
iSeries

IBM HTTP Server

Version 5 Release 3

���

iSeries

IBM HTTP Server

Version 5 Release 3

���

Note

Before using this information and the product it supports, read the information in “Notices,” on

page 791.

Fourth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM HTTP Server (product number 5722-DG1) and to

all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1997, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

IBM HTTP Server for iSeries 1

What’s new for IBM HTTP Server for iSeries V5R3 . 1

Printable PDF 2

Concepts of functions of HTTP Server 2

IBM Web Administration for iSeries 2

Fundamental directive, context, and server area

concepts on HTTP Server (powered by Apache) . 7

Content negotiation for HTTP Server (powered

by Apache) 11

Highly available Web server cluster on HTTP

Server 17

Real time server statistics 21

Web Publishing with the PUT Method 25

File compression for HTTP Server (powered by

Apache) 26

Fast Response Cache Accelerator (FRCA) for

HTTP Server (powered by Apache) 27

Log formats for HTTP Server (powered by

Apache) 29

Proxy server types and uses for HTTP Server

(powered by Apache) 31

Web crawling on HTTP Server 33

Webserver search engine on HTTP Server . . . 34

Security tips for HTTP Server 38

Kerberos for HTTP Server 39

User profiles and required authorities for HTTP

Server 40

Validation list on HTTP Server 43

About Tomcat 43

Triggered cache manager for HTTP Server . . . 46

Trigger messages for triggered cache manager on

HTTP Server (powered by Apache) 49

WebDAV for HTTP Server (powered by Apache) 64

Virtual hosts on HTTP Server 65

WebSphere Application Server for iSeries . . . 66

WebSphere Portal Express for iSeries 67

Scenarios for HTTP Server 68

JKL Toy Company creates an HTTP Server

(powered by Apache) 69

JKL Toy Company adds a new directory to HTTP

Server (powered by Apache) 71

JKL Toy Company adds user directories for

HTTP Server (powered by Apache) 74

JKL Toy Company enables cookie tracking on

HTTP Server (powered by Apache) 78

JKL Toy Company creates virtual hosts on HTTP

Server (powered by Apache) 81

JKL Toy Company adds password protection for

HTTP Server (powered by Apache) 84

JKL Toy Company adds dynamic content with

server-side includes for HTTP Server (powered

by Apache) 88

JKL Toy company enables Secure Sockets Layer

(SSL) protection on HTTP Server (powered by

Apache) 91

JKL Toy Company enables single signon for

HTTP Server (powered by Apache) 96

JKL Toy Company configures an in-process JSP

with ASF Tomcat on HTTP Server (powered by

Apache) 112

JKL Toy Company configures an in-process

servlet with ASF Tomcat on HTTP Server

(powered by Apache) 114

JKL Toy Company configures an in-process

WAR file with ASF Tomcat on HTTP Server

(powered by Apache) 117

JKL Toy Company monitors Web server activity

with logs on HTTP Server (powered by Apache) 120

Tasks 123

Getting started with the IBM Web

Administration for iSeries interface 123

Install and test the HTTP Server 125

HTTP Server tasks 127

Compression tasks 143

Fast Response Cache Accelerator tasks 145

Log and log file tasks 147

Proxy tasks 151

Search tasks 154

Security tasks 173

Tomcat tasks 178

Triggered cache manager tasks 185

WebDAV tasks 195

WebSphere tasks 196

Virtual host tasks 215

Programming 218

Application Programming Interface 218

Directives for HTTP Server 456

Common Gateway Interface 723

HTTP Server (powered by Apache) and Apache

portable runtime application programming

interfaces 751

Regular expression notation for HTTP Server 752

Set up third party modules for HTTP Server

(powered by Apache) 754

Handler for HTTP Server (powered by Apache) 755

Net.Data programs for the HTTP Server . . . 756

Java servlets and JSPs for the HTTP Server

(powered by Apache) 757

Troubleshoot 758

Symptom: Out-of-process ASF Tomcat server

does not start or appears to start, but then stops 758

Symptom: Error 404 on HTTP Server 759

Symptom: HTTP Server has a slow response 759

Symptom: Error 500 on HTTP Server 759

Symptom: Cannot read or write to

QUSRSYS/QATMHINSTC or

QUSRSYS/QATMHASFT 760

Symptom: HTTP Server on port 80 does not

start 760

Symptom: Web browser problems with HTTP

Server 761

© Copyright IBM Corp. 1997, 2005 iii

Symptom: ADMIN server will not start 762

Symptom: HTTP Server will not start or

functions will not work 762

Symptom: Unknown server type when working

with HTTP Servers in ADMIN 763

Symptom: All servers show status ’Stopped’ . . 763

Symptom: Cannot access ADMIN or some

functions do not work 763

Symptom: User Profile does not have

*IOSYSCFG 763

Symptom: Tomcat options not shown in the

IBM Web Administration for iSeries interface . . 763

Symptom: Error 500 when Tomcat settings in

the IBM Web Administration for iSeries interface

is accessed 763

Symptom: Cannot create new HTTP Server

instance 764

Symptom: Net.Data error 764

Symptom: Error occurred opening file 764

Symptom: Databases fail to deploy when

configuring with the IBM Web Administration

for iSeries interface 764

Symptom: WebSphere Portal authentication

performance problems 764

Reference documentation for HTTP Server . . . 765

CL commands for HTTP Server 765

Environment variables on HTTP Server . . . 766

Lotus Domino plug-in for HTTP Server

(powered by Apache) 782

Server-side include commands for HTTP Server 782

Supported OS/400 file systems for Web content

served by HTTP Server 785

Time formats for HTTP Server 786

Related information on HTTP Server 788

Legal notices for Apache Software Foundation on

HTTP Server 790

Appendix. Notices 791

Trademarks 792

Terms and conditions for downloading and

printing information 793

iv iSeries: IBM HTTP Server

IBM HTTP Server for iSeries

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Welcome to the V5R3 IBM® HTTP Server for iSeries™ documentation. This information describes concepts

and tasks related to the V5R3 IBM Web Administration for iSeries interface.

See the IBM HTTP Server for iSeries homepage

for additional product information.

What’s new for IBM HTTP Server for iSeries V5R3

This topic highlights the product features that are new in version V5R3 and monthly updates.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

See the HTTP Server: What’s New

topic for a list of recent enhancements made to the HTTP Server

for iSeries.

“IBM Web Administration for iSeries” on page 2

The IBM Web Administration for iSeries interface combines forms, tools, and wizards to

create a simplified environment to set up and manage many different servers and server

types on your iSeries server.

“Web Publishing with the PUT Method” on page 25

The standard way of uploading files to a Web server using HTTP is through the use of the

PUT method. HTTP Server (powered by Apache) supports the PUT method, but requires

additional setup to tell the server how to handle incoming PUT requests. One way to

accomplish this is to enable WebDAV, which is provided with HTTP Server (powered by

Apache) through the module mod_dav. Another is to provide your own CGI program and

configure it for use with HTTP Server (powered by Apache). This article discusses both

options, as well as the PUT method in general.

“JKL Toy Company enables single signon for HTTP Server (powered by Apache)” on page 96

This scenario describes how to enable single signon for your HTTP Server (powered by

Apache). Follow JKL Toy Company’s (a fictitious company) step-by-step examples to enable

single signon for your HTTP Server.

“Real time server statistics” on page 21

Real time server statistics provide information on HTTP Server (powered by Apache)

performance. Server statistics can be viewed with the Real Time Server Statistics tool

available through the IBM Web Administration for iSeries interface.

“WebSphere Portal wizard worksheet” on page 198

Use the work sheet to help you quickly set up and run the WebSphere® Portal server. The

worksheet provides space for you to enter your own values.

To find other information about what is new or changed this release, see the Memo to Users.

© Copyright IBM Corp. 1997, 2005 1

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/eserver/iseries/software/http
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www-1.ibm.com/servers/eserver/iseries/software/http/news/sitenews.html

Printable PDF

This topic provides PDF files for this information that you can print or download.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

You can view or download these related topics:

See “Related information on HTTP Server” on page 788 for additional information.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As...

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the

Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Concepts of functions of HTTP Server

This topic provides concepts of functions on HTTP Server and IBM Web Administration for iSeries

interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

IBM Web Administration for iSeries

This topic provides information about the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The IBM Web Administration for iSeries interface combines forms, tools, and wizards to create a

simplified environment to set up and manage many different servers and server types on your iSeries

server.

One of the key differences between IBM HTTP Server for iSeries and other Web server products is the

graphical user interface (GUI) provided for setting up and managing your servers. The IBM Web

Administration for iSeries interface is rich in function, examples, error-checking, and ease-of-use.

Administration is made significantly easier through the use of forms, wizards, tasks and tools.

2 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

With the HTTP Server for iSeries, it is no longer necessary to memorize directive names and their proper

usage or syntax. Directives are represented in the interface by descriptive field names, along with help

text for every field. For Apache users, it is no longer necessary to memorize the supported context of

directives. The IBM Web Administration for iSeries interface enforces supported context for the directives.

To start the IBM Web Administration for iSeries interface, complete the following steps:

1. Start a 5250 session on your iSeries server where IBM HTTP Server for iSeries is installed.

2. Type STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN).

3. Start a Web browser.

4. Type http://[your_iSeries]:2001 in the URL field to start the iSeries Tasks Web page, where

[your_iSeries] is the name of your iSeries server.

Example: http://ibm.com:2001

5. Click IBM HTTP Server for iSeries.

Note: The IBM Web Administration for iSeries interface can also be started by iSeries Navigator.

Header images

The IBM Web Administration for iSeries interface has several images in the header, or top most portion,

of the GUI. These images are hyperlinks to helpful information.

 Table 1. Header images

Header Image Description

Image hyperlink to the iSeries Information Center entry

page.

Image hyperlink to the WebSphere Application Server

Family Web page. This Web page contains information

on WebSphere products, including support and service

information.

Image hyperlink to the IBM Web page where you can

find information on all of IBM’s products.

Image hyperlink to the IBM HTTP Server for iSeries Web

page. This Web page contains additional information on

PTFs and support, developer documentation, and other

topics.

Tabs and subtabs

Navigation of the IBM Web Administration for iSeries interface is done through tabs. There are two types

of tabs, the main task tabs on the top (referred to in the documentation as tabs) and more specific subtabs

underneath (referred to in the documentation as subtabs).

 Table 2. Main task tabs

Tab Name Description

Setup The Setup tab contains the setup tasks for your servers. Setup tasks include the common tasks

and wizards for the IBM Web Administration for iSeries interface. Simple ″getting started″

tasks and wizards are also available.

HTTP Server 3

Table 2. Main task tabs (continued)

Tab Name Description

Manage The Manage tab contains the manage tasks for your servers. The HTTP Server, Application

Server, and ASF Tomcat Server subtabs are available under the Manage tab. You can manage

all servers, or choose a specific server to manage on your iSeries server.

Advanced The Advanced tab contains advanced tasks that you can perform on your servers. The

advanced tasks include global settings for your iSeries server, Internet Users and Groups

management, and Search Setup.

Related Links The Related Links tab contains hyperlinks to useful information related to features, functions,

and uses of the IBM Web Administration for iSeries interface. From here, you can find general

and support documentation.

Use the subtabs to quickly manage your servers or to set up advanced tasks.

 Table 3. Manage subtabs

Subtab Name Description

All Servers The All Servers subtab opens a form to view all the currently configured servers

on your iSeries server. This form also provide you the ability to start, stop, restart,

and configure your servers, as well as monitor and manage details. Select the

server that you want to work with by clicking the button to the left of the server

name. Clicking on the server name will also take you directly to managing the

details for the selected server.

HTTP Servers The HTTP Servers subtab opens forms for managing HTTP Servers currently

configured on your iSeries server. Use these forms to set up and manage your

HTTP Server quickly and easily.

Application Servers The Application Servers subtab opens forms for managing WebSphere Application

Servers, and WebSphere Application Servers - Express, and WebSphere Portal

servers currently configured on your iSeries server. Server properties forms, the

WebSphere Application Server Administrative Console, and problem

determination logs can be viewed here.

Note: This subtab is only available if WebSphere Application Server, WebSphere

Application Server - Express, or WebSphere Portal is installed.

ASF Tomcat Servers The ASF Tomcat Servers subtab opens forms for managing the ASF Jakarta Tomcat

servers currently configured on your iSeries server.

ASF Jakarta Tomcat is an industry standard Java™ Servlet and JavaServer Pages

engine. The iSeries implementation of ASF Jakarta Tomcat servlet engine provides

a lightweight servlet engine that supports servlets, JavaServer pages (JSPs), and

Web application archive (WAR) files.

The out-of-process ASF Jakarta Tomcat runs in a separate process (this separate

process can be on a different system than the one HTTP Server (powered by

Apache) is on) and communicates to the HTTP Server (powered by Apache)

through a TCP/IP sockets connection. Running out-of-process provides for more

flexibility in the number and type of processes that you can configure.

 Table 4. Advanced subtabs

Subtab Name Description

Settings The Settings subtab opens forms for managing your global server settings.

Global server settings are values that apply to each IBM HTTP Server (powered by

Apache) configuration. The values provided here can be overridden individually

within each IBM HTTP Server (powered by Apache) configuration file.

4 iSeries: IBM HTTP Server

Table 4. Advanced subtabs (continued)

Subtab Name Description

Internet Users and Groups The Internet Users and Groups subtab opens forms for managing validation lists,

group files, and digital certificates.

Validation lists are used in conjunction with other resources to limit access to server

resources. Each validation list contains a list of Internet users and passwords. Use

the Internet users and groups form to list and manage digital certificates

associated with validation lists. Validation list entries also require you to identify

an authentication protocol type to associate with the user id and password.

Validation lists are case-sensitive and reside in iSeries libraries. A validation list is

used to store user ID and password information about remote users. You can use

existing validation lists or create your own.

A group file identifies a group of users with a common security profile. A group

file contains iSeries user profiles. A user profile is an object with a unique name

that contains the user’s password, the list of special authorities assigned to a user,

and the objects the user owns or has access to.

A digital certificate is a form of personal identification that can be verified

electronically. Only the certificate owner who holds the corresponding private key

can present a certificate for authentication through a Web browser session. The key

can be validated through any readily available public key. Use the Digital

Certificate Manager to create, distribute, and manage digital certificates.

Search Setup The Search Setup subtab opens forms for managing your Web server search engine.

Use the Web server search engine to set up your web site for full text searches on

HTML and text files. Enhance your search results with field support for META

tags, a mapping rules file to map internal file names to an external path, and

thesaurus support.

TCM The TCM subtab opens forms for managing your Triggered Cache Manager (TCM)

servers. TCM servers may be used in conjunction with Web servers and Web

document caching agents to keep Internet (and Intranet) web sites running at peak

performance. If your Web site contains dynamically produced web pages, or

perhaps rapidly changing static pages, it may benefit you by having a Web

document caching agent that is managed by a TCM server.

Note: This subtab only appears if you have Option 1 of the DG1 product installed.

Lists

The IBM Web Administration for iSeries interface organizes large groupings of servers and configuration

files into different lists. Click the list and select the server or server area you want to work with.

 Table 5. Lists

List Name Description

Server The Server list contains the name of every server

currently configured on your iSeries server. This includes

HTTP Servers, WebSphere Application Servers,

WebSphere Application Servers - Express, and

WebSphere Portal servers. The server list only shows the

servers for the selected type. For example, if the subtab

HTTP Servers is selected, the servers list will show only

HTTP Servers, not WebSphere Application Servers.

Server area The Server area list contains the different container areas,

such as <VirtualHost> or <Directory> for the HTTP

Server (powered by Apache) configuration file.

HTTP Server 5

Tasks, wizards, property forms, and tools

Each subtab opens specific tasks, wizards, property forms, and tools that provide you the ability to

configure and manage your server.

 Table 6. Tasks, Wizards, and Property Forms

Name Description

Task Tasks are guided property forms that guide you through

advanced configuration steps. Tasks are not a wizard.

Tasks group property forms together for advanced

configuration tasks.

Wizards Wizards provide instructional steps that guide you

through a series of advanced steps to accomplish a task.

Wizards cannot save your progress and must be

completed to successfully update or create a server.

Property forms Property forms are forms with field values that may be set

for specific configuration requirements. Each property

form has help text to assist you in managing your

servers.

Tools Tools provide easy access to log files, the server

configuration file, directive index, and real time HTTP

server statistics. Tools are useful for problem solving and

server maintenance.

Note: The IBM Web Administration for iSeries interface checks any changes you make for errors. A

message will be displayed below the forms (in the error window) detailing any errors.

Server status

The IBM Web Administration for iSeries interface shows you the current status of your servers. The status

of the server is displayed with the following icons.

 Table 7. Server states

Server State Description

Stopped. The server is currently stopped. The server is

no longer available. The IP address and port number are

not in use.

Running. The server is currently running. The IP address

and port number are in use.

Stopping. The server is attempting to stop. the IP

address and port number are still in use.

Creating. The server is being configured and created.

The IP address and port number are not in use.

Loading. The IBM Web Administration for iSeries

interface is loading the selected form, wizard, or Web

browser frame.

6 iSeries: IBM HTTP Server

Server buttons

The IBM Web Administration for iSeries interface uses server stop, start, and restart buttons to manage

your server’s status. Use the following buttons to change your server’s status at anytime.

 Table 8. Buttons

Button Description

Start. Click this button to start the server you are

currently working with. The button is gray and

unavailable when the server is running.

Stop. Click this button to stop the server you are

currently working with. The button is gray and

unavailable when the server has stopped.

Restart. Click this button to restart the server you are

currently working with. The restart button stops the

server and then attempts to restart it.

Refresh. Click this button to refresh the IBM Web

Administration for iSeries interface display. Some

changes made by property forms may not be readily

displayed. The refresh button clears the IBM Web

Administration for iSeries interface display and updates

the current server status.

Fundamental directive, context, and server area concepts on HTTP

Server (powered by Apache)

This topic provides information on the fundamental directive, context, and server area concepts on HTTP

Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The HTTP Server is configured using directives. A directive is used to define an attribute of the HTTP

Server or how the HTTP Server operates. For example, the Listen directive defines what port the HTTP

Server (powered by Apache) should wait on to handle incoming requests.

With the HTTP Server (powered by Apache), the directives are extensive, functional, and built around the

concept of context.

Directive categories of HTTP Server (powered by Apache)

The HTTP Server (powered by Apache) directives may be categorized into two main groups. These are

Assignment directives and Container directives.

Assignment directives

Used to configure the function or characteristics of the HTTP Server (powered by Apache). For

example, the Listen directive assigns the port the HTTP Server (powered by Apache) should use

to handle incoming requests.

HTTP Server 7

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Container directives

Used to group directives together within the HTTP Server (powered by Apache). The container

directives group one or more assignment directives which are used to control the function

intended specifically within the context of the container. For example, the <Directory> directive is

used to enclose a group of assignment directives that only apply to the directory and

subdirectory context.

 When dealing with container directives, individual assignment directives may not be valid within

one or more container directives due to improper context. See “Directives for HTTP Server” on

page 456 for more information on the specific context a directive may or may not be used.

Supported directive context for HTTP Server (powered by Apache)

Understanding the context concept is necessary to increase the productivity and usefulness of your HTTP

Server (powered by Apache). The IBM Web Administration for iSeries interface assist in managing

context areas of your server. By selecting a different area of the server area, you are changing the context

you are managing.

The following are the types of context the HTTP Server (powered by Apache) directives are supported:

server config

Also called ″Server Area″, ″Global Level″ or ″Global Context″. The attributes set by directives in

the server config context can and most likely will be inherited by the container directives and

assignment directives used in the configuration.

directory

Also called ″Container Context″, the directory context should not be confused with <Directory>

containers. If the directive supports this context, the directive can be used in most container

directive (<Directory>, <File>, <Proxy>, and <Location> for example). This context support does

not apply to virtual hosts. There are limited exceptions where directives are not supported in all

of the containers associated with this context. See “Directives for HTTP Server” on page 456 for

specific directive exceptions.

virtual host

The virtual host context refers to directives that are allowed to be configured, or assigned, in the

<Virtual Host> container directive.

.htaccess

Also called ″.htaccess files″, the .htaccess context refers to directives supported in per-directory

configuration files. Per-directory configuration files are read by the server from the physical

directory where they reside. The directives within this file are applied to any objects that are to

be served from the directory where the file exists, and may also be carried forward to

sub-directories. Note that the use of .htaccess files is not recommended due to the additional

overhead incurred by the server.

Container types of HTTP Server (powered by Apache)

The directives used to configure HTTP Server (powered by Apache) containers are encased in greater

than (<) and lesser than (>) brackets. For example, <Directory> is a container directive. Each container is

comprised of an opening directive, such as <Directory>, and closed with the same context directive

prefixed with a slash (/). For example, </Directory>.

There are six different types of container directives. Five of the six container directives listed below have

variants which results in a total of eleven different container directives (shown below with the opening

and closing tags).

Directory and DirectoryMatch

<Directory directory>...</Directory>

 <DirectoryMatch regex>...</DirectoryMatch>

8 iSeries: IBM HTTP Server

rzaiemod_core.htm#directory
rzaiemod_core.htm#directorymatch

Files and FilesMatch

<Files filename>...</Files>

 <FilesMatch regex>...</FilesMatch>

Location and LocationMatch

<Location URL>...</Location>

 <LocationMatch regex>...</LocationMatch>

Proxy and ProxyMatch

<Proxy criteria>...</Proxy>

 <ProxyMatch regex>...</ProxyMatch>

VirtualHost

<VirtualHost addr[:port] >...</VirtualHost>

Limit and LimitExcept

<Limit method method>...</Limit>

 <LimitExcept method method>...</LimitExcept>

Note: Not all directives enclosed by brackets (<>) are container directives. For example, directives

<IfModule> and <IfDefine> are used to define parts of the HTTP Server (powered by Apache)

configuration that are conditional and are ignored once the server has started; however, they are

not directive containers.

Context and server area relationship

The following table shows server area and context relationship.

 Server area Context

Global configuration server config

Directory container directory (<Directory> or <DirectoryMatch>)

File container directory (<File> or <FileMatch>)

Location container directory (<Location> or <LocationMatch>)

Proxy container directory (<Proxy> or <ProxyMatch>)

Virtual host container virtual host (<VirtualHost>)

Limit except container <Limit> or <LimitExcept>

Note: The context depends on the location of the <Limit> and

<LimitExcept> container. It will inherit the context of the area it is in,

meaning, if you work with a <Limit> or <LimitExcept> container

within a directory container, the <Limit> or <LimitExcept> will be

assigned the same values as the <Directory> container in which it is

located.

See “Directives for HTTP Server” on page 456 for more information on all the supported HTTP Server

(powered by Apache) directives and the context the directive may be used.

Directives within containers

The container directives <Directory>, <Location> and <Files> can contain directives which only apply to

specified directories, URLs or files respectively. This also includes .htaccess files that can be used inside a

directory container to apply directives to that directory.

Files that are included in the configuration file are processed by the HTTP Server (powered by Apache) at

start time. Changes to files that are included in the configuration file (such as include files and group

files, but not .htaccess files) do not take effect until the server is restarted.

HTTP Server 9

rzaiemod_core.htm#files
rzaiemod_core.htm#filesmatch
rzaiemod_core.htm#location
rzaiemod_core.htm#locationmatch
rzaiemod_proxy.htm#proxy
rzaiemod_proxy.htm#proxymatch
rzaiemod_core.htm#virtualhost
rzaiemod_core.htm#limit
rzaiemod_core.htm#limitexcept
rzaiemod_core.htm#ifmodule
rzaiemod_core.htm#ifdefine

Everything that is syntactically allowed in <Directory> is also allowed in <Location> (except a

sub-<Files> section). Semantically however some things, and the most notable are AllowOverride and the

two options FollowSymLinks and SymLinksIfOwnerMatch, make no sense in <Location>,

<LocationMatch> or <DirectoryMatch>. The same for <Files> -- while syntactically correct, they are

semantically incorrect.

Directive inheritance: Directives inherit first from the top most (or ″parent″) directive container, then

from more specific directive containers within.

Example:

<Directory A>

 directive a

 <Directory B>

 directive b

 </Directory>

</Directory>

In the above example, Directory A is the parent container to Directory B. Directive b first inherits its

parameters from Directory A and directive a by default. If the parameters for directive b are

defined, then directive b does not inherit, but uses its own parameter settings.

 In reverse, directive a does not inherit any parameter settings from directive b, since directive a is

the parent to directive b. Inheritance only goes from parent to child.

Note: Best practice for security of your HTTP Server is to put all security directives into each container to

ensure that each directory or file is secured.

How the directives are merged

The order of merging is:

1. <Directory> (except regular expressions) and .htaccess done simultaneously (with .htaccess overriding

<Directory>)

2. <DirectoryMatch>, and <Directory> with regular expressions

3. <Files> and <FilesMatch> done simultaneously

4. <Location> and <LocationMatch> done simultaneously

Apart from <Directory>, each directive group (directives within container directives) is processed in the

order that they appear in the configuration files. <Directory> (directive group 1 above) is processed in the

order shortest directory component to longest. If multiple <Directory> sections apply to the same

directory they are processed in the configuration file order. Configurations included through the Include

directive will be treated as if they were inside the including file at the location of the Include directive.

Container directives inside a <VirtualHost> container directive are applied after the corresponding

directives outside of the virtual host definition. This allows virtual hosts to override the main server

configuration.

Using container directives

General guidelines:

v If you are attempting to match objects at the file system level then you must use the <Directory> and

<Files> container directives.

v If you are attempting to match objects at the URL level then you must use the <Location> container

directive.

Notable exception:

v Proxy control is done via <Proxy> containers. Directives which are valid in a <Directory> container are

also valid in a <Proxy> container. A <Proxy> container is very similar to a <Location> container, since

it deals with virtual paths and locations rather than with physical paths. The directives in <Proxy>

10 iSeries: IBM HTTP Server

containers are processed after the directives in <Location> containers are processed, but before

directives in <Directory> containers are processed. The directives in <Proxy> containers are also

inherited into more specific <Proxy> containers in the same way as the directives in a <Directory>

container.

.htaccess parsing:

v Modifying .htaccess parsing within a <Location> container directive has no affect. The .htaccess parsing

has already occurred.

<Location> and symbolic links:

v It is not possible to use Options FollowSymLinks or Options SymLinksIfOwnerMatch inside a

<Location>, <LocationMatch> or <DirectoryMatch> container directives (the Options are simply

ignored). Using the Options in question is only possible inside a <Directory> container directive (or a

.htaccess file).

<Files> and Options:

v Using an Options directive inside a <Files> container directive has no effect.

Note: A <Location>/<LocationMatch> sequence is performed just before the name translation phase

(where Aliases and DocumentRoots are used to map URLs to filenames). The results of this

sequence are removed after the translation has completed.

Content negotiation for HTTP Server (powered by Apache)

This topic provides information on content negotiation, type-map files, MultiViews, negotiation methods,

dimensions of negotiation, negotiation algorithm, media types, and wildcards.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A resource may be available in several different representations. For example, it might be available in

different languages or different media types, or a combination. One way of selecting the most appropriate

choice is to give the user an index page, and let them select; however it is often possible for the server to

choose automatically. This works because browsers can send as part of each request information about

what representations it prefers. For example, a browser could indicate that it would like to see

information in French, if possible, else English will do. Browsers indicate their preferences by headers in

the request. To request only French representations, the browser would send:

Accept-Language: fr

Note that this preference will only be applied when there is a choice of representations and they vary by

language.

As an example of a more complex request, this browser has been configured to accept French and

English, but prefers French, and to accept various media types, preferring HTML over plain text or other

text types, and preferring GIF or JPEG over other media types, but also allowing any other media type as

a last resort:

Accept-Language: fr; q=1.0, en; q=0.5

Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6,

 image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

The HTTP Server (powered by Apache) supports ’server driven’ content negotiation, as defined in the

HTTP/1.1 specification. It fully supports the Accept, Accept-Language, Accept-Charset and

Accept-Encoding request headers. The HTTP Server (powered by Apache) also supports ’transparent’

HTTP Server 11

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

content negotiation, which is an experimental negotiation protocol defined in RFC 2295 and RFC 2296. It

does not offer support for ’feature negotiation’ as defined in these RFCs.

A resource is a conceptual entity identified by a URI (RFC 2396). The HTTP Server (powered by Apache)

provides access to representations of the resource(s) within its namespace, with each representation in

the form of a sequence of bytes with a defined media type, character set, encoding, or other. Each

resource may be associated with zero, one, or more than one representation at any given time. If multiple

representations are available, the resource is referred to as negotiable and each of its representations is

termed a variant. The ways in which the variants for a negotiable resource vary are called the dimensions

of negotiation.

Content negotiation

In order to negotiate a resource, the server needs to be given information about each of the variants. This

is done in one of two ways:

v Using a type -map (for example, a *.var file) which names the files containing the variants explicitly.

v Using a ’MultiViews’ search, where the server does an implicit filename pattern match and chooses

from among the results.

Using a type-map file

A type map is a document which is associated with the handler named type-map (or, for

backwards-compatibility with older HTTP Server (powered by Apache) configurations, the mime type

application/x-type-map). Note that to use this feature, you must have a handler set in the configuration

that defines a file suffix as type-map; this is best done with an AddHandler in the server configuration

file, as shown below.

AddHandler type-map var

See the comments in the sample config file for more details.

Type map files have an entry for each available variant; these entries consist of contiguous HTTP-format

header lines. Entries for different variants are separated by blank lines. Blank lines are illegal within an

entry. It is conventional to begin a map file with an entry for the combined entity as a whole (although

this is not required, and if present will be ignored). An example map file is:

URI: jkl

URI: jkl.en.html

Content-type: text/html

Content-language: en

URI: jkl.fr.de.html

Content-type: text/html;charset=iso-8859-2

Content-language: fr, de

If the variants have different source qualities, that may be indicated by the ″qs″ parameter to the media

type, as in this picture (available as jpeg, gif, or ASCII-art):

URI: jkl

URI: jkl.jpeg

Content-type: image/jpeg; Qs=0.8

URI: jkl.gif

Content-type: image/gif; Qs=0.5

URI: jkl.txt

Content-type: text/plain; Qs=0.01

The ″Qs″ value can vary in the range 0.000 to 1.000. Note that any variant with a ″Qs″ value of 0.000 will

never be chosen. Variants with no ″Qs″ parameter value are given a ″Qs″ factor of 1.0. The ″Qs″

parameter indicates the relative ’quality’ of this variant compared to the other available variants,

12 iSeries: IBM HTTP Server

independent of the client’s capabilities. For example, a jpeg file is usually of higher source quality than an

ASCII file if its attempting to represent a photograph; however, if the resource being represented is an

original ASCII art, then an ASCII representation would have a higher source quality than a jpeg

representation. A ″Qs″ value is therefore specific to a given variant depending on the nature of the

resource it represents.

The full list of headers recognized are:

URI The uri of the file containing the variant (of the given media type, encoded with the given

content encoding). These are interpreted as URLs relative to the map file; they must be on the

same server, and they must refer to files to which the client would be granted access if they were

to be requested directly.

Content-Type

The media type --- charset, level and ″Qs″ parameters may be given. These are often referred to

as MIME types; typical media types are image/gif, text/plain, or text/html; level=3.

Content-Language

The languages of the variant, specified as an Internet standard language tag from RFC 1766 (for

example, en for English, or kr for Korean).

Content-Encoding

If the file is compressed, or otherwise encoded, rather than containing the actual raw data, this

states how it was done. The HTTP Server (powered by Apache) only recognizes encodings that

are defined by an AddEncoding directive. This normally includes the encodings x-compress for

compressed files, and x-gzip for gzip’d files. The x- prefix is ignored for encoding comparisons.

Content-Length

The size of the file. Specifying content lengths in the type-map allows the server to compare file

sizes without checking the actual files.

Description

A human-readable textual description of the variant. If the HTTP Server (powered by Apache)

cannot find any appropriate variant to return, it will return an error response which lists all

available variants instead. Such a variant list will include the human-readable variant

descriptions.

MultiViews

MultiViews is a per-directory option, meaning it can be set with an Options directive within a

<Directory>, <Location> or <Files> container in the configuration file, or (if AllowOverride is properly

set) in .htaccess files. Note that Options All does not set MultiViews; you have to ask for it by name.

The effect of MultiViews is as follows: if the server receives a request for /some/dir/jkl, if /some/dir has

MultiViews enabled, and /some/dir/jkl does not exist, then the server reads the directory looking for

files named jkl.*, and effectively fakes up a type map which names all those files, assigning them the

same media types and content-encodings it would have if the client had asked for one of them by name.

It then chooses the best match to the client’s requirements.

MultiViews may also apply to searches for the file named by the DirectoryIndex directive, if the server is

trying to index a directory. If the configuration files specify:

DirectoryIndex index

The server will arbitrate between index.html and index.html3 if both are present.

If one of the files found when reading the directive is a CGI script, it is not obvious what should happen.

The code gives that case special treatment --- if the request was a POST, or a GET with QUERY_ARGS or

HTTP Server 13

rzaiemod_mime.htm#addencoding

PATH_INFO, the script is given an extremely high quality rating, and generally invoked; otherwise it is

given an extremely low quality rating, which generally causes one of the other views (if any) to be

retrieved.

The negotiation methods

After the HTTP Server (powered by Apache) has obtained a list of the variants for a given resource,

either from a type-map file or from the filenames in the directory, it invokes one of two methods to

decide on the ’best’ variant to return, if any. It is not necessary to know any of the details of how

negotiation actually takes place in order to use the HTTP Server (powered by Apache) content

negotiation features. However the rest of this document explains the methods used for those interested.

There are two negotiation methods:

1. Server driven negotiation with the HTTP Server (powered by Apache) algorithm is used in the

normal case. The HTTP Server (powered by Apache) algorithm is explained in more detail below.

When this algorithm is used, the HTTP Server (powered by Apache) can sometimes ’fiddle’ the

quality factor of a particular dimension to achieve a better result. The ways the HTTP Server

(powered by Apache) can fiddle quality factors is explained in more detail below.

2. Transparent content negotiation is used when the browser specifically requests this through the

mechanism defined in RFC 2295. This negotiation method gives the browser full control over deciding

on the ’best’ variant, the result is therefore dependent on the specific algorithms used by the browser.

As part of the transparent negotiation process, the browser can ask the HTTP Server (powered by

Apache) to run the ’remote variant selection algorithm’ defined in RFC 2296.

Dimensions of negotiation

Media Type

Browser indicates preferences with the Accept header field. Each item can have an associated

quality factor. Variant description can also have a quality factor (the ″Qs″ parameter).

Language

Browser indicates preferences with the Accept-Language header field. Each item can have a

quality factor. Variants can be associated with none, one or more than one language.

Encoding

Browser indicates preference with the Accept-Encoding header field. Each item can have a quality

factor.

Charset

Browser indicates preference with the Accept-Charset header field. Each item can have a quality

factor. Variants can indicate a charset as a parameter of the media type.

Client (Browser)

The User-Agent HTTP header is used to determine browser type.

The negotiation algorithm

The HTTP Server (powered by Apache) can use the following algorithm to select the ’best’ variant (if

any) to return to the browser. This algorithm is not further configurable. It operates as follows:

1. First, for each dimension of the negotiation, check the appropriate Accept* header field and assign a

quality to each variant. If the Accept* header for any dimension implies that this variant is not

acceptable, eliminate it. If no variants remain, go to step 4.

2. Select the ’best’ variant by a process of elimination. Each of the following tests is applied in order.

Any variants not selected at each test are eliminated. After each test, if only one variant remains,

select it as the best match and proceed to step 3. If more than one variant remains, move on to the

next test.

a. Multiply the quality factor from the Accept header with the quality-of-source factor for this

variant’s media type, and select the variants with the highest value.

b. Select the variants with the highest language quality factor.

14 iSeries: IBM HTTP Server

c. Select the variants with the best language match, using either the order of languages in the

Accept-Language header (if present), or else the order of languages in the LanguagePriority

directive (if present).

d. Select the variants with the highest ’level’ media parameter (used to give the version of text/html

media types).

e. Select variants with the best charset media parameters, as given on the Accept-Charset header line.

Charset ISO-8859-1 is acceptable unless explicitly excluded. Variants with a text/* media type but

not explicitly associated with a particular charset are assumed to be in ISO-8859-1.

f. Select those variants which have associated charset media parameters that are not ISO-8859-1. If

there are no such variants, select all variants instead.

g. Select the variants with the best encoding. If there are variants with an encoding that is acceptable

to the user-agent, select only these variants. Otherwise if there is a mix of encoded and

non-encoded variants, select only the non-encoded variants. If either all variants are encoded or all

variants are not encoded, select all variants.

h. Select the variants that correspond to the User-Agent header received on the HTTP Request.

i. Select the variants with the smallest content length.

j. Select the first variant of those remaining. This will be either the first listed in the type-map file, or

when variants are read from the directory, the one whose file name comes first when sorted using

ASCII code order.
3. The algorithm has now selected one ’best’ variant, so return it as the response. The HTTP response

header Vary is set to indicate the dimensions of negotiation (browsers and caches can use this

information when caching the resource).

4. To get here means no variant was selected (because none are acceptable to the browser). Return a 406

status (meaning ″No acceptable representation″) with a response body consisting of an HTML

document listing the available variants. Also set the HTTP Vary header to indicate the dimensions of

variance.

Editing quality values

The HTTP Server (powered by Apache) sometimes changes the quality values from what would be

expected by a strict interpretation of the HTTP Server (powered by Apache) negotiation algorithm above.

This is to get a better result from the algorithm for browsers which do not send full or accurate

information. Some of the most popular browsers send Accept header information which would otherwise

result in the selection of the wrong variant in many cases. If a browser sends full and correct information

these fiddles will not be applied.

Media types and wildcards

The Accept: request header indicates preferences for media types. It can also include ’wildcard’ media

types, such as ″image/*″ or ″*/*″ where the * matches any string. So a request including Accept:

image/*, */* would indicate that any type starting ″image/″ is acceptable, as is any other type (so the

first ″image/*″ is redundant). Some browsers routinely send wildcards in addition to explicit types they

can handle. For example, Accept: text/html, text/plain, image/gif, image/jpeg, */*.

The intention of this is to indicate that the explicitly listed types are preferred, but if a different

representation is available, that is OK too. However under the basic algorithm, as given above, the */*

wildcard has exactly equal preference to all the other types, so they are not being preferred. The browser

should really have sent a request with a lower quality (preference) value for *.*, such as: Accept:

text/html, text/plain, image/gif, image/jpeg, */*; q=0.01.

The explicit types have no quality factor, so they default to a preference of 1.0 (the highest). The wildcard

/ is given a low preference of 0.01, so other types will only be returned if no variant matches an

explicitly listed type.

If the Accept: header contains no ″q″ factors at all, the HTTP Server (powered by Apache) sets the ″q″

value of ″*/*″, if present, to 0.01 to emulate the desired behavior. It also sets the ″q″ value of wildcards of

HTTP Server 15

the format ″type/*″ to 0.02 (so these are preferred over matches against ″*/*″). If any media type on the

Accept: header contains a ″q″ factor, these special values are not applied, so requests from browsers

which send the correct information to start with work as expected.

Variants with no language

If some of the variants for a particular resource have a language attribute, and some do not, those

variants with no language are given a very low language quality factor of 0.001.

The reason for setting this language quality factor for variant with no language to a very low value is to

allow for a default variant which can be supplied if none of the other variants match the browser’s

language preferences. For example, consider the situation with three variants:

v jkl.en.html, language en

v jkl.fr.html, language en

v jkl.html, no language

The meaning of a variant with no language is that it is always acceptable to the browser. If the request

Accept-Language header includes either en or fr (or both) one of jkl.en.html or jkl.fr.html will be

returned. If the browser does not list either en or fr as acceptable, jkl.html will be returned instead.

Extensions to transparent content negotiation

The HTTP Server (powered by Apache) extends the transparent content negotiation protocol (RFC 2295)

as follows. A new {encoding ..} element is used in variant lists to label variants which are available with a

specific content-encoding only. The implementation of the RVSA/1.0 algorithm (RFC 2296) is extended to

recognize encoded variants in the list, and to use them as candidate variants whenever their encodings

are acceptable according to the Accept-Encoding request header. The RVSA/1.0 implementation does not

round computed quality factors to 5 decimal places before choosing the best variant.

Notes on hyperlinks and naming conventions

If you are using language negotiation you can choose between different naming conventions, because

files can have more than one extension, and the order of the extensions is normally irrelevant (see

mod_mime for details).

A typical file has a MIME-type extension (for example, html), maybe an encoding extension (for example,

gz), and of course a language extension (for example, en) when we have different language variants of

this file.

Examples:

v jkl.en.html

v jkl.html.en

v jkl.en.html.gz

Examples of filenames together with valid and invalid hyperlinks:

 Filename Valid hyperlink Invalid hyperlink

jkl.html.en jkl

jkl.html

-

jkl.en.html jkl jkl.html

jkl.html.en.gz jkl

jkl.html

jkl.gz

jkl.html.gz

16 iSeries: IBM HTTP Server

rzaiemod_mime.htm

Filename Valid hyperlink Invalid hyperlink

jkl.en.html.gz jkl jkl.html

jkl.html.gz

jkl.gz

jkl.gz.html.en jkl

jkl.gz

jkl.gz.html

jkl.html

jkl.html.gz.en jkl

jkl.html

jkl.html.gz

jkl.gz

Looking at the table above you will notice that it is always possible to use the name without any

extensions in an hyperlink (for example, jkl). The advantage is that you can hide the actual type of a

document rsp. file and can change it later, for example, from html to shtml or cgi without changing any

hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (for example jkl.html) the language

extension (including an encoding extension if there is one) must be on the right hand side of the

MIME-type extension (for example, jkl.html.en).

Notes on caching

When a cache stores a representation, it associates it with the request URL. The next time that URL is

requested, the cache can use the stored representation. But, if the resource is negotiable at the server, this

might result in only the first requested variant being cached and subsequent cache hits might return the

wrong response. To prevent this, the HTTP Server (powered by Apache) normally marks all responses

that are returned after content negotiation as non-cacheable by HTTP/1.0 clients. The HTTP Server

(powered by Apache) also supports the HTTP/1.1 protocol features to allow caching of negotiated

responses.

For requests which come from an HTTP/1.0 compliant client (either a browser or a cache), the directive

CacheNegotiatedDocs can be used to allow caching of responses which were subject to negotiation. This

directive can be given in the server config or virtual host, and takes no arguments. It has no effect on

requests from HTTP/1.1 clients.

Highly available Web server cluster on HTTP Server

This topic provides information on highly available Web server clusters.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

If Web serving is a critical aspect of your business, you may want high availability and scalability of your

Web server environment. High availability and scalability of the Web server environment can be achieved

through the use of iSeries clustering.

The Web server cluster solution can provide:

v Planned downtime: If a Web server requires planned maintenance, it is possible to transfer the work to

another node without visible service interruptions to the client.

HTTP Server 17

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v No unplanned downtime: If a machine fails, the work is transferred to another node with no human

involvement and without visible service interruptions to the client.

v Scalability: When employing multiple nodes, it is possible to distribute the Web site workload over the

cluster nodes.

Clusters are a collection of complete systems that work together to provide a single, unified computing

capability. For more information on clusters, see Clusters in the iSeries Information Center.

A liveness monitor checks the state of the Web server and interacts with the Web server and the

clustering resource services in the event that a Web server fails (failover), or a manual switchover takes

place (ensures no interruption of Web server services). The clustered hash table (part of the state

replication mechanism) can be used to replicate highly available CGI program state data across the

cluster nodes so that the state data is available to all nodes in the event that a Web server fails (failover)

or is switched-over manually (switchover). To take advantage of this capability, an existing CGI program

must be enabled in a highly available Web Server environment. CGI programs write to the CGI APIs to

indicate what data is replicated.

There are three Web server cluster models that are supported:

v Primary/backup with takeover IP model

v Primary/backup with a network dispatcher model

v Peer model

Primary/backup with takeover IP model

In this model, the Web server runs on the primary and all backup nodes. The backup node or nodes are

in a idle state, ready to become the primary Web server should the primary Web server fail (failover), or

a switchover takes place. All client requests are always served by the primary node.

The following diagram illustrates a Primary/backup with takeover IP model.

18 iSeries: IBM HTTP Server

When the primary node fails (failover), or is brought down by the administrator, the failover/switchover

process begins. The following steps are performed during failover/switchover:

1. One of the backup servers becomes the primary (the first backup in the switchover order).

2. The client requests are redirected to the new primary node.

3. If the new primary receives a user request that belongs to a long-running-session (a CGI program that

has been updated to be a highly available CGI program), the server will restore the request’s state.

The new primary retrieves that highly available CGI program’s state information from the clustered

hash table. The clustered hash table is part of the state replication mechanism.

4. After the failed node recovers, the highly available Web server instance can be restarted and it will

become the backup system. If the system administrator wants the failed node to become primary

again, a manual switchover must be performed (this can be accomplished with the IBM Simple

Cluster Management interface available through iSeries Navigator or a business partner tool).

Primary/backup with a network dispatcher model

In this model, just like the primary/backup with takeover IP model, the Web server runs on the primary

and all backup nodes. The backup nodes are in an idle state and all client requests are served by the

primary node. A network dispatcher (for example the IBM WebSphere Edge Server) sends client requests

to the Web server.

HTTP Server 19

The following diagram illustrates a Primary/backup with a network dispatcher model.

When the primary node fails (failover), or a switchover takes place, the failover/switchover process

begins. The following steps are performed during failover/switchover:

1. One of the backup servers becomes the primary (the first backup in the switchover order).

2. The client requests are sent to the new primary node by the network dispatcher.

3. If the new primary receives a user request that belongs to a long-running-session, the server needs to

restore the request’s state. The new primary searches for the state either locally or in the clustered

hash table. The clustered hash table is part of the state replication mechanism.

4. After the failed node recovers, the system administrator can restart the Web server instance and it will

become a backup Web server. If the system administrator wants the failed node to become primary

again, a manual switchover must be performed.

Note: A node can join a recovery domain as primary only if the cluster resource group is in inactive

mode.

Peer model

In this model, there is no declared primary node. All nodes are in an active state and serve client

requests. A network dispatcher (for example the IBM WebSphere Edge Server) evenly distributes requests

to different cluster nodes. This guarantees distribution of resources in case of heavy load. Linear

20 iSeries: IBM HTTP Server

scalability is not guaranteed beyond a small number of nodes. After some number of nodes are added,

scalability can disappear, and the cluster performance can deteriorate.

The following diagram illustrates the peer model.

For more information on Clusters, see Clustering troubleshooting. For instructions on how to set up a

highly available Web server, see “Set up and administration of a highly available Web server cluster on

HTTP Server (powered by Apache)” on page 130, or Set up a highly available Web server using

clustering CL commands for HTTP Server.

Real time server statistics

This topic provides information about the real time server statistics support for HTTP Server (powered by

Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 21

rzaiesetha_cl.htm
rzaiesetha_cl.htm
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Real time server statistics provide information on HTTP Server (powered by Apache) performance. Server

statistics can be viewed with the Real Time Server Statistics tool available through the IBM Web

Administration for iSeries interface. Only statistics for running HTTP Servers (powered by Apache) can

be viewed. Data is collected from the primary server job only.

The header information for the active server displays the following:

Server name

Displays the name of the active server. The user-defined name was specified during the creation

of the server.

Job Displays the job name for the active server.

Server started

Displays the date and time the server was started.

Current time

Displays the date and time of the last manual or automatic refresh of the statistical information.

 Statistical information can be refreshed manually by clicking Refresh or can be automatically refreshed

by selecting a refresh rate from the Refresh Intervals drop-down menu.

Note: Statistical information is cumulative. If a value is greater than 264-1 in any column, the value will

reset to 0. All values will reset to 0 if the server is stopped and then started. The type of

information displayed is dependent on the activity of the HTTP Server (powered by Apache) and

what functions are enabled. Only statistical information for enabled or active functions are

displayed. Each column heading identifies what enabled function or associated server is being

surveyed for statistical information.

Each column heading identifies what enabled function or associated server is being surveyed for

statistical information. Statistical information is obtained for the following functions:

Server handled

This column displays the number of completed server transactions by the HTTP Server (powered

by Apache) since the server was started. For example, completed transactions for static HTML

pages, HTML pages containing Server Side Include (SSI), and images.

Proxy This column displays the number of completed server transactions that used proxy since the

server was started. Proxy statistics are only available if proxy is enabled. See “Proxy server types

and uses for HTTP Server (powered by Apache)” on page 31 for more information.

CGI This column displays the number of completed server transactions that were handled as

Common Gateway Interface (CGI) since the server was started. CGI statistics are only available if

CGI is enabled. See “Set up CGI programs for HTTP Server (powered by Apache)” on page 744

for more information.

Using SSL

This column displays the number of completed server transactions that used Secure Sockets Layer

(SSL) since the server was started. SSL statistics are only available if SSL is enabled. See “Set up

SSL for the administration (ADMIN) server for HTTP Server” on page 176 for more information.

WebSphere

This column displays the number of completed server transactions that used an associated

application server since HTTP Server (powered by Apache) was started. If the associated

application server is not running, the information will still be displayed but will equal ’0’.

WebSphere statistics are only available if a WebSphere Application Server is associated with an

HTTP Server (powered by Apache).

Tomcat

This column displays the number of completed server transactions that used an in-process or

22 iSeries: IBM HTTP Server

out-of-process ASF Tomcat server since HTTP Server (powered by Apache) was started. See

“About Tomcat” on page 43 for more information.

Customer module

This column displays the number of completed server transactions that used a customer or

third-party module. A customer module is a user module incorporated as a service program into

the HTTP Server (powered by Apache). See “Set up third party modules for HTTP Server

(powered by Apache)” on page 754 for more information.

FRCA Stats

This column displays the number of completed server transactions that used Fast Response Cache

Accelerator (FRCA) since the server was started. FRCA statistics are only available if FRCA is

enabled. See “Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by Apache)”

on page 27 for more information.

FRCA Proxy

This column displays the number of completed server transactions that used Fast Response Cache

Accelerator (FRCA) proxy since the server was started. FRCA statistics are only available if FRCA

is enabled. See “Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by Apache)”

on page 27 for more information.

 General

The general statistical information displays basic information about the active server since the server was

started. Statistical information displayed includes the following:

Active threads

Displays the number of currently active threads on the server. A thread is an independent unit of

work within a job that uses many of the jobs resources to complete work. The difference between

jobs and threads is that threads run within the job helping it to finish its work. Every active job

has at least one thread, which is called an initial thread. The initial thread is created as part of

starting the job. The use of threads within a job allows many things to be done at once. For

example, while a job is processing, a thread may retrieve and calculate data needed by the job to

finish processing.

Idle threads

Displays the number of currently idle threads active on the server. An idle thread is a portion of

a program that is waiting for either a response or a request before it can continue. Idle threads

are most often waiting for an HTTP request to process.

Normal connections

Displays the number of total normal (non-secure) connections to the server.

SSL connections

Displays the number of total SSL (secure) connections currently active.

Requests

Displays the number of total requests to the server since the server was started.

Responses

Displays the number of total responses from the server since the server was started.

Requests rejected

Displays the number of total rejected requests issued by the server since the server was started.

Absolute and Delta

The absolute and delta information displays statistical information about currently enabled functions or

associated servers. The absolute value is a measurement of the total transactions since the server was

started. The delta value is a measurement of the total transactions since the server statistics were refreshed.

The absolute and delta statistical information may be displayed separately or side by side for comparison.

HTTP Server 23

Connections are not the same thing as a request or response transaction. Connection are only recorded for

new inbound connections to the server. Each column heading identifies what enabled function or

associated server is being surveyed for statistical information. Each row identifies what statistical

information is being retrieved. Statistical information displayed for each column includes:

Requests

Displays the number of requests to the enabled function or associated server identified at the top

of the column.

Responses

Displays the number of responses sent by the enabled function or associated server identified at

the top of the column.

Error responses

Displays the number of error responses sent by the enabled function or associated server

identified at the top of the column. An error response example is the 404 ″Page Not Found″

response.

Non-cache responses

Displays the number of non-cached responses sent by the enabled function or associated server

identified at the top of the column.

Cache responses

Displays the number of local memory cached responses sent by the enabled function or

associated server identified at the top of the column.

Bytes received

Displays the number of bytes received by the enabled function or associated server identified at

the top of the column.

Bytes sent

Displays the number of bytes sent by the enabled function or associated server identified at the

top of the column.

Non-cache Processing (seconds)

Displays the number of seconds of non-cached processing activity completed by the enabled

function or associated server identified at the top of the column.

Cache Processing (seconds)

Displays the number of seconds of cached processing activity completed by the enabled function

or associated server identified at the top of the column.

Averages

The server averages information displays the average length of activity, in seconds, completed by the

enabled function or associated server identified at the top of the column. Each column heading identifies

what enabled function or associated server is being surveyed for statistical information. Each row

identifies what statistical information is being retrieved. Averages are not affected by end user response

times. Factors such as internet and intranet traffic, firewalls, and connection speeds are not determined.

Statistical information displayed for each column includes:

Total (seconds)

Displays the total time of activity completed by the enabled function or associated server

identified at the top of the column.

Non-cached (seconds)

Displays the average length of time of non-cached activity completed by the enabled function or

associated server identified at the top of the column.

Cached (seconds)

Displays the average length of time of cached activity completed by the enabled function or

associated server identified at the top of the column.

24 iSeries: IBM HTTP Server

Web Publishing with the PUT Method

This topic provides information on Web publishing with the PUT method.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The standard way of uploading files to a Web server using HTTP is through the use of the PUT method.

HTTP Server (powered by Apache) supports the PUT method, but requires additional setup to tell the

server how to handle incoming PUT requests. One way to accomplish this is to enable WebDAV, which is

provided with HTTP Server (powered by Apache) through the module mod_dav. Another is to provide

your own CGI program and configure it for use with HTTP Server (powered by Apache). This article

discusses both options, as well as the PUT method in general.

About the PUT Method

POST and PUT are two methods in the HTTP specification that are used to permanently change files on a

Web server. While the POST method is used in conjunction with preestablished content such as Web

forms, the PUT method involves manipulating files that do not yet exist on the server. HTTP Server

(powered by Apache) supports the POST and PUT methods in the same way -- that is, it requires a

program to tell it how to handle incoming requests.

WebDAV

Most users will find that the easiest way to implement the PUT method for HTTP Server (powered by

Apache) is to enable WebDAV and use a client program that supports WebDAV (such as Microsoft® Web

Folders) to upload files. WebDAV is a set of extensions to the HTTP protocol, and is included in HTTP

Server (powered by Apache) through the module mod_dav. In addition to the WebDAV extensions,

mod_dav includes a PUT handler.

For more information on WebDAV, including a list of all the methods included, see “WebDAV for HTTP

Server (powered by Apache)” on page 64 and “Set up WebDAV for HTTP Server (powered by Apache)”

on page 196.

CGI programs

Alternatively, you can provide your own CGI program to handle incoming PUT requests, and configure it

for use with HTTP Server (powered by Apache). A program that handles PUT requests operates much

like a program that handles POST requests, but must include additional code for writing (and

overwriting) files on the server.

Because a PUT action results in a permanent change on the server, it’s important to be aware of the

security issues involved in providing your own PUT-handling CGI program. Some of these issues

include:

v Ensuring the user making the PUT request is authorized to update files on the server

v Making sure only Web content files are updated

v Only updating content the user is authorized to update

For a more detailed discussion on providing your own PUT-handling CGI program, see the Apache Week

article Publishing Pages with PUT

.

HTTP Server 25

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http:\www.apacheweek.com�eaturesput

Once you have a program capable of handling PUT requests, you can configure it for use with HTTP

Server (powered by Apache) using the Script directive. For more information on the Script directive, see

“Module mod_actions” on page 472.

File compression for HTTP Server (powered by Apache)

This topic provides information on file compression and how output from your server is compressed

before being sent to the client over the network.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Compressed output is transferred to requesting client browsers at a higher rate of speed than

noncompressed output. This decreases the amount of data that the server needs to send over the network

and improves network performance and response times.

Compression and decompression is implemented by the DEFLATE filter, located in “Module mod_deflate

for HTTP Server (powered by Apache)” on page 578. The DEFLATE filter is always inserted after

RESOURCE filters like PHP or SSI. It never touches internal subrequests. See Apache HTTP Server

Version 2.0 Documentation

for additional information and examples on configuring the Apache

server to use compression.

When the DEFLATE filter is used, a LoadModule is required in order to recognize the associated

directives.

LoadModule deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 Output compression

Files can be compressed by the server before output to the client. The server can be configured to only

compress files which are located in specific containers or globally. Directive SetOutputFilter enables

compression for files in the container where it is placed. For example:

SetOutputFilter DEFLATE

Files being compressed can also be restricted to specific MIME types. In order to configure the server to

restrict compression based on MIME types, the AddOutputFilterByType directive should be used. For

example, to enabling compression only for the HTML files located in a specific directory:

<Directory "/your-server-root/htdocs">

 AddOutputFilterByType DEFLATE text/html

</Directory>

Input compression

Compressed files require decompression before they can be used. A filter is necessary for decompressing

a GZIP compressed request body. The DEFLATE filter is required in the input filter chain and is set by

using the SetInputFilter or the AddInputFilter. For example:

<Location /dav-area>

SetInputFilter DEFLATE

</Location>

Requests containing a Content-Encoding: GZIP header are automatically decompressed. The

Content-Length header specifies the length of incoming data from the client, not the byte count of the

decompressed data stream. The actual length of the data will be greater than the Content-Length header

indicates after the decompression has been done.

26 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://httpd.apache.org/docs-2.0/mod/mod_deflate.html
http://httpd.apache.org/docs-2.0/mod/mod_deflate.html

Note: Check your browser to ensure it supports GZIP request bodies.

Proxy servers

Proxy servers receive a Vary: Accept-Encoding HTTP response header to identify that a cached response

should be sent only to clients that send the appropriate Accept-Encoding request header. The response

header prevents compressed content from being sent to a client that cannot support it.

Dependencies on special exclusions, for example, the User-Agent header, can be specified with an

addition to the Vary header. The Vary header must be manually configured in order to alert proxies of

the additional restrictions. For example, where the addition of the DEFLATE filter depends on the

User-Agent, the following Very header should be added:

Header append Vary User-Agent

If compression depends on information other than request headers, set the Vary header with a value of

″*″. The ″*″ prevents compliant proxies from caching entirely. For example:

Header set Vary *

Fast Response Cache Accelerator (FRCA) for HTTP Server (powered

by Apache)

This topic provides information on the Fast Response Cache Accelerator.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Fast Response Cache Acceleration is only available for V5R2 HTTP Server and later releases.

The Fast Response Cache Accelerator (FRCA) improves the performance and scale of Web and TCP server

applications by storing both static and dynamic content in a memory-based cache located in the Licensed

Internal Code. You can configure FRCA by using the IBM Web Administration for iSeries interface. See

“Set up Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by Apache)” on page 145.

FRCA improves efficiency, scale, and performance by implementing two concepts:

v Use of a memory-based cache that filters what is stored and what is dismissed. Requests can process

much more quickly when the majority of the requested content is cached within the Licensed Internal

Code. The memory-based cache delegates stored information to the Network File Cache which is

located in the Licensed Internal Code.

v Caching functions from within the Licensed Internal Code to reduce request processing time.

Storing cached files within the Licensed Internal Code eliminates overhead and reduces request

processing time by reducing task-switching between the Licensed Internal Code and user application

layers. This conserves system resources allowing them to be reallocated towards hosting dynamic

content.

Note: The HTTP Server (powered by Apache) does not check for authorization on content served from

FRCA. Use FRCA to cache content that does not need to be secured or accessed through specific

validation.

FRCA improves HTTP Server (powered by Apache) performance for both static and dynamic content.

Static content, or content that comes from a file, is stored in Network File Cache and is then served to

Licensed Internal Code of HTTP Server (powered by Apache) which essentially ’short circuits’ the normal

request processing path so the requested information will reach the user faster.

HTTP Server 27

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Dynamic content can be served from a Licensed Internal Code proxy cache or distributed by the Licensed

Internal Code reverse proxy to one or more remote servers. A layer-7 router looks at the URL paths to

route dynamic requests to the appropriate remote server.

Static content request and response process without FRCA

Static content request and response process with FRCA

28 iSeries: IBM HTTP Server

Log formats for HTTP Server (powered by Apache)

This topic provides information about log formats and log files.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Use the following information to understand log formats. For information on how to configure logs, see

“Set up logs on HTTP Server (powered by Apache)” on page 148.

Log files contain one line for each request. A line is composed of several tokens separated by spaces. If a

token does not have a value then it is represented by a hyphen (-). A line in a log file might look like the

following:

192.168.1.3 - - [18/Feb/2000:13:33:37 -0600] "GET / HTTP/1.0" 200 5073

The following log file types are supported:

Common (Access)

This format is the common log file format defined by the W3C working group. This format is

HTTP Server 29

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

compatible with many industry standard log tools. For more information see the W3C common

log format web site at http://www.w3.org/Daemon/User/Config/Logging.html

.

 The common log format is defined by the following string:

"%h %l %u %t \"%r\" %>s %b"

Extended (Access, Referer, and Agent)

This format has two types: NCSA extended log format and the W3C extended log format. The

NCSA extended log format is the common log format appended with the agent and referer

information. The W3C extended log format is defined by the W3C working group and allows you

to determine the format of the log entry. For more information see the W3C extended log format

web site at http://www.w3.org/TR/WD-logfile

.

 NCSA’s extended format is defined by the following string:

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"\%{User-agent}i\"

Data Description Specification (DDS)

This format is an iSeries database (physical) file in QSYS.LIB. This format allows you to write a

database query program to generate reports. This format contains the same information as the

common log format.

 Tokens used to define log file formats

 Token Description

%...a The remote client IP address. Example: 192.168.1.3

%...A The local client IP address. Example: 192.168.1.3

%...b The number of bytes transmitted, excluding HTTP headers in common log format.

Example: - = no bytes transmitted

%...B The number of bytes transmitted, excluding HTTP headers in extended log format.

Example: 0 = no bytes transmitted

%...{var}e The contents of the environment variable named var.

%...f The requested file name. Example: /www/index.htm

%...h The remote host name or IP address. Example: hal.ibm.com or 192.168.1.3

%...H The requested protocol.

%...{var}i The contents of the HTTP header line named var. Example: %{User-agent}i =

Mozilla/4.5 [en] (WinNT; U)

%...l The remote logname.

%...m The request method.

%...{var}n The contents of the note named var.

%...{var}o The contents of the header lines named var in the reply.

%...p The canonical Port of the server serving the request. Example: 80

%...P The process ID that serviced the request. Example: 837

%...q The query string (or search argument) prepended with a ″?″. Example: ?name=hal

%...r The first line of the request. Example: GET / HTTP/1.0

%...s The server response status. Example: 200

%...t The time in common log format. Example: [21/Mar/2000:14:08:03 -0600]

%...{strftime}t The time in strftime format.

%...T The time (in seconds) taken to serve the request. Example: 1

%...u The name of the authenticated remote user. Example: hal

30 iSeries: IBM HTTP Server

http://www.w3.org/Daemon/User/Config/Logging.html
http://www.w3.org/TR/WD-logfile

Token Description

%...U The requested URL path. Example: /

%...v The canonical server name of the server serving the request.

%...V The server name according to the UseCanonicalName setting.

Note:

v Logformat %D is not supported.

v The ″...″ can be replaced with a condition for inclusion or it can be omitted. The character <

determines if the original value is logged. The greater than character (>) determines if the

redirected value is logged. The condition may be preceded by a ! to reverse the condition. For

example:

 Condition Description

%>s Logs the returned status.

%{User-agent}i Logs User-agent on all requests.

%400,501{User-agent}i Logs User-agent only when a 400 error (Bad Request) or a 501 error (Not

Implemented) is encountered.

%!200,304,302{Referer}i Logs Referer on all requests which did not return some sort of normal status.

Proxy server types and uses for HTTP Server (powered by Apache)

This topic provides information about proxy server types and uses.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Proxy servers receive requests intended for other servers and then act to fulfill, forward, redirect, or reject

the requests. Exactly which service is carried out for a particular request is based on a number of factors

which include: the proxy server’s capabilities, what is requested, information contained in the request,

where the request came from, the intended destination, and in some cases, who sent the request.

The two most attractive reasons to use a proxy server are its ability to enhance network security and

lessen network traffic. A proxy server enhances network security by providing controls for receiving and

forwarding (or rejecting) requests between isolated networks, for example, forwarding requests across a

firewall. A proxy server lessens network traffic by rejecting unwanted requests, forwarding requests to

balance and optimize server workload, and fulfilling requests by serving data from cache rather than

unnecessarily contacting the true destination server.

HTTP Server (powered by Apache) has proxy server capabilities built in. Activating these services is

simply a matter of configuration. This topic explains three common proxy concepts: forward proxy,

reverse proxy, and proxy chaining.

Forward proxy

A forward proxy is the most common form of a proxy server and is generally used to pass requests from

an isolated, private network to the Internet through a firewall. Using a forward proxy, requests from an

isolated network, or intranet, can be rejected or allowed to pass through a firewall. Requests may also be

fulfilled by serving from cache rather than passing through the Internet. This allows a level of network

security and lessens network traffic.

HTTP Server 31

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

A forward proxy server will first check to make sure a request is valid. If a request is not valid, or not

allowed (blocked by the proxy), it will reject the request resulting in the client receiving an error or a

redirect. If a request is valid, a forward proxy may check if the requested information is cached. If it is,

the forward proxy serves the cached information. If it is not, the request is sent through a firewall to an

actual content server which serves the information to the forward proxy. The proxy, in turn, relays this

information to the client and may also cache it, for future requests.

The above image shows a forward proxy configuration. An intranet client initiates a request that is valid

but is not cached on Server A (Proxy Server). The request is sent through the firewall to the Internet

server, Server B (Content Server), which has the information the client is requesting. The information is

sent back through the firewall where it is cached on Server A and served to the client. Future requests for

the same information will be fulfilled by the cache, lessening network traffic (proxy caching is optional

and not necessary for forward proxy to function on your HTTP Server).

 For information on how to configure a forward proxy, see “Set up forward proxy for HTTP Server

(powered by Apache)” on page 151.

Reverse proxy

A reverse proxy is another common form of a proxy server and is generally used to pass requests from

the Internet, through a firewall to isolated, private networks. It is used to prevent Internet clients from

having direct, unmonitored access to sensitive data residing on content servers on an isolated network, or

intranet. If caching is enabled, a reverse proxy can also lessen network traffic by serving cached

information rather than passing all requests to actual content servers. Reverse proxy servers may also

balance workload by spreading requests across a number of content servers. One advantage of using a

reverse proxy is that Internet clients do not know their requests are being sent to and handled by a

reverse proxy server. This allows a reverse proxy to redirect or reject requests without making Internet

clients aware of the actual content server (or servers) on a protected network.

A reverse proxy server will first check to make sure a request is valid. If a request is not valid, or not

allowed (blocked by the proxy), it will not continue to process the request resulting in the client receiving

an error or a redirect. If a request is valid, a reverse proxy may check if the requested information is

cached. If it is, the reverse proxy serves the cached information. If it is not, the reverse proxy will request

the information from the content server and serve it to the requesting client. It also caches the

information for future requests.

The above image shows a reverse proxy configuration. An Internet client initiates a request to Server A

(Proxy Server) which, unknown to the client, is actually a reverse proxy server. The request is allowed to

pass through the firewall and is valid but is not cached on Server A. The reverse proxy (Server A)

requests the information from Server B (Content Server), which has the information the Internet client is

requesting. The information is served to the reverse proxy, where it is cached, and relayed through the

firewall to the client. Future requests for the same information will be fulfilled by the cache, lessening

32 iSeries: IBM HTTP Server

network traffic and load on the content server (proxy caching is optional and not necessary for proxy to

function on your HTTP Server). In this example, all information originates from one content server

(Server B).

For information on how to configure a reverse proxy, see “Set up reverse proxy for HTTP Server

(powered by Apache)” on page 152.

