
iSeries

Systems Management

Back up your server

Version 5 Release 3

ERserver

���

iSeries

Systems Management

Back up your server

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 165.

Sixth edition (August 2005)

This edition applies to version 5, release 3, modification 2 of IBM Operating System/400 (product number 5722-SS1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not

run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1996, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|

Contents

Chapter 1. Back up your server 1

Code disclaimer information 2

Chapter 2. Before you save anything... . 3

Use the precheck option 3

Choose compression type 3

Free storage when saving 4

How object locking affects save operations . . . 5

Size limitations when saving objects 5

Restrictions when using save files 6

Verify what the server saved 7

Determine objects that the server saved (save

messages) 7

Determine objects that are not saved 8

Determine when an object was last saved 9

How the server handles damaged objects during a

save operation 10

Chapter 3. Prepare your media to save

your server 11

Choose your save media 11

Compare optical and tape media 12

Consider using save files 14

Consider using virtual optical 17

Rotate tapes and other media 19

Prepare media and tape drives 19

Name and label media 20

Verify your media 21

Store your media 21

Handle tape media errors 21

Chapter 4. Save your server with the

GO SAVE command 23

Explanation for Save commands and menu options

figure 25

Overview of the GO SAVE command menu options 25

Change Save menu defaults with GO SAVE: Option

20 28

Save your whole server with GO SAVE: Option 21 29

Save system data with GO SAVE: Option 22 . . . 30

Save user data with GO SAVE: Option 23 30

Save parts of your server with other GO SAVE

command menu options 31

View entire GO SAVE checklist 31

Printing system information 37

Identify optional features that affect your backup 40

Chapter 5. Manually save parts of your

server 43

Commands to save parts of your server 43

Commands to save specific object types 44

Save system data 46

Methods to save Licensed Internal Code 47

Methods to save system information 47

Methods to save operating system objects . . . 48

Save system data and related user data 48

Save libraries with the SAVLIB command . . . 49

Save independent ASPs 52

Save security data 53

Save configuration information 54

Save licensed programs 55

Methods to save system data and related user

data 55

Save user data in your server 58

Save objects with the SAVOBJ command 59

Save only changed objects 60

Save database files 63

Save journaled objects 67

Save journals and journal receivers 67

Save file systems 68

Save user-defined file systems 75

Save document library objects (DLOs) 76

Save spooled files 79

Save office services information 80

Methods to save user data 82

Save logical partitions and system applications . . 88

Explanation of File Systems–Save Commands . . 90

Save logical partitions 90

Save a Domino server 92

Save IBM iSeries Integration for Windows Server 92

Save OS/400 Enhanced Integration for Novell

NetWare information 92

Save storage (Licensed Internal Code data and disk

unit data) 92

Purpose of saving storage 93

Task 1 - Start the save storage procedure . . . 94

Task 2 - Respond to messages 95

Task 3 - Complete the SAVSTG process 97

Cancel a save storage operation 97

Resume a save storage operation 97

Chapter 6. Save your server while it is

active 99

Save-while-active and your backup and recovery

strategy 99

Save-while-active function 100

Considerations and restrictions for the

save-while-active function 106

Save-outage time reduction 113

Save-outage time elimination 114

Parameters for the save-while-active function . . . 114

Synchronization-level values for Save Active

(SAVACT) parameter 115

The wait time (SAVACTWAIT) parameter . . . 116

The checkpoint notification (SAVACTMSGQ)

parameter 116

Additional save-while-active option

(SAVACTOPT) parameter 117

Reduce your save-outage time 117

© Copyright IBM Corp. 1996, 2005 iii

||

Recommended procedure to reduce your

save-outage time 118

Example: Reduce save-outage time for two

libraries 118

Example: Reduce save-outage time for a

directory 119

Example: Restore libraries after reducing

save-outage time 119

Example: Restore a directory after reducing

save-outage time 119

Eliminate your save-outage time 120

Recommended procedure to eliminate

save-outage time 120

Monitor your save-while-active operation . . . 121

Recommended recovery procedures after

eliminating save-outage time 121

Example: Eliminate save-outage time for

libraries 123

Example: Eliminate save-outage time for a

directory 124

Example: Saving objects with partial

transactions 124

Example: Restore libraries after eliminating

save-outage time 125

Example: Restoring objects with partial

transactions 127

Example: Restore a directory after eliminating

save-outage time 130

Considerations for recovery procedures after

eliminating save-outage time 132

Chapter 7. Save to multiple devices to

reduce your save window 135

Set up saves to multiple devices 135

Restrictions of saving to multiple devices 136

Chapter 8. Backup programming

techniques 139

Consider job recovery 139

Interpret output from Save (SAV) and Restore

(RST) commands 140

Output sequence 141

Entry header information 142

Command information entries 142

Directory information entries 144

Object link information entries 145

Trailer information entry 148

Field descriptions 148

Interpret output from save commands 155

Output file information 155

Field descriptions 157

Example: Retrieve the device name from save

completion messages 161

Example: Display status messages when saving 161

Chapter 9. Recover your server . . . 163

Appendix. Notices 165

Programming Interface Information 167

Trademarks 167

Terms and conditions for downloading and

printing publications 168

iv iSeries: Systems Management Back up your server

|
||

|
||

 |
 | |
 | |
 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |

Chapter 1. Back up your server

The method that you use to back up your server depends upon your backup strategy. If you do not have

a strategy, review the information in Planning a backup and recovery strategy. After reviewing the

information, determine how you should save your data.

Simple strategy

If you choose a simple strategy you can use the GO SAVE command to back up up your server. The Save

menu options of the GO SAVE command provide an easy method to back up your server. These Save

menu options include option 21 to save your entire server, option 22 to save your system data, and

option 23 to save your user data. Each of these options requires that your server be in a restricted state.

This means that no users can access your server, and the backup is the only thing that is running on your

server.

Use the GO SAVE command, menu option 21, to save your entire server. Then you can use the other GO

SAVE command menu options to save the parts of your server that change regularly. In addition, you can

use a variety of other save commands to save individual parts of your server.

If you choose a simple save strategy, review Figure 1 on page 24 to see what parts of your server GO

SAVE command, menu options 21, 22, or 23 save. Then skip to the topic, Chapter 3, “Prepare your media

to save your server,” on page 11.

Medium and complex strategy

To help you get started with a medium or complex strategy follow these steps:

1. Draw a picture of your server similar to the one in Figure 1 on page 24. In your picture, break the

section called “User Libraries” into smaller segments that match the way you plan to save user

libraries.

2. Study the information in Figure 1 on page 24 and in Chapter 5, “Manually save parts of your server,”

on page 43.

3. Determine how and when you plan to save each part of your server.

If you do not have time to do a full save, you can save your server while it is active. However, you must

have a complete backup of your entire server (which requires a restricted state) before you use these

advanced functions.

Information to back up your server

The information following contains the details that you can use to perform your save strategy.

 Before you save anything...
Read this information before you save anything on your server.

Prepare your media to save your server
Use this information to select and manage the save media that you will use for all your save functions.

Save your server with the GO SAVE command
Save your entire server or parts of your server that change regularly with this simple method.

© Copyright IBM Corp. 1996, 2005 1

Manually save parts of your server
Use this information to use save commands to save your server manually. This information applies if you

use a medium or complex save strategy.

Save your server while it is active
Use this information to decrease or eliminate your save window. It is typically for complex save strategies

which have a small save window.

Save to multiple devices to reduce your save window
Use these save methods to decrease your save window by saving to multiple devices.

Backup programming techniques
Learn about techniques you can use to design applications that will help make your save environment

more efficient.

Note: Read the “Code disclaimer information” for important legal information.

Code disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

2 iSeries: Systems Management Back up your server

Chapter 2. Before you save anything...

Read the following information before you save anything:

v “Use the precheck option” explains how to have the server check certain criteria on each object that

you save on a library-by-library basis. This option is not required.

v “Choose compression type” explains the types of compression that are available.

v “Free storage when saving” on page 4 explains how to use the STG parameter to remove an object

from your server after you save it. This only works with a limited number of commands.

v “Size limitations when saving objects” on page 5 explains how the server records a list of the objects

that you save during a save operation.

v “Verify what the server saved” on page 7 explains techniques to audit your save strategy. You will

learn which objects the server saved, which objects the server did not save, and when the server last

saved an object.

v “How the server handles damaged objects during a save operation” on page 10 explains how the

server handles damaged objects. This information also provides you with important information on

error messages that you may see during a save operation.

Use the precheck option

You can use the precheck (PRECHK) parameter when you save objects to ensure that all of the objects

you intend to save can be successfully saved. If you specify PRECHK(*YES), the server verifies that the

following are true of each object that you are saving on a library-by-library basis:

v The object can be allocated during the save operation. No other job has a conflicting lock on the object.

v The object exists.

v The object is not marked as damaged. The precheck process looks only for damage that has already

been detected. It does not detect new damage to the object header or damage to the contents.

v All members of an object can be allocated if the object is a database file.

v The person that requests the save operation has sufficient authority to save the object.

When you specify PRECHK(*YES), all of the objects you are saving in a library must meet the conditions.

If they do not, no objects in the library are saved. If you specify more than one library on the save

command, the failure of one library to meet the PRECHK tests does not typically prevent the server from

saving other libraries. However, if you specify SAVACT(*SYNCLIB), the entire save operation stops if one

object fails the precheck process.

When you specify PRECHK(*NO), the server performs the checking on an object-by-object basis. The

server bypasses any object that does not meet the conditions, but the save operation continues with other

objects in the library.

Choose compression type

You can use compression and other capabilities to improve save performance and also use less media for

your save. Data compression compresses data on the media when you perform the save operations. Data

decompression reconstructs data when you perform a restore operation. The system ensures that

information saved can be reconstructed exactly. No data is lost as a result of compression and

decompression.

The two main types of compression are hardware compression and software compression. Most tape

media devices use hardware compression, which is normally faster than software compression. Software

compression takes considerable processing unit resources and may increase your save and restore time.

© Copyright IBM Corp. 1996, 2005 3

In addition to data compression, you can use compaction and optimum block size features to streamline

your save. These features are available through parameters on all save commands:

v Data Compression (DTACPR)

v Data Compaction (COMPACT)

v Use Optimum Block Size (USEOPTBLK)

You can see examples of the parameter values in the SAVSYS command description. You can also find

more information about compression, compaction, and optimum block size in iSeries™ Performance

Capabilities Reference

.

If you save to save files or optical media, you also have three choices available for software compression:

low, medium, and high. If you choose a higher form of compression, your save will take longer, but the

resulting save data will usually be smaller. The following choices are available on the Data Compression

(DTACPR) parameter of the save commands and through the Save Object (QsrSave) and Save Object List

(QSRSAVO) APIs:

v Low — This is the default form of compression for save files and optical media. Low compression is

usually faster than medium or high compression. The compressed data is usually larger than if

medium or high compression is used.

v Medium — This is the default form of compression for optical-DVD media. Medium compression is

usually slower than low compression but faster than high compression. The compressed data is usually

smaller than if low compression is used and larger than if high compression is used.

v High — This form of compression is new at V5R2 and is meant to be used when maximum

compression is desired. High compression is usually noticeably slower than low and medium

compression. The compressed data is usually smaller than if low or medium compression is used.

If you choose to compress data with any of these values and specify a TGTRLS prior to V5R2M0, you

will receive an error message and your save will fail. Also, if you specify these compression values when

saving to tape your save will fail and you will receive an error message.

Free storage when saving

Normally, saving an object does not remove it from the server. However, you can use the storage (STG)

parameter on some save commands to free some of the storage that is used by saved objects.

If you specify STG(*FREE), the object description and search values remain on the server. The server

deletes the contents of the object. You can perform operations such as moving and renaming an object

whose storage you freed. However, you must restore the object to use it.

You can use the STG(*FREE) parameter for the object types in the following table:

 Table 1. Object types that support freeing storage

Object Type Description

*FILE1,2 Files, except save files

*STMF3 Stream files

*JRNRCV4 Journal receivers

*PGM5 Programs

*DOC Documents

*SQLPKG SQL packages

*SRVPGM Service programs

*MODULE Modules

4 iSeries: Systems Management Back up your server

|
|
|
|
|

|
|
|

|
|
|

|
|
|

Table 1. Object types that support freeing storage (continued)

Object Type Description

1 When you free a database file, the server frees the storage that is occupied by the data portion of the object,

but the object description remains on the server. If you save a database file that has already been freed and

free its storage, the server does not save the object description and you receive the following message:

CPF3243 Member xxx already saved with storage freed

If you install the Media and Storage Extensions product on your server, and you save a database file and

free its storage, the server saves the object description.

2 The server does not free the storage occupied by logical file access paths.

3 You can free storage for *STMF objects, but not during a save operation. Free the storage for *STMF objects

with the Save Storage Free Qp0lSaveStgFree() API.

 You can save an *STMF object whose storage has already been freed, but you must restore the *STMF object

before you can use it.

4 You can free storage for a journal receiver if it is detached and all previous journal receivers are deleted or

have their storage freed.

5 Do not specify STG(*FREE) for a program that is running. This causes the program to end abnormally. For

Integrated Language Environment® (ILE) programs, the program does not end abnormally. The server sends

a message that indicates that the server did not save the ILE program.

You can also specify STG(*DELETE) on the Save Document Library Object (SAVDLO) command. This

deletes any filed documents after the server saves them. This includes the object description, the

document description, the search values, and the document contents.

“How object locking affects save operations” explains how object locking affects save operations.

How object locking affects save operations

In general, the server locks an object to prevent an update operation while the server saves it. If the

server cannot obtain a lock on an object within the specified time, the server does not save that object

and the server sends a message to the joblog. The save-while-active function shortens the time during

which the server locks an object while saving.

Table 38 on page 110 shows the type of lock the server must obtain successfully to save an object or to

establish a checkpoint for the object for save-while-active processing.

When you specify multiple libraries for a save procedure, the server locks the libraries that you specified

and the libraries are unavailable for use during the save operation. Some or all of the libraries may be

unavailable for use at any given moment.

Size limitations when saving objects

When you perform a save operation, the server creates a list of the objects and descriptions of those

objects that it saves. The server saves this list with the objects for use when the server displays the save

media or restores the objects. The list is an internal object that is not accessible to user programs. It does

not appear in the count of saved objects. The server limits a single list of saved objects to approximately

111 000 related objects. Because the server creates multiple lists for each library that you save, the limits

are rarely exceeded.

You cannot save more than 349 000 objects from a single library. Because you normally store DLOs in

libraries, this limit applies to the QDOC library in the system ASP and the QDOCnnnn libraries in user

ASPs. The following table shows the limits that apply to save and restore operations.

Chapter 2. Before you save anything... 5

|
|
|
|
|
|

Table 2. Limits that apply to save and restore operations

Save and Restore Limits Value

Maximum number of related objects that you can save in a single save

operation1

Approximately 111 000

Maximum number of private authorities a user profile can have to successfully

save the profile using SAVSYS or SAVSECDTA commands

Limited only by machine

resources

Maximum number of names in a save or restore command that specify which

objects or libraries to include or exclude in the save or restore operation2

300

Maximum number of concurrent save or restore operations Limited only by machine

resources

Maximum size of an object that you can save Approximately 1 TB

Maximum size of a save file Approximately 1 TB

1All database file objects in a library that are related to each other by dependent logical files are considered to be

related objects.

Starting in V5R3, unless they are related to each other by dependent logical files, the following are not considered to

be related objects:

v All database file objects in a library that are journaled to the same journal when using the save-while-active

function

v All objects in a library when SAVACT(*LIB) is specified

A database file object consists of one or more internal objects. A maximum of approximately 500,000 related internal

objects can be saved in a single save operation. One internal object is saved for each database file object, along with

the following additional internal objects:

v If the physical file is not keyed, add 1 internal object per member.

v If the physical file is keyed, add 2 internal objects per member.

v If the physical file has unique or referential constraints, add 1 internal object per constraint.

v If the physical file has triggers, add 1 internal object for the file.

v If the physical or logical file has column level authorities, add 1 internal object for the file.

v If you use ACCPTH(*YES) on the save command, add 1 internal object for each logical file in the save request.

Note: This information is for estimation purposes only. The actual number of internal objects in your library may be

higher or lower due to other variables.

2You can help to avoid this limit by using generic names to specify groups of objects or libraries.

If your save operation fails because you exceed the size limit for the save list, you need to save objects

using separate save commands instead of saving them with a single command.

Message CPF3797

When you exceed the save limit, the server generates message CPF3797. This occurs when the library has

too many internal objects, and if the server reaches the approximate 500 000 limit. This occurs in spite of

the number of objects that are visible in the file or library. The server reaches this limit because the

objects that the error message refers to are actually internal objects. Multiple internal objects comprise

each visible object, so you may reach the 500 000 limit before you expected.

“Restrictions when using save files” explains restrictions when using a save file.

Restrictions when using save files

You can specify only one library when the media for the save procedure is a save file. When saving

DLOs, you can specify only one ASP when the output media is a save file.

Size limits for save files are 2 146 762 800 512–byte records or approximately 1024 GB.

6 iSeries: Systems Management Back up your server

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

Verify what the server saved

You can use the joblog or an output file to determine which objects the server saved successfully.

Refer to the following additional information:

v “Determine objects that the server saved (save messages)” helps you determine which objects the

server saved during your save procedure.

v “Determine objects that are not saved” on page 8 explains why the server did not save certain objects.

v “Determine when an object was last saved” on page 9 is useful to determine the save history for DLOs.

This information is also useful to determine the last time that you saved an object.

Determine objects that the server saved (save messages)

Save messages show the number of objects that the server saved. The message help of the completion

message includes the volume identifiers of the first 75 volumes of save media that the server used. The

server uses these identifiers to update the status information of each object that the server saved. The

message data contains this information, the last volume ID, and either the last device that the server used

or the save file that the server used.

Note: The server performs overlap processing during normal save operations. The server can write some

libraries to the media while the server preprocesses other libraries. Occasionally the job log

contains preprocessing and completion messages that appear in a different order than the order in

which the server wrote libraries to the media.

If a single command saves multiple libraries, a final completion message (CPC3720 or CPC3721) also

contains the last device that the server used.

Information in Output Files

Most save commands create output that shows what the server saved. Depending on which command

you use, you can direct this output to a printer (OUTPUT(*PRINT)), a database file

(OUTPUT(*OUTFILE)), a stream file, or a user space. The default for save commands is not to create

output. You must request it each time you run the save command. You can change the default for the

OUTPUT parameter for save commands by using the Change Command Default (CHGCMDDFT)

command.

You can do one of two things: print the output and store it with your media, or create a program to

analyze and report on the information in the output file.

You can use the OUTPUT parameter with these commands:

 SAV SAVDLO SAVSAVFDTA

SAVCFG SAVLIB SAVSECDTA

SAVCHGOBJ SAVOBJ SAVSYS

If you use an output file for the SAVDLO command, the server uses the file format

QSYS/QAOJSAVO.OJSDLO. Use the Display File Field Description (DSPFFD) command to look for the

file layout.

If you use an output file for any of the other commands that are listed above, the server uses the file

format QSYS/QASAVOBJ.QSRSAV.

The SAVCHGOBJ, SAVLIB, SAVOBJ, and SAV commands have an information type (INFTYPE) parameter

to specify how much detail you want in the output. See “Interpret output from save commands” on page

155 for more information.

Chapter 2. Before you save anything... 7

The SAV command does not support sending output to an output file. You can send output from the SAV

command to a stream file or to a user space. “Interpret output from Save (SAV) and Restore (RST)

commands” on page 140 shows the layout for the stream file or user space.

The on-line information for the save commands tells the names of the model database output files they

use for output.

Note: The output file that you specify is in use throughout the save operation. Therefore, the server

cannot save it as part of the operation. Depending on how you perform your save operation, you

may see a CPF379A message in the joblog for the output file. If you want to save the output file

after your save operation has completed, use the SAVOBJ command.

These are some messages that you may see during the verification process:

Message CPF3797: Objects from library <your library name> not saved. Save limit exceeded.

Message CPC3701: Sent for each library that is saved to media.

Message CPC3722: Sent for each library that is saved to a save file.

Message CPC9410: Completion message for SAVDLO command to media.

Message CPC9063: Completion message for SAVDLO command to save file.

Message CPC370C: Completion message for SAV command to media.

Message CFP370D: Completion message for SAV command to save file.

Determine objects that are not saved

Determining the objects that are not saved is just as important as determining the objects that the server

saved. The server may not save an object for two basic reasons:

v The object is not in your save plan. For example, you save libraries individually. You add a new

application with new libraries, but forget to update your save procedures.

v The object is in your save plan, but the server did not successfully save it. The server may not save an

object for any of the following reasons:

– It is in use. If you use the save-while-active function, the server waits a certain amount of time to

obtain a lock on the object. If you do not use the save-while-active function, the server does not

wait.

– The server marked the object as damaged.

– You do not have the necessary authority to the object.

When the server cannot save an object, the server skips that object and writes an entry to the job log.

Verifying the job logs that the server creates by your save procedures is very important. If you have

very large save operations, you may want to develop a program that copies the job log to a file and

analyzes it.

You can specify OUTPUT(*OUTFILE) INFTYPE(*ERR) on the SAVLIB, SAVOBJ, and SAVCHGOBJ

commands. This creates an output file that only contains entries for those objects that the server did

not save. Refer to the on-line command help for more information about the specific command.

Periodically verify your backup strategy by the following methods:

v Review when the server saves objects.

v Determine when the server saved the changes that were made to these objects.

8 iSeries: Systems Management Back up your server

Use the information in the object description to determine when the server last saved the object. Base

your method for doing this according to your save strategy. If you save entire libraries, you can verify the

save date for every library on the server. If you save individual objects, you need to verify the save date

for objects in all user libraries.

To verify save dates for libraries, you can do the following:

1. Create an output file that has information about all the libraries by typing:

DSPOBJD OBJ(QSYS/*ALL) OBJTYPE(*LIB) +

 OUTPUT(*OUTFILE) +

 OUTFILE(library-name/file-name)

2. Use a query tool or a program to analyze the output file. The field ODSDAT contains the date that the

object was last saved. You can sequence your report by this field or compare this field to some date in

the past.

You can use a similar technique to check when the server last saved objects in a specific library.

Determine when an object was last saved

If a library contains an object, you can use the Display Object Description (DSPOBJD) command to find

out when the server saved the object. If the QSYS library contains an object, you can use the DSPOBJD

command to display the appropriate data area that is shown in Table 3 on page 10.

You can also use the DSPOBJD command to obtain the save history for document library objects (DLO)

in libraries. Use the Display Document Library Object Name (DSPDLONAM) command to find the

system object name and the ASP ID of the DLO. On the DSPOBJD command, specify the system object

name on the OBJ parameter. In the library name field, specify QDOCxxxx where xxxx is the ASP ID. For

example, for auxiliary storage pool (ASP) 2 the library name would be QDOC0002.

Note: For ASP 1, the system ASP, the library name is QDOC, not QDOC0001.

For objects that you store in directories, you can use the output from the SAV command to maintain save

history information. To use the output, you must elect to keep the save history information when you

issue the SAV command. To keep the save history information, specify either *PRINT or a stream file or

user space path name on the OUTPUT parameter of the SAV command.

Note: The output from the SAV command does not store the last save data for objects in directories. See

“Save changed objects in directories” on page 71 for instructions to save only changed objects.

The following commands do not update the save history information for the individual objects that the

server saves:

v Save System (SAVSYS)

v Save Security (SAVSECDTA)

v Save Configuration (SAVCFG)

v Save Save File Data (SAVSAVFDTA)

For some save operations, the server updates history information in a data area. In some cases, the server

updates the data area instead of updating the individual objects. In other cases, the server updates the

data area in addition to the individual objects.

Beginning with V5R1, when you install the operating system, the server will update the data areas.

However, the data areas will appear as if you used RSTOBJ to restore them. The server does not support

the QSAVDLOALL data area.

The following table shows these commands and the associated data areas:

Chapter 2. Before you save anything... 9

|
|

Table 3. Data areas that contain save history

Command Associated Data Area Individual Objects Updated?

SAVCFG QSAVCFG No

SAVLIB *ALLUSR QSAVALLUSR Yes1

SAVLIB *IBM QSAVIBM Yes1

SAVLIB *NONSYS QSAVLIBALL Yes1

SAVSECDTA QSAVUSRPRF No

SAVSTG QSAVSTG No

SAVSYS QSAVSYS, QSAVUSRPRF, QSAVCFG No

1 If you specify UPDHST(*NO), the server does not update the Date last saved field in either the object or the

data area.

The server uses the save history information when you save objects that have changed since the last save

operation. See “Save only changed objects” on page 60.

How the server handles damaged objects during a save operation

When the server encounters a damaged object during a save operation, it does one of several things

based on when it detected the damage.

Object that the server marked as damaged before the save operation

The server does not save an object that it marked as damaged, but the save operation continues with the

next object. The operation completes with an indication of how many objects the server saved and how

many it did not save. Diagnostic messages describe the reason that the server did not save each object.

Object that the save operation detects as damaged

The server marks the object as damaged, and the save operation ends. The save operation ends because

the save media may contain part of the damaged object. If the media contains a damaged object, the save

media cannot be used for restore operations. The server sends diagnostic messages.

Object that the server does not detect as damaged

In some unusual cases, a save operation does not detect a damaged object. The save operation may detect

physical damage on the disk, but it may not detect all damage. For example, the server does not attempt

to determine if all bytes within an object are valid and consistent (logical damage). For some cases, you

will not be able to determine a damage condition unless you attempt to use the object (such as calling a

program object). If this type of damage exists, the server restores the object normally.

10 iSeries: Systems Management Back up your server

|
|
|

Chapter 3. Prepare your media to save your server

Managing your tapes and other media is an important part of your save operation. If you cannot locate

the correct and undamaged tapes and other media that you need to do a recovery, your server recovery

is more difficult. Here is a list of the save media types:

v Magnetic tape

v Optical media

v Virtual optical

v Save file

Successful media management involves making decisions about how to manage your media, writing

down those decisions, and monitoring the procedures regularly.

Media management requires these things:

v “Choose your save media”

v “Rotate tapes and other media” on page 19

v “Prepare media and tape drives” on page 19

v “Name and label media” on page 20

v “Verify your media” on page 21

v “Store your media” on page 21

v “Handle tape media errors” on page 21

The Backup Recovery and Media Services (BRMS) program provides a set of tools to help you manage

your media. For more information, go to the BRMS topic.

Choose your save media

Tape is the most common media that is used for save and restore operations. You can also save your user

data and your system data to optical media.

The table below shows which save and restore commands support which types of media.

 Table 4. Media Used with the Save Commands

Command Tape Optical media Save file Virtual Optical

SAVSYS Yes Yes1 No Yes4

SAVCFG Yes Yes Yes Yes

SAVSECDTA Yes Yes Yes Yes

SAVLIB Yes Yes2 Yes Yes

SAVOBJ Yes Yes Yes Yes

SAVCHGOBJ Yes Yes Yes Yes

SAVDLO Yes Yes3 Yes Yes

SAVSAVFDTA Yes Yes No Yes

SAVLICPGM Yes Yes1 Yes Yes4

SAVSTG Yes No No No

SAV Yes Yes Yes Yes

RUNBCKUP Yes No No No

© Copyright IBM Corp. 1996, 2005 11

|

||

Table 4. Media Used with the Save Commands (continued)

Command Tape Optical media Save file Virtual Optical

1 You cannot run this command on an optical media library device.

2 You can specify SAVLIB LIB(*ALLUSR), SAVLIB LIB(*IBM), or SAVLIB LIB(*NONSYS) when you use optical

media. However, you need to initialize your optical media to the *UDF format. You cannot use optical

media that you initialized to *HPOFS format.

3 You can save document library objects (DLO) from more than one auxiliary storage pool (ASP) to optical

media with a single SAVDLO command. However, you need to initialize your optical media to the *UDF

format. You cannot use optical media that you initialized to *HPOFS format.

4 In a disaster recovery situation you must have physical media of the Licensed Internal Code and the

operating system to begin your recovery.

For more information on the various types of save media, see the following topics:

v Compare optical and tape media

v Consider using save files

v Consider using virtual optical media

Optical media library devices allow you to archive information to optical media, and they provide

backup and recovery capability similar to tape media. The Optical Support

book provides more

information about using optical media. If you want to substitute optical media for tape in some of your

existing procedures, you need to evaluate how to assign saved objects to directories on the optical media

and how to name the media.

Compare optical and tape media

Optical media is different from tape media. When you use optical media, to back up your data, consider

the following information:

 Table 5. Comparison of optical media and tape media

Characteristic Comparison

Access to data Optical storage provides random access, whereas tape is sequential access.

Capacity The lowest capacity tape has a similar capacity to DVD-RAM, but midrange and

high capacity tapes typically have 10 to 25 times the capacity of optical.

Compression The server uses software compression to save compressed data to your optical

media. This process takes considerable processing unit resources and may increase

your save and restore time. Most tape media devices use hardware compression,

which is normally faster.

Cost Because you can store a larger amount of data on tape, it has a lower cost per

gigabyte.

Data transfer rates Data transfer rates for tape tend to be higher than for optical, particularly if you use

tape drive compression.

Number of media passes or

mounts

Optical media can be mounted anywhere from 50,000 to 1 million times, depending

on the type of media used. The number of media passes supported by tape varies,

but is usually lower than optical.

Reusability Not all optical media is re-writable. Some optical media are write-once media,

which means that once they are written to, they cannot be reused. Tape is reusable.

12 iSeries: Systems Management Back up your server

|

||
|

Table 5. Comparison of optical media and tape media (continued)

Characteristic Comparison

Media volumes on optical

media cartridges

Optical media cartridges with two volumes have one volume on each side. After the

server fills up the first volume, it writes to the second volume and considers the

two volumes a set. The server can only write information to the last volume on a

set. For example, in a three-volume optical media set, the server can only write to

the third volume. It cannot write to the first or second volume.

How random storage mode affects save functions

Optical devices use a random storage mode to save information. Tape media devices use a sequential

mode. Optical devices use a hierarchical file structure when the server accesses files on the media.

You may specify a path name for the optical file in the save operation beginning with the root directory.

If you specify an asterisk (*), the server generates an optical file name in the root directory (/). If you

specify an ’optical_directory_path_name/*’, the server generates an optical file name in the specified

directory on the optical volume. If the directory does not exist, the server creates the directory.

For example, if you specify SAVLIB LIB(MYLIB) DEV(OPT01) OPTFILE(’MYDIR/*’), the server creates the

following optical file: MYDIR/MYLIB.

The server looks for active files on the optical media volume for the same file that you save currently. For

example, you previously saved a SAVLIB to optical media. Now you run a new SAV command to the

same media; the server ignores the SAVLIB files and does not report any active files for your SAV

command.

In general, the save operation looks for an active file that matches the pathname specified on the

OPTFILE parameter. SAVSYS and options 21 and 22 of the SAVE menu look for any active file.

 Table 6. Checking for active files on optical media

Consideration General information

CLEAR(*NONE) parameter If you specify CLEAR(*NONE) on the save command, the server checks the optical

media volume for active optical files. The server looks for active files with the same

name and path as the specified optical file.

If the server finds an optical file that is identical to the specified optical file, the

server displays an inquiry message. You may respond to the message by cancelling

the process, writing over the existing file on the volume, or inserting a new

cartridge.

If the server does not find any active files and there is enough space on the optical

volume, the server writes the files to the media. If the server does not find enough

available space on the optical media volume, the server prompts you to insert a

new media volume in the media device.

CLEAR(*ALL) parameter The CLEAR(*ALL) parameter automatically clears all of the files on the optical

media volume without prompting.

CLEAR(*AFTER) parameter The CLEAR(*AFTER) parameter clears all the media volumes after the first volume.

If the server encounters the specified optical file on the first volume, the server

sends an inquiry message that allows you to either end the save operation or

replace the file.

CLEAR(*REPLACE)

parameter

The CLEAR(*REPLACE) parameter automatically replaces active data of the

specified optical file on the media volumes.

Chapter 3. Prepare your media to save your server 13

Table 6. Checking for active files on optical media (continued)

Consideration General information

Check for active files

parameter on the GO SAVE

command

During a GO SAVE command, menu option 21 or 22, or a SAVSYS command if the

server detects an active file of the specified optical file, it displays message OPT1563

in the QSYSOPR message queue. During other save command operations, the server

may display message OPT1260 depending on the value of the CLEAR parameter. If

the server does not detect an active file of the specified optical file, the server

checks for available space. If there is room to write the file, the server writes the file

to the current volume in random mode. If there is not enough room, the server

prompts you to insert another optical media volume into your optical device.

During a GO SAVE command, menu option 21, you specify Y or N at the Check for

active files prompt to see if there are active files on your media volume.

v Check for active files: N option

When you select the Check for active files: N option, the option forces the server

to automatically overwrite all files on your DVD-RAM optical media.

v Check for active files: Y option

When you select the Check for active files: Y option, the option forces the server

to check for active files on your DVD-RAM optical media.

SAVSYS command messages When you run a SAVSYS command to an optical media volume, the server displays

message OPT1503 - Optical volume contains active files if there are active files on

the optical media volume. You can either initialize the media with the Initialize

Optical (INZOPT) command or you can specify CLEAR(*ALL) on the SAVSYS

command to run an unattended save.

For complete information on optical media, refer to Optical Support.

Consider using save files

Using a save file allows you to save and restore objects without first placing save media into your save

media device. You can also use a save file to send objects from one iSeries server to another over

communications lines. You can use the save file as an online container to save the contents of a single

library to run overnight. The next day, save the contents of the save file to storage media with the Save

Save File Data (SAVSAVFDTA) command. Objects saved to media using the SAVSAVFDTA command can

be restored directly from save media, using the RSTLIB or RSTOBJ command.

A few things to consider when saving to save files are:

v Only one library can be saved to a save file.

v You cannot save or send a save file that is larger than the target release allows.

v Performance can vary, depending on other disk activity. Save files can be created on or moved to an

ASP for improved performance and additional protection from system disk device failures.

v The maximum capacity of a save file is about one terabyte. You can specify the maximum size of the

save file on the Create Save File (CRTSAVF) command.

Remember to specify data compression on the save commands to reduce the space for the save file and

the amount of media needed for the SAVSAVFDTA command. (Data compression is not an option on the

SAVSAVFDTA command.) See Choose compression type for more information.

Refer to the following topics for more information on saving save files.

v Copy save files to media

v Work with save files

v Save file security

v Input and output operations on a save file

14 iSeries: Systems Management Back up your server

|
|
|
|
|
|

|

|

|

|
|

|
|

|
|
|

|

|

|

|

|

v Damage to a save file

v Send network files

Copy save files to media

You can back up parts of your server to a save file on disk rather than removable save media. However,

you should save the save file to removable media on a set schedule.

You can save the contents of your save file by two different methods. You can use the Save save file data

(SAVSAVFDTA) command to save your save file data as if your objects were saved directly to media. Or,

you can use the Save file data (SAVFDTA) parameter to save the entire save file to media.

Save save file data (SAVSAVFDTA) command
Use the Save Save File Data (SAVSAVFDTA) command to save objects that appear on the media as if the

server saved them directly to the media. For example, assume that you use the following commands to

save a library:

SAVLIB LIB(LIBA) DEV(*SAVF) SAVF(LIBB/SAVFA)

SAVSAVFDTA SAVF(LIBB/SAVFA) DEV(media-device-name)

You can restore library LIBA either from the media volume or from the save file by using the RSTLIB

command. When you use the SAVSAVFDTA command, the server does not save the save file object itself.

Save file data (SAVFDTA) parameter
Use the save file data (SAVFDTA) parameter on the SAVLIB command, the SAVOBJ command, or the

SAVCHGOBJ command. When you specify SAVFDTA(*YES), the server saves the save file and its

contents to save media. You cannot restore individual objects that are in the save file from the media

copy of the save file. You must restore the save file and then restore the objects from the save file.

The following restrictions apply when specifying SAVFDTA(*YES):

v If you are saving the save file for a server at a previous release, the server saves the save file in a

previous release format. The objects within the save file remain in the release format that was specified

when they were saved to the save file.

v If the save media for the save operation is the same save file, the server only saves the description of

the save file. The server sends message CPI374B, SAVFDTA(*YES) ignored for file <your-file-name>

in library <your-library-name>, and the save operation continues.

Work with save files

Use the following CL commands with save files:

v The Create Save File (CRTSAVF) command creates a save file that can be used with save and restore

commands to store data. The save file stores data that would otherwise be written to save media. A

save file can also be used as a container to send objects to another iSeries user on the systems network

architecture distribution services (SNADS) network.

v The Change Save File (CHGSAVF) command changes one or more of the attributes of a save file, such

as the maximum number of records.

v The Override with Save File (OVRSAVF) command overrides or replaces certain attributes of a save

file, or overrides any file with a save file.

v The Display File Description (DSPFD) command displays the attributes of the save file.

v The Clear Save File (CLRSAVF) command clears the contents of a save file.

v The Display Save File (DSPSAVF) command displays the save and restore information in a save file, or

the contents of the save file.

v You can use the Save Object (SAVOBJ) or the Save Library (SAVLIB) command to save the description

of the save file. You can also save the data to tape, optical media, or another save file in a different

library.

Chapter 3. Prepare your media to save your server 15

|

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

|

|

|
|

|
|
|

v The Save Save File Data (SAVSAVFDTA) command writes the contents of a save file to either tape or

optical media.

Use the following API to work with save files:

The List Save File (QSRLSAVF) API returns the contents of the save file in a user space. The contents of

the save file is returned at a user-selected level of library information, object information, or member

information. The QSRLSAVF API returns the same information that is shown on a DSPSAVF command.

In addition, when you specify the SAVF0200 format, the system includes the following:

v The serial number of the system on which the save operation was performed.

v The ASP from which the object was saved.

The QSYSINC library provides structures for the SAVF0100, SAVF0200, and SAVF0300 formats in C,

COBOL, and RPG.

Save file security

The authority you grant for a save file is the same as for any file. Be careful when granting authority for

save files. The authority you grant to the save file allows access to objects in the save file. For example,

the same file can be read from and written to by a high-level language program. The authority you grant

for a particular save file should depend on what objects are in the file.

Consider the following factors when granting authorities to save files:

v A user with use (*USE) authority can read records and restore objects from the save file. This user can

save the contents of the save file to tape or optical media.

v A user with use (*USE) and add (*ADD) authority can write records and save objects in a save file.

v A user with object operational (*OBJOPR) and object management (*OBJMGT) authority can clear the

contents of a save file using the CLRSAVF command. The clear operation is required first when

replacing existing records in a save file.

v A user with either save system (*SAVSYS) special authority or object existence (*OBJEXIST) authority

for the file can save the description and contents.

Digital signature for a save file
The system verifies any digital signatures present on the save file each time you display the save file or

use the save file in a restore operation. If the signature is not valid you cannot display or use the save file

in a restore operation. The Verify Object on Restore (QVFYOBJRST) system value does not affect the

verification of save files. Therefore, the system verifies the signature every time you display the save file

or use the save file in a restore operation.

For more information about digital signatures, see Object signing and signature verification.

Input and output operations on a save file

The following considerations apply to input and output operations on a save file:

v Records are always read and written sequentially. The records read from a save file contain sequence

and parity information that is validated when the records are written into another save file. This

information ensures that the records are processed in sequence and have not been changed.

You cannot write a record that has changed since it was retrieved from another save file. You cannot

write a record that is not the next record in sequence. If you attempt either of these, an escape message

is sent to report the error.

v A read of records from the save file can be done only if the entire file has been written.

v The force-end-of-data (FEOD) function is valid for both input and output.

For an input file, FEOD signals end-of-file to the program that does the operation.

To ensure buffered output records are not lost after an FEOD operation completes, they are written to

the file. For an output file, buffered output records are not lost even if the job or system fails.

16 iSeries: Systems Management Back up your server

|
|

|

|
|
|
|

|

|

|
|

|
|
|
|
|

|

|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|
|
|

|

|

|

|
|

File-dependent attributes for a save file

v The following file-dependent attributes apply when the save file is open:

– For input operations, the first record returned for a read operation is the one specified by the

parameter POSITION when the file is opened. After the first record is read, all remaining records are

returned sequentially to the end of the file.

– For output operations, new records can be added to the end of records already in the file (specified

using the EXTEND parameter). Each save file record contains sequencing information used by the

system to ensure that a record is not skipped or written more than once.

– If no record length is specified in the high-level language program that opens the file, a length of

528 bytes is assumed. If the program specifies a record length value, it must be 528 bytes.
v No file-dependent parameters (such as format name) can be specified for read or write operations with

a save file. Any file-dependent parameters specified are ignored.

Damage to a save file

A save file is marked partially damaged if an attempt to read a record or restore an object from the file

encounters an auxiliary storage error. You can restore objects from a partially damaged save file other

than the objects on the damaged part of auxiliary storage. The objects on the damaged portion of the

auxiliary storage within the save file cannot be restored. When a file is marked partially damaged, you

cannot add more records to it until it is cleared.

Partial damage of the save file itself can occur that is unrelated to auxiliary storage errors. Sometimes a

partial damage message is issued during a SAVSAVFDTA when the system is very busy. This can happen

because an internal operation did not complete within a given time interval. It is most often seen when

the SAVSAVFDTA job is running at a low priority and there is a heavy interactive load on the system.

Although a SAVSAVFDTA can no longer be done from that save file, the objects in the SAVF can be

restored to the system using RSTOBJ.

Send network files

The only objects you can send with the Send Network (SNDNETF) command are database file members

or save files. The SNDNETF command creates a save file and copies the information into it. The network

file is not included in save operations on the destination system until the network file is received. Once

the file is received using the Receive Network File (RCVNETF) command, the copy on the source system

is not saved. Consider backing up the information on the destination system.

Other objects (such as programs or commands) must be saved in a save file before they can be sent using

the SNDNETF command.

Note: Do not use save files to save objects on a system at the current release to distribute them to a

system at a previous release unless TGTRLS(*PRV) is specified on the save command. You may

also specify TGTRLS(VxRxMx) on the save command, where (VxRxMx) is the

previous-release-value. The current release to previous release rules still apply.

Consider using virtual optical

You can use virtual optical media to save images directly to system disk units for convenience, flexibility,

and in some cases improved performance. The following scenarios will give you some examples of ways

that you can utilize virtual optical in your save environment.Unattended saves
Virtual optical is beneficial for unattended saves because it eliminates media errors that could halt an

unattended save. If you do not allocate enough space in the image catalog to save the intended

information, virtual optical will use the autoload feature to create additional images with the same

capacity as the last image you loaded, provided the disk storage is available. You must specify automatic

load in the reply list, MSGID(OPT149F), to avoid receiving a message that interrupts the unattended save.

