qszrtvpr_argv[6];

 /* return code from _RSLOBJ2 and _PGMCALL functions */

 int rc;

OS/400 PASE 31

/* Set the OS/400 pointer to the QSYS/QSZRTVPR *PGM object */

 rc = _RSLOBJ2(&qszrtvpr_pointer,

 RSLOBJ_TS_PGM,

 "QSZRTVPR",

 "QSYS");

 /* initialize the QSZRTVPR returned info structure */

 memset(rcvr, 0, sizeof(rcvr));

 /* initialize the QSZRTVPR error code structure */

 memset(&errcode, 0, sizeof(errcode));

 errcode.bytes_provided = sizeof(errcode);

 /* initialize the array of argument pointers for the QSZRTVPR API */

 qszrtvpr_argv[0] = &rcvr;

 qszrtvpr_argv[1] = &rcvrlen;

 qszrtvpr_argv[2] = &format;

 qszrtvpr_argv[3] = &prodinfo;

 qszrtvpr_argv[4] = &errcode;

 qszrtvpr_argv[5] = NULL;

 /* Call the OS/400 QSZRTVPR API from OS/400 PASE */

 rc = _PGMCALL(&qszrtvpr_pointer,

 (void*)&qszrtvpr_argv,

 0);

 /* Check the contents of bytes 63-64 of the returned information.

 If they are not ’90’ (in EBCDIC), the code load is NOT correctly

 installed */

 if (memcmp(&rcvr[63], &installed, 2) != 0)

 printf("OS/400 Option 33 is NOT installed\n");

 else

 printf("OS/400 Option 33 IS installed\n");

 return(0);

}

Run OS/400 commands from OS/400 PASE

You can extend the capabilities of your OS/400 PASE program by running control language (CL)

commands that use OS/400 functions.

Use the systemCL runtime function to run an OS/400 command from within an OS/400 PASE program.

When you run OS/400 commands from OS/400 PASE, the systemCL run-time function handles

ASCII-to-EBCDIC conversion of character string arguments, and lets you call the program in a different

job.

See Example: Run OS/400 commands from OS/400 PASE) for an example of how you run CL commands

in an OS/400 PASE program.

Example: Run OS/400 commands from OS/400 PASE: The following example (see disclaimer) shows

how you call commands in an OS/400 PASE program:

/* sampleCL.c

 example to demonstrate use of sampleCL to run a CL command

 Compile with a command similar to the following.

 xlc -o sampleCL -I /whatever/pase -bI:/whatever/pase/as400_libc.exp sampleCL.c

 Example program using QP2SHELL() follows.

 call qp2shell (’sampleCL’ ’wrkactjob’) */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

32 iSeries: OS/400 PASE

#include <as400_types.h> /* PASE header */

#include <as400_protos.h> /* PASE header */

void main(int argc, char* argv[])

{

 int rc;

 if (argc!=2)

 {

 printf("usage: %s \"CL command\"\n", argv[0]);

 exit(1);

 }

 printf("running CL command: \"%s\"\n", argv[1]);

 /* process the CL command */

 rc = systemCL(argv[1], /* use first parameter for CL command */

 SYSTEMCL_MSG_STDOUT

 SYSTEMCL_MSG_STDERR); /* collect messages */

 printf("systemCL returned %d. \n", rc);

 if (rc != 0)

 {

 perror("systemCL");

 exit(rc);

 }

}

How OS/400 PASE programs interact with OS/400

As you customize your OS/400 PASE programs to use OS/400 functions, you need to consider the ways

in which your program will interact with them. The following topics provide basic guidance, and provide

links to detailed OS/400 system information in the iSeries Information Center:

v Communications

v Database

v Data encoding

v File systems

v Globalization

v Message services

v Printing

v Pseudo-terminal (PTY)

v Security

v Work management

Communications

OS/400 PASE supports the same syntax as AIX for sockets communications. This may not match other

UNIX systems in every detail.

OS/400 PASE sockets support is comparable to the AIX implementation of sockets, but OS/400 PASE

uses the OS/400 implementation of sockets (instead of the AIX kernel implementation of sockets), and

this forces some minor differences from AIX behavior.

The OS/400 implementation of sockets supports both UNIX 98 and Berkeley Software Distributions (BSD)

sockets. In most cases, OS/400 PASE resolves differences in these styles by adopting the behavior of the

AIX implementation.

In addition, the user profile for a running application must have the *IOSYSCFG special authority to

specify the level parameter as IPPROTO_IP and the option_value parameter as IP_OPTIONS on socket

OS/400 PASE 33

APIs. See the Socket programming topic for details about the use of sockets on OS/400. In particular, see

the Berkeley Software Distributions (BSD) compatibility and UNIX 98 compatibility topics.

Database

OS/400 PASE supports the DB2 UDB for iSeries Call Level Interface (CLI). DB2 CLI on AIX and OS/400

are not proper subsets of each other, so there are minor differences in a few interfaces, and some APIs in

one implementation may not exist in another. Because of this, you should consider the following points:

v Code can be generated, but not tested, on AIX itself. Instead, you must test your code across platforms

within OS/400 PASE.

v You must compile with the OS/400 version of header file sqlcli.h. A program compiled using the AIX

version of this header file will not run in OS/400 PASE.

OS/400 is an EBCDIC encoded system by default, while AIX is based on ASCII. This difference often

requires data conversions between the OS/400 database (DB2 UDB for iSeries) and the OS/400 PASE

application.

In the OS/400 PASE implementation of the DB2 CLI, OS/400 PASE-provided library routines

automatically perform data conversions from ASCII to EBCDIC and back for character data. The

conversions are made based on the tagged CCSID of the data being accessed and the ASCII CCSID under

which the OS/400 PASE program is running. If the database is tagged, or if it is tagged with a CCSID of

65535, no automatic conversion takes place. It is left to the application to understand the encoding format

of the data and to do any necessary conversion.