Proxy chaining

A proxy chain uses two or more proxy servers to assist in server and protocol performance and network

security. Proxy chaining is not a type of proxy, but a use of reverse and forward proxy servers across

multiple networks. In addition to the benefits to security and performance, proxy chaining allows

requests from different protocols to be fulfilled in cases where, without chaining, such requests would not

be possible or permitted. For example, a request using HTTP is sent to a server that can only handle FTP

requests. In order for the request to be processed, it must pass through a server that can handle both

protocols. This can be accomplished by making use of proxy chaining which allows the request to be

passed from a server that is not able to fulfill such a request (perhaps due to security or networking

issues, or its own limited capabilities) to a server that can fulfill such a request.

The first proxy server in a chain will check to make sure a request is valid. If a request is not valid, or

not allowed (blocked by the proxy), it will reject the request resulting in the client receiving an error or a

redirect. If a request is valid, the proxy may check if the requested information is cached and simply

serve it from there. If the requested information is not in cache, the proxy will pass the request on to the

next proxy server in the chain. This server also has the ability to fulfill, forward, redirect, or reject the

request. If it acts to forward the request then it too passes the request on to yet another proxy server. This

process is repeated until the request reaches the last proxy server in the chain. The last server in the chain

is required to handle the request by contacting the content server, using whatever protocol is required, to

obtain the information. The information is then relayed back through the chain until it reaches the

requesting client.

The above image shows a proxy chaining configuration. The intranet client makes a request to Server C

(Content Server FTP). Server A (Proxy Server HTTP) does not contain the requested information in cache,

so the request is passed through the firewall to Server B (proxy server HTTP/FTP). Server B has both

HTTP and FTP protocols and is able to change the HTTP request to an FTP request. Server C receives the

FTP request and passes back the requested information to Server B. Server B, in turn, passes the fulfilled

request back to the intranet client using the HTTP protocol. The request is sent through the firewall and

Server A where the request is cached and given to the intranet client.

For information on how to configure proxy chaining, see “Set up proxy chaining for HTTP Server

(powered by Apache)” on page 153.

Web crawling on HTTP Server

This topic provides information about Web crawling and Web crawlers.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 33

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

A Web crawler is a program that finds a URL on another Web server. A ″crawl″ is the Web crawler

program following links within Web pages and downloading HTML and text pages it finds. The Web

crawler downloads files to your local directory, and creates a document list. The document list and the

files can then be used to create a search index. The search results will link to the actual URL that was

found during the crawl.

 Attention: The Web crawler downloads text and HTML files to your iSeries. The iSeries checks if

sufficient memory is available for a successful Web crawl, but it will not check for available storage.

To crawl a Web site, you must specify attributes such as the document storage directory, the URL to

crawl, and so on. Alternately, you may start a crawl using a URL and options object that you have

already created using other forms. A URL object contains a list of URLs. An options object contains

crawling attributes, such as the proxy server to use for each crawling session.

Some sites cannot be entered without some sort of authentication, such as a userid and password, or

certificate authentication. The web crawler has the capacity to handle either case as long as you do the

required set up.

For a site requiring a userid and password, you must create a validation list object, entering the URL,

userid, and password. See “Set up validation lists for the Webserver search engine on HTTP Server” on

page 172 for more information. Then be sure to enter the validation list object when you start crawling.

See the digital server certificate information on how to obtain certificate authentication. The digital

certificate manager can be used to obtain a new, or register an existing, certificate for any secure server

instance of the IBM HTTP Server.

Building a document list by crawling Web sites always runs as a background task and will take several

minutes, at a minimum, to run, depending on the maximum time you selected for the session to run, as

well as other attributes you have specified.

See “Build the document list by crawling a URL” on page 163 for information on how to use the Web

crawler with the IBM Web Administration for iSeries interface.

Webserver search engine on HTTP Server

This topic provides information about the Webserver search engine and national language considerations.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The Webserver search engine allows you to perform full text searches on HTML and text files. You can

control what options are available to the user and how the search results are displayed through

customized Net.Data® macros. You can enhance search results by using the thesaurus support. For

information on configuring the search engine with the HTTP Server (powered by Apache), see “Set up

the Webserver search engine on HTTP Server (powered by Apache)” on page 169.

How it works

Before you can search, you must have an index. The index is a set of files that contain the contents of the

documents (in a searchable form) that are to be searched. The search index is used by the search engine

rather than searching all of the actual documents.

A search index is created based upon a document list. A document list contains a list of fully qualified

path names of all the documents that you want to index.

34 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Documents satisfying a search request are returned by default in their order of ranking. A document’s

ranking specifies the relevance with respect to the specified search conditions. The following factors

determine a document’s ranking:

v Frequency of search terms in the document - As the search words appear more frequently in the

document, the ranking gets higher.

v Position of search terms in the document - As the search words appear closer to the beginning of the

document, the ranking gets higher.

v Frequency of search terms in the whole set of documents - As the search words appear less frequently

within the documents in the entire index, the ranking for documents that have search words gets

higher.

It is possible that a document with one search term appearing toward the beginning of the document can

have a higher ranking than a document with multiple search terms appearing near the end of the

document. The search function assumes that words indicating the subject or topic of the document

usually appear near the beginning of the document. The highest ranking a document can have is 100%. A

document can achieve a ranking of 100% if relatively few of the documents in the index contain the

search terms. If many documents in the index contain the search terms, it is likely that none of the

documents would achieve a ranking of 100%.

You can provide the following search functions through the customized Net.Data macros:

v Exact search - 100% of the letters match. For example street returns street, Street, and STREET.

v Fuzzy search - 60% of the letters match. For example street returns street, streets, treat, and Tree.

v Wild card search - an asterisk (*) is replaced by zero or more letters and a question mark (?) is replaced

by one letter. For example jump* returns jump, jumps, Jumping, and jumper.

v Proximity search - two or more words in the same sentence.

v English word stemming - for example, knife returns knife and knives.

v Case sensitive search - for example, Street returns Street, not street.

v Boolean search (simple) - for example, A and B and C.

v Boolean Search (advanced) - for example, (A and (B or C) not D).

v Document ranking - documents are automatically sorted according to ranking.

v Thesaurus support - finds synonyms or related terms of a search word.

v Search within results - search within returned search results only.

v Simple and Advanced search

You can enhance search results through the use of the thesaurus support. A thesaurus contains words that

are synonyms or related terms of a search word. For example, searching for Ping-Pong without thesaurus

support results only in documents containing the string Ping-Pong. Using thesaurus support that includes

synonyms for Ping-Pong, such as table tennis, results in documents containing either the string

Ping-Pong or table tennis.

The URL mapping rules file, built from your selected HTTP Server, is used to set the URL for each

document found on a search. It can specify the server port number (or instance) to use and can also map

resulting file path names to external path names.

Sample files

Several files are shipped with the product for your use to customize your own Web search function:

 File Description

/QIBM/ProdData/HTTP/Public/HTTPSVR/sample_search.ndm Sample Net.Data macro that you can customize.

QIBM/ProdData/HTTP/Public/HTTPSVR/

thesaurus_sample_search.ndm

Sample Net.Data macro with thesaurus support

that you can customize.

HTTP Server 35

File Description

/QIBM/ProdData/HTTP/Public/HTTPSVR/sample_search.html Sample search HTML file.

/QIBM/ProdData/HTTP/Public/HTTPSVR/HTML/ Directory of sample HTML files that you can use

to build a test search index.

/QIBM/ProdData/HTTP/Public/HTTPSVR/sample_thesaurus.txt Sample thesaurus definition file.

National language considerations

Documents that you are indexing can be encoded in most ASCII codepages and EBCDIC CCSIDs.

Because the search engine does not support all CCSIDs, your documents might be converted to one of

the supported CCSIDs during the indexing process. To see the CCSID used to index your documents,

view the status of the search index.

Wildcard characters in search strings are not allowed for double byte languages. A wildcard search is

implied for double byte languages. Both the name of the index and index directory name must be

specified in a single byte characters. The contents of documents are often converted to one of the index

CCSIDs listed below.

Documents in languages from the included character sets can all be contained in the same index, as long

as the documents are indexed separately. For example, an index can contain English and French

documents. Create the index including just the English documents, then update the index with the French

documents. If you attempt to index Italian and Russian documents in the same index, an error will occur

since the two languages cannot be converted to a common index CCSID. In this case you would need to

create two separate indexes. The following table describes the supported CCSIDs for indexes.

 Index

CCSID

Code page name Included character sets (CCSIDs)

500 Latin 1 International Albanian, Belgian English, Belgian French, Canadian French

MNCS, Danish, Dutch, Dutch MNCS, English International, English US,

Finnish, French (France), French MNCS, German (Germany), German

MNCS, Icelandic, Italian, Latin 1/Open Systems, Norwegian, Portuguese

(Brazil), Portuguese (Portugal), Swedish

838 Thai Thai

870 Latin 2 Croatian, Czech, Hungarian, Polish, Romanian, Serbian (Latin), Slovak,

Slovenia

1025 Cyrillic Bulgarian, Macedonian, Russian, Serbian (Cyrillic)

1026 Latin 5 Turkish

875 Greek Greek

424 Hebrew Hebrew

420 Arabic Arabic

1112 Baltic Latvian, Lithuanian

1122 Estonian Estonian

935 Simplified Chinese (GB) Simplified Chinese (GB)

1388 Simplified Chinese

(GBK)

Simplified Chinese (GBK)

937 Traditional Chinese Traditional Chinese

5026 (930) Japanese Katakana Japanese Katakana

5035 (939) Japanese Latin Japanese Latin

1364 (933) Korean Korean

36 iSeries: IBM HTTP Server

Browser and CL command interface for the Webserver search engine and Web

crawler

This table shows the browser and CL command interface to all of the search engine and web crawling

tasks.

 Task Browser form CL command First release

available

Create an index Create search index CFGHTTPSCH OPTION(*CRTIDX) V4R4

Update an index Update search index CFGHTTPSCH OPTION(*ADDDOC)

CFGHTTPSCH OPTION(*RMVDOC)

V4R4

Merge an index Merge search index CFGHTTPSCH OPTION(*MRGIDX) V4R4

Delete an index Delete search index CFGHTTPSCH OPTION(*DLTIDX)

V4R4 View the status of an index View

status of search index:

CFGHTTPSCH OPTION(*PRTIDXSTS)

V4R4

View the status of an

index

View status of search index CFGHTTPSCH OPTION(*PRTIDXSTS)

See spoolfile QPZHASRCH

V4R4

V5R1

Create a document list

Start the web crawler

Build a document list CFGHTTPSCH OPTION(*CRTDOCL) - local

STRHTTPCRL OPTION(*CRTDOCL) - web

crawler

V4R4

V5R1

Add documents to a

document list

Build a document list CFGHTTPSCH OPTION(*UPDDOCL)

Use for local documents.

STRHTTPCRL OPTION(*UPDDOCL)

Use for documents found with the web

crawler.

V4R4

V5R1

Stop a web crawling

session.

Work with document list

status

ENDHTTPCRL V5R1

Pause a web crawling

session.

Work with document list

status

ENDHTTPCRL V5R1

Resume a web crawling

session.

Work with document list

status

RSMHTTPCRL V5R1

Register a document

list created before V4R5

Register document list CFGHTTPSCH OPTION(*REGDOCL) V5R1

Delete a document list Delete document list CFGHTTPSCH OPTION(*DLTDOCL) V4R4

Display information

about a document list

Work with document list

status

CFGHTTPSCH OPTION(*PRTDOCLSTS)

See spoolfile QPZHASRCH

V4R4

V5R1

Create a URL mapping

rules file

Build URL mapping rules

file

CFGHTTPSCH OPTION(*CRTMAPF) V4R4

Append a URL

mapping rules file

Build URL mapping rules

file

CFGHTTPSCH OPTION(*UPDMAPF) V4R4

Build a thesaurus

dictionary

Build thesaurus dictionary CFGHTTPSCH OPTION(*CRTTHSDCT) V4R4

Test a thesaurus

dictionary

Test thesaurus dictionary None. V5R1

HTTP Server 37

Task Browser form CL command First release

available

Retrieve a thesaurus

definition from a

dictionary

Retrieve thesaurus definition CFGHTTPSCH OPTION(*RTVTHSDFNF) V4R4

Delete a thesaurus

dictionary

Delete thesaurus dictionary CFGHTTPSCH OPTION(*DLTTHSDCT) V4R4

Create a list of URLs to

crawl

Build URL object CFGHTTPSCH OPTION(*CRTURLOBJ) V5R1

Update a list of URLs

to crawl

Build URL object CFGHTTPSCH OPTION(*UPDURLOBJ) V5R1

Delete a list of URLs to

crawl

Delete URL object CFGHTTPSCH OPTION(*DLTURLOBJ) V5R1

Create an object

containing crawling

attributes

Build options object CFGHTTPSCH OPTION(*CRTOPTOBJ) V5R1

Update an object

containing crawling

attributes

Build options object CFGHTTPSCH OPTION(*UPDOPTOBJ) V5R1

Build an object with

userid and passwords

for authentication

Build validation list CFGHTTPSCH OPTION(*CRTVLDL) V5R1

Add userids and

passwords for

authentication.

Build validation list CFGHTTPSCH OPTION(*ADDVLDLDTA) V5R1

Remove userids and

passwords for

authentication.

Build validation list CFGHTTPSCH OPTION(*RMVVLDLDTA) V5R1

Search an index Search index None V4R4

Security tips for HTTP Server

This topic provides tips to secure your HTTP Server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Some hints and tips on security issues in setting up the HTTP Server.

v “Permissions on ServerRoot directories for HTTP Server”

v “Stopping users from overriding system wide settings for HTTP Server (powered by Apache)” on page

39

v “Protect server files by default for HTTP Server (powered by Apache)” on page 39

v “Server Side Includes for HTTP Server (powered by Apache)” on page 39

v “CGI for HTTP Server” on page 39

Permissions on ServerRoot directories for HTTP Server

In typical operation, the HTTP Server is started under the iSeries user profile QTMHHTTP and requests

coming into the server are run under that user profile. It is possible to start the server and serve requests

under different profiles. Refer to the ServerUserID and UserID directives for more information. You must

38 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_as_auth.htm#userid

also ensure that all of the resources that can be accessed by a Web client are properly protected. See

“User profiles and required authorities for HTTP Server” on page 40 for additional information.

Stopping users from overriding system wide settings for HTTP Server (powered by

Apache)

You will want to stop users from setting up .htaccess files which can override security features. Here is

one example:

<Directory />

 AllowOverride None

 Options None

</Directory>

This stops all overrides, Includes, and accesses in all directories. You also need to set up directory

containers to allow access for specific directories.

Protect server files by default for HTTP Server (powered by Apache)

HTTP Server (powered by Apache) has a default access feature. To prevent clients from seeing the entire

file system, add the following block to the configuration:

<Directory />

 Order deny,allow

 Deny from all

</Directory>

This forbids default access to filesystem locations. Add appropriate <Directory> blocks to allow access.

For example,

<Directory /users/public_html>

 Order deny,allow

 Allow from all

</Directory>

Pay particular attention to the interactions of <Location> and <Directory> directives. For example, even if

<Directory /> denies access, a <Location /> directive might override it.

Server Side Includes for HTTP Server (powered by Apache)

Server side includes (SSI) can be configured so that users can execute programs on the server. To disable

that part of SSI use the IncludesNOEXEC option to the Options directive.

CGI for HTTP Server

You should consider limiting CGI program execution by using the ScriptAlias directive. This gives you

more control over what programs are allowed to run as CGI programs

Always remember that you must trust the writers of the CGI script programs and have the ability to spot

potential security holes in CGI, whether they were deliberate or accidental. All of the CGI script

programs run as the same user unless you configure them otherwise. When programs run as the same

user, they have the potential to conflict with other scripts or programs.

Kerberos for HTTP Server

This topic provides information about Kerberos for use with your HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Kerberos is a network authentication protocol designed to provide authentication for client or server

applications with secret-key cryptography. The Kerberos server contains an authentication and a ticket

HTTP Server 39

rzaiemod_core.htm#directory
rzaiemod_core.htm#location
rzaiemod_core.htm#directory
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

granting function for users who have been authenticated. The HTTP Server does not authenticate;

however, it does support the WWW-Authenticate header and uses information received in that header

with API calls to an Enterprise Identity Mapping (EIM) server. EIM then determines whether the user is

authenticated and if mutual authorization should be initiated using Kerberos. EIM may also be

configured to use multiple Kerberos realms (with multiple EIM servers) for authentication processing

with users from one realm accessing entities defined in a different realm.

For more information on EIM, see EIM concepts.

Kerberos requirements

v Only supported on OS/400® V5R2 or later.

v Netscape does not support Kerberos; however, Netscape users can access Kerberos protected Websites

through a Basic prompt enabled with the Authtype KerberosOrBasic directive.

v Windows® Internet Explorer (IE) does support Kerberos. At the minimum, IE 5.5 with the latest fix

pack installed is required.

See the “JKL Toy Company enables single signon for HTTP Server (powered by Apache)” on page 96

scenario for a complete step-by-step instructions on how to enable Kerberos for your iSeries server.

User profiles and required authorities for HTTP Server

This topic provides information about user profiles and required authorities for the HTTP Server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

User profiles and required authorities for HTTP Server (powered by Apache)

Webmaster user profile

The Webmaster user profile must have read, write, and execute authority to the directory path of the

server root directory. This is necessary because the HTTP Administration server swaps to the Webmaster

user profile during configuration and administration. If you are using the Create New HTTP Server

wizard, the default server root path is /www/server_name/, where server_name is the name of HTTP

Server.

If there are directories in the path which already exist, the Webmaster user profile must have read, write,

and execute authority to those directories prior to executing the Create New HTTP Server wizard. Note

that directory www already exists when the product is shipped. If you plan to use the default server root

path of the Create New HTTP Server wizard then the authority to directory www will need to be

changed prior to executing the wizard.

The Webmaster user profile must have the following authorities to perform configuration and

administration tasks:

v *IOSYSCFG special authority

v *SERVICE special authority if you plan to use the trace TCP application (TRCTCPAPP) function

v *CHANGE authority to the library object QUSRSYS

v *ALL authority to the following objects:

– QUSRSYS/QATMHINSTA

– QUSRSYS/QATMHINSTC
v *USE authority for the following command objects:

– CRTVLDL

40 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

– STRTCPSVR

– ENDTCPSVR
v *RX authority for root directory (″/ ″) and directory ″/www″, including all subdirectories in the path

v *RWX authority for directory ″/www/server_name/″

If the QPWFSERVER authorization list contains an entry that restricts *PUBLIC access to *EXCLUDE, and

one of the authorization list objects is QSYS.LIB, an entry must be created to grant the webmaster profile

*CHANGE authority, Use the ″DSPAUTL AUTL(QPWFSERVER)″ command to display the authorization

list. The ″ADDAUTLE AUTL(QPWFSERVER) USER(<webmaster>) AUT(*CHANGE)″ command can be

used to grant the appropriate authority.

Note: Granting *ALLOBJ authority to the Webmaster user profile is not recommended. Using the

QSECOFR user profile as the Webmaster user profile is not recommended.

Server user profiles

The QTMHHTTP user profile is the default user profile of HTTP Server. This user profile is referred to as

the server user profile. The server user profile must have read and execute authority to the directory path

of the server root directory. If you are using the Create New HTTP Server wizard, the default server root

path is /www/server_name/, where server_name is the name of the HTTP Server (powered by Apache).

The server user profile must have read, write, and execute authority to the directory path where the log

files are stored. If you are using the Create New HTTP Server wizard, the default path is

/www/server_name/logs/, where server_name is the name of the HTTP Server (powered by Apache). The

log files could include any access, script, or rewrite logs. These logs may or may not be configured to be

stored in the /www/server_name/logs/ directory. Since log files could potentially contain sensitive

information, the security of the configuration and log files should be fully considered. The path of the

configuration and log files should only be accessible by the appropriate user profiles.

The QTMHHTP1 user profile is the default user profile that HTTP Server uses when running CGI

programs. This user profile must have read and execute authority to the location of any CGI program.

User QTMHHTTP requires *RWX (write) authority to directory ’/tmp’.

You can optionally specify that the QTMHHTTP or QTMHHTP1 user profile swap to another user profile

as long as that user profile has the required authorities.

Note: Granting *ALLOBJ authority to any server user profile is not recommended.

v *RX authority for root directory (″/ ″) and directory ″/www″, including all subdirectories in the path

v *RWX authority for directory ″/www/server_name/″

ASF Jakarta Tomcat

v out-of-process: The user profile configuring the out-of-process ASF Tomcat is the owner of the

configuration files that are created. This user profile must have:

– *JOBCTL authority

– *ALL authority to the file QUSRSYS/QATMHASFT

– *CHANGE authority to the library object QUSRSYS

This configured user profile can, but will not necessarily, have the following directories (with the given

authorities) after going through the IBM Web Administration for iSeries interface to create a new ASF

Tomcat server.

/tomcat_home/conf - execute authority

/tomcat_home/conf/server.xml - read authority

/tomcat_home/webapps - read, write, and execute authority

HTTP Server 41

/tomcat_home/webapps/app1 - read and execute authority

/tomcat_home/webapps/app1/WEB-INF - read and execute authority

/tomcat_home/webapps/app1/WEB-INF/classes - read and execute authority

/tomcat_home/webapps/app1/WEB-INF/lib - read and execute authority

/tomcat_home/webapps/app1/WEB-INF/web.xml - read authority

/tomcat_home/webapps/app1/*.jsp - read authority

/tomcat_home/webapps/some_war_file.war - read authority

/tomcat_home/webapps/ROOT - read and execute authority

/tomcat_home/work - read, write, and execute authority

/tomcat_home/logs - read, write, and execute authority

/tomcat_home/java - execute authority

/tomcat_home/Java/Java/lib - read and execute authority

In addition the configuration process creates the tomcat_home directory with public execute authority.

The default out-of-process tomcat_home directory is /ASFTomcat/tomcat_server_name. If any of these

directories existed prior to the ASF Tomcat configuration process, then the previous authorities are left

unchanged.

v The user profile used to start the out-of-process ASF Tomcat must have:

– *USE authority to the file QUSRSYS/QATMHASFT

– *USE authority to the profile associated with the server user profile (this is QTMHHTTP by default)

– *IOSYSCFG special authority
v By default the user profile that the out-of-process ASF Tomcat runs under is the QTMHHTTP user

profile, but you can configure this to be another user profile.

This user profile must have *USE authority to the file QUSRSYS/QATMHASFT.

This user profile must NOT have the following:

– *SECADM authority

– *ALLOBJ authority (if the system is at security level 30 or greater).
v in-process: in-process ASF Tomcat configurations have the following authority considerations:

The server user profile (QTMHHTTP) can but will not necessarily have all of the following directories

with the given authorities after going through the IBM Web Administration for iSeries interface to

create a new ASF Tomcat.

/tomcat_home/conf - execute authority

/tomcat_home/conf/server.xml - read authority

/tomcat_home/conf/workers.properties - read authority

/tomcat_home/webapps - read, write, and execute authority

/tomcat_home/webapps/app1 - read and execute authority

/tomcat_home/webapps/app1/WEB-INF - read and execute authority

/tomcat_home/webapps/app1/WEB-INF/classes - read and execute authority

/tomcat_home/webapps/app1/WEB-INF/lib - read and execute authority

/tomcat_home/webapps/app1/WEB-INF/web.xml - read authority

/tomcat_home/webapps/app1/*.jsp - read authority

/tomcat_home/webapps/some_war_file.war - read authority

/tomcat_home/webapps/ROOT - read and execute authority

/tomcat_home/work - read, write, and execute authority

/tomcat_home/logs - read, write, and execute authority

/tomcat_home/Java - execute authority

/tomcat_home/Java/lib - read and execute authority

v In addition the configuration process creates the tomcat_home directory with public execute authority.

The default in-process tomcat_home directory is /www/server_name/.

v When running JSPs on an in-process ASF Tomcat, in order to assure that the Java and .class files

resulting from the compilation process of a JSP are owned by the configured profile for that server, the

42 iSeries: IBM HTTP Server

JSPs should be precompiled by the server administrator under that configured profile. This will assure

users swapped to by HTTP Server are not the first to cause the JSP to be compiled and thus become

the owners of the Java and Class files that result.

The Java virtual machine (JVM) used to run in-process and out-of-process ASF Tomcat is by default set

up to assign Public execute authority to any new IFS directories that are created and Public exclude

authority to any new IFS files that are created by Java code running within the JVM.

If any of these directories existed prior to the ASF Tomcat configuration process, then the previous

authorities are left unchanged.

See Basic system security and planning for more information on how to work with authorities.

Validation list on HTTP Server

This topic provides information about validation lists for limiting access to your HTTP Server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Your system uses validation lists in conjunction with other resources to limit access to your server

resources. Each validation list contains a list of Internet users and their passwords. Each Internet user has

one valid password defined for it. An iSeries user profile is never created for the internet users.

A validation list is an AS/400® object of type *VLDL that stores user names and passwords or SSL

certificates for use in access control. Validation lists are case-sensitive. Validation lists reside in iSeries

libraries and are required when adding a user unless you are adding the user to a group file. If you enter

a validation list that does not exist, the system will create it for you.

To create and delete validation lists, you can use the CL commands Create Validation List (CRTVLDL)

and the Delete Validation List (DLTVLDL). Application Programming Interfaces (APIs) are also provided

to allow applications to add, change, remove, verify (authenticate), and find entries in a validation list.

Validation list objects are available for all applications to use. For example, if an application requires a

password, the application passwords can be stored in a validation list object rather than a database file.

The application can use the validation list APIs to verify a user’s password, which is encrypted, rather

than the application performing the verification itself.

About Tomcat

This topic provides information about the Apache Software Foundation Jakarta Tomcat servlet engine.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The iSeries implementation of Apache Software Foundation (ASF) Jakarta Tomcat servlet engine (hereafter

referred to as ASF Tomcat) provides a lightweight servlet engine that supports servlets, JavaServer pages

(JSPs), and Web application archive (WAR) files. The HTTP Server for iSeries supports a module (mod_jk)

that allows communication between the HTTP Server (powered by Apache) and ASF Tomcat.

HTTP Server 43

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

For more in-depth technical information about ASF Tomcat, see http://jakarta.apache.org/tomcat/

index.html

. For more in-depth technical information about Java servlet technology (including the

Java Servlet Specification, V2.2), see http://java.sun.com/products/servlet/

.

ASF Tomcat can be configured to run:

v In-process where ASF Tomcat and the HTTP Server (powered by Apache) run in the same process and

communicate through a Java native interface (JNI). Generally, running in-process is easier to configure

and gives better performance. Running in-process also allows you to configure authentication through

the HTTP server (including the ability to swap to an authenticated user profile) where out-of-process

does not.

v Out-of-process where ASF Tomcat runs in a separate process (this separate process can be on a

different computer than the HTTP server) and communicates to the HTTP server through a TCP/IP

sockets connection. It is important to note that if SSL support is configured between the Web Browser

and the Web server, the connection between the Web server and the out-of-process ASF Tomcat server

is not secured with SSL. Running out-of-process allows more flexibility in the number and type of

processes that you can configure. An out-of-process configuration allows for:

– application and functional isolation of information

– reliability

– serviceability

– logically linking organizational synergies to application servlets

For example, you may have different out-of-process ASF Tomcat servers on different systems to

service specific functional areas of an organization, like shipping or accounting.

Configuration and administration of ASF Tomcat on the iSeries is accomplished through the IBM Web

Administration for iSeries interface. The ASF Tomcat Basic wizard is provided as an easy way to get

started configuring servlets, JSPs, and WAR files.

ASF Tomcat supports the following:

v ASF Tomcat 3.2.4

v Java server pages (JSP) 1.1

v Servlet 2.2 specification

v In-process ASF Tomcat

v Out-of-process ASF Tomcat using mod_jk ajp12 protocol support

v Out-of-process ASF Tomcat using mod_jk ajp13 protocol support

v Making SSL certificates and attributes associated with the client request available to the intended

servlet, when configured as in-process or as out-of-process using the ajp13 protocol

v HTTP Server (powered by Apache) virtual host mapping to ASF Tomcat

v JDK 1.2 and 1.3

Directory structure

 Directory Description

tomcat_home The tomcat_home directory is the base directory for ASF

Tomcat. The tomcat_home directory can be located in the root

or QOpenSys file systems. For an in-process ASF Tomcat

configuration, the default tomcat_home directory is set to the

HTTP server directory (/www/server_name/). For an

out-of-process ASF Tomcat configuration, the default

tomcat-home directory is set to /ASFTomcat/
tomcat_server_name/. Within the tomcat_home directory there

are subdirectories for logs and configuration information.

44 iSeries: IBM HTTP Server

http://jakarta.apache.org/tomcat/index.html
http://jakarta.apache.org/tomcat/index.html
http://java.sun.com/products/servlet/

Directory Description

tomcat_home/webapps This directory contains WAR files if you have them. All WAR

files are expanded and subdirectories are added as contexts.

Tomcat_home/webapps/ROOT This directory is required by ASF Tomcat.

Tomcat_home/webapps/app1 This directory is known as a document base directory. You may

have several document base directories under the webapps

directory. These represent and map a directory structure to a

servlet or JSP application.

Tomcat_home/webapps/app1/WEB-INF This directory contains the web.xml file for the application.

Tomcat_home/webapps/app1/WEB-INF/classes This directory contains any Java class files and associated

resources that are required for your application. This directory

is searched prior to the tomcat_home/webapps/app1/WEB-
INF/lib directory for any servlet .class file that is specified in

the URL.

Tomcat_home/webapps/app1/WEB-INF/lib This directory contains any JAR files and associated resources

that are required for your application.

Tomcat_home/conf This directory contains the server.xml and workers.properties

configuration files.

Tomcat_home/logs This directory contains all log files.

Tomcat_home/work This directory is automatically generated by ASF Tomcat as a

place to store intermediate files.

Java/lib This directory is created as a place to put .jar and Class files

that you want to add to the class path.

See “User profiles and required authorities for HTTP Server” on page 40 for information about authority

considerations for ASF Tomcat.

Log files

The jk.log file contains messages generated by mod_jk. It is important to note that this file is not erased

or regenerated when the ASF Tomcat engine starts. Messages are appended to this file and the size of this

file could grow very large if errors are being logged. You should periodically monitor the size of this file

and reduce its size. By default, the jk.log is set to the logs directory under server_home

(/www/server_name/logs/).

Each time the ASF Tomcat servlet engine is started, a set of log files is generated. These log files are all

based on the configuration in the server.xml file. The default location of the log files is in the /logs

directory under the tomcat_home directory.

The following is a description of each log file:

 Log file Description

jasper.log This log file contains messages resulting from trying to start or run JSPs.

servlet.log This log file contains messages generated as a result of a servlet running in the ASF Tomcat

servlet engine. When a servlet is initialized a ServletConfig object is provided to the servlet.

Contained within the ServletConfig object is a ServletContext object that provides methods for a

servlet to communicate to the Servlet container, in this case Tomcat. On the ServletContext

object is a log method that allows Web applications to log to the servlet.log file.

tomcat.log This log file contains ASF Tomcat servlet engine messages.

jvmstderr.txt This log file can contain messages from any Java code that does a System.err.println().

jvmstdout.txt This log file can contain messages from any Java code that does a System.out.println().

HTTP Server 45

rzaiemod_jk.htm

Process description

Running in-process means that the ASF Tomcat module (mod_jk) uses the Java invocation API to:

v Set up the JVM

v Attach a given HTTP Server (powered by Apache) thread to the JVM

v Run the servlet in the JVM

The servlet, written in Java, uses the JNI interface to call to the HTTP server to get the headers and data

that accompany the HTTP request. The servlet container invokes the target servlet, packages the response,

and sends the resulting response headers and data through the HTTP server using the JNI.

Running out-of-process means that the ASF Tomcat module (mod_jk) running in the HTTP server needs

to take the headers and accompanying data, package it up into a protocol (ajp12 or ajp13), and then send

that information across a TCP socket to the system where the JVM is running. This could be on the same

system, or it could be on an different system.

The servlet running in the JVM does the following:

v Receives the request from the socket

v Finds the target servlet

v Invokes the target servlet

v Packages the response headers and data into an ajp12 or ajp13 response

v Sends the response across the TCP socket to the HTTP server

The ASF Tomcat module running in the HTTP Server decodes the ajp12 or ajp13 response to retrieve the

HTTP headers and data. The ASF Tomcat module sends the HTTP headers and data to the browser.

Triggered cache manager for HTTP Server

This topic provides information about the triggered cache manager, page assembly, and wrappers.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The triggered cache manager (TCM) function provides a means to manage cached copies of static and

dynamically produced Web pages including those generated by CGI programs, Net.Data, or Java servlets.

The triggered cache manager function does not provide a cache, but rather a cache content manager. Web

pages are actually cached in such places as local file systems, proxy servers, or caching network routers.

When used in conjunction with an application trigger, the triggered cache manager function keeps caches

synchronized with the most current data while reducing the frequency of unnecessary dynamic page

generation and cache synchronization. See “Trigger messages for triggered cache manager on HTTP

Server (powered by Apache)” on page 49 for more information.

These Web pages can consist of a single object or they can consist of several objects (or page fragments).

Dynamically produced Web pages that embed page fragments are updated anytime an embedded page

fragment changes.

For example, several Web pages are constructed by a Java servlet using data extracted from a DB2®

database. These Web pages are in turn cached in several caching network routers. Web pages are served

from the network router caches rather than from the HTTP server running the Java servlet. When the

database data is changed, an application sends a trigger message to the triggered cache manager function.

Through the use of object dependency graphs, the triggered cache manager function determines which

Web pages need to be updated. The triggered cache manager function then requests new versions of each

affected Web page from the Java servlet and updates the cached copies in the caching network routers.

46 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

In this example, the Web site performance is greatly increased by serving cached copies of dynamically

produced Web pages rather than serving newly generated Web pages for each request. The Web site

consistency and performance is again increased by using an application trigger, with the triggered cache

manager function, to update cached Web pages only when underlying data changes. This avoids

unnecessary and costly cache updates and synchronization.

The triggered cache manager function is most effective for a Web site that has a large number of requests

for content that is somewhat constant, but with variables that change frequently. An example of this

might be a Web site that serves an on-line catalog that contains price and inventory information (the

product information is static, but the price and inventory information changes frequently). One of IBM’s

first uses of the triggered cache manager function was to drive the 1996 Winter Olympic Games Web site.

Page assembly

Often, advanced Web sites contain information that appears on more than one page. If the information

changes, all of the pages with that information need to be updated. There are several potentially difficult

problems associated with this:

v It can be extremely difficult to find and update all affected pages, especially as a Web site grows in

complexity.

v Information with a tendency to change also has a tendency to be expensive to maintain; for example,

database activity might be required to effect an update.

If a Web site’s pages can be composed from partial HTML fragments. Each fragment is unique and any

page that contains its information acquires it by embedding the fragment. This can lead to more flexible,

diverse, and complex Web sites.

The trigger cache manager function provides a way to assemble Web pages from a set of fragments. If a

fragment changes, the author of the fragment needs only to publish that fragment; the triggered cache

manager finds all the affected pages (data sources), rebuilds them, and copies the updated pages to the

configured delivery locations (cache targets).

To take advantage of this facility, HTML segments must indicate which other fragments are to be

embedded. This is done with a simple tag very similar to Server Side Includes (SSI). These tags are used

for two purposes:

v To determine the dependency relationships among HTML fragments (dependency parsing).

v To physically construct pages from the fragments (page assembly).

A publish trigger handler is used to accomplish this task.

The tag used to specify that a fragment is to be included is specified in HTML as follows. The keyword

%fragment is chosen to avoid conflicts with SSI.

<!-- %fragment (/source-name, /default-name) -->

Notes:

v The source-name is the name of the embedded fragment, relative to the data source specified in the

server configuration. The data source is searched in this order:

1. Among the objects triggered.

2. Among objects in the assembled directory within the repository of published objects maintained by

the triggered cache manager function. These are objects that might have been fetched as a result of

previous triggers and correspond to the assembled versions of fragments, intermediate results, and

final publishable pages.

If the data source is a file system, the source-name is a file name. If the data source is HTTP, the

source-name is the file name portion of a URL.

HTTP Server 47

v The default-name is the name of another fragment that might be used as a default when a specified

fragment cannot be found.

v Nesting is supported. The triggered cache manager function uses the object dependency graph (ODG)

specified in the server configuration to start the page assembler in the correct order to build pages.

For example, when one fragment, fragment A.html, embeds another fragment, fragment B.html, it is said

that fragment A.html is dependent on fragment B.html. This is denoted as either B --> A or as the ordered

pair (B, A). It is said that there is a dependency relationship between B and A. Suppose that A also

embeds another fragment, fragment C.html, and that fragment C.html in turn embeds fragment D.html.

Suppose further that some other fragment, fragment E.html, also embeds fragment C.html. This relationship

can be represented as a directed graph called the object dependency graph (ODG). The object dependency

graph is for fragment A.html and fragment C.html. The HTML fragments that describe this look something

like the following:

 Fragment A.html Fragment C.html Fragment E.html

<html>

 ...

 <!-- %fragment(B.html) -->

 <!-- %fragment(C.html) -->

 ...

</html>

<html>

 ...

 <!-- %fragment(D.html) -->

 ...

</html>

<html>

 ...

 <!-- %fragment(C.html) -->

 ...

</html>

When the triggered cache manager function is instructed to publish fragment C.html, it determines that

C.html embeds D.html. Similarly, when A.html and E.html are published, it determines B --> A, C --> A,

and C --> E. These relationships are automatically entered into the object dependency graph when the

fragments are processed by the publish trigger handler. If D.html is republished at a later time, the

publish application can determine, by examining the ODG, that all of C.html, A.html, and E.html must be

rebuilt but that the old copy of B.html can be used. Similarly, if only B.html changes, none of C.html,

D.html, or E.html are affected. The entire process of discovering dependencies, updating the object

dependency graph, and composing the correct and only the correct pages is all automatically performed

by the publish trigger handler.

 Graphical representation of

fragment A.html

Graphical representation of

fragment E.html

Graphical representation of ODG

for fragments A.html and E.html.

48 iSeries: IBM HTTP Server

Wrappers

In some cases, most notably when HTML is generated automatically from HTML editors, it might be

undesirable to use the full HTML content in a fragment. Such applications might insist on producing

<html> and <body> tags, for example, which make the fragment nearly unusable. To manage this,

fragments are also parsed for wrappers.

A wrapper directive begins with the following tag:

<!-- %begin-fragment(name) -->

A wrapper directive ends with the following tag:

<!-- %end-fragment -->

When these are encountered within a document, all text before the initial tag and following the final tag

is discarded. Only the text between these tags is actually used during page composition. The selected text

can be given a name other than the name of the file in which it occurs. This permits multiple fragments

to exist in the same file. That is, if multiple %begin-fragment and %end-fragment tags are found, the file is

treated as multiple files for the purpose of composing the page and managing the object dependency

graph.

Trigger messages for triggered cache manager on HTTP Server

(powered by Apache)

This topic provides information about trigger requests and trigger messages.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Trigger requests

Communication with the triggered cache manager function is done using HTTP 1.0 protocol. The HTTP

POST method is used to send trigger messages to the triggered cache manager function (unless otherwise

noted). The Content-Length header is required on all POST requests. The header Content-Type may be set

to application/x-trigger-request, but is not required. All other request headers are ignored.

The contents of a POST request should not be URL encoded. Each line of the POST request describes an

independent trigger message. A single logical operation is associated with each trigger message. Any line

that begins with a pound sign (#) is treated as a comment line and is ignored.

Trigger messages are issued by writing a program to submit them using the HTTP 1.0 protocol. You

should write a program to issue a POST similar to the following:

POST /handler/ HTTP/1.0

Content-Type: application/x-trigger-request

Content-length: nn

-id trigid1 -qp A -update -from /item1.html -to /item1.html

 Where:

v handler is the name of the trigger handler that should process your trigger message. The Admin trigger

name is admin. The ODG-Admin trigger handler name is odg-admin. Update Cache trigger handler

and Publish trigger handler names are defined by you in your configuration.

v nn is the actual length of your content.

HTTP Server 49

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Trigger messages

The following tasks (organized by trigger handler) are supported using trigger messages. Trigger

messages are plain text printable strings. Trigger messages generally consist of keywords and associated

values. Keywords may be abbreviated to the shortest unambiguous string. Optional letters are specified

within square brackets. For example, -fo[rce] indicates that any of the following are valid: -fo, -for, -forc,

or -force.

v Admin trigger handler

– “Terminate the triggered cache manager function (Admin trigger handler)”

– “Query request queues (Admin trigger handler)” on page 51

– “Start logging (Admin trigger handler)” on page 51

– “Stop logging (Admin trigger handler)” on page 52

– “Roll log (Admin trigger handler)” on page 52

– “Purge request (Admin trigger handler)” on page 52

– “Query trigger messages (Admin trigger handler)” on page 53

– “Enable and disable cache targets (Admin trigger handler)” on page 54

– “Enable and disable acknowledgement targets (Admin trigger handler)” on page 54

– “Change cache target priority (Admin trigger handler)” on page 55
v Update cache trigger handler

– “Update cache target object (Update Cache trigger handlers)” on page 55

– “Delete cache target object (Update Cache trigger handlers)” on page 56
v Publish trigger handlers

– “Update cache target object (Publish trigger handlers)” on page 56
v ODG-Admin trigger handler

– “Dump the ODG to disk (ODG-Admin trigger handler)” on page 56

– “Add an object to the ODG (ODG-Admin trigger handler)” on page 57

– “Delete an object from the ODG (ODG-Admin trigger handler)” on page 57

– “Add an edge to the ODG (ODG-Admin trigger handler)” on page 58

– “Delete an edge from the ODG (ODG-Admin trigger handler)” on page 58

– “Query orphan objects (ODG-Admin trigger handler)” on page 59

– “Query dependencies (ODG-Admin trigger handler)” on page 59

– “Query dependents (ODG-Admin trigger handler)” on page 59

– “Query chain (ODG-Admin trigger handler)” on page 60

– “Retreive object from the ODG (ODG-Admin trigger handler)” on page 60

Terminate the triggered cache manager function (Admin trigger handler): Use this trigger message to

stop the triggered cache manager function. Terminating the triggered cache manager function may result

in significant delays during restart.

Syntax

-id trigid -term[inate]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-term[inate] No value.

50 iSeries: IBM HTTP Server

Response

See “Trigger responses” on page 61.

Query request queues (Admin trigger handler): Use this trigger message to monitor the status of

request queues.

Syntax

-id trigid -q[ueues]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qu[eues] No value.

Responses

This trigger message returns one line per request queue, where each line has the following format:

1140 id internalid admin ! description-name: active=nn queued=mm lifetime-total=tt

lifetime-failed=ff lifetime-retried=rr threads=numt

 Response Description

1140 The message ID 1140, response to query request queues.

id The trigger ID from the query or the internally generated trigger ID if -id was

omitted from the query.

internalid The internally generated trigger id.

description-name The name of the configuration description whose request queue this line

pertains to.

nn The number of requests in this request queue that are currently processing.

mm The number of requests in this request queue that are waiting to be processed.

tt The number of total requests processed by this request queue since the triggered

cache manager function was last started.

ff The total number of requests which were processed and failed by this request

queue since the triggered cache manager function was last started.

rr The total number of requests which were processed and retried by this request

queue since the triggered cache manager function was last started.

numt The number of threads used to handle this request queue. This number remains

constant unless the triggered cache manager function is restarted and the

configuration was changed to specify more threads. For example: 1140 6 6

admin ! publishapp: active=5 queued=7 lifetime-total=98770

lifetime-failed=0 lifetime-retried=0 threads=10

See “Trigger responses” on page 61.

Start logging (Admin trigger handler): Use this trigger message to start logging messages to the

configured log.

HTTP Server 51

Syntax

-id trigid -startlog

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-startlog No value.

Response

See “Trigger responses” on page 61.

Stop logging (Admin trigger handler): Use this trigger message to stop logging messages to the log.

Syntax

-id trigid -stoplog

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-stoplog No value.

Response

See “Trigger responses” on page 61.

Roll log (Admin trigger handler): Use this trigger message to roll over the log. The current log file is

closed, .old is appended to the file name, and a new file is started.

Syntax

-id trigid -rolllog

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-rolllog No value.

Response

See “Trigger responses” on page 61.

Purge request (Admin trigger handler): Use this trigger message to purge an asynchronous request that

has not yet completed. Note that it may not be possible to immediately purge a request if the request is

52 iSeries: IBM HTTP Server

in a state which must complete before it can be removed from the system. When a purge trigger message

arrives, the specified request is marked purged and it is deleted from the system at the first available

synchronization point.

Syntax

-id trigid -purge triggerid

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-purge The internal ID assigned to the request. The internal ID is returned to the

requester as part of the response when the trigger message is accepted and can

also be found in the logs.

Response

See “Trigger responses” on page 61.

Query trigger messages (Admin trigger handler): Use these trigger messages to find the status of all

trigger messages or a particular trigger message. You can query all trigger messages or query a specific

trigger message.

Syntax

-id trigid -qa[ll]

-id trigid -qt[rigger] triggerid

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique id is used.

-qa[ll] No value. Queries all trigger messages.

-qt[rigger] The internal ID assigned to the request. The internal ID is returned to the

requester as part of the response when the trigger message is accepted and can

also be found in the logs.

Responses

The following message is returned as one line for each trigger message, where each line has the following

format:

1151 id internalid admin ! trigger-id trigger-internalid handler state queue-policy collapsed-id

purged

 Response Description

1151 The message ID 1151, response to a query trigger message.

id The trigger ID from the query or the internally generated trigger ID if -id was

omitted from the query.

HTTP Server 53

Response Description

internalid The internally generated trigger id.

trigger-id The trigger ID from the trigger message.

handler The name of the trigger handler.

state The state of the trigger message.

queue-policy The queue policy specified on the trigger message. See “Queue policy” on page

61.

collapsed-id The internal identifier of the trigger message into which this request has been

collapsed, if the request has been collapsed.

purged The word purged, if the request has been purged. For example: 1151

DaedalusCtl 212 admin ! trg65 180 updates Collapsed A 160 purged.

See “Trigger responses” on page 61.

Enable and disable cache targets (Admin trigger handler): Any cache target can be enabled or disabled

without shutting down the triggered cache manager function. If a cache target is disabled, no data is sent

to the cache target, and all other actions proceed as normal.

Syntax

-id trigid -chsi[nk] target {e[nable]|d[isable]}

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique id is used.

-chsi[nk] The name of the cache target to enable or disable.

{e[nable]|d[isable]} Specify enable to enable the cache target. Specify disable to disable the cache

target.

Response

See “Trigger responses” on page 61.

Enable and disable acknowledgement targets (Admin trigger handler): Any acknowledgement target

can be enabled or disabled without shutting down the triggered cache manager function. If an

acknowledgement target is disabled, no requests are sent to the acknowledgement target, and the system

acts as if the request was successfully sent.

Syntax

-id trigid -chac[k] acknowledgement {e[nable]|d[isable]}

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique id is used.

-chac[k] The name of the acknowledgement to enable or disable.

54 iSeries: IBM HTTP Server

Keyword Description

{e[nable]|d[isable]} Specify enable to enable the acknowledgement. Specify disable to disable the

acknowledgement.

See “Trigger responses” on page 61.

Change cache target priority (Admin trigger handler): The cache target priority associated with an

Update Cache trigger handler can be changed without shutting down the triggered cache manager

function.

Syntax

id trigid -chsp[riority] handler num

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique id is used.

-chsp[riority] The name of the trigger handler and the new value for the cache target priority.

Response

See “Trigger responses” on page 61.

Update cache target object (Update Cache trigger handlers): Use these messages to copy a single object

(optionally renaming the object) or copy a list of objects from a data source to a cache target.

Syntax

-id trigid -qp[olicy] queue-policy -ob[jects] object-list

-id trigid -qp[olicy] queue-policy -up[date] -fr[om] source-d -to target-id

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qp[olicy] Optional. See “Queue policy” on page 61.

-ob[jects] Specifies a list of objects delimited by a space. Paths are relative to the cache

target directory defined in your configuration. For example: -ob item1.html

item2.html /dir3/item3.html.

-up[date] No value.

-fr[om] Required if -update is specified. Any printable string that specifies the name of

the source object.

-to Optional, defaults to the value specified by -to. Any printable string that

specifies the name of the cache target object.

HTTP Server 55

Response

See “Trigger responses” on page 61.

Delete cache target object (Update Cache trigger handlers): Use these messages to delete cache target

objects.

Syntax

-id trigid -qp[olicy] queue-policy -de[elete] object

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qp[olicy] Optional. See “Queue policy” on page 61.

-de[lete] Specifies the object to delete.

Response

See “Trigger responses” on page 61.

Update cache target object (Publish trigger handlers): Use this message to move data from one or more

data sources, construct pages, and write constructed pages to one or more targets. This message inputs a

set of object names. The objects are copied from a data source and all other objects that have been

defined as dependent upon the input objects are added to this set. All objects are then assembled and

copied to the cache target. Object dependencies are identified through an object dependency graph

(ODG).

Syntax

-id trigid -qp[olicy] queue-policy -ob[jects] itemlist

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qp[olicy] Optional. See “Queue policy” on page 61.

-ob[jects] Specifies a list of objects delimited by a space. Paths are relative to the cache

target directory defined in your configuration. For example: -ob item1.html

item2.html /dir3/item3.html.

Response

See “Trigger responses” on page 61.

Dump the ODG to disk (ODG-Admin trigger handler): Use this message to write the current state of

the ODG into a text format. A file named snapshot.log is created in the directory containing the specified

ODG.

56 iSeries: IBM HTTP Server

Syntax

-id trigid -dos[napshot]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-dos[napshot] No value.

Response

See “Trigger responses” on page 61.

Add an object to the ODG (ODG-Admin trigger handler): Use this message to add an object to the

ODG.

Syntax

-id trigid -ao[bject] objectid

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-ao[bject] Specifies the name of the object to add.

Response

See “Trigger responses” on page 61.

Delete an object from the ODG (ODG-Admin trigger handler): Use these messages to delete an object

from the ODG.

Syntax

-id trigid -dob[ject] objectid

-id trigid -dob[ject] objectid -fo[rce]

-id trigid -dob[ject] objectid -dor[phans]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-dob[ject] Specifies the name of the object to delete.

-fo[rce] Optional. No value. Specifies that all edges connected to the object are removed

and the object is removed.

HTTP Server 57

Keyword Description

-dor[phans] Optional. No value. Specifies that all edges connected to the object are removed,

the object is removed, and orphaned objects are removed.

Response

See “Trigger responses” on page 61.

Add an edge to the ODG (ODG-Admin trigger handler): Use these messages to add an edge to the

ODG.

Syntax

-id trigid -ae[dge] -fr[om] from-object -to to-object -ed[getype] composition

-id trigid -ae[dge] -fr[om] from-object -to to-object -ed[getype] composition -fo[rce]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-ae[dge] No value.

-fr[om] Specifies the file name of the independent object.

-to Specifies the file name of the dependent object.

-ed[getype] Must be composition.

-fo[rce] Optional. No value. Specifies that any necessary endpoints are added and then

the edge is added.

Response

See “Trigger responses” on page 61.

Delete an edge from the ODG (ODG-Admin trigger handler): Use these messages to delete an edge

from the ODG.

Syntax

-id trigid -de[dge] -fr[om] from-object -to to-object -ed[getype] composition

-id trigid -de[dge] -fr[om] from-object -to to-object -ed[getype] composition -dor[phans]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-de[dge] No value.

-fr[om] Specifies the file name of the independent object.

-to Specifies the file name of the dependent object.

58 iSeries: IBM HTTP Server

Keyword Description

-ed[getype] Must be composition.

-dor[phans] Optional. No value. Specifies that the edge is removed and orphaned endpoints

are removed.

Response

See “Trigger responses” on page 61.

Query orphan objects (ODG-Admin trigger handler): Use this message to retrieve a list of all orphaned

objects.

Syntax

-id trigid -qo[rphans]

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qo[rphans] No value.

Response

See “Trigger responses” on page 61.

Query dependencies (ODG-Admin trigger handler): Use this message to query an object for a list of all

objects that this object is dependent upon.

Syntax

-id trigid -qdependen[cies] object -ed[dgetype] composition

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qdependen[cies] Specifies the name of the object to query.

-ed[dgetype] Must be composition.

Response

See “Trigger responses” on page 61.

Query dependents (ODG-Admin trigger handler): Use this message to query an object fo a list of all

objects that are dependent upon this object.

Syntax

-id trigid -qdependen[ts] object -ed[dgetype] composition

HTTP Server 59

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qdependen[ts] Specifies the name of the object to query.

-ed[dgetype] Must be composition.

Response

See “Trigger responses” on page 61.

Query chain (ODG-Admin trigger handler): Use this message to return the list of all dependencies of

the objects in the object list. This query returns a list of all the objects that might be affected if all of the

objects in the object list were triggered to a Publish trigger handler.

Syntax

-id trigid -qc[hain] list -ed[dgetype] composition

Keywords

 Keyword Description

-id Optional. Any printable string and is used for identification in the logs and

within messages. If not specified, an internally generated unique ID is used.

-qc[hain] Specifies a list of objects delimited by a space.

-ed[dgetype] Must be composition.

Response

See “Trigger responses” on page 61.

Retreive object from the ODG (ODG-Admin trigger handler): Use a GET request with the following

URL to retreive an object out of the object dependency graph (ODG) repository.

Syntax

/odg-name/{source|assembled}/object-name

Keywords

 Keyword Description

odg-name The name of the ODG description in the configuration.

{source|assembled} Specify source to indicate that the original data should be returned. Specify

assembled to indicate that the assembled version of the object should be

returned.

object-name The name of the object.

60 iSeries: IBM HTTP Server

Response

The Content-Length: response header record is returned. If the specified URL is not valid, status code 404

is returned. A URL may not be valid for any of the following reasons:

v The ODG name specified is not a valid ODG.

v The second directory name is neither source or assembled.

v The object name does not exist in the specified ODG.

See “Trigger responses.”

Queue policy

Some trigger messages may specify a queuing policy. A queuing policy refers to how asynchronous

trigger messages are sequenced through the request queues. There are three different queuing policies: A,

S, and P. Trigger messages queued under policy A (asynchronous) are processed independently of each

other and generally in parallel of each other. Trigger messages queued under policy S or P (sequential or

parallel) are logically grouped into a dependent group consisting of at least one S trigger message and

zero or more P trigger messages. For example, trigger messages may arrive in groups which can be

visualized in either of the two following ways:

trailing-S group) PPPPPPPS PPS PPPPS S PPS

(leading -S group) SPPPPPPP SPPPPPP SPPPPPP S SPP

Sets of consecutive P trigger messages are processed in parallel, but while any type P trigger message is

being processed, no type S trigger message may be started. Once a type S trigger message has started, no

type P trigger message may start. For any queue, there is at most one type S trigger message processed at

any time. For any queue, no type S trigger message is being processed if a type P trigger message is

being processed. Type A trigger messages are processed regardless of the current state of type S or P

trigger messages.

Note that because the request queues are associated with trigger handler descriptions, you may have

multiple S and P streams processing in parallel, so long as the incoming trigger messages are directed to

different trigger handlers.

Trigger responses

Responses are sent when a trigger message is received and as an acknowledgement message. The format

of the response is:

sss text

Content-Length: nn

Content-Type: application/x-trigger-msglist

mmmm requestors-requestid internal-requestid handlerid ! data\r\n

Where:

v sss is one of the defined status codes. See “Trigger status and message codes” on page 62.

v text is the message text associated with the status code.

v nn is the length of the content.

v mmmm is one on the defined message codes. See “Trigger status and message codes” on page 62.

v requestors-requestid is the trigger ID supplied by the caller. If no trigger ID is supplied with the trigger

message, the internally generated ID is supplied.

v internal-requestid is the internally generated trigger id. This value is guaranteed to be unique.

v handlerid is the name of the trigger handler used to process this request.

v data is text relevant to the message.

HTTP Server 61

Some handlers process trigger messages asynchronously. The initial response to asynchronous trigger

messages is to indicate a status code of 202. Final status is provided through an acknowledgement

message sent to an acknowledgement target.

Trigger status and message codes

The general status codes may be sent in response to any trigger message. Handler specific status codes

are listed for status codes that have a more specific meaning.

General status codes

 Value Meaning Example of cause or use

200 The request was completed successfully Queries

202 The request has been accepted for processing. There

may be an asynchronous response later.

Publish trigger handlers

400 Client error, handler specific. The returned text body

may contain more information.

Malformed POST

404 Cannot find URL requested. Handler does not exist

500 Server error, handler specific. The returned text body

may contain more information.

Publish errors

501 Specified HTTP command not implemented. HEAD, PUT

Admin trigger handler status codes

 Value Meaning

202 Success. The command response is in the body.

400 Failure. The request syntax is wrong.

Update cache trigger handler status codes

 Value Meaning

202 Success. The trigger message is queued for processing.

400 Failure. The request syntax is wrong.

Publish trigger handler status codes

 Value Meaning

202 Success. The operation is queued for processing.

400 Failure. The request syntax is wrong.

ODG-Admin trigger handler status codes

 Value Meaning

200 Success. The operation is complete, with possible warnings.

400 Failure. The requested syntax is wrong.

62 iSeries: IBM HTTP Server

Trigger message codes

 Code Meaning

1101 {0} (Successful acknowledgement of queued trigger message. The data consists

of the list of objects that are rebuilt)

1102 {0} request is queued (The trigger message was successfully queued)

1104 Server terminated

1105 Log roll-over successful

1106 Logging has been enabled

1107 Logging has been disabled

1108 Request ″{0}″ will be purged

1109 Specified object ″{0}″ has been deleted from ODG ″{1}″

1110 Object ″{0}″ defined in ODG ″{1}″

1111 Edge ″{0}″ to :{1}″ was deleted from ODG ″{2}″

1113 Edge ″{0}″ to ″{1}″ was added in ODG ″{2}″

1114 Collapsed requests {0} will also be purged

1115 Server will terminate after active asynchronous request have completed

1120 Snapshot for {0} successful

1140 {0}: active={1} queued={2} lifetime-total={3} lifetime-failed={4} lifetime-retried={5}

threads={6}

1141 Lifetime total server requests={0}

1150 No active requests.

1151 {0} {1} {2} {3} {4} {5}

1152 Version: {0} Started: {1}

1160 {0} {1} {2}

1161 {0}

1162 {0}

1170 ={0} ″{1}″ has been changed

1171 {0} ″{1}″ has been changed to have cache target priority {2}

2102 A value for the ″{0}″ flag was specified and will be ignored

2103 Changed ″{0}″ to ″/{0}″ because all names specified on the command line must

be absolute

2104 Error saving request to disk, request will not be recovered over restart

2105 Error rolling log

2106 Logging already enabled

2107 Logging already disabled

2108 Duplicate object ″{0}″ will be ignored

2110 Server is in the process of being shutdown. This request will not be executed

until the server is restarted.

2115 No value found for the ″{0}″ flag. The flag has been ignored

2116 Value ″{0}″ for ″{1}″ keyword will be ignored

2117 Specification of the ″{0}″ keyword was done twice, ″{1}″ ignored

HTTP Server 63

Code Meaning

9011 Error reading ″{0}″ from data source specified in description ″{1}″ {2}

9012 Error writing ″{0}″ to cache target specified in description ″{1}″ {2}

9013 Error sending acknowledgment to acknowledgment specified in description ″{0}″

{1}

9014 Error erasing ″{0}″ from cache target specified in description ″{1}″ {2}

9102 Error assembling ″{0}″ {1}

9103 Error parsing ″{0}″ {1}

9106 Error creating log file: {0}

9108 Could not delete ″{0}″ from ODG ″{1}″: {2}

9110 Could not delete edge ″{0}″ to ″{1}″ from ODG ″{2}″: {3}

9112 Could not add edge ″{0}″ to ″{1}″ in ODG ″{2}″: {3}

9114 Invalid keyword ″{0}″ found, request rejected

9115 Required flag ″{0}″ was not specified

9116 One of the flags ″{0}″ must be specified

9117 Invalid edgetype ″{0}″ specified, request rejected

9118 Both keywords ″{0}″ and ″{1}″ are specified, but are mutually exclusive

9122 Exception taking snapshot: {0}

9126 Two arguments for the ″{0}″ flag must be specified

9127 One argument for the ″{0}″ flag must be specified

9128 Specified ODG ″{0}″ does not allow updates via API commands

9129 Specified ODG ″{0}″ does not exist

9130 Object ″{0}″ does not exist in ODG ″{1}″

9131 ODG cycle detected, some objects in the chain: {0}

9132 Invalid edgetype ″{0}″ returned by dependency parser, verify configuration

9135 Leftover pages cannot be built - check for duplicates of: {0}

9138 Error writing ″{0}″ to repository in ″{1}″ {2}

9140 Request was purged before completion.

9141 {0} ″{1}″ does not exist

9142 {0} ″{1}″ is invalid, must be integer

9143 {0} ″{1}″ does not support enable/disable

9150 ODG Fatal Exception Processing Request

9151 Internal error {0}

WebDAV for HTTP Server (powered by Apache)

This topic provides information about Web-based distributed authoring and versioning (WebDAV).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

64 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Web-based distributed authoring and versioning (WebDAV) is a set of extensions to the HTTP protocol

that allows WebDAV clients (such as Microsoft Web Folders) to collaboratively edit and manage files on

remote Web servers. Major features of WebDAV include:

v File locking so that two or more users do not overwrite the same file.

v XML data to store properties data such as author information.

v Copy and move operations so that directory structures can be modified.

See “Set up WebDAV for HTTP Server (powered by Apache)” on page 196 for information on how to

configure WebDAV.

WebDAV is a set of extensions to the HTTP protocol. The following table defines the HTTP methods and

the WebDAV extensions. Note that two methods, DELETE and PUT, are defined in the HTTP 1.1

specification, but modified by WebDAV.

 Method Specifications Description

COPY WebDAV Copies the resource.

DELETE HTTP

1.1/WebDAV

Deletes the resource.

GET HTTP 1.1 Get’s the contents of the resource.

HEAD HTTP 1.1 Returns the message headers from a message sent to the server.

LOCK WebDAV Locks the resource.

MKCOL WebDAV Creates the collection specified.

MOVE WebDAV Moves the resource.

OPTIONS HTTP 1.1 Performs an option call to the server.

POST HTTP 1.1 Action defined by the server.

PROPFIND WebDAV Performs a property find on the server.

PROPPATCH WebDAV Sets or removes properties on the server.

PUT HTTP

1.1/WebDAV

Puts the contents of the resource to the server in the specified location.

TRACE HTTP 1.1 Does a trace call to the server.

UNLOCK WebDAV Unlocks the resource.

See RFC2518

for more information on WebDAV.

Virtual hosts on HTTP Server

This topic provides information about virtual host types.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The concept of virtual hosts allows more than one Web site on one system or Web server. The servers are

differentiated by their host name. Visitors to the Web site are routed by host name or IP address to the

correct virtual host. Virtual hosting allows companies sharing one server to each have their own domain

names. For example www.company1.com and www.company2.com can both be hosted on the same server.

HTTP Server 65

http://www.ietf.org/rfc/rfc2518.txt?number=2518
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

HTTP Server (powered by Apache) virtual host types

There are three variations of virtual hosts on HTTP Server (powered by Apache):

IP address-based virtual host

The IP address-based virtual host requires one IP address per Web site (host name). This

approach works very well, but requires a dedicated IP address for every virtual host. For more

information on virtual hosts refer to the <VirtualHost> directive.

Name-based virtual host

The name-based virtual host allows one IP address to host more than one Web site (host name).

This approach allows practically an unlimited number of servers, ease of configuration and use,

and requires no additional hardware or software. The main disadvantage to this approach is that

the client must support HTTP 1.1 (or HTTP 1.0 with 1.1 extensions) that include the host name

information inside the HTTP document requests. The latest versions of most browsers support

HTTP 1.1 (or HTTP 1.0 with 1.1 extensions), but there are still old browsers that only support

HTTP 1.0. For more information on virtual hosts refer to the <VirtualHost> directive.

 For information on how to configure a name-based virtual host see “JKL Toy Company creates

virtual hosts on HTTP Server (powered by Apache)” on page 81.

Dynamic virtual host

The dynamic virtual host allows you to dynamically add Web sites (host names) by adding

directories of content. This approach is based on automatically inserting the IP address and the

contents of the Host: header into the pathname of the file that is used to satisfy the request.

 The advantages of a dynamic virtual host are:

v A smaller configuration file so that the server starts faster and uses less memory.

v Adding virtual hosts does not require the configuration to be changed or the server to be

restarted.

The disadvantage of a dynamic virtual host is that you cannot have a different log file for each

virtual host. For more information on dynamic virtual hosts refer to mod_vhost_alias.

 For information on how to configure dynamic virtual hosts on HTTP Server (powered by Apache)

see “Set up virtual hosts on HTTP Server (powered by Apache)” on page 215.

WebSphere Application Server for iSeries

This topic provides information about the WebSphere Application Server for iSeries.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The IBM WebSphere Application Server for iSeries is a Web application server for interactive, Web-based

applications to be used with your HTTP Server (powered by Apache). The Web application server

supports Java servlets, JavaServer Pages (JSP) files, resource adapter (connector) implementations, and

other Web components.

In addition, the IBM Telephone Directory is a business application is provided with WebSphere

Application Server - Express that delivers the ability to search, view, and manage entries in a directory.

For example, the IBM Telephone Directory application can be used to provide access to online accounting

information, personnel records, and inventory. In a new or existing directory, you can use the application

to create and manage entries.

See the WebSphere Application Server - Express or the WebSphere Application Server for iSeries topics

for information on:

66 iSeries: IBM HTTP Server

rzaiemod_core.htm#virtualhost
rzaiemod_core.htm#virtualhost
rzaiemod_vhost_alias.htm
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v Installation - This topic provides instructions for installing the WebSphere Application Server products

v Administration - This topic describes how to configure and administer WebSphere Application Server

products.

v Application development - This topic is a reference for developing applications for WebSphere

Application Server.

v Security - This topic describes the security features for WebSphere Application Server, and how to use

them.

v Troubleshooting - This topic provides information to help you determine the cause of problems with

WebSphere Application Server.

See the IBM Telephone Directory topic for information on how to install, configure, and use the IBM

Telephone Directory application.

WebSphere Portal Express for iSeries

This topic provides information about WebSphere Portal Express for iSeries.

WebSphere Portal for Multiplatforms on iSeries is one of the industry’s most comprehensive portal

offerings. It contains a wide range of portal technologies that help you develop and maintain first-class

business-to-consumer (B2C), business-to-business (B2B), and business-to-employee (B2E) portals. The IBM

Web Administration for iSeries interface provides an easy to use wizard to set up a WebSphere Portal

Server. The WebSphere Portal wizard helps you through the necessary steps to create and configure

servers, deploy the Portal EAR files, set up security, databases, LDAP, and perform any other necessary

set up tasks to get WebSphere Portal up and running.

Create a New WebSphere Portal Wizard

Important: WebSphere Portal Express for iSeries is supported on OS/400 V5R2 or later only.

The IBM Web Administration for iSeries interface can create and configure your WebSphere Portal for

you using the Create a New WebSphere Portal Wizard . The wizard will perform the following tasks for

you:

v Create and configure a new WebSphere Portal server

v Create and configure a new WebSphere Application Server

v Create and configure a new HTTP Server (powered by Apache)

v Configure DB2 for WebSphere Portal

v Configure LDAP authentication for WebSphere Portal

v Configure Portal URIs

v Deploy portlets

See “WebSphere Portal wizard worksheet” on page 198 for a list of prerequisites and a step-by-step

walkthrough for the wizard.

One Step WebSphere Portal Create Wizard

In addition, the IBM Web Administration for iSeries interface can create a production ready portal server

without security in one easy step with the Create WebSphere Portal - One Step Wizard. The wizard will

select appropriate default values based on information gathered form your system and a recommended a

WebSphere Portal configuration. The wizard will preform the following tasks for you:

v Create and configure a new WebSphere Portal server

v Create and configure a new WebSphere Application Server

v Create and configure new HTTP Server (powered by Apache)

v Configure DB2 for Portal

HTTP Server 67

Note: This wizard does not configure security. For security configuration, use the Create a New

WebSphere Portal Wizard .