Ability to duplicate to physical media
When a save is complete to virtual optical, you can transfer it to physical media at any time and not

Chapter 3. Prepare your media to save your server 17

|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|

interfere with system operations. You also have the capability to send the stream files from the virtual

optical save to another system via FTP. If you have multiple servers, your strategy could be to save each

system to virtual optical and then FTP the stream files to a single server where the save to physical

media could take place. You can save the virtual images to tape in optical format, or you can use the

Duplicate Optical (DUPOPT) command to save the image to optical media.

Note: In a disaster recovery situation you must have physical media of the Licensed Internal Code and

the operating system to begin your recovery. If you are saving to virtual optical as part of your

disaster protection strategy, you must then save your Licensed Internal Code and operating system

to physical media from the virtual images. You must also have access to all of your user data,

either on a remote system or on physical media.

Save cumulative PTF record
If you receive fixes on CD-ROM, you can install your fixes from an image catalog. To maintain a

complete record of all of the fixes that you apply, you can save these virtual PTF images to media. Then,

in a recovery situation, you can restore all of the cumulative PTF images and automatically install them

from the image catalog.

Save to virtual optical
Perform the following steps to save data to virtual optical media.

1. Ensure that the server has enough disk space to hold all the virtual images you are going to create for

your save operation.

2. Create a virtual optical device.

CRTDEVOPT DEVD(virtual-device-name) RSRCNAME(*VRT) ONLINE(*YES) TEXT(text-description)

3. Vary on the virtual optical device.

VRYCFG CFGOBJ(virtual-device-name) CFGTYPE(*DEV) STATUS(*ON)

4. Create an image catalog for your save operation.

CRTIMGCLG IMGCLG(catalog-name) DIR(catalog-path) CRTDIR(*YES) TEXT(image-description)

5. Add a new image catalog entry with a size of 48MB to 16GB. If you are performing a SAVSYS, the

first volume must be at least 1489 MB to accomodate the Licensed Internal Code. If you plan to save

the full operating system, add a new image catalog entry with a size of 4GB. If you plan to duplicate

image catalogs to physical media, then ensure you select a virtual image size that matches the size of

the media you plan to write to.

ADDIMGCLGE IMGCLG(catalog-name) FROMFILE(*NEW) TOFILE(file-name) IMGSIZ(*DVD4700) TEXT(text-description)

ADDIMGCLGE IMGCLG(catalog-name) FROMFILE(*NEW) TOFILE(file-name) IMGSIZ(*CD650) TEXT(text-description)

Repeat this step for the number of desired images. You should add the images in the same order as

you plan to restore from them. The virtual images provide spanning capability, with sequence

numbers continuing from one volume to the next.

6. Load the image catalog. This step associates the virtual optical device to the image catalog. Only one

image catalog at a time can be associated with a specific virtual optical device.

LODIMGCLG IMGCLG(catalog-name) DEV(virtual-device-name) OPTION(*LOAD)

7. Initialize the new volume.

INZOPT NEWVOL(volume-name) DEV(virtual-device-name) TEXT(’volume text’)

Repeat this step for the number of new images you want to initialize. Use the WRKIMGCLGE (Work

with image catalog entries) command to select the image to be initialized or use the LODIMGCLGE

(Load or unload image catalog entry) command to continue to the next volume to be initialized.

LODIMGCLGE IMGCLG(catalog-name) IMGCLGIDX(2) OPTION(*MOUNT)

LODIMGCLGE IMGCLG(catalog-name) IMGCLGIDX(1) OPTION(*MOUNT)

When you have completed initializing the new volumes, leave the first entry in mounted status.

18 iSeries: Systems Management Back up your server

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|

|

|

|
|
|
|
|

|
|

|
|
|

|
|

|

|

|

|
|
|

|

|

|

8. Run the save command for your desired save operation, listing the virtual optical device in the DEV

parameter.

Note: After you create virtual optical images, they will automatically be included when you perform a

full system save using GO SAVE Option 21. The virtual optical images could significantly increase

the time it takes to complete the Option 21 save operation, even if the image catalog entries do not

contain data. If you want to exclude the virtual images from a full system save, use one of the

following strategies:

v Use the Change Attribute (CHGATR) command to mark the image catalog directory as

non-saveable. For example:

CHGATR OBJ(’/MYINFO’) ATR(*ALWSAV) VALUE(*NO)

v Use the Load Image Catalog (LODIMGCLG) command to make the image catalog ready. Image

catalogs with a ready status will be omitted from the save.

v In an attended save, you can specify to omit the image catalog directories on the Save Object

(SAV) command.

Rotate tapes and other media

An important part of a good save procedure is to have more than one set of save media. When you

perform a recovery, you may need to go back to an old set of your media if one of the following is true:

v Your most recent set is damaged.

v You discover a programming error that has affected data on your most recent save media.

At a minimum, rotate three sets of media, as follows:

Save 1 Set A

Save 2 Set B

Save 3 Set C

Save 4 Set A

Save 5 Set B

Save 6 Set C

And so on.

Many installations find that the best approach is to have a different set of media for each day of the

week. This makes it easy for the operator to know which media to mount.

Prepare media and tape drives

You do not have to clean optical media devices as often as tape drives. You must clean your tape units on

a regular basis. The read-write heads collect dust and other material that can cause errors when reading

or writing to tape. In addition, you should also clean the tape unit if you are going to use it for an

extended period of time or if you use new tapes. New tapes tend to collect more material on the

read-write heads of the tape unit. For more specific recommendations, refer to the manual for the specific

tape unit that you are using.

Initialize your tapes with the Initialize Tape (INZTAP) command or the Format tape function available in

iSeries Navigator. Initialize your optical media with the Initialize Optical (INZOPT) command. These

commands prepare your media, and the commands can physically erase all data on the media with the

CLEAR parameter.

For tapes, you can specify the format (or density in bits per inch) before you write to tape. Do this by

using parameters on the INZTAP command when you initialize the tape.

Chapter 3. Prepare your media to save your server 19

|
|

|
|
|
|
|

|
|

|

|
|

|
|

|

You can specify the format of your optical media. Several optical media types require a particular format.

For erasable media, which allows a choice of format, you should use the *UDF format if you use the

optical media for backup and recovery purposes.

You can use option 21 (Prepare tapes) on the GO BACKUP menu. This provides a simple method of

initializing your media with a naming convention like the ones in “Name and label media.”

Name and label media

When you initialize each media volume with a name, this helps to ensure that your operators load the

correct media for the save operation. Choose media names that help determine what is on the media and

in which media set it belongs. The following table shows an example of how you might initialize your

media and label them externally if you use a simple save strategy. The INZTAP and the INZOPT

commands create a label for each media volume. Each label has a prefix that indicates the day of the

week (A for Monday, B for Tuesday, and so on) and the operation.

Notes:

1. You can find more information on the different save strategies in the information about Planning a

backup and recovery strategy.

2. You may use up to 30 characters to label optical media volumes. See the Optical Support

book

for additional information.

 Table 7. Media naming for simple save strategy

Volume Name

(INZTAP) External Label

B23001 Tuesday–GO SAVE command, menu option 23–Media 1

B23002 Tuesday–GO SAVE command, menu option 23–Media 2

B23003 Tuesday–GO SAVE command, menu option 23–Media 3

E21001 Friday–GO SAVE command, menu option 21–Media 1

E21002 Friday–GO SAVE command, menu option 21–Media 2

E21003 Friday–GO SAVE command, menu option 21–Media 3

Your media names and labels for a medium save strategy might look like those in the following table:

 Table 8. Media naming for medium save strategy

Volume Name External Label

E21001 Friday–GO SAVE command, menu option 21–Media 1

E21002 Friday–GO SAVE command, menu option 21–Media 2

AJR001 Monday–Save journal receivers–Media 1

AJR002 Monday–Save journal receivers–Media 2

ASC001 Monday–Save changed objects–Media 1

ASC002 Monday–Save changed objects–Media 2

BJR001 Tuesday–Save journal receivers–Media 1

BJR002 Tuesday–Save journal receivers–Media 2

B23001 Tuesday–GO SAVE command, menu option 23–Media 1

B23002 Tuesday–GO SAVE command, menu option 23–Media 2

Put an external label on each media. The label should show the name of the media, and the most recent

date that you used it for a save operation. Color-coded labels can help you locate and help you store

your media: Yellow for Set A, red for Set B, and so on.

20 iSeries: Systems Management Back up your server

Verify your media

Good save procedures ensure that you verify that you use the correct media. Depending on the size of

your installation, you may choose to manually verify media, or you may have the server verify the

media.

Manual checking

You can use the default of *MOUNTED for the volume (VOL) parameter on the save commands.

This tells the server to use the currently mounted media. It is up to the operator to load the

correct media in the correct order.

System checking

You specify a list of volume identifiers on the save or restore commands. The server makes sure

that the operator loads the correct media volumes in the order specified on the command. If an

error occurs, the server sends a message to the operator that requests the correct media volume.

The operator can either load another media or override the request.

Expiration dates on the media files are another method that you can use to verify that you use the correct

media. If you rely on your operators to verify the media, you might specify an expiration date

(EXPDATE) of *PERM (permanent) for your save operations. This prevents someone from writing over a

file on the media unintentionally. When you are ready to use the same media again, specify

CLEAR(*ALL) or CLEAR(*REPLACE) for the save operation. CLEAR(*REPLACE) automatically replaces

active data on the media.

If you want the server to verify your media, specify an expiration date (EXPDATE) that ensures that you

do not use the media again too soon. For example, if you rotate five sets of media for daily saves, specify

an expiration date of the current day plus 4 on the save operation. Specify CLEAR(*NONE) on save

operations so the server does not write over unexpired files.

Avoid situations where the operator must regularly respond to (and ignore) messages such as “Unexpired

files on the media”. If operators get in the habit of ignoring routine messages, they might miss important

messages.

Store your media

Store your media where it is safe but accessible. Make sure that they have external labels and that you

organize them well so that you can locate them easily. Store a complete set of backup media at a safe,

accessible location away from your server. When choosing your off-site storage, consider how quickly

you can retrieve the media. Also consider whether or not you have access to your tapes on the weekends

and during holidays. Off-site backup is essential in the case of a site loss.

Handle tape media errors

When reading from or writing to tape, it is normal for some errors to occur. Three types of tape errors

can occur during save and restore operations:

Recoverable errors

Some media devices support recovering from media errors. The server repositions the tape

automatically and tries the operation again.

Unrecoverable errors–processing can continue

In some cases, the server cannot continue to use the current tape, but can continue processing on

a new tape. The server requests you to load another tape. The tape with the irrecoverable error

can be used for restore operations.

Chapter 3. Prepare your media to save your server 21

Unrecoverable errors–processing cannot continue

In some cases, an irrecoverable media error causes the server to stop the save process. “How to

recover from a media error during a SAVLIB operation” on page 51 describes what to do when

this type of error occurs.

Tapes physically wear out after extended use. You can determine if a tape is wearing out by periodically

printing the error log. Use the Print Error Log (PRTERRLOG) command and specify TYPE(*VOLSTAT).

The printed output provides statistics about each tape volume. If you use unique names (volume

identifiers) for your tapes, you can determine which tapes have excessive read or write errors. You

should remove these bad tapes from your media library.

If you suspect that you have a bad tape, use the Display Tape (DSPTAP) or the Duplicate Tape (DUPTAP)

command to check the integrity of the tape. These commands read the entire tape and detect objects on

the tape that the server cannot read.

22 iSeries: Systems Management Back up your server

Chapter 4. Save your server with the GO SAVE command

Using the GO SAVE command is a simple way to make sure that you have a good backup of your entire

server. The GO SAVE command presents you with Save menus that make it easy to back up your server,

no matter what backup strategy you decide to use. It is a good idea to use menu option 21 of the GO

SAVE command right after you install your server.

Menu option 21 of the GO SAVE command is the basis for all save strategies. This option allows you to

perform a complete save of all the data on your server. Once you have used menu option 21, you can use

other menu options to save parts of the server, or to use a manual save process.

Another save method uses Backup Recovery and Media Services (BRMS/400) to automate your save

processes. BRMS provides a comprehensive and easy solution for your backup and recovery needs.

The following figure illustrates the commands and menu options you can use to save the parts of the

server and the entire server.

© Copyright IBM Corp. 1996, 2005 23

The following information provides an overview and procedures on how to use menu options of the GO

SAVE command:

v “Overview of the GO SAVE command menu options” on page 25 explains how to start the GO SAVE

command and provides more information on the various GO SAVE options.

Figure 1. Save commands and menu options

24 iSeries: Systems Management Back up your server

v Customize your GO SAVE backup instructions allows you to create a list of GO SAVE steps tailored to

your save environment.

v “View entire GO SAVE checklist” on page 31 provides you with all of the steps for a GO SAVE

operations. Some of the steps may not apply to your environment.

Explanation for Save commands and menu options figure

Option 21 uses the following commands to save all required system information including IBM® supplied

data, security information, and user data.

v SAVSYS saves the Licensed Internal Code, OS/400® Objects in QSYS, user profiles, private authorities,

and configuration objects.

v SAVLIB*NONSYS saves OS/400 optional libraries such as QHLPSYS and QUSRTOOL; Licensed

Program Libraries such as QRPG, QCBL, and Qxxxxx; IBM libraries with user data such as QGPL,

QUSRSYS, QS36F, and #LIBRARY; and user libraries such as LIBA, LIBB, LIBC, LIBxxx.

v SAVDLO saves documents and folders, and distribution objects.

v SAV saves objects in directories.

Option 22 uses the following commands to save IBM supplied data and your security information.

v SAVSYS saves the Licensed Internal Code, OS/400 Objects in QSYS, user profiles, private authorities,

and configuration objects.

v SAVLIB*IBM saves OS/400 optional libraries such as QHLPSYS and QUSRTOOl as well as Licensed

Program Libraries such as QRPG, QCBL, and Qxxxxx.

v SAV saves IBM-supplied directories.

Option 23 uses the following commands to save all of your user information.

v SAVSECDTA saves user profiles and private authorities.

v SAVCFG saves configuration objects.

v SAVLIB*ALLUSR saves IBM libraries with user data such as QGPL, QUSRSYS, QS36F, and #LIBRARY

as well as user libraries such as LIBA, LIBB, LIBC, LIBxxx.

v SAVDLO saves documents and folders as well as distribution objects.

v SAV saves objects in directories.

Overview of the GO SAVE command menu options

Access the GO SAVE command menu by typing GO SAVE from any command line. From the Save menu,

you see option 21, option 22, and option 23 along with many more save options. A single plus sign (+)

indicates that the option places your server into a restricted state, which means that nothing else can be

running on your system when the menu option is selected. A double plus sign (++) indicates that your

server must be in a restricted state before you can run this option.

Chapter 4. Save your server with the GO SAVE command 25

rzaiubackup_welcome.htm

Page down on the Save menu to see additional options:

Figure 2. Save menu—first display

26 iSeries: Systems Management Back up your server

Figure 3. Save menu—second display

Chapter 4. Save your server with the GO SAVE command 27

Select any of the following links to learn more about the menu options of the GO SAVE command:

v “Change Save menu defaults with GO SAVE: Option 20”

v “Save your whole server with GO SAVE: Option 21” on page 29

v “Save system data with GO SAVE: Option 22” on page 30

v “Save user data with GO SAVE: Option 23” on page 30

v “Save parts of your server with other GO SAVE command menu options” on page 31

v “View entire GO SAVE checklist” on page 31

Change Save menu defaults with GO SAVE: Option 20

You can use save menu option 20 to change the default values for the GO SAVE command, menu options

21, 22, and 23. This option simplifies the task of setting your save parameters and helps to ensure that

operators use the options that are best for your system.

In order to change the defaults, you must have *CHANGE authority for both the QUSRSYS library and

the QSRDFLTS data area in the QUSRSYS library.

When you enter the GO SAVE command, then select menu option 20, the server displays the default

parameter values for menu options 21, 22, and 23. If this is the first time you have used option 20 from

the Save menu, the server displays the IBM-supplied default parameter values. You can change any or all

of the parameter values to suit your needs. For example, you can specify additional tape devices or

Figure 4. Save menu—third display

28 iSeries: Systems Management Back up your server

change the message queue delivery default. The server saves the new default values in data area

QSRDFLTS in library QUSRSYS. The server creates the QSRDFLTS data area only after you change the

IBM-supplied default values.

Once you define new values, you no longer need to worry about which, if any, options to change on

subsequent save operations. You can simply review your new default options and then press Enter to

start the save with the new default parameters.

If you have multiple, distributed servers with the same save parameters on each server, this option

provides an additional benefit. You can simply define the parameters from the Save menu, using option

20 on one server. Then, save the QSRDFLTS data area, distribute the saved data area to the other servers,

and restore it.

Save your whole server with GO SAVE: Option 21

Option 21 saves everything on your server and allows you to perform the save while you are not there.

Option 21 does not save spooled files.

Option 21 saves all of your data for additional licensed programs, such as Domino™ or iSeries Integration

for Windows Server when you select to vary off your network servers. Also, if you have Linux installed

on a secondary logical partition, you can back up that partition when you select to vary off your network

servers.

Option 21 puts your server into a restricted state. This means that when the save begins, no users can

access your server and the backup is the only thing that is running on your server. It is best to run this

option overnight for a small server or during the weekend for larger servers. If you schedule an

unattended save, make sure your server is in a secure location; after you schedule the save, you will not

be able to use the workstation where the backup is initiated until the save is complete.

Note: If you are saving information on independent disk pools, make sure that you have varied on the

independent disk pools that you want to save before using Option 21. For more information see

Saving independent ASPs.

 Option

Number

Description Commands

21 Entire server (QMNSAVE) ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK or *NOTIFY)

SAVSYS

SAVLIB LIB(*NONSYS) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT))1 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

1The command omits QSYS.LIB file system because the SAVSYS command and the SAVLIB LIB(*NONSYS) command

both save it. The command omits the QDLS file system because the SAVDLO command saves it.

“View entire GO SAVE checklist” on page 31 provides you with step-by-step instructions on how to save

your entire server with menu option 21 of the GO SAVE command.

Chapter 4. Save your server with the GO SAVE command 29

Save system data with GO SAVE: Option 22

Option 22 saves only your system data. It does not save any user data. Option 22 puts your server into a

restricted state. This means that no users can access your server, and the backup is the only thing that is

running on your server.

 Option

Number

Description Commands

22 System data only

(QSRSAVI)

ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK or *NOTIFY)

SAVSYS

SAVLIB LIB(*IBM) ACCPTH(*YES)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/QIBM/ProdData’) +

 (’/QOpenSys/QIBM/ProdData’)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

“View entire GO SAVE checklist” on page 31 provides you with step-by-step instructions on how to save

your system data with menu option 22 of the GO SAVE command.

Save user data with GO SAVE: Option 23

Option 23 saves all user data. This information includes files, records, and other data that your users

supply into your server. Option 23 puts your server into a restricted state. This means that no users can

access your server, and the backup is the only thing that is running on your server.

Note: If you are saving information on independent disk pools, make sure that you have varied on the

independent disk pools that you want to save before using Option 23. For more information see

Saving independent ASPs.

 Option

Number

Description Commands

23 All user data (QSRSAVU) ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK or *NOTIFY)

SAVSECDTA

SAVCFG

SAVLIB LIB(*ALLUSR) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT) +

 (’/QIBM/ProdData’ *OMIT) +

 (’/QOpenSys/QIBM/ProdData’ *OMIT))1 +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

1Menu option 23 omits the QSYS.LIB file system because the SAVSYS command, the SAVSECDTA command, the

SAVCFG command, and the SAVLIB LIB(*ALLUSR) command save it. The command omits the QDLS file system

because the SAVDLO command saves it. Menu option 23 also omits the /QIBM and /QOpenSys/QIBM directories

because these directories contain IBM supplied objects.

“View entire GO SAVE checklist” on page 31 provides you with step-by-step instructions on how to save

your user data with menu option 23 of the GO SAVE command.

30 iSeries: Systems Management Back up your server

Save parts of your server with other GO SAVE command menu options

You may perform the following GO SAVE command menu options.

 Option

Number

Description Commands

40 All libraries other than the

system library (QMNSAVN)

ENDSBS SBS(*ALL) OPTION(*IMMED)

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK)

SAVLIB LIB(*NONSYS) ACCPTH(*YES)

STRSBS SBSD(controlling-subsystem)

41 All IBM libraries other than

the system library

SAVLIB LIB(*IBM)

42 All user libraries SAVLIB LIB(*ALLUSR)

43 All changed objects in user

libraries

SAVCHGOBJ LIB(*ALLUSR)

Chapter 5, “Manually save parts of your server,” on page 43 contains information about how to manually

save parts of your server using CL commands.

View entire GO SAVE checklist

Use the following checklist for menu options 21, 22, and 23 of the GO SAVE command. When

appropriate, select the option that you require. If you choose to, you can print system information during

the procedure. Otherwise, “Printing system information” on page 37 contains detailed instructions on

how to print system information if you do not want the Save menu option command to print your

system information automatically.

Some of the steps in this checklist may not apply to your system configuration. See “Identify optional

features that affect your backup” on page 40 for help to determine whether you use optional features in

your environment. If you are still unsure how your system is configured, contact your system

administrator.

As an alternative to this checklist, use Customize your GO SAVE backup to produce a set of instructions

that is tailored to your save environment.

 Attention: If you are using the Hardware Management Console for eServer™ (HMC), you must back up

the HMC in addition to using the GO SAVE: Option 21 to obtain a complete save of your system. See

Backing up your HMC for details on saving your HMC.

 1. Sign on with a user profile that has *SAVSYS and *JOBCTL special authorities, and also has sufficient

authority to list different types of server resources. (The QSECOFR user profile contains all of these

authorities.) This ensures that you have the authority that you need to place the server in the

necessary state and to save everything.

 2. Virtual optical images can significantly increase the time it takes to complete an Option 21 save

operation, even if the image catalog entries do not contain data. If you want to exclude virtual

images from a full system save, use one of the following strategies:

v Use the Change Attribute (CHGATR) command to mark the image catalog directory as

non-saveable. For example:

CHGATR OBJ(’/MYINFO’) ATR(*ALWSAV) VALUE(*NO)

v Use the Load Image Catalog (LODIMGCLG) command to make the image catalog ready. Image

catalogs with a ready status will be omitted from the save.

v In an attended save, you can specify to omit the image catalog directories on the Save Object

(SAV) command.
 3. If you have independent ASPs, make them available before ending iSeries Navigator if you want

them to be included in an Option 21 or 23 save.

Chapter 4. Save your server with the GO SAVE command 31

|
|
|

|
|
|

|
|

|

|
|

|
|

rzaiubackup_welcome.htm

Note: If your server includes independent ASPs that are geographically mirrored, it is recommended

that you eliminate them from this GO SAVE option by making them unavailable. You should

save independent ASPs that are geographically mirrored separate from this GO SAVE

operation. If the geographically mirrored ASPs remain available during the GO SAVE

operation, geographic mirroring is suspended when the system becomes restricted. When you

resume mirroring after the save, a complete synchronization is required. Synchronization can

be a very lengthy process.

For more information see Make a disk pool available and Saving independent ASPs.

 4. If you are operating in a clustered environment and want to save independent ASPs without causing

a failover, or you want to save the cluster environment for a node, you must end the device cluster

resource group and end clustering before you end subsystems.

Use the End Cluster Resource Group ENDCRG command and the End Cluster Node ENDCLUNOD

command. For more information, refer to the online help in the Simple Cluster Management utility

or see Clusters.

 5. If you have OptiConnect controllers, vary them off prior to the save operation. You must vary off

OptiConnect controllers before ending subsystems and performing a save of the entire server, or

before any save that ends the QSOC subsystem. If you do not vary off OptiConnect controllers

before ending subsystems, they go into a failed status, the server marks them as damaged, and the

server does not save them. For more information, see OptiConnect for OS/400

.

 6. If you have IBM WebSphere® MQ for iSeries, V5.3 (5724-B41), you need to quiesce WebSphere MQ,

V5.3 before you save the server. The MQSeries® for OS/400 Administration, GC33–1356 book has

instructions for quiescing WebSphere MQ, V5.3.

 7. If you plan to run the save procedure immediately, make sure that no jobs are running on the server:

type WRKACTJOB.

If you plan to schedule the save procedure to run later, send a message to all users informing them

when the server will be unavailable.

 8. Type GO SAVE at a command prompt to display the Save menu.

 9. To perform an attended save of your server, go to step 11.

10. To perform an unattended save operation, continue with the following steps. An unattended save

operation prevents your save operation from stopping because of unanswered messages:

a. Display the reply list sequence numbers to find what numbers are available for use:

WRKRPYLE

b. If MSGID(CPA3708) is not already in your reply list, add it. For xxxx, substitute an unused

sequence number from 1 through 9999:

ADDRPYLE SEQNBR(xxxx) +

 MSGID(CPA3708) +

 RPY(’G’)

c. If you are using virtual optical for your save media, specify automatic load in the reply list,

MSGID(OPT149F), to avoid receiving a message that interrupts the unattended save. If necessary,

virtual optical will use the autoload feature to create additional images with the same capacity as

the last image you loaded, provided the disk storage is available.

d. Change your job to use the reply list and to notify you of any break messages that are sent:

CHGJOB INQMSGRPY(*SYSRPYL) BRKMSG(*NOTIFY)

Note: You can also set up a default so that whenever you select menu options 21, 22, or 23, the

server will always use the reply list. To set up the default, select menu option 20 from the

Save menu. Specify Yes on the Use system reply list option.

11. Select the option (21, 22, or 23) from the Save menu and press the Enter key.

A prompt display describes the function of the menu option that you selected.

12. After reading the prompt display, press the Enter key to continue. You are shown the Specify

Command Defaults display:

32 iSeries: Systems Management Back up your server

|
|
|
|

13. Type your choices for the Devices prompt. You can specify as many as four tape media device names.

If you specify more than one device, the server automatically switches to the next tape device when

the current tape is full. You may select only one DVD-RAM optical media device.

The first device for options 21 and 22 should be your alternate IPL device. If you are creating media

to install on another server, the device must be compatible with the alternate IPL device for that

server. This ensures that the server can read the SAVSYS media if you need to restore your Licensed

Internal Code and the operating system.

Chapter 4. Save your server with the GO SAVE command 33

14. Type your choice for the Prompt for commands prompt. Specify N (No) if you want to run an

unattended save. Specify Y (Yes) if you want to change the defaults on the SAVxxx commands.

Note: If Y is specified to change the LABEL parameter for save commands, Y must be specified if

you use this media to restore the server.

15. Type your choice for the Check for active files prompt. Specify Y (Yes) if you want the server to warn

you if active files exist on the save media. The warning you receive gives the following choices:

v Cancel the save operation.

v Insert new media and try the command again.

v Initialize the current media and try the command again.

Note: If you use DVD-RAM optical media for your save, the server sends inquiry messages to the

QSYSOPR message queue when it encounters identical active files. The server sends the

inquiry message for each identical active file that it finds. See How optical media is different

from tape media or the Optical Support

book for more information on optical media.

Specify N (No) if you want the server to write over any active files on the save media without

warning you.

16. Type your choice for the Message queue delivery prompt. Specify *NOTIFY if you want to do an

unattended save. This prevents communications messages from stopping the save operation. If you

specify *NOTIFY, severity 99 messages that are not associated with the save operation are sent to the

QSYSOPR message queue without interrupting the save process. For example, messages that request

a new volume be loaded interrupt the save operation because they are associated with the job. You

cannot continue until you reply to these messages.

Specify *BREAK if you want to be interrupted for severity 99 messages that require a reply.

17. Type your choice for the Start time prompt. You may schedule the start of the save operation up to

24 hours later. For example, assume that the current time is 4:30 p.m. on Friday. If you specify 2:30

for the start time, the save operation begins at 2:30 a.m. on Saturday.

Notes:

a. The server uses the Delay Job (DLYJOB) command to schedule the save operation. Your

workstation will be unavailable from the time you request the menu option until the save

operation completes.

b. Make sure that your workstation is in a secure location. Your workstation remains signed on,

waiting for the job to start. If the server request function is used to cancel the job, your

workstation displays the Save menu. The workstation remains signed on with your user profile

and your authority.

c. Make sure that the value for the QINACTITV system value is *NONE. If the value for

QINACTITV is other than *NONE, the workstation will vary off in the amount of time specified.

If you changed the value to *NONE, write the old value down.

d. If you specify a delayed start and want your save operation to run unattended, be sure you have

done the following:

v Set up the system reply list.

v Specified *NONE on QINACTITV system value.

v Specified *NOTIFY on message queue delivery.

v Specify *NOTIFY for any break messages.

v Responded N to the Prompt for commands prompt.

v Responded N to Check for active files.
18. Type your choice for the Vary off network servers prompt. If you use iSeries Integration for Windows

Server, you may vary off the network server descriptions before beginning the save procedure.

“Save IBM iSeries Integration for Windows Server” on page 92 provides additional information

about the effects of varying off the network servers.

34 iSeries: Systems Management Back up your server

Select one of the following options to specify which network servers should be varied off before the

save operation is performed:

*NONE

Does not vary off network servers. The save operation will take longer since the network

server data will be saved in a format that allows restoration of individual objects.

*ALL Varies off all network servers. The save operation will take less time but the network server

data will not be saved in a format that allows restoration of individual objects. You will only

be able to restore all of the data from the network servers.

*WINDOWSNT

Varies off all network servers of type *WINDOWSNT prior to the start of the save. This

allows the save of the network server storage spaces.

*GUEST

Varies off all network servers of type *GUEST. Select this option to save data on a secondary

logical partition with Linux installed on it.

Note: Linux (*GUEST) NWSDs that use an NWSSTG as the IPL source (IPLSRC(*NWSSTG))

or use a stream file as the IPL source (IPLSRC(*STMF)) will be fully saved and

restored using Option 21. *GUEST NWSDs that use IPLSRC(A), IPLSRC(B), or

IPLSRC(PANEL) will NOT be able to start on a system restored from an Option 21

save and will require additional actions, such as booting Linux from the original

installation media, to be recovered.

See Linux in a guest partition for more information.

19. Type your choice for the Unmount file system prompt. If you use user-defined file systems (UDFSs),

you should unmount the UDFSs before beginning the save procedure. Specify Y (Yes) if you want to

allow all dynamically mounted file systems to be unmounted. This allows you to save UDFSs and

their associated objects. IBM recommends that you unmount your UDFSs for recovery purposes. For

more information on UDFSs, refer to OS/400 Network File System Support

.

Note: After the save operation completes, the server will not attempt to remount the file systems.

Specify N (No) if you do not want all dynamically mounted file systems to be unmounted. If you

specify N, and you have mounted UDFSs, you will receive a CPFA09E message for each mounted

UDFS. The objects in the mounted UDFS will be saved as if they belong to the mounted over file

system.

20. Type your choice for the Print system information prompt. Specify Y (Yes) if you want to print the

system information. The system information may be useful for disaster recovery. “Printing system

information” on page 37 explains how to print your system information manually without using the

automatic GO SAVE command menu option function.

21. Type your choice for the Use system reply list prompt. Specify Y (Yes) if you want to use the system

reply list when the server sends an inquiry message.

22. Press the Enter key. If you chose a later start time, your display shows message CPI3716. The

message tells when the save operation was requested and when it will start. You cannot use the

display until the save operation completes. The input-inhibited indicator should appear. You have

completed the steps for setting up the save operation.

If you did not choose a later start time, continue with step 23. If the value for QSYSOPR message

queue delivery is *BREAK with a severity level of 60 or lower, you must respond to the ENDSBS

messages. This is true even if you plan to run an unattended save operation specifying a start

time of *CURRENT.

23. If you responded Y to the system prompt, Prompt for commands, the End Subsystem display appears.

Type any changes and press the Enter key. While the server is ending subsystems, you see the

Chapter 4. Save your server with the GO SAVE command 35

following messages. You must respond to them if the QSYSOPR message queue is set to *BREAK

with a severity level of 60 or lower. Each message appears at least twice. Press the Enter key to

respond to each message.

a. CPF0994 ENDSBS SBS(*ALL) command being processed

b. CPF0968 System ended to restricted condition

If you responded N to the Prompt for commands prompt, skip to step 25.

24. When the server is ready to perform each major step in the save operation, you are shown the

prompt display for that step. The time between prompt displays may be quite long.

For option 21 (Entire system) these prompt displays appear:

ENDSBS SBS(*ALL) OPTION(*IMMED)

SAVSYS

SAVLIB LIB(*NONSYS) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

For option 22 (System data only) these prompt displays appear:

ENDSBS SBS(*ALL) OPTION(*IMMED)

SAVSYS

SAVLIB LIB(*IBM) ACCPTH(*YES)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/QIBM/ProdData’) +

 (’/QOpenSys/QIBM/ProdData’)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

For option 23 (All user data) these prompt displays appear:

ENDSBS SBS(*ALL) OPTION(*IMMED)

SAVSECDTA

SAVCFG

SAVLIB LIB(*ALLUSR) ACCPTH(*YES)

SAVDLO DLO(*ALL) FLR(*ANY)

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT) +

 (’/QIBM/ProdData’ *OMIT) +

 (’/QOpenSys/QIBM/ProdData’ *OMIT)) +

 UPDHST(*YES)

STRSBS SBSD(controlling-subsystem)

Type your changes at each prompt display and press the Enter key.

25. When the server sends a message that asks you to load the next volume, load the next media and

respond to the message. For example, if the message is the following, load the next volume and then

enter R to retry (C cancels the operation):

Device was not ready or next volume was

not loaded (C R)

If a media error occurs

If an unrecoverable media error occurs during the SAVLIB procedure, see How to recover from

a media error during a SAVLIB operation.

26. After the save completes, you should mount user-defined file systems at this point if you

unmounted them for the save operations.

27. Change the QINACTITV system value back to its original value. You wrote this value down in step

17c on page 34.

36 iSeries: Systems Management Back up your server

28. When the save operation completes, print the job log. It contains information about the save

operation. Use it to verify that the operation saved all objects. Type one of the following:

DSPJOBLOG * *PRINT

Or

SIGNOFF *LIST

You have completed the save operation. Make sure that you mark all of your media and store it in a

safe, accessible place.

29. If you ended clustering before running the save operation, restart clustering on the save node from a

node where clustering is already active.

For more information, refer to the online help in the Simple Cluster Management utility or see

Clusters.

30. Now restart the device cluster resource group to enable resiliency.

For more information, refer to the online help in the Simple Cluster Management utility or see

Clusters.

31. When your independent disk pool was saved, the Qdefault.UDFS was unmounted, if you chose to

unmount file systems. In order to use the independent disk pool again, remount Qdefault.UDFS. Do

this step for each independent disk pool that you saved.

v MOUNT MFS(’/dev/iasp_name/Qdefault.UDFS’) MTOVRDIR(’/iasp-name’)

Printing system information

Printing the system information provides valuable information about your server that will be useful

during a system recovery. It is especially useful if you cannot use your SAVSYS media to recover and

must use your distribution media. Printing this information requires *ALLOBJ, *IOSYSCFG, and *JOBCTL

authority and produces many spooled file listings. You may not need to print this information every time

you perform a backup. However, you should print it whenever important information about your server

changes.

 1. Print your current disk configuration. This is essential if you plan to do a model upgrade and you

are using mirrored protection. This information is also vital if you need to recover an independent

ASP. Do the following:

a. Sign on with a user profile that has *SERVICE special authority.

b. Type STRSST on a command line and press the Enter key.

c. Specify the service tools user ID and service tools password. These are case-sensitive.

d. Select option 3 (Work with disk units) on the System Service Tools (SST) display.

e. Select option 1 (Display disk configuration) on the Work with Disk Units display.

f. Select option 3 (Display disk configuration protection) on the Display Disk Configuration display.

g. Print the displays (there may be several) using the PRINT key for each display.

h. Press F3 until you see the Exit System Service Tools display.

i. On the Exit System Service Tools display, press the Enter key.
 2. If you are using logical partitions, print the logical partition configuration information.

a. From the primary partition, type STRSST on a command line and press Enter.

b. If you are using SST, select option 5 (Work with system partitions), and press Enter. If you are

using DST, select option 11 (Work with system partitions), and press Enter.

c. From the Work With System Partitions menu, select option 1 (Display partition information).

d. To display all system I/O resources from the Display Partition Information menu, select option 5.

e. At the Level of detail to display field, type *ALL to set the level of detail to ALL.

f. Press F6 to print the system I/O configuration.

g. Select option 1 and press Enter to print to a spooled file.

h. Press F12 to return to the Display Partition Information menu.

Chapter 4. Save your server with the GO SAVE command 37

|
|
|

|

i. Select option 2 (Display partition processing configuration).

j. From the Display Partition Processing Configuration display, Press F6 to print the processing

configuration.

k. Press F12 to return to Display Partition Information display.

l. Select option 7 (Display communications options).

m. Press F6 to print communication configuration.

n. Select option 1 and press Enter to print to a spooled file.

o. Return to an OS/400 command line and print these three spooled files.
 3. If you are operating in a clustered environment, print the cluster configuration information. Use the

following commands to print cluster information:

a. Display Cluster Information — DSPCLUINF DETAIL(*FULL)

b. Display Cluster Resource Group — DSPCRG CLUSTER(cluster-name) CLU(*LIST)
 4. If you have independent ASPs configured, record the relationship between the independent ASP

name and number. You can find this information in iSeries Navigator. In the Disk Units folder, select

Disk Pools.

 5. Sign on with a user profile that has *ALLOBJ special authority, such as the security officer. The

server lists information only if you have the proper authority. If you sign on as a user with less than

*ALLOBJ authority, some of the listings in these steps may not be complete. You must also be

enrolled in the system directory before you can print a list of all the folders on the server.

 6. If you use the history log or if you have a requirement to keep it, do the following:

a. Display the system log QHST. This automatically brings it up to date. Type:

DSPLOG LOG(QHST) OUTPUT(*PRINT)

b. Display all copies of the system log:

WRKF FILE(QSYS/QHST*)

Look at the list to verify that you saved all copies of the log that you may need later.

Note: The history (QHST) log contains information such as date created, and the last change date

and time. To get more information about the history (QHST) log, select option 8 (Display

file description) on the Work with Files display.

c. To prevent confusion about the date of the log, select the Delete option on the Work with Files

display. Delete all but the current copies of the system log. This step improves the performance of

the SAVSYS command.
 7. Print the system information. You can do this by two different methods:

a. Using the GO SAVE command, on the Specify Command Defaults display, select Y at the Print

system information prompt.

b. Use the PRTSYSINF command.

The following table describes the spooled files that the server creates. The PRTSYSINF command

does not create empty spooled files. If some objects or types of information do not exist on your

server, you may not have all of the files listed below.

 Table 9. Spooled Files Created by the server

Spooled File Name User Data Description of Contents

QPEZBCKUP DSPBCKUPL List of all user libraries

QPEZBCKUP DSPBCKUPL List of all folders

QSYSPRT DSPSYSVAL Current settings for all system values

QDSPNET DSPNETA Current settings for all network attributes

QSYSPRT DSPCFGL Configuration lists

QSYSPRT DSPEDTD User-defined edit descriptions (a separate spooled file for each)

38 iSeries: Systems Management Back up your server

Table 9. Spooled Files Created by the server (continued)

Spooled File Name User Data Description of Contents

QSYSPRT DSPPTF Details of all fixes that are installed on your server

QPRTRPYL WRKRYPLE All reply list entries

QSYSPRT DSPRCYAP Settings for access path recovery times

QSYSPRT DSPSRVA Settings for service attributes

QSYSPRT DSPNWSSTG Network server storage spaces information

QSYSPRT DSPPWRSCD Power on/off schedule

QSYSPRT DSPHDWRSC Hardware configuration reports (a separate spooled file for each

resource type, such as *CMN or *LWS)

QSYSPRT WRKOPTCFG Optical device descriptions (if your server has an optical device and

optical support is started when you run the command)

QSYSPRT DSPRJECFG Remote job entry configurations

QPDSTSRV DSPDSTSRV SNADS configuration

QPRTSBSD DSPSBSD Subsystem descriptions (a separate spooled file for each subsystem

description on your server)

QSYSPRT DSPSFWRSC Installed licensed programs (Software Resources List)

QPRTOBJD DSPOBJD A list of all the journals on your server

QPDSPJNA WRKJRNA The journal attributes for each journal that is not in the QUSRSYS

library (a separate file for each journal). Typically, journals in the

QUSRSYS library are IBM-supplied journals. If you have your own

journals in the QUSRSYS library, you need to manually print

information about those journals.

QSYSPRT CHGCLNUP Settings for automatic cleanup

QPUSRPRF DSPUSRPRF Current values for the QSECOFR user profile

QPRTJOBD DSPJOBD Current values for the QDFTJOBD job description

QPJOBLOG PRTSYSINF The job log for this job1

1 On your server, this spooled file might be in the QEZJOBLOG output queue.

 8. Print a list of directories in the root directory.

DSPLNK OBJ(’/*’) OUTPUT(*PRINT)

 9. Print any IBM-supplied objects that you have modified, such as the QSYSPRT print file.

10. If you maintain a CL program that contains your configuration information, use the Retrieve

Configuration Source (RTVCFGSRC) command to ensure that the CL program is current.

RTVCFGSRC CFGD(*ALL) CFGTYPE(*ALL) +

 SRCFILE(QGPL/QCLSRC) +

 SRCMBR(SYSCFG)

11. Print these spooled files. Keep this information with your backup log or your save system media for

future reference. If you choose not to print the lists, use the Copy Spooled File (CPYSPLF) command

to copy them to database files. See “Save spooled files” on page 79 for information on how to do

this. Make sure that the database files are in a library that is saved when you perform the Save

menu option.

Go to “View entire GO SAVE checklist” on page 31.

Chapter 4. Save your server with the GO SAVE command 39

Identify optional features that affect your backup

Do you use user-defined file systems on this system?

A user-defined file system (UDFS) is a file system that a user creates and manages. To determine if you

have any UDFS on your system, , use one of the following methods:

Using iSeries Navigator
Expand your server --> File Systems --> Integrated File System --> Root --> dev --> select QASPxx or

the name of an independent disk pool. If UDFS objects exist, they will appear in the right-hand pane.

Using the character-based interface

1. At a command line, specify wrklnk dev.

2. On the Work with Object Links screen, select option 5 to display the contents of the dev folder.

3. Locate object links beginning with QASPxx or the name of an independent disk pool, and select

Option 5 to display the UDFS within the auxiliary storage pool (ASP).

Do you use virtual optical media?

Virtual optical media simulates CD or DVD images that are stored directly on your server disk units. To

determine if you store virtual optical images in image catalogs, do the following:

1. At a command line, specify WRKIMGCLG.

2. If you have image catalogs configured for virtual optical media they will display on the resulting

screen.

Do you use independent disk pools?

An independent disk pool is a collection of disk units that can be brought online or taken offline

independent of the rest of the storage on a system. If you have the necessary authority, you can check

whether independent disk pools are configured on your system. In iSeries Navigator expand your iSeries

server --> Configuration and Service --> Hardware --> Disk Units --> Disk Pools. All of the disk pools

that are configured on your system will appear in the Disk Pools folder. Independent disk pools are

numbered 33-255.

