
iSeries

DDS for physical and logical files

Version 5 Release 3

ERserver

���

iSeries

DDS for physical and logical files

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

Appendix C, “Notices,” on page 91.

Fourth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400® (product number

5722-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version

does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 2001, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|

Contents

About DDS for physical and logical files v

Who should read the DDS for physical and logical

files book v

Conventions and terminology used in the DDS

information v

Print this topic v

What’s New for V5R3 in the DDS for physical and

logical files information vi

Chapter 1. Defining physical and logical

files using DDS 1

Defining a physical file using DDS 1

Defining a logical file using DDS 1

Simple and multiple format logical files in DDS . 2

Join logical files in DDS 2

Specifying record formats in a logical file in DDS 3

Positional entries for physical and logical files

(positions 1 through 44) 4

Sequence number for physical and logical files

(positions 1 through 5) 4

Form type for physical and logical files (position

6) 4

Comment for physical and logical files (position 7) 4

Conditioning for physical and logical files

(positions 8 through 16) 5

Type of name or specification for physical and

logical files (position 17) 5

Reserved for physical and logical files (position

18) 5

Name for physical and logical files (positions 19

through 28) 5

Reference for physical and logical files (position

29) 19

Length for physical and logical files (positions 30

through 34) 20

Data type for physical and logical files (position

35) 23

Decimal positions for physical and logical files

(positions 36 and 37) 25

Usage for physical and logical files (position 38) 27

Location for physical and logical files (positions

39 through 44) 28

Chapter 2. Keyword entries for physical

and logical files (positions 45 through

80) 29

ABSVAL (Absolute Value) keyword for physical and

logical files 30

ALIAS (Alternative Name) keyword for physical

and logical files 31

ALL (All) keyword—logical files only 31

ALTSEQ (Alternative Collating Sequence) keyword

for physical and logical files 32

ALWNULL (Allow Null Value) keyword—physical

files only 33

CCSID (Coded Character Set Identifier) keyword for

physical and logical files 33

CHECK (Check) keyword for physical and logical

files 35

CHKMSGID (Check Message Identifier) keyword

for physical and logical files 36

CMP (Comparison) keyword for physical and

logical files 36

COLHDG (Column Heading) keyword for physical

and logical files 37

COMP (Comparison) keyword for physical and

logical files 37

Specifying COMP at the field level 39

Specifying COMP at the select or omit-field level 39

CONCAT (Concatenate) keyword—logical files only 40

DATFMT (Date Format) keyword for physical and

logical files 42

DATSEP (Date Separator) keyword for physical and

logical files 44

DESCEND (Descend) keyword for physical and

logical files 45

DFT (Default) keyword—physical files only . . . 45

DIGIT (Digit) keyword for physical and logical files 47

DYNSLT (Dynamic Select) keyword—logical files

only 48

EDTCDE (Edit Code) and EDTWRD (Edit Word)

keywords for physical and logical files 50

FCFO (First-Changed First-Out) keyword for

physical and logical files 51

FIFO (First-In First-Out) keyword for physical and

logical files 52

FLTPCN (Floating-Point Precision) keyword for

physical and logical files 52

FORMAT (Format) keyword for physical and logical

files 53

JDFTVAL (Join Default Values) keyword—join

logical files only 53

JDUPSEQ (Join Duplicate Sequence) keyword—join

logical files only 55

JFILE (Joined Files) keyword—join logical files only 56

JFLD (Joined Fields) keyword—join logical files only 57

JOIN (Join) keyword—join logical files only . . . 59

JREF (Join Reference) keyword—join logical files

only 61

LIFO (Last-In First-Out) keyword for physical and

logical files 62

NOALTSEQ (No Alternative Collating Sequence)

keyword for physical and logical files 62

PFILE (Physical File) keyword—logical files only . . 63

RANGE (Range) keyword for physical and logical

files 64

Specifying RANGE at the field level 65

Specifying RANGE at the select or omit-field

level 65

© Copyright IBM Corp. 2001, 2005 iii

REF (Reference) keyword—physical files only . . . 66

REFACCPTH (Reference Access Path Definition)

keyword—logical files only 67

REFFLD (Referenced Field) keyword—physical files

only 67

REFSHIFT (Reference Shift) keyword for physical

and logical files 69

RENAME (Rename) keyword—logical files only . . 70

SIGNED (Signed) keyword for physical and logical

files 70

SST (Substring) keyword—logical files only 71

TEXT (Text) keyword for physical and logical files 73

TIMFMT (Time Format) keyword for physical and

logical files 74

TIMSEP (Time Separator) keyword for physical and

logical files 74

TRNTBL (Translation Table) keyword—logical files

only 75

UNIQUE (Unique) keyword for physical and logical

files 76

UNSIGNED (Unsigned) keyword for physical and

logical files 77

VALUES (Values) keyword for physical and logical

files 78

Specifying VALUES at the field level 79

Specifying VALUES at the select or omit-field

level 79

VARLEN (Variable-Length Field) keyword for

physical and logical files 80

ZONE (Zone) keyword for physical and logical files 81

Appendix A. Unicode considerations

for database files 83

Length (positions 30 through 34) 83

Data type (position 35) 84

Decimal positions (positions 36 and 37) 84

Keyword considerations (positions 45 through 80) 84

Appendix B. DBCS considerations for

database files 87

Positional entry considerations for database files

that use DBCS 87

Length (positions 30 through 34) 87

Data type (position 35) 87

Decimal (positions 36 and 37) 88

Keyword considerations for database files that use

DBCS 88

CONCAT (Concatenate) keyword 88

Additional considerations for describing database

files that contain DBCS data 89

Appendix C. Notices 91

Trademarks 92

Terms and conditions for downloading and printing

publications 92

Code disclaimer information 93

Index 95

iv OS/400 DDS for physical and logical files V5R3

 |
 | |
 | |
 | |
 | |
 | |

About DDS for physical and logical files

This book provides the reference information you need to know for coding the data description

specifications (DDS) for physical and logical files that can be described externally.

Who should read the DDS for physical and logical files book

This manual is intended for programmers who use the iSeries servers.

Conventions and terminology used in the DDS information

v A keyword is a name that identifies a function.

v A parameter is an argument shown between the parentheses on a keyword that identifies a value or set

of values you can use to tailor the function the keyword specifies.

v A value is an actual value that you can use for a parameter.

v In the keyword descriptions, this field or this record format means the field or record format you are

defining.

v The expression use this file- or record-level keyword means the keyword is valid only at the file or record

level.

v To specify a keyword means to code the keyword in the DDS for a file. This contrasts with to select a

keyword or when a keyword is in effect, which both mean that any conditioning (such as one or more

option indicators) is satisfied when an application program issues an input or output operation.

v Current source or source you are defining means the DDS that together make up the description of one

file.

v In sample displays, character fields are shown as Xs and numeric fields are shown as Ns.

v The 5250 Work Station Feature is a feature of the OS/2® communications manager that allows the

personal computer to perform like a 5250 display station and use functions of the iSeries servers.

v Logical file includes join logical files, simple logical files, and multiple-format logical files.

v Page means to move information up or down on the display. Roll means the same as page. Paging keys

are the same as roll keys. The PAGEDOWN keyword is the same as the ROLLUP keyword. The

PAGEUP keyword is the same as the ROLLDOWN keyword.

Print this topic

To view or download the PDF version, select DDS for physical and logical files (about 437 KB or 106

pages).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As...

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the

Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

© Copyright IBM Corp. 2001, 2005 v

rzakbmst.pdf
http://www.adobe.com/products/acrobat/readstep.html

What’s New for V5R3 in the DDS for physical and logical files

information

Technical updates to DDS Reference: Physical and Logical Files information:

Updated the information about zoned and packed decimal fields to show a new maximum length of 63

digits.

Added information about the Binary Character data type.

Updated the CCSID keyword for physical and logical files to show the *NORMALIZE option, and to add

information about using this keyword with UTF-8 and UTF-16 encoding schemes.

Updated the Appendix A, “Unicode considerations for database files,” on page 83 topic to add

information about using Unicode data in physical and logical files.

vi OS/400 DDS for physical and logical files V5R3

Chapter 1. Defining physical and logical files using DDS

This topic provides the following information regarding physical and logical files:

v Defining a physical file using DDS

v Defining a logical file using DDS

v Positional entries for physical and logical files

v Keyword entries for physical and logical files

Defining a physical file using DDS

A physical file can contain only one record format. Specify the record format in either of two ways:

v Define a new record format. Specify field and key field specifications as desired for the new record

format.

v Share an existing record format. Use the FORMAT keyword to specify that the OS/400 program is to

use a previously defined record format from another physical file. When the FORMAT keyword is

used, key field level specifications must be specified again (if a keyed access path is desired) even if

they were specified on the existing record format.

Specify the entries in the following order to define a physical file:

1. File-level entries (optional)

2. Record-level entries

3. Field-level entries

4. Key field-level entries (optional)

Note: The file name is specified through the Create Physical File (CRTPF) command, not through DDS.

You can find an explanation of file-, record-, field-, and key field-level specifications in the Describing

data attributes using DDS topic.

Refer to the DDS Reference: Concepts information for rules when specifying record or field names in

DDS.

The maximum number of fields in a record format is 8000. If any of the fields in the record format are

date, time, timestamp, variable length, or allows the null value, then the actual maximum number of

fields can be less than 8000. The maximum number of fields can vary depending on the number of fields

and combinations of fields that occur within the record format. The maximum number of bytes in a

record format is 32 766 if variable length fields are not included and 32 740 if variable length fields are

included. Table 1 on page 22 describes rules for determining the total length of the record format.

Defining a logical file using DDS

A logical file determines how data records are selected and defined when read by an application

program. A logical file can be a simple, multiple format, or join logical file. A simple logical file contains one

record format and has one file specified on the PFILE keyword. A multiple format logical file either

contains more than one record format or has more than one file specified on the PFILE keyword. A join

logical file contains one record format and has up to 256 files specified on the JFILE keyword. See

“Specifying record formats in a logical file in DDS” on page 3 for more information on specifying record

formats for logical files.

© Copyright IBM Corp. 2001, 2005 1

|
|
|
|
|
|
|

Simple and multiple format logical files in DDS

You must specify the PFILE keyword at the record level for simple and multiple format logical files. In a

multiple format logical file, a record format can use only the fields common to all the physical files

specified on the PFILE keyword for that record format.

Specify the entries in the following order to define a simple or multiple format logical file:

1. File-level entries (optional)

2. Record-level entries

3. Field-level entries (optional)

4. Key field-level entries (optional)

5. Select and omit-field level entries (optional)

Repeat steps 2 through 5 for each record format in the file.

Figure 1 shows a multiple format logical file coding example.

Join logical files in DDS

Join logical files combine different fields from more than one physical file into a single record. You must

specify the JFILE keyword at the record level for join logical files.

Specify the entries in the following order to define a join logical file:

1. File-level entries (optional)

2. Record-level entries

3. Join-level entries

4. Field-level entries

5. Key field-level entries (optional)

6. Select/omit-field level entries (optional)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A* LOGICAL FILE EXAMPLE

00020A* INVENTORY FORMAT

00030A R INVFMT PFILE(INVENTORY)

00040A K ITEM

00050A*

00060A* ORDER FORMAT

00070A R ORDFMT PFILE(ORDER)

00080A TEXT(’ORDER ANALYSIS’)

00090A ITEM

00100A ORDER 10

00110A SUPPLY +2

00120A SHPDAT CONCAT(SHPMO SHPDA SHPYR)

00130A QTY 5P RENAME(QTYDUE)

00140A K ITEM

00150A K SHPYR

00160A K SHPMO

00170A K SHPDA

00180A O QTYDUE CMP(LT 1)

00190A*

00200A* ACCOUNTING FORMAT

00210A R ACTFMT PFILE(ACCOUNTS)

00220A FORMAT(ACCOUNTL)

00230A K ITEM

 A

Figure 1. Multiple Format Logical File Coding Example

2 OS/400 DDS for physical and logical files V5R3

Because only one record format is allowed in a join logical file, specify these entries only once.

Figure 2 shows a join logical file coding example.

 You can find an explanation of file-, record-, join-, field-, key field-, and select/omit field-levels in the

DDS Concepts information Describing data attributes using DDS topic.

Refer to the DDS Reference: Concepts information for rules to use when specifying keywords in DDS.

Specifying record formats in a logical file in DDS

If there is more than one record format specified in a logical file, you must specify the PFILE keyword for

each record format.

There are three ways to specify the fields in a record format:

v Specify the record format name and the PFILE keyword.

v Specify the record format name, the PFILE or JFILE keyword, and at least one individual field.

v Specify the record format name, the PFILE keyword, and the FORMAT keyword.

Figure 1 on page 2 illustrates the three ways to specify fields.

For each of the three ways to specify fields in a record format, you can have one of the following access

path specifications:

v Specify no key fields (arrival sequence access path). You cannot specify select/omit fields unless you

specify the DYNSLT keyword. You can specify only one record format with one physical file on the

PFILE keyword for the logical file.

v Specify one or more key fields (keyed sequence access path). If you specify more than one record

format in the logical file, each record format must have at least one key field specified. You can specify

select/omit fields for any of the record formats in the file.

v Specify the REFACCPTH keyword (keyed sequence access path). The access path information from

another physical or logical file is copied into the file you are defining.

The maximum number of fields in a record format is 8000. If any of the fields in the record format are

date, time, timestamp, variable length, or allows the null value, then the actual maximum number of

fields can be less than 8000. The maximum number of fields can vary depending on the number of fields

and combinations of fields that occur within the record format. The maximum number of bytes in a

record format is 32 766 if variable length fields are not included and 32 740 if variable length fields are

included. See Table 1 on page 22 for rules on determining the total length of the record format.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A* Joins fields from two physical files into one record format

00020A R RECORD1 JFILE(PF1 PF2)

00030A J JOIN(PF1 PF2)

00040A JFLD(NAME NAME)

00050A NAME JREF(1)

00060A ADDR

00070A PHONE

 A

Figure 2. Join Logical File Coding Example

Chapter 1. Defining physical and logical files using DDS 3

Positional entries for physical and logical files (positions 1 through 44)

This section describes how to specify the first 44 positions of the data description specifications form for

physical and logical files. To code the remainder of the form, see Chapter 2, “Keyword entries for

physical and logical files (positions 45 through 80),” on page 29.

The following positional entries are described below:

v Sequence number

v Form type

v Comment

v Conditioning

v Type of name or specification

v Reserved

v Name

v Reference

v Length

v Data type

v Decimal positions

v Usage

v Location

Figure 3 shows some positional entries for physical files.

 Figure 1 on page 2 and Figure 2 on page 3 show positional entries for multiple format and join logical

files.

Sequence number for physical and logical files (positions 1 through 5)

Use these positions to specify a sequence number for each line on the form. The sequence number is

optional and is used for documentation purposes only.

Form type for physical and logical files (position 6)

Type an A in this position to designate this as a DDS form. The form type is optional and is for

documentation purposes only.

Comment for physical and logical files (position 7)

Type an asterisk (*) in this position to identify this line as a comment. Use positions 8 through 80 for

comment text. A blank line (no characters specified in positions 7 through 80) is treated as a comment.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A* PHYSICAL FILE CODING EXAMPLE

00020A REF(INVENCTL/INVENTORY)

00030A UNIQUE

00040A R ORDFMT TEXT(’Format for Purchase Orders’)

00050A ORDNBR 7 0 COLHDG(’Order’ ’Number’)

00060A ITMNBR R 10

00070A SUPNBR R +2 REFFLD(SUPID SUPLIB/SUPMST)

00080A QTYORD 5B

00090A K ORDNBR

00100A K ITMNBR ABSVAL

 A

Figure 3. Physical File Coding Example

4 OS/400 DDS for physical and logical files V5R3

Comments can appear anywhere in DDS and are kept only in the source file. Comments are printed on

the source computer printout but not on the expanded source computer printout.

Conditioning for physical and logical files (positions 8 through 16)

These positions do not apply to physical or logical files. Leave these positions blank unless you use them

for comment text.

Type of name or specification for physical and logical files (position

17)

Type a value in this position to identify the type of name or, for logical files, the type of specification. If

you specify a name type, the name is specified in positions 19 through 28.

The valid entries for physical files are:

Entry Meaning

R Record format name

Blank Field name

K Key field name

Note: Specify only one R because a physical file can contain only one record format.

The valid entries for logical files are:

Entry Meaning

R Record format name

J Join specification

Blank Field name or select/omit AND condition

K Key field name

S Select field name

O Omit field name

For more information on types of names, see “Name for physical and logical files (positions 19 through

28).” For more information on join specifications, see “JOIN (Join) keyword—join logical files only” on

page 59.

Reserved for physical and logical files (position 18)

This position does not apply to any file type. Leave this position blank unless you use it for comment

text.

Name for physical and logical files (positions 19 through 28)

Use these positions to specify names of the following:

v The record format for this physical file or formats for this logical file

v The field name or field names that make up the record format (unless you specify the FORMAT or

PFILE keyword at the record level)

v The field or fields used as key fields

v For logical files, the field or fields to be used for select/omit specifications

Note: The file name is specified through the Create Physical File (CRTPF) command, not in the DDS.

Chapter 1. Defining physical and logical files using DDS 5

Refer to the DDS Concepts information for rules to use when specifying record or field names in DDS.

Names must begin in position 19.

You must specify the name type in position 17, unless you are specifying a field name or select/omit

AND condition.

Figure 3 on page 4 shows how to code names for a physical file. Figure 1 on page 2 and Figure 2 on page

3 show how to code names for logical files.

Record format

When you specify R in position 17, the name specified in positions 19 through 28 is a record format

name.

Record format for physical files:

Only one record format name is allowed for a physical file. Specify the record format name in one of two

ways:

v As the name of a new record format with field names specified in this physical file. The name of the

record format can be the same as the file name specified in the Create Physical File (CRTPF) command.

However, a warning message appears if the names are not unique, because some high-level language

processors do not allow record format and file names to be the same. RPG is such a high-level

language. The record format name and field names do not have to be unique to the system; the same

names can exist in another file.

v As the name of a record format previously defined in another physical file. The FORMAT keyword must

be specified. Field names and attributes are not specified. See “FORMAT (Format) keyword for

physical and logical files” on page 53 for an explanation of the FORMAT keyword.

Record format for simple and multiple format logical files:

You can specify more than one record format name. However, each name must be unique within the file.

See the appropriate high-level language manual for exceptions.

Specify the record format name in one of three ways:

v As the record format name in the first physical file specified on the PFILE keyword. This is required if

you do not specify the FORMAT keyword and do not identify individual fields by naming them in this

record format.

v As the name of a new record format with field names specified in this logical file. Every field must be

identified by name. No unnamed physical file fields are part of this logical file record format. Physical

file fields that are parameters of RENAME and CONCAT keywords are part of the logical file record

format. Physical file fields that are parameters of SST keywords are not part of the logical file record

format unless specified elsewhere.

v As the name of a record format previously described in a physical or logical file. Field names and

attributes are not specified and the FORMAT keyword must be specified. For a description of how to

specify the FORMAT keyword, see “FORMAT (Format) keyword for physical and logical files” on page

53.

The record format name can be the same as the file name specified in the create file command. However,

a warning message is sent if the names are not unique. Some high-level language processors, such as

RPG, do not allow record format and file names to be the same.

Use the PFILE keyword in conjunction with the record format name to specify the physical files with

which the record format is to be associated. A record format can have more than one physical file

specified on the PFILE keyword. If no fields are defined and the FORMAT keyword is not specified, the

6 OS/400 DDS for physical and logical files V5R3

format of the first file specified in the PFILE keyword is used as the format for all the physical files. (This

format is used for field attribute references and attribute and name checking.)

Join logical files:

Only one record format name can be specified. Specify the record format name as the name of a new

record format with field names specified in this logical file. Every field in the record format for a join

logical file must be identified by the name in positions 19 through 28. Physical file fields that are

parameters of the RENAME, CONCAT, and SST keywords are part of the logical file record format only

if you specify the field names elsewhere in the record format.

The JFILE keyword is required at the record level. It specifies the physical files that the record format

joins.

Field name

When position 17 is left blank, the name specified in positions 19 through 28 is a field name. You cannot

specify field names if you specify the FORMAT keyword.

Physical files require that each field be named. These names must be unique within the record format.

The field names appear in the physical buffer in the same order that they are specified in the DDS.

If you are describing a simple or multiple format logical file, you can use the record format as it exists in

the physical file on which this logical file is based, and you do not have to specify field names.

If you do not use the record format as it exists in the physical file, you must name each field specified in

a logical file. In a simple or multiple format logical file, each field name must be unique within the record

format and must correspond to a field in the physical file record format. The field name order is the

order in which the fields appear to programs using the logical file.

The name you give to a field in a logical file record format is usually the same as the corresponding field

name in the physical file record format. If different, the two names must be equated by using the

RENAME keyword. A field in a logical file record format can also represent the concatenation of two or

more fields from the physical file (see “CONCAT (Concatenate) keyword—logical files only” on page 40).

The SST keyword can also be used to describe a substring of a field from the physical file in the logical

file format.

Note: The sequence in which the field names are specified in the logical file is important. If the same

physical field is specified more than once in a record format in the logical file (by using either

RENAME or CONCAT), the sequence in which the fields are specified in the logical file is the

sequence that the data is moved to the physical file. Thus, the value of the field the last time the

field is specified in the logical file is the value in the physical record.

Key field name

When you specify K in position 17, the name specified in positions 19 through 28 is a key field name. It

must be one of the field names within the physical file record format. The contents of this field are used

to sequence the records for retrieval from the database. Specifying a key is optional. If no key field is

specified, the default sequence is arrival sequence (the order that the records were put into the file).

Use key fields (and optionally, select/omit fields) to define a keyed sequence access path for record

formats in the logical file member. The logical file member includes the physical file members specified

on the DTAMBRS parameter on the Create Logical File (CRTLF) or Add Logical File Member (ADDLFM)

commands.

Chapter 1. Defining physical and logical files using DDS 7

You can change the sequence of records as they are read from the file by specifying a sequencing

keyword. The sequencing keywords are ALTSEQ, NOALTSEQ, SIGNED, UNSIGNED, ABSVAL, ZONE,

DIGIT, DESCEND, FCFO, FIFO, and LIFO. Refer to the discussion of each of these keywords for more

information.

When you do not specify any sequencing keywords for a key field, the default sequence for that key field

is ascending order. The default for character, hexadecimal, date, time, and timestamp fields is the

UNSIGNED attribute. The default for numeric fields is the SIGNED attribute, except for zoned decimal

fields (S specified in position 35) in the following cases:

v When you specify ALTSEQ at the file level, all zoned decimal key fields in the file default to

UNSIGNED.

v When you specify DIGIT or ZONE for a zoned decimal key field, the field defaults to UNSIGNED.

If you specify more than one record format for a logical file or more than one physical file for the PFILE

keyword, you must specify at least one key field for all record formats of that logical file.

A key can have more than one key field. This is called a composite key. In a composite key, specify the key

field names in the order of importance (major to minor), and specify each key field name on a separate

line.

Figure 4 shows a multiple format logical file with two record formats, one of which uses a composite key.

In this example, RECORD1 has a single key field, FIELD1. RECORD2 has a composite key that includes

FIELD4 and FIELD5.

 If you do not specify a key field for a logical file, the file you are defining has an arrival sequence access

path.

The number of fields that make up a key is restricted to 120. The total key length cannot exceed 2000

bytes. (If the FCFO keyword is specified, the total key length cannot exceed 1995 bytes.) The total key

length includes the length of each key field. If any of the key fields allow the null value, add 1 byte for

each key field that allows the null value. The OS/400 program uses the extra byte to determine whether

the key contains the null value. If any of the key fields is variable length, add 2 bytes for each

variable-length key field. The OS/400 program uses the extra 2 bytes to store the allocated length of the

field.

When you specify more than one record format in a logical file, an additional byte for the first *NONE

key field position is required. An additional byte also may be required for each additional key field

position. The OS/400 program uses the extra bytes when records from different physical files have

duplicate key values.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PF1)

00020A FIELD1

00030A FIELD2

00040A FIELD3

00050A K FIELD1

00060A*

00070A R RECORD2 PFILE(PF2)

00080A FIELD4

00090A FIELD5

00100A K FIELD4

00110A K FIELD5

 A

Figure 4. Specifying a Multiple Format Logical File with Two Record Formats

8 OS/400 DDS for physical and logical files V5R3

For example, suppose a key consists of fields named FIELDA, FIELDB, and FIELDC (in that order). The

DDS appears as shown in Figure 5.

 The records are sequenced in the following order:

v They are sequenced according to the contents of FIELDA.

v If two or more records with the same value in FIELDA exist, the OS/400 program sequences those

records according to the values in FIELDB.

v If two or more of those records have the same value in both FIELDA and FIELDB, they are sequenced

according to the values in FIELDC.

Consider the following file:

 Record FIELDA FIELDB FIELDC

1 333 99 67

2 444 10 45

3 222 34 23

4 222 12 01

5 222 23 45

6 111 06 89

7 222 23 67

Assuming ascending sequencing for all fields, the records are retrieved in this order:

 Record FIELDA FIELDB FIELDC

6 111 06 89

4 222 12 01

5 222 23 45

7 222 23 67

3 222 34 23

1 333 99 67

2 444 10 45

The following information applies:

v Because records 3, 4, 5, and 7 have the same contents in FIELDA, FIELDB becomes the determining

field.

v Within those four records, 5 and 7 have the same values in FIELDB. For these two records, FIELDC

becomes the determining field.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A* SAMPLE COMPOSITE KEY (PHYSICAL FILE)

00020A R RECORD

00030A FIELDA 3 0

00040A FIELDB 3 0

00050A FIELDC 3 0

00060A FIELDD 3 0

00070A K FIELDA

00080A K FIELDB

00090A K FIELDC

 A

Note: Lines 00070 to 00090 make up the composite key.