Install the WebSphere Portal Configuration Wizard

v Download and apply the latest group PTFs to your iSeries. See “Requirements” on page 199 in the

“WebSphere Portal wizard worksheet” on page 198 topic for a list of required PTFs, software, and

hardware.

v After you have applied the Group PTFs and the individual PTFs, ensure that the QHTTPSVR

subsystem is started by typing Work Active Job (WRKACTJOB) and looking for the QHTTPSVR

subsystem. If the subsystem has not been started, start it now with the following command: STRSBS

QHTTPSVR/QHTTPSVR

v You must end the HTTP admin instance under the QHTTPSVR subsystem (if it is currently running)

by using the following command: ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN)

v Start the HTTP admin instance by using the following command: STRTCPSVR SERVER(*HTTP)

HTTPSVR(*ADMIN)

v To access the WebSphere Portal wizard, type the URL http://systemName:2001 (where systemName is

the fully qualified domain name of your iSeries system) into a web browser.

v Log into the HTTP admin instance and click IBM Web Administration for iSeries.

v Click Create WebSphere Portal to start the wizard.

The iSeries installation and configuration documentation for WebSphere Portal - Express and WebSphere

Portal - Express Plus for Mutliplatform is located in the WebSphere Portal Product Documentation

Web site.

Scenarios for HTTP Server

This topics provides information on how to use the IBM Web Administration for iSeries interface to set

up or manage your HTTP Server, step-by-step. Each task is specific and includes a usable HTTP Server

configuration file when completed.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The JKL Toy Company (JKL), a fictitious company, scenarios will take you through the same processes

employees of the JKL Toy Company followed while working with the IBM Web Administration for iSeries

interface. Follow the scenario steps, and all prerequisites, to complete the scenario successfully.

The given examples may be used to successfully complete the scenario; however, you may enter your

own information at any time. If you are not familiar with the IBM Web Administration for iSeries

interface or Web serving, it is suggested that you use the given examples and follow the scenarios closely

in the order they are given.

Replace examples in brackets, [...], with your own HTTP Server information. For example,

http://[iSeries_name]:[port]

When instructions are given in the following format, replace the words in the brackets, such as

[iSeries_name], with what is being asked for. For example,

http://jklserver:2001

68 iSeries: IBM HTTP Server

http://www.ibm.com/websphere/portal/library/
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

JKL Toy Company creates an HTTP Server (powered by Apache)

This scenario discusses how to create an HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to run a Web site with their iSeries. The examples

used in this scenario show the Create New HTTP Server wizard being used to create an HTTP Server

(powered by Apache) instance called JKLTEST which will use all IP addresses, port 1975 on an iSeries

designated JKL_SERVER.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Create your HTTP Server (powered by Apache)

The IBM Web Administration for iSeries interface allows you to create, set up, and manage multiple

servers.

 1. Click the Setup tab.

 2. Expand Common Tasks and Wizards.

 3. Click Create HTTP Server.

 4. Select HTTP server (powered by Apache) - recommended.

 5. Click Next.

 6. Enter a descriptive, unique name in the Server name field.

Example: JKLTEST

 7. Click Next.

 8. Accept the default value.

Example: /www/jkltest

 9. Click Next.

10. Accept the default value.

Example: /www/jkltest/htdocs

11. Click Next.

HTTP Server 69

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

12. Accept the default values or replace with your own unique IP address and port.

Example: IP address All Addresses

Example: Port 1975

13. Click Next.

14. Optional: Select Yes to use an access log.

Select No if you do not want to create an access log at this time. By default, the log will be created

for you.

15. Click Next.

16. Accept the default values to specify the length of time to keep the log files or update with your

preferences.

17. Click Next.

18. Review the displayed information. If any information is incorrect, click Back and correct it.

19. Click Finish to create your new HTTP Server (powered by Apache).

Note: If the wizard fails and you receive an error message, check your Webmaster user profile

authorities.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Open a new Web browser.

2. Enter http://[iSeries_hostname]:[port] in the location or URL field .

Example: http://jkl_server:1975

Your new HTTP Server (powered by Apache) will display a generic HTML file provided by the IBM Web

Administration for iSeries interface.

70 iSeries: IBM HTTP Server

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

JKL Toy Company adds a new directory to HTTP Server (powered by

Apache)

This scenario discusses how to add a new directory.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) has a need to add a directory to their JKLTEST

configuration. The JKL Web administrator wants to create a directory to keep online employee profile

information, such as current projects and contact information. Due to the large number of employees, a

separate directory will be created to contain the employee profile information. The new directory will be

called profiles.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

HTTP Server 71

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Create a new directory

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server list.

 5. Expand HTTP Tasks and Wizards.

 6. Click Add a Directory to the Web.

 7. Click Next.

 8. Select Static Web pages and files.

 9. Click Next.

10. Optional: Accept the default or enter a new directory name.

Example: /www/jkltest/profiles/

11. Click Next.

12. Optional: Accept the default or enter a new alias name.

Example: /profiles/

13. Click Next.

14. Click Finish.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

72 iSeries: IBM HTTP Server

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Open a new Web browser.

2. Enter http://[iSeries_hostname]:[port]/[new_directory_alias]/ in the location or URL field.

Example: http://jkl_server:1975/profiles/

Your new directory will display a generic HTML file provided by the IBM Web Administration for iSeries

interface.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Alias /profiles/ /www/jkltest/profiles/

Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/profiles>

 Order Allow,Deny

 Allow From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

HTTP Server 73

JKL Toy Company adds user directories for HTTP Server (powered by

Apache)

This scenario discusses how to add a user directory.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) has decided to allow employees to maintain their own

personal Web pages. The JKL Web administrator wants the personal Web pages to be stored in a directory

of the root file system called /home on the JKLTEST HTTP Server (powered by Apache). The directory

/home will contain one subdirectory for each employee.

To begin, the JKL Web administrator creates a user profile and user directory for fellow employee Sharon

Jones. The new user profile will be called SJONES on the iSeries and the new user directory will be

located at /home/sjones.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you have read and completed “JKL Toy Company adds a new directory to HTTP Server

(powered by Apache)” on page 71.

v It is assumed you have installed and are familiar with iSeries Navigator.

v It is assumed you have read “User profiles and required authorities for HTTP Server” on page 40.

Create a new user profile with iSeries Navigator

For in-depth information on how to use the iSeries Navigator, read the iSeries Navigator help installed

with the product.

Note: It is not necessary to create a new user profile on your iSeries if you want to use an existing

profile. If using an existing profile, make certain the user profile has the appropriate permissions.

 1. Start iSeries Navigator.

 2. Expand the iSeries the HTTP Server is installed on.

Example: JKL_SERVER

 3. Select Users and Groups, or click the Users and Group icon in the toolbar.

 4. Click Create a new user, or click the Create a New Use icon in the toolbar.

 5. Enter a new user name.

Example: SJONES

 6. Optional: Enter a description for this new profile.

Example: This is a test profile.

 7. Optional: Add a password if necessary for your iSeries.

 8. Click Capabilities.

 9. Set the system privileges to allow the new user profile to use the HTTP Server.

10. Click OK.

11. Click Add.

74 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Create a new user directory with iSeries Navigator

Note: The /home directory comes preinstalled on your iSeries.

1. Start iSeries Navigator.

2. Expand the iSeries the HTTP Server is installed on.

Example: JKL_SERVER

3. Expand File Systems > Integrated File System > Root.

4. Right-click directory home.

5. Click New Folder.

6. Enter the name of your new user profile.

Example: sjones

7. Click OK.

Copy HTML welcome page to user directory with iSeries Navigator

The new user directory does not contain any files. Use the iSeries Navigator to copy index.html, found in

/www/[server_name]/htdocs directory of your HTTP Server (powered by Apache), to your new user

directory.

Example: /www/jkltest/htdocs

1. Start iSeries Navigator.

2. Expand the iSeries the HTTP Server is installed on.

Example: JKL_SERVER

3. Expand File Systems > Integrated File Systems > Root > www > [server_name] > htdocs.

Example: /www/jkltest/htdocs

4. Right-click file index.html.

5. Click Copy.

6. Right-click the new user directory.

Example: sjones

7. Click Paste.

Optional: Edit file index.html in any way you choose. This is the file the HTTP Server (powered by

Apache) will look for when this directory is requested by the Web browser.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

HTTP Server 75

Set up user directories for HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand Server properties.

 6. Click URL Mapping.

 7. Click the User Directories tab in the form.

 8. Select Disable all users except from the following under Enable or Disable user directories.

 9. Click Add under the Enabled users table.

10. Enter the name of your new user profile.

Example: sjones

11. Click Continue.

12. Click Add under the Current user directories table.

13. Enter /home in the User directories column.

Note: The order in which the user directories are listed determines which directory the HTTP Server

(powered by Apache) will use first. If a match is not found in the first (top) user directory, the

next user directory listed will be used. This continues until a match is found.

14. Click Continue.

15. Click OK.

Set up /home directory for HTTP Server (powered by Apache)

After creating the user directory, you must set up your HTTP Server (powered by Apache) to provide

access to directory /home.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select Global configuration from the Server area list.

 4. Expand Server Properties.

 5. Click Container Management.

 6. Click the Directories tab in the form.

 7. Click Add under Directory/Directory Match containers table.

 8. Select Directory from the list in the Type column.

 9. Enter /home in the Directory path or expression column.

10. Click Continue.

11. Click OK.

12. Select Directory /home from the Server area list.

13. Click Security.

14. Click the Control Access tab in the form.

15. Select Deny then allow from the Order for evaluating access list under Control access based on

where the request is coming from.

16. Select Allow access to all, except the following under Control access based on where the request is

coming from.

Note: Do not add restrictions at this time. Return to this form at the end of the scenario to add

restrictions.

76 iSeries: IBM HTTP Server

17. Click OK.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Open a new Web browser.

2. Enter http://[iSeries_hostname]:[port]/~[user_directory] in the location or URL field .

Example: http://jkl_server:1975/~sjones

Your new user directory will display the generic HTML file copied from directory /htdocs.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

HTTP Server 77

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

UserDir Disable

UserDir Enable Sjones

UserDir /home

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

<Directory /home>

 Order Deny, Allow

 Allow From all

</Directory>

JKL Toy Company enables cookie tracking on HTTP Server (powered

by Apache)

This scenario discusses how to enable cookie tracking for your HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to be able to measure Web site visitor activity and

trends. The JKL Web administrator would like to try to measure how many new and unique users visit

the intranet Web site. Requiring users to obtain a userid and password is the most accurate way track

users; however, this method has the disadvantage of forcing the intranet Web users to register for a

userid and password.

Analyzing the data in the log file by IP address could be used to track users. Two disadvantages to this

method are:

v Some ISPs use dynamic IP addressing, assigning random IP addresses to all users.

v Some ISPs send all traffic through a proxy server, creating a log entry for the IP address of the proxy

server only.

Setting a unique number in a cookie in the user’s browser the first time that they visit the Web site

combined with using a log that records cookies could be used to track users. This log can be analyzed to

show how many new cookies have been set and how many old cookies have returned. In addition, the

log can also be used to show the sequence of URLs that a particular cookie used to navigate through the

Web site. A downside of this method is that users can shut off the browsers ability to record cookies.

The JKL Web administrator has decided to use the cookie method. The JKL Web administrator will store

cookie information in a new log called JKLCOOKIE_LOG using a new cookie called JKLCOOKIE.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

78 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Create a cookie for HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Logging.

 7. Click the User Tracking (Cookies) tab in the form.

 8. Select Enabled from the Track user requests in a cookie list.

 9. Enter a name for the cookie in the Cookie name field or use the default.

Example: JKLCOOKIE

10. Enter a value in the Expiration period field.

Example: 1

11. Select a time period from the Expiration period list.

Example: Years

12. Click OK.

Set up the cookie log for HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select Global configuration from the Server area list.

 4. Expand Server Properties.

 5. Click Logging.

 6. Click the Custom Logs tab in the form.

 7. Click Add under the Custom logs table.

 8. Enter logs/[log_name] in the Log column.

Example: logs/jklcookie_log

 9. Select cookie from the Log format list.

10. Enter a value in the Expiration field.

Example: 364

11. Select a time period from the Expiration list.

Example: Days

HTTP Server 79

12. Click Continue.

13. Click OK.

Note: The rest of the fields on this form are optional.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Open a new Web browser.

2. Turn cookie alerts on in your browser. Consult the Web browser’s help documentation for details on

enabling cookie alerts.

3. Enter http://[iSeries_hostname]:[port] in the location or URL field.

Example: http://jkl_server:1975

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

LogMaint logs/jklcookie_log 364 0

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

80 iSeries: IBM HTTP Server

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

CustomLog logs/jklcookie_log cookie

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

CookieTracking On

CookieName JKLCOOKIE

CookieExpires 31536000

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

JKL Toy Company creates virtual hosts on HTTP Server (powered by

Apache)

This scenario discusses how to create virtual hosts.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to serve two domain names from one IP address.

This can be done using virtual hosts.

The JKL Web administrator has decided to use the name-based virtual host for HTTP Server (powered by

Apache) JKLTEST. The ISP has configured the Domain Name Server to route requests for JKLINFO to IP

address 9.5.61.228, port 78.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you are familiar with Domain Name Servers (DNS).

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

HTTP Server 81

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up a name-based virtual host

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Virtual Hosts.

 7. Click the Name-based tab in the form.

 8. Click Add under the Named virtual hosts table.

 9. Select or enter an IP address in the IP address column.

Example: 9.5.61.228

Note: The IP address 9.5.61.288 used in this scenario is associated with JKL Toy Company’s iSeries

hostname JKLINFO and registered by a Domain Name Server (DNS). You will need to choose

a different IP address and hostname. The IBM Web Administration for iSeries interface

provides the IP addresses used by your iSeries system in the IP Address list; however, you

will need to provide the hostname associated with the address you choose.

10. Enter a port number in the Port column.

Example: 78

11. Click Add under the Virtual host containers table in the Named host column.

12. Enter the fully qualified server hostname for the virtual host in the Server name column.

Example: JKLINFO

Note: Make sure the server hostname you enter is fully qualified and associated with the IP address

you selected.

13. Enter a document root for the virtual host index file or welcome file in the Document root column.

Example: /www/jkltest/companyinfo/

Note: You are specifying a document root using a directory that will be added below in the Set up

the virtual host directories section.

14. Click Continue.

15. Click OK.

Set up Listen directive for virtual host

 1. Expand Server Properties.

 2. Click General Server Configuration.

 3. Click the General Settings tab in the form.

 4. Click Add under the Server IP addresses and ports to listen on table.

 5. Select the IP address you entered for the virtual host in the IP address column.

Example: 9.5.61.288

 6. Enter the port number you entered for the virtual host in the Port column.

Example: 78

 7. Accept Disabled default for FRCA.

82 iSeries: IBM HTTP Server

8. Click Continue.

 9. Accept the default values for the remainder of the form.

10. Click OK.

Set up the virtual host directories

 1. Select the virtual host from the Server area list.

 2. Expand HTTP Tasks and Wizards.

 3. Click Add a Directory to the Web.

 4. Click Next.

 5. Select Static web pages and files.

 6. Click Next.

 7. Enter a directory name for the virtual host in the Name field.

Example: /www/jkltest/companyinfo/

 8. Click Next.

 9. Enter an alias for the virtual host in the Alias field.

Example: /companyinfo/

10. Click Next.

11. Click Finish.

The document root and directory for the virtual host has been created.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Start a new Web browser.

2. Enter http://[virtual_hostname_name]:[port] in the location or URL field.

Example: http://JKLINFO:78

HTTP Server 83

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Listen *:1975

Listen 9.5.61.228:78

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

NameVirtualHost 9.5.61.228:78

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

<VirtualHost 9.5.61.228:78>

 ServerName JKLINFO

 DocumentRoot /www/jkltest/companyinfo/

 <Directory /www/jkltest/companyinfo>

 Order Allow,Deny

 Allow From all

 </Directory>

 Alias /companyinfo/ /www/jkltest/companyinfo/

</VirtualHost>

JKL Toy Company adds password protection for HTTP Server

(powered by Apache)

This scenario discusses how to add password protection.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to protect a set of Web pages on its Web site so that

they can only be viewed by visitors that have a password. In order to add password protection, JKL

needs to decide what type of authentication method to use:

84 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v Internet user - requires an entry in a validation list.

v User profile - requires an iSeries server user profile.

v LDAP - requires an LDAP server.

JKL Toy Company chooses to use Internet users for the following reasons:

v User profiles are not desirable since JKL does not want to create a user profile for each authenticated

visitor to the Web site.

v Since JKL only wants to implement authentication on one iSeries, validation lists will be used. LDAP is

a better solution for multiple systems.

The Web page content to be protected is in the preexisting directory /www/jkltest/profiles/. The visitor’s

user name and passwords will be stored in a new validation list called users in library PROFILES. The

first user name that we will enter is sjones with a password of dragon102.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you have read and completed “JKL Toy Company adds a new directory to HTTP Server

(powered by Apache)” on page 71.

v It is assumed you have access to or the correct authority to create an iSeries library.

Create a library for validation lists on your iSeries

Skip the following steps if you will be using an existing library on your iSeries for your validation list.

1. Start a 5250 session on your iSeries.

2. Enter CRTLIB on the command line.

3. Type the F4 key to prompt for additional parameters.

4. Enter a name for your library in the Library field.

Example: PROFILES

5. Optional: Edit the remaining fields as necessary or accept the default values.

6. Type the Enter key (or equivalent) to create your library.

Make sure the proper authorities and restrictions you want on the library are active before continuing.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

HTTP Server 85

Set up password protection for a directory on HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Directory /www/[server_name]/[new_directory]/ from the Server area list.

Example: /www/jkltest/profiles/

Note: The new directory was created with the “JKL Toy Company adds a new directory to HTTP

Server (powered by Apache)” on page 71 scenario.

 5. Expand Server Properties.

 6. Click Security.

 7. Click the Authentication tab in the form.

 8. Select Use Internet users in validation lists.

 9. Enter a descriptive name in the Authentication name or realm field.

Example: JKL Employee Profiles

Note: When users attempt to access a password protected resource, they are challenged for a

username and password. The Authentication name or realm value is displayed in the login

window, and should provide information regarding the resource the user is attempting to

access.

10. Click Add under Validation lists table.

11. Enter [library]/[validation_list_name].

Example: profiles/users

Note: In the above example, profiles is the name of the iSeries library and users is the name of the

validation list.

12. Click Continue.

13. Select Default server profile from the OS/400 user profile to process requests list under Related

information. When selected, the value %%SERVER%% will be placed in the field.

14. Click Apply.

15. Click the Control Access tab in the form.

16. Select All authenticated users (valid user name and password) under Control access based on who

is making the requests.

17. Click OK.

Create a validation list for HTTP Server (powered by Apache)

 1. Click the Advanced tab.

 2. Click the Internet Users and Groups subtab.

 3. Expand Internet Users and Groups.

 4. Click Add Internet User.

 5. Enter [username] into the User name field.

Example: sjones

 6. Enter [password] into the Password field.

Example: dragon102

 7. Enter the same password in the Confirm password field.

 8. Optional: Enter comments for this Internet user.

 9. Enter [library]/[validation_list_name] in the Validation list field.

86 iSeries: IBM HTTP Server

Example: profiles/users

Note: In the above example, profiles is the name of the library and users is the name of the

validation list.

10. Click Apply.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Open a new Web browser.

2. Enter http://[iSeries_hostname]:[port]/[new_directory_alias]/in the location or URL field.

Example: http://jkl_server:1975/profiles/

3. Enter the username and password you created.

You will be asked to provide a valid username and password. Enter the username and password you

entered in the validation list. It is suggested you limit *PUBLIC authority, but allow authority to the Web

administrator user authority and QTMHHTTP.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.

HTTP Server 87

Alias /profiles/ /www/jkltest/profiles/

Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/profiles>

 Order Allow,Deny

 Allow From all

 Require valid-user

 PasswdFile profiles/users

 UserID %%SERVER%%

 AuthType Basic

 AuthName "JKL Employee Profiles"

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

JKL Toy Company adds dynamic content with server-side includes for

HTTP Server (powered by Apache)

This scenario discusses how to add dynamic content with server-side includes.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy company (a fictitious company) wants to add some dynamic content to their index file (or

welcome page) on their Web site. The welcome Web page is located in /www/jkltest/htdocs. The JKL

Web administrator will add the current server time to display on their Web page.

Note: Server-side includes (SSI) create dynamic Web pages by adding content to a Web page before it is

sent to the browser. Server performance may be impacted when processing SSIs.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you have installed and are familiar with iSeries Navigator.

88 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Edit the index file (or welcome page) with iSeries Navigator

For in-depth information on how to use the iSeries Navigator, read the iSeries Navigator help installed

with the product.

 1. Start iSeries Navigator.

 2. Expand the iSeries the HTTP Server is installed on.

Example: JKL_SERVER

 3. Expand File Systems > Integrated File System > Root > www > [server_name].

Example: File Systems > Integrated File System > Root > www > jkltest

 4. Click htdocs.

The directory htdocs is the default name of your document root provided by the Create New HTTP

Server wizard.

 5. Right-click index.html.

 6. Click Rename.

 7. Rename the file index.shtml.

 8. Right-click index.shtml.

 9. Click Edit.

10. Enter the following lines below the <BODY> tag and before the </BODY> tag:

<p>The current server time is:

<!--#config timefmt="%T" -->

<!--#echo var="DATE_LOCAL" -->

</p>

11. Save and close the file.

See “Server-side include commands for HTTP Server” on page 782 for more information about SSI

commands.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up server-side includes for HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand Server properties.

 6. Click Container Management.

 7. Click the Files tab in the form.

HTTP Server 89

8. Click Add under the Files/Files Match containers table.

 9. Select Files Match from the list in the Type column.

10. Enter \.shtml(\..+)?$ in the File name or expression column.

11. Click Continue.

12. Click OK.

13. Select Files Match \.shtml(\..+)?$ from the Server area list.

14. Expand Server Properties.

15. Click Dynamic Content and CGI.

16. Click the Server Side Includes tab in the form.

17. Select Allow server side files without CGI under Server side includes.

18. Click OK.

19. Select Global configuration from the Server area list.

20. Expand Server Properties.

21. Click General Server Configuration.

22. Click the Welcome Pages tab in the form.

23. Select index.html in the Welcome/index file names table.

24. Rename the file index.shtml in the File name column.

25. Click Continue.

26. Click OK.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Start a new Web browser.

2. Enter http://[iSeries_hostname]:[port] in the location or URL field.

Example: http://jkl_server:1975

90 iSeries: IBM HTTP Server

The Web page now displays the current server time.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

AccessFileName .htaccess

LogFormat "%h %l %u %t \"%r\" %|s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -| %U" referer

LogFormat "%h %l %u %t \"%r\" %|s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

DirectoryIndex index.shtml

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

<FilesMatch \.shtml(\..+)?$>

 Options +IncludesNoExec

 AddOutputFilter INCLUDES .shtml

</FilesMatch>

JKL Toy company enables Secure Sockets Layer (SSL) protection on

HTTP Server (powered by Apache)

This scenario discusses how to enable SSL protection.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy company (a fictitious company) wants to enable Secure Sockets Layer (SSL) protection for a

specific directory on their HTTP Server (powered by Apache). The secured directory will contain

confidential corporate earnings information that only a select group of employees and business associates

will be able to access. The JKL Web administrator has decided not to create and deploy user certificates to

client browsers, but rather use SSL so that all data exchanged with the browser is encrypted. The JKL

HTTP Server 91

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Web administrator will use a server certificate, basic password protection (based upon existing iSeries

user accounts), and standard SSL encryption to provide access to the secured information.

Note: Although JKL chooses not to implement digital certificates, they must still register their HTTP

Server (powered by Apache) with the iSeries Digital Certificate Manager.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed that a certificate authority (and certificate store) is already established for the iSeries

Digital Certificate Manager.

v It is assumed you are familiar with Domain Name Servers (DNS).

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up a name-based virtual host

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Virtual Hosts.

 7. Click the Name-based tab in the form.

 8. Click Add under the Named virtual hosts table.

 9. Select or enter an IP address in the IP address column.

Example: 9.5.61.228

Note: The IP address 9.5.61.288 used in this scenario is associated with JKL Toy Company’s iSeries

hostname JKLEARNINGS and registered by a Domain Name Server (DNS). You will need to

choose a different IP address and hostname. The IBM Web Administration for iSeries interface

provides the IP addresses used by your iSeries system in the IP Address list; however, you

will need to provide the hostname associated with the address you choose.

10. Enter a port number in the Port column.

Example: 443

Note: Specify a port number other than the one currently being used for your HTTP Server

(powered by Apache) to maintain an SSL and non-SSL Web site.

92 iSeries: IBM HTTP Server

11. Click Add under the Virtual host containers table in the Named host column.

Note: This is a table within the Named virtual hosts table in the Named host column.

12. Enter the fully qualified server hostname for the virtual host in the Server name column.

Example: www.JKLEARNINGS.org

Note: Make sure the server hostname you enter is fully qualified and associated with the IP address

you selected.

13. Enter a document root for the virtual host index file or welcome file in the Document root column.

Example: /www/jkltest/earnings/

Note: You are specifying a document root that will be created below. Remember the document root

you have entered; you will be asked to enter the document root again when creating a new

directory.

14. Click Continue.

15. Click OK.

Set up Listen directive for virtual host

1. Expand Server Properties.

2. Click General Server Configuration.

3. Click the General Settings tab in the form.

4. Click Add under the Server IP addresses and ports to listen on table.

5. Select the IP address you entered for the virtual host in the IP address column.

Example: 9.5.61.288

6. Enter the port number you entered for the virtual host in the Port column.

Example: 443

7. Click Continue.

8. Click OK.

Set up the virtual host directories

 1. Select the virtual host from the Server area list.

 2. Expand HTTP Tasks and Wizards.

 3. Click Add a Directory to the Web.

 4. Click Next.

 5. Select Static web pages and files.

 6. Click Next.

 7. Enter a directory name for the virtual host in the Name field.

Example: /www/jkltest/earnings/

 8. Click Next.

 9. Enter an alias for the virtual host in the Alias field.

Example: /earnings/

10. Click Next.

11. Click Finish.

The document root and directory for the virtual host has been created.

HTTP Server 93

Set up password protection via authentication

 1. Select the directory under the virtual host from the Sever area list.

Example: Directory /www/jkltest/earnings

 2. Expand Server Properties.

 3. Click Security.

 4. Click the Authentication tab in the form.

 5. Select Use OS/400 profile of client under User authentication method.

 6. Enter Projected Earnings in the Authentication name or realm field.

 7. Select Default server profile from the OS/400 user profile to process requests list under Related

information. When selected, the value %%SERVER%% will be placed in the field.

 8. Click Apply.

 9. Click the Control Access tab in the form.

10. Click All authenticated users (valid user name and password) under Control access based on who

is making the request.

11. Click OK.

Enable SSL for the virtual host

1. Select the virtual host from the Sever area list.

Example: Virtual Host *:443

2. Expand Server Properties.

3. Click Security.

4. Click the SSL with Certificate Authentication tab in the form.

5. Select Enable SSL under SSL.

6. Select QIBM_HTTP_SERVER_[server_name] from the Server certificate application name list.

Example: QIBM_HTTP_SERVER_JKLTEST

Note: Remember the name of the server certificate. You will need to select it again in the Digital

Certificate Manager.

7. Select Do not request client certificate for connection under Client certificates when establishing

the connection.

8. Click OK.

The HTTPS_PORT provides a specific environment variable value that is passed to CGI programs . This

field is not used in this scenario.

Associate system certificate with HTTP Server (powered by Apache)

The application name (created during the SSL process) is assigned a system certificate via the iSeries

Digital Certificate Manager (DCM). During the process of enabling SSL for a virtual host, an iSeries

server certificate must be assigned to the application name used when configuring SSL. This task is

accomplished via the Digital Certificate Manager interface (accessed from the iSeries Tasks screen). See

iSeries Digital Certificate Manager for more information.

Note: The following steps will require a user profile with higher levels of authority than those

documented for the Webmaster profile. Web browsers will need to be restarted using the higher

authority profile to authenticate.

 1. Click the Related Links tab.

 2. Click Digital Certificate Manager.

 3. Click Select a Certificate Store.

94 iSeries: IBM HTTP Server

4. Select *SYSTEM.

 5. Click Continue.

 6. Enter a password in the Certificate store password field.

 7. Click Continue.

 8. Click Manage Applications.

 9. Select Update certificate assignment.

10. Click Continue.

11. Select Server.

12. Click Continue.

13. Select the appropriate application name.

Note: Select the application name created while enabling SSL for the virtual host directory.

Example: QIBM_HTTP_SERVER_JKLTEST

14. Click Update Certificate Assignment.

15. Select the appropriate certificate.

16. Click Assign New Certificate. This assigns the certificate to the application name selected in the

previous step.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Start a new Web browser.

2. Enter https://[virtual_hostname_name]:[port] in the location or URL field.

Example: https://www.JKLEARNINGS.org:443

You will be challenged for a user name and password. After entering an appropriate iSeries user name

and password, you will see a sample homepage (created by the Serve New Directory wizard) with the

HTTP Server 95

browser’s security padlock icon enabled. The padlock indicates that SSL is enabled.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Listen *:1975

Listen 9.5.61.228:443

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

NameVirtualHost 9.5.61.228:443

AccessFileName .htaccess

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

DirectoryIndex index.html

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

 <Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

<VirtualHost 9.5.61.228:443>

 ServerName www.JKLEARNINGS.org

 DocumentRoot /www/jkltest/earnings/

 SSLEnable

 SSLAppName QIBM_HTTP_SERVER_JKLTEST

 SSLClientAuth None

 <Directory /www/jkltest/earnings>

 Order Allow,Deny

 Allow From all

 Require valid-user

 PasswdFile %%SYSTEM%%

 UserID %%SERVER%%

 AuthType Basic

 AuthName "Projected Earnings"

 </Directory>

 Alias /earnings/ /www/jkltest/earnings/

</VirtualHost>

JKL Toy Company enables single signon for HTTP Server (powered by

Apache)

This scenario discusses how to enable single signon for your HTTP Server (powered by Apache).

96 iSeries: IBM HTTP Server

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Important: This scenario is for OS/400 V5R2 or later. Enterprise Identity Mapping (EIM) is not

supported in OS/400 V5R1.

To learn more about Kerberos and network security on the iSeries, see Network authentication service.

Scenario

The JKL Web administrator, John Day, wants to enable single signon for the JKL Toy Company network.

The network consists of several iSeries systems and a Windows 2000 server, where the users are

registered in Microsoft Windows Active Directory. Based on John Day’s research, he knows that Microsoft

Active Directory uses the Kerberos protocol to authenticate Windows users. John Day also knows that

OS/400 provides a single signon solution based on an implementation of Kerberos authentication, called

network authentication service, in conjunction with Enterprise Identity Mapping (EIM).

While excited about the benefits of a single signon environment, John Day wants to thoroughly

understand single signon configuration and usage before using it across the entire enterprise.

Consequently, John Day decides to configure a test environment first.

After considering the various groups in the company, John Day decides to create the test environment for

the MYCO Order Receiving department, a subsidiary of JKL Toys. The employees in the Order Receiving

department use multiple applications, including HTTP Server, on one iSeries system to handle incoming

customer orders. John Day uses the Order Receiving department as a testing area to create a single

signon test environment that can be used to better understand how single signon works and how to plan

a single signon implementation across the JKL enterprise.

This scenario has the following advantages:

v Allows you to see some of the benefits of single signon on a small scale to better understand how you

can take full advantage of it before you create a large-scale, single signon environment.

v Provides you with a better understanding of the planning process required to successfully and quickly

implement a single signon environment across your entire enterprise.

As the network administrator at JKL Toy Company, John Day wants to create a small single signon test

environment that includes a small number of users and a single iSeries server, iSeries A. John Day wants

to perform thorough testing to ensure that user identities are correctly mapped within the test

environment. The first step is to enable a single signon environment for OS/400 and applications on

iSeries A, including the HTTP Server (powered by Apache). After implementing the configuration

successfully, John Day eventually wants to expand the test environment to include the other systems and

users in the JKL enterprise.

The objectives of this scenario are as follows:

v The iSeries system, known as iSeries A, must be able to use Kerberos within the MYCO.COM realm to

authenticate the users and services that are participating in this single signon test environment. To

enable the system to use Kerberos, iSeries A must be configured for network authentication service.

v The directory server on iSeries A must function as the domain controller for the new EIM domain.

Note: Two types of domains play key roles in the single signon environment: an EIM domain and

a Windows 2000 domain. Although both of these terms contain the word domain, these

entities have very different definitions.

HTTP Server 97

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Use the following descriptions to understand the differences between these two types of domains. For

more information about these terms, see the EIM and Network authentication service topics.

EIM domain

An EIM domain is a collection of data, which includes the EIM identifiers, EIM associations,

and EIM user registry definitions that are defined in that domain. This data is stored in a

Lightweight Directory Access Protocol (LDAP) server, such as the IBM Directory Server for

iSeries, which can run on any system in the network defined in that domain. Administrators

can configure systems (EIM clients), such as OS/400, to participate in the domain so that

systems and applications can use domain data for EIM lookup operations and identity

mapping. To find out more about an EIM domain, see EIM.

Windows 2000 domain

In the context of single signon, a Windows 2000 domain is a Windows network that contains

several systems that operate as clients and servers, as well as a variety of services and

applications that the systems use. The following are some of the components pertinent to single

signon that you may find within a Windows 2000 domain:

– Realm

A realm is a collection of machines and services. The main purpose of a realm is to

authenticate clients and services. Each realm uses a single Kerberos server to manage the

principals for that particular realm.

– Kerberos server

A Kerberos server, also known as a key distribution center (KDC), is a network service that

resides on the Windows 2000 server and provides tickets and temporary session keys for

network authentication service. The Kerberos server maintains a database of principals

(users and services) and their associated secret keys. It is composed of the authentication

server and the ticket granting server. A Kerberos server uses Microsoft Windows Active

Directory to store and manage the information in a Kerberos user registry.

– Microsoft Windows Active Directory

Microsoft Windows Active Directory is an LDAP server that resides on the Windows 2000

server along with the Kerberos server. The Active Directory is used to store and manage the

information in a Kerberos user registry. Microsoft Windows Active Directory uses Kerberos

authentication as its default security mechanism. Therefore, if you are using Microsoft Active

Directory to manage your users, you are already using Kerberos technology.
v One user profile on iSeries A and one Kerberos principal must each be mapped to a single EIM

identifier.

v A Kerberos service principal must be used to authenticate the user to the IBM HTTP Server for iSeries.

98 iSeries: IBM HTTP Server

Details

The following figure illustrates the network environment for this scenario:

The figure illustrates the following points relevant to this scenario.

EIM domain data defined for the enterprise

v An EIM domain called MyCoEimDomain.

v An EIM registry definition for iSeries A called ISERIESA.MYCO.COM.

v An EIM registry definition for the Kerberos registry called MYCO.COM.

v An EIM identifier called John Day. This identifier uniquely identifies John Day, the administrator for

MyCo.

v A source association for the jday Kerberos principal on the Windows 2000 server.

v A target association for the JOHND user profile on iSeries A to access HTTP Server.

Windows 2000 server

v Acts as the Kerberos server (kdc1.myco.com), also known as a key distribution center (KDC), for the

network.

v The default realm for the Kerberos server is MYCO.COM.

v A Kerberos principal of jday is registered with the Kerberos server on the Windows 2000 server. This

principal will be used to create a source association to the EIM identifier, John Day.

iSeries A

v Runs OS/400 Version 5 Release 2 (V5R2) with the following options and licensed products installed:

– IBM HTTP Server for iSeries

HTTP Server 99

– OS/400 Host Servers

– Qshell Interpreter

– iSeries Access for Windows

– Cryptographic Access Provider
v The IBM Directory Server for iSeries (LDAP) on iSeries A will be configured to be the EIM domain

controller for the new EIM domain, MyCoEimDomain. iSeries A participates in the EIM domain,

MyCoEimDomain.

v The principal name for iSeries A is krbsvr400/iseriesa.myco.com@MYCO.COM.

v The principal name for the HTTP Server on iSeries A is HTTP/iseriesa.myco.com@MYCO.COM.

v The user profile of JOHND exists on iSeries A. You will create a target association between this user

profile and the EIM identifier, John Day.

v The home directory for the OS/400 user profile, JOHND, (/home/JOHND) is defined on iSeries A.

Client PC used for single signon administration

v Runs Microsoft Windows 2000 operating system.

v Runs V5R2 iSeries Access for Windows.

v Runs iSeries Navigator with the following subcomponents installed:

– Network

– Security
v Serves as the primary logon system for administrator John Day.

v Configured to be part of the MYCO.COM realm (Windows domain).

Prerequisites

Successful implementation of this scenario requires that the following assumptions and prerequisites are

met:

1. It is assumed you have read “Scenarios for HTTP Server” on page 68.

2. All system requirements, including software and operating system installation, have been verified.

Ensure that all the necessary licensed programs are installed. To verify that the licensed programs

have been installed, complete the following:

a. In iSeries Navigator, expand your iSeries server → Configuration and Service → Software →

Installed Products.
3. All necessary hardware planning and setup is complete.

4. TCP/IP and basic system security are configured and tested on each system.

5. The directory server and EIM are not previously configured on iSeries A.

Note: Instructions in this scenario are based on the assumption that the directory server has not been

previously configured on iSeries A. However, if you have previously configured the directory

server, you can still use these instructions with only slight differences. These differences are

noted in the appropriate places within the configuration steps.

6. A single DNS server is used for host name resolution for the network. Host tables are not used for

host name resolution.

Note: The use of host tables with Kerberos authentication may result in name resolution errors or

other problems.

Configuration steps:

Note: Before you implement this scenario, you need to thoroughly understand the concepts related to

single signon, including network authentication service and Enterprise Identity Mapping (EIM).

See the following information to learn about the terms and concepts related to single signon:

100 iSeries: IBM HTTP Server

v Enterprise Identity Mapping (EIM)

v Network authentication service

These are the configuration steps John Day completed. Follow these configuration steps to enable a single

signon environment for your iSeries server.

 “Step 1: Planning work sheet”

 “Step 2: Create a basic single signon configuration for iSeries A” on page 104

 “Step 3: Add principal names to the KDC” on page 106

 “Step 4: Add Kerberos keytab” on page 106

 “Step 5: Create home directory for John Day on iSeries A” on page 107

 “Step 6: Test network authentication service configuration on iSeries A” on page 107

 “Step 7: Create EIM identifier for John Day” on page 108

 “Step 8: Create a source association and target association for the new EIM identifier” on page 108

 “Step 9: Configure iSeries Access for Windows applications to use Kerberos authentication” on page

109

 “Step 10: Add iSeries A to and existing EIM domain” on page 109

 “Step 11: Configure HTTP Server for single signon” on page 110

 “Step 12: (Optional) Post configuration considerations” on page 111

Step 1: Planning work sheet:

The following planning work sheets are tailored to fit this scenario. These planning work sheets

demonstrate the information that you need to gather and the decisions you need to make to prepare the

single signon implementation described by this scenario. To ensure a successful implementation, you

must be able to answer Yes to all prerequisite items in the work sheet and be able to gather all the

information necessary to complete the work sheets before you perform any configuration tasks.

 Table 9. Single signon prerequisite work sheet

Prerequisite work sheet Answers

Are you running OS/400 at version V5R2 or higher? Yes

Are the following options and licensed products installed

on iSeries A?

v OS/400 Host Servers

v Qshell Interpreter

v iSeries Access for Windows

v Cryptographic Access Provider

Yes

Have you installed an application that is enabled for

single signon on each of the PCs that will participate in

the single signon environment?

Note: For this scenario, all of the participating PCs have

iSeries Access for Windows installed and iSeries A has

the HTTP Server for iSeries installed.

Yes

Is iSeries Navigator installed on the administrator’s PC?

v Is the Security subcomponent of iSeries Navigator

installed on the administrator’s PC?

v Is the Network subcomponent of iSeries Navigator

installed on the administrator’s PC?

Yes

Have you installed the latest iSeries Access for Windows

service pack? See iSeries Access

for the latest

service pack.

Yes

HTTP Server 101

http://www.ibm.com/servers/eserver/iseries/access/

Table 9. Single signon prerequisite work sheet (continued)

Prerequisite work sheet Answers

Do you, the administrator, have *SECADM, *ALLOBJ,

and *IOSYSCFG special authorities?

Yes

Do you have one of the following systems in the

network acting as the Kerberos server (also known as the

KDC)? If yes, specify which system.

1. Windows 2000 Server

Note: Microsoft Windows 2000 Server uses Kerberos

authentication as its default security mechanism.

2. Windows Server 2003

3. OS/400 PASE

4. AIX® server

5. zSeries®

Yes, Windows 2000 Server

Are all your PCs in your network configured in a

Windows (R) 2000 domain?

Yes

Have you applied the latest program temporary fixes

(PTFs)?

Yes

Is the iSeries system time within 5 minutes of the system

time on the Kerberos server? If not see Synchronize

system times.

Yes

You need this information to configure EIM and network authentication service to create a single signon

test environment.

 Table 10. Single signon configuration planning work sheet for iSeries A.

Use the following information to complete the EIM Configuration wizard. The information in this work sheet correlates

with the information you need to supply for each page in the wizard:

Configuration planning work sheet for iSeries A Answers

How do you want to configure EIM for your system?

v Join an existing domain

v Create and join a new domain

Note: This option allows you to configure the current

system’s directory server as the EIM domain controller

when the directory server is not already configured as

the EIM domain controller.

Create and join a new domain

Note: This will configure the directory server on the

same system on which you are currently configuring

EIM.

Do you want to configure network authentication

service?

Note: You must configure network authentication service

to configure single signon.

Yes

The Network Authentication Service wizard launches from the EIM Configuration wizard. Use the following

information to complete the Network Authentication Service wizard:

Note: You can launch the Network Authentication Service wizard independently of the EIM Configuration wizard.

What is the name of the Kerberos default realm to which

your iSeries will belong?

Note: A Windows 2000 domain is similar to a Kerberos

realm. Microsoft Windows Active Directory uses

Kerberos authentication as its default security

mechanism.

MYCO.COM

Are you using Microsoft Active Directory? Yes

102 iSeries: IBM HTTP Server

Table 10. Single signon configuration planning work sheet for iSeries A (continued).

Use the following information to complete the EIM Configuration wizard. The information in this work sheet correlates

with the information you need to supply for each page in the wizard:

Configuration planning work sheet for iSeries A Answers

What is the Kerberos server, also known as a key

distribution center (KDC), for this Kerberos default

realm? What is the port on which the Kerberos server

listens?

 KDC: kdc1.myco.com

 Port:88

Note: This is the default port for the Kerberos server.

Do you want to configure a password server for this

default realm? If yes, answer the following questions:

What is name of the password server for this Kerberos

server? What is the port on which the password server

listens?

Yes

 Password server: kdc1.myco.com

 Port: 464

Note: This is the default port for the Kerberos server.

For which services do you want to create keytab entries?

v OS/400 Kerberos Authentication

v LDAP

v iSeries IBM HTTP Server for iSeries

v iSeries NetServer™

OS/400 Kerberos Authentication

Note: A keytab entry for HTTP Server must be done

manually as described later in the configuration steps.

What is the password for your service principal or

principals?

iseriesa123

Note: Any and all passwords specified in this scenario

are for example purposes only. To prevent a compromise

to your system or network security, never use these

passwords as part of your own configuration.

Do you want to create a batch file to automate adding

the service principals for iSeries A to the Kerberos

registry?

Yes

Do you want to include passwords with the OS/400

service principals in the batch file?

Yes

As you exit the Network Authentication Service wizard, you will return to the EIM Configuration wizard. Use the

following information to complete the EIM Configuration wizard:

Specify user information for the wizard to use when

configuring the directory server. This is the connection

user. You must specify the port number, administrator

distinguished name, and a password for the

administrator.

Note: Specify the LDAP administrator’s distinguished

name (DN) and password to ensure the wizard has

enough authority to administer the EIM domain and the

objects in it.

 Port: 389

 Distinguished name: cn=administrator

 Password: mycopwd

Note: Any and all passwords specified in this scenario

are for example purposes only. To prevent a compromise

to your system or network security, do not use these

passwords as part of your own configuration.

What is the name of the EIM domain that you want to

create?

MyCoEimDomain

Do you want to specify a parent DN for the EIM

domain?

No

Which user registries do you want to add to the EIM

domain?

Local OS/400--ISERIESA.MYCO.COM

Kerberos--MYCO.COM

Note: The Kerberos principals stored on the Windows

2000 server are not case sensitive; therefore do not select

Kerberos user identities are case sensitive.

HTTP Server 103

Table 10. Single signon configuration planning work sheet for iSeries A (continued).

Use the following information to complete the EIM Configuration wizard. The information in this work sheet correlates

with the information you need to supply for each page in the wizard:

Configuration planning work sheet for iSeries A Answers

Which EIM user do you want iSeries A to use when

performing EIM operations? This is the system user

Note: If you have not configured the directory server

prior to configuring single signon, the only distinguished

name (DN) you can provide for the system user is the

LDAP administrator’s DN and password.

 User type: Distinguished name and password

 User: cn=administrator

 Password: mycopwd

Note: Any and all passwords specified in this scenario

are for example purposes only. To prevent a compromise

to your system or network security, never use these

passwords as part of your own configuration.

After you complete the EIM Configuration wizard, use the following information to complete the remaining steps

required for configuring single signon:

What is the OS/400 user profile name for the user? JOHND

What is the name of the EIM identifier that you want to

create?

John Day

What kinds of associations do you want to create?

 Source association: Kerberos principal jday

 Target association: OS/400 user profile JOHND

What is the name of the user registry that contains the

Kerberos principal for which you are creating the source

association?

MYCO.COM

What is the name of the user registry that contains the

OS/400 user profile for which you are creating the target

association?

ISERIESA.MYCO.COM

Step 2: Create a basic single signon configuration for iSeries A

You need to create a basic single signon configuration using the iSeries Navigator. The EIM configuration

wizard will assist in the configuration process. Use the information from your planning work sheets to

configure EIM and network authentication service on iSeries A.

Note: For more information about EIM, see the EIM concepts topic.

 1. Start iSeries Navigator.

 2. Expand iSeries A → Network → Enterprise Identity Mapping.

 3. Right-click Configuration and select Configure to start the EIM Configuration wizard.

 4. On the Welcome page, select Create and join a new domain. Click Next.

 5. On the Specify EIM Domain Location page, select On the local Directory server.

 6. Click Next and the Network Authentication Service wizard is displayed.

Note: The Network Authentication Service wizard only displays when the system determines that

you need to enter additional information to configure network authentication service for the

single signon implementation.

 7. Complete these tasks to configure network authentication service:

a. On the Configure Network Authentication Service page, select Yes.

Note: This launches the Network Authentication Service wizard. With this wizard, you can

configure several OS/400 interfaces and services to participate in the Kerberos realm.

b. On the Specify Realm Information page, enter MYCO.COM in the Default realm field and select

Microsoft Active Directory is used for Kerberos authentication. Click Next.

104 iSeries: IBM HTTP Server

c. On the Specify KDC Information page, enter kdc1.myco.com in the KDC field and enter 88 in the

Port field. Click Next.

d. On the Specify Password Server Information page, select Yes. Enter kdc1.myco.com in the

Password server field and 464 in the Port field. Click Next.

e. On the Select Keytab Entries page, select OS/400 Kerberos Authentication. Click Next.

f. On the Create OS/400 Keytab Entry page, enter and confirm a password, and click Next. For

example, iSeries A123. This password will be used when iSeries A is added to the Kerberos server.

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent

a compromise to your system or network security, never use these passwords as part of

your own configuration

g. On the Create Batch File page, select Yes, specify the following information, and click Next:

v Batch file: Add the text iSeries A to the end of the default batch file name. For example,

C:\Documents and Settings\All Users\Documents\IBM\Client Access\NASConfigiSeries A.bat.

v Select Include password: This ensures that all passwords associated with the OS/400 service

principal are included in the batch file. It is important to note that passwords are displayed in

clear text and can be read by anyone with read access to the batch file. Therefore, it is

recommended that you delete the batch file from the Kerberos server and from your PC

immediately after use.

Note: If you do not include the password, you will be prompted for the password when the

batch file is run.

h. On the Summary page, review the network authentication service configuration details. Click

Finish to complete the Network Authentication Service wizard and return to the EIM

Configuration wizard.

 8. On the Configure Directory Server page, enter the following information, and click Next:

Note: If you configured the directory server before you started this scenario, you will see the

Specify User for Connection page instead of the Configure Directory Server page. In that

case, you must specify the distinguished name and password for the LDAP administrator.

v Port: 389

v Distinguished name: cn=administrator

v Password: mycopwd

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent a

compromise to your system or network security, never use these passwords as part of your

own configuration.

 9. On the Specify Domain page, enter the name of the domain in the Domain field, and click Next.

For example, MyCoEimDomain.

10. On the Specify Parent DN for Domain page, select No, and click Next.

Note: If the directory server is active, a message is displayed that indicates you need to end and

restart the directory server for the changes to take effect. Click Yes to restart the directory

server.

11. On the Registry Information page, select Local OS/400 and Kerberos, and click Next.

Note:

v Registry names must be unique to the domain.

v You can enter a specific registry definition name for the user registry if you want to use a

specific registry definition naming plan. However, for this scenario you can accept the

default values.

HTTP Server 105

12. On the Specify EIM System User page, select the user for the operating system to use when

performing EIM operations on behalf of operating system functions, and click Next:

Note: Because you did not configure the directory server prior to performing the steps in this

scenario, the only distinguished name (DN) that you can choose is the LDAP administrator’s

DN.

v User type: Distinguished name and password

v Distinguished name: cn=administrator

v Password: mycopwd

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent a

compromise to your system or network security, never use these passwords as part of your

own configuration.

13. On the Summary page, confirm the EIM configuration information. Click Finish.

Step 3: Add principal names to the KDC

To add the iSeries system to the Windows 2000 KDC, use the documentation for your KDC that describes

the process of adding principals. By convention, the iSeries system name can be used as the username.

Add the following principal names to the KDC:

krbsvr400/iSeriesA.ordept.myco.com@ORDEPT.MYCO.COM

HTTP/iseriesa.myco.com@MYCO.COM

On a Windows 2000 server, follow these steps:

1. Use the Active Directory Management tool to create a user account for the iSeries system (select the

Users folder, right-click, select New, then select User.) Specify iSeriesA as the Active Directory user

and HTTPiSeriesA as the service principal for HTTP.

2. Access the properties on the Active Directory user iSeriesA and the service principal HTTPiSeriesA.

From the Account tab, select the Account is trusted for delegation. This will allows the HTTPiSeriesA

service principal to access other services on behalf of a signed-in user.

3. Map the user account to the principal by using the ktpass command. This needs to be done twice.

Once for iSeriesa and once for HTTPiSeriesA. The ktpass tool is provided in the Service Tools folder on

the Windows 2000 Server installation CD. To map the user account, open the ktpass command

window and enter the following:

ktpass -princ krbsvr400/iSeriesA.ordept.myco.com@ORDEPT.MYCO.COM -mapuser iSeries A -pass iseriesa123

Then add the HTTP Server to the KDC:

ktpass -princ HTTP/iseriesa.myco.com@MYCO.COM -mapuser iSeries A -pass iseriesa123

For HTTP, an additional step (setspn - set service principal name) is required after the ktpass is done:

SETSPN -A HTTP/iseriesA.myco.com@MYCO.COM HTTPiSeriesA

Note: The value iseriesa123 is the password that you specified when you configured network

authentication service. Any and all passwords used within this scenario are for example

purposes only. Do not use the passwords during an actual configuration.

Step 4: Add Kerberos keytab

You need keytab entries for authentication purposes as well as for generating the authorization identity.

The network authentication service (the OS/400 implementation of the Kerberos protocol) wizard creates

a keytab entry for iSeriesA, however a keytab for HTTP must be manually created. The wizard is only

able to create keytab entries for the system and certain applications that the code is aware are

Kerberos-enabled. The network authentication service wizard configures network authentication service

(Kerberos) for you. The wizard is called by the EIM wizard if you have not already configure network

authentication service on the system or if your network authentication service configuration is not

complete.

106 iSeries: IBM HTTP Server

The kinit command is used to initiate Kerberos authentication. A Kerberos ticket-granting ticket (TGT) is

obtained and cached for the HTTP Server principal. Use kinit to perform the ticket exchange for the

HTTP Server principal. The ticket is cached for reuse.

1. Start a 5250 session on iSeries A.

2. Type QSH.

3. Type keytab add HTTP/iseriesa.myco.com.

4. Type iseries123 for the password.

5. Type iseries123 again to confirm the password.

6. Type keytab list.

Note: The keytab list command lists the keytab information on your iSeries server.

7. Now test the password entered in the keytab to make sure it matches the password used for this

service principal on the KDC. Do this with the following command: kinit -k HTTP/iseriesa.myco.com

The -k option tells the kinit command not to prompt for a password; only use the password that is in

the keytab. If the kinit command fails, it is likely that different passwords were used on either the

ktpass command done on the Windows Domain controller or on the keytab command entered in QSH.

8. Now test the iSeries Kerberos authentication to make sure the keytab password is the same as the

password stored in the KDC. Do this with the following command: kinit -k krbsvr400/
iseriesa.myco.com

Note: The Network Authentication Service wizard created this keytab entry.

9. Type klist.

Note: If the kinit command returns without errors, then klist will show your ticket cache.

Step 5: Create home directory for John Day on iSeries A

You need to create a directory in the /home directory to store your Kerberos credentials cache. To create

a home directory, complete the following:

1. Start a 5250 session on iSeries A.

2. Type QSH.

3. On a command line, enter: CRTDIR ’/home/user profile’ where user profile is your OS/400 user profile

name. For example: CRTDIR ’/home/JOHND’.

Step 6: Test network authentication service configuration on iSeries A

Now that you have completed the network authentication service configuration tasks for iSeries A, you

need to test that your configuration. You can do this by requesting a ticket-granting ticket for the HTTP

principal name, HTTP/iseriesa.myco.com.

To test the network authentication service configuration, complete these steps:

Note: Ensure that you have created a home directory for your OS/400 user profile before performing this

procedure.

1. On a command line, enter QSH to start the Qshell Interpreter.

2. Enter keytab list to display a list of principals registered in the keytab file. In this scenario,

HTTP/iseriesa.myco.com@MYCO.COM displays as the principal name for iSeries A.

3. Enter kinit -k HTTP/iseriesa.myco.com@MYCO.COM. If this is successful, then the kinit command is

displayed without errors.

4. Enter klist to verify that the default principal is HTTP/iseriesa.myco.com@MYCO.COM.

HTTP Server 107

Step 7: Create EIM identifier for John Day

Now that you have performed the initial steps to create a basic single signon configuration, you can

begin to add information to this configuration to complete your single signon test environment. You need

to create the EIM identifier that you specified in “Step 1: Planning work sheet” on page 101. In this

scenario, this EIM identifier is a name that uniquely identifies John Day in the enterprise.

To create an EIM identifier, follow these steps:

1. Start iSeries Navigator.

2. Expand iSeries A → Network → Enterprise Identity Mapping → Domain Management →

MyCoEimDomain

Note: If the domain is not listed under Domain Management, you may need to add the domain. You

may be prompted to connect to the domain controller. In that case, the Connect to EIM

Domain Controller dialog is displayed. You must connect to the domain before you can

perform actions in it. To connect to the domain controller, provide the following information

and click OK:

v User type: Distinguished name

v Distinguished name: cn=administrator

v Password: mycopwd

Note: Any and all passwords specified in this scenario are for example purposes only. To prevent a

compromise to your system or network security, never use these passwords as part of your

own configuration.

3. Right-click Identifiers and select New Identifier....

4. On the New EIM Identifier dialog, enter a name for the new identifier in the Identifier field, and

click OK. For example, John Day.

Step 8: Create a source association and target association for the new EIM

identifier

You must create the appropriate associations between the EIM identifier and the user identities that the

person represented by the identifier uses. These identifier associations, when properly configured, enable

the user to participate in a single signon environment.

In this scenario, you need to create two identifier associations for the John Day identifier:

v A source association for the jday Kerberos principal, which is the user identity that John Day, the

person, uses to log in to Windows and the network. The source association allows the Kerberos

principal to be mapped to another user identity as defined in a corresponding target association.

v A target association for the JOHND OS/400 user profile, which is the user identity that John Day, the

person, uses to log in to iSeries Navigator and other OS/400 applications on iSeries A. The target

association specifies that a mapping lookup operation can map to this user identity from another one

as defined in a source association for the same identifier.

Now that you have created the John Day identifier, you need to create both a source association and a

target association for it.

To create a source association between the Kerberos principal jday identifier, follow these steps:

 1. Start iSeries Navigator.

 2. Expand iSeries A → Enterprise Identity Mapping → Domain Management → MyCoEimDomain →

Identifiers

 3. Right-click John Day, and select Properties.

 4. On the Associations page, click Add.

108 iSeries: IBM HTTP Server

5. In the Add Association dialog, specify or click Browse... to select the following information, and

click OK:

v Registry: MYCO.COM

v User: jday

v Association type: Source

 6. Click OK to close the Add Association dialog.

To create a target association between the OS/400 user profile and the John Day identifier, follow

these steps:

 7. On the Associations page, click Add.

 8. On the Add Association dialog, specify or Browse... to select the following information, and click

OK:

v Registry: iSeriesA.MYCO.COM

v User: JOHND

Note: The default behavior in V5R2 is to create the Kerberos registry as case sensitive. The user

value entered here must be the same case as the user in Active Directory.

v Association type: Target

 9. Click OK to close the Add Association dialog.

10. Click OK to close the Properties dialog.

Step 9: Configure iSeries Access for Windows applications to use Kerberos

authentication

You must use Kerberos to authenticate before you can use iSeries Navigator to access iSeries A. Therefore,

from your PC, you need to configure iSeries Access for Windows to use Kerberos authentication. Jay Day

will use iSeries Access to monitor the status of the iSeries HTTP Server and monitor the other activities

on the iSeries.

To configure iSeries Access for Windows applications to use Kerberos authentication, complete the

following steps:

1. Log on to the Windows 2000 domain by logging on to your PC.

2. In iSeries Navigator on your PC, right-click iSeries A and select Properties.

3. On the Connection page, select Use Kerberos principal name, no prompting. This will allow iSeries

Access for Windows connections to use the Kerberos principal name and password for authentication.

4. A message is displayed that indicates you need to close and restart all applications that are currently

running for the changes to the connection settings to take effect. Click OK. Then, end and restart

iSeries Navigator.

Step 10: Add iSeries A to and existing EIM domain:

The iSeries server does not require mapping, per the EIM configuration, as it is not a signon-type entity.

You do, however, have to add the iSeries server to an existing EIM domain.

Note: IF EIM resides on the same iSeries server as the HTTP Server, then skip this step.

 1. Start iSeries Navigator.

 2. Expand iSeries A → Enterprise Identity Mapping → Configuration.

 3. Click Configure system for EIM.

 4. Click Join an existing domain. Click Next.

 5. Type iseriesa.myco.com in the Domain controller name field.

 6. Type 389 in the Port field. Click Next.

 7. Select Distinguished name and password from the User type field.

HTTP Server 109

8. Type cn=administrator in the Distinguished name field.

 9. Type mycopwd in the Password field.

10. Type mycopwd in the Confirm password field. Click Next.

11. Select MyCoEimDomain from the Domain column. Click Next.

12. Select iseriesa.myco.com for Local OS/400 and kdc1.myco.com for Kerberos.

13. Select Kerberos user identities are case sensitive. Click Next.

14. Select Distinguished name and password from the User type list.

15. Type cn=administrator in the Distinguished name field.

16. Type mycopwd in the Password field.

17. Type mycopwd in the Confirm password field. Click Next.

18. Review the information and click Finish.

Step 11: Configure HTTP Server for single signon

After the basic test environment is working, John Day configures the HTTP Server to participate in the

single signon environment. Once single signon is enabled, John Day can access the HTTP Server without

being prompted for a user ID and password after signing on to the Windows environment

To set up Kerberos for your HTTP Server, complete the following steps:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select the HTTP Server (powered by Apache) you want to work with from the Server list.

 5. Select the resource from the server area (a directory or a file) you want to work with from the Server

area list.

 6. Expand Server Properties.

 7. Click Security.

 8. Click the Authentication tab.

 9. Select Kerberos under User authentication method.

10. Select enable or disable to match the source user identity (user ID) associated with the server ticket

with an iSeries system profile defined in a target association. If enabled when Kerberos is specified

for the AuthType directive, the server will use EIM to attempt to match the user ID associated with

the server ticket with an iSeries system profile. If there is no appropriate target association for an

iSeries system profile, the HTTP request will fail.

11. Click Apply.

Restart the HTTP Server (powered by Apache) instance to use your new Kerberos settings.

Your configuration file will now include new code for the Kerberos options you selected.

Note: These examples are used as reference only. Your configuration file may differ from what is shown.

Processing requests using client’s authority is Disable:

<Directory />

 Order Deny,Allow

 Deny From all

 Require valid-user

 PasswdFile %%KERBEROS%%

 AuthType Kerberos

</Directory>

Processing requests using client’s authority is Enabled:

110 iSeries: IBM HTTP Server

<Directory />

 Order Deny,Allow

 Deny From all

 Require valid-user

 PasswdFile %%KERBEROS%%

 UserID %%CLIENT%%

 AuthType Kerberos

</Directory>

Note: If your Directory or File server area does not contain any control access restrictions, perform the

following steps:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the server area you want to work with from the Server area list.

 6. Expand Server Properties.

 7. Click Security.

 8. Click the Control Access tab.

 9. Select Deny then allow from the Order for evaluating access list.

10. Select Deny access to all, except the following.

11. Click Add under the Specific allowed client hosts table.

12. Type *.jkl.com under the Domain name or IP address column to allow clients in the JKL

domain to access the resource.

Note: You should type the domain name or IP address of your server. If you do not, no client

is allowed access to the resources.

13. Click Continue.

14. Click OK.

Step 12: (Optional) Post configuration considerations:

Now that you finished this scenario, the only EIM user you have defined that EIM can use is the

Distinguished Name (DN) for the LDAP administrator. The LDAP administrator DN that you specified

for the system user on iSeries A has a high level of authority to all data on the directory server. Therefore,

you might consider creating one or more DNs as additional users that have more appropriate and limited

access control for EIM data. The number of additional EIM users that you define depends on your

security policy’s emphasis on the separation of security duties and responsibilities. Typically, you might

create at least the two following types of DNs:

v A user that has EIM administrator access control

This EIM administrator DN provides the appropriate level of authority for an administrator who is

responsible for managing the EIM domain. This EIM administrator DN could be used to connect to the

domain controller when managing all aspects of the EIM domain by means of iSeries Navigator.

v At least one user that has all of the following access controls:

– Identifier administrator

– Registry administrator

– EIM mapping operations

This user provides the appropriate level of access control required for the system user that performs

EIM operations on behalf of the operating system.

Note: To use the new DN for the system user instead of the LDAP administrator DN, you must change

the EIM configuration properties for the system user on each system.

HTTP Server 111

JKL Toy Company configures an in-process JSP with ASF Tomcat on

HTTP Server (powered by Apache)

This scenario discusses how to configure ASF Tomcat to use an in-process JSP.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to take an existing Java server page (JSP) named

date.jsp and enable it to run in-process using the ASF Tomcat servlet engine with the HTTP Server

(powered by Apache). The Basic ASF Tomcat Server wizard is used to modify the existing Web server

configuration called JKLTEST and create new workers.properties, server.xml, and web.xml configuration

files.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you have read “User profiles and required authorities for HTTP Server” on page 40.

v It is assumed you have a usable JSP.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up ASF Tomcat for your HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand HTTP Tasks and Wizards.

 6. Click Servlet and JSP Enablement.

 7. Click Next.

Note: If you have used the Servlet and JSP Enablement wizard prior to this scenario, the wizard

will reset all values to the wizard default. Click Next to continue.

112 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

8. Select I want to use a servlet or Java Server Page (JSP), and I either already have them or will

provide them later.

 9. Click Next.

10. Select I want to use a Java Server Page (JSP). I already have a JSP file or will provide it later.

11. Click Next.

12. Click Finish.

Place your JSP file in the Web applications directory

Using a file transfer method such as iSeries Navigator, Netserver mapped drives, or FTP, transfer your

JSP file to your HTTP Server (powered by Apache) /www/[server_name]/webapps/app1/ directory.

Example: /www/jkltest/webapps/app1/

Note: All Java servlet class files supporting the JSP should be placed in /www/[server_name]/webapps/
app1/WEB-INF/classes/ directory.

Example: /www/jkltest/webapps/app1/WEB-INF/classes/

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Start a new Web browser.

2. Enter http://[iSeries_hostname]:[port]/app1/[JSP_name.jsp] in the location or URL field.

Example: http://jkl_server:1975/app1/date.jsp

Your JSP file will be displayed.

HTTP Server 113

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

HotBackup Off

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

JkWorkersFile /www/jkltest/conf/workers.properties

JkLogFile /www/jkltest/logs/jk.log

JkLogLevel Error

JkMount /app1/* inprocess

JkMount /servlet/* inprocess

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

JKL Toy Company configures an in-process servlet with ASF Tomcat

on HTTP Server (powered by Apache)

This scenario discusses how to configure ASF Tomcat to use an in-process servlet.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to take an existing Java servlet named

jklservlet.class and enable it to run, in-process, using the ASF Tomcat servlet engine with the HTTP

Server (powered by Apache). The Servlet and JSP Enablement wizard will be used to modify the

existing HTTP Server (powered by Apache), JKLTEST.

114 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you have read “User profiles and required authorities for HTTP Server” on page 40.

v It is assumed you have a usable Java servlet compiled with JDK 1.2 or later.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up ASF Tomcat for your HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand HTTP Tasks and Wizards.

 6. Click Servlet and JSP Enablement.

 7. Click Next.

Note: If you have used the Servlet and JSP Enablement wizard prior to this scenario, the wizard

will reset all values to the wizard default. Click Next to continue.

 8. Select I want to use a servlet or Java Server Page (JSP), and I either already have them or will

provide them later.

 9. Click Next.

10. Select I want to use a servlet. I either already have a class or jar file containing the servlet or will

provide it later.

11. Enter the name of your servlet in Servlet class name field.

Example: jklservlet

12. Click Next.

13. Click Finish.

Place your servlet file in the Web applications directory

Using a file transfer method such as iSeries Navigator, Netserver mapped drives, or FTP, transfer your

servlet class files to your HTTP Server (powered by Apache) /www/[server_name]/webapps/app1/WEB-
INF/classes/ directory. Place JAR files in the /www/server_name]/webapps/app1/WEB-INF/lib/ directory.

Example: /www/jkltest/webapps/app1/WEB-INF/classes/

HTTP Server 115

Example: /www/jkltest/webapss/app1/WEB-INF/lib/

Note: If you transfer the servlet source files only, you will need to compile them in the /classes directory.

If transferring files over using a different user profile, ensure the files have the appropriate

authorities after the transfer.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Start a new Web browser.

2. Enter http://[iSeries_hostname]:[port]/app1/[servlet_name] in the location or URL field.

Example: http://jkl_server:1975/app1/jklservlet

Note: Servlet names must be in lowercase.

Your new servlet will be displayed.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

116 iSeries: IBM HTTP Server

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

HotBackup Off

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

JkWorkersFile /www/jkltest/conf/workers.properties

JkLogFile /www/jkltest/logs/jk.log

JkLogLevel Error

JkMount /app1/* inprocess

JkMount /servlet/* inprocess

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

JKL Toy Company configures an in-process WAR file with ASF Tomcat

on HTTP Server (powered by Apache)

This scenario discusses how to configure ASF Tomcat to use an in-process WAR.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to take an existing Web application archive (WAR)

file named jklwar.war and enable it to run in-process using the ASF Tomcat servlet engine with the

HTTP Server (powered by Apache). The Servlet and JSP Enablement wizard is used to modify the

existing HTTP Server (powered by Apache), JKLTEST.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

v It is assumed you have read “User profiles and required authorities for HTTP Server” on page 40.

v It is assumed you have a usable WAR file.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

HTTP Server 117

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up ASF Tomcat for your HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand HTTP Tasks and Wizards.

