
iSeries

Developing iSeries Navigator plug ins

Version 5 Release 3

ERserver

���

iSeries

Developing iSeries Navigator plug ins

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 55.

Fifth Edition (May 2005)

This edition applies to version 5, release 3, modification 0 of iSeries Access for Windows (product number

5722-XE1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version

does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Developing iSeries Navigator Plug-ins . . 1

Plug-in support in iSeries Navigator 2

What you can do with a plug-in 2

How plug-ins work 3

Plug-in requirements 5

Distribute plug-ins 6

Identifying plug-ins to iSeries Navigator 11

Install and run sample plug-ins 11

Setting up sample C++ plug-ins 11

Setting up sample Visual Basic plug-ins 13

Setting up the sample Java plug-in 15

Plug-in programming reference 18

iSeries Navigator structure and flow of control

for C++ plug-ins 19

iSeries Navigator COM interfaces for C++ . . . 19

iSeries Navigator API listing 23

Return codes unique to iSeries Navigator APIs 26

iSeries Navigator structure and flow of control

for Visual Basic plug-ins 28

iSeries Navigator Visual Basic interfaces 29

iSeries Navigator structure and flow of control

for Java plug-ins 29

Customize the plug-in registry files 30

Appendix. Notices 55

Programming Interface Information 56

Trademarks 56

Terms and conditions for downloading and printing

publications 57

Code disclaimer information 57

© Copyright IBM Corp. 1998, 2005 iii

iv iSeries: Developing iSeries Navigator plug ins

Developing iSeries Navigator Plug-ins

Are you interested in integrating your iSeries(TM) server administration tasks and client/server programs

into a single application environment? The plug-in feature for iSeries Navigator allows you to do just

that! You can use plug-ins to consolidate third-party applications and specialized functions written in

C++, Visual Basic (VB) or Java(TM) into the iSeries Navigator interface. Use these articles to learn what

plug-ins are, how to create or customize them, and how to distribute them to your users.

Learn about plug-ins:

“Plug-in support in iSeries Navigator” on page 2
Plan your plug-in by learning what plug-ins are, what you can do with them, and how to distribute

them to your users.

“Install and run sample plug-ins” on page 11
The Programmer’s Toolkit helps you download and run sample plug-ins. You can use these samples

to learn about plug-in support in iSeries Navigator. Also, many developers use these samples as a

base for their own modifications.

Develop plug-ins:

“Plug-in programming reference” on page 18
Find information about each type of plug-in’s architecture, and the flow of control within iSeries

Navigator. This topic also contains API listings, return codes, and links to ActiveX and COM

information for C++ plug-ins, as well as links to the interfaces and classes relevant to Java plug-ins.

“Distribute plug-ins” on page 6
The Selective Setup feature in iSeries Access for Windows(R) makes it easy to distribute the plug-in

to your end users. Use this section to learn how to identify the new plug-in to iSeries Navigator,

and where to install the new plug-in.

Note: Support for the GUIPlugin location will be removed in a future release so you should migrate

your plug-ins to the OpNavPlugin location.

Code disclaimer information

This topic contains programming examples.

IBM(R) grants you a nonexclusive copyright license to use all programming code examples from which

you can generate similar functions tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability, and fitness for a particular purpose are

expressly disclaimed.

© Copyright IBM Corp. 1998, 2005 1

Plug-in support in iSeries Navigator

iSeries(TM) Navigator Plug-in support provides a convenient way to integrate your own functions and

applications into a single user interface: iSeries Navigator. These new functions and applications can vary

in complexity from simple new behaviors to whole applications. Regardless of what specific new ability

your plug-in provides, integrating it into iSeries Navigator provides several important benefits. For

example, bundling common system tasks into a single location in iSeries Navigator can dramatically

simplify common administration and operation functions. Also, iSeries Navigator’s GUI interface ensures

that your integrated functions can be completed easily, and with only minimal prerequisite skills.

To help you plan your plug-in you may want to become familiar with the following topics:

v “What you can do with a plug-in”

v

The new functions you can add with a plug-in

v “How plug-ins work” on page 3

v

How plug-ins work by examining an example Java(TM) plug-in

v “Plug-in requirements” on page 5

v

You can develop plug-ins in C++, VB or Java. This topic describes the specific requirements for each

language.

v “Distribute plug-ins” on page 6

v

You can easily distribute the new plug-in to your end users by placing it on the managing iSeries

server. iSeries Access for Windows(R) Selective Setup then detects the new plug-in and installs it on

your client PCs.

What you can do with a plug-in

Plug-ins are sets of predefined classes and methods that iSeries(TM) Navigator will start in response to a

particular user action. You can use plug-ins to add or modify objects and folders in the iSeries Navigator

hierarchy that will represent your tools and applications. You can completely customize the support for

your folders and objects by adding or modifying:

Context menus

Use context menus to launch applications, present new dialogs and add or modify behaviors.

Property pages

Use property pages to support customized attributes, for example additional security settings. You can

add property pages to any object or folder that has a property sheet.

Toolbars
You can completely customize toolbars and buttons.

Custom folders and objects
You can add your own customized folders and objects into the iSeries Navigator tree hierarchy.

2 iSeries: Developing iSeries Navigator plug ins

How plug-ins work

The following illustration demonstrates how a Java(TM) plug-in that adds a new container to the

iSeries(TM) Navigator tree could work.

 After identifying the new plug-in to the Windows(R) registry, iSeries Navigator will find the new plug-in

and install it in a new configuration. Afterwards, the new container will appear in the iSeries Navigator

hierarchy. When the user selects the container, the plug-in’s Java code is called to obtain the container’s

contents—in this case, a list of messages on the user’s default message queue.

iSeries Navigator dialog — messages in the message queue

iSeries Navigator communicates with the Java plug-in by calling methods defined on a Java interface:

ListManager. This interface lets Java applications supply list data to the Navigator’s tree and list views.

To integrate your application into iSeries Navigator, you create a new Java class that implements this

interface. The methods on the new class call into your existing Java application to obtain the list data, as

shown below.

Developing iSeries Navigator Plug-ins 3

How iSeries Navigator calls an application to obtain list data

What happens when the user wants to perform an action on one of your objects? The illustration below

shows what happens when the user right-mouse clicks on a message object to display its context menu.

iSeries Navigator object context menu

iSeries Navigator calls a predefined method on another Java interface: ActionsManager. This interface

obtains the list of menu items supported for message objects. Once again, you would create a new Java

class that implements this interface. This is how you make your application’s specialized functions

available to your users through iSeries Navigator. When the user selects the menu item, the Navigator

4 iSeries: Developing iSeries Navigator plug ins

calls another ActionsManager method to perform the action. Your ActionsManager implementation calls

your existing Java application, which then can display a confirmation dialog or some other more

sophisticated user interface panel that allows the user to perform a specialized task. The iSeries Navigator

user interface is designed to let users work with lists of iSeries server resources and to perform actions on

them. The architecture of the plug-in feature reflects this user interface design, both by defining interfaces

for working with lists of objects in a hierarchy, and for defining actions on those objects. A third interface,

DropTargetManager, handles drag-and-drop operations.

Plug-in requirements

iSeries(TM) Navigator plug-in requirements differ according to the programming language that you use.

C++ plug-ins

 Plug-ins that are developed by using Microsoft(R)’s Visual C++ programming language must be written in

Version 4.2 or later.

C++ plug-ins also require the following iSeries Navigator APIs:

 Header file Import library Dynamic Link Library

cwbun.h cwbunapi.lib cwbunapi.dll

cwbunpla.h (Application Administration APIs) cwbapi.lib cwbunpla.dll

Java(TM) plug-ins

 Java plug-ins run on the IBM(R) runtime for Windows(R), Java Technology Edition. The following table

indicates the version of Java installed with iSeries Access for Windows:

 Release JRE Swing JavaHelp

V5R3 1.4.1 N/A 1.1.1

V5R2 1.3.1 N/A 1.1.1

V5R1 1.3.0 N/A 1.1.1

V4R5 1.1.8 1.1 N/A

V4R4 1.1.7 1.0.3 N/A

All Java plug-ins require a small Windows resource DLL, that contains certain information about your

plug-in. This allows iSeries Navigator to represent your function in the Navigator object hierarchy

without having to load your plug-in’s implementation. The sample’s resource DLL was created by using

Microsoft’s Visual C++ version 4.2, but any C compiler that supports compiling and linking Windows

resources may be used.

iSeries Navigator provides a Java console as an aid to debugging. The console is activated by selecting a

registry file to write the required console indicators to the Windows registry. When the console is

activated, the JIT compiler is turned off to allow source code line numbers to appear in the stack trace,

and any exceptions that are encountered in the Navigator’s Java infrastructure will be displayed in

message boxes. The registry files for activating and for deactivating the console are provided with the

sample Java plug-in, found in the iSeries Access for Windows Toolkit.

The sample’s user interface was developed by using the Graphical Toolbox for Java, which is a part of the

IBM Toolbox for Java component. The Toolbox is an optionally installable component of iSeries Access for

Windows. It can be installed with the initial installation of the iSeries Access for Windows product or

selectively installed later, by using the iSeries Access for Windows Selective Setup program.

Visual Basic plug-ins

Developing iSeries Navigator Plug-ins 5

Visual Basic plug-ins run on Version 5.0 of the Visual Basic runtime environment.

Distribute plug-ins

You can deliver your plug-in code to iSeries(TM) Navigator users by including it with your OS/400(R)

applications. The installation program for the application writes the plug-in’s code binaries, registry file,

and translatable resources to a folder in the iSeries server integrated file system. After completing this

process, your end users can obtain the plug-in from the iSeries Access for Windows(R) folder (with the

help of an iSeries NetServer mapped network drive) using the iSeries Access for Windows Selective Setup

program. Selective Setup copies your plug-in code to the user’s machine, downloads the appropriate

translatable resources based on the language settings on the user’s PC, and runs the registry file to write

your plug-in’s registry information to the Windows registry. If you are not initially installed, you can also

install plug-ins on the initial install using the custom option.

 For this type of plug-in... Install in this directory... And include these files...

C++ /QIBM/USERDATA/OpNavPlugin/
<vendor>.<component> (To prevent

installation without iSeries Access for

Windows)

v The registry file for the plug-in.

v The iSeries Access for Windows

“Setup.ini file” on page 7 for the

plug-in.

v The ActiveX server DLL for the

plug-in, and any associated code

DLLs.

Java(TM) /QIBM/USERDATA/OpNavPlugin/
<vendor>.<component>
(Java plug-ins require iSeries Access)

v The registry file for the plug-in.

v The iSeries Access for Windows

“Setup.ini file” on page 7 for the

plug-in.

v The Java JAR file contains all Java

classes, HTML, .gif, PDML, PCML,

and serialization files..

Visual Basic /QIBM/USERDATA/OpNavPlugin/
<vendor>.<component>
(VB plug-ins require iSeries Access

for Windows)

v The registry file for the plug-in.

v The iSeries Access for Windows

“Setup.ini file” on page 7 for the

plug-in.

v The ActiveX server DLL for the

plug-in, and any associated code

DLLs.

Notes:

v The <vendor>.<component> subdirectory must match the one specified in the registry file.

v Support for the GUIPlugin location will be removed in a future release so you should migrate your

plug-ins to the OpNavPlugin location.

Additionally, all plug-ins must create at least one directory below the <vendor>.<component>

subdirectory called MRI29XX, where XX identifies a supported language. For example, MRI2924

(English). This directory should contain the correct national language version of the following items:

v The resource DLL for the plug-in

v The help files for the plug-in

v The “MRI setup file” on page 10 for the plug-in.

6 iSeries: Developing iSeries Navigator plug ins

Upgrading or uninstalling the plug-in

After the users have installed your new plug-in, you may choose either to upgrade it at a later date or

ship bug fixes. When the code is upgraded on the iSeries server, the iSeries Access Check Version

program will detect that this process has occurred and automatically download the updates onto the

users machines. iSeries Access for Windows also provides uninstall support, which lets your users

completely remove the plug-in from their machines anytime they wish. Users can learn what plug-ins are

installed on their machines by clicking on the Plug-ins tab on the iSeries Navigator Properties for an

iSeries server.

Restricting access to the plug-in with system policies and Application Administration

If you provide a Windows policy template with your plug-in, you can also take advantage of Windows

system policies to control which network users can install your plug-in. Additionally, you can use the

iSeries server based Application Administration support in iSeries Navigator to control which users and

user groups can access your plug-in.

Setup.ini file

Your plug-in’s setup.ini file provides the installation wizard with the information needed to install an

iSeries(TM) Navigator plug-in on a client workstation. It also provides information that allows the Check

Service Level program to determine when the plug-in needs to be upgraded or serviced.

The file must be named SETUP.INI, and it must reside in the primary <vendor>.<component> directory

for the plug-in on the iSeries server.

The format of the file conforms to that of a standard Windows(R) configuration (.INI) file. The file is

divided into three parts:

v “Example: Information section of setup.ini”

v “Example: Service section of setup.ini” on page 8

v Sections to “Example: Identify files section of setup.ini” on page 8 to install on the client workstation

Example: Information section of setup.ini: The first section of the Setup file (Plug-in Info) contains

global information about the plug-in:

[Plugin Info]

Name=Sample plug-in

NameDLL=sampmri.dll

NameResID=128

Description=Sample plug-in description

DescriptionDLL=sampmri.dll

DescriptionResID=129

Version=0

VendorID=IBM.Sample

JavaPlugin=YES

 Field in [Plugin Info]

section of Setup.ini Description of field

Name English name of the plug-in. This name is displayed during installation of the plug-in

when the translated name cannot be determined.

NameDLL Name of the resource DLL that contains the translated name of the plug-in. This DLL

is located in the MRI directories of the plug-in.

NameResID Resource ID of the translated name in the MRI DLL. This field must contain the same

value as the NameID field defined in the primary registry key for the plug-in.

Description English description of the plug-in. This description is displayed during installation of

the plug-in when the translated description cannot be determined.

Developing iSeries Navigator Plug-ins 7

Field in [Plugin Info]

section of Setup.ini Description of field

DescriptionDLL Name of the resource DLL that contains the translated description of the plug-in. This

DLL is located in the MRI directories of the plug-in.

DescriptionResID Resource ID of the translated description in the MRI DLL. This field must contain the

same value as the DescriptionID field that is defined in the primary registry key for

the plug-in.

Version A numeric value that indicates the release level of the plug-in. The Check Service Level

program uses this value to determine whether the plug-in needs to be upgraded on the

client workstation. This value is incremented by some amount for each new release of

the plug-in.

The Version value is compared to the current Version value of the installed plug-in that

is on the client workstation. When this Version value is greater than the one already

existing on the client workstation, the Check Service Level program upgrades the

plug-in to the new Version.

VendorID The <VENDOR>.<COMPONENT> string that is used to identify the plug-in. This

string is used to create the registry key for the plug-in in the iSeries(TM) Access for

Windows(R) registry tree. The VendorID must be identical to the

<VENDOR>.<COMPONENT> portion of the path where the plug-in will be installed

on the iSeries server.

JavaPlugin JavaPlugin is used to indicate whether this is a Java(TM) plug-in. The install process

needs to do some special processing if the plug-in is a Java plug-in. All JAR files must

be installed into the \PLUGINS\<VENDOR>.<COMPONENT> directory, and this

value is used to determine whether the install process should do this. If the plug-in is

a Java plug-in and this value is set to NO or doesn’t exist, the plug-in may not work

after it is installed.

Example: Service section of setup.ini: The second section of the setup file (Service) provides the Check

Service Level program with the information it requires to determine if a new fix level of the plug-in

should be applied to the client workstation:

[Service]

FixLevel=0

AdditionalSize=0

Below is a listing of the meaning of each field:

 Field in [Service] section of

Setup.ini Description of field

FixLevel A numeric value that indicates the service level of the plug-in. The Check Service

Level program uses this value to determine whether the plug-in requires servicing.

This value must be incremented by some amount with each service release for a

particular Version.