Figure 5. Composite Key

Chapter 1. Defining physical and logical files using DDS 9

v If FIELDC also contains duplicate values, the records are retrieved in first-in first-out (FIFO), last-in

first-out (LIFO), or first-changed first-out (FCFO) order. To guarantee the order, specify the FIFO

keyword, the LIFO keyword, or the FCFO keyword. Specify the UNIQUE keyword to prevent

duplicate key values.

See “SIGNED (Signed) keyword for physical and logical files” on page 70 for an example that includes a

key field with negative (−) contents.

Special restrictions apply to key field specifications when either FILETYPE(*SRC) is used on the Create

Physical File (CRTPF) command or for the Create Source Physical File (CRTSRCPF) command. .

For logical files, the following rules apply to fields that you specify as key fields:

v For simple and multiple format logical files, the following search order is used to match key field

names with defined fields:

1. Fields specified in DDS positions 19 through 28

2. Fields specified as parameters on the CONCAT or RENAME keywords

If the field name is specified more than once, the first occurrence is used.

The field name on a CONCAT or RENAME keyword and the associated field name in positions 19

through 28 cannot both be specified as key fields.

The parameter name on the SST keyword is not valid as a key field unless it is defined elsewhere in

the logical file format.

v For join logical files, the key field name you specify must be specified at the field level in positions 19

through 28 and must be a field described in the primary file (the first physical file specified on the

JFILE keyword).

Note: If you specify a field as a parameter value on the CONCAT, RENAME, or SST keyword, but do

not specify the field in positions 19 through 28 of the join logical file, you cannot specify the

field as a key field.

If you are concatenating numeric with either character or hexadecimal, you cannot specify the numeric

fields as key fields. If you are concatenating zoned decimal and fields of any other numeric data type,

you cannot specify the fields of the other data types as key fields.

Figure 6 illustrates which concatenated fields can and cannot be used as key fields.

 In physical file PF1, ZFLD is zoned decimal and PFLD is packed decimal. Therefore Z is zoned decimal,

and PFLD cannot be used as a key field. ZFLD and Z can be used as key fields but not in the same

record format.

In physical file PF1, AFLD is a character field and NFLD is a numeric field. Therefore A is character, and

NFLD cannot be used as a key field. AFLD and A can be used as key fields but not in the same record

format.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PF1)

00020A FLD1

00030A FLD2

00040A Z CONCAT(ZFLD PFLD)

00050A A CONCAT(AFLD NFLD)

00060A K ZFLD

00070A K AFLD

 A

Figure 6. Correct and Incorrect Concatenated Fields

10 OS/400 DDS for physical and logical files V5R3

DDS Access Path Keywords: You can specify one or more access path keywords to affect the way the

OS/400 program builds and uses key values. The access path keywords are:

 File Level Key Field Level

ALTSEQ

FCFO

FIFO

LIFO

REFACCPTH

UNIQUE

DESCEND

DIGIT

SIGNED

UNSIGNED

ZONE

Different key fields within a composite key can have different access path keywords.

DDS Logical Files with More than One Record Format: When you specify more than one record

format in a logical file, you must specify at least one key field for every record format in the logical file.

It is not necessary to specify the same number of key fields in each key. Also, key fields specified in one

record format must have the same field attributes and access path keywords as the corresponding key

fields in other record formats in the same logical file. For variable-length key fields, a variable-length key

field will not be allowed to align with a fixed-length key field, even if the field types and lengths are the

same.

A key is required for every record format so that the logical file members can have a single access path

sequencing records of each record format. When records are returned from the various members of the

physical file on which the logical file is based, they are merged according to the values of the key fields

in the access path for the logical file member.

When records of a logical file member are sequenced, the OS/400 program builds a key value for each

record by concatenating the values in its key fields. The key value is then used to build the access path

for use by your program.

Each key field in a composite key has a key position. The first key field specified is in position 1, the

second key field specified is in position 2, and so on. During I/O operations to a logical file, the OS/400

program compares the key values of the records written to or read from the database. When you create a

logical file that has more than one record format (with or without different key fields specified), the

OS/400 program performs key position attribute checking. For key position attribute checking to succeed,

key fields of different record formats that are in the same key positions must have the same data type,

length, decimal positions, and access path keywords specified at the key field level. This ensures a

meaningful record sequence from the comparisons made during an I/O operation.

Floating-point fields used as key fields must have the same data type and precision but need not have

the same length and decimal positions.

In Figure 7, FIELD1, FLD1, and F1 must have the same attributes, and FIELD2, FLD2, and F2 must have

the same attributes. FIELD1, FLD1, and F1 are in key position 1; FIELD2, FLD2, and F2 are in key

position 2. One record format can have more key fields than another, and the additional fields do not

need key position attribute checking. FLD3 is such a field.

Chapter 1. Defining physical and logical files using DDS 11

For examples of key fields in a logical file with more than one record format, refer to Figure 1 on page 2.

In Figure 1 on page 2, fields named ITEM are specified in each key. For record formats INVFMT and

ACTFMT, ITEM is the only key field specified. For record format ORDFMT, a composite key is specified.

This composite key includes ITEM, SHPYR, SHPMO, and SHPDA. Each of the fields used in a key must

also exist at the field level. Therefore, ITEM must exist in the record format for the physical file

INVENTORY so that it can be copied into this logical file for INVFMT. Also, ITEM must exist in the

record format for the logical file ACCOUNTL so that it can be copied into this logical file for ACTFMT.

ITEM must also exist in physical file ACCOUNTS.

Using *NONE in the Key Field When Creating a DDS File: Two conditions occur in which key fields

having the same key position should not be compared. The two conditions are:

v The key fields do not have the same field attributes (data type, length, decimal positions, or access

path keywords at the field level).

v The key fields have the same attributes, but you do not want them to be merged and sequenced

together.

To avoid unwanted comparisons between key fields, specify *NONE in place of one of them and move

the displaced key field to the next key position. The OS/400 program compares the values of key

positions before and after *NONE, but retrieves the affected records in the order in which the record

formats are specified in the DDS for the logical file.

You can specify *NONE two or more times on the following lines to displace a key field to a key position

for which a comparison of key field attributes is relevant to your application.

Figure 8 on page 13 shows *NONE as the key field.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PF1)

00020A FIELD1 5 0

00030A FIELD2 10

00040A FIELD3 10

00050A K FIELD1

00060A K FIELD2 DESCEND

00070A*

00080A R RECORD2 PFILE(PF2)

00090A FLD1 5 0

00100A FLD2 10

00110A FLD3 20

00120A K FLD1

00130A K FLD2 DESCEND

00140A K FLD3

 A*

 A R RECORD3 PFILE(PF3)

 A F1 5 0

 A F2 10

 A F3 30

 A K F1

 A K F2 DESCEND

 A

 A

Figure 7. Key Field Attribute Checking

12 OS/400 DDS for physical and logical files V5R3

In Figure 8, the attributes for FIELD2, FLD2, and F2, must be identical. Since you specified *NONE for

the first key field of the second record, then FIELD1 and F1 (first key field of the first record and first key

field of the third record) must have identical attributes. FIELD3 and F3 must also have identical

attributes; there is no corresponding field in the second record format.

Figure 9 through Figure 12 on page 16 field.

 Record Format Key Positions

�1� �2�

CLSHST EMPNBR CLSDTE

JOBHST EMPNBR JOBDTE

DDS Example 1: In Figure 9, a logical file views records of two physical files through two different

record formats: CLSHST (class history) and JOBHST (job history). In the logical file, the records from the

two physical files can be merged together and sequenced by employee identification number (EMPNBR)

by specifying EMPNBR in key position 1.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD1 PFILE(PF1)

 A FIELD1 6A

 A FIELD2 4A

 A FIELD3 10A

 A K FIELD1

 A K FIELD2

 A K FIELD3

 A

 A R RECORD2 PFILE(PF2)

 A FLD1 3A

 A FLD2 4A

 A FLD3 12A

 A K *NONE

 A K FLD2

 A

 A R RECORD3 PFILE(PF3)

 A F1 6A

 A F2 4A

 A F3 10A

 A K F1

 A K F2

 A K F3

 A

Figure 8. Specifying *NONE as the Key Field

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R CLSHST PFILE(CLSHSTP)

00020A K EMPNBR �1�

00030A K CLSDTE �2�

00040A*

00050A R JOBHST PFILE(JOBHSTP)

00060A K EMPNBR �1�

00070A K JOBDTE �2�

 A

Figure 9. Specifying the Key Field (Example 1)

Chapter 1. Defining physical and logical files using DDS 13

All records that have the same key value for EMPNBR pertain to the same employee. To merge and

sequence all records for a given employee into a single history of classes and job assignments, specify

CLSDTE (date of class) and JOBDTE (date of job assignment) in key position 2 for the two record

formats, as shown in Figure 9 on page 13.

Suppose that the job assignment dates and class dates are the dates (month/year) that the class or

assignment started. Records for three students are retrieved in the following order:

 EMPNBR CLSDTE JOBDTE Description

1005 3/79 Completed class

1005 4/79 Left to begin new job

1005 4/79 Completed job

1005 6/79 Completed class

1006 1/79 Completed job

1006 2/79 Completed job

1006 3/79 Completed class

1006 5/79 Transferred to new location

1007 1/79 Completed job

1007 4/79 Completed job

1007 7/79 Completed job

1007 8/79 Left because of illness

The above report provides a continuous history for each student.

DDS Example 2: In Figure 10, another logical file views the same two physical files as in Example 1, but

the second record format in the logical file has *NONE specified in key position 2.

 Record Format Key Positions

�1� �2� �3�

CLSHST EMPNBR CLSDTE *NONE

JOBHST EMPNBR *NONE JOBDTE

As in Figure 9, all records from the two physical files are first merged and sequenced together on

employee number (EMPNBR). However, the records for each student are merged and sequenced first on

class date (CLSDTE) and then on job assignment date (JOBDTE). The set of records used for Figure 9 are

now retrieved as follows:

 EMPNBR CLSDTE JOBDTE Description

1005 3/79 Completed class

1005 4/79 Left to begin new job

1005 6/79 Completed class

1005 4/79 Completed job

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R CLSHST PFILE(CLSHSTP)

00020A K EMPNBR �1�

00030A K CLSDTE �2�

00040A*

00050A*

00060A R JOBHST PFILE(JOBHSTP)

00070A K EMPNBR �1�

00080A K *NONE �2�

00090A K JOBDTE �3�

 A

Figure 10. Specifying the Key Field (Example 2)

14 OS/400 DDS for physical and logical files V5R3

EMPNBR CLSDTE JOBDTE Description

1006 3/79 Completed class

1006 5/79 Transferred to new location

1006 1/79 Completed job

1006 2/79 Completed job

1007 8/79 Left because of illness

1007 1/79 Completed job

1007 4/79 Completed job

1007 7/79 Completed job

When several adjacent record formats have *NONE in the same key position, they form a set, relative to

record formats specified before and after them, that functions in sequencing as an individual record

format. Key fields specified after *NONE serve to merge and sequence records of the formats within the

set. The following example shows how several record formats function as a set.

DDS Example 3: In Figure 11, consider a logical employee file over five physical files.

Record Format Key Positions

�1� �2� �3�

EMPMST EMPNBR *NONE *NONE

CLSREG EMPNBR CLSDTE *NONE

CLSHST EMPNBR CLSDTE *NONE

JOBHST EMPNBR *NONE JOBDTE

ACTHST EMPNBR *NONE ACTDTE

The records are merged and sequenced as follows:

1. All records are merged and sequenced by employee number.

2. For a given employee, records are sequenced by:

a. The master record (of the EMPMST format)

b. Records of the CLSREG and CLSHST formats, merged and sequenced together on values of

CLSDTE (key position 2)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R EMPMST PFILE(EMPMSTP)

00020A K EMPNBR �1�

00030A*

00040A R CLSREG PFILE(CLSREGP)

00050A K EMPNBR �1�

00060A K CLSDTE �2�

00070A*

00080A R CLSHST PFILE(CLSHSTP)

00090A K EMPNBR �1�

00100A K CLSDTE �2�

00110A*

00120A R JOBHST PFILE(JOBHSTP)

00130A K EMPNBR �1�

00140A K *NONE �2�

00150A K JOBDTE �3�

00160A*

00170A R ACTHST PFILE(ACTHSTP)

00180A K EMPNBR �1�

00190A K *NONE �2�

00200A K ACTDTE �3�

 A

Figure 11. Specifying the Key Field (Example 3)

Chapter 1. Defining physical and logical files using DDS 15

c. Records of the JOBHST and ACTHST formats, merged together and sequenced together on values

of JOBDTE and ACTDTE (key position 3)

Specifying *NONE in the key definitions achieves this sequencing as follows:

v *NONE and a field name, CLSDTE, appear in the second key position of the adjacent formats, CLSHST

and JOBHST. This effectively causes a split between the two formats after the preceding key position

(position 1). Records of formats above the split are merged and sequenced with records of formats

below the split only on values of EMPNBR.

v An implicit *NONE in the second key position of the format EMPMST forces a similar split.

v With *NONE in key position 2, the JOBHST and ACTHST formats form a set in which the values of

JOBDTE and ACTDTE are compared in order to merge and sequence records of these two formats

only.

The record sequence defined by the previous key specifications is totally dependent on the order in

which the formats are specified. For example, if JOBHST had been specified before CLSHST, key position

2 would read:

*NONE, CLSDTE, *NONE, CLSDTE, *NONE

Here, the values of CLSDTE within CLSREG would not have been sequenced with the values of CLSDTE

within CLSHST, and JOBDTE would not have been sequenced with ACTDTE.

DDS Example 4: In Figure 12, assume that an employee has repeated a class. To sequence two records

with the same values for EMPNBR and CLSDTE, a third key field, DATE, is specified in record format

CLSHST. However, DATE cannot be specified in the next available key position (position 3) because

JOBDTE and ACTDTE appear in that position for other formats. If DATE is specified in this position, the

attributes of DATE are compared with the attributes of CLSHST and JOBHST, and the key definitions are

rejected.

To obtain the sequencing necessary, specify *NONE before DATE, displacing DATE to key position 4.

The DATE field can be shown in position 4 as in Figure 12.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R EMPMST PFILE(EMPMSTP)

00020A K EMPNBR

00030A*

00040A R CLSREG PFILE(CLSREGP)

00050A K EMPNBR

00060A K CLSDTE

00070A*

00080A R CLSHST PFILE(CLSHSTP)

00090A K EMPNBR

00100A K CLSDTE

00110A K *NONE �1�

00120A K DATE �1�

00130A*

00140A R JOBHST PFILE(JOBHSTP)

00150A K EMPNBR

00160A K *NONE

00170A K JOBDTE

00180A*

00190A R ACTHST PFILE(ACTHSTP)

00200A K EMPNBR

00210A K *NONE

00220A K ACTDTE

 A

Figure 12. Specifying the Key Field (Example 4)

16 OS/400 DDS for physical and logical files V5R3

Record Format Key Positions

�1� �2� �3� �4�

EMPMST EMPNBR *NONE *NONE *NONE

CLSREG EMPNBR CLSDTE *NONE *NONE

CLSHST EMPNBR CLSDTE *NONE DATE

JOBHST EMPNBR *NONE JOBDTE *NONE

ACTHST EMPNBR *NONE ACTDTE *NONE

Specifying DATE in key position 4 enables records from physical file CLSHSTP with identical values for

EMPNBR and CLSDTE to be merged and sequenced according to the value for DATE.

Note: Since values are actually placed in the keys to ensure the sequencing in the previous examples,

duplicate key values are not always predictable when *NONE is needed for logical files with more

than one record format.

Select or omit field name

Use select or omit fields to tell the OS/400 program how to select or omit records when your program

retrieves them using this record format. The only records affected are those from the physical file(s)

specified for the PFILE or JFILE keyword for this record format.

The following rules apply to select/omit fields in logical files:

v You can specify select/omit fields only if you also specify key fields or if you also specify the DYNSLT

keyword for the file. You can also specify *NONE as a key field to satisfy the requirement for a key

field when your application requires no key fields.

v For simple and multiple-format logical files, the OS/400 program uses the following search order to

match select/omit field names with defined fields:

– Fields specified in DDS positions 19 through 28

– Fields specified as parameters on the CONCAT or RENAME keywords

If the field name is specified more than once, the first occurrence is used.

The field name on a CONCAT or RENAME keyword and the associated field name in positions 19

through 28 cannot both be specified as select/omit fields.

The parameter name on the SST keyword is not valid as a select/omit field unless it is defined

elsewhere in the logical file record format.

For join logical files, the select/omit field name you specify must be specified at the field level in

positions 19 through 28.

When using the select/omit fields, specify either S or O in position 17. By specifying either S or O, the

select and omit comparison statements are ORed together. The system treats the ORed select and omit

comparison statements independently from one another. That is, if the select or omit comparison

condition is met, the record is either selected or omitted. If the condition is not met, the system proceeds

to the next comparison.

By specifying a blank in position 17, the select and omit comparison statements are ANDed together. The

combined comparisons must be met before the record is selected or omitted. See Figure 13 on page 18

and Figure 14 on page 19. In positions 19 through 28, specify a field name whose contents at processing

time determine whether the record is to be selected or omitted based on the select/omit keyword

specified for this field. The select/omit keywords are COMP, RANGE, and VALUES. The last select/omit

specification can be made with the ALL keyword, but a field name is not permitted.

The field must appear in both the physical file record format and the logical file record format.

Select/omit statements must follow all field and key field level entries for the record format. You can

specify both select and omit for the same record format. The following information applies:

Chapter 1. Defining physical and logical files using DDS 17

v If you specify both select and omit for a record format, the order in which you specify them is

important. The select/omit statements are processed in the order they are specified; if a record satisfies

a statement, the record is either selected or omitted as specified, and remaining select/omit statements

are not examined for that record. See Figure 15 on page 19.

v If you specify both select and omit statements, you can indicate whether records not meeting any of

the values specified are to be selected or omitted. See “ALL (All) keyword—logical files only” on page

31 for more information.

v If you do not specify the ALL keyword, the action taken for the records that do not meet the values is

the converse of the type of the last statement specified. Records that do not meet selection values are

omitted, and records that do not meet omission values are selected.

There are limits to the number of select/omit statements you can specify in a single logical file. If you

specify many select/omit statements and you cannot create the file, reduce the overhead for the file

through the following changes in the specifications, in decreasing order of importance:

v Reduce the number of record formats in the file.

v Reduce the number of physical files specified on the PFILE or JFILE keyword.

v Reduce the number of fields used (single occurrences) in the select/omit specifications.

You cannot specify a floating-point field as a select/omit field.

It is possible to have an access path with select/omit and process the file in arrival sequence. For

example, CPYF can be specified with FROMRCD(1) or the high-level language may not request keyed

processing. In this case, the processing is the same as if the DYNSLT keyword had been specified.

Figure 13 shows how to specify the select/omit field using ANDed select statements.

 In Figure 13, records are selected only if they satisfy two select statements: the first statement selects

records in which the value of field UPR is greater than 5.00, and the second statement selects records in

which the value of field QOH is less than 10. S is not specified in position 17 for field QOH. Therefore,

these select statements are ANDed together. For a record to be read by a program, both conditions

specified must be true.

Figure 14 on page 19 shows how to specify the select/omit field using an omit statement ORed with two

select statements ANDed together.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PARTS)

00020A PNO

00030A DSC

00040A UPR

00050A QOH

00060A K PNO

00070A S UPR COMP(GT 5.00)

00080A QOH COMP(LT 10)

00090A O ALL

 A

Figure 13. Specifying the Select/Omit Field (Example 1)

18 OS/400 DDS for physical and logical files V5R3

In Figure 14, records are supplied to the program if they pass both of the following tests:

v The DSC field is not equal to HAMMER.

v The UPR field is greater than 5.00 and the QOH field is less than 10.

Figure 15 shows several ways to specify the same select/omit logic.

 In Figure 15, you want to select all the records before 1978 for a sales representative named JSMITH in

the state of New York. There are three ways to code this example.

�1� All records must be compared with the select fields ST, REP, and YEAR before they can be

selected or omitted.

�2� All records in and after 1978 are omitted in the first comparison. Then, only the records before

1978 are compared with ST and REP. Only two select fields must be satisfied. This way is more

efficient than method �1�.

�3� All records that are not associated with JSMITH in the state of New York are omitted in the first

and second comparisons. Then, all records left are compared to YEAR. This is more efficient than

method �1� or method�2�.

Reference for physical and logical files (position 29)

For a logical file, leave this position blank. All logical files automatically provide the reference capability

for all specified fields. Any attributes that are not specified explicitly in the logical file are furnished from

the corresponding field in the physical file record format.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PARTS)

00020A PNO

00030A DSC

00040A UPR

00050A QOH

00060A K PNO

00070A O DSC COMP(EQ ’HAMMER’)

00080A S UPR COMP(GT 5.00)

00090A QOH COMP(LT 10)

00100A O ALL

 A

Figure 14. Specifying the Select/Omit Field (Example 2)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A S ST COMP(EQ ’NY’)

00020A REP COMP(EQ ’JSMITH’) �1�

00030A YEAR COMP(LT 78)

00040A O ALL

 A

00050A O YEAR COMP(GE 78)

00060A S ST COMP(EQ ’NY’) �2�

00070A REP COMP(EQ ’JSMITH’)

00080A O ALL

 A

00090A O REP COMP(NE ’JSMITH’)

00100A O ST COMP(NE ’NY’) �3�

00110A S YEAR COMP(LT 78)

00120A O ALL

 A

Figure 15. Specifying the Select/Omit Field (Example 3)

Chapter 1. Defining physical and logical files using DDS 19

For a physical file, specify R in this position to refer to the attributes of a previously defined named field

(called the referenced field). You must specify the REF or the REFFLD keyword. The referenced field can be

previously defined in either the physical file you are defining or a previously created database file. The

field attributes referred to are the length, data type, and decimal positions of the field, as well as the

ALIAS, COLHDG, DATFMT, DATSEP, FLTPCN, REFSHIFT, TEXT, TIMFMT, TIMSEP, VARLEN, editing,

and validity checking keywords.

If R is not specified, you must specify the field attributes for this field.

Note: If the DATFMT keyword is overridden on a reference field to *ISO, *EUR, *USA, or *JIS, the

DATSEP keyword is not referenced.

Position 29 must be blank at the file and record levels.

The referenced field name cannot be the same as the field you are defining if that field is in the file you

are defining. If the names are the same, specify the name of the file defining the referenced field as a

parameter value with the REF or REFFLD keyword. If the names are different, specify the name of the

referenced field with the REFFLD keyword. For more information, see “REF (Reference)

keyword—physical files only” on page 66, “REFFLD (Referenced Field) keyword—physical files only” on

page 67, and the topic ″When to specify REF and REFFLD keywords for DDS files″ in the DDS Concepts

information.

To override specific attributes of the referenced field, specify those attributes for the field you are

defining. In addition:

v If you specify Edit Code (EDTCDE) or Edit Word (EDTWRD) on the field, no editing specifications are

copied from the referenced field.

v If you specify CHECK (AB, ME, MF, M10, M10F, M11, M11F, VN, or VNE), CHKMSGID, COMP,

RANGE, or VALUES on the field, no validity checking specifications are copied from the referenced

field.

v If you specify data type, field length, or decimal positions for the field you are defining, then neither

editing nor validity checking keywords are copied from the referenced field.

Note: After the physical file is created, the referenced file can be deleted or changed without affecting the

field descriptions in the physical file. To incorporate changes made in the referenced file, delete

and re-create the physical file.

Length for physical and logical files (positions 30 through 34)

For a physical file, use these positions to specify the field length for each named field (unless you copy it

from a referenced field). Specify the number of digits for a numeric type field, or specify the number of

characters for a character type field.

For a logical file, use these positions to specify the length of a logical field. Specify the length only to

override or change the length of the corresponding field in the physical file on which this logical file is

based. If you leave this position blank, the field you are defining has the same length as the

corresponding field in the physical file(s) on which the logical file(s) is based. If the field in the physical

file is variable length and you leave the length blank, the field is also variable length in the logical file. If

you do specify a length, the field in the logical file is fixed length unless you also specify the VARLEN

keyword. Additionally, the SST (Substring) keyword may be used to control the length of a logical file

field by specifying a character string that is a subset of another field. For more information about SST

keyword, see “SST (Substring) keyword—logical files only” on page 71.

If you specify length, it must be right-justified; leading zeros are optional.

Figure 16 on page 21 shows correct and incorrect field length specifications for a physical file.

20 OS/400 DDS for physical and logical files V5R3

Valid length specifications are:

 Data Type Valid Lengths

Character 1 through 32 766 characters

Hexadecimal 1 through 32 766 bytes

Binary 1 through 18 digits

Binary Character 1 through 32 766 characters

Zoned decimal 1 through 63 digits

Packed decimal 1 through 63 digits

Floating-point

(single precision)

1 through 9 digits

Floating-point

(double precision)

1 through 17 digits

Date 6, 8, or 10 characters

Time 8 characters

Timestamp 26 characters

The length for fields with data type L (date), T (time), or Z (timestamp) is determined by the system. You

should not enter a field length in positions 30 through 34.

The field length for date and time includes the separator.

A timestamp has a fixed format that has the following form:

YYYY-MM-DD-hh.mm.ss.uuuuuu

Type in a maximum of 9 digits for single precision and 17 digits for double precision. The OS/400

program supports a floating-point accuracy of 7 digits for single precision and 15 digits for double

precision.

The total number of bytes occupied by all the fields in a record must not exceed 32 766 (in storage). See

Table 1 on page 22 for rules on determining the total length of the record format.

The system determines the number of bytes actually occupied in storage as follows:

 Data Type Bytes Occupied in Storage

Character Number of characters

Hexadecimal Number of bytes

Binary

1 through 4 digits 2 bytes

5 through 9 digits 4 bytes

10 through 18 digits 8 bytes

Binary Character Number of characters

Zoned decimal Number of digits

Packed decimal (Number of digits/2) + 1 (truncated if fractional)

|...+....1....+....2....+....3....+....4....+....5

00010A FIELD1 7

 A

00020A FIELD2 7

 A

00030A FIELD3 R +7

 A

Note: FIELD1 shows the field length specified incorrectly. FIELD2 and FIELD3 show the field length specified

correctly.