Working with CCSIDs

When you use the Qp2RunPase() API, you must explicitly specify the OS/400 PASE CCSID.

You can control the OS/400 PASE CCSID by setting both of these variables in the ILE environment before

you call API program QP2TERM, QP2SHELL, or QP2SHELL2:

v PASE_LANG

v QIBM_PASE_CCSID

If the ILE environment omits either or both of these variables, QP2TERM, QP2SHELL, and QP2SHELL2

by default set the OS/400 PASE CCSID and OS/400 PASE environment variable LANG with the best

OS/400 PASE equivalents of the language and CCSID attributes of your job.

See the QP2TERM() and QP2SHELL() program descriptions for more information.

Extensions to libc.a give the OS/400 PASE application the ability to change the running CCSID of the

application, using the _SETCCSID() function.

Another extension gives the OS/400 PASE application the ability to override the DB2 CLI internal

conversion without changing the CCSID of the application. The SQLOverrideCCSID400() function accepts

as a single parameter an integer of the override CCSID.

Note: The CCSID override function SQLOverrideCCSID400() must be called before any other SQLx() API

for it to take effect; otherwise, the request is ignored.

Using the DB2 UDB for iSeries CLI in OS/400 PASE programs

To use DB2 CLI in your OS/400 PASE programs, you need to copy the sqlcli.h header file and the

libdb400.exp export file to your AIX system before you compile your source. The DB2 CLI library

routines are in libdb400.a for the OS/400 PASE environment, and are implemented using pthread

interfaces, providing threadsafety. Most OS/400 PASE CLI functions call corresponding ILE CLI functions

to perform the desired operation.

34 iSeries: OS/400 PASE

Note: When you use the DB2 CLIs in your OS/400 PASE programs, consider the following points:

v SQLGetSubString always returns an EBCDIC string when sub-stringing the CLOB/DBCLOB

field. The SQLGetSubString is used only for LOB data types.

v SQLTables, column 4 of the result set (table type), is always returned as EBCDIC.

v To render graphic-typed data in an OS/400 PASE program, the data must be typed in the

program as wchar; this causes the database to convert from a graphic and pure double-byte

character to Unicode/UCS-2. Otherwise, the database converts between the CCSID of the data

and the CCSID of the OS/400 job. The database does not support conversion between EBCDIC

graphic and the CCSID (either from the Qp2RunPase() API or the SQLOverrideCCSID400() API).

See the DB2 UDB for iSeries SQL Call Level Interface (ODBC) topic for more information on the DB2

UDB call level interface.

See Example: Call DB2 UDB for iSeries CLI functions in an OS/400 PASE program for an example of how

OS/400 PASE accesses DB2 UDB for iSeries using the DB2 UDB for iSeries SQL call level interface.

Example: Call DB2 UDB for iSeries CLI functions in an OS/400 PASE program: The following

example (see disclaimer) shows an OS/400 PASE program that accesses DB2 UDB for iSeries using the

DB2 UDB for iSeries SQL call level interfaces.

/* OS/400 PASE DB2 UDB for iSeries example program

 *

 * To show an example of an OS/400 PASE program that accesses

 * OS/400 DB2 UDB via SQL CLI

 *

 * Program accesses iSeries Access data base, QIWS/QCUSTCDT, that

 * should exist on all systems

 *

 * Change system name, userid, and password in fun_Connect()

 * procedure to valid parms

 *

 * Compilation invocation:

 *

 * xlc -I./include -bI:./include/libdb400.exp -o paseclidb4 paseclidb4.c

 *

 * FTP in binary, run from QP2TERM() terminal shell

 *

 * Output should show all rows with a STATE column match of MN */

/* Change Activity: */

/* End Change Activity */

#define SQL_MAX_UID_LENGTH 10

#define SQL_MAX_PWD_LENGTH 10

#define SQL_MAX_STM_LENGTH 255

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "sqlcli.h"

SQLRETURN fun_Connect(void);

SQLRETURN fun_DisConnect(void);

SQLRETURN fun_ReleaseEnvHandle(void);

SQLRETURN fun_ReleaseDbcHandle(void);

SQLRETURN fun_ReleaseStmHandle(void);

SQLRETURN fun_Process(void);

SQLRETURN fun_Process2(void);

void fun_PrintError(SQLHSTMT);

SQLRETURN nml_ReturnCode;

SQLHENV nml_HandleToEnvironment;

SQLHDBC nml_HandleToDatabaseConnection;

SQLHSTMT nml_HandleToSqlStatement;

OS/400 PASE 35

|

|
|

|

|
|
|
|
|

SQLINTEGER Nmi_vParam;

SQLINTEGER Nmi_RecordNumberToFetch = 0;

SQLCHAR chs_SqlStatement01[SQL_MAX_STM_LENGTH + 1];

SQLINTEGER nmi_PcbValue;

SQLINTEGER nmi_vParam;

char *pStateName = "MN";

void main() {

 static

 char*pszId = "main()";

 SQLRETURN nml_ConnectionStatus;

 SQLRETURN nml_ProcessStatus;

 nml_ConnectionStatus = fun_Connect();

 if (nml_ConnectionStatus == SQL_SUCCESS) {

 printf("%s: fun_Connect() succeeded\n", pszId);

 } else {

 printf("%s: fun_Connect() failed\n", pszId);

 exit(-1);

 } /* endif */

 printf("%s: Perform query\n", pszId);

 nml_ProcessStatus = fun_Process();

 printf("%s: Query complete\n", pszId);

 nml_ConnectionStatus = fun_DisConnect();

 if (nml_ConnectionStatus == SQL_SUCCESS) {

 printf("%s: fun_DisConnect() succeeded\n", pszId);