The FixLevel value is compared to the current FixLevel value of the installed plug-in

on the customer’s computer. When this FixLevel value is greater than that of the

plug-in that is installed on the client workstation, the Check Service Level program

will Service the plug-in to the new FixLevel. The value must be reset to zero when a

plug-in is upgraded to a new Version or release level.

AdditionalSize The amount of DASD space that is required to store any new or additional executable

files that will be added to the plug-in during servicing. Install uses this value to

determine if the workstation has adequate disk space for the plug-in.

Example: Identify files section of setup.ini: The third and final portion of the setup file contains

sections that identify the files that are to be installed on the client workstation. The section in which a file

8 iSeries: Developing iSeries Navigator plug ins

appears identifies the locations of the source and target for each file. These file sections are used during

initial installations or during an upgrade to a new Version or release level.

The format for file entries in each file section should be n=file.ext, where n is the number of the file in

that section. The numbering must start with one (1) and increment by one (1) until all of the files are

listed in the section. For example:

[Base Files]

1=file1.dll

2=file2.dll

3=file3.dll

In all cases, only the file name and plug-in should be specified. Do not specify directory path names. If a

file section contains no entries, the section simply is ignored.

Note:The Programmer’s Toolkit provides a sample setup file for three different sample plug-ins: C++,

Java(TM), and Visual Basic.

 Section in Setup.ini Description

[Base Files] Files that are copied to \PLUGINS\<VENDOR>.<COMPONENT> under the Client

Access install directory. Normally, the ActiveX server DLL (and associated code DLLs)

for the plug-in reside here.

For C++ and Visual Basic, the ActiveX server DLL (and associated code DLLs) for the

plug-in reside here.

For Java, the Code JAR file name will reside here.

[Shared Files] Files that are copied to the Client Access Shared directory.

[System Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

[Core Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory

that are use counted in the registry and are never removed. These are typically

re-distributable files.

[MRI Files] Files that are copied from the MRI directories of the plug-in on the iSeries(TM) server to

the CLIENT ACCESS\MRI29XX\<VENDOR>.<COMPONENT> directories on the

workstation. This typically is where the locale-dependent resources for a plug-in reside.

This will include your Resource MRI DLL name.

[Java MRI29xx] (where

29xx is the NLV feature

code for the files)

Java files that are copied from the MRI29xx directory of the plug-in on the iSeries server

to the same directory to which the [Base Files] are installed. This typically is where the

JAR MRI29xx resources for the plug-in reside. For each MRI29xx directory supported by

the Java plug-in, there needs to be a [Java MRI29xx] section listing those files. This only

is used by Java plug-ins.

[Help files] The .HLP and .CNT files that are copied from the MRI directories of the plug-in on the

iSeries server to the CLIENT ACCESS\MRI29XX\<VENDOR>.<COMPONENT>

directories on the workstation. The directory path to these files is written to

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS\HELP in the

Windows(R) registry.

[Registry files] The Windows registry file that is associated with the plug-in.

Developing iSeries Navigator Plug-ins 9

[Dependencies] Defines the sub components that must be installed before the plug-in can be installed.

AS400_Client_Access_Express is needed only if the plug-in requires other sub

components, besides the iSeries Navigator base support sub component, to be installed.

AS400_Client_Access_Express

v The sub components are specified in a comma-delimited list. A single subcomponent

is specified as a single number (AS400_Client_Access_Express=3). The CWBAD.H

header file contains a list of constants that are prefixed with CWBAD_COMP_. These

constants provide the numeric values that are used in the comma-delimited list for

AS400_Client_Access_Express. There are several CWBAD_COMP_ constants that

identify PC5250 font sub components. These constants must not be used in the

AS400_Client_Access_Express value and are listed below:

//5250 Display and Printer Emulator sub components

 #define CWBAD_COMP_PC5250_BASE_KOREAN (150)

 #define CWBAD_COMP_PC5250_PDFPDT_KOREAN (151)

 #define CWBAD_COMP_PC5250_BASE_SIMPCHIN (152)

 #define CWBAD_COMP_PC5250_PDFPDT_SIMPCHIN (153)

 #define CWBAD_COMP_PC5250_BASE_TRADCHIN (154)

 #define CWBAD_COMP_PC5250_PDFPDT_TRADCHIN (155)

 #define CWBAD_COMP_PC5250_BASE_STANDARD (156)

 #define CWBAD_COMP_PC5250_PDFPDT_STANDARD (157)

 #define CWBAD_COMP_PC5250_FONT_ARABIC (158)

 #define CWBAD_COMP_PC5250_FONT_BALTIC (159)

 #define CWBAD_COMP_PC5250_FONT_LATIN2 (160)

 #define CWBAD_COMP_PC5250_FONT_CYRILLIC (161)

 #define CWBAD_COMP_PC5250_FONT_GREEK (162)

 #define CWBAD_COMP_PC5250_FONT_HEBREW (163)

 #define CWBAD_COMP_PC5250_FONT_LAO (164)

 #define CWBAD_COMP_PC5250_FONT_THAI (165)

 #define CWBAD_COMP_PC5250_FONT_TURKISH (166)

 #define CWBAD_COMP_PC5250_FONT_VIET (167)

Note: The AS400_Client_Access_Express value is used if it exists, otherwise, this section

is ignored.

[Service Base Files] Files that are copied to \PLUGINS\<VENDOR>.<COMPONENT> under the iSeries

Access for Windows install directory.

[Service Shared Files] Files that are copied to the iSeries Access for Windows Shared directory.

[Service System Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

[Service Core Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

These files are use counted in the registry, are never removed, and are typically

re-distributable files.

[Service Registry Files] The Windows registry file that is associated with the plug-in.

MRI setup file

The MRI setup file provides the iSeries(TM) Access for Windows(R) Selective Setup program with the

information it needs to install the locale-dependent resources that are associated with an iSeries

Navigator plug-in on a client PC.

You must name the file MRISETUP.INI. A version of this file must reside in the MRI29XX subdirectory on

the iSeries server for each national language that the plug-in supports.

The format of the file conforms to that of a standard Windows configuration (.INI) file. The file contains a

single section, MRI Info. The MRI Info section provides the Version value for the MRI of the plug-in. The

MRI for the plug-in includes all resource DLLs, as well as Help files (.HLP and .CNT) for a particular

language. For example:

10 iSeries: Developing iSeries Navigator plug ins

[MRI Info]

Version=0

The iSeries Access for Windows Selective Setup program checks the Version value of the MRI during an

initial install and during an upgrade of the plug-in when incrementing the Version or release level of the

plug-in. The MRI Version value in this file must match the Version value in the SETUP.INI file of the

plug-in during the installation or upgrade. When these values do not match, the MRI files will not be

copied to the client PC. The Programmer’s Toolkit provides a sample MRI setup file with the sample

plug-in.

Identifying plug-ins to iSeries Navigator

Plug-ins identify themselves to iSeries(TM) Navigator by supplying information in the Windows(R) registry

when the plug-in software is installed on the Windows desktops of your users. The registry entries

specify the location of the plug-in code and identify the classes that implement the special iSeries

Navigator interfaces. You can supply additional registry information that lets iSeries Navigator determine

whether the plug-in’s function should be activated for a particular iSeries system. For example, a plug-in

may require a certain minimum release of OS/400(R), or it may specify that a certain product needs to be

installed on the iSeries server in order for it to function.

When a user clicks on an iSeries server in the iSeries Navigator hierarchy tree after installing a plug-in,

iSeries Navigator examines the iSeries server to determine whether it is capable of supporting the new

plug-in. The software prerequisites (specified in the plug-in’s registry entries) are compared against the

software installed on the iSeries server. If the plug-in’s requirements are satisfied, the new function will

be displayed in the hierarchy tree. If the requirements are not met, the plug-in’s function will not appear

for that iSeries server, unless the registry file specifies otherwise.

Install and run sample plug-ins

The Programmer’s Toolkit supplies sample plug-ins in each of the supported programming languages.

These samples provide an excellent way to learn how plug-ins work, and an efficient starting point for

developing your own plug-ins. If you don’t already have the Programmer’s Toolkit installed, you will

need to install it before working with any of the sample plug-ins. You can install the Toolkit through

iSeries(TM) Access for Windows(R) Selective Setup.

v “Setting up sample C++ plug-ins”
Download the sample C++ plug-in and get it running in iSeries Navigator.

v “Setting up sample Visual Basic plug-ins” on page 13
Download the sample Visual Basic plug-in and get it running in iSeries Navigator.

v “Setting up the sample Java plug-in” on page 15
Download the sample Java plug-ins and get them running in iSeries Navigator.

 Note: Before starting to work on any of the sample plug-ins, you may want to be aware of the unique “Plug-in

requirements” on page 5 for developing plug-ins in each of the three languages.

Setting up sample C++ plug-ins

This task involves building and running the sample ActiveX server DLL. The sample provides a

functioning Developer Studio workspace that you can use to set breakpoints and to observe the behavior

of a typical iSeries(TM) Navigator plug-in. It also allows you to verify that your Developer Studio

environment is set up correctly for compiling and linking plug-in code.

In order to get the sample C++ plug-in running or your PC, you must complete the following steps:

Developing iSeries Navigator Plug-ins 11

Download the

C++ plug-in

Download the executable file cppsmppq.exe

. When you run the file it will extract all the

files associated with the plug-in. Make a new directory, c:\MyProject, and copy all the files into

it. If you create a different directory, you will have to modify registry file to specify the correct

location for the plug-in.

Prepare to build

an ActiveX server

.dll

1. Create a new directory that is named ″MyProject″ on your local hard drive. This example

assumes that the local drive is the C: drive.

Note: If the new directory is not c:\MyProject, you will need to change the registry file.

2. Copy all of the sample files into this directory. You can download the samples from the

Programmer’s Toolkit - iSeries Navigator Plug-ins Web page

.

3. In the Developer Studio, open the File menu and select Open Workspace.

4. In the Open Project Workspace dialog, switch to the MyProject directory and in Files of

Type: select Makefiles (*.mak).

5. Select sampext.mak and click Open.

6. Open the Tools menu and select Options...

7. In the Directories tab, make sure that the Client Access Include directory appears at the top

of your Include files search path.

8. In Show directories for:, select Library files. Make sure that the Client Access Lib directory

appears at the top of your Library files search path.

9. Click OK to save the changes, then close and reopen Developer Studio. This is the only

known way to force Developer Studio to save the search path changes to your hard disk.

Build the ActiveX

server DLL

1. In the Developer Studio, open the Build menu and select Set Default Configuration...

2. In the Default Project Configuration dialog, select samptext Win32 Debug Configuration.

3. Open the Build menu and select Rebuild All to compile and link the DLL.
Note:If the DLL does not compile and link cleanly, double-click the error messages in the

Build window to locate and fix the errors. Then open the Build menu and select sampext.dll

to restart the build.

Build the resource

library

The resource DLL that contains the translatable text strings and other locale-dependent

resources for the plug-in is included with the sample. This means that you do not have to create

this DLL on your own. Even if your plug-in supports only one language, your plug-in code

must load its text strings and locale-specific resources from this resource library.

To build the resource DLL, complete the following steps:

1. In Developer Studio, open the File menu and select Open Workspace... and select the

MyProject directory.

2. Specify Makefiles (*.mak) in Files of Type:.

3. Select sampmri.mak and click Open.

4. Open the Build menu and select Rebuild All to compile and link the DLL.

Register the

ActiveX server

.dll

The SAMPDBG.REG file in the MyProject directory contains registry keys that communicate the

location of the sample plug-in on your workstation to the iSeries Navigator. If you specified a

directory other than c:\MyProject, complete the following steps.

1. Open the SAMPDBG.REG file in the Developer Studio (or use your chosen text editor).

2. Replace all occurrences of ″c:\\MyProject\\″ with ″x:\\<dir>\\,″ where x is the drive letter

where your directory resides and <dir> is the name of the directory.

3. Save the file.

4. In Windows(R) Explorer, double-click the SAMPDBG.REG file. This will write the entries in

the registry file to the Windows registry on your machine.
Note: In Windows NT(R), you must login with administrative privileges on your workstation

to write to the Windows registry.

12 iSeries: Developing iSeries Navigator plug ins

http://www.ibm.com/servers/eserver/iseries/access/toolkit/opnav_plugins.htm
http://www.ibm.com/servers/eserver/iseries/access/toolkit/opnav_plugins.htm

Run iSeries

Navigator in the

debugger

To run iSeries Navigator and observe the sample plug-in in action, complete the following steps.

1. In Developer Studio, open the Build menu and select Debug —-> Go.

2. At the prompt, type the fully-qualified path to the iSeries Navigator executable in the iSeries

Access for Windows Install directory on your workstation. The path will be C:\PROGRAM

FILES\IBM\CLIENT ACCESS\CWBUNNAV.EXE or something similar.

3. Click OK. The main window of the iSeries Navigator will open.

4. Because you have just registered a new Navigator plug-in, a dialog in iSeries Navigator will

prompt you to scan for the new plug-in.

5. After the progress indicator finishes, click OK in the resulting dialog.

6. After the Navigator window refreshes, a new folder (3rd Party Sample Folder) appears in

the hierarchy under the iSeries server that was initially selected. You can now interact with

the plug-in in iSeries Navigator and observe its behavior in the debugger.

Setting up sample Visual Basic plug-ins

The sample Visual Basic (VB) plug-in adds a folder to the iSeries(TM) Navigator hierarchy that provides a

list of OS/400(R) libraries, and illustrates how to implement properties and actions on those library

objects.

In addition to installing the plug-in code, the sample plug-in includes a Readme.txt file, and two registry

files, one for use during development, and another for distribution with the retail version. See the

“Sample VB plug-in directory of files” on page 14 for detailed description of all the files included with

the VB plug-in.

In order to get the sample VB plug-in running on your PC, you must complete the following steps:

 Download the VB

plug-in

Download the executable file vbopnav.exe

. When you run the file it will extract all the

files associated with the plug-in. Make a new directory, c:\VBSample, and copy all the files into

it. If you create a different directory, you will have to modify registry file to specify the correct

location for the plug-in.

Create the VB

project

Open vbsample.vpb in Visual Basic. In the reference dialog, select IBM(R) iSeries Access for

Windows(R) ActiveX Object Library, and iSeries Navigator Visual Basic Plug-in Support.

Note: If either of these references do not appear in your References dialog, select Browse and

look for cwbx.dll and cwbunvbi.dll in the iSeries Access for Windows shared directory. The IBM

iSeries Access ActiveX Object Library contains OLE automation objects that the sample

application requires to make remote command calls to the iSeries server. The iSeries Navigator

Visual Basic Plug-in Support contains classes and interfaces required to create a Visual Basic

Plug-in. directory.

Build the ActiveX

server DLL

Select Make from the Visual Basic file menu to build the DLL. If it doesn’t compile and link,

locate and fix the errors, and then rebuild the DLL.

Build the resource

library

1. Open Microsoft(R) Developer Studio, open the File menu, select Open Workspace and then

select the VBSample\win32 directory.

2. In Files of Type:, specify Makefiles (*.mak)

3. Select vbsmpmri.mak and click Open.

4. Open the Build menu and select Rebuild All to compile and link the DLL.

Note: You do not have to create this DLL on your own. The sample includes a resource DLL

that contains the translatable text strings and other locale-dependent resources for the plug-in is

included with the sample. Even if your plug-in supports only one language, your plug-in code

must load its text strings and locale-specific resources from this resource library.

Register the

plug-in

Double-click the file vbsmpdbg.reg in order to register the plug-in. If you did not use the

directory c:\VBSample, edit the registry file, and replace all occurrences of ″c:\\VBSample\\″

with the fully-qualified path to the plug-in code. You must use double back slashes in the path.

Developing iSeries Navigator Plug-ins 13

http://www.ibm.com/eserver/iseries/access/toolkit/opnav_plugins.htm

Run the plug-in

in iSeries

Navigator

Start iSeries Navigator, and click on the ″+″ next to an iSeries server to expand the tree. iSeries

Navigator will detect the changes to the registry, and prompt you to scan the iSeries server in

order to verify that it is capable of supporting the new plug-in. After completing the scan,

iSeries Navigator will display the new plug-in in the tree hierarchy.