Figure 16. Correct and Incorrect Length Specifications for Physical Files

Chapter 1. Defining physical and logical files using DDS 21

||
||
||

||

Data Type Bytes Occupied in Storage

Floating-point

(single precision)

4 bytes

Floating-point

(double precision)

8 bytes

Date 10 characters without DATFMT keyword

and 6, 8 or 10 characters with DATFMT keyword

Time 8 characters

Timestamp 26 characters

Note: The system performs arithmetic operations more efficiently for a packed decimal than for a zoned

decimal data type.

Table 1 describes the rules for determining total format length.

 Table 1. Rules for Determining Total Format Length

Situation Action

Does the record format contain any

variable-length fields?

1. Add an extra 24 bytes to the total format length.

2. Add an extra 2 bytes to the format length for each field that is

variable length.

Does the record format contain any fields that

allow the null value?

Divide the total number of fields in the format by 8, round up to

the next highest whole byte, then add to format length.

To override the length of a referenced field (R in position 29) of a physical file or the length of the field in

a logical file, either specify a new value or a change in length. To increase the length, specify +n, where n

is the amount of increase. To decrease the length, specify −n, where n is the amount of decrease. For

example, type +4 to indicate that a numeric field is to be 4 digits longer than the referenced field. See

Figure 3 on page 4 for an example showing how to override the field length for a physical file. Figure 1

on page 2 shows how to change and override the field length for a logical file.

If the corresponding field in the physical file record format has a data type of binary with decimal

positions greater than zero, the length cannot be overridden in the logical file. If the field you are

describing is a concatenation of fields from the associated physical record format, you cannot specify the

length in the logical file. The sum of the physical field lengths is calculated by the system.

If you specify a value in positions 30 through 34, your program sees the specified length. However, the

length of the field in the corresponding physical file field does not change. This can cause data

conversion errors. When attempting to add a member to a file or to open a member of a file, the OS/400

program may send a mapping error message. The OS/400 program may also send a mapping error

message to your program in the following cases:

v When reading from a logical file that reduces the length specified in the corresponding physical file

v When writing to a logical file that increases the length specified in the corresponding physical file

For example, if the physical file field is defined as 4 characters long and the logical file field decreases the

length to 2 characters, a value of ABCD in the physical file cannot be read by the program, although a

value of AB can. In this case, the program can always write successfully. For character fields, the data is

left-justified and filled with blanks in the physical file field. For numeric fields, the data is right-justified

and filled with zeros in the physical file field.

Positions 30 through 34 are valid only for field specifications. You must leave these positions blank at the

key field, select/omit field, join, record, and file level.

22 OS/400 DDS for physical and logical files V5R3

Note: High-level languages can impose restrictions on the field length. Any length restrictions should be

observed for files used by these high-level languages.

Data type for physical and logical files (position 35)

For a physical file, use this position to specify the data type of the field within the database.

Specify data type in a logical file only to override or change the data type of the corresponding field in

the physical file on which this logical file is based. If you leave this position blank, the field you are

defining has the same data type as the corresponding field in the physical file(s) on which the logical

file(s) is based.

Valid data type entries are as follows:

Entry Meaning

P Packed decimal

S Zoned decimal

B Binary

F Floating-point

A Character

H Hexadecimal

L Date

T Time

Z Timestamp

5 Binary Character

Note: The data types J (only), E (either), O (open), and G (graphic) support DDS database files that use

DBCS. The G (graphic) data type also supports DDS database files that use UCS-2 or UTF-16. The

A (character) data type also supports database files that use UTF-8.

Figure 3 on page 4 and Figure 1 on page 2 show how to code the data type.

For physical files, if you do not specify a data type or duplicate one from a referenced field, the OS/400

program assigns the following defaults:

v A (character) if the decimal positions 36 through 37 are blank.

v P (packed decimal) if the decimal positions 36 through 37 contain a number in the range 0 through 63.

Notes:

1. Specify 0 in position 37 to indicate an integer numeric field for packed decimal, zoned decimal, or

binary fields.

2. Specify an F in position 35 for a single precision floating-point field. Use the FLTPCN keyword to

specify double precision or to change the precision of an already specified floating-point field.

3. Specify an H (hexadecimal) in position 35 to indicate a field whose contents are not interpreted by the

system. In most cases, hexadecimal fields are treated as character fields, except the contents of a

hexadecimal field are not translated to any character set or code page.

The following table shows what types of data conversion are valid between the data types of physical

and logical file fields, where valid conversions are marked with an X or with a reference to the table

notes:

Chapter 1. Defining physical and logical files using DDS 23

||

|
|
|

|

|
|
|

Data type of physical

file field

Data type of logical file field

A H S P B F L T Z UTF8 UTF16 UCS2 O J E G 5

Character (A) X X 1 X X X X X X

Hexadecimal (H) X X 1 X X X X

Zoned (S) 1 1 X X 2 X 1

Packed (P) X X 2 X

Binary (B) 2 2 3 2

Floating Point (F) X X 2 X

Date (L) 6,7 6 6 X

Time (T) 4 X

Timestamp (Z) 5 5 X

UTF-8 X X X X X X

UTF-16 X X X X X X

UCS-2 X X X X X X

Open (O) X X X X X X

Only (J) X X X X X X

Either (E) X X X X

Graphic (G) X X X X X X X

Binary character X X 1 X X X X

Notes:

1. Valid only if the number of characters (or bytes) equals the number of digits and the character (or hexadecimal) field is not defined as a

variable-length field.

2. Valid only if the binary field has a decimal precision of zero.

3. Valid only if both fields have the same decimal precision.

4. The system generates the field length for you so do not enter a length in columns 30 through 34. The length does not include the separator

character.

5. Valid only if the field is input only.

6. You may specify a field length (columns 30 to 34) for these data types on a logical file field. If you do not specify a length, the system will

generate a default length. Valid lengths for these data types are documented with the DATFMT keyword.

7. DBCS field types are not allowed to be mapped over DATE fields.

Converting One Numeric Data Type to Another in a DDS File

Any conversion of data types from the physical file record format is permitted within the numeric types.

For example, a binary field in the physical file can be converted to zoned decimal in the logical file.

Converting between Zoned Decimal and Character or Hexadecimal in a DDS File

You can convert zoned decimal fields to character or hexadecimal fields and the converse, provided that

the field lengths are the same. The data type of the field in your program is the data type specified in the

logical file. No error occurs in an I/O operation if the data passed contains only numeric characters (0

through 9). However, your program cannot send an I/O operation that attempts to pass characters other

than 0 through 9 from a character or hexadecimal field to a zoned decimal field. The OS/400 program

sends a message and the I/O operation cannot be completed.

For example, suppose a field is zoned decimal in the physical file. If you specify character type (A) for

presentation to your programs, you must ensure that the field contains only numeric characters (0

through 9) when it is returned through the logical file to the physical file.

In another example, suppose a field is a character field in the physical file. If you specify the field as a

zoned decimal field and as a key field in the logical file, you cannot create the logical file unless all

records in the physical file contain only numeric characters (0 through 9).

24 OS/400 DDS for physical and logical files V5R3

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

Converting from Floating Point to Packed Decimal, Zoned Decimal, or Binary in

DDS

If you are converting a floating-point field (in a physical file) to a packed decimal, zoned decimal, or

binary field (in a logical file), you must explicitly specify the length and decimal positions. When

converting floating-point data to fixed-point format make sure the values you specify for length and

decimal positions are large enough to accommodate the data. Physical file length and decimal positions

are presentation values only and do not indicate the magnitude of the number.

Converting Data Types When Concatenating Fields in DDS

If the field you are defining is a concatenation of fields from the associated physical file (specified by the

CONCAT keyword), you cannot specify the data type. The OS/400 program assigns the data type based

on the data types of the fields that are being concatenated. The general rules are:

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

v If the concatenation contains one or more character (A) fields, but no hexadecimal fields, the resulting

data type is character (A).

v If the concatenation contains only numeric (S, P, B) fields, the resulting data type is zoned decimal (S).

v If the concatenation contains UTF-8 fields, the result is UTF-8.

v If the concatenation contains UCS-2 or UTF-16 fields, the result is UTF-16 if there is a UTF-16 field in

the list; otherwise, the result is UCS-2.

v If the concatenation contains Binary character fields, the result is Binary character.

Converting Data Types When Substringing Fields in DDS

If the field you are defining is a substring of a field (specified by the SST keyword) from the logical file

or the associated physical file, the original field must be character, hexadecimal, zoned, DBCS-graphic or

Binary character (A, H, S, or G). If you do not specify the logical file field’s data type, then the

conversion is shown in the following table (the Source field type is the type of the physical file field or the

logical file field defined earlier in the logical file source):

 Source field type Logical file field becomes:

A A

H H

S A

G G

Binary character Binary character

Decimal positions for physical and logical files (positions 36 and 37)

For a physical file, use these positions to specify the decimal placement within a packed decimal, zoned

decimal, binary, or floating-point field. Specify a decimal number from 0 through 63 for the number of

decimal positions to the right of the decimal point. (The number must not be greater than the number of

digits specified in the field length.) Figure 3 on page 4 shows how to code the decimal positions field. If

the field length is greater than 9 for a binary field, the decimal positions value must be 0.

The data is actually stored in the system without a decimal point. The decimal point is only implied. For

example, the value stored for 1.23 is 123. This is what appears in display or printer files if editing is not

specified.

To override the position of a referenced field (R in position 29), either specify a new value or a change in

position. To increase the position, specify +n, where n is the amount of increase. To decrease the position,

specify −n, where n is the amount of decrease. For example, an entry of +4 indicates there are 4 more

digits to the right of the decimal point than were in the referenced field. An error message is sent if the

number of decimal positions is greater than the maximum allowed.

Chapter 1. Defining physical and logical files using DDS 25

|

|
|

|

|
|
|
|
|

|||

||

||

||

||

||
|

|
|
|
|
|

For logical files, specify decimal positions only to override or change the decimal positions of the

corresponding field in the physical file on which this logical file is based. If you leave these positions

blank, the field you are defining has the same decimal positions as the corresponding field in the physical

file on which this logical file is based.

To override or change the placement of the decimal point within a packed decimal or zoned decimal

field, specify a number from 0 through 63 to indicate the number of decimal positions to the right of the

decimal point. The number here must not be greater than the number of digits specified in the field

length. You cannot override or change decimals when the corresponding field in the physical file is

binary (data type B) and contains decimal positions greater than zero. When the logical file field is binary

and the corresponding field in the physical file is not binary (B specified in position 35 in the logical file),

the decimal positions must be zero for the binary field.

You can override the position of the field by specifying a new value or by specifying an increase or

decrease in position. To increase the position, specify +n, where n is the amount of increase. To decrease

the position, specify −n, where n is the amount of decrease. For example, an entry of +4 indicates there

are 4 more digits to the right of the decimal point than were in the referenced field.

If you specify a value in positions 36 through 37 and your program writes or retrieves data through the

logical file field to the physical file field, the OS/400 program aligns the data on the decimal point.

Depending on the case, this can cause the decimal values to be truncated, or it can cause a data

conversion error. Decimal values are truncated in the following cases:

v When reading from a logical file that reduces the number of decimal positions specified in the physical

file

v When writing to a logical file that increases the number of decimal positions specified in the physical

file

For example, if the physical file field is defined as 4 digits long with 2 decimal positions, and the logical

file field decreases the decimal positions to 0 decimal positions, a value of 0.20 in the physical file

becomes a value of 0 in the logical file, and a value of 2.52 in the physical file becomes a value of 2 in the

logical file.

When decimal values are truncated, the left side of the field is filled with zeros.

A data conversion error can occur in the following cases:

v When writing to a logical file that reduces the number of decimal positions specified in the physical

file

v When reading from a logical file that increases the number of decimal positions specified in the

physical file

The data conversion error occurs because too many digits would be moved into the space available to the

left of the decimal point. For example, if, as in the previous example, the physical file field is defined as 4

digits long with 2 decimal positions and the logical file field decreases the decimal positions to 0 decimal

positions, a value of 3322 written to the logical file cannot fit in the physical file because only 2 digits are

allowed left of the decimal point in the physical file.

To avoid data conversion errors, increase or decrease the length (positions 30 through 34) of the logical

file field by the same amount that you increase or decrease the decimal positions.

If you specify the CONCAT keyword for the field you are defining, you cannot specify decimal positions.

A field in the physical file that contains decimal positions cannot be included in a concatenated field.

Note: High-level languages can impose specific length and value restrictions on the decimal positions.

Observe these restrictions for files used by those high-level languages.

26 OS/400 DDS for physical and logical files V5R3

|
|
|
|
|
|
|

Usage for physical and logical files (position 38)

Use this field to specify that a named field is to be an input-only, both (both input and output are

allowed), or neither field.

For physical files, you can specify the following entries:

Entry Meaning

Blank Defaults to B (both input and output allowed)

B Both input and output allowed

Because the default is the same as the only value, you do not need to make an entry in this field.

Entries in position 38 are not referred to by the REF or REFFLD keywords. Therefore, a B in position 38

for a field in a physical file has no effect when that field is referred to in a display file.

The valid entries for logical files are described as follows:

Blank (Default)

If position 38 is blank, the following occurs:

v For simple and multiple format logical files (PFILE specified at the record level), the field is a both

(B) field.

v For join logical files (JFILE specified at the record level), the field is an input-only (I) field.

B (Both)

If position 38 is B, the field is a both field and can be used for both input and output operations. That

is, your program can read data from the field and write data to the field. Both fields are not valid for

join logical files, because join logical files are read-only files.

I (Input-Only)

If position 38 is I, the field is an input-only field and can be used for input operations only. That is,

your program can read data from the field, but cannot change the field. Typical cases of input-only

fields are key fields (to reduce maintenance of access paths), sensitive fields that a user can see but

not change (such as, in employee records, salary), and fields for which the SST or TRNTBL keyword

is specified.

 If your program performs a change to a record format in which you have specified input-only fields,

the input-only fields are not updated and no message is sent. If your program performs an output

operation to a record format in which you have specified input-only fields, the input-only fields take

default values (see “DFT (Default) keyword—physical files only” on page 45).

 Input-only fields are not valid in physical files.

N (Neither)

If position 38 is N, the field is a neither field (neither input nor output) and is valid only for join

logical files. A neither field can be used as a join field in a join logical file, but your program cannot

read a neither field.

 Use neither fields when the attributes of join fields in the physical files do not match. In this case,

one or both join fields must be redefined. However, you may not want to include the redefined fields

in the record format (that is, you may not want the application program to see the redefined fields).

Therefore, code the redefined join fields as N and they do not appear in the record format.

 A field with N in position 38 does not appear in the buffer used by your program. However, the field

description is displayed with the Display File Field Description (DSPFFD) command.

 Neither fields cannot be used as select/omit or key fields.

Entries in position 38 are not referred to using the REF or REFFLD keywords. Therefore, a B or an I in

position 38 for a field in a logical file has no effect when that field is referred to in a display file.

Chapter 1. Defining physical and logical files using DDS 27

Location for physical and logical files (positions 39 through 44)

These positions do not apply to physical or logical files. Leave these positions blank unless you use them

for comment text.

28 OS/400 DDS for physical and logical files V5R3

Chapter 2. Keyword entries for physical and logical files

(positions 45 through 80)

This section contains keyword entries valid for describing physical and logical files. They are typed in

positions 45 through 80 (functions). See the DDS Reference: Concepts information for a discussion of the

general rules for specifying keywords.

The following keywords are valid for both physical and logical files (except where noted):

 ABSVAL

ALIAS

ALL (logical files only)

ALTSEQ

ALWNULL (physical files only)

CCSID (physical files only)

CHECK

CHKMSGID

CMP

COLHDG

COMP

CONCAT (logical files only)

DATFMT

DATSEP

DESCEND

DFT (physical files only)

DIGIT

DYNSLT (logical files only)

EDTCDE

EDTWRD

FCFO

FIFO

FLTPCN

FORMAT

LIFO

NOALTSEQ

RANGE

REF (physical files only)

REFFLD (physical files only)

REFSHIFT

RENAME (logical files only)

SIGNED

SST (logical files only)

TEXT

TIMFMT

TIMSEP

TRNTBL (logical files only)

UNIQUE

UNSIGNED

VALUES

VARLEN

ZONE

The following keywords are valid only for simple and multiple format logical files:

v PFILE

v REFACCPTH

The following keywords are valid only for join logical files:

v JDFTVAL

v JDUPSEQ

v JFILE

v JFLD

v JOIN

v JREF

When you use DDS to describe a source file (usually created without DDS, using the CRTSRCPF

command) or when a logical file is based on a physical file to be used as a source file, you cannot use the

following keywords:

© Copyright IBM Corp. 2001, 2005 29

ABSVAL

ALTSEQ

DESCEND

FCFO

FIFO

LIFO

NOALTSEQ

SIGNED

UNIQUE

VARLEN

ZONE

ABSVAL (Absolute Value) keyword for physical and logical files

Use this key field level keyword to direct the OS/400 program to ignore the sign of the field when it

sequences the values associated with this numeric field. This keyword has no parameters.

The following example shows six records with a zoned decimal key field:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

1 98 F9F8

2 00 F0F0

3 98− F9D8

4 97 F9F7

5 20 F2F0

6 99 F9F9

If you do not specify any sequencing keywords or the ALTSEQ keyword, the default sequencing for the

key field is the SIGNED attribute. In this case, the records are sequenced in the following order:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

3 98− F9D8

2 00 F0F0

5 20 F2F0

4 97 F9F7

1 98 F9F8

6 99 F9F9

If you specify the ABSVAL keyword, the absolute value of the negative field is used, and the resulting

sequence is:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

2 00 F0D0

5 20 F2F0

4 97 F9F7

1 98 F9F8

3 98− F9D8

6 99 F9F9

The ABSVAL keyword is not valid for a character, date, time, timestamp, and hexadecimal data type

field. You cannot use this keyword with the DIGIT, SIGNED, UNSIGNED, or ZONE keywords.

ABSVAL (a key field-level keyword) causes ALTSEQ (a file-level keyword) to be ignored. If you specify

ABSVAL for a key field, NOALTSEQ is in effect for that key field, even if ALTSEQ was specified at the

file level. This occurs whether or not the NOALTSEQ keyword is specified.

Example:

Physical and Logical Files, ABSVAL

30 OS/400 DDS for physical and logical files V5R3

The following example shows how to specify the ABSVAL keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A ORDAMT 5 0

00020A K ORDAMT ABSVAL

 A

ALIAS (Alternative Name) keyword for physical and logical files

Use this field-level keyword to specify an alternative name for a field. When the program is compiled,

the alternative name is brought into the program instead of the DDS field name. The high-level language

compiler in use determines if the ALIAS name is used. Refer to the appropriate high-level language

reference manual for information about ALIAS support for that language.

The format of the keyword is:

ALIAS(alternative-name)

Refer to the DDS Concepts information for rules for ALIAS naming conventions.

The alternative name must be different from all other alternative names and from all DDS field names in

the record format. If a duplicate is found, an error message appears on the field name or alternative

name.

An alternative name cannot be used within DDS or any other OS/400 function (for example, as a key

field name, as the field name specified for the REFFLD keyword, or as a field name used in the Copy File

(CPYF) command).

When you refer to a field that has the ALIAS keyword, the ALIAS keyword is copied in unless the

ALIAS keyword is explicitly specified on the referencing field.

Example:

The following example shows how to specify the ALIAS keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A FIELDA 25A ALIAS(CUSTOMERNAME)

 A

In the example, the alternative name for FIELDA is CUSTOMERNAME.

ALL (All) keyword—logical files only

Use this select/omit field-level keyword to specify the action to be taken after all other select/omit

specifications have been processed for this logical file. Specify ALL with S in position 17 to direct the

OS/400 program to select any records that do not meet any of the other select/omit rules. Specify O in

position 17 to direct the OS/400 program to omit any records that do not meet any of the other

select/omit rules. If specified, ALL must follow the other select/omit keywords. You cannot specify a

field name with the ALL keyword.

This keyword has no parameters.

If you do not specify the ALL keyword, the default action taken is the opposite of the last select/omit

specification you made for the file. If the last specification was a select, the default is to omit all. If the

last specification was an omit, the default is to select all.

Example:

The following example shows how to specify the ALL keyword.

Physical and Logical Files, ABSVAL

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 31

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A S ACT COMP(EQ 3000)

00020A S ACT COMP(GT 3100)

00030A O AMT COMP(LT 0)

00040A O ALL

 A

ALTSEQ (Alternative Collating Sequence) keyword for physical and

logical files

Use this file-level keyword to direct the OS/400 program to use an alternative collating sequence table

when sequencing the records of a file member for retrieval, if you specified a key for this file.

The format of the keyword is:

ALTSEQ([library-name/]table-name)

The name of the alternative collating sequence table is a required parameter value. The library-name is

optional. If you do not specify the library-name, the OS/400 program uses the library list (*LIBL) at file

creation time.

The ALTSEQ keyword is not valid under the following conditions:

v When you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File (CRTLF)

commands.

v When key fields have a data type of packed decimal, binary, or floating-point.

v When key fields are specified with ABSVAL or SIGNED. For those fields, NOALTSEQ (a key field-level

keyword) is assumed and does not need to be specified. You can specify NOALTSEQ for any field in a

composite key that does not require the alternative sequence.

v When you specify a value other than *SRC on the SRTSEQ parameter on the Create Physical File

(CRTPF) or Create Logical File (CRTLF) command.

The ALTSEQ keyword cannot be specified with the REFACCPTH keyword.

You must have use authority to the alternative collating sequence table. The alternative collating sequence

table is created using the Create Table (CRTTBL) command.

ALTSEQ causes zoned key fields to default to unsigned sequence. You can override the default by

specifying the SIGNED keyword for individual key fields.

Example:

The following example shows how to specify the ALTSEQ keyword for a logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A ALTSEQ(TABLELIB/TABLE1)

00020A R RECORD1 PFILE (PF1)

00030A :

00040A :

00050A :

00060A NAME 20

00070A :

00080A :

00090A K NAME

 A

Records with format RECORD1 are sequenced by key NAME according to the alternative collating

sequence table (TABLE1 in library TABLELIB).

Physical and Logical Files, ALL

32 OS/400 DDS for physical and logical files V5R3

ALWNULL (Allow Null Value) keyword—physical files only

Use this field-level keyword to define this field to allow the null value.

This keyword has no parameters.

When you specify the ALWNULL keyword, the maximum length you can specify in positions 30 to 34 is

32 765 bytes (32 739 if the field is also variable length).

For physical files, when you specify the DATFMT keyword with values of *JOB, *MDY, *DMY, *YMD, or

*JUL and the field allows null value, you must specify a valid date on the DFT keyword for this field.

Example:

The following example shows how to specify the ALWNULL keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1

00020A FIELD1 75A ALWNULL

00030A FIELD2 100A

00040A FIELD3 L ALWNULL

00050A DATFMT(*MDY)

00060A DFT(’12/25/93’)

 A

FIELD1 is defined to allow the null value. The default value of FIELD1 is the null value. FIELD2 is

defined to not allow the null value. The default value of FIELD2 is blanks.

CCSID (Coded Character Set Identifier) keyword for physical and

logical files

Use this file- or field-level keyword on physical files and this field-level keyword on logical files to

specify a coded character set identifier for character fields.

The format of the keyword is:

CCSID(value [field-display-length | *MIN | *LEN display-positions]

 [*CONVERT | *NOCONVERT] [*NORMALIZE])

The value is a number up to 5 digits long that identifies a specific set of encoding scheme identifiers,

character set identifiers, code page identifiers, and other relevant information that uniquely identifies the

coded graphic character representation used for the data in the field.

For logical files, the following characteristics must be true before the CCSID keyword is allowed on a

logical file field.

v If the specified value on the logical file CCSID keyword uses a Unicode encoding scheme, then the

field data type must be G for a UCS-2 Level 1 or a UTF-16 encoding scheme, and the field data type

must be A for a UTF-8 encoding scheme. Also, the corresponding physical file field must be of types A,

G, or O.

v If the specified value on the logical file CCSID keyword does not use the Unicode encoding scheme,

then the field data type must be A, O, or G. Also, the corresponding physical file field must be a G

type field and have the CCSID keyword specified with a UCS-2 or UTF-16 value, or be an A (character)

type field with a UTF-8 CCSID.

The field-display-length parameter is optional and is only used when the field is referenced by a field in

a display file. The parameter is only valid when the value parameter is UCS-2 or UTF-16. The

field-display-length allows the user to control the field size according to the UCS-2 or UTF-16 data. See

the description of the CCSID keyword for display files for more information.

Physical and Logical Files, ALWNULL

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 33

|
|

|
|
|
|

|
|
|
|

|
|
|
|

A special value, *MIN, can be specified instead of a field-display-length. It can be defined in a physical

file only for use by a referencing field in a display file DDS record format. This value is used to specify a

field display length defined in terms of display positions. This value causes the field length on the screen

to be equal to the field length defined in the DDS.

A special value, *LEN, along with the display-positions value can be specified instead of a

field-display-length. It can be defined in the physical file only for use by a referencing field in a display

file DDS record format. This value is used to specify a field display length defined in terms of display

positions. This value causes the field length on the screen to be equal to the display-positions value.

The *CONVERT parameter is optional. It can be defined in a physical file only for use by a referencing

field in a printer file DDS record format. The parameter specifies that, when the field prints, the UCS-2 or

UTF-16 data is converted to the target CCSID specified on the CHRID command parameter on the

CRTPRTF, CHGPRTF, or OVRPRTF command. If you do not specify this parameter, the keyword defaults

to *CONVERT. If you specify *NOCONVERT, the UCS-2 or UTF-16 data will be not converted to the

target CCSID.

The *NORMALIZE parameter is optional, but provides more predictable results when you are using

UTF-8 and UTF-16 data. You can use this parameter to combine characters in UTF-8 and UTF-16 data.