 } else {

 printf("%s: fun_DisConnect() failed\n", pszId);

 exit(-1);

 } /* endif */

 printf("%s: normal exit\n", pszId);

} /* end main */

SQLRETURN fun_Connect()

{

 static char *pszId = "fun_Connect()";

 SQLCHAR chs_As400System[SQL_MAX_DSN_LENGTH];

 SQLCHAR chs_UserName[SQL_MAX_UID_LENGTH];

 SQLCHAR chs_UserPassword[SQL_MAX_PWD_LENGTH];

 nml_ReturnCode = SQLAllocEnv(&nml_HandleToEnvironment);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLAllocEnv() succeeded\n", pszId);

 fun_PrintError(SQL_NULL_HSTMT);

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLAllocEnv() succeeded\n", pszId);

 } /* endif */

 strcpy(chs_As400System, "AS4PASE");

 strcpy(chs_UserName, "QUSER");

 strcpy(chs_UserPassword, "QUSER");

 printf("%s: Connecting to %s userid %s\n", pszId, chs_As400System, chs_UserName);

 nml_ReturnCode = SQLAllocConnect(nml_HandleToEnvironment,

 &nml_HandleToDatabaseConnection);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLAllocConnect\n", pszId);

 fun_PrintError(SQL_NULL_HSTMT);

 nml_ReturnCode = fun_ReleaseEnvHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLAllocConnect() succeeded\n", pszId);

36 iSeries: OS/400 PASE

} /* endif */

 nml_ReturnCode = SQLConnect(nml_HandleToDatabaseConnection,

 chs_As400System,

 SQL_NTS,

 chs_UserName,

 SQL_NTS,

 chs_UserPassword,

 SQL_NTS);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLConnect(%s) failed\n", pszId, chs_As400System);

 fun_PrintError(SQL_NULL_HSTMT);

 nml_ReturnCode = fun_ReleaseDbcHandle();

 nml_ReturnCode = fun_ReleaseEnvHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLConnect(%s) succeeded\n", pszId, chs_As400System);

 return SQL_SUCCESS;

 } /* endif */

} /* end fun_Connect */

SQLRETURN fun_Process()

{

 static

 char*pszId = "fun_Process()";

 charcLastName[80];

 nml_ReturnCode = SQLAllocStmt(nml_HandleToDatabaseConnection,

 &nml_HandleToSqlStatement);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLAllocStmt() failed\n", pszId);

 fun_PrintError(SQL_NULL_HSTMT);

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLAllocStmt() succeeded\n", pszId);

 } /* endif */

 strcpy(chs_SqlStatement01, "select LSTNAM, STATE ");

 strcat(chs_SqlStatement01, "from QIWS.QCUSTCDT ");

 strcat(chs_SqlStatement01, "where ");

 strcat(chs_SqlStatement01, "STATE = ? ");

 nml_ReturnCode = SQLPrepare(nml_HandleToSqlStatement,

 chs_SqlStatement01,

 SQL_NTS);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLPrepare() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLPrepare() succeeded\n", pszId);

 } /* endif */

 Nmi_vParam = SQL_TRUE;

 nml_ReturnCode = SQLSetStmtOption(nml_HandleToSqlStatement,

 SQL_ATTR_CURSOR_SCROLLABLE,

 (SQLINTEGER *) &Nmi_vParam);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLSetStmtOption() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

OS/400 PASE 37

} else {

 printf("%s: SQLSetStmtOption() succeeded\n", pszId);

 } /* endif */

 Nmi_vParam = SQL_TRUE;

 nml_ReturnCode = SQLSetStmtOption(nml_HandleToSqlStatement,

 SQL_ATTR_FOR_FETCH_ONLY,

 (SQLINTEGER *) &Nmi_vParam);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLSetStmtOption() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLSetStmtOption() succeeded\n", pszId);

 } /* endif */

 nmi_PcbValue = 0;

 nml_ReturnCode = SQLBindParam(nml_HandleToSqlStatement,

 1,

 SQL_CHAR,

 SQL_CHAR,

 2,

 0,

 (SQLPOINTER) pStateName,

 (SQLINTEGER *) &nmi_PcbValue);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLBindParam() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLBindParam() succeeded\n", pszId);

 } /* endif */

 nml_ReturnCode = SQLExecute(nml_HandleToSqlStatement);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLExecute() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLExecute() succeeded\n", pszId);

 } /* endif */

 nml_ReturnCode = SQLBindCol(nml_HandleToSqlStatement,

 1,

 SQL_CHAR,

 (SQLPOINTER) &cLastName,

 (SQLINTEGER) (8),

 (SQLINTEGER *) &nmi_PcbValue);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLBindCol() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLBindCol() succeeded\n", pszId);

 } /* endif */

 do {

 memset(cLastName, ’\0’, sizeof(cLastName));

 nml_ReturnCode = SQLFetchScroll(nml_HandleToSqlStatement,

38 iSeries: OS/400 PASE

SQL_FETCH_NEXT,

 Nmi_RecordNumberToFetch);

 if (nml_ReturnCode == SQL_SUCCESS) {

 printf("%s: SQLFetchScroll() succeeded, LastName(%s)\n", pszId, cLastName);

 } else {

 }/*endif */

 } while (nml_ReturnCode == SQL_SUCCESS);

 if (nml_ReturnCode != SQL_NO_DATA_FOUND) {

 printf("%s: SQLFetchScroll() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLFetchScroll() completed all rows\n", pszId);