Sample VB plug-in directory of files

The following tables describe all of the files included with the sample VB plug-in.

 Visual Basic project file Description

vbsample.vbp Visual Basic 5.0 project file

 VB forms Description

authorty.frm Set authority form

delete.frm Confirm delete form

propsht.frm Property Sheet form

sysstat.frm System status form

wizard.frm Create new library wizard form

 VB Modules Description

global.bas Global declarations.

 VB Class Modules Description

actnman.cls SampleActions Manager class

dropman.cls Sample Drop Target Manager class

library.cls Library class

listman.cls Sample List Manager class

 VB Binaries Description

authorty.frx Set authority form binary

delete.frx Confirm delete form binary

propsht.frx Property Sheet form binary

sysstat.frx System status form binary

wizard.frx Create new library wizard form binary

vbsample.bin Vbsample binary

 Configuration settings Description

14 iSeries: Developing iSeries Navigator plug ins

“MRI setup file” on page 10 Install information for plug-in’s translatable resources

“Setup.ini file” on page 7 Install information for plug-in’s executables

 Registry entries Description

vbsmpdbg.reg Registry file for use during development.

vbsmprls.reg

Registry file used during installation.

 Files for constructing the

resource DLL

Description

vbsmpmri.mak Make File

vbsmpmri.rc RC file

vbsmpres.h Header file

 Images Description

compass.bmp iSeries(TM) Navigator icon

lib.ico

vbsmpflr.ico Visual Basic Sample plug-in folder in open and closed state.

vbsmplib.ico Visual Basic Sample plug-in library icon.

Setting up the sample Java plug-in

The sample Java(TM) plug-in works with message queues in QUSRSYS on a given iSeries(TM) server. The

first plug-in allows you to view, add and delete messages in your default message queue, the one with

the same name as your iSeries user ID. The second plug-in adds support for multiple message queues.

Finally, the third plug-in adds the ability to drag and drop messages between queues.

In addition to installing the plug-in code, the sample plug-in includes Java docs, a Readme.txt file, and

two registry files, one for use during development and another for distribution with the retail version.

See the “Sample Java plug-in directory of files” on page 16 for a detailed description of all files included

with the Java plug-ins.

To set up the sample Java plug-in:

 Download the sample

Java plug-ins

Download the executable file jvopnav.exe.

When you run this file, it will extract all

of the previously mentioned files. You should allow the executable to install the files in

the default directory: jvopnav\com\ibm\as400\opnav.

Developing iSeries Navigator Plug-ins 15

http://www.ibm.com/eserver/iseries/access/toolkit/opnav_plugins.htm

Identify the plug-in to

iSeries Navigator

1. Edit the file MsgQueueSampleX.reg in

jvopnav\com\ibm\as400\opnav\MsgQueueSampleX. (X=1, 2 or 3, depending on

which sample you are installing.)

2. Find the lines: ″NLS″=″c:\\jvopnav\\win32\\mri\\MessageQueuesMRI.dll″ and

″JavaPath″=″c:\\jvopnav″

3. Replace ″c:\\″ with the fully-qualified path to the jvopnav directory on your PC. You

must double all back slashes in the path.

4. Save your changes, and double click the registry file.

Run the sample Java

plug-in.

 1. Start iSeries Navigator, and click on the ″+″ next to an iSeries server to expand the

tree.

 2. iSeries Navigator will detect the changes to the registry, and prompt you to scan the

iSeries server in order to verify that it is capable of supporting the new plug-in.

 3. Click Scan Now

 4. iSeries Navigator will scan the iSeries server. When it finishes, it will display a new

folder in the hierarchy tree, Java Message Queue Sample 1, 2 or 3.

 5. Double click on the new folder

 6. The first sample plug-in will display the contents of your default message queue in

QUSRSYS on the iSeries server. The second and third samples will display a list of

message queues.

 7. Add a new message by right-clicking on the message queue folder, and selecting

New -> Message.

 8. The plug-in displays a PDML dialog allowing you to enter the message text.

 9. Delete a message by right-clicking on a message and selecting Delete. You can also

do this from the toolbar.

10. If you’re using the third sample plug-in, you can select a message, drag it to another

queue, and then drop it.

11. The plug-in will then move the message to the other queue.

Sample Java plug-in directory of files

The following tables describe all of the files included with the sample Java(TM) plug-ins. For more

information, read the plug-in’s javadoc documentation. These were installed in your

jvopnav\com\ibm\as400\opnav\MsgQueueSample1\docs directory. Start with the file

Package-com.ibm.as400.opnav.MsgQueueSample1.html.

The sample’s package name is com.ibm.as400.opnav.MsgQueueSample1. All class names are
prefixed with ″Mq″ to differentiate them from like-named classes in other packages.

 Java source code files; first

sample plug-in

Description

MqMessagesListManager.java The ListManager for lists of messages.

MqActionsManager.java The ActionsManager implementation which handles all context menus for the

plug-in.

MqMessageQueue.java A collection of iSeries(TM) server message objects on a message queue.

MqMessage.java An object representing an iSeries server message.

MqNewMessageBean.java The UI DataBean implementation for the ″New Message″ dialog.

MqDeleteMessageBean.java The UI DataBean implemetation for the ″Confirm Delete″ dialog.

16 iSeries: Developing iSeries Navigator plug ins

Java source code files; second sample

plug-in

Description

MqListManager.java The master ListManager implementation for the plug-in.

MqMessageQueuesListManager.java A slave ListManager for lists of message queues.

MqMessagesListManager.java A slave ListManager for lists of messages.

MqActionsManager.java The ActionsManager implementation which handles all context menus for

the plug-in.

MqMessageQueueList.java A collection of iSeries server message queues.

MqMessageQueue.java A collection of iSeries server message objects on a particular queue.

MqMessage.java An object representing an iSeries server message.

MqNewMessageBean.java The UI DataBean implementation for the ″New Message″ dialog.

MqDeleteMessageBean.java The UI DataBean implemetation for the ″Confirm Delete″ dialog.

 Java source code files; third sample

plug-in

Description

MqListManager.java The master ListManager implementation for the plug-in.

MqMessageQueuesListManager.java A slave ListManager for lists of message queues.

MqMessagesListManager.java A slave ListManager for lists of messages.

MqActionsManager.java The ActionsManager implementation which handles all context menus for

the plug-in.

MqDropTargetManager.java The DropTargetManager implementation which handles drag/drop for the

plug-in.

MqMessageQueueList.java A collection of iSeries server message queues.

MqMessageQueue.java A collection of iSeries server message objects on a particular queue.

MqMessage.java An object representing an iSeries server message.

MqNewMessageBean.java The UI DataBean implementation for the ″New Message″ dialog.

MqDeleteMessageBean.java The UI DataBean implemetation for the ″Confirm Delete″ dialog.

 PDML files Description

MessageQueueGUI.pdml Contains all Java UI panel definitions for the plug-in.

MessageQueueGUI.java The associated Java resource bundle (subclasses java.util.ListResourceBundle).

 Online help files Description

IDD_MSGQ_ADD.html Online help skeleton for the ″New Message″ dialog.

IDD_MSGQ_CONFIRM_DELETE.html Online help skeleton for the ″Confirm Delete″ dialog.

Developing iSeries Navigator Plug-ins 17

Serialized files Description

IDD_MSGQ_ADD.pdml.ser Serialized panel definition for the ″New Message″ dialog.

IDD_MSGQ_CONFIRM_DELETE.pdml.ser Serialized panel definition for the ″Confirm Delete″ dialog.

Note: If you make changes to MessageQueueGUI.pdml, rename these

files. Otherwise your changes will not be reflected in the panels.

 Registry entries Description

MsgQueueSample1.reg
MsgQueueSample2.reg
MsgQueueSample3.reg

Windows(R) registry entries that tell iSeries Navigator that this plug-in

exists, and identifies its Java interface implementation classes.

MsgQueueSample1install.reg
MsgQueueSample2install.reg
MsgQueueSample3install.reg

The registry file for distribution with the retail version of your plug-in.

This version of the registry file cannot be read directly by Windows. It

contains substitution variables that represent the directory path of the

iSeries Access for Windows installation directory. When the user

invokes the iSeries Access for Windows Selective Setup program to

install your plug-in from the iSeries server, Selective Setup reads this

registry file, fills in the correct directory paths, and writes the entries

to the registry on the user’s machine. The entries in this file should

therefore be kept in sync with the registry file used in development.

Plug-in programming reference

iSeries(TM) Navigator handles plug-ins in each programming language in a different way. You can use the

following topics to learn about the flow of control in iSeries Navigator for each type of plug-in, as well as

specific reference information regarding the unique interfaces for each language.

C++ Reference

v “iSeries Navigator structure and flow of control for C++ plug-ins” on page 19

v “iSeries Navigator COM interfaces for C++” on page 19

v “iSeries Navigator API listing” on page 23

v “Return codes unique to iSeries Navigator APIs” on page 26

VB Reference

v “iSeries Navigator structure and flow of control for Visual Basic plug-ins” on page 28

v “iSeries Navigator Visual Basic interfaces” on page 29

Java(TM) Reference

v “iSeries Navigator structure and flow of control for Java plug-ins” on page 29

v Java Classes and Interfaces

In addition to reference information specific to each language, each plug-in requires some customization

to Windows(R) registry files.

“Customize the plug-in registry files” on page 30
After modifying the sample plug-ins, you’ll need to make some modifications to the registry files. This

topic provides a walk-through of the registry files for each type of plug-in, and recommends some

modifications.

18 iSeries: Developing iSeries Navigator plug ins

javadoc/index.html

iSeries Navigator structure and flow of control for C++ plug-ins

The internal architecture of the iSeries(TM) Navigator product is intended to serve as an integration point

for an extensible, broad-based operations interface for the iSeries server. Each functional component of

the interface is packaged as an ActiveX server DLL. iSeries Navigator uses Microsoft’s(R) Component

Object Model (COM) technology to activate only the component implementations that currently are

needed to service a user request. This avoids the problem of having to load the entire product at start up,

thereby consuming the majority of Windows(R) resources, and impacting performance of the entire

system. Multiple servers may register their request to add menu items and dialogs to a given object type

in the Navigator hierarchy.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to

user actions. For example, when a user right-clicks on an object in the Navigator hierarchy, the Navigator

constructs a context menu for the object, and displays the menu on the screen. The Navigator obtains the

menu items by calling each plug-in that has registered its intention to supply context menu items for the

selected object type.

The functions that are implemented by a plug-in logically are grouped into ″interfaces.″ An interface is a

set of logically related methods on a class that iSeries Navigator can call to perform a specific function.

The Component Object Model supports the definition of interfaces in C++ through the declaration of an

abstract class that defines a set of pure virtual functions. Classes that call the interface are known as

implementation classes. Implementation classes subclass the abstract class definition and provide C++

code for each of the functions defined on the interface.

A given implementation class may implement as many interfaces as the developer chooses. When

creating a new project workspace for an ActiveX server DLL in the Developer Studio, the AppWizard

generates macros that facilitate interface implementation. Each interface is declared as a nested class on a

containing implementation class. The nested class has no member data and does not use any functions

other than those that are defined on its interface. Its methods typically call functions on the

implementation class to get and set state data, and to perform the actual work that is defined by the

interface specification.

iSeries Navigator COM interfaces for C++

The functions implemented by a plug-in logically are grouped into Component Object Model (COM)

interfaces. An interface is a set of logically related methods on a class that iSeries(TM) Navigator can call

to perform a specific function. A plug-in may implement one or more COM interfaces, depending on the

type of function that the developer intends to provide. For example, when a user right-clicks an object in

the tree hierarchy, iSeries Navigator constructs a context menu for the object and displays the menu on

the screen. The Navigator obtains the menu items by calling each plug-in that has registered its desire to

supply context menu items for the selected object type. The plug-ins pass their menu items to the

Navigator when it calls their implementation of the QueryContextMenu method on the IContextMenu

interface.

 Interface Method Description

IContextMenu QueryContextMenu Supplies context menu items when a

user right-clicks on an object.

GetCommandString Supplies help text for context menu

items and, based on the state of the

object, also indicates whether the

item should be enabled or grayed.

InvokeCommand Displays the appropriate dialog and

performs the requested action. It’s

called when the user clicks on a

given menu item.

Developing iSeries Navigator Plug-ins 19

IPropSheetExt AddPages Creates the property page or pages

being added by using standard

Windows(R) APIs. It then adds the

pages by calling a function that was

passed to it as a parameter.

IDropTarget DragEnter Active when the user drags an object

over the drop area.

DragLeave Active when the user drags an object

out of the drop area.

DragOver Active while the user is over the

drop area.

Drop Active when the user drops the

object.

IPersistFile Load Called to initialize the extension with

the fully qualified object name of the

selected folder.

IA4SortingHierarchyFolder IsSortingEnabled Indicates whether sorting is enabled

for a folder.

SortOnColumn Sorts the list on the specified list

view column.

IA4FilteringHierarchyFolder GetFilterDescription Returns a text description of the

current include criteria.

IA4PublicObjectHierarchyFolder GetPublicListObject Implemented by a plug-in when it

desires to make its list objects

available for use by other by other

plug-ins

IA4ListObject GetAttributes Returns a list of supported attribute

IDs and the type of data associated

with each.

GetValue Given an attribute ID, returns the

current value of the attribute.

IA4TasksManager QueryTasks Returns a list of tasks supported by

this object

TaskSelected Informs the IA4TasksManager

implementation that a particular task

has been selected by the user.

IA4 interfaces

In addition to Microsoft’s(R) COM interfaces, IBM(R) supplies the IA4HierarchyFolder and

IA4PropSheetNotify interfaces.

IA4PropSheetNotify, notifies third-party property pages when the main dialog closes. It also defines

methods that communicate information to the plug-in. For example, the method may communicatate

whether the iSeries user whose properties are being displayed already exists or is being defined, and

whether changes should be saved or discarded.

IA4HierarchyFolder allows a plug-in to add new folders to the iSeries Navigator hierarchy. The purpose

of this interface is to supply the data used to populate the contents of a new folder that your plug-in

added to the Navigator hierarchy. It also defines methods for specifying list view columns and their

headings, and for defining a custom toolbar that is associated with a folder.

20 iSeries: Developing iSeries Navigator plug ins

See the following topics for more information:

v “Description of IA4HierarchyFolder Interface”

v “IA4HierarchyFolder interface specifications listing”

v “Description of IA4PropSheetNotify interface” on page 22

v “IA4PropSheetNotify interface specifications listing” on page 23

Description of IA4HierarchyFolder Interface

The IA4HierarchyFolder interface describes a set of functions that the independent software vendor will

implement. IA4HierarchyFolder is a component object model (COM) interface that IBM(R) defined for the

purpose of allowing third parties to add new folders and objects to the iSeries(TM) Navigator hierarchy.

For a description of the Microsoft(R) COM, see the Microsoft Web site.

The iSeries Navigator program calls the methods on the IA4HierarchyFolder interface whenever it needs

to communicate with the third-party plug-in. The primary purpose of the interface is to supply the

Navigator with list data that will be used when displaying the contents of a folder defined by the

plug-in. The methods on the interface allow the Navigator to bind to a particular third-party folder and

list its contents. There are methods for returning the number of columns in the details view and their

associated headings. Additional methods exist that supply the specifications for a custom toolbar to be

associated with the folder.

The interface implementation is typically compiled and linked into an ActiveX server Dynamic Link

Library (DLL). The Navigator learns about the existence of the new DLL by means of entries in the

Windows(R) registry. These entries specify the location of the DLL on the user’s personal computer and

the ″junction point″ in the object hierarchy where the new folder or folders are to be inserted. The

Navigator then loads the DLL at the appropriate time and calls methods on the IA4HierarchyFolder

interface as needed.

The header file CWBA4HYF.H contains declarations of the interface prototype and associated data

structures and return codes.