This support for combining characters allows a resulting character to be comprised of more than one

character. After the first character, up to 300 different nonspacing accent characters (umlaut, accent, and

so on) can follow in the data string. If the resulting character is one that is already defined in the

character set, normalization replaces the string of combining characters with the hex value of the defined

character. If the resulting character is not a defined character, the combining character string is unchanged

after normalization. For example, normalization of a UTF-16 graphic string of an ’e’ (X’0065’) followed by

an acute character (X’0301’) results in the replacement character é (X’00E9’).

You can use the *NORMALIZE parameter only when the CCSID keyword is used at the field level.

Without this keyword, the system assumes that data inserted or updated into UTF-8 and UTF-16 fields is

already normalized. *NORMALIZE is valid only with a CCSID keyword UTF-16 value (on a graphic

field) or UTF-8 value (on a character field).

When specified at the file level for physical files, the CCSID keyword applies to each character field in

the file except those character fields that also have the CCSID keyword specified. If the file level CCSID

is UCS-2 or UTF-16, it is applied to any G field that does not have a CCSID keyword. If a CCSID value

on the physical file field used the UCS-2 encoding scheme, the data type of this field must be type G. If a

CCSID value on the physical file field used the UTF-8 encoding scheme, the data type of this field must

be character. If a CCSID value on the physical file field used the UTF-16 encoding scheme, the data type

of this field must be type G.

If the CCSID keyword is not specified at the file level and not all character fields have the CCSID

keyword specified, then the fields are assigned the job’s default CCSID when the file is created.

For a list of the valid CCSIDs, see the Globalization topic in the Programming category of the

Information Center.

Example 1:

The following example shows how to specify the CCSID keyword for physical files.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A CCSID(285)

00020A R RECORD1

00030A FIELD1 75G CCSID(13488)

00040A FIELD2 150A

Physical and Logical Files, CCSID

34 OS/400 DDS for physical and logical files V5R3

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

00050A FIELD3 20A

00060A FIELD4 10A CCSID(1208 *NORMALIZE)

00070A FIELD5 10G CCSID(1200)

 A

FIELD1 is assigned a UCS-2-ccsid value of 13488. FIELD2 and FIELD3 are assigned a CCSID value of 285.

FIELD4 is assigned a UTF-8 CCSID value of 1208 and its data will be normalized before being inserted or

updated in the file. FIELD5 is assigned a UTF-16 CCSID value of 1200 and its data will not be

normalized before being inserted or updated in the file.

Example 2:

The following example shows how to specify the CCSID keyword on a corresponding logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00000A

00010A R RECORD1

00020A FIELD1 75A CCSID(37)

00030A FIELD2 150G CCSID(13488 80)

00040A FIELD3 20A

00050A FIELD4 10G CCSID(1200 *NORMALIZE)

00060A FIELD5 10A

 A

The logical file’s FIELD1 is assigned a SBCS CCSID value of 37. Conversion occurs between the physical

file and the logical file for FIELD1 since the physical file field contains UCS-2 data. The logical file’s

FIELD2 is assigned a UCS-2-ccsid value of 13488. Conversion occurs between the physical file and the

logical file for FIELD2 since the logical file contains UCS-2 data. A CCSID is not specified for FIELD3.

FIELD4 is assigned a UTF-16 CCSID value of 1200. Conversion occurs between the physical file and the

logical file for FIELD4 since the physical file field contains UTF-8 character data. The data will be

normalized. FIELD5 is assigned the CCSID of the job in which the file is created. Conversion occurs

between the physical file and the logical file for FIELD5 since the physical file field contains UTF-16 data.

The data will not be normalized.

CHECK (Check) keyword for physical and logical files

Use this field-level keyword to specify validity checking in display files.

The format of the keyword is:

CHECK(edit-check-code [. . .])

CHECK does not affect the physical or logical file being defined. When you define an input-capable field

in a display file, refer to the field you are now defining by specifying R in position 29 and using the REF

or REFFLD keyword. At display file creation, the OS/400 program copies the CHECK keyword and other

field attributes from the field in the physical or logical file into the field in the display file. You can

override the CHECK keyword (as well as all other validity-checking keywords and the CHKMSGID

keyword) by specifying any validity checking keyword for the field in the display file. See the Reference

for display files topic for details.

The rules for specifying this keyword in a physical or logical file are similar to those for a display file.

However, only the following codes are allowed in physical or logical files:

Code Meaning

AB Allow blank

ME Mandatory enter

MF Mandatory fill

M10 IBM* Modulus 10 self-check algorithm

Physical and Logical Files, CCSID

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 35

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

M10F IBM Modulus 10 self-check algorithm

M11 IBM Modulus 11 self-check algorithm

M11F IBM Modulus 11 self-check algorithm

VN Validate name

VNE Validate name extended

You cannot specify the CHECK(AB), CHECK(VN), CHECK(VNE), CHECK(M10), CHECK(M11),

CHECK(M10F), or CHECK(M11F) keywords on a floating-point field (F in position 35). You cannot

specify the CHECK keyword on a hexadecimal field (H in position 35). Do not specify the CHECK

keyword on a date, time, or timestamp field (L, T, or Z in position 35).

See the CHECK keyword for display files for more information and an example that shows how to

specify the keyword.

CHKMSGID (Check Message Identifier) keyword for physical and

logical files

Use this field-level keyword to identify an error message that is associated with validity checking

keywords. If the CHKMSGID keyword is not specified, a system-supplied message is used. If the

CHKMSGID keyword is specified and the field you are now defining is referred to later during display

file creation, the validity checking information and the CHKMSGID keyword are copied into the display

file. If a validity checking error is found while checking input from the screen, the error message

specified on the CHKMSGID keyword is displayed on the message line.

CHKMSGID does not affect the physical or logical file you are defining.

The format of the keyword is:

CHKMSGID(message-id [library/]message-file [message-data-field])

If the message-data-field parameter is specified, the field it identifies does not need to be defined in the

physical or logical file. However, if the field containing the CHKMSGID keyword is referred to during

display file creation, the message data field must be defined in the display file (in the same record format

as the field with the CHKMSGID keyword).

CHKMSGID is allowed only on fields that also contain a VALUES, RANGE, CMP, COMP, CHECK(M10),

CHECK(M11), CHECK(VN), or CHECK(VNE) keyword.

See the description for the CHKMSGID keyword for display files for more information and an example

that shows how to specify the keyword.

CMP (Comparison) keyword for physical and logical files

This keyword is equivalent to the COMP keyword.

The format of the keyword is:

CMP(relational-operator value)

The COMP keyword is preferred. See “COMP (Comparison) keyword for physical and logical files” on

page 37 for an explanation of how to use these keywords.

Physical and Logical Files, CHECK

36 OS/400 DDS for physical and logical files V5R3

COLHDG (Column Heading) keyword for physical and logical files

Use this field-level keyword to specify column headings used as a label for this field by text

management, the query utility, the data file utility (DFU), and the screen design aid (SDA).

The format of the keyword is:

COLHDG(’line-1’ [’line-2’ [’line-3’]])

A maximum of three lines of 20 characters each is allowed. Each line of the column heading must be

enclosed in apostrophes. Use double apostrophes (’ ’) to specify apostrophes within column headings.

Use one or more blanks to separate the first column heading line from the second and the second from

the third.

For a physical file, if you do not specify COLHDG and it is not retrieved from a referenced field, the field

name is used. If you do not specify COLHDG for a logical file, the column heading from the physical file

is used, except when the field is a concatenation of fields; in this case, the default is the field name.

If you specify COLHDG but do not specify TEXT, 50 positions of column heading information are used

as text. For example, COLHDG(’Order’ ’Date’) is equivalent to TEXT(’Order Date’).

Example:

The following example shows how to specify the COLHDG keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00150A ORDDAT 5 0 COLHDG(’Order’ ’Date’)

00160A NAME 20 COLHDG(’Customer’’s Name’)

00170A CITY 20 COLHDG(’Customer’ ’City’ ’Field’)

 A

Decimal positions or data type must be specified for ORDDAT since Order Date is a numeric field

(denoted by NNNNN below).

The following display illustrates how the column headings can appear when running text management,

query, DFU, or SDA.

Customer

Order City

Date Customer’s Name Field

NNNNN XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX

COMP (Comparison) keyword for physical and logical files

Use this field-level keyword to specify validity checking for the field you are defining when it is referred

to later during display file creation. For logical files, you can also specify this keyword at the

select/omit-field level. COMP is equivalent to CMP.

The format of the keyword is:

COMP(relational-operator value)

At the select/omit-field level, the format of the keyword is:

COMP(relational-operator field-name)

Valid relational operators are:

Relational Operator

Meaning

Physical and Logical Files, COLHDG

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 37

EQ Equal to

NE Not equal to

LT Less than

NL Not less than

GT Greater than

NG Not greater than

LE Less than or equal to

GE Greater than or equal to

Specify the value parameter at either the field level or the select/omit field level. Specify the field name

parameter only at the select/omit field level.

Example 1:

The following example shows how to specify the COMP keyword for character and numeric strings.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD PFILE(PF1)

00020A

00030A FIELDA 1 0 COMP(NE O) �1�

C0040A FIELDB 1 COMP(NE ’A’) �1�

00050A FIELDC

00060A FIELDD

00070A FIELDE

00080A K FIELDB

00090A S FIELDC COMP(EQ FIELDD) �2�

00100A S FIELDA COMP(NE O) �2�

00110A S FIELDE COMP(NE *NULL) �2�

00120A O FIELDB COMP(GE ’A’) �2�

 A

�1� COMP is specified for FIELDA and FIELDB as a validity checking keyword for display files that

refer to FIELDA and FIELDB.

�2� COMP is specified as a select/omit keyword for FIELDC, FIELDA, FIELDB, and FIELDE. Records

from the physical file PF1 are retrieved through this logical file record format depending on the

following comparisons:

v FIELDC: Records are selected when FIELDC equals FIELDD.

v FIELDA: Records not meeting FIELDC test are selected only when FIELDA is not equal to zero.

v FIELDE: Records not meeting FIELDA test are selected only when FIELDE is not the null

value.

 Example 2:

The following example specifies the COMP keyword using a hexadecimal character string.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RCD1 PFILE(PF1)

00020A CODEA

00030A FLD1

00040A FLD2

00050A K FLD1

00060A S CODEA COMP(EQ X’51’)

 A

COMP is specified as a select/omit keyword for CODEA (which is a 1-byte field). Records from physical

file PF1 are retrieved through this record format only if the value of field CODEA is hex 51.

Physical and Logical Files, COMP

38 OS/400 DDS for physical and logical files V5R3

Specifying COMP at the field level

At the field level, COMP does not affect the physical or logical file you are describing. However, when

you describe an input-capable field in a display file, you can refer to the field you are now describing by

specifying R in position 29 and the REF or REFFLD keyword. During display file creation, the OS/400

program copies the COMP keyword and other field attributes from the field in the logical file into the

field in the display file. You can override the COMP keyword (as well as all other validity-checking

keywords and the CHKMSGID keyword) by specifying any validity checking keyword for the field in the

display file. See the Reference for display files topic for details.

You cannot specify a field name as a parameter value for a field-level COMP keyword.

You cannot specify *NULL as a parameter value for a field level COMP keyword.

You cannot specify the COMP keyword on a floating-point field (F in position 35) or a hexadecimal field

(H in position 35). Do not specify the COMP keyword on a date, time, or timestamp field (L, T, or Z in

position 35).

The rules for specifying this keyword in a physical or logical file are the same as for a display file. See

the COMP keyword for display files for more information and an example that shows how to specify the

keyword.

Defining a numeric field for physical and logical files:

When a work station user types in data, the OS/400 program aligns the characters typed in according to

the number of decimal positions in the field. Leading and trailing blanks are filled with zeros when the

field is passed to your program. If you do not type a decimal character, the OS/400 program places a

decimal character to the right of the farthest right character typed. For example, for a numeric field with

a length of 5 (specified in position 34) and 2 decimal positions (specified in position 37), 1.2 is interpreted

as 001.20, and 100 is interpreted as 100.00.

Specifying COMP at the select or omit-field level

At the select/omit-field level, you can specify a field name, a value, or *NULL for the parameter.

If the select/omit field is a Binary character field, the field-name parameter must also be a Binary

character field. The comparisons for Binary character select/omit fields will also need to take the actual

lengths of the operands into consideration. The operands will only compare as equal if the actual lengths

of the operands are equal. Shorter operands will be considered less than the longer operands when they

are equal up to the length of the shorter operand.

If you specify a value, the following rules apply:

v If you are defining a character field, specify a character constant or a hexadecimal character string.

Specify character strings with apostrophes (see example 1 above).

Specify hexadecimal character strings as an X followed by a combination of the digits 0 through 9 and

the letters A through F, enclosed in apostrophes. The number of hexadecimal digits in apostrophes

must be exactly twice the specified length of the field (see example 2 above).

v If you are defining a numeric field, specify a numeric string (digits 0 through 9 specified without

apostrophes) as shown in example 2.

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT

keyword and use the same separator as specified on the DATSEP keyword. For example, COMP(EQ

’12/15/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is specified for DATSEP.

Physical and Logical Files, COMP

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 39

|
|
|
|
|

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT

keyword and use the same separator as specified on the TIMSEP keyword. For example, COMP(EQ

’11.00.00’) is the default value if *ISO is specified for TIMFMT. The default separator for *ISO is a

period (.).

v If you are defining a timestamp field, you must specify the default value in the following format:

COMP(EQ ’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

If you specify *NULL, the relational operator must be EQ or NE.

COMP selects or omits records retrieved from the physical file on which this logical file is based when

your program sends an input operation to the record format you are defining. The OS/400 program

selects or omits records as a result of testing the value of the select/omit fields against the value you

specify, the value of the field whose name you specify, or the null value (if *NULL was specified).

CONCAT (Concatenate) keyword—logical files only

Use this field-level keyword when you want to combine two or more fields from the physical file record

format into one field in the logical file record format you are defining. The name of this concatenated

field must appear in positions 19 through 28.

The format of the keyword is:

CONCAT(field-1 field-2...)

Specify the physical file field names in the order in which you want them to be concatenated, and

separate them by blanks.

If the same physical field is specified more than once in a record format in the logical file (that is, by

using either RENAME or CONCAT), the sequence in which the fields are specified in the logical file is

the sequence in which the data is moved to the physical file on an update or insert operation. Thus, the

value in the last occurrence of the physical field is the value that is put in the physical record and is the

value that is used for all keys built over that physical field. All previous values of the same field are

ignored.

If you want to use a field defined using the CONCAT keyword or a field specified as a parameter value

on the CONCAT keyword as a key field, see “Key field name” on page 7.

Binary character fields can be concatenated only with other Binary character fields. UTF-8 fields can be

concatenated only with other UTF-8 fields. UCS-2 and UTF-16 fields can be concatenated only with fields

of the same type or with each other.

You cannot include a field containing decimal positions other than zero in a concatenated field. You can

include a field having decimal positions of zero in which case the field is treated as an integer field.

The OS/400 program assigns the length of the concatenated field as the sum of the lengths (digits and

characters) of the fields included in the concatenation.

The OS/400 program assigns the field to be fixed length or variable length based on the fields that are

concatenated. The general rules are:

v Concatenation of a variable-length field to either a fixed-length field or another variable-length field

results in a variable-length field.

v Concatenation of a fixed-length field to a fixed-length field results in a fixed-length field unless the

VARLEN keyword is also specified on the same field as the CONCAT keyword.

Note: If the result of the concatenation is a variable-length field, a field that allows the null value, a

UCS-2 field, a UTF-16 field, a UTF-8 field, or a Binary character field, the CONCAT field must

Physical and Logical Files, COMP

40 OS/400 DDS for physical and logical files V5R3

|
|
|

|
|

be input only (I in position 38). If a logical file record format contains a concatenation, it cannot

contain any fields that allow the null value from the physical file record format of the based-on

file.

The OS/400 program assigns the data type based on the data types of the fields that are being

concatenated. The general rules are:

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

v If the concatenation contains one or more character (A) fields, but no hexadecimal fields, the resulting

data type is character (A).

v If the concatenation contains only numeric (S, P, B) fields, the resulting data type is zoned decimal (S).

v If the concatenation contains UTF-8 fields, the result is a UTF-8 field.

v If the concatenation contains UCS-2 or UTF-16 fields, the result is UTF-16 if there is at least one UTF-16

field in the list; otherwise, the result is UCS-2.

v If the concatenation contains Binary character fields, the result is Binary character.

When concatenating numeric fields, the sign of the farthest right field in the concatenation is used as the

sign of the concatenated field. The signs of the other fields are ignored; however, they are present in the

concatenated field. Therefore, if a negative value appears in a field other than the last, you must take

appropriate action to delete the embedded signs (such as converting the concatenated field to packed

decimal).

The maximum length of a concatenated field varies, depending on the data type of the concatenated field

and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its total

length cannot exceed 63 bytes. If the field is character (A) or hexadecimal (H), its total length cannot

exceed 32 766 bytes. If the concatenated field is a variable length field, its total length cannot exceed

32 740 (32 739 if the field also allows the null value).

You cannot include a floating-point, date, time, or timestamp field in a concatenated field.

In join logical files, the fields to be concatenated must be from the same physical file. The first field

specified on the CONCAT keyword identifies which physical file is used. The first field must, therefore,

be unique among the physical files the join logical file is based on, or you must also specify the JREF

keyword following the CONCAT keyword to specify which physical file to use.

See the DBCS-specific CONCAT (Concatenate) keyword for additional information about using the

CONCAT keyword with DBCS data.

Examples:

The following examples show how to specify the CONCAT keyword.

Example 1:

MTH, DAY, and YEAR are fields in the physical file that are concatenated into one field DATE in the

logical file, as shown in the following example.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PF1)

00020A DATE CONCAT(MTH DAY YEAR)

 A

Example 2:

Physical and Logical Files, CONCAT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 41

|
|
|

|

|
|

|

|
|
|
|
|

|
|

In the following example, if the program changes DATE from 01 03 81 to 02 05 81, the value placed in the

physical record does not change because the fields specified last are MTH (value 01), DAY (value 03), and

YEAR (value 81). However, if MTH, DAY, and YEAR are changed to new values, the value of DATE in

the physical record also changes.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD2 PFILE(PF1)

00020A DATE CONCAT(MTH DAY YEAR)

00030A MTH

00040A DAY

00050A YEAR

 A

Example 3:

In the following example, fields from the physical file are concatenated into more than one field in the

logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD3 PFILE(PF1)

00020A DATE CONCAT(MTH DAY YEAR)

00030A CMPDAT CONCAT(DAY MTH YEAR)

 A

Example 4:

In the following example, if the fields from PF1 are:

v FIXED1 is a fixed length field.

v FIXED2 is a fixed length field.

v VARLEN1 is a variable length field.

The resulting fields are:

v FIELD1 is a variable length field.

v FIELD2 is a fixed length field.

v FIELD3 is a variable length field.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD4 PFILE(PF1)

00020A FIELD1 CONCAT(FIXED1 VARLEN1)

00030A FIELD2 CONCAT(FIXED1 FIXED2)

00040A FIELD3 CONCAT(FIXED1 FIXED2)

00050A VARLEN

 A

DATFMT (Date Format) keyword for physical and logical files

Use this field-level keyword to specify the format of a date field. This keyword is valid only for date

fields (data type L) or for logical file zoned fields (data type S), packed fields (data type P), or character

fields (data type A) whose corresponding physical file fields are date fields (data type L).

The format of the keyword is:

DATFMT(date-format)

The date-format parameter specifies the format for the date. The following table describes the valid date

formats and their default separator values for physical file fields.

Physical and Logical Files, CONCAT

42 OS/400 DDS for physical and logical files V5R3

Format Name

Date-Format

Parameter

Date Format

and

Separator

Field

Length Example

Job Default *JOB1

Month/Day/Year *MDY1 mm/dd/yy 8 06/21/90

Day/Month/Year *DMY1 dd/mm/yy 8 21/06/90

Year/Month/Day *YMD1 yy/mm/dd 8 90/06/21

Julian *JUL1 yy/ddd 6 90/172

International

Standards Organization

*ISO yyyy-mm-dd 10 1990-06-21

IBM USA Standard *USA mm/dd/yyyy 10 06/21/1990

IBM European Standard *EUR dd.mm.yyyy 10 21.06.1990

Japanese Industrial

Standard Christian Era

*JIS yyyy-mm-dd 10 1990-06-21

Notes:

1. If this format is specified and the field allows the null value, you must specify a valid date for the DFT keyword

for this field.

Other attributes of the DATFMT keyword for physical file fields are:

v You may specify only the DATFMT keyword on the date (L) data type.

v If you do not specify the DATFMT keyword, the default is *ISO.

v Field length values and decimal position values must be blank.

The following table describes the valid date formats and their default separator values for logical files.

 Format Name Date Format

Parameter

Date Format Zoned or

Character

Field Length

Zoned or

Character

Example

Packed Field

Length

Packed Example

(in Hex)

Job Default *JOB

Month/Day/Year *MDY mmddyy 6,0 062196 6,0 or 7,0 ’0062196F’X

Day/Month/Year *DMY ddmmyy 6,0 210696 6,0 or 7,0 ’0210696F’X

Year/Month/Day *YMD yymmdd 6,0 960621 6,0 or 7,0 ’0960621F’X

Month/Day/Year (4 digit

year)

*MDYY1 mmddyyyy 8,0 06211996 8,0 or 9,0 ’006211996F’X

Day/Month/Year (4 digit

year)

*DMYY1 ddmmyyyy 8,0 21061996 8,0 or 9,0 ’021062006F’X

Year/Month/Day (digit

year)

*YYMD1 yyyymmdd 8,0 19960621 8,0 or 9,0 ’019960621F’X

Julian *JUL yyddd 5,0 96172 5,0 ’96172F’X

Julian (4 digit year) *LONGJUL1 yyyyddd 7,0 1996172 7,0 ’1996172F’X

Century/Day/Month/Year *CMDY1 cmmddyy 7,0 0062196 7,0 ’0062196F’X

Century/Day/Month/Year *CDMY1 cddmmyy 7,0 1210696 7,0 ’1210696F’X

Century/Year/Month/Day *CYMD1 cyymmdd 7,0 1960621 7,0 ’1960621F’X

Month/Year *MY1,2 mmyy 4,0 0696 4,0 or 5,0 ’00696F’X

Year/Month *YM1,2 yymm 4,0 9606 4,0 or 5,0 ’09606F’X

Month/Year (4 digit year) *MYY1,2 mmyyyy 6,0 061996 6,0 or 7,0 ’0061996F’X

Year/Month (4 digit year) *YYM1,2 yyyymm 6,0 199606 6,0 or 7,0 ’0199606F’X

International Standards

Organization

*ISO yyyymmdd 8,0 19960621 8,0 or 9,0 ’019960621F’X

IBM USA Standard *USA mmddyyyy 8,0 19960621 8,0 or 9,0 ’006211996F’X

IBM European Standard *EUR ddmmyyyy 8,0 21061996 8,0 or 9,0 ’021061996F’X

Physical and Logical Files, DATFMT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 43

Format Name Date Format

Parameter

Date Format Zoned or

Character

Field Length

Zoned or

Character

Example

Packed Field

Length

Packed Example

(in Hex)

Japanese Industrial Standard

Christian Era

*JIS yyyymmdd 8,0 19960621 8,0 or 9,0 ’019960621F’X

Notes:

1. These DATFMTs are not valid for the date (L) type field. They are only valid on logical file zoned, packed, or character types

having a physical file based on date type fields.

2. DATFMTs that do not have any ″days″ specified are implied to be day 1 of the specified month.

Other attributes of the DATFMT keyword specified for logical file fields are:

v The packed (P), zoned (S), character (A), and date (L) data types for logical file fields allow the

DATFMT keyword.

v Field length may be specified for packed, character, and zoned logical file fields, but must be a valid

value listed in the table.

v If you do not specify the DATFMT keyword and the data type is L, the default is the date format and

field length from the corresponding physical file field.

v For packed and zoned data types, the decimal positions (positions 36 and 37) must be blank.

v For the packed data type, two lengths are sometimes allowed for a particular format. The larger length

is better from a performance perspective. If you do not specify a length, the smaller length is used as

the default.

Attributes of the DATFMT keyword that apply to both physical file fields and logical file fields include

the following:

v If you specify *JOB, the default is the job attribute and the field length and is based on the job attribute

without separators.

v If the DFT keyword is not specified, the default value is the current date.

v If you specify the *ISO, *USA, *EUR, or *JIS value, you cannot specify the DATSEP keyword. These

date formats have a fixed separator.

v The DATFMT keyword overrides the job attribute for a date field. It does not change the system

default.

Example:

The following example shows how to specify the DATFMT keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A

00020A R RECORD

00030A DATFLD1 L DATFMT(*JUL)

00040A DATFLD2 L DATFMT(*EUR)

 A

If the current date is June 21, 1990, the current system date format value is MDY, and the current system

separator is /, DATFLD1 contains 90/172 (the 172nd day of the year 1990). DATFLD2 contains 21.06.1990.

DATSEP (Date Separator) keyword for physical and logical files

Use this field-level keyword to specify the separator character for a date field. This keyword is valid only

for date fields (data type L).

The format of the keyword is:

DATSEP(*JOB | ’date-separator’)

Physical and Logical Files, DATFMT

44 OS/400 DDS for physical and logical files V5R3

The date separator parameter specifies the separator character that appears between the year, month, and

day. Valid values are a slash (/), dash (–), period (.), comma (,) or blank (). The parameter must be

enclosed in apostrophes.

If you specify *JOB, the default is the job attribute.

For physical files, if you do not specify the DATSEP keyword, the default is the job attribute.

For logical files, if you do not specify the DATSEP keyword, the default is the date separator from the

physical file. If you did not specify the DATSEP keyword for the physical file field (*ISO, *USA, *EUR, or

*JIS was specified on the DATFMT keyword), the default for DATSEP is the job attribute.