 } /* endif */

 nml_ReturnCode = SQLCloseCursor(nml_HandleToSqlStatement);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLCloseCursor() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 nml_ReturnCode = fun_ReleaseStmHandle();

 printf("%s: Terminating\n", pszId);

 return SQL_ERROR;

 } else {

 printf("%s: SQLCloseCursor() succeeded\n", pszId);

 } /* endif */

 return SQL_SUCCESS;

} /* end fun_Process */

SQLRETURN fun_DisConnect()

{

 static

 char*pszId = "fun_DisConnect()";

 nml_ReturnCode = SQLDisconnect(nml_HandleToDatabaseConnection);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLDisconnect() failed\n", pszId);

 fun_PrintError(SQL_NULL_HSTMT);

 printf("%s: Terminating\n", pszId);

 return 1;

 } else {

 printf("%s: SQLDisconnect() succeeded\n", pszId);

 } /* endif */

 nml_ReturnCode = fun_ReleaseDbcHandle();

 nml_ReturnCode = fun_ReleaseEnvHandle();

 return nml_ReturnCode;

} /* end fun_DisConnect */

SQLRETURN fun_ReleaseEnvHandle()

{

 static

 char*pszId = "fun_ReleaseEnvHandle()";

 nml_ReturnCode = SQLFreeEnv(nml_HandleToEnvironment);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLFreeEnv() failed\n", pszId);

 fun_PrintError(SQL_NULL_HSTMT);

 return SQL_ERROR;

 } else {

 printf("%s: SQLFreeEnv() succeeded\n", pszId);

 return SQL_SUCCESS;

 } /* endif */

} /* end fun_ReleaseEnvHandle */

OS/400 PASE 39

SQLRETURN fun_ReleaseDbcHandle()

{

 static

 char*pszId = "fun_ReleaseDbcHandle()";

 nml_ReturnCode = SQLFreeConnect(nml_HandleToDatabaseConnection);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLFreeConnect() failed\n", pszId);

 fun_PrintError(SQL_NULL_HSTMT);

 return SQL_ERROR;

 } else {

 printf("%s: SQLFreeConnect() succeeded\n", pszId);

 return SQL_SUCCESS;

 } /* endif */

} /* end fun_ReleaseDbcHandle */

SQLRETURN fun_ReleaseStmHandle()

{

 static

 char*pszId = "fun_ReleaseStmHandle()";

 nml_ReturnCode = SQLFreeStmt(nml_HandleToSqlStatement, SQL_CLOSE);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLFreeStmt() failed\n", pszId);

 fun_PrintError(nml_HandleToSqlStatement);

 return SQL_ERROR;

 } else {

 printf("%s: SQLFreeStmt() succeeded\n", pszId);

 return SQL_SUCCESS;

 } /* endif */

} /* end fun_ReleaseStmHandle */

void fun_PrintError(SQLHSTMT nml_HandleToSqlStatement)

{

 static

 char*pszId = "fun_PrintError()";

 SQLCHAR chs_SqlState[SQL_SQLSTATE_SIZE];

 SQLINTEGER nmi_NativeErrorCode;

 SQLCHAR chs_ErrorMessageText[SQL_MAX_MESSAGE_LENGTH + 1];

 SQLSMALLINT nmi_NumberOfBytes;

 nml_ReturnCode = SQLError(nml_HandleToEnvironment,

 nml_HandleToDatabaseConnection,

 nml_HandleToSqlStatement,

 chs_SqlState,

 &nmi_NativeErrorCode,

 chs_ErrorMessageText,

 sizeof(chs_ErrorMessageText),

 &nmi_NumberOfBytes);

 if (nml_ReturnCode != SQL_SUCCESS) {

 printf("%s: SQLError() failed\n", pszId);

 return;

 } /* endif */

 printf("%s: SqlState - %s\n", pszId, chs_SqlState);

 printf("%s: SqlCode - %d\n", pszId, nmi_NativeErrorCode);

 printf("%s: Error Message:\n", pszId);

 printf("%s: %s\n", pszId, chs_ErrorMessageText);

} /* end fun_PrintError */

40 iSeries: OS/400 PASE

Data encoding

Most UNIX systems use ASCII character encoding. Most OS/400 functions use EBCDIC character

encoding. You can specify a CCSID (Coded Character Set Identifier) value for some OS/400 object types

to identify a specific encoding for character data in the object.

OS/400 PASE bytestream files have a CCSID attribute that is used by most system interfaces outside

OS/400 PASE to convert text data read from or written to the file as needed. OS/400 PASE does not do

CCSID conversion for data read from or written to stream files (consistent with AIX), but it does set the

CCSID attribute of any bytestream file created by an OS/400 PASE program to the current OS/400 PASE

CCSID value so other system functions can correctly handle ASCII text in the file.

If you use AIX APIs that are shipped in the OS/400 PASE shared libraries, OS/400 PASE handles most of

the data conversion for you. OS/400 PASE programs can use iconv functions provided in shared library

libiconv.a for any character data conversions that are not handled automatically by OS/400 PASE

run-time. For example, an OS/400 PASE application generally needs to convert character strings to

EBCDIC before calling an OS/400 API function (using either _ILECALLX or _PGMCALL).

File systems

OS/400 PASE programs can access any file or resource that is accessible through the integrated file

system, including objects in the QSYS.LIB and QOPT file systems.

Buffered input and output

Input and output to and from external devices is buffered on OS/400; it is handled by input and output

processors that deal with blocks of data. Conversely, UNIX systems typically operate with

character-by-character (unbuffered) input and output. On OS/400, only certain input and output signals

(for example, the Enter key, function keys, and system request) send an interrupt to the system.

Data conversion support

OS/400 PASE programs pass ASCII (or UTF-8) path names to the open function to open bytestream files,

where the name is automatically converted to the encoding scheme used by OS/400, but any data read or

written from the open file is not converted.