IA4HierarchyFolder interface specifications listing

An item identifier, or data entity, identifies all folders and objects in the Windows(R) namespace. Item

identifiers are like filenames in a hierarchical file system. The Windows namespace is, in fact, a

hierarchical namespace with its root at the Desktop.

An item identifier consists of a two-byte count field that is followed by a binary data structure of variable

length (see the SHITEMID structure in the Microsoft(R) header file SHLOBJ.H). This item identifier

uniquely describes an object relative to the parent folder of the object.

The iSeries(TM) Navigator uses item identifiers that adhere to the following given structure that must be

returned by IA4HierarchyFolder::ItemAt.

<cb><item name>\x01<item type>\x02<item index>

where

 <cb> is the size in bytes of the item identifier, including the count field itself

 <item name> is the translated name of the object, suitable for displaying to the user

 <item type> is a unique language-independent string that identifies the object type. It must be at

least four characters in length.

Developing iSeries Navigator Plug-ins 21

http://www.microsoft.com

<item index> is the zero-based index that identifies the position of the object within the list of

parent folder objects.

 Link to any of the following IA4HierarchyFolder specifications:

 IA4HierarchyFolder::Activate

 IA4HierarchyFolder::BindToList

 IA4HierarchyFolder::DisplayErrorMessage

 IA4HierarchyFolder::GetAttributesOf

 IA4HierarchyFolder::GetColumnDataItem

 IA4HierarchyFolder::GetColumnInfo

 IA4HierarchyFolder::GetIconIndexOf

 IA4HierarchyFolder::GetItemCount

 IA4HierarchyFolder::GetToolBarInfo

 IA4HierarchyFolder::GetListObject

 IA4HierarchyFolder::ItemAt

 IA4HierarchyFolder::ProcessTerminating

 IA4HierarchyFolder::Refresh

Description of IA4PropSheetNotify interface

Like the IA4HierarchyFolder interface, the IA4PropSheetNotify interface describes a set of functions that

the independent software vendor will implement. IA4PropSheetNotify is a COM interface IBM(R) defined

to allow third parties to add new property pages to any property sheet that the iSeries(TM) Navigator

defines for an iSeries server user.

The iSeries Navigator program calls the methods on the IA4PropSheetNotify interface whenever it needs

to communicate with the third-party plug-in. The purpose of the interface is to provide notification when

the main Properties dialog for an iSeries user is closing. The notification indicates whether any changes

that are made by the user should be saved or discarded. The intention is that the interface be added to

the same implementation class that is used for IPropSheetExt.

22 iSeries: Developing iSeries Navigator plug ins

rzakxia4hfactivate.htm#HDRIA4HFACTIVATE
rzakxia4hfbindtolist.htm#HDRIA4HFBINDTOLIST
rzakxia4hfdisplayerrormessage.htm#HDRIA4HFDISPLAYERRORMESSAGE
rzakxia4hfgetattributes.htm#HDRIA4HFGETATTRIBUTES
rzakxia4hfgetcolumndataitem.htm#HDRIA4HFGETCOLUMNDATAITEM
rzakxia4hfgetcolumninfo.htm#HDRIA4HFGETCOLUMNINFO
rzakxia4hfgeticonindexof.htm#HDRIA4HFGETICONINDEXOF
rzakxia4hfgetitemcount.htm#HDRIA4HFGETITEMCOUNT
rzakxia4hfgettoolbarinfo.htm#HDRIA4HFGETTOOLBARINFO
rzakxia4hfgetlistobject.htm#HDRIA4HFGETLISTOBJECT
rzakxia4hfitemat.htm#HDRIA4HFITEMAT
rzakxia4hfprocessterminating.htm#HDRIA4HFPROCESSTERMINATING
rzakxia4hfrefresh.htm#HDRIA4HFREFRESH

The interface implementation is compiled and linked into the ActiveX server DLL for the plug-in. The

Navigator learns of the existence of the new DLL by means of entries in the Windows(R) registry. These

entries specify the location of the DLL on the user’s personal computer. The Navigator then loads the

DLL at the appropriate time, calling methods on the IA4PropSheetNotify interface as needed.

CWBA4HYF.H contains declarations of the interface prototype and associated data structures and return

codes.

IA4PropSheetNotify interface specifications listing

The IA4PropSheetNotify interface supplies notifications to the implementation of IShellPropSheetExt that

are needed when adding additional property pages to one of the Users and Groups property sheets.

These notifications are necessary because creating and destroying Users and Groups property sheets may

occur many times before the user clicks OK on the main Properties dialog. IA4PropSheetNotify informs

the IShellPropSheetExt implementation when changes that are made by the user should be saved.

The iSeries(TM) Navigator learns about an IA4PropSheetNotify implementation by means of the normal

registry entries that are defined for iSeries Navigator plug-ins. In addition, when a property sheet handler

for the Users and Groups component is registered, a special registry value is supported that allows the

plug-in to specify to which property sheet it desires to add pages.

Link to any of the following IA4PropSheetNotify interface specifications:

v IA4PropSheetNotify::InformUserState

v IA4PropSheetNotify::ApplyChanges

v IA4PropSheetNotify::GetErrorMessage

iSeries Navigator API listing

iSeries(TM) Navigator APIs help plug-in developers obtain and manage certain types of global

information. The following iSeries Navigator APIs are listed alphabetically, and are grouped by function:

 Function iSeries Navigator APIs

System values: This API allows the plug-in developer to

obtain the current value of an iSeries system value.

 cwbUN_GetSystemValue

System handles: These APIs allow the plug-in developer

to obtain and to release the current value of an iSeries

system object handle that contains connection properties

including the secure sockets layer (SSL) settings to be

used for the specified iSeries system.

 cwbUN_GetSystemHandle

 cwbUN_ReleaseSystemHandle

User input validation: These APIs allow the plug-in

developer to check whether the current user has

authority to a particular iSeries object. The APIs also

allow the developer to determine if the user has one or

more special authorities.

 cwbUN_CheckObjectAuthority

 cwbUN_CheckSpecialAuthority

User authority checking: This API allows the plug-in

developer to check whether certain types of

user-supplied strings are valid before transmitting them

to the iSeries server.

 cwbUN_CheckAS400Name

Developing iSeries Navigator Plug-ins 23

rzakxia4psninformuserstate.htm#HDRIA4PSNINFORMUSERSTATE
rzakxia4psnapplychanges.htm#HDRIA4PSNAPPLYCHANGES
rzakxia4psngeterrormessage.htm#HDRIA4PSNGETERRORMESSAGE
rzakxcwbungetsystemvalue.htm#HDRCWBUN_GETSYSTEMVALUE
rzakxcwbungetsystemhandle.htm#HDRCWBUN_GETSYSTEMHANDLE
rzakxcwbunreleasesystemhandle.htm#HDRCWBUN_RELEASESYSTEMHANDLE
rzakxcwbuncheckobjectauthor.htm#HDRCWBUN_CHECKOBJECTAUTHORITY
rzakxcwbuncheckspecialautho.htm#HDRCWBUN_CHECKSPECIALAUTHORITY
rzakxcwbuncheckas400name.htm#HDRCWBUN_CHECKAS400NAME

Function iSeries Navigator APIs

User profile attributes: This API allows the plug-in

developer to obtain the value of any of the user profile

attributes for the current iSeries Navigator user.

 cwbUN_GetUserAttribute

Data management: Objects that the user has selected are

identified to the third-party plug-in by two data entities,

the item identifier list, and the object name. Data

management APIs provide the plug-in developer with a

means of extracting information from these structures.

 cwbUN_ConvertPidlToString

 cwbUN_GetDisplayNameFromItemId

 cwbUN_GetDisplayNameFromName

 cwbUN_GetDisplayPathFromName

 cwbUN_GetIndexFromItemId

 cwbUN_GetIndexFromName

 cwbUN_GetIndexFromPidl

 cwbUN_GetListObject

 cwbUN_GetParentFolderNameFromName

 cwbUN_GetParentFolderPathFromName

 cwbUN_GetParentFolderPidl

 cwbUN_GetSystemNameFromName

 cwbUN_GetSystemNameFromPidl

 cwbUN_GetTypeFromItemId

 cwbUN_GetTypeFromName

 cwbUN_GetTypeFromPidl

24 iSeries: Developing iSeries Navigator plug ins

rzakxcwbungetuserattribute.htm#HDRCWBUN_GETUSERATTRIBUTE
rzakxcwbunconvertpidltostri.htm#HDRCWBUN_CONVERTPIDLTOSTRING
rzakxcwbungetdisplaynameiid.htm#HDRCWBUN_GETDISPLAYNAMEFROMITEMID
rzakxcwbungetdisplaynamenme.htm#HDRCWBUN_GETDISPLAYNAMEFROMNAME
rzakxcwbungetdisplaypathnme.htm#HDRCWBUN_GETDISPLAYPATHFROMNAME
rzakxcwbungetindexfromitemi.htm#HDRCWBUN_GETINDEXFROMITEMID
rzakxcwbungetindexfromname.htm#HDRCWBUN_GETINDEXFROMNAME
rzakxcwbungetindexfrompidl.htm#HDRCWBUN_GETINDEXFROMPIDL
rzakxcwbungetlistobject.htm#HDRCWBUN_GETLISTOBJECT
rzakxcwbungetparentfolderna.htm#HDRCWBUN_GETPARENTFOLDERNAMEFROM
rzakxcwbungetparentfolderpa.htm#HDRCWBUN_GETPARENTFOLDERPATHFROM
rzakxcwbungetparentfolderpi.htm#HDRCWBUN_GETPARENTFOLDERPIDL
rzakxcwbungetsystemnamename.htm#HDRCWBUN_GETSYSTEMNAMEFROMNAME
rzakxcwbungetsystemnamepidl.htm#HDRCWBUN_GETSYSTEMNAMEFROMPIDL
rzakxcwbungetsystemnamepidl.htm#HDRCWBUN_GETSYSTEMNAMEFROMPIDL
rzakxcwbungettypefromname.htm#HDRCWBUN_GETTYPEFROMNAME
rzakxcwbungettypefrompidl.htm#HDRCWBUN_GETTYPEFROMPIDL

Function iSeries Navigator APIs

Refresh the iSeries Navigator window: Following the

completion of an operation on behalf of the user, these

APIs enable execution of a request by the plug-in to

refresh the tree and list views or to place a message in

the Navigator status bar.

 cwbUN_RefreshAll

 cwbUN_RefreshList

 cwbUN_RefreshListItems

 cwbUN_UpdateStatusBar

ODBC connections: These APIs allow the plug-in

developer to reuse and end the handle for an ODBC

connection that already has been obtained by the

Database component of the iSeries Navigator.

 cwbUN_GetODBCConnection

 cwbUN_EndODBCConnections

Access iSeries Navigator icons: These APIs allow the

plug-in developer to access the icon image lists for

objects that appear in the Navigator object hierarchy.

 cwbUN_GetIconIndex

 cwbUN_GetSharedImageList

Application Administration: These APIs allow the

plug-in developer to programmatically determine

whether a user is denied or allowed use of an

Administrable function. An Administrable function is

any function whose use can be controlled through the

Application Administration sub component of iSeries

Navigator.

 cwbUN_GetAdminValue

 cwbUN_GetAdminValueEx

 cwbUN_GetAdminCacheState

 cwbUN_GetAdminCacheStateEx

Install: This API allows the plug-in developer to

determine if an iSeries Navigator sub component is

installed.

 cwbUN_IsSubcomponentInstalled

Developing iSeries Navigator Plug-ins 25

rzakxcwbunrefreshall.htm#HDRCWBUN_REFRESHALL
rzakxcwbunrefreshlist.htm#HDRCWBUN_REFRESHLIST
rzakxcwbunrefreshlistitems.htm#HDRCWBUN_REFRESHLISTITEMS
rzakxcwbunupdatestatusbar.htm#HDRCWBUN_UPDATESTATUSBAR
rzakxcwbungetodbcconnection.htm#HDRCWBUN_GETODBCCONNECTION
rzakxcwbunendodbcconnections.htm#HDRCWBUN_ENDODBCCONNECTIONS
rzakxcwbungeticonindex.htm#HDRCWBUN_GETICONINDEX
rzakxcwbungetsharedimagelis.htm#HDRCWBUN_GETSHAREDIMAGELIST
rzakxcwbungetadminvalue.htm#HDRCWBUN_GETADMINVALUE
rzakxcwbungetadminvalueex.htm#HDRCWBUN_GETADMINVALUEEX
rzakxcwbungetadmincachestat.htm#HDRCWBUN_GETADMINCACHESTATE
rzakxcwbungetadmincachestateex.htm#HDRCWBUN_GETADMINCACHESTATEEX
rzakxcwbunissubcomponentins.htm#HDRCWBUN_ISSUBCOMPONENTINSTALLED

Function iSeries Navigator APIs

Directory Services: These APIs provide information

about the Directory Services (LDAP) server on an iSeries

computer, and functions to connect to the server. The

connection functions enable you to connect to a server

using information (distinguished names, password, etc.)

cached by the iSeries Access for Windows(R). The

connection functions use the LDAP client shipped with

iSeries Access for Windows (LDAP.LIB and LDAP.DLL)

and therefore require that your application use that

client.

Functions that use strings are available in ANSI and

Unicode versions.

Functions that return distinguished names and other

strings for use with LDAP client APIs also are provided

in a UTF-8 version for use with LDAP version 3 servers.

cwbUN_OpenLocalLdapServer

cwbUN_FreeLocalLdapServer

cwbUN_GetLdapSvrPort

cwbUN_GetLdapSvrSuffixCount

cwbUN_GetLdapSvrSuffixName

cwbUN_OpenLdapPublishing

cwbUN_FreeLdapPublishing

cwbUN_GetLdapPublishCount

cwbUN_GetLdapPublishType

cwbUN_GetLdapPublishServer

cwbUN_GetLdapPublishPort

cwbUN_GetLdapPublishParentDn

Return codes unique to iSeries Navigator APIs

6000 CWBUN_BAD_PARAMETER

 An input parameter was not valid.

6001 CWBUN_FORMAT_NOT_VALID

 The input object name was not valid.

6002 CWBUN_WINDOW_NOTAVAIL

 View window not found.

6003 CWBUN_INTERNAL_ERROR

 Processing error occurred.

6004 CWBUN_USER_NOT_AUTHORIZED

 User does not have specified authority.

6005 CWBUN_OBJECT_NOT_FOUND

 Object not found on the iSeries.

6006 CWBUN_INVALID_ITEM_ID

 Invalid item ID parameter.

6007 CWBUN_NULL_PARM

 NULL parameter passed.

6008 CWBUN_RTN_STR_TOO_LONG

 String too long for return buffer.

6009 CWBUN_INVALID_OBJ_NAME

 Invalid object name parameter.

6010 CWBUN_INVALID_PIDL

 Invalid PIDL parameter.

6011 CWBUN_NULL_PIDL_RETURNED

 Parent folder PIDL was NULL.

6012 CWBUN_REFRESH_FAILED

26 iSeries: Developing iSeries Navigator plug ins

rzakxcwbunopenlocalldapserv.htm#HDRCWBUN_OPENLOCALLDAPSERVER
rzakxcwbunfreelocalldapserv.htm#HDRCWBUN_FREELOCALLDAPSERVER
rzakxcwbungetldapsvrport.htm#HDRCWBUN_GETLDAPSVRPORT
rzakxcwbungetldapsvrsuffixc.htm#HDRCWBUN_GETLDAPSVRSUFFIXCOUNT
rzakxcwbungetldapsvrsuffixn.htm#HDRCWBUN_GETLDAPSVRSUFFIXNAME
rzakxcwbunopenldappublishin.htm#HDRCWBUN_OPENLDAPPUBLISHING
rzakxcwbunfreeldappublishin.htm#HDRCWBUN_FREELDAPPUBLISHING
rzakxcwbungetldappublishcou.htm#HDRCWBUN_GETLDAPPUBLISHCOUNT
rzakxcwbungetldappublishtyp.htm#HDRCWBUN_GETLDAPPUBLISHTYPE
rzakxcwbungetldappublishser.htm#HDRCWBUN_GETLDAPPUBLISHSERVER
rzakxcwbungetldappublishpor.htm#HDRCWBUN_GETLDAPPUBLISHPORT
rzakxcwbungetldappublishpar.htm#HDRCWBUN_GETLDAPPUBLISHPARENTDN

Refresh list failed.