Have you configured independent disk pools to switch between systems in a cluster?

An iSeries cluster is a collection or group of one or more servers or logical partitions that work together

as a single server. If you have the required authority you can check to see if your independent disk pool

is switchable between systems in a cluster.

1. In iSeries Navigator expand your iSeries server --> Configuration and Service --> Hardware --> Disk

Units --> Disk Pools.

2. Independent disk pool are numbered somewhere between 33 and 255. Right-click the independent

disk pool and select Properties.

3. On the Disk Pool Properties page the General tab displays the field Switchable: Yes if you have

configured your independent disk pool to switch between systems.

Do you use WebSphere MQ, V5.3 on this system?

The IBM WebSphere MQ for iSeries, V5.3, licensed program provides application programming services

that enable you to code indirect program-to-program communications that use message queues. This

allows programs to communicate with each other independently of their platforms, for example, between

OS/390(R) and OS/400(R).

To check whether you have installed WebSphere MQ, V5.3, use one of the following methods:

Using iSeries Navigator

In iSeries Navigator expand your server --> Configuration and Service --> Software --> Installed

Products. WebSphere MQ, V5.3, is product 5724b41, IBM WebSphere MQ for iSeries.

40 iSeries: Systems Management Back up your server

Using the character-based interface

1. At a command line, specify GO LICPGM.

2. Specify option 10 to display installed licensed programs.

3. If WebSphere MQ for iSeries is installed, 5724B41 will appear when you scroll through the list of

installed programs.

4. If MQ is installed, the Work with Queue Managers (WRKMQM) command allows you to see if you

have configured any queue managers.

Do you use OptiConnect controllers?

OptiConnect is the iSeries system area network that provides high-speed interconnectivity between

multiple iSeries systems in a local environment.

To check whether you have installed OptiConnect, use one of the following methods:

Using iSeries Navigator

Expand your server --> Configuration and Service --> Software --> Installed Products.

OptiConnect is option 0023 of product 5722-ss1, OS/400 - OptiConnect.

Using the character-based interface

1. At a command line, specify GO LICPGM.

2. Specify option 10 to display installed licensed programs.

3. If OptiConnect is installed, 5722SS1 will appear when you scroll through the list of installed

programs.

Do you use network servers?

Network servers enable you to run other operating systems on your iSeries server. Examples of network

servers include running Windows operating systems using iSeries Integration for Windows Server, or

running Linux in a guest partition.

Do you use the Hardware Management Console for eServer

If you have an eServer 5xxx, your server may be equipped with a Hardware Management Console

(HMC). An HMC is required if you use capacity on demand or logical partitions.

Chapter 4. Save your server with the GO SAVE command 41

|

42 iSeries: Systems Management Back up your server

Chapter 5. Manually save parts of your server

Use the information that follows if you are saving your server with a medium or complex save strategy.

You can save the information automatically with the GO SAVE command menu options, or you can save

the information manually with individual save commands.

You must save your entire server with menu option 21 of the GO SAVE command before you save parts

of your server. You should also periodically save your entire server after you install prerequisite program

temporary fixes (PTFs) or before a migration or upgrade.

Use this information to save parts of your server:

v Commands for saving parts of your server

v Commands for saving specific object types

v Save system data

v Save system data and related user data

v Save user data

v Save logical partitions and applications

v Save storage (Licensed Internal Code data and disk unit data)

Commands to save parts of your server

The following table groups the data that you need to save on your server. Three sections divide the

information into the following groups:

v System data

v System data and related user data

v User data

For detailed information in each section, select the appropriate link the in table.

 Table 10. Saving the parts of your server

Part of your server GO SAVE command menu option Save commands

System data is IBM-supplied data that runs your server hardware and software

Licensed Internal Code Option 21 or 22 SAVSYS

OS/400 objects in QSYS Option 21 or 22 SAVSYS

System data and related user data is a combination of system data and related user data

User profiles Option 21, 22 or 23 SAVSYS or SAVSECDTA

Private authorities Option 21, 22 or 23 SAVSYS or SAVSECDTA

Configuration Objects Option 21, 22, or 23 SAVSYS or SAVCFG

IBM-supplied directories Option 21 or 22 SAV

OS/400 optional libraries Option 21 or 22 SAVLIB *NONSYS or SAVLIB *IBM

Licensed program libraries Option 21 or 22 SAVLIB *NONSYS or SAVLIB *IBM

User data is data that you input to the server

IBM libraries with user data Option 21 or 23 SAVLIB *NONSYS or SAVLIB

*ALLUSR

© Copyright IBM Corp. 1996, 2005 43

Table 10. Saving the parts of your server (continued)

Part of your server GO SAVE command menu option Save commands

User libraries Option 21 or 23 SAVLIB *NONSYS or SAVLIB

*ALLUSR

Documents and folders Option 21 or 23 SAVDLO

User objects in directories Option 21 or 23 SAV

Distribution objects Option 21 or 23 SAVDLO

“Commands to save specific object types” provides you with detailed information on which save

command you can use to save specific types of objects.

Commands to save specific object types

The following table shows you which commands that you can use to save each object type. An X appears

in the column for the SAV command if you can use the SAV command to individually save an object of

that type. When you specify SAV OBJ(/*), the server saves all objects of all types.

 Table 11. Objects Saved by Commands According to Object Type

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

Alert table *ALRTBL X X X1 X

Authority holder *AUTHLR X6 X6

Authorization list *AUTL X6 X6

Bind directory *BNDDIR X X X1 X

Block special file *BLKSF10 X

C locale description *CLD X X X1 X

Chart format *CHTFMT X X X1 X

Change request descriptor *CRQD X X X1 X

Class *CLS X X X1 X

Class-of-service description *COSD X3 X

Cluster resource group *CRG X X X

Command definition *CMD X X X1 X

Communications side information *CSI X X X1 X

Configuration list3,4 *CFGL X3 X

Connection list3 *CNNL X3 X

Controller description *CTLD X3 X

Cross-system product map *CSPMAP X X X1 X

Cross-system product table *CSPTBL X X X1 X

Data area *DTAARA X X X1 X

Data queue2 *DTAQ X X X1 X

Data dictionary *DTADCT X X

Device description

11 *DEVD X3 X

Directory *DIR X

Distributed directory *DDIR X

Distributed stream file *DSTMF X

Distributions *MAIL8 X

Document *DOC X X

Double-byte character set dictionary *IGCDCT X X X1 X

Double-byte character set sort table *IGCSRT X X X1 X

Double-byte character set font table *IGCTBL X X X1 X

Edit description4 *EDTD X X X X

Exit registration *EXITRG X X X X

44 iSeries: Systems Management Back up your server

Table 11. Objects Saved by Commands According to Object Type (continued)

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

File2,5 *FILE X X X1,7 X

Filter *FTR X X X1 X

First-in-first-out special file *FIFO X

Folder *FLR X X

Font mapping table *FNTTBL X X X1 X

Font resource *FNTRSC X X X1 X

Forms control table *FCT X X X1 X

Forms definition *FORMDF X X X1 X

Graphics symbol set *GSS X X X1 X

Internet packet exchange description *IPXD X3 X3

Job description *JOBD X X X1 X

Job queue2 *JOBQ X X X1 X

Job scheduler *JOBSCD X X X1 X

Journal2 *JRN X X X1 X

Journal receiver *JRNRCV X X X1 X

Library

9 *LIB X7 X

Line description *LIND X3 X

Locale *LOCALE X X X1 X

Management collection *MGTCOL X X X1 X

Media definition *MEDDFN X X X1 X

Menu *MENU X X X1 X

Message file *MSGF X X X1 X

Message queue2 *MSGQ X X X1 X

Mode description *MODD X3 X

Module *MODULE X X X1 X

NetBIOS description *NTBD X3 X

Network interface description *NWID X3 X

Network server description *NWSD X3 X

Node group *NODGRP X X X1 X

Node list *NODL X X X1 X

Output queue2,

11 *OUTQ X X X1 X

Overlay *OVL X X X1 X

Page definition *PAGDFN X X X1 X

Page segment *PAGSEG X X X1 X

PDF map *PDFMAP X X

Panel group *PNLGRP X X X1 X

Printer description group *PDG X X X1 X

Product availability *PRDAVL X X X1 X

Program *PGM X X X1 X

PSF configuration object *PSFCFG X X X1 X

Query definition *QRYDFN X X X1 X

Query form *QMFORM X X X1 X

Query manager query *QMQRY X X X1 X

Reference code translation table *RCT X X X1 X

System/36™ machine description *S36 X X X1 X

Search index *SCHIDX X X X1 X

Server storage *SVRSTG X X X1 X

Service program *SRVPGM X X X1 X

Session description *SSND X X X1 X

Spelling help dictionary *SPADCT X X X1 X

SQL package *SQLPKG X X X1 X

Chapter 5. Manually save parts of your server 45

|

Table 11. Objects Saved by Commands According to Object Type (continued)

Object Type

System

Object Type

SAVxxx Command:

SAV OBJ LIB SECDTA SYS CFG DLO

Stream file *STMF X

Subsystem description *SBSD X X X1 X

Symbolic link *SYMLINK X

System object model object *SOMOBJ X

System resource management data *SRMDATA8 X3 X

Table *TBL X X X1 X

Time zone description *TIMZON X X

User defined SQL type *SQLUDT X X X1 X

User index *USRIDX X X X1 X

User profile *USRPRF X6 X6

User queue *USRQ X X X1 X

User space *USRSPC X X X1 X

Validation list *VLDL X X X1 X

Workstation customization *WSCST X X X1 X

Notes:

1 If the object is in library QSYS.

2 For save files, the server only saves the descriptions when you specify the SAVFDTA(*NO) parameter on the

save command. For other objects that the server only saves descriptions for, see Table 21 on page 60.

3 Use the RSTCFG command to restore these objects.

4 Edit descriptions and configuration lists reside only in library QSYS.

5 The SAVSAVFDTA command saves only the contents of save files.

6 Use the RSTUSRPRF command to restore user profiles. Use the RSTAUT command to restore authorities

after you restore the objects that you need. The server restores authorization lists and authority holders

when you use the RSTUSRPRF USRPRF(*ALL) command and parameter.

7 If there are save files in the library, the server saves the save file data by default.

8 Mail and SRM data consists of internal object types.

9 Table 15 on page 49 shows which IBM-supplied libraries that you cannot save with the SAVLIB command.

10 You can only save block special files when they are not mounted.

11 When a printer device description is saved, the associated output queue located in library QUSRSYS is not

saved.

Save system data

System data is IBM-supplied data that runs the hardware and software for your server. System data

includes the Licensed Internal Code and OS/400 objects in QSYS.

The easiest way to save your system data is with menu option 22 of the GO SAVE command. This saves

all of your system data as well as security data.

To manually save your system data, use the SAVSYS command. You can use the same device that you

use for the SAVSYS command to perform an initial program load (IPL) of your server. You can also use

the SAVSYS save media to perform the IPL.

Methods for saving system data

The following information explains the various methods for saving system data:

46 iSeries: Systems Management Back up your server

|

||
|

v “Methods to save Licensed Internal Code”

v “Methods to save system information”

v “Methods to save operating system objects” on page 48

For more information on the SAVSYS command, see the SAVSYS command in CL reference. The CL

reference provides complete information on the SAVSYS command.

Methods to save Licensed Internal Code

 Table 12. Licensed Internal Code information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Licensed Internal Code Your Licensed Internal

Code changes when you

apply Program Temporary

Fixes (PTFs) or when you

install new releases of the

operating system.

No Yes

 Common save method for Licensed Internal Code Requires restricted state?

SAVSYS Yes

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Note: DO NOT use a tape that you created through DST with option 5=Save Licensed Internal Code

from the IPL or Install the System menu. Only do this if Software Services instructs you to use this

type of tape. This process creates a tape that does not contain the Licensed Internal Code PTF

Inventory information or the OS/400 Operating System. If you recover your server with this type

of tape, you need to re-install the Licensed Internal Code from either SAVSYS tapes or from your

distribution media. After you re-install the Licensed Internal Code, you can load PTFs onto your

server.

Methods to save system information

 Table 13. System information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

System information System information, such as

system values and access

path recovery times change

regularly.

Yes Yes

 Common save method for system information Requires restricted state?

SAVSYS Yes

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Chapter 5. Manually save parts of your server 47

Methods to save operating system objects

 Table 14. Operating system objects information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Operating system objects Operating system objects

change under two

circumstances. First, when

you apply Program

Temporary Fixes (PTFs).

Second, when you install a

new release of the operating

system.

No1 Yes

Note:

1 You should not change objects or store user data in these IBM-supplied libraries or folders. When

you install a new release of the operating system, the installation may destroy these changes. If

you make changes to objects in these libraries, note them carefully in a log for future reference.

 Common save method for operating system objects Requires restricted state?

SAVSYS Yes

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Save system data and related user data

System data and related user data includes information that the server needs to operate and information

that allows you to use the server. This information includes:

v User profiles

v Private authorities

v Configuration objects

v IBM-supplied directories

v OS/400 optional libraries (QHLPSYS and QUSRTOOL)

v Licensed program libraries (QRPG, QCBL, and Qxxxx)

The following pages contain information to help you save system data and related user data:

v Save libraries with the SAVLIB command
Save one or more libraries. You can use this information to save your OS/400 optional libraries. This

information also includes special SAVLIB parameters and how to select libraries on your server.

v Save independent ASPs
Save one or more independent ASPs.

v Save security data
Save user profiles, private authorities, authorization lists, and authority holders.

v Save configuration information
Save your configuration objects.

v Save licensed programs
Save licensed programs for backup purposes or to distribute licensed programs to other servers in your

organization. Use this information to save Licensed program libraries.

v Methods to save user data
This information provides you with several different methods to save your system data and related

user data. These methods include the GO SAVE command and manual save commands and APIs.

48 iSeries: Systems Management Back up your server

Save libraries with the SAVLIB command

Use the Save Library (SAVLIB) command or menu option 21 of the GO SAVE command to save one or

more libraries. When you specify libraries by name on the SAVLIB command, the server saves the

libraries in the order in which you list them. You may specify generic values for the LIB parameter.

The following topics provide you with important information about saving libraries:

v “Special values for the SAVLIB command” explains how to use the *NONSYS, *IBM, and *ALLUSR

special values for your libraries.

v “OMITLIB parameter and OMITOBJ parameter for the SAVLIB command” on page 51 explains how to

omit libraries and objects.

v “Tips and restrictions for the SAVLIB command” on page 51 gives you important information before

you use the SAVLIB command.

v “How to recover from a media error during a SAVLIB operation” on page 51 explains what to do if the

server encounters a media error during a SAVLIB operation.

Special values for the SAVLIB command

The Save Library (SAVLIB) command allows you to use the special values *NONSYS, *ALLUSR, and

*IBM to specify groups of libraries. When you use a special value to save libraries, the server saves the

libraries in alphabetical order by name. The table below shows which IBM-supplied libraries the server

saves for each special value:

 Table 15. Comparison of special values for SAVLIB command: LIB parameter. The server saves all of the libraries that

are marked with an X.

Library Name *NONSYS *IBM *ALLUSR

Both user and

IBM-supplied libraries

All IBM-supplied libraries

that do not contain user

data

All user libraries and IBM

supplied libraries that

contain user data

QMGTC X X

QMCTC2 X X

QSRVAGT X X

QDOCxxxx1

QDSNX X X

QGPL7 X X

QGPL38 X X

QMPGDATA X X

QMQMDATA X X

QMQMPROC X X

QPFRDATA X X

QRCL X X

QRCLxxxxx6 X X

QRCYxxxxx6

QRECOVERY3

QRPLOBJ3

QRPLxxxxx6

QSPL3

QSPLxxxx1

QSRV3

QSYS2

QSYSxxxxx6

QSYS27 X X

QSYS2xxxxx6,

7 X X

QS36F X X

QTEMP3

Chapter 5. Manually save parts of your server 49

Table 15. Comparison of special values for SAVLIB command: LIB parameter (continued). The server saves all of the

libraries that are marked with an X.

Library Name *NONSYS *IBM *ALLUSR

Both user and

IBM-supplied libraries

All IBM-supplied libraries

that do not contain user

data

All user libraries and IBM

supplied libraries that

contain user data

QUSER38 X X

QUSRADSM X X

QUSRBRM X X

QUSRDIRCL X X

QUSRDIRDB X X

QUSRIJS X X

QUSRINFSKR X X

QUSRNOTES X X

QUSROND X X

QUSRPYMSVR X X

QUSRPOSGS X X

QUSRPOSSA X X

QUSRRDARS X X

QUSRSYS7 X X

QUSRVI X X

QUSRVxRxMx4 X X

Qxxxxxx5 X X

#LIBRARY X X

#CGULIB X X

#COBLIB X X

#DFULIB X X

#RPGLIB X X

#SDALIB X X

#SEULIB X X

#DSULIB X X

1 Where xxxx is a value from 0002 to 0032, corresponding to an auxiliary storage pool (ASP).

2 Use the SAVSYS command to save information in the QSYS library.

3 These libraries contain temporary information. They are not saved or restored.

4 A different library name, format QUSRVxRxMx, may have been created by the user for each previous release

supported by IBM. This library contains user commands to be compiled in a CL program for a previous

release. For the QUSRVxRxMx user library, the VxRxMx is the version, release, and modification level of a

previous release that IBM continues to support.

5 Qxxxxxx refers to any other library that starts with the letter Q. These libraries are intended to contain

IBM-supplied objects. They are not saved when you specify *ALLUSR. See the CL Programming

book

for a complete list of libraries that contain IBM-supplied objects.
6 Where xxxxx is a value from 00033 to 00255, corresponding to an independent auxiliary storage pool (ASP).

7 The SAVLIB LIB(*NONSYS), SAVLIB LIB(*ALLUSR), and SAVCHGOBJ LIB(*ALLUSR) functions save

libraries QSYS2, QGPL, QUSRSYS, and QSYS2xxxxx libraries first on the media if they are located on the

ASPs specified by the ASPDEV parameter. The other libraries follow in alphabetical order by ASP device

name. Libraries on independent ASPs are saved before libraries on the system and basic user ASPs. The IBM

libraries are restored first and contain the prerequisite objects necessary for other libraries that follow in the

restore process.

50 iSeries: Systems Management Back up your server

|

|
|
|
|
|
|

OMITLIB parameter and OMITOBJ parameter for the SAVLIB command

The following information explains two parameters for the SAVLIB command:

OMITLIB parameter for the SAVLIB command:

You can exclude one or more libraries by using the OMITLIB parameter. The server does not save

libraries that you exclude. You may specify generic values for the OMITLIB parameter.

Here is an example of omitting a group of libraries from a SAVLIB operation:

SAVLIB LIB(*ALLUSR) OMITLIB(TEMP*)

An example of using the OMITLIB parameter along with generic library naming appears as: SAVLIB

LIB(T*) OMITLIB(TEMP). The server saves all libraries that begin with the letter ’T’ except for the library

that is named TEMP.

You can also use the OMITLIB parameter with generic naming while performing concurrent save

operations to different media devices:

SAVLIB LIB(*ALLUSR) DEV(first-media-device) OMITLIB(A* B* $* #* @*...L*)

SAVLIB LIB(*ALLUSR) DEV(second-media-device) OMITLIB(M* N* ...Z*)

OMITOBJ parameter for the SAVLIB command:

You can exclude one or more objects by using the OMITOBJ parameter. You do not need to use any of the

special values that are listed above. You may specify generic values for this parameter.

Tips and restrictions for the SAVLIB command

When you save a large group of libraries, you should place your server in a restricted state. This ensures

that the server saves all of the important objects. For example, if subsystem QSNADS or directory

shadowing is active, the server does not save files whose names begin with QAO in library QUSRSYS. The

QAO* files in library QUSRSYS are very important files. If the server does not save the QAO* files, you

should end the QSNADS subsystem (End Subsystem (ENDSBS) command or End Directory Shadow

System (ENDDIRSHD) command). Then you can save the QAO* files.

Be sure that you regularly save the QGPL library and the QUSRSYS library. These IBM-supplied libraries

contain information that is important to your server and it changes regularly.

Restrictions for the SAVLIB command:

1. You can only specify one library if you save to a save file.

2. You may not run multiple concurrent SAVLIB commands that use the same library. A SAVLIB and

Restore Library (RSTLIB) command may not run concurrently using the same library.

How to recover from a media error during a SAVLIB operation

If an irrecoverable media error occurs when you save multiple libraries, restart the procedure with the

Start Library (STRLIB) parameter on the SAVLIB command.

The basic recovery steps for a save operation are:

1. Check the job log to determine the library where the previous save operation failed. Find the last

library saved, which is indicated by a successful completion message.

2. Load the next media volume and ensure that you initialized the media volume. If you were using

menu option 21, 22, or 23 when the save operation failed, skip to step 4 on page 52.

3. Type the SAVxxx command you were using with the same parameter values. Add the STRLIB and

OMITLIB parameters and specify the last library that was saved successfully. For example, if you

were running a SAVLIB *ALLUSR and CUSTLIB was the last library that was successfully saved, you

would type:

Chapter 5. Manually save parts of your server 51

|
|

SAVLIB LIB(*ALLUSR) DEV(media-device-name) +

 STRLIB(CUSTLIB) OMITLIB(CUSTLIB)

This starts the save operation on the library after the last successfully saved library. You have

completed restarting the SAVLIB operation.

4. If you were using a menu option, select that menu option again.

5. On the Specify Command Defaults display, type Y for the Prompt for commands prompt. When the

server displays prompts for commands that you have completed successfully, press F12 (cancel).

When the server displays the prompt for the SAVLIB command, specify the STRLIB and OMITLIB

parameters as shown in step 3 on page 51.

Note: Restoring the server using this set of media requires two RSTLIB commands to restore the libraries.

Save independent ASPs

You can save independent ASPs (also known as independent disk pools in iSeries Navigator) separately

or you can save them as part of a full system save (GO SAVE: Option 21), or when you save all user data

(GO SAVE: Option 23). In either case, you must make the independent ASPs available before you perform

the save. Refer to the following scenarios and choose the option that best fits your needs.

Save the current ASP group
Perform the following commands to save the current independent ASP group (the primary ASP and any

associated secondary ASPs).

Note: If you are saving independent ASPs that are geographically mirrored, it is recommended that you

save the production copy. Quiesce any applications that affect the data in the independent ASP

prior to the save. You may also want to consider Backup, Recovery and Media Services.

1. SETASPGRP ASPGRP(primary-ASP-name)

2. SAVSECDTA ASPDEV(*CURASPGRP)

3. SAVLIB LIB(*ALLUSR) ASPDEV(*CURASPGRP)

4. Unmount any QDEFAULT user-defined file systems in the current independent ASP group

5. SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(*CURASPGRP)

6. Mount any QDEFAULT user-defined file systems that were unmounted in an earlier step

Save UDFS ASP
Perform the following commands to save an available UDFS ASP.

1. SAVSECDTA ASPDEV(ASP-name)

2. Unmount any QDEFAULT user-defined file systems in the UDFS ASP that you are saving

3. SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(ASP-name)

4. Mount any QDEFAULT user-defined file systems that were unmounted in an earlier step

Save independent ASPs as part of a full system save (Option 21)
If you make independent ASPs available, they will be included in an Option 21 save.1 Follow the

checklist in Use GO SAVE: Option 21, 22, and 23, and note extra requirements if you are operating in a

clustered environment. Before you end subsystems and restrict your server, make sure that your current

job does not use integrated file system objects in the independent ASP. Also, do not perform a

SETASPGRP command; Option 21 will perform the necessary commands to save the independent ASPs

that you have made available. In addition to the commands listed in Save your whole server with GO

SAVE: Option 21, the server performs the following commands for each available ASP group during an

Option 21 save:

v SETASPGRP ASPGRP(asp-group-name)

v SAVLIB LIB(*NONSYS) ASPDEV(*CURASPGRP)

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(*CURASPGRP)

52 iSeries: Systems Management Back up your server

|

|
|
|

The server then performs the following command for each available user-defined file system (UDFS) ASP.

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(udfs-asp-name)

The server will also perform a CHKTAP ENDOPT(*UNLOAD) command after the last SAV command it

processes.

Save independent ASPs when you save all user data (Option 23)
If you make independent ASPs available, they will be included in an Option 23 save.1 Follow the

checklist in Use GO SAVE: Option 21, 22, and 23, and note extra requirements if you are operating in a

clustered environment. Before you end subsystems and restrict your server, make sure that your current

job does not use integrated file system objects in the independent ASP. Also, do not perform a

SETASPGRP command; Option 23 will perform the necessary commands to save the independent ASPs

that you have made available. In addition to the commands listed in Save user data with GO SAVE:

Option 23, the server performs the following commands for each available ASP group during an Option

23 save:

v SETASPGRP ASPGRP(asp-group-name)

v SAVLIB LIB(*ALLUSR) ASPDEV(*CURASPGRP)

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(*CURASPGRP)

The server then performs the following command for each available user-defined file system (UDFS) ASP.

v SAV OBJ((’/dev/*’)) UPDHST(*YES) ASPDEV(udfs-asp-name)

The server will also perform a CHKTAP ENDOPT(*UNLOAD) command after the last SAV command it

processes.

1 If your server includes independent ASPs that are geographically mirrored, it is recommended

that you eliminate them from this GO SAVE option by making them unavailable. You should

save independent ASPs that are geographically mirrored separately, as described in Save the

current ASP group. If the geographically mirrored ASPs remain available during the GO SAVE

operation, geographic mirroring is suspended when the system becomes restricted. When you

resume mirroring after the save, a complete synchronization is required. Synchronization can be a

very lengthy process.

 Example of save order for independent ASPs with GO SAVE: Option 21 or 23
When you choose to perform a full-system save (Option 21) or to save all user data (Option 23),

independent disk pools are saved alphabetically. Secondary ASPs are saved along with their primary.

 Save

order

Independent ASP name Independent ASP type What is saved Command

1 Apples Primary Libraries SAVLIB LIB (*NONSYS

or *ALLUSR) Cantaloupe Secondary

2 Apples Primary User-defined file systems SAV OBJ((’/dev/*’))

Cantaloupe Secondary

3 Bananas UDFS User-defined file systems SAV OBJ((’/dev/*’))

Save security data

SAVSYS or SAVSECDTA command

Use the SAVSYS command or the Save Security Data (SAVSECDTA) command to save the following

security data:

v User profiles

v Private authorities

Chapter 5. Manually save parts of your server 53

||
|
|
|
|
|
|

v Authorization lists

v Authority holders

You can use the SAVSYS or SAVESECDTA commands to save private authorities for objects on

independent ASPs.

The server stores additional security data with each object. The server saves this security data when it

saves the object, as follows:

v Public authority

v Owner and owner authority

v Primary group and primary group authority

v Authorization list linked to object

To save security data, the command does not require that your server be in a restricted state. However,

you cannot delete user profiles while the server saves security data. If you change user profiles or grant

authority while you save security data, your saved information may not reflect the changes.

To reduce the size of a large user profile, do one or more of the following:

v Transfer ownership of some objects to another user profile.

v Remove the private authority to some objects for that user profile.

Your server stores authority information for objects in the /QNTC file systems. The information about

iSeries Integration for Windows Server describes how to save security data for iSeries Integration for

Windows Server.

Notice!

If you use authorization lists to secure objects in library QSYS, you should write a program to

produce a file of those objects. Include this file in the save. This is because the association between

the object and the authorization list is lost during a restore operation due to QSYS being restored

prior to user profiles. Refer to ″What You Should Know About Restoring User Profiles″ in the

Backup and Recovery book

for more information.

 QSRSAVO API

You can use the Save Objects List (QSRSAVO) API to save User Profiles.

Save configuration information

Use the Save Configuration (SAVCFG) command or the SAVSYS (Save System) command to save

configuration objects. The SAVCFG command does not require a restricted state. However, if your server

is active, the SAVCFG command bypasses the following configuration objects:

v Devices that the server is creating.

v Devices that the server is deleting.

v Any device that is using the associated system resource management object.

When you save your configuration by using the SAVCFG command or the SAVSYS command, the server

saves the following object types:

 *CFGL *CTLD *NWID

*CNNL *DEVD *NWSD

*CIO *LIND *SRM

54 iSeries: Systems Management Back up your server

*COSD *MODD

*CRGM *NTBD

Note: You might think of system information, such as system values and network attributes, as

configuration information. However, the server does not store this type of information in

configuration objects. The SAVCFG command does not save system information. The SAVSYS

command saves it because the server stores it in the QSYS library.

Save licensed programs

You can use the SAVLIB command or the Save Licensed Program (SAVLICPGM) command to save

licensed programs. These methods work well for two different purposes:

v If you are saving licensed programs in case you need them for a recovery, use the SAVLIB command.

You can save just the libraries that contain licensed programs by specifying SAVLIB LIB(*IBM). Or, you

can save the libraries that contain licensed programs when you save other libraries by specifying

SAVLIB LIB(*NONSYS).

v If you are saving licensed programs to distribute them to other servers in your organization, use the

SAVLICPGM command. You can use a save file as the output for the SAVLICPGM command. You can

then send the save file over your communications network.

Refer to the Central Site Distribution information about saving licensed programs to distribute to other

servers.

Methods to save system data and related user data

The easiest way to save all of your user data and system data is with menu option 22 of the GO SAVE

command. This saves all of your system data as well as the related user data.

The following commands allow you to manually save your server and user data:

v SAVSECDTA (Save Security Data)

v SAVCFG (Save Configuration)

v SAV (Save)

v SAVLIB (Save Library)

v SAVLICPGM (Save Licensed Programs)

 Table 16. Methods, CL commands, and APIs for saving system data and related user data

Methods for saving system data and related user data

The following information explains the various methods that you can use to save your system data and related user

data:

v “Methods to save security data” on page 56

v “Methods to save configuration objects in QSYS” on page 57

v “Methods to save OS/400 optional libraries (QHLPSYS, QUSRTOOL)” on page 57

v “Methods to save licensed program libraries (QRPG, QCBL, Qxxxx)” on page 58

 CL commands and APIs for saving system data and related user data

Chapter 5. Manually save parts of your server 55

The following links provide you with detailed information on various save commands and save APIs:

v QSRSave API in the API reference

v QSRSAVO API in the API reference

v SAV command in CL reference

v SAVCFG command in CL reference

v SAVCHGOBJ command in CL reference

v SAVDLO command in CL reference

v SAVLIB command in CL reference

v SAVOBJ command in CL reference

v SAVSAVFDTA command in CL reference

v SAVSECDTA command in CL reference

v SAVSYS command in CL reference

v SAVLICPGM command in CL reference

Methods to save security data

 Table 17. Information about security data

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Security data Security data—user profiles,

private authorities, and

authorization lists—change

regularly as you add new

users and objects or if you

change authorities.

Yes Some

 Common save method for security data Requires restricted state?

SAVSYS1 Yes

SAVSECDTA1 No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

GO SAVE command, menu option 23 No2

QSRAVO API (for saving user profiles) No3

Note:

1 SAVSYS and SAVSECDTA do not save authority information for objects in the QNTC file

systems. The server saves authority information with the Windows server objects.

2 When you use option 23 from the GO SAVE command menu, the default is to place your

server in a restricted state. If you choose the prompting option, you can cancel the display

that puts your server in a restricted state.

 Important: For procedures where the server does not require a restricted state, you must

ensure that the server can get the locks necessary to save the information. You should

place your server in a restricted state whenever you save multiple libraries, documents, or

directories, unless you use the save-while-active function.

3 You must have *SAVSYS special authority to save user profiles with the QSRAVO API

“Save security data” on page 53 contains information on how to back up the authority data for your

users and objects.

56 iSeries: Systems Management Back up your server

Methods to save configuration objects in QSYS

 Table 18. Configuration objects in QSYS information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Configuration objects in

QSYS

Configuration objects in

QSYS change regularly. This

happens when you add or

change configuration

information with

commands or with the

Hardware Service Manager

function. These objects may

also change when you

update licensed programs.

Yes No

 Common save method for configuration objects in QSYS Requires restricted state?

SAVSYS Yes

SAVCFG No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

GO SAVE command, menu option 23 No2

1 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should place your server

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.

 “Save configuration information” on page 54 contains information about how to save your configuration

objects.

Methods to save OS/400 optional libraries (QHLPSYS, QUSRTOOL)

 Table 19. OS/400 optional libraries (QHLPSYS, QUSRTOOL) information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

OS/400 optional libraries

(QHLPSYS, QUSRTOOL)

OS/400 optional libraries

(QHLPSYS, QUSRTOOL)

change when you apply

Program Temporary Fixes

(PTFs) or when you install

new releases of the

operating system.

No1 Yes

 Common save method Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *IBM No2,

3

SAVLIB library-name No3

GO SAVE command, menu option 21 Yes

Chapter 5. Manually save parts of your server 57

Common save method Requires restricted state?

GO SAVE command, menu option 22 Yes

1 You should avoid changing objects or storing user data in these IBM-supplied libraries or folders.

You could lose or destroy these changes when you install a new release of the operating system.

If you make changes to objects in these libraries, note them carefully in a log for future reference.

2 You do not need to put your server into a restricted state, but it is recommended.

3 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should place your server

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

 “Save libraries with the SAVLIB command” on page 49 explains how to save one or more libraries. This

information also includes special SAVLIB parameters and how to select libraries on your server.

Methods to save licensed program libraries (QRPG, QCBL, Qxxxx)

 Table 20. Licensed program libraries (QRPG, QCBL, Qxxxx) information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Licensed program libraries

(QRPG, QCBL, Qxxxx)

When you update licensed

programs

No1 Yes

 Common save method for licensed program libraries (QRPG, QCBL,

Qxxxx) Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *IBM No2,

3

SAVLICPGM No3

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

1 You should avoid changing objects or storing user data in these IBM-supplied libraries or folders.

You could lose or destroy these changes when you install a new release of the operating system.

If you make changes to objects in these libraries, note them carefully in a log for future reference.

2 You do not need to put your server into a restricted state, but it is recommended.

3 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should place your server

in a restricted state whenever you save multiple libraries, documents, or directories, unless you

use the save-while-active function.

 “Save licensed programs” on page 55 contains information on how to save your licensed programs.

Save user data in your server

User data includes any information that you enter into the server, including the following:

v User profiles

v Private authorities

v Configuration objects

v IBM libraries with User Data (QGPL, QUSRSYS, QS36F, #LIBRARY)

58 iSeries: Systems Management Back up your server

v User libraries (LIBA, LIBB, LIBC, LIBxxxx)

v Documents and folders

v Distribution objects

v User objects in directories

The following information includes detailed steps for saving various user data in your server:

v “Save objects with the SAVOBJ command”

v “Save only changed objects” on page 60

v “Save database files” on page 63

v “Save journaled objects” on page 67

v “Save journals and journal receivers” on page 67

v “Save file systems” on page 68

v “Save user-defined file systems” on page 75

v “Save document library objects (DLOs)” on page 76

v “Save spooled files” on page 79

v “Save office services information” on page 80

“Methods to save user data” on page 82 provides you with several different methods to save your user

data. These methods include the GO SAVE command and manual save commands and APIs.

Save objects with the SAVOBJ command

Use the Save Object (SAVOBJ) command to save one or more objects on your server. You may also use

the QSRSAVO API to save multiple objects.

Unless you specify that storage is to be freed, this command does not affect objects (other than having

the change history updated). You may specify generic values for the LIB parameter with this command.

You may run multiple concurrent SAVOBJ operations (including the QSRSAVO API) against a single

library.

Before you use the SAVOBJ command, read the following information:

v “Size limitations when saving objects” on page 5 explains limitations during your save process.

v “Save multiple objects with the SAVOBJ command” explains how to concurrently save multiple objects.

v “QSRSAVO API” on page 60 briefly explains the QSRSAVO API with a link to the API reference

section.

v “Objects whose contents are not saved” on page 60 explains how the SAVOBJ command works

differently for some objects.

Save multiple objects with the SAVOBJ command

The parameters of the SAVOBJ command can be used to specify multiple objects in many ways, including

the following:

 Parameter Description

Object (OBJ) Can be *ALL, a generic name, or a list of as many as 300 specific names and

generic names.

Object type (OBJTYPE) Can be *ALL or a list of types. For example, you can save all job descriptions

and subsystem descriptions by specifying OBJ(*ALL) and OBJTYPE(*JOBD

*SBSD).

Library (LIB) Can be a single library or a list of as many as 300 library names. You may

specify generic values for this parameter.

Chapter 5. Manually save parts of your server 59

Parameter Description

Omit object (OMITOBJ) Allows you to specify up to 300 objects to exclude from the SAVOBJ command.

You may specify generic values for this parameter. If you use generic values, or

supply a specific object type, you can actually omit more than 300 objects.

Omit library (OMITLIB) Allows you to exclude from 1 to 300 libraries. You may specify generic values

for this parameter.

When you save from more than one library, you can specify one or more object types, but you must

specify OBJ(*ALL) for the object name. Libraries are processed in the order that is specified in the library

(LIB) parameter.

QSRSAVO API

You can use the Save Objects List (QSRSAVO) application programming interface (API) to save multiple

objects. The QSRSAVO API is similar to the SAVOBJ command except that you can associate a specific

object type with each object name that you specify. This provides more granularity in what you save with

a single command. The QSRSAVO API also allows you to save one or more user profiles. The System API

Reference provides you with information about this API and others. You can find detailed information

about the QSRSAVO API in the API reference.

Objects whose contents are not saved

For some object types, the server saves only object descriptions, not the contents of the objects. The

following table shows these object types:

 Table 21. Object Types Whose Contents Are Not Saved

Object Type Contents Not Saved

Data queues (*DTAQ) Data queue entries

Job queues (*JOBQ) Jobs

Journals (*JRN) List of currently journaled objects. List of associated journal receivers.

Logical files (*FILE) Physical files making up logical files are not saved when the logical file is saved.

Access paths owned by logical files are saved with the physical file if access path

(*YES) is specified on the save command.

Message queues (*MSGQ) Messages

Output queues (*OUTQ) Spooled files

Save file (*SAVF) When SAVFDTA(*NO) is specified.

User Queue (*USRQ) User queue entries

Save only changed objects

You can use the save changed object function to reduce the amount of save media that you use. You can

also complete your save process in a shorter period of time.

Refer to the following information for more details on how to use the SAVCHGOBJ command:

v “Save Changed Objects (SAVCHGOBJ) command” on page 61

v “Save changed objects in directories” on page 71

v “Save changed objects when you use journaling” on page 62

v “Save changed document library objects” on page 77

v “Additional considerations for SAVCHGOBJ” on page 61

v “How the server updates changed object information with the SAVCHGOBJ command” on page 62

For information on saving a Domino server, go to the Lotus® Domino reference library

.

60 iSeries: Systems Management Back up your server

http://www.ibm.com/eserver/iseries/domino/reports.htm

Save Changed Objects (SAVCHGOBJ) command

Use the Save Changed Objects (SAVCHGOBJ) command to save only those objects that have changed

since a specified time.

The options for specifying objects, object types, and libraries are similar to those for the SAVOBJ

command:

v You can specify up to 300 different libraries by using the LIB parameter. You may use specific or

generic values.

v You can omit up to 300 libraries by using the OMITLIB parameter. You may specify generic values for

this parameter.

v You can omit up to 300 objects by using the OMITOBJ parameter. You may specify generic values for

this parameter.

You can perform multiple concurrent SAVCHGOBJ operations against a single library. This can be helpful

if you need to save different parts of a library to different media devices simultaneously, as shown in the

following example:

SAVCHGOBJ OBJ(A* B* C* $* #* @* ...L*) DEV(media-device-name-one) LIB(library-name)

SAVCHGOBJ OBJ(M* N* O* ...Z*) DEV(media-device-name-two) LIB(library-name)

Additional considerations for SAVCHGOBJ

If you need to save changed objects as part of your save strategy, you must ensure that any partial save

activity that occurs between your full save operations does not affect what you save with the

SAVCHGOBJ command. If users occasionally save individual objects, you may want them to specify

UPDHST(*NO). That prevents their save activity from having an impact on the overall SAVCHGOBJ

strategy.

Note: The most common way to use the SAVCHGOBJ command is to specify REFDATE(*SAVLIB). If you

have a new library that has never been saved, it is not saved when you specify SAVCHGOBJ

REFDATE(*SAVLIB).

Using SAVCHGOBJ–Example: In a typical environment, you might use the SAVLIB command once a

week and the SAVCHGOBJ command every day. Because the default for SAVCHGOBJ is from the last

SAVLIB operation, the media that the SAVCHGOBJ command produces tends to grow during the week.

What follows shows an example of using SAVCHGOBJ during a typical week. Assume that you save the

entire library on Sunday night and the SAVCHGOBJ command is used each evening during the week:

 Table 22. SAVCHGOBJ Command: Cumulative

Day Files That Changed That Day Media Contents

Monday FILEA, FILED FILEA, FILED

Tuesday FILEC FILEA, FILEC, FILED

Wednesday FILEA, FILEF FILEA, FILEC, FILED, FILEF

Thursday FILEF FILEA, FILEC, FILED, FILEF

Friday FILEB FILEA, FILEB, FILEC, FILED, FILEF

If a failure occurred on Thursday morning, you would:

1. Restore the library from Sunday evening.

2. Restore all the objects from Wednesday’s SAVCHGOBJ media volumes.

When you use this technique of saving everything that changed since the last SAVLIB, recovery is easier.

You need to restore only the media volumes from the most recent SAVCHGOBJ operation.

Chapter 5. Manually save parts of your server 61

Changing the reference date and time: The default for the command is to save objects that have changed

since the library was last saved using the SAVLIB command. You can specify a different reference date

and time by using the reference date (REFDATE) and reference time (REFTIME) parameters on the

SAVCHGOBJ command. This allows you to save only objects that have changed since the last

SAVCHGOBJ operation.

This may reduce the amount of media and the time for the save operation. Here is an example:

 Table 23. SAVCHGOBJ Command–Not Cumulative

Day Files That Changed That Day Media Contents

Monday FILEA, FILED FILEA, FILED

Tuesday FILEC FILEC

Wednesday FILEA, FILEF FILEA, FILEF

Thursday FILEF FILEF

Friday FILEB FILEB

You can restore the SAVCHGOBJ media from earliest to latest. Or you can display each media volume

and restore only the latest version of each object.

Save changed objects when you use journaling

When you use journaling, the server uses one or more journal receivers to keep a record of changes that

occur to the journaled objects. Journal Management describes how to set up journaling.

If you are journaling data areas, data queues, or database files, you probably do not want to save those

journaled objects when you save changed objects. You should save the journal receivers rather than the

journaled objects.

The journaled objects (OBJJRN) parameter of the SAVCHGOBJ command controls whether the server

saves journaled objects or not. If you specify *NO, which is the default, the server does not save an object

if both of these conditions are true:

v The server journaled the object at the time specified for the REFDATE and REFTIME parameters on the

SAVCHGOBJ command.

v The object is currently being journaled.

The OBJJRN parameter applies only to journaled data areas, data queues, and database files. It does not

apply to journaled Integrated File System (IFS) objects.