 6. Click Servlet and JSP Enablement.

 7. Click Next.

Note: If you have used the Servlet and JSP Enablement wizard prior to this scenario, the wizard

will reset all values to the wizard default. Click Next to continue.

 8. Select I want to use a Web Application Archive (WAR) file containing an entire server application,

and I either already have the WAR file or will provide it later.

 9. Click Next.

10. Enter the name of your WAR file.

Example: jklwar.war

11. Click Next.

12. Click Finish.

Place your JSP file in the Web applications directory

Using a file transfer method such as iSeries Navigator, Netserver mapped drives, or FTP, transfer your

WAR file to your HTTP Server (powered by Apache) /www/[server_name]/webapps/ directory.

Example: /www/jkltest/webapps/

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

118 iSeries: IBM HTTP Server

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Test your HTTP Server (powered by Apache)

1. Start a new Web browser.

2. Enter http://[iSeries_hostname]:[port]/[WAR_file_name]/[WAR_file_content] in the location or URL

field.

Example: http://jkl_server:1975/jklwar/jklwar.html

The contents of your WAR file will be displayed.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
LoadModule jk_module /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes -MultiViews

HotBackup Off

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

JkWorkersFile /www/jkltest/conf/workers.properties

JkLogFile /www/jkltest/logs/jk.log

JkLogLevel Error

JkMount /jklwar/* inprocess

JkMount /servlet/* inprocess

JkMount /jklwar inprocess

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

HTTP Server 119

JKL Toy Company monitors Web server activity with logs on HTTP

Server (powered by Apache)

This scenario discusses how to monitor Web server activity with logs.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Scenario

The JKL Toy Company (a fictitious company) wants to know who is visiting their Web site. The JKLTEST

server is already using a combined access log, but the JKL Web administrator wants to create a new

access log that can be altered without affecting the data in the default access log file. By using this

method, the JKL Web administrator will have two logs that can be formatted to log specific information.

The JKL Web administrator found that enabling the logging function has some advantages and some

disadvantages. Enabling the logging function does cause a small performance hit on the server, but a

wide range of information about who is visiting the Web site can be obtained. After reading the

information on log formats, the JKL Web administrator has decided to use the Combined, or NCSA

Extended, log format.

See Module mod_log_config for HTTP Server (powered by Apache) for advanced information.

Prerequisites

v It is assumed you have read “Scenarios for HTTP Server” on page 68.

v It is assumed you have read and completed “JKL Toy Company creates an HTTP Server (powered by

Apache)” on page 69 or you have an existing HTTP Server (powered by Apache) configuration.

Start the IBM Web Administration for iSeries interface

Note: Enter your Webmaster user profile username and password when prompted.

1. Start a Web browser.

2. Enter http://[iSeries_hostname]:2001 in the location or URL field .

Example: http://jkl_server:2001

Note: If you have changed your port number for the IBM Web Administration for iSeries interface,

replace port 2001 with your port number.

3. Click IBM HTTP Server for iSeries.

Note: If the IBM Web Administration for iSeries interface does not start, see “Install and test the HTTP

Server” on page 125.

Set up a log file

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) instance from the Server list.

Example: JKLTEST

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Logging.

120 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_log_config.htm

7. Click the Custom Logs tab in the form.

 8. Click Add under the Custom logs table.

 9. Enter a name for the new log in the Log column.

Example: logs/server_monitor

Note: The above example creates a log file named server_monitor in the /logs directory.

10. Select combined from the Log format list in the Attributes column.

11. Optional: Accept the default Environment variable condition or enter a new value.

12. Optional: Accept the default expiration of the log or enter a new value.

13. Optional: Accept the default maximum cumulative seize or enter a new value.

14. Click Continue.

15. Optional: Click Log identity of client. This may significantly degrade performance of the web

server. under Client identity logging.

Note: The option to Log identity of client will impact server performance by requiring a Domain

Name Server (DNS) lookup every time a new client is logged. If you do not log the identity of

the client the IP address of the client will be logged instead of the domain name. Some log

analysis tools can perform DNS lookup, allowing identity of clients without impacting your

performance.

16. Click OK.

Restart your HTTP Server (powered by Apache)

Select one of the following methods below:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select All Servers from the Server list.

4. Click the All HTTP Servers tab.

5. Select your HTTP Server name in the table.

Example: JKLTEST

6. Click Stop if the server is running.

7. Click Start.

Note: If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

Logging will begin when the HTTP Server (powered by Apache) instance has started. The JKL Web

administrator has decided to use the IBM WebSphere Site Analyzer

to generate usage reports. This

product can read the log file and generate detailed reports that contain information such as the following:

HTTP Server 121

http://www-4.ibm.com/software/webservers/siteanalyzer/

Test your HTTP Server (powered by Apache)

1. Open a new Web browser.

2. Enter http://[iSeries_hostname]:[port] in the location or URL field.

Example: http://jkl_server:1975

Review your log for HTTP Server (powered by Apache) activity.

View your HTTP Server (powered by Apache) configuration

Your configuration will look similar if you used the given example in this and previous examples.

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

Example: JKLTEST

4. Expand Tools.

5. Click Display Configuration File.
Listen *:1975

DocumentRoot /www/jkltest/htdocs

ServerRoot /www/jkltest

Options -ExecCGI -FollowSymLinks -SymLinksIfOwnerMatch -Includes -IncludesNoExec -Indexes

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

122 iSeries: IBM HTTP Server

LogFormat "%{Cookie}n \"%r\" %t" cookie

LogFormat "%{User-agent}i" agent

LogFormat "%{Referer}i -> %U" referer

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log combined

CustomLog logs/server_monitor combined

SetEnvIf "User-Agent" "Mozilla/2" nokeepalive

SetEnvIf "User-Agent" "JDK/1\.0" force-response-1.0

SetEnvIf "User-Agent" "Java/1\.0" force-response-1.0

SetEnvIf "User-Agent" "RealPlayer 4\.0" force-response-1.0

SetEnvIf "User-Agent" "MSIE 4\.0b2;" nokeepalive

SetEnvIf "User-Agent" "MSIE 4\.0b2;" force-response-1.0

<Directory />

 Order Deny,Allow

 Deny From all

</Directory>

<Directory /www/jkltest/htdocs>

 Order Allow,Deny

 Allow From all

</Directory>

Tasks

This topic provides step-by-step instructions for administration and management tasks with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Getting started with the IBM Web Administration for iSeries interface

This topic provides everything you need to know to get started with HTTP Server and the IBM Web

Administration for iSeries interface, quickly.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Step 1: Install

Three easy steps to get you on your way to using the IBM Web Administration for iSeries interface.

1. Your first step is to install the IBM Web Administration for iSeries interface. See “Install and test the

HTTP Server” on page 125 for more information.

2. Make sure you have the correct user profiles and required authorities for HTTP Server. See “User

profiles and required authorities for HTTP Server” on page 40 for more information.

3. Finally, test your installation of the IBM Web Administration for iSeries interface. See “Test the

installation of HTTP Server (powered by Apache) ” on page 126 for more information.

Step 2: Set up an HTTP Server (powered by Apache) instance

Once the IBM Web Administration for iSeries interface is ready, it is time to set up your first HTTP Server

(powered by Apache) instance.

Use the Create HTTP Server wizard to quickly create a working HTTP Server (powered by Apache)

configuration.

HTTP Server 123

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

1. Start the IBM iSeries Tasks page.

Non-secure connection: http://your.server.name:2001/

Secure connection: https://your.server.name:2010/

 2. Click IBM Web Administration for iSeries

 3. Click the Setup tab.

 4. Expand Common Tasks and Wizards.

Note: By default, all lists are expanded. If you collapse any list, the IBM Web Administration for

iSeries interface displays the list as collapsed the next time you view it.

 5. Click Create HTTP Server.

 6. Enter a name to identify your HTTP Server (powered by Apache). This name is used later to

configure and administer your server.

 7. Click Next.

 8. Enter the server root. The server root is the base directory for your HTTP Server. Within this

directory, the wizard creates subdirectories for your logs, and configuration information. If the server

root does not exist, the Create HTTP Server wizard creates one for you.

 9. Click Next.

10. Enter the document root. The document root is the directory from which your documents are served

by your HTTP Server. If the directory root does not exist, the Create HTTP Server wizard creates

one for you.

11. Click Next.

12. Leave the IP address list as All addresses. You may select a specific IP address if you so choose.

13. Enter a port number. Be default, the port is 80. This is the port your Web site runs (or ″listen on″). It

is suggested you enter a different port other than 80.

14. Click Next.

15. Select Yes or No for the Create HTTP Server wizards to create an access log. The access log contains

information about requests made to your HTTP Server. This information is useful for analyzing who

is accessing your Web site and how many requests have been made during a specific period of time.

16. Click Next.

17. Specify how long you want to keep the error and access log files. Select Keep, do not delete or

Delete based upon age.

18. Click Next.

19. The Create HTTP Server wizard displays a summary of HTTP Server (powered by Apache)

configuration it creates. If you want to change an entry, simply click Back.

20. Click Finish and HTTP Server (powered by Apache) is created.

For more information on the IBM Web Administration for iSeries interface, see “IBM Web Administration

for iSeries” on page 2.

Step 3: Start and test your HTTP Server (powered by Apache)

After using the Create HTTP Server wizard, it is time to start your Web server and go live.

1. Click Manage newly created server.

2. Click the Start icon under the Server list.

3. Click the Refresh icon and check if the server status is still shown as ″Running″.

If your HTTP Server (powered by Apache) does not start, see “Troubleshoot” on page 758.

4. Open another Web browser of your choice (see “Web browser requirements” on page 126) and go to

http://your.server.name:port/ where your.server.name is the name of your iSeries and port is the port

number you entered in the Create HTTP Server wizard.

124 iSeries: IBM HTTP Server

The supplied HTML example welcome page is displayed.

When you have finished this preliminary work with the IBM Web Administration for iSeries interface,

expand its capabilities. See the “Scenarios for HTTP Server” on page 68 for more information.

Install and test the HTTP Server

This topic provides information about how to install and test the HTTP Server and the IBM Web

Administration for iSeries interface after installation.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Install the HTTP Server

Basic requirements

v View the latest PTF requirements on the Internet at: http://www.ibm.com/servers/eserver/iseries/

software/http/services/service.htm

Note: To determine your current HTTP Server (powered by Apache) version , use the ″-V″ option on

STRTCPSVR. For example, if HTTP Server (powered by Apache 2.0.43) is installed, STRTCPSVR

SERVER(*HTTP) HTTPSVR(APACHEDFT ’-V’) displays:

Server version: Apache/2.0.43

Server built: Nov 26 2002 15:57:01

v View the HTTP Server compatibility information at: http://www.ibm.com/servers/eserver/iseries/

software/http/product/compatibility.html

v Have a communication hardware adapter that is supported by the TCP/IP protocol stack.

v Add (ADDTCPIFC) and start (STRTCPIFC) at least one TCP/IP interface for the system’s TCP/IP

communications. You can use the NETSTAT OPTION(*IFC) command to work with the status of

TCP/IP interfaces.

v Specify the system’s TCP/IP host and domain name (CHGTCPDMN command) information.

v Add LOCALHOST to the TCP/IP host table.

v Install OS/400 Version 5 Release 3(5722-SS1).

v Have IBM Developer Kit for Java (5722-JV1) *BASE, Option , and Option 5 installed.

v Set the QSHRMEMCTL (shared memory) system value is to 1.

WebSphere Application Server - Express for iSeries

See WebSphere Application Server - Express product installation for information on how to install.

WebSphere Application Server for iSeries

If you plan to use WebSphere Application Server with the HTTP Server (powered by Apache), you will

need to perform actions to install a version of the WebSphere Application Server Apache plug-in that is

compatible with your current level of HTTP Server (powered by Apache). If the proper WebSphere

Application Server PTFs are not loaded, the mismatch will prevent the HTTP Server from starting.

V5R3

v

HTTP Server 125

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.htm
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.htm
http://www.ibm.com/servers/eserver/iseries/software/http/product/compatibility.html
http://www.ibm.com/servers/eserver/iseries/software/http/product/compatibility.html

See the WebSphere Application Server for iSeries product Web page

for information on the current

PTFS, including those to upgrade to the latest WebSphere Application Server Apache plugin.

Optional software

v If you want to use secure sockets layer (SSL), you must install one of the IBM Cryptographic Access

provider products:

– Crypto Access Provider 56-bit for iSeries (5722-AC2)

– Crypto Access Provider 128-bit for iSeries (5722-AC3)
v In order to provide the required support for handling digital server certificates used by SSL for secure

Web serving, you must install Option 34 OS/400 - Digital Certificate Manager option (5722-SS1).

v If you want to use the native OS/400 interface to create and edit HTML files, install IBM WebSphere

Development Studio for iSeries (5722-WDS).

v If you want to configure a high availability Web server cluster, then you need to install Option 41 HA

Switchable Resources (5722-SS1), or use a business partner tool to manage clusters. See Clusters for

more information.

To install

1. Insert the installation media for HTTP Server into your system.

2. At the OS/400 command line, type GO LICPGM and press Enter.

3. Select option 11 (Install licensed programs) on the Work with Licensed Programs display to see a list

of licensed programs.

4. Select and install 5722-DG1 (HTTP Server for iSeries). If you want to use the Triggered Cache

Manager, install 5722-DG1 Option 1. See the Software Installation guide

for help with licensed

program installation.

Authorities

See “User profiles and required authorities for HTTP Server” on page 40 for information on user profiles

and the required authorities necessary for the HTTP Server.

Web browser requirements

v To use the IBM Web Administration for iSeries interface you need a Web browser that supports the

HTTP 1.0 or 1.1 protocol, frames, and Java Script. Suggested Web browsers include Internet Explorer

5.0 and later and Netscape 4.7x and later.

Note: Consult your Web browser documentation for more information.

Test the installation of HTTP Server (powered by Apache)

The HTTP Server is installed with a default server called APACHEDFT. To test your installation, do the

following:

1. Verify that you have an active connection from the computer with the browser to the iSeries server.

2. Start the default server. In iSeries Navigator click Network -> Servers -> TCP/IP and right-click

HTTP Administration.

3. Click Start Instance -> APACHEDFT.

4. Enter http://your.server.name/ to view the default Welcome (or index) page.

126 iSeries: IBM HTTP Server

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/services/service.htm
rzaietriggeredcacheman.htm
rzaietriggeredcacheman.htm

Test the installation for HTTP Server (original)

The HTTP Server is installed with a default server configuration called CONFIG and default server

instance called DEFAULT. The DEFAULT server instance is associated with the CONFIG server

configuration. To test your installation, do the following:

1. Verify that TCP/IP is started and verify that you have an active connection from the computer with

the browser to the server.

2. Start the DEFAULT server. In iSeries Navigator click Network -> Servers -> TCP/IP and right-click

HTTP Administration.

3. Click Start Instance -> DEFAULT.

4. Enter http://your.server.name/ to view the default Welcome (or index) page.

HTTP Server tasks

This topic provides step-by-step tasks for HTTP Server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “Concepts of functions of HTTP Server” on page 2
This topic provides concepts of functions on HTTP Server and IBM Web Administration for iSeries

interface.

Set up MIME types on HTTP Server (powered by Apache)

This topic provides information about how to set up MIME types for your HTTP Server with the IBM

Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Multipurpose Internet Mail Extensions (MIME) types associate file contents and file extensions with the

way the server and the client handle files. To change the MIME settings for the server, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Content Settings.

 7. Click the MIME tab in the form.

 8. Edit the default content-type, content-language, and character set values as necessary.

 9. Optional: If necessary, select File extensions are case sensitive to distinguish between uppercase

and lowercase letters when comparing file extensions.

10. Optional: If necessary, select Force content-type for all files to force the mapping of all files in this

context to a specified MIME type.

11. Click Add under the Specify individual Meta (MIME) information for file extensions table.

12. Enter file extensions in the File extension column.

13. If available, select Add from the list in the Action column.

HTTP Server 127

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

14. Select the file type from the list in the Type column.

15. Enter or select additional MIME types, encoding, languages, or browser types in the Value column.

16. Click Continue.

17. Click OK.

Set up content and language negotiation for HTTP Server (powered by Apache)

This topic provides information about how to set up content and language negotiation for your HTTP

Server with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Content negotiation is defined as the process where the client provides a set of preferences (such as

language) to the server and the server finds the best resource match to those the client preferences.

To configure content and language negotiation, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Content Settings.

 7. Click the Content Negotiation tab in the form.

 8. Optional: If necessary, select Allow content-negotiated documents to be cached.

 9. Click Add under the Language priority (highest to lowest priority) table.

10. Enter or select from the list a content-language in the Content-language column.

11. Click Continue.

12. Optional: If necessary, select language priority to force from the Force language priority list.

13. Click OK.

Set up customized error messages on HTTP Server (powered by Apache)

This topic provides information about how to set up customized error messages for your HTTP Server

with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The server has default messages that are displayed to the user when an error occurs. You can change

these messages to better suit your particular needs. For example, you can change a message to include

more information about the cause of the problem and suggest possible solutions for it. For internal

networks, you might provide a contact person for your users to call.

To customize your messages, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

128 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click HTTP Responses.

 7. Click the Error Message Customization tab in the form.

 8. Select how you want to append the generated footer onto error messages. Depending on the server

area you select, you may, optionally, select Inherit.

 9. Select an error code from the Custom messages from error codes table or click Add to add a new

error message.

10. Click OK.

If your messages may be displayed in the Microsoft Internet Explorer browser, see “Symptom: Web

browser problems with HTTP Server” on page 761.

Set up directory indexing and directory listing on HTTP Server (powered by

Apache)

This topic provides information about how to set up a directory index and directory listing on your

HTTP Server with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A directory index or directory listing shows files and subdirectories that are contained in the directory.

The server shows each subdirectory item or each file on a separate line along with information about

each item. Use caution when configuring directory listing function, since it allows others to view your

directory structure.

To enable directory listings do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Directory Handling.

 7. Click the General Settings tab in the form.

 8. Select Enabled for your HTTP Server (powered by Apache) to always search for a welcome or index

file name.

 9. Select Display directory listings for all directories.

10. Click Apply.

Once directory listings are enabled, you can customize the appearance of the directory list (also called

fancy indexing). Directory listing is an optional.

To customize the appearance of your directory list, do the following:

1. Click the Appearance tab in the form.

2. Select the options for your directory listing. View the help text for specific field values.

3. Click OK.

HTTP Server 129

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Set up environment variables on HTTP Server (powered by Apache)

This topic provides information about how to set up environment variables on your HTTP Server to pass

information about CGI requests to the server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

When the server runs a CGI program, it uses environment variables to pass information about the request

and the server. Configuring environment variables allows you to specify which variables the CGI

programs inherits.

To specify environment variables, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Request Processing.

 7. Click the Custom Environment Variables tab in the form.

 8. Click Add under the Environment variables based on a conditional attribute table.

Note: Select an environment variable from the table to redefine or remove an existing environment

variable.

 9. Enter the environment variable name in the Variable column.

10. Enter the environment variable value in the Value column.

11. Enter the environment variable attribute in the Attribute column.

12. Enter the environment variable attribute value in the Attribute value column.

13. Optional: Select to make the environment variable case sensitive in the Case sensitive column.

14. Click Continue.

15. Click OK.

See “Environment variables on HTTP Server” on page 766 for a list of environment variables.

Set up and administration of a highly available Web server cluster on HTTP Server

(powered by Apache)

This topic provides information about how to set up and administer highly available Web server clusters

for your HTTP Server with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

All required programs (HTTP Server, WebSphere, Servlets, Net.Data, and Clustering support) must

already be installed on all nodes. See http://www.iseries.ibm.com/ha

and “Highly available Web

server cluster on HTTP Server” on page 17 for more information.

130 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.iseries.ibm.com/ha

Step 1 - Configure the iSeries Cluster for highly available HTTP Server (powered by

Apache)

For each node, configure your cluster using the IBM Simple Cluster Management interface available

through iSeries Navigator or use the cluster CL commands. See “Set up a highly available Web server

using clustering CL commands for HTTP Server” on page 132 and Clusters for more information.

1. Start the node.

Use the Cluster CL commands found in “Set up a highly available Web server using clustering CL

commands for HTTP Server” on page 132 or use the IBM Simple Cluster Management interface

available through iSeries Navigator.

2. Continue to step 2.

Step 2 - Configure the highly available Web server

Configure IP addresses.

For each iSeries node in the cluster that a highly available Web server will be running on, configure the

IP address that the Web server will be using. This can be done using the CFGTCP CL command. You

should configure one IP address for each unique Web server. Each Web server is configured to a

dedicated TCP/IP line interface. When using the Network Dispatcher model or comparable IP director

with either HAModel IPTakeoverWithDispatcher of PurePeer model, the IP Line interface should be

typed *VIRTUALIP. See TCP/IP for more information.

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the context you want to work with from the Server area list.

 6. Expand Server Properties.

 7. Click General Server Configuration.

 8. Click the General Settings tab in the form.

 9. Click Add under the Server IP addresses and ports to listen on table.

Note: Directive HotBackup will be set to the default value of off and ignored if currently configured

for your HTTP Server (powered by Apache).

You may want to perform the next steps on one iSeries and copy (for example using FTP or

NetServer) the HTTP Server (powered by Apache) configuration and instance files to each iSeries

server where the highly available HTTP Server will be running in the cluster. The files that must be

copied are:

v /www/server_name/conf/server_name.conf

v /QSYS.LIB/QUSRSYS.LIB/QATMINSTC.FILE/instance_name.MBR
10. Add the IP address the highly available Web server will be running on.

11. Click OK.

Configure highly available HTTP Server (powered by Apache)

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the context you want to work with from the Server area list.

 6. Expand Server Properties.

HTTP Server 131

rzaiemod_core.htm#HotBackup

7. Click System Resources.

 8. Click the Highly Available Server tab in the form.

 9. Specify one specific server IP address to listen on.

10. Click Enable HTTP server to be highly available.

11. Select a highly available model.

Note: If you are implementing the primary/backup with network dispatcher model or the peer

model, configure the network dispatcher according to the existing cluster nodes and the

configured Web server.

12. Optional: Click Enable highly available CGI program.

13. Enter your liveness monitor settings. The LMUrlCheck directive is required. The other LM directives

have defaults.

14. Click OK.

15. Continue to step 3.

Step 3 - Start highly available HTTP Server (powered by Apache)

Start your highly available HTTP Server (powered by Apache).

1. Start a 5250 session on the iSeries you are going to use the highly available HTTP Server (powered by

Apache).

2. Use STRTCPSVR CL command on the appropriate node.

3. Continue to step 4.

Note: In the case of the primary/backup model, the first highly available server to be started will

automatically assume the role of the primary. The second highly available server to be started will

automatically assume the role of the backup.

Step 4 - Manage your highly available HTTP Server (powered by Apache)

Use the ENDTCPSVR CL command on the appropriate node or use the IBM Simple Cluster Management

interface available through iSeries Navigator to stop or end your highly available HTTP Server (powered

by Apache). In the case of primary/backup model depending on which server you are ending this may

or may not force a fail over. Ending the primary server with a backup server running will force a fail

over from primary to backup to occur. Ending the backup will only affect the backup server. Ending the

primary server with no backup will end the primary server. In the case of PurePeer model only the

server you are ending will be affected as any other peer servers will continue to process client requests.

See “Set up a highly available Web server using clustering CL commands for HTTP Server” and Clusters

for more information.

Note: In the case of primary/backup model, it is possible to determine which highly available Web

server is the primary or backup server. The QBATCH subsystem will have a job running named

QZHBEXPG on the primary node only. For the client data it is suggested that you set up a method to

automatically publish static files to each Web server. Static files include HTML and highly available

CGI programs.

Set up a highly available Web server using clustering CL commands for HTTP

Server

This topic provides information about how to set up a highly available Web server using a 5250 session.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

132 iSeries: IBM HTTP Server

rzaiemod_ha.htm#lmurlcheck
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Set up your highly available HTTP Server instance using the clustering CL commands. Before using the

following commands, see Clusters for more information.

The following is a subset of the Clustering CL commands that can be used to perform clustering

operations. See “CL commands for HTTP Server” on page 765 for more information.

To create a cluster, use the following CL command:

CRTCLU

Create Cluster creates a new cluster for one or more nodes.

 To add nodes to an existing cluster, use the following CL command:

ADDCLUNODE

Add Cluster Node Entry adds a node to the membership list of an existing cluster.

 To start a node in the cluster, use the following CL command:

STRCLUNOD

Start Cluster Node starts Clusters Resource Services on a node in the cluster.

Note: It is suggested that you start a new cluster node from a node that is already active.

 To determine the status of a node in a the cluster, use the following CL command:

DSPCLUINF

Display Cluster Information displays the status of a node in a cluster.

 To perform a swtichover in the case of a Primary/Backup configuration, use the following CL command:

CHGCRGPRI

Change Cluster Resource Group Primary performs an administrative switchover of the cluster

resource group by changing the current roles of nodes in the recovery domain.

 To remove a node from a cluster, use the following CL command:

RMVCLUNODE

Remove Cluster Node Entry removes a node from a cluster.

 For more information on Clusters, see Clustering troubleshooting.

For instructions on how to set up a highly available Web server, see “Set up and administration of a

highly available Web server cluster on HTTP Server (powered by Apache)” on page 130.

Set up a welcome or index page on HTTP Server (powered by Apache)

This topic provides information about how to set up a welcome or index page on your HTTP Server with

the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

You can configure your server to display a specific Web page known as a welcome page for client

requests that do not include a specific file name. The server determines which file to serve by matching

the list of welcome pages to the files in the directory. The first match it finds is the file it will return. To

configure welcome page settings, do the following:

 1. Click the Manage tab.

HTTP Server 133

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click General Server Configuration.

 7. Click the Welcome Pages tab in the form.

 8. Select Enabled to have the Welcome page displayed.

 9. Select the default action the server will take if the welcome file or index file does not exists.

10. Click Add under the Welcome/index file names table.

Note: You may also use the existing file in the Welcome/index file names table.

11. Click Browse and select the HTML file you want to use as a Welcome page.

12. Click Continue.

13. Click OK.

Manually edit HTTP Server

This topic provides information about how to manually edit your HTTP Server configuration without the

IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Attention: It is strongly suggested that any editing to the HTTP Server configuration file be done

through the IBM Web Administration for iSeries interface. Improper modifications to your configuration

file could make your HTTP Server unusable. Modifications to the configuration file manually should only

be performed by advanced users.

The IBM Web Administration for iSeries interface has been designed to modify the HTTP Server

configuration file by applying changes made to the various forms and wizards supplied by the IBM Web

Administration for iSeries interface. Use of the forms and wizards greatly decreases the potential for user

error and helps maintain an error-free configuration file.

Optionally, the configuration file may be edited manually. When the configuration file has been modified

manually, the IBM Web Administration for iSeries interface does not perform the usual error checking

that is done when using the IBM Web Administration for iSeries interface. Any changes made to the

configuration file directly should be done with caution.

As a precaution, do the following before you modify the configuration file manually:

v Save a backup of your configuration file before manually editing. See “Manage backup files for HTTP

Server” on page 137 for more information.

v Keep track of any changes you make to your configuration file.

In addition, after each modification, test your configuration by stopping and starting your HTTP Server.

Verify the directives you manually configured have the desired effect.

Manually edit HTTP Server (powered by Apache) configuration: To modify the HTTP Server (powered

by Apache) configuration manually, do the following:

1. Start the IBM Web Administration for iSeries interface.

2. Click the Manage tab.

3. Click the HTTP Servers subtab.

134 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

4. Select your HTTP Server (powered by Apache) from the Server list.

5. Expand Tools.

6. Click Edit Configuration File.

Note: The line mode editor functions as a simple text editor only and does not error check any

changes to the configuration file.

Click OK when you have finished modifying the configuration file. Stop and start the server.

Note: Command line WRKHTTPCFG (Config_Name) is not supported in V5R3 and later releases.

Manage HTTP Servers

This topic provides information about how to manage your HTTP Server with the with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

As your client base grows and changes, and you add or move Web content, you need to redefine your

list of servers. After successfully creating an HTTP Server (powered by Apache), HTTP Server (original),

or an ASF Tomcat server there are a number of basic tasks that you will need to know in order to

manage your servers successfully.

v “Start and stop the ADMIN server”

v “Check status of server”

v “Start and stop server” on page 136

v “Rename server” on page 136

v “Manage HTTP Servers”

v “Delete server” on page 136

Start and stop the ADMIN server: The ADMIN server runs on port 2001 (or 2010 for a secure

connection) and serves the iSeries Tasks page.

You can start the ADMIN server by doing one of the following:

v In iSeries Navigator click Network -> Servers -> TCP/IP and right-click HTTP Administration. Then

click Start Instance -> ADMIN.

v On an OS/400 command line type STRTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN).

You can stop the ADMIN server by doing one of the following:

v In iSeries Navigator click Network -> Servers -> TCP/IP and right-click HTTP Administration. Then

click Stop Instance -> ADMIN.

v On an OS/400 command line type ENDTCPSVR SERVER(*HTTP) HTTPSVR(*ADMIN).

Check status of server: To determine the status of your server, do the following using the IBM Web

Administration for iSeries interface:

1. Click the Manage tab.

2. Click the All Servers subtab.

Note: Items listed as ″Unknown″ are servers the Web master user profile does not have authority to.

HTTP Server 135

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Start and stop server: Select one of the following methods below using the IBM Web Administration for

iSeries interface:

Manage one server

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your server from the Server list.

4. Click the Stop icon if the server is running.

5. Click the Start icon.

Manage all servers

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select your server name in the table.

5. Click Stop if the server is running.

6. Click Start.

Note: When stopping or starting a server, it may take several seconds for the jobs to end or begin. Click

Refresh to view the server’s current status. If your HTTP Server (powered by Apache) does not

start, see “Troubleshoot” on page 758.

Rename server: To rename a server, do the following using the IBM Web Administration for iSeries

interface:

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select the server you want to rename.

5. Click Rename.

6. Enter the new name.

7. Click OK.

You will receive a message that indicates whether or not the task completed successfully.

Delete server: Once you delete a server, you cannot retrieve it. You must create a server to replace the

deleted server. If the server you selected is running, it stops before the system deletes it. The system does

not delete the server configuration that is associated with this server or the directory and its contents.

To delete a serer, do the following using the IBM Web Administration for iSeries interface:

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select the server you want to delete.

5. Click Stop if the server is running.

6. Click Delete.

You will receive a message that indicates whether or not the task completed successfully.

136 iSeries: IBM HTTP Server

Manage addresses and ports for HTTP Server (powered by Apache)

This topic provides information about how to manage addresses and ports for your HTTP Server with

the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Most browsers make HTTP requests on ports 80 and 443 by default. Typically, the default configuration

option is for servers to listen on all IP addresses on port 80. Multiple servers cannot listen on the same

port and IP numbers. Multiple servers may listen on the same IP address, but require a unique port, or

they may listen on the same port, but require a unique IP address. If you want each server to listen on

port 80, then you should configure each server to listen on a specific unique IP address.

If you add another Web server product such as Lotus® Domino® (with the HTTP task enabled) on the

same iSeries, it cannot listen on the same IP address and the same port as the HTTP Server.

You can change the IP address or port for your server by doing the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server name from the Server list.

 4. Expand Server Properties.

 5. Click General Server Configuration.

 6. Click the General Settings tab in the form.

 7. Do one of the following:

v Select an existing IP address and port from the Server IP address and port to listen on table to

modify or delete.

v Click Add under the Server IP address and ports to listen on table to add a new IP address and

port.
 8. Click Enabled or Disabled in the FRCA column. Only select Enabled if you are using or will be

using FRCA.

 9. Click Continue.

10. Click OK.

Manage backup files for HTTP Server

This topic provides information about which files to backup for HTTP Server recovery.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Make sure that the following objects are included in your periodic backup activity:

Instance files

v QUSRSYS/QATMHINSTA

v QUSRSYS/QATMHINSTC

Configuration files

HTTP Server 137

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

HTTP Server (powered by Apache)

Save the conf file located in the /www/[server_name]/conf/ directory, where Server_Name is the

name of your HTTP Server (powered by Apache) instance.

HTTP Server (original)

v QUSRSYS/QATMHTTP

v QUSRSYS/QATMHTTPA

v QUSRSYS/QATMHTTPC

 ASF Tomcat

The ASF Tomcat files are located in the /www/[server_name]/conf/ directory. For each Web application

there is a configuration file (web.xml) in the same directory that the Web application is located under the

/www/[server_name]/webapps/ directory.

Additional files to save

v Signed certificates and certificate requests

v Group files

v Access control lists

v Validation lists

v Web content

Example: HTML, graphics, media objects, Java, CGI programs, Net.Data scripts

For more information about backup and recovery of files on the iSeries server, see Systems management.

Manage a directory on HTTP Server (powered by Apache)

This topic provides information about how to manage a directory on your HTTP Server with the IBM

Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The following explains how to add a directory and how to remove a directory from your HTTP Server

(powered by Apache) configuration.

Add a directory

The HTTP Server (powered by Apache) uses directories to serve Web pages and content. The IBM Web

Administration for iSeries interface has an Add a Directory to the Web wizard that will create a new

directory to serve Web content and CGIs.

To add a new directory, do the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select Global configuration from the Server area list.

5. Expand HTTP Tasks and Wizards.

6. Click Add a Directory to the Web.

When the wizard is finished, it will display a summary of the directory you just created.

138 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Remove a directory

When removing a directory, the IBM Web Administration for iSeries interface will remove all references

to the directory from your configuration file only. The physical directory and content within the directory

are not removed from the file system.

To remove a directory and subdirectories, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Container Management.

 7. Click the Directories tab in the form.

 8. Select the directory you want to delete from the Directory/Directory Match container table.

 9. Click Remove.

10. Click OK when the message box appears.

11. Click OK.

Manage highly available HTTP Server (powered by Apache)

This topic provides information about how to manage your highly available HTTP Server using a 5250

session.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

v To stop or end the highly available HTTP Server (powered by Apache), do the following:

Enter ENDTCPSRV CL command or use the IBM Simple Cluster Management interface available through

iSeries Navigator.

v To force a switchover to cause the primary and backup HTTP Servers to switch roles (primary to

backup, backup to primary), see “Set up a highly available Web server using clustering CL commands

for HTTP Server” on page 132or using the IBM Simple Cluster Management interface available through

iSeries Navigator.

v To determine which highly available HTTP Server is the primary or backup use WRKACTJOB CL

command. The primary subsystem will have job QZHBEXPG running.

For more information on Clusters, see Clustering troubleshooting.

For instructions on how to set up a highly available Web server, see “Set up and administration of a

highly available Web server cluster on HTTP Server (powered by Apache)” on page 130.

Manage ports for the administration (ADMIN) server on HTTP Server

This topic provides information about how to manage ports for the administration (ADMIN) HTTP

Server with the IBM Web Administration for iSeries interface and using a 5250 session.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 139

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The IBM Web Administration for iSeries interface runs on the ADMIN server. By default, the ADMIN

server listens to port 2001. If this port is being used by another Web server or another application on

your iSeries, the IBM Web Administration for iSeries interface will not start. You can change the default

port number for the ADMIN server at any time to avoid conflicts with shared port numbers.

Two methods of editing your ADMIN server’s port number are given below.

Note: After changing the port number, you will use the new port number to start the IBM Web

Administration for iSeries interface.

Change ADMIN port with a 5250 session on iSeries:

1. Start a 5250 session and connect to your iSeries.

2. Enter WRKLNK (″/QIBM/UserData/HTTPA/admin/conf/admin-cust.conf″) on the command line.

3. Edit admin-cust.conf configuration file.

4. Add a line after # Customer additions to the admin configuration.

5. Enter Listen [port_number] (where [port_number] is the new port number you want the ADMIN

server to listen on).

Example: # Customer additions to the admin configuration Listen 2222

6. Save and exit the configuration file.

Stop and restart your server.

Change ADMIN port:

You will need authority to the file /QIBM/UserData/HTTPA/admin/conf/admin-cust.conf before you can

change the port number of the ADMIN server.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select ADMIN from the Server list.

 4. Select Include /QIBM/UserData/HTTPA/admin/conf/admin-cust.conf from the Server area list.

 5. Expand Server Properties.

 6. Click General Server Configuration.

 7. Click the General Settings tab in the form.

 8. Click Add under the Server IP addresses and ports to listen on table.

 9. Enter a port number other than 2001.

10. Click Continue.

11. Click OK.

Stop and restart your server.

Manage server performance for HTTP Server (powered by Apache)

This topic provides information about how to manage your HTTP Server performance.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

There are several things that can affect your server’s performance. Consider the following performance

related topics:

v “Local cache” on page 141

140 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v “Files to cache when server has started”

v “Threads” on page 142

v “DNS lookups” on page 142

v “Server-side includes” on page 142

v “Content negotiation” on page 142

v “Document tree” on page 142

v “.htaccess files” on page 142

v “Virtual host log files” on page 142

v “KeepAlive and KeepAliveTimeout” on page 143

v “Logging” on page 143

v “CGI programs” on page 143

v “TCP/IP settings” on page 143

v “Network” on page 143

Local cache: Enabling the HTTP Server’s local cache can result in better performance and system

throughput by caching (in memory) frequently accessed files. You can configure several settings

associated with the local cache.

To configure the local cache settings, do the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select the Global configuration from the Server area list.

5. Expand Server Properties.

6. Click System Resources.

7. Click the Caching tab in the form.

Enter or select options from this form. After you are finished, click OK.

Files to cache when server has started: Including file names in Files to cache when server is started

causes the files to be loaded into the server’s memory when the server is started.

v Copy into memory specifies the names of files that you want to load into the server’s memory each

time you start the server. By keeping your most frequently requested files loaded in the server’s

memory, you can improve your server’s response time for those files. For example, if you load your

server’s welcome page into memory at startup, the server can handle requests for the page much more

quickly than if it had to read the file from the file system.

v Keep file descriptor open specifies the names of ASCII stream files whose descriptors are cached at

the server startup. By keeping your most frequently requested files opened at server startup, you can

improve your server’s response time for those files. For example, if you open your server’s welcome

page files at startup, the server can handle requests for the page much more quickly than if it had to

open the files each time they are requested. The advantage of using this option over Copy into

memory is it does not cache the content of the file and therefore does not allocate large amount of

memory, yet provides similar performance. The disadvantage of using this option over Copy into

memory is it only caches the file descriptors of ASCII stream files and it keeps the file open (share

read) while the server is active.

v Memory map of file option is the same as Copy into memory except it uses memory address pointers,

instead of simply using a chunk of server memory, to specify the names of files that you want to map

into the server’s memory each time that you start the server.

What to cache allows you to specify what information is included in the cache.

HTTP Server 141

v Dynamically cache files based on file usage allows dynamic caching. The default value is off (or

disabled).

v Update cache when files are modified updates the cache whenever its original file content changes.

The default value is on (or enabled).

Enter or select options from this form. After you are finished, click OK.

Threads: Each time your server receives a client request, the server first checks to see if any threads are

available and then uses available threads to process the request. If no threads are available, it holds the

request until threads become available. When a request ends, the server threads become idle (at which

point they are available for the server to use again).

Note: The HTTP Server performance my increase by increasing the number of threads, but not the iSeries

system performance.

Setting the maximum number of active threads too high can cause a decrease in system performance. You

can experiment with lowering the maximum number of active threads until you see no affect on system

performance. A good starting point would be half of the previous setting. For example, if you had the

maximum number of active threads set to 100, try setting it to 50. Lowering the maximum number of

active threads directive might result in an increased number of rejected connections when the server

reaches its capacity.

To change the number of threads to process requests, do the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select the Global configuration from the Server area list.

5. Expand Server Properties.

6. Click System Resources.

7. Click the Advanced tab in the form.

Enter or select options from this form. After you are finished, click OK.

DNS lookups: Every time the server needs to request a DNS lookup, there may be a delay while the

DNS server is contacted. Limit the use of DNS lookups. Consider logging IP addresses and using a log

analysis tool that does DNS lookups.

Server-side includes: Server performance can be impacted when server-side includes are processed.

Limit the use of server-side includes except where needed.

Content negotiation: Restrict content negotiation to those contexts where it is needed.

Document tree: Try to organize your document tree into a flat broad tree structure rather than a narrow

deep tree structure. The fewer directory levels the better.

For better performance, store static and Net.Data files in the root (or /) file system. Avoid placing static

and Net.Data files in the QSYS and QDLS file systems.

.htaccess files: Server performance is impacted if the server must look for and open .htaccess files. If the

AllowOverride directive is set to None, the server does not look for .htaccess files. If AllowOverride is set

to All, there is a significant performance impact as the server looks for .htaccess files in every directory.

Virtual host log files: If you create separate log files for each virtual host, you should consider that a

file descriptor is opened for each log file. Opening too many file descriptors can impact system

performance.

142 iSeries: IBM HTTP Server

rzaiemod_core.htm#allowoverride

KeepAlive and KeepAliveTimeout: The connection time-out determines the number of seconds the

server waits for a subsequent request before closing a persistent connection. Enabling persistent

connections increases the throughput of your server. Consider decreasing the connection time-out if you

have simple pages without images.

To set this value, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click System Resources.

 7. Click the HTTP Connections tab in the form.

 8. Enter a value for Connection time-out, or make a selection from the list.

 9. Enter a value for Maximum pending connections, or make a selection from the list.

10. Select Enabled for Allow persistent connections.

11. Enter a value for Time to wait between requests, or make a selection from the list.

12. Enter a value for Maximum requests per connection, or make a selection from the list.

13. Click OK.

Logging: Logging server activity does impact server performance. Try to do as little error and access

logging as required.

CGI programs: CGI programs should be run in a named activation group to get the best performance.

Also determine what CGI jobs your server generally uses. Use the StartCGI and StartThreadedCGI

directives to start those jobs when the server starts. Use the QTMHHTP1 user profile to run CGI requests.

If you must use a different user profile, use a ″dummy″ user profile (a user profile that is not allowed to

sign-on) instead of %%CLIENT%%.

TCP/IP settings: See Adjusting your TCP/IP configuration for more information on TCP/IP settings.

Network: Consider that the performance of the network that your data flows across can also affect the

perception of your server’s performance.

Compression tasks

This topic provides step-by-step tasks for configuration and management of compression files.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “File compression for HTTP Server (powered by Apache)” on page 26
This topic provides information on file compression and how output from your server is compressed

before being sent to the client over the network.

Set up input decompression for HTTP Server (powered by Apache)

This topic provides information about how to set up input decompression for GZIP compressed input

bodies for HTTP Server with the IBM Web Administration for iSeries interface.

HTTP Server 143

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

In order to set up input decompression, a filter must be inserted in the input filter chain. This is done

using the SetInputFilter directive. WebDAV makes frequent use of compression, and as such, input

decompression is used primarily with WebDAV. The range of usefulness of input decompression is also

determined by Web browser support. Most Web browser do not support compressed data or have limited

support. Compressed information is only accessible with Web browsers with HTTP/1.1 support. See “File

compression for HTTP Server (powered by Apache)” on page 26 for more information.

To set up input compression, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Container Management.

 7. Click Compression.

 8. Click the Input Filter tab.

 9. Click Add under the Set input filter table.

10. Specify a filter name under the Filter name column.

11. Click Apply.

You should now have something like the below example in your configuration.

Example

SetInputFilter DEFLATE

 See “Set up output compression for HTTP Server (powered by Apache)” for more information.

Set up output compression for HTTP Server (powered by Apache)

This topic provides information about how to set up output compression for HTTP Server (powered by

Apache) with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

In order to set up output compression, a filter must be inserted in the output filter chain. This is done

using the SetOutputFilter directive. See “File compression for HTTP Server (powered by Apache)” on

page 26 for more information.

To set up output compression, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

144 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

6. Click Compression.

 7. Click the Output Filters tab.

 8. Add an output filter:

There are two types of output filters. The first output filter type only requires a file extension and a

filter name. The second output filter type requires a MIME type and filter name. For both output

filter types, click Add under the appropriate table and specify the file extension, MIME type, and

filter name.

 9. Click Continue.

10. Click Add under the Set output filter table.

11. Specify the same filter name used when the output filter was added.

12. Click Apply.

You should now have something like the below example in your configuration.

Example

AddOutputFilterByType DEFLATE text/html

AddOutputFilter DEFLATE .html

SetOutputFilter DEFLATE

 See “Set up input decompression for HTTP Server (powered by Apache)” on page 143 for more

information.

Fast Response Cache Accelerator tasks

This topic provides step-by-step tasks for the Fast Response Cache Accelerator.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related concepts

 “Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by Apache)” on page 27
This topic provides information on the Fast Response Cache Accelerator.

Set up Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by

Apache)

This topic provides information about how to set up FRCA for your HTTP Server with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The following explains how to enable FRCA, FRCA logging, and FRCA file caching. See Fast Response

Cache Accelerator (FRCA) for HTTP Server (powered by Apache) for more information.

FRCA is a Web cache architecture that is tightly integrated with the TCP/IP stack. FRCA moves

performance critical TCP Application functions into a fast response cache that improves HTTP Server

performance.

v “Enable FRCA” on page 146

v “Enable FRCA logging” on page 146

v “Enable FRCA file caching” on page 146

HTTP Server 145

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v “Enable FRCA reverse proxy caching” on page 147

Enable FRCA:

Note: The following information may be used to enable FRCA for the first time or enable FRCA for a

different Server area.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click FRCA.

 7. Click the General Settings tab in the form.

 8. Click Add under the Server IP addresses and ports to listen on table.

 9. Enter an IP address and port number or select an existing IP address and port. FRCA will listen on

the IP address and port you specify.

10. Select Enabled from the list under the FRCA column.

11. Click Continue.

12. Click Apply.

13. Stop and restart your server.

FRCA is now enabled. After enabling FRCA, you can set up logs and file caching.

Enable FRCA logging: FRCA logging information allows you to track and generate reports on your

HTTP Server’s activity. You may specify various log attributes, such as the format for the information in

the log file, rules for excluding entries from the log file, and client side information logging. Each server

configuration file contains information about the type of log files the server will create. You must enable

FRCA before FRCA logging can be set up. See Set up logs on HTTP Server (powered by Apache) for

more information.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click FRCA.

 7. Click the FRCA Logs tab in the form.

 8. Click Add under the FRCA logs table.

 9. Enter the name of the log file you want to use.

10. Enter the log attributes under the Attribute column.

11. Click Continue.

12. Click OK.

13. Stop and restart your server.

Enable FRCA file caching: FRCA provides file caching support. You may specify the maximum cache

size, the maximum file size to cache, the files to cache during server startup, and the directories to

dynamically cache files from. You must enable FRCA before FRCA file caching can be set up.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

146 iSeries: IBM HTTP Server

4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click FRCA.

 7. Click the FRCA File Cache tab in the form.

 8. Select Enabled from the FRCA file cache capabilities list.

 9. Enter a new value for Maximum cache size or keep the default value.

10. Enter a new value for Maximum file size to cache or keep the default value.

11. Click Add under the Files to cache during server startup table to add file types or specific files to

cache at HTTP Server startup.

12. Click Continue when finished adding files to table.

13. Click Add under the Files to cache during server runtime table to add file types or specific files to

cache during HTTP Server runtime.

14. Click Continue when finished adding files to table.

15. Click OK.

16. Stop and restart your server.

Enable FRCA reverse proxy caching: FRCA provides reverse proxy caching support. You may specify

the maximum proxy cache size and the maximum proxy response size to cache. In addition, you may

provide options for controlling which documents are cached based on expiration criteria, specify remote

servers for proxy requests, and establish document retention policies. You must enable FRCA before

FRCA Reverse Proxy caching can be set up.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click FRCA.

 7. Click the FRCA Reverse Proxy Cache tab in the form.

 8. Select Enabled from the FRCA reverse proxy cache capabilities list.

 9. Enter a new value for Maximum proxy cache size or keep the default value.

10. Enter a new value for Maximum proxy response size to cache or keep the default value.

11. Enter a new value for Document retention period or keep the default value.

12. Click Add under the Proxy requests to remote servers table.

13. Enter a virtual path under the Local virtual path column.

14. Enter a remote server URL under the Remote server URL column.

15. Click Continue.

16. Click Add under the Document refresh policies table.

17. Enter a full or partial URL under the Match URL column.

18. Enter a value under the Period column.

19. Click Continue.

20. Click OK.

21. Stop and restart your server.

Log and log file tasks

This topic provides step-by-step tasks for log and log file tasks.

HTTP Server 147

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “Log formats for HTTP Server (powered by Apache)” on page 29
This topic provides information about log formats and log files.

Set up logs on HTTP Server (powered by Apache)

This topic provides information about how to set up logs to record events and other information for your

HTTP Server with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Your HTTP Server (powered by Apache) can generate a record of events commonly referred to as a Log.

Logs can contain error messages, information on what is being access on your HTTP Server (powered by

Apache), who is accessing your HTTP Server (powered by Apache), script logs, and FRCA logs.

The following topic discuss general log settings required for all logs, Access logs, Error logs, Script logs,

FRCA logs, where to find the HTTP Server job log, and how to run a trace.

General log settings: Before creating a specific log type, the general settings for all logs must be applied

to your HTTP Server (powered by Apache) configuration. To configure the general settings for all logs, do

the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select the context you want to work with from the Server area list.

5. Expand Server Properties.

6. Click Logging.

7. Click the General Settings tab in the form.

The General Settings allow you to specify log entry time (local or Greenwich Mean Time), the log

cycle, and maximum log file size.

8. Click Apply.

After you complete the general settings for all logs, you can specify what type of logs you want to create.

Access Logs: Access logs contain a record of requests to the HTTP Server (powered by Apache). The

access log itself can be configured to record specific information that you will want to review later. To

configure an access log, do the following:

1. See General log settings.

2. Click the Manage tab.

3. Click the HTTP Servers subtab.

4. Select your HTTP Server (powered by Apache) from the Server list.

5. Select the context you want to work with from the Server area list.

6. Expand Server Properties.

7. Click Logging.

148 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

8. Click the Custom Log tab in the form.

You can specify various types of information that can be logged in the Access log by specifying a

customized log format. For more information how to specify a customized log format see Log Format.

9. Click Apply.

Error Logs: Error Logs contain records of errors that are encountered by visitors to the server. You can

specify what types of errors that are logged. To configure error logs, do the following:

 1. See General log settings.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the context you want to work with from the Server area list.

 6. Expand Server Properties.

 7. Click Logging.

 8. Click the Error Logs tab in the form.

You must first enable error logging to edit what errors will be logged. Once enabled, do the

following:

 9. Enter the path and name of the error log.

10. Enter an expiration date.

11. The value defines how long the error log will be maintained before information is rolled over.

12. Enter a maximum cumulative size.

The value defines how large your error log can be before old log entries are deleted.

13. Select logging level.

From the Logging level list, select the level of information you want entered in the error log.

14. Click Apply.

Script Logs: Script Logs contain errors generated by CGI programs running on the server. Generally you

should only enable these logs when you are debugging programs on the server. To configure script logs,

do the following:

Note: Set up a script log only if you are running CGI programs.

 1. See General log settings.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the context you want to work with from the Server area list.

 6. Expand Server Properties.

 7. Click Logging.

 8. Click the Script Logs tab in the form.

You must first enable script logging to edit what script errors will be logged. Once enabled, do the

following:

 9. Enter the path and name of the script error log.

10. Enter a maximum log file size.

The value defines the size of the script error log.

11. Enter a maximum log entry size.

The value defines the size of the script error log entry.

12. Click Apply.

HTTP Server 149

FRCA Logs: Fast Response Cache Accelerator (FRCA) is an extension to the HTTP Server (powered by

Apache) that enables caching and serving of data in Licensed Internal Code.

 1. See General log settings.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the context you want to work with from the Server area list.

 6. Expand Server Properties.

 7. Click Logging.

 8. Click the FRCA Logs tab in the form.

FRCA must be enabled before information is written to the FRCA log. Once enabled, do the

following:

 9. Click Add under the FRCA logs table.

10. Enter the path and name of the FRCA log.

11. Enter the log format.

Note: For more information how to specify a customized log format see “Log formats for HTTP

Server (powered by Apache)” on page 29.

12. Enter the environment variable conditions.

13. Enter an expiration date.

The value defines how long the FRCA log will be maintained before information is rolled over.

14. Enter the maximum cumulative size of the FRCA log file.

The value defines how large your FRCA log can be before old log entries are deleted.

15. Click Continue.

16. Click Apply.

For information on ASF Tomcat logs, see “About Tomcat” on page 43.

HTTP server job logs: The HTTP Server job logs contain messages or exceptoins. The HTTP Server

(powered by Apache) job log is maintained in the QHTTPSVR subsystem, listed with a job name

matching the name of your HTTP Server instance.

Run a trace: The HTTP Server (powered by Apache) trace allows you to view various levels of trace

information related to a specific server. You will need to have a 5250 session on the iSeries your HTTP

Server is currently running on.

1. Start a 5250 session.

2. Start the server with a parameter of the STRTCPSVR command. Use the following:

v -ve (error) for a trace that contains records for all error return codes or exception conditions.

v -vi (information) for a trace that contains -ve level trace records as well as trace records for entry

and exit points from application level API’s and API parameters.

v -vv (verbose) for a trace that contains -vi level trace records as well as trace records for debugging

control flow or data corruption.

For example STRTCPSVR *HTTP HTTPSVR(JKLSERVER ’-vv’).

3. There are three ways to get output from the trace:

v ENDTCPSVR - When the server is ended the trace data is placed into a spool file. There is a spool file

for each job that is running on the server. If a server ends abnormally, trace data is placed into

spool files even if tracing is not active at the time of the error.

v DMPUSRTRC - This command dumps the trace data for a specific job to the display or to a physical

file member in the QTEMP library. For example:

150 iSeries: IBM HTTP Server

a. Use the WRKACTJOB command to find the server job number. For example WRKACTJOB

SBS(QHTTPSVR).

b. Dump the user trace to a file in QTEMP. For example DMPUSRTRC JOB(nnnnnn/QTMHHTTP/
MYSERVER), where nnnnnn is the job number and MYSERVER is the server.

c. Use the DSPPFM command to view the contents of the trace. For example DSPPFM QTEMP/QAP0ZDMP

MBR(QP0Znnnnnn).
v TRCTCPAPP - You can use the TRCTCPAPP command to initiate a trace after the server is started and to

end a trace. To use the TRCTCPAPP command, the server must have been started with the

STRTCPSVR command.

Note: If you started the trace with the STRTCPSVR and one of the trace startup parameters (-ve, -vi,

or -vv), then you must do the following to end the trace:

a. Enter the TRCTCPAPP SET (*ON) command to synchronize it with the STRTCPSVR command. For

example: TRCTCPAPP APP(HTTP) SET(*ON) HTTPSVR(JKLSERVER) TRCLVL(*VERBOSE).

b. Enter the TRCTCPAPP SET (*OFF) command. For example: TRCTCPAPP APP(*HTTP) SET (*OFF)

TITLE(’My title’).

Proxy tasks

This topic provides step-by-step tasks for proxy.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “Proxy server types and uses for HTTP Server (powered by Apache)” on page 31
This topic provides information about proxy server types and uses.

Set up forward proxy for HTTP Server (powered by Apache)

This topic provides information about how to set up forward proxy for your HTTP Server with the IBM

Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Configure your HTTP Server (powered by Apache) for forward proxy using the IBM Web Administration

for iSeries interface. Only the steps necessary to configure a forward proxy are discussed.

To configure your HTTP Server (powered by Apache) for forward proxy, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

Note: To configure a forward proxy for a virtual host, select the virtual host from the Server area

list. See JKL Toy Company creates virtual hosts on HTTP Server (powered by Apache) for

more information.

 5. Expand Server Properties.

 6. Click Proxy.

HTTP Server 151

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

7. Click the Forward Proxy tab in the form.

 8. Select Enabled from the Forward proxy capabilities list.

 9. Enter the domain default in the Default domain for unqualified requests field. The default domain

is used if a request does not contain a domain name. For example, http:\\www, does not contain a

domain name.

Note: The remaining fields are not required to set up forward proxy for your HTTP Server (powered

by Apache). Edit the default values now or return to this form at a later time.

10. Click OK.

Set up reverse proxy for HTTP Server (powered by Apache)

This topic provides information about how to set up a reverse proxy for your HTTP Server with the IBM

Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Configure your HTTP Server (powered by Apache) for reverse proxy using the IBM Web Administration

for iSeries interface. Only the tabs necessary to configure reverse proxy are discussed.

To configure your HTTP Server (powered by Apache) for reverse proxy, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

Note: If you want to configure a reverse proxy for a virtual host, click the virtual host from the

Server area menu. See JKL Toy Company creates virtual hosts on HTTP Server (powered by

Apache) for more information.

 5. Expand Server Properties.

 6. Click Proxy.

 7. Click the Reverse Proxy tab in form.

 8. Select Enabled from the Reverse proxy capabilities list.

 9. Click Add under the Proxy request to remote servers table.

Note: This table defines what requests will be mapped into the space of the server. The local server

does not act as a proxy in the conventional sense, but appears as a mirror of the remote

server.

10. Select Client requests from the Request Type list.

When this option is used, non-proxy requests matching the URL specified in the Local virtual path

column are transformed into proxy requests for the URL specified in the Remote server URL

column. The proxy then handles the transformed request and returns any document (or error

messages) the remote server provides. Clients remain unaware of any transformation.

11. Enter the local virtual path in the Local virtual path column.

If a non-proxy requests matches the path specified in this column, the non-proxy request will be

transformed into a proxy request for the URL specified in the Remote server URL column.

12. Select Specify URL from the list in the Remote server URL column.

13. Enter the remote server URL in the Remote server URL column.

14. Click Add under the Proxy requests to remote servers table.

152 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

15. Select Redirect requests from the Request Type list.

When this option is used for redirected requests, headers in response documents are adjusted in the

event that a ″Redirect″ is issued by the remote server. This allows clients to remain unaware of any

transformation of the requests even if remote servers redirect the proxy.

16. Enter the path in the Local virtual path column.

If your server is given a non-proxy request and the request matches the URL specified in the Local

virtual path column, the URL request will be transformed into a proxy request for the URL specified

in the Remote server URL column.

17. Enter the remote server URL in the Remoter server URL column.

If a non-proxy request matches a URL in the Local virtual path column, the request will be

transformed in the URL specified in the Remote server URL column. The client will be directed to

the remote server URL without being aware of the redirect.

18. Click Continue.

19. Click OK.

All other options for reverse proxy are optional and allow you to modify specific reverse proxy

capabilities.

After configuring your HTTP Server (powered by Apache) for reverse proxy, you can configure your

server for a proxy chain.

Set up proxy chaining for HTTP Server (powered by Apache)

This topic provides information about how to set up a proxy chain with your HTTP Server and other

proxy servers with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Configure your HTTP Server (powered by Apache) for proxy chaining using the IBM Web Administration

for iSeries interface. Only the steps necessary to configure a proxy chain are discussed. Before you can

configure your HTTP Server (powered by Apache) for a proxy chain, you must configure your HTTP

Server (powered by Apache) for forward proxy or reverse proxy.

To configure your HTTP Server (powered by Apache) for a proxy chain, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

Note: If you want to configure a proxy chain for a virtual host, select the virtual host from the

Server area list. See “JKL Toy Company creates virtual hosts on HTTP Server (powered by

Apache)” on page 81 for more information.

 5. Expand Server Properties.

 6. Click Proxy.

 7. Click the Proxy Chaining tab in the form.

 8. Click Add under the Remote proxies table.

 9. Enter the URL of the remote proxy in the Remote proxy URL column.

Note: If you are not using the default port 80, include the port number with the remote proxy URL.

HTTP Server 153

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Example: http://www.myserver.com:1975

10. Enter the full or partial URL in the Match requests to forward column.

11. Click Continue.

12. Click OK.

Search tasks

This topic provides step-by-step tasks for the Webserver search engine.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “Webserver search engine on HTTP Server” on page 34
This topic provides information about the Webserver search engine and national language

considerations.

Manage document lists for the Webserver search engine on HTTP Server

This topic provides information about how to manage document lists for the Webserver search engine

with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Register a document list: Register a document list if it was created manually or does not appear listed

in the IBM Web Administration for iSeries interface.

Note: See “Set up a document list for the Webserver search engine on HTTP Server” on page 161 for

more information on creating document lists.

To register a document list, do the following:

Note: Document lists created using Search Administration forms or the CFGHTTPSCH command starting

in Version 4 Release 5 do not need to be registered.

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Register document list.

5. Enter the directory and file name of the document list file. For example, /QIBM/UserData/
HTTPSVR/index/mydoclist.DOCUMENT_LIST.

Choose one of the two following options:

Document list built from document on this server

Select this option if you created the document list from a local directory.

Document list built from documents found by crawling web sites

Select this option if you created the document list from a remote server.
6. Click Apply.

Delete a document list: To delete the document list, do the following:

154 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Delete document list.

5. Select the document list to be deleted from the list.

6. Click Delete.

Note: If the document list was not registered, it will not be listed.

Work with document list status: The Webserver search engine can show the status of a document list.

To view the status of a document list, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Work with document list status.

5. Select the document list you want to work with from the Document list file name list

6. Click Apply.

The status page displays all the current information available for the document list. Use this page to view

information about your document list and to keep track of its status. Different information will be

displayed for document lists created from local documents and those created from remote sites. If your

document list contains documents from remote web sites, you can also control the current crawling

session by using the buttons displayed at the end of the form. An active crawling session can be stopped

or paused and a paused crawling session can be stopped or resumed. Once a crawling session is stopped,

it can be started again from the Build document list form.

Set up a thesaurus dictionary for the Webserver search engine on HTTP Server

This topic provides information about how to set up a thesaurus dictionary file for use with the

Webserver search engine with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The thesaurus support allows you to automatically expand a search query by using a thesaurus. To make

sure information is always found in your indexed documents, you can create your own thesaurus in

which you can list common terms and associate them with the terms that exist in your documents. For

example, if a person typically searches for PC but your documents only refer to a personal computer, just

add PC to your thesaurus as a synonym of personal computer. You must first create a thesaurus definition

file that contains terms that are related. Then you build the thesaurus dictionary to be used by the

Webserver search engine. See “Build the thesaurus dictionary” on page 157 for more information.

Note: The thesaurus definition file can be created in IFS or QSYS.LIB.

Create a thesaurus definition file: To create a thesaurus definition file, do the following:

1. Open a text editor on the iSeries, such as edtf.

Note: Use edtf or some other iSeries editor rather than a PC editor. It is important that the file is

tagged with the correct CCSID since the words will be matched with words in the documents

themselves.

2. Create the content of the thesaurus definition file using the following file format:

HTTP Server 155

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

a. Open a text editor on the iSeries, such as edtf.

Note: Use edtf or some other iSeries editor rather than a PC editor. It is important that the file is

tagged with the correct CCSID since the words will be matched with words in the

documents themselves.

b. Create the content of the thesaurus definition file using the following file format:

A thesaurus definition file consists of blocks containing elements. Each element of the block is

defined by a capitalized keyword. The block also contains terms that are single or multiple words.

For example ″cake″ and ″chocolate cake″ are terms.

Each block starts with :WORDS followed on the same line by one of the following:

RELATED

 Where :RELATED indicates related terms that are not synonyms.

:SYNONYM

 Where :SYNONYM indicates terms that are synonyms.

Member terms are listed in the block starting on the second line of the block, one term per line.

For example:

:WORDS:SYNONYM

PC

personal computer

The following relationships can also be specified within the block:

.LOWER_THAN

Where the block member terms are more specific in meaning than the term following

.LOWER_THAN.

.HIGHER_THAN

Where the block member terms are less specific in meaning than the term following

.HIGHER_THAN.

.RELATED_TO

Block member terms are related to this term.

.SYNONYM_OF

Block member terms are synonyms of this term.
A related term is specified on the same line as the relationship. A term is a single or multiple

words. The relationships can be specified in any order within the block. For example the two

following blocks are interpreted exactly the same:

:WORDS

 rain

 snow

 hail

.LOWER_THAN precipitation

.RELATED_TO weather

:WORDS

.LOWER_THAN precipitation

.RELATED_TO weather

 rain

 snow

 hail

When creating a thesaurus definition file, keep the following in mind:

v Preceding and trailing blanks are removed.

v Preceding and trailing control characters are removed.

v Terms beginning with a period (.) or a colon (:) are not allowed.

v Capital letters and small letters of the same character are treated as the same character.

v Leave the keywords that are UPPERCASED as-is.

v Terms in the file may be in any language.

156 iSeries: IBM HTTP Server

v The maximum length of a term is 64 characters or 64 bytes.

Note: A sample thesaurus definition file is stored in /QIBM/ProdData/HTTP/Public/HTTPSVR/
sample_thesaurus.txt.

c. Once you have created the thesaurus definition file, save it as a text file (txt).

Note: Terms can be added in any supported language; however, the keywords (:RELATED,

:SYNONYM, .LOWER_THAN, .HIGHER_THAN, .RELATED_TO, .SYNONYM_OF, and

:WORDS) can not be changed in order for the definition file to work.

After you have created a thesaurus dictionary, you can manage a thesaurus dictionary . See “Manage a

thesaurus dictionary for the Webserver search engine on HTTP Server” for more information. To use the

dictionary on a search, select your index and the search option. After you have selected to do a simple or

advanced search, you will reach a form that allows you to add a thesaurus dictionary to your search.

Build the thesaurus dictionary: To build the thesaurus dictionary, allowing it to be used by the

Webserver search engine, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Build thesaurus dictionary.

5. Enter the directory and name of the thesaurus definition file that contains relationship data for

generating a thesaurus dictionary in the Thesaurus definition file field. A definition file is a simple

text file with formatting tags to indicate word relationships.

6. Enter a name for the thesaurus dictionary in the Thesaurus dictionary name field. For example,

mydict.

7. Enter the directory that is used to hold the thesaurus dictionary files that are created in the Thesaurus

dictionary directory field. Possible values include /QIBM/UserData/HTTPSVR/search (the default

setting), or any valid directory path.

8. Click Apply.

Manage a thesaurus dictionary for the Webserver search engine on HTTP Server

This topic provides information about how to manage your thesaurus dictionary with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

This topic explains how to manage thesauruses for the Webserver search engine on the HTTP Server.

Test thesaurus dictionaries: Test your thesaurus for accuracy and completeness. To test your thesaurus,

do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Test thesaurus dictionary.

5. Enter the thesaurus dictionary name to be tested.

6. Enter the directory where the thesaurus dictionary is located.

7. Enter a term or multiple terms to test.

HTTP Server 157

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

There are a number of options you can test on your thesaurus dictionary.

Find terms with all relationships

Check this box to find all the terms in the dictionary that have a broader or narrower

meaning than the entered term, are synonyms of the term, or are related to the term.

Find terms with a broader meaning

Check this box to find all terms that have a broader meaning than the entered term. For

example, dessert has a broader meaning than cake.

Find terms with a narrower meaning

Check this box to find all terms that have a narrower meaning than the entered term. For

example, apple has a narrower meaning than fruit.

Find terms that are synonyms

Check this box to find all terms that are synonyms. For example, Ping-Pong is a synonym for

table tennis.

Find terms that are related

Check this box to find all terms that are related to the entered term. For example, apple and

pear are related terms
8. Enter the number of related terms that will be displayed for each term entered. Possible values are 1 -

10.

9. Click Expand terms.

Retrieve thesaurus definitions: You can retrieve a thesaurus definition from a thesaurus dictionary.

Specify the file to use for the thesaurus definition. The thesaurus data will be retrieved from the specified

thesaurus dictionary. To retrieve a thesaurus definition, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Retrieve thesaurus definition.

5. Enter the directory and name of the thesaurus definition file that contains relationship data for

generating a thesaurus dictionary in the Thesaurus definition file field. A definition file is a simple

text file with formatting tags to indicate word relationships.

6. Enter a name for the thesaurus dictionary in the Thesaurus dictionary name field. For example,

mydict.

7. Enter the directory that is used to hold the thesaurus dictionary files that are created in the Thesaurus

dictionary directory field. Possible values include /QIBM/UserData/HTTPSVR/search (the default

setting), or any valid directory path.