6012 CWBUN_UPDATE_FAILED

 Update toolbar failed.

6013 CWBUN_INVALID_NAME_TYPE

 Invalid iSeries name type.

6014 CWBUN_INVALID_AUTH_TYPE

 Invalid authority type.

6016 CWBUN_HOST_COMM_ERROR

 iSeries communications error.

6017 CWBUN_INVALID_NAME_PARM

 Invalid name parameter.

6018 CWBUN_NULL_DISPLAY_STRING

 Null display string returned.

6019 CWBUN_GENERAL_FAILURE

 General iSeries operation failure.

6020 CWBUN_INVALID_SYSVAL_ID

 Invalid system value ID.

6021 CWBUN_INVALID_LIST_OBJECT

 Can not get list object from name.

6022 CWBUN_INVALID_IFS_PATH

 Invalid IFS path specified.

6023 CWBUN_LANG_NOT_FOUND

 Extension does not support any of the languages installed.

6024 CWBUN_INVALID_USER_ATTR_ID

 Invalid user attribute ID.

6025 CWBUN_GET_USER_ATTR_FAILED

 Unable to retrieve user attribute.

6026 CWBUN_INVALID_FLAG_VALUE

 Invalid flag parameter value set.

6027 CWBUN_CANT_GET_IMAGELIST

 Cannot get icon image list.

The following return codes are for name check APIs.

6050 CWBUN_NAME_TOO_LONG

 Name is too long.

6051 CWBUN_NAME_NULLSTRING

 String in empty - no chars at all.

6054 CWBUN_NAME_INVALIDCHAR

 Invalid character.

6055 CWBUN_NAME_STRINGTOOLONG

 String too long.

6056 CWBUN_NAME_MISSINGENDQUOTE

 End quote missing.

6057 CWBUN_NAME_INVALIDQUOTECHAR

 Char invalid for quote string.

6058 CWBUN_NAME_ONLYBLANKS

 A string of only blanks found.

6059 CWBUN_NAME_STRINGTOOSHORT

 String is too short.

6060 CWBUN_NAME_TOOLONGFORIBM

 String OK, too long for IBM(R) cmd.

6011 CWBUN_NAME_INVALIDFIRSTCHAR

 The first char is invalid.

6020 CWBUN_NAME_CHECK_LAST

 Reserved range.

The following return codes are for LDAP-related APIs.

6101 CWBUN_LDAP_NOT_AVAIL

 LDAP is not installed or configured.

6102 CWBUN_LDAP_BIND_FAILED

 LDAP bind failed.

The following return codes are for check iSeries(TM) name APIs.

1001 CWBUN_NULLSTRING

 String is empty.

Developing iSeries Navigator Plug-ins 27

1004 CWBUN_INVALIDCHAR

 Invalid character.

1005 CWBUN_STRINGTOOLONG

 String is too long.

1006 CWBUN_MISSINGENDQUOTE

 End quote for quoted string missing.

1007 CWBUN_INVALIDQUOTECHAR

 Character invalid for quoted string.

1008 CWBUN_ONLYBLANKS

 String contains only blanks.

1009 CWBUN_STRINGTOOSHORT

 String is less than the defined minimum.

1011 CWBUN_TOOLONGFORIBM

 String is OK, but too long for IBM commands.

1012 CWBUN_INVALIDFIRSTCHAR

 First character is invalid.

1999 CWBUN_GENERALFAILURE

 Unspecified error.

iSeries Navigator structure and flow of control for Visual Basic

plug-ins

For Visual Basic plug-ins, iSeries(TM) Navigator provides a built-in ActiveX server that manages the

communication between Navigator and the plug-in’s implementation. Visual Basic programmers who are

developing iSeries Navigator plug-ins then use the facilities that are provided by Microsoft(R)’s Visual

Basic 5.0 to create their plug-in classes, and to package them in an ActiveX server DLL.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to

user actions. For example, when a user right-clicks on an object in the Navigator hierarchy, Navigator

constructs a context menu for the object and displays the menu on the screen. Navigator obtains the

menu items by calling each plug-in that has registered its intent to supply context menu items for the

selected object type.

The functions that are implemented by a plug-in are logically grouped into interfaces. An interface is a

set of logically related methods on a class that iSeries Navigator can call to perform a specific function.

For Visual Basic plug-ins, three interfaces are defined:

v “iSeries Navigator ListManager interface class” on page 29

v “iSeries Navigator ActionsManager interface class” on page 29

v “iSeries Navigator DropTargetManager interface class” on page 29

iSeries Navigator data for Visual Basic plug-ins

When the Navigator calls a function implemented by a plug-in, the request typically involves an object or

objects the user selected in the main Navigator window. The plug-in must be able to determine which

objects have been selected. The plug-in receives this information as a list of fully-qualified object names.

For Visual Basic plug-ins, an ObjectName class is defined that provides information about the selected

objects. Plug-ins that add folders to the object hierarchy must return items in the folder to iSeries

Navigator in the form of ″item identifiers.″ For Visual Basic plug-ins, an ItemIdentifier class is defined

that is used by the plug-in to return the requested information.

iSeries Navigator services for Visual Basic plug-ins

An iSeries Navigator plug-in sometimes will need to affect the behavior of the main Navigator window.

For example, following completion of a user operation, it may be necessary to refresh the Navigator list

view or to insert text into the Navigator’s status area. A utility class called UIServices is supplied in the

Visual Basic environment that provides the required services. A Visual Basic plug-in also can use the C++

28 iSeries: Developing iSeries Navigator plug ins

APIs in the cwbun.h header file to achieve similar results. For detailed descriptions of this class and its

methods, see the online help that is provided with the iSeries Navigator Visual Basic Plug-in Support

DLL (cwbunvbi.dll and cwbunvbi.hlp).

iSeries Navigator Visual Basic interfaces

A Visual Basic plug-in must implement one or more iSeries(TM) Navigator interface classes, depending on

the type of function that the developer intends to provide to the iSeries Navigator.

The Programmer’s Toolkit contains a link to the Visual Basic interface definition help file.

There are three iSeries Navigator interface classes:

v “iSeries Navigator ListManager interface class”

v “iSeries Navigator ActionsManager interface class”

v “iSeries Navigator DropTargetManager interface class”

Your application does not have to implement all three interface classes.

iSeries Navigator ListManager interface class

The ListManager interface class is used for data serving in iSeries(TM) Navigator. For example, when a

list view needs to be created and filled with objects, iSeries Navigator will call methods in the

ListManager class to do this. The Visual Basic Sample plug-in provides an example of this class in the file

listman.cls. You must have a ListManager class if your plug-in needs to populate iSeries Navigator

component lists.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries

Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

iSeries Navigator ActionsManager interface class

The ActionsManager interface class is used to build context menus, and to implement commands of the

context menu actions. For example, when a user performs a right mouse-click on a Visual Basic list object

in iSeries(TM) Navigator, the queryActions method in the ActionsManager interface class will be called to

return the context menu item strings. The Visual Basic Sample plug-in provides an example of this class

in the file actnman.cls. You must define an ActionsManager interface class for each unique object type

that your plug-in supports. You can specify the same ActionsManager interface class for different object

types, but your code logic must handle being called with multiple types of objects.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries

Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp files).

iSeries Navigator DropTargetManager interface class

The DropTargetManager interface class is used to handle drag-and-drop operations in iSeries(TM)

Navigator. When a user selects a Visual Basic list object, and performs mouse drag-and-drop operations

on it, methods in this class will be called to perform the drag-and-drop operations.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries

Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

iSeries Navigator structure and flow of control for Java plug-ins

For Java plug-ins, iSeries(TM) Navigator provides a built-in ActiveX server that manages the

communication between the Navigator and the plug-in’s Java classes. The server component uses the Java

Native Interface (JNI) API to create the plug-in’s objects and to call their methods. Thus, Java

programmers who are developing iSeries Navigator plug-ins do not need to be concerned with the details

of ActiveX server implementation.

Developing iSeries Navigator Plug-ins 29

When a user is interacting with iSeries Navigator Java plug-ins, calls will be generated to the different

registered Java interface classes for the implementation of the specific request.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to

user actions. For example, when a user right-clicks on an object in the Navigator hierarchy, the Navigator

constructs a context menu for the object, and displays the menu on the screen. The Navigator obtains the

menu items by calling each plug-in that has registered its intent to supply context menu items for the

selected object type.

The functions that are implemented by a plug-in logically are grouped into ″interfaces.″ An interface is a

set of logically related methods on a class that iSeries Navigator can call to perform a specific function.

For Java plug-ins, the following three Java interfaces are defined:

v ListManager

v ActionsManager

v DropTargetManager

Product architecture for iSeries Navigator plug-ins
The internal architecture of the iSeries Navigator product reflects that it is intended to serve as an

integration point for an extensible, broad-based operations interface for the iSeries server. Each

functional component of the interface is packaged as an ActiveX server. The Navigator learns about

the existence of a particular server component by means of entries in the Windows(R) registry.

Multiple servers may register their request to add menu items and dialogs to a given object type in

the Navigator hierarchy.
Note: For third-party Java plug-ins to be available to iSeries Navigator users, iSeries Access for

Windows users must have Version 4 Release 4 Modification Level 0 of iSeries Access for Windows

installed on their personal computers.

iSeries Navigator data for Java plug-ins

 When the Navigator calls a function implemented by a plug-in, the request typically involves an object or

objects the user selected in the main Navigator window. The plug-in must be able to determine which

objects have been selected. The plug-in receives this information as a list of fully-qualified object names.

For Java plug-ins, an ObjectName class is defined that provides information about the selected objects.

Plug-ins that add folders to the object hierarchy must return items in the folder to iSeries Navigator in

the form of ″item identifiers.″ For Java plug-ins, an ItemIdentifier class is defined that is used by the

plug-in to return the requested information.

An iSeries Navigator plug-in sometimes will need to affect the behavior of the main Navigator window.

For example, following completion of a user operation, it may be necessary to refresh the Navigator list

view or to insert text into the Navigator’s status area. Utility classes are supplied in the package

com.ibm.as400.opnav that provide the required services.

Customize the plug-in registry files

Registry files identify plug-ins to iSeries(TM) Navigator, describe their functions, and specify any

prerequisites for using the plug-in. The sample plug-ins include two registry files: a windows-readable

copy for use during development, and a copy for distribution on the iSeries server. You’ll need to make

some modifications to these registry files after developing your plug-in. To help you make those changes,

this topic provides an overview of the registry files, and detailed descriptions of the required sections of

each registry file.

iSeries navigator uses the registry files to learn about the plug-ins existence, requirements and functions.

In order to provide that information every plug-in must specify at least the following information

v A ″primary″ registry key that that provides global information about the plug-in. This section includes

the Programmatic Identifier (ProgID) which specifies the vendor and component name for your

30 iSeries: Developing iSeries Navigator plug ins

plug-in, and will also name the folder in which your plug-in resides on the iSeries server. The ProgID

must follow the form <vendor>.<component>, i.e. IBM(R).Sample.

v Registry keys that identify the object types in the iSeries Navigator hierarchy for which a plug-in

intends to supply additional function.

v A separate registry key for the root of each sub tree of objects that a plug-in adds to the object

hierarchy. This key contains information about the root folder of the sub tree.

Descriptions of the required sections of the registry files, and the recommended changes:

v “Customize the C++ registry values”

v “Customize the VB plug-in registry values” on page 37

v “Sample Java registry file” on page 43

Special considerations for the registry files

v “Property pages for a property sheet handler” on page 48

v “Example: Constructing Visual Basic property pages for a property sheet handler” on page 50

v “Secure Sockets Layer (SSL) registry entry” on page 52

Customize the C++ registry values

The sample plug-includes two registry files: SAMDBG.REG, a windows-readable registry file for use

during development and SAMPRLS.REG, a registry file for distribution on the iSeries(TM) server. The

following table describes the sections in these registry files, and recommends changes for use when

developing your own plug-in.

Primary registry key

 ; ---

; Define the primary registry key for the plugin

; NOTE: NLS and ServerEntryPoint DLL names must

; not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample]

"Type"="PLUGIN"

"NLS"="sampmri.dll"

"NameID"=dword:00000080

"DescriptionID"=dword:00000081

"MinimumIMPIRelease"="NONE"

"MinimumRISCRelease"="030701"

"ProductID"="NONE"

"ServerEntryPoint"="sampext.dll"

See the topic for a description of each of the fields and the recommended values.

Data Server Implementation

 --

; This section will register an IA4HierarchyFolder implementation for each new

; folder added to the iSeries Navigator hierarchy.

[HKEY_CLASSES_ROOT\CLSID\{D09970E1-9073-11d0-82BD-08005AA74F5C}]

 @="AS/400 Data Server - Sample Data"

[HKEY_CLASSES_ROOT\CLSID\{D09970E1-9073-11d0-82BD-08005AA74F5C}\InprocServer32]

 @="%CLIENTACCESS%\Plugins\IBM.Sample\sampext.dll"

 "ThreadingModel"="Apartment"

Developing iSeries Navigator Plug-ins 31

If your plug-in will add more than one new folder to the hierarchy, you must duplicate this section of the

registry file for each additional folder, making sure to generate a separate GUID for each folder. If your

plug-in doesn’t add any folders, you can remove this section.

 1. Change the name of the DLL to match the name of the DLL that is generated by your new project

workspace.

 2. Generate and copy a new GUID (See the global changes section at the bottom of this page)

 3. Replace both occurrences of the CLSID in this section of the registry with the new GUID string you

just generated.

 4. Search for the string ″IMPLEMENT_OLECREATE″ in your version of the file SAMPDATA.CPP

 5. Paste the new GUID over the existing CLSID in the comment line, then change the CLSID in the

IMPLEMENT_OLECREATE macro call to match the hex values in your new GUID. Replace the

word ″Sample″ with the name of your new folder.

 6. Create two new source files for each new GUID, using a renamed copy of SAMPDATA.H and

SAMPDATA.CPP as a base.

 7.

 Note: The header file (.H) contains the class declaration for the new implementation class. The implementation file

(.CPP) contains the code that obtains the data for the new folder.

 8. Replace all occurrences of the class name ″CSampleData″ in the two source files with a class name

that is meaningful in the context of your plug-in.

 9. To add the new implementation files to the project workspace, open the Insert menu and select Files

Into Project....

10. Because you are duplicating SAMPDATA.CPP in this way, all your new folders will initially contain

library objects.

Shell plug-in implementation

 ;--

; This section will register the shell plug-in implementation class.

; A shell plug-in adds context menu items and/or property pages

; for new or existing objects in the hierarchy.

[HKEY_CLASSES_ROOT\CLSID\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

 @="AS/400 Shell plug-ins - Sample"

[HKEY_CLASSES_ROOT\CLSID\{3D7907A1-9080-11d0-82BD-08005AA74F5C}\InprocServer32]

 @="%CLIENTACCESS%\Plugins\IBM.Sample\sampext.dll"

 "ThreadingModel"="Apartment"

;--

; Approve shell plug-in (required under Windows NT(R))

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Shell plug-ins\Approved]

 "{3D7907A1-9080-11d0-82BD-08005AA74F5C}"="AS/400 Shell plug-ins - Sample"

This section registers the shell plug-in implementation class. Every c++ plug-in must use this section.

1. Change the DLL name to match the name of the DLL that was generated by your new project

workspace.

2. Generate and copy a new GUID (see the global changes section at the bottom of this page).

3. Replace all occurrences of the CLSID in the entries that are shown in the example above with the new

GUID you just generated.

4. Search for the string ″IMPLEMENT_OLECREATE″ in your version of the file EXTINTFC.CPP

5. Paste the new GUID over the existing CLSID in the comment line, then change the CLSID in the

IMPLEMENT_OLECREATE macro call to match the hex values in your new GUID.