How the server updates changed object information with the SAVCHGOBJ

command

The changed object information kept by the server is a date and a timestamp. When the server creates an

object, the server places a timestamp in the changed field. Any change to the object causes the server to

update the date and timestamp.

Note: Refer to “Save changed objects in directories” on page 71 for additional information regarding the

changed object information for objects’ directories.

Use the DSPOBJD command and specify DETAIL(*FULL) to display the date and time of the last change

for a specific object. Use the Display File Description (DSPFD) command to display the last change date

for a database member.

To display the last change date for a document library object, do the following:

1. Use the Display DLO Name (DSPDLONAM) command to display the system name for the DLO and

the ASP where it is located.

62 iSeries: Systems Management Back up your server

2. Use the DSPOBJD command, specifying the system name, the name of the document library for the

ASP (such as QDOC0002 for ASP 2), and DETAIL(*FULL).

Some common operations that result in a change of the date and time are:

v Create commands

v Change commands

v Restore commands

v Add and remove commands

v Journal commands

v Authority commands

v Moving or duplicating an object

These activities do not cause the server to update the change date and time:

v Message queue. When the server sends a message or when the server receives a message.

v Data queue. When the server sends an entry or when the server receives and entry.

When you IPL, the server changes all of the job queues and output queues.

Change Information for Database Files and Members: For database files, the SAVCHGOBJ command

saves the file description and any members that changed.

Some operations change the change date and time of the file and all of its members. Examples are the

CHGOBJOWN, RNMOBJ, and MOVOBJ commands. If you save a file with 5 or more members, the

server updates the change date for the library because it creates a recovery object in the library to

improve save performance.

Operations that affect only the content or attributes of a member change only the date and time of the

members. Examples are:

v Using the Clear Physical File Member (CLRPFM) command

v Updating a member by using source entry utility (SEU)

v Updating a member with a user program.

The SAVCHGOBJ command can be useful for backing up typical source files. Normally, a source file has

many members, and only a small percentage of members change every day.

Save database files

Use the SAVOBJ command to save individual database files. You can use the FILEMBR (file member)

parameter to save:

v A list of members from one database file.

v The same group of members from multiple files.

The online information for the SAVOBJ command describes how to use the FILEMBR parameter.

The SAVCHGOBJ command saves only changed members of physical files.

Here is what the server does when you save a database file:

 Table 24. Saving database files

Type of File What is saved

Physical file, TYPE(*DATA), keyed access path1 Description, data, access path

Physical file, TYPE(*DATA), access path not keyed Description, data

Chapter 5. Manually save parts of your server 63

Table 24. Saving database files (continued)

Type of File What is saved

Physical file, TYPE(*SRC), keyed access path Description, data

Logical file2 Description

1 The following types of access paths are included as keyed access paths: keyed access paths, primary key

constraints, unique constraints, referential constraints.

2 You can save the access path for a logical file by saving the associated physical files using the SAVLIB,

SAVOBJ, or SAVCHGOBJ command and specify the ACCPTH parameter. For additional information see

Save access paths.

The description for a file may include the following:

v Definitions of triggers and the programs that are associated with the file, but not the programs

themselves. You must save the programs separately.

v Definitions of any constraints for the file.

Special considerations apply when you restore a file that has trigger programs or constraints defined. You

can find additional information about how the server restores files with triggers and files with referential

constraints in the Backup and Recovery book.

v “Save access paths” explains how you can decrease your recovery time for databases. If you save the

access paths to your databases, the server does not have to re-create them during a recovery.

v “Save files with referential constraints” explains how you should save all files that are related by

referential constraints similar to your access paths.

If you are journaling a database file, “Save journaled objects” on page 67 explains more information

about saving a database file if it is a journaled object.

Save files with referential constraints

Referential constraints link multiple files together in a network, similar to the network for access paths.

You might think of this as a relationship network. If possible, you should save all the files in a

relationship network in a single save operation.

If you restore files that are in a relationship network during separate restore operations, the server must

verify that the relationships are still valid and current. You can avoid this process and improve restore

performance if you save and restore relationship networks in a single operation.

The Backup and Recovery book

has more information about the considerations when restoring

relationship networks.

Save access paths

When you restore a database file, but you did not save the access path to the database, the server

rebuilds the access path. You can significantly reduce the amount of time it takes you to recover if you

save the access paths. However, the process that saves access paths increases the time for the save

operation and the amount of media that you use.

To save access paths that are owned by logical files, specify ACCPTH(*YES) on the SAVCHGOBJ,

SAVLIB, and SAVOBJ commands when you save the physical files. The server saves access paths when

you save the physical file because the physical file contains the data that is associated with the access

path. When you save the logical file, you are saving only the description of the logical file.

When a save command (SAVLIB, SAVOBJ, SAVCHGOBJ, SAVRSTLIB, SAVRSTOBJ, or SAVRSTCHG) is

performed, the save access paths parameter value is determined by this system value when

64 iSeries: Systems Management Back up your server

|
|
|

|
|

ACCPTH(*SYSVAL) is specified. When ACCPTH(*YES) or ACCPTH(*NO) is specified, this system value

is ignored. If access paths are to be saved, the process that saves access paths increases the time for the

save operation and the amount of media that you use. However, by having the access paths saved, you

significantly reduce the amount of time it takes to recover a system because the access paths do not need

to be rebuilt.

The server saves access paths that logical files own, and that are not used for referential constraints if all

of the following are true:

v You specify ACCPTH(*YES) on the save command for the physical files.

v All based-on physical files under the logical file are in the same library and are being saved at the

same time on the same save command.

v The logical file is MAINT(*IMMED) or MAINT(*DLY).

In all cases, the server saves an access path only if it is valid and not damaged at the time of the save

operation.

When you save a physical file that is not a source file, the server saves the following types of access

paths with it, whether or not you specify ACCPTH(*YES):

v Keyed access paths that are owned by the physical file

v Primary key constraints

v Unique constraints

v Referential constraints

If the based-on physical files and the logical files are in different libraries, the server saves the access

paths. However, the server may not restore these access paths. Look for information about restoring

access paths in the Backup and Recovery book

.

“EXAMPLE - Saving files in a network” provides you with an example of saving files in a network.

EXAMPLE - Saving files in a network: The following figure shows a physical file, FILEA in the LIB1

library. Logical file FILEB in LIB1 and logical file FILEC in LIB2 have access paths over physical file

FILEA in LIB1.

Chapter 5. Manually save parts of your server 65

|
|
|
|
|

The following table shows which parts of this file network different commands save:

 Table 25. Saving a File Network

Command What is saved

SAVLIB LIB(LIB1)

 ACCPTH(*YES)

FILEA: description, data, keyed access path

FILEB: description, access path

FILEC: access path

SAVOBJ OBJ(FILEA) LIB(LIB1)

 ACCPTH(*YES)

FILEA: description, data, keyed access path

FILEB: access path

FILEC: access path

Figure 5. Saving Access Paths

66 iSeries: Systems Management Back up your server

Table 25. Saving a File Network (continued)

Command What is saved

SAVLIB LIB(LIB2)

 ACCPTH(*YES)

FILEC: description

Save journaled objects

When you save a journaled object, the server writes an entry to the journal for each object that you save.

When you start journaling an object, save that object after you start journaling it. After you add a new

physical file member to a journaled database file, you should save that database file. Save an IFS object

after it is added to a directory which has the inherit journaling attribute on.

You can journal the objects that are listed below:

v Database files

v Data areas

v Data queues

v Byte stream files

v Directories

v Symbolic links

“Commands to save specific object types” on page 44 contains information for saving these objects.

You can use the OBJJRN parameter of the SAVCHGOBJ command to omit journaled objects. See “Save

changed objects when you use journaling” on page 62.

For files that you partition across multiple servers, refer to DB2® Multisystem for OS/400.

Save journals and journal receivers

Use the SAVOBJ, SAVCHGOBJ, SAV, or SAVLIB command to save journals and journal receivers that are

in user libraries. Use the SAVSYS command to save the journals and journal receivers that are in the

QSYS library.

You can save a journal or journal receiver even when you journal objects to it. The save operation always

starts at the beginning of the journal receiver. If you save a journal receiver that is currently attached, you

receive a diagnostic message.

If you specified MNGRCV(*USER) for a journal on the CRTJRN command or the CHGJRN command,

save the detached receiver immediately after running the CHGJRN command.

If you specified MNGRCV(*SYSTEM), do one of the following:

v Set up a regular procedure for saving detached receivers. Use this procedure to determine which

detached journal receivers that you need to save:

1. Type WRKJRNA JRN(library-name/journal-name)

2. On the Work with Journal Attributes display, press F15 (Work with receiver directory).
v Create a program to monitor for message CPF7020 in the journal’s message queue. This server sends

this message when you detach the receiver. Save the receiver that the message identifies.

Journal Management provides more information about managing journals and journal receivers.

Chapter 5. Manually save parts of your server 67

Save file systems

The integrated file system is a part of the OS/400 program that supports stream input/output and

storage management similar to personal computers and UNIX® operating systems. The integrated file

system also provides an integrating structure over all information that you store in the server.

You can view all objects on the server from the perspective of a hierarchical directory structure. However,

in most cases, you view objects in the way that is most common for a particular file system. For example,

you usually view objects in the QSYS.LIB file system from the perspective of libraries. You usually view

objects in the QDLS file system as documents within folders.

Similarly, you should save objects in different file systems with the methods that are designed for each

particular file system. You can find several good examples of how to use the SAV command in the CL

reference information in the Information Center.

The following topics help you save your file systems:

v “Using the Save (SAV) command”

v “Specifying the device name” on page 69

v “Saving objects that have more than one name” on page 69

The following information explains restrictions on saving file systems on your server.

v “When saving across multiple file systems” on page 72 explains the restrictions of the SAV command

when you save across multiple file systems.

v “When saving objects from the QSYS.LIB file system” on page 73 explains the restrictions of the SAV

command when you save objects in the QSYS.LIB file system.

v “When saving objects from the QDLS file system” on page 74 explains restrictions of the SAV

command when you save objects from the QDLS file system.

Using the Save (SAV) command

The SAV command allows you to save the following data:

v A specific object

v A directory or subdirectory

v An entire file system

v Objects that meet search value

You can also save the items in this list by using the QsrSave API. For more information, refer to the

System API Reference.

The Objects (OBJ) parameter on the SAV command supports the use of wildcard characters and the

directory hierarchy. When you have a specific subset of similar objects within a directory subtree that you

want to save, you can use the Name pattern (PATTERN) parameter to further define the objects that are

identified in the (OBJ) parameter. For example, you could have a directory ’/MyDir’ that contains 100

subdirectories, Dir1 through Dir100, that each contain 100 .jpg files, Photo1.jpg through Photo100.jpg,

with corresponding backup files, Photo1.bkp through Photo100.bkp. To save all of the .jpg files in

’/MyDir’, but omit the backup files, you could issue the following command:

SAV OBJ((’/MyDir’)) PATTERN((’*.bkp’ *OMIT))

When you use the SAV command to save the current directory SAV OBJ(’*’) and the current directory is

empty (it has no files or subdirectories), the server does not save anything. The command does not save

the one *DIR object that represents the current directory. However, when you explicitly specify the

directory by name SAV OBJ(’/mydir’) you include the *DIR object in your save. The same applies to the

home directory.

68 iSeries: Systems Management Back up your server

|
|
|
|
|
|
|

|

|

Another feature that the SAV command offers is the Scan objects (SCAN) parameter for purposes such as

virus protection. If exit programs are registered with any of the integrated file system scan-related exit

points, you can specify whether objects will be scanned while being saved. This parameter also allows

you to indicate whether objects that previously failed a scan should be saved. To learn more about exit

programs, see Integrated File System Scan on Close API (Exit Program or Integrated File System Scan on

Open API (Exit Program.

When you use the SAV command, you can specify OUTPUT(*PRINT) to receive a report of what the

server saved. You can also direct the output to a stream file or to a user space. The SAV command does

not provide the option to create an output file. “Interpret output from Save (SAV) and Restore (RST)

commands” on page 140 describes output file format information from the SAV and RST commands.

The Integrated file system topic provides more information about how to specify object names when you

use integrated file system commands.

Specifying the device name

When you use the SAV command, you use a pathname to specify objects to be saved. The pathname

consists of a sequence of directory names that are followed by the name of the object. You also use the

pathname for the values of other parameters, such as the device (DEV) parameter. For example, on the

SAVLIB command, you specify DEV(TAP01). To use device TAP01 on the SAV command, you specify:

DEV(’/QSYS.LIB/TAP01.DEVD’)

To use a save file name MYSAVF in library QGPL on the SAVF command, you specify:

DEV(’/QSYS.LIB/QGPL.LIB/MYSAVF.FILE’)

You may want to create symbolic links for devices that you specify with the SAV command to simplify

keying and to reduce errors. For example, you can create a symbolic link for the media device description

that is called either TAP01 or OPT01. If you wish to use symbolic links, it is recommended that you

perform a one-time setup of symbolic links in the root directory. For each tape device on your server,

type the following:

ADDLNK OBJ(’/qsys.lib/media-device-name.devd’) NEWLNK(media-device-name) +

 LNKTYPE(*SYMBOLIC)

If the current directory is the root directory, then an example of the SAV command using the symbolic

link would be the following:

SAV DEV(media-device-name) +

 OBJ((’/*’) (’/QDLS’ *OMIT) (’/QSYS.LIB’ *OMIT))

All subsequent path names on the command would need to begin from the root directory.

Note: If the root directory is not the current directory, be sure to specify DEV(’/media-device-name’) on

the SAV command.

Saving objects that have more than one name

You can give more than one name to objects on the server. An additional name for an object is sometimes

called a link. Some links, referred to as hard links, point directly to the object. Other links are more like a

nickname for an object. The nickname does not point directly to the object. Instead, you can think of the

nickname as an object that contains the name of the original object. This type of link is referred to as a

soft link, or a symbolic link.

If you create links for objects, study the examples that follow to ensure that your save strategy saves both

the contents of objects and all their possible names.

Chapter 5. Manually save parts of your server 69

|
|
|
|
|
|

The following figure shows an example of a hard link: The root directory contains UserDir. UserDir

contains JCHDIR and DRHDIR. JCHDIR contains FILEA that has a hard link to Object A. DRHDIR

contains FILEB which also contains a hard link to Object A.

 You can save Object A with either of the following commands. For both commands, you get the

description of Object A and the data:

v SAV OBJ(’/UserDir/JCHDIR/FILEA’)

v SAV OBJ(’/UserDir/DRHDIR/FILEB’)

If you use only the first command (JCHDIR), you have not saved the fact that FILEB is also named in the

DRHDIR directory.

You can use the following commands to get the data once and both names (hard links) for the file:

v SAV OBJ((’/UserDir’))

v SAV OBJ((’/UserDir/JCHDIR’) (’/UserDir/DRHDIR’))

v SAV OBJ((’/UserDir/JCHDIR/FILEA’) (’/UserDir/DRHDIR/FILEB’))

The following figure shows an example of a symbolic link: The root directory contains QSYS.LIB and

Customer. QSYS.LIB contains CUSTLIB.LIB. CUSTLIB.LIB contains CUSTMAS.FILE. Customer has a

symbolic link to CUSTMAS.FILE.

Figure 6. An Object with Hard Links–Example

70 iSeries: Systems Management Back up your server

Following are several commands you can use to save the CUSTMAS file (both description and data):

v SAVLIB LIB(CUSTLIB)

v SAVOBJ OBJ(CUSTMAS) LIB(CUSTLIB)

v SAV (’/QSYS.LIB/CUSTLIB.LIB/CUSTMAS.FILE’)

v SAV (’/QSYS.LIB/CUSTLIB.LIB’)

None of these commands saves the fact that the CUSTMAS file has a “nickname” of customer in the root

directory.

If you specify SAV OBJ(’/customer’), you save the fact that customer is a nickname for the CUSTMAS

file. You do not save the description of the CUSTMAS file or its contents.

Save changed objects in directories

You can use the change period (CHGPERIOD) parameter on the Save (SAV) command to save objects

that changed since a specified time, objects that last changed during a specific time period, or objects that

were changed since they were last saved.

If you specify CHGPERIOD(*LASTSAVE), you get any object that changed since any save operation you

performed for that object with UPDHST(*YES) specified. If you use this method several times during a

week, the resulting media will look like Table 23 on page 62.

To perform a save operation that includes all objects that changed since the last complete save of a

directory (similar to what is shown in Table 22 on page 61), do one of the following:

v Specify a date and time for the CHGPERIOD parameter.

v Specify UPDHST(*YES) for a complete save operation. Specify UPDHST(*NO) and

CHGPERIOD(*LASTSAVE) when you save changed objects.

You can also use the SAV command to save objects that have not changed since a particular time by

specifying CHGPERIOD(*ALL *ALL date time). This might be useful to archive old information before you

remove it.

Figure 7. An Object with a Symbolic Link–Example

Chapter 5. Manually save parts of your server 71

The server keeps a record of when it last changed the object. It also records whether it changed the object

since the last save or not. The server does not store data for when it last saved the object.

Select option 8 on the Work With Object Links (WRKLNK) display to view the attributes that describe

whether an object in a directory changed since you last saved it. The attributes are shown as:

Need to archive (PC) : Yes

Need to archive (AS/400) : Yes

Note: If you use the operating system of a client workstation to save an object, the PC archive indicator

will be set to ’No’. Since file systems accessed through the network server do not distinguish

between save operations, the server archive indicator for those file systems will always match the

PC archive indicator. Therefore, changed objects in the file systems accessed through the network

server that have been saved by a client workstation save operation will not be saved by a save

operation until they have been changed again.

The UPDHST parameter value controls updating of the server save history and PC save history:

v *NO - The server does not update the save history. The PC archive attribute and the server archive

attribute do not change.

v *YES - The server updates the save history. For file systems that you access through the network server,

the PC archive attribute is set to ’No’. For other file systems, the server archive attribute is set to ’No’.

v *SYS - The system updates the system save history. The server archive attribute is set to ’No’.

v *PC - The system updates the PC save history. The PC archive attribute is set to ’No’.

“Using the Save (SAV) command” on page 68 provides more information about using the SAV command.

When saving across multiple file systems

When you use the SAV command to save objects from more than one file system at the same time, the

following restrictions apply:

v Different file systems support different types of objects and different methods of naming objects.

Therefore, when you save objects from more than one file system with the same command, you cannot

specify object names or object types. You can save all objects from all file systems, or you can omit

some file systems. These combinations are valid:

– Saving all objects on the server: OBJ(’/*’)

Note: Using this command is not the same as using option 21 from the GO SAVE command menu.

Following are the differences between SAV OBJ(’/*’) and option 21:

- SAV OBJ(’/*’) does not put the server in a restricted state.

- SAV OBJ(’/*’) does not start the controlling subsystem when it finishes.

- SAV OBJ(’/*’) does not provide prompting to change default options.
– Saving all objects in all file systems except the QSYS.LIB file system and the QDLS file system:

OBJ((’/*’) (’/QSYS.LIB’ *OMIT) (’/QDLS’ *OMIT))

– Saving all objects in all files systems except the QSYS.LIB file system, the QDLS file system, and one

or more other file systems: OBJ((’/*’) (’/QSYS.LIB’ *OMIT) (’/QDLS’ *OMIT) (’/other values’

*OMIT))

v Values for other parameters of the SAV command are supported only for some file systems. You must

choose values that are supported by all file systems. Specify the following parameters and values:

CHGPERIOD

Default

PRECHK

*NO

72 iSeries: Systems Management Back up your server

UPDHST

*YES

LABEL

*GEN

SAVACT

*NO

OUTPUT

*NONE

SUBTREE

*ALL

SYSTEM

*LCL

DEV Must be a tape device or an optical device
v The SAV OBJ(’/*’) command parameters require the following:

– The server must be in a restricted state.

– You must have *SAVSYS or *ALLOBJ special authority.

– You must specify VOL(*MOUNTED).

– You must specify SEQNBR(*END).

Note: SAV OBJ(’/*’) is not the recommended method for saving the entire server. Use menu option 21

of the GO SAVE command to save the entire server.

When saving objects from the QSYS.LIB file system

When you use the SAV command to save objects from the QSYS.LIB (library) file system; the following

restrictions apply:

v The OBJ parameter must have only one name.

v The OBJ parameter must match the way that you can specify objects on the SAVLIB command and the

SAVOBJ command:

– You can save a library: OBJ(’/QSYS.LIB/library-name.LIB’)

– You can save all the objects in a library: OBJ(’/QSYS.LIB/library-name.LIB/*’)

– You can save all objects of a particular type in a library: OBJ(’/QSYS.LIB/library-
name.LIB/*.object-type’)

– You can save a specific object name and object type in a library:

OBJ(’/QSYS.LIB/library-name.LIB/object-name.object-type’)

– You can save all the members in a file by using either of the following:

- OBJ(’/QSYS.LIB/library-name.LIB/file-name.FILE/*’)

- OBJ(’/QSYS.LIB/library-name.LIB/file-name.FILE/*.MBR’)

– You can save a specific member in a file:

OBJ(’/QSYS.LIB/library-name.LIB/

 file-name.FILE/member-name.MBR’)

v You can specify only the object types that the SAVOBJ command allows. For example, you cannot use

the SAV command to save user profiles, because the SAVOBJ command does not allow

OBJTYPE(*USRPRF).

v You cannot save some libraries in the QSYS.LIB file system with the SAVLIB command because of the

type of information that they contain. Following are examples:

– The QDOC library, because it contains documents

– The QSYS library, because it contains system objects.

Chapter 5. Manually save parts of your server 73

You cannot use the SAV command to save these entire libraries:

 QDOC QRPLOBJ QSYS

QDOCxxxx1 QRPLxxxxx2 QSYSxxxxx2

QRECOVERY QSRV QTEMP

QRCYxxxxx2 QSPL QSPLxxxx1

1 Where xxxx is a value from 0002 to 0032, corresponding to an ASP.

2 Where xxxxx is a value from 00033 to 00255, corresponding to an independent ASP.

v Other parameters must have these values:

SUBTREE

*ALL

SYSTEM

*LCL

OUTPUT

*NONE

CHGPERIOD

– Start date cannot be *LASTSAVE

– End date must be *ALL

– End time must be *ALL

– Default, if you specify a file member

When saving objects from the QDLS file system

When you use the SAV command to save objects from the QDLS (document library services) file system,

the following restrictions apply:

v The OBJ and SUBTREE parameters must be one of the following:

– OBJ(’/QDLS/path/folder-name’) SUBTREE(*ALL)

– OBJ(’/QDLS/path/document-name’) SUBTREE(*OBJ)

v Other parameters must have these values:

SYSTEM

*LCL

OUTPUT

*NONE

CHGPERIOD

– Start date cannot be *LASTSAVE

– End date must be *ALL

– End time must be *ALL

– Default, if OBJ(’/QDLS/path-name/document-name’) SUBTREE(*ALL) specified

PRECHK

*NO

UPDHST

*YES

SAVACT

Cannot be *SYNC

SAVACTMSGQ

*NONE

74 iSeries: Systems Management Back up your server

Save user-defined file systems

A User-Defined File System (UDFS) is a file system that you can create and manage yourself. You can

create multiple UDFSs, with unique names. You can specify other attributes for a UDFS when you create

it. These attributes include:

v An auxiliary storage pool (ASP) number where you store the objects in the UDFS.

v The case-sensitivity that the names of all UDFS objects follow.

Note: If the UDFS is on an independent disk pool, ensure that the independent disk pool is varied on

and that the UDFS is unmounted before you start the save.

A UDFS exists only in two states: mounted and unmounted. When you mount a UDFS, you can access

the objects within it. When you unmount a UDFS, you cannot access the objects within it.

The following topics provide more information about saving your UDFS:

v “How the server stores user-defined file systems”

v “Save an unmounted UDFS”

v “Save a mounted UDFS” on page 76

How the server stores user-defined file systems

In a UDFS, as in the “root” (/) and QOpenSys file systems, users can create directories, stream files,

symbolic links, and local sockets.

A single block special file object (*BLKSF) represents a UDFS. When you create a UDFS, the server also

creates an associated block special file. You can only access the block special file through the Integrated

File System generic commands, application programming interface (API), and the QFileSvr.400 interface.

Block special file names must be of the form:

/dev/QASPxx/udfs_name.udfs

Where xx is the system or basic ASP number (1–32) where the user stores the UDFS and udfs_name is the

unique name of the UDFS. Note that the UDFS name must end in the .udfs extension. If the UDFS is

stored in an independent ASP, the block special file name will be of the form:

/dev/device-description/udfs_name.udfs

A UDFS exists only in two states: mounted and unmounted. When you mount a UDFS, you can access

the objects within it. When you unmount a UDFS, you cannot access the objects within it.

In order to access the objects within a UDFS, you must ’mount’ the UDFS on a directory (for example,

/home/JON). When you mount a UDFS on a directory, you cannot access the original contents of that

directory. Also, you cannot access the contents of the UDFS through that directory. For example, the

/home/JON directory contains a file /home/JON/payroll. A UDFS contains three directories mail, action, and

outgoing. After mounting the UDFS on /home/JON, the /home/JON/payroll file is inaccessible, and the

three directories become accessible as /home/JON/mail, /home/JON/action, and /home/JON/outgoing. After

you unmount the UDFS, the /home/JON/payroll file is accessible again, and the three directories in the

UDFS become inaccessible.

For more information about mounting file systems, see OS/400 Network File System Support.

.

Save an unmounted UDFS

In most cases, you should unmount any user-defined file systems before you perform a save or restore

operation. Use the DSPUDFS command to determine if you mounted a UDFS or if you unmounted a

UDFS.

Chapter 5. Manually save parts of your server 75

|
|
|
|

The server saves objects from an unmounted UDFS if you specify the *BLKSF for the UDFS which is

contained in an ASP or independent ASP (/dev/qaspxx). The server saves information about the UDFS

(for example, the ASP number, authority, and case sensitivity).

To save an unmounted UDFS, specify:

SAV OBJ((’/dev/QASP02/udfs_name.udfs’))

Restrictions when you save an unmounted UDFS

1. You cannot specify individual objects from UDFSs for the object (OBJ) parameter on a SAV command.

2. You cannot view or work with objects in an unmounted UDFS. Therefore, you cannot determine the

amount of storage or time that the server requires for the save operation after you unmount the

UDFS.

3. SUBTREE(*ALL) is required.

Save a mounted UDFS

Ordinarily, you should unmount user-defined file systems (UDFS) before save and restore operations.

Menu options 21, 22, and 23 of the GO SAVE command provide an option to unmount UDFSs prior to

the save.

If a save includes objects from mounted UDFSs, only pathname information is saved. The server saves

the objects as if they are in the file system over which the UDFS is mounted. The server does not save

any information about the UDFSs or ASPs that contain the saved objects, and the server issues the

following message:

CPD3788 - File system information not saved for <your udfs>

The server does not save objects that are contained in a directory over which you mount a UDFS. For

example, if directory /appl has objects in it and if you mount a UDFS over /appl, the server does not

save the objects in /appl. The server only saves the objects in the UDFS.

You may mount your UDFS as read-only. Because the server does not save any file system information

for a mounted UDFS, the server does not save the read-only attribute. Therefore, the server restores the

UDFS without the read-only attribute.

If the mounted UDFS is read-only and you specify UPDHST(*YES), the server issues message CPI3726

that indicates that the server did not update the save history for objects.

To save a mounted UDFS, specify the following command:

SAV OBJ((’/appl/dir1’)

Where the server mounted the UDFS over directory /appl/dir1.

Save document library objects (DLOs)

The server provides the capability to store documents and folders in a hierarchy (documents within a

folder within another folder). Document library objects (DLOs) are documents and folders. The following

topics tell you:

v “How the server stores and uses document library objects” on page 77 explains how DLOs work.

v “Ways to save multiple documents” on page 77 explains several ways to save multiple documents.

v “Ways to reduce disk space that is used by documents” on page 79 explains how you can limit the

storage that your documents use.

v “Output from the SAVDLO command” on page 79 explains to how use the OUTPUT parameter to

show information about the documents that you save.

76 iSeries: Systems Management Back up your server

|
|
|

|

|

|

|

|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

|

|

|

How the server stores and uses document library objects

The server provides the capability to store documents and folders in a hierarchy (documents within a

folder within another folder). Document library objects (DLOs) are documents and folders.

To simplify storage management, the server stores all DLOs in one or more libraries. The name of the

library in the system ASP is QDOC. Each user ASP that contains DLOs has a document library called

QDOCnnnn, where nnnn is the number that is assigned to the ASP. From a user perspective, DLOs are

not in libraries; the server files them in folders. You manipulate DLOs by using DLO commands and

menus.

Several licensed programs, including iSeries Access Family and Image WAF/400, use DLO support. For

example, iSeries Access Family for most workstation platforms uses shared folders, which are DLOs. The

folder names begin with the characters QBK.

Within the integrated file system, the QDLS (Document Library Services) file system provides DLO

support.

The server uses a set of search index files in the QUSRSYS library to keep track of all the DLOs on the

server. The names of these database files begin with the characters QAOSS. The server uses other QAO*

files in the QUSRSYS library to track distributions and support text search capabilities. You should

periodically save these files in QUSRSYS. Menu options 21 and 23 of the GO SAVE command save both

library QUSRSYS and all the DLOs on the server.

You can use the Save Document Library Object (SAVDLO) command to manually save one or more

documents. This does not affect documents unless you specify the settings to free or delete storage. You

can save a single document or more than one document.

Save changed document library objects

You can use the Save Document Library Object (SAVDLO) command to save DLOs that have changed

since a particular time. When you specify SAVDLO DLO(*CHG), the default setting saves DLOs that changed

since you saved all DLOs for that user ASP (SAVDLO DLO(*ALL) FLR(*ANY)). When you save changed

DLOs, the server also saves the distribution objects in the QUSRSYS library, which are called unfiled

mail.

Note: The server saves documents that a distribution (unfiled mail) refers to if they have changed since

the last time that you saved them. If you have Version 3 Release 1 or later, the server does not save

these documents when you specify DLO(*MAIL).

v “Save document library objects (DLOs)” on page 76 provides more information about saving DLOs.

v “Ways to reduce disk space that is used by documents” on page 79 explains ways to reduce disk space

that the server uses for documents if your disk space is limited.

Ways to save multiple documents

You can save multiple documents in several ways:

v Save all of your documents by typing: SAVDLO DLO(*ALL) FLR(*ANY).

v Save all documents in a list of folders by typing: SAVDLO DLO(*ALL) FLR(folder). You can specify up to

300 generic or specific folder names on the Folder (FLR) parameter.

v You can run multiple SAVDLO commands concurrently for documents within a single ASP or in

multiple ASPs. You can run one or more SAVDLO commands concurrently with one or more Restore

Document Library Object (RSTDLO) commands that use the same ASP. Here is an example of running

concurrent SAVDLO operations with generic values:

SAVDLO DLO(*ANY) DEV(first-device) FLR(A* B* C* ...L*) +

SAVDLO DLO(*ANY) DEV(second-device) FLR(M* N* O* ...Z*)

v Save all documents in an ASP by typing: SAVDLO DLO(*ALL) FLR(*ANY) ASP(n).

Chapter 5. Manually save parts of your server 77

You may want to move the folders that contain user documents to user ASPs. You can save the DLOs

in those ASPs regularly and not save the system ASP. This eliminates the extra time and media for

saving the system folders for iSeries Access Family, which change infrequently.

Note: When you save iSeries Access Family, you must also run the SAV command. The following

shows all the parameters that are needed to save everything in the integrated file system which

picks up iSeries Access Family.

SAV DEV(’/QSYS.LIB/media-device-name.DEVD’) +

 OBJ((’/*’) +

 (’/QSYS.LIB’ *OMIT) +

 (’/QDLS’ *OMIT)) +

 UPDHST(*YES)

v Save a list of documents, by user-defined name or by system object name.

v Save all documents that meet certain search values. The following table shows the parameters you can

use if you specify DLO(*SEARCH).

 Table 26. Parameters for DLO(*SEARCH)

Parameter Definition

FLR Folder

SRCHTYPE *ALL, for all folders that meet the search criteria

CHKFORMRK Marked for offline storage

CHKEXP Document expiration date

CRTDATE Creation date

DOCCLS Document class

OWNER Owner

REFCHGDATE Document last changed date

REFCHGTIME Document last changed time

v Save all distribution objects (mail) by typing: SAVDLO DLO(*MAIL).

v Save all distribution objects, new folders, new documents, and changed documents by typing: SAVDLO

DLO(*CHG). This is another method for reducing the effect of online information on the amount of time

and media that it takes to save DLOs. “Save document library objects (DLOs)” on page 76 provides

more information about specifying DLO(*CHG).

You can use the OMITFLR parameter to exclude folders from the save operation. The OMITFLR

parameter will allow up to 300 generic or specific folder names.

Note: If you specify the OMITFLR(QBK*) parameter on the SAVDLO command, the server omits online

information from the save operation.

The OMITFLR parameter is useful if you want to omit folders that never change or only change

infrequently. You can also use it to remove a group of folders from one save operation while you

concurrently save that group to a different media device.

When you save DLOs from more than one ASP with the same operation, the server creates a separate file

on the media for each ASP. When you restore DLOs from the media, you must specify the sequence

numbers to restore the DLOs from more than one ASP.

Authority that is required for the SAVDLO command: The following parameter combinations for the

SAVDLO command require either *ALLOBJ special authority, *SAVSYS special authority, or *ALL

authority to the documents. You also need enrollment in the system directory:

v DLO(*ALL) FLR(*ANY)

v DLO(*CHG)

v DLO(*MAIL)

78 iSeries: Systems Management Back up your server

v DLO(*SEARCH) OWNER(*ALL)

v DLO(*SEARCH) OWNER(user-profile-name)

Note: You can always save your own DLOs. You must have the authorities that are specified to specify

another user profile for the owner parameter.

Ways to reduce disk space that is used by documents

Documents tend to accumulate and require more and more storage. You can manage the disk space that

is used for documents by doing the following:

v Saving documents and delete them (STG(*DELETE)). These documents no longer appear when you

search for documents.

v Saving documents and free storage (STG(*FREE)). These documents appear when you search and the

server marks them as offline.

v Moving documents to a user ASP. You can establish different backup strategies and different recovery

strategies for these user ASPs.

v Using the Reorganize Document Library Object (RGZDLO) command.

When you save documents, specify search values such as the storage mark on the document or the

document expiration date to identify which documents should have their storage freed.

Output from the SAVDLO command

You can use the OUTPUT parameter on the SAVDLO command to show information about the saved

documents, folders, and mail. You can either print the output (OUTPUT(*PRINT)) or save it to a database

file (OUTPUT(*OUTFILE)).

If you print the output, you should be aware of device dependencies:

v The heading information in the output is device-dependent. All information does not appear for all

devices.

v The printer file for the SAVDLO command uses a character identifier (CHRID) of 697 500. If your

printer does not support this character identifier, the server displays message CPA3388. To print the

SAVDLO output and not receive message CPA3388, specify the following before specifying *PRINT on

the SAVDLO command:

CHGPRTF FILE(QSYSOPR/QPSAVDLO) CHRID(*DEV)

For more information about character identifiers (CHRID), see the Printer Device Programming

book.

If you use an output file, the server uses the file format QSYS/QAOJSAVO.OJSDLO.

Save spooled files

When you save an output queue, you save its description but not its contents (the spooled files).

To save spooled files, including all the advanced function attributes associated with the spooled files, use

the following APIs:

v Open Spooled File (QSPOPNSP)

v Create Spooled File (QSPCRTSP)

v Get Spooled File Data (QSPGETSP)

v Put Spooled File Data (QSPPUTSP)

v Close Spooled File (QSPCLOSP)

v User Spooled File Attributes (QUSRSPLA)

Chapter 5. Manually save parts of your server 79

The System API Reference includes information about these APIs. You can find an example and a tool for

using these APIs in the QUSRTOOL library in the TSRINFO member of the QATTINFO file.

To copy only the data from a spooled file, do the following:

1. Use the Copy Spooled File (CPYSPLF) command to save the spooled files to a database file.

2. Save the database file.

Because it copies textual data only and not advanced function attributes such as graphics and variable

fonts, the CPYSPLF command may not provide a complete solution for saving your spooled files.

The IBM Backup Recovery and Media Services for iSeries licensed program provides additional support

for saving and restoring spooled files. For further information, see the BRMS topic or contact your service

provider.

Save office services information

Office services information includes database files, distribution objects, and DLOs. The following figure

shows how the server organizes these objects. The figure also provides common methods for saving

them:

80 iSeries: Systems Management Back up your server

To save your office information completely, you must save all documents and save the QUSRSYS library.

The documents you save must include users’ mail.

To ensure that you save all of the system directory files in QUSRSYS, you must end the QSNADS

subsystem. If QSNADS is active, the server cannot get the necessary locks on the directory files.

“Save files for text search services” on page 82 explains how you can save your text index database.

Explanation of How Office Services Objects Are Saved figure

Library QUSRSYS stores database files, Office Services Journal (QAOSDIAJRN), office journal receivers,

and distribution objects. You can use SAVLIB *ALLUSR to save these items.

Figure 8. How Office Services Objects Are Saved

Chapter 5. Manually save parts of your server 81

QDOC library stores filed documents and folders. QDOCnnnn library also stores filed documents and

folders. You can use SAVDLO to save the objects in QDOC and QDOCnnnn libraries.

Both Options 21 and 23 provide another option for saving the necessary office services information from

QUSRSYS, QDOC, and QDOCnnnn.

Save files for text search services

The text index database files are a part of the text search services. For more information about text search

services, see the Programmer’s Guide

Office Services Concepts book.

Before you save the text index files, update the index by using the Start Update Index (STRUPDIDX)

command to finish any outstanding requests.

When you run one of the following commands, the server removes the records from the index the next

time that the STRUPDIDX command runs.

v The SAVDLO with STG(*DELETE) specified.

v The SAVDLO with CHKFORMRK(*YES) specified and the server marked the document for save and

delete.

v The DLTDLO command.

Before your save operation, you must stop the STRUPDIDX command, or the Start Reorganize Index

(STRRGZIDX) command.

Perform the following steps to stop the STRUPDIDX and STRRGZIDX commands:

1. Use the End Index Monitor (ENDIDXMON) command to end the automatic administration monitor.

2. Select option 8 (Display all status) on the Work with Text Index (WRKTXTIDX) display to verify that

you stopped the update function and that you stopped the reorganize function.

Methods to save user data

The following link references explain how you can save user data in your server.

An easy way to save all of your user data is with GO SAVE command, menu option 23.

The following commands allow you to manually save user data:

v SAVSECDTA

v SAVCFG

v SAVLIB *ALLUSR

v SAVDLO

v SAV

 Table 27. Methods, and CL commands for saving user data

Methods for saving user data

82 iSeries: Systems Management Back up your server

http://publib.boulder.ibm.com:80/cgi-bin/bookmgr/DOCNUM/SH21-0703

Table 27. Methods, and CL commands for saving user data (continued)

v “Methods to save user libraries” on page 84

v “Methods to save Q libraries that contain user data” on page 85

v “Methods to save distribution objects” on page 86

v “Methods to save network server storage spaces” on page 86

v “Methods to save user-defined file systems” on page 87

v “Methods to save directories in the Root and the QOpenSys file systems” on page 87

v “Methods to save IBM-supplied directories without user data” on page 88

v “Methods to save user document library objects and folders”

v “Methods to save IBM-supplied document library objects and folders” on page 84

 CL commands for saving user data

v SAV command in CL reference

v SAVCFG command in CL reference

v SAVCHGOBJ command in CL reference

v SAVDLO command in CL reference

v SAVLIB command in CL reference

v SAVOBJ command in CL reference

v SAVSECDTA command in CL reference

Methods to save user document library objects and folders

 Table 28. User document library objects and folders information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

User document library

objects and folders

User document library

objects and folders change

regularly.

Yes Some

 Common save method for user document library objects and folders Requires restricted state?

SAVDLO No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

GO SAVE command, menu option 30 Yes

GO SAVE command, menu option 32 Yes

1 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.

2 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.
v “Save document library objects (DLOs)” on page 76 explains how you can save your data that is stored

in document library objects.

v “Save changed document library objects” on page 77 explains how to save changes in your document

library objects.

Chapter 5. Manually save parts of your server 83

Methods to save user libraries

 Table 29. User libraries information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

User libraries User libraries change

regularly.

Yes No

 Common save method for user libraries Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *ALLUSR No

SAVLIBSAVLIB library-name No1

SAVCHGOBJ No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

1 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.

 These library objects change when you update licensed programs.

“Save libraries with the SAVLIB command” on page 49 explains how to save one or more libraries. This

information also includes special SAVLIB parameters and how to select libraries on your server.

Methods to save IBM-supplied document library objects and folders

 Table 30. IBM-supplied document library objects and folders information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

IBM-supplied document

library objects and folders

(usually start with Q, used

by iSeries Access Family)

These library objects change

when you update licensed

programs.

No1 Yes

1 You should avoid changing objects or storing user data in these IBM-supplied libraries or folders.

You could lose or destroy these changes when you install a new release of the operating system.

If you make changes to objects in these libraries, note them carefully in a log for future reference.

 Common save method for IBM-supplied document library objects and

folders Requires restricted state?

SAVDLO2 No3

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No3,

4

GO SAVE command, menu option 30 Yes

GO SAVE command, menu option 32 Yes

84 iSeries: Systems Management Back up your server

2 To ensure that the server saves all iSeries Access Family data, end subsystem QSERVER.

3 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

4 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.
v “Save document library objects (DLOs)” on page 76 explains how you can save your data that is stored

in document library objects.

v “Save changed document library objects” on page 77 explains how to save changes in your document

library objects.

Methods to save Q libraries that contain user data

 Table 31. Q libraries that contain user data information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Q libraries that contain user

data include QGPL,

QUSRSYS, QDSNX, and

others.

“Special values for the

SAVLIB command” on page

49 includes a complete list

of Q libraries that contain

user data.

These libraries change

regularly.

Yes Yes

To save the system directory files, you must end the QSNADS subsystem before saving the QUSRSYS

library.

If you have the iSeries Integration for Windows Server you must vary off the network server descriptions

before saving the QUSRSYS library. This allows the server to obtain the necessary locks on the server

storage spaces in the library.

 Common save method for Q libraries that contain user data Requires restricted state?

SAVLIB *NONSYS Yes

SAVLIB *ALLUSR No1

SAVLIB library-name No1

SAVCHGOBJ No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

1 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.

Chapter 5. Manually save parts of your server 85

“Save libraries with the SAVLIB command” on page 49 explains how to save one or more libraries. This

information also includes special SAVLIB parameters and how to select libraries on your server.

Methods to save distribution objects

 Table 32. Distribution objects information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Distribution objects Distribution objects in

QUSRSYS change regularly.

Yes No

 Common save method for distribution objects Requires restricted state?