8. Click Apply.

Delete thesaurus dictionaries: You can delete your thesaurus dictionaries. Files that were created for

this dictionary will be deleted. The directory will not be deleted. To delete a thesaurus dictionary, do the

following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Delete thesaurus dictionary.

5. Enter a name for the thesaurus dictionary in the Thesaurus dictionary name field. For example,

mydict.

6. Enter the directory that is used to hold the thesaurus dictionary files that are created in the Thesaurus

dictionary directory field. Possible values include /QIBM/UserData/HTTPSVR/search (the default

setting), or any valid directory path.

158 iSeries: IBM HTTP Server

7. Click Delete.

Manage search indexes for the Webserver search engine on HTTP Server

This topic provides information about how to manage your search indexes with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

This topic explains how to manage search indexes for the Webserver search engine on HTTP Server. “Set

up the Webserver search engine on HTTP Server (powered by Apache)” on page 169 to learn how to

create a search index.

The following topics explain how to manage your search index.

v “Update search index”

v “Merge search index” on page 160

v “Delete search index” on page 161

v “View the status of search index” on page 161

Update search index: After creating a search index, you will want to update it when ever you change

the documents being searched. For example, if you add additional content to some of your files, that

content will not be found in using the Webserver search engine until you update your search index. You

can add new or changed documents or delete documents from the index. If documents are added, they

will be indexed and added to the supplemental index. Use the fields to specify information about the

documents to add to the index. Once you have finished adding the documents, you may want to merge

the supplemental and main indexes.

To update your search index, do the following:

 1. Click the Advanced tab.

 2. Click the Search Setup subtab.

 3. Expand Search Engine Setup.

 4. Select your search index from the Index list.

 5. Click Update search index.

 6. Choose one of the following:

Build a document list from this directory

Select this option to create a document list containing the set of documents to add, update,

or delete from your search index.
There are two additional options that you may select.

Traverse subdirectories in this directory

Select to include any documents in subdirectories of the directory you provided in the field

above.

Document filter

Select this option if you want the document list to be made of specific file types. For

example, entering *.htm* will only build a document list of file types htm and html.

Use the document list in this file

Select this option if you want to use an existing document list to add, update, or delete

document from your search index.
 7. Choose an updating processing option:

HTTP Server 159

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Add new or changed documents to the index

Select this option to use the document list to add or update document in your search index.

Delete documents from the index

Select this option to use the document list to delete documents from your search index.
 8. Choose a document content option:

Documents are HTML documents

Select this option if the documents to be searched are HTML.

Documents are TEXT documents

Select this option if the documents to be searched are text documents (do not contain HTML

tags).
 9. Choose a processing option:

Update index immediately

Select this option if you want the search index to be updated as soon as you complete the

form.

Update index in a background task

Select this option if you want the search index to be updated in a background task. This is

the suggested method if there is a large number of documents to be indexed.
10. Choose a document error processing option:

Skip documents in error

Select this option if you want the search index to continue updating if document errors are

found. The documents found with an error will not be included in the search index.

Stop processing when error occurs

Select this option if you want the search index to stop updating if document errors are

found. All documents before the error will be indexed.
11. Click Apply.

To update the search index using the CFGHTTPSCH *ADDDOC and CFGHTTPSCH *MGRIDX CL commands, do the

following:

CFGHTTPSCH OPTION(*ADDDOC) IDX(myindex) IDXDIR(’/mydir’) +

DOCLIST(’/mydir/myindex.DOCUMENT_LIST’)

CFGHTTPSCH OPTION(*MRGIDX) IDX(myindex) IDXDIR(’/mydir’)

You can also update your index through scheduled batch jobs. For example, to update an index on Friday

of every week at 11:30 p.m., do the following:

ADDJOBSCDE JOB(UPDATE) CMD(CFGHTTPSCH OPTION(*ADDDOC) IDX(’myindex’)

 DOCLIST(’/QIBM/UserData/HTTPSVR/index/myindex.DOCUMENT.LIST’))

 JOB(UPDATE)

 FRQ(*WEEKLY)

 SCDDATE(*NONE)

 SCDDAY(*FRI)

 SCDTIME(’23:30:00’)

To update an index at 11:30 p.m. on the last day of every month, do the following:.

ADDJOBSCDE JOB(UPDATE) CMD(CFGHTTPSCH OPTION(*ADDDOC) IDX(’myindex’)

 DOCLIST(’/QIBM/UserData/HTTPSVR/index/myindex.DOCUMENT.LIST’))

 JOB(UPDATE)

 SCDDATE(*MONTHEND)

 SCDTIME(’23:30:00’)

 FRQ(*MONTHLY)

Merge search index: The supplemental index contains indexed documents that were added with the

update search index form and are not yet merged into the main index. This merged index will include

both the supplemental index and the main index.

160 iSeries: IBM HTTP Server

To merge your search indexes, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Select your supplemental search index from the Index list.

5. Click Merge search index.

6. Choose one of the two processing options:

Merge index immediately

Select this option if you want the search indexes to merge as soon as you complete the form.

Merge index in a background task

Select this option if you wan the search indexes to merge in a background task. This is the

suggested method if the search indexes are large.
7. Click Apply.

Delete search index: You can delete both the main and supplemental indexes or just the supplemental

index. The supplemental index contains indexed documents that were added with the update search

index form and are not yet merged into the main index.

To delete your search indexes, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Select your search index from the Index list.

5. Click Delete search index.

6. Choose one of the two processing options:

Delete both main and supplemental indexes

Select this option if you want to delete both the supplemental and main search indexes from

your iSeries.

Delete only the supplemental index

Select this option if you want to delete the supplemental search index from your iSeries. Your

main search index will not be deleted.
7. Click Delete.

View the status of search index: The Webserver search engine can show the status of a search index

allowing you to keep track of its progress when updating or merging.

To view the status of a search index, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Select your search index from the Index list.

5. Click View status of search index.

The status page displays all the current information available for the search index. Use this page to see

any file errors that occurred during indexing.

Set up a document list for the Webserver search engine on HTTP Server

This topic provides information about how to create a document list for the Webserver search engine

with the IBM Web Administration for iSeries interface.

HTTP Server 161

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A document list is a file that contains a list of documents used to create or update a search index. When a

request for a search title or description is sent, it is compared to the document list for possible matches.

To set up a document for use with the Webserver search engine, complete the following steps:

Create a document list: To create a document list, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Build document list.

5. Choose one of the two options:

“Build a document list from documents on this server”

Select this option if the documents to be included in the document list are in a local directory.

“Build the document list by crawling a URL” on page 163

Select this option if the documents to be included in the document list reside in a remote

server.
There are two additional options if you choose to build the document list using the Web crawler.

These are:

Build the document list by crawling a URL

Select this option to crawl a single URL.

“Build the document list from selected URL and options objects” on page 164

Select this option only if you have previously created a “Set up a URL object for the

Webserver search engine on HTTP Server” on page 167 and an “Set up an options object for

the Webserver search engine on HTTP Server” on page 165.
6. Click Apply.

Build a document list from documents on this server: If you opted to build a document list from a

local directory, follow these instructions to complete your document list:

1. Choose one of the two document list file name options:

Create a new document list file

Select this option to create a new document list file. Replace the asterisk (*) with a new name

for your document list file.

Use the document list in this file

Select this option to use an existing document list file. Select the document list file from the

list.
There are two additional options if you choose to use an existing document list file. These are:

Replace the document list file

Select this option to overwrite the existing document list file.

Append the new list to the document list file

Select this option to add any new information to the existing document list file. This option

will not delete existing information.
2. Enter the directory the document list will build from in the Build a document list from this directory

field. For example, /www/mydocs/public/info.

There are two additional options that you may select. These are:

162 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Traverse subdirectories in this directory

Select to include any documents in subdirectories of the directory you provided in the field

above.

Document filter

Select this option if you want the document list to be made of specific file types. For example,

entering *.htm* will only build a document list of file types htm and html.
3. Click Apply.

Build the document list by crawling a URL: If you opted to build a document list with the Web

crawler that will crawl a URL, follow these instructions to complete your document list:

1. Choose one of the two document list file name options:

Create a new document list file

Select this option to create a new document list file. Replace the asterisk (*) with a new name

for your document list file.

Use the document list in this file

Select this option to use an existing document list file. Select the document list file from the

list.
There are two additional options if you choose use an existing document list file. These are:

Replace the document list file

Select this option to overwrite the existing document list file.

Append the new list to the document list file

Select this option to add any new information to the existing document list file. This option

will not delete existing information.
2. Enter the Web crawler options:

URL Enter the URL the Web crawler will visit to add documents to your document list. For

example, http://www.ibm.com.

URL domain filter

Enter the URL domain filter the Web crawler will stay on. For example, ibm.com.

Maximum crawling depth

Enter the depth of the crawling from the starting URL. For example, entering a depth of 0 will

download only the starting URL page. Selecting a depth of 1, will continue the crawl to the

first layer of links from the starting URL.

Support robot exclusion

If you select Yes, any site or pages that contain robot exclusion META tags or files will not be

downloaded. Excluded files do not usually contain HTML or text. See “Manage Web spiders,

Web crawlers, and robots on HTTP Server” on page 166 for more information.
3. Choose crawling options:

Directory to store documents

Enter the directory to store the documents the Web crawler finds. For example,

/www/mydocs/public/crawl.

Document language

Select the language of the documents being retrieved by the Web crawler.

Proxy server for HTTP

Enter the proxy server for HTTP requests. Possible values include any valid server name.

Proxy port for HTTP

Enter the port number for the above proxy server. A port is required if a proxy server for

HTTP is specified.

HTTP Server 163

Proxy server for HTTPS

Enter the proxy server for HTTPS requests.

Proxy port for HTTPS

Enter the port number for the above proxy server.

Maximum file size to download

Enter the maximum size for a downloaded file (in KB).

Maximum storage for files

Enter the maximum storage space for all downloaded files (in MB).

Maximum threads

Enter the maximum number of threads used during web crawling. Set this value based on the

system resources that are available.

Maximum run time

Enter the maximum amount of time the crawling session remains active in hours and

minutes.

Activity log file

Enter the action to take for an activity log file. This file contains information about the

crawling session plus any errors that occur. This file must be in a directory of the IFS. You can

choose to run a crawling session with or without an activity log file. You also have the option

of replacing the log file each time a crawling session is started or appending information to

the existing file.
There are two additional options if you choose to write an activity log. These are:

Create or replace the logging file

Select this option if the log file does not exist or you want to overwrite an existing log file.

Append to the existing logging file

Select this option to add any new information to the existing log file. This option will not

delete existing information.
4. Click Apply.

Build the document list from selected URL and options objects: If you opted to build a document list

with the Web crawler using selected URL and options objects, follow these instructions to complete your

document list:

1. Choose one of the two document list file name options:

Create a new document list file

Select this option to create a new document list file. Replace the asterisk (*) with a new name

for your document list file.

Use the document list in this file

Select this option to use an existing document list file. Select the document list file from the

list.
There are two additional options if you choose use an existing document list file. These are:

Replace the document list file

Select this option to overwrite the existing document list file.

Append the new list to the document list file

Select this option to add any new information to the existing document list file. This option

will not delete existing information.
2. Select the “Set up a URL object for the Webserver search engine on HTTP Server” on page 167.

3. Select the “Set up an options object for the Webserver search engine on HTTP Server” on page 165.

4. Select “Set up validation lists for the Webserver search engine on HTTP Server” on page 172:

164 iSeries: IBM HTTP Server

Validation list

Select Do not use a validation list if you know the server the Web crawler will visit does not

use a validation list for authentication. Otherwise, select Use this validation list for sites

requiring a userid and password and select the validation list to be used from the list.
5. Click Apply.

Set up an options object for the Webserver search engine on HTTP Server

This topic provides information about how to set up an options object for use with the Webserver search

engine with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

An options object contains values that are used when remote web sites are crawled. If you select to edit

an existing object, the current values are displayed and can be changed. This object can be selected

together with a URL object to use when you select to build document lists by crawling remote web sites.

To create an options object, do the following:

1. Click the Advanced tab.

2. Click the Search Setup subtab.

3. Expand Search Engine Setup.

4. Click Build options object.

5. Choose options object options:

Create an options object

Select this option to create a new options object. Enter the name of the new options object.

Select an options object to edit

Select this option to edit an existing options object. Select the options object from the list.
6. Click Apply.

7. Enter crawling options:

Proxy server for HTTP

Enter the proxy server for HTTP requests. Possible values include any valid server name.

Proxy port for HTTP

Enter the port number for the above proxy server. A port is required if a proxy server for

HTTP is specified.

Proxy server for HTTPS

Enter the proxy server for HTTPS requests. Possible values include any valid server name.

Proxy port for HTTPS

Enter the port number for the above proxy server. A port is required if a proxy server for

HTTPS is specified.

Maximum file size to download

Enter the maximum size for a downloaded file (in KB).

Maximum storage for files

Enter the maximum storage space for all downloaded files (in MB).

Maximum threads

Enter the maximum number of threads used during web crawling. Set this value based on the

system resources that are available.

HTTP Server 165

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Maximum run time

Enter the maximum amount of time the crawling session remains active in hours and

minutes.

Activity log file

Enter the action to take for an activity log file. This file contains information about the

crawling session plus any errors that occur. This file must be in a directory of the IFS. You can

choose to run a crawling session with or without an activity log file. You also have the option

of replacing the log file each time a crawling session is started or appending information to

the existing file.
There are two additional options if you choose to write an activity log.

Create or replace the logging file

Select this option if the log file does not exist or you want to overwrite an existing log file.

Append to the existing logging file

Select this option to add any new information to the existing log file. This option will not

delete existing information.
8. Click Apply.

Your new options object can now be used when Web crawling remote sites.

Manage Web spiders, Web crawlers, and robots on HTTP Server

This topic provides information about how to manage Web spider, Web crawlers, and robots.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Web spiders, Web crawlers, and robots are programs that traverse the Internet retrieving documents and

following links in those documents. You may have noticed entries in your log files that document

requests for /robots.txt files or requests for many of your Web documents. These requests may be from a

robot. Most robots adhere to the robot exclusion protocol. If you want to control what portion of your

Web site robots attempt to visit, you can either use a robots.txt file or the robots meta tag.

The robots.txt file

The robots.txt file must be placed in the document root directory of the server. The following is an

example of a robots.txt file:

User-agent: *

Disallow: /cgi-bin/

Note: Make sure that you do not alert hackers to important directories or files by listing them in the

robots.txt file.

Robots meta tag

The robots meta tag can be placed in HTML documents to tell the robot:

v Do not index a document

<META NAME="ROBOTS" CONTENT="NOINDEX">

v Do not follow links in a document

<META NAME="ROBOTS" CONTENT="NOFOLLOW">

166 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Set up a URL mapping rules file for the Webserver search engine on HTTP Server

This topic provides information about how to set up a URL mapping rules file for use with the

Webserver search engine with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A mapping rules file is used to set the URL for documents found on a search. The file is built using the

configuration of the selected HTTP Server and the specified URL prefix.

In order to allow documents to be opened when found on a search, you will need an HTTP Server

configuration that contains at least one routing directive. The routing directive has two purposes. It

determines what URLs will be accepted, and it optionally maps those URLs to physical file names. These

routing directives are added to the mapping rules file and are used to set the URL for the documents

found on a search.

The format of the routing directive depends on the HTTP Server that is selected. If you have documents

in directory /root/clothing/ but want the URL to contain just /clothing as the directory, then you need a

routing directive in the HTTP Server configuration. If there is no routing directive that maps a URL to an

actual path, an error may occur attempting to display the document.

To create a URL mapping rules file, do the following:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Advanced tab.

 3. Click the Search Setup subtab.

 4. Expand Search Engine Setup.

 5. Select your search index from the Index list.

 6. Click Build URL mapping rules file.

 7. Select your HTTP Server instance from the HTTP servers list.

 8. Enter a prefix to use for URL addresses. For example, http://www.ibm.com.

This optional prefix is the first part of the URL that is created for a document. For example, if you

enter a prefix such as http://www.ibm.com, the URL of a document found on a search would be

http://www.ibm.com/clothing/doc1.htm. If this field is left blank, then the name of the server and port

would be assumed for the URL, for example, /clothing/doc1.htm. If the server is started on a TCP/IP

port other than the default of port 80, be sure to include the port number in the prefix as follows:

http://myserver.com:8282.

 9. Accept the default entry in the Mapping rules file name field.

There are two additional options for you to choose.

Create or replace the mapping rules file

Select this option to overwrite the existing mapping rules file.

Append the new list to the mapping rules file

Select this option to add any new information to the existing mapping rules file. This option

will not delete existing information.
10. Click Apply.

Set up a URL object for the Webserver search engine on HTTP Server

This topic provides information about how to set up a URL object file for use with the Webserver search

engine with the IBM Web Administration for iSeries interface.

HTTP Server 167

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A URL object contains a list of URLs plus additional web crawling attributes. If you select to edit an

existing URL object, the contents of the current object are displayed. The URL object can be selected

together with an options object to use when you select to build document lists by crawling remote web

sites. See “Set up a document list for the Webserver search engine on HTTP Server” on page 161 for more

information.

To create a URL object, do the following:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Advanced tab.

 3. Click the Search Setup subtab.

 4. Expand Search Engine Setup.

 5. Click Build URL object.

 6. Choose URL object options:

Create a new URL object

Select this option to create a new URL object. Enter the name of the new URL object.

Edit this URL object

Select this option to edit an existing URL object. Select the URL object from the list.
 7. Click Apply.

 8. Enter document storage and language options:

Directory to store documents

Enter the directory where documents found on web sites are stored. Possible values include

any valid directory path name.

Document language

Select the language of the documents that are downloaded. The list provides all valid

language entries.
 9. Enter URL list options:

Action

Click Add to add a new row.

 Click Remove to remove an existing row.

URL Enter a URL in the form, for example, http://www.ibm.com. If you enter a URL that

requires authentication, create a validation list using the Build validation list form. See “Set

up validation lists for the Webserver search engine on HTTP Server” on page 172 for more

information.

URL domain filter

Enter a domain to limit crawling, for example, ibm.com.

Maximum crawling depth

Enter the depth of links from the starting URL to continue crawling. The starting URL is at

depth 0. The links on that page are at depth 1.

Support robot exclusion

Choose whether to support robot exclusion. If you select Yes, any site or pages that contain

robot exclusion META tags or files will not be downloaded.
10. Click Apply.

168 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Your new URL object can now be used when Web crawling remote sites.

Set up the Webserver search engine on HTTP Server (powered by Apache)

This topic provides information about how to set up the Webserver search engine for your HTTP Server

with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The Webserver search engine allows you to perform full text searches on HTML and text files. You an

control what options are available to the user and how the search results are displayed through

customized Net.Data macros.

Follow these steps to configure the Webserver search engine for HTTP Server (powered by Apache) using

the IBM Web Administration for iSeries interface.

Edit HTTP Server (powered by Apache)

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

 5. Expand HTTP Tasks and Wizards.

 6. Click Add a directory to the Web.

Using the wizard, create a new directory to serve static Web content, with directory

/www/MyServer/scripts/, and with an alias /scripts/, where MyServer is the name of your HTTP

Server (powered by Apache). See “JKL Toy Company adds a new directory to HTTP Server

(powered by Apache)” on page 71 for more information.

Note: The new scripts directory and the directory containing the files to be searched must have

*Public *RX authority or Net.data will return an error.

 7. Expand Server Properties.

 8. Click Container Management.

 9. Click the Directories tab in the form.

10. Click Add under the Directory/Directory Match container table.

11. Select Directory from the list in the Type column.

12. Enter /QSYS.LIB/QHTTPSVR.LIB/ in the Directory path or expression column.

13. Click Continue.

14. Click OK.

15. Click URL Mapping.

16. Click the Aliases tab in the form.

17. Click Add under the URL to host file system mappings table.

18. Select Alias from the list in the Alias Type column.

19. Enter /htdocs/ in the URL path column.

20. Enter /www/MyServer/htdocs in the Host directory or file column, where MyServer is the name of

your HTTP Server (powered by Apache).

21. Click Add.

22. Select ScriptAlias from the list in the Alias Type column.

HTTP Server 169

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

23. Enter /cgi-bin/db2www/ in the URL path column.

24. Enter /QSYS.LIB/QHTTPSVR.LIB/DB2WWW.PGM/ in the Host directory or file column.

25. Click Continue.

26. Click OK.

27. Select Directory \www\MyServer\scripts\ from the Server area list, where MyServer is the name

of your HTTP Server (powered by Apache).

28. Click Dynamic Content and CGI.

29. Click the General Settings tab in the form.

30. Select Enabled for Allow CGI programs to be run.

31. Click OK.

32. Click Security.

33. Click the Control Access tab in the form.

34. Select All authenticated users (valid user name and password) under Control access based on who

is making the request.

35. Select Allow then deny from Order for evaluating access under Control access based on where the

request is coming from.

36. Select All client hosts under Client hosts allowed access to this resource.

37. Click OK.

38. Select Directory /QSYS.LIB/QHTTPSVR.LIB/ from the Server area list.

39. Click Dynamic Content and CGI.

40. Click the General Settings tab in the form.

41. Select Enabled for Allow CGI programs to be run.

42. Click OK.

43. Click Security.

44. Click the Control Access tab in the form.

45. Select All authenticated users (valid user name and password) under Control access based on who

is making the request.

46. Select Allow then deny from Order for evaluating access under Control access bade on where the

request is coming from.

47. Select All client hosts under Client hosts allowed access to this resource.

48. Click OK.

Create search index

 1. Click the Advanced tab.

 2. Click the Search Setup subtab.

 3. Expand Search Engine Setup.

 4. Click Create search index.

 5. Enter an index name in the Index name field.

 6. Click Apply.

 7. Select Build a document list from this directory under Document list.

 8. Enter the directory where the HTML and text files to searched are located. Example,

/www/MyServer/htdocs, where MyServer is the configuration directory of your HTTP Server

(powered by Apache).

 9. Select Create a mapping rules file from this HTTP server under Mapping rules.

10. Select your HTTP Server (powered by Apache) configuration name from the list.

11. Enter a URL prefix in the Prefix to use for URL address field. Example, http://iSeries:Port, where

iSeries:Port is the name of your iSeries and port number.

170 iSeries: IBM HTTP Server

Note: Remember the search index name and mapping rules directory and file name. This

information will be used in the following steps.

12. Click Apply.

Copy sample_search.ndm and sample_html.html files

1. Open directory \QIBM\ProdData\HTTP\Public\HTTPSVR.

2. Copy sample_html.html to \www\MyServer\htdocs directory, where MyServer is the configuration

directory of your HTTP Server (powered by Apache).

3. Copy sample_search.ndm to \www\MyServer\scripts directory, where MyServer is the configuration

directory of your HTTP Server (powered by Apache).

Note: File sample_search.ndm must have *Public *RX authority or Net.data will return an error.

Edit sample_search.ndm

1. Open sample_search.ndm with a text editor.

2. Change the following lines found under %{ ---- STEP 1 -----%}:

idxIndexName=″Recipes″

Search index name: replace Recipes with the name of your search index.

mapFile=″″

Map file directory and name: add /QIBM/UserData/HTTPSVR/index/SearchIndex.MAP_FILE,

where SearchIndex is the name of your search index.
3. Save and close the file.

Note: The sample_search.ndm file has additional fields that allow you to modify the search results

displayed with the Webserver search engine. Read the documentation provided in the

sample_search.ndm file for more details.

Edit sample_html.html

1. Open sample_html.html with a text editor.

2. Change the following lines:

FORM NAME=″search″ ACTION=″/cgi-bin/db2www/qibm/proddata/http/public/httpsvr/
sample_search.ndm/output″ METHOD=″post″>

Replace the ACTION attribute value with /cgi-bin/db2www/www/MyServer/scripts/
sample_search.ndm/output, where MyServer is the configuration directory of your HTTP

Server (powered by Apache)

<INPUT TYPE=″hidden″ NAME=″frmIndexName″ VALUE=″Recipes″>

Search index name: replace Recipes with the name of your search index.

<INPUT TYPE=″hidden″ NAME=″frmMapFile″ VALUE=″ ″>

Map file directory and name: add /QIBM/UserData/HTTPSVR/index/SearchIndex.MAP_FILE

to the VALUE attribute, where SearchIndex is the name of your search index.
3. Save and close the file.

Note: The sample_html.html file contains additional fields for the Webserver search engine. Only the

necessary information for the required fields are documented here.

Start the server

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select your HTTP Server (powered by Apache) from the table.

HTTP Server 171

5. Click Start.

Test the Webserver search engine

1. Open a Web browser.

2. Enter http://iSeries:Port/sample_html.html to start the Webserver search engine, where iSeries:Port is

the name of your iSeries and port number.

3. Enter a search term.

4. Click Search.

Note: If the MAP_FILE is incorrectly built, the search results will not contain the correct URL and the

Web page will not be displayed.

Set up validation lists for the Webserver search engine on HTTP Server

This topic provides information about how to set up a validation list for use with the Webserver search

engine with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A validation list contains URLs, userids, and password sets. This list can be specified when you select to

build document lists by crawling remote web sites. To create a validation list, do the following:

1. Start the IBM Web Administration for iSeries interface.

2. Click the Advanced tab.

3. Click the Search Setup subtab.

4. Expand Search Engine Setup.

5. Click Build validation list.

6. Choose validation list options:

Create a new validation list

Select this option to create a new validation list. Enter the name of the new validation list.

Edit this validation list

Select this option to edit an existing validation list. Select the validation list from the list.
7. Click Apply.

8. Enter validation list content options:

Action

Click Add to add a new row.

 Click Remove to remove an existing row.

URL domain filter

Enter the URL domain filter. For example, ibm.com.

Userid

Enter the Userid to be used on the URL domain.

Password

Enter the password to be used for the Userid on the URL domain.
9. Click Apply.

Your new validation list can now be used when Web crawling remote sites.

172 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Security tasks

This topic provides step-by-step tasks for security.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “Security tips for HTTP Server” on page 38
This topic provides tips to secure your HTTP Server.

Set up password protection on HTTP Server (powered by Apache)

This topic provides information about how to set up password protection for resources on your HTTP

Server with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

You can protect Web resources by asking the user for a userid and password to gain access to these

resources. Group files can be used to classify users into groups (for example: users and administrators).

This allows you to limit access to those users that are defined in a group. If the user is listed in the

group, then the userid and password are validated in one of the following ways:

v Internet users in a validation list - This requires you to create a validation list that contains Internet

users. You can create a validation list and Internet users through the IBM Web Administration for

iSeries interface.

v User profiles password protection - This requires that each user must have a system user profile.

v LDAP password protection - This requires that you configure a LDAP server with the user entries.

Group file password protection: The following steps explain how to add password protection (using

groups) to a directory context.

 1. Create a group file with the following format:

groupname: user1[, user2[, user3...]]

groupname

Any name you want to use to identify the group you are defining. This name can be used

on subsequent group definitions within the same server group file.

user1[, user2[, user3...]]

This can be any combination of user names and group names. Separate each item with a

comma.
For example:

ducks: webfoot, billface, swandude

geese: goosegg,

bagel flock: ducks, geese

In the above example, notice that once the groups named ducks and geese are defined, they can be

included as part of the group named flock.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select the context you want to work with from the Server area list.

HTTP Server 173

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: Do not select Global configuration or Virtual Host. If the Authentication tab cannot be

selected, select a different context to work with from the Server area list.

 6. Expand Server Properties.

 7. Click Security.

 8. Click the Authentication tab in the form.

 9. Select Use Internet users in validation list or Use OS/400 profile of client under User

authentication method.

Note: Your selection should be based off of the incoming traffic your HTTP Server (powered by

Apache) will receive. If incoming traffic is from outside of your local access network, using

Internet users in a validation list would be more beneficial than using OS/400 profiles. If

incoming traffic is from a local access network, using OS/400 profiles would be more

beneficial than using Internet users in a validation list.

10. Enter an authentication name or realm. The realm name is displayed on the login prompt.

11. Add a user authentication method if necessary.

12. Click OK.

After configuring authentication, you must configure control access.

 1. Select the same context you work with previously from the Server area list.

 2. Expand Server Properties.

 3. Click Security.

 4. Click the Control Access tab in the form.

 5. Select Specific users and groups.

 6. Click Add under the User and Group names table.

 7. Select Group from the list in the Type column.

 8. Enter the name of the group in the Name column.

 9. Enter the path/filename of the group file used above.

10. Click OK.

Note that changes to an existing group files take effect after the HTTP Server is restarted.

User profiles password protection: You can protect Web resources by asking the user for a userid and

password to gain access to these resources. An iSeries user profile can be used to authenticate users.

To configure password protection using a user profile, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Security.

 7. Click the Authentication tab in the form.

Note: If the Authentication tab cannot be selected, select a different context to work with from the

Server area list.

 8. Select Use OS/400 profile of client under User authentication method.

 9. Enter an authentication name or realm. The realm name is displayed on the login prompt.

10. Choose one of the two methods below:

Enter a user name in the OS/400 user profile to process requests field.

174 iSeries: IBM HTTP Server

Select a user name under OS/400 user profile to process requests. Select Default server profile to

allow the HTTP Server profile (QTMHHTTP) to process requests.

11. Click OK.

After configuring authentication, you must configure control access.

1. Select the same context you work with previously from the Server area list.

2. Expand Server Properties.

3. Click Security.

4. Click the Control Access tab in the form.

5. Select All authenticated users (valid user name and password) under Control access based on who

is making requests.

6. Click OK.

LDAP password protection: You can protect Web resources by asking the user for a userid and

password (to gain access to these resources). A Lightweight Directory Access Protocol (LDAP) server can

be used to authenticate users.

LDAP is a directory service protocol that runs over TCP/IP, using non-secure or Secure Sockets Layer

(SSL). The LDAP directory service follows a client/server model, where one or more LDAP servers

contain the directory data. This allows any LDAP-enabled application to store information once (such as

user authentication information). Other applications using the LDAP server are then able to request the

stored information. The HTTP server (powered by Apache) can act as a LDAP server client, making

requests for information.

One of the advantages of using the LDAP server for authentication is that it allows the information to be

shared by multiple LDAP clients, and stores the information in a platform independent fashion. This can

help prevent information from being duplicated within a network.

The following steps explain how to add password protection (using LDAP) to a directory context.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select the context you want to work with from the Server area list.

 5. Expand Server Properties.

 6. Click Security.

 7. Click the Authentication tab in the form.

Note: If the Authentication tab cannot be selected, select a different context to work with from the

Server area list.

 8. Select Use user entries in LDAP server under User authentication method.

 9. Enter an authentication name or realm. The realm name is displayed on the login prompt.

10. Enter an LDAP configuration file.

11. Enter an LDAP group name or filter.

12. Click OK.

After configuring authentication, you must configure control access.

1. Select the same context you work with previously from the Server area list.

2. Expand Server Properties.

3. Click Security.

4. Click the Control Access tab in the form.

HTTP Server 175

5. Select one of the options for who can access this resource.

6. Select one of the options for who can access this resource under Users and groups who can access

this resource.

7. Select Allow access to all, except the following under Control access based on where the request is

coming from.

8. Enter any domain names or IP address you do not want to allow access to.

9. Click OK.

Set up SSL for the administration (ADMIN) server for HTTP Server

This topic provides information about how to secure your administration server configuration with

Secure Socket Layers with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

You can SSL enable the ADMIN server by doing the following:

 1. Make sure that you have the following products and product options installed:

v IBM Cryptographic Access provider product (5722-AC3)

v Digital Certificate Manager Option 34 of 5722-SS1
 2. To complete this task you must supply a digital certificate. For more information on how to obtain a

digital certificate, see Digital certificate management.

 3. Make sure you have proper authority to the directories and file. See “User profiles and required

authorities for HTTP Server” on page 40 for more information.

 4. Make sure that the ADMIN server is running.

 5. Click the Manage tab.

 6. Click the All HTTP Servers subtab.

 7. Select ADMIN from the Server list.

 8. Select Include /QIBM/UserData/HTTPA/admin/conf/admin-cust.conf from the Server area list.

 9. Expand Tools.

10. Select Edit Configuration File.

Note: The following changes must be made using the Edit Configuration File tool. Use of other

editing tools may result in errors.

11. Enter the following information into the configuration file or remove the ″#″ symbol to uncomment

these lines:

LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Listen 2001

Listen 2010

SetEnv HTTPS_PORT 2010

<VirtualHost *:2010>

 SSLEnable

 SSLAppName QIBM_HTTP_SERVER_ADMIN

</VirtualHost>

12. Click OK.

13. Select Virtual Host *:2010 from the Server area list.

14. Expand Server properties, and select Security.

15. Click OK.

16. Click the Related Links tab.

17. Click Digital Certificate Manager.

176 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

18. Click Select a Certificate Store.

19. Select *SYSTEM.

20. Click Continue.

21. Enter a password in the Certificate store password field.

22. Click Continue.

23. Click Manage Applications.

24. Select Update certificate assignment.

25. Click Continue.

26. Select Server.

27. Click Continue.

28. Select QIBM_HTTP_SERVER_ADMIN application name.

29. Click Update Certificate Assignment.

30. Select the appropriate certificate.

31. Click Assign New Certificate to assign the certificate to the application name selected in the

previous step.

32. Restart the ADMIN server.

33. Restart your Web browser.

To use the ADMIN server, type http://[iSeries_hostname]:2001 for a non-secure connection or

https://[iSeries_hostname]:2010 for a secure connection.

Note: If you have trouble getting the secure connection working, check the ADMIN error log file located

in the (\QIBM\UserData\HTTPA\admin\logs\ directory for information.

Set up to secure against a Telnet denial of service attack for HTTP Server

This topic provides information about how to secure your HTTP Server against a Telnet denial of service

attack with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A Telnet attack could result in a denial of service to your HTTP Server. The configuration to protect

against attacks has default settings, but you may want to change them to suit your individual needs.

Your HTTP Server can detect a denial of service attack by measuring the time-out and frequency, or the

number of time-outs of certain clients’ requests. If the HTTP Server does not receive a request from the

client, then your HTTP Server determines that a Telnet denial of service attack is in progress. This occurs

after making the initial client connection to your HTTP Server.

The HTTP Server’s default is to perform attack detection and penalization. However, this default may not

be right for your environment. If all access to your HTTP Server is through a firewall or proxy server or

Internet Service Provider (ISP), then the Telnet denial of service protection is built into each of these

entities. You should turn off the Telnet denial of service protection for this HTTP Server instance so that

the HTTP Server does not falsely detect a denial of service condition.

Secure against a Telnet denial of service attack for HTTP Server (powered by Apache):

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

HTTP Server 177

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

4. Expand Server Properties.

 5. Click System Resources.

 6. Click the HTTP Connections tab in the form.

Note: The values provided are the current HTTP connections settings used by your Web server.

Continue only if you want to change the default values.

 7. Enter new values for the provided fields.

 8. Click Apply.

 9. Click the Denial of Service tab in the form.

Note: The values provided are the current denial of service settings used by your Web server.

Continue only if you want to change the default values.

10. Enter new values for the provided fields.

11. Click OK.

See “User profiles and required authorities for HTTP Server (powered by Apache)” on page 40 for more

information if you encounter authority problems.

Tomcat tasks

This topic provides step-by-step tasks for the Apache Software Foundation Tomcat servlet engine.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “About Tomcat” on page 43
This topic provides information about the Apache Software Foundation Jakarta Tomcat servlet engine.

Manage ASF Tomcat servers on HTTP Server (powered by Apache)

This topic provides information about how to manage your Tomcat server with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Use the IBM HTTP Server Administrator interface to manage your HTTP Server (powered by Apache)

from using ASF Tomcat or stop an out-of-process ASF Tomcat server.

Enable and disable ASF Tomcat for HTTP Server (powered by Apache): You can enable or disable

(without discarding your configuration) the ASF Tomcat servlet engine by doing the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Expand Server Properties.

5. Click ASF Tomcat Settings.

6. Check or uncheck Enable servlets from this HTTP Server.

7. Click OK.

178 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Start and stop out-of-process ASF Tomcat server: You can start or stop an out-of-process ASF Tomcat

server by doing the following:

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All ASF Tomcat Servers tab.

4. Select the ASF Tomcat out-of-process server you want to stop.

5. Click Stop or Start.

Set up JSP files for out-of-process ASF Tomcat server on HTTP Server (powered

by Apache)

This topic provides information about how to set up a Java JavaServer Page (JSP) file for use with the

Tomcat servlet engine with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Follow the instructions to use a JSP file with out-of-process ASF Tomcat servlet engine on your HTTP

Server (powered by Apache).

Before you begin, review the “User profiles and required authorities for HTTP Server” on page 40 topic.

Set up HTTP Server (powered by Apache) for ASF Tomcat:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select Global configuration from the Server area list.

 6. Expand Server Properties.

 7. Click ASF Tomcat Setup task from the task list.

 8. Select Enable from Enable servlets for this HTTP Server option.

 9. Accept the default workers definition file provided.

10. Click Next.

11. Select Enable from Enable ″out-of-process″ servlet engine connections option.

Note: Do not select to enable an ″in-process″ servlet engine.

12. Click Add.

13. Enter the name of your ASF Tomcat server in the Worker name field.

14. Select Binary (AJP13) from Worker type.

15. Enter information based off one of the below conditions for Hostname:Port.

a. Enter localhost and a port number if your out-of-process ASF Tomcat server is on your iSeries.

For example, localhost:8009.

b. Enter the name of the remote server host and the port number if your out-of-process ASF

Tomcat server is not on your local iSeries. For example, IBMiSeries:8009.
16. Click Continue.

17. Click Next.

18. Click Add.

19. Enter /app1/* for URL (Mount point).

HTTP Server 179

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

20. Accept the default value for ASF Tomcat worker.

21. Click Add.

22. Enter the name of your JSP file with a forward slash ″/″ before it and .jsp after for URL (Mount

point). For example, /myjsp.jsp.

23. Accept the default value for ASF Tomcat worker.

24. Click Add.

25. Enter /servlet/* for URL (Mount point).

26. Accept the default value for ASF Tomcat worker.

27. Click Add.

28. Enter /app1 for URL (Mount point).

29. Accept the default value for ASF Tomcat worker.

30. Click Continue.

31. Click Next.

32. Click Finish.

33. Click OK.

Set up the out-of-process ASF Tomcat:

 1. Click the Manage tab.

 2. Click the ASF Tomcat Servers subtab.

 3. Expand Tomcat Tasks and Wizards.

 4. Click Create ASF Tomcat Server.

 5. Enter your worker name in the ASF Tomcat server name field. This is the name of the ASF Tomcat

server.

 6. Click Next.

 7. Accept the default value (QTMHHTTP) or enter a specific user id in Server userid.

 8. Accept the default value for Java version (JDK).

 9. Accept the default value for ASF Tomcat home.

10. Accept the default value for Java classpath entires.

11. Click Next.

12. Accept the default value for IP address.

13. Enter the port number you provided for your localhost or remote server host in Port.

Note: If no port number was given (you accepted the default localhost:8009), accept the default

value.

14. Select Binary (AJP13) for Server type.

15. Click Next.

16. Click Add.

17. Enter the name of your JSP file with a forward slash ″/″ before it and .jsp after for URL path. For

example, /myjsp.jsp.

18. Enter webapps/app1 for Application base directory.

Note: Do not select the Reloadable option.

19. Click Continue.

20. Click Next.

21. Click Finish.

22. Click OK.

180 iSeries: IBM HTTP Server

Place your JSP file in the correct directory: Using a file transfer method such as Netserver mapped

drives or FTP, transfer the JSP file to the following directory: /www/myserver/webapps/app1/jsp (where

myserver is your server’s name).

Start HTTP Server and out-of-process ASF Tomcat server:

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select your HTTP Server (powered by Apache) from the table.

5. Click Start.

6. Click the All ASF Tomcat Servers tab.

7. Select your out-of-process ASF Tomcat server from the table.

8. Click Start.

Test your configuration:

1. Start a Web browser.

2. Enter http://myserver:port/app1/jsp/myjsp.jsp, where myserver:port is the name of your iSeries and

port number and myjsp.jsp is the name of your JSP file.

Set up servlets for out-of-process ASF Tomcat server on HTTP Server (powered by

Apache)

This topic provides information about how to set up Java servlets for use with the Tomcat servlet engine

with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Follow the instructions to use a servlet with out-of-process ASF Tomcat servlet engine on your HTTP

Server (powered by Apache).

This topic assumes that you have an existing HTTP Server (powered by Apache) and you do not have a

Tomcat configuration. Before you begin, review the “User profiles and required authorities for HTTP

Server” on page 40 topic.

Configure the out-of-process ASF Tomcat:

 1. Click the Manage tab.

 2. Click the ASF Tomcat Servers subtab.

 3. Expand Tomcat Tasks and Wizards.

 4. Click Create ASF Tomcat Server.

 5. Enter your worker name in the ASF Tomcat server name field. This is the name of the ASF Tomcat

server. For example, mytomcat.

 6. Click Next.

 7. Accept the default value (QTMHHTTP) or enter a specific user id for Server userid.

 8. Accept the default value for Java version (JDK).

 9. Accept the default value for ASF Tomcat home.

10. Accept the default value for Java classpath entries.

11. Click Next.

12. Accept the default value for IP address.

HTTP Server 181

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

13. Enter the port number you provided for Port.

Note: If no port number was given (you accepted the default localhost:8009) accept the default

value.

14. Select Binary (AJP13) for Server type.

15. Click Next.

16. Click Add.

17. Enter the name of your URL path for URL path. For example, /calc.

18. Enter the name of your application base directory for Application base directory. For example,

webapps/example.

Note: Do not select the Reloadable option at this time.

19. Click Continue.

20. Click Configure.

21. Click Add.

22. Enter the name of your servlet class file for Servlet classname.

If a jar file is used, enter the name of the servlet class in the jar file. For example, CalculatorExample.

23. Accept the default value for URL patterns.

24. Accept the default value for Startup load sequence.

If you are having trouble, one possible cause is incorrect authority and permissions. See “User

profiles and required authorities for HTTP Server” on page 40 for more information.

25. Click OK.

26. Click Next.

27. Click Finish.

28. Click OK.

Configure HTTP Server (powered by Apache) for ASF Tomcat:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select Global configuration from the Server area list.

 6. Expand Server Properties.

 7. Click ASF Tomcat Setup task from the task list.

 8. Select Enable from Enable servlets for this HTTP Server.

 9. Accept the default workers definition file for Workers definition file.

10. Click Next.

11. Select Enable for Enable ″out-of-process″ servlet engine connections.

Note: Do not select the Enable an ″in-process″ servlet engine option at this time.

12. Click Add.

13. Enter the name of the out-of-process ASF Tomcat server for Worker name. For example, mytomcat.

14. Select Binary (AJP13) for Worker type.

15. Enter information based off one of the below conditions for Hostname:Port.

a. Enter localhost and a port number if your out-of-process ASF Tomcat server is on your iSeries.

For example, localhost:8009.

b. Enter the name of the remote server host and the port number if your out-of-process ASF

Tomcat server is not on your local iSeries. For example, IBMiSeries:8009.

182 iSeries: IBM HTTP Server

16. Click Continue.

17. Click Next.

18. Click Add.

19. Enter the name of the URL mount point for URL (Mount point). For example, /calc.

20. Accept the default value for ASF Tomcat worker.

21. Click Next.

22. Click Finish.

23. Click OK.

Place your servlet file in the correct directory: Using a file transfer method such as Netserver mapped

drives or FTP, transfer the servlet to one of the following directories:

v .class files

– /ASFTomcat/myserver/webapps/example/WEB-INF/classes (where myserver is your server’s name)
v .jar files

– /ASFTomcat/myserver/webapps/example/WEB-INF/lib (where myserver is your server’s name)

Start HTTP Server and out-of-process ASF Tomcat server:

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select your HTTP Server (powered by Apache) from the table.

5. Click Start or Restart.

6. Click the All ASF Tomcat Servers tab.

7. Select your out-of-process ASF Tomcat server from the table.

8. Click Start.

Test your configuration:

1. Start a Web browser.

2. Enter http://myserver:port/calc, to test the configuration, where myserver:port is the name of your

iSeries and port number.

Set up WAR files for out-of-process ASF Tomcat server on HTTP Server (powered

by Apache)

This topic provides information about how to set up a Web Archive (WAR) file for use with the Tomcat

servlet engine with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Follow the instructions to use a WAR file with out-of-process ASF Tomcat servlet engine on your HTTP

Server (powered by Apache).

Before you begin, review the “User profiles and required authorities for HTTP Server” on page 40 topic.

Configure the out-of-process ASF Tomcat:

 1. Click the Manage tab.

 2. Click the ASF Tomcat Servers subtab.

 3. Expand Tomcat Tasks and Wizards.

HTTP Server 183

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

4. Click Create ASF Tomcat Server.

 5. Enter a name for your ASF Tomcat server.

 6. Click Next.

 7. Accept the default value (QTMHHTTP) or enter a specific user id for Server userid.

 8. Accept the default value for Java version (JDK).

 9. Accept the default value for ASF Tomcat home.

10. Accept the default value for Java classpath entries.

11. Click Next.

12. Accept the default value for IP address.

13. Enter the port number you provided for your localhost or remote server host for Port.

Note: If no port number was given (you accepted the default localhost:8009) accept the default

value.

14. Select Binary (AJP13) for Server type.

15. Click Next.

16. Click Add.

17. Enter the name of your WAR file with a forward slash ″/″ before it for URL path. For example,

/warexample.

18. Enter webapps followed by a forward slash ″/″ and the name of your WAR file for Application base

directory. For example, webapps/warexample.

Note: Do not select the Reloadable option at this time.

19. Click Continue

The WAR file contains a web.xml file. The first time the WAR file is accessed, the files within the

WAR file are extracted into the correct directory.

20. Click Next.

21. Click Finish.

22. Click OK.

Configure HTTP Server (powered by Apache) for ASF Tomcat:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the HTTP Servers subtab.

 4. Select your HTTP Server (powered by Apache) from the Server list.

 5. Select Global configuration from the Server area list.

 6. Expand Server Properties.

 7. Click ASF Tomcat Setup task from the task list.

 8. Select Enable from Enable servlets fro this HTTP Server.

 9. Accept the default workers definition file for Workers definition file.

10. Click Next.

11. Select Enable from Enable ″out-of-process″ servlet engine connections.

Note: Do not select the Enable an ″in-process″ servlet engine option at this time.

12. Click Add.

13. Accept the default name or enter a new name of your ASF Tomcat server for Worker name.

Note: The name of the worker will be used below.

14. Select Binary (AJP13) for Worker type.

184 iSeries: IBM HTTP Server

15. Enter information based off one of the below conditions for Hostname:Port.

a. Enter localhost and a port number if your out-of-process ASF Tomcat server is on your iSeries.

For example, localhost:8009.

b. Enter the name of the remote server host and the port number if your out-of-process ASF

Tomcat server is not on your local iSeries. For example, IBMiSeries:8009.
16. Click Continue.

17. Click Next.

18. Click Add.

19. Enter the name of your WAR file with a forward slash ″/″ before it for URL (Mount point). For

example, /warexample.

Note: This name will be used below.

20. Accept the default value for ASF Tomcat worker. Select the worker defined by you above.

21. Click Add.

22. Enter the name of your WAR file with a forward slash ″/″ before it and after it, followed by an

asterisk ″*″ for URL (Mount point). For example, /warexample/*.

This URL (Mount point) is necessary so the files contained in your WAR file can be accessed.

23. Accept the default value for ASF Tomcat worker.

24. Click Continue.

25. Click Next.

26. Click Finish.

27. Click OK.

Place your WAR file in the correct directory: Using a file transfer method such as Netserver mapped

drives or FTP, transfer the WAR file to the following directory: /ASFTomcat/[myserver]/webapps (where

myserver is your server’s name).

Start HTTP Server and out-of-process ASF Tomcat server:

1. Click the Manage tab.

2. Click All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select your HTTP Server (powered by Apache) from the table.

5. Click Start.

6. Click the All ASF Tomcat Servers tab.

7. Select your out-of-process ASF Tomcat server from the table.

8. Click Start.

Test your configuration:

1. Start a Web browser.

2. Enter http://myserver:port/warexample, where myserver:port is the name of your iSeries and port

number and warexample is the name of your WAR file.

Triggered cache manager tasks

This topic provides step-by-step tasks for the triggered cache manager.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 185

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Related information

 “Triggered cache manager for HTTP Server” on page 46
This topic provides information about the triggered cache manager, page assembly, and wrappers.

 “Trigger messages for triggered cache manager on HTTP Server (powered by Apache)” on page 49
This topic provides information about trigger requests and trigger messages.

Set up triggered cache manager on HTTP Server (powered by Apache)

This topic provides information about how to set up the triggered cache manager for your HTTP Server

with the IBM Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The triggered cache manager (TCM) may be used with the default configuration or you may create your

own customized configuration.

Default configuration: The following provides an overview of the process of configuring the triggered

cache manager function with the default configuration.

You must write an application to send trigger messages to the triggered cache manager server. Messages

your application sends cause the server to update, delete, or publish items in one or more cache targets

(specified in the server configuration), using data retrieved from data sources (also specified in the server

configuration). For more information on how to write a program to send trigger messages, see “Trigger

messages for triggered cache manager on HTTP Server (powered by Apache)” on page 49.

Ensure that LPP 5722-DG1 Option 1 is installed on your iSeries system and HTTP *ADMIN server is up

and running.

1. Start the IBM Web Administration for iSeries interface.

2. Click the Advanced tab.

3. Click the TCM subtab.

4. Click Create server.

5. Complete the following in the Create server form.

 Field Description

Server Name Enter a name that you will later use to identify this server. For example,

JKLTCMServer

Autostart Select Yes.

This will cause your server to automatically startup when TCP/IP Services is started

on your iSeries system. If you do not want your server to startup automatically, select

No.

TCP Port Use the default value or enter a new TCP Port.

You will use this port to communicate with your new server. When the server is

started it will establish a listening port on every IP interface configured for TCP/IP

Services on your iSeries system. Enter a different port number if you do not want to

use this default. Servers cannot share ports so if another server is already configured to

use the default port (7049) then you must enter a different, unused port number for

this server.

186 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Field Description

Options Use the default, Create with default configuration, or select a new option.

If you would rather copy the configuration of a server you have already configured,

select Create based on existing configuration and then select that server name.

6. Click Create. The message, ″Server ’JKLTCMServer’ has been created with default configuration

settings″ will display at the bottom of your screen.

7. In the list on the left, click Work with servers.

8. Select the server that you just created (for example, JKLTCMServer).

9. Click Start. The message, ″A request to start server ’JKLTCMServer’ has been submitted″ will display

at the bottom of your screen. It may take a few minutes for the server to fully activate for the first

time (click Refresh periodically until you see the server listed as Active under the Status column).

You have just created and started a triggered cache manager server that uses the default configuration

settings provided by IBM. Servers using the default configuration settings are fully operational. IBM has

established the following settings for a default configuration:

v A host description named LOCALHOST is defined for IP address 127.0.0.1. To view host descriptions,

click Hosts in the list on the left.

IP address 127.0.0.1 is the ’loopback’ interface. The loopback interface is used by many application

servers to communicate with each other without using an actual physical network. In this case, the

triggered cache manage server uses the loopback interface to communicate with a data source and

potential cache target applications that may be added to the configuration (see the section titled

Custom configuration, below, for details on how to add custom configuration setting to the default

configuration).

v A data source description named LOCAL_HTTP is defined for a local HTTP server. To view data

source descriptions, click on Data sources in the list on the left.

The local HTTP server is assumed to use the default HTTP port (80) on the loopback interface

(described previously). The triggered cache manager server communicates with the local HTTP server

over the loopback interface to request Web pages it needs to send (or publish) to cache targets.

v A cache target description named LOCAL_DIRECTORY is defined for the local IFS (the iSeries

Integrated File System). To view cache target descriptions, click on Cache targets in the list on the left.

This description specifies the root (/) directory by default. The triggered cache manager server uses the

local system’s IFS as a cache target.

v Two trigger handler descriptions are set, one named PUBLISH, and the other named

UPDATE_CACHE. To view trigger handler descriptions, click on Trigger handlers in the list on the

left.

Both descriptions are set to establish trigger request handlers that manage the cache defined by

LOCAL_DIRECTORY using data obtained from the data source defined by LOCAL_HTTP. The trigger

request handler named UPDATE_CACHE simply updates cached items by copying them from data

source to cache target(s), whereas the trigger request handler PUBLISH may be used to perform

dependency parsing and page assembly prior to sending updated items to cache.

v An object dependency graph description named DEFAULT is defined for document publishing. To

view object dependency graph descriptions, click on Object dependency graphs in the list on the left.

By default, the trigger request handler PUBLISH (described previously) is set to use the object

dependency graph DEFAULT to record and query information pertaining to Web document

dependency parsing and page assembly.

Your application must send trigger messages to one of the request handlers (either UPDATE_CACHE or

PUBLISH). This type of application is referred to as an application trigger. When the server receives a

HTTP Server 187

trigger message from an application trigger, it places the request in queue for the specified request

handler and returns message code 1102 (indicating that the request was accepted). The server then

continues to process the request asynchronously.

Servers running with a default configuration may be used in conjunction with application triggers and a

local HTTP server (using port 80) to store dynamically produced Web pages as static files in the local file

system. An HTTP server may then be used to serve these static files rather than the dynamically

produced files, while application triggers ensure the cache of static files are updated only when necessary.

Custom configuration: The following section describes how to create customized configurations for the

triggered cache manager function.

 1. Follow the steps outlined in the previous section, “Default configuration” on page 186, to create and

start a new server.

 2. Select the server that you just created (for example, JKLTCMServer).

 3. Click Hosts.

 4. Click Create New Description to add additional host descriptions to the configuration. If you don’t

want to add additional host descriptions, skip to step 5.

Note: Host descriptions must be added before certain data source types or cache target descriptions

may be added (steps 6d, 8d, and 8e).

a. Enter the server (or servers) host name or IP address you want this server to use as a data source

or cache target (for example, myserver.ibm.com).

b. Click Create.

c. To add more host descriptions, repeat steps 4 through 4b.
 5. In the list on the left, click Data sources.

 6. Click Create New Description to add additional data source descriptions to the configuration. If you

don’t want to add additional data source descriptions, skip to step 7.

Note: Data source descriptions must be added before trigger handler descriptions can be added (re:

steps 10c and 10d).

a. Do the following on the first Create data source description form.

 Field Description

Name Enter a name for this description. For example fields for a file system data source, or

webDS for an HTTP Server data source.

Type Select File System to define a local IFS directory as a data source.

Select HTTP Server to define an HTTP server as a data source.

For HTTP server data sources, the server hostname or IP address is provided by selecting

a host description on the next screen. Host descriptions are not used when defining file

system data sources.

b. Click Next.

c. If File System was chosen previously, do the following on the second Create data source

description form. Otherwise, skip to the next step.

 Field Directory

Directory Enter a directory name that is the data source. For example, /tcm/files

All files requested from this data source will be relative to the specified directory.

188 iSeries: IBM HTTP Server

Field Directory

Threads Use the default value or enter a new value.

When started, the server will run in a multithreaded process on the iSeries system. It

will use the number of specified threads to interact with the data source.

d. If HTTP Server was chosen previously, do the following on the second Create data source

description form.

 Field Description

Host Select the description that describes the HTTP server data source hostname or IP address.

Host descriptions were created in steps 4 through 4b. If there is no host description for

the data source you are describing, you must first create it by repeating steps 4 through

4b.

TCP Port Use the default value or enter a new value.

If the HTTP Server data source is not using the default HTTP port, enter it here.

Root Directory Select the default, (/).

All URLs requested from this data source will be relative to the specified directory (path).

Keep Alive Select No.

If you know the data source supports persistent HTTP connections, commonly referred to

as ’keepalive’ support, you may want to select Yes to avoid having the server disconnect

after each read request.

Timeout Use the default value or enter a new value.

Zero (0) indicates the server should wait indefinitely for responses from the data source

after requests are sent. If you would rather the server eventually timeout rather than wait

indefinitely, enter the number of seconds it should wait before dropping connections. Just

remember that an HTTP server may take some time to respond to a request, especially if

it needs to dynamically produce the requested file. Be sure to specify a timeout value that

is acceptable, otherwise cache targets may not get updated.

Threads Use the default value or enter a new value.

When started, the server will run in a multithreaded process on the iSeries system. It will

use the number of specified threads to interact with this data source.

A data source thread is dedicated to fulfill one read request at a time. When threads are

waiting for a response from a data source (see Timeout value above), it is not available to

send other requests. Be sure to specify enough threads to provide for a number of

simultaneous requests acceptable to the data source without overwhelming it.

e. Click Create.

f. To add more data source descriptions, repeat steps 6 through 6e.
 7. Click Cache targets.

 8. Click Create New Description to add additional cache target descriptions to the configuration. If

you don’t want to add additional cache target descriptions, skip to step 9.

HTTP Server 189

a. Do the following on the first Create cache target description form.

 Field Description

Name Enter a name for this description. For example fileCT for a file system cache target, or

webCT for an HTTP Server cache target, or routerCT for a router cache target.

This name is only used to refer to the description you are about to create. It is not used

for communication with the cache target.

Type Select File System to define a local IFS directory as a cache target.

Select HTTP Server to define an HTTP server as a cache target. Select Router to define an

IBM model 2212 or IBM model 2216 caching router as a cache target.

For HTTP server and router cache targets, the server/router hostname or IP address is

provided by selecting a host description on the next screen. Host descriptions are not

used when defining file system cache targets.

b. Click Next.

c. If File System was chosen previously, do the following on the second Create cache target

description form. Otherwise, skip to the next step.

 Field Description

Status at

Startup

Select Enabled.

The server creates an internal handler for each cache target description at startup. These

handlers direct the server’s interaction with cache targets. This option indicates the initial

handler state when the server is started.

Requests sent to a disabled cache target handler always appear to be handled successfully

(when the handler actually does nothing). This allows you to take cache targets off-line

without having failed cache update attempts logged by your triggered cache manager

server. When cache targets go on-line again, their corresponding handlers may be

re-enabled.

Directory Enter a directory name that is the data source. For example: /tcm/filect

All files requested from this cache target will be relative to the specified directory.

Threads Use the default value or enter a new value.

When started, the server will run in a multithreaded process on the iSeries system. It will

use the number of specified threads to interact with this cache target.

d. If HTTP Server was chosen previously, do the following on the second Create cache target

description form. Otherwise, skip to the next step.

 Field Description

Status at

Startup

Select Enabled.

The server creates an internal handler for each cache target description at startup. These

handlers direct the server’s interaction with cache targets. This option indicates the initial

handler state when the server is started.

Requests sent to a disabled cache target handler always appear to be handled successfully

(when the handler actually does nothing). This allows you to take cache targets off-line

without having failed cache update attempts logged by your triggered cache manager

server. When cache targets go on-line again, their corresponding handlers may be

re-enabled.

190 iSeries: IBM HTTP Server

Field Description

Host Select the description that describes the HTTP cache target source hostname or IP address.

Host descriptions were created in steps 4 through 4b. If there is no host description for the

cache target you are describing, you must first create it by repeating steps 4 through 4b.

TCP Port Use the default value or select a new value.

If the HTTP server cache target is not using the default HTTP port, enter it here.

Root

Directory

Use the default, (/).

All URLs posted to this cache target will be relative to the specified directory (path).

Keep Alive Select No.

If you know the cache target supports persistent HTTP connections, commonly referred to

as ’keepalive’ support, you may want to select Yes to avoid having the server disconnect

after each post request.

Timeout Use the default value or enter a new value.

Zero (0) indicates the server should wait indefinitely for responses from the cache target

after requests are sent. If you would rather the server eventually timeout rather than wait

indefinitely, enter the number of seconds it should wait before dropping connections. Just

remember that an HTTP server may take some time to respond to a request, especially if it

needs to dynamically produce the requested file. Be sure to specify a timeout value that is

acceptable, otherwise you cannot determine if the cache target received the request.

Threads Use the default value or enter a new value.

When started, the server will run in a multithreaded process on the iSeries system. It will

use the number of specified threads to interact with this cache target.

A cache target thread is dedicated to fulfill one post request at a time. When threads are

waiting for a response from a cache target (see Timeout value above), it is not available to

send other requests. Be sure to specify enough threads to provide for a number of

simultaneous requests acceptable to the cache target without overwhelming it.

e. If Router was chosen previously, do the following on the second Create cache target description

form.

 Field Description

Status at

Startup

Select Enabled.

The server creates an internal handler for each cache target description at startup. These

handlers direct the server’s interaction with cache targets. This option indicates the initial

handler state when the server is started.

Requests sent to a disabled cache target handler always appear to be handled successfully

(when the handler actually does nothing). This allows you to take cache targets off-line

without having failed cache update attempts logged by your triggered cache manager

server. When cache targets go on-line again, their corresponding handlers may be

re-enabled.

Host Select the description that describes the hostname or IP address of the router hosting the

web document cache target.

Host descriptions were created in steps 4 through 4b. If there is no host description for the

cache target you are describing, you must first create it by repeating steps 4 through 4b.

TCP Port Use the default value or enter a new value.

If the router is not using the default port, enter it here.

HTTP Server 191

Field Description

Cluster ID Enter the fully qualified host name or IP address of the web server cluster for which the

router is caching documents.

This name applies to the name of the web document cache, not the router that is hosting

the cache. The router, specified by the Host field, may contain multiple caches for different

web server clusters. Use this field to specify which web document cache you want to

manage.

Cluster TCP

Port

Enter the TCP port number associated with the cluster ID specified above.

The server combines the cluster ID and the cluster TCP port to uniquely identify a cache

target hosted by the router.

Root

Directory

Use the default, (/).

All URLs posted to this cache target will be relative to the specified directory (path).

Keep Alive Select No.

If you know the cache target supports persistent HTTP connections, commonly referred to

as ’keepalive’ support, you may want to select Yes to avoid having the server disconnect

after each post request.

Threads Use the default, 5.

When started, the server will run in a multithreaded process on the iSeries system. It will

use the number of specified threads to interact with this cache target.

A cache target thread is dedicated to fulfill one post request at a time. When threads are

waiting for a response from a cache target it is not available to send other requests. Be sure

to specify enough threads to provide for a number of simultaneous requests acceptable to

the cache target without overwhelming it.

f. Click Create.

g. To add more cache target descriptions, repeat steps 8 through 8f.
 9. Click Trigger handlers.

10. Click Create New Description to add additional trigger handler descriptions to the configuration. If

you don’t want to add additional trigger handler descriptions, skip to step 11.

a. Do the following on the first Create trigger handler description form.

 Field Description

Name Enter a name for this description. For example simpleDocUpdate for an update cache trigger

handler, or docPublisher for a publish trigger handler.

The name you choose is used by your application triggers when sending messages to the

server. All trigger messages sent to the server must contain the name of the trigger handler

that is to process the request.

192 iSeries: IBM HTTP Server

Field Description

Type Select Update Cache to define a trigger handler that does simple cache updates.

Select Publish to define a trigger handler that does document publishing.

Update Cache trigger handlers perform simple data transfers. They retrieve objects from a

data source and copy them to cache targets.

Publish trigger handlers may use object dependency graphs and rule sets to perform

dependency parsing and page assembly (prior to doing cache updates). You may use the

DEFAULT object dependency graph description included in the default configuration, or

you may create and use a new one specifically for your handlers.

For more information, click on Publishing rules and Rule set in the list on the left, then

click on the help icon in the top-right corner of these pages. If you decide to create your

own publishing rules and rule set(s) you may do so, and then return to step 9 to add

publish trigger handler descriptions to reference your new rule set(s).

b. Click Next.

c. If Update Cache was chosen previously, do the following on the second Create trigger handler

description form. Otherwise, skip to the next step.

 Field Description

Data Source Select the description that describes the data source for this trigger handler.

Trigger handlers go to one, and only one, data source to retrieve information. The same data

source, however, may be used by more than one trigger handler. Data source descriptions

were created in steps 6 through 6f. If there is no description for the data source you want

your handler to use, you must first create it by repeating steps 6 through 6f.

Cache

Targets

Select the descriptions that describe the cache targets for this trigger handler, or select no

descriptions to create a trigger handler that retrieves data but does not sent it to cache.

Trigger handlers can manage data for multiple cache targets. Moreover, the same cache

target can be managed by more than one trigger handler. Cache target descriptions were

created in steps 8 through 8g. If there is no descriptions for the cache targets you want your

handler to manage, you may first create them by repeating steps 8 through 8g, or continue

on to create this description and then come back to include them later.

Trigger

Queue

Collapse

Policy

Use the default value.

Trigger messages sent from application triggers to a server are always placed on a particular

trigger handler’s request queue. The handler then processes the requests asynchronously

according to the queuing policy specified within the message. It is possible for identical

trigger messages to be in queue, either due to the queuing policy or due to the server being

overwhelmed by requests. This setting defines how identical triggers in queue are to be

handled.

Cache

Request

Queue

Priority

Use the default value.

The same cache target can be managed by more than one trigger handler. Cache update

requests from trigger handlers are queued and processed according to priority. This setting

defines the priority this handler is to specify when placing cache update requests. The lower

the number, the higher the priority. The default is the lowest priority. Enter a lower number

if you want this handler to have a higher priority.

Threads Use the default value or enter a new value.

When started, the server will run in a multithreaded process on the iSeries system. It will

use the number of specified threads to process requests sent to this trigger handler.

HTTP Server 193

Field Description

Success/

Failures

Use the default value.

Trigger handlers can post success or failure messages to acknowledgment targets after

requests are handled. This setting allows you to specify the two acknowledgment target lists

this handler uses. One list is used to send success messages; the other is used to send failure

messages.

Default configuration settings do not include acknowledgment target descriptions. If you

want your trigger handler to post completion messages, you must first write an application

that listens for such messages (using HTTP POST method). You can then add an

acknowledgment target description to this server’s configuration and reference it here.

d. If Publish was chosen previously, do the following on the second Create trigger handler

description form.

 Field Description

Data Source Select the description that describes the data source for this trigger handler.

Trigger handlers go to one, and only one, data source to retrieve information. The same data

source, however, may be used by more than one trigger handler. Data source descriptions

were created in steps 6 through 6f. If there is no description for the data source you want

your handler to use, you must first create it by repeating steps 6 through 6f.

Cache

Targets

Select the descriptions that describe the cache targets for this trigger handler, or select no

descriptions to create a trigger handler that retrieves data but does not sent it to cache.

Trigger handlers can manage data for multiple cache targets. Moreover, the same cache

target can be managed by more than one trigger handler. Cache target descriptions were

created in steps 8 through 8g. If there is no descriptions for the cache targets you want your

handler to manage, you may first create them by repeating steps 8 through 8g, or continue

on to create this description and then come back to include them later.

Default

Include

Object

Use the default value.

All document component must be triggered before they can be processed by a publish

trigger handler. This setting defines an object (by name) that is included during page

assembly when neither the source object nor the specified default object in a %fragment tag

has been triggered. The default value, none, indicates that such a global default include

object is not specified for this handler.

Object

Dependency

Graph

Select the DEFAULT description.

Publish trigger handlers only use one object dependency graph to record and query object

dependency information. The same graph, however, may be used by more than one publish

trigger handler.

Edge Type

to Traverse

Use the default value.

When publish trigger handlers query an object dependency graph to determine dependency

relationships between document components, they traverse a particular edge type (by

name). Other edge types, perhaps added by other handlers, are ignored. This setting defines

the name of the edge type this handler is to build and traverse. If not specified (the default)

a system supplied edge type is used.

194 iSeries: IBM HTTP Server

Field Description

Rule Set Use the default value.

Publish trigger handlers abide by a set of publishing rules when publishing documents. The

same rule set, however, may be used by more than one publish trigger handler. If not

specified (the default) the default publishing rule is used for all components.

For more information, click on Publishing rules and Rule set in the list on the left (after

creating this trigger handler description), then click on the help icon in the top-right corner

of these pages. If you decide to create your own publishing rules and rule sets you may

then change this trigger handler description to reference your new rule sets.

Threads Use the default value.

When started, the server will run in a multithreaded process on the iSeries system. It will

use the number of specified threads to process requests sent to this trigger handler.

Success/

Failures

Use the default value.

Trigger handlers can post success or failure messages to acknowledgment targets after

requests are handled. This setting allows you to specify the two acknowledgment target lists

this handler uses. One list is used to send success messages; the other is used to send failure

messages.