32 iSeries: Developing iSeries Navigator plug ins

Shell plug-in implementation for objects

 ;--

; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*

\ContextMenuHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

;--

; Register a property sheet handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\shellex\Sample*

\PropertySheetHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

;--

; Register the Auto Refresh property sheet handler for the new folder and its objects

; (this will allow your folder to take advantage of the iSeries Navigator

; Auto Refresh function)

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*

\PropertySheetHandlers\{5E44E520-2F69-11d1-9318-0004AC946C18}]

;--

; Register drag and drop context menu handlers

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*

\DragDropHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\File Systems*

\DragDropHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

;--

; Register Drop Handler to accept drops of objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*\DropHandler]

 @="{3D7907A1-9080-11d0-82BD-08005AA74F5C}"

;--

; Register that this plug-in supports Secure Socket Layer (SSL) Connection

; Note: "Support Level"=dword:00000001 says the plugin supports SSL

; Note: "Support Level"=dword:00000000 says the plugin does not support SSL

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL]

"Support Level"=dword:00000001

The final section of the registry specifies which objects in the Navigator hierarchy are affected by

implementation of the plug-in.

1. Replace the CLSID in this section with the new GUIDs.

2. If your plug-in will not add additional property pages to a property sheet for a folder or object, then

remove the registry entry for the property sheet handler.

3. If your plug-in will not be a drop handler for objects, remove the drag and drop context menu

handler and drop handler registry entries.

4. Edit the subkeys \Sample*\. For more information see, “Shell plug-ins” on page 36.

5. Edit or remove the code in your version of EXTINTFC.CPP, that checks for the object types defined by

the sample.

You should see the folders, context menu items, property pages, and drop actions from the sample,

depending on how much function from the sample you decided to retain

Developing iSeries Navigator Plug-ins 33

Note: The code file based on the sample file EXTINTFC.CPP contains the code that will be called for context

menus, property pages, and drop actions. The sample code contains checks for the object types that the

sample defines. You must edit this file and either remove these tests or change them to check for the object

types for which you wish to provide new function.

Global changes

You have to specify a unique ProgID and GUIDs for use throughout the plug-in registry file.

 Define a unique programmatic identifier, or ProgID, for your plug-in:

The ProgID should match the <vendor>.<component> text string, where vendor identifies the name of

the vendor who developed the plug-in, and component describes the function being provided. In the

sample plug-in, the string ″IBM.Sample″ identifies IBM(R) as the vendor, and ″Sample″ as the description

of the function that is provided by the plug-in. This will be used throughout the registry file, and will

name the directory where your plug-in will reside on both the iSeries server and the workstation. Replace

every occurrence of ″IBM.Sample″ in the registry file with your ProgID.

Generate new GUIDs, and replace the CLSID values in the registry file:

For your iSeries Navigator C++ plug-in to work properly, you must replace specific CLSIDs in your

new registry file with GUIDs that you generate.
The Component Object Model from Microsoft uses 16-byte hex integers to uniquely identify ActiveX

implementation classes and interfaces. These integers are known as GUIDs (Globally Unique

Identifiers). GUIDs that identify implementation classes are called CLSIDs. (pronounced ″class IDs″)

iSeries Navigator uses the Windows(R) ActiveX runtime support to load a plug-in’s components, and to

obtain a pointer to an instance of the plug-in’s implementation of a particular interface. A CLSID in

the registry uniquely identifies a specific implementation class that resides in a specific ActiveX server

DLL. The first stage of this mapping, from the CLSID to the name and location of the server DLL, is

accomplished by means of a registry entry. Therefore, an iSeries Navigator plug-in must register a

CLSID for each implementation class that it provides.

 Follow these steps to generate your GUIDs:

1. From the Windows taskbar, select Start and then Run.

2. Type GUIDGEN and click OK.

3. Make sure that Registry Format is selected

4. To generate a new GUID value, select New GUID.

5. To copy the new GUID value to the clipboard, select Copy.

 Example: Primary registry key: The primary registry key defines a set of fields that specify global

information for the plug-in. This information is required.

;--

; Define the primary registry key for the plugin

; NOTE: NLS and ServerEntryPoint DLL names must not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample]

"Type"="PLUGIN"

"NLS"="sampmri.dll"

"NameID"=dword:00000080

"DescriptionID"=dword:00000081

"MinimumIMPIRelease"="NONE"

"MinimumRISCRelease"="030701"

"ProductID"="NONE"

"ServerEntryPoint"="sampext.dll"

34 iSeries: Developing iSeries Navigator plug ins

Primary Registry key field Field Description

Type If the plug-in adds new folders to the iSeries(TM)

Navigator hierarchy, the value of this field should be

PLUGIN. Otherwise, it should be EXT.

NLS Identifies the name of the resource DLL that contains the

locale-dependent resources for the plug-in. In the

development version of the registry file, this may be a

fully-qualified pathname.

NameID A double word containing the resource identifier of the

text string in the resource DLL which will be used to

identify the plug-in in the iSeries Navigator user

interface.

DescriptionID A double word that contains the resource identifier of the

text string in the resource DLL. This resource DLL is

used to describe the function of the plug-in in the iSeries

Navigator user interface.

MinimumIMPIRelease A 6-character string that identifies the minimum release

of OS/400(R) that runs on the IMPI hardware that the

plug-in requires. The string should be of the form

vvrrmm, where vv is the OS/400 Version, rr is the

Release, and mm is the Modification Level. For example,

if the plug-in requires Version 3 Release 2 Modification

Level 0, the value of this field should be ″030200.″

If the plug-in does not support any OS/400 release that

runs on IMPI hardware (releases prior to Version 3

Release 6), the value of this field should be ″NONE.″ If

the plug-in can support any release that runs on IMPI

hardware, the value of this field should be ″ANY.″

MinimumRISCRelease A 6-character string that identifies the minimum release

of OS/400 that runs on RISC hardware that the plug-in

requires. The string should be of the form vvrrmm,

where vv is the OS/400 Version, rr is the Release, and

mm is the Modification Level. For example, if the plug-in

requires Version 3 Release 7 Modification Level 1, the

value of this field should be ″030701.″

If the plug-in does not support any OS/400 release that

runs on RISC hardware (Version 3 Release 6 and above),

the value of this field should be ″NONE.″ If the plug-in

can support any release that runs on RISC hardware, the

value of this field should be ″ANY.″

ProductID A 7-character string that specifies the product ID of a

prerequisite iSeries server licensed program that is

required by the plug-in. If the plug-in does not require

that a particular licensed program be installed on the

iSeries server, the value of this field should be ″NONE.″

Multiple comma-separated product IDs may be specified

if multiple IDs exist for the same product.

Developing iSeries Navigator Plug-ins 35

ServerEntryPoint The name of the code DLL that implements the server

entry point. This entry point is called by the iSeries

Navigator when it needs to determine whether the

plug-in is supported on a particular iSeries server. If the

plug-in does not implement the entry point, the value of

this field should be ″NONE.″ In the development version

of the registry file, this may be a fully-qualified

pathname.

JavaPath The classpath string that identifies the location of your

plug-in’s Java(TM) classes. During development of your

plug-in, this field might contain the directory paths for

the directories where your class files reside. In the

production version of the registry file, it should identify

your JAR file names relative to the iSeries Access for

Windows(R) install path, each preceded by the iSeries

Access for Windows substitution variable that represents

the install path.

JavaMRI The base names of the JAR files that contain

locale-dependent resources for the plug-in. iSeries

Navigator will search for each JAR file after first

suffixing the name with the appropriate Java language

and country identifiers. If no MRI JAR files exist for a

given locale, iSeries Navigator will expect the MRI for

the base locale (usually US English) to reside in the code

JAR files.

Shell plug-ins: These registry keys map a particular node or set of nodes in the hierarchy to the type of

function supplied by the plug-in, and to the CLSID of the implementation class which implements the

function.

Remember that any number of shell plug-ins may register their intent to add function to a given object

type in the Navigator hierarchy. The plug-in should never assume that it is the only server component

which is providing function for a given object type. This applies not only to existing object types, but also

to any new objects that a plug-in may choose to define. If your plug-in is widely used, there is nothing to

prevent another vendor from extending object types that are defined by your plug-in.

Object type identifiers

A pair of object type identifiers, subkeys \Sample*\, are always expected at this level in the subkey

hierarchy.

The first identifier in the pair specifies the root folder for a Navigator component. For plug-ins that add

new folders, this identifier should always match the registry key name for a root folder specified the

previous section. For plug-ins which add behaviors to existing object types, this subkey should generally

be the object type of the first-level folder under an iSeries(TM) server container object. These type strings

are defined under HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry.

The second identifier in the pair identifies the specific object type that the plug-in wants to affect. If * is

specified, the plug-in will be called the for the folder type identified in the parent subkey, plus all folders

and objects which appear in the hierarchy under that folder. Otherwise, a specific type identifier must be

specified, and the plug-in will then only be called for that object type.

Checking for object types

When performing checks for existing object types, you should use the 3-character type identifiers that are

defined under the key HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry. When

36 iSeries: Developing iSeries Navigator plug ins

performing checks for new object types that are defined by your plug-in, use a registry key. Use the

registry key that identifies the folder that you specified as your junction point, or whatever type you will

return to the Navigator when serving data for a folder that is defined by your plug-in.

Customize the VB plug-in registry values

The sample plug-includes two registry files: VBSMPDBG.REG, a windows-readbale registry file for use

during development and VBSMPRLS.REG, a registry file for distribution on the iSeries(TM) server. The

following table describes the sections in this registry file, and recommends changes for use when

developing your own plug-in.

Primary registry key

The primary registry key defines a set of fields which specify global information for the plug-in. This

information is required.

 Note: The subkey name must match the ProgID for your plug-in.

See for a description of each field.

 [HKEY_CLASSES_ROOT\IBM.AS400.Network

\3RD PARTY EXTENSIONS\IBM.VBSample]

"Type"="Plugin"

"NLS"="vbsmpmri.dll"

"NameID"=dword:00000080

"DescriptionID"=dword:00000081

"MinimumIMPIRelease"="NONE"

"MinimumRISCRelease"="040200"

"ProductID"="NONE"

"ServerEntryPoint"="vbsample.dll"

Recomended changes:

1. Change the name ″vbsample.dll″ in the ServerEntryPoint key to match the name of the plug-in

ActiveX server DLL.

2. Change the name ″vbsmpmri.dll″ in the NLS key to match the name of the C++ MRI resource DLL

for your plug-in. Each Visual Basic plug-in must have a unique C++ MRI DLL name.

 Note: Do not include the path in either of these changes.

Registering a new folder

This section will register a Visual Basic Plug-in ListManager class implementation for each new folder

added to the iSeries Navigator hierarchy. If your plug-in does not add any new folders to the iSeries

Navigator hierarchy, delete this section and proceed to the next task.

The Visual Basic ListManager class is the main interface to serve data to your plug-in folder.

Developing iSeries Navigator Plug-ins 37

The sample places the Sample Visual Basic Folder into the root level of an iSeries server system name in

the iSeries Navigator hierarchy. If you want your folder to appear at some other point in the hierarchy,

you must change the ″Parent″ key value. See “Parent field values” on page 41 for a listing of possible

values.

See Example: “Example: New folder registry key” on page 42 for a description of each field, and the

possible values.

 [HKEY_CLASSES_ROOT\IBM.AS400.Network\

3RD PARTY EXTENSIONS\IBM.VBSample\

folders\SampleVBFolder]

"Parent"="AS4"

"Attributes"=hex:00,01,00,20

"CLSID"="{040606B1-1C19-11d2-AA12-08005AD17735}"

"VBClass"="vbsample.SampleListManager"

"VBInterface"="{0FC5EC72-8E00-11D2-AA9A-08005AD17735}"

"NameID"=dword:00000082

"DescriptionID"=dword:00000083

"DefaultIconIndex"=dword:00000001

"OpenIconIndex"=dword:00000001

Recomended changes:

1. Change all occurrences of the name ″SampleVBFolder″ in the registry file to a unique name that will

identify your folder object. The name that is specified in the registry file must match the object name

that is specified in your ListManager and ActionsManager Visual Basic classes. For the sample plug-in

these Visual Basic source files are: listman.cls and actnman.cls.

2. Change the name ″vbsample.SampleListManager″ in the VBClass key to match the program identifier

name of your ListManager class. For example, if your ActiveX Server DLL is named foo.dll, and your

ListManager implementation class is MyListManager, then the program identifier is

″foo.MyListManager″. This name is case-sensitive.

3. Change the value of the ″VBInterface″ key to the ListManager implementation class interface ID.

Registering VB plug-in objects

The final section of the registry specifies which objects in the Navigator hierarchy are affected by

implementation of the Visual Basic plug-in.

On many of the ActionsManager, ListManager and DropTargetManager class methods, you will be passed

in items or objects. To determine which folder object is being referenced, use the object type string that is

defined in the Windows(R) registry.

Property sheets still can be added to your plug-in by using a context menu item. You cannot use a

registry key for a property sheet that is the mechanism that is used for a C++ plug-in. Property sheet

handlers including the Auto Refresh property sheet handler are not supported for Visual Basic plug-ins.

38 iSeries: Developing iSeries Navigator plug ins

;--

; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\

IBM.VBSample\shellex\SampleVBFolder*\

ContextMenuHandlers\{040606B2-1C19-11d2-AA12-08005AD17735}]

"VBClass"="vbsample.SampleActionsManager"

"VBInterface"="{0FC5EC7A-8E00-11D2-AA9A-08005AD17735}"

;---

; Register drag and drop context menu handlers

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\

IBM.VBSample\shellex\SampleVBFolder*\

DragDropHandlers\{040606B2-1C19-11d2-AA12-08005AD17735}]

"VBClass"="vbsample.SampleActionsManager"

"VBInterface"="{0FC5EC7A-8E00-11D2-AA9A-08005AD17735}"

;--

; Register Drop Handler to accept drops of objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.VBSample\

shellex\SampleVBFolder*\

DropHandler]

@="{040606B2-1C19-11d2-AA12-08005AD17735}"

"VBClass"="vbsample.SampleDropTargetManager"

"VBInterface"="{0FC5EC6E-8E00-11D2-AA9A-08005AD17735}"

Recomended changes:

1. The CLSID in the entries above should always have the following: ″{040606B2-1C19-11d2-AA12-
08005AD17735}″

2. The ″VBClass″ key contains the program identifier (ProgID) of the Visual Basic implementation class.

3. The ″VBInterface″ key contains the Visual Basic implementation class’ interface ID.

4. If your plug-in will not be a drop handler for objects, remove the drag and drop context menu

handler and drop handler registry entries.

5. Rename the subkeys \SampleVBFolder*\ and use a unique string to identify your folder object. This

name is the object type that will be used in your Visual Basic source to identify when actions are

taken on this folder in iSeries Navigator.

6. In the file that you created that was based on the ActionsManager interface, edit the code that checks

for the object types that are defined by the sample to reflect the name of your new folder object. The

sample’s ActionsManager interface is located in actnman.cls.

Global changes:

Define a unique programmatic identifier, or ProgID for your plug-in. The ProgID should match the

<vendor>.<component> text string, where vendor identifies the name of the vendor who developed the

plug-in, and component describes the function being provided. In the sample plug-in, the string

″IBM.Sample″ identifies IBM(R) as the vendor, and ″Sample″ as the description of the function that is

provided by the plug-in. This will be used throughout the registry file, and will name the directory where

your plug-in will reside on both the iSeries server and the workstation.

Replace all instances of ″IBM.VBSample″ with your new [vender].ProgID.

Developing iSeries Navigator Plug-ins 39

Note: iSeries Navigator provides built-in ActiveX server DLLs that manage plug-ins written in Java(TM) and in

Visual Basic. Therefore, all Java and Visual Basic plug-ins register their own respective CLSID. The registry

files that are provided with the programming samples already contain these predefined CLSIDs.