SAVDLO No1

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

GO SAVE command, menu option 30 Yes

GO SAVE command, menu option 32 Yes

1 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

2 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.
 v “Save document library objects (DLOs)” on page 76 explains how you can save your data that is stored

in document library objects.

v “Save changed document library objects” on page 77 explains how to save changes in your document

library objects.

Methods to save network server storage spaces

 Table 33. Network server storage spaces information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Network server storage

spaces

Network server storage

spaces for IBM iSeries

Integration for Windows

Server licensed programs

(QFPNWSSTG directory)

change regularly.

Yes Yes

 Common save method for network server storage spaces Requires restricted state?

SAV1 No

GO SAVE command, menu option 211 Yes

GO SAVE command, menu option 231 No2,

3

1 You must vary off the network servers. You can perform this option from the GO SAVE

command menu if you select option 21, 22, or 23. Select the network servers you wish to vary off

from the Specify Command Defaults screen.

86 iSeries: Systems Management Back up your server

2 When you use option 23 from the GO SAVE command menu, the default is to place your server

in a restricted state. If you choose the prompting option, you can cancel the display that puts

your server in a restricted state.

3 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

 “Save logical partitions and system applications” on page 88 explains how to save server applications

and logical partitions.

Methods to save user-defined file systems

 Table 34. User-defined file systems information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

User-defined file systems User-defined file systems

change regularly.

Yes Some

You should unmount all user-defined file systems before you perform the save operation. You can

perform this option from the GO SAVE command menu if you select option 21, 22, or 23. Then select Y at

the Unmount file systems prompt on the Specify Command Defaults screen.

 Common save method for user-defined file systems (UDFS) Requires restricted state?

SAV No1

GO SAVE command, menu option 21 Yes

1 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

 “Save user-defined file systems” on page 75 explains how to save the UDFSs that you create for your

business.

Methods to save directories in the Root and the QOpenSys file systems

 Table 35. Directories in the Root and the QOpenSys file systems information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

Directories in the Root and

the QOpenSys file systems

Directories in the Root and

QOpenSys file systems

change regularly.

Yes Some

 Common save method for directories in the Root and the QOpenSys file

systems Requires restricted state?

SAV No

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 23 No1,

2

1 When you select menu option 23 of the GO SAVE command, the command menu option places

Chapter 5. Manually save parts of your server 87

your server in a restricted state by default. If you choose the prompting option, you can cancel

the display that puts your server in a restricted state.

2 Important: For procedures where the server does not require a restricted state, you must ensure

that the server can get the locks necessary to save the information. You should put your server in

a restricted state whenever you save multiple libraries, documents, or directories, unless you use

the save-while-active function.

 For detailed step-by-step instructions and more information, see:

v The Lotus Domino reference library

provides you with information on how to save your Domino

server.

v “Save IBM iSeries Integration for Windows Server” on page 92 explains how to save your iSeries

Integration for Windows Server product.

v “Save file systems” on page 68 explains how to use the SAV command when you save your file

systems.

Methods to save IBM-supplied directories without user data

 Table 36. IBM-supplied directories without user data information

Item description When changes occur Contains user data or

changes?

IBM-supplied data?

IBM-supplied directories

without user data

IBM-supplied directories

without user data change

when you apply Program

Temporary Fixes (PTFs).

They also change when you

install a new release of the

operating system, or when

you update licensed

programs.

No Yes

 Common save method for IBM-supplied directories without user data Requires restricted state?

SAV Yes

GO SAVE command, menu option 21 Yes

GO SAVE command, menu option 22 Yes

Save logical partitions and system applications

The following diagram shows the system from the perspective of the different file systems available. It

shows which SAVxxx commands you can use to save each file system that you use.

Important: For procedures where the system does not require a restricted state, you must ensure that the

system can get the locks necessary to save the information. A restricted state is recommended whenever

you save multiple libraries, documents, or directories, unless you use the save-while-active function.

If you are saving data on a logical partition with Linux installed, you must use Option 21. See “View

entire GO SAVE checklist” on page 31. If want to save only that logical partition, or selected data from

that partition, you must use third party software.

88 iSeries: Systems Management Back up your server

http://www.ibm.com/eserver/iseries/domino/reports.htm

Note: The following file systems are not saveable:

v NFS

v QFileSvr.400

v QOPT

Figure 9. File Systems–Save Commands

Chapter 5. Manually save parts of your server 89

This information explains how to save the following applications on your server:

v “Save logical partitions”

v “Save IBM iSeries Integration for Windows Server” on page 92

v “Save OS/400 Enhanced Integration for Novell NetWare information” on page 92

For information on saving a Domino server go to the Lotus Domino reference library

Explanation of File Systems–Save Commands

The diagram shows the save commands that can be used for different file systems:

v The root (/) file system is saved with SAV.

v QSYS.LIB can be saved with SAVSYS, SAVCFG, SAVSECDTA, SAVLIB, SAVOBJ, SAVCHGOBJ, or SAV.

v QDLS (Document library services) can be saved with SAVDLO, or SAV.

v QOpenSys Open systems) is saved with SAV.

v QNetware (Novell Netware) is saved with SAV.

v Domino server data directory (Domino for iSeries) is saved with SAV.

v User-defined file systems (/dev/QASPxx/) or (/dev/asp-name/) are saved with SAV.

v Other file systems are saved with SAV as well.

Save logical partitions

Each logical partition functions like an independent server, so you should perform backups accordingly.

However, you can also connect them together, or even to another server. This has some of the same

backup benefits as a clustered environment and as a set of connected servers. In these ways, logical

partitions can provide you with some unique and helpful backup procedures for your server.

This section covers the information you need to know to make backing up data on your logical partitions

easier.

v Read this list of special considerations for backing up a server with logical partitions.

v Read the information about backing up logical partitions before you start the backup process.

v Get information on how your server saves the logical partition configuration.

Attention: If you are using the Hardware Management Console for eServer (HMC), you must back up

the HMC in addition to saving the individual logical partitions. See Backing up your HMC for details on

saving your HMC.

Backup considerations with logical partitions

The process of backing up a logical partition is fundamentally the same as backing up a server without

logical partitions. Each logical partition requires its own save strategy.

Here are a few items that should affect how you plan your backup strategy:

v It is important to remember that each logical partition functions independently of any others. Therefore

you cannot perform a single, entire server backup. Instead, you need to back up each logical partition

separately.

v As part of your backup strategy, remember that a processor failure, main storage failure, failure in the

primary partition, or disaster shuts down the entire server. This may require you to recover all or some

of your logical partitions. Therefore, plan carefully how you use your logical partitions and how often

you need to perform a backup of each logical partition.

v You can generally perform these backups at the same time since each logical partition functions like an

independent server. This can reduce the time that is required for performing backups.

90 iSeries: Systems Management Back up your server

|
|
|

http://www.ibm.com/eserver/iseries/domino/reports.htm

v If any secondary partitions switch a removable media device between themselves, you must back up

each of these logical partitions sequentially. You must manually remove and add the removable media

device between the logical partitions after each save. Use iSeries Navigator to change resources for

logical partitions.

v The server automatically maintains the configuration data for your logical partitions. This data is not

saved to or restored from removable media.

v You should print your system configuration when you make changes to your logical partition

configuration.

v Any function that requires you to power off or restart the server (like applying program temporary

fixes [PTFs]) requires special care. If you need to power off or restart only a secondary partition, then

you may safely do it. However, if you need to power off or restart the primary partition, then you

need to power off all the secondary partitions before you perform that function.

Back up a logical partition

Each logical partition functions like an independent server, and needs to be backed up individually. For

other information on how logical partitions affect how you perform backups, see the backup

considerations.

You cannot include multiple logical partitions in the same save operation. You must back up each logical

partition individually. However, you can perform a backup for each logical partition at the same time

(provided all logical partitions have a dedicated removable media device).

The server automatically maintains the configuration data for your logical partitions; you cannot save it

to removable media.

You need to make two copies of each backup you perform because you should always store one copy off

site in case of a disaster.

It is essential that you have a backup and recovery strategy for each logical partition so that you do not

lose any of your important data.

If you have any advanced program-to-program communications (APPC) controls configured that use

OptiConnect on the logical partition, vary off these controllers before performing the save. If you do not

vary off these controllers, they go into a failed status, are marked as damaged, and are not saved. For

more information about OptiConnect, see the OptiConnect for OS/400 book

.

You must perform each backup from the console or a workstation that is attached to that logical partition.

Follow the steps in Chapter 1, “Back up your server,” on page 1 as you back up each logical partition.

Save logical partition configuration data

Logical partition configuration data is automatically maintained for the life of the physical system. Each

logical partition load source contains the configuration data.

Only disaster recovery to a different physical system would require that you rebuild the configuration

from the beginning. You should print your system configuration when you make changes to your logical

partition configuration. This printout will help you as you rebuild the configuration.

During a save operation, the configuration data for the logical partition is not saved to the media volume.

This allows data to be restored to a server whether or not it has logical partitions. However, you can

work with the configuration data for logical partitions as needed for recovery purposes.

Attention:: Logical partitions that you keep powered off for extended periods should be restarted at least

once after any change to the logical partition configuration. This allows the server to update

the changes on that logical partition’s load source.

Chapter 5. Manually save parts of your server 91

Attention: If you are using the Hardware Management Console for eServer (HMC), you must back up

the HMC in addition to saving the individual logical partitions. See Backing up your HMC for details on

saving your HMC.

Save a Domino server

For information on saving a Domino server, go to the Lotus Domino reference library

.

Save IBM iSeries Integration for Windows Server

The links below lead you to the Network Operating system area of the Information Center that covers

Integrated xSeries Server for iSeries and how to use, backup, and recover IBM iSeries Integration for

Windows Server.

v Backup and recovery of IBM iSeries Integration for Windows Server

v Backing up objects associated with iSeries Integration for Windows Server

v Backing up individual iSeries Integration for Windows Server files and iSeries Integration for Windows

Server directories

Save OS/400 Enhanced Integration for Novell NetWare information

You can use a stand-alone PC server that is attached to your server for OS/400 Enhanced Integration for

Novell NetWare. Your server communicates with the Novell Server through /QNetWare, but it does not

save any Netware data on the server. You store all of your Netware data on the stand-alone PC server.

The best way for you to back up your Novell data is through PC-workstation-based software such as IBM

Tivoli® Storage Manager

. However, you can use your server to save the data on your remote

stand-alone PC server. Do this through the /QNetWare file system with the SAV command.

Here is the directory that OS/400 Enhanced Integration for Novell NetWare uses:

/QNetWare

 Your server uses the /QNetWare directory to access data on your stand-alone Netware server.

Save storage (Licensed Internal Code data and disk unit data)

The save storage process copies the Licensed Internal Code and all of the disk unit data to tape. The

media volume that the server produces is a sector-by-sector copy of all permanent data on configured

disk units. You cannot restore individual objects from the save tape.

Attention!

You should use the save and restore storage processes for disaster backup and recovery along with

the standard commands for saving and restoring. This procedure is not intended to be used for

copying or distributing data to other servers. IBM does not support using the processes for saving

and restoring storage as a means to distribute the Licensed Internal Code and the operating system

to other servers.

 Planning to save storage

As you plan to save the storage on your server, consider the following:

v “Purpose of saving storage” on page 93 explains several uses for saving storage to consider before you

save storage.

92 iSeries: Systems Management Back up your server

|
|
|

http://www.ibm.com/eserver/iseries/domino/reports.htm
http://www.tivoli.com/products/index/storage_mgr/
http://www.tivoli.com/products/index/storage_mgr/

v “Hardware considerations for saving storage” explains which servers you can save storage on.

v “Operational considerations for saving storage” explains some of the restrictions of the save storage

function.

v “Recover from save storage errors” on page 94 explains how you can recover from save storage media

errors.

v “Save storage for mirrored protection” on page 94 explains how the save storage process works if you

have mirrored protection.

After you plan carefully, follow the tasks below to save your storage:

1. “Task 1 - Start the save storage procedure” on page 94 explains how to start the save storage process.

2. “Task 2 - Respond to messages” on page 95 explains how you should respond to system messages

during the save storage process.

3. “Task 3 - Complete the SAVSTG process” on page 97 explains what you steps you should take after

the save storage process completes.

4. “Cancel a save storage operation” on page 97 explains how to cancel your save storage process.

5. “Resume a save storage operation” on page 97 explains how to resume your save storage process

under certain conditions.

Purpose of saving storage

The following information explains several purposes for saving storage:

v The processes for saving and restoring storage provide a one-step method for backing up and

recovering the data on an entire server. The restore storage process is an easy and fast method for

restoring the data for an entire server.

v The save storage media is for a complete system recovery, and you cannot use it to restore individual

objects. You must complement a save storage approach with the SAVSYS, SAVLIB, SAVDLO, and SAV

commands.

v To properly carry out a save storage approach, you should have multiple levels of your backup media.

v The save storage operation does not save disk sectors that are not used or that contain temporary data.

Hardware considerations for saving storage

The following list explains limitations of hardware during a save storage procedure:

v If the tape unit supports hardware data compression, then tape unit uses hardware data compression.

If the tape unit does not support device data compression, then you may use programming data

compression. Generally if the tape unit device operates faster than possible for data compression, the

tape unit writes data without compression to the device.

v The server only uses one tape unit.

v The save storage process does not start unless all of the configured disk units are operating.

v The server cannot use some tape units as an alternate IPL device. In these cases, you cannot use these

tape units to restore the Licensed Internal Code and the Licensed Internal Code PTFs from the save

storage tape.

v The disk configuration of the restoring server must be the same as the disk configuration of the saving

server. The disk types and models must be the same or equivalent with some additional devices. Serial

numbers and physical addresses do not have to be the same. All disk units that were saved are

required for the restore operation.

Operational considerations for saving storage

Consider the following things before you save storage:

v You can only run the save storage process when the server is in a restricted state.

v The user must have save system (*SAVSYS) special authority to use the Save Storage (SAVSTG)

command.

Chapter 5. Manually save parts of your server 93

v The SAVSTG command causes the server to power down and starts the server again as though you

specified PWRDWNSYS RESTART(*YES). An initial program load (IPL) of the server occurs after the

command completes. The save storage function implicitly occurs during the IPL of the server from the

dedicated service tools (DST) function.

Attention logical partitioning users:

– If you are going to use this command on the primary

partition, be sure to power off all secondary partitions before

running the command.

– In order to save your entire system configuration, you must

save each logical partition individually.
v You can save the first tape without an operator being present. After you save the first tape, DST

messages appear that ask for the next tape so the save operation can continue.

v As the amount of storage on the server increases, the chance of an irrecoverable media error increases.

Clean the tape unit frequently.

v You must specify a device name on the command. Expiration date (EXPDATE) and clear (CLEAR)

parameters are optional. You cannot specify a volume ID.

v The save storage process does not start unless the console is available. If the console is not available, a

system reference code appears on the control panel.

v When the save storage operation completes successfully, a normal IPL occurs.

Recover from save storage errors

If a tape error occurs, the server attempts to recover from the error by automatically trying the operation

again. If the server cannot recover, you can resume the save storage operation on a new tape volume. The

operation continues from the last completed tape volume that was saved.

Save storage for mirrored protection

If the system is using mirrored protection, only one copy of the data from each mirrored pair is saved.

When you restore your system by using the SAVSTG tapes, mirrored protection will not be active.

Task 1 - Start the save storage procedure

Do These Things Before You Begin:

v Initialize at least three more tapes than you think that you will need to complete the save operation.

Initialize them as standard-labeled tapes and specify the maximum density for the tape unit you are

using. The number of tapes that you need depends on the size of the server, the number of objects, and

the capacity of the tape.

Each tape should have a volume ID of SAVEDS and an external label that allows you to easily identify

the tape. Ensure that each of the tapes support the same density.

v Clean the read/write heads of the tape unit.

v Apply any program temporary fixes (PTFs).

v Print a list of all the PTFs currently on the server. Type the following and press the Enter key:

DSPPTF LICPGM(*ALL) OUTPUT(*PRINT)

v Ensure that you saved the hardware configuration information from the server. Use the Save

Configuration (SAVCFG) command or the Save System (SAVSYS) command to save the configuration

objects. For additional information, see “Save configuration information” on page 54. The restore

storage procedure uses the SAVSYS media volume or the SAVCFG media volume to restore the

hardware configuration information.

v Print a list of the current network attributes. Type the following and press the Enter key:

DSPNETA OUTPUT(*PRINT)

Keep this Network Attributes list with the tapes that are written during the save storage operation.

94 iSeries: Systems Management Back up your server

Attention logical partitioning users:

v Using the Save Storage (SAVSTG) command will cause your

server to perform an IPL. If you are running this command on

the primary partition, you must quiesce the secondary partitions

before continuing.

v In order to save your entire system configuration, you must save

each logical partition individually.
1. Sign on at the console with a user profile that has *SAVSYS special authority.

2. Notify users that the server will be unavailable.

3. Change the QSYSOPR message queue to break mode:

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*BREAK) SEV(60)

4. Type the following to bring the server to a restricted state:

ENDSBS SBS(*ALL) OPTION(*CNTRLD) DELAY(600)

Note: For the delay parameter, specify a number of seconds that allows your server time to bring

most jobs to a normal end. On a large, busy server, you may need a longer delay.

The server sends messages to the QSYSOPR message queue. These messages indicate that the

subsystems ended, and the server is in a restricted state. When the subsystems have ended, continue

with the next step.

5. Load the first media volume of the SAVSTG media, and make the media device ready.

6. Check the control panel on your processor to ensure that the server is in normal mode.

7. If you are not using logical partitioning, continue with the next step. Otherwise, if you are performing

this operation from the primary partition, be sure to power down all secondary partitions.

8. Enter the save storage command, such as:

SAVSTG DEV(TAP01) CLEAR(*ALL)

You can also enter an expiration date (EXPDATE(mmddyy)).

9. Press the Enter key. The server will power down with a restart IPL. This is similar to PWRDWNSYS

OPTION(*IMMED) RESTART(*YES). This means that when you enter the command, the server will

power down and perform an automatic IPL.

When the IPL occurs, a dedicated service tools (DST) function starts saving storage. If the operator

correctly loads the media volume and the expiration date check passes, the operator does not need to

be present for the first media volume.

If you load the media volume correctly, the following save status display continually displays the

progress of the save operation.

The Percent saved field on the display estimates the progress of the total amount of saved sectors.

However, this estimate does not accurately predict the time it takes to save or the number of tapes

that you need to complete the save operation. The reason is that the server does not save unused

sectors.

Task 2 - Respond to messages

While the SAVSTG procedure is running, you may see either the Handle Tape or Diskette Intervention

display or the Device Intervention Required display:

 Function Status

 You selected to save storage.

 1 % Complete

Chapter 5. Manually save parts of your server 95

Handle Tape or Diskette Intervention

Device: ...
I/O manager code : _________ ...
Type choice, press Enter.

 Action . 1=Cancel

 3=Continue

F3=Exit F12=Cancel

End of tape encountered. Load next volume.

 Device Intervention Required

Device type. : _____ ...
I/O manager code : _________ ...
Type choice, press enter

 Action . 1=Cancel

 2=Ignore

 3=Continue

 4=Format

When one of these displays appears, look for messages at the bottom of the display or for an I/O

manager code on the display. Respond to the display by using the following information:

 Table 37. Handling SAVSTG Messages

Message or Code Your Action

End of tape encountered. Load next volume. Load the next tape volume. Select option 3 (Continue),

and press the Enter key.

Active files exist on media. To continue the save operation to tape, select option 2

(Ignore) to ignore the active files. Press the Enter key.

Tape unit not ready. Make the tape unit ready, select option 3 (Continue), and

press the Enter key.

Media is write protected. Replace the tape with a tape that is not write-protected

and select option 3 (Retry). Press the Enter key.

Device is not able to process the media format. Select option 4 (Format), and press the Enter key.

Tape or diskette loaded is blank. Select option 4 (Format), and press the Enter key.

I/O manager code 8000 0001C. Replace the tape with a tape that can be formatted to the

requested density and select option 3 (Retry). Press the

Enter key.

If an irrecoverable tape media error occurs, do the following:

1. Remove the tape that failed from the tape device. Do not put the tape that failed with the other tapes

that you already used during the save storage operation. You cannot use the failed tape during the

restore storage operation.

2. Load a different tape in the media device.

3. Press the F3 key to return to the Use Dedicated Service Tools menu.

4. Go to “Resume a save storage operation” on page 97.

96 iSeries: Systems Management Back up your server

Task 3 - Complete the SAVSTG process

When the last tape is complete and no errors have occurred, the tape automatically rewinds and a normal

IPL occurs. Do the following:

1. The server updates the data area QSAVSTG in library QSYS to show the date and time of the save

operation. Use the Display Object Description (DSPOBJD) command to display the date and time of

the save storage operation.

2. Ensure that the save operation completed successfully. Use the Display Log (DSPLOG) command to

display the history (QHST) log:

DSPLOG QHST

Or use the Display Message (DSPMSG) command to display the QSYSOPR messages:

DSPMSG QSYSOPR

Look for a save storage completion message or diagnostic messages that indicate that the server could

not read some sectors. If the server found any damaged sectors that it could not read, this means that

your tapes may not be complete. If you use them to restore storage, the operation may fail. Contact

your service representative for assistance. Then repeat the save storage operation.

This completes the save storage procedure. If you do not want the server to perform an automatic IPL,

you can use an autostart job, which powers down the server.

Cancel a save storage operation

To cancel the save storage operation, press the F19 key. This action cancels an active save storage

operation.

Resume a save storage operation

You can use this procedure only if the following conditions are true:

v The save storage operation finished saving the Licensed Internal Code.

v The save storage operation completed writing to at least one tape during the save storage operation.

v You attached all disk units, and the disk units are operating.

If an error occurs that stops a save storage operation (for example, server power loss, operator error, or

tape drive error), you can start the save storage operation again.

Do the following to resume the save storage operation:

1. Select manual mode on the control panel of your processor.

2. Power on the server by using the Power switch or the Power button. The IPL or Install the System

menu is shown.

3. Select option 3 (Use Dedicated Service Tools (DST)) and press the Enter key.

4. Sign on DST by using the password that is assigned to your server for full DST authority. The Use

Dedicated Service Tools (DST) menu that appears on the console.

5. From the Use Dedicated Service Tools (DST) menu, select option 9 (Work with save storage and

restore storage) and press the Enter key.

6. Select option 4 (Resume save storage) and press the Enter key.

If the server does not allow you to resume the save storage operation, a display with an explanation

appears on the console.

7. If you see the Resume Save Storage display on the console, load the tape that the server last wrote to

when the save storage operation stopped. Press the Enter key.

Chapter 5. Manually save parts of your server 97

Resume Save Storage

You have selected to resume the save storage.

Do the following:

 1. Locate the set of tapes created during the save storage

 which was interrupted. The last tape which was completely

 written before the save storage was interrupted has the

 following identification:

 Volume identifier : ________

 Sequence number : ____

2. Ensure that an initialized and write-enable tape is

 loaded and ready in the tape device. Follow the

 procedures described in the tape device operator

 guide.

3. Press Enter to resume the save storage.

8. If the volume identifier of the tape that is loaded is different from the volume identifier of the first

save storage tape, the Device Intervention Required display appears. The message at the bottom says

that the Wrong volume loaded.

To continue the save operation, type SAVEDS on the ″New volume″ line and select option 4 to format

the tape.

98 iSeries: Systems Management Back up your server

Chapter 6. Save your server while it is active

You can use the save-while-active function, along with your other backup and recovery procedures, to

reduce or eliminate your outage for particular save operations. The amount of time during the backup

process that you cannot use the server is the save-outage time. The save-while-active function allows you

to use your server during all or part of the save process, that is, save your server while it is active. This

allows you to reduce or eliminate your save-outage time. In contrast, other save functions allow no

access, or only allow read access, to the objects as you are saving them.

The topics below provide information about the save-while-active function:

v “Save-while-active and your backup and recovery strategy”

How your save-while-active function fits into your backup and recovery strategy depends on whether

you will reduce or eliminate your save-outage time. These pages contain information to help you

decide how you will use the save-while-active function. It also contains pages with technical

descriptions of the save-while-active function.

v “Save-outage time reduction” on page 113

This information tells you what happens when you use the save-while-active function to reduce your

save-outage time.

v “Save-outage time elimination” on page 114
This information tells you what happens when you use the save-while-active function to eliminate your

save-outage time.

v “Parameters for the save-while-active function” on page 114
Use these options to specify how you will use the save-while-active function.

v “Reduce your save-outage time” on page 117
Use the save-while-active function to reduce your save-outage time. This is the easiest way to use the

save-while-active function.

v “Eliminate your save-outage time” on page 120
Use the save-while-active function to eliminate your save-outage time.

Save-while-active and your backup and recovery strategy

How the save-while-active function fits into your backup and recovery strategy depends on whether or

not you plan to reduce or eliminate your save-outage time.

Reducing your save-outage time

Reducing your save-outage time is the easiest way to use the save-while-active function. When you use

this option, the restore procedure is the same as when you perform a standard save. In addition, you can

use the save-while-active function to reduce your save-outage time without using journaling or

commitment control. Unless you have no tolerance for a save-outage time, you should use the

save-while-active function to reduce your save outage. For an overview, see “Save-outage time reduction”

on page 113.

Eliminating your save-outage time

You can use the save-while-active function to eliminate your save outage. Use this option only if you

have no tolerance for a save-outage time. You should use the save-while-active function to eliminate your

save-outage time only for objects that you protect with journaling or commitment control. In addition

you will have considerably more complex recovery procedures. You should consider these more complex

recovery procedures in your disaster recovery plan. For an overview, see “Save-outage time elimination”

on page 114.

© Copyright IBM Corp. 1996, 2005 99

Making your decision

Whether or not you to decide reduce or eliminate your save-outage time, this topic may help you decide

how the save-while-active function fits into your backup and recovery plan. Review your applications.

Other procedures that you use in your backup and recovery strategy still apply. You should still consider

them when you review your backup and recovery procedures. You may conclude one of the following:

v Your current save strategy is adequate for your scheduled save-outage time.

v Critical application libraries are candidates for save-while-active processing.

v Your critical application libraries are candidates, but may require modification to minimize recovery

procedures.

v Critical documents or folders are candidates.

v All application libraries are candidates because of a compressed save-outage time.

v You will use save-while-active to reduce your save-outage time because you can tolerate a small save

outage time.

v You will use save-while-active to eliminate your save-outage time for the following reasons:

– You have no tolerance for a save-outage time.

– You are already using journaling and commitment control.

– You plan to use journaling and commitment control.

The following pages may help you make an informed decision on how to use the save-while-active

function.

v “Save-while-active function”
This information contains a detailed description of the save-while-active function.

v “Considerations and restrictions for the save-while-active function” on page 106
This information discusses how the save-while-active function affects things such as performance,

auxiliary storage, and commitment control. It also describes what you cannot do with the

save-while-active function.

Save-while-active function

The save-while-active function is an option on several OS/400 save commands. It allows you to save

parts of your server without putting your server in a restricted state. You can use the save-while-active

function to reduce your save outage or to eliminate your save outage.

How it works

OS/400 objects consist of units of storage, which are called pages. When you use the save-while-active

function to save an object, the server creates two images of the pages of the object:

v The first image contains the updates to the object with which normal server activity works.

v The second image is an image of the object at a single point in time. The save-while-active job uses this

image to save the object to the media.

In other words, when an application makes changes to an object during a save-while-active job, the

server uses one image of the object’s pages to make the changes. At the same time, the server uses the

other image to save the object to the media. The image that the server saves does not have the changes

you made during the save-while-active job. The image on the media is as it existed when the server

reached a checkpoint.

Checkpoints

The checkpoint for an object is the instant in time that the server creates an image of that object. The

image that the server creates at that instant in time is the checkpoint image of the object.

100 iSeries: Systems Management Back up your server

Creating a checkpoint image is similar to taking a photograph of a moving automobile. The point in time

that you took the photograph would equate to the checkpoint. The photograph of the moving automobile

would equate to the checkpoint image. When the server has finished making the checkpoint image of the

object, the object has reached a checkpoint.

Despite the name save-while-active, you cannot change objects while the server obtains their checkpoint

images. The server allocates (or locks) objects as it obtains checkpoint images. After the server obtains the

checkpoint images, you can change the objects.

Synchronization

When you save more than one object, you must choose when the objects will reach a checkpoint in

relationship to each other. This is synchronization. There are three kinds of synchronization:

v Full synchronization
With full synchronization, the checkpoints for all of the objects occur at the same time. The checkpoints

occur during a time period in which no changes can occur to the objects. IBM strongly recommends

that you use full synchronization, even when you are saving objects in only one library.

v Library synchronization
With library synchronization, the checkpoints for all of the objects in a library occur at the same time.

v System-defined synchronization
With system-defined synchronization, the server decides when the checkpoints for the objects occur.

The checkpoints for the objects may occur at different times resulting in complex restore procedures.

Save-outage time

The amount of time during the backup process that you cannot use the server is the save-outage time.

You can use the save-while-active function to reduce or eliminate your save outage.

The easiest and recommended way to use the save-while-active function is to reduce your save-outage

time. You can reduce your save-outage time by ending your applications that change objects. You can

restart the applications after the server has reached a checkpoint for those objects. You can choose to have

the save-while-active function send a notification when it completes the checkpoint processing. After the

save-while-active function completes checkpoint processing, it is safe to start your applications again.

When you use the save-while-active function in this way, the save-outage time can be much less than

with normal save operations.

You can also use the save-while-active function to eliminate your save-outage time. When you use the

save-while-active function to eliminate your save-outage time, you do not end the applications that make

changes to the objects you save. However, the save operation affects the performance and response time

of your applications. You should also use journaling or commitment control for all of the objects you are

saving when using save-while-active in this way. Using the save-while-active function to eliminate your

save-outage time may also greatly increase the complexity of your recovery procedures.

Save-while-active commands

The save-while-active function is an option on the OS/400 save commands listed below:

 Command Location Function

SAVLIB OS/400 Save Library

SAVOBJ OS/400 Save Object

SAVCHGOBJ OS/400 Save Changed Objects

SAVDLO OS/400 Save Document Library Objects

SAV OS/400 Save

Chapter 6. Save your server while it is active 101

Command Location Function

SAVRSTLIB ObjectConnect/400 Save/Restore Library

SAVRSTOBJ ObjectConnect/400 Save/Restore Object

SAVRSTCHG ObjectConnect/400 Save/Restore Changed Objects

SAVRSTDLO ObjectConnect/400 Save/Restore Document Library

Objects

SAVRST ObjectConnect/400 Save/Restore

The following pages contain information that you need to know if you plan to eliminate your

save-outage time:

v “Checkpoint processing with save-while-active”

v “Timestamp processing with save-while-active” on page 104

v “Commitment control with save-while-active” on page 104

Checkpoint processing with save-while-active

Checkpoint processing occurs after the server determines exactly which objects it will save for a

particular library. If the save-while-active request is for multiple libraries, then the server performs

checkpoint processing for all libraries in the save request.

Checkpoint processing does not require that the server maintain two complete copies of the objects you

are saving. The server only maintains two copies of the pages of the object that the applications are

changing while you are performing the save. The more pages that applications change for an object

during the save-while-active request, the greater the storage requirement for the object. After the server

completes checkpoint processing to create the checkpoint image of the page, performance decreases

slightly for the first update to a page. The performance impact varies depending on the disk type,

available disk storage, and processor model. Further updates to the same changed page do not require

any additional processing with respect to the checkpoint version of the page.

The following figure shows how the server maintains a checkpoint image of an object during a

save-while-active operation. The shaded parts of the diagram represent the checkpoint version of the

object. An explanation of the steps follows the figure.

102 iSeries: Systems Management Back up your server

The figure above shows a timeline with T1 — T5:

1. Time T1 is the save preprocessing phase of the save-while-active operation. The object reaches a

checkpoint at the end of time T1.

2. Time T2 shows an update to the object, referred to as C1. The update occurs while the

save-while-active request saves the object to the media.

a. An application makes a request to update C1.

b. The server first makes a copy of the original page.

c. The applications make the change to the object.

The original page copied is then part of the checkpoint image for the object.

3. Time T3 shows that the object received two additional changes, C2 and C3. Any additional change

requests that are made to the pages of the object already changed for C1, C2, or C3 do not require any

additional processing. At the end of time T3, the save-while-active request has completely saved the

object to the media.

4. Time T4 shows that the server no longer maintains copied pages for the checkpoint image of the

object because the server no longer needs them.

5. Time T5 shows the object on the server has the C1, C2, and C3 changes. But the copy, or image, of the

object saved to the media does not contain those changes.

Save post-processing
Checkpoint image being
saved to media

Checkpoint
processing
complete

End of
save
request

Start of
save
request

C2

C1

C3

C2

C1

C3

Object to
be saved

Object on
the system
after the
save

Object on
the save-
while-
active
media

C2

C3

Checkpoint image
completely saved
to media

Pages of the
object before
updates C1,
C2, and C3
are made

Additional
updates
C2 and C3
made to the
object

Pages used
for checkpoint
image no
longer
maintained

The image of the object saved to the media is the conceptual
image of the object after checkpoint processing is completed.

Save preprocessing

a. Request to
make update
C1 to the
object

b. Copy
unchanged
page of the
object

c. Make update
C1 to the
object

C1C1

T1 T2 T3 T4 T5

RV2W419-2

Figure 10. Server management of updates to objects after checkpoint processing is complete

Chapter 6. Save your server while it is active 103

Timestamp processing with save-while-active

The save-active-time for an object can be useful when you determine which recovery procedures to use

after you restore objects from the media. All of the changes made to the object before the save active

timestamp will be present for the object on the save-while-active media. The changes made to the object

after the save active timestamp will not be present for the object on the save-while-active media.

If you specify UPDHST(*YES) on the save command, the server records the date and time that it

performs a save operation for an object. The server takes the timestamp early during the save

preprocessing phase. The timestamp identifies when the save operation started for the object. This

timestamp is the save-time for the object. Multiple objects that you save with one save request will have

the same save time if they all reside in the same library. This timestamp displays in the save date/time

field when you use the Display Object Description (DSPOBJD) command displays.

The save-while-active function introduces an additional timestamp that relates to save processing. This

additional timestamp is the save-active-time for an object. The save-active-time identifies the time an

object that you saved with the save-while-active function object reached the checkpoint. The

save-active-time is the same for all of the objects that reach a checkpoint together.

When you use the Display Object Description (DSPOBJD) command, the save-active-time displays in the

save active date/time field. The server only updates the save-active-time for an object if you specify

UPDHST(*YES) on the save command when you request the save-while-active operation.

Some objects do not require special save-while-active checkpoint processing. Therefore the

save-while-active timestamp is the same time that the object’s description is saved. Examples of this are

object types *JOBQ and *OUTQ that have only their descriptions saved, not their contents. This is also

true for files that do not have any members.

For physical file members, the last save date/time information that the DSPFD command identifies is

either the last save-time or the last save-active-time. The information that displays depends on which

type of save operation you last performed for each of the members.

The recovery considerations do not apply if you are using the save-while-active function to reduce your

save-outage time.

recovery procedure considerations

This consideration applies to journaled objects that are saved with the save-while-active function. The

start of save journal entry in journal contains both the save-time and save-active-time. The object saved

journal entry in the journal also contains both the save-time and save-active-time. Look for the journal

entry that identifies when the journaled file member reached the checkpoint. All journal entries after this

journal entry for a journaled object will not be reflected in the data that is saved during a

save-while-active operation. This information may be useful when you determine what recovery

procedures are necessary after restoring journaled objects from the save-while-active media.

See Journal Management for more information about the journaling function and layouts for the specific

journal entries created during save-while-active processing.

Commitment control with save-while-active

This information applies if you are using commitment control and save-while-active to eliminate your

save-outage time. This information applies only if you are not specifiying *NOCMTBDY for handling

pending record changes on the SAVACTWAIT parameter.

If an object receives updates under commitment control during the checkpoint processing phase of a

save-while-active operation, the server saves the object at a commitment boundary. The server saves all

objects that reach a checkpoint together at the same common commitment boundary. See “Checkpoint

104 iSeries: Systems Management Back up your server

processing with save-while-active” on page 102 for more information on how objects for a particular

library may be grouped together with respect to checkpoint processing.

During the save preprocessing phase of a save-while-active request, the server ensures that it saves the

objects commitment boundary as follows:

v If the job performing the save-while-active request is not currently at a commitment boundary, the save

request ends without saving any objects. This processing is the same for any save request.

v If updates are in progress for any objects in a group that are reaching a checkpoint together, the server

delays the checkpoint. The checkpoint resumes when all of the transactions reach a commitment

boundary. The server waits the amount of time specified on the second element of SAVACTWAIT

parameter for these transactions to reach a commitment boundary. If uncommitted transactions still

exist when the specified time expires, the save request ends.

v The server identifies which jobs have commitment definitions that are not currently at a commitment

boundary and are delaying the checkpoint processing. The server waits until uncommitted transactions

delay checkpoint processing for a group of objects for approximately 30 seconds. The server then sends

a CPI8365 message to the QSYSOPR message queue for each job that is delaying the save-while-active

request. After you receive these messages, you can then take the appropriate actions to bring all

commitment definitions for those jobs to a commitment boundary.

v When no more commitment definitions are delaying the save-while-active job, the save-while-active job

completes the checkpoint processing for the objects. After the checkpoint processing ends, the server

allows changes for those objects under commitment control.

v If a commitment definition has uncommitted changes, it could possibly delay a save-while-active

request. The uncommitted changes could delay the save-while-active request even though the changes

are not for any database files. This situation can occur if you are journaling any of the database files to

the same journal as the commitment definition is using for unrelated, uncommitted changes and if you

specify a value greater than 0 for the second element of the SAVACTWAIT parameter.

v If an application is performing a read-for-update operation but no changes have been made, the

application is considered to have started a commit cycle. The server allows a checkpoint to be

established in the middle of a commit cycle as long as no changes have been made. Checkpoint

processing does not stop if the application is performing only a read-for-update operation.

v The server temporarily delays a job that has all commitment definitions at a commitment boundary

when both of the following are true:

– When it is likely that an application will change an object that is under commitment control

– When that object is reaching a checkpoint

The server holds that job until the objects reach a checkpoint, or the checkpoint processing for the

object exceeds the time specified on the SAVACTWAIT parameter. During the time the server delays a

job at a commitment boundary, the Work Active Job (WRKACTJOB) command displays CMTW as the

job status.

Commitment control with save-while-active and *NOCOMTBDY

This information applies if you are using commitment control and save-while-active to eliminate your

save-outage time. This information applies only if you are *NOCMTBDY for handling pending record

changes on the SAVACTWAIT parameter.

v If the job performing the save-while-active request is not currently at a commitment boundary, the save

continues and objects are saved with partial transactions.

v If updates other than pending record changes are in progress for any objects in a group that are

reaching a checkpoint together, the server delays the checkpoint. The checkpoint resumes when all of

the transactions reach a commitment boundary. The server waits the amount of time specified on the

second element of SAVACTWAIT parameter for these transactions to reach a commitment boundary. If

uncommitted transactions still exist when the specified time expires, the save request ends.

Chapter 6. Save your server while it is active 105

|

v When no more commitment definitions are delaying the save-while-active job, the save-while-active job

completes the checkpoint processing for the objects. After the checkpoint processing ends, the server

allows changes for those objects under commitment control.

v If a commitment definition has uncommitted changes other than record changes, it could possibly

delay a save-while-active request. The uncommitted changes could delay the save-while-active request

even though the changes are not for any database files. This situation can occur if you are journaling

any of the database files to the same journal as the commitment definition is using for unrelated,

uncommitted changes and if you specify a value greater than 0 for the second element of the

SAVACTWAIT parameter.

v If an application is performing a read-for-update operation but no changes have been made, the

application is considered to have started a commit cycle. The server allows a checkpoint to be

established in the middle of a commit cycle as long as no changes have been made. Checkpoint

processing does not stop if the application is performing only a read-for-update operation.

v The server temporarily delays a job that has all commitment definitions at a commitment boundary

when both of the following are true:

– When it is likely that an application will change an object that is under commitment control

– When that object is reaching a checkpoint

The server holds that job until the objects reach a checkpoint, or the checkpoint processing for the

object exceeds the time specified on the SAVACTWAIT parameter. During the time the server delays a

job at a commitment boundary, the Work Active Job (WRKACTJOB) command displays CMTW as the

job status.

Commitment control with save-while-active and server performance

Using the save-while-active function while commitment control processing is active needs extra

consideration. An application can update an object under commitment control during the checkpoint

processing phase of a save-while-active request. If this happens, the server ensures that it saves the object

to the media at a commitment boundary. The server saves all objects that have reached a checkpoint

together to the media at the same common commitment boundary. Therefore, it is important to make

sure you understand the performance considerations unique to save-while-active processing if you

protect the objects you are saving with commitment control. Otherwise, the server may never be able to

reach a commitment boundary. It may not be able to obtain a checkpoint image of the objects you are

saving.

Considerations and restrictions for the save-while-active function

The save-while-active function will affect important aspects of your server such as performance, auxiliary

storage, and commitment control. The pages that follow contain considerations and restrictions in regard

to these aspects of your server.

The pages that apply to you depend on whether you are reducing or eliminating your save-outage time.

Information for reducing and eliminating your save-outage time

This information may apply if you plan to reduce or eliminate your save-outage time.

v “Performance considerations for save-while-active” on page 107

v “Storage considerations for save-while-active” on page 108

v “Save-while-active restrictions” on page 109

Information for eliminating your save-outage time

This information may apply if you plan to eliminate your save-outage time.

v “Save-while-active object locking rules” on page 110

106 iSeries: Systems Management Back up your server

v “Restrictions for commitment control with save-while-active” on page 112

Performance considerations for save-while-active

While you can run save-while-active operations any time, save-while-active operations will affect the

performance of other applications you are running. Therefore you should run save-while active

operations during times of low server activity. A few interactive jobs or batch jobs that are primarily

read-only, are examples of activities that allow better server performance during the save-while-active

operation.

In general, the server performs checkpoint processing faster for a small number of larger objects than for

a large number of smaller objects.

You should not use the save-while-active function when the server is very busy or when there is very

little disk storage available. Before you save large amounts of data (such as all user libraries), you should

initially use the save-while-active function on a limited amount of data. Using the save-while-active

feature on a limited amount of data will help you determine its impact on your server’s performance and

storage.

Major factors that can affect the performance of the save-while-active function are the following:

v Central processing unit (CPU) factors

v Auxiliary storage factors

v Main storage (memory) factors

v DLO activity factors

Central processing unit (CPU) and save-while-active

The relationship between the server’s CPU and a save-while-active operation depends on the available

CPU capacity and the characteristics of other jobs on the server

Available CPU capacity

The amount of CPU capacity that is available for the save process can have a large influence on the time

required for the save operation to complete. Therefore, be prepared for the save-while-active operation to

take longer than a save operation on a restricted server. The change in the time required for the save

operation to complete may be as little as 10 percent longer to four to five times longer or more. This

depends on the server resources that are available for the save. As a guideline, allow only about 30% of

the CPU for workloads that are running in the background.