Default configuration settings do not include acknowledgment target descriptions. If you

want your trigger handler to post completion messages, you must first write an application

that listens for such messages (using HTTP POST method). You can then add an

acknowledgment target description to this server’s configuration and reference it here.

The Include object dependency information in acknowledgments option may be used.

e. Click Create.

f. To add more trigger handler descriptions, repeat steps 10 through 10e.
11. Click Work with servers.

12. Select the server that you just customized. For example: JKLTCMServer.

13. If your server is listed as ″Active″ under the Status column, click Stop. Otherwise skip to step 15.

The message, ″A request to end server ’JKLTCMServer’ has been submitted″ will display at the

bottom of your screen. It may take a few moments for the server end (click Refresh periodically

until you see the server listed as ″Not Active″).

14. Select the server that you just customized. For example: JKLTCMServer.

15. Click Start.

16. The message, ″A request to start server ’JKLTCMServer’ has been submitted″ will display at the

bottom of your screen. It may take a few minutes for the server to fully activate for the first time

(click Refresh periodically until you see the server listed as ″Active″ under the Status column).

You have just created, configured, and started a triggered cache manager server using a custom

configuration. Your application triggers may now send trigger messages to the active server to request

that documents be updated, deleted, or published to the cache targets specified in the configuration.

WebDAV tasks

This topic provides step-by-step tasks for Web-based distributed authoring and versioning (WebDAV).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 195

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Related information

 “WebDAV for HTTP Server (powered by Apache)” on page 64
This topic provides information about Web-based distributed authoring and versioning (WebDAV).

Set up WebDAV for HTTP Server (powered by Apache)

This topic provides information about how to set up WebDAV for your HTTP Server with the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Web-based distributed authoring and versioning (WebDAV) is a set of extensions to the HTTP protocol

that allows WebDAV clients (such as Microsoft Web Folders) to collaboratively edit and manage files on

remote Web servers. See “WebDAV for HTTP Server (powered by Apache)” on page 64 for more

information.

To configure WebDAV on your server, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Request Processing.

 7. Click the WebDAV tab in the form.

 8. Specify one of the following under WebDAV lock databases:

v Full path name for locking stream files: - the full path of the DAV lock database for the Root (/)

or QOpenSys streaming file system.

v Library/name for locking QSYS objects: - the library and file name of the DAV lock database for

QSYS objects.
 9. Click OK.

10. Select the context you want to work with from the Server area list. The server area you select will be

WebDAV enabled.

11. Click Request Processing.

12. Click the WebDAV tab in the form.

13. Select Enabled to Enable WebDAV.

14. Enter the appropriate file system under Repository provider.

15. Enter any WebDAV restrictions you want enabled for this server area.

16. Click OK.

WebSphere tasks

This topic provides step-by-step tasks for managing WebSphere applications.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

196 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Manage WebSphere Application Server

V5R3 is shipped with a pre-configured WebSphere Application Server - Express Version 5 application

server instance referred to as the System Application Server Instance (SYSINST). This topic describes how

to start SYSINST.

The SYSINST has the following IBM supplied system administrative web applications pre-installed,

providing an easy-to-use web GUI interface to administration tasks:

v iSeries Navigator Tasks for the Web

v Access core systems management tasks and access multiple systems through one iSeries from a web

browser

v Tivoli® Directory Server Web Administration Tool

v Setup new or manage existing (LDAP) directories for business application data.

The SYSINST is not started by default when V5R3 is installed. Before you begin working with the above

functions, the Administration instance of the HTTP Server (port 2001) must be running on your system.

The above administrative web applications are accessible after the SYSINST is started. Perform these

steps to start the SYSINST.

Set up the system instance to start when the ADMIN HTTP server starts.

1. Using a Web browser, go to the IBM HTTP Server Configuration and Administration forms by

performing these steps:

a. Open this URL in your browser:

http://your.server.name:2001/

where your.server.name is the name of your iSeries server.

b. Enter a valid user ID and password for your iSeries server.

c. At the iSeries Tasks page, select IBM Web Administration for iSeries .
2. Click the Manage tab and the HTTP Server tab.

3. Select Admin from the Server drop-down list.

4. Under Server Properties, select General Server Configuration.

5. On the General Server Configuration page, click the General Settings tab.

6. Select Yes in the Start the system application server instance when the ’Admin’ server is started

field.

7. The Stop the system application server instance when the ’Admin’ server is stopped field displays.

It is recommended that you select Yes to stop the system application server instance when the

ADMIN server is stopped. Click OK.

8. Restart the administrative instance, and both the administrative HTTP server and the SYSINST are

started.

(Optional) Start the system instance independent of the ADMIN HTTP server.

If you have already set up the system instance using the previous steps, you can perform these steps to

start the system instance independent of the ADMIN HTTP server.

1. Using a Web browser, go to the IBM HTTP Server Configuration and Administration forms by

performing these steps:

a. Open this URL in your browser:

http://your.server.name:2001/

where your.server.name is the name of your iSeries server.

b. Enter a valid user ID and password for your iSeries server.

c. At the iSeries Tasks page, select IBM Web Administration for iSeries .

HTTP Server 197

2. Click the Manage tab and the Application Servers tab.

3. Select the system application server instance from the Instance/Server drop-down list.

4. Click Start to start SYSINST.

WebSphere Portal wizard worksheet

This topic helps you with the Create WebSphere Portal wizard in the IBM Web Administration for iSeries

interface.

Note: See the “Requirements” on page 199 in this document for information on all required PTFs,

software, and hardware.

It is recommended that you use the Create WebSphere Portal wizard in the IBM Web Administration for

iSeries interface when configuring your WebSphere Portal server. This reduces the time required to

configure and start the Portal server and reduces the complexity of the many different features of the

Portal server. Information documenting the installation and configuration of the Portal server on iSeries is

located in the WebSphere Portal Product Documentation

Web site.

The Create WebSphere Portal wizard. WebSphere Portal is a J2EETM application that runs on WebSphere

Application Server. WebSphere Portal creates an environment that provides connectivity, administration,

and presentation services that allow portal users a means for doing business efficiently and with high

satisfaction. The wizard will help you create and configure the elements of a portal server. The following

elements are configured through the wizard:

WebSphere Application Server

The WebSphere Application Server is the engine that drives the WebSphere Portal. This is

the Web server that provides J2EE services for the portal environment. For more information

on WebSphere Application server, see WebSphere Application Server for iSeries.

HTTP Server

The HTTP server routes the incoming URL requests to the proper locations. All dynamic

requests are routed by the HTTP server to the application server, which then displays the

required portlets.

WebSphere Portal

WebSphere Portal consists of the middleware, portlets, and development tools for building

and managing secure business portals. A portal is a Web site that provides end users with a

single point of access to Web-based resources. For more information on WebSphere Portal,

see the WebSphere Portal Product Documentation

Web site.

LDAP The LDAP server controls who has access to the portal server. In the portal environment, it

stores, updates, and retrieves user-specific data related to authentication such as users and

passwords. For more information on LDAP, see Directory Services (LDAP).

Database

DB2 database is used by the WebSphere Portal as a repository for user customized portal

Web pages and portal configuration information. For more information on DB2, see DB2

Universal Database™ for iSeries.

Portlet deployment

The wizard deploys portlets to your Portal server.

 Before you begin

1. Make sure you have the required software and PTFs installed. See “Requirements” on page 199.

2. Plan to set aside enough time for the wizard to complete the WebSphere Portal server configuration.

Depending on your iSeries server and if you are accessing remote iSeries servers for DB2 or LDAP,

the process may take an hour or more once you have clicked the Finish button in the wizard.

198 iSeries: IBM HTTP Server

http://www.ibm.com/websphere/portal/library
http://www.ibm.com/websphere/portal/library

Note: The installation of PTFs for products required by WebSphere Portal might require at least one

initial program load (IPL or restart) of the server, so plan appropriately

3. You must have a valid user ID and password on the local iSeries server. The user profile must at least

have *ALLOBJ, *IOSYSCFG, and *JOBCTL special authority to install and configure the WebSphere

Portal server.

4. You must have a database user profile, a user profile that owns the database, with at least *USER

authority on the iSeries server where the DB2 is located to use an existing database user profile. If

you have *SECADM authority, you can create a new database user profile through the wizard. If

using a remote iSeries server for the Portal server database, you must have a user profile with at least

*USER authority on the remote iSeries server.

5. Verify the following network setup requirements before installation:

v Static IP address: WebSphere Portal requires that you use a static IP address on the machine where

you are installing.

v Fully-qualified host name: WebSphere Portal also requires the use of a fully-qualified host name,

which is typically the host name of the iSeries server, along with its fully-qualified domain name.

To be sure that this is configured correctly, you can check with a simple ping before you start

installation. For example, you could enter the following command at a command prompt: ping

yourserver.yourcompany.com

Requirements

Minimum hardware requirements

You can use the IBM Workload Estimator

for help with sizing all system configurations. It might be

possible to use systems that do not meet the recommended minimums in environments that support a

limited number of users and where longer server initialization times can be tolerated, but performance

may suffer.

v iSeries Model 810 with processor feature 2465

v 2 GB of memory

v 1.5 GB of disk space for installation of WebSphere Portal and WebSphere Application Server V5.0

Enterprise Enablement

v 500 MB of disk space for each WebSphere Application Server instance configured for use with

WebSphere Portal

Note: These requirements represent the recommended minimum requirements. Deployments which must

support many users or require shorter response times might require additional resources. These

minimum requirements are based on a non-cluster environment running a single WebSphere

Application Server instance. To run multiple WebSphere Application Server instances at the same

time, additional system resources are required.

Required software

The following software is required. Items noted with a CD number following their description are

included with WebSphere Portal. All other required and optional software must be obtained separately.

v 5722SS1 OS/400 V5R2 or 5722SS1 OS/400 V5R3

v 5722JV1 (Option *BASE) IBM Developer Kit for Java

v 5722JV1 (Option 5) Dev Toolkit for Java (Version 1.3), requires the *BASE option

v 5722SS1 (Option 12) Host Servers

v 5722SS1 (Option 30) Qshell Interpreter

v 5722SS1 (Option 33) Portable Application Solution Environment (PASE)

v 5722DG1 IBM HTTP Server for iSeries

HTTP Server 199

http://www-912.ibm.com/supporthome.nsf/document/16533356

v 5722TC1 TCP/IP Utilities

v 5733WS5 (Option *BASE) WebSphere Application Server V5.0 (CD 1-1)

v 5733WS5 (Option 1) WebSphere Application Server V5.0 Client development and runtime (CD 1-1)

v 5733WS5 (Option 2) WebSphere Application Server V5.0 Application server runtime (CD 1-2)

v 5733WS5 (Option 10) WebSphere Application Server V5.0 Enterprise Enablement (CD 1-12)

Note: The WebSphere Application Server V5.0.2 PTF Group must be installed, and the system must be

restarted prior to installing WebSphere Application Server V5.0 Enterprise Enablement.

Required PTFs

Note: The Create WebSphere Portal wizard in the IBM Web Administration for iSeries interface has a

built-in dependency checklist. If your system does not have all of the required PTFs installed, a

message displays with a link to a detailed list of missing requirements. The wizard does not allow

you to continue until the missing PTFs are applied.

See these websites for a complete list of all required PTFs.

v See the WebSphere Portal for iSeries

website for a partial list of iSeries specific PTFs.

v See the WebSphere Portal product website

for a partial list of required PTFs.

v Additional required PTFs are provided on CD 1-13. Refer to the Release Notes at Release Notes

for this list.

To determine if the correct PTF packages are installed, perform the following steps:

1. Sign onto your iSeries server.

2. Enter the Display PTF Status (DSPPTF) command on an OS/400 command line. The Display PTF Status

screen is displayed. This screen lists the PTFs that have been applied to your server.

3. Enter the Work with PTF Groups (WRKPTFGRP) command on an OS/400 command line. The Work with

PTF Groups status screen is displayed. This screen lists the PTF group level and what group PTFs

have been applied to your server.

Note: See the IBM eServer™ iSeries Support Fixes

for instructions on ordering PTFs.

Planning worksheet

The planning worksheet lists the information needed for installing the WebSphere Portal server and its

components. Fill in the table with values appropriate for your iSeries server and do not assume the

default values listed within the table are correct. When possible, the Create WebSphere Portal wizard

provides iSeries and LDAP server system values for you. These values are noted in the planning

worksheet.

 Form and field name Write your value here

Step 1: Create WebSphere Application Server for the Portal - Specify Name

The first step is to create a new WebSphere Application Server for your WebSphere Portal server. The wizard creates

a new WebSphere Application Server for you with the specified name. You cannot use an existing application server.

The name must be unique within your WebSphere Application Server installation. If the name you type is currently

used by another application server, the wizard displays a warning. The wizard creates the application server,

updates the virtual host information for the HTTP Server (that is specified in the next step), updates the Web server

plug-in, and creates the necessary JDBC providers and datasources that are required for WebSphere Portal.

200 iSeries: IBM HTTP Server

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/portal/ptf.html
http://publib.boulder.ibm.com/pvc/wp/502/smbi/en/InfoCenter/wpf/is_inst_req_smb.html#sup_ptf
http://publib.boulder.ibm.com/pvc/wp/502/smbi/en/release_notes_smbi.html
http://www.ibm.com/eserver/iseries/support/

Form and field name Write your value here

v Application server name: Specifies a name for the application

server that identifies the application server. The name can be any

alphanumeric value. Names cannot contain a blank or any of the

following special characters: &!@%*:/\#;?,=^<>|+’"(){}[]. The

name must be unique. A default application server name is entered

for you. This default value is unique.

Example: WAS5Portal5

v Server description: Specifies a description for the application

server. This field is optional and is only used to identify your

application server throughout the IBM Web Administration for

iSeries interface. A default description is entered for you. This field

is optional.

Example: WebSphere Portal server WAS5Portal5, created by the portal

wizard

Step 2: Select HTTP Server Type

The application server requires an association with an HTTP Server. The HTTP Server routes incoming requests

from Web clients to the application server. Using an external HTTP Server is the recommended method for a

production Web server. The application server has its own internal HTTP Server, but it is recommended that it only

be used for development as it is not enabled for production-level security. Using an HTTP Server (powered by

Apache) gives you control of the security of your server. If you have a firewall, you can put the HTTP Server

(powered by Apache) outside the firewall so only specific requests are enabled to reach your application server,

providing for a greater degree of security.

Choose to create a new HTTP Server (powered by Apache) (option A) or use an existing HTTP Server (powered by

Apache) already configured on your iSeries server (option B).

v Option A: Create a new HTTP server (powered by Apache):

Enables you to create a new HTTP Server to be used with your

WebSphere Portal server. Select this option to create a new HTTP

Server to use with your WebSphere Portal server.

If you select this option, skip to Step 3: Create a new HTTP Server

(powered by Apache) to continue.

v Option B: Select an existing HTTP Server (powered by Apache):

Enables you to select an existing HTTP Server previously

configured on your iSeries server. Select this option to use an

existing HTTP Server instead of creating a new HTTP Server. By

choosing this option, the existing HTTP Server is now associated

with your new WebSphere Portal server. Any other application

server that was previously configured to use this particular HTTP

Server will need to be reconfigured.

If you select this option, skip to Step 4: Select an existing HTTP

Server (powered by Apache) to continue.

Step 3: Create a new HTTP Server (powered by Apache)

The new HTTP Server is created with all the necessary directives to be ready for production. The server is

configured with the plug-in directives which routes URL requests from the HTTP Server to the application server.

The name of the HTTP Server must be unique. If the name you type is in use by another HTTP Server, the wizard

displays a warning.

v HTTP Server name: Specifies a name for the HTTP Server that

identifies the server. The name can be any alphanumeric value no

more than 10 characters long. Names cannot contain a blank or

any of the following special characters: &!@%*:/\
#;?,=^<>|+’"(){}[]. The name must be unique.

Example: MYHTTPSRVR

HTTP Server 201

Form and field name Write your value here

v HTTP Server description: Specifies a description for the HTTP

Server. This field is optional and is only used to identify your

HTTP Server throughout the IBM Web Administration for iSeries

interface. The default for this field is HTTP Server created by the

Create Application Server Wizard.

Example: This is the HTTP Server for WebSphere Portal.

v IP address: Specifies the IP address the HTTP Server uses.

Possible values include any valid IP address or All IP

addresses. The default is All IP addresses. If All IP

addresses is selected, the HTTP Server listens on the

designated port for all IP addresses on the system. You can

only specify the IP addresses that are currently configured to

this iSeries. If you have multiple IP addresses configured for

this machine (for example, one for your external requests and

one for internal requests), you can limit this server to listen

to only one of them by selecting the desired IP address from

the list.

v Port: Specifies the TCP/IP port number the HTTP Server will

be listening on. The port number is used to link the

incoming data to the correct application service. The wizard

reviews the list of ports being used on the system and

recommends a port number currently not in use. The wizard

starts looking at port number 10000 for free ports. Most

browsers send request to port 80 by default. For production

situations, it is recommended to use port number 80. Specify

port 443 for secure HTTP (HTTPS) transactions. The wizard

does not configure SSL.

The wizard verifies that another server is not using any of

the ports in the specified range. The wizard checks the list of

active ports on the system. It also examines all the HTTP

Servers that are configured, any ASF Tomcat servers that

might be configured, and all WebSphere Application Servers

configured on this system. If another server is configured

using any of the ports in the specified range, an error

message is displayed and you cannot proceed.

Step 4: Select an existing HTTP Server (powered by Apache)

Select an existing HTTP Server from the table. The HTTP Server is configured to route URL requests to the

application server. The plug-in directives are reconfigured to point to the application server that is being created in

this wizard.

Note: If the HTTP Server is already configured for a different WebSphere Application Server, it is reconfigured for

the new WebSphere Application Server. An HTTP Server can route requests to only one application server. If the

HTTP Server is already configured for a different application server, it is reconfigured for the new application

server. Any application server previously configured for an existing HTTP Server no longer receives HTTP requests.

Step 5: Specify Internal Ports Used by the Application Server

A range of consecutive is reserved for the application server internal services only. The number you specify is the

first of a range of 12 to 13 consecutive numbers. For example, if you specify 10219, the numbers 10219 to 10230 or

10219 to 10231 are assigned. All of the consecutive ports must be free.

202 iSeries: IBM HTTP Server

Form and field name Write your value here

v First port in range: Specifies the range of port numbers your

application server uses for internal services. The port number is

used to link the incoming data to the correct application service.

The default value is the first port number in the range of

consecutive ports that are not currently in use by your system.

Example: 10219

Note: Only one service can run on a port at a time. The wizard

verifies that the port range you specify is correct and the port

range is not in use. The wizard verifies that another server is not

using any of the ports in the specified range. The wizard checks

the list of active ports on the system. It also examines all the HTTP

Servers that are configured, any ASF Tomcat servers that might be

configured, and all WebSphere Application Servers configured on

this system. If another server is configured using any of the ports

in the specified range, an error message is displayed and you

cannot proceed.

Step 6: Create DB2 Database for Portal

The WebSphere Portal server requires a database to store information about user identities, credentials, permissions

for accessing portal resources, customized Web pages, and other customized portal information. The wizard creates

a DB2 database on the local iSeries server or on a remote iSeries server.

Choose to create a new collection, schema, or library on your local iSeries server (option A) or create a new

collection, schema, or library on a remote iSeries (option B).

v Option A: Create a new collection on this local iSeries: Enables

you to create a new database collection, schema, or library on a

local iSeries server database.

v Collection, Schema or Library name: Specifies the name of

your new collection, schema, or library. The name can be any

alphanumeric value no more than 10 characters long. The

name must be unique. The wizard recommends a unique

default value. If a collection, schema, or library with the

name specified currently exists, an error message is

displayed and you cannot proceed.

Example: PortalDB

v Option B: Create a new collection on a remote iSeries: Enables

you to create a new database collection, schema, or library on a

remote iSeries server database.

If you select this option, skip to Step 8: Create a default URL path,

portal path, and personalized path to continue.

Note: You must have a user ID on the remote iSeries server that

has *USER authority to the Change Job (CHGJOB) command to

create a new collection, schema, or library.

v Collection, Schema or Library name: Specifies the name of

your new collection, schema, or library. The name can be any

alphanumeric value no more than 10 characters long. The

name must be unique. The wizard recommends a unique

default value. If a collection, schema, or library with the

name specified currently exists, an error message is

displayed and you cannot proceed.

Example: PortalDB

HTTP Server 203

Form and field name Write your value here

v System: Specifies the IP address or the hostname of the

remote iSeries server where the database is to be created. If

the remote iSeries cannot be accessed, an error message is

displayed and you cannot proceed.

Example: myiseries.com

v iSeries userid: Specifies a valid iSeries user ID that can

access the remote iSeries server and database. Note that the

user ID is also the iSeries user profile that owns the remote

iSeries database after it is created. It is recommended that

you specify a special user ID whose only purpose is to own

the remote database. This prevents the remote database from

being associated with a specific user whose user ID might be

removed in the future. The specified user ID must have a

password associated with it. Do not change the user ID or

password for the remote database at a later date. If the

remote database owner user ID profile or password is edited,

removed or disabled, your WebSphere Portal server stops

working. It is recommended that you create a profile called

wpsdbuser.

v Password: Specifies the password for the iSeries user ID

typed in the iSeries userid field.

Step 7: Specify User ID to Own the Portal Database

The local database created for the WebSphere Portal server requires an iSeries user profile to own the database. It is

recommended that you specify a special user ID whose only purpose is to own the database. This prevents the

database from being associated with a specific user whose user ID might be removed in the future. The specified

user ID must have a password associated with it. Do not change the user ID or password for the database at a later

date. If the database owner user ID profile or password is edited, removed or disabled, your WebSphere Portal

server stops working. It is recommended that you create a profile called wpsdbuser.

Choose to use an existing user ID (option A) or create a new user ID (option B).

v Option A: Use an existing user ID on this local system: Enables

you to specify an existing user ID and password.

v User name: Specifies an existing user ID. The name can be

any alphanumeric value no more than 10 characters long. By

default, wpsadmin is used.

Note: You must provide a valid and existing iSeries user ID

and password, or an error is issued and you cannot proceed.

v Password: Specifies the password for the iSeries user name

typed in the User name field.

204 iSeries: IBM HTTP Server

Form and field name Write your value here

v Option B: Create a new user ID on this local system: Enables you

to create a new user ID and password. The user ID is created with

*USER class authority.

Note: The create a new user ID on a local system option is

available only if the user currently signed on to the GUI has

*SECADM special authority.

v User name: Specifies the new user ID. The name can be any

alphanumeric value no more than 10 characters long. By

default, wpsadmin is used.

v Password: Specifies the password for the iSeries user name

typed in the User name field.

v Confirm password: Specifies the new iSeries user name

password a second time for confirmation.

Step 8: Create a default URL path, portal path, and personalized path

To access the WebSphere Portal server you need to provide a base URI for the default URL path. Provide a base URI

for the default URL path to access the WebSphere Portal server. The values are customizable to better suit the needs

of your organization. Any URL that starts with this URI is reserved for the WebSphere Portal server. In addition, the

WebSphere Portal server default home path is used to access the WebSphere Portal home Web page. The

personalized path is the path to the WebSphere Portal server user’s customized pages. Use the forward slash (/) to

distinguish different directory levels (example, /myportal/users/home). The wizard creates the directories for you.

Note: When specifying the Default URL path (context root), do not specify a value that is the same as a directory

existing in a portlet’s WAR directory. For example, if you set the context root for WebSphere Portal to be /images

(/wps is the default value) and there is also a portlet with the directory structure /myPortlet.ear/myPortlet.war/images,

this could cause a conflict if the portlet encoded URI references to resources in its own /images directory. In this

situation, the portlet would be unable to display images because WebSphere Portal would look for the image

resources according to its own context root path instead of the directory path specified by the portlet’s WAR file.

v Default URL path: Specifies the context root or base URI for the

WebSphere Portal server. All URLs beginning with this path are

reserved for the WebSphere Portal server. This value is part of the

URL used to access WebSphere Portal from a browser. By default,

wps is used.

Example: http://hostname.yourco.com:9081/wps/portal

v Default home path: Specifies the default WebSphere Portal server

home path. This URL is used to access the WebSphere Portal home

page. This is the Web page for users who are not logged in. This

value is part of the URL used to access WebSphere Portal from a

browser. By default, portal is used.

Example: http://hostname.yourco.com:9081/wps/portal

v Personalized path: Specifies the personalized path URL. The

personalized path is the URL for user’s customized pages. This is

the portal Web page for users who have already logged into the

portal. This page cannot be accessed by anonymous users. This

value is part of the URL used to access WebSphere Portal from a

browser. By default, myportal is used.

Example: http://hostname.yourco.com:9081/wps/myportal

HTTP Server 205

Form and field name Write your value here

Step 9: Configure Proxy Information

Some intranet security configurations require a proxy server for accessing content outside the Intranet. A proxy

server is used to enable users to access Web sites outside of firewalls, to provide better access time by using

caching, to provide logging and tracking of internet usage, or to limit port access. If you are unsure whether your

company uses a proxy server, contact your network administrator. If you specify to use a proxy server, all portlets

that use the Content Access Service (CAS) to retrieve data from sources that reside outside your local network use

this proxy server to retrieve data.

WebSphere Portal comprises a highly configurable framework of services to accommodate the different scenarios

that portals need to address. The framework enables convenient replacement of service implementations as well as

modification to the configuration of each service. Content Access Service is one of the services provided by the

configurable framework of services.

Portlets can access content from a remote system that is located on the other side of a firewall by invoking CAS.

Not all portlets use CAS. You may need to modify portlets individually to use your proxy server to obtain external

data. Some portlets included with the Business portlets, such as the Pinnacor portlets (My News, My Weather, My

Stocks, etc.) and the Financial Times portlets, do not use CAS. Refer to the ″Troubleshooting Portlets″ section of the

WebSphere Portal InfoCenter

for instructions on configuring these portlets to use a proxy. For more

information about the Content Access Service, refer to the sections entitled ″Accessing remote systems″ and ″Portal

service configuration″ in the WebSphere Portal InfoCenter

. If you are unsure if your company uses a proxy

server, contact your network administrator.

Choose to not use a proxy (option A) or use a proxy (option B).

v Option A: Do not use proxy: Enables you to use the WebSphere

Portal server without proxy.

v Option B: Use proxy: Configures WebSphere Portal server for

portlets that use Content Access Service.

v Hostname: Specifies the hostname of your proxy server. A

hostname is a fully qualified Domain Name System (DNS)

domain name that can be resolved to one or more IP

addresses via the DNS domain name service. It represents a

logical host and must be resolvable to at least one fully

qualified Internet address in numeric (dotted quad) form or

often to a list of hosts with different IP addresses. The

wizard attempts to verify that the hostname and port are

valid by attempting to connect to the specified proxy server.

If the wizard is unable to connect, a warning is issued.

Before the portal server can use the proxy, you must make

sure the proxy server is running.

Example: myiseries.proxy.domain

v Port: Specifies the TCP/IP port number on which the proxy

server is listening.

Example: 78

 Step 10: Deploy Default Portlets

WebSphere Portal includes a variety of portlets that you can deploy and use in your portal pages. The

Administrative portlets and Themes and Skins are deployed by default. Specify the portlets that you want to deploy

to your WebSphere Portal server.

206 iSeries: IBM HTTP Server

http://publib.boulder.ibm.com/pvc/wp/502/index-smbi.html
http://publib.boulder.ibm.com/pvc/wp/502/index-smbi.html

v Administrative portlets: These portlets allow you the ability to easily and efficiently administer the content

and resources of your portal server, deploy new portlets, and control who has access to the portal server.

v Themes and skins: These portlets easily customize the look and feel of your portal.

v Business portlets: These portlets provide connectivity and integration to allow access to enterprise data,

external newsfeeds, weather, newsgroups, and other applications.

v Portal Document Manager (PDM) portlets: These portlets streamline complicated document management

processes by providing a centralized location for documents and built-in methods for tracking changes and

comments from members of the work team. They provide protection for the documents by controlling who

has read or write access.

v Lotus Collaborative portlets: These portlets provide access to a variety of Lotus Notes-based applications,

such as e-mail, calender, to-do list, discussion, team room, contacts, and notebooks, and other Lotus

applications such as knowledge management, instant messaging, quickplaces, and document management.

v iSeries Access portlets: These portlets allow you to access information on your iSeries servers through a

Web browser. This option is disabled if you do not have the following 5722-XH2 PTFs applied:

– SI11914 (5722XH2)

iSeries Access portlets include the following:

– 5250 portlet:

- Run commands and access full-screen 5250 character-based applications.

– IFrame portlet:

- Access any of the iSeries Access for Web servlets using the IFrame portlet.

– Integrated file system browsing portlets:

- Browse the iSeries integrated file system.

- View, edit, upload and download files.

– Printers, printer output, and output queues portlets:

- View printer status, start and stop the writer job associated with a printer.

- Hold, release, print, delete and view printer output files.

- Move printer output files to another output queue or printer.

- Hold and release output queues.

– Database tables and SQL portlets:

- View database tables, add and update records.

- View query results, customize format of results.

- Run SQL statements dynamically.

– Command portlets:

- Run CL commands.

HTTP Server 207

v Lotus Collaboration Center: These portlets provide users immediate access to a searchable directory of

people that is integrated with their workplaces and their e-meetings within the collaborative portal. Users

can find people in the directory, see their online status, and interact with them using instant messaging and

other actions provided by people links. In addition to search features, the People Finder provides views of

each person’s directory record and his or her place in the organizational context. This option is disabled if

you do not have WebSphere Portal - Express Plus, or if you have WebSphere Portal - Express Plus, but

chose not to install the Lotus Collaboration Center.

Note: After the portlets have been deployed, they may require user configuration before they are functional.

Refer to the WebSphere Portal InfoCenter

for documentation regarding specific portlets.

If you select to deploy Lotus Collaborative portlets or Lotus Collaboration Center, continue to Step 11: Configure

Lotus Collaborative Components . Otherwise, to continue, skip to Step 12: Secure server using LDAP.

Step 11: Configure Lotus Collaborative Components

Lotus Collaborative Components provide the building blocks for integrating the functionality of Lotus Domino,

Lotus Sametime®, and Lotus QuickPlace® into portals and portlets. To use Lotus Collaborative Components, you

must use the Lotus companion products. In addition, you can configure Lotus Collaborative Components to use

Domino Directory as the LDAP server. Specify the Lotus Collaborative Components that you want to deploy to

your WebSphere Portal server. The hostname and port number are required. The default port number for Lotus

Sametime is 1533. The default port number for Lotus QuickPlace is 80.
Note: The port number is used by the Domino HTTP server to serve the Lotus companion products. Contact

your Domino administrator to determine what port number should be used for each Lotus companion

product.

Lotus Collaborative Components are Java APIs that provide the building blocks for integrating the functionality of

Domino, Lotus Sametime, Lotus QuickPlace, and Lotus Discovery Server™ into portals and portlets. Using Lotus

Collaborative Components, application developers can design and implement user interface extensions in portals

and portlets that extend the functionality of Lotus Software collaboration products. The primary goal of Lotus

Collaborative Components is to provide the data for portlets’ user interface and to enable developers to execute

actions on installed Lotus products. Lotus Collaborative Components include no platform-specific code, hide the

configuration details of Lotus Software products installed in the enterprise, and (except for the PeopleService tags)

are user interface neutral. Application developers can add collaborative functionality to a portlet without having to

know the details of server configuration and with total control of user interface design and implementation. These

benefits make Lotus Collaborative Components effective for implementing mobile applications.

Step 12: Secure server using LDAP

Determine if your WebSphere Portal server requires security. If you want to control who has access to the

WebSphere Portal server environment, configure LDAP. The wizard enables global security for the application

server. Global security enables the LDAP server to provide the WebSphere Portal server with user information. The

LDAP server must be active and you must have the administrator user’s Distinguished Name (DN) and password.

The wizard updates the LDAP server with the required application server and WebSphere Portal server information

such as the WebSphere Portal administrator user and group. If you plan to use LDAP with WebSphere Portal server,

it is advised that you use the wizard now to configure LDAP for you. The wizard configures Single Signon (SSO)

for the application server. SSO allows the user to enter one name and password and access to more than one

application.

Choose to not secure your WebSphere Portal server with LDAP (option A) or secure your WebSphere Portal server

with LDAP (option B).

v Option A: No, do not secure this server: Enables you to use

WebSphere Portal server without LDAP (not secured).

v If you select this option, skip to Step 16: Portal Administrative

Group and Administrative User to continue.

Note: If you plan on using LDAP with WebSphere Portal server,

it is advised you use the wizard now to configure LDAP for you.

v Option B: Yes, secure this server using LDAP: Enables you to

use WebSphere Portal server with LDAP (secured server).

208 iSeries: IBM HTTP Server

http://publib.boulder.ibm.com/pvc/wp/502/index-smbi.html

v LDAP server host name: Specifies the LDAP hostname. The

LDAP server can be located either on this iSeries or on a

remote system. Specify the hostname for the local or remote

LDAP server that you want to use. By default, the wizard

retrieves the hostname for the LDAP server for this iSeries.

Edit the hostname if you wish to use another LDAP server

within your enterprise. The LDAP server specified here

must be running. The wizard attempts to connect to the

LDAP server. If a connection is not made, an error is issued

and you cannot proceed.

Example: MYSERVER.COM

Note: Only certain types of LDAP servers are supported by

WebSphere Portal. Refer to the WebSphere Portal InfoCenter

for more information about LDAP servers.

v LDAP port: Specifies the TCP/IP port number on which the

LDAP server is listening. The wizard initializes the port to

the port being used by the IBM Directory Server if it is

configured or to the default port number. The default value

is port number 389 for TCP/IP connections and 636 for SSL

connections to the LDAP server. Edit the port number if

your LDAP server does not listen on port number 389 by

default. Check your LDAP server configuration to determine

the correct port number.

Step 13: Specify LDAP user and password

The wizard connects to your LDAP server and attempts to gather the proper configuration parameters for you. The

configuration for LDAP cannot continue without a valid LDAP administrator user and password for this

connection. The wizard verifies that the LDAP administrator Distinguished Name (DN) and password values

correspond to a valid LDAP entry. If the entry does not exist or an incorrect password is entered, an error is issued

and you cannot proceed.

v LDAP administrator DN: Specifies the administration DN for the

LDAP server. The DN uniquely identifies an entry in the LDAP

server. The wizard tries to retrieve the administrator user DN

from the LDAP server. If the administrator DN is found, the value

is entered into this field. If the value is not found, this field is left

blank and you must enter the correct value in this field. Edit the

value if you want to change the administrator DN.

Example: cn=administrator

v LDAP administrator password: Specifies the password for the

administrator DN.

Step 14: LDAP Configuration Parameters

The WebSphere Portal server uses LDAP to store user information for authentication purposes. Specify where the

administrator user and group reside in your LDAP directory. This is the same location that the repository of users

authorized to access the Portal Server resides. This can be existing list of users that have been defined in your

enterprise. The wizard connects to your LDAP server and attempts to gather the proper configuration parameters

for you.

v Information describing user entries

HTTP Server 209

http://publib.boulder.ibm.com/pvc/wp/502/index-smbi.html

v Parent DN: Specifies the user parent DN for the LDAP

server. This is the container where the Portal administrator

user (wpsadmin) and where all new Portal users will reside.

If a wpsadmin entry already exists in this LDAP server, it is

recommended that you specify the user parent DN

(container) where that wpsadmin entry is located. If no

wpsadmin Portal administrator exists in this LDAP server,

the wizard creates a new wpsadmin entry in the user parent

DN container that you specify. All new Portal users are

created in this user parent DN container. If your LDAP

server has a user parent DN container that is already

populated with LDAP users that are to have access to Portal

and if no wpsadmin Portal administrator exists in this LDAP

server, specify this populated user parent DN container. The

users already in this user parent DN container will now

have access to Portal. All new Portal users that are

registered via Portal will be created in this user parent DN

container as well. The wizard searches for the default user

parent DN cn=users,DC=myserver,DC=area,DC=co,DC=com. If

it is found, the value is entered into this field. If the value is

not found, select the user parent DN with Browse. Edit the

value if you want to change the user parent DN.

Example: cn=users,DC=myserver,DC=area,DC=co,DC=com

Note: For IBM Directory Server, when using the default

value (cn=users,DC=myserver,DC=area,DC=co,DC=com),

the wizard creates the cn=users container for you if it does

not exist. If you require a special user parent DN, create the

special user parent DN in your LDAP server before

proceeding. Refer to the WebSphere Portal InfoCenter for

more information on LDAP servers and their recommended

configurations.

The Browse button can be used to select a location within

your directory where user information is stored. This could

be a container that already holds user information. The

directory browser is provided as an aid for specifying the

location in the directory where user information will be

stored. Users are typically stored under suffixes that begin

with c=, o=, ou=, or dc=. For this reason, the directory

browser only displays suffixes that begin with these values.

v Object class: Select an object class that inherits, directly or

indirectly from the person class. A list of possible classes is

retrieved by the wizard.

v Naming attribute: Select a naming attribute. The possible

values are retrieved by the wizard based on the value of the

object class.

v Information describing the administrative group entry

210 iSeries: IBM HTTP Server

v Parent DN: Specifies the group parent DN for the LDAP

server. This is the container in which the Portal

administrator group (wpsadmins) must exist. If a wpsadmins

group entry already exists in this LDAP server, it is

recommended that you specify the group parent DN

(container) where that wpsadmins entry is located. If no

wpsadmins Portal administrator group exists in this LDAP

server, the wizard creates a new wpsadmins entry in the

group parent DN container that you specify. The wizard

makes the wpsadmin administrator a member of that group.

Unless you are using an IBM Directory Server and have

chosen cn=groups,DC=myserver,DC=area,DC=co,DC=com, the

group parent DN container must exist before continuing (it

is created for you in an IBM Directory Server). If you want

to create a special group parent DN, you need to create that

container first before continuing. The wizard searches for

the default group parent DN

cn=groups,DC=myserver,DC=area,DC=co,DC=com. If it is

found, the value is entered into this field. If the value is not

found, select the group parent DN with Browse. Edit the

value if you want to change the group parent DN.

Example: cn=groups,DC=myserver,DC=area,DC=co,DC=com

Note: For IBM Directory Server, when using the default

value (cn=groups,DC=myserver,DC=area,DC=co,DC=com),

the wizard creates the cn=groupscontainer for you if it does

not already exist. Also, for Domino LDAP servers, the use of

group Parent DNs is not required. Therefore, if you

configure WebSphere Portal to use a Domino LDAP server,

the wizard provides a special value, *ROOT, that you may

use for your group Parent DN. This value indicates that the

wpsadmins Portal administrator group is to be located in the

root of the Domino LDAP server. This is the only LDAP

server type for which this additional support is provided.

(You are not required to use the *ROOT special value when

configuring a Domino server. You can specify to have the

wpsadmins Portal administrator group located in a group

parent DN container.) Refer to the WebSphere Portal

InfoCenter

for more information about what common

group parent DNs are used based on your LDAP server

type. Some LDAP servers do not use group Parent DNs.

v Object class: Select an object class that contains the member,

uniqueMember, or memberURL class. A list of possible

classes is retrieved by the wizard.

v Naming attribute: Select a naming attribute. The possible

values are retrieved by the wizard based on the value of the

object class.

v Member attribute: The member attribute is retrieved by the

wizard based on the value of the object class.

HTTP Server 211

http://publib.boulder.ibm.com/pvc/wp/502/index-smbi.html
http://publib.boulder.ibm.com/pvc/wp/502/index-smbi.html

Step 15: LDAP Administrative Group and Administrative User

The WebSphere Portal server requires an administrative group and user entry in the LDAP directory. The wizard

defaults to wpsadmins and wpsadmin, respectively. The wizard creates the wpsadmins and wpsadmin LDAP

entries if they do not exist, and then adds wpsadmin to the wpsadmins group in your LDAP directory. The values

shown are used to create the LDAP Distinguished Name (DN) for these entries. Provide a password that can be

used to access the administrative functions of the installed applications in the future.

Note: wpsadmin is the WebSphere Portal administrator, the WebSphere Application Server administrator, and the

LDAP authentication user.

v Administrative group name: The administrative group name is

retrieved by the wizard and cannot be edited.

v Administrator name: The administrator name is retrieved by the

wizard and cannot be edited.

v Password: Specifies a new password for the portal administrator

ID.

Important: Keep the password for future reference. If the

administrator user is already in the selected LDAP directory, you

need to provide the password for that user to proceed with the

installation of the WebSphere Portal server.

v Confirm password: Specifies the password for the portal

administrator ID a second time for confirmation.

Note: Some LDAP servers, such as Microsoft Active Directory,

require a Secure Socket Layer (SSL) connection to create users. If

you are securing your WebSphere Portal server with such an

LDAP server and wpsadmin or wpsadmins do not already exist,

create a wpsadmin Portal administrator entry in the directory and

assign the necessary authority, because the Create Portal wizard is

not able to create the entry. Next, create a wpsadmins Portal

administrative group entry in the directory and add wpsadm into

this group. After you have successfully created the two entries,

enter the password twice.

Step 16: Portal Administrative Group and Administrative User

If you determine your WebSphere Portal does not require security (for example, you are not securing this server

with an LDAP server via the wizard), a WebSphere Portal server administrative group, administrator user, and

password are required when using the WebSphere Portal administration tools.

v Administrative group name: The administrative group name is

retrieved by the wizard and cannot be edited.

v Administrator name: The administrator name is retrieved by the

wizard and cannot be edited.

v Password: Specify the password for the administrative group and

administrative name.

v Confirm Password: Specify the new user ID password a second

time for confirmation.

Step 17: Web Server Single Signon (SSO) Configuration Parameters

The wizard configures single signon (SSO) to allow a user to access multiple Web servers without the need to

re-authenticate. Specify the SSO domain:

v Option A: Limit SSO domain to this Web server’s hostname:

Does not enable your WebSphere Portal to acquire information

from other Web servers without additional authentication.

To continue, skip to Step 21: Configure Look-Aside Database.

212 iSeries: IBM HTTP Server

v Option B: Include other Web servers in your SSO environment:

Enables your WebSphere Portal to acquire information from other

Web servers without additional authentication.

v SSO domain name: Specifies the DNS hostname that is

shared by all Web servers participating in your SSO

environment. The SSO domain name is case sensitive.

Example: domain.com

Step 18: Configure Lightweight Third Party Authentication (LTPA) for Web Server Single Signon (SSO)

Environment

Lightweight Third Party Authentication (LTPA) is the mechanism used to implement Web Server SSO. LTPA is a set

of tokens or cookies which provide a means to share authentication and access control information between Web

servers. The information in these tokens uniquely identifies the user. The application server creates the keys. The

keys must be exported from this application server to other Web servers in your SSO environment. Create a

password to encrypt and decrypt the LTPA keys.

v LTPA password: Specifies a new password for LTPA.

Important: Keep the password for future reference.

v Confirm password: Specifies the password for LTPA a second

time for confirmation.

Step 19: Configure Identity Token SSO for Web to iSeries Access

The wizard configures Identity Token support to enable single signon (SSO) capabilities. This allows authenticated

WebSphere users to access iSeries server data and resources through an Enterprise Identity Mapping (EIM) mapping

operation.

Choose to not configure identity tokens (option A) or to configure identity tokens (option B).

v Option A: Do not configure Identity Tokens:If you select this

option, the wizard does not install the EIM Identity Token

Connector resource adapter plug-in into your WebSphere

Application Server instance. Web applications that normally

support using the WebSphere authenticated user and identity

tokens to access iSeries resources are not able to provide this type

of single signon capability. Select this option if you do not want

web applications to provide this function. Identity Token support

can be added at a later time by using the WebSphere Application

Server administrative console to install the resource adapter.

v If you select this option, skip to Step 21: Configure Look-Aside

Database.

v Option B: Configure Identity Tokens:If you select this option, the

wizard installs the EIM Identity Token Connector resource adapter

plug-in into your WebSphere Application Server instance. An EIM

domain must be configured and running on an LDAP server. In

addition, a user registry definition in EIM must be created that

represents the source WebSphere registry being used for

authentication, such as an LDAP user registry. For more

information on configuring EIM and Identity Tokens, see

Enterprise Identity Mapping (EIM) in the iSeries Information

Center.

HTTP Server 213

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzalv/rzalvmst.htm

v LDAP server host name:Specifies the fully qualified TCP/IP

host name of the LDAP server hosting the EIM domain

controller. This value was set by the administrator when the

EIM Configuration Wizard in iSeries Navigator was run to

configure an iSeries server for EIM. Example:

myhost.mycompany.com.

v LDAP port:Specifies the TCP/IP port number on which the

LDAP server hosting the EIM domain controller is listening.

By default, an LDAP directory server using an unsecured

connection listens on port 389. This value was set by the

administrator when the EIM Configuration Wizard in iSeries

Navigator was run to configure an iSeries server for EIM.

v LDAP administrator DN:The (Distinguished Name) DN of

the user who is capable of performing searches on the

LDAP directory. If the LDAP directory contents are

restricted to certain users, you need to specify the DN of an

authorized user. This value was set by the administrator

when the EIM Configuration Wizard in iSeries Navigator

was run to configure an iSeries server for EIM. Example:

cn=administrator.

v LDAP administrator password:The password corresponding

to the LDAP administrator DN field. This field is case

sensitive. This value was set by the administrator when the

EIM Configuration Wizard in iSeries Navigator was run to

configure an iSeries server for EIM.

Step 20: Configure Identity Token EIM Domain information

The wizard has signed into specified LDAP server which is an EIM Domain Controller. Select the correct EIM

domain and source registry name that contains the repository of identity information.

v EIM domain name:The name of the EIM domain to use for

Identity Token EIM mapping operations. The wizard retrieves the

names of the EIM domains currently defined on the EIM domain

controller. This value was set by the administrator when the EIM

Configuration Wizard in iSeries Navigator was run to configure

an iSeries server for EIM. Example: EIM.

v Source registry name:The name of the EIM user registry that

contains WebSphere user identity source associations. The wizard

retrieves the names of the EIM user registries currently defined

for the selected EIM domain. This value was set by the Add a

new system registry request in the iSeries Navigator. For more

information, see Add a system registry definition in the iSeries

Information Center. Example: WebSphereLdapUserRegistry.

214 iSeries: IBM HTTP Server

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzalv/rzalvadminaddusrreg.htm#rzalvadminaddusrreg

Step 21: Configure Look-Aside Database

The WebSphere Portal server is configured to use an LDAP directory to store the user account information for

security. The information is referred to as user registry information and includes user and password information.

The LDAP directory can also be extended to contain additional user preference information such as e-mail addresses

and telephone numbers. The additional information is referred to as user repository information. If your LDAP

directory can be extended to contain both the user registry and user repository information, a look-aside database is

not required. However, if the LDAP directory cannot store all the profile information, the WebSphere Portal

database can be used as a look-aside database for storing the additional profile information. If you think that you

need the look-aside database, configure it now. If you choose to use the look-aside database at a later time, you

need to reconfigure your LDAP security configuration.

Choose to not configure the look-aside database (option A) or configure the look-aside database now (option B).

v Option A: No, do not configure the look-aside database:

Disables the look-aside database.

v Option B: Yes, configure the look-aside database: Enables the

look-aside database to extend your LDAP directory.

Step 22: Summary

The wizard summary page details information you specified for the WebSphere Application Server, the HTTP Server

(powered by Apache), the WebSphere Portal server, the WebSphere Portal server security, the deployed portlets, and

the WebSphere Portal server properties. It is recommend that you click the Printable Summary button for a

complete summary of the options and values you provided and that you print this page for future reference.

Step 23: Creation and Configuration

The wizard now configures and deploys your WebSphere Portal server. Note creation and configuration of your

WebSphere Portal server and its components may take some time to complete. You can monitor the progress from

the WebSphere Portal server introduction page that displays after the Finish button has been clicked.

To access your new WebSphere Portal on the Web, enter http://[iSeries]:[port]/wps/portal in a Web browser, where

iSeries is the name of your iSeries and port is the port number for your HTTP Server (powered by Apache).

Virtual host tasks

This topic provides step-by-step tasks for virtual hosts.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Related information

 “Virtual hosts on HTTP Server” on page 65
This topic provides information about virtual host types.

Set up virtual hosts on HTTP Server (powered by Apache)

This topic provides information about how to set up virtual hosts on your HTTP Server with the IBM

Web Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Virtual hosts allow more than one Web site on one system or Web server. The servers are differentiated

by their host name. Visitors to the Web site are routed by host name or IP address to the correct virtual

HTTP Server 215

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

host. Virtual hosting allows companies sharing one server to each have their own domain names. For

example, www.company1.com and www.company2.com can both be hosted on the same server. See “Virtual

hosts on HTTP Server” on page 65 for more information.

You can configure virtual hosts by doing the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select Global configuration from the Server area list.

5. Expand Server Properties.

6. Click Virtual Hosts.

7. Click either the Name-based virtual host tab or the IP-based virtual host tab in the form.

Name-based virtual hosts: The name-based virtual host allows one IP address to host more than one

Web site (hostname). This approach allows a single HTTP Server to service requests directed at many

different hostnames. This simplifies configuration and use, and requires no additional hardware or

software. The main disadvantage to this approach is that the client must support HTTP 1.1 (or HTTP 1.0

with 1.1 extensions) that include the server hostname information inside the HTTP document requests.

The latest versions of most browsers support HTTP 1.1 (or HTTP 1.0 with 1.1 extensions), but there are

still old browsers that only support HTTP 1.0. For more information on virtual hosts refer to the

<VirtualHost> directive.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Virtual Hosts.

 7. Click the Name-based tab in the form.

 8. Click Add under the Named virtual hosts table.

 9. Select or enter an IP address in the IP address column.

Note: The IBM Web Administration for iSeries interface provides the IP addresses used by your

iSeries system in the IP Address list; however, you will need to provide the hostname

associated with the address you choose and register the hostname with your Domain Name

Server (DNS).

10. Enter a port number in the Port column.

11. Click Add under the Virtual host containers table in the Named host column.

12. Enter the fully qualified server hostname for the virtual host in the Server name column.

Note: Make sure the server hostname you enter is fully qualified and associated with the IP address

you selected.

13. Enter a document root for the virtual host index file or welcome file in the Document root column.

14. Click Continue.

15. Click OK.

IP-based virtual hosts: The IP-based virtual host requires one IP address per Web site (host name). This

approach works very well, but requires a dedicated IP address for every virtual host. For more

information on virtual hosts refer to the <VirtualHost> directive.

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

216 iSeries: IBM HTTP Server

rzaiemod_core.htm#virtualhost
rzaiemod_core.htm#virtualhost

3. Select your HTTP Server (powered by Apache) from the Server list.

 4. Select Global configuration from the Server area list.

 5. Expand Server Properties.

 6. Click Virtual Hosts.

 7. Click the IP-based tab in the form.

 8. Click Add under the Virtual host containers table.

 9. Enter a valid IP address in the IP address or hostname column.

10. Enter a valid port number in the Port column.

11. Optional: Enter a server name in the Server name column.

12. Optional: Enter the document root from where the files will be served in the Document root

column.

13. Click Continue.

14. Click OK.

Mass-dynamic virtual hosting: Use the Mass-dynamic tab to create a dynamic virtual host with a

Name-based or IP-based virtual host, or work with canonical names. A canonical name is the actual name

of an HTTP Server resource. For example, a canonical name of the HTTP Server powered by Apache) is

its true name rather than an alias. See directive <UseCanonicalName> for more information.

The dynamic virtual host allows you to dynamically add Web sites (hostnames) by adding directories of

content. This approach is based on automatically inserting the IP address and the contents of the Host:

header into the pathname of the file that is used to satisfy the request.

The Mass-dynamic tab provides a subset of options that are more complex than those provided by the

other tabs. The options include specifying the root directory for serving files, and selecting the root

directory for CGI scripts. The availability of these settings are dependent on what server area you are

working with.

At the global configuration server area, all mass-dynamic settings are available. These include:

v Options on how to build self-referencing URL’s.

v Options for the root directory for serving files.

v Options for the root directory for CGI scripts.

The mass-dynamic settings use strings and substrings to create a dynamic virtual hosts. For example, to

create a simple dynamic virtual host, the Root directory for serving files option is defined as

/usr/local/apache/vhosts/%0 and Use server name is selected. A request for http://www.ibm.com/
directory/file.html returns /usr/local/apache/vhosts/www.ibm.com/directory/file.html.

The string %0 is an interpolate (insert) string of the server name or IP address. The following defines the

interpolate string:

 Interpolate (insert) strings

%% inserts a %

%p inserts the port number of the virtual host

%N.M inserts (part of) the name

N and M are used to specify substrings of the name. N selects from the period-separated components of

the name, and M selects characters within whatever N has selected. M is optional and defaults to zero if

it is not present; the period must be present if and only if M is present. The interpretation is as follows:

HTTP Server 217

rzaiemod_core.htm#usecanonicalname

Substring interpretation

0 the whole name

1 the first part

2 the second part

-1 the last part

-2 the next to last part

2+ the second and all subsequent parts

-2+ the next to last part and all preceding parts

1+ and -1+ the same as 0

For more information on mass-dynamic virtual hosts refer to mod_vhost_alias.

Programming

This topic provides information on CGI, directives, APIs, and other programming topics.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: As of V5R3, the Web Programming Guide is now in HTML format. The contents of the guide are

found under this topic.

Application Programming Interface

This topic provides information on application programming interfaces (APIs).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Application programming interfaces (APIs) for HTTP Server

This topic provides information about HTTP Server APIs for CGI applications, configuration APIs, server

instance APIs, group APIs, and triggered cache manager APIs.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server supports the APIs listed below in C++, Java, REXX, ILE C, ILE COBOL, and ILE RPG

programming languages. Although all APIs are supported in all of these languages, most ILE C CGI

applications will only need to use QtmhCvtDB, QzhbCgiParse, or QzhbCgiUtils. This is because ANSI C

can work with stdin, stdout, and environment variables directly. ILE C CGI applications use ANSI C

function calls to work with stdin, stdout, environment variables, and string functions for parsing stdin

and environment variable data.

CGI application APIs: To use these APIs in a CGI application, you must bind the CGI program to

*SRVPGM QZHBCGI in library QHTTPSVR. ILE C programs must include header file

218 iSeries: IBM HTTP Server

rzaiemod_vhost_alias.htm
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

QSYSINC/H(QZHBCGI). CGI application programs must be written and compiled in Integrated

Language Environment® ILE C, ILE RPG, and ILE COBOL.

v “Get Environment Variable (QtmhGetEnv) API” on page 224

v “Put Environment Variable (QtmhPutEnv) API” on page 226

v “Read from Stdin (QtmhRdStin) API” on page 227

v “Write to Stdout (QtmhWrStout) API” on page 228

v “Convert to DB (QtmhCvtDB) API” on page 222

v “Parse QUERY_STRING Environment Variable or Post stdin data (QzhbCgiParse) API” on page 231

v “Produce Full HTTP Response (QzhbCgiUtils) API” on page 237

v “Send or Save CGI Stateful Data (QzhbCgiSendState) API” on page 236

v “Receive CGI Stateful Data (QzhbCgiRecvState) API” on page 235

Configuration APIs: The configuration APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C

programs must include header file QHTTPSVR/H(QZHBCONF). While each individual API lists its own

authorities, the following authorities are needed to run all configuration APIs:

v *OBJOPR, *READ, *ADD, and *EXECUTE to the QUSRSYS library

v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHTTPC file

v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHTTPA file

Note: The QUSRSYS/QATMHTTPA file is the administration (ADMIN) server configuration file.

v “Add Config Object (QzuiAddConfigObject) API” on page 427

v “Change Config Object Value (QzuiChangeConfigObject) API” on page 429

v “Close Apache Config File (QzuiCloseConfig) API” on page 432

v “Find Config Object (QzuiFindConfigObject) API” on page 435

v “Open Apache Config File (QzuiOpenConfig) API” on page 440

v “Remove Config Object (QzuiRemoveConfigObject) API” on page 442

Server instance APIs: The server instance APIs are in *SRVPGM QZHBCONF in library QHTTPSVR.

ILE C programs must include header file QHTTPSVR/H(QZHBCONF). While each individual API lists

its own authorities, the following authorities are needed to run all server instance APIs:

v *OBJOPR, *READ, *ADD, and *EXECUTE to the QUSRSYS library

v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHINSTC file

v *READ, *ADD, *DELETE, *EXECUTE, *OBJOPR, *OBJEXIST, and either *OBJMGT or *OBJALTER to the

QUSRSYS/QATMHINSTA file

Note: The QUSRSYS/QATMINSTA file is the administration (ADMIN) server instance file.

v “Change Apache Server Instance Data (QzuiChangeInstanceData) API” on page 430

v “Create Apache Server Instance (QzuiCreateInstance) API” on page 433

v “Get Apache Server Instance Data (QzuiGetInstanceData) API” on page 437

v “Get Server Instance Names (QzuiGetInstanceNames) API” on page 438

v “Get Instance Type (QzuiGetInstanceType) API” on page 440

Group file APIs: The group file APIs are in *SRVPGM QZHBCONF in library QHTTPSVR. ILE C

programs must include header file QHTTPSVR/H(QZHBCONF).

Note: Group file APIs are independent of HTTP Server type.

HTTP Server 219

v “Create a new Group File (QzhbCreateGroupList) API” on page 239

v “Read a Group File into Memory (QzhbOpenGroupList) API” on page 246

v “Free Group File from Memory (QzhbCloseGroupList) API” on page 238

v “Retrieve the next Group in the Group List (QzhbGetNextGroup) API” on page 243

v “Locate a named group in a Group List (QzhbFindGroupInList) API” on page 240

v “Retrieve the Name of a Group (QzhbGetGroupName) API” on page 242

v “Add a new Group to the end of a Group List (QzhbAddGroupToList) API” on page 229

v “Remove a Group from a Group List (QzhbRemoveGroupFromList) API” on page 248

v “Retrieve the next User in the Group (QzhbGetNextUser) API” on page 244

v “Locate a User in a Group (QzhbFindUserInGroup) API” on page 241

v “Retrieve the Name of a User (QzhbGetUserString) API” on page 245

v “Add a new user to the end of a Group (QzhbAddUserToGroup) API” on page 230

v “Remove a User or Element from a Group (QzhbRemoveUserFromGroup) API” on page 248

TCM server operation APIs: The trigger cache manager server operation APIs may be used to start and

stop trigger cache manager servers. The APIs are callable service implemented as an ILE entry point

within the QZHTINOPS *SVRPGM in the QTCM *LIB. The QTCM/H(QZHTINCONF) header file

includes ILE C prototypes for these APIs.

v “Start Triggered Cache Manager Server (QzhtStrTCMServer) API” on page 426

v “End Triggered Cache Manager Server (QzhtEndTCMServer) API” on page 367

TCM basic configuration APIs: The trigger cache manager basic configuration APIs are a callable

service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB. The

QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

v “Create Triggered Cache Manager Server (QzhtCrtTCMServer) API” on page 362

v “Get Triggered Cache Manager Server Status (QzhtGetTCMServerStatus) API” on page 368

v “Delete Triggered Cache Manager Server Status (QzhtDltTCMServer) API” on page 365

v “Retrieve Triggered Cache Manager Basic Configuration (QzhtRtvTCMBasicConfig) API” on page 390

v “Change Triggered Cache Manager Basic Configuration (QzhtChgTCMBasicConfig) API” on page 305

TCM trigger handler configuration APIs: The trigger cache manager trigger handler configuration APIs

are a callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the

QTCM *LIB. The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

v “Add Triggered Cache Manager Trigger Handler Description (QzhtAddTCMTriggerHandlerDesc) API”

on page 288

v “Retrieve Triggered Cache Manager Trigger Handler Description (QzhtRtvTCMTriggerHandlerDesc)

API” on page 419

v “Change Triggered Cache Manager Trigger Handler Description (QzhtChgTCMTriggerHandlerDesc)

API” on page 353

v “Remove Triggered Cache Manager Trigger Handler Description (QzhtRmvTCMTriggerHandlerDesc)

API” on page 383

TCM data source configuration APIs: The trigger cache manger data source configuration APIs are a

callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM

*LIB. The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

v “Add Triggered Cache Manager Data Source Description (QzhtAddTCMDataSourceDesc) API” on page

270

v “Retrieve Triggered Cache Manager Data Source Description (QzhtRtvTCMDataSourceDesc) API” on

page 402

220 iSeries: IBM HTTP Server

v “Change Triggered Cache Manager Data Source Description (QzhtChgTCMDataSourceDesc) API” on

page 329

v “Remove Triggered Cache Manager Data Source Description (QzhtRmvTCMDataSourceDesc) API” on

page 374

TCM cache target configuration APIs: The trigger cache manager cache target configuration APIs are a

callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM

*LIB. The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

v “Add Triggered Cache Manager Cache Target Description (QzhtAddTCMCacheTargetDesc) API” on

page 256

v “Retrieve Triggered Cache Manager Cache Target Description (QzhtRtvTCMCacheTargetDesc) API” on

page 393

v “Change Triggered Cache Manager Cache Target Description (QzhtChgTCMCacheTargetDesc) API” on

page 308

v “Remove Triggered Cache Manager Cache Target Description (QzhtRmvTCMCacheTargetDesc) API” on

page 372

TCM acknowledgement target configuration APIs: The triggered cache manager acknowledgement

target configuration APIs are a callable service implemented as an ILE entry point within the

QZHTINCONF *SRVPGM in the QTCM *LIB. The QTCM/H(QZHTINCONF) header file includes ILE C

prototypes for these APIs.

v “Add Triggered Cache Manager Acknowledgment Target Description (QzhtAddTCMAckTargetDesc)

API” on page 249

v “Retrieve Triggered Cache Manager Acknowledgment Target Description (QzhtRtvTCMAckTargetDesc)

API” on page 385

v “Change Triggered Cache Manager Acknowledgment Target Description (QzhtChgTCMAckTargetDesc)

API” on page 297

v “Remove Triggered Cache Manager Acknowledgment Target Description

(QzhtRmvTCMAckTargetDesc) API” on page 371

TCM host configuration APIs: The triggered cache manager host configuration APIs are a callable

service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB. The

QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

v “Add Triggered Cache Manager Host Description (QzhtAddTCMHostDesc) API” on page 277

v “Retrieve Triggered Cache Manager Host Description (QzhtRtvTCMHostDesc) API” on page 407

v “Change Triggered Cache Manager Host Description (QzhtChgTCMHostDesc) API” on page 338

v “Remove Triggered Cache Manager Host Description (QzhtRmvTCMHostDesc) API” on page 376

TCM object dependency graph configuration APIs: The QTCM/H(QZHTINCONF) header file includes

ILE C prototypes for these API.

v “Add Triggered Cache Manager Object Dependency Graph Description (QzhtAddTCMODGDesc) API”

on page 279

v “Retrieve Triggered Cache Manager Object Dependency Graph Description (QzhtRtvTCMODGDesc)

API” on page 410

v “Change Triggered Cache Manager Object Dependency Graph Description (QzhtChgTCMODGDesc)

API” on page 341

v “Remove Triggered Cache Manager Object Dependency Graph Description (QzhtRmvTCMODGDesc)

API” on page 378

TCM rule set configuration APIs: The triggered cache manager rule set configuration APIs are a

callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM

*LIB. The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

HTTP Server 221

v “Add Triggered Cache Manager Rule Set (QzhtAddTCMRuleSet) API” on page 286

v “Retrieve Triggered Cache Manager Rule Set (QzhtRtvTCMRuleSet) API” on page 416

v “Change Triggered Cache Manager Rule Set (QzhtChgTCMRuleSet) API” on page 350

v “Remove Triggered Cache Manager Rule Set (QzhtRmvTCMRuleSet) API” on page 381

TCM publishing rule configuration APIs: The triggered cache manger publishing rule configuration

APIs are a callable service implemented as an ILE entry point within QZHTINCONF *SRVPGM in QTCM

*LIB. The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for these APIs.

v “Add Triggered Cache Manager Publishing Rule (QzhtAddTCMPublishingRule) API” on page 282

v “Retrieve Triggered Cache Manager Publishing Rule (QzhtRtvTCMPublishingRule) API” on page 413

v “Change Triggered Cache Manager Publishing Rule (QzhtChgTCMPublishingRule) API” on page 345

v “Remove Triggered Cache Manager Publishing Rule (QzhtRmvTCMPublishingRule) API” on page 380

Convert to DB (QtmhCvtDB) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Qualified database file name Input Char(20)

2 Input string Input Char(*)

3 Length of input string Input Binary(4)

4 Response variable Output Char(*)

5 Length of response variable Input Binary(4)

6 Length of response available Output Binary(4)

7 Response code Output Binary(4)

8 Error Code I/O Char(*)

The QtmhCvtDB API provides an interface for CGI programs to parse CGI input, defined as a series of

keywords and their values, into a buffer which is formatted according to a DDS file specification. CGI

input data, which comes to the CGI program as character data, will be converted by the QtmhCvtDB API

to the data type defined for the keyword by the corresponding field name in the input DDS file.

Language statements, such as the ILE C #pragma mapinc statement, provide the ability to map the

returned structure with field names defined in the DDS file. See the appropriate language user’s guide

for details.

Note: QtmhCvtDB API is not allowed in CGI mode %%BINARY%%.

The following DDS field types are handled:

v A - Alphanumeric (see note 1 below)

v P - Packed Decimal (see note 2 below)

v S - Zoned Decimal

v F - Floating Point

v T - Time

v L - Date

v Z - Timestamp

v B - Binary (see note 3 below)

v O - DBCS

222 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The following DDS field types are not handled:

v H - Hexadecimal (see note 4 below)

v G - Graphic

v J - DBCS

v E - DBCS

Notes:

1. The VARLEN keyword is not supported.

2. When using a packed decimal field, the #pragma mapinc() must use _P the option, to create a

packed structure.

3. Input to Binary fields is converted to integer. The DDS file specification must declare zero

decimal positions (for example, “xB 0”, where x is 1-9).

4. ILE C converts hex DDS field data to character fields. Since the input stream to QtmhCvtDB()

is a text string, the “hex” data would be converted from text to character fields. Therefore,

using the A (Alphanumeric) field type to obtain the same conversion.

Required parameter group:

Qualified database file name

Input:CHAR(20)

 The input variable containing the name of the database file defining field names and data types

for the keywords anticipated in the input to the CGI program. Typically, the database file is

generated using DDS to define the fields corresponding to the keywords anticipated in the CGI

inputs. The first 10 characters contain the database file name, and the second 10 characters

contain the library name.

Input string

INPUT:CHAR(*)

 The input variable containing the string of CGI input parameters to be parsed. When the

environment variable REQUEST_METHOD indicates that the method is GET, characters up to the

first ? are ignored. The string must meet the format requirements for CGI input keyword strings.

Length of input string

INPUT:BINARY(4)

 The input variable containing the length of the character string that contains the CGI input

parameters to be parsed. The length of the string must be greater than 0.

Response variable

OUTPUT:CHAR(*)

 The output variable which is to contain the structure mapped according to the database file

describing the input parameters anticipated by the CGI program.

Length of response available

INPUT:BINARY(4)

 The input variable containing the total length of the buffer into which the CGI input parameters

will be parsed.

Length of response

OUTPUT:BINARY(4)

 The output variable that contains the length of the response. If the response variable is too small

to contain the entire response, this parameter will be set to the size that is required to contain the

entire response.

Response code

OUTPUT:BINARY(4)

HTTP Server 223

A code that indicates the status of the request.

v 0 - All keywords have been translated according the database file.

v -1 - The database file contains definitions for structure fields for which the CGI input has no

corresponding keyword.

v -2 - The CGI input contains one or more keywords for which the database file contains no

corresponding field.

v -3 - A combination of the condition for response codes -1 and -2 has been detected.

v -4 - An error occurred while converting the CGI input string to the DDS defined data types.

The data may or may not be usable.

v -5 - This API is not valid when a program is not called by HTTP Server. No data parsing is

done.

v -6 - This API is not valid when operating in %%BINARY%% mode. No data parsing is done.

Error Code

I/O CHAR(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3CF1 E

Error code parameter not valid.

CPF9810 E

Library &1 not found.

CPF9812 E

File &1 in library &2 not found.