If you specify the *ISO, *USA, *EUR, or *JIS date format value on the DATFMT keyword, you cannot

specify the DATSEP keyword. These formats have a fixed date separator.

The DATSEP keyword overrides the job attribute. It does not change the system default.

Example:

The following example shows how to specify the DATSEP keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A

00020A R RECORD1

00030A DATFLD2 L DATFMT(*DMY) DATSEP(’-’)

00040A DATFLD4 L DATSEP(’ ’)

 A

If the current date is June 21, 1990, the current system date format value is MDY, and the system date

separator value is '/', DATFLD2 contains 21-06-90. DATFLD4 contains 06 21 90.

DESCEND (Descend) keyword for physical and logical files

Use this key field-level keyword to specify that the values of this character, hexadecimal, or numeric key

field are retrieved in descending sequence. The default is ascending sequence. See “SIGNED (Signed)

keyword for physical and logical files” on page 70 for an example of data sorted using the DESCEND

keyword.

This keyword has no parameters.

Example:

The following example shows how to specify the DESCEND keyword for a logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A K ITEM

00020A K BALDUE DESCEND

 A

DFT (Default) keyword—physical files only

Use this field-level keyword to specify a default value for a field.

The format of the keyword is:

DFT(’value’ | numeric-value | X’hexadecimal-value’ | *NULL)

Without this keyword, character and hexadecimal fields default to blanks and numeric fields default to

zeros. However, if you specify the ALWNULL keyword for the field, then the character, hexadecimal, and

numeric fields default to the null value.

Physical and Logical Files, DATSEP

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 45

The following rules apply to the specified value:

v If the field being defined is a character field, specify a character constant, hexadecimal value, or

*NULL. Specify character strings within apostrophes. If the field is variable length (VARLEN), then the

length of the string must be less than or equal to the allocated length.

Specify hexadecimal values as an X followed by a combination of the digits 0 through 9 and the letters

A through F. Enclose the combination in apostrophes. The number of hexadecimal digits in apostrophes

must be exactly twice the specified length of the field. If the field is variable length (VARLEN), then

the number of hexadecimal digits in apostrophes must be exactly twice the allocated length.

v If the field being defined is a hexadecimal field, specify a character constant, hexadecimal value, or

*NULL.

Note: If a character constant is specified, the hexadecimal representation of the character constant is

the default value.

Specify character strings within apostrophes. If the field is variable length (VARLEN), then the length

of the string must be less than or equal to the allocated length.

Specify hexadecimal values as an X followed by a combination of the digits 0 through 9 and the letters

A through F. Enclose the combination in apostrophes. The number of hexadecimal digits in apostrophes

must be exactly twice the specified length of the field. If the field is variable length (VARLEN), then

the number of hexadecimal digits in apostrophes must be exactly twice the allocated length.

v If you are defining a numeric field, specify a numeric value (digits 0 through 9 specified without

apostrophes) or *NULL. For a value other than zero in positions 36 and 37, specify the decimal

character with a numeric constant in the appropriate position in the DDS.

v If you specify *NULL, then you must also specify the ALWNULL keyword on the field.

v If you do not specify any value (DFT('')), this indicates a default of a 0 length string and is valid only

when the field is variable length (the VARLEN keyword must also be specified).

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT

keyword and use the same separator as specified on the DATSEP keyword. For example,

DFT(’12/15/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is specified for DATSEP.

If the DFT keyword is not specified, the default value is the current date.

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT

keyword and use the same separator as specified on the TIMSEP keyword. For example,

DFT(’11.00.00’) is the default value if *ISO is specified for TIMFMT. The default separator for *ISO is

a period (.).

If the DFT keyword is not specified, the default value is the current time.

v If you are defining a timestamp field, you must specify the default value in the following format:

DFT(’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

If the DFT keyword is not specified, the default value is the current time.

The value specified is assigned to the field in the following cases:

v When the program does an output operation to a logical file based on this physical file and the record

format in the logical file does not name this field.

v When you use the Initialize Physical File Member (INZPFM) command for a member in this file.

v When you use the Copy File (CPYF) command with FMTOPT(*MAP) specified and a field in the to-file

is not in the from-file.

The specified value is supplied to the program when the program does an input operation to a join

logical file and all of the following are true:

v You specify the JDFTVAL keyword for the join logical file.

v The file being defined is specified as a secondary file in the join logical file.

v When the input operation occurs and the link to the secondary file produces no records.

Physical and Logical Files, DFT

46 OS/400 DDS for physical and logical files V5R3

This keyword does not affect the physical file on input operations.

Example:

The following example shows how to specify the DFT keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1

00020A CHARFLD1 20A DFT(’Sample field’)

00030A CHARFLD2 5A DFT(X’D985955185’)

00040A HEXFLD1 3H DFT(’ABC’)

00050A HEXFLD2 3H DFT(X’C1C2C3’)

00060A NUMFLD1 5S 0 DFT(99999)

00070A NUMFLD2 5S 2 DFT(999.99)

00080A NUMFLD3 5S 2 DFT(999)

00090A NUMFLD4 5S 2 DFT(*NULL)

00100A ALWNULL

00110A NUMFLD5 5S 2 DFT(999.99)

00120A ALWNULL

00130A DATFLD1 L DATFMT(*MDY) DATSEP(’-’)

00140A DFT(’12-31-91’)

00150A TIMFLD1 T DFT(’11.15.00’)

 A

The default value for CHARFLD1 is ‘Sample field’. The default value for CHARFLD2 is hex D985955185.

The default value for HEXFLD1 is C1C2C3 (the hexadecimal representation of the character constant).

The default value for HEXFLD2 is C1C2C3. The default value for NUMFLD1 is 99999 (no decimal

character is required because the field has zero decimal positions). The default value for NUMFLD2 is

999.99. The default value for NUMFLD3 is 999 (no decimal character is required if you do not need to

specify decimal values). The default value for NUMFLD4 is the null value (ALWNULL is a required

keyword for the field if DFT(*NULL) is specified). The default value for NUMFLD5 is 999.99; the field

also allows the null value. The default value for DATFLD1 is 12-31-91. The default value for TIMFLD1 is

11.15.00 (*ISO format).

DIGIT (Digit) keyword for physical and logical files

Use this key field-level keyword to specify that only the digit portion (farthest right 4 bits) of each byte

of the key field is used when constructing a value associated with this key field. The zone portion is

zero-filled.

This keyword has no parameters.

The DIGIT keyword is applied against the entire key field (not just a position within the field). It is valid

only for character, hexadecimal, or zoned decimal type fields.

You cannot use this keyword with the ABSVAL, SIGNED, or ZONE keywords.

If you specify DIGIT for a key field, the value of the field is treated as a string of unsigned binary data,

rather than signed data, which is the default for zoned decimal fields.

Example:

The following example shows how to specify the DIGIT keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00040A K ORDTYP DIGIT

 A

Physical and Logical Files, DFT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 47

If ORDTYP is a 3-byte field, the values of the field for three different records could be as follows:

 Values Hexadecimal Digits Used for Key

C4J C3F4D1 341

CMA D3D4C1 341

3D1 F3C4F1 341

DYNSLT (Dynamic Select) keyword—logical files only

Use this file-level keyword to indicate that the selection and omission tests specified in the file (using

select/omit specifications) are done at processing time. This keyword specifies dynamic select/omit

rather than access path select/omit.

This keyword has no parameters.

As your program does input operations to a logical file with the DYNSLT keyword specified, all the

records in the associated physical file are tested by the system to see if they satisfy the select/omit values.

Only those records that satisfy the values are supplied to your program. The testing of each record can

result in slower I/O performance, but may be more efficient than maintaining an access path for the file.

This is particularly likely for files read only occasionally, especially when the physical files they are based

on are updated frequently. Using dynamic select/omit is probably also more efficient for files with a high

percentage of selected records.

In keyed sequence access files, an access path is created at file creation time and is maintained for the file

according to the MAINT parameter on the Create Logical File (CRTLF) or Change Logical File (CHGLF)

command. The DYNSLT keyword does not affect the maintenance of access paths for keyed sequence

access files.

For all single-format logical files with a DYNSLT keyword, you do not need to specify key fields in order

to specify select/omit fields. However, for all multiple-format logical files with a DYNSLT keyword, you

do need to specify at least one key field. You can specify *NONE for this key field.

You must use the DYNSLT keyword when you want to select or omit fields and any of the following are

true:

v The logical file has arrival sequence (no key fields are specified). See example 1 below.

v The logical file is a join logical file with the JDFTVAL keyword specified.

v The logical file is a join logical file, select/omit fields come from more than one of the physical files the

logical file is based on, and one of the following is true:

– The select/omit fields are on the same select or omit statement. See example 3 below.

– The select/omit fields are on a mixture of select and omit statements. See example 4 below.

– The select/omit fields are on select statements that are ORed together.

– The select/omit fields are on omit statements that are ANDed together.

You cannot specify the DYNSLT keyword with the REFACCPTH keyword.

For a join logical file, the select/omit fields can occur in any of the physical files specified on the JFILE

keyword. Use the JREF keyword in join logical files to qualify the origin of the field and resolve any

ambiguities.

Examples:

The following examples show how to specify the DYNSLT keyword.

Example 1:

Physical and Logical Files, DIGIT

48 OS/400 DDS for physical and logical files V5R3

The following example shows how to specify dynamic select with arrival sequence.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A DYNSLT

00020A R RECORD1 PFILE(PF1)

00030A FLD1

00040A FLD2

00050A S FLD1 COMP(GT 2)

The DYNSLT keyword is required because there are no key fields.

The logical file supplies records to your program in arrival sequence. Assume that physical file PF1 has

the following records:

FLD1 FLD2

1 aaaa

2 dddd

3 jjjj

4 bbbb

As your program does input operations, the system tests the first two records according to the

select/omit values, but does not supply them to your program. Your program only sees the last two

records:

FLD1 FLD2

3 jjjj

4 bbbb

Example 2:

The following example shows how to specify dynamic select with keyed sequence access path.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A DYNSLT

00020A R RECORD1 PFILE(PF1)

00030A FLD1

00040A FLD2

00050A K FLD1

00060A S FLD2 COMP(GT ’bbbb’)

 A

In this example, the DYNSLT keyword is not required. The logical file supplies records to your program

in keyed sequence. Assume that physical file PF1 has the following records:

FLD1 FLD2

1 aaaa

2 dddd

3 jjjj

4 bbbb

When your program requests a record, the system tests the value of FLD2 for that record according to the

select/omit values. Your program only sees the following records:

FLD1 FLD2

2 dddd

3 jjjj

Physical and Logical Files, DYNSLT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 49

Example 3:

The following example shows how to specify a join logical file with select/omit comparing fields from

two physical files.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A DYNSLT

00020A R RECORD1 JFILE(PF1 PF2)

00030A J JFLD(FLD1 FLD3)

00040A FLD1 JREF(PF1)

00050A FLD2 JREF(PF1)

00060A FLD3 JREF(PF2)

00070A FLD4 JREF(PF2)

00080A S FLD1 COMP(GT FLD4)

 A

FLD1 and FLD2 come from the primary file (PF1), and FLD3 and FLD4 come from the secondary file

(PF2). The select specification compares FLD1 from the primary file with FLD4 from the secondary file.

Therefore, the DYNSLT keyword is required.

Example 4:

The following example shows how to specify a join logical file with select and omit using fields from

more than one physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A DYNSLT

00020A R JREC JFILE(PF1 PF2)

00030A J JOIN(PF1 PF2)

00040A JFLD(FLD1 FLD2)

00050A FLD1 JREF(PF1)

00060A FLD2 JREF(PF1)

00070A FLD3 JREF(PF2)

00080A K FLD1

00090A S FLD1 COMP(GT 0)

00100A O FLD3 COMP(GT 4)

 A

FLD1 and FLD3 come from different physical files and are specified in a mixture of select and omit

statements. Therefore, the DYNSLT keyword is required.

EDTCDE (Edit Code) and EDTWRD (Edit Word) keywords for physical

and logical files

Use these field-level keywords to specify editing for the field you are defining when the field is

referenced later during display or printer file creation. The EDTCDE and EDTWRD keywords do not

affect the physical or logical file.

The format of the EDTCDE keyword is:

EDTCDE(edit-code [* | floating-currency-symbol])

The format of the EDTWRD keyword is:

EDTWRD(’edit-word’)

When defining an input-capable field in a display file, refer to the field you are now defining by

specifying the letter R in position 29 and the REF or REFFLD keyword. At display file creation, the

OS/400 program copies the EDTCDE or EDTWRD keyword and other field attributes from the field in

the physical or logical file into the field in the display file. You can override the EDTCDE or EDTWRD

Physical and Logical Files, DYNSLT

50 OS/400 DDS for physical and logical files V5R3

keyword by specifying new editing keywords in the display or printer file. Specifying the DLTEDT

keyword in the display or printer file deletes all editing for the field. See the Reference for display files

topic for details.

You cannot specify the EDTCDE or EDTWRD keyword on a floating-point field (F in position 35) or a

hexadecimal field (H in position 35). Do not specify the EDTCDE or EDTWRD keywords on a date, time,

or timestamp field (L, T, or Z in position 35).

The rules for specifying these keywords in a physical or logical file are the same as for a display file. For

more information on specifying these keywords, see the description of the EDTCDE or EDTWRD

keywords for display files.

Example:

The following example shows how to specify the EDTCDE and EDTWRD keywords for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD

 A

 A PRICE 5 2 EDTCDE(J)

 A

 A SALES 7 2 EDTCDE(K $)

 A

 A SALARY 8 2 EDTCDE(1 *)

 A

 A BALANCE 7 2 EDTWRD(’$ 0. &CR’)

 A

 A DATE 6 0 EDTCDE(Y)

 A

The fields PRICE, SALES, SALARY, and DATE have editing specified. No new editing needs be specified

when they are referred to by a display or printer file. This standardizes the editing of these fields for

applications that refer to these fields.

FCFO (First-Changed First-Out) keyword for physical and logical files

Use this file-level keyword to specify that if records with duplicate key values are retrieved from the

same physical or logical file member, the record with the key value that was changed first is the first

record retrieved. This is a first-changed first-out (FCFO) order.

This keyword has no parameters.

FCFO is not allowed with an FIFO, LIFO, UNIQUE, or REFACCPTH keyword.

If you do not specify FCFO, LIFO, FIFO, or UNIQUE, records with duplicate key values are retrieved in

first-in first-out (FIFO), last-in first-out (LIFO), or first-changed first-out (FCFO) order, but the order in

which they are retrieved is not guaranteed.

With the FCFO keyword, the records are ordered by when the record key value is changed. With the

FIFO and LIFO keywords, the records are ordered by the relative record number.

At least one key field must be specified in the file containing the FCFO keyword. The FCFO keyword is

not valid when you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File

(CRTLF) command.

Example:

The following example shows how to specify the FCFO keyword for a physical file.

Physical and Logical Files, EDTCDE and EDTWRD

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 51

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A FCFO

00020A R CUSREC TEXT(’CUSTOMER RECORD’)

00030A CUSNAMEF 10A

00040A CUSNAMEM 1A

00050A CUSNAMEL 10A

00060A K CUSNAMEL

 A

FIFO (First-In First-Out) keyword for physical and logical files

Use this file-level keyword to specify that if records with duplicate key values are retrieved from the

same physical or logical file member, they are to be retrieved in a first-in first-out (FIFO) order.

This keyword has no parameters.

FIFO is not allowed with an FCFO, LIFO, UNIQUE, or REFACCPTH keyword.

If you do not specify FCFO, LIFO, FIFO, or UNIQUE, records with duplicate key values are retrieved in

first-in first-out (FIFO), last-in first-out (LIFO), or first-changed first-out (FCFO) order, but the order in

which they are retrieved is not guaranteed.

At least one key field must be specified in a file containing the FIFO keyword. The FIFO keyword is not

valid when you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File

(CRTLF) command.

Example:

The following example shows how to specify the FIFO keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A FIFO

00020A R CUSREC TEXT(’CUSTOMER RECORD’)

00030A CUSNAMEF 10A

00040A CUSNAMEM 1A

00050A CUSNAMEL 10A

00060A K CUSNAMEL

 A

FLTPCN (Floating-Point Precision) keyword for physical and logical

files

Use this field-level keyword to specify the precision of a floating-point field.

The format of the keyword is:

FLTPCN(*SINGLE | *DOUBLE)

where *SINGLE is single precision and *DOUBLE is double precision. This keyword is valid for

floating-point fields only (data type F).

If you do not specify the FLTPCN keyword, the default is single precision. A single precision field can be

up to 9 digits; a double precision field can be up to 17 digits. If you specify a field length greater than 9

(single precision) or 17 (double precision), an error message is sent and the file is not created.

Example:

The following example shows how to specify the FLTPCN keyword.

Physical and Logical Files, FCFO

52 OS/400 DDS for physical and logical files V5R3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00090A FIELDA 17F 4 FLTPCN(*DOUBLE)

 A

FIELDA is a floating-point field with double precision.

FORMAT (Format) keyword for physical and logical files

Use this record-level keyword to specify that this record format is to share the field specifications for a

previously defined record format. The name of the record format you are defining must be the name of

the previously defined record format.

The format of the keyword is:

FORMAT([library-name/]database-file-name)

The database-file-name parameter is required. It is the name of the physical or logical file from which the

previously defined record format is taken.

The library-name is optional. If you do not specify the library-name, the library list (*LIBL) in effect at file

creation time is used.

If you specify the FORMAT keyword, you cannot specify field specifications for this record format.

Specify key specifications and, if necessary, select/omit specifications if you want them to be in effect for

this file. (They can be the same as or different from the previously defined record format.)

The FORMAT keyword is not valid in join logical files and you cannot specify a join logical file as the

parameter value on the FORMAT keyword.

If the database file from which you are using the record format is deleted, the record format remains in

existence as long as some file is using the record format. For example, RECORD in FILE2 uses the

FORMAT keyword to share the specifications of RECORD in FILE1. Both files have been created. If FILE1

is deleted and then re-created with different DDS, RECORD still exists in FILE2. It can be referred to for

the original record format by other files using the FORMAT keyword.

You cannot specify a distributed data management (DDM) file on this keyword.

Example:

The following example shows how to specify the FORMAT keyword for a logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD PFILE(FILE2)

00020A FORMAT(FILE1)

 A

The record format for this logical file is the same as the previously specified record format in file FILE1.

The name of this record format (RECORD) must be the same as the name of the record format in FILE1.

JDFTVAL (Join Default Values) keyword—join logical files only

Use this file-level keyword in a join logical file so the system provides default values for fields when a

join to a secondary file does not produce any records. JDFTVAL is valid only for join logical files.

This keyword has no parameters.

Physical and Logical Files, FLTPCN

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 53

The default values for the system are blanks for character and hexadecimal fields and zeros for numeric

fields. You can change the default for specific fields by specifying the DFT keyword for the fields in the

physical file (see “DFT (Default) keyword—physical files only” on page 45).

If you specify JDFTVAL, your program retrieves records for which a secondary file does not have a

corresponding record. If you do not specify JDFTVAL, a record in the primary file for which there is no

corresponding record in a secondary file is skipped.

If you are joining three or more files, and you specify the JDFTVAL keyword for fields used as join fields,

default values of fields missing in secondary files are used in the same way that a field value is used. For

example, records are selected and omitted based on the default value. Also, if this field is used as a join

field to join to other secondary files, records from the other secondary files are returned to your program

based on the default value.

Example:

The following example shows how to specify the JDFTVAL keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A JDFTVAL

00020A R RECORD1 JFILE(PF1 PF2)

00030A J JOIN(PF1 PF2)

00040A JFLD(NAME NAME)

00050A NAME JREF(1)

00060A ADDR

00070A BAL

 A

PF1 is the primary file and PF2 is a secondary file. Assume that PF1 and PF2 have the following records:

 PF1 NAME ADDR PF2 NAME BAL

Anne 120 1st St. Anne 5.00

Doug 40 Pillsbury Doug 6.50

Mark 2 Lakeside Dr. Sue 2.00

Sue 120 Broadway

With JDFTVAL specified in the join logical file, the program reads the following records (shown in arrival

sequence):

 NAME ADDR BAL

Anne 120 1st St. 5.00

Doug 40 Pillsbury 6.50

Mark 2 Lakeside Dr. 0.00

Sue 120 Broadway 2.00

Without JDFTVAL specified in the join logical file, the program can read only three records (no record is

found for Mark).

In this example, if you specified JREF(2) instead of JREF(1), the records returned to the program would

be different, as follows:

 NAME ADDR BAL

Anne 120 1st St. 5.00

Doug 40 Pillsbury 6.50

2 Lakeside Dr. 0.00

Sue 120 Broadway 2.00

Physical and Logical Files, JDFTVAL

54 OS/400 DDS for physical and logical files V5R3

JDUPSEQ (Join Duplicate Sequence) keyword—join logical files only

Use this join-level keyword to specify the order in which records with duplicate join fields are presented

when your program reads a join logical file.

The format of the keyword is:

JDUPSEQ(sequencing-field-name [*DESCEND])

This keyword has no effect on the ordering of unique records. If you do not specify the keyword, the

system does not guarantee the order in which records with duplicate join fields are presented.

If more than one JDUPSEQ keyword is specified in one join specification, the order in which you specify

the JDUPSEQ keywords determines the order of presentation of duplicate records. This is similar to

specifying an additional key field, in that it determines the order in which records with duplicate keys

are presented.

This keyword is valid only for join logical files.

In a single join specification, the total length of fields specified as to fields on the JFLD keyword and

fields specified on the JDUPSEQ keyword cannot exceed 120 bytes.

The sequencing field name must be a field that (1) exists in the to file for this join specification and (2)

has not been specified as a to field on the JFLD keyword for this join specification. The sequencing field

name can be a concatenated field or a SST field. The sequencing field name need not be specified in the

record format for the join logical file.

Optionally, you can specify *DESCEND to change the order in which duplicate records are presented.

Without *DESCEND, duplicate records are presented in the following default sequences:

v Ascending signed order for a numeric sequencing field

v Ascending order for a character sequencing field

Example 1:

The following example shows how to specify the JDUPSEQ keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JREC JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(NAME1 NAME2)

00040A JDUPSEQ(PHONE)

00050A NAME1

00060A ADDR

00070A PHONE

This example assumes that PF1 and PF2 have the following records:

 PF1 NAME1 ADDR PF2 NAME2 TELEPHONE

Anne 120 1st St. Anne 555-1111

Doug 40 Pillsbury Anne 555-6666

Mark 2 Lakeside Dr. Anne 555-2222

Doug 555-5555

There are three records for Anne in PF2, showing three telephone numbers. With JDUPSEQ specified as

shown, the records are returned as follows:

 NAME ADDR TELEPHONE

Anne 120 1st St. 555-1111

Physical and Logical Files, JDUPSEQ

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 55

NAME ADDR TELEPHONE

Anne 120 1st St. 555-2222

Anne 120 1st St. 555-6666

Doug 40 Pillsbury 555-5555

The JDUPSEQ keyword only affects the order of records when duplicates exist.

Example 2:

This example assumes the logical file is based on the same physical files as example 1. There are three

records for Anne in PF2, showing three telephone numbers.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JREC JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(NAME1 NAME2)

00040A JDUPSEQ(PHONE *DESCEND)

00050A NAME1

00060A ADDR

00070A PHONE

 A

When you specify JDUPSEQ with *DESCEND, the records are returned as follows:

 NAME1 ADDR TELEPHONE

Anne 120 1st St. 555-6666

Anne 120 1st St. 555-2222

Anne 120 1st St. 555-1111

Doug 40 Pillsbury 555-5555

The list shows Anne’s telephone numbers in descending order.

JFILE (Joined Files) keyword—join logical files only

Use this record-level keyword to identify the physical files containing the data to be accessed through the

join logical file you are defining.

The format of the keyword is:

JFILE([library-name/]physical-file-name [..256])

This keyword is similar to the PFILE keyword except it identifies this file as a join logical file. The JFILE

keyword is not allowed with the PFILE keyword.

The JFILE keyword is required at the record level in a join logical file. The JFILE keyword requires a

minimum of two physical file names. You can specify the same file name more than once.

The first file is called the primary file, which is the file from which the join will begin. All other files are

called secondary files. Up to 255 secondary files can be specified (256 total files on the JFILE keyword).

Distributed data management (DDM) files are allowed on the JFILE keyword only when the logical file is

being created on a remote system. See the Distributed data management information for more

information.

The following considerations apply to the order in which you specify physical files on the JFILE

keyword:

Physical and Logical Files, JDUPSEQ

56 OS/400 DDS for physical and logical files V5R3

|

|
|

v If the physical files have a different number of records, specify physical files with fewer records toward

the left on the JFILE keyword. The primary file should have as many or fewer records than the

secondary files. This can improve performance when reading files.

v Primary and secondary files specified in join specifications must be in a specific order. This order

depends on the order in which the files are specified on the JFILE keyword. See example 3 in the JOIN

(Join) keyword—join logical files only keyword description.

v The JOIN and JREF keywords can use relative file numbers to identify files specified by the JFILE

keyword. The first file specified on the JFILE keyword has relative file number 1, the second file has

relative file number 2, and so on up to 256. If you use relative file numbers instead of file names on

the JOIN and JREF keywords, the order of files on the JFILE keyword can affect the way the JOIN and

JREF keywords are specified.

Note: If the names in the physical file are not unique, you must specify relative file numbers.

Examples:

The following examples show how to specify the JFILE keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JREC JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(NAME1 NAME2)

 A

In the join logical file, PF1 is the primary file and PF2 is the secondary file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JREC JFILE(MYLIBA/PHYSICAL1 +

00020A MYLIBB/PHYSICAL2 MYLIBC/PHYSICAL3)

00030A J JOIN(1 2)

00040A JFLD(FIELD1 FIELD2)

00050A J JOIN(1 3)

00060A JFLD(FIELD1 FIELD2)

 A

In the join logical file, file PHYSICAL1 in library MYLIBA is the primary file. File PHYSICAL2 in library

MYLIBB and file PHYSICAL3 in library MYLIBC are secondary files.