Characteristics of other jobs on the server

The active jobs during a save-while-active operation can affect both the response time and the duration of

the save operation. Try to use the save-while-active function when CPU utilization is low and the amount

of update activity on the server is low.

Auxiliary storage activity and save-while-active

When choosing the time period for a save-while-active operation, evaluate the activity in auxiliary

storage without save-while-active processing. Ideally, disks should be less than 30 percent busy before

adding the activity for the save operation. This is due to the heavy auxiliary storage activity that is added

with the save-while-active operation.

Main storage (memory) and save-while active

How a save-while-active operation affects main storage depends on three items:

v Pageable size of the machine pool

v Job priority and pool usage

v Number and size of objects

Chapter 6. Save your server while it is active 107

Pageable size of the machine pool

Additional pages are required in the machine pool for the server to use during the save-while-active

operation. Additionally, saving many small objects or file members places additional requirements on the

pageable portion of the machine pool. You should consider the addition of 1200KB to the machine pool a

minimum. Additional memory may improve the response time and the save-time.

Additional megabytes of storage for the machine pool may help performance if saving thousands of

small objects or file members (less than 50KB object sizes). You should monitor the machine pool for

paging activity.

Job priority and pool usage

You must decide which jobs have priority: the save operation or the other activity on the server. You

should give the save operation a lower priority than the interactive jobs, but a higher priority than other

batch jobs. This priority will maintain the best response time for interactive jobs, but still allow the save

to complete as quickly as possible. In addition, separate the save operation from other work on your

server by using a separate memory pool. The size of this separate pool should be a minimum of 10MB

(16MB if you are using a high speed tape device). The full synchronization and library synchronization

options generally require a few additional megabytes of memory. If there are thousands of objects or file

members in the save-while-active operation, you should add more memory to the memory pool. This is

especially true if the objects are small. To determine the correct pool size for your server, monitor the

paging activity in the pool during a save and adjust the memory as necessary. However, if the pool is a

shared memory pool, then the settings in the system value, QPFRADJ, will adjust its performance.

Number and size of objects

If you are saving many small objects or file members, the paging in the machine pool may increase. You

should monitor paging in the machine pool. You should take steps to minimize paging to maintain better

overall server performance. These recommendations are also apply for normal save and restore

operations.

DLO activity and save-while-active

If the save-while-active operation is run at a time when users are updating document library objects

(DLO), the save-while-active process may affect these users. When users are changing document library

objects, they may notice a delay if the save-while-active operation is performing checkpoint processing

for the document library objects.

For example, an application may be editing a document while a save-while-active operation is running. It

is possible that the application could attempt to update the document when the save-while-active

operation is performing checkpoint processing on that document. If that happens, the application will

probably wait until checkpoint processing completes before it can make the update. If the

save-while-active job is running at low priority, or on a busy server, the application may wait for an

extended time.

If the save-while-active operation does not complete checkpoint processing for the document library

objects within 30 minutes, the user function ends abnormally. The abnormal end of the user function

indicates there is a problem. The system administrator should determine why the save-while-active

process is taking an excessive amount of time for the document library objects to reach a checkpoint.

Then, the system administrator should take the appropriate action to correct the problem. This may

require contacting your service representative.

Storage considerations for save-while-active

The save-while-active function uses more disk storage than normal save operations. As applications

change the objects in a save-while-active operation, the server makes copies of the data that reach a

checkpoint. The server could run out of available storage if the following happens:

108 iSeries: Systems Management Back up your server

|
|
|
|
|
|

v The data on your server uses a high percentage of the disk capacity.

v A large amount of the data changes during a save-while-active operation.

If the server sends messages that it is running out of storage, you should be prepared to stop the save

operation or some applications.

The full synchronization option uses the most additional storage. The system-defined synchronization

option uses the least additional storage.

Save-while-active restrictions

The following restrictions apply to all of the commands which provide the save-while-active function.

v The save-while-active function is only available on the commands listed in “Save-while-active

function” on page 100.

v You cannot use the save-while-active function in the following situations:

– When all subsystems have ended. If you have ended all subsystems, the save operation is the only

user job that is active. It must finish before you can restart your subsystems and applications. The

following save operations require that you end all subsystems. Therefore, you cannot use the

save-while-active function with these operations:

- Saving the system library

- Saving all libraries

- Saving the entire system
– When freeing or deleting storage during a save operation. If specifying STG(*FREE) or

STG(*DELETE) on a save command, or CHKFORMRK(*YES) on the SAVDLO command, you cannot

use the save-while-active function.
v You should not use the save-while-active function when the server is very busy or when there is very

little disk storage available. Before you save large amounts of data (such as all user libraries), you

should initially use the save-while-active function on a limited amount of data. Using the

save-while-active feature on a limited amount of data will help you determine its impact on your

server’s performance and storage. See “Performance considerations for save-while-active” on page 107

and “Storage considerations for save-while-active” on page 108.

v You should not load, apply, or remove program temporary fixes (PTF)s when running a

save-while-active operation.

v You must issue separate save commands to use the save-while-active function for objects in libraries,

document library objects, and objects in directories. If you need to synchronize objects you are saving

with different commands, first end your applications until all of the objects have reached a checkpoint.

– If you have only one media device, each command must finish before the next can start. If you use

the save-while-active function to reduce your save-outage time, save folders and directories first.

Save libraries last. Saving the objects in this order will probably provide the greatest reduction in the

save-outage time.

– If you have multiple media devices, and you use the save-while-active function to reduce your

save-outage time, save libraries, folders, and directories concurrently. This will probably provide the

greatest reduction in you save-outage time.
v You cannot save objects that you create after the save operation begins.

v You cannot save objects that other jobs are using during checkpoint processing. See “Save-while-active

object locking rules” on page 110 for additional information.

v Do not use System Service Tools (SST) functions for objects you are currently saving by a

save-while-active operation.

Library restrictions

Chapter 6. Save your server while it is active 109

Full synchronization is not available when you use save all IBM libraries using SAVLIB LIB(*IBM). If you

have specified *NOCMTBDY for the SAVACTWAIT parameter, you cannot save any *IBM library or any

library that begins with Q (except for QGPL).

Integrated file system restrictions

Consider the following when using the save-while-active function with the SAV or SAVRST commands

with integrated file systems:

v The wait time option is not available.

v When you are saving objects in libraries or document library objects, the considerations stated for those

objects also apply.

Document library restrictions

Consider the following considerations when you use the save-while-active function to save document

library objects.

v Full synchronization is not available. Only system-defined synchronization is available.

v Checkpoint notification is not available. This means that you cannot determine when it would be safe

to restart your applications that use document library objects. When saving document library objects,

the benefit of the save-while-active function is that objects are allocated for a shorter time than with

normal save operations.

v You may cannot save documents during save-while-active processing if a reclaim operation (RCLDLO

command) is running.

v Folders may not be saved during save-while-active processing if a reorganize operation (RGZDLO

command) or a reclaim operation (RCLDLO command) is running.

v Some applications use application programming interfaces (APIs) or shared folders to work with a

document like a personal computer. When they update document data, they save the updates to a

temporary file. The application does not permanently write changes to the document until the

application session ends. Therefore these applications can update a document while a save-while-active

operation is running.

Other applications update documents directly as the application receives data. For example, some

spreadsheet applications and image applications work this way. If this type of application updates a

document while a save-while-active operation is running, the application does not save document. The

job log receives Diagnostic messages CPF8A80:Document in use and CPF90AC:Document not saved to

indicate that the application did not save the object because the object was in use.

Save-while-active object locking rules

The object locking rules that the server uses for save-while-active requests are less restrictive than the

rules it uses for other save operations. These object locking rules allow users to perform update

operations and use most object-level commands after the server performs checkpoint processing.

Generally, the server keeps a shared, no update (*SHRNUP) lock on the objects through the checkpoint

processing. After the establishes checkpoints, the server unlocks most of the objects. Other objects remain

allocated with a shared for read (*SHRRD) lock.

The following table shows the locks a normal save operation holds, by a save-while-active operation

during checkpoint processing, and by a save-while-active operation after checkpoint processing is

complete.

 Table 38. Lock Type Needed for Save Operation

Save-While-Active

Object Type SAVACT(*NO) Establish Checkpoint After Checkpoint

Most object types *SHRNUP *SHRNUP None

Configuration object None

1 1

110 iSeries: Systems Management Back up your server

|
|
|

Table 38. Lock Type Needed for Save Operation (continued)

Save-While-Active

Object Type SAVACT(*NO) Establish Checkpoint After Checkpoint

Data area *SHRNUP *SHRRD None

Database members *SHRNUP *SHRRD None

Document *SHRNUP *SHRRD None

Folder *SHRRD *SHRRD None

Job queue *SHRRD *SHRRD None

Journal *SHRRD *SHRRD None

Journal receiver *SHRRD *SHRRD *SHRRD

Library, when the library or an object in it is

being saved

*SHRUPD *SHRUPD *SHRRD

Output queue *SHRRD *SHRRD None

Product load *SHRNUP *SHRNUP *SHRRD

System resource management object *SHRNUP

1 1

User profiles, authorization lists, and

authority holders

*SHRRD

1 1

Object, if STG(*FREE) is specified *EXCL2 1 1

Objects in directories Share with readers Share with readers3, 4 Share with readers

and writers3

1 The save-while-active function is not available when saving these objects.

2 Applies to document, file, journal receiver, module, program, SQL package, and service program. Other

types remain as listed previously.

3 Objects in QNTC are not synchronized with SAVACT(*SYNC). Furthermore, all locks for these file systems

will be released before the checkpoint message is sent.

4 Objects that are saved with SAVACTOPT(*ALWCKPWRT) and have the QP0L_ATTR_ALWCKPWRT system

attribute set, have an implied share with readers and writers lock.

These locking rules pertain to object-level locks and not database record-level locks. The locking rules

allow the opening and closing of database file members and any record-level I/O operations to database

file members during any phase of the save-while-active operation.

See these topics to read about object locking considerations during and after checkpoint processing:

v “Object locking: During save-while-active checkpoint processing”

v “Object locking: After save-while-active checkpoint processing” on page 112

Object locking: During save-while-active checkpoint processing

During checkpoint processing, these locking rules can conflict with object-level lock types of exclusive

allow read (*EXCLRD); exclusive, no read (*EXCL); and share update (*SHRUPD). Some object-level

system commands and user applications can acquire these lock types. User applications that acquire these

object-level locks generally conflict with save-while-active operations until the checkpoint processing is

complete for the objects. User applications that use system commands that require these object-level locks

also conflict with save-while-active operations until the checkpoint processing is complete for the objects.

Lock conflicts can prevent the save operation from saving the object. Lock conflicts can also can prevent

applications from using the object. To eliminate lock conflicts during checkpoint processing, you should

end your applications until checkpoint processing is complete.

In general, checkpoint processing operations prevent the following list of operations from occurring for

objects you are saving.

v Changing an object

v Deleting an object

v Renaming an object

Chapter 6. Save your server while it is active 111

v Moving an object to a different library or folder

v Changing the ownership of an object

v Compressing or decompressing an object

Object locking: After save-while-active checkpoint processing

After completing checkpoint processing, an attempt to perform one of the following operations will result

in a message stating that the library is in use:

v Performing additional save or restore operations on objects or libraries being saved

v Deleting, renaming, or reclaiming a library from which objects are being saving.

v Loading, applying, removing, or installing PTFs that affect a library from which objects are saved

v Saving, restoring, installing, or deleting licensed programs that contain a library from objects you are

saving

In addition, the following object types have operations that are restricted after checkpoint processing is

complete. An attempt to perform one of the operations that are listed below the following objects below

will result in a message stating that the object is in use:

*FILE-PF (physical file)

v Using the Change Physical File (CHGPF) command with the parameter specifications of SRCFILE,

ACCPTHSIZ, NODGRP, or PTNKEY to change a physical file.

v Using an SQL Alter Table statement to change a physical file.

*JRN (journal)

v Deleting a journal with an associated journal receiver.

v Using the Work with Journal (WRKJRN) interface to recover a journal that has an associated journal

receiver you are saving.

*JRNRCV (journal receiver)

v Deleting or moving the journal receiver.

v Deleting the journal with which the receiver is associated.

v Using the Work with Journal (WRKJRN) interface to recover a damaged journal receiver.

*PRDLOD (product load)

v Deleting, moving, or renaming the product load.

Restrictions for commitment control with save-while-active

Restrictions for commitment control with save-while-active consist of object-level resource restrictions and

application programming interface (API) resource restrictions.

Object-level resource restrictions

You cannot make object-level resource changes for objects under commitment control that are in the

object-level resource library while the server performs checkpoint processing for those objects. You cannot

make object-level resource changes if either of the following are true:

v The commitment definition is at a commitment boundary.

v Only record-level changes have been made in the uncommitted transaction.

For this situation, the change does not occur until the save-while-active request completes checkpoint

processing for the library. After a delay of approximately 60 seconds, you receive inquiry message

CPA8351. The inquiry message allows you to continue to wait for the checkpoint processing to complete

or to cancel the request for the object-level resource. If the job is a batch job, the QSYSOPR message

queue receives inquiry message CPA8351.

112 iSeries: Systems Management Back up your server

Application programming interface (API) resource restrictions

You can register an API resource within a commitment control transaction with the QTNADDCR API. If

you set the Allow save while active field to Y when you use this API, the considerations in this topic do

not apply.

You cannot place resources under commitment control if the server is performing checkpoint processing

for any save-while-active request and either of the following are true:

v With the Add Commitment Resource API (QTNADDCR program), the commitment definition is at a

commitment boundary.

v Only record-level changes have been made in the uncommitted transaction.

For this situation, the add is delayed until checkpoint processing is complete for the save-while-active

request. After a delay of approximately 60 seconds, you receive inquiry message CPA8351. The inquiry

message allows you to continue to wait for the checkpoint processing to complete or to cancel the request

for the API resource. If the job is a batch job, the QSYSOPR message queue receives the inquiry message

CPA8351.

If a commitment definition has an API commitment resource associated with it, and checkpoint

processing is being performed for any save-while-active request, then the job performing a commit or

rollback operation for the commitment definition is delayed immediately after the commit or rollback has

been performed. The server delays the job until the completion of checkpoint processing for the

save-while-active request. After the checkpoint processing is complete, control is returned back to the job

issuing the commit or rollback. This delay is necessary because a commitment definition with an API

commitment resource is only considered to be at a commitment boundary immediately after a commit or

rollback operation but before control is returned to the user program. Once the commit or rollback

operation returns control back to the user program, the commitment definition is no longer considered to

be at a commitment boundary.

See Commitment Control for more information about the commitment control function.

Save-outage time reduction

Reducing your save-outage time is the recommended way to use the save-while-active function. To

reduce your save-outage time, you can end the applications that make changes to the objects you are

saving. You can restart the applications when the server has established a checkpoint for

application-dependent objects.

An application-dependent object is any object that applications use and update. By using the

save-while-active to reduce your save-outage time, you will have to perform no additional recovery

procedures when you restore the objects.

You can specify to have the server send you a message when it has completed checkpoint processing of

the following:

v For all objects within a particular library

v For all libraries in the save request

You can start the applications again when all application-dependent objects have reached a checkpoint.

The checkpoint images of the objects that you save then appear as if you performed a dedicated save

during the time the applications were ended.

If you are saving objects from multiple libraries and a common application-dependency that spans the

libraries exists, do not restart the applications right away. You should wait until checkpoint processing

has completed for all the libraries in the save request. When the checkpoint processing has completed for

all the libraries, you can then restart the applications.

Chapter 6. Save your server while it is active 113

This method can substantially reduce your save-outage time, even though it does not eliminate it.

Save-outage time elimination

The save-while-active function can eliminate your outage for particular save operations by not waiting

for applications to end before starting the save procedure. However, you will have more complex and

longer recovery procedures after restoring objects from the media.

You will have more complex recovery procedures because eliminating your save-outage time saves

objects at different application boundaries. For save-while-active purposes, an application boundary is a

point in time:

v When all of the objects that a particular application is dependent upon are at a consistent state in

relationship to each other.

v When the objects are also in a state where you can start or restart the application.

When you choose to eliminate your save-outage time, applications can update the objects you are saving

before the objects reach a checkpoint. When this happens the server cannot determine if the images of

those objects reached application boundaries when you restore those objects. Therefore at restore time,

you need to define recovery procedures to bring those objects to a common application boundary. You

will need these recovery procedures to bring the objects to a consistent state in relationship to each other.

For this reason you should protect the objects you are saving with journaling or commitment control.

Furthermore, if you do not use commitment control, partial transactions can be saved without your

knowledge. When you use commitment control, you can choose to have the save operation save all

objects at transaction boundaries. However, if applications do not reach commitment boundaries within

the specified time, the save operation will fail.

You should consider each of the following when you determine these recovery procedures:

v If the objects that the applications are dependent on consist entirely of database files or if they depend

on other object types such as integrated file system objects.

v If the objects that the applications are dependent on are in a single library or span multiple libraries.

v If the objects that the applications are dependent on are journaled objects.

v If the changes the applications made to the objects are under commitment control.

“Considerations for recovery procedures after eliminating save-outage time” on page 132 and

“Recommended recovery procedures after eliminating save-outage time” on page 121 have more

information on recovery procedures after restoring objects after a save-while-active operation.

Parameters for the save-while-active function

To use the save-while-active function, specify your choice of values for the following parameters:

v Synchronization-level values for the (SAVACT) parameter
You must decide if you are going to use full synchronization, library synchronization, or

system-defined synchronization. IBM recommends full synchronization in most cases.

v The Save Active Wait Time (SAVACTWAIT) parameter
You can specify the maximum number of seconds that the save-while-active operation will wait to

allocate an object and for commitment control transactions during checkpoint processing.

v The Save Active Message Queue (SAVACTMSGQ) parameter
You can specify whether or not the server sends you a message when it reaches a checkpoint.

v The Save-while-active Options (SAVACTOPT) parameter
This parameter has values which are specific for the the SAV command.

114 iSeries: Systems Management Back up your server

Synchronization-level values for Save Active (SAVACT) parameter

You use the save-while-active function by specifying a synchronization level on the Save Active

(SAVACT) parameter. The default value is *NO, which means that you will not use the save-while-active

function. To use the save-while-active function, you must select one of the following synchronization

levels:

v “Full synchronization”

v “Library synchronization”

v “System-defined synchronization”

The following table shows which synchronization levels are available for each command and the value to

specify for each level.

 Table 39. SAVACT parameter values

Command Full Synchronization Library Synchronization

System-Defined

Synchronization

SAVLIB

SAVOBJ

SAVCHGOBJ

SAVRSTLIB

SAVRSTOBJ

SAVRSTCHG

*SYNCLIB *LIB *SYSDFN1

SAVDLO

SAVRSTDLO

not available not available *YES

SAV SAVRST *SYNC not available *YES

Full synchronization

All objects you are saving reach a checkpoint at the same time. The server then saves them to the media.

IBM strongly recommends that you use full synchronization, even when you are saving objects in only

one library. It will usually complete checkpoint processing in the least amount of time, and it has the

least impact to your recovery procedures. Because it allocates all objects you are saving before obtaining a

checkpoint image of them, it will usually keep objects locked longer than other options. This option will

also use the most additional storage.

Library synchronization

All objects in a library reach a checkpoint at the same time. But different libraries reach checkpoints at

different times. After two libraries reach a checkpoint, the server saves one library to media before a third

library reaches a checkpoint. This option may be useful if all of the following are true.

v You are saving more than one library.

v Each of your applications is dependent on only one library.

v Full synchronization uses more storage than you have available or it would keep objects locked longer

than your business needs will allow.

System-defined synchronization

Using this option could cause lengthy recovery procedures. You should only use this option for objects

that you are protecting with journaling or commitment control to avoid extremely complex recovery

procedures.

Objects you are saving may reach checkpoints at different times. The server may separate objects in a

library into different groups. After two groups of objects have reached a checkpoint, the server will save

one group to media before a third group reaches a checkpoint. This option will usually keep objects

locked for the shortest period of time and use the least amount of additional storage. But it will usually

take the longest to complete checkpoint processing. It will also result in the most complex recovery

Chapter 6. Save your server while it is active 115

procedures if you do not end your applications during the checkpoint processing. Beginning with V5R3,

when you save objects in libraries, *SYSDFN operates the same as *LIB.

The wait time (SAVACTWAIT) parameter

Specifies the amount of time to wait for an object that is in use, or for transactions with pending changes

to reach a commit boundary, before continuing the save operation.

You can specify three wait time elements in the SAVACTWAIT parameter.

Object locks

The default value is 120 seconds. You can specify the amount of time to wait for the object to become

available. You can specify any number of seconds from 0 to 99999 for object locks, or *NOMAX to have

the save-while-active operation wait indefinitely. If you end your applications before starting the save

operation, specify 0 seconds. If you do not end your applications, specify a value large enough for your

applications to make the objects available.

If an object is not available during checkpoint processing, the save-while-active operation will wait up to

the specified number of seconds for the object to become available. While waiting for an object, the save

operation does nothing else. The save operation may have to wait for several objects. The total time that

the save-while-active operation waits may be much longer than the value specified. If an object does not

become available within the specified time, the object is not saved, but the save operation continues.

Pending record changes

The default value is *LOCKWAIT. You can specify any number of seconds from 0 to 99999 for

transactions with pending record changes. You use *NOCMTBDY to save objects without waiting for

commit boundaries. If you use *NOMAX, the save-while-active operation will wait indefinitely. If 0 is

specified, all objects being saved must be at commit boundaries.

After the save-while-active operation allocates a group of objects that it is synchronizing, it may then wait

this many seconds for all jobs that are using the same journals as these objects to reach commitment

boundaries. If these jobs do not reach commitment boundaries within the specified time, the save

operation ends. After waiting 30 seconds, a CPI8365 message is sent to the QSYSOPR message queue for

each job for which the save-while-active operation is waiting.

Other pending changes

The default value is *LOCKWAIT. You can specify the amount of time to wait for transactions with Data

Definition Language (DDL) object changes or any API commitment resource that is added without the

option to allow normal save processing. If you use *NOMAX there is no maximum wait time. You can

specify any number of seconds from 0 to 99999. If 0 is specified, and only one name is specified for the

Objects (OBJ) parameter, and *FILE is the only value specified for the Object types (OBJTYPE) parameter,

the system will save the object without requiring the types of transactions that are listed above to reach a

commit boundary.

The checkpoint notification (SAVACTMSGQ) parameter

You can specify the checkpoint notification on the SAVACTMSGQ parameter. The specified message

queue receives a message after checkpoint processing is complete. An operator or a job can monitor this

message queue and restart applications when checkpoint processing is complete.

The following table shows the messages that are sent for each command when checkpoint processing is

complete.

116 iSeries: Systems Management Back up your server

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

Table 40. SAVACTMSGQ checkpoint completion messages

Command Full Synchronization

Library

Synchronization

System-Defined

Synchronization

Save Operation

Abnormal

Termination

SAVLIB

SAVOBJ

SAVCHGOBJ

SAVRSTLIB

SAVRSTOBJ

SAVRSTCHG

CPI37121 CPI3710 for each

library

CPI3710 for each

library

CPI3711

SAV objects in

 libraries

CPI37121 not available CPI3710 for each

library

CPI3711

SAVDLO

SAVRSTDLO

SAV objects in

 folders

not available not available not available not available

SAV objects in

 directories

SAVRST

CPI3712 not available CPI3712 CPI3722

Note:

1 Prior to the CPI3712 checkpoint completion message, messages CPI3724 and CPI3725 are sent to the

message queue and to the workstation to indicate the progress of the checkpoint processing. CPI3724 is sent for

each library as the operation begins to allocate the objects in that library. CPI3725 is sent when all objects have been

allocated as the operation begins to obtain the checkpoint images of the objects.

Additional save-while-active option (SAVACTOPT) parameter

The SAV command provides additional save-while-active options which you specify on the SAVACTOPT

parameter. The default is *NONE, which means that no additional options are used during a

save-while-active operation.

Applications should only use the allow checkpoint write (*ALWCKPWRT) option to save objects which

are associated with the application. Also, the applications should have additional backup and recovery

considerations such as Lotus Domino databases.

Objects with the QP0L_ATTR_ALWCKPWRT server attribute set will be locked with O_SHARE_RDWR

by the save operation. You can update data before the save-while-active operation reaches a checkpoint.

You will need to verify these objects after you restore them. You may also need to perform additional

recovery procedures before they are usable.

Reduce your save-outage time

Use the following general procedures to reduce your save-outage time for particular save operations. You

need to end the applications for the objects you are saving before you perform these procedures.

However, these procedures require no additional recovery procedures. See Save-outage time reduction

for information about how the save-while-active function reduces your save-outage time.

Recommended procedures for reducing save-outage time

This information contains general instructions for a save operation when you use save-while active. You

should adapt the steps in these instructions for your specific needs.

v Recommended procedure to reduce save-outage time

Examples for reducing save-outage time

Chapter 6. Save your server while it is active 117

This information contains examples of save and restore procedure for a save-while-active operation that

reduced your save-outage time.

v Example: Reducing save-outage time for two libraries

v Example: Reducing save-outage time for a directory

v Example: Restoring libraries after reducing save-outage time

v Example: Restoring a directory after reducing save-outage time

Recommended procedure to reduce your save-outage time

You can use the following general procedure to reduce your outage for particular save operations. This

procedure is the recommended way to use the save-while-active function on a daily basis. This

save-while-active operations saves the objects as if they were saved in a dedicated fashion. This

procedure does not require any special recovery procedures.

1. End all application jobs that are making updates to the application-dependent objects.

2. Start the save-while-active operation for the objects that reside in the application libraries. Specify a

message queue on which to receive the checkpoint completion message. See “Parameters for the

save-while-active function” on page 114 to determine which synchronization option and wait time

will best meet your needs.

3. Wait for the checkpoint completion or termination message identified in SAVACTMSGQ checkpoint

completion messages at the message queue you specified on the SAVACTMSGQ parameter.

4. Start the application jobs again.

5. For journaled objects in the save request, if you did not save their receivers in the request, save those

receivers after the save request finishes.

Example: Reduce save-outage time for two libraries

This example makes use of two libraries, LIB1 and LIB2. Both libraries contain objects that you will save

on a daily basis. Your current save strategy ends jobs that make changes to the objects in the two libraries

for the entire time that the you are saving the libraries.

For this example, objects of any type can exist in the two libraries. The objects that exist in the two

libraries may or may not be journaled.

The several hour save-outage time can be greatly reduced by the following steps:

1. End all application jobs that are making updates to the objects in libraries LIB1 and LIB2.

2. Submit the following command as an individual batch job:

SAVLIB LIB(LIB1 LIB2) DEV(TAP01) SAVACT(*SYNCLIB) +

 SAVACTMSGQ(QSYSOPR) +

 ACCPTH(*YES)

Note: You could also use the SAVOBJ or SAVCHGOBJ commands depending on your specific needs.

The objects in library LIB1 and LIB2 reach a checkpoint together, as specified by SAVACT(*SYNCLIB),

and the server saves the libraries to TAP01. The server sends the message indicating that checkpoint

processing is complete to QSYSOPR.

You are also saving access paths for the logical files, as specified by ACCPTH(*YES). If you specify

this, the access paths, in most cases, will not need to be built after restoring the files from this save

media.

A single save command saves the libraries to provide a consistent checkpoint. This is also faster than

saving both libraries to the same storage device with separate commands. Using two save commands

to two separate media devices allows the server to perform the checkpoint processing for the libraries

concurrently. It may also allow the server to perform checkpoint processing faster than saving both

libraries with a single save command.

118 iSeries: Systems Management Back up your server

3. After checkpoint processing is complete, the message queue QSYSOPR receives the message CPI3712.

If checkpoint processing does not complete for the objects, message queue receives the message

CPI3711 and the save operation ends.

4. After receiving CPI3712 message, start the application jobs that make updates to the objects in the two

libraries.

The objects exist on the media as they were at the time the application jobs were ended, prior to the save

command being run. However, the save-while-active function greatly reduces the amount of time that the

applications are not available.

Example: Reduce save-outage time for a directory

This example uses a directory, MyDirectory. The directory contains objects that you will save on a daily

basis. Your current save strategy ends jobs that make changes to the objects in the directory for the entire

time that the you are saving the directory.

The objects that exist in the directory may or may not be journaled.

The several hour save-outage time can be greatly reduced by the following steps:

1. End all application jobs that are making updates to the objects in MyDirectory.

2. Submit the following command as an individual batch job:

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’) SAVACT(*SYNC) +

 SAVACTMSGQ(QSYS.LIB/LIB1.LIB/MSGQ1.MSGQ) +

The objects in directory MyDirectory reach a checkpoint together, as specified by SAVACT(*SYNC).

The server saves the objects TAP01. The server sends the message indicating that checkpoint

processing is complete to MSGQ1

3. After checkpoint processing is complete, the message queue receives the message CPI3712. If

checkpoint processing does not complete for the objects, message queue receives the message CPI3711

and the save operation ends.

4. After receiving CPI3712 message, start the application jobs that make updates to the objects in the

directory.

The objects exist on the media as they were at the time the application jobs were ended, prior to the save

command being run. The save-while-active function greatly reduces the amount of time that the

applications are not available.

Example: Restore libraries after reducing save-outage time

This example shows a typical restore procedure after you reduce save-outage time in a library. Your exact

use of the function may differ, based on your specific application requirements.

You can restore the objects from the media just as if you did not use the save-while-active function. The

restore requires no additional recovery procedures. You can restore the two libraries with the following

commands:

RSTLIB SAVLIB(LIB1) DEV(TAP01)

RSTLIB SAVLIB(LIB2) DEV(TAP01)

Example: Restore a directory after reducing save-outage time

This example shows a typical restore procedure after you reduce save-outage time in a directory. Your

exact use of the function may differ, based on your specific application requirements.

Chapter 6. Save your server while it is active 119

You can restore the objects from the media just as if you did not use the save-while-active function. The

restore requires no additional recovery procedures. You can restore the directory with the following

command:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’)

Eliminate your save-outage time

Use the following general procedures to eliminate your save-outage time for particular save operations.

These save-while-active procedures do not require any applications to be ended to perform the save

operation. However, these save-while-active methods do require additional recovery procedures.

IBM highly recommends that you use these procedures only for objects you are protecting with

journaling or commitment control. See the Save-outage time elimination and Considerations for recovery

procedures after eliminating save-outage time topics for information about how the save-while-active

function eliminates your save-outage time.

Recommended procedures for eliminating save-outage time

This information contains general instructions for save and restore operations when you use save-while

active. You should adapt the steps in these instructions for your specific needs.

v Recommended procedure to eliminate save-outage time

v Monitoring your save-while-active operation

v Considerations for recovery procedures after eliminating save-outage time

v Recommended recovery procedures after eliminating save-outage time

Examples for eliminating save-outage time

This information contains specific examples of save and restore operations for save-while-active.

v Example: Eliminating save-outage time for libraries

v Example: Saving objects with partial transactions

v Example: Eliminating save-outage time for a directory

v Example: Restoring libraries after eliminating save-outage time

v Example: Restoring objects with partial transactions

v Example: Restoring a directory after eliminating save-outage time

Recommended procedure to eliminate save-outage time

This procedure outlines how you can use the save-while-active function to eliminate save-outage time.

You will not end the application jobs.

1. Start the save-while-active operation for the objects. You can do this specifying (SAVACT(*SYNCLIB))

for libraries or (SAVACT(*SYNC)) for directories on the save command.

2. When you receive the message CPI3712 (for SAVACT(*SYNCLIB)) or CPI3710 (for SAVACT (*SYNC)),

no additional lock conflicts for objects or jobs with uncommitted transactions occur.

3. If checkpoint processing does not complete for the objects you are saving, the message queue

specified for the SAVACTMSGQ parameter receives the message CPI3711 or message CPI3722 and the

save operation ends.

4. Objects with a lock conflict still allow checkpoint processing to complete, and the save operation

continues. However, the server does not save objects with a lock conflict.

5. The save-while-active operation ends.

6. For every journaled object in the save-while-active request, save each attached journal receiver that

the save-while-active operation did not save.

120 iSeries: Systems Management Back up your server

|

|

Monitor your save-while-active operation

Do the following procedures as they apply if you are using the save-while-active function to eliminate

your save-outage time.

Checking for lock conflicts

1. During checkpoint processing, look for possible lock conflicts by monitoring the save-while-active job.

A status of LCKW on the Work Active Jobs (WRKACTJOB) display identifies a lock conflict. See “The

wait time (SAVACTWAIT) parameter” on page 116 for information on controlling the amount of time

that server spends waiting for locks.

2. If a lock conflict exists for a particular object, identify the job that holds the conflicting lock with the

Work with Object Locks (WRKOBJLCK) command.

3. Take appropriate steps to have the job release the lock so that the save-while-active job can continue

and perform the save for that particular object.

4. If a save-while-active request does not save a particular objects due to lock conflicts, resolve all lock

conflicts.

5. Issue the entire save-while-active request again. You should not just re-save the objects that had a lock

conflict. Otherwise objects you saved in the two save-while-active requests will not be in a consistent

state each other. This situation can lead to a complex recovery procedure.

Monitoring save-while-active operations for objects under commitment control

1. During checkpoint processing, if changes to the objects you are saving are made under commitment

control and *NOCMTBDY is not used for the SAVACTWAIT pending record changes value, monitor

the QSYSOPR message queue for CPI8365 messages.

CPI8365 messages indicate that the jobs have commitment definitions that are preventing the

save-while-active job from proceeding. The QSYSOPR message queue only receives CPI8365

informational messages if you specify the SAVACTWAIT time to be at least 30 seconds.

Note: See “The wait time (SAVACTWAIT) parameter” on page 116 for information on controlling the

amount of time that elapses while waiting for commitment definitions to reach a commitment

boundary.

2. Take the appropriate steps, as outlined in the recovery portion of the CPI8365 message, to bring all

commitment definitions for a job to a commitment boundary.

3. The save-while-active request ends if you cannot reach a commitment boundary for a particular

commitment definition.

4. Depending upon the type of uncommitted changes one of the following happens:

v The job log receives CPF836C messages.

v The QSYSOPR message queue receives CPI8367 messages.

In either case, the messages contain the job names that had commitment definitions that prevented the

save-while-active request for the library.

Recommended recovery procedures after eliminating save-outage time

If you perform save-while-active operations to eliminate save outage time and you specified

*NOCMTBDY for the SAVACTWAIT pending record changes value, you can be left with objects that are

saved with partial transaction. It is recommended that you use Backup, Recovery, and Media Services

(BRMS) to automate your backup and recovery operations. BRMS automatically applies changes to

objects with partial transactions and restores them to a usable state. For more detailed information see the

BRMS topic or the Example: Restoring objects with partial transactions topic.

Chapter 6. Save your server while it is active 121

The following provides some recommended recovery procedures after restoring from the

save-while-active media. The following procedure is a recommendation only. Your recovery procedures

may need to be somewhat different depending upon your applications and your particular application

dependencies.

The recovery for journaled objects may include Apply Journaled Changes (APYJRNCHG) and Remove

Journaled Changes (RMVJRNCHG) operations. The following recommendation uses the APYJRNCHG

command exclusively. The APYJRNCHG command is the most common recovery operation that brings

journaled objects to application boundaries. However, you can use the RMVJRNCHG command instead

of the APYJRNCHG to bring the journaled objects to an application boundary. Use the RMVJRNCHG

command if you are removing changes from the journaled object. You can use the RMVJRNCHG

command if you are journaling before images for the journaled object. See Journal Management for more

information about how to apply and remove journaled changes.

If you need to use the APYJRNCHG command for the recovery, you must specify a known application

boundary for either the ending sequence number (TOENT) parameter or the ending large sequence

number (TOENTLRG) parameter but not both. Specify the FROMENTLRG parameter regardless of

whether all objects reached a checkpoint together. You must run multiple APYJRNCHG commands if the

objects are journaled to different journals.

The following steps give a general recommendation to follow for recovery procedures:

 1. If some of the objects you are restoring are journaled objects, make sure that the necessary journals

are on the server.

 2. If all necessary journals are not on the server, restore the journals first. The server automatically

restores the journals first if both items below are true:

v The journals are in the same library as the objects you are restoring.

v You used the same save request to save the journals and the objects.

 3. Restore objects from the save-while-active media.

 4. If some of the objects restored are journaled objects, restore any required journal receivers that do

not already exist on the server.

a. Start by restoring receivers that contain the start of save journal entries for the journaled objects.

b. Continue restoring receivers until you restore the receiver that contains the journal entry that is

the desired application boundary. These receivers need to be online for each of the journals used

to journal the restored objects.

 5. If all of the application-dependent objects are journaled, skip to step 9. If only some or none of the

application-dependent objects are journaled, go to step 6.

 6. If some application-dependent objects are not journaled objects, and one of the following scenarios is

true, go to step 7. Otherwise, go to step, 8.

a. All of the objects are in the same library and are saved using SAVACT(*LIB).

b. All objects in all of the libraries are saved using SAVACT(*SYNCLIB).

 7. You can perform the recovery procedures in “Example: Restore libraries after reducing save-outage

time” on page 119.

All of the objects reached a checkpoint together and the restored objects are in a consistent state in

relationship to each other. However, if you need to bring the objects forward to some defined

application boundary, you can only use the APYJRNCHG command for the journaled objects. For

objects that are not journaled, you must perform user-defined recovery procedures.

 8. If neither of the scenarios in 6 are true, then the objects are not saved in a consistent state in

relationship to each other. Use the APYJRNCHG command to bring the journaled objects forward to

some common application boundary. For objects that are not journaled, you must perform

user-defined recovery procedures.

 9. If all of the application-dependent objects are journaled, and all of the application-dependent objects

are under commitment control, skip to step 11 on page 123. Otherwise, go to step 10 on page 123.

122 iSeries: Systems Management Back up your server

|
|
|
|
|

|
|

|

|

|
|

|
|
|
|

|
|
|
|

|

10. If all application-dependent objects are journaled objects but all of the changes made to the objects

are not made under commitment control, then you must use APYJRNCHG command to bring all of

the objects to an application boundary.

11. If all of the application-dependent objects are under commitment control and the objects exist in

different libraries go to step 12. Otherwise, go to step 13.

12. If the objects exist in different libraries, then the objects restored are at commitment boundaries.

However, not all of the objects will be at the same common commitment boundary. Bring the objects

to the same common commitment boundary with the APYJRNCHG command. Specify the

CMTBDY(*YES) parameter to bring the objects forward to some common application boundary.

By specifying CMTBDY(*YES), you ensure that the apply operation starts on a commitment

boundary. You also ensure that the server applies complete transactions up through the sequence

number that you specified to correspond with your application boundary.

13. If all application-dependent objects are journaled objects that exist in the same library, and the files

are only updated under commitment control, the server restores the files as they existed at some

common commitment boundary when you saved the data.

Use the APYJRNCHG command specifying the CMTBDY(*YES) parameter to bring the files forward

to some defined application boundary if one of the following is true:

v The common commitment transaction boundary is not an application boundary.

v Additional transactions exist in the journal that you want to apply to the objects.

By specifying CMTBDY(*YES), you can ensure that the apply operation starts on a commitment

boundary. You also ensure that the server applies complete transactions up through the specified

sequence number that corresponds to your application boundary.

If the commitment boundary is an application boundary, then no additional recovery procedures are

necessary.

Example: Eliminate save-outage time for libraries

This example shows a typical use of the save-while-active function to eliminate a save-outage time. Your

exact use of the function may differ, based on your specific application requirements.

This example uses two libraries, LIB1, and LIB2. Both libraries contain only journaled objects and the

journals for those objects. The changes made to the journaled objects may or may not be made under

commitment control.

This example demonstrates a save-while-active operation that does not end the applications that are

making changes to the objects in these libraries. Not ending the applications introduces additional restore

considerations for the recovery operation after you restore the objects from the save-while-active media.

Eliminate the save-outage time with the following steps:

1. Submit the following command as an individual batch job:

SAVLIB LIB(LIB1 LIB2) DEV(TAP01) SAVACT(*SYNCLIB) +

 SAVACTWAIT(600) +

 SAVACTMSGQ(QSYSOPR) +

 ACCPTH(*YES)

Note: You can also use the SAVOBJ or SAVCHGOBJ commands, depending on your specific needs.

The server waits 10 minutes, as specified by the SAVACTWAIT parameter, to resolve each lock conflict

and for any active commitment definitions to reach a commitment boundary during checkpoint

processing.

By specifying ACCPTH(*YES), you are also saving access paths for the logical files. Access paths, in

most cases, will not be built after restoring the files from this save media.

The recovery procedures needed when restoring objects from this media are dependent upon each of

the database members in LIB1 and LIB2 being updated with the timestamp of this save operation.

Chapter 6. Save your server while it is active 123

2. When checkpoint processing is complete, QSYSOPR receives message CPI3712 as specified by the

SAVACTMSGQ parameter. Until the QSYSOPR message queue receives the CPI3712 message, monitor

lock conflicts that the save-while-active job may encounter.

3. Wait for the save-while-active job to complete.

4. After the batch job has completed, verify that all of the required objects were saved. If lock conflicts

prevented some of the objects from being saved, you should issue the original save command again

after resolving any and all lock conflicts.

5. Save the receiver containing the earliest start of save entry from each journal being used to journal the

objects in libraries LIB1 and LIB2. You can get the earliest receiver from the OUTFILE on the save

command. If the attached journal receivers do not reside in library LIB1 or LIB2, then you must issue

separate save requests to save each of the attached receivers.

Save all of the attached receivers with the following command. Multiple save commands may be

necessary for this step.It is not necessary to use the save-while-active function when saving journal

receivers. The following command defaults to SAVACT(*NO).

SAVOBJ OBJ(attached-receiver) +

 LIB(attached-receiver-library) +

 OBJTYPE(*JRNRCV) +

 DEV(TAP01)

Example: Eliminate save-outage time for a directory

This example shows a typical use of the save-while-active function to eliminate save-outage time in a

directory. Your exact use of the function may differ, based on your specific application requirements.

This example uses the directory, MyDirectory. MyDirectory contains only journaled objects.

This example demonstrates a save-while-active operation that does not end the applications that are

making changes to the objects in this directory. Not ending the applications introduces additional restore

considerations for the recovery operation after you restore the objects from the save-while-active media.

Eliminate the save-outage time with the following steps:

1. Submit the following command as an individual batch job:

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’) UPDHST (*YES) SAVACT(*SYNC) +

 SAVACTMSGQ(QSYS.LIB/LIB1.LIB/MSGQ1.MSGQ) +

2. When checkpoint processing is complete for the directory, the message queue receives the message

CPI3712, as specified by the SAVACTMSGQ parameter. Until the message queue, MSQ1, receives the

CPI3712 message, monitor lock conflicts that the save-while-active job may encounter.

3. Wait for the save-while-active job to complete.

4. After the batch job has completed, verify that all of the required objects were saved. If lock conflicts

prevented some of the objects from being saved, you should issue the original save command again

after resolving any and all lock conflicts.