CPF9822 E

Not authorized to file &1 in library &2

Get Environment Variable (QtmhGetEnv) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Length of response Output Binary(4)

4 Request variable Input Char(*)

5 Length of request variable Input Binary(4)

6 Error Code I/O Char(*)

224 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The QtmhGetEnv API allows you to get the value set by the server for a particular HTTP environment

variable.

Required parameter group:

Receiver variable

OUTPUT:CHAR(*)

 The output variable that contains the value set by the server for the requested environment

variable. In CGI input mode %%MIXED%%, this value will be in CCSID 37; otherwise, it will be

in the CCSID of the current job. Note that the QUERY_STRING in %%BINARY%% mode is not

converted by the server.

Length of receiver variable

INPUT:BINARY(4)

 The input variable containing the length of the space provided to receive the environment

variable value.

Length of response

OUTPUT:BINARY(4)

 The output variable that contains the length of the environment variable value. When the API is

unable to determine the value for the requested environment variable, the length of the

environment variable value is set to zero. When the size required for the environment variable

value is larger than the length of the receiver variable, the size required to receive the value is

returned.

Request variable

INPUT:CHAR(*)

 The input variable containing the desired environment variable name.

Length of request variable

INPUT:BINARY(4)

 The input variable containing the length (without trailing blanks) of the desired environment

variable name.

Error Code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3CF1 E

Error code parameter not valid.

Note: The Environment Variable APIs provide the getenv() (Get Value of Environment Variable) function

necessary to retrieve environment variables in ILE C. Therefore, programs written in ILE C do not

need to use the QtmhGetEnv() API. This API, for ILE C, is more difficult to use (and is slower)

than the getenv() API on which it is based.

HTTP Server 225

Put Environment Variable (QtmhPutEnv) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Environment string Input Char(*)

2 Length of environment string Input Binary(4)

3 Error Code I/O Char(*)

The QtmhPutEnv API allows you to set or create a job-level environment variable. This is useful for

communication between programs running in the same job, such as your program and the Net.Data

language environment DTW_SYSTEM.

Required parameter group:

Environment string

INPUT:CHAR(*)

 The input string of the form: �envVar=value�. Where �envVar� is the name of the new or existing

environment variable, and �value� is the value you want to set the environment variable. Note

that they are both case sensitive. The server expects this value to be in the CCSID of the job.

Length of environment string

INPUT:BINARY(4)

 The input variable that contains the length of the environment string parameter (without trailing

blanks). For example, the length of the environment string �envVar=value� is twelve.

Error Code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3021 E

The value specified for the argument is not correct.

CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E

Error code parameter not valid.

CPF3408 E

The address used for an argument is not correct.

CPF3460 E

Storage allocation request failed.

CPF3474 E

Unknown system state.

CPF3484 E

A damaged object was encountered.

226 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: The Environment Variable APIs provide the putenv() (Put Value in Environment Variable) function

necessary to set (or create and set) an environment variable. Therefore, programs written in ILE C

do not need to use the QtmhPutEnv() API. This API, for ILE C, is more difficult to use (and is

slower) than the putenv() API on which it is based.

Read from Stdin (QtmhRdStin) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Receiver variable Output Char(*)

2 Length of receiver variable Input Binary(4)

3 Length of response available Output Binary(4)

4 Error Code I/O Char(*)

The QtmhRdStin API allows CGI programs that are written in languages other than ILE C to read from

stdin. CGI programs read from stdin when the request from the browser indicates the method that is

POST. This API reads what the server has generated as input for the CGI program.

Important: CGI input data is only available from standard input when the client request is submitted

with method POST. There are no standard input data when the method is GET or HEAD. In

addition, the Content_Length environment variable is set only when the Request_Method is

POST.

The program reads all of the data in a single request. This is because the API treats each request as a

request for data starting at its beginning. The API handles each request as if it was the only request.

The length of the data returned by QtmhRdStin includes all the data from stdin. This includes

line-formatting characters that are normally a part of the POST data as defined by the CGI specification.

Note that the format of this data is different depending on the CGI input mode being used. For

%%MIXED%% mode, the data will have American National Standard Code for Information Interchange

(ASCII) hexadecimal encoded characters. For %%EBCDIC%% mode, all data including hexadecimal will

be in the CCSID of the job. The server performs no conversion for %%BINARY%% mode.

Required parameter group:

Receiver variable

OUTPUT:CHAR(*)

 The output variable that contains the data read from stdin. In CGI input mode %%MIXED%%,

this data is in the CCSID of the job except that the encoded characters “%xx” are still represented

by the ASCII 819 octet. In %%EBCDIC%% mode, this data is in the CCSID of the job, including

the escape sequences. In %%BINARY%% mode, the data is in the code page sent by the browser.

Length of receiver variable

INPUT:BINARY(4)

 The input variable containing the number of bytes that are to be read from stdin.

Length or response available

OUTPUT:BINARY(4)

 The output variable containing the length of the data read from stdin. If there is no data available

from stdin, this variable will be set to zero.

HTTP Server 227

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Error Code

I/O:Char(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3CF1 E

Error code parameter not valid.

Write to Stdout (QtmhWrStout) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Data variable Input Char(*)

2 Length of data variable Input Binary(4)

3 Error Code I/O Char(*)

The QtmhWrStout API provides the ability for CGI programs that are written in languages other than ILE

C to write to stdout.

Required parameter group:

Data variable

Input:CHAR(*)

 The input variable containing the data to write to stdout.

Length of data variable

INPUT:BINARY(4)

 The input variable contains the length of the data written to stdout. The length of the data must

be larger than 0.

Error Code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

228 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

CPF3CF1 E

Error code parameter not valid.

Note: CGI programs written in the ILE C language do not require a special API to write data to stdout.

The following example shows how a CGI program might write to stdout:

fwrite(buffer,1,sizeof(buffer),stdout);

CGI programs are expected to produce data in the stdout that is formatted according to the CGI

interface specification. The QtmhWrStout API provides no line formatting; the user of the API must

perform prescribed formatting which includes the requirement for text line characters (such as new

line). Errors are not indicated for data that is not formatted per CGI requirements.

Add a new Group to the end of a Group List (QzhbAddGroupToList) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 group Input Char(*)

3 group_len Input Binary(4)

4 grp Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbAddGroupToList API to add a new group to an in-memory group list.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList

API.

group INPUT:CHAR(*)

 The group name to add to the list.

group_len

INPUT:BINARY(4)

 The length of the group name. The length must be greater than or equal to 1.

grp OUTPUT:BINARY(4)

 The handle of the newly created group, or the handle of an existing group if the named group

already exists. Attempting to add a group that already exists is not considered an error by the

system.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

HTTP Server 229

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

Add a new user to the end of a Group (QzhbAddUserToGroup) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 user Input Char(*)

4 user_len Input Binary(4)

5 usr Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbAddUserToGroup API to add a new user to an in-memory group.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

user INPUT:CHAR(*)

 The user name to be added to the group.

user_len

INPUT:BINARY(4)

 The length of the user string. The length must be greater than or equal to 1.

usr OUTPUT:BINARY(4)

 The handle of the newly created user, or the handle of an existing user if the named user already

exists in the group. Attempting to add a user that already exists is not considered an error by the

system.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

230 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

Parse QUERY_STRING Environment Variable or Post stdin data (QzhbCgiParse) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Command string Input Char(*)

2 Output format Input Char(8)

3 Target Buffer Output Char(*)

4 Length of Target Buffer Input Binary(4)

5 Length of response Output Binary(4)

6 Error Code I/O Char(*)

Use QzhbCgiParse API to parse the QUERY_STRING environment variable, in the case of the GET

method, or standard input, in the case of POST method, for CGI scripts. If the QUERY_STRING

environment variable is not set, the QzhbCgiParse API reads the CONTENT_LENGTH characters from its

input. All return output is written to its standard output.

You can only call QzhbCgiParse once for the POST method. To use this API with the POST method, you

would first want to read all of stdin and assign it to the QUERY_STRING environment variable. You

would then change the environment variable REQUEST_METHOD to GET.

This API does not work with the %%MIXED%% CGI input mode.

Required parameter group:

Command string

Input:CHAR(20)

 The command string is a null ended string for flags and modifiers. At least one space must

separate each flag. There is a one-character equivalent for each flag. The following flags are

supported:

-a[gain] continuation-handle

The continuation-handle is the value returned to the caller in the target buffer when only

partial information is returned. This flag is not valid on the first call to this API. It is used

to retrieve the next set of information that would have been returned on a previous call if

there had been enough space in the target buffer. All other flags must be the same as the

previous call. Incomplete or inaccurate information may result if all other flags are not

the same.

HTTP Server 231

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: This flag can only be used for the CGII0200 format.

-k[eywords]

Parses QUERY-STRING for keywords. Keywords are decoded and written to the target

buffer, one per line.

-f[orm]

Parses QUERY_STRING as form request. The field names will be set as environment

variables with the prefix FORM_. Field values are the contents of the variables.

-v[alue] field-name

Parses QUERY_STRING as form request. Returns only the value of field-name in the target

buffer.

-r[ead] Reads CONTENT_LENGTH characters from standard input and writes them to the target

buffer.

-i[nit] If QUERY_STRING is not set, reads the value of standard input and returns a string that

can be used to set QUERY_STRING.

-s[ep] separator

Specifies the string that is used to separate multiple values. If you are using the -value

flag, the default separation is newline. If you are using the -form flag, the default

separator is a comma (,).

-p[refix] prefix

Used with -POST and -form to specify the prefix to use when creating environment

variable names. The default is �FORM_�.

-c[ount]

Used with -keywords, -form, and -value, returns a count of items in the target buffer that

is related to these flags:

v -keywords: Returns the number of keywords.

v -form: Returns the number of unique fields (multiple values are counted as one).

v -value field-name: Returns the number of values for field-name. If there is no field that is

named field-name, the output is 0.

-number

Used with -keywords, -form, and -value. Returns the specified occurrence in the target

buffer related to the following flags:

v -keywords: Returns the n’th keyword. For example, -2 -keywords writes the second

keyword.

v -form: Returns all the values of the n’th field.

v -value field-name: Returns the n’th of the multiple values of field field-name.

-Post Information from standard input is directly decoded and parsed into values that can be

used to set environment variables. This flag is the equivalent to consecutive use of the

-init and -form options.

-F[sccsid] FileCCSID

The FileCCSID is the name of the file system CCSID used in CCSID conversion when

processing the CGI input data. The CGI program wants the data to be returned in this

CCSID. It only applies when the server is using %%BINARY%% CGI conversion mode.

When an unknown CCSID is set, the current value of the CGI_EBCDIC_CCSID

environment variable is used.

-N[etccsid] NetCCSID

The NetCCSID is the network CCSID used in CCSID conversion when processing the CGI

input data. This is the CCSID that the data is presumed to be in at this time (as assumed

232 iSeries: IBM HTTP Server

or as set in a charset tag). It only applies when the server is using %%BINARY%% CGI

Input mode. When an unknown CCSID is set, the current value of the CGI_ASCII_CCSID

environment variable is used.

Output format

INPUT:CHAR(*)

 The format of the data to be returned in the target buffer. You must use one of the following

format names:

v CGII0100 - This format is the free-form format returned to standard output on other platforms.

v CGII0200 - CGI form variable format. This format only applies to the -form and -POST option.

Target Buffer

OUTPUT:CHAR(*)

 This is output buffer that contains the information requested by the command string (if any).

Length of Target Buffer

INPUT:BINARY(4)

 The length of the target buffer provided to receive the API output.

Length of Response

OUTPUT:BINARY(4)

 The actual length of the information returned in the target buffer.

Error Code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

CGII0200 Format:

 Offset Decimal Offset Hexadecimal Type Field

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(20) Continuation handle

28 1C Binary(4) Offset to first variable entry

32 20 Binary(4) Number of variable entries

returned

36 24 Char(*) Reserved

Binary(4) Length of variable entry

(see note below)

Binary(4) Length of variable name

(see note below)

Char(*) Variable name (see note

below)

Binary(4) Length of variable value

(see note below)

Char(*) Variable value (see note

below)

Char(*) Reserved (see note below)

Note: These fields contain variable entry information and are repeated for each variable entry returned.

HTTP Server 233

Field descriptions:

Bytes returned

The number of bytes of data returned.

Bytes available

The number of bytes of data available to be returned. All available data is returned if enough

space is available.

Continuation handle

The handle that is returned when more data is available to return, but the target buffer is not

large enough. The handle indicates the point in the repository that the retrieval stopped. If the

handle is used on the next call to the API (using the -again flag), the API returns more data

starting at the point that the handle indicates. This field is set to blanks when all information is

returned.

Offset to first variable entry

The offset to the first variable entry returned. The offset is from the beginning of the structure. If

no entries are returned, the offset is set to zero.

Number of variable entries returned

The number of variable entries returned. If the target buffer is not large enough to hold the

information, this number contains only the number of variables actually returned.

Reserved

This field is ignored.

Length of variable entry

The length of this variable entry. This value is used in determining the offset to the next variable

entry. Note that this value is always set to a multiple of four.

Length of variable name

The length of the variable name for this entry.

Variable name

A field name as found in the form data. If the server is using %%EBCDIC%% or %%MIXED%%

CGI mode, this value is in the CCSID of the job. If the server is using %%BINARY%% CGI mode,

this value is in the codepage as sent from the browser unless -fsccsid is specified on the API

invocation. If -fsccsid is specified, the value is in that CCSID.

Length of variable value

The length of the variable value for this entry.

Variable value

A field name as found in the form data. If the server is using %%EBCDIC%% or %%MIXED%%

CGI mode, this value is in the CCSID of the job. If the server is using %%BINARY%% CGI mode,

this value is in the codepage as sent from the browser unless -fsccsid is specified on the API

invocation. If -fsccsid is specified, the value is in that CCSID.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3CF1 E

Error code parameter not valid.

234 iSeries: IBM HTTP Server

Note: For further information on errors, the joblog for the CGI job may contain CPF9898 messages (with

all English text) describing the error in more detail.

Receive CGI Stateful Data (QzhbCgiRecvState) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Target buffer Output Char(*)

2 Length of target buffer Input Binary(4)

3 Length of response Output Binary(4)

4 Continuation handle I/O Char(*)

5 Error Code I/O Char(*)

Use the QzhbCgiRecvState API with HA CGI programs to receive the CGI stateful data. The HTTP Server

receives the data for the next request to the stateful CGI so that if a failover occurs the data is available

on the backup system (new primary system). This API is used with API QzhbCgiSendState.

Required parameter group:

Target buffer

OUTPUT:CHAR(*)

 The target buffer containing the state of a high availability CGI program.

Length of target buffer

INPUT:BINARY(4)

 The length of the target buffer that receives the API output. The minimum length is 1 byte and

the maximum length is 61,000 bytes.

Length of response

OUTPUT:BINARY(4)

 The length of response is the actual length of the information that is returned from the target

buffer. If this value is greater than the length of the target buffer, then there is more state to read.

The difference between these two values represents the amount of bytes the caller should read in

subsequent calls to this API.

Continuation handle

I/O:CHAR(*)

 The continuation handle is the handle that is returned when more data is available to return, but

the target buffer is not large enough. The caller must pass this handle to this API on subsequent

calls as it was received from the previous call. On the first call to this API, the continuation

handle must be set to 0 (equivalent to NULL in C). The caller must not allocate, deallocate, or

modify the continuation handle. This field is set to 0 when all information is returned.

Error code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure, see API Error

Reporting in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

HTTP Server 235

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E

Error code parameter not valid.

HTP4005 E

Highly Available CGI invoked QzhbCgiRecvState() after it had already received the entire state.

HTP4006 E

QzhbCgiRecvState() was called when there was no state.

Send or Save CGI Stateful Data (QzhbCgiSendState) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 CGI’s state string Input Void

2 Length of the string Input Binary(4)

3 Error Code I/O Char(*)

Use the QzhbCgiSendState API with HA CGI programs to send or save the CGI stateful data. The HTTP

Server saves the data for the next request to the stateful CGI so that if a failover occurs the data is

available on the backup system (new primary system).

Required parameter group:

CGI’s state string

INPUT:VOID

 The CGI’s state string is the state of a high availability CGI that the Web server stores and passes

to the CGI with the subsequent request. This string can consist of any information necessary for

the CGI state (for example, a structure of several variables or fields). The Web server treats the

contents of the state as binary data.

Length of the string

INPUT:BINARY(4)

 The length of the CGI’s state. The minimum length is 1 byte and the maximum length is 61,000

bytes.

Error code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure, see API Error

Reporting in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E

Error code parameter not valid.

236 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Produce Full HTTP Response (QzhbCgiUtils) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 Command string Input Char(*)

2 Error code I/O Char(*)

Use QzhbCgiUtils API to produce a full HTTP 1.0/1.1 response for non-parsed header CGI programs. This

API provides functionality similar to the cgiutils command used by other HTTP Server platforms.

Required parameter group:

Command string

INPUT:CHAR(*)

 The command string is a null ended string of flags and modifiers. Each flag must be separated by

at least one space. The following flags are supported:

-nodate

Does not return the Date: header to the browser.

-noel Does not return a blank line after headers. This is useful if you want other MIME headers

after the initial header lines.

-status nnn

Returns full HTTP response with status code nnn, instead of only a set of HTTP headers.

Do not use this flag if you only want the Expires: header.

-reason explanation

Specifies the reason line for the HTTP response. You can only use this flag with the

-status flag. If the explanation text contains more than one word, you must enclose it in

parentheses.

-ct [type/subtype]

Specifies MIME Content-Type header to return to the browser. If you omit the

type/subtype, the MIME content type is set to the default text/plan.

-charset character-set

Used with the -ct flag to specify the charset tag associated with the text Content-Types.

-ce encoding

Specifies MIME Content-Encoding header to return to the browser.

-cl language-code

Specifies MIME Content-Language header to return to the browser.

-length nnn

Specifies MIME Content-Length header to return to the browser.

-expires Time-Spec

Specifies MIME Expires header to return to the browser. This flag specifies the time to

live in any combination of years, months, days, hours, minutes, and seconds. The time

must be enclosed in parentheses. For example:

-expires (2 days 12 hours)

-expires now

Produces an Expires: header that matches the Date: header to return to the browser.

HTTP Server 237

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

-uri URI

Specifies the Universal Resource Identifier (URI) for the returned document. URI can be

considered the same as URL.

-extra xxx: yyy

Specifies an extra header that cannot otherwise be specified.

Error Code

I/O:CHAR(*)

 The structure in which to return error information. For the format of the structure and for details

on how to process API errors, see the API error reporting topic in the iSeries Information Center.

Error messages:

CPF24B4 E

Severe Error while addressing parameter list.

CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E

Error code parameter not valid.

Free Group File from Memory (QzhbCloseGroupList) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 write Input Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCloseGroupList API to free the memory of an in-memory copy of a group file. You can

optionally write the in-memory version of the group list back to the group file before the memory is

freed.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList API or

QzhbOpenGroupList API.

write INPUT:BINARY(4)

 The value of 0 (false) or a value of 1 (true), indicating whether or not to write the contents of the

in-memory group list back to the group file before freeing it from memory. If you specify 1 for

this parameter, and the write fails, the memory is not freed and the grplist handle is still valid.

Note: In order to specify a write value of 1, you must have previously used either the

QzhbCreateConfigList API or specified a writelock of 1 on the QzhbOpenGroupList API. If

these conditions are not met, the contents of the file are not written.

238 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA202 E

Unable to update group file &1.

HTPA203 E

Input group list handle in parameter &1 not valid.

Create a new Group File (QzhbCreateGroupList) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 path Input Binary(4)

2 path_len Input Binary(4)

3 grplist Output Binary(4)

4 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbCreateGroupList API to create a new empty group file, and return a handle to that empty

in-memory version of the file. Normally this API would be followed by calls to the QzhbAddGroupToList

and QzhbAddUserToGroup APIs, followed by the QzhbCloseGroupList API to write group information out.

Upon successful completion of this API, a new group list handle is returned. This is a handle much like

the one returned by the QzhbOpenGroupList API against an already existing file, with a writelock

argument of 1 (TRUE). After a call to the QzhbCreateGroupList API the new file is left open for write

access and the QzhbCloseGroupList API can be invoked with a write argument of 1. For more details about

the writelock argument, see “Read a Group File into Memory (QzhbOpenGroupList) API” on page 246.

Authorities and locks:

v *X authority to each directory in the path of the specified group file

v *WX authority to the last directory in the path that will contain the group file path

Required parameter group:

path INPUT:BINARY(4)

 The path to the group file to be created in the Integrated File System. You can specify an absolute

or relative path to the working directory. This path should be in the job CCSID.

path_len

INPUT:BINARY(4)

 The length of the path string.

grplist OUTPUT:BINARY(4)

HTTP Server 239

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The variable that receives the integer handle of the newly created empty group list. Subsequent

API calls use this handle.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA202 E

Unable to update group file &1.

HTPA208 E

Group file &1 already exists.

Locate a named group in a Group List (QzhbFindGroupInList) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 group Input Binary(4)

3 group_len Input Binary(4)

4 grp Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbFindGroupInList API to search an in-memory group list for a named group.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList

API.

group INPUT:CHAR(*)

 The group name for which the system will search the list . The group name is case-sensitive.

Leading and trailing blanks are included with the name.

group_len

INPUT:BINARY(4)

 The length of the group name string. The length must be greater than or equal to 1.

grp OUTPUT:BINARY(4)

240 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The group name handle returned if the named group was found in the list.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA206 E

Group file &1 not found in group list.

Locate a User in a Group (QzhbFindUserInGroup) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 user Input Char(*)

4 user_len Input Binary(4)

5 usr Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbFindUserInGroup API to search an in-memory group for a specific user.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

user INPUT:CHAR(*)

 The user name for which the system will search the group . The user name is case-sensitive.

Leading and trailing blanks are included with the name.

user_len

INPUT:BINARY(4)

HTTP Server 241

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The length of the user string. The length must be greater than or equal to 1.

usr OUTPUT:BINARY(4)

 The handle of the user if it was found in the group.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

HTPA207 E

User &1 not found in group.

Retrieve the Name of a Group (QzhbGetGroupName) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 buf Output Char(*)

4 buf_len Input Binary(4)

5 buf_actlen Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetGroupName API to retrieve the name of a group using the group handle.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

buf OUTPUT:BINARY(4)

242 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The buffer to receive the group name.

buf_len

OUTPUT:BINARY(4)

 The size of the buffer.

buf_actlen

OUTPUT:BINARY(4)

 The actual length of the group name. If the buf_actlen value is greater than the buf_len value, the

data is truncated.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

Retrieve the next Group in the Group List (QzhbGetNextGroup) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 prev_grp Input Binary(4)

3 grp Output Binary(4)

4 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetNextGroup API to retrieve the next group from an in-memory group list.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

prev_grp

INPUT:BINARY(4)

HTTP Server 243

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The group handle returned from a call to the QzhbGetNextGroup, QzhbGetNextGroup,

QzhbFindGroupInList, or QzhbAddGroupToList API, that returns the group immediately following

this group. A handle of 0 returns the first group in the group list.

grp OUTPUT:BINARY(4)

 The group name handle returned if the next group is found in the list. If no next group exists,

then error HTPA206 is returned.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

HTPA206 E

Group file &1 not found in group list.

Retrieve the next User in the Group (QzhbGetNextUser) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 prev_usr Input Binary(4)

4 usr Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetNextUser API to retrieve the next user from a group.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

244 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

prev_usr

INPUT:BINARY(4)

 The user handle for an existing user that returns the user immediately following this user. A

handle of 0 returns the first user in the group list.

usr OUTPUT:BINARY(4)

 The handle of the user if a next user is found in the group. If no next user is found, error

HTPA207 is returned.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

HTPA205 E

Input user handle in parameter &1 not valid.

HTPA207 E

User &1 not found in group.

Retrieve the Name of a User (QzhbGetUserString) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 usr Input Binary(4)

4 buf Output Char(*)

5 buf_len Input Binary(4)

6 buf_actlen Output Binary(4)

7 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbGetUserString API to retrieve the name string of a group member given the user handle, as

returned by the QzhbGetNextUser, QzhbFindUserInGroup, or QzhbAddUserToGroup API.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

HTTP Server 245

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

usr INPUT:BINARY(4)

 The user handle returned from a call to the QzhbGetNextUser, QzhbFindUserInGroup, or

QzhbAddUserToGroup API.

buf OUTPUT:CHAR(*)

 The buffer to receive the user string.

buf_len

INPUT:BINARY(4)

 The size of the buffer.

buf_actlen

OUTPUT:BINARY(4)

 The actual length of the user string. If the buf_actlen value is greater than the buf_len value, the

data is truncated by the system.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

HTPA205 E

Input group handle in parameter &1 not valid.

Read a Group File into Memory (QzhbOpenGroupList) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 path Input Binary(4)

2 path_len Input Binary(4)

3 writelock Input Binary(4)

4 grplist Output Binary(4)

246 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbOpenGroupList API to read in an existing group file, and return a handle to an in-memory

version of the file. See “Free Group File from Memory (QzhbCloseGroupList) API” on page 238 for

information about freeing memory and optionally writing the group list information out.

Authorities and locks:

v *X authority to each directory in the path of the specified group file

v *R authority to the group file for a writelock value of 0

v *RW authority to the group file for a writelock value of 1

Required parameter group:

path INPUT:BINARY(4)

 The path to the group file to be created in the Integrated File System. You can specify an absolute

or relative path to the working directory.

path_len

INPUT:BINARY(4)

 The length of the path string.

writelock

INPUT:BINARY(4)

 If the value is 1, the group file is opened for write access with a lock and kept open. No other

user is allowed to update the group file while the lock is in place. The group file is closed and

the lock released by invoking the QZHbCloseGroupList API. If the value is 0, then the following

are true:

v The group file is opened for read access

v A lock is not placed on the group file

v The group file does not remain open

Note: You must specify a writelock of 1 in order to later specify a write argument of 1 on the

QzhbCloseGroupList API. If you do not hold the group file open for write, the

QzhbCloseGroupList API will not write the contents of the file.

grplist OUTPUT:BINARY(4)

 The handle of the group list. Subsequent API calls use this handle.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

CPF3C1D E

Input variable length in parameter &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA201 E

Group file &1 not found or is unreadable.

HTTP Server 247

HTPA202 E

Unable to update group file &1.

Remove a Group from a Group List (QzhbRemoveGroupFromList) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

2 grp Input Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbRemoveGroupFromList API to remove a named group, and all the users in that group, from

an in-memory group list.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

Remove a User or Element from a Group (QzhbRemoveUserFromGroup) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 grplist Input Binary(4)

248 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

2 grp Input Binary(4)

3 usr Input Binary(4)

4 errcode I/O Char(*)

Threadsafe: Yes

Use the QzhbRemoveUserFromGroup API to remove a user from an in-memory group.

Authorities and locks: None.

Required parameter group:

grplist INPUT:BINARY(4)

 The group list handle returned from a call to the QzhbCreateGroupList or QzhbOpenGroupList API.

grp INPUT:BINARY(4)

 The group handle returned from a call to the QzhbGetNextGroup, QzhbFindGroupInList, or

QzhbAddGroupToList API.

usr INPUT:BINARY(4)

 The user handle returned from a call to the QzhbGetNextUser, QzhbFindUserInGroup, or

QzhbAddUserToGroup API.

errcode

I/O:CHAR(*)

 The structure in which to return error information.

Error messages:

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA203 E

Input group list handle in parameter &1 not valid.

HTPA204 E

Input group handle in parameter &1 not valid.

HTPA205 E

Input user handle in parameter &1 not valid.

Add Triggered Cache Manager Acknowledgment Target Description (QzhtAddTCMAckTargetDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length or request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

HTTP Server 249

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Threadsafe: Yes

Use the QzhtAddTCMAckTargetDesc API to add new acknowledgment target descriptions to the

configurations of triggered cache manager servers. New acknowledgment target descriptions are

referenced subsequently, by name, from trigger handler descriptions associated with the same server.

New acknowledgment target descriptions are utilized by all trigger handler descriptions, referencing then

the next time the servers are restarted. The API is a callable service implemented as an ILE entry point

within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add a new acknowledgment target description.

See Acknowledgment target description formats for more information.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v ATDP0100: Basic information format for an acknowledgment target description.

v ATDP0200: Detailed information format for an *HTTP1 type acknowledgment target

description.

v ATDP0210: Detailed information format for an *HTTP2 type acknowledgment target

description.

error code

I/O: CHAR(*)

 The structure in which to return error information.

ATDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Acknowledgement target

description name

64 40 Char(10) Acknowledgement target

type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

250 iSeries: IBM HTTP Server

ATDP0100 format field descriptions:

Note: Acknowledgment target descriptions are added using default values for all unspecified values

according to the type specified by Acknowledgment target type). See other acknowledgment target

description formats for details regarding these default values.

Acknowledgement target description name

The name used by the new acknowledgment target description (left justified and padded with

blanks if necessary).

Note: Acknowledgment target description names must be unique for each triggered cache

manager server. They are referenced, by name, from trigger handler descriptions associated

with the same server.

Acknowledgement target type

The type of acknowledgment target description that is added (left justified and padded with

blanks if necessary). The value must be one of the special values described below.

 Special values and their meanings are as follows:

*HTTP1

QZHT_HTTP_TYPE1: An *HTTP1 type is added.

*HTTP2

QZHT_HTTP_TYPE2: An *HTTP2 type is added.

Default property

Specifies if the new description is the default acknowledgment target description for the triggered

cache manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default cache

target description.

-1 QZHT_DEFAULT: The default value is used.

Note: Multiple default acknowledgment target descriptions are allowed. Trigger handler

descriptions, added or changed using the *DEFAULT special value, reference all

acknowledgment target descriptions designated as default at the time the trigger handler

descriptions are added or changed.

Initial state

Specifies the state that the triggered cache manager server request processor, for this

acknowledgment target, is in at server startup. The value must equal one of the special values

described below. The default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at

server startup.

-1 QZHT_DEFAULT: The default value is used.

Note: The state of a acknowledgment target request processor can be changed while the triggered

cache manager server is active by using the -chack command in a trigger message.

HTTP Server 251

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this acknowledgment target. The value must be greater that 0 and less than 231

(or 2.147x109), or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

ATDP0200 format:

 Offset Type Field

Dec Hex

0 0 Char(256) Everything from ATDP0100

format

88 58 Binary(4) HTTP IP interface

344 158 Binary(4) HTTP TCP port

348 15C Binary(4) Offset to HTTP URI root

352 160 Binary(4) Length of HTTP URI root

356 164 Binary(4) HTTP keepalive

360 168 Binary(4) Timeout

Char(*) HTTP URI root

ATDP0200 format field descriptions:

HTTP IP interface

The IP host name or address of the system hosting an HTTP server that accepts completion

messages (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The

default value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

252 iSeries: IBM HTTP Server

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server acknowledgment target.

HTTP URI root

The path of HTTP Server URI that is the root of this acknowledgment target (left justified and

padded with blanks if necessary). The value must be a path acceptable to HTTP Server. The

default path is / .

Note: All completion message requests sent to the acknowledgment target are prepended with

this path. If the value is null, Offset to HTTP URI root must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT). See Offset to HTTP URI root for more details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for HTTP URI root.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

HTTP Server 253

ATDP0210 format:

 Offset Type Field

Dec Hex

0 0 Everything from ATDP0100

format

88 58 Char(32) HTTP host

120 78 Binary(4) HTTP TCP port

124 7C Binary(4) Offset to HTTP URI root

128 80 Binary(4) Length of HTTP URI root

132 84 Binary(4) HTTP keepalive

136 88 Binary(4) Timeout

Char(*) HTTP URI root

ATDP0210 format field descriptions:

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new acknowledgment target description and used later, at server startup, to

obtain information about the system hosting an HTTP server accepting completion messages. The

value must be a host description name, or one of the special values described below (left justified

and padded with blanks if necessary). The default value is to reference the description currently

designated as the default host description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

Note: See HTTP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after completion messages are

sent. The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after

messages are sent.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after messages

are sent.

-1 QZHT_DEFAULT: The default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming completion messages. The

value must be greater than 0 and less than 65536, or equal to one of the special values described

below. The default value is 80.

254 iSeries: IBM HTTP Server

Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server acknowledgment target.

HTTP URI root

The path of HTTP Server URI that is the root of this acknowledgment target (left justified and

padded with blanks if necessary). The value must be a path acceptable to HTTP Server. The

default path is / .

Note: All requests to send completion messages to this acknowledgment target are prepended

with this path. If the value is null, Offset to HTTP URI root must equal 0 (QZHT_NONE),

or -1 (QZHT_DEFAULT). See Offset to HTTP URI root for more details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP URI root.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

HTTP Server 255

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Cache Target Description (QzhtAddTCMCacheTargetDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtAddTCMCacheTargetDesc API to add new cache target descriptions to the configurations of

triggered cache manager servers. New cache target descriptions are referenced subsequently, by name,

from trigger handler descriptions associated with the same server. New cache target descriptions are

utilized by all trigger handler descriptions, referencing then the next time the servers are restarted. The

API is a callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the

QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

256 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add a new cache target description. See Cache

target description formats for more information.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v CTDP0100: Basic information format for a cache target description.

v CTDP0200: Detailed information format for an *IFS type cache target description.

v CTDP0300: Detailed information format for a *HTTP1 type cache target description.

v CTDP0310: Detailed information format for a *HTTP2 type cache target description.

v CTDP0500: Detailed information format for a *ECCP1 type cache target description.

v CTDP0510: Detailed information format for a *ECCP2 type cache target description.

error code

I/O: CHAR(*)

 The structure in which to return error information.

CTDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Cache target description

name

64 40 Char(10) Cache target type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

CTDP0100 format field descriptions:

Note: Cache target descriptions are added using default values for all unspecified values according to the

type specified by Cache target type). See other cache target description formats for details

regarding these default values. This format cannot be used to add cache target descriptions of type

*ECCP1 or *ECCP2.

Cache target description name

The name used by the new cache target description (left justified and padded with blanks if

necessary).

Note: Cache target description names must be unique for each triggered cache manager server.

They are referenced, by name, from trigger handler descriptions associated with the same

server.

HTTP Server 257

Cache target type

The type of cache target description that is added (left justified and padded with blanks if

necessary). The value must be one of the special values described below.

 Special values and their meanings are as follows:

*IFS QZHT_IFS_TYPE: An *IFS type is added.

*HTTP1

QZHT_HTTP_TYPE1: An *HTTP1 type is added.

*HTTP2

QZHT_HTTP_TYPE2: An *HTTP2 type is added.

Note: Cache target description types of *ECCP1 and *ECCP2 must be added using the CTDP0500

and CTDP0510 formats, respectively.

Default property

Specifies if the new description will become the default cache target description for the triggered

cache manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description becomes the default cache

target description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default cache

target description.

-1 QZHT_DEFAULT: The default value is used.

Note: Multiple default cache target descriptions are allowed. Trigger handler descriptions added

or changed using the *DEFAULT special value reference all cache target descriptions

designated as default at the time the trigger handler descriptions are added or changed.

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below. The

default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at server

startup.

-1 QZHT_DEFAULT: The default value is used.

Note: The state of a cache target request processor can be changed while the triggered cache

manager server is active by using the -chsink command in a trigger message.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

258 iSeries: IBM HTTP Server

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

CTDP0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDP0100

format

88 58 Binary(4) Offset to local directory

root

92 5C Binary(4) Length of local directory

root

Char(*) Local directory root

CTDP0200 format field descriptions:

Length of local directory root

The length of the information for the Local directory root entry.

Note: If Offset to local directory root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this

value must equal 0.

Local directory root

The path to the local file system directory that is the root of this cache target (left justified and

padded with blanks if necessary). The value must be a path acceptable to the root (/) file system

of the local iSeries system. If a path is provided, but does not specify a absolute path (does not

start with /), the path is prepended with the default path. The default path is

/QIBM/UserData/TCM/{Server name} where {Server name} is the name of the triggered cache

manager server as defined by Server name.

Note: All requests for files from the cache target must have this path prepended to the file name,

even if an absolute file path is specified. If the value is null, Offset to local directory root

must equal 0 (QZHT_NONE) or -1 (QZHT_DEFAULT). See Offset to local directory root

for more details.

Offset to local directory root

The offset from the beginning of the request variable to the Local directory root data, in bytes.

The value must be greater that 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for Local directory root.

CTDP0300 format:

 Offset Type Field

Dec Hex

0 0 Char(256) Everything from CTDP0100

format

88 58 Binary(4) HTTP IP interface

344 158 Binary(4) HTTP TCP port

HTTP Server 259

348 15C Binary(4) Offset to HTTP URI root

352 160 Binary(4) Length of HTTP URI root

356 164 Binary(4) HTTP keepalive

360 168 Binary(4) Timeout

Char(*) HTTP URI root

CTDP0300 format field descriptions:

HTTP IP interface

The IP host name or address of the system hosting an HTTP server cache target (left justified and

padded with blanks if necessary). The value must be a host name (for example,

server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special values

described below. If a host name is specified, it must use proper naming conventions as defined

by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it must

use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The default

value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server cache target.

HTTP URI root

The path of HTTP Server URI that is the root of this cache target (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

260 iSeries: IBM HTTP Server

Note: All file requests from this cache target have this path inserted into the URI, even if an

absolute path for the file is specified. If the value is null, Offset to HTTP URI root must

equal 0 (QZHT_NONE), or -1 (QZHT_DEFAULT). See Offset to HTTP URI root for more

details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for HTTP URI root.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

CTDP0310 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDP0100

format

88 58 Char(32) HTTP host

120 78 Binary(4) HTTP TCP port

124 7C Binary(4) Offset to HTTP URI root

128 80 Binary(4) Length of HTTP URI

132 84 Binary(4) HTTP keepalive

136 88 Binary(4) Timeout

Char(*) HTTP URI root

CTDP0310 format field descriptions:

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new cache target description and used later, at server startup, to obtain

information about the system hosting an HTTP server cache target. The value must be a host

description name, or one of the special values described below (left justified and padded with

HTTP Server 261

blanks if necessary). The default value is to reference the description currently designated as the

default host description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

Note: See HTTP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server cache target.

HTTP URI root

The path of HTTP Server URI that is the root of this cache target (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

Note: All requests to send files to this cache target have this path inserted into the URI, even if

an absolute file path is specified. If the value is null, Offset to HTTP URI root must equal 0

(QZHT_NONE), or -1 (QZHT_DEFAULT). See Offset to HTTP URI root for more details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

262 iSeries: IBM HTTP Server

Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP URI root.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

CTDP0500 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Cache target description

name

64 40 Char(10) Cache target type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

88 58 Char(256) ECCP IP interface

344 158 Binary(4) ECCP TCP port

348 15C Char(32) HTTP cluster IP interface

604 260 Binary(4) HTTP cluster TCP port

608 264 Binary(4) Offset to HTTP cluster URI

root

612 268 Binary(4) Length of HTTP cluster

URI root

6161 26C Binary(4) ECCP keepalive

Char(*) HTTP cluster URI root

CTDP0500 format field descriptions:

Cache target description name

The name used by the new cache target description (left justified and padded with blanks if

necessary).

Note: Cache target description names must be unique for each triggered cache manager server.

They are referenced, by name, from trigger handler descriptions associated with the same

server.

HTTP Server 263

Cache target type

The added cache target descriptions type (left justified and padded with blanks if necessary). The

value must be one of the special values described below.

 Special values and their meanings are as follows:

*ECCP1

QZHT_ECCP_TYPE1: An *ECCP1 type is added.

Default property

Specifies if the new description is a default cache target description for the triggered cache

manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is a default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not a default cache

target description.

-1 QZHT_DEFAULT: The default value is specified.

Note: Multiple default cache target descriptions are allowed. Trigger handler descriptions added

or changed, using the *DEFAULT special value, reference all cache target descriptions

designated as default at the time they are added or changed.

ECCP IP interface

The IP host name or address of the backend IP interface to the network router hosting a web

server cluster cache target (left justified and padded with blanks if necessary). The value must be

a host name (for example, server.mycompany.com) or dotted address (for example, 192.168.3.57).

If a host name is specified, it must use proper naming conventions as defined by RFC 1034,

Domain Names - Concepts and Facilities. If a dotted address is specified, it must use proper IP

version 4 address conventions as defined by RFC 791, Internet Protocol. There is no default value

for this entry.

Note: An exception occurs if an IP host name or address is not specified. See ECCP TCP port for

more information.

ECCP keepalive

Specifies if the connection to the network router is kept open for reuse after data is transferred.

The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

Note: The network router must support keepalive for this option to function properly.

ECCP TCP port

The TCP port number upon which the network router listens for incoming requests. The value

must be greater than 0 and less than 65536. There is no default value for this entry.

Note: The TCP port number is used in combination with the IP host name or address, in ECCP

IP interface, to establish communications with the network router cache target.

264 iSeries: IBM HTTP Server

HTTP cluster IP interface

The IP host name or address of the web server cluster from which the network router is hosting a

cache (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. There

is no default value for this entry.

Note: An IP host name or address must be specified. See HTTP cluster TCP port for more

information.

HTTP cluster TCP port

The web server cluster URI path that is used to define the root for this cache target (left justified

and padded with blanks if necessary). The value must be a path acceptable to the web server

cluster (from which the network router is hosting a cache). The default path is /.

Note: All file requests sent to this cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP cluster URI root must

equal 0 (QZHT_NONE), or -1 (QZHT_DEFAULT). See Offset to HTTP URI root for more

details.

HTTP cluster URI root

The web server cluster URI path that is used to define the root of this cache target (left justified

and padded with blanks if necessary). The value must be a path acceptable to the web server

cluster from which the network router is hosting a cache. The default path is /.

Note: All file requests sent to this cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP cluster URI root must

equal 0 (QZHT_NONE), or -1 (QZHT_DEFAULT). See Offset to HTTP URI root for more

details.

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below. The

default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at server

startup.

-1 QZHT_DEFAULT: The default value is used.

Note: The state of a cache target request processor can be changed while the triggered cache

manager server is active by using the -chsink command in a trigger message.

Length of HTTP cluster URI root

The length of the information for the HTTP cluster URI root entry.

Note: If Offset to HTTP cluster URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this

value must equal 0.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 5.

HTTP Server 265

Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP cluster URI root data, in bytes.

The value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP cluster URI root.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

CTDP0510 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Cache target description

name

64 40 Char(10) Cache target type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

88 58 Char(32) ECCP host

120 78 Binary(4) ECCP TCP port

124 7C Char(256) HTTP cluster IP interface

380 17C Binary(4) HTTP cluster TCP port

384 180 Binary(4) Offset to HTTP cluster URI

root

388 184 Binary(4) Length of HTTP cluster

URI root

392 188 Binary(4) ECCP keepalive

Char(*) HTTP cluster URI root

CTDP0510 format field descriptions:

Cache target description name

The name used by the new cache target description (left justified and padded with blanks if

necessary).

Note: Cache target description names must be unique for each triggered cache manager server.

They are referenced, by name, from trigger handler descriptions associated with the same

server.

266 iSeries: IBM HTTP Server

Cache target type

The added cache target description type (left justified and padded with blanks if necessary). The

value must be one of the special values described below.

 Special values and their meanings are as follows:

*ECCP1

QZHT_ECCP_TYPE2: An *ECCP2 type is added.

Default property

Specifies if the new description is a default cache target description for the triggered cache

manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is a default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not a default cache

target description.

-1 QZHT_DEFAULT: The default value is specified.

Note: Multiple default cache target descriptions are allowed. Trigger handler descriptions added

or changed, using the *DEFAULT special value, reference all cache target descriptions

designated as default at the time they are added or changed.

ECCP host

The name of a host description associated with the triggered cache manager server referenced by

the new cache target description and used later, at server startup, to obtain information about the

network router hosting a web server cluster cache target. The value must be a host description

name, or one of the special values described below (left justified and padded with blanks if

necessary). The default setting references the description currently designated as the default host

description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default is referenced.

Note: See ECCP TCP port for more information. An escape message is sent if the

referenced description does not currently exist, or if *DEFAULT is specified and

there is currently no default host description for the server.

ECCP keepalive

Specifies if the connection to the network router is kept open for reuse after data is transferred.

The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

Note: The network router must support keepalive for this option to function properly.

ECCP TCP port

The TCP port number upon which the network router listens for incoming requests. The value

must be greater than 0 and less than 65536.

HTTP Server 267

Note: There is no default value for this entry. A TCP port number must be specified. The TCP

port number is used in combination with the IP host name or address, obtained at server

startup, from the host description (specified in ECCP host) to establish communication

with the network router cache target.

HTTP cluster IP interface

The IP host name or address of the web server cluster from which the network router is hosting a

cache (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. There

is no default value for this entry.

Note: There is no default value for this entry. An IP host name or address must be specified. See

HTTP cluster TCP port for more information.

HTTP cluster TCP port

The number of the TCP port associated with the IP host name or address described by HTTP

cluster IP interface. The value must be greater than 0 and less than 65536.

Note: There is no default value for this entry. A TCP port number must be specified. The

network router using the address described by ECCP host may host multiple web server

caches. The TCP port number specified here is used in combination with the IP host name

or address in HTTP cluster IP interface to identify a particular web server cache when

communicating with the network router.

HTTP cluster URI root

The web server cluster URI path that is used to define the root of this cache target (left justified

and padded with blanks if necessary). The value must be a path acceptable to the web server

cluster from which the network router is hosting a cache. The default path is /.

Note: All file requests sent to this cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP cluster URI root must

equal 0 (QZHT_NONE), or -1 (QZHT_DEFAULT). See Offset to HTTP URI root for more

details.

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below. The

default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at server

startup.

-1 QZHT_DEFAULT: The default value is used.

Note: The state of a cache target request processor can be changed while the triggered cache

manager server is active by using the -chsink command in a trigger message.

Length of HTTP cluster URI root

The length of the information for the HTTP cluster URI root entry.

Note:

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

268 iSeries: IBM HTTP Server

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP cluster URI root data, in bytes.

The value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 E

Value passed to offset &1 is not valid.

HTTP Server 269

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Data Source Description (QzhtAddTCMDataSourceDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtAddTCMDataSourceDesc API to add new data source descriptions to the configurations of

triggered cache manager servers. New data source descriptions are referenced subsequently, by name,

from trigger handler descriptions associated with the same server. New data source descriptions are

utilized by all trigger handler descriptions, referencing then the next time the servers are restarted. The

API is a callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the

QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add a new data source description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v DSDP0100: Basic information format for a data source description.

v DSDP0200: Detailed information format for an *IFS type data source description.

v DSDP0300: Detailed information format for a *HTTP1 type data source description.

v DSDP0310: Detailed information format for a *HTTP2 type data source description.

error code

I/O: CHAR(*)

 The structure in which to return error information.

270 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

DSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Data source description

name

64 40 Char(10) Data source type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

DSDP0100 format field descriptions:

Note: Data source descriptions are added using default values for all unspecified values according to the

type specified by Data source type). See other data source description formats for details regarding

these default values.

Data source description name

The name used by the new data source description (left justified and padded with blanks if

necessary).

Note: Data source description names must be unique for each triggered cache manager server.

They are referenced, by name, from trigger handler descriptions associated with the same

server.

Data source type

The type of data source description that is added (left justified and padded with blanks if

necessary). The value must be one of the special values described below.

 Special values and their meanings are as follows:

*IFS QZHT_IFS_TYPE: An *IFS type is added.

*HTTP1

QZHT_HTTP_TYPE1: An *HTTP1 type is added.

*HTTP2

QZHT_HTTP_TYPE2: An *HTTP2 type is added.

Default property

Specifies if the new description will become the default data source description for the triggered

cache manager server specified in Server name. The value must equal one of the special values

described below. If the value equals 1 (QZHT_YES), the default property on the current default

data source description is set to 0 (QZHT_NO). This description takes over the default role. The

default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description becomes the default data

source description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default data

source description.

-1 QZHT_DEFAULT: The default value is used.

HTTP Server 271

Note: Trigger handler descriptions added or changed using the *DEFAULT special value are

referenced from this data source description designated as default at the time the trigger

handler descriptions are added or changed.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

triggers sent to this trigger handler. The value must be greater that 0 and less than 231 (or

2.147x109), or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Server name

The name used to identify the triggered cache manager server for which the description is

associated (left justified and padded with blanks if necessary).

DSDP0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDP0100

format

84 54 Binary(4) Offset to local directory

root

88 58 Binary(4) Length of local directory

root

Char(*) Local root directory

DSDP0200 format field descriptions:

Length of local directory root

The length of the information for the Local directory root entry.

Note: If Offset to local directory root equals 0 (QZHT_NONE) or -1 (QZHT_DEFAULT), this

value must equal 0.

Local directory root

The path to the local file system directory that is the root of this data source (left justified and

padded with blanks if necessary). The value must be a path acceptable to the root (/) file system

of the local iSeries system. If a path is provided, but does not specify a absolute path (does not

start with /), the path is prepended with the default path. The default path is

/QIBM/UserData/TCM/{Server name} where {Server name} is the name of the triggered cache

manager server as defined by Server name.

Note: All requests for files from the data source must have this path prepended to the file name,

even if an absolute path is specified for the file. If the value is null, Offset to local directory

root must equal 0 (QZHT_NONE) or -1 (QZHT_DEFAULT).

Offset to local directory root

The offset from the beginning of the request variable to the Local directory root data, in bytes.

The value must be greater that 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

272 iSeries: IBM HTTP Server

-1 QZHT_DEFAULT: The default path is used.

DSDP0300 format:

 Offset Type Field

Dec Hex

0 0 Char(256) Everything from DSDP0100

format

88 58 Binary(4) HTTP IP interface

340 154 Binary(4) HTTP TCP port

344 158 Binary(4) Offset to HTTP URI root

348 15C Binary(4) Length of HTTP URI root

352 160 Binary(4) HTTP keepalive

356 164 Binary(4) Timeout

Char(*) HTTP URI root

DSDP0300 format field descriptions:

HTTP IP interface

The IP host name or address of the system hosting an HTTP server data source (left justified and

padded with blanks if necessary). The value must be a host name (for example,

server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special values

described below. If a host name is specified, it must use proper naming conventions as defined

by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it must

use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The default

value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

Note: See HTTP TCP port for more information.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

HTTP Server 273

Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server data source.

HTTP URI root

The path of HTTP Server URI that is the root of this data source (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

Note: All file requests from this data source have this path inserted into the URI, even if an

absolute path for the file is specified. If the value is null, Offset to HTTP URI root must

equal 0 (QZHT_NONE), or -1 (QZHT_DEFAULT).

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

DSDP0310 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDP0100

format

84 54 Char(32) HTTP host

116 74 Binary(4) HTTP TCP port

120 78 Binary(4) Offset to HTTP URI root

124 7C Binary(4) Length of HTTP URI root

128 80 Binary(4) HTTP keepalive

132 84 Binary(4) Timeout

274 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

Char(*) HTTP URI root

DSDP0310 format field descriptions:

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new data source description and used later, at server startup, to obtain

information about the system hosting an HTTP server data source. The value must be a host

description name, or one of the special values described below (left justified and padded with

blanks if necessary). The default value is to reference the description currently designated as the

default host description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

Note: See HTTP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server data source.

HTTP URI root

The path of HTTP Server URI that is the root of this data source (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

HTTP Server 275

Note: If the value is null, Offset to HTTP URI root must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT).

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP URI root.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

276 iSeries: IBM HTTP Server

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Host Description (QzhtAddTCMHostDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtAddTCMHostDesc API to add new host descriptions to the configuration of triggered cache

manager servers. New host descriptions are referenced subsequently, by name, from certain types of data

source, cache target, and acknowledgment target descriptions associated with the same server. New host

descriptions are utilized by all descriptions referencing them the next time the servers are started. The

API is a callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the

QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add a new host description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v HSDP0100: Basic information format for a host description.

HTTP Server 277

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

error code

I/O: CHAR(*)

 The structure in which to return error information.

HSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Host description

64 40 Binary(4) Default property

68 44 Char(32) IP interface

Field descriptions:

Default property

Specifies if the new description is the default host description for the triggered cache manager

server specified in Server name. The value must equal one of the special values described below.

If the value equals 1 (QZHT_YES), the default property for the current default host description is

set to 0 (QZHT_NO), and this description takes over the default role. The default value is 0

(QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the default host

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default host

description.

-2 QZHT_DEFAULT: The default value is used.

Note: Data source, cache target, and acknowledgment target descriptions, added or changed

using the *DEFAULT special value, reference the host description designated as default at

the time they are added or changed.

Host description name

The name used by the new host description (left justified and padded with blanks if necessary).

Note: Host description names must be unique for each triggered cache manager server. They are

referenced, by name, from certain types of data source, cache target, and acknowledgment

target descriptions associated with the same server.

IP interface

The IP host name or address of the system hosting servers used by the triggered cache manager

server (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The

default value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

278 iSeries: IBM HTTP Server

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Object Dependency Graph Description (QzhtAddTCMODGDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtAddTCMODGDesc API adds new object dependency graph (ODG) descriptions to the

configuration of triggered cache manager servers. New object dependency graph descriptions are

HTTP Server 279

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

referenced subsequently, but name, from trigger handler descriptions associated with the same server.

New object dependency graph descriptions are utilized by all descriptions referencing them the next time

the servers are started.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to add a new object dependency graph description.

length or request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of Request variable data. The following values must be used:

v OGDP0100: Basic information format for an object dependency graph description.

error code

I/O: CHAR(*)

 The structure in which to return error information.

OGDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Object dependency graph

description name

64 40 Binary(4) Default property

68 44 Binary(4) Allow API updates

Field descriptions:

Allow API updates

Specifies whether APIs are allowed to update the object dependency graph described by the new

object dependency graph description. The value must be one of the special values described

below. The default value is 1 (QZHT_YES).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The object dependency graph is updated

using APIs via the triggered cache manager server, as well as from trigger handler

process parsing.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The object dependency graph may not be

updated using APIs through the triggered cache manager server. Only updates as a result

of trigger handler publish parsing are allowed.

-1 QZHT_DEFAULT: The default value is used.

280 iSeries: IBM HTTP Server

Default property

Specifies whether the new description is to become the default object dependency graph

description for the triggered cache manager server specified in Server name. The value must

equal one of the special values described below. If the value equals 1 (QZHT_YES), the default

property for the current default object dependency graph description is set to 0 (QZHT_NO), and

this description takes over the default role. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is to become the default

object dependency graph description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not to become the

default object dependency graph description.

-1 QZHT_DEFAULT: The default value is used.

Note: Trigger handler descriptions added or changed using the *DEFAULT special value

references the object dependency graph description designated as default at the time the

trigger handler descriptions are added or changed.

Object dependency graph description name

The name used by the new object dependency graph description (left justified and padded with

blanks if necessary).

Note: Object dependency graph description names must be unique for each triggered cache

manager server. They are referenced, by name, from trigger handler descriptions associated

with the same server.

Server name

The name used to identify the triggered cache manager server with which the new description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

HTTP Server 281

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed at offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Publishing Rule (QzhtAddTCMPublishingRule) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtAddTCMPublishingRule API adds new publishing rules to the configurations of triggered cache

manager servers. New publishing rules are referenced subsequently, by name, from rule sets associated

with the same server. New publishing rules are utilized by all Rule Sets referencing them the next time

the servers are started. The API is a callable service implemented as an ILE entry point within

QZHTINCONF *SRVPGM in QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information to add a new publishing rule.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v PRDP0100: Basic information format for a publishing rule.

error code

I/O: CHAR(*)

 The structure in which to return error information.

282 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

PRDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Publishing rule name

64 40 Binary(4) Offset to file extensions

68 44 Binary(4) Length of file extensions

72 48 Binary(4) Read from data source

76 4C Binary(4) Send data source version

80 50 Binary(4) Parse and assemble

84 54 Binary(4) Send assembled version

88 58 Binary(4) Offset to new file extension

72 5C Binary(4) Length of new file

extension

Char(*) File extensions

Char(*) New file extension

PRDP0100 format field descriptions:

File extension

A list of file extensions used to identify files that are processed according to this new publishing

rule. File extensions must be listed as a string of characters, where each extension starts with a

period character (.) and is separated by one or more spaces (left justified and padded with blanks

if necessary). There is no default value for this entry.

Note: A list of file extensions is required. The file extensions are used by trigger handlers to

determine when the publishing rule applies. File names are compared to file extensions

starting at the last period in the file name. Therefore, each file extension must start with a

period character (.), otherwise a match is not made. For example, .html, .gif, or .event.

Length of file extensions

The length of the information for the File extensions entry.

Length of new file extension

The length of the information for the New file extension entry.

Note: If Offset to new file extension equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this

value must equal 0.

New file extension

A file extension used to rename files after they have been assembled and before they are sent to

the cache targets (left justified and padded with blanks if necessary). The default value is null,

indicating that files are not renamed.

Note: If the value is null, Offset to new file extension must equal 0 (QZHT_NONE) or -1

(QZHT_DEFAULT). If a new file extension is specified, file names matching any one of the

file extensions listed in File extension are renamed with the file extension prior to being

sent to the cache targets. An escape message is sent if a new file extension is provided and

Send assembled version equals 0 (QZHT_NO).

Offset to new file extension

The offset from the beginning of the request variable to the New file extension data, in bytes. The

value must be greater than 0 or equal one of the special values described below.

HTTP Server 283

Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for New file extension.

Note: An escape message is sent if Offset to new file extension is greater than 0 (indicating that a

new file extension has been provided) and Send assembled version equals 0 (QZHT_NO).

Offset to file extensions

The offset from the beginning of the request variable to the File extension data, in bytes.

Parse and assemble

Specifies if files matching this publishing rule are parsed for wrappers and includes, and possibly

sent through the page assembler. If the name is changed during wrapper parsing, the extension of

the new name is used to determine if the file should be parsed for includes and sent through the

page assembler. The value must equal one of the special values described below. The default

value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Files matching this publishing rule are

parsed and possibly sent through the page assembler.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Files matching this publishing rule are

not parsed.

Note: Files that are not parsed are not sent through the page assembler.

-1 QZHT_DEFAULT: The default value is used.

Note: An escape message is sent if Parse and assemble equals 1 (QZHT_YES) and Read from

data source equals 0 (QZHT_NO).

Publishing rule name

The name used by the publishing rule, left justified and padded with blanks if necessary.

Note: Publishing rule names must be unique for each triggered cache manager server. They are

referenced by name, from Rule Sets associated with the same server.

Read from data source

Specifies if files matching this publishing rule are read from the data source when triggered. The

value must be one of the special values described below. The default value is 1 (QZHT_YES).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Files matching this publishing rule are

read from the data source when triggered.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Files matching this publishing rule are

not read from the data source.

Note: Not reading files from the data source is useful when triggers specify a file which

is purely symbolic and need not correspond to an actual file, yet causes dependent files

processing.

-1 QZHT_DEFAULT: The default value is used.

Send assembled version

Specifies if the assembled version of files matching this publishing rule are sent to cache targets

when triggered and processed. The value must equal one of the special values described below.

The default value is 0 (QZHT_NO).

284 iSeries: IBM HTTP Server

Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Assembled versions of files matching this

publishing rule are sent to cache targets when triggered and processed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Assembled versions of files matching this

publishing rule are not sent to cache targets.

-1 QZHT_DEFAULT: The default value is used.

Note: An escape message is sent if Send assembled version equals 1 (QZHT_YES) and Parse and

assemble equals 0 (QZHT_NO).

Send data source version

Specifies if the data source version of files matching this publishing rule (the version read from

the data source prior to assembly) are sent to cache targets when triggered and processed. The

value must equal one of the special values described below. The default value is 1 (QZHT_YES)

when Read from data source equals 1 (QZHT_YES), and 0 (QZHT_NO) when Read from data

source equals 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Data source versions of files matching this

publishing rule are sent to cache targets when triggered and processed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Data source versions of files matching

this publishing rule are not sent to cache targets.

-1 QZHT_DEFAULT: The default value is used.

Note: An escape message is sent if Send data source version equals 1 (QZHT_YES) and Read

from data source equals 0 (QZHT_NO).

Server name

The name used to identify the triggered cache manager server to which the description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

HTTP Server 285

TCM7293 E

A &1 using the name&2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Rule Set (QzhtAddTCMRuleSet) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtAddTCMRuleSet API adds new rule sets to the configurations of triggered cache manager

servers. New rule sets are referenced subsequently, by name, from trigger handler descriptions associated

with the same server. New rule sets are utilized by all descriptions referencing them the next time the

servers are started.

Note: Triggers are sent to trigger handlers which process them according to publishing rules. Custom

publishing rule descriptions may be provided for the trigger handler through a rule set. If

extensions of files identified in triggers match one of the extensions listed in a custom publishing

rule, they will be processed according to that publishing rule. If extensions do not match any of

the custom publishing rules, the file will be processed according to the default publishing rule.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information to add a new rule set.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

286 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v RSDP0100: Basic information format for a rule set.

error code

I/O: CHAR(*)

 The structure in which to return error information.

RSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Rule set name

64 40 Binary(4) Default property

68 44 Binary(4) Offset to publishing rules

72 48 Binary(4) Length of publishing rules

Char(*) Publishing rules

RSDP0100 format field descriptions:

Default property

Specifies if the new description is to become the default rule set for the triggered cache manager

server specified in Server name. The value must equal one of the special values described below.

If the value equals 1 (QZHT_YES), the default property on the current default rule set, if any, is

set to 0 (QZHT_NO). The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is to become the default

rule set for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not to become the

default rule set.

-1 QZHT_DEFAULT: The default value is used.

Note: Trigger handler descriptions, added or changed using the *DEFAULT special value,

reference the rule set designated as default at the time they are added or changed.

Length of publishing rules

The length of the information for the Publishing rules entry.

Note: If Offset to Publishing rules equals 0 (QZHT_NONE) or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to publishing rules

The offset from the beginning of the request variable to the Publishing rules data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for Publishing rules.

Publishing rules

A list of publishing rules associated with the triggered cache manager server referenced by the

new Rule Set and used by trigger handlers, at startup, to direct how files are processed.

HTTP Server 287

Descriptions must be listed by name, where each name is separated by one or more spaces, and

padded with blanks if necessary. The default value is null, indicating that an empty rule set is

described.

Note: If the value is null, Offset to publishing rules must equal 0 (QZHT_NONE) or -1

(QZHT_DEFAULT). See Offset to publishing rules for more details. An empty rule set

referenced by a trigger handler causes it to process all triggers according to the default

publishing rule. An escape message is sent if any referenced description does not currently

exist.

Rule set object name

The name used by the new rule set (left justified and padded with blanks if necessary).

Note: Rule set names must be unique for each triggered cache manager server. They are

referenced, by name, from trigger handler descriptions associated with the same server.

Server name

The name used to identify the triggered cache manager server to which the new description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7293 E

A &1 using the name&2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Add Triggered Cache Manager Trigger Handler Description (QzhtAddTCMTriggerHandlerDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

288 iSeries: IBM HTTP Server

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtAddTCMTriggerHandlerDesc API to add new trigger handler descriptions to the

configurations of triggered cache manager servers. New trigger handler descriptions are utilized by the

triggered cache manager servers after they are restarted. The API is a callable service implemented as an

ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add a new trigger handler description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v THDP0100: Basic information format for a trigger handler description.

v THDP0200: Detailed information format for an *UPDATE type trigger handler description.

v THDP0300: Detailed information format for a *PUBLISH type trigger handler description.

error code

I/O: CHAR(*)

 The structure in which to return error information.

THDP0100 format:

Note: When using this format, trigger handler description are added using default values for all

unspecified values (according to the type specified by Trigger handler type). See other trigger

handler description formats for details regarding these default values.

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Trigger handler description

name

64 40 Char(10) Trigger handler type

HTTP Server 289

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Offset Type Field

Dec Hex

74 4A Char(2) Reserved

76 4C Char(32) Data source

108 6C Binary(4) Offset to cache targets

112 70 Binary(4) Length of cache targets

116 74 Binary(4) Offset to ack targets

120 78 Binary(4) Length of ack targets

124 7C Binary(4) Offset to nack targets

128 80 Binary(4) Length of nack targets

132 84 Binary(4) Number of threads

Char(*) Cache targets

Char(*) Ack targets

Char(*) Nack targets

THDP0100 format field descriptions:

Ack targets

A list of acknowledgment target descriptions associated with the triggered cache manager server

referenced by the new trigger handler description and used later, at server startup, to obtain

information as to where successful process completion messages are sent. Descriptions must be

listed by name, where each name is separated by one or more spaces, and padded with blanks if

necessary. The default setting is to reference the descriptions currently designated as default

acknowledgment target descriptions for the triggered cache manager server. If there are no

descriptions currently designated as default, a null list is used. A null list indicates successful

process completion messages are not sent.

Note: If a null list is specified, Offset to ack targets must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT). See Offset to ack targets for more details. Messages concerning

successful process completion of triggers referencing this handler are sent to all listed

acknowledgment targets. An escape message is sent if any referenced description does not

currently exist.

Cache targets

A list of cache target descriptions associated with the triggered cache manager server referenced

by the new trigger handler description and used later, at server startup, to obtain information

about the cache targets to which the trigger handler sends data. Descriptions must be listed by

name, where each name is separated by one or more spaces, and padded with blanks if necessary.

The default setting is to reference the descriptions currently designated as default cache target

descriptions for the triggered cache manager server. If there are no descriptions currently

designated as default, a null list is used. A null list indicates data is not sent to cache targets.

Note: If a null list is specified, Offset to ack targets must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT). See Offset to ack targets for more details. Data processed by this

trigger handler is sent to all listed cache targets. An escape message is sent if any

referenced description does not currently exist.

Data source

The name of a data source description associated with the triggered cache manager server

referenced by the new trigger handler description and used later, at server startup, to obtain

information about the data source from which the trigger handler receives data. The value must

be a data source description name, or one of the special values described below (left justified and

290 iSeries: IBM HTTP Server

padded with blanks if necessary). The default setting references the description currently

designated as the default data source description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

Note: An escape message is sent if the referenced description does not currently exist, or if

*DEFAULT is specified and there is currently no default data source description for the

server.

Length of ack targets

The length of the information for the Ack targets entry.

Note: If Offset to ack targets equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value must

equal 0.

Length of cache targets

The length of the information for the Cache targets entry.

Note: If Offset to cache targets equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Length of nack targets

The length of the information for the Nack targets entry.

Note: If Offset to nack targets equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value must

equal 0.

Nack targets

A list of acknowledgment target descriptions associated with the triggered cache manager server

referenced by the new trigger handler description and used later, at server startup, to obtain

information as to where failed process completion messages are sent. Descriptions must be listed

by name, where each name is separated by one or more spaces, and padded with blanks if

necessary. The default setting is to reference the descriptions currently designated as default

acknowledgment target descriptions for the triggered cache manager server. If there are no

descriptions currently designated as default, a null list is used. A null list indicates failed process

completion messages are not sent.

Note: If a null list is specified, Offset to nack targets must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT). See Offset to nack targets for more details. Messages concerning failed

trigger process completion referencing this handler are sent to all listed acknowledgment

targets. An escape message is sent if any referenced description does not currently exist.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

triggers sent to this trigger handler. The value must be greater that 0 and less than 231 (or

2.147x109), or equal to one of the special values described below. The default value is 10.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Offset to ack targets

The offset from the beginning of the request variable to the Ack targets data, in bytes. The value

must be greater than 0, or equal to one of the special values described below.

HTTP Server 291

Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Ack targets indicating successful process

completion messages are not sent.

-1 QZHT_DEFAULT: The default descriptions, if any, are referenced for Ack targets.

Offset to cache targets

The offset from the beginning of the request variable to the Cache targets data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Cache targets indicating data is not sent to

cache targets.

-1 QZHT_DEFAULT: The default descriptions, if any, are referenced for Cache targets.

Offset to nack targets

The offset from the beginning of the request variable to the Nack targets data, in bytes. The value

must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Nack targets indicating failed process

completion messages are not sent.

-1 QZHT_DEFAULT: The default descriptions, if any, are referenced for Nack targets.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

Trigger handler description name

The name used by the new trigger handler description (left justified and padded with blanks if

necessary).

Note: Trigger handler description names must be unique for each triggered cache manager

server.

Trigger handler type

The trigger handler type (left justified and padded with blanks if necessary). The value must be

one of the special values described below.

 Special values and their meanings are as follows:

*UPDATE

QZHT_UPDATE_TYPE: A *UPDATE type is described.