JFLD (Joined Fields) keyword—join logical files only

Use this join-level keyword to identify the from and to fields whose values are used to join physical files

in a join logical file. These fields are both referred to as join fields.

The format of the keyword is:

JFLD(from-field-name to-field-name)

The join fields must correspond to fields in the physical files identified on the JOIN keyword for this join

specification. The name you specify on the JFLD keyword must be the same as the name specified in the

physical file unless it was renamed in the join logical file. If you do not specify a JOIN keyword, then the

JFILE keyword is used.

This keyword is valid only for join logical files.

At least one JFLD keyword is required for each join specification. A join specification is identified by J in

position 17. Since at least one join specification is required in a join logical file, you must have at least

one JFLD keyword specified in a join logical file.

These fields need not also be specified as fields in the record format for a join logical file.

Physical and Logical Files, JFILE

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 57

|
|
|
|
|

To specify additional join fields to use when joining physical files, specify more than one JFLD keyword.

The field names you specify on the JFLD keyword must either be specified at the field level in the join

record format or in one of the physical files, which are specified on the JFILE keyword.

The OS/400 program uses the following search order to match join field names with defined fields:

1. Fields specified in the join logical file at the field level in positions 19 through 28.

Note: Fields that specify the CONCAT, RENAME, or SST keywords are valid as join fields; fields that

are specified on CONCAT, RENAME, or SST keywords cannot be join fields.

2. Fields in the physical file specified on the JOIN keyword.

The rules for specifying join fields are as follows:

v The from field must be found in the from file specified on the JOIN keyword.

v The to field must be found in the to file specified on the JOIN keyword.

v Join fields are not required to be defined in the join record format.

v From and to fields must have the same field attributes (length, data type, and decimal positions) but

need not have the same name. When the joined fields in the physical files have different definitions,

you must redefine one or both fields. If you redefine fields, there is a possibility of data conversion

errors. See “Length for physical and logical files (positions 30 through 34)” on page 20, “Data type for

physical and logical files (position 35)” on page 23, “Decimal positions for physical and logical files

(positions 36 and 37)” on page 25, and “Usage for physical and logical files (position 38)” on page 27.

Note: Character fields need not have the same length. The shorter join field is padded with blanks to

equal the length of the longer join field.

v In a single join specification, the total length of fields specified as to fields on the JFLD keyword and

fields specified on the JDUPSEQ keyword can be up to 120 bytes.

v Binary character fields can be joined only with other Binary character fields.

Examples:

The following examples show how to specify the JFLD keyword.

Example 1:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JREC JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(NAME1 NAME2)

 A

In the join logical file, the JFLD keywords specify that NAME1 in physical file PF1 is used to join to

NAME2 in physical file PF2.

Example 2:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JREC JFILE(PF1 PF2)

00020A J JOIN(PF1 PF2)

00030A JFLD(NAME1 NAME2)

00040A JFLD(ADDR1 ADDR2)

 A

In the join logical file, the JFLD keywords specify that NAME1 and ADDR1 in physical file PF1 are used

to join to NAME2 and ADDR2 in physical file PF2.

Physical and Logical Files, JFLD

58 OS/400 DDS for physical and logical files V5R3

|

JOIN (Join) keyword—join logical files only

Use this join-level keyword to identify which pair of files are joined by the join specification in which

you specify this keyword.

The format of the keyword is:

JOIN(from-file to-file)

This keyword is valid only for join logical files.

You can use file names or relative file numbers to indicate which files are to be joined. You must specify

a relative file number if the same file is specified more than once on the JFILE keyword.

If you specify file names, you must select files that you have specified only once on the JFILE keyword.

On each JFILE keyword, the from file must occur before the to file.

If you specify numbers, they correspond to the files specified on the JFILE keyword. The following are

the valid values:

File Valid Values

From-file number

1 through 255

To-file number

2 through 256

The from-file number must always be less than the to-file number.

Special rules apply to the order in which you specify from and to files. See example 3 below for details.

In a join logical file, each secondary file can be a to file only once.

Join specifications for physical and logical files:

To describe a join specification do the following:

v Specify J in position 17 immediately after the record level (before the first field name in positions 19

through 28). J in position 17 indicates the beginning of a join specification.

v Specify the JOIN keyword. The JOIN keyword is optional when only two files are specified on the

JFILE keyword. When more than two physical files are specified on the JFILE keyword, one JOIN

keyword is required for each secondary file.

v Specify the JFLD keyword at least once for each join specification.

v The end of the join specification is indicated by another J in position 17 or by a field name specified in

positions 19 through 28.

There must be one join specification for each secondary file specified on the JFILE keyword. Therefore, at

least one join specification is required in a join logical file.

You can specify the JOIN keyword only once within a join specification.

Examples:

The following examples show how to specify the JOIN keyword.

Example 1:

Physical and Logical Files, JOIN

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 59

||

|
|

|
|

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 JFILE(PFA PFB PFC)

00020A J JOIN(PFA PFB)

00030A JFLD(NAME1 NAME2)

00040A J JOIN(PFA PFC)

00050A JFLD(NAME1 NAME3)

00060A NAME1

 A

In this example, PFA is joined to PFB and also to PFC.

Example 2:

The following example shows how to specify JOIN using relative file numbers.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 JFILE(PFA PFB PFC)

00020A J JOIN(1 2)

00030A JFLD(NAME1 NAME2)

00040A J JOIN(1 3)

00050A JFLD(NAME1 NAME3)

00060A NAME1

 A

Example 2 is equivalent to example 1. PFA is the first physical file specified on the JFILE keyword and

has relative file number 1. PFB and PFC are the second and third files specified on the JFILE keyword

and have relative file numbers 2 and 3, respectively.

Example 3:

The following example shows the order of associated physical files.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R J3 JFILE(VENDORS PARTS PARTWARE +

00020A WAREHOUSE

�1�

00030A J JOIN(1 2) �2�

00040A JFLD(VNBR VNUM)

00050A J JOIN(2 3) �3�

00060A JFLD(PNBR PNBR)

00070A J JOIN(3 4) �3�

00080A JFLD(WNBR WNBR)

00090A VNAME

00100A VAD1

00110A VAD2

00120A PNBR JREF(2)

00130A WNBR JREF(4)

00140A BIN

00150A QOH

 A

The join logical file in this example is based on four physical files. The VENDORS file, which is specified

first on the JFILE keyword, is the primary file and has relative file number 1. The PARTS, PARTWARE,

and WAREHOUSE files, which are secondary files, have relative file numbers 2, 3, and 4, respectively.

Notice the pattern of numbers specified on the JOIN keywords:

�1� The first parameter value on the first JOIN keyword (the first from file) must be the primary file.

�2� The second parameter values specified on the JOIN keywords (to files) must reflect the same

order as the secondary files on the JFILE keyword. If file names were specified instead of relative

file numbers, they would have to be specified in the following order:

Physical and Logical Files, JOIN

60 OS/400 DDS for physical and logical files V5R3

J JOIN(VENDORS PARTS)

J JOIN(PARTS PARTWARE)

J JOIN(PARTWARE WAREHOUSE)

�3� On each JOIN keyword, the from and to files must be specified in ascending order.

Note: A file can be specified as a from file more than once. For example, the parameters on the JOIN

keywords above could have been specified as follows:

J JOIN(1 2)

J JOIN(2 3)

J JOIN(2 4)

However, a file can be specified as a to file only once.

JREF (Join Reference) keyword—join logical files only

Use this field-level keyword in join logical files for fields whose names are specified in more than one

physical file. This keyword identifies which physical file contains the field.

The format of the keyword is:

JREF(file-name | relative-file-number)

You can specify either the physical file name or its relative file number. If a physical file is named twice

on the JFILE keyword, then you must specify the relative file number. The relative file number

corresponds to the physical file name specified on the JFILE keyword. For example, specifying JREF(1)

associates a field with the first physical file specified on the JFILE keyword. Specifying JREF(2) associates

a field with the second physical file specified on the JFILE keyword. See example 2 below.

This keyword is valid only in a join logical file.

Join logical files are based on two or more physical files (up to 256). Field names specified in the record

format in a join logical file must uniquely identify only one field from the physical files on which the join

logical file is based. For example, if the join logical file is based on two physical files, and each physical

file has the field named NAME, you must specify the JREF keyword to identify which physical file the

field comes from.

When a field name is unique among the physical files specified on the JFILE keyword, this keyword is

optional. For example, if the join logical file is associated with two physical files, and only one of the

physical files has a field named NAME1, you do not need to specify the JREF keyword.

If the join logical file is associated with only one physical file (the JFILE keyword names the same file

twice), you must specify the JREF keyword on every field.

Examples:

The following examples show how to specify the JREF keyword.

Example 1:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JOINREC JFILE(PFA PFB PFC)

00020A :

00030A :

00040A :

00050A NAME JREF(PFB)

 A

In this example, the JREF keyword is specified with the file name, and NAME occurs in both PFA and

PFB. Specifying JREF (PFB) associates this field with PFB.

Physical and Logical Files, JOIN

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 61

|
|
|
|
|

Example 2:

The following example shows how to use the file reference numbers to specify JREF.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R JOINREC JFILE(PFA PFB PFC)

00020A :

00030A :

00040A :

00050A NAME JREF(2)

 A

Example 2 is equivalent to example 1. In example 2, NAME occurs in both PFA and PFB. Specifying

JREF(2) associates this field with PFB (the second of the physical files specified on the JFILE keyword).

LIFO (Last-In First-Out) keyword for physical and logical files

Use this file-level keyword to specify that records with duplicate key values from the same physical file

member are retrieved in a last-in first-out (LIFO) order.

This keyword has no parameters.

LIFO is not allowed with an FCFO, FIFO, UNIQUE, or REFACCPTH keyword.

If you do not specify FCFO, FIFO, LIFO, or UNIQUE, records with duplicate key values are retrieved in

first-in first-out (FIFO), last-in first-out (LIFO), or first-changed first-out (FCFO) order, but the order in

which they are retrieved is not guaranteed.

At least one key field must be specified in a file containing the LIFO keyword. The LIFO keyword is not

valid when you specify FILETYPE(*SRC) on the Create Physical File (CRTPF) or Create Logical File

(CRTLF) command.

Example:

The following example shows how to specify the LIFO keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A LIFO

00020A R CUSREC TEXT(’CUSTOMER RECORD’)

00030A CUSNAMEF 10A

00040A CUSNAMEM 1A

00050A CUSNAMEL 10A

00060A K CUSNAMEL

 A

NOALTSEQ (No Alternative Collating Sequence) keyword for physical

and logical files

Use this key field-level keyword to specify that the ALTSEQ keyword specified at the file level does not

apply to this key field. If you specify ABSVAL or SIGNED for a key field, NOALTSEQ is automatically in

effect whether or not the NOALTSEQ keyword is specified for that key field.

This keyword has no parameters.

Example:

The following example shows how to specify the NOALTSEQ keyword.

Physical and Logical Files, JREF

62 OS/400 DDS for physical and logical files V5R3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A ALTSEQ(TABLELIB/TABLE1)

00020A R DSTR

00030A :

00040A :

00050A CODE 1

00060A NAME 20

00070A :

00080A :

00090A K CODE

00100A K NAME NOALTSEQ

 A

Records with the record format DSTR are sequenced by the composite keys CODE and NAME. CODE is

sequenced by the alternative collating sequence (TABLE1 in TABLELIB). NAME is sequenced by the

EBCDIC collating sequence. NOALTSEQ prevents the sequence of the NAME field from being altered.

PFILE (Physical File) keyword—logical files only

Use this record-level keyword to identify the physical file(s) containing the data to be accessed through

the record format you are now defining.

The format of the keyword is:

PFILE([library-name/]physical-file-name [.32])

The PFILE keyword is required on every record format in a simple or multiple format logical file. This

keyword is similar to the JFILE keyword except it identifies this file as a simple or multiple format logical

file; the PFILE keyword is not allowed with the JFILE keyword. Up to 32 physical file names can be

specified on PFILE keywords in a logical file. If the maximum is being used, 32 physical file names can

be specified on one record format (using one PFILE keyword) or 32 physical file names can be distributed

among 32 record formats; or, file names can be unevenly distributed among record formats. In any case,

the maximum number of physical file names allowed is 32. For restrictions on specifying multiple

physical files when creating a logical file, see the appropriate high-level language manual.

For each physical-file-name, a library-name is optional. If the library-name is omitted, the library list

(*LIBL) that is in effect at file creation time is used.

If you specify more than one physical file name for one record format in a multiple format logical file, all

fields in the record format for the logical file must exist in all physical files specified. This type of file

cannot be externally described in RPG because it results in duplicate format names. If your program

requires access to fields that occur in one or more of the physical files specified on the PFILE keyword,

but not in all of them, you can do one of the following:

v Specify a join logical file. If you do this, use the JFILE keyword instead of the PFILE keyword.

v Specify a separate logical file record format that includes fields not in the first physical file.

For instance, if FLD1 and FLD2 occur in physical files PF1, PF2, and PF3, but FLD3 occurs only in PF3,

you cannot specify FLD3 in a logical file record format based on PF1 and PF2. To provide access to

FLD3, either specify a second logical file record format that includes FLD3 or use a join logical file.

You cannot use a simple or multiple format logical file to bring together into one record format fields

from separate physical files. Use a join logical file to accomplish this. A record read through the use of

a record format in a simple or multiple format logical file can contain data from only one physical file,

and a record written through the use of a record format in a logical file can be stored only in one

physical file.

Distributed Data Management (DDM) files are allowed on the PFILE keyword only when the logical file

is being created on a remote system.

Examples:

Physical and Logical Files, NOALTSEQ

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 63

The following examples show how to specify the PFILE keyword.

Example 1:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R LOGRCD1 PFILE(PF1)

 A

In this example, LOGRCD1 can use fields only in PF1.

Example 2:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R LOGRCD2 PFILE(PF1 PF2)

 A :

 A :

00020A R LOGRCD3 PFILE(PF1 PF2 PF3)

 A :

 A :

 A

In this example, LOGRCD2 must use fields common to PF1, and PF2, and LOGRCD3 must use fields

common to PF1, PF2, and PF3.

Example 3:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R LOGRCD4 PFILE(PF1)

 A :

 A :

00020A R LOGRCD5 PFILE(PF2)

 A :

 A :

00030A R LOGRCD6 PFILE(LIB1/PF6)

 A

In this example, LOGRCD4, LOGRCD5, and LOGRCD6 can have unique fields. LOGRCD6 specifies a

qualified physical-file name.

RANGE (Range) keyword for physical and logical files

Specify this keyword at the field level, the select- or omit-field level, or both.

The format of the keyword is:

RANGE(low-value high-value)

Example 1:

The following example shows how to specify character and numeric strings for the RANGE keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD PFILE(PF1)

 A

00020A FIELDA 1 0 RANGE(2 5) �1�

00030A FIELDB 1 RANGE(’2’ ’5’)

00040A FIELDC

00050A K FIELDD

00060A S FIELDA RANGE(1 4) �2�

 A

In this example, RANGE (�1�) is specified for FIELDA and FIELDB as a validity checking keyword for

display files that refer to FIELDA and FIELDB. In the display file, RANGE requires that the work station

Physical and Logical Files, PFILE

64 OS/400 DDS for physical and logical files V5R3

user type only 2, 3, 4, or 5 in FIELDA or FIELDB. FIELDA is a numeric field and FIELDB is a character

field. The type of field you specify depends on the high-level language the program is written in.

RANGE (�2�) is specified as a select/omit keyword for FIELDA. Records from the physical file PF1 are

retrieved through this logical file record format only if the value of FIELDA is 1, 2, 3, or 4.

Example 2:

The following example uses hexadecimal character strings when specifying the RANGE keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RCD1 PFILE(PF1)

00020A CODEA

00030A FLD1

00040A FLD2

00050A K FLD1

00060A S CODEA RANGE(X’51’ X’54’)

 A

RANGE is specified as a select/omit keyword for CODEA (which is a 1-byte field). Records from physical

file PF1 are retrieved through this record format only if the value of field CODEA is from hex 51 through

hex 54.

Specifying RANGE at the field level

At the field level, this keyword specifies validity checking for the field you are defining when it is

referred to later during display file creation.

RANGE does not affect the physical or logical file you are defining. When you define an input-capable

field in a display file, you can refer to the field you are now defining by specifying R in position 29 and

the REF or REFFLD keyword. During display file creation, the OS/400 program copies the RANGE

keyword and other field attributes from the field in the physical or logical file into the field in the display

file. You can override the RANGE keyword (as well as all other validity-checking keywords and the

CHKMSGID keyword) by specifying any validity checking keyword for the field in the display file. See

the Reference for display files topic for details.

The rules for specifying this keyword in a physical or logical file are the same as for a display file. See

the RANGE keyword for display files for more information and an example that shows how to specify

the keyword.

You cannot specify the RANGE keyword on a floating-point field (F in position 35) or a hexadecimal

field (H in position 35). Do not specify the RANGE keyword on a date, time, or timestamp field (L, T, or

Z in position 35).

Specifying RANGE at the select or omit-field level

At the select/omit-field level, this keyword selects or omits records retrieved from the physical file(s)

when your program sends an input operation using the record format in which the select/omit field is

specified.

The following rules apply:

v If the field you are defining is a character field, you must specify character strings or hexadecimal

character strings.

Specify character strings enclosed in apostrophes (see example 1 above).

Specify hexadecimal character strings as an X followed by a combination of the digits 0 through 9 and

the letters A through F, enclosed in apostrophes. The number of hexadecimal digits in apostrophes

must be exactly twice the specified length of the field. See example 2.

Physical and Logical Files, RANGE

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 65

v If you are defining a numeric field, you must specify a numeric value (digits 0 through 9 specified

without apostrophes). See example 1.

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT

keyword and use the same separator as specified on the DATSEP keyword. For example,

RANGE(’12/15/91’ ’12/31/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is

specified for DATSEP.

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT

keyword and use the same separator as specified on the TIMSEP keyword. For example,

RANGE(’11.00.00’ ’12.00.00’) is the default value if *ISO is specified for TIMFMT. The default

separator for *ISO is a period (.).

v If you are defining a timestamp field, you must specify the default value in the following format:

RANGE(’YYYY-MM-DD-HH.MM.SS.UUUUUU’ ’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

REF (Reference) keyword—physical files only

Use this file-level keyword to specify the name of the file from which field descriptions are retrieved.

The format of the keyword is:

REF([library-name/]database-file-name [record-format-name])

REF supplies the field attributes from a previously defined record format. Specify the file name once in

the REF keyword instead of on several REFFLD keywords if each field description refers to the same file.

To refer to more than one file, use the REFFLD keyword. You can specify the REF keyword only once.

The database-file-name is a required parameter value for this keyword. The library-name and the

record-format-name are optional.

If you do not specify the library-name, the library list (*LIBL) in effect at file creation time is used.

Specify a record-format-name as a parameter value for this keyword if there is more than one record

format. If you do not specify the record-format-name, each record format is searched sequentially. The

first occurrence of the field name is used. For information on how the choice of REF and REFFLD

keywords controls these searches, see the topic ″When to specify REF and REFFLD keywords for DDS

files″ in the DDS Reference: Concepts information..

You can specify a Distributed Data Management (DDM) file on this keyword.

When using a DDM file, the database-file-name and library-name are the DDM file and library names on

the source system. The record-format-name is the record format name in the remote file on the target

system.

Note: IDDU files cannot be used as reference files.

Example 1:

The following example shows how to specify the REF keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A REF(FILE1)

00020A R RECORD

00030A FLD1 R

 A

FLD1 has the same attributes as the first (or only) FLD1 in FILE1.

Example 2:

Physical and Logical Files, RANGE

66 OS/400 DDS for physical and logical files V5R3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A REF(LIB1/FILE1 RECORD2)

00020A R RECORD

00030A FLD1 R

 A

FLD1 has the same attributes as FLD1 in RECORD2 in FILE1 in LIB1.

REFACCPTH (Reference Access Path Definition) keyword—logical files

only

Use this file-level keyword to specify that the access path information for this logical file is to be copied

from another physical or logical file. The access path information includes key information, select and

omit information, alternative collating sequence information, dynamic select information, and key

sequencing information (specified in the FCFO, FIFO, LIFO, and UNIQUE keywords).

The format of the keyword is:

REFACCPTH([library-name/]database-file-name)

The name of the file defining the access path is the parameter value for the keyword.

The file containing the REFACCPTH keyword cannot contain key, select, or omit fields.

The record format(s) in the file you are defining can contain fewer or more fields than the record

format(s) in the physical file on which this logical file is based.

If the file specified on the REFACCPTH keyword is a simple or multiple format logical file, it and the file

containing the REFACCPTH keyword must have the same physical files specified in the same order on

the PFILE keyword.

The REFACCPTH keyword is not allowed in join logical files. You can specify a join logical file as the

parameter value on the REFACCPTH keyword only if all the following are true:

v The file you are creating is a simple logical file.

v The physical file specified on the PFILE keyword is the first file specified on the JFILE keyword in the

join logical file.

v The join logical file has key fields specified and does not have select and omit fields specified.

You cannot specify a Distributed Data Management (DDM) file on this keyword.

You cannot specify the REFACCPTH keyword with the DYNSLT, ALTSEQ, FCFO, FIFO, LIFO, or

UNIQUE keywords.

Example:

The following example shows how to specify the REFACCPTH keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00030A* ORDER HEADER LOGICAL FILE (ORDHDR11)

00040A REFACCPTH(DSTLIB/ORDHDRL)

00050A R ORDHDR PFILE(ORDHDRP)

 A

REFFLD (Referenced Field) keyword—physical files only

Use this field-level keyword to refer to a field under one of these three conditions:

v When the name of the referenced field is different from the name in positions 19 through 28

Physical and Logical Files, REF

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 67

v When the name of the referenced field is the same as the name in positions 19 through 28, but the

record format, file, or library of the referenced field is different from that specified with the REF

keyword

v When the referenced field occurs in the same DDS source file as the referencing field

The format of the keyword is:

REFFLD([record-format-name/]referenced-field-name

[{*SRC | [library-name/]database-file-name}])

The referenced-field-name is required even if it is the same as the name of the field being defined. Use

the record-format-name when the referenced file contains more than one record format. Use *SRC (rather

than the database-file-name) when the field name being referred to is in the same DDS source file as the

field being defined. *SRC is the default value when the database-file-name and the library-name are not

specified.

Note: When you refer to a field in the same DDS source file, the field being referred to must precede the

field being defined.

Specify the database-file-name (with its library-name, if necessary) to search a particular database file.

An R must be in position 29. Some keywords specified with the field being referred to are not included

on the field being defined. For more information, see “Reference for physical and logical files (position

29)” on page 19.

If you specify REF at the file level and REFFLD at the field level in the same DDS source file, the

REFFLD specification is used. The search sequence depends on both the REF and REFFLD keywords. For

more information, see the topic ″When to specify REF and REFFLD keywords for DDS files″ in the DDS

Concepts information.

You can specify a Distributed Data Management (DDM) file on this keyword.

When using a DDM file, the database-file-name and library-name are the DDM file and library names on

the source system. The referenced-field-name and the record-format-name are the field name and the

record format name in the remote file on the target system.

Note: IDDU files cannot be used as reference files.

Example:

The following example shows how to code the REFFLD keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R FMAT1

00020A ITEM 5

00030A ITEM1 R REFFLD(ITEM)

00040A ITEM2 R REFFLD(FMAT1/ITEM)

00050A ITEM3 R REFFLD(ITEM FILEX)

00060A ITEM4 R REFFLD(ITEM LIBY/FILEX)

00070A ITEM5 R REFFLD(FMAT1/ITEM LIBY/FILEX)

00080A ITEM6 R REFFLD(ITEM *SCR)

 A

The default for lines 00030 and 00040 is to search the DDS source file where they are specified because

the REF keyword is not specified. In line 00080, the parameter *SRC explicitly specifies this source file.

See the topic ″When to specify REF and REFFLD keywords for DDS files″ in the DDS Reference:

Concepts information for explanations of the various specifications.

Physical and Logical Files, REFFLD

68 OS/400 DDS for physical and logical files V5R3

REFSHIFT (Reference Shift) keyword for physical and logical files

Use this field-level keyword to specify a keyboard shift for a field when the field is referred to in a

display file or DFU operation.

The format of the keyword is:

REFSHIFT(keyboard-shift)

When defining an input-capable field in a display file, refer to the field you are now defining by

specifying the letter R in position 29 and the REF or REFFLD keyword. At display file creation, the

OS/400 program copies the REFSHIFT keyword and other field attributes from the field in the logical file

into the field in the display file. You can override the editing specified in the display or printer file by

specifying new editing keywords. Specifying the DLTEDT keyword deletes all editing for the field. See

the Reference for display files topic for details.

The keyboard shift in the display file (position 35) becomes the parameter value specified on this

keyword instead of the data type specified in the database file. When you refer to a field with the

REFSHIFT keyword from a physical or logical file, the REFSHIFT keyword is copied into the new field.

However, if the field attributes (such as data type) specified for the new field are not compatible with the

keyboard shift specified on the REFSHIFT keyword, the keyword is ignored.

This keyword is valid for fields with data types A, S, B, or P. Choose any keyboard shift that is

compatible with the data type as a parameter value. The following parameters apply to the data types:

v Character field (A): REFSHIFT(A | X | W | N | I | D | M)

v Numeric fields (S, B, P): REFSHIFT(S | Y | N | I | D)

Refer to the description of the data type/keyboard shift positional entry for display files for more

information on the parameters.

Example 1:

The following example shows how to specify the REFSHIFT keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD

00020A FIELDA 5 REFSHIFT(X)

00030A FIELDN 4P REFSHIFT(N)

 A

Fields FIELDA and FIELDN in the file (FILE1) have the REFSHIFT keyword specified as shown. The

REFSHIFT keyword is used when the fields are referred to from a display file.