See Data encoding for more information about data conversion.

Use of file descriptors

The OS/400 PASE run-time normally uses ILE C run-time support for files stdin, stdout, and stderr,

which provide consistent behavior for OS/400 PASE and ILE programs.

OS/400 PASE and ILE C use the same streams for standard input and output (stdin, stdout, and stderr).

OS/400 PASE programs always access standard input and output using file descriptors 0, 1, and 2. ILE C,

however, does not always use integrated file descriptors for stdin, stdout, and stderr, so OS/400 PASE

provides a mapping between OS/400 PASE file descriptors and descriptors in the integrated file system.

Because of this mapping, OS/400 PASE programs and ILE C programs may use different descriptor

numbers to access the same open file.

You can use the OS/400 PASE extension on the fcntl function, F_MAP_XPFFD, to assign an OS/400

PASE descriptor to an ILE number. This is useful if your OS/400 PASE application needs to do file

operations for an ILE descriptor that was not created by OS/400 PASE.

An OS/400-unique extension to the fstatx function, STX_XPFFD_PASE, allows an OS/400 PASE program

to determine the integrated file system descriptor number for an OS/400 PASE file descriptor. Special

values (negative numbers) are returned for any OS/400 PASE descriptor attached to ILE C run-time

support for files stdin, stdout, and stderr.

OS/400 PASE 41

If the ILE environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Y or I when the Qp2RunPase()

API is called, OS/400 PASE synchronizes file descriptors 0, 1, and 2 with the integrated file system so

that both OS/400 PASE and ILE C programs use the same descriptor numbers for files stdin, stdout, and

stderr. When operating in this mode, if either OS/400 PASE code or ILE C code closes or reopens file

descriptor 0, 1, or 2, the change affects stdin, stdout, and stderr processing for both environments.

OS/400 PASE run-time generally does no character encoding conversion for data read or written through

OS/400 PASE file descriptors (including sockets), except that ASCII-to-EBCDIC conversion is done

(between the OS/400 PASE CCSID and job default CCSID) for data read from ILE C stdin or written to

ILE C stdout and stderr.

Two environment variables control the automatic translation of stdin, stdout, and stderr:

v The variable that generally applies is QIBM_USE_DESCRIPTOR_STDIO. When set to Y, the ILE

run-time uses file descriptor 0, 1, or 2 for these files.

v The PASE-specific environment variable is QIBM_PASE_DESCRIPTOR_STDIO. It has values of B for

binary and T for text.

ASCII-to-EBCDIC conversion for OS/400 PASE stdin, stdout, and stderr is disabled if the ILE

environment variable QIBM_USE_DESCRIPTOR_STDIO is set to Y and

QIBM_PASE_DESCRIPTOR_STDIO is set to B (allowing binary data to be read from stdin and written to

stdout or stderr). The default for QIBM_PASE_DESCRIPTOR_STDIO is T for text. This value causes

translation of EBCDIC to ASCII.

For more information about file systems, see the Integrated file system topic.

Globalization

Because the OS/400 PASE run-time is based on the AIX run-time, OS/400 PASE programs can use the

same rich set of programming interfaces for locales, character string manipulation, date and time services,

message catalogs, and character encoding conversions supported on AIX.

OS/400 PASE supports the interfaces in AIX run-time for managing the locale that an application uses

and for performing locale-sensitive functions (such as ctype and strcoll), including support for both

single-byte and multibyte character encoding.

OS/400 PASE includes a subset of AIX locales, which provide support for a large number of countries

and languages using industry-standard encoding (code sets ISO8859-x), code set IBM-1250, and code set

UTF-8. OS/400 PASE provides support for the Euro in three different ways: IBM-1252 locales and ISO

8859-15 locales (both of which use single-byte encodings), and UTF-8 locales.

Note: Locale support for OS/400 PASE is independent of either form of locale support used by ILE C

programs (object types *CLD and *LOCALE). In addition to internal structural differences, none of

the existing shipped locales for ILE C programs supports ASCII.

Creating new locales

OS/400 PASE does not ship a utility to create new locales. However, you can create locales for use in

OS/400 PASE on an AIX system with the localedef utility.

Changing locales

When an OS/400 PASE application changes locales, it generally should also change the OS/400 PASE

CCSID (using the _SETCCSID run-time function) to match the encoding for the new locale. This ensures

that any character data interface arguments are correctly interpreted by OS/400 PASE run-time (and

possibly converted when calling an EBCDIC system service). You can use the cstoccsid run-time function

to determine what CCSID corresponds to a code set name.

42 iSeries: OS/400 PASE

The OS/400 PASE run-time sets the CCSID tag on any file created by an OS/400 PASE program to the

current OS/400 PASE CCSID value (supplied either when the program is started or using the most recent

_SETCCSID value).

You should use UTF-8 locales for OS/400 PASE applications that support Japanese, Korean, Traditional

Chinese, and Simplified Chinese. OS/400 includes other locales for these languages, but the system does

not support setting the OS/400 PASE CCSID to match the encoding for IBM-eucXX code sets. Using

UTF-8 support may require converting file data that may be stored in other encoding (such as Shift-JIS)

when the application runs on other platforms.

Where OS/400 PASE conversion objects and locales are stored

Conversion objects and locales for OS/400 PASE are packaged with OS/400 language feature codes.

When you install OS/400 PASE, only those locales that are associated with installed OS/400 language

features are created.

All OS/400 PASE locales use ASCII or UTF-8 character encoding; therefore, all OS/400 PASE run-time

works in ASCII (or UTF-8).

See the Globalization topic for more information about globalization on OS/400.