5. Save the attached receiver of each journal being used to journal the objects in directory MyDirectory.

Save all of the attached receivers with a command such as the one below. Multiple save commands

may be necessary for this step. It is not necessary to use the save-while-active function when saving

journal receivers. The following command defaults to SAVACT(*NO).

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/QSYS.LIB/MYLIB.LIB/JRNR*.JRNRCV’)

Example: Saving objects with partial transactions

This example shows a typical use of the save-while-active function to eliminate save-outage time by not

waiting for commitment boundaries. Your exact use of the function may differ, based on your specific

application requirements.

124 iSeries: Systems Management Back up your server

|

|
|
|

This example uses a checking and savings account. Both libraries contain journaled objects and the

journals for those objects. The changes may or may not be made under commitment control.

This example demonstrates a save without waiting for commitment boundaries and does not end the

applications that are making changes to the objects that are in these libraries. Not ending the applications

introduces additional restore considerations for the recovery operation after you restore the objects from

the media.

Use the following steps to eliminate save-outage time without waiting for commitment boundaries:

1. Submit the following command before the transaction is ended:

SAVLIB LIB(CHK SAV) DEV(TAP01) SAVACT(*SYNCLIB) +

 SAVACTWAIT(30 *NOCMTBDY 30) +

 SAVACTMSGQ(QSYSOPR) +

 ACCPTH(*YES)

Note: You can also use the SAVOBJ or SAVCHGOBJ commands, depending on your specific needs.

The server waits 30 seconds, as specified by the SAVACTWAIT parameter to resolve each lock conflict

during checkpoint processing. The objects will not be saved if lock conflicts are not resolved within

the specified time.

By specifying ACCPTH(*YES), you are also saving access paths for the logical files. Access paths, in

most cases, will not be built after restoring the files from this save media.

The recovery procedures needed when restoring objects from this media are dependent upon each of

the database members in the CHK and SAV being updated with the time stamp of this save

operation.

2. When checkpoint processing is complete, QSYSOPR receives message CPI3712 as specified by

SAVACTMSGQ parameter. Until the QSYSOPR message queue receives the CPI3712 message, monitor

lock conflicts that the save-while-active job may encounter.

3. Wait for the save job to complete.

4. After the batch job has completed, verify that all of the required objects were saved. If any objects

were saved in a partial state, the files must be either rolled forward or backward to a consistent state

before they can be used.

5. Save the appropriate receivers of each journal being used to journal the objects in libraries CHK and

SAV. You must include the receivers to be saved starting with the receiver containing the start of

commit entry for any transactions which were open when the save checkpoint processing took place

through the attached receiver. The save OUTFILE will indicate the name of the earliest receiver for

each object which will need to be available to use the APYJRNCHG command during the recovery

process. You must issue a separate save request to save these receivers if these receivers do not exist

in library CHK or SAV

Note: It is highly recommended that you save all of the attached receivers with the following

command.

Multiple save commands may be necessary for this step. Note that it is not necessary to use the

save-while-active function when saving journal receivers. The following command defaults to

SAVACT(*NO).

SAVOBJ OBJ (attached-receiver)+

LIB (attached-receiver-library)+OBJTYPE(*JRNRCV)+DEV(TAP01)

Example: Restore libraries after eliminating save-outage time

This example shows a typical restore procedure after you eliminate save-outage time in a library. Your

exact use of the function may differ, based on your specific application requirements.

Perform the following steps when restoring libraries LIB1 and LIB2:

1. Restore the two libraries with the following commands:

Chapter 6. Save your server while it is active 125

|
|

|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|

RSTLIB SAVLIB(LIB1) DEV(TAP01)

RSTLIB SAVLIB(LIB2) DEV(TAP01)

If the journals still exist on the system, they are not restored. That is not a problem.

If they did not exist, the server will restore the journal objects before the other objects.

At the completion of these restore commands, the objects exist on the server, but they will not be in a

consistent state in relationship to each other.

2. Restore the necessary journal receivers that were attached at the time the libraries were saved. If the

journal receivers are in libraries other than LIB1 or LIB2 at the time of the save and they do not

currently exist on the server, use the following restore command to restore the receivers:

RSTOBJ OBJ(attached-receiver-at-save-time) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

If the attached receivers were in LIB1 or LIB2 when you saved the data and they did not exist prior to

the RSTLIB operation, they were restored as part of that RSTLIB operation.

3. Determine a point in time, or application boundary, in which to bring the objects in LIB1 and LIB2.

This way all of the objects are in a consistent state in relationship to each other. After determining the

desired application boundary, you might need to restore additional journal receivers. If you need to

restore additional journal receivers, but the receivers are not online, restore them with the following

restore command. Multiple restore commands may be necessary for this step:

RSTOBJ OBJ(other-needed-receivers) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

The Work with Journal Attributes (WRKJRNA) and Display Journal (DSPJRN) commands can be

helpful in finding the application boundary.

You can use the WRKJRNA command to determine the appropriate range of receivers you need for

the ensuing Apply Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command

to locate the exact sequence number that identifies the desired application boundary. If multiple

journals are involved, you must locate the same application boundary (most likely identified by the

timestamp) in each journal. You must also note the appropriate journal sequence number.

4. Bring the objects forward to a specific application boundary with one of the following Apply

Journaled Changes (APYJRNCHG) commands. Different variations of the APYJRNCHG command

may be appropriate based on the given criteria.

If any objects received changes during the save operation, and they were under commitment control,

the commitment boundaries will be preserved on the following APYJRNCHG commands. If you do

not want the commitment control boundaries preserved, then you specify CMTBDY(*NO) on the

following APYJRNCHG commands:

a. Use the commands below to apply the journaled changes to the objects if the following is true:

v The journaled objects for which changes are to be applied were saved in V5R3.

v You did not restore the journal (which is not a problem) because the objects were being restored

to the system from where they were saved.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB1/*ALL)) +

 TOENT(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB2/*ALL)) +

 TOENT(seq#-for-application-boundary)

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

Note that the TOENT sequence number is very likely different for each journal in LIB1 and LIB2,

but they all identify a common application boundary.

126 iSeries: Systems Management Back up your server

b. Use the commands below to apply the journaled changes to the objects if the following is true:

v The objects were saved prior to V5R3.

v You restored the journal.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB1/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 TOENT(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((LIB2/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 TOENT(seq#-for-application-boundary)

In the situation where the journal is restored, and the journaled objects for which changes are

going to be applied were saved prior to V5R3, the server cannot determine the correct receiver

range. Therefore, the correct range of receivers must be specified on the RCVRNG parameter. Note

that the attached receiver at the time that the libraries were saved is the specified starting journal

receiver.

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

Note that the TOENT sequence number is very likely different for each journal in LIB1 and LIB2,

but they all identify a common application boundary. If the journaled objects for which changes

are going to be applied were saved in V5R3 or later, then the server can determine the correct

receiver range when the default of RCVRNG(*LASTSAVE) is used. In this situation, the apply

command from step a works.

c. If your objects were saved prior to V5R3 and the save-while-active media used does not represent

the most recent save of the objects specifying UPDHST(*YES), do the following commands.

1) Use the DSPJRN command to determine the sequence number of the start-of-save journal entry

for each object.

2) Issue an individual APYJRNCHG command for each of the objects.

The following example demonstrates such an APYJRNCHG command:

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((filelib/filename filembr)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(seq#-for-start-of-save-entry) +

 TOENT(seq#-for-application-boundary)

If you are prior to V5R3 and the most recent save of the objects are not being used,

FROMENT(*LASTSAVE) cannot be specified on the APYJRNCHG commands. An individual

sequence number must be specified for each of the objects in libraries LIB1 and LIB2.

Some of the APYJRNCHG commands could specify multiple objects if there is a continuous series

of start-of-save entries in the journal. The members identified by the continuous series of

start-of-save journal entries could be applied to with a single APYJRNCHG command by

specifying the earliest sequence number of all the start-of-save entries in the continuous series for

the FROMENT parameter. If you are using V5R3, use the *LASTSAVE value in the FROMENT

parameter.

Example: Restoring objects with partial transactions

If you perform save-while-active operations that can result in objects that are saved with partial

transactions, it is recommended that you use Backup, Recovery, and Media Services (BRMS). You can use

Chapter 6. Save your server while it is active 127

|
|

|
|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

BRMS to automate your backup and recovery operations. BRMS automatically applies changes to objects

with partial transactions and restores them to a usable state. For more detailed information on BRMS see

Backup, Recovery and Media Services.

If an object is saved with partial transactions, FROMENT(*LASTSAVE) will be required when applying or

removing journaled changes on the restored version of the object.

When you use the character-based interface to restore objects with partial transactions, perform the

following steps to restore libraries CHK and SAV:

1. Restore the two libraries with the following commands:

RSTLIB SAVLIB(CHK) DEV(TAP01)

RSTLIB SAVLIB(SAV) DEV(TAP01)

If the journals still exist on the system, they are not restored. However, this is not a problem.

If they did not exist, the server will restore the journal objects before the other objects.

2. Restore the earliest receiver as specified by the outfile. If the journal receivers are in libraries other

than CHK or SAV at the time of the save and they do not currently exist on the server, use the

following restore command to restore the receivers:

RSTOBJ OBJ(attached-receiver-at-save-time) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

 OUTPUT(*OUTFILE)OUTFILE(lib/file)

If the attached receivers were in CHK or SAV when you saved the data and they did not exist prior to

the RSTLIB operation, they were restored as part of that RSTLIB operation

3. Determine a point in time, or application boundary, in which to bring the objects in CHK and SAV.

This way all of the objects are in a consistent state in relationship to each other. After determining the

desired application boundary, you might need to restore additional journal receivers. You can use the

WRKJRNA command to determine the appropriate range of receivers you need for the ensuing Apply

Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command to locate the exact

sequence number that identifies the desired application boundary. If multiple journals are involved,

you must locate the same application boundary (most likely identified by the timestamp) in each

journal. You must also note the appropriate journal sequence number. If you need to restore

additional journal receivers, but the receivers are not online, restore them with the following restore

command. Multiple restore commands may be necessary for this step:

RSTOBJ OBJ(other-needed-receivers) +

 SAVLIB(receiver-library) +

 DEV(TAP01)

The Work with Journal Attributes (WRKJRNA) and Display Journal (DSPJRN) commands can be

helpful in finding the application boundary.

You can use the WRKJRNA command to determine the appropriate range of receivers you need for

the ensuing Apply Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command

to locate the exact sequence number that identifies the desired application boundary. If multiple

journals are involved, you must locate the same application boundary (most likely identified by the

timestamp) in each journal. You must also note the appropriate journal sequence number.

4. Bring the objects forward to a specific application boundary with one of the following Apply

Journaled Changes (APYJRNCHG) commands. Different variations of the APYJRNCHG command

may be appropriate based on the given criteria.

If any objects received changes during the save operation, and they were under commitment control,

the commit boundaries will be preserved on the following APYJRNCHG commands. If you do not

wish to have the commitment control boundaries preserved, then you would need to specify

CMTBDY(*NO) on the following APYJRNCHG commands.

a. Use the commands below to apply the journaled changes to the objects (completed or partial) if

the following is true:

128 iSeries: Systems Management Back up your server

|
|
|

|
|

|
|

|

|
|
|

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

v The objects were saved prior to V5R3.

v You did not restore the Journal because the objects were being restored to the system from

where they were saved.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 FROMENT(*LASTSAVE) +

 OBJ((CHK/*ALL)) +

 TOENTLRG(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 FROMENT(*LASTSAVE) +

 OBJ((SAV/*ALL)) +

 TOENTLRG(seq#-for-application-boundary)

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENTLRG parameter) that identifies the desired application boundary.

Note that the TOENTLRG sequence number is very likely different for each journal in CHK and

SAV, but they all identify a common application boundary.

b. Use the commands below to apply the journaled changes to the objects (completed or partial) if

the following is true:

v The objects were saved prior to V5R3.

v You restored the journal.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((CHK/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(*LASTSAVE) +

 TOENTLRG(seq#-for-application-boundary)

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((SAV/*ALL)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(*LASTSAVE) +

 TOENTLRG(seq#-for-application-boundary)

In the situation where the journal is restored, and the journaled objects for which changes are

going to be applied were saved prior to V5R3, the server cannot determine the correct receiver

range. Therefore, the correct range of receivers must be specified on the RCVRNG parameter. Note

that the attached receiver at the time that the libraries were saved is the specified starting journal

receiver. If the journaled objects for which changes are going to be applied were saved in V5R3 or

later, then the server can determine the correct receiver range when the default of

RCVRNG(*LASTSAVE) is used. In this situation, the apply command from step a is correct.

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENTLRG parameter) that identifies the desired application boundary.

Note that the TOENTLRG sequence number is very likely different for each journal in CHK and

SAV, but they all identify a common application boundary.

c. Do the following commands if your objects were saved prior to V5R3 and the save-while-active

media used does not represent the most recent save of the objects specifying UPDHST(*YES).

1) Use the DSPJRN command to determine the sequence number of the start-of-save journal entry

for each object.

2) Issue an individual APYJRNCHG command for each of the objects.

The following example demonstrates such an APYJRNCHG command:

Chapter 6. Save your server while it is active 129

|

|
|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJ((filelib/filename filembr)) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(seq#-for-start-of-save-entry) +

 FROMENT(*LASTSAVE) +

 TOENT(seq#-for-application-boundary)

If you are not using V5R3 and the most recent save of the objects is not being used,

FROMENT(*LASTSAVE) cannot be specified on the APYJRNCHG commands. An individual

sequence number must be specified for each of the objects in libraries CHK and SAV

Some of the APYJRNCHG commands could specify multiple objects if there is a continuous series

of start-of-save entries in the journal. The members identified by the continuous series of

start-of-save journal entries could be applied to with a single APYJRNCHG command by

specifying the earliest sequence number of all the start-of-save entries in the continuous series for

the FROMENT parameter. If you are using V5R3, use the *LASTSAVE value in the FROMENT

parameter.

Example: Restore a directory after eliminating save-outage time

This example shows a typical restore procedure after you eliminate save-outage time in a directory. Your

exact use of the function may differ, based on your specific application requirements.

Perform the following steps when restoring directory MyDirectory:

1. Restore the directory with the following command:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’/MyDirectory’)

At the completion of these restore commands, the objects exist on the server, but they will not be in a

consistent state in relationship to each other.

2. Restore the necessary journal receivers that were attached at the time the directory was. Use, a

command such as the following to restore the receivers:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’receiver-path’)

3. Determine a point in time, or application boundary, in which to bring the objects in MyDirectory. This

way all of the objects are in a consistent state in relationship to each other. After determining the

desired application boundary, you might need to restore additional journal receivers. If you need to

restore additional journal receivers, but the receivers are not online, restore them with a restore

command such as the following. Multiple restore commands may be necessary for this step:

RST DEV(’/QSYS.LIB/TAP01.DEVD’) +

 OBJ(’receiver-path’)

The Work with Journal Attributes (WRKJRNA) and Display Journal (DSPJRN) commands can be

helpful in finding the application boundary.

You can use the WRKJRNA command to determine the appropriate range of receivers you need for

the ensuing Apply Journaled Changes (APYJRNCHG) operations. You can use the DSPJRN command

to locate the exact sequence number that identifies the desired application boundary. If multiple

journals are involved, you must locate the same application boundary (most likely identified by the

timestamp) in each journal. You must also note the appropriate journal sequence number.

4. Bring the objects forward to a specific application boundary with one of the following Apply

Journaled Changes (APYJRNCHG) commands. Different variations of the APYJRNCHG command

may be appropriate based on the given criteria.

a. Use the commands below to apply the journaled changes to the objects if the following is true:

v The objects were saved prior to V5R3.

v You did not restore the journal.

v The media used represent the most recent save of the objects

v You saved the objects specifying UPDHST(*YES) on the save command.

130 iSeries: Systems Management Back up your server

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

v If the above conditions are not met but you are using V5R3.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJPATH(/MyDirectory) +

 SUBTREE(*ALL)+

 TOENT(seq#-for-application-boundary)

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

b. Use the commands below to apply the journaled changes to the objects if the following is true

v The objects were saved prior to V5R3.

v You restored the journal.

v The media used represent the most recent save of the objects.

v You saved the objects specifying UPDHST(*YES) on the save command.
APYJRNCHG JRN(jrnlib/jrnname) +

 OBJPATH(/MyDirectory) +

 SUBTREE(*ALL)+

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 TOENT(seq#-for-application-boundary)+

In the situation where the journal is restored, and the journaled objects for which changes are

going to be applied were saved prior to V5R3, the server cannot determine the correct receiver

range. Therefore, the correct range of receivers must be specified on the RCVRNG parameter. The

attached receiver at the time that the directory was saved is the specified starting journal receiver.

If the journaled objects for which changes are going to be applied were saved in V5R3 or later,

then the server can determine the correct receiver range when the default of

RCVRNG(*LASTSAVE) is used. In this situation, the apply command from step a works correctly.

If multiple journals are involved, then repeat these commands for each journal specifying the

correct sequence number (TOENT parameter) that identifies the desired application boundary.

c. If you are not using V5R3, do the following commands if the save-while-active media used does

not represent the most recent save of the objects specifying UPDHST(*YES).

1) Use the DSPJRN command to determine the sequence number of the start of save journal entry

for each object.

2) Issue an individual APYJRNCHG command for each of the objects.

The following example demonstrates such an APYJRNCHG command:

APYJRNCHG JRN(jrnlib/jrnname) +

 OBJPATH(/MyDirectory) +

 RCVRNG(rcv-attached-at-save-time +

 ending-rcv) +

 FROMENT(seq#-for-save or start-of-save-entry) +

 TOENT(seq#-for-application-boundary)

Because the most recent save of the objects is not being used, you cannot specify

FROMENT(*LASTSAVE) on the APYJRNCHG command. You must specify an individual sequence

number for directory MyDirectory

Some of the APYJRNCHG commands could specify multiple objects if there is a continuous series

of save or start-of-save entries in the journal. The objects identified by the continuous series of

save or start-of-save journal entries could be applied to with a single APYJRNCHG command by

specifying the earliest sequence number of all the save or start-of-save entries in the continuous

series for the FROMENT parameter. If you are using V5R3, use the *LASTSAVE value in the

FROMENT parameter.

Chapter 6. Save your server while it is active 131

Considerations for recovery procedures after eliminating save-outage

time

In general, the server cannot preserve application boundaries because they are defined by the application.

It is left up to you to provide for any of the appropriate recovery procedures when you use the

save-while-active function to eliminate your save-outage time.

This topic discusses some of the considerations for save-while-active recovery procedures. Additional

recovery procedures are needed to bring the objects to a consistent state in relationship to each other after

the restore operation is completed. You must determine the exact steps that are required for these

recovery procedures at the time the objects are being saved. The recovery procedures must be performed

after the objects from the save-while-active media are restored, but before the objects are used by any

application.

You need to consider these recovery procedures if you are using the save-while-active function to

eliminate your save-outage time:

If you use commitment control within your application, force one checkpoint during the save

operation, and wait for transaction boundaries

If you specify SAVACT(*SYNCLIB) for the save operation, then all the data is saved with one common

checkpoint. If you use commitment control to define all of the application boundaries and wait for

transaction boundaries during the save operation, the recovery procedure is a basic restore of your

objects.

If you use commitment control within your application, allow multiple checkpoints during the save

operation, and wait for transaction boundaries

If you specify SAVACT(*SYSDFN) or SAVACT(*LIB) for the save operation, then the data is saved with

multiple checkpoints. If you use commitment control to define all of the application boundaries and wait

for transaction boundaries during the save operation, the recovery procedure requires you to apply or

remove journaled changes to reach a common application boundary. See the “Recommended recovery

procedures after eliminating save-outage time” on page 121 for more details on the needed recovery

procedures.

If you use commitment control within your application, force one checkpoint during the save

operation, and do not wait for transaction boundaries

If you specify SAVACT(*SYNCLIB) for the save operation, then the data is saved with one common

checkpoint. If you use commitment control and specify *NOCMTBDY on the SAVACTWAIT parameter

for the save operation, the recovery procedure requires you to apply or remove journaled changes to

complete or rollback your partial transactions and reach commit boundaries. See the “Recommended

recovery procedures after eliminating save-outage time” on page 121 for more details on the needed

recovery procedures.

If you use commitment control within your application, allow multiple checkpoints during the save

operation, and do not wait for transaction boundaries

If you specify SAVACT(*SYSDFN) or SAVACT(*LIB) for the save operation, then the data is saved with

multiple checkpoints. If you use commitment control and specify *NOCMTBDY on the SAVACTWAIT

parameter for the save operation, the recovery procedure requires you to apply or remove journaled

changes to complete partial transactions and bring them to a common application boundary. See the

“Recommended recovery procedures after eliminating save-outage time” on page 121 for more details on

the needed recovery procedures.

If you do not use commitment control but all objects are journaled

132 iSeries: Systems Management Back up your server

|
|
|
|
|
|

If all application-dependent objects are journaled but commitment control is not used, then you can apply

or remove journaled changes. These commands can bring all of the objects to an application boundary

after restoring them from the save-while-active media. However, application boundaries are not recorded

in the journal so you will need to determine where the boundaries are on an object by object basis. When

the journaled object reaches a checkpoint, the journal receiver gets an additional journal entry in

conjunction with the object saved journal entry. The journal entry notes that you used the

save-while-active function to save the object and is used by the APYJRNCHG and RMVJRNCHG

commands as the location to start the operation when the FROMENT(*LASTSAVE) parameter is used. It

is critical that the currently attached journal receiver be saved along with the objects being journaled. If

more than one journal is being used to journal the objects, then all attached receivers must be saved.

Include the request to save the receiver in the same save request as that for the journaled objects. Or save

the receiver in a separate save request after the save of the journaled objects. This save is necessary

because the attached journal receiver will contain the entries that may be required by any apply or

remove journaled changes operation that is part of the recovery when using the save-while-active media.

See the “Recommended recovery procedures after eliminating save-outage time” on page 121 for more

details on the needed recovery procedures.

If commitment control is not used and objects are not journaled

If you do not define your application boundaries you will have to do a restore and do a recovery from an

abnormal end. If you do not know what procedures are required for recovering an abnormal end, then

use the method to “Example: Restore libraries after reducing save-outage time” on page 119.

Chapter 6. Save your server while it is active 133

134 iSeries: Systems Management Back up your server

Chapter 7. Save to multiple devices to reduce your save

window

You can reduce your save window by using multiple devices. When you save to multiple devices you

can use one of two techniques. You can issue a single save operation as one job, or you can issue multiple

save operations as several jobs.

The information contains the details on how to save to multiple devices.

v Set up saves to multiple devices

v Restrictions of saving to multiple devices

Set up saves to multiple devices

When you set up saves to multiple devices, you can perform a single save operation or a multiple save

operation.

Using multiple devices for a single save operation

You can perform a save operation while using more than one media device simultaneously. If you save a

single library, the data that is produced on the save media by these save operations will have a parallel

save format; the data will be spread across the media devices. If you use Backup, Recovery and Media

Services (BRMS), the save format is also parallel.

If you save multiple libraries to more than one media device, the server saves each library to a single

device in serial format. If you use BRMS to save multiple libraries to more than one media device, the

format could be a mixture of parallel and serial formats.

The following shows when the server will use a parallel or serial save.

 Table 41. Parallel and serial saves

Save scenario Using SAVxxx command

2 Using BRMS

Save one library to multiple devices Parallel Parallel

Save multiple libraries to multiple

devices

Serial1 Could be a mixture of parallel and

serial1

1 You can save these libraries in parallel format by creating data area QTEMP/QSRPARFMT. This capability

does not apply if LIB(*ALLUSR), LIB(*IBM), or LIB(*NONSYS) is specified on the SAVLIB command.

2 To save to multiple devices using the SAVxxx commands, you must use a media definition (*MEDDFN).

During a single library parallel save, the server spreads data across a set of tape files, which are media

files. The entire set of these media files are a parallel save/restore file. All of the media files in a single

library parallel save (or restore) operation use the same file label. When you save multiple libraries to

multiple devices in a parallel save operation the libraries have different file labels.

Save (or restore) operations identify a media file by the device (DEV), sequence number (SEQNBR),

volume identifiers (VOL), and file label (LABEL) parameters. These parameters only allow one media file

to be identified. However, a parallel save (or restore) operation uses more than one media file. You can

solve this problem by using a media definition.

© Copyright IBM Corp. 1996, 2005 135

A media definition (*MEDDFN) allows you to identify more than one media file. A media definition

defines the devices, sequence numbers, and volume identifiers that the parallel save operation will use.

(You may also use the media definition to perform a save operation in serial format.) You create a media

definition by using the Create Media Definition (QsrCreateMediaDefinition (ILE) or QSRCRTMD (OPM))

API.

Once you create a media definition, a convenient way to save all of your user libraries to multiple

devices is to specify SAVLIB LIB(*ALLUSR) DEV(*MEDDFN). If you happen to have a particularly large

library that you do not want to save in serial format, you could omit that library and save it individually

in parallel format.

Backup Recovery Media Services/400 (BRMS) provides an easy to use interface that allows you to

perform parallel save operations without creating a media definition. You specify which tape drives to

use in parallel, and BRMS builds and manages the media definition for you. See the BRMS topic for more

information.

Using multiple devices for multiple save operations

When you issue multiple save operations to save different sets of data to different media devices, you

perform concurrent saves. The following scenarios provide some examples of situations when you may

want to perform concurrent saves within the Integrated File System.

v Save the complete IFS structure and all user libraries concurrently:

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) OBJ((’/*’) (’/QSYS.LIB’ *OMIT) (’/QDLS’ *OMIT))

SAVLIB LIB(*ALLUSR) DEV(TAP02)

v Save separate unmounted user-defined file systems concurrently:

SAV DEV(’/QSYS.LIB/TAP01.DEVD’) OBJ((’/dev/udfs-directory/udfs-01.udfs’)

SAV DEV(’/QSYS.LIB/TAP02.DEVD’) OBJ((’/dev/udfs-directory/udfs-02.udfs’)

The following information explains more information on how to use OS/400 save commands to perform

concurrent saves.

v “Save libraries with the SAVLIB command” on page 49 provides an overview of the SAVLIB command.

This allows you to use the “OMITLIB parameter and OMITOBJ parameter for the SAVLIB command”

on page 51.

v “Save objects with the SAVOBJ command” on page 59 provides an overview of the SAVOBJ command.

This allows you to use the SAVOBJ command for “Save multiple objects with the SAVOBJ command”

on page 59.

v “Save only changed objects” on page 60 contains information on how to save changed objects

concurrently.

Restrictions of saving to multiple devices

The devices that you specify in a media definition must be compatible stand-alone tape devices or tape

media library devices. The tape volumes that you specify must have compatible media formats.

Note: Your results may depend on the device type that you use. This is because different device types

may identify different formats for the same media. For example, one 8mm device may identify a

tape as having an FMT7GB format, while a different 8mm device might identify the same tape as

having an FMT5GB format.

You may use a media definition on the following commands and APIs:

 Name API1 Command2

Save Library SAVLIB

Save Object QSRSAVO SAVOBJ

136 iSeries: Systems Management Back up your server

Name API1 Command2

Save Changed Object SAVCHGOBJ

Restore Library RSTLIB

Restore Object RSTOBJ

Create Media Definition QsrCreateMediaDefinition

QSRCRTMD

Delete Media Definition QsrDeleteMediaDefinition

QSRDLTMD

DLTMEDDFN

Retrieve Media Definition QsrRetrieveMediaDefinition

QSRRTVMD

1 For more information regarding these APIs, refer to System API reference.

2 For more information regarding these CL commands, refer to System CL Command reference.

You must have *USE authority to the media definition, *EXECUTE authority to the media definition

library, and normal save or restore authority for each device you specify in the media definition.

You cannot use a media definition if the save or restore command or API specifies any of the following:

v Volume identifiers

v A sequence number

v A save file

v An optical file

You cannot use a media definition if your server has been enabled for CD-ROM premastering by using

the Handle CD-ROM Premastering State (QlpHandleCDState) API.

Chapter 7. Save to multiple devices to reduce your save window 137

138 iSeries: Systems Management Back up your server

Chapter 8. Backup programming techniques

This topic provides you with some backup considerations, techniques, and examples for programming

tactics that can assist you in your backup process. See the following topics for more information:

v Consider job recovery

v Interpret output from Save (SAV) and Restore (RST) commands

v Interpret output from save commands

v Example: Retrieve the device name from save completion messages

v Example: Display status messages when saving

Note: Read the “Code disclaimer information” on page 2 for important legal information.

Consider job recovery

Job recovery and starting again should be a basic part of application design. Applications should be

designed to handle:

v Unexpected data problems, such as alphabetic data occurring where numeric data is expected

v Operator problems, such as operators taking the wrong option or canceling the job

v Equipment problems, such as workstation, disk unit, and communication line failures

Job recovery procedures should ensure the integrity of the user’s data and allow for easy starting of the

interrupted application. Journaling and commitment control can be used in application design to help in

job recovery. Recovery procedures should be transparent to the end users.

Interactive job recovery
If you are running a data entry job or one that updates a single file, it is unlikely that you need to plan

an extensive recovery strategy. The operators can inquire against the file to determine which record was

last updated and then continue from that point.

To recover from inquire-only jobs, the workstation operators simply start where they left off. When using

update transactions for many files, consider using a journal or commitment control. The system

automatically recovers journaled files during the initial program load (IPL) following an abnormal end of

the system, or during make available (vary on) processing of an independent ASP after an abnormal vary

off. In addition, the journal can be used for user-controlled forward or backward file recovery. There are

other object types in addition to database physical files that you can protect with journaling.

Commitment control, using the file changes recorded in the journal, provides automatic transaction and

file synchronization. During job end, the system automatically rolls back file updates to the beginning of

the transaction. In addition, the commitment control notify object can assist you in restarting the

transaction.

When designing an interactive application, consider the possibility that you can experience equipment

problems with your workstations and communications lines. For example, suppose your computer

system loses power. If you have an uninterruptible power supply installed to maintain power to the

processing unit and disk units, your system remains active. However, in this example, your workstations

lost power. When your programs attempt to read or write to the workstations, an error indication is

returned to the program. If the application is not designed to handle these errors, the system can spend

all its time in workstation error recovery.

You should design your interactive applications to look at error feedback areas and handle any errors

indicated. If the application handles the errors and stops, the system resource is not used to do

© Copyright IBM Corp. 1996, 2005 139

|

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

nonproductive error recovery. Examples of using error feedback areas and error recovery routines can be

found in the programming languages reference manuals.

Batch job recovery
Print-only batch jobs normally do not need special recovery to start again. Running the program again

may be adequate.

Batch jobs that perform file updates (add, change, or delete actions) present additional considerations for

starting again and recovery. One approach to starting again is to use an update code within the record.

As a record is updated, the code for that record can also be updated to show that processing for that

record is complete. If the job is started again, the batch program positions itself (as a result of the update

code) to the first record that it had not processed. The program then continues processing from that point

in the file.

Another way to start batch processing again is to save or copy the file before starting the job. You can use

one of the following commands to save or copy the file:

v Save Object (SAVOBJ)

v Copy File (CPYF)

Then, if you have to start again, restore or copy the file to its original condition and run the job again.

With this approach, you need to ensure that no other job is changing the files. One way to ensure this is

to get an exclusive lock on the file while the job is running. A variation of this approach is to use the

journal. For example, if starting again is required, you could issue the Remove Journal Change

(RMVJRNCHG) command to remove changes to the files. Then, run the job again against the files.

If your batch job consists of a complex input stream, you probably want to design a strategy for starting

again into the input stream. Then, if the batch job needs to be started again, the job determines from

what point the stream continues.

Commitment control also can be used for batch job recovery. However, if you plan to use commitment

control for batch jobs, consider that the maximum number of record locks allowed in a commit cycle is

4 000 000. Therefore, you may need to divide the batch job into logical transactions. For example, if your

batch program updates a master file record followed by several detail records in another file, each of

those sets of updates can represent a logical transaction and can be committed separately. Locks are held

on all records changed within a commit cycle. Therefore, changed data is made available more quickly if

your batch job is divided into small, logical transactions.

Journaling can also be used to assist in batch job recovery just as it can be for interactive jobs.

Interpret output from Save (SAV) and Restore (RST) commands

When you use the Save (SAV) command or the Restore (RST) command, you can direct output to a

stream file or to a user space. This topic describes the output that these commands create. If data already

exists in the stream file or user space that you specify, the command writes over that data. It does not

append the new data to any existing data.

To specify a stream file, you must have *W authority to the stream file and *R authority to the directory

for the stream file.

To specify a user space, you must have *CHANGE authority to the user space and *USE authority to the

library. The server needs an *EXCLRD lock on the user space.

The output for the Save (SAV) command and the Restore (RST) command consists of the following types

of entries or components of entries:

v “Entry header information” on page 142

140 iSeries: Systems Management Back up your server

|
|

|
|
|

|
|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|

|
|

|
|

|

v “Command information entries” on page 142

v “Directory information entries” on page 144

v “Object link information entries” on page 145

v “Trailer information entry” on page 148

Each section describes the entry or entry component and its associated format.

See the following topics for additional information about the fields used and entries written by the save

and restore commands.:

v “Field descriptions” on page 148

v “Output sequence”

Output sequence

The following table shows the sequence of entries in the output when you specify INFTYPE(*ALL) or

INFTYPE(*ERR):

 Table 42. Output sequence 1–SAV and RST commands

Command information

Directory information for directory 1

Object link information for object line 1

. . .

Object link information for object link N

Directory information for directory 2

Object link information for object line 1

. . .

Object link information for object link N

Directory information for directory N

Object link information for object line 1

. . .

Object link information for object link N

Trailer information

When you specify INFTYPE(*ALL), the output contains an object link entry for all object links (both

successful and unsuccessful). When you specify INFTYPE(*ERR), the output contains an object link entry

only for unsuccessful links.

The following table shows the sequence of entries in the output when you specify

INFTYPE(*SUMMARY):

 Table 43. Output sequence 2–SAV and RST commands

Command information

Directory information for directory 1

Directory information for directory 2

Directory information for directory

Trailer information

When you retrieve information from the output format for object links, you must use the entry length

that the server returns in the header information format of each entry. The size of each entry might

include padding at the end of the entry. If you do not use the entry length, the result might not be valid.

The entry length can be used to find the next entry. The trailer entry is always the last entry.

Chapter 8. Backup programming techniques 141

|

|

|

|

|

|
|

|

|

|

|
|

||

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

||

|

|

|

|

|
|

|
|
|
|

Entry header information

When a Save (SAV) command or the Restore (RST) command is run, the output can be directed to a

stream file or user area. The content of the output is divided into entries. Each entry in the output has an

associated header. This header contains data that specifies the length of the entry and the type of the

entry. Each type of entry has its own format. This header information allows the content of the output to

be divided into entries that have specific formats. This enables the data in the output to be parsed.

No count of the entries is kept. Instead, the end of an entry is determined by the value of the Entry length

field. An entry may contain variable length elements. This may result in the entry being padded.

The number of entries in the output is variable. Entries will appear one after the other until a trailer entry

is reached. The trailer entry is the last entry in the output.

For each field in the header, an offset is specified in bytes. This offset is relative to the base address of the

header, or the beginning of the first field in the header.

The following table shows the format for the header information in the output created by the SAV or RST

command.

 Table 44. Entry header information output–SAV and RST commands

Offset (bytes) Type

(in bytes) Set by1 Field Decimal Hex

0 0 BINARY(4) S/R Entry type

4 4 BINARY(4) S/R Entry length

 Note:

1. Set by column. The following column values indicate which operations write the content of the field into

the output:

Value Condition

S Save operation writes this field.

R Restore operation writes this field.

S/R Either operation writes this field.

(blank) Neither operation writes this field. The associated field is set to zero for

numeric fields, blank for character fields, or empty for variable-length

character fields.

Command information entries

Command information entries are created in the format described in the following table. The value of the

entry type field in the header determines if the entry associated with the header is a command

information entry.

The server associates a coded character set identifier (CCSID) with all data. This association is maintained

across all save and restore operations.

For each field, an offset is specified in bytes. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

142 iSeries: Systems Management Back up your server

|

|
|
|
|
|

|
|

|
|

|
|

|
|

||

||
|||||

|||||

|||||
|

||||||

||
|

||||

||||

||||

||||

||||
|
|
|

|

|
|
|

|
|

|
|

Table 45. Command information entry output–SAV and RST commands

Offset (bytes)

Type

(in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Device identifier offset

2

12 C BINARY(4) S/R File label offset

3

16 10 BINARY(4) S/R Sequence number

20 14 BINARY(4) S/R Save while active

24 18 BINARY(4) S/R CCSID of data

28 1C BINARY(4) S/R Number of records

32 20 CHAR(10) S/R Command

42 2A CHAR(10) S/R Expiration date

52 34 CHAR(8) S/R Save date/time

60 3C CHAR(10) S/R Start change date

70 46 CHAR(10) S/R Start change time

80 50 CHAR(10) S/R End change date

90 5A CHAR(10) S/R End change time

100 64 CHAR(6) S/R Save release level

106 6A CHAR(6) S/R Target release level

112 70 CHAR(1) S/R Information type

113 71 CHAR(1) S/R Data compressed

114 72 CHAR(1) S/R Data compacted

115 73 CHAR(8) S/R Save System serial number

123 7B CHAR(8) R Restore date/time

131 83 CHAR(6) R Restore release level

137 89 CHAR(8) R Restore system serial number

145 91 CHAR(10) S/R Save active option

 Notes®:

1. Set by column. The following column values indicate which operations write the content of the field into

the output:

Value Condition

S Save operation writes this field.

R Restore operation writes this field.

S/R Either operation writes this field.

Chapter 8. Backup programming techniques 143

||

|
|
|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|

||||||

||
|

||||

||||

||||

||||

(blank) Neither operation writes this field. The associated field is set to zero for

numeric fields, blank for character fields, or empty for variable-length

character fields.

2. Format of device identifier. Find the first entry using the Device identifier offset field to get to the Number

of device identifiers field. The Number of device identifiers field is not repeated.

BINARY(4) (blank) Number of device identifiers

Then, moving to the first device identifier. Each device identifier consists of a length followed by its

name. The device identifier fields are repeated for each device identifier.

BINARY(4) S/R Device identifier length

CHAR(*) S/R Device identifier

3. Format of file label. Find the start of the file label using the File label offset field. The file label fields are

not repeated.

BINARY(4) S/R File label length

CHAR(*) S/R File label

Directory information entries

Directory information entries are created in the format described in the following table. The value of the

Entry type field in the entry header determines if the entry associated with the header is a directory

information entry.

The server associates a coded character set identifier (CCSID) with all data. This association is maintained

across all save and restore operations. The value of the Starting volume identifier is written as Unicode. A

CCSID of 1200 indicates that the field is maintained in Unicode. The CCSID of any field can be found by

using the CCSID of data field from the Command information entry.

For each field, an offset is specified in bytes. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 46. Directory information entry output–SAV and RST commands

Offset (bytes)

Type

(in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Directory identifier offset

2

12 C BINARY(4) S/R Number of object links processed successfully in directory

16 10 BINARY(4) S/R Number of object links processed unsuccessful in

directory

20 14 BINARY(4) S/R Starting volume identifier offset

3

24 18 BINARY(4) S/R Total size (in K) of object links processed successfully in

directory

 Notes:

1. Set by column. The following column values indicate which operations write the content of the field into

the output:

Value Condition

S Save operation writes this field.

144 iSeries: Systems Management Back up your server

||||
|
|

||
|

|||||

||
|

|||||

|||||

||
|

|||||

|||||
|

|

|
|
|

|
|
|
|

|
|

||

|
|
|||||

|||||
|

|||||

|||||

|||||
|

|||||

|||||
|

|

||||||

||
|

||||

||||

R Restore operation writes this field.

S/R Either operation writes this field.

(blank) Neither operation writes this field. This field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

2. Format of directory identifier. Find the start of the directory identifier using the Directory identifier offset

field. The directory identifier consists of a length followed by the directory name. The directory fields are

not repeated.

BINARY(4) S/R Directory identifier length

CHAR(*) S/R Directory identifier

3. Format of starting volume identifier. You can find the first entry using the Starting volume identifier offset

field. The starting volume identifier consists of a length followed by the starting volume identifier. The

starting volume identifier fields are not repeated.

The server stores the starting volume identifier in Unicode. For information on converting this identifier,

see the documentation for the iconv() API in the APIs topic.

BINARY(4) S/R Starting volume identifier length

CHAR(*) S/R Starting volume identifier

Object link information entries

Object link information entries are created in the format described in the following table. The value of the

Entry type field in the entry header determines if the entry associated with the header is an object link

information entry.

The server associates a coded character set identifier (CCSID) with all data including object link names.

This association is maintained across all save and restore operations. The CCSID of any field can be

found by using the CCSID of data field from the Command information entry.

For each field, an offset is specified in bytes. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 47. Object link information entry–output from SAV and RST commands

Offset (bytes)

Type

(in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Object link identifier offset2

12 C BINARY(4) R Object link identifier after restore operation offset3

16 10 BINARY(4) S/R Starting volume identifier offset4

20 14 BINARY(4) S/R Object link error message replacement identifier offset

5

24 18 BINARY(4) S/R Object link size

28 1C BINARY(4) S/R Object link size multiplier

32 20 BINARY(4) S/R ASP at the time of save operation

36 24 BINARY(4) R ASP after restore operation

40 28 CHAR(10) S/R Object link type

50 32 CHAR(8) S/R Save-while-active date/time

Chapter 8. Backup programming techniques 145

||||

||||

||||
|
|

||
|
|

|||||

|||||

||
|
|

|
|

|||||

|||||
|

|

|
|
|

|
|
|

|
|

||

|
|
|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 47. Object link information entry–output from SAV and RST commands (continued)

Offset (bytes)

Type

(in bytes) Set in1 Field Decimal Hex

58 3A CHAR(10) S/R Object link owner at time of save

68 44 CHAR(10) R Object link owner after restore

78 4E CHAR(50) S/R Object link text

128 80 CHAR(1) R Object link security message

129 81 CHAR(1) S/R Object link status

130 82 CHAR(7) S/R Object link error message ID

137 89 CHAR(1) S/R Object link data

138 8A BIN(8) (blank) Reserved

146 92 CHAR(1) S/R ALWCKPWRT

147 93 CHAR(10) S/R ASP device name at time of save operation

157 9D CHAR(10) R ASP device name after restore operation

167 A7 CHAR(1) S In mounted UDFS

168 A8 CHAR(4) (blank) Reserved

172 AC BINARY(4) S/R Journal information required for recovery offset6

176 B0 BINARY(4) S/R Journal receiver information required for recovery offset7

 Notes:

1. Set by column. The following column values indicate which operations write the content of the field into

the output:

Value Condition

S Save operation writes this field.

R Restore operation writes this field.

S/R Either operation writes this field.