Example: Primary registry key: The primary registry key defines a set of fields that specify global

information for the plug-in. This information is required.

;--

; Define the primary registry key for the plugin

; NOTE: NLS and ServerEntryPoint DLL names must not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample]

"Type"="PLUGIN"

"NLS"="sampmri.dll"

"NameID"=dword:00000080

"DescriptionID"=dword:00000081

"MinimumIMPIRelease"="NONE"

"MinimumRISCRelease"="030701"

"ProductID"="NONE"

"ServerEntryPoint"="sampext.dll"

 Primary Registry key field Field Description

Type If the plug-in adds new folders to the iSeries(TM)

Navigator hierarchy, the value of this field should be

PLUGIN. Otherwise, it should be EXT.

NLS Identifies the name of the resource DLL that contains the

locale-dependent resources for the plug-in. In the

development version of the registry file, this may be a

fully-qualified pathname.

NameID A double word containing the resource identifier of the

text string in the resource DLL which will be used to

identify the plug-in in the iSeries Navigator user

interface.

DescriptionID A double word that contains the resource identifier of the

text string in the resource DLL. This resource DLL is

used to describe the function of the plug-in in the iSeries

Navigator user interface.

MinimumIMPIRelease A 6-character string that identifies the minimum release

of OS/400(R) that runs on the IMPI hardware that the

plug-in requires. The string should be of the form

vvrrmm, where vv is the OS/400 Version, rr is the

Release, and mm is the Modification Level. For example,

if the plug-in requires Version 3 Release 2 Modification

Level 0, the value of this field should be ″030200.″

If the plug-in does not support any OS/400 release that

runs on IMPI hardware (releases prior to Version 3

Release 6), the value of this field should be ″NONE.″ If

the plug-in can support any release that runs on IMPI

hardware, the value of this field should be ″ANY.″

40 iSeries: Developing iSeries Navigator plug ins

MinimumRISCRelease A 6-character string that identifies the minimum release

of OS/400 that runs on RISC hardware that the plug-in

requires. The string should be of the form vvrrmm,

where vv is the OS/400 Version, rr is the Release, and

mm is the Modification Level. For example, if the plug-in

requires Version 3 Release 7 Modification Level 1, the

value of this field should be ″030701.″

If the plug-in does not support any OS/400 release that

runs on RISC hardware (Version 3 Release 6 and above),

the value of this field should be ″NONE.″ If the plug-in

can support any release that runs on RISC hardware, the

value of this field should be ″ANY.″

ProductID A 7-character string that specifies the product ID of a

prerequisite iSeries server licensed program that is

required by the plug-in. If the plug-in does not require

that a particular licensed program be installed on the

iSeries server, the value of this field should be ″NONE.″

Multiple comma-separated product IDs may be specified

if multiple IDs exist for the same product.

ServerEntryPoint The name of the code DLL that implements the server

entry point. This entry point is called by the iSeries

Navigator when it needs to determine whether the

plug-in is supported on a particular iSeries server. If the

plug-in does not implement the entry point, the value of

this field should be ″NONE.″ In the development version

of the registry file, this may be a fully-qualified

pathname.

JavaPath The classpath string that identifies the location of your

plug-in’s Java(TM) classes. During development of your

plug-in, this field might contain the directory paths for

the directories where your class files reside. In the

production version of the registry file, it should identify

your JAR file names relative to the iSeries Access for

Windows(R) install path, each preceded by the iSeries

Access for Windows substitution variable that represents

the install path.

JavaMRI The base names of the JAR files that contain

locale-dependent resources for the plug-in. iSeries

Navigator will search for each JAR file after first

suffixing the name with the appropriate Java language

and country identifiers. If no MRI JAR files exist for a

given locale, iSeries Navigator will expect the MRI for

the base locale (usually US English) to reside in the code

JAR files.

Parent field values: A three-character ID that identifies the parent of the folder to be added. One of the

following IDs may be specified:

 AS4 iSeries(TM) server folder

BKF Backup folder

BOF Basic Operations folder

CFG Configuration and Service folder

DBF Database folder

FSF File Systems folder

Developing iSeries Navigator Plug-ins 41

JMF Job Management folder

MCN Management Central folder

MCS Management Central Configuration and Service folder

MDF Management Central Definitions folder

MST Management Central Scheduled Tasks

MSM Management Central Monitors

MTA Management Central Task Activity

MXS Management Central Extreme Support

NSR Network Servers folder

NWF Network folder

SCF Security folder

UGF Users and Groups folder

Example: New folder registry key: A separate registry key must be defined for the root of each sub tree

of objects that a plug-in chooses to add to the object hierarchy. This key contains information specific to

the root folder of the sub tree.

Assign the registry key a meaningful folder name that is at least four characters in length.

;--

; Register a new folder

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\folders\Sample]

"Parent"="AS4"

"Attributes"=hex:00,01,00,20

"CLSID"="{D09970E1-9073-11d0-82BD-08005AA74F5C}"

"NameID"=dword:00000082

"DescriptionID"=dword:00000083

"DefaultIconIndex"=dword:00000000

"OpenIconIndex"=dword:00000001

"AdminItem"="QIBM_SAMPLE_SMPFLR"

 Parent A three-character ID that identifies the parent of the folder to be added.

See “Parent field values” on page 41 for a listing of possible values.

Attributes A 4-byte binary field that contains the attributes for the folder, with the indicator bytes in

reverse order. See the folder attribute flags defined for the IShellFolder::GetAttributesOf method

in the Microsoft(R) include file SHLOBJ.H.

CLSID The CLSID of the IA4HierarchyFolder implementation that should be called by the iSeries(TM)

Navigator to obtain the contents of the folder.

For Java(TM) plug-ins, the CLSID always should be: 1827A856-9C20-11d1-96C3-00062912C9B2.

For Visual Basic plug-ins, the CLSID should always be: 040606B1-1C19-11d2-AA12-
08005AD17735}.

JavaClass The fully-qualified Java class name of the ListManager implementation that should be called by

the iSeries Navigator to obtain the contents of the folder. This field should be omitted if the

plug-in is not a Java plug-in.

VBClass The Program Identifier (ProgID) of the ListManager implementation class that should be called

by iSeries Navigator to obtain the contents of the folder.

VBInterface The GUID of the ListManager implementation class’ interface.

NameID A double word that contains the resource ID of the string that should appear as the name of the

folder in the iSeries Navigator hierarchy.

DescriptionID A double word that contains the resource ID of the string that should appear as the description

of the folder in the iSeries Navigator hierarchy.

42 iSeries: Developing iSeries Navigator plug ins

DefaultIconIndex A double word that contains the index into the NLS resource DLL of the plug-in for the icon

that should be displayed for the folder in the iSeries Navigator hierarchy. This is a zero-based

index into the resource DLL, not the resource ID of the icon. For indexing to work properly, the

icon resource IDs should be assigned sequentially.

OpenIconIndex A double word that contains the index into the NLS resource DLL of the plug-in for the icon

that should be displayed for the folder in the iSeries Navigator hierarchy whenever it is selected

by the user.

AdminItem A STRING that contains the Function ID of the Application Administration function that

controls access to the folder. If this field is omitted, no Application Administration function

controls access to the folder. If specified, this must be the function ID of a Group or

Administrable function. It cannot be the function ID of a Product Function.

Sample Java registry file

Each of the sample plug-ins written in Java(TM) provides its own registry file. The following sections

describe the important parts of the registry file and illustrate how to create appropriate entries for your

own plug-ins. The examples are taken from the appropriate sample which illustrates the function

described. Programmatic Identifier (ProgID)

Your plug-in is uniquely identified to iSeries(TM) Navigator by means of a text string of the form

<vendor>.<component>, where vendor identifies the vendor who developed the plug-in, and component

describes the function being provided. In the examples below, the string IBM.MsgQueueSample3 identifies

IBM(R) as the vendor, and ″MsgQueueSample3″ as the description of the function provided by the

plug-in. This string is known as the programmatic identifier, or ProgID. It’s used throughout the registry

file when specifying the function your plug-in provides, and it also names the directory where your

plug-in will reside on both the iSeries server and the client workstation.

Globally unique identifiers (GUIDs)

Microsoft(R)’s Component Object Model uses 16-byte hex integers to uniquely identify ActiveX

implementation classes and interfaces. These integers are known as Globally Unique Identifiers, or GUIDs.

GUIDs that identify implementation classes are called CLSIDs (pronounced ″class IDs″).

For iSeries Navigator components written in Java, you should not define new GUIDs. All Java plug-ins

use a set of standard GUIDs that specify the built-in ActiveX server component which manages Java

plug-ins. The standard CLSIDs to use are provided in the examples below.

Defining your plug-in’s primary attributes:

 ;--

; Define the primary registry key for Message Queue Sample 3.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3]

"Type"="PLUGIN"

"NLS"="MessageQueuesMRI.dll"

"NameID"=dword:00000001

"DescriptionID"=dword:00000002

"MinimumIMPIRelease"="NONE"

"MinimumRISCRelease"="ANY"

"ProductID"="NONE"

"ServerEntryPoint"="NONE"

"JavaPath"="MsgQueueSample3.jar"

"JavaMRI"="MsgQueueSample3MRI.jar"

Type
If the plug-in adds new folders to the iSeries Navigator hierarchy, the value of this field should be

PLUGIN. Otherwise, it should be EXT.

Developing iSeries Navigator Plug-ins 43

NLS
Identifies the name of the resource DLL that contains locale-dependent resources for the plug-in. In

the development version of the registry file, this may be a fully-qualified pathname.

NameID
A double word containing the resource identifier of the text string in the resource DLL which will be

used to identify the plug-in in the iSeries Navigator user interface.

DescriptionID
A double word that contains the resource identifier of the text string in the resource DLL. This

resource DLL is used to describe the function of the plug-in in the iSeries Navigator user interface.

MinimumIMPIRelease
A 6-character string that identifies the minimum release of OS/400(R) running on IMPI hardware that

the plug-in requires. The string should be of the form vvrrmm, where vv is the OS/400 Version, rr is the

Release, and mm is the Modification Level. For example, if the plug-in requires Version 3 Release 2

Modification Level 0, the value of this field should be ″030200.″

 If the plug-in does not support any OS/400 release that runs on IMPI hardware (releases prior to Version

3 Release 6), the value of this field should be ″NONE.″ If the plug-in can support any release that runs on

IMPI hardware, the value of this field should be ″ANY.″

MinimumRISCRelease
A 6-character string that identifies the minimum release of OS/400 running on RISC hardware that the

plug-in requires. The string should be of the form vvrrmm, where vv is the OS/400 Version, rr is the

Release, and mm is the Modification Level. For example, if the plug-in requires Version 3 Release 7

Modification Level 1, the value of this field should be ″030701.″

If the plug-in does not support any OS/400 release that runs on RISC hardware (Version 3 Release 6 and

above), the value of this field should be ″NONE.″ If the plug-in can support any release that runs on

RISC hardware, the value of this field should be ″ANY.″

ProductID
A 7-character string that specifies the product ID of a prerequisite iSeries server licensed program that is

required by the plug-in. If the plug-in does not require that a particular licensed program be installed on

the iSeries server, the value of this field should be ″NONE.″

Multiple comma-separated product IDs may be specified if multiple IDs exist for the same product.

ServerEntryPoint
The name of the code DLL that implements the server entry point. This entry point is called by the

iSeries Navigator when it needs to determine whether the plug-in is supported on a particular iSeries

server. If the plug-in does not implement the entry point, the value of this field should be ″NONE.″ In

the development version of the registry file, this may be a fully-qualified pathname.

JavaPath
The classpath string that identifies the location of your plug-in’s Java classes. During development of

your plug-in, this field might contain the directory paths for the directories where your class files

reside. In the production version of the registry file, it should identify your JAR files. The JAR file

names should not be qualified with any directory names - iSeries Navigator will qualify them

automatically when it constructs the classpath string to be passed to the Java VM.

 JavaMRI
The base names of the JAR files that contain locale-dependent resources for the plug-in. iSeries Navigator

will search for each JAR file after first suffixing the name with the appropriate Java language and country

identifiers. In the development version of the registry file this field may contain an empty string, since

the resources for the base locale (usually US English) should reside in the code JAR.

44 iSeries: Developing iSeries Navigator plug ins

Defining new folders:

 ;--

; Register a new folder

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\folders\Sample3]

"Parent"="AS4"

"Attributes"=hex:00,01,00,a0

"CLSID"="{1827A856-9C20-11d1-96C3-00062912C9B2}"

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqListManager"

"NameID"=dword:0000000b

"DescriptionID"=dword:0000000c

"DefaultIconIndex"=dword:00000001

"OpenIconIndex"=dword:00000000

"AdminItem"="QIBM_SAMPLE_SMPFLR"

"TaskpadNameID"=dword:00000003

"TaskpadDescriptionID"=dword:00000004

Type
Each new folder that your plug-in adds to the iSeries Navigator hierarchy has a unique logical type. In

the example above, the string Sample3 is the type which will be used to identify the currently selected

folder when control is passed to your plug-in at runtime.

Parent
A three-character ID that identifies the parent of the folder to be added. One of the following IDs may

be specified:

 AS4 iSeries server folder

BKF Backup folder

BOF Basic Operations folder

CFG Configuration and Service folder

DBF Database folder

FSF File Systems folder

MCN Management Central folder

MCS Management Central Configuration and Service folder

MDF Management Central Definitions folder

MMN Management Central Monitors

MST Management Central Scheduled Tasks

MTA Management Central Task Activity

MXS Management Central Extreme Support

NSR Network Servers folder

NWF Network folder

SCF Security folder

UGF Users and Groups folder

WMF Work Management folder

Attributes
A 4-byte binary field that contains the attributes for the folder, with the indicator bytes in reverse

order. See the folder attribute flags defined for the IShellFolder::GetAttributesOf method in the

Microsoft include file SHLOBJ.H. To indicate that your folder has a taskpad, use 0x00000008.

CLSID
The CLSID of the IA4HierarchyFolder implementation that should be called by iSeries Navigator to

obtain the contents of the folder. For Java plug-ins this CLSID should always be {1827A856-9C20-11d1-
96C3-00062912C9B2}.

Developing iSeries Navigator Plug-ins 45

JavaClass

The fully-qualified Java class name of the ListManager implementation that should be called by

the iSeries Navigator to obtain the contents of the folder.

NameID
A double word that contains the resource ID of the string that should appear as the name of the folder

in the iSeries Navigator hierarchy.

DescriptionID
A double word that contains the resource ID of the string that should appear as the description of the

folder in the iSeries Navigator hierarchy.

DefaultIconIndex
A double word that contains the index into the NLS resource DLL of the plug-in for the icon that

should be displayed for the folder in the iSeries Navigator hierarchy. This is a zero-based index into

the resource DLL, not the resource ID of the icon. For indexing to work properly, the icon resource IDs

should be assigned sequentially.

OpenIconIndex
A double word that contains the index into the NLS resource DLL of the plug-in for the icon that

should be displayed for the folder in the iSeries Navigator hierarchy whenever it is selected by the

user. This may be the same as the default icon index.

AdminItem
A STRING that contains the Function ID of the Application Administration function that controls

access to the folder. If this field is omitted, no Application Administration function controls access to

the folder. If specified, this must be the function ID of a Group or Administrable function. It cannot

be the function ID of a Product Function.

TaskpadNameID
A double word that contains the resource ID of the string that should appear as the name of the

taskpad in the iSeries Navigator hierarchy.

TaskpadDescriptionID
A double word that contains the resource identifier of the text string in the resource DLL. This

resource DLL is used to describe the function of the taskpad in the iSeries Navigator user interface.