Message services

OS/400 PASE signals and ILE signals are independent, so it is not possible to directly call a handler for

one signal type by raising the other type of signal. You can use the OS/400 PASE Qp2SignalPase() API to

post corresponding OS/400 PASE signals for any ILE signal that you receive. The QP2SHELL() program

and the OS/400 PASE fork() function always set up handlers to map every ILE signal to a

corresponding OS/400 PASE signal.

The system automatically converts any OS/400 exception message sent to the program message queue of

a call running the Qp2RunPase, Qp2CallPase, or Qp2CallPase2 API to a corresponding OS/400 PASE

signal. An OS/400 PASE application can therefore handle any OS/400 exception by handling the OS/400

PASE signal that the system converts it to.

OS/400 PASE provides the following runtime functions that give you direct control over OS/400 message

handling:

v QMHSNDM

v QMHSNDM1

v QMHSNDPM

v QMHSNDPM1

v QMHSNDPM2

v QMHRCVM

v QMHRCVM1

v QMHRCVPM

v QMHRCVPM1

v QMHRCVPM2

See Run-time functions for details on these functions.

OS/400 message support

OS/400 provides message support in a variety of contexts:

v Job logs. Your job log will contain any messages issued by OS/400 or your application while it is

running or being compiled. To look at a job log, type DSPJOBLOG on a command line. When the

OS/400 PASE 43

Display Job Log screen appears, press the F10 key, followed by Shift + F6. These key combinations

result in the Display All Messages screen being displayed and set to the most recent messages. To view

the details of any particular message, move the cursor to the message you want to know more about

and press the F1 key.

v Work with active jobs. The Work with Active Jobs (WRKACTJOB) command is useful for examining

jobs and job stacks on the OS/400.

For more information about message support on OS/400, see the Work Management topic.

For more information about OS/400 PASE and OS/400 messages, see OS/400 PASE Signal Handling.

Print output from OS/400 PASE applications

You can use the QShell Rfile utility to read and write output from OS/400 PASE shells.

The following example writes the contents of stream file mydoc.ps to spooled printer device file QPRINT

as unconverted ASCII data, and then uses the CL LPR command to send the spooled file to another

system:

before=’ovrprtf qprint devtype(*userascii) spool(*yes)’\

after="lpr file(qprint) system(usrchprt01) prtq(’rchdps’) transform(*no)"

cat -c mydoc.ps | Rfile -wbQ -c "$before" -C "$after" qprint

Pseudo-terminal (PTY)

OS/400 PASE supports both AT&T and Berkeley Software Distributions (BSD) style devices. From a

programming perspective, these devices work in OS/400 PASE in the same way that they work on AIX.

OS/400 PASE allows a maximum of 1024 instances for AT&T style devices, and a maximum of 592 BSD

style devices. When the system is started, the first 32 instances of each device type are created

automatically.

Configuring PTY devices in OS/400 PASE

On AIX, an administrator would use smit to configure the number of available devices of each type. In

OS/400 PASE, these devices are configured in the following way:

v For AT&T style devices, OS/400 PASE supports autoconfiguration. If the first 32 instances are in use

and an application tries to open another instance, the CHRSF device is created in the integrated file

system automatically, up to the limit of 1024 devices.

v For BSD style devices, you must create the CHRSF devices manually, using the OS/400 PASE mknod

utility. To do this, you will need to know the major numbers for the BSD subordinate and BSD primary

devices as well as the naming convention. The following example shell script shows how to create

additional BSD PTY devices. It creates them in groups of 16.

#!/QOpenSys/usr/bin/ksh

prefix="pqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

bsd_tty_major=32949

bsd_pty_major=32948

if [$# -lt 1]

then

 echo "usage: $(basename $0) ptyN "

 exit 10

fi

function mkdev {

 if [! -e $1]

 then

 mknod $1 c $2 $3

 chown QSYS $1

 chmod 0666 $1

44 iSeries: OS/400 PASE

fi

}

while ["$1"]

do

 N=${1##pty}

 if ["$N" = "$1" -o "$N" = "" -o $N -lt 0 -o $N -gt 36]

 then

 echo "skipping: \"$1\": not valid, must be in the form ptyN where: 0 <= N <= 36"

 shift

 continue

 fi

 minor=$((N * 16))

 pre=$(expr "$prefix" : ".\{$N\}\(.\)")

 echo "creating /dev/[pt]ty${pre}0 - /dev/[pt]ty${pre}f"

 for i in 0 1 2 3 4 5 6 7 8 9 a b c d e f

 do

 echo ".\c"

 mkdev /dev/pty${pre}${i} $bsd_pty_major $minor

 echo ".\c"

 mkdev /dev/tty${pre}${i} $bsd_tty_major $minor

 minor=$((minor + 1))

 done

 echo ""

 shift

done

For more information about pseudo-terminal devices, see the AIX documentation

web site.

Security

From a security point of view, OS/400 PASE programs are subject to the same security restrictions as any

other program on OS/400. To run an OS/400 PASE program on OS/400, you must have authority to the

AIX binary in the integrated file system. You must also have the proper level of authority to each of the

resources that your program accesses, or the program will receive an error when you attempt to access

those resources.

The following information is particularly important when you run OS/400 PASE programs.

User profiles and authority management

System authorization management is based on user profiles that are also objects. All objects created on

the system are owned by a specific user. Each operation or access to an object is verified by the system to

ensure the user’s authority. The owner or appropriately authorized user profiles may delegate to other

user profiles various types of authorities to operate on an object. Authority checking is provided

uniformly to all types of objects.

The object authorization mechanism provides various levels of control. A user’s authority may be limited

to exactly what is needed. Files stored in the QOpenSys file system are authorized in the same manner as

UNIX files. The following table shows the relationship between UNIX permissions and the security

values used on OS/400 database files. On OS/400, *OBJOPR is Use object authority; *EXCLUDE is No

authority. *READ, *ADD, *UPD, *DLT, and *EXECUTE are data authorities. You need *EXECUTE

authority (and sometimes *READ authority) to a file to run it as an OS/400 PASE program.