Example 2:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A REF(FILE1)

00020A R RECORD

00030A FIELDA R 1 2

 A FIELDN R 2 2

 A

The display file references FILE1 (REF keyword). Fields FIELDA and FIELDN in this display file reference

fields FIELDA and FIELDN in FILE1. When the REFSHIFT keyword is specified for the fields in FILE1,

the keyboard shift specified with the REFSHIFT keyword is used in the display file, and the fields have

the following attributes:

v FIELDA has keyboard shift X in position 35.

v FIELDN has keyboard shift N in position 35.

Physical and Logical Files, REFSHIFT

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 69

RENAME (Rename) keyword—logical files only

Use this field-level keyword when you want a field name in the logical record format you are defining to

be different from its corresponding physical file field name.

The format of the keyword is:

RENAME(physical-file-field-name)

The name as it appears in the physical file record format is the parameter value for this keyword. One

field in the physical file record format can be renamed to more than one field in the record format being

described.

You would rename fields in situations similar to the following:

v You want to use programs that were written using a different name for the same field.

v You want to map one field in a physical file record format to two or more fields in a logical file record

format.

v You are using a high-level language (such as RPG III) that does not permit two fields having different

names to have only one data storage area. By specifying the RENAME keyword, you allow both fields

to access the same data storage area.

If you specify the same physical field more than once in a record format in the logical file (that is, by

using either RENAME or CONCAT), the sequence in which the fields are specified in the logical file is

the sequence in which the data is moved to the physical file on an update or insert operation. Thus, the

value in the last occurrence of the physical field is the value that is put in the physical record and is the

value that is used for all keys built over that physical field. All previous values of the same field are

written over and have no effect.

Examples:

The following examples show how to specify the RENAME keyword.

In the following example, the QTYDUE field in the physical file (PF1) is renamed QTY in the logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00050A R RCD1 PFILE(PF1)

00060A QTY RENAME(QTYDUE)

 A

In the following example, the renamed field in the logical file (QTY) is used as a key field.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00050A R RCD2 PFILE(PF2)

00060A :

 A :

00130A QTY RENAME(QTYDUE)

00140A K QTY

 A

SIGNED (Signed) keyword for physical and logical files

Use this key field-level keyword to specify that when sequencing the values associated with this numeric

key field, the OS/400 program is to consider the signs of the values (negative versus positive values).

This keyword has no parameters.

Physical and Logical Files, RENAME

70 OS/400 DDS for physical and logical files V5R3

The following example shows six records with a zoned decimal key field:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

1 98 F9F8

2 00 F0F0

3 98− F9D8

4 97 F9F7

5 20 F2F0

6 99 F9F9

By default (with no sequencing keywords specified and without the ALTSEQ keyword), the key field has

the SIGNED attribute. The records are sequenced in the following order:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

3 98− F9D8

2 00 F0F0

5 20 F2F0

4 97 F9F7

1 98 F9F8

6 99 F9F9

If both SIGNED and DESCEND are specified, the records are sequenced in this order:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

6 99 F9F9

1 98 F9F8

4 97 F9F7

5 20 F2F0

2 00 F0F0

3 98− F9D8

This keyword is not valid for a character, date, time, timestamp, or hexadecimal data type field. You

cannot use it with the ABSVAL, DIGIT, UNSIGNED, or ZONE keywords.

SIGNED (a key field-level keyword) causes ALTSEQ (a file-level keyword) to be ignored. If you specify

SIGNED for a key field, NOALTSEQ is automatically in effect for that key field even if ALTSEQ is

specified at the file level. This occurs whether or not NOALTSEQ is specified.

Example:

The following example shows how to specify the SIGNED keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD

00020A FLDA 7S 2

00030A FLDB

00040A K FLDA SIGNED

 A

SST (Substring) keyword—logical files only

Use this field-level keyword to specify a character string that is a subset of an existing character,

hexadecimal, zoned field, or graphic.

The format of the keyword is:

SST(field-name starting-position [length])

Physical and Logical Files, SIGNED

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 71

The field-name parameter specifies the name of the field from which the substring is taken. This field

must be defined in the same logical file format prior to the SST field (which is the field you are defining)

or it must exist in the physical file specified on the PFILE or JFILE keyword. To find the field, the system

searches for a matching field name as follows:

1. First, the system searches the field names specified in positions 19 to 28 in the logical file format prior

to the SST field.

2. If no matching field name is found in positions 19 to 28 in the logical file format, the system searches

for the field name in the physical file specified on the PFILE or JFILE keyword, according to the

following rules:

v If the logical file is a simple or multiple format logical file, the field must exist in all files specified

on the PFILE keyword.

v If the logical file is a join logical file and the JREF keyword is specified on the SST field, the field

must exist in the JFILE referred to by the JREF keyword.

v If the logical file is a join logical file and the JREF keyword is not specified on the SST field, the

field must exist in exactly one JFILE.

The substring begins at the starting position you specify on the SST keyword. Specify its length either as

the third parameter on the keyword or on the field length (DDS positions 30 through 34). The starting

position is a required parameter; the length is optional.

Note: Both the starting position and length values must be positive integer values and the defined

substring must not be greater than the length of the field specified on the SST keyword.

The following rules apply:

v If the field on the SST keyword is Binary character, the resulting field is Binary character; if the field on

the SST keyword is hexadecimal, the resulting field is hexadecimal; if the field on the SST keyword is

DBCS-graphic, the resulting field is DBCS-graphic; otherwise, the resulting field is always character. If

the data type is not specified in DDS, the result field’s data type depends on the sub-stringed field as

shown in the following table (the Source field type is the type of the physical file field or the logical file

field defined earlier in the logical file source):

 Source field type Logical file field becomes:

A A

H H

S A

G G

Binary character Binary character

v The use of the resulting field must be either input-only (I) or neither (N).

v The length of the resulting field is optional. You must specify either the field length or the length

parameter on the keyword. If you specify both, they must be equal. If the field length is not specified,

it is assigned the length parameter on the keyword.

v You cannot specify this keyword on the same field with the CONCAT, RENAME, or TRNTBL

keywords.

v The field specified on this keyword cannot be defined with the CONCAT, TRNTBL, or SST keywords.

Examples:

The following examples show how to specify the SST keyword.

The following example shows how to specify the SST keyword on a join logical file.

Physical and Logical Files, SST

72 OS/400 DDS for physical and logical files V5R3

|
|
|
|
|
|

|||

||

||

||

||

||
|

|

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD1 JFILE(PF1 PF2)

 A J JOIN(1 2)

 A JFELD(CITY CITY)

 A ADDRESS JREF(2)

 A CITY I SST(ADDRESS 21 10)

 A JREF(2)

 A SYEAR I SST(SALESDATE 5)

 A NAME JREF(1)

 A CUSTNAME I SST(NAME 11 10) JREF(2)

 A K SYEAR

 A

This example shows:

v CITY is a substring of ADDRESS from the logical format and is joined with CITY from PF1.

v CUSTNAME is a substring of NAME from PF2, since NAME in the logical file format has a different

JREF.

v Since SYEAR is a key field, the unique field name SALESDATE must exist in PF1.

v The usage (position 38) for a field with the SST keyword must be I (input only). Since this is a join

logical file, the usage default is I.

The following example shows how to specify the SST keyword on a simple or multiple format logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1 PFILE(PFA)

 A LASTNAME I SST(NAME 10 10)

 A K LASTNAME

 A

The LASTNAME field is a substring of NAME from PFA. The usage I in position 38 must be specified for

SST fields in simple or multiple format logical files.

TEXT (Text) keyword for physical and logical files

Use this record- or field-level keyword to supply a text description (or comment) for the record format or

field that is used for program documentation.

The format of the keyword is:

TEXT(’description’)

The text must be enclosed in apostrophes. If the length of the text is greater than 50 positions, only the

first 50 characters are used by the high-level language compiler.

Note: If the TEXT keyword is specified for a logical file and no fields are specified, the text keyword for

the physical file is used (if specified).

Example:

The following example shows how to specify the TEXT keyword at the record and field levels.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R CUSMST TEXT(’Customer Master Record’)

00020A FLD1 3 0 TEXT(’ORDER NUMBER FIELD’)

 A

Physical and Logical Files, SST

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 73

TIMFMT (Time Format) keyword for physical and logical files

Use this field-level keyword to specify the format of a time field. This keyword is valid for either time

fields (data type T) or zoned fields (data type S) whose corresponding physical file fields are time fields

(data type T).

The format of the keyword is:

TIMFMT(time-format)

The following table describes the valid time formats and their default separators.

Format Name

Time Format

Parameter

Time Format and

Separator Field Length Example

Hours:Minutes:Seconds *HMS hh:mm:ss 8 14:00:00

International

Standards Organization

*ISO hh.mm.ss 8 14.00.00

IBM USA Standard *USA hh:mm AM or

hh:mm PM

8 2:00 pm

IBM European Standard *EUR hh.mm.ss 8 14.00.00

Japanese Industrial

Standard Christian Era

*JIS hh:mm:ss 8 14:00:00

If you do not specify the TIMFMT keyword for a physical file, the default is *ISO.

If you do not specify the TIMFMT keyword for a logical file, the default is the time format from the

physical file.

If you specify the time-format parameter value *ISO, *USA, *EUR, or *JIS, you cannot specify the TIMSEP

keyword. These formats have a fixed separator.

The TIMFMT keyword overrides the job attribute for a time field. It does not change the system default.

Example:

The following example shows how to specify the TIMFMT keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A

00020A R RECORD

00030A TIMFLD1 T TIMFMT(*ISO)

00040A TIMFLD2 T TIMFMT(*USA)

 A

If the current time is 2 o’clock p.m., the system time format is hhmmss, and the system time separator is

':', TIMFLD1 contains 14.00.00. TIMFLD2 contains 2:00 PM.

TIMSEP (Time Separator) keyword for physical and logical files

Use this field-level keyword to specify the separator character used for a time field. This keyword is valid

only for time fields (data type T).

The format of the keyword is:

TIMSEP(*JOB | ’time-separator’)

Physical and Logical Files, TIMFMT

74 OS/400 DDS for physical and logical files V5R3

The time-separator parameter specifies the separator character that appears between the hour, minute,

and second values. Valid values are a colon (:), period (.), a comma (,), and blank (). The parameter

must be enclosed in apostrophes.

If you specify *JOB, the default is the job attribute.

For physical files, if you do not specify the TIMSEP keyword, the default is the job attribute.

For logical files, if you do not specify the TIMSEP keyword, the default is the separator character from

the physical file. If you did not specify the TIMSEP keyword for the physical file field (*ISO, *USA, *EUR,

or *JIS was specified on the TIMFMT keyword), the default is the job attribute.

If you specify *ISO, *USA, *EUR, or *JIS time format on the TIMFMT keyword, you cannot specify the

TIMSEP keyword. These formats have a fixed separator.

If the DFT keyword is not specified, the default value is the current time.

The TIMSEP keyword overrides the job attribute for a time field. It does not change the system default.

Example:

The following example shows how to specify the TIMSEP keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A

00020A R RECORD

00030A TIMFLD1 T TIMSEP(’ ’)

00040A TIMFLD2 T TIMSEP(’.’)

If the current time is 2 o’clock p.m., the system time format is hhmmss, and the system time separator is

':', TIMFLD1 contains 14 00 00. TIMFLD2 contains 14.00.00.

TRNTBL (Translation Table) keyword—logical files only

Use this field-level keyword to specify the name of a translation table to be used when passing this field

between the physical file on the PFILE or JFILE keyword and your program. The field must be a

character field and its length cannot be redefined in the logical file. If the TRNTBL keyword is specified

with the CONCAT keyword, the fields specified on the CONCAT keyword must all be character fields.

The format of the keyword is:

TRNTBL([library-name/]translation-table-name)

The translation-table-name is a required parameter value; the library-name is optional. If you do not

specify the library-name, the OS/400 program uses the library list (*LIBL) that is in effect at file creation

time.

The translation-table-name cannot name an ICU table.

This keyword is valid only for character fields that are input-only (I specified in position 38) or neither

(N specified in position 38) fields.

You cannot specify the TRNTBL keyword on a hexadecimal field (H in position 35). Do not specify the

TRNTBL keyword on a date, time, or timestamp field (L, T, or Z in position 35).

You can specify as many as 99 different translation tables for different fields in the same logical file.

Physical and Logical Files, TIMSEP

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 75

|

Translation occurs when the field is read from the physical file. Therefore, all functions specified in the

logical file (such as key field sequencing, select/omit processing, and joining of records) depend on the

translated version of the data.

The TRNTBL keyword changes the data in the records returned from the logical file. The ALTSEQ

keyword changes only the order of the records returned from the logical file.

The TRNTBL keyword is similar to the CHRID keyword, except for the following:

v The TRNTBL keyword names the translation table to be used; the CHRID keyword does not.

v The TRNTBL keyword changes data on input to the program when your program is reading a logical

file. The CHRID keyword changes the data for display or printing on a specific device. Use the

TRNTBL keyword when your program will use the changed data (for example, in an IF-THEN-ELSE

statement or a COBOL SORT statement). If your program is handling data that comes only from a

logical file, you do not need to specify the CHRID keyword in display or printer files used by the

program.

The TRNTBL keyword is not valid when you specify FILETYPE(*SRC) on the Create Logical File (CRTLF)

command.

Notes:

1. When you use the TRNTBL keyword, the length of the field in the logical file must be the same as the

length of the corresponding field in the physical file.

2. At file creation time, you must have use authority to the translation table. The translation table is

created using the Create Table (CRTTBL) command.

3. The translation table specified in the TRNTBL keyword is referred to only when the logical file is

created. Therefore, a change to a translation table does not affect the logical file until the logical file is

re-created.

Example:

The following example shows how to specify the TRNTBL keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PF1)

00020A CHAR1 I TRNTBL(LIB1/TBL1)

00030A CHAR2 A I TRNTBL(LIB2/TBL2)

00040A NUM1

00050A NUM2

 A

Field CHAR1 is translated using table TBL1 in library LIB1. Field CHAR2 is translated using table TBL2

in library LIB2. Field CHAR2 was redefined in the logical file as a character field (A in position 35) to

allow the TRNTBL keyword to be specified. Fields NUM1 and NUM2 are numeric fields in the physical

file PF1 and cannot have the TRNTBL keyword specified for them.

UNIQUE (Unique) keyword for physical and logical files

Use this file-level keyword to specify that records with duplicate key values are not allowed within a

member of this physical or logical file. You can specify whether null key values are to be considered as

duplicates using the parameter. Any inserts or additions of new records, or updates to existing records,

that would result in a duplicate key are rejected. The application program issuing the write or the update

operation receives an error message. When a work station user is using DFU, a message is displayed at

the work station. A copy file command that would copy records with duplicate keys in this file is not

completed.

The format of this keyword is:

UNIQUE[(*INCNULL | *EXCNULL)]

Physical and Logical Files, TRNTBL

76 OS/400 DDS for physical and logical files V5R3

The parameter is optional. When specified, it determines whether null key values cause duplicates.

*INCNULL is the default and indicates to include null values when determining duplicates. *EXCNULL,

when specified, indicates to exclude null values when determining duplicates.

When a logical file based on a physical file has the UNIQUE keyword, the physical file member or

members cannot have duplicate key values.

When you specify the UNIQUE keyword for a physical or logical file, you must specify the

MAINT(*IMMED) parameter value on the Create Physical File (CRTPF) or Create Logical File (CRTLF)

command that creates the file. This means that the access path is maintained immediately as changes are

made.

If you do not specify the UNIQUE keyword, records with duplicate key values are sequenced in the

order you specify. If you specify the FIFO keyword, they are sequenced in first-in first-out order. If you

specify the LIFO keyword, they are sequenced in last-in first-out order. If you specify the FCFO keyword,

they are sequenced in first-changed first-out order. If you do not specify FIFO, LIFO or FCFO, the order

in which the records are sequenced is not guaranteed.

You cannot specify the UNIQUE keyword with the FIFO, LIFO, FCFO, or REFACCPTH keywords.

Example:

The following example shows how to specify the UNIQUE keyword for a logical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A*

00020A* SAMPLE LOGICAL FILE (CUSMSTL)

00030A*

00040A UNIQUE

00050A R CUSREC PFILE(CUSMSTP)

00060A TEXT(’Logical File Master Record’)

00070A CUST

00080A NAME

00090A ADDR

00100A K CUST

 A

UNSIGNED (Unsigned) keyword for physical and logical files

Use this key field-level keyword to specify that numeric fields are sequenced as a string of unsigned

binary data. Character, date, time, timestamp, and hexadecimal fields default to unsigned values.

This keyword has no parameters.

UNSIGNED is valid on key fields in physical or logical files regardless of the data type of the key field.

The UNSIGNED keyword is not allowed with the SIGNED and ABSVAL keywords.

The UNSIGNED keyword will be the default in the following situations:

v When you specify ALTSEQ at the file level for a zoned key field

v When you specify ZONE or DIGIT for a zoned key field

v For all character and hexadecimal fields

Note: You can specify UNSIGNED for floating point fields, but the results cannot be predicted.

The following figure shows six records with a zoned decimal key field:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

1 98 F9F8

Physical and Logical Files, UNIQUE

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 77

Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

2 00 F0F0

3 98− F9D8

4 97 F9F7

5 20 F2F0

6 99 F9F9

If you specify UNSIGNED, the records are sequenced in this order:

 Record Numeric Key Field (Zoned Decimal) Hexadecimal Representation

2 00 F0F0

5 20 F2F0

3 98− F9D8

4 97 F9F7

1 98 F9F8

6 99 F9F9

Example:

The following example shows how to specify the UNSIGNED keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORDA

00020A FLDA 7S 2

00030A FLDB 5

00040A K FLDA UNSIGNED

 A

VALUES (Values) keyword for physical and logical files

Specify this keyword at the field level, the select/omit-field level, or both.

The format of the keyword is:

VALUES(value-1 [value-2...[value-100]])

Examples:

The following examples show how to specify the VALUES keyword.

The following example uses character and numeric values.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1 PFILE(PF1)

00020A FIELDA 1 0 VALUES(1 6 9) �1�

00030A FIELDB 1 VALUES(’A’ ’B’ ’C’) �1�

00040A K FIELDA

00050A S FIELDB VALUES(’A’ ’B’) �2�

00060A S FIELDA VALUES(1 6) �2�

 A

�1� VALUES is specified for FIELDA and FIELDB as a validity checking keyword for display files

that refer to FIELDA and FIELDB.

�2� VALUES is also specified for FIELDA and FIELDB as a select/omit keyword. Records from the

physical file PF1 are retrieved through this logical file record format depending on the values of

the following fields:

v FIELDB: Records are selected only when FIELDB equals A or B.

v FIELDA: Records not already selected are selected when FIELDA equals 1 or 6.

Physical and Logical Files, UNSIGNED

78 OS/400 DDS for physical and logical files V5R3

The following example uses hexadecimal values.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RCD1 PFILE(PF1)

00020A CODEA

00030A FLD1

00040A FLD2

00050A K FLD1

00060A S CODEA VALUES(X’51’ X’54’ X’AE’)

 A

VALUES is specified as a select/omit keyword for CODEA (which is a 1-byte field). Records from

physical file PF1 are retrieved through this record format only if the value of field CODEA is hex 51, hex

54, or hex AE.

Specifying VALUES at the field level

At the field level, this keyword specifies validity checking for the field you are defining when it is

referred to later during display file creation.

VALUES does not affect the physical or logical file you are defining. When you define an input-capable

field in a display file, you can refer to the field you are now defining by specifying R in position 29 and

the REF or REFFLD keyword. During display file creation, the OS/400 program copies the VALUES

keyword and other field attributes from the field in the physical or logical file into the field in the display

file. You can override the VALUES keyword (as well as all other validity-checking keywords and the

CHKMSGID keyword) by specifying any validity checking keyword for the field in the display file. See

the Reference for display files topic for details.

The rules for specifying this keyword in a physical or logical file are the same as for a display file. See

the VALUES keyword for display files for more information and an example that shows how to specify

the keyword.

You cannot specify the VALUES keyword on a floating-point field (F in position 35) or a hexadecimal

field (H in position 35). Do not specify the VALUES keyword on a date, time, or timestamp field (L, T, or

Z in position 35).

Specifying VALUES at the select or omit-field level

At the select/omit-field level, this keyword selects or omits records retrieved from the physical file(s)

when your program sends an input operation using the record format in which the select/omit field is

specified.

The following rules apply:

v If the field you are defining is a character field, you must specify character strings or hexadecimal

character strings.

Specify character strings enclosed in apostrophes (see example 1 above).

Specify hexadecimal character strings as an X followed by a combination of the digits 0 through 9 and

the letters A through F, enclosed in apostrophes. The number of hexadecimal digits in apostrophes

must be exactly twice the specified length of the field. See example 2 above.

v If the field you are defining is a numeric field, you must specify a numeric value (digits 0 through 9

specified without apostrophes). See example 1 above.

v If you are defining a date field, specify a valid date in the same format specified on the DATFMT

keyword and use the same separator as specified on the DATSEP keyword. For example,

VALUES(’12/15/91’ ’12/31/91’) is the default value if *MDY is specified for DATFMT and ‘/’ is

specified for DATSEP.

Physical and Logical Files, VALUES

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 79

v If you are defining a time field, specify a valid time in the same format specified on the TIMFMT

keyword and use the same separator as specified on the TIMSEP keyword. For example,

VALUES(’11.00.00’ ’12.00.00’) is the default value if *ISO is specified for TIMFMT. The default

separator for *ISO is a period (.).

v If you are defining a timestamp field, you must specify the default value in the following format:

VALUES(’YYYY-MM-DD-HH.MM.SS.UUUUUU’ ’YYYY-MM-DD-HH.MM.SS.UUUUUU’)

VARLEN (Variable-Length Field) keyword for physical and logical files

Use this field-level keyword to define this field as a variable-length field. Variable-length fields are useful

for improving storage when the data for the field typically fits within a certain length, but can

occasionally be longer. Specify the maximum length of the field in positions 30 to 34. You can specify the

allocated length (or typical length) in the parameter.

The format of the keyword is:

VARLEN[(allocated-length)]

The allocated-length parameter is optional. Use it to specify the number of bytes (two byte characters in

the case of graphic fields) allocated for the field in the fixed portion of the file. If you do not specify the

allocated-length parameter, the data for this field is stored in the variable length portion of the file.

Valid values for the allocated-length parameter are 1 to the maximum length of the field specified in

positions 30 to 34.

The VARLEN keyword has no parameters for a logical file.

The VARLEN keyword is valid only on character fields and graphic fields.

When you specify the VARLEN keyword, the maximum length you can specify in positions 30 to 34 is

32 740 (32 739 if the field allows the null value). If the field is a graphic field, the maximum length you

can specify is 16 370.

If you specify the DFT keyword for a variable-length field, the length of the default value must be less

than or equal to the allocated length for the field. If the default value is longer than the allocated length,

an error message is issued when the file is created.

If you specify a hexadecimal value as the default value for a variable-length field, the number of

hexadecimal characters must be equal to two times the allocated length for the field.

The DFT keyword is not allowed on the same field as a VARLEN keyword unless you specify a value for

the allocated-length parameter.

Do not specify the VARLEN keyword on a date, time, or timestamp field (L, T, or Z in position 35).

Example:

The following example shows how to specify the VARLEN keyword for a physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A R RECORD1

00020A FIELD1 100A VARLEN(30)

00030A FIELD2 200A VARLEN

 A

FIELD1 is defined as a variable-length field with a maximum length of 100 and an allocated length of 30.

FIELD2 is defined as a variable-length field with a maximum length of 200 and no allocated length.

Physical and Logical Files, VALUES

80 OS/400 DDS for physical and logical files V5R3

ZONE (Zone) keyword for physical and logical files

Use this key field-level keyword to specify that only the zone portion (farthest left 4 bits) of each byte of

the key field is used when constructing a value associated with this key field. The digit portion is filled

with zeros.

This keyword has no parameters.

This keyword is applied against the entire key field (not just a position within the field) and is valid only

for character, hexadecimal, or zoned decimal type fields.

ZONE is not allowed with the ABSVAL, SIGNED, or DIGIT keywords.

If you specify ZONE for a key field, the value of the field is treated as a string of unsigned binary data

rather than signed (which is the default for zoned decimal fields).

Example:

The following example shows how to specify the ZONE keyword.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

00010A K CODE ZONE

 A

If CODE is a 1-byte field, the values of the field for three different records could be as follows:

 Values Hexadecimal Digits Used for Key

A C1 C

B C2 C

E C5 C

Physical and Logical Files, ZONE

Chapter 2. Keyword entries for physical and logical files (positions 45 through 80) 81

Physical and Logical Files, ZONE

82 OS/400 DDS for physical and logical files V5R3

Appendix A. Unicode considerations for database files

This appendix describes Unicode considerations for the positional entries and keyword entries for

database (physical and logical) files.

Unicode is a universal encoding scheme for written characters and text that enables the exchange of data

internationally. A Unicode field can contain all types of characters used on an iSeries™ server, including

ideographic (DBCS). Unicode data is composed of code units, which represent the minimal byte

combination that can represent a unit of text.

There are three transformation formats (encoding forms) of Unicode that are supported with physical and

logical file DDS:

v UTF-8 is an 8-bit encoding form designed for ease of use with existing ASCII-based systems. UTF-8

data is stored in character data types. The CCSID value for data in UTF-8 format is 1208.

A UTF-8 code unit is 1 byte in length. A UTF-8 character can be 1, 2, 3, or 4 code units in length. A

UTF-8 data string can contain any character, including surrogates and combining characters.

v UTF-16 is a 16-bit encoding form designed to provide code values for over a million characters, and a

superset of UCS-2. UTF-16 data is stored in graphic data types. The CCSID value for data in UTF-16

format is 1200.

A UTF-16 code unit is 2 bytes in length. A UTF-16 character can be 1 or 2 code units (2 or 4 bytes) in

length. A UTF-16 data string can contain any character, including UTF-16 surrogates and combining

characters.

v UCS-2 is the Universal Character Set coded in 2 octets, which means that characters are represented in

16-bits per character. UCS-2 data is stored in graphic data types. The CCSID value for data in UCS-2

format is 13488.