Adding context menu items:

 ;--

; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\

 shellex\Sample3*\ContextMenuHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqActionsManager"

 ;--

; Register a drag/drop context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\

 shellex\Sample3*\DragDropHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqActionsManager"

46 iSeries: Developing iSeries Navigator plug ins

Adding taskpad tasks:

 ;--

; Register a task handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample5\

 shellex\Sample5*\TaskHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample5.MqTasksManager"

"JavaClassType"="TasksManager"

Supporting drag/drop:

 ;--

; Register a drop handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\

 shellex\Sample3*\DropHandler]

@="{1827A857-9C20-11d1-96C3-00062912C9B2}"

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqDropTargetManager"

Specifying the objects to be managed

 A pair of object type identifiers is required under the shellex key. The first identifier in the pair specifies

the root folder for an iSeries Navigator component. For new folders added by your plug-in, this identifier

should match the logical type of the folder you specified as your junction point. For existing folders, this

subkey should generally be the object type of the first-level folder under an iSeries server container

object. These type strings are defined under HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry.

The second identifier in the pair identifies the specific object type that the plug-in wants to affect. If ″*″ is

specified, the plug-in will be called the for the folder type identified in the first identifier, plus all folders

and objects which appear in the hierarchy under that folder. Otherwise, a specific type identifier should

be specified, and the plug-in will only be called when the user performs an action on an object of that

type.

Remember that any number of plug-ins may register their intent to add function to a given object type in

the Navigator hierarchy. The plug-in should never assume that it is the only server component which is

providing function for a given object type. This applies not only to existing object types, but also to any

new objects that a plug-in may choose to define. If your plug-in is widely used, there is nothing to

prevent another vendor from extending object types that are defined by your plug-in.

CLSIDs
The CLSIDs shown in the above examples specify the built-in ActiveX server component which manages

Java plug-ins. For all non-folder related function this CLSID should always be {1827A857-9C20-11d1-
96C3-00062912C9B2}.

JavaClass
The fully-qualified Java class name of the interface implementation that should be called by the iSeries

Navigator to support the designated function.

SSL support: If a plug-in’s communications with the iSeries server are performed by using the Sockets

API or some other low-level communications service, then it is the responsibility of the plug-in to

support SSL if it has been requested. If the plug-in doesn’t provide this support, it should indicate that it

doesn’t support SSL as described below. When this is done, the plug-in’s function will be disabled if the

user has requested a secure connection.

Developing iSeries Navigator Plug-ins 47

;--

; Indicate that this plug-in supports SSL.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\SSL]

"Support Level"=dword:00000001

Support Level
If the plug-in supports SSL, this value should be 1. Otherwise, it should be 0.

Property pages for a property sheet handler

The Microsoft(R) Foundation Class Library classes cannot be used to construct property pages for a

property sheet handler. However, IBM(R) provides CExtPropertyPage, which may be used in place of the

MFC class CPropertyPage. Property pages implemented by iSeries(TM) Navigator plug-ins should subclass

CExtPropertyPage. The class declaration may be found in the header file PROPEXT.H, and the

implementation is contained in the file PROPEXT.CPP. Both files are provided as part of the sample

plug-in.

Note It is necessary to include PROPEXT.CPP in the project workspace for your plug-in.

If a plug-in requires that a property sheet is associated with one of its own object types, the

SFGAO_HASPROPSHEET flag must be returned as part of the attributes of the object. When this flag is

on, the Navigator automatically will add Properties to the context menu for the object. Also, when this

flag is on, Navigator will call any registered property sheet handlers to add pages to the property sheet

when the context menu item is selected.

In certain cases a plug-in may desire to implement a Properties context menu item that is defined for one

of its own object types as a standard Windows(R) dialog instead of a property sheet. A flag is defined for

this situation that may be returned to the Navigator on calls to IContextMenu::QueryContextMenu. If the

flag is returned, no automatic processing for Properties is performed, and it is up to the plug-in to add

the context menu item and implement the associated dialog. This flag is documented in “Description of

QueryContextMenu flags” on page 49.

If a plug-in intends to add property pages to one of the property sheets for an iSeries user, the key that

specifies the CLSID of the property sheet handler must specify a PropSheet field that identifies the

property sheet to which the specified handler will add pages. An example follows.

;-- ;

Register a property sheet handler for the Network property sheet for iSeries users

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Users

and Groups\User\PropertySheetHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

"PropSheet"="Networks"

Valid values for the PropSheet field are:

48 iSeries: Developing iSeries Navigator plug ins

PropSheet field valid values

Groups Personal

Security or

Capabilities Jobs Networks

Groups-Before-All

Groups-After-Info

Personal-Before-All

Personal-After-Name

Personal-After-
Location

Personal-After-Mail

Capabilities-Before-
All

Capabilities-After-
Privileges

Capabilities-After-
Auditing

Capabilities-Before-
Other

Capabilities-After-
Other

Jobs-Before-All

Jobs-After-General

Jobs-After-Startup

Jobs-After-Display

Jobs-After-Output

Jobs-After-
International

Networks-Before-All

Networks-After-
Servers

Networks-After-
General

To add pages to a property sheet for an iSeries user, the plug-in must implement the IA4PropSheetNotify

interface (see “IA4PropSheetNotify interface specifications listing” on page 23).

Restriction:

The following restriction currently applies to property sheets for iSeries user objects:

 Multiple property sheet handlers for the various property sheets that are associated with

an iSeries user cannot be implemented on the same implementation class. Each property

sheet requires a separate CLSID.

Description of QueryContextMenu flags: iSeries(TM) Navigator supports the following enhancements to

the IContextMenu interface:

Ordering of context menu items

The iSeries Navigator has extended the IContextMenu interface to obtain more precise control

over the order in which menu items are added to the menu for a particular folder or object. The

Navigator structures its context menus in three sections. This structure ensures that when more

than one component adds items to the context menu for an object, the items will still appear in

the correct order that is defined for the Windows(R) user interface.

 The first section contains actions which are specific to the object type, such as Reorganize for a

database table. The second section contains ″object creation″ items; these items are object types

which cascade off of a New menu item. Lastly there are the so-called ″standard″ Windows menu

items, such as Delete or Properties. You may choose to add menu items to any section of the

context menu.

 The iSeries Navigator calls the QueryContextMenu method for a component three times in

succession, once for each section of the menu. The following additional flags are defined in the

uFlags parameter to allow you to determine which section of the context menu is currently being

serviced.

UNITY_CMF_CUSTOM

This flag indicates that you should add object-specific actions to the menu.

Developing iSeries Navigator Plug-ins 49

UNITY_CMF_NEW

This flag indicates that you should add object creation items to the menu.

UNITY_CMF_STANDARD

This flag indicates that you should add standard actions to the menu.

UNITY_CMF_FILEMENU

 This flag changes UNITY_CMF_STANDARD. It indicates construction of the File menu

pull down for your object, as opposed to the menu that is displayed when the user clicks

on an object with mouse button 2.

 Items on the File pull down are arranged slightly differently. If you add Properties to the

menu, you should avoid inserting a separator as is normally done before this item. Also,

edit actions such as Copy or Paste should not be added to the File menu, because they

appear on the Edit pull down instead. (The iSeries Navigator calls your shell plug-in at

the appropriate time to obtain the items for the Edit menu, and does not set

UNITY_CMF_FILEMENU).

Unique property dialogs

 In certain cases, a plug-in may desire to implement a Properties context menu item that is

defined for one of its own object types as a standard Windows dialog instead of a property sheet.

A flag that is defined for this situation may be returned to the Navigator on calls to

IContextMenu::QueryContextMenu when the UNITY_CMF_STANDARD flag is set. This flag,

A4HYF_INFO_PROPERTIESADDED, should be OR’d with the HRESULT value that is returned

by QueryContextMenu.

 Returning this flag means that automatic processing for Properties is not performed. In this case,

the plug-in must add the context menu item and construct the associated dialog.

Example: Constructing Visual Basic property pages for a property sheet handler

Property pages that are implemented by iSeries(TM) Navigator Visual Basic plug-ins can not use a registry

key to specify property pages. You must add a specific property page context menu item in your

ListManager class to implement a property page. You can not add a property page to any existing

property sheet objects.

In the Visual Basic Sample plug-in, a property page is supported for Libraries in the iSeries Navigator

List. This is done with the following steps:

1. In listman.cls, the Library object type specifies a properties page in the getAttributes method:

’ Returns the attributes of an object in the list.

Public Function ListManager_getAttributes(ByVal item As Object) As Long

 Dim uItem As ItemIdentifier

 Dim nAttributes As ObjectTypeConstants

 If Not IsEmpty(item) Then

 Set uItem = item

 End If

 If uItem.getType = "SampleVBFolder" Then

 nAttributes = OBJECT_ISCONTAINER

 ElseIf item.getType = "SampleLibrary" Then

 nAttributes = OBJECT_IMPLEMENTSPROPERTIES

 Else

 nAttributes = 0

 End If

 ListManager_getAttributes = nAttributes

End Function

50 iSeries: Developing iSeries Navigator plug ins

2. In actnman.cls, the queryActions method specifies that properties should be shown on the Library

object context menu.

Public Function ActionsManager_queryActions(ByVal flags As Long) As Variant

 .

 .

 ’ Add menu items to a Sample Library

 If selectedFolderType = "SampleLibrary" Then

 ’ Standard Actions

 If (flags And STANDARD_ACTIONS) = STANDARD_ACTIONS Then

 ReDim actions(0)

 ’ Properties

 Set actions(0) = New ActionDescriptor

 With actions(0)

 .Create

 .setID IDPROPERTIES

 .SetText m_uLoader.getString(IDS_ACTIONTEXT_PROPERTIES)

 .setHelpText m_uLoader.getString(IDS_ACTIONHELP_PROPERTIES)

 .setVerb "PROPERTIES"

 .setEnabled True

 .setDefault True

 End With

 ’ Properties is only selectable if there is ONLY 1 object selected

 If Not IsEmpty(m_ObjectNames) Then

 If UBound(m_ObjectNames) > 0 Then

 actions(2).setEnabled False

 End If

 End If

 End If

 End If

 .

 .

End Function

3. In actnman.cls, the actionsSelected method displays a properties form when the properties context

menu is selected.

Public Sub ActionsManager_actionSelected(ByVal action As Integer, ByVal owner As Long)

 .

 .

 Select Case action

 .

 .

 Case IDPROPERTIES

 If (Not IsEmpty(m_ObjectNames)) Then

 ’ Pass the System Name into a hidden field on the form for later use

 frmProperties.lblSystemName = m_ObjectNames(0).getSystemName

 ’ Pass the Display Name of the selected object into a hidden field on the form

 frmProperties.lblLibName = m_ObjectNames(0).getDisplayName

 ’ Show the properties

 frmProperties.Show vbModal

 End If

 .

 .

 Case Else

 ’Do Nothing

 End Select

 .

End Sub

Note: The code to create and display the property sheet can be seen in propsht.frm

Developing iSeries Navigator Plug-ins 51

Property sheet handling in Java

You can add property pages to property sheets of Java(TM) plug-ins. This allows you to build object

names, display properties, share objects with third parties, and mix C++ and Java code in the same

plug-in.

To use property pages, you must build the properties manager interface, which provides the following

methods:

v Initialize
Identifies the container object for the properties.

v getPages
Construct and provide a vector of PanelManager objects.

v CommitHandlers
Returns a vector of handlers to be called upon Commit.

v CancelHandlers
Returns a vector of handlers to be called upon Cancel.

Then enable the properties menu by having the ListManager getAttributes method return

ListManager.OBJECT_HASPROPERTIES.

Finally, create a registry entry that identifies the PopertiesManagerInterface. For example:

[HKEY_CLASSES_ROOT\IBM.AS400.Network\AS/400 Network*
\shellex\PropertySheetHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

″JavaClass″=″com.ibm.as400.opnav.TestPages.TestPropertiesManager″
″JavaClassType″=″PropertiesManager″

 Note: Multiple PropertiesManager implementations may register to provide property pages for a given

object type. Do not assume that your entity is the only one supplying pages, or the order that the

pages will be added.

For more information, see the Properties Manager example.

Secure Sockets Layer (SSL) registry entry

iSeries(TM) Navigator users can request a secure connection to an iSeries server by selecting the Use

Secure Sockets Layer checkbox on the Connection tab of the property sheet for iSeries objects. When this

is done, only iSeries Navigator components that are capable of supporting SSL communications are

enabled for activation by the user.

If all of a plug-in’s communications with the iSeries server are managed by using the iSeries Access for

Windows(R) system handle (enter cwbCO_SysHandle), or by using the class com.ibm.as400.access.AS400

in the case of a Java(TM) plug-in, then it should indicate that it supports secure connections to the iSeries

server. For C++ plug-ins, the cwbCO_SysHandle is obtained by calling the cwbUN_GetSystemHandle

API. When the user requests a secure connection, the Navigator automatically will enable SSL. In the case

of Java plug-ins, the iSeries server object obtained by calling the getSystemObject method on the class

com.ibm.as400.opnav.ObjectName actually will be an instance of com.ibm.as400.access.SecureAS400.

Note: If you are running Java over SSL, and creating your own CA certificate, iSeries Access for Windows

GA service pack is required.

If a plug-in’s communications with the iSeries server are performed by using the Sockets API or some

other low-level communications service, then it is the responsibility of the plug-in to support SSL if it has

been requested. If the plug-in doesn’t provide this support, it should indicate that it doesn’t support SSL

as described below. When this is done, the plug-in’s function will be disabled if the user has requested a

secure connection.

52 iSeries: Developing iSeries Navigator plug ins

rzakxexpropmngr.htm

Example: Adding a registry key to enable SSL

The key is SSL under [HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY

EXTENSIONS\IBM.Sample\SSL] ″Support Level″=dword:00000001 where IBM.Sample is the plug-in

supplied product component.

Note: ″Support Level″=dword:00000001 = supports SSL, and ″Support Level″=dword:00000000 = does

NOT support SSL.

 ;--

; Example registry key that

 says this plug-in supports SSL

 {HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL}

 "Support Level"=dword:00000001

Developing iSeries Navigator Plug-ins 53

54 iSeries: Developing iSeries Navigator plug ins

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 55

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) IBM Corporation. 2004. Portions of this code are derived from IBM Corporation. Sample Programs.

(C) Copyright IBM Corp. 1999-2004. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

Developing iSeries Navigator plug-ins documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of iSeries Access for Windows.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
AS/400
e(logo)
IBM
iSeries
OS/400

Lotus, Notes, Freelance, and WordPro are trademarks of International Business Machines Corporation and

Lotus Development Corporation in the United States, other countries, or both.

56 iSeries: Developing iSeries Navigator plug ins

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM(R).

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

IBM(R) grants you a nonexclusive copyright license to use all programming code examples from which

you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Appendix. Notices 57

58 iSeries: Developing iSeries Navigator plug ins

����

Printed in USA

	Contents
	Developing iSeries Navigator Plug-ins
	Plug-in support in iSeries Navigator
	What you can do with a plug-in
	How plug-ins work
	Plug-in requirements
	Distribute plug-ins
	Setup.ini file
	MRI setup file

	Identifying plug-ins to iSeries Navigator

	Install and run sample plug-ins
	Setting up sample C++ plug-ins
	Setting up sample Visual Basic plug-ins
	Sample VB plug-in directory of files

	Setting up the sample Java plug-in
	Sample Java plug-in directory of files

	Plug-in programming reference
	iSeries Navigator structure and flow of control for C++ plug-ins
	iSeries Navigator COM interfaces for C++
	Description of IA4HierarchyFolder Interface
	IA4HierarchyFolder interface specifications listing
	Description of IA4PropSheetNotify interface
	IA4PropSheetNotify interface specifications listing

	iSeries Navigator API listing
	Return codes unique to iSeries Navigator APIs
	iSeries Navigator structure and flow of control for Visual Basic plug-ins
	iSeries Navigator Visual Basic interfaces
	iSeries Navigator ListManager interface class
	iSeries Navigator ActionsManager interface class
	iSeries Navigator DropTargetManager interface class

	iSeries Navigator structure and flow of control for Java plug-ins
	Customize the plug-in registry files
	Customize the C++ registry values
	Customize the VB plug-in registry values
	Sample Java registry file
	Property pages for a property sheet handler
	Example: Constructing Visual Basic property pages for a property sheet handler
	Property sheet handling in Java
	Secure Sockets Layer (SSL) registry entry

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