 UNIX permission *OBJOPR *READ *ADD *UPD *DLT *EXECUTE

r(read) X X - - - -

w(write) X - X X X -

OS/400 PASE 45

http://www.ibm.com/servers/aix/library/

UNIX permission *OBJOPR *READ *ADD *UPD *DLT *EXECUTE

x(execute) X - - - - X

No authority - - - - - -

User profiles in OS/400 PASE

On OS/400, authentication information is stored in individual profiles rather than in such files as

/etc/passwd. Users and groups have profiles. All of these profiles share one namespace, and each profile

must have a unique monocase name. If you pass a lowercase name to the getpwnam() or getgrnam() APIs,

the system converts the name strings to the expected case.

If you call getpwuid() or getgrgid() to get the profile name returned, it will be in lowercase, unless you

set the OS/400 PASE environment variable PASE_USRGRP_LOWERCASE=N, which returns the result in

uppercase.

Every user has a user identification (UID). Every group has a group identification (GID). These are defined

according to the POSIX 1003.1 standard. The two numeric spaces are separate, so you can have a user

with a UID of 104 and a group with a GID of 104 that are distinct from each other.

OS/400 has a user profile for the security officer, QSECOFR, that has a UID of 0. No other profile can

have the UID of 0. QSECOFR is the most privileged profile on the system and, in that sense, acts as the

root user. However, OS/400 also provides a set of specific privileges that can be assigned to individual

users by system administrators. One of these privileges, *ALLOBJ, overrides the discretionary access

control for file access, for example, which is a typical use of root privileges on UNIX systems.

In a ported application that uses root access, it is probably a better security practice to create a specific

user profile for the application user that can be given *ALLOBJ authority, therefore avoiding the use of

QSECOFR, which has much more privilege than is needed by the single application. Unlike UNIX

systems, OS/400 does not require group membership for users. The GID of 0 for a user profile on

OS/400 means no group assigned rather than referring to a group with more privileges.

OS/400 security relies on integrated security built into the system. All accesses to objects must pass a

security check. The security check is done with respect to the user profile for which the process runs at

the time of the access.

OS/400 PASE relies on giving each process a separate address space to maintain integrity and security. If

a resource is not available in your OS/400 PASE address space, you cannot access it. File system security

prevents someone from loading a resource into their address space without proper authorization. Once in

the address space, the resource is available to the process regardless of the identity under which the

process is running.

An OS/400 PASE program uses system calls to request system functions. System calls for an OS/400

PASE program are handled by OS/400. This interface gives OS/400 PASE programs only indirect (and

safe) access to system internals.

To learn more about security on iSeries servers, see the Security topic.

Work management

OS/400 handles OS/400 PASE programs in the same way it handles any other job on the system. For

information about how OS/400 handles jobs, see the Work Management topic.

46 iSeries: OS/400 PASE

Debug your OS/400 PASE programs

The OS/400 PASE run-time environment provides library support for the syslog() run-time function, and

a syslogd binary (for more sophisticated message routing). In addition, you can use existing facilities in

OS/400, such as job logs for diagnostic messages and sending severe messages to the OS/400 system

operator message queue, QSYSOPR.

Depending on the application, your strategy for debugging an OS/400 PASE application can take

different paths:

v If the application does not require any OS/400 integration (for instance, with DB2 UDB for iSeries or

with ILE functions), you should first debug the application on AIX.

v Then, you use a combination of OS/400 PASE dbx and OS/400 debug capabilities (such as job logs) to

debug the application on OS/400.

Applications that you have coded to use database or ILE functions cannot be fully tested on AIX, but you

can debug the remaining parts of the application on AIX to assure their proper structure and design.

Using dbx in OS/400 PASE

OS/400 PASE supports the AIX dbx debugger utility. The utility lets you debug related processes, such as

parent and child, at the source code level, if they were compiled as such. You can use the Network File

System (NFS) to make the AIX source visible to the debugger that runs in OS/400 PASE.

OS/400 PASE support for xterm and aixterm lets you use dbx to debug both the parent and child

processes. dbx launches another xterm window with dbx attached to the second process.

For details on dbx, see the AIX documentation

Web site. You can also type help on the dbx command

line.

Using OS/400 debugging tools

You can use the following tools on OS/400 to debug your OS/400 PASE applications:

v The iSeries System Debugger provides specific support for OS/400 PASE application debugging.

v The ILE C source debugger is an effective tool for determining problems with your code. To learn

about this tool, see the WebSphere® Development Studio ILE C/C++ Programmer’s Guide

.

Optimize performance

To achieve the best performance, be sure to store your application binaries in the local stream file system.

It is much slower to start OS/400 PASE programs if your binaries (base program and libraries) are

outside of the local stream file system since file mapping cannot be done.

If you run an application in OS/400 PASE that performs a large number of fork() operations, it will not

run as fast as it runs on AIX. This is because each OS/400 PASE fork() operation starts a new OS/400

job, which can have a significant impact on performance.

See the Performance topic in the System Management category for information about collecting and

analyzing performance data.

OS/400 PASE 47

|

|

|

|

http://www.ibm.com/servers/aix/library/

Examples

The following examples have been provided in the OS/400 PASE information. Before you use these

examples, read the Code disclaimer information.