UCS-2 is a subset of UTF-16, and can no longer support all of the characters defined by Unicode.

UCS-2 is identical to UTF-16, except that UTF-16 also supports combining characters and surrogates. If

you do not need support for combining characters and surrogates, then you can choose to use the

UCS-2 type, because there is more database functionality available for it.

In the following topics, references to UTF-16 imply UCS-2 as well.

Positional and keyword entry considerations for database files that use Unicode:

The following topics describe how to specify DDS position 30 through 37 and position 45 through 80 for

describing database files. Positions not mentioned have no special considerations for Unicode.

v Length

v Data type

v Decimal positions

v Keyword considerations

Length (positions 30 through 34)

Specify the length of the field in these positions. The length of a field containing UTF-16 data can range

from 1 through 16 383 code units. The length of a field containing UTF-8 data can range from 1 through

32 766 code units.

When determining the program length of a field containing Unicode data, consider the following:

v Each UTF-16 code unit is 2 bytes long.

© Copyright IBM Corp. 2001, 2005 83

|

|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|

|
|

|

|

|

|

|
|

|
|
|

|

|

v The length of the field is specified in number of UTF-16 code units. For example, a field containing 3

UTF-16 code units has 6 bytes of data.

v Each UTF-8 code unit is 1 byte long. A UTF-8 character can be 1, 2, 3, or 4 code units in length.

v After converting between Unicode data and EBCDIC, the resulting data may be equal to, longer, or

shorter than the original length of the data before the conversion. For example, 1 UTF-16 code unit is

composed of 2 bytes of data. That character may convert to 1 SBCS character composed of 1 byte of

data, 1 graphic-DBCS character composed of 2 bytes of data, or 1 bracketed DBCS character composed

of 4 bytes of data. It is, therefore, recommended that, when converting a Unicode field (in the physical

file) to a field with a different type in the logical file, the field in the logical file be defined with the

VARLEN keyword. The length of the logical file field should be defined large enough to hold the

maximum size that the Unicode field could be converted to. This will account for the expansion that

could occur.

On a logical file, if the length is not specified, and a UTF-16 to EBCDIC conversion will be taking place,

the length of the corresponding physical file field will be taken, except in the following case:

v If the physical file field is UTF-16 capable and the logical file field has a data type of O, then the length

of the logical file field will be 2 times the field size of the physical file field.

Data type (position 35)

The valid data types for Unicode data are the G (Graphic) data type and the A (Character) type.

G (Graphic)

Type G, in combination with the CCSID keyword, specifies that this field contains UTF-16 data.

 Normally, by specifying G, the field contains graphic-DBCS EBCDIC data. In combination with

the CCSID keyword, the field contains UTF-16 data. When conversion is necessary between

corresponding fields in a physical and logical file, data will be mapped between the characters of

the UTF-16 CCSID and the CCSID of the corresponding field.

A (Character)

Type A, in combination with the CCSID keyword (with 1208) specifies that this field contains

UTF-8 data.

 Normally, by specifying A, the field contains EBCDIC data. In combination with the CCSID

keyword, the field contains UTF-8 data. When conversion is necessary between corresponding

fields in a physical and logical file, data will be mapped between the characters of the UTF-8

CCSID and the CCSID of the corresponding field.

Decimal positions (positions 36 and 37)

Leave these positions blank when using Unicode data.

Keyword considerations (positions 45 through 80)

The CCSID keyword is used to enable an A-type or G-type field to contain Unicode data.

The CCSID parameter must have a CCSID using a Unicode encoding scheme. This keyword is enabled

for both physical and logical files.

For logical files the following characteristics must be true before the CCSID keyword is allowed on a

logical file field.

v If the specified value on the logical file CCSID keyword uses Unicode encoding schemes, then the field

data type must be A for UTF-8 or G for UCS-2/UTF-16. Also, the corresponding physical file field must

be of types A, G, or O. If the CCSID keyword is specified on the physical file field, it must contain a

value other than 65535.

84 OS/400 DDS for physical and logical files V5R3

|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|

|
|

|
|

|
|
|
|

v If the specified value on the logical file CCSID keyword does not use Unicode encoding schemes, then

the field data type must be A, O, or G. Also, the corresponding physical file field must be a Unicode

field. The CCSID keyword specified on the logical file field must contain a value other than 65535.

The DFT keyword may contain SBCS, bracketed-DBCS, or bracketed-DBCS-graphic character strings

when specified on a Unicode-capable field.

You can use the COMP keyword only to compare data in another Unicode-capable field. Two equal

length UTF-8 data strings can be compared to each other using their hex values regardless of character

boundaries.

You can specify a character literal on a select or omit field that is tagged with a Unicode CCSID on the

COMP, RANGE, and VALUES keywords. The maximum length of the literal is equal to the number of

Unicode code units that is defined in positions 30 to 34 of the DDS specification.

The VARLEN keyword can be used on Unicode fields.

Logical files can have UTF-8 and UTF-16 data keys.

Concatenation of Unicode fields

Unicode fields can be used in the CONCAT keyword. The following rules apply:

v The parameters of the CONCAT keyword can be UCS-2 graphic fields, UTF-16 fields, or a mix of each

type. No other field types can be concatenated with UCS-2 or UTF-16 fields.

– The concatenation result is UTF-16 if one of the parameters is UTF-16.

– Otherwise, the result is UCS-2.
v A UTF-8 field can be concatenated only with other UTF-8 fields. No other field type is allowed to be

concatenated with a UTF-8 field. The concatenation result is UTF-8.

v The resulting field must be an input-only field; use I in position 38 of the DDS source statement.

Join logical file support

A UTF-8 field may be joined to another UTF-8 field in a join logical file. UTF-16 fields can be joined. To

join a UTF-8 or UTF-16 field to a CHAR field, for example, the UTF-8, UTF-16, or CHAR field must be

redefined in the logical file to the same type field.

Select/Omit fields in logical files

UTF-8 and UTF-16 fields are allowed as select and omit field specifications.

Appendix A. Unicode considerations for database files 85

|
|
|

|
|

|
|
|

|
|
|

|

|

|

|

|
|

|

|

|
|

|

|

|
|
|

|

|

86 OS/400 DDS for physical and logical files V5R3

Appendix B. DBCS considerations for database files

This topic describes the DBCS considerations for the positional entries and keyword entries for physical

and logical files, along with general considerations for database files.

See the DDS Reference: Concepts information for additional general information relating to the use of the

double-byte character set (DBCS) with DDS.

The functions described in this appendix are supported on both DBCS and non-DBCS systems.

Positional entry considerations for database files that use DBCS

The following topics describe DBCS considerations for the length, data type, and decimal positional

entries on database files. Positional entries that are not mentioned have no special considerations for

DBCS.

Length (positions 30 through 34)

The length of a field containing bracketed-DBCS data can range from 4 through 32 766 bytes (4 through

32 740 bytes if the field is variable length). The length of a DBCS-graphic field can range from 1 through

16 383 characters (1 through 16 370 characters if the field is variable length).

When determining the length of a field containing DBCS data, consider the following:

v Each DBCS character is 2 bytes long.

v For DBCS-graphic fields, the length of the field is specified in number of DBCS characters.

v Include both shift-control characters in the length of the field for fields with a data type of J, E, or O.

Together, these characters are 2 bytes long.

v Fields specified with the J or E data types must have an even length.

For example, a bracketed-DBCS field that contains up to 3 DBCS characters, 1 shift-in character, and 1

shift-out character, has 8 bytes of data:

(3 characters x 2 bytes) + (shift-out + shift-in) = 8

A DBCS-graphic field that contains up to 3 DBCS characters has 6 bytes of data:

(3 characters x 2 bytes) = 6

Data type (position 35)

You can use one of the following DBCS data types:

J (Only)

Fields can contain only DBCS data.

E (Either)

Fields can contain either DBCS or alphanumeric data.

O (Open)

Fields can contain both DBCS and alphanumeric data. Distinguish DBCS data from alphanumeric

data with shift-control characters.

G (Graphic)

Fields can contain only DBCS data with no shift-control characters.

© Copyright IBM Corp. 2001, 2005 87

Decimal (positions 36 and 37)

Leave these positions blank when using DBCS data.

Keyword considerations for database files that use DBCS

Do not specify DDS keywords intended for use with numeric data for fields containing DBCS data. The

system treats DBCS data the same as character data, and, therefore, cannot perform arithmetic operations

on it.

For additional information on the keywords for database files, refer to the keyword descriptions in the

physical and logical files topics.

Do not use the following DDS keywords with DBCS data fields (the data type specified in position 35 is

O, J, E, or G):

 ABSVAL

ALTSEQ

CHECK(M10)

CHECK(M10F)

CHECK(M11)

CHECK(M11F)

CHECK(VN)

CHECK(VNE)

DATFMT

DATSEP

DIGIT

EDTCDE

EDTWRD

FLTPCN

REFSHIFT

SIGNED

SST

TIMFMT

TIMSEP

TRNTBL

ZONE

Notes:

1. The SST keyword is allowed on fields with a data type of G.

2. The REFSHIFT keyword is allowed on fields with a data type of O, J, or E.

The CONCAT keyword can be used as described below.

CONCAT (Concatenate) keyword

Use this field-level keyword when you want to combine two or more fields from the physical file record

format into one field in the logical file record format you are describing. The name of this concatenated

field must appear in positions 19 through 28. Specify the physical file field names in the order in which

you want them to be concatenated, and separate them by blanks.

The following rules and restrictions apply:

v The OS/400 program assigns the length of the concatenated field as the sum of the lengths (digits and

characters) of the fields that are included in the concatenation.

Note: For fields with data type J, the shift-out and shift-in pairs between the concatenated fields are

removed from the resulting field. If the resulting data type is hexadecimal, the shift-out and

shift-in pairs are eliminated for DBCS fields that precede the first hexadecimal fields.

v A DBCS-graphic field can be concatenated only with another graphic data type field.

v The OS/400 program assigns the data type based on the data types of the fields that are being

concatenated. When bracketed-DBCS fields are included in a concatenation, the general rules are:

– If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

– If all fields in the concatenation are DBCS-only (J), the resulting data type is DBCS-only (J).

– If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal fields, the

resulting data type is DBCS-open (O).
v The OS/400 program assigns the field to be fixed length or variable length based on the fields that are

being concatenated. The general rules are:

88 OS/400 DDS for physical and logical files V5R3

– Concatenation of a variable length field to either a fixed length field or another variable length field

results in a variable length field.

– Concatenation of a fixed length field to a fixed length field results in a fixed length field unless the

VARLEN keyword is also specified on the same field as the CONCAT keyword.
v The maximum length of a concatenated field varies depending on the data type of the concatenated

field and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its

total length cannot exceed 63 bytes; if it is character (A) or DBCS(O, J), its total length cannot exceed

32 766 bytes. If the concatenated field is variable length, its total length cannot exceed 32 740 bytes

(32 739 if the field also allows the null value).

If the concatenated field is a DBCS-graphic (G) field, its total length cannot exceed 16 383 characters. If

the concatenated field is variable length, its total length cannot exceed 16 370 characters.

v In join logical files, the fields to be concatenated must be from the same physical file. The first field

specified on the CONCAT keyword identifies which physical file is used. The first field must,

therefore, be unique among the physical files on which the logical file is based, or you must also

specify the JREF keyword to specify which physical file to use.

v When one or more of the fields being concatenated are DBCS fields, none of the fields on the CONCAT

keyword can be specified as a key, select, or omit field unless the field name is also specified in

positions 19 through 28 or on a RENAME or CONCAT keyword specified before the DBCS

concatenation.

v The usage of a concatenated field must be I (input only).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

Example:

The following example shows how to specify the CONCAT keyword on the DDS coding form.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD 1 PFILE(PF1)

 A FLD1 I CONCAT(PFLD1 PFLD2)

 A FLD2 I CONCAT(PFLD1 PFLD2 PFLD3)

 A FLD3 I CONCAT(PFLD4 PFLD5)

 A

In the example, if the fields from PF1 are:

v PFLD1 with data type J

v PFLD2 with data type J

v PFLD3 with data type E

v PFLD4 and PFLD5 with data type G

Then the resulting fields are:

v FLD1 with data type J

v FLD2 with data type O

v FLD3 with data type G

Additional considerations for describing database files that contain

DBCS data

Consider the following when describing a database file that contains DBCS fields:

v If you describe DBCS fields in the DDS, the system treats the file as a DBCS file. You do not have to

specify IGCDTA(*YES) on the file creation command to identify the file as DBCS.

v The data type of a field in a physical file may be changed as follows when you refer to that field in a

logical file:

Appendix B. DBCS considerations for database files 89

|
|
|
|
|

|
|

Physical File Data

Type Logical File Data Type

J J, O, E, H, G

O O, H

E O, E, H

A A, O, E, H

H J, O, E, A, H

G G, O, J, E

Note: When the physical file data type is character (A) or hexadecimal (H), and the logical file data

type is DBCS-only (J) or DBCS-either (E), the physical file field length (columns 30 through 34)

must be an even number greater than or equal to 4.

v DDS treats DBCS key fields as character fields (the data type specified in position 35 is O).

v DDS uses the EBCDIC collating sequence to sort DBCS data.

v Any key field sequencing keywords that can be used with character fields can be used with DBCS

fields, except the following keywords:

ALTSEQ

DIGIT

ZONE

v Use bracketed-DBCS data anywhere that comments and character strings are allowed. See the DBCS

character strings topic in the DDS Reference: Concepts for instructions.

v Any bracketed-DBCS field except a field with data type J can be compared with a character field (data

type A).

v A DBCS-graphic field can be compared only with another graphic field.

v The following validity checking keywords may be specified on DBCS fields:

COMP

RANGE

VALUES

v When specifying the VARLEN keyword in a physical file, the minimum allowed length for the

allocated length is 4 for a bracketed-DBCS field. The minimum allowed length for the allocated length

is 1 for a DBCS-graphic field.

90 OS/400 DDS for physical and logical files V5R3

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM® Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 2001, 2005 91

|
|
|
|
|

|
|
|
|

|
|

|

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 IBM

 iSeries

 Operating System/400

 OS/2

 OS/400

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

92 OS/400 DDS for physical and logical files V5R3

|
|
|
|

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Appendix C. Notices 93

94 OS/400 DDS for physical and logical files V5R3

Index

Special characters
*NONE key field 8, 12

A
Absolute Value (ABSVAL) keyword 30

ABSVAL (Absolute Value) keyword 30

ALIAS (Alternative Name) keyword 31

ALL (All) keyword 31

Allow Null (ALWNULL) keyword 33

Alternative Collating Sequence (ALTSEQ)

keyword 32

Alternative Name (ALIAS) keyword 31

ALTSEQ (Alternative Collating Sequence)

keyword 32

ALWNULL (Allow Null) keyword 33

C
CCSID (Coded Character Set Identifier)

keyword 33

Change Logical File (CHGLF)

command 48

CHECK (Check) keyword 35

Check Message Identifier (CHKMSGID)

keyword 36

CHGLF (Change Logical File)

command 48

CHKMSGID (Check Message Identifier)

keyword 36

CMP (Comparison) keyword 36

Coded Character Set Identifier (CCSID)

keyword 33

COLHDG (Column Heading)

keyword 37

Column Heading (COLHDG)

keyword 37

commands
Create Physical File (CRTPF)

command 1

comment 4

COMP (Comparison) keyword 37

Comparison (CMP) keyword 36

CONCAT (Concatenate) keyword 40, 88

conditioning 5

converting between zoned decimal and

hexadecimal data types 24

converting data types 24

when substringing fields 25

converting data types when

concatenating fields 25

converting floating point
to binary 25

to packed decimal 25

to zoned decimal 25

Copy File (CPYF) command 46

copying
file 46

CPYF (Copy File) command 46

Create Logical File (CRTLF)

command 48

Create Physical File (CRTPF)

command 1

CRTLF (Create Logical File)

command 48

CRTPF (Create Physical File)

command 1

D
data type 23

data types
converting between zoned decimal

and hexadecimal data types 24

converting floating point to packed,

zoned, and binary data types 25

converting in DDS files 24

converting when concatenating

fields 25

converting when substringing

fields 25

Date Format (DATFMT) keyword 42

Date Separator (DATSEP) keyword 44

DATFMT (Date Format) keyword 42

DATSEP (Date Separator) keyword 44

DBCS considerations for database

files 87

DDS file considerations
Unicode 83

decimal positions 25

Default (DFT) keyword 45

defining a logical file 1

defining a physical file 1

DESCEND (Descend) keyword 45

DFT (Default) keyword 45

DIGIT (Digit) keyword 47

Dynamic Select (DYNSLT) keyword 48

DYNSLT (Dynamic Select) keyword 48

E
Edit Code (EDTCDE) keyword 50

EDTCDE (Edit Code) keyword 50

F
FCFO (First-Changed First-Out)

keyword 51

field name 7

FIFO (First-In First-Out) keyword 52

First-Changed First-Out (FCFO)

keyword 51

First-In First-Out (FIFO) keyword 52

Floating-Point Precision (FLTPCN)

keyword 52

FLTPCN (Floating-Point Precision)

keyword 52

form type 4

FORMAT (Format) keyword 53

I
Initialize Physical File Member (INZPFM)

command 46

initializing
physical file member 46

INZPFM (Initialize Physical File Member)

command 46

J
JDFTVAL (Join Default Values)

keyword 53

JDUPSEQ (Join Duplicate Sequence)

keyword 55

JFILE (Joined Files) keyword 56

JFLD (Joined Fields) keyword 57

JOIN (Join) keyword 59

Join Default Values (JDFTVAL)

keyword 53

Join Duplicate Sequence (JDUPSEQ)

keyword 55

join logical files 2

Join Reference (JREF) keyword 61

Joined Fields (JFLD) keyword 57

Joined Files (JFILE) keyword 56

JREF (Join Reference) keyword 61

K
key field name 7

keyword entries for physical and logical

files 29

L
Last-In First-Out (LIFO) keyword 62

length 20

LIFO (Last-In First-Out) keyword 62

location 28

logical files
*NONE key field 8, 12

comment 4

conditioning 5

data type 23

DBCS considerations 87

decimal positions 25

field name 7

form type 4

join 2

key field name 7

keyword entries 29

length 20

location 28

multiple format 2

multiple record formats 11

name 5

name type 5

positional entries 4

© Copyright IBM Corp. 2001, 2005 95

logical files (continued)
record format for simple and multiple

format 6

record format in join logical files 7

record format name 6

reference 19

reserved 5

select/omit field name 17

sequence number 4

simple 2

specification type 5

specifying record formats 3

Unicode 83

usage 27

M
multiple format logical files 2

N
name 5

name type 5

No Alternative Collating Sequence

(NOALTSEQ) keyword 62

NOALTSEQ (No Alternative Collating

Sequence) keyword 62

P
PFILE (Physical File) keyword 63

Physical File (PFILE) keyword 63

physical files
comment 4

conditioning 5

data type 23

DBCS considerations 87

decimal positions 25

field name 7

form type 4

key field name 7

keyword entries 29

length 20

location 28

name 5

name type 5

positional entries 4

record format name 6

reference 19

reserved 5

sequence number 4

specification type 5

Unicode 83

usage 27

positional entries for physical and logical

files 4

R
RANGE (Range) keyword 64

record format 6, 7

record format name 6

record formats in logical files 3

REF (Reference) keyword 66

REFACCPTH (Reference Access Path

Definition) keyword 67

reference 19

Reference Access Path Definition

(REFACCPTH) keyword 67

Reference Shift (REFSHIFT) keyword 69

Referenced Field (REFFLD) keyword 67

REFFLD (Referenced Field) keyword 67

REFSHIFT (Reference Shift) keyword 69

RENAME (Rename) keyword 70

reserved 5

S
select or omit-field level

specifying COMP 39

select/omit field name 17

sequence number 4

SIGNED (Signed) keyword 70

simple logical files 2

specification type 5

specifying COMP at the select or

omit-field level 39

specifying record formats in logical

files 3

SST (Substring) keyword 71

Substring (SST) keyword 71

T
TEXT (Text) keyword 73

Time Format (TIMFMT) keyword 74

Time Separator (TIMSEP) keyword 74

TIMFMT (Time Format) keyword 74

TIMSEP (Time Separator) keyword 74

Translation Table (TRNTBL) keyword 75

TRNTBL (Translation Table) keyword 75

U
Unicode

DDS file considerations 83

physical and logical files 83

UNIQUE (Unique) keyword 76

UNSIGNED (Unsigned) keyword 77

usage 27

V
VALUES (Values) keyword 78

Variable-Length Field (VARLEN)

keyword 80

VARLEN (Variable-Length Field)

keyword 80

Z
ZONE (Zone) keyword 81

96 OS/400 DDS for physical and logical files V5R3

����

Printed in USA

	Contents
	About DDS for physical and logical files
	Who should read the DDS for physical and logical files book
	Conventions and terminology used in the DDS information
	Print this topic
	What's New for V5R3 in the DDS for physical and logical files information

	Chapter 1. Defining physical and logical files using DDS
	Defining a physical file using DDS
	Defining a logical file using DDS
	Simple and multiple format logical files in DDS
	Join logical files in DDS
	Specifying record formats in a logical file in DDS

	Positional entries for physical and logical files (positions 1 through 44)
	Sequence number for physical and logical files (positions 1 through 5)
	Form type for physical and logical files (position 6)
	Comment for physical and logical files (position 7)
	Conditioning for physical and logical files (positions 8 through 16)
	Type of name or specification for physical and logical files (position 17)
	Reserved for physical and logical files (position 18)
	Name for physical and logical files (positions 19 through 28)
	Record format
	Field name
	Key field name
	Select or omit field name

	Reference for physical and logical files (position 29)
	Length for physical and logical files (positions 30 through 34)
	Data type for physical and logical files (position 35)
	Converting One Numeric Data Type to Another in a DDS File
	Converting between Zoned Decimal and Character or Hexadecimal in a DDS File
	Converting from Floating Point to Packed Decimal, Zoned Decimal, or Binary in DDS
	Converting Data Types When Concatenating Fields in DDS
	Converting Data Types When Substringing Fields in DDS

	Decimal positions for physical and logical files (positions 36 and 37)
	Usage for physical and logical files (position 38)
	Location for physical and logical files (positions 39 through 44)

	Chapter 2. Keyword entries for physical and logical files (positions 45 through 80)
	ABSVAL (Absolute Value) keyword for physical and logical files
	ALIAS (Alternative Name) keyword for physical and logical files
	ALL (All) keyword—logical files only
	ALTSEQ (Alternative Collating Sequence) keyword for physical and logical files
	ALWNULL (Allow Null Value) keyword—physical files only
	CCSID (Coded Character Set Identifier) keyword for physical and logical files
	CHECK (Check) keyword for physical and logical files
	CHKMSGID (Check Message Identifier) keyword for physical and logical files
	CMP (Comparison) keyword for physical and logical files
	COLHDG (Column Heading) keyword for physical and logical files
	COMP (Comparison) keyword for physical and logical files
	Specifying COMP at the field level
	Specifying COMP at the select or omit-field level

	CONCAT (Concatenate) keyword—logical files only
	DATFMT (Date Format) keyword for physical and logical files
	DATSEP (Date Separator) keyword for physical and logical files
	DESCEND (Descend) keyword for physical and logical files
	DFT (Default) keyword—physical files only
	DIGIT (Digit) keyword for physical and logical files
	DYNSLT (Dynamic Select) keyword—logical files only
	EDTCDE (Edit Code) and EDTWRD (Edit Word) keywords for physical and logical files
	FCFO (First-Changed First-Out) keyword for physical and logical files
	FIFO (First-In First-Out) keyword for physical and logical files
	FLTPCN (Floating-Point Precision) keyword for physical and logical files
	FORMAT (Format) keyword for physical and logical files
	JDFTVAL (Join Default Values) keyword—join logical files only
	JDUPSEQ (Join Duplicate Sequence) keyword—join logical files only
	JFILE (Joined Files) keyword—join logical files only
	JFLD (Joined Fields) keyword—join logical files only
	JOIN (Join) keyword—join logical files only
	JREF (Join Reference) keyword—join logical files only
	LIFO (Last-In First-Out) keyword for physical and logical files
	NOALTSEQ (No Alternative Collating Sequence) keyword for physical and logical files
	PFILE (Physical File) keyword—logical files only
	RANGE (Range) keyword for physical and logical files
	Specifying RANGE at the field level
	Specifying RANGE at the select or omit-field level

	REF (Reference) keyword—physical files only
	REFACCPTH (Reference Access Path Definition) keyword—logical files only
	REFFLD (Referenced Field) keyword—physical files only
	REFSHIFT (Reference Shift) keyword for physical and logical files
	RENAME (Rename) keyword—logical files only
	SIGNED (Signed) keyword for physical and logical files
	SST (Substring) keyword—logical files only
	TEXT (Text) keyword for physical and logical files
	TIMFMT (Time Format) keyword for physical and logical files
	TIMSEP (Time Separator) keyword for physical and logical files
	TRNTBL (Translation Table) keyword—logical files only
	UNIQUE (Unique) keyword for physical and logical files
	UNSIGNED (Unsigned) keyword for physical and logical files
	VALUES (Values) keyword for physical and logical files
	Specifying VALUES at the field level
	Specifying VALUES at the select or omit-field level

	VARLEN (Variable-Length Field) keyword for physical and logical files
	ZONE (Zone) keyword for physical and logical files

	Appendix A. Unicode considerations for database files
	Length (positions 30 through 34)
	Data type (position 35)
	Decimal positions (positions 36 and 37)
	Keyword considerations (positions 45 through 80)

	Appendix B. DBCS considerations for database files
	Positional entry considerations for database files that use DBCS
	Length (positions 30 through 34)
	Data type (position 35)
	Decimal (positions 36 and 37)

	Keyword considerations for database files that use DBCS
	CONCAT (Concatenate) keyword

	Additional considerations for describing database files that contain DBCS data

	Appendix C. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

	Index