(blank) Neither operations writes this field. This field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

 2. Format of object link identifier. Find the start of the object link identifier using the Object link identifier

offset field. An object link identifier consists of a length followed by the object link identifier. The object

link identifier fields are not repeated.

The CCSID of the object link identifier can be found by using CCSID of data field from the Command

information format.

BINARY(4) S/R Object link identifier length

CHAR(*) S/R Object link identifier

146 iSeries: Systems Management Back up your server

|

|
|
|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|

||||||

||
|

||||

||||

||||

||||

||||
|
|
|

|||
|
|

|
|

|||||

|||||
|

3. Format of object link identifier after restore operation. Find the start of the object link identifier after

the restore operation by using the Object link identifier after restore operation offset field. An object link

identifier consists of a length followed by the object link name. The object link identifier fields are not

repeated.

The CCSID of the object link identifier can be found by using CCSID of data field from the Command

information entry. The server stores the object link name in Unicode. For information on converting this

name, see the documentation for the iconv() API in the APIs topic.

BINARY(4) S/R Object link name after restore operation length

CHAR(*) R Object link name after restore operation

 4. Format of starting volume identifier. Find the first entry by using the Starting volume identifier offset field.

The volume identifier consists of a length followed by the starting volume identifier. The volume

identifier fields are not repeated.

BINARY(4) S/R Starting volume identifier length

CHAR(*) S/R Starting volume identifier

 5. Format of object link error message replacement identifier. Find the start of the object link error

message replacement identifier using the Object link error message replacement identifier offset field. An

object link error message consists of a length followed by a name. The object link error message

replacement identifier fields are not repeated.

BINARY(4) S/R Object link error message replacement identifier length

CHAR(*) S/R Object link error message replacement identifier

 6. Format of journal information required for recovery. You can find the start of the entry by using the

Journal information required for recovery offset field. Journal information required for recovery consists of a

length followed by the journal path name. The journal fields are not repeated.

The CCSID of the journal path name can be found by using the CCSID of data field from the Command

information format. For information on converting this name, see the documentation for the iconv() API

in the APIs topic.

BINARY(4) S/R Journal information required for recovery — path name

length

CHAR(*) S/R Journal information required for recovery — path name

 7. Format of journal receiver information required for recovery. Find the start of the entry using the

Journal receiver information required for recovery offset field. Journal receiver information required for

recovery consists of an ASP device name, a length, and the journal receiver path name. The journal

receiver fields are not repeated.

The CCSID of the journal receiver path name can be found by using CCSID of data field from the

Command information format. For information on converting this name, see the documentation for the

iconv() API in the APIs topic.

CHAR(10) S/R Journal receiver information required for recovery — ASP

device name

CHAR(2) (blank) Reserved

BINARY(4) S/R Journal receiver information required for recovery — path

name length

CHAR(*) S/R Journal receiver information required for recovery — path

name

Chapter 8. Backup programming techniques 147

|||
|
|
|

|
|
|

|||||

|||||
|

|||
|
|

|||||

|||||
|

|||
|
|
|

|||||

|||||
|

|||
|
|

|
|
|

|||||
|

|||||
|

|||
|
|
|

|
|
|

|||||
|

|||||

|||||
|

|||||
|
|

Trailer information entry

The trailer information entry is created in the format described in the following table. The Entry type

value in the entry header determines if the entry associated with the header is a trailer information entry.

The trailer information entry is the last entry in the output created by Save (SAV) or Restore (RST)

commands.

For each field, an offset is specified. This offset is relative to the base address of the entry, or the

beginning of the first field in the entry header.

 Table 48. Trailer information entry–output from SAV and RST Commands

Offset (bytes)

Type

(in bytes) Set in1 Field Decimal Hex

0 0 BINARY(8) S/R See the table in Entry header information for more format

details.

8 8 BINARY(4) S/R Volume identifier offset2

12 C BINARY(4) S/R Complete data

16 10 BINARY(4) S/R Number of object links processed successfully

20 14 BINARY(4) S/R Number of object links processed unsuccessfully

24 18 BINARY(8) S/R Total size (in K) of object links processed successfully

 Notes:

1. Set by column. The following column values indicate which operations write the content of the field

into the output:

Value Condition

S Save operation writes this field.

R Restore operation writes this field.

S/R Either operation writes this field.

(blank) Neither operation writes this field. This field is set to zero for numeric

fields, blank for character fields, or empty for variable-length character

fields.

 2. Format of volume identifier. Find the first entry by using the Volume name offset field to get to the

Number of volume identifiers field. The Number of volume identifiers field is not repeated.

BINARY(4) (blank) Number of volume identifiers

Then, moving to the first volume identifier. A volume identifier consists of a length followed by the

volume name. The Volume identifier length and the Volume identifier fields are repeated for each volume

identifier.

BINARY(4) S/R Volume identifier length

CHAR(*) S/R Volume identifier

Field descriptions

ALWCKPWRT. Indicates whether an object was updated while being saved. The following are possible values for

this field:

0 No updates occurred to the object while the object was being saved.

148 iSeries: Systems Management Back up your server

|

|
|
|
|

|
|

||

|
|
|||||

|||||
|

|||||

|||||

|||||

|||||

|||||

|

|||||

||
|

||||

||||

||||

||||

||||
|
|
|

|||
|

|||||

||
|
|

|||||

|||||
|

|

|
|

||

1 Updates to the object may have occurred while the object was being saved. The object was saved with the

SAVACTOPT(*ALWCKPWRT) parameter and the corresponding system attribute for the object was set. See

Using additional save-while-active options (SAVACTOPT) for more information.

ASP after restore operation. The auxiliary storage pool (ASP) of the object link when the object link was restored.

The following are possible values for this field:

1 System ASP

2–32 Basic user ASPs

33–255 Independent ASPs

ASP at the time of save operation. The auxiliary storage pool (ASP) of the object link when it was saved. Possible

values are:

1 System ASP

2–32 Basic user ASPs

33–255 Independent ASPs

ASP device name after restore operation. The auxiliary storage pool (ASP) device name of the object link when the

object link was restored. Possible values are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

ASP device name at time of save operation. The auxiliary storage pool (ASP) device name of the object link when

it was saved. The possible values are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

CCSID of data. The coded character set identifier (CCSID) of the object associated with this entry in the output.

Command. The command used when the save or restore operation was performed. The possible values are:

SAV Save operation

RST Restore operation

Complete data. Indicates whether all of the data for the save or restore operation was in fact saved or restored. This

trailer data element can inform you as the completeness of the system description contained in the rest of the output

generated by the operation. The possible values are:

0 The data is not complete.

1 The data is complete.

When the data is not complete, one or more directory information entries or object link information entries were not

written to a byte stream file or user space. This can occur when a user space object link is used and more than 16MB

of information about the save or restore operation is generated. This situation occurs only when the save or restore

operation processes a very large number of object links. If this situation occurs, you should consider using a stream

file to store your output information.

 When the data is compete, all of the information about the save or restore operation is contained in the output.

Data compacted. Indicates whether the data was stored in compacted format. The possible values are:

0 The data is not compacted.

1 The data is compacted.

Data compressed. Indicates whether the data was stored in compressed format. The possible values are:

Chapter 8. Backup programming techniques 149

||
|
|

|
|

||

||

||

|
|

||

||

||

|
|

|
|

|
|

|
|

|
|

|
|

|

|

||

||

|
|
|

||

||

|
|
|
|
|

|

|

||

||

|

0 The data is not compressed.

1 The data is compressed.

Device identifier. A string representing the following:

v The name or identifier of a device or the name of the save file (*SAVF) saved or restored during the operation.

v The name of a device or the save file as it appears in the list of devices created during the save or restore option.

v The variable-length string that contains the device name or save file name.

v The character data component of a Device identifier length and Device identifier pair that defines the variable-length

string. The number of such pairs appearing in the output is contained in the Number of device identifiers field.

Device identifier length. A number representing the following:

v The number of characters in the variable length string that contains a device name or identifier.

v The length component of a Device identifier length and Device identifier pair that defines the variable-length string.

The number of such pairs appearing in the output is contained in the Number of device identifiers field.

Device identifier offset. The offset to the Device identifier length field.

Directory identifier. The name of the directory from which the object was saved, or to which the object was

restored.

Directory identifier length. The length of the Directory identifier field.

Directory identifier offset. The offset to the Directory identifier length field.

End change date. The value that was specified for the end change date when the save operation was performed.

The possible values are:

*ALL No end change date was specified.

End change time. The value that was specified for the end change time when the save operation was performed.

The possible values are:

*ALL No end change time was specified.

end date. The end change date that was specified on the save operation. The date is in YYMMDD format, is

left-justified, and is padded with blanks.

end time. The end change time that was specified on the save operation. The time is in HHMMSS format, is

left-justified, and is padded with blanks.

Entry length. The length of the variable-length string containing the entry. The first data element in the entry header

information. The entry associated is this long.

Entry type. Indicates the entry format needed to interpret the associated entry. The possible values are:

1 This list entry contains command level information. Use the command information format to map out the

data for this list entry.

2 This list entry contains directory-level information. Use the directory information format to map out the data

for this list entry.

3 This list entry contains link level information. Use the object link information format to map out the data for

this list entry.

4 This list entry contains trailer information. Use the trailer information format to map out the data for this

list entry.

Expiration date. The expiration date of the media. The possible values are:

*PERM The media is permanent. There is no expiration date.

YYMMDD

The date that was specified as the expiration date on the save operation. The date format, is left-justified,

and is padded with blanks.

150 iSeries: Systems Management Back up your server

||

||

|

|

|

|

|
|

|

|

|
|

|

|
|

|

|

|
|

||

|
|

||

|
|

|
|

|
|

|

||
|

||
|

||
|

||
|

|

||

|
|
|

File label. The file label associated with the file that was saved or restored. For a save or restore operation on a save

file, this field is blank.

File label length. The length of the File label field.

File label offset. The offset to the File label length field.

Information type. The type of information output from the execution of a SAV command that used a INFTYPE

parameter. The possible values are:

1 Summary information and information about each object link that was saved (*ALL).

2 Summary information and information about object links that were not successfully saved (*ERR).

3 Summary information only (*SUMMARY).

In mounted UDFS. Shows whether the object was in a mounted user-defined file system (UDFS) during the save

operation. The possible values are:

0 The object was not in a mounted UDFS during the save operation.

1 The object was in a mounted UDFS during the save operation.

Journal information required for recovery offset. The offset to the Journal information required for recovery — path

name length field. This field is set to zero for objects that were not journaled at the time of the save.

Journal information required for recovery - path name. The path name of the journal required to recover the

object. The object must be journaled by this journal before an Apply Journaled Changes (APYJRNCHG) can

successfully restore the object.

Journal information required for recovery - path name length. The length of the Journal information required for

recovery — path name field.

Journal receiver information required for recovery offset. The offset to the Journal receiver information required for

recovery — ASP device name field. This field is set to zero for objects that were not journaled at the time of the save.

Journal receiver information required for recovery - ASP device name. The name of the disk pool device that

contains the library containing the journal receiver required to recover the object.

Journal receiver information required for recovery - path name. The path name of the first journal receiver in the

journal receiver chain needed to recover the object. The object must be journaled to this journal receiver before an

Apply Journaled Changes (APYJRNCHG) can successfully restore the object.

Journal receiver information required for recovery - path name length. The length of the Journal receiver information

required for recovery — path name field.

Number of device identifiers. A number representing the following:

v The number of devices used during the save or restore operation.

v The number of device identifiers, representing the devices, in a list of devices.

v The number of variable-length strings that contain the device identifiers listed.

v The number of Device identifier length and Device identifier pairs. Each pair being used to define a single

variable-length string.

Number of object links processed successfully. The total number of object links successfully saved or restored for

the entire save or restore operation.

Number of object links processed successfully in directory. The number of object links that were successfully

saved or restored for this directory.

Number of object links processed unsuccessfully. The total number of object links saved nor restored for the entire

save or restore operation.

Number of object links processed unsuccessfully in directory. The number of object links that were not saved, or

restored for this directory.

Chapter 8. Backup programming techniques 151

|
|

|

|

|
|

||

||

||

|
|

||

||

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

|

|

|
|

|
|

|
|

|
|

|
|

Number of records. The number of records saved or restored for a *SAVF device or save file encountered during

the save or restore operation. This field is set to zero if no *SAVF device or save file was encountered.

Number of volume identifiers. A number representing the following:

v The number of volumes used during the save or restore operation.

v The number of volume identifiers, representing the volumes, in a list of volumes.

v The number of variable-length strings that contain the volume identifiers listed.

v The number of Volume identifier length and Volume identifier pairs. Each pair being used to define a single

variable-length string.

Save and restore commands are limited to operating on a maximum of 75 volumes. This limits the number of volume

identifiers, or Volume identifier length and Volume identifier pairs, to 75 entries as well.

Object link data. Indicates whether the data for this object was saved with the object. The possible values are:

0 The object’s description was saved, but the object’s data was not saved.

1 The object’s description and the object’s data was saved.

Object link error message ID. The message ID of an error message that was issued for this link.

Object link error message replacement identifier. The error message replacement identifier from the link error

message.

Object link error message replacement identifier length. The length of the Object link error message replacement

identifier.

Object link error message replacement identifier offset. The offset to the Object link error message replacement

identifier length field.

Object link identifier. For a save operation, the name of the object link that was saved. For a restore operation, the

qualified object link name that was saved (including the directory and object link identifier).

Object link identifier after restore operation. The name of the object link after it was restored.

Object link identifier after restore operation length. The length of the Object link identifier after restore operation

field.

Object link identifier after restore operation offset. The offset to the Object link identifier after restore operation length

field.

Object link identifier length. The length of the Object link identifier field.

Object link identifier offset. The offset of the Object link identifier length field.

Object link owner after restore. The name of the user profile associated with the owner of the object link that was

restored.

Object link owner at time of save. The name of the user profile associated with the owner of the object link that

was saved.

Object link security message. The number of security messages issued for this object link during a restore

operation. If no security messages were issued, this field is set to zero.

Object link size. The size of the object link in units of the size multiplier. The true object link size is equal to or

smaller than the object link size multiplied by the object link size multiplier.

Object link size multiplier. The value to multiply the object link size by to get the true size. The value is 1 if the

object link is smaller than 1 000 000 000 bytes, 1024 if it is between 1 000 000 000 and 4 294 967 295 bytes (inclusive).

The value is 4096 if the object link is larger than 4 294 967 295 bytes.

Object link status. Indicates whether the object link was successfully processed. The possible values are:

0 The object link was not successfully saved or restored.

1 The object link was successfully saved or restored.

152 iSeries: Systems Management Back up your server

|
|

|

|

|

|

|
|

|
|

|

||

||

|

|
|

|
|

|
|

|
|

|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|
|

|

||

||

Object link text. The text description of the object link.

Object link type. The type of the object link.

Restore date/time. The time at which the object links were restored in system timestamp format. See the Convert

Date and Time Format (QWCCVTDT) API for information on converting this timestamp.

Restore release level. The release level of the operating system on which the object links were restored. This field

has a VvRrMm format, containing the following:

Vv The character V followed by a one-character version number

Rr The character R followed by a one-character release number

Mm The character M followed by a one-character modification number

Restore system serial number. The serial number of the server on which the restore operation was performed.

Save while active. Indicates whether object links were allowed to be updated while they were being saved. The

possible values are:

0 SAVACT(*NO)—Object links were not allowed to be saved while they were in use by another job.

1 SAVACT(*YES)—Object links were allowed to be saved while they were in use by another job. Object links

in the save operation may have reached a checkpoint at different times and may not be in a consistent state

in relationship to each other.

-1 SAVACT(*SYNC)—Object links were allowed to be saved while they were in use by another job. All of the

object links and all of the directories in the save operation reached a checkpoint together and were saved in

a consistent state in relationship to each other.

Save-while-active date/time. The time at which the object link was saved while active in system timestamp format.

See the Convert Date and Time Format (QWCCVTDT) API for information on converting this timestamp.

Save-while-active option. Indicates which options were used with save-while-active command. The possible values

are:

*NONE

SAVACTOPT(*NONE) was specified. No special save-while-active options were used.

*ALWCKPWRT

SAVACTOPT(*ALWCKPWRT) was specified. This enabled objects to be saved while they were being

updated if the corresponding system attribute was set. Refer to Using additional save-while-active options

(SAVACTOPT) for more information.

Save date/time. The time at which the object links were saved in system timestamp format. See the Convert Date

and Time Format (QWCCVTDT) API for information on converting this timestamp.

Save release level. The release level of the operating system on which the object links were saved. This field has a

VvRrMm format, containing the following:

Vv The character V is followed by a one-character version number.

Rr The character R is followed by a one-character release number.

Mm The character M is followed by a one-character modification number.

Save server serial number. The serial number of the server on which the save operation was performed.

Sequence number. The sequence number of the file on media. The value will be 0 if the save media is not tape.

Start change date. The value that was specified for the start change date when the save operation was performed.

 The possible values are:

*LASTSAVE

The save operation saves object links that have changed since the last time they were saved with

UPDHST(*YES) specified on the save operation.

*ALL No start change date was specified.

Chapter 8. Backup programming techniques 153

|

|

|
|

|
|

||

||

||

|

|
|

||

||
|
|

||
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

||

||

||

|

|

|

|

|
|
|

||

Start change time. The value that was specified for the start change time when the save operation was performed.

 The possible values are:

*ALL No start change time was specified.

Start time

The start change time that was specified on the save operation. The time is in HHMMSS format, is

left-justified, and is padded with blanks.

Start date. The start change date that was specified on the save operation. The date is in YYMMDD format, is

left-justified, and is padded with blanks.

Starting volume identifier. (1) For an object link, the name of the first volume, on which this object link was saved.

(2) For a directory, the name of the first volume, on which this directory was saved. Saved content can be saved

across several volumes.

Starting volume identifier length. For either the starting volume of a directory or an object link, the length of the

Starting volume identifier.

Starting volume identifier offset. The offset to the Starting volume identifier length.

Target release level. The earliest release level of the operating system on which the object links can be restored. This

field has a VvRrMm format, containing the following:

Vv The character V is followed by a one-character version number.

Rr The character R is followed by a one-character release number.

Mm The character M is followed by a one-character modification number.

Total size (in K) of object links processed successfully. The total size of the object links saved or restored

successfully. This field is part of the trailer information entry created during the execution of a SAV or RST

command.

Total size (in K) of object links processed successfully in directory. The total size of the object links saved or

restored successfully in the directory. This field is part of the directory information entry created during the execution

of a SAV or RST command.

Volume identifier. A string representing the following:

v The name or identifier of a volume used during the save or restore operation.

v The name of a volume as it appears in the list of volumes created during the save or restore option.

v The variable-length string that contains the volume name.

v The character data component of a Volume identifier length and Volume identifier pair that defines the variable-length

string. The number of such pairs appearing in the output is contained in the Number of volume identifiers field. If

the output is complete, the number of such pairs equals the number of volumes used during the save or restore

operation. The Complete data field indicates if the output is complete.

Each volume has its own Volume identifier value.

Volume identifier length. A number representing

v The number of characters in the variable length string that contains a volume name or identifier.

v The length component of a Volume identifier length and Volume identifier pair that defines the variable-length string.

The number of such pairs appearing in the output is contained in the Number of volume identifiers field. If the

output is complete, the number of such pairs equals the number of volumes used during the save or restore

operation. The Complete data field indicates if the output is complete.

Each volume has its own Volume identifier length value.

Volume identifier offset. The offset to the start of the Volume identifier length field.

154 iSeries: Systems Management Back up your server

|

|

||

|
|
|

|
|

|
|
|

|
|

|

|
|

||

||

||

|
|
|

|
|
|

|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

Interpret output from save commands

When you use the following save commands or API, you can direct output to a file.

v QSRSAVO (Save Object List)

v SAVCFG (Save Configuration)

v SAVCHGOBJ (Save Changed Objects)

v SAVLIB (Save Library)

v SAVOBJ (Save Object)

v SAVSAVFDTA (Save Save File Data)

v SAVSECDTA (Save Security Data)

v SAVSYS (Save System)

Prerequisites

To specify an output file, you must have *CHANGE authority to the database file and *USE authority to

the library. The server needs an *EXCLRD lock on the database file. Click the command above that

applies to the information that you would like to save. The control language (CL) command provides

descriptions for the three parameters that allow you to directly save the output of a save operation to a

file: File to receive output (OUTFILE), Output member options (OUTMBR), and Type of output

information (INFTYPE).

The following topics explain the output information and the field descriptions that these commands

create are included:

v “Output file information”

v “Field descriptions” on page 157

Output file information

The following table shows the format for the information for output. Unused fields, fields that are not set,

contain a value of zero for numeric fields and blanks for character fields.

 Table 49. Output file information

Identifier Type Field

SROCMD CHAR(10) Save command

SROINF CHAR(10) Information type

SROSYS CHAR(8) System name

SROSRL CHAR(6) Save release level

SROLIB CHAR(10) Library name

SROASP ZONED(2) Library ASP number

SROSAV ZONED(6) Objects saved

SROERR ZONED(6) Objects not saved

SROSEQ ZONED(4) Sequence number

SROLBL CHAR(17) File label

SROVOL CHAR(60) Volume identifiers

SROSVT CHAR(13) Save date/time

SRONAM CHAR(10) Object name

SROMNM CHAR(10) Member name

SROTYP CHAR(8) Object type

Chapter 8. Backup programming techniques 155

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|

|

|

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 49. Output file information (continued)

Identifier Type Field

SROATT CHAR(10) Object attribute

SROSIZ ZONED(15) Size

SOOWN CHAR(10) Owner

SROSTA CHAR(1) Status

SROMSG CHAR(7) Error message ID

SROSWA CHAR(13) Save-while-active date/time

SROTXT CHAR(50) Text

SRODEV CHAR(40) Device names

SROSVF CHAR(10) Save file name

SROSFL CHAR(10) Save file library name

SROTRL CHAR(6) Target release

SROSTF CHAR(1) Storage

SROACP CHAR(1) Save the access paths

SROSFD CHAR(1) Save file data

SROCMP CHAR(1) Data compressed

SROCOM CHAR(1) Data compacted

SRORFD CHAR(7) Reference date

SRORFT CHAR(6) Reference time

SROEXP CHAR(7) Expiration date

SROXVM CHAR(390) Extra volume identifiers

SROPGP CHAR(10) Primary group

SROSQ2 ZONED(10) Large sequence number

SROMIT CHAR(1) Objects omitted

SROFMT CHAR(1) Save format

SROMFN ZONED(3) Media file number

SROTMF ZONED(3) Total media files

SROMDN CHAR(10) Media definition name

SROMDL CHAR(10) Media definition library name

SROVLC ZONED(3) Volume count

SROVLL ZONED(3) Volume length

SROVLD CHAR(2400) Volume identifiers (complete)

SROOPT CHAR(256) Optical file

SROAS1 CHAR(10) ASP name

SROAS2 ZONED(5) ASP number

SROTSZ PACKED(21) Total size saved

SROPRT CHAR(1) Partial transaction exists

SROJN CHAR(10) Journal name

SROJL CHAR(10) Journal library name

SROJRN CHAR(10) Journal receiver name

SROJRL CHAR(10) Journal receiver library name

156 iSeries: Systems Management Back up your server

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 49. Output file information (continued)

Identifier Type Field

SROJRA CHAR(10) Journal receiver ASP

Field descriptions

ASP name. The auxiliary storage pool (ASP) device name of the object when it was saved. Possible values are:

*SYSBAS

System and basic auxiliary storage pools

device name

Name of the independent auxiliary storage pool

ASP number. The auxiliary storage pool (ASP) of the object when it was saved. The possible values are:

1 System ASP

2–32 Basic user ASPs

33-255 Independent ASPs

-1 Independent ASPs. See ASP number field for independent ASP number.

Data compacted. Indicates whether the data was stored in compacted format. The possible values are:

0 The data is not compacted.

1 The data is compacted.

Data compressed. Indicates whether the data was stored in compressed format. The possible values are:

0 The data is not compressed.

1 The data is compressed.

Device names. The name of the devices used to perform the save or restore operation. The field contains a list of

device names. Each device name is CHAR(10), and there can be one-4 devices listed.

Error message ID. The message ID of an error message that was issued for this object or library.

Expiration date. The expiration date of the media file. The possible values are:

*PERM

The data is permanent.

YYMMDD

The date used for the expiration date. The date format, is left-justified, and is padded with blanks.

Extra volume identifiers. This field contains a list of extra volume IDs beyond the first 10 volumes. It contains

volume names for volumes 11-75. Each entry is CHAR(6).

File label . The file label of the media file used by the save operation. For a save operation that uses a save file, this

field is blank.

Information type. Shows you the type of information that was saved with this operation. (INFTYPE parameter on

SAV command). The SAVSYS command does not support the INFTYPE parameter. The output contains one record

for each media file that is written. The SAVSAVFDTA command does not support the INFTYPE parameter. The

output contains one record for the SAVF that is saved. The SAVCFG and SAVSECDTA commands do not support the

INFTYPE parameter. The output is type *OBJ. The possible values are:

*ERR The list contains information about the command, an entry for each library, and an entry for each object that

was not successfully saved

*LIB The list contains a library entry for each library requested to be saved.

*MBR The list contains an entry for each object or, for database files, each member requested to be saved.

Chapter 8. Backup programming techniques 157

|

|||

|||
|

|

|

|
|

|
|

|

||

||

||

||

|

||

||

|

||

||

|
|

|

|

|
|

|
|

|
|

|
|

|
|
|
|
|

||
|

||

||

*OBJ The list contains an entry for each object requested to be saved.

Journal library name. The name of the library that contains the journal to which the object is journaled.

Journal name. The name of the journal to which the object is journaled.

Journal receiver ASP. The name of the auxiliary storage pool (ASP) that contains the earliest journal receiver needed

for applying journal changes when recovering the object.

Journal receiver library name. The name of the library that contains the earliest journal receiver needed for

applying journal changes when recovering the object.

Journal receiver name. The name of the earliest journal receiver needed for applying journal changes when

recovering the object.

Large sequence number. The sequence number of the file on media. The value will be 0 if the save media is not

tape.

Library ASP name. The auxiliary storage pool (ASP) device name of the object when it was saved. Possible values

are:

*SYSBAS

System and basic auxiliary storage pools

Device name

Name of the independent auxiliary storage pool

Library ASP number. The auxiliary storage pool (ASP) of the object when it was saved. The possible values are:

1 System ASP

2–32 Basic user ASPs

-1 Independent ASPs. See ASP number field for independent ASP number.

Library name. The name of the library that contains the objects that were saved.

Media definition library name. The name of the library that contains the media definition used in the save

operation.

Media definition name. The name of the media definition used in the save operation.

Media file number. A number to identify this media file when a library is saved in parallel format. This field is

only valid if the Save format field contains a value of 1, which indicates that the save format is parallel. A value of 0

indicates that the save media is not tape.

Member name. The name of the database file member that was saved. This field will be blank if the object is not a

database file, or if INFTYPE(*MBR) was not specified, or if the record is the summary record for the database file.

Object attribute. The attribute of the object that was saved.

Object name. The name of the object that was saved.

Objects not saved. The total number of objects that were not saved for the library.

Objects omitted. Indicates whether any objects were omitted from the save operation. The possible values are:

0 No objects were omitted from the save operation.

1 Objects were omitted from the save operation.

Objects saved. The total number of objects saved successfully for the library.

Object type. The type of the object.

Optical file. The name of the optical file used by the save operation. For a save operation that does not use optical

media, this field is blank.

158 iSeries: Systems Management Back up your server

||

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

||

||

||

|

|
|

|

|
|
|

|
|

|

|

|

|

||

||

|

|

|
|

Owner. The name of the object owner’s user profile when the object was saved.

Partial transaction exists. Indicates whether this object was saved with one or more partial transactions. If you

restore an object that was saved with partial transactions, you cannot use the object until you apply or remove

journal changes. To apply or remove journal changes you will need the journal identified by the Journal name field

and the journal receivers starting with the one identified by the Journal receiver name field. The possible values are: :

0 The object was saved with no partial transactions.

1 The object was saved with one or more partial transactions.

Primary group. The name of the primary group for the object that was saved.

Reference date. The value that was specified for the reference date when the save operation was performed. The

possible values are:

*SAVLIB

All changes since the last SAVLIB was specified.

YYMMDD

The date that was specified as a reference date on the save operation. Objects changed since this date are

saved. The date format, is left-justified, and is padded with blanks.

Reference time. The value that was specified for the reference time when the save operation was performed. The

possible values are:

*NONE

No reference time was specified

reference time

The reference time that was specified on the save operation. The time is in HHMMSS format, is left-justified,

and is padded with blanks.

Save the access paths. Indicates whether access paths were requested to be saved during the save operation. The

possible values are:

0 Access paths were not requested to be saved during the save operation.

1 Access paths were requested to be saved during the save operations.

Save command. The command that was used when the operation was performed. The possible values are:

SAVCFG

Save configuration operation

SAVCHGOBJ

Save changed objects operation

SAVLIB

Save library operation

SAVOBJ

Save object operation

SAVSAVFDTA

Save the save file data operation

SAVSECDTA

Save security data operation

SAVSYS

Save system operation

Save date/time. The time at which the object was saved in system timestamp format. See the Convert Date and

Time Format (QWCCVTDT) API for information on converting this timestamp.

Save file name. The name of the save file used in the save operation.

Save file data. Indicates whether save file data was requested to be saved during the save operation. The possible

values are:

Chapter 8. Backup programming techniques 159

|

|
|
|
|

||

||

|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

||

||

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

0 Save file data was not requested to be saved during the save operation.

1 Save file data was requested to be saved during the save operations.

Save file library name. The name of the library that contains the save file used in the save operation.

Save format. Indicates whether the data was saved in serial or parallel format. The possible values are:

0 The save format is serial.

1 The save format is parallel.

Save release level. The release level of the operating system on which the objects were saved. This field has a

VvRrMm format, containing the following:

Vv The character V is followed by a one-character version number.

Rr The character R is followed by a one-character release number.

Mm The character M is followed by a one-character modification number.

Save-while-active date/time. The time at which the object was saved by a save operation using save-while-active.

The value is formatted in system timestamp format. See the Convert Date and Time Format (QWCCVTDT) API for

information on converting this timestamp.

Sequence number. The sequence number of the file on media. This field only contains values between 0 - 9999. If

the sequence number is larger than 9999, this field will contain a value of -5 and the sequence number value in the

Large sequence number field should be used. The value will be 0 if the save media is not tape.

Size. The size of the object.

Status. Indicates whether the object saved successfully. The possible values are:

0 The object did not save successfully.

1 The object saved successfully.

Storage. Indicates whether storage was requested to be freed after the save operation. The possible values are:

0 STG(*KEEP) was specified on the save operation to keep storage for the objects saved.

1 STG(*FREE) was specified on the save operation to free storage for the objects saved.

System name. The name of the server on which the save operation was performed.

Target Release. The earliest release level of the operating system on which the objects can be restored. This field has

a VvRrMm format, containing the following:

Vv The character V is followed by a one-character version number.

Rr The character R is followed by a one-character release number.

Mm The character M is followed by a one-character modification number.

Text. The text description of the object.

Total media files. The total number of media files created for a library saved in parallel format. This field is only

valid if the Save format field is 1.

Total size saved. The total size of all of the objects saved for this library.

Volume count. The number of volume identifiers in the Volume identifiers (complete) fields

Volume identifiers. The list of volume identifiers that are used during this save operation. The list can contain from

one to 10 volumes. If more than 10 volume were used, see the ″Extra volume identifiers″ list.

Volume identifiers (complete). The list of volume identifiers that are used during this save operation. The list can

contain from one to 75 volumes. See the Volume count field to tell how many volume identifiers are in the list. This

field is a variable-length field.

160 iSeries: Systems Management Back up your server

||

||

|

|

||

||

|
|

||

||

||

|
|
|

|
|
|

|

|

||

||

|

||

||

|

|
|

||

||

||

|

|
|

|

|

|
|

|
|
|

Volume length. The length of each volume identifier in the Volume identifiers (complete) field.

Example: Retrieve the device name from save completion messages

The CL program retrieves the device name from the CPC3701 message (found in positions 126 through

135 of the message data) and uses the information to determine which device is used by the next save

command.

SEQNBR *... ... 1 2 3 4 5 6 7

 1.00 PGM

 2.00 DCL &MSGDATA *CHAR LEN(250)

 3.00 DCL &MSGID *CHAR LEN(7)

 4.00 DCL &DEV *CHAR LEN(10)

 5.00 DCL &DEV1 *CHAR LEN(10) VALUE(TAP01)

 6.00 DCL &DEV2 *CHAR LEN(10) VALUE(TAP02)

 7.00 SAVLIB LIB(LIB1) DEV(&DEV1 &DEV2) ENDOPT(*LEAVE)

 8.00 L00P: RCVMSG RMV(*NO) MSGDTA(&MSGDATA) MSGID(&MSGID)

 9.00 IF (&MSGID *NE CPC3701) GOTO L00P /* Compltn */

10.00 CHGVAR &DEV %SST(&MSGDATA 126 10) /* Device name */

11.00 IF (&DEV *EQ ’TAP01’) DO /* Last was TAP01 */

12.00 CHGVAR &DEV1 ’TAP01’ /* Set for first device */

13.00 CHGVAR &DEV2 ’TAP02’ /* Set for second device */

14.00 ENDDO /* Last was TAP01 */

15.00 ELSE DO /* Last was not TAP01 */

16.00 CHGVAR &DEV1 ’TAP02’ /* Set for first device */

17.00 CHGVAR &DEV2 ’TAP01’ /* Set for second device */

18.00 ENDDO /* Last was not TAP01 */

19.00 SAVLIB LIB(LIB2) DEV(&DEV1 &DEV2) /* Save Lib 2 */

20.00 ENDPGM

If any objects cannot be saved, the operation attempts to save remaining objects and sends an escape

message (CPF3771 for single libraries, CPF3751/CPF3778 for more than one library, and CPF3701 for save

operations to save files) stating how many objects were saved and how many were not. To continue with

the next library, the Monitor Message (MONMSG) command must be used to handle the escape

condition. The format of the message data for the CPF3771 message is similar to the CPC3701 message

and also identifies the last device used.

The SAVCHGOBJ command operates in a similar manner, but uses CPC3704 as a completion message,

CPF3774 as an escape message for single libraries, and CPC3721 or CPF3751 for multiple libraries. For

save operations to save files, these messages are CPC3723 as a completion message and CPF3702 as an

escape message. These messages also contain the last device or save file used in the message data.

Note: Read the “Code disclaimer information” on page 2 for important legal information.

Example: Display status messages when saving

The following program sends a message to the external (*EXT) program message queue if any objects

cannot be saved.

PGM /* SAVE SOURCE */

SAVLIB LIB(SRCLIB) DEV(TAPE01) PRECHK(*YES)

MONMSG MSGID(CPF0000) EXEC(DO)

SNDPGMMSG MSG(’Objects were not saved - Look at the job +

 log for messages’) TOPGMQ(*EXT)

SNDPGMMSG MSG(’SRCLIB library was not backed up’) +

 TOPGMQ(xxxx)

RETURN

ENDDO

ENDPGM

Note: Read the “Code disclaimer information” on page 2 for important legal information.

Chapter 8. Backup programming techniques 161

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

162 iSeries: Systems Management Back up your server

Chapter 9. Recover your server

Your main source for recovery information is the Backup and Recovery

manual. Refer to it for

recovery concepts, scenarios, checklists, and procedures.

You may also want to refer to the following topics in the Information Center:

v Backup and recovery for clusters

v Recovery operations for journal management

v Rules and considerations for save and restore operations with remote journals

v Backup and recovery of a guest partition

© Copyright IBM Corp. 1996, 2005 163

|

|

|
|

|

|

|

|

|

|

164 iSeries: Systems Management Back up your server

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1996, 2005 165

|

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

166 iSeries: Systems Management Back up your server

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This (ADD NAME OF PUBLICATION HERE) documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of (ADD PRODUCT NAME HERE).

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AIX

AIX 5L

e(logo)server

eServer

i5/OS

IBM

iSeries

pSeries

xSeries

zSeries

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States,

other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Appendix. Notices 167

|
|

|

|
|

|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

168 iSeries: Systems Management Back up your server

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

����

Printed in USA

	Contents
	Chapter 1. Back up your server
	Code disclaimer information

	Chapter 2. Before you save anything...
	Use the precheck option
	Choose compression type
	Free storage when saving
	How object locking affects save operations

	Size limitations when saving objects
	Restrictions when using save files

	Verify what the server saved
	Determine objects that the server saved (save messages)
	Determine objects that are not saved
	Determine when an object was last saved

	How the server handles damaged objects during a save operation

	Chapter 3. Prepare your media to save your server
	Choose your save media
	Compare optical and tape media
	Consider using save files
	Copy save files to media
	Work with save files
	Save file security
	Input and output operations on a save file
	Damage to a save file
	Send network files

	Consider using virtual optical

	Rotate tapes and other media
	Prepare media and tape drives
	Name and label media
	Verify your media
	Store your media
	Handle tape media errors

	Chapter 4. Save your server with the GO SAVE command
	Explanation for Save commands and menu options figure
	Overview of the GO SAVE command menu options
	Change Save menu defaults with GO SAVE: Option 20
	Save your whole server with GO SAVE: Option 21
	Save system data with GO SAVE: Option 22
	Save user data with GO SAVE: Option 23
	Save parts of your server with other GO SAVE command menu options
	View entire GO SAVE checklist
	Printing system information
	Identify optional features that affect your backup

	Chapter 5. Manually save parts of your server
	Commands to save parts of your server
	Commands to save specific object types
	Save system data
	Methods to save Licensed Internal Code
	Methods to save system information
	Methods to save operating system objects

	Save system data and related user data
	Save libraries with the SAVLIB command
	Special values for the SAVLIB command
	OMITLIB parameter and OMITOBJ parameter for the SAVLIB command
	Tips and restrictions for the SAVLIB command
	How to recover from a media error during a SAVLIB operation

	Save independent ASPs
	Save security data
	Save configuration information
	Save licensed programs
	Methods to save system data and related user data
	Methods to save security data
	Methods to save configuration objects in QSYS
	Methods to save OS/400 optional libraries (QHLPSYS, QUSRTOOL)
	Methods to save licensed program libraries (QRPG, QCBL, Qxxxx)

	Save user data in your server
	Save objects with the SAVOBJ command
	Save multiple objects with the SAVOBJ command
	QSRSAVO API
	Objects whose contents are not saved

	Save only changed objects
	Save Changed Objects (SAVCHGOBJ) command
	Additional considerations for SAVCHGOBJ
	Save changed objects when you use journaling
	How the server updates changed object information with the SAVCHGOBJ command

	Save database files
	Save files with referential constraints
	Save access paths

	Save journaled objects
	Save journals and journal receivers
	Save file systems
	Using the Save (SAV) command
	Specifying the device name
	Saving objects that have more than one name
	Save changed objects in directories
	When saving across multiple file systems
	When saving objects from the QSYS.LIB file system
	When saving objects from the QDLS file system

	Save user-defined file systems
	How the server stores user-defined file systems
	Save an unmounted UDFS
	Save a mounted UDFS

	Save document library objects (DLOs)
	How the server stores and uses document library objects
	Save changed document library objects
	Ways to save multiple documents
	Ways to reduce disk space that is used by documents
	Output from the SAVDLO command

	Save spooled files
	Save office services information
	Explanation of How Office Services Objects Are Saved figure
	Save files for text search services

	Methods to save user data
	Methods to save user document library objects and folders
	Methods to save user libraries
	Methods to save IBM-supplied document library objects and folders
	Methods to save Q libraries that contain user data
	Methods to save distribution objects
	Methods to save network server storage spaces
	Methods to save user-defined file systems
	Methods to save directories in the Root and the QOpenSys file systems
	Methods to save IBM-supplied directories without user data

	Save logical partitions and system applications
	Explanation of File Systems–Save Commands
	Save logical partitions
	Backup considerations with logical partitions
	Back up a logical partition
	Save logical partition configuration data

	Save a Domino server
	Save IBM iSeries Integration for Windows Server
	Save OS/400 Enhanced Integration for Novell NetWare information

	Save storage (Licensed Internal Code data and disk unit data)
	Purpose of saving storage
	Hardware considerations for saving storage
	Operational considerations for saving storage
	Recover from save storage errors
	Save storage for mirrored protection

	Task 1 - Start the save storage procedure
	Task 2 - Respond to messages
	Task 3 - Complete the SAVSTG process
	Cancel a save storage operation
	Resume a save storage operation

	Chapter 6. Save your server while it is active
	Save-while-active and your backup and recovery strategy
	Save-while-active function
	Checkpoint processing with save-while-active
	Timestamp processing with save-while-active
	Commitment control with save-while-active

	Considerations and restrictions for the save-while-active function
	Performance considerations for save-while-active
	Central processing unit (CPU) and save-while-active
	Auxiliary storage activity and save-while-active
	Main storage (memory) and save-while active
	DLO activity and save-while-active
	Storage considerations for save-while-active
	Save-while-active restrictions
	Save-while-active object locking rules
	Object locking: During save-while-active checkpoint processing
	Object locking: After save-while-active checkpoint processing
	Restrictions for commitment control with save-while-active

	Save-outage time reduction
	Save-outage time elimination
	Parameters for the save-while-active function
	Synchronization-level values for Save Active (SAVACT) parameter
	Full synchronization
	Library synchronization
	System-defined synchronization

	The wait time (SAVACTWAIT) parameter
	The checkpoint notification (SAVACTMSGQ) parameter
	Additional save-while-active option (SAVACTOPT) parameter

	Reduce your save-outage time
	Recommended procedure to reduce your save-outage time
	Example: Reduce save-outage time for two libraries
	Example: Reduce save-outage time for a directory
	Example: Restore libraries after reducing save-outage time
	Example: Restore a directory after reducing save-outage time

	Eliminate your save-outage time
	Recommended procedure to eliminate save-outage time
	Monitor your save-while-active operation
	Recommended recovery procedures after eliminating save-outage time
	Example: Eliminate save-outage time for libraries
	Example: Eliminate save-outage time for a directory
	Example: Saving objects with partial transactions
	Example: Restore libraries after eliminating save-outage time
	Example: Restoring objects with partial transactions
	Example: Restore a directory after eliminating save-outage time
	Considerations for recovery procedures after eliminating save-outage time

	Chapter 7. Save to multiple devices to reduce your save window
	Set up saves to multiple devices
	Restrictions of saving to multiple devices

	Chapter 8. Backup programming techniques
	Consider job recovery
	Interpret output from Save (SAV) and Restore (RST) commands
	Output sequence
	Entry header information
	Command information entries
	Directory information entries
	Object link information entries
	Trailer information entry
	Field descriptions

	Interpret output from save commands
	Output file information
	Field descriptions

	Example: Retrieve the device name from save completion messages
	Example: Display status messages when saving

	Chapter 9. Recover your server
	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions for downloading and printing publications