Run OS/400 PASE programs and procedures from ILE programs

v Run an OS/400 PASE program from an ILE program

v Call an OS/400 PASE procedure from an ILE program

Call OS/400 programs from OS/400 PASE programs

v Call ILE procedures from an OS/400 PASE program

v Call OS/400 programs from OS/400 PASE

v Run CL commands from OS/400 PASE

Use DB2 UDB for iSeries functions in OS/400 PASE programs

v Call DB2 UDB for iSeries Call Level Interfaces in an OS/400 PASE program

Code disclaimer information

This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Related information for OS/400 PASE

Following are the Information Center topics and Web sites that relate to the OS/400 PASE topic.

Other iSeries Information Center topics

v OS/400 PASE APIs

See this topic for details about the following general categories of OS/400 PASE APIs:

– Callable program APIs

– ILE procedure APIs

– Run-time functions for use by OS/400 PASE programs

You must call a system API to run an OS/400 PASE program. The system provides both callable

program APIs and ILE procedure APIs to run OS/400 PASE programs. The callable program APIs can

be easier to use, but do not offer all the controls available with the ILE procedure APIs.

v OS/400 PASE shells and utilities

OS/400 PASE includes three shells (Korn, Bourne, and C Shell) and nearly 200 utilities that run as

OS/400 PASE programs. OS/400 PASE shells and utilities provide an extensible scripting environment

that includes a large number of industry-standard and de facto-standard commands.

v OS/400 PASE commands

48 iSeries: OS/400 PASE

Most OS/400 PASE commands described in this topic support the same options and provide the same

behavior as AIX commands. In addition to the OS/400 PASE commands, each OS/400 PASE shell

supports a number of built-in commands (such as cd, exec, and if).

v OS/400 PASE libraries

OS/400 PASE run-time supports a large subset of the interfaces provided by AIX run-time. Most

run-time interfaces supported by OS/400 PASE provide the same options and behavior as AIX. The

OS/400 PASE run-time libraries are installed (as symbolic links) in /usr/lib.

Web sites

v Enablement roadmaps & resources

(http://www.ibm.com/servers/enable/site/porting/index.html) This Web site compares OS/400 PASE

to other solutions for porting your applications to iSeries servers.

v OS/400 PASE

(http://www.ibm.com/servers/enable/site/porting/iseries/pase/index.html)This

Web site provides information about porting applications to iSeries servers with OS/400 PASE.

v API Analysis Tool

(http://www.ibm.com/servers/enable/site/porting/iseries/overview/apitool.html)The analysis tool

provides detailed information about how your application’s use of AIX commands, APIs, and utilities

is supported by OS/400 PASE.

v AIX documentation

(http://www.ibm.com/servers/aix/library/)This Web site provides

information about AIX commands and utilities.

News groups

The OS/400 PASE news group (news://news.software.ibm.com/ibm.software.iseries.pase) discusses user

questions and answers relating to OS/400 PASE.

IBM Redbooks™ and Redpapers

Bringing PHP to your iSeries server

The step-by-step implementation discussed in this Redpaper

involves the CGI version of the Hypertext Preprocessor (PHP) running in OS/400 Portable Application

Solutions Environment (OS/400 PASE).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

v Right-click the link to the PDF in your browser.

v Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using

Netscape Communicator.

v Navigate to the directory in which you would like to save the PDF.

v Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html)

.

OS/400 PASE 49

http://www.ibm.com/servers/enable/site/porting/index.html
http://www.ibm.com/servers/enable/site/porting/iseries/pase/index.html
http://www.ibm.com/servers/enable/site/porting/iseries/overview/apitool.html
http://www.ibm.com/servers/aix/library/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/redp3639.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

50 iSeries: OS/400 PASE

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2000, 2005 51

|
|
|
|
|

|
|
|
|

|
|

|

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AFS

 AIX

 AS/400e

 DB2

 DB2 Universal Database

 DFS

 IBM

 Integrated Language Environment

 iSeries

 OS/400

 PartnerWorld

 PowerPC

 pSeries

 Redbooks

 VisualAge

 WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

52 iSeries: OS/400 PASE

|
|
|
|

Terms and conditions for downloading and printing publication

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

Appendix. Notices 53

54 iSeries: OS/400 PASE

����

Printed in USA

	Contents
	OS/400 PASE
	What's new for V5R3
	How to see what's new or changed

	Print this topic
	Get started with OS/400 PASE
	What is OS/400 PASE?
	When is OS/400 PASE a useful option for application development?
	Install OS/400 PASE

	Plan for OS/400 PASE
	Prepare programs to run in OS/400 PASE
	Analyze your program's compatibility with OS/400 PASE
	Compile your AIX source
	Install AIX compilers on OS/400 PASE

	Copy the OS/400 PASE program to your iSeries server
	Case sensitivity
	Line terminating characters in integrated file system files

	Customize OS/400 PASE programs to use OS/400 functions
	Copy header files
	Copy export files
	OS/400 PASE APIs for accessing OS/400 functions

	Use OS/400 PASE programs in the OS/400 environment
	Run OS/400 PASE programs and procedures
	Run an OS/400 PASE program with QP2SHELL()
	Run an OS/400 PASE program with QP2TERM()
	Run an OS/400 PASE program from within OS/400 programs
	Call an OS/400 PASE procedure from within OS/400 programs
	Use OS/400 PASE native methods from Java
	Work with environment variables

	Call OS/400 programs and procedures from your OS/400 PASE programs
	Call ILE procedures
	Call OS/400 programs from OS/400 PASE
	Run OS/400 commands from OS/400 PASE

	How OS/400 PASE programs interact with OS/400
	Communications
	Database
	Data encoding
	File systems
	Globalization
	Message services
	Print output from OS/400 PASE applications
	Pseudo-terminal (PTY)
	Security
	Work management

	Debug your OS/400 PASE programs
	Optimize performance
	Examples
	Code disclaimer information

	Related information for OS/400 PASE

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publication