*PUBLISH

QZHT_PUBLISH_TYPE: A *PUBLISH type is described.

THDP0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from THDP0100

format

136 88 Binary(4) Cache request queue

priority

292 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

140 8C Binary(4) Trigger queue collapse

policy

THDP0200 format field description:

Cache request queue priority

Specifies the trigger handler priority value when submitting requests to the cache targets. Lower

values indicate higher priority. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 231 (the lowest

priority).

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: Triggered cache manager servers queue the trigger handler requests to the cache targets

and process them according to queue priority. Requests from trigger handlers with higher

priority are processed before requests from trigger handlers with lower priority. The trigger

handler queue priority can be changed while servers are active by using the -chspriority

command in a trigger message.

Trigger queue collapse policy

Specifies if identical triggers waiting on the request queue, for this trigger handler, are collapsed.

The value must equal one of the special values described below. The default value is 1

(QZHT_YES).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Identical triggers are collapsed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Identical triggers are not collapsed.

-1 QZHT_DEFAULT: The default value is used.

Note: Only triggers using the -objects keyword can be collapsed. Identical triggers are those

having an identical set of listed objects. The order of the listed objects is not important.

Once a trigger handler begins processing a trigger, it is not collapsed.

THDP0300 format:

 Offset Type Field

Dec Hex

0 0 Everything from THDP0100

format

136 88 Char(32) Object dependency graph

168 A8 Char(32) Rule set

200 C8 Binary(4) Offset to traversal edge

name

204 CC Binary(4) Length of traversal edge

name

208 D0 Binary(4) Offset to default included

file

HTTP Server 293

Offset Type Field

Dec Hex

212 D4 Binary(4) Length of default included

file

216 D8 Binary(4) Include dependency

information

220 DC Binary(4) Include triggered file

information

224 E0 Binary(4) Include cached file

information

Char(*) Traversal edge type

Char(*) Default include file

THDP0300 format field description:

Default included file

The name of a file the trigger handler includes, by global default, as a replacement for included

files that have not been triggered (when a local default file is not specified or available). The file

name must be left justified and padded with blanks if necessary. The default value is null,

indicating that a global default file name is not specified for this trigger handler description.

Note: If the value is null, Offset to default included file must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT). See Offset to default included file for more details. The file specified as

a global default must be triggered (at runtime) before it can be used.

Include cached file information

Specifies if a list of names for all files sent to cache targets, as a result of handling original trigger

requests, is included in successful process completion messages. The value must equal one of the

special values described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: A list of names is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: A list of names is not included.

-1 QZHT_DEFAULT: The default value is used.

Include dependency information

Specifies if information concerning all dependent files, assembled into triggered files as a result of

handling original trigger request, is included in successful process completion messages. The

value must equal one of the special values described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Information is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Information is not included.

-1 QZHT_DEFAULT: The default value is used.

Include triggered file information

Specifies if a list of names for all files triggered, as a result of handling original trigger requests,

is included in successful process completion messages. The value must equal one of the special

values described below. The default value is 0 (QZHT_NO).

294 iSeries: IBM HTTP Server

Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: A list of names is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: A list of names is not included.

-1 QZHT_DEFAULT: The default value is used.

Length of default included file

The length of information for the Default included file entry.

Note: If Offset to traversal edge type equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this

value must equal 0.

Object dependency graph

The name of an object dependency graph description associated with the triggered cache

manager server referenced by the new trigger handler description and used later, at server

startup, to identify which object dependency graph is used by the handler to record and obtain

object dependency information. The value must be an object dependency graph description name,

or one of the special values described below (left justified and padded with blanks if necessary).

The default setting is to reference the description currently designated as the default object

dependency graph description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default is referenced.

Note: An object dependency graph description is required. An escape message is sent if the

referenced description does not currently exist, or if *DEFAULT is specified and there is

currently no default object dependency graph description for the server.

Offset to default included file

The offset from the beginning of the request variable to the Default included file data, in bytes.

The value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value for Default included file is used.

Offset to traversal edge type

The offset from the beginning of the request variable to the Traversal edge type data, in bytes.

The value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value for Traversal edge type is used.

Rule set

The name of a rule set associated with the triggered cache manager server referenced by the new

trigger handler description and used later, at server startup, to identify which publishing rules

are used by the handler. The value must be a rule set name, or one of the special values

described below (left justified and padded with blanks if necessary).

 Special values and their meanings are as follows:

HTTP Server 295

*DEFAULT

QZHT_DEFAULT_CHAR: The default rule set currently associated with the triggered

cache manager server is referenced.

*NONE

QZHT_NONE_CHAR: No rule set is referenced by the trigger handler.

Note: Triggers that specify files that do not match any publishing rules, in the specified rule set,

are processed according to the default publishing rule. That is, they are read from the data

source and sent to all cache targets (they are not parsed). An empty rule set has the same

affect as not specifying a rule set at all. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default Rule Set for the server.

Traversal edge type

The name of an object dependency graph (ODG) edge type used by the trigger handler to

determine object dependencies when assembling files. The edge type name must be left justified

and padded with blanks if necessary. The default name is composition.

Note: If the value is null, Offset to traversal edge type must equal 0 (QZHT_NONE), or -1

(QZHT_DEFAULT). Only edges of the specified type are traversed by this trigger handler

to determine object dependencies.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

296 iSeries: IBM HTTP Server

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Acknowledgment Target Description (QzhtChgTCMAckTargetDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtChgTCMAckTargetDesc API to change acknowledgment target descriptions associated with

triggered cache manager servers. Changes made to acknowledgment target descriptions are utilized by all

trigger handler descriptions referencing them (the next time the servers are started). The API is a callable

service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*) The variable used to pass the information used to change an acknowledgment

target description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v ATDP0100: Basic information format for an acknowledgment target description.

v ATDP0200: Detailed information format for an *HTTP1 type acknowledgment target

description.

v ATDP0210: Detailed information format for an *HTTP2 type acknowledgment target

description.

server name

INPUT: CHAR(32)

HTTP Server 297

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The name used to identify the triggered cache manager server for which the description is

changed (left justified and padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify the changed acknowledgment target description (left justified and

padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

ATDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Acknowledgement target

description name

64 40 Char(10) Acknowledgement target

type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

ATDP0100 format field descriptions:

Note: Acknowledgment target descriptions are added using default values for all unspecified values

according to the type specified by Acknowledgment target type). See other acknowledgment target

description formats for details regarding these default values.

Acknowledgement target description name

The name used by the new acknowledgment target description (left justified and padded with

blanks if necessary). The value must be a description name, or be one of the special values

described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

Note: Acknowledgment target description names must be unique for each triggered cache

manager server.

Acknowledgement target type

The added acknowledgment target description type (left justified and padded with blanks if

necessary). The value must be one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The description is not changed to a different type.

*HTTP1

QZHT_HTTP_TYPE1: An *HTTP1 type is added.

298 iSeries: IBM HTTP Server

*HTTP2

QZHT_HTTP_TYPE2: An *HTTP2 type is added.

Note: If a type is specified, that is different than the current type, certain information is

discarded if it cannot be mapped to values for the new description type. See other

acknowledgment target description formats for details.

Default property

Specifies if the new description is the default acknowledgment target description for the triggered

cache manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default cache

target description.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is be changed.

Note: Multiple default acknowledgment target descriptions are allowed. Trigger handler

descriptions, added or changed using the *DEFAULT special value, reference all

acknowledgment target descriptions designated as default at the time the trigger handler

descriptions are added or changed.

Initial state

Specifies the state that the triggered cache manager server request processor, for this

acknowledgment target, is in at server startup. The value must equal one of the special values

described below. The default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at

server startup.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: The state of a acknowledgment target request processor can be changed while the triggered

cache manager server is active by using the -chack command in a trigger message.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this acknowledgment target. The value must be greater that 0 and less than 231

(or 2.147x109), or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Server name

The name used to identify the triggered cache manager server for which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

HTTP Server 299

or one of the special values described below. If a server name is specified, that is different than

the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association (while

being referenced by other descriptions).

ATDP0200 format:

 Offset Type Field

Dec Hex

0 0 Char(256) Everything from ATDP0100

format

88 58 Binary(4) HTTP IP interface

344 158 Binary(4) HTTP TCP port

348 15C Binary(4) Offset to HTTP URI root

352 160 Binary(4) Length of HTTP URI root

356 164 Binary(4) HTTP keepalive

360 168 Binary(4) Timeout

Char(*) HTTP URI root

ATDP0200 format field descriptions:

Note: If the current description type is not *HTTP1, all information currently stored for the description,

that is not mapped to one the following entries, is discarded.

HTTP IP interface

The IP host name or address of the system hosting an HTTP server that accepts completion

messages (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The

default value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

 If the current type is: Details

*HTTP1 use current HTTP IP interface

value

No change is made.

*HTTP2 use IP interface value from the

host description currently

referenced by HTTP host

An exception occurs if the

referenced description does not

exist. Refers to ATDP0210 format.

300 iSeries: IBM HTTP Server

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after

messages are sent.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after messages

are sent.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server acknowledgment target.

HTTP URI root

The path of HTTP Server URI that is the root of this acknowledgment target (left justified and

padded with blanks if necessary). The value must be a path acceptable to HTTP Server. The

default path is / .

 If Offset to HTTP URI root equals -2 (QZHT_NO_CHANGE), the current path is not changed.

Note: All completion message requests sent to the acknowledgment target are prepended with

this path. If the value is null, Offset to HTTP URI root must equal 0 (QZHT_NONE), -1

(QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to HTTP URI root for more

details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0. If Offset to HTTP URI root equals 0

(QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE), this value must

equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

HTTP Server 301

-1 QZHT_DEFAULT: The default value is used for HTTP URI root.

-2 QZHT_NO_CHANGE: The current path for HTTP URI root is not changed.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

ATDP0210 format:

 Offset Type Field

Dec Hex

0 0 Everything from ATDP0100

format

88 58 Char(32) HTTP host

120 78 Binary(4) HTTP TCP port

124 7C Binary(4) Offset to HTTP URI root

128 80 Binary(4) Length of HTTP URI root

132 84 Binary(4) HTTP keepalive

136 88 Binary(4) Timeout

Char(*) HTTP URI root

ATDP0210 format field descriptions:

Note: If the current description type is not *HTTP2, all information currently stored for the description,

that is not mapped to one the following entries, is discarded.

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new acknowledgment target description and used later, at server startup, to

obtain information about the system hosting an HTTP server accepting completion messages. The

value must be a host description name, or one of the special values described below (left justified

and padded with blanks if necessary). The default value is to reference the description currently

designated as the default host description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

302 iSeries: IBM HTTP Server

If the current type is: Details

*HTTP1 the default host description,

currently associated with the

triggered cache manager server is,

referenced.

*HTTP2 the description, currently

referenced for HTTP host, is not

changed

No change is made.

Note: See HTTP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after completion messages are

sent. The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after

messages are sent.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after messages

are sent.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming completion messages. The

value must be greater than 0 and less than 65536, or equal to one of the special values described

below. The default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server acknowledgment target.

HTTP URI root

The path of HTTP Server URI that is the root of this acknowledgment target (left justified and

padded with blanks if necessary). The value must be a path acceptable to HTTP Server. The

default path is / .

 If Offset to HTTP URI root equals -2 (QZHT_NO_CHANGE), the current path is not changed.

Note: All requests to send completion messages to this acknowledgment target are prepended

with this path. If the value is null, Offset to HTTP URI root must equal 0 (QZHT_NONE),

-1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to HTTP URI root for more

details.

HTTP Server 303

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP URI root.

-2 QZHT_NO_CHANGE: The current path for HTTP URI root is not changed.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 D

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 D

A configuration file for triggered cache manager server &1 was not found.

TCM7222 D

A default &1 is not designated for triggered cache manager server &2.

TCM7290 D

&1 &2 was not found for triggered cache manager server &3.

304 iSeries: IBM HTTP Server

TCM7293 D

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 D

Triggered cache manager &1 name is not valid.

TCM72C1 D

Triggered cache manager &1 type is not valid.

TCM72C2 D

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 D

Value passed to offset &1 is not valid.

TCM74C0 D

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Basic Configuration (QzhtChgTCMBasicConfig) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtChgTCMBasicConfig API to change the basic configuration information for a triggered cache

manager server. The API is a callable service implemented as an ILE entry point within the

QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to change the basic configuration information for

a triggered cache manager server.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v INDP0200: Detailed information format for server data.

HTTP Server 305

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

error code

I/O: CHAR(*)

 The structure in which to return error information.

INDP0200 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Binary(4) Autostart property

36 24 Binary(4) Local TCP port

40 28 Binary(4) Offset to root directory

44 2C Binary(4) Length of root directory

48 30 Binary(4) Maximum number of

retries

52 34 Binary(4) Defer time between retries

56 38 Binary(4) Memory buffer size

Char(*) Root directory

Field descriptions:

Autostart property

Specifies if the new triggered cache manager server is to start when startup of *AUTOSTART

triggered cache manager servers, is requested. Usually *AUTOSTART servers are requested to

start when TCP/IP is started, however they may also be requested via the STRTCPSVR command

or QzhtStrTCMServer API. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The server is set to start when startup of

*AUTOSTART servers is requested.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The server is not set to start when

startup of *AUTOSTART servers is requested.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: No change is made to the current auto start setting.

Defer time between retries

The number of seconds the triggered cache manager server is to wait between retry attempts for

a failing action. The value must be greater than 0 and less than 231 (or 2.147x109), or equal to one

of the special values described below. The default value is 60.

 Special values and their meanings are as follows:

 0 QZHT_NONE: No defer time is to be used.

-1 QZHT_DEFAULT: The default value is to be used.

-2 QZHT_NO_CHANGE: The current defer time value is not to be changed.

Note: If maximum number of retries is equal to 0 (QZHT_NONE), this value must be equal to 0

(QZHT_NONE).

306 iSeries: IBM HTTP Server

Length of root directory

The length of the information for the root directory entry.

Note: If offset to root directory is equal to 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must be equal to 0.

Maximum number of retries

The maximum number of time the server will attempt to retry a failing action. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default is to retry failing actions until successful (QZHT_NOMAX).

 Special values and their meanings are as follows:

 0 QZHT_NONE: Do not retry failing actions.

-1 QZHT_DEFAULT: The default action is specified.

-2 QZHT_NO_CHANGE: The current maximum number of retries value is not to be

changed.

-3 QZHT_NOMAX: Failing actions are to be retried until successful.

Memory buffer size

The maximum amount of working data the triggered cache manager server attempts to store in

memory, in bytes. The value must be greater than -1 and less than 231 (or 2.147x109), or equal to

one of the special values described below. A value equal to 0 indicates that the new triggered

cache manager server should attempt to run in the least memory possible. The default value is

10,000,000 (or 1x107).

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is to be used.

-2 QZHT_NO_CHANGE: The current memory buffer size value is not to be changed.

Offset to root directory

The offset from the beginning of the request variable to the Root directory data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -2 (QZHT_NO_CHANGE).

-1 QZHT_DEFAULT: The default value is to be used for Root directory. The value for Root

directory is null.

-2 QZHT_NO_CHANGE: The current root directory name is not to be changed for Root

directory. The value for Root directory is null.

Root directory

The name of the local file system directory in which the triggered cache manager server is to

maintain its persistent record of incoming transactions. The value must be null, or specify a

directory name, left justified and padded with blanks if necessary. The default name is

/QIBM/UserData/TCM/{servername}/ root, where {server-name} is the name of the server as

defined by Server name.

Note: If the value is null, Offset to root directory must be set to 0 (QZHT_NONE), -1

(QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE).

Server name

The name used to identify the server for which the configuration change is made (left justified

and padded with blanks if necessary).

HTTP Server 307

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Cache Target Description (QzhtChgTCMCacheTargetDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtChgTCMCacheTargetDesc API to change cache target description associated with triggered

cache manager servers. Changes made to cache target descriptions are utilized by all trigger handler

descriptions referencing them (the next time the servers are started). The API is a callable service

implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

308 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to change a cache target description. See Cache

target description formats for more information.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. See Cache target description formats for more

information. The following values must be used:

v CTDP0100: Basic information format for a cache target description.

v CTDP0200: Detailed information format for an *IFS type cache target description.

v CTDP0300: Detailed information format for a *HTTP1 type cache target description.

v CTDP0310: Detailed information format for a *HTTP2 type cache target description.

v CTDP0500: Detailed information format for a *ECCP1 type cache target description.

v CTDP0510: Detailed information format for a *ECCP2 type cache target description.

server name

INPUT: CHAR(32)

 The name used to identify the server for which the description is changed (left justified and

padded with blanks if necessary).

description name

CHAR(32)

 The name used to identify which cache target description information is changed (left justified

and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

CTDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Cache target description

name

64 40 Char(10) Cache target type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

CTDP0100 format field descriptions:

HTTP Server 309

Note: If a description type is specified in Cache target type that is different than the current description

type, the description is changed using default values for all unspecified values according to the

specified type). See other cache target description formats for details regarding these default

values.

Cache target description name

The name used by the cache target description (left justified and padded with blanks if

necessary). The value must be a description name, or one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

Note: Cache target description names must be unique for each triggered cache manager server. If

the name is changed, while the description is referenced by trigger handler description,

they too are changed to reference the new name.

Cache target type

The type of cache target description that is added (left justified and padded with blanks if

necessary). The value must be one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The description is not changed.

*IFS QZHT_IFS_TYPE: The description is changed to an *IFS type cache target description.

*HTTP1

QZHT_HTTP_TYPE1: The description is changed to an *HTTP1 type cache target

description.

*HTTP2

QZHT_HTTP_TYPE2: The description is changed to an *HTTP2 type cache target

description.

Note: If a type is specified, that is different than the current type, certain information is

discarded if it cannot be mapped to values for reuse by the new description type. See other

cache target description formats for details. Cache target description types of *ECCP1 and

*ECCP2 must be added using the CTDP0500 and CTDP0510 formats, respectively.

Default property

Specifies if the new description will become the default cache target description for the triggered

cache manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description becomes the default cache

target description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default cache

target description.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: Multiple default cache target descriptions are allowed. Trigger handler descriptions added

or changed using the *DEFAULT special value reference all cache target descriptions

designated as default at the time the trigger handler descriptions are added or changed.

310 iSeries: IBM HTTP Server

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below. The

default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at

server startup.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: The state of a cache target request processor can be changed while the triggered cache

manager server is active by using the -chsink command in a trigger message.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Server name

The name used to identify the triggered cache manager server for which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

or one of the special values described below. If a server name is specified, that is different than

the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association

while being referenced by other descriptions.

CTDP0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDP0100

format

88 58 Binary(4) Offset to local directory

root

92 5C Binary(4) Length of local directory

root

Char(*) Local directory root

CTDP0200 format field descriptions:

HTTP Server 311

Note: If the current description type is not *IFS, all information currently stored for the description (that

is not mapped to one the following entries) is discarded.

Length of local directory root

The length of the information for the Local directory root entry.

Note: If Offset to local directory root equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE) this value must equal 0.

Local directory root

The path to the local file system directory that is the root of this cache target (left justified and

padded with blanks if necessary). The value must be a path acceptable to the root (/) file system

of the local iSeries system. If a path is provided, but does not specify a absolute path (does not

start with /), the path is prepended with the default path. The default path is

/QIBM/UserData/TCM/{Server name} where {Server name} is the name of the triggered cache

manager server as defined by Server name.

 If Offset to local directory root equals -2 (QZHT_NO_CHANGE), the following rules are used to

map current description values for reuse:

 If the current type is: Details

*IFS use current Local directory root

path

No change is made.

*HTTP1 or *HTTP2 use current HTTP URI root path Refers to CTDP0300 or DSDP0310

format.

*ECCP1 or *ECCP2 use current HTTP cluster URI root

path

Refers to CTDP0500 or CTDP0510

format.

any other use default path

Note: All file requests from the cache target must have this path prepended to the file name,

even if an absolute file path is specified. If the value is null, Offset to local directory root

must equal 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See

Offset to local directory root for more details.

Offset to local directory root

The offset from the beginning of the request variable to the Local directory root data, in bytes.

The value must be greater that 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for Local directory root.

-2 QZHT_NO_CHANGE: If the current description type is *IFS, the current path for Local

directory root is not changed. If the current description type is not *IFS, see details for

Local directory root on how current description values are mapped for reuse by the new

description type.

CTDP0300 format:

 Offset Type Field

Dec Hex

0 0 Char(256) Everything from CTDP0100

format

88 58 Binary(4) HTTP IP interface

312 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

344 158 Binary(4) HTTP TCP port

348 15C Binary(4) Offset to HTTP URI root

352 160 Binary(4) Length of HTTP URI root

356 164 Binary(4) HTTP keepalive

360 168 Binary(4) Timeout

Char(*) HTTP URI root

CTDP0300 format field descriptions:

Note: If the current description type is not *HTTP1, all information currently stored for the description

(that is not mapped to one the following entries) is discarded.

HTTP IP interface

The IP host name or address of the system hosting an HTTP server cache target (left justified and

padded with blanks if necessary). The value must be a host name (for example,

server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special values

described below. If a host name is specified, it must use proper naming conventions as defined

by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it must

use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The default

value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

 If the current type is: Details

*HTTP1 use current HTTP IP interface

value

No change is made.

*HTTP2 use IP interface value from the

host description currently

referenced by HTTP host

An exception occurs if the

referenced description does not

exist. Refers to the CTDP0310

format.

*ECCP1 use current ECCP IP interface

value

Refers to CTDP0500 format.

*ECCP2 use IP interface value from the

host description currently

referenced by ECCP host

An exception occurs if the

referenced description does not

exist. Refers to CTDP0510 format.

any other use default value

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

HTTP Server 313

Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The following rules are used to map current description values

for reuse:

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP TCP port value No change is made.

*ECCP1 or *ECCP2 use current ECCP TCP port value Refers to CTDP0500 or CTDP0510

format.

any other use default value

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server cache target.

HTTP URI root

The path of HTTP Server URI that is the root of this cache target (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

 If Offset to HTTP URI root equals -2 (QZHT_NO_CHANGE), the following rules are used to map

current description values for reuse:

 If the current type is: Details

*IFS use current Local directory root

path

Refers to CTDP0200 format.

*HTTP1 or *HTTP2 use current HTTP URI root path No change is made.

*ECCP1 or *ECCP2 use current HTTP cluster URI root

path

Refers to CTDP0500 or CTDP0510

format.

any other use default path

Note: All file requests from this cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP URI root must equal 0

(QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to HTTP

URI root for more details.

314 iSeries: IBM HTTP Server

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for HTTP URI root.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

path for HTTP URI root is not changed. If the current description type is not *HTTP1 or

*HTTP2, see details for HTTP URI root on how current description values are mapped

for reuse by the new description type.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

CTDP0310 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDP0100

format

88 58 Char(32) HTTP host

120 78 Binary(4) HTTP TCP port

124 7C Binary(4) Offset to HTTP URI root

128 80 Binary(4) Length of HTTP URI root

132 84 Binary(4) HTTP keepalive

136 88 Binary(4) Timeout

Char(*) HTTP URI root

CTDP0310 format field descriptions:

Note: If the current description type is not *HTTP2, all information currently stored for the description,

that is not mapped to one the following entries, is discarded.

HTTP Server 315

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new cache target description and used later, at server startup, to obtain

information about the system hosting an HTTP server cache target. The value must be a host

description name, or one of the special values described below (left justified and padded with

blanks if necessary). The default value is to reference the description currently designated as the

default host description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

 If the current type is: Details

*HTTP2 the description currently

referenced for HTTP host is not

changed

No change is made.

*ECCP2 the description currently

referenced for ECCP host is

referenced

An exception occurs if the

referenced description does not

exist. Refers to CTDP0510 format.

any other the default host description

currently associated with the

triggered cache manager server is

referenced

Note: See HTTP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

316 iSeries: IBM HTTP Server

Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The following rules are used to map current description values

for reuse:

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP TCP port value No change is made.

*ECCP1 or *ECCP2 use current ECCP TCP port value Refers to CTDP0500 or CTDP0510

format.

any other use default value

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server cache target.

HTTP URI root

The path of HTTP Server URI that is the root of this cache target (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

 If Offset to HTTP URI root equals -2 (QZHT_NO_CHANGE), the following rules are used to map

current description values for reuse:

 If the current type is: Details

*IFS use current Local directory root

path

Refers to CTDP0200 format.

*HTTP1 or *HTTP2 use current HTTP URI root path No change is made.

*ECCP1 or *ECCP2 use current HTTP cluster URI root

path

Refers to CTDP0500 or CTDP0510

format.

any other use default path

Note: All file requests sent to the cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP URI root must equal 0

(QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to HTTP

URI root for more details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QQZHT_DEFAULT: The default path is used for HTTP URI root.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

path for HTTP URI root is not changed. If the current description type is not *HTTP1 or

*HTTP2, see details for HTTP URI root on how current description values are mapped

for reuse by the new description type.

HTTP Server 317

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

CTDP0500 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Cache target description

name

64 40 Char(10) Cache target type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

88 58 Char(256) ECCP IP interface

344 158 Binary(4) ECCP TCP port

348 15C Char(32) HTTP cluster IP interface

604 260 Binary(4) HTTP cluster TCP port

608 264 Binary(4) Offset to HTTP cluster URI

root

612 268 Binary(4) Length of HTTP cluster

URI root

616 26C Binary(4) ECCP keepalive

Char(*) HTTP cluster URI root

CTDP0500 format field descriptions:

Note: If the current description type is not *ECCP1, all information currently stored, for the description

that is not mapped to one the following entries, is discarded.

Cache target description name

The name used by the cache target description (left justified and padded with blanks if

necessary). The value must be a description name, or one of the special values described below.

 Special values and their meanings are as follows:

318 iSeries: IBM HTTP Server

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

Note: Cache target description names must be unique for each triggered cache manager server. If

the name is changed, while the description is referenced by trigger handler description,

they too are changed to reference the new name.

Cache target type

The changed cache target descriptions type (left justified and padded with blanks if necessary).

The value must be one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The description is not changed to a different type.

*ECCP1

QZHT_ECCP_TYPE1: The description is changed to an *ECCP1 type cache target

description.

Note: If a type is specified, that is different than the current type, certain information is

discarded if it cannot be mapped to values for reuse by the new description type.

Default property

Specifies if the description is a default cache target description for the triggered cache manager

server specified in Server name. The value must equal one of the special values described below.

The default value is 0 (QZHT_NO).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is a default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not a default cache

target description.

-1 QZHT_DEFAULT: The default value is specified.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: Multiple default cache target descriptions are allowed. Trigger handler descriptions added

or changed, using the *DEFAULT special value, reference all cache target descriptions

designated as default at the time they are added or changed.

ECCP IP interface

The IP host name or address of the backend IP interface to the network router hosting a web

server cluster cache target (left justified and padded with blanks if necessary). The value must be

a host name (for example, server.mycompany.com) or dotted address (for example, 192.168.3.57).

If a host name is specified, it must use proper naming conventions as defined by RFC 1034,

Domain Names - Concepts and Facilities. If a dotted address is specified, it must use proper IP

version 4 address conventions as defined by RFC 791, Internet Protocol. There is no default value

for this entry.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

 If the current type is: Details

*ECCP1 use current ECCP IP interface

value

No change is made.

HTTP Server 319

If the current type is: Details

*ECCP2 use IP interface value from the

host description currently

referenced by ECCP host

An exception occurs if the

referenced description does not

exist. Refers to CTDP0510 format.

Note: An exception occurs if the current type is not one of the types listed above and *SAME is specified

for ECCP IP interface.

ECCP keepalive

Specifies if the connection to the network router is kept open for reuse after data is transferred.

The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The following rules are used to map current description values

for reuse:

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP keepalive value Refers to CTDP0300 or CTDP0310

format.

*ECCP1 or *ECCP2 use current ECCP keepalive value No change is made.

any other use default value

Note: The network router must support keepalive for this option to function properly.

ECCP TCP port

The TCP port number upon which the network router listens for incoming requests. The value

must be greater than 0 and less than 65536, or equal to one of the special values described below.

There is no default value for this entry.

 Special values and their meanings are as follows:

 -2 QZHT_NO_CHANGE: If the current description type is *ECCP1 or *ECCP2, the current

value is not changed.

Note: If the current description type is not *ECCP1 or *ECCP2, an escape message is sent if -2

(QZHT_NO_CHANGE) is specified.

Note: The TCP port number is used in combination with the IP host name or address, in ECCP

IP interface, to establish communications with the network router cache target.

HTTP cluster IP interface

The IP host name or address of the web server cluster from which the network router is hosting a

cache (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. There

is no default value for this entry.

 Special values and their meanings are as follows:

320 iSeries: IBM HTTP Server

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

 If the current type is: Details

*HTTP1 use current HTTP IP interface

value

Refers to CTDP0300 format.

*HTTP2 use IP interface value from the

host description currently

referenced by HTTP host .

Refers to the CTDP0310 format

*ECCP1 use current ECCP IP interface

value

No change is made.

*ECCP2 use IP interface value from the

host description currently

referenced by ECCP host

An exception occurs if the

referenced description does not

exist. Refers to CTDP0510 format.

any other use default value

Note: An exception occurs if the current type is not one of the types listed above and *SAME is specified

for HTTP cluster IP interface.

HTTP cluster TCP port

The TCP port number associated with the IP host name or address described by HTTP cluster IP

interface. The value must be greater than 0 and less than 65536, or one of the special values

described below. There is no default value for this entry.

 Special values and their meanings are as follows:

 -2 QZHT_NO_CHANGE: The following rules are used to map current description values

for reuse:

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP TCP port value Refers to CTDP0300 or CTDP0310

format.

*ECCP1 or *ECCP2 use current ECCP TCP port value No change is made.

any other use default value

Note: An exception occurs if the current type is not one of the types listed above and -2

(QZHT_NO_CHANGE) is specified for HTTP cluster IP interface.

Note: The network router using the address, described by ECCP IP interface, may host multiple

web server caches. The specified TCP port number is used in combination with the IP

interface in HTTP cluster IP interface to identify a particular web server cache when

communicating with the network router.

HTTP cluster URI root

The web server cluster URI path that is used to define the root of this cache target (left justified

and padded with blanks if necessary). The value must be a path acceptable to the web server

cluster from which the network router is hosting a cache. The default path is /.

 If Offset to HTTP cluster URI root equals -2 (QZHT_NO_CHANGE), the following rules are used

to map current description values for reuse:

HTTP Server 321

If the current type is: Details

*IFS use current Local directory root

path

Refers to CTDP0200 format.

*HTTP1 or *HTTP2 use current HTTP URI root path Refers to CTDP0300 or CTDP0310

format.

*ECCP1 or *ECCP2 use current HTTP cluster URI root

path

No change is made.

any other use default path

Note: All file requests sent to the cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP cluster URI root must

equal 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to

HTTP URI root for more details.

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below. The

default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at

server startup.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: The state of a cache target request processor can be changed while the triggered cache

manager server is active by using the -chsink command in a trigger message.

Length of HTTP cluster URI root

The length of the information for the HTTP cluster URI root entry.

Note: If Offset to HTTP cluster URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP cluster URI root data, in bytes.

The value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP cluster URI root.

322 iSeries: IBM HTTP Server

-2 QZHT_NO_CHANGE: If the current description type is *ECCP1 or *ECCP2, the current

path for HTTP cluster URI root is not changed. If the current description type is not

*ECCP1 or *ECCP2, see details for HTTP cluster URI root on how current description

values are mapped for reuse by the new description type.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary). The value must specify a server

name, or one of the special values described below. If a server name is specified, that is different

than the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

CTDP0510 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Cache target description

name

64 40 Char(10) Cache target type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

84 54 Binary(4) Initial state

88 58 Char(32) ECCP host

120 78 Binary(4) ECCP TCP port

124 7C Char(256) HTTP cluster IP interface

380 17C Binary(4) HTTP cluster TCP port

384 180 Binary(4) Offset to HTTP cluster URI

root

388 184 Binary(4) Length of HTTP cluster

URI root

392 188 Binary(4) ECCP keepalive

Char(*) HTTP cluster URI root

CTDP0510 format field descriptions:

Note: If the current description type is not *ECCP2, all information currently stored for the description,

that is not mapped to one the following entries, is discarded.

Cache target description name

The name used by the cache target description (left justified and padded with blanks if

necessary). The value must be a description name, or one of the special values described below.

 Special values and their meanings are as follows:

HTTP Server 323

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

Note: Cache target description names must be unique for each triggered cache manager server. If

the name is changed, while the description is referenced by trigger handler description,

they too are changed to reference the new name.

Cache target type

The changed cache target descriptions type (left justified and padded with blanks if necessary).

The value must be one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The description is not changed to a different type.

*ECCP2

QZHT_ECCP_TYPE2: The description is changed to an *ECCP2 type cache target

description.

Note: If a type is specified, that is different than the current type, certain information is

discarded if it cannot be mapped to values for reuse by the new description type.

Default property

Specifies if the description is a default cache target description for the triggered cache manager

server specified in Server name. The value must equal one of the special values described below.

The default value is 0 (QZHT_NO).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is a default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not a default cache

target description.

-1 QZHT_DEFAULT: The default value is specified.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: Multiple default cache target descriptions are allowed. Trigger handler descriptions added

or changed, using the *DEFAULT special value, reference all cache target descriptions

designated as default at the time they are added or changed.

ECCP host

The name of a host description associated with the triggered cache manager server referenced by

the cache target description and used later, at server startup, to obtain information about the

network router that hosts a web server cluster cache target. The value must be a host description

name, or one of the special values described below (left justified and padded with blanks if

necessary). The default setting references the description currently designated as the default host

description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

324 iSeries: IBM HTTP Server

If the current type is: Details

*HTTP2 the description currently

referenced for HTTP host is

referenced

An exception occurs if the

referenced description does not

exist. Refers to CTDP0510 format.

*ECCP2 the description currently

referenced for ECCP host is not

changed

No change is made.

any other the default host description

currently associated with the

triggered cache manager server is

referenced

Note: See ECCP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

ECCP keepalive

Specifies if the connection to the network router is kept open for reuse after data is transferred.

The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The following rules are used to map current description values

for reuse:

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP keepalive value Refers to CTDP0300 or CTDP0310

format.

*ECCP1 or *ECCP2 use current ECCP keepalive value No change is made.

any other use default value

Note: The network router must support keepalive for this option to function properly.

ECCP TCP port

The TCP port number upon which the network router listens for incoming requests. The value

must be greater than 0 and less than 65536, or equal to one of the special values described below.

There is no default value for this entry.

 Special values and their meanings are as follows:

 -2 QZHT_NO_CHANGE: If the current description type is *ECCP1 or *ECCP2, the current

value is not changed.

Note: If the current description type is not *ECCP1 or *ECCP2, an escape message is sent if -2

(QZHT_NO_CHANGE) is specified.

Note: The TCP port number is used in combination with the IP host name or address, in ECCP

host, to establish communications with the network router cache target.

HTTP Server 325

HTTP cluster IP interface

The IP host name or address of the web server cluster from which the network router is hosting a

cache (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special

values described below. If a host name is specified, it must use proper naming conventions as

defined by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it

must use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. There

is no default value for this entry.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse:

 If the current type is: Details

*HTTP1 use current HTTP IP interface

value

Refers to CTDP0300 format.

*HTTP2 use IP interface value from the

host description currently

referenced by HTTP host

Refers to the CTDP0310 format.

*ECCP1 use current ECCP IP interface

value

Refers to CTDP0500 format.

*ECCP2 use IP interface value from the

host description currently

referenced by ECCP host

No change is made.

Note: An exception occurs if the current type is not one of the types listed above and *SAME is specified

for HTTP cluster IP interface.

Note: See HTTP cluster TCP port for more information.

HTTP cluster TCP port

The TCP port number associated with the IP host name or address described by HTTP cluster IP

interface. The value must be greater than 0 and less than 65536, or one of the special values

described below. There is no default value for this entry.

 Special values and their meanings are as follows:

 -2 QZHT_NO_CHANGE: The following rules are used to map current description values

for reuse:

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP TCP port value Refers to CTDP0300 or CTDP0310

format.

*ECCP1 or *ECCP2 use current ECCP TCP port value No change is made.

Note: An exception occurs if the current type is not one of the types listed above and -2

(QZHT_NO_CHANGE) is specified for HTTP cluster IP interface.

Note: The network router using the address, described by ECCP IP interface, may host multiple

web server caches. The specified TCP port number is used in combination with the IP

interface in HTTP cluster IP interface to identify a particular web server cache when

communicating with the network router.

HTTP cluster URI root

The web server cluster URI path that is used to define the root of this cache target (left justified

326 iSeries: IBM HTTP Server

and padded with blanks if necessary). The value must be a path acceptable to the web server

cluster from which the network router is hosting a cache. The default path is /.

 If Offset to HTTP cluster URI root equals -2 (QZHT_NO_CHANGE), the following rules are used

to map current description values for reuse:

 If the current type is: Details

*IFS use current Local directory root

path

Refers to CTDP0200 format.

*HTTP1 or *HTTP2 use current HTTP URI root path Refers to CTDP0300 or CTDP0310

format.

*ECCP1 or *ECCP2 use current HTTP cluster URI root

path

No change is made.

any other use default path

Note: All file requests sent to the cache target have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP cluster URI root must

equal 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to

HTTP URI root for more details.

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below. The

default value is 1 (QZHT_ENABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at

server startup.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: The state of a cache target request processor can be changed while the triggered cache

manager server is active by using the -chsink command in a trigger message.

Length of HTTP cluster URI root

The length of the information for the HTTP cluster URI root entry.

Note: If Offset to HTTP cluster URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP cluster URI root data, in bytes.

The value must be greater than 0, or equal to one of the special values defined below.

HTTP Server 327

Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP cluster URI root.

-2 QZHT_NO_CHANGE: If the current description type is *ECCP1 or *ECCP2, the current

path for HTTP cluster URI root is not changed. If the current description type is not

*ECCP1 or *ECCP2, see details for HTTP cluster URI root on how current description

values are mapped for reuse by the new description type.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary). The value must specify a server

name, or one of the special values described below. If a server name is specified, that is different

than the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association while

being referenced by other descriptions.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

328 iSeries: IBM HTTP Server

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Data Source Description (QzhtChgTCMDataSourceDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtChgTCMDataSourceDesc API to change data source descriptions associated with triggered

cache manager servers. Changes made to data source descriptions are utilized by all trigger handler

descriptions that reference them the next time the servers are started. The API is a callable service

implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to change a data source description. See Data

source description formats for more information.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v DSDP0100: Basic information format for a data source description.

v DSDP0200: Detailed information format for an *IFS type data source description.

v DSDP0300: Detailed information format for a *HTTP1 type data source description.

HTTP Server 329

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v DSDP0310: Detailed information format for a *HTTP2 type data source description.

See Data source description formats for more information.

server name

The name used to identify the server for which the description is changed (left justified and

padded with blanks if necessary).

description name

The name used to identify which data source description is changed (left justified and padded

with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

DSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Data source description

name

64 40 Char(10) Data source type

74 4A Char(2) Reserved

76 4C Binary(4) Default property

80 50 Binary(4) Number of threads

DSDP0100 format field descriptions:

Note: Data source descriptions are added using default values for all unspecified values according to the

type specified by Data source type). See other data source description formats for details regarding

these default values.

Data source description name

The name used by the new data source description (left justified and padded with blanks if

necessary).

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current type is not changed.

Note: Data source description names must be unique for each triggered cache manager server.

They are referenced, by name, from trigger handler descriptions associated with the same

server.

Data source type

The type of data source description that is added (left justified and padded with blanks if

necessary). The value must be one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The description is not changed to a different type.

*IFS QZHT_IFS_TYPE: The description is changed to an *IFS type data source description.

330 iSeries: IBM HTTP Server

*HTTP1

QZHT_HTTP_TYPE1: The description is changed to an *HTTP1 type data source

description.

*HTTP2

QZHT_HTTP_TYPE2: The description is changed to an *HTTP2 type data source

description.

Note: If a specified type is different than the current type, certain information is discarded if it

cannot be mapped to values for reuse by the new description type. See other data source

description formats for details.

Default property

Specifies if the new description will become the default data source description for the triggered

cache manager server specified in Server name. The value must equal one of the special values

described below. If the value equals 1 (QZHT_YES), the default property on the current default

data source description is set to 0 (QZHT_NO). This description takes over the default role. The

default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 If a specified type is different than the current type, certain information is discarded if it

cannot be mapped to values for reuse by the new description type. See other data source

description formats for details.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: Trigger handler descriptions added or changed using the *DEFAULT special value are

referenced from this data source description designated as default at the time the trigger

handler descriptions are added or changed.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

triggers sent to this trigger handler. The value must be greater that 0 and less than 231 (or

2.147x109), or equal to one of the special values described below. The default value is 5.

 Special values and their meanings are as follows:

 -1 QQZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Server name

The name used to identify the triggered cache manager server to which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

or one of the special values described below. If a server name is specified that is different than

the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association

while being referenced by other descriptions.

HTTP Server 331

DSDP0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDP0100

format

84 54 Binary(4) Offset to local directory

root

88 58 Binary(4) Length of local directory

root

Char(*) Local root directory

DSDP0200 format field descriptions:

Note: If the current description type is not *IFS, all information currently stored for the description, that

is not mapped for one the following entries, is discarded.

Length of local directory root

The length of the information for the Local directory root entry.

Note: If Offset to local directory root equals 0 (QZHT_NONE) or -1 (QZHT_DEFAULT), this

value must equal 0.

Local directory root

The path to the local file system directory that is the root of this data source (left justified and

padded with blanks if necessary). The value must be a path acceptable to the root (/) file system

of the local iSeries system. If a path is provided, but does not specify a absolute path (does not

start with /), the path is prepended with the default path. The default path is

/QIBM/UserData/TCM/{Server name} where {Server name} is the name of the triggered cache

manager server as defined by Server name.

 If the current type is: Details

*IFS use current Local directory root

path

No change is made

*HTTP1 or *HTTP2 use current HTTP URI root path Refers to DSDP0300 or DSDP0310

format

any other use default path

Note: All requests for files from the data source must have this path prepended to the file name,

even if an absolute path is specified for the file. If the value is null, Offset to local directory

root must equal 0 (QZHT_NONE) or -1 (QZHT_DEFAULT).

Offset to local directory root

The offset from the beginning of the request variable to the Local directory root data, in bytes.

The value must be greater that 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for Local directory root.

-2 QZHT_NO_CHANGE: If the current description type is *IFS, the current path for Local

directory root is not changed. If the current description type is not *IFS, see details for

Local directory root on how current description values are mapped for reuse by the new

description type.

332 iSeries: IBM HTTP Server

DSDP0300 format:

 Offset Type Field

Dec Hex

0 0 Char(256) Everything from DSDP0100

format

88 58 Binary(4) HTTP IP interface

340 154 Binary(4) HTTP TCP port

344 158 Binary(4) Offset to HTTP URI root

348 15C Binary(4) Length of HTTP URI root

352 160 Binary(4) HTTP keepalive

356 164 Binary(4) Timeout

Char(*) HTTP URI root

DSDP0300 format field descriptions:

Note: If the current description type is not *HTTP1, all information currently stored for the description,

that is not mapped for one the following entries, is discarded.

HTTP IP interface

The IP host name or address of the system hosting an HTTP server data source (left justified and

padded with blanks if necessary). The value must be a host name (for example,

server.mycompany.com), dotted address (for example, 192.168.3.57), or one of the special values

described below. If a host name is specified, it must use proper naming conventions as defined

by RFC 1034, Domain Names - Concepts and Facilities. If a dotted address is specified, it must

use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The default

value is 127.0.0.1, the local system loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse.

 If the current type is: Details

*HTTP1 use current HTTP IP interface

value

No change is made.

*HTTP2 use IP interface value from the

host description currently

referenced by HTTP host An

exception occurs if the referenced

description does not exist. Refers

to the

An exception occurs if the

referenced description does not

exist. Refers to the DSDP0310

format.

any other use default value

Note: See HTTP TCP port for more information.

HTTP Server 333

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The following rules are used to map current description values for

reuse.

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP TCP port value No change is made

any other use default value

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server data source.

HTTP URI root

The path of HTTP Server URI that is the root of this data source (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

 If Offset to HTTP URI root equals -2 (QZHT_NO_CHANGE), the following rules are used to map

current description values for reuse:

 If the current type is: Details

*IFS use current Local directory root

path

Refers to DSDP0200 format.

*HTTP1 or *HTTP2 use current HTTP URI root path No change is made

any other use default path

Note: All file requests from this data source have this path inserted into the URI, even if an

absolute path for the file is specified. If the value is null, Offset to HTTP URI root must

equal 0 (QZHT_NONE), or -1 (QZHT_DEFAULT).

334 iSeries: IBM HTTP Server

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for HTTP URI root.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

path for HTTP URI root is not changed. If the current description type is not *HTTP1 or

*HTTP2, see details for HTTP URI root on how current description values are mapped for

reuse by the new description type.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

DSDP0310 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDP0100

format

84 54 Char(32) HTTP host

116 74 Binary(4) HTTP TCP port

120 78 Binary(4) Offset to HTTP URI root

124 7C Binary(4) Length of HTTP URI root

128 80 Binary(4) HTTP keepalive

132 84 Binary(4) Timeout

Char(*) HTTP URI root

DSDP0310 format field descriptions:

Note: If the current description type is not *HTTP2, all information currently stored for the description,

that is not mapped to one the following entries, is discarded.

HTTP Server 335

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new data source description and used later, at server startup, to obtain

information about the system hosting an HTTP server data source. The value must be a host

description name, or one of the special values described below (left justified and padded with

blanks if necessary). The default value is to reference the description currently designated as the

default host description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

*SAME

QZHT_NO_CHANGE_CHAR: The following rules are used to map current description

values for reuse.

 If the current type is: Details

*HTTP2 the description currently

referenced for HTTP host is not

changed

No change is made.

any other the default host description

currently associated with the

triggered cache manager server is

referenced

Note: See HTTP TCP port for more information. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default host description for the server.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

Note: HTTP Server must support keepalive for this option to work properly.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536, or equal to one of the special values described below. The

default value is 80.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

336 iSeries: IBM HTTP Server

-2 QZHT_NO_CHANGE: The following rules are used to map current description values for

reuse.

 If the current type is: Details

*HTTP1 or *HTTP2 use current HTTP TCP port value No change is made.

any other use default value

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server data source.

HTTP URI root

The path of HTTP Server URI that is the root of this data source (left justified and padded with

blanks if necessary). The value must be a path acceptable to HTTP Server. The default path is / .

 If Offset to HTTP URI root equals -2 (QZHT_NO_CHANGE), the following rules are used to map

current description values for reuse:

 If the current type is: Details

*IFS use current Local directory root

path

Refers to DSDP0200 format

*HTTP1 or *HTTP2 use current HTTP URI root path No change is made

any other use default path

Note: All requests for files from this data source have this path inserted into the URI, even if an

absolute file path is specified. If the value is null, Offset to HTTP URI root must equal 0

(QZHT_NONE), -1 (QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to HTTP

URI root for more details.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Note: If Offset to HTTP URI root equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes. The

value must be greater than 0, or equal to one of the special values defined below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default path is used for HTTP URI root.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

path for HTTP URI root is not changed. If the current description type is not *HTTP1 or

*HTTP2, see details for HTTP URI root on how current description values are mapped for

reuse by the new description type.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

HTTP Server 337

Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *HTTP1 or *HTTP2, the current

value is not changed. If the current description type is not *HTTP1 or *HTTP2, the

default value is used.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Host Description (QzhtChgTCMHostDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

338 iSeries: IBM HTTP Server

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: yes

The QzhtChgTCMHostDesc API changes host descriptions associated with triggered cache manager

servers. Changes made to host descriptions are utilized by all data source, cache target, and

acknowledgment target descriptions referencing them the next time the servers are started.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to change a host description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of request variable data. The following values must be used:

v HSDP0100: Basic information format for a host description.

server name

INPUT: CHAR(32)

 The name used to identify the server for which the description is the be changed (left justified

and padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify which host description is the be changed (left justified and padded

with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

HTTP Server 339

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

HSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Host description

64 20 Binary(4) Default property

68 44 Binary(4) IP interface

Field descriptions:

Default property

Specifies whether the description is to become the default host description for the triggered cache

manager server specified in Server name. The value must equal one of the special values

described below. If the value equals 1 (QZHT_YES) and the description is not currently the

default description, the default property on the current default host description, if any, are set to

0 (QZHT_NO) and this description takes over the default role. The default value is –2

(QZHT_NO_CHANGE).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is to become the default

host description for this server.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Host description name

The name used by the host description (left justified and padded with blanks if necessary). The

value must be a description name, or one of the special values described below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE: The current name is not changed.

Note: Host description name must be unique for each triggered cache manager server. If the

name is changed while the description is referenced by data source, cache target, or

acknowledgement target descriptions, they too are changed to reference the new name.

IP interface

The IP host name or address of the computer system hosting servers used by the triggered cache

manager server (left justified and padded with blanks if necessary). The value must specify a host

name (i.e.: server.mycompany.com), dotted address (i.e.: 192.168.3.57), or one of the special values

described below. If a host name is specified, it must use proper naming conventions as defined

by RFC 1034, Domain Names – Concepts and Facilities. If a dotted address is specified, it must

use proper IP version 4 address conventions as defined by RFC 791, Internet Protocol. The default

value is 127.0.0.1, the local systems loopback interface.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is used.

*SAME

QZHT_NO_CHANGE_CHAR: The current value is not changed.

340 iSeries: IBM HTTP Server

Server name

The name used to identify the triggered cache manager server with which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

or one of the special values described below. If a server name is specified which is different than

the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association while

it is referenced by other descriptions.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager servers &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager&1 name is not valid.

TCM72C3 E

Value passed at offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Object Dependency Graph Description (QzhtChgTCMODGDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 341

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Required Parameter Group:

1 request variable Output Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhthgTCMODGDesc API changes object dependency graph (ODG) descriptions associated with

triggered cache manager servers. Changes made to object dependency graph descriptions are utilized by

all trigger handler descriptions referencing them the next time the servers are started.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to change an object dependency graph description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

CHAR(8)

 The format name of request variable data. The following values must be used:

v OGDP0100: Basic information format for an object dependency graph description.

server name

INPUT: CHAR(32)

 The name used to identify the server for which the description is changed (left justified and

padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify which object dependency graph (ODG) description is changed (left

justified and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

OGDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

342 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

32 20 Char(32) Object dependency graph

description name

64 40 Binary(4) Default property

68 44 Binary(4) Allow API updates

OGDP0100 format field descriptions:

Allow API updates

Specifies whether APIs are allowed to update the object dependency graph described by the

object dependency description. The value must be one of the special values described below. The

default value is 1 (QZHT_YES).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The object dependency graph is updating

using APIs via the triggered cache manager server, as well as from trigger handler

publish parsing.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The object dependency graph may not be

updated using APIs via the triggered cache manager server. Only updates as a result of

trigger handler publish parsing are allowed.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Default property

Specifies whether the description is to become the default object dependency graph description

graph description for the triggered cache manager server specified in Server name. The value

must equal one of the special values described below. If the value equals 1 (QZHT_YES) and the

description is not currently the default description, the default property for the current default

object dependency graph description, is set to 0 (QZHT_NO) and this description takes over the

default role. The default value is –2 (QZHT_NO_CHANGE).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is to become the default

object dependency graph description for this server.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: Trigger handler descriptions, added or changed using the *DEFAULT special value,

reference the object dependency graph description designated as default at the time they

are added or changed.

Object dependency graph description name

The name used by the object dependency graph description (left justified and padded with

blanks if necessary). The value must be a description name, or one of the special values described

below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

HTTP Server 343

Note: Object dependency graph description names must be unique for each triggered cache

manager server. If the name is changed while the description is referenced by trigger

handler descriptions, they too are changed to reference the new name.

Server name

The name used to identify the triggered cache manager server with which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

or one of the special values described below. If a server name is specified which is different than

the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association while

it is being referenced by other descriptions.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed at offset &1 is not valid.

TCM7401 E

User QTCM is not authorized to server data for triggered cache manager server &1.

TCM74C0 E

Triggered cache manager server name is not valid.

344 iSeries: IBM HTTP Server

TCM7701 E

User QTCM is not authorized to object dependency graph data for triggered cache manager

server &1.

Change Triggered Cache Manager Publishing Rule (QzhtChgTCMPublishingRule) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtChgTCMPublishingRule API changes publishing rules associated with triggered cache manager

servers. Changes made to publishing rules are utilized by all Rule Sets that are referencing them the next

time that the servers are started. The API is a callable service implemented as an ILE entry point within

QZHTINCONF *SRVPGM in QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to change a publishing rule.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v PRDP0100: Basic information format for a publishing rule.

server name

INPUT: CHAR(32)

 The name used to identify the server for which the description is changed (left justified and

padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify the which publishing rule is changed (left justified and padded with

blanks if necessary).

HTTP Server 345

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

error code

I/O: CHAR(*)

 The structure in which to return error information.

PRDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Publishing rule name

64 40 Binary(4) Offset to file extensions

68 44 Binary(4) Length of file extensions

72 48 Binary(4) Read from data source

76 4C Binary(4) Send data source version

80 50 Binary(4) Parse and assemble

84 54 Binary(4) Send assembled version

88 58 Binary(4) Offset to new file extension

72 5C Binary(4) Length of new file

extension

Char(*) File extensions

Char(*) New file extension

PRDP0100 format field descriptions:

File extension

A list of file extensions used to identify files that are processed according to this new publishing

rule. File extensions must be listed as a string of characters, where each extension starts with a

period character (.) and is separated by one or more spaces (left justified and padded with blanks

if necessary). There is no default value for this entry.

 If Offset to file extensions equals -2 (QZHT_NO_CHANGE), the current list of file extensions is

not changed.

Note: A list of file extensions is required. The file extensions are used by trigger handlers to

determine when the publishing rule applies. File names are compared to file extensions

starting at the last period in the file name. Therefore, each file extension must start with a

period character (.), otherwise a match is not made. For example, .html, .gif, or .event.

Length of file extensions

The length of the information for the File extensions entry.

Note: If Offset to file extensions equals 0 (QZHT_NONE) or -2 (QZHT_NO_CHANGE), this

value must equal 0.

Length of new file extension

The length of the information for the New file extension entry.

Note: If Offset to new file extension equals 0 (QZHT_NONE), or -1 (QZHT_DEFAULT), this

value must equal 0.

346 iSeries: IBM HTTP Server

New file extension

A file extension used to rename files after they have been assembled and before they are sent to

the cache targets (left justified and padded with blanks if necessary). The default value is null,

indicating that files are not renamed.

Note: If the value is null, Offset to new file extension must equal 0 (QZHT_NONE), -1

(QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). If a file extension is specified, files

matching any one of the file extensions listed in File extension are renamed with the file

extension prior to being sent to the cache targets. An escape message is sent if a new file

extension is provided and Send assembled version equals 0 (QZHT_NO).

Offset to new file extension

The offset from the beginning of the request variable to the New file extension data, in bytes. The

value must be greater than 0 or equal one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for New file extension.

-2 QZHT_NO_CHANGE: The current file extension, if any, is not changed for New file

extension.

Note: An escape message is sent if Offset to new file extension is greater than 0 (indicating that a

new file extension has been provided) and Send assembled version equals 0 (QZHT_NO).

Offset to file extensions

The offset from the beginning of the request variable to the New file extension data, in bytes. The

value must be greater than 0, or equal one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for New file extension.

-2 QZHT_NO_CHANGE: The current file extension, if any, is not changed for New file

extension.

Note: An escape message is sent if Offset to new file extension is greater than 0 (indicating a new

file extension has been provided) and Send assembled version equals 0 (QZHT_NO).

Parse and assemble

Specifies if files matching this publishing rule are parsed for wrappers and includes, and possibly

sent through the page assembler. If the name is changed during wrapper parsing, the extension of

the new name is used to determine if the file should be parsed for includes and sent through the

page assembler. The value must equal one of the special values described below. The default

value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Files matching this publishing rule are

parsed and possibly sent through the page assembler.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Files matching this publishing rule are

not parsed.

Note: Files that are not parsed are not sent through the page assembler.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

HTTP Server 347

Note: An escape message is sent if Parse and assemble equals 1 (QZHT_YES) and Read from

data source equals 0 (QZHT_NO).

Publishing rule name

An escape message is sent if Parse and assemble equals 1 (QZHT_YES) and Read from data

source equals 0 (QZHT_NO).

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

Note: Publishing rule names must be unique for each triggered cache manager server. They are

referenced by name, from Rule Sets associated with the same server.

Read from data source

Specifies if files matching this publishing rule are read from the data source when triggered. The

value must be one of the special values described below. The default value is 1 (QZHT_YES).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Files matching this publishing rule are

read from the data source when triggered.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Files matching this publishing rule are

not read from the data source.

Note: Not reading files from the data source is useful when triggers specify a file which

is purely symbolic and need not correspond to an actual file, yet causes dependent files

processing.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Send assembled version

Specifies if the assembled version of files matching this publishing rule are sent to cache targets

when triggered and processed. The value must equal one of the special values described below.

The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Assembled versions of files matching this

publishing rule are sent to cache targets when triggered and processed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Assembled versions of files matching this

publishing rule are not sent to cache targets.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: An escape message is sent if Send assembled version equals 1 (QZHT_YES) and Parse and

assemble equals 0 (QZHT_NO).

Send data source version

Specifies if the data source version of files matching this publishing rule (the version read from

the data source prior to assembly) are sent to cache targets when triggered and processed. The

value must equal one of the special values described below. The default value is 1 (QZHT_YES)

when Read from data source equals 1 (QZHT_YES), and 0 (QZHT_NO) when Read from data

source equals 0 (QZHT_NO).

348 iSeries: IBM HTTP Server

Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Data source versions of files matching this

publishing rule are sent to cache targets when triggered and processed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Data source versions of files matching

this publishing rule are not sent to cache targets.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: An escape message is sent if Send data source version equals 1 (QZHT_YES) and Read

from data source equals 0 (QZHT_NO).

Server name

The name used to identify the triggered cache manager server to which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

or be one of the special values described below. If a server name is specified which is different

than the one that is currently associated, it is removed from its current association and added to

the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association while

it is being referenced by other descriptions.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1&2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name&2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

HTTP Server 349

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Rule Set (QzhtChgTCMRuleSet) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtChgTCMRuleSet API changes rule sets associated with triggered cache manager servers.

Changes made to rule sets are utilized by all trigger handler descriptions that are referencing them the

next time that the servers are started.

Note: Triggers are sent to trigger handlers which process them according to publishing rules. Custom

publishing rules are provided for the trigger handler through a rule set. If extensions of files

identified in triggers match one of the extensions listed in a custom publishing rule, they are

processed according to that publishing rule. If extensions do not match any of the custom

publishing rules, the file is processed according to the default publishing rule.

The API is a callable service implemented as an ILE entry point within QZHTINCONF *SRVPGM in

QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to change a rule set.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v RSDP0100: Basic information format for a rule set.

350 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

server name

The name used to identify the server for which the description is changed (left justified and

padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify the which rule set is changed (left justified and padded with blanks if

necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

RSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Rule set name

64 40 Binary(4) Default property

68 44 Binary(4) Offset to publishing rules

72 48 Binary(4) Length of publishing rules

Char(*) Publishing rules

RSDP0100 format field descriptions:

Default property

Specifies if the new description is to become the default rule set for the triggered cache manager

server specified in Server name. The value must equal one of the special values described below.

If the value equals 1 (QZHT_YES), the default property on the current default rule set, if any, is

set to 0 (QZHT_NO). The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is to become the default

rule set for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not to become the

default rule set.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Note: Trigger handler descriptions, added or changed using the *DEFAULT special value,

reference the rule set designated as default at the time they are added or changed.

Length of publishing rules

The length of the information for the Publishing rules entry.

Note: If Offset to Publishing rules equals 0 (QZHT_NONE) or -1 (QZHT_DEFAULT), this value

must equal 0.

Offset to publishing rules

The offset from the beginning of the request variable to the Publishing rules data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

HTTP Server 351

Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value is used for Publishing rules.

-2 QZHT_NO_CHANGE: The current list of publishing rules, if any, is not changed for

Publishing rules.

Note: An escape message is sent if Offset to new file extension is greater than 0 (indicating that a

new file extension has been provided) and Send assembled version equals 0 (QZHT_NO).

Publishing rules

A list of publishing rules associated with the triggered cache manager server referenced by the

new Rule Set and used by trigger handlers, at startup, to direct how files are processed.

Descriptions must be listed by name, where each name is separated by one or more spaces, and

padded with blanks if necessary. The default value is null, indicating that an empty rule set is

described.

 If Offset to publishing rules equals 0 (QZHT_NONE) or -1 (QZHT_DEFAULT), an empty rule set

is described. If Offset to publishing rules equals -2 (QZHT_NO_CHANGE), the current list of

publishing rules are not changed.

Note: If the value is null, Offset to publishing rules must equal 0 (QZHT_NONE) or -1

(QZHT_DEFAULT). See Offset to publishing rules for more details. An empty rule set

referenced by a trigger handler causes it to process all triggers according to the default

publishing rule. An escape message is sent if any referenced description does not currently

exist.

Rule set object name

The name used by the rule set (left justified and padded with blanks if necessary). The value

must be a description name, or one of the special values described below.

*SAME

QZHT *SAME

Note: Rule set names must be unique for each triggered cache manager server. They are

referenced, by name, from trigger handler descriptions associated with the same server.

Server name

The name used to identify the triggered cache manager server with which the description is

associated (left justified and padded with blanks if necessary). The value must be a server name,

or one of the special values described below. If a server name is specified which is different than

the one with which the description is currently associated, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Note: An escape message is sent if the description is removed from its current association while

it is being referenced by other descriptions.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

352 iSeries: IBM HTTP Server

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1&2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name&2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Change Triggered Cache Manager Trigger Handler Description (QzhtChgTCMTriggerHandlerDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable name Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtChgTCMTriggerHandlerDesc API to change trigger handler descriptions associated with

triggered cache manager servers. Changes made to trigger handler descriptions are utilized by triggered

cache manager servers after they are restarted. The API is a callable service implemented as an ILE entry

point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

HTTP Server 353

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add a new trigger handler description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v THDP0100: Basic information format for a trigger handler description.

v THDP0200: Detailed information format for an *UPDATE type trigger handler description.

v THDP0300: Detailed information format for a *PUBLISH type trigger handler description.

server name

INPUT: CHAR(32)

 The name used to identify the server for which the description is changed (left justified and

padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify which trigger handler description is changed (left justified and padded

with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

THDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Trigger handler description

name

64 40 Char(10) Trigger handler type

74 4A Char(2) Reserved

76 4C Char(32) Data source

108 6C Binary(4) Offset to cache targets

112 70 Binary(4) Length of cache targets

116 74 Binary(4) Offset to ack targets

120 78 Binary(4) Length of ack targets

124 7C Binary(4) Offset to nack targets

128 80 Binary(4) Length of nack targets

132 84 Binary(4) Number of threads

Char(*) Cache targets

Char(*) Ack targets

354 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

Char(*) Nack targets

THDP0100 format field descriptions:

Note: If a description type, that is different than the current type, is specified in Trigger handler type),

the description is changed using default values for all unspecified values (according to the type

specified. See other trigger handler description formats for details regarding these default values.

Ack targets

A list of acknowledgment target descriptions associated with the triggered cache manager server

referenced by the trigger handler description and used later, at server startup, to obtain

information as to where successful process completion messages are sent. Descriptions must be

listed by name, where each name is separated by one or more spaces, and padded with blanks if

necessary. The default setting is to reference the descriptions currently designated as default

acknowledgment target descriptions for the triggered cache manager server. If there are no

descriptions currently designated as default, a null list is used. A null list indicates successful

process completion messages are not sent.

Note: If a null list is specified, Offset to ack targets must equal 0 (QZHT_NONE), -1

(QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to ack targets for more

details. Messages concerning successful process completion of triggers referencing this

handler are sent to all listed acknowledgment targets. An escape message is sent if any

referenced description does not currently exist.

Cache targets

A list of cache target descriptions associated with the triggered cache manager server referenced

by the trigger handler description and used later, at server startup, to obtain information about

the cache targets to which the trigger handler sends data. Descriptions must be listed by name,

where each name is separated by one or more spaces, and padded with blanks if necessary. The

default setting is to reference the descriptions currently designated as default cache target

descriptions for the triggered cache manager server. If there are no descriptions currently

designated as default, a null list is used. A null list indicates data is not sent to cache targets.

Note: If a null list is specified, Offset to ack targets must equal 0 (QZHT_NONE), -1

(QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to ack targets for more details.

Data processed by this trigger handler is sent to all listed cache targets. An escape message

is sent if any referenced description does not currently exist.

Data source

The name of a data source description associated with the triggered cache manager server

referenced by the trigger handler description and used later, at server startup, to obtain

information about the data source from which the trigger handler receives data. The value must

be a data source description name, or one of the special values described below (left justified and

padded with blanks if necessary). The default setting references the description currently

designated as the default data source description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default value is referenced.

*SAME

QZHT_NO_CHANGE_CHAR: The current reference is not changed.

HTTP Server 355

Note: A data source name is required. An escape message is sent if the referenced description

does not currently exist, or if *DEFAULT is specified and there is currently no default data

source description for the server.

Length of ack targets

The length of the information for the Ack targets entry.

Note: If Offset to ack targets equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Length of cache targets

The length of the information for the Cache targets entry.

Note: If Offset to cache targets equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Length of nack targets

The length of the information for the Nack targets entry.

Note: If Offset to nack targets equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Nack targets

A list of acknowledgment target descriptions associated with the triggered cache manager server

referenced by the trigger handler description and used later, at server startup, to obtain

information as to where failed process completion messages are sent. Descriptions must be listed

by name, where each name is separated by one or more spaces, and padded with blanks if

necessary. The default setting is to reference the descriptions currently designated as default

acknowledgment target descriptions for the triggered cache manager server. If there are no

descriptions currently designated as default, a null list is used. A null list indicates failed process

completion messages are not sent.

Note: If a null list is specified, Offset to nack targets must equal 0 (QZHT_NONE), -1

(QZHT_DEFAULT), or -2 (QZHT_NO_CHANGE). See Offset to nack targets for more details.

Messages concerning failed trigger process completion referencing this handler are sent to

all listed acknowledgment targets. An escape message is sent if any referenced description

does not currently exist.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

triggers sent to this trigger handler. The value must be greater that 0 and less than 231

(or

2.147x109), or equal to one of the special values described below. The default value is 10.

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: The current value is not changed.

Offset to ack targets

The offset from the beginning of the request variable to the Ack targets data, in bytes. The value

must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Ack targets indicating successful process

completion messages are not sent.

-1 QZHT_DEFAULT: The default descriptions, if any, are referenced for Ack targets.

-2 QZHT_NO_CHANGE: The current references for Ack targets are not changed.

356 iSeries: IBM HTTP Server

Offset to cache targets

The offset from the beginning of the request variable to the Cache targets data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Cache targets indicating data is not sent to

cache targets.

-1 QZHT_DEFAULT: The default descriptions, if any, are referenced for Nack targets.

-2 QZHT_NO_CHANGE: The current references for Nack targets are not changed.

Offset to nack targets

The offset from the beginning of the request variable to the Nack targets data, in bytes. The value

must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Nack targets indicating failed process

completion messages are not sent.

-1 QZHT_DEFAULT: The default descriptions, if any, are referenced for Nack targets.

-2 QZHT_NO_CHANGE: The current references for Nack targets are not changed.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary). The value must specify a server

name, or be one of the special values described below. If a server name that is different than the

one with which the description is currently associated is specified, it is removed from its current

association and added for the new server.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current server association is not changed.

Trigger handler description name

The name used by the new trigger handler description (left justified and padded with blanks if

necessary). The value must specify a description name, or be one of the special values described

below.

 Special values and their meanings are as follows:

*SAME

QZHT_NO_CHANGE_CHAR: The current name is not changed.

Note: Trigger handler description names must be unique for each triggered cache manager

server.

Trigger handler type

The trigger handler type (left justified and padded with blanks if necessary). The value must be

one of the special values described below.

 Special values and their meanings are as follows:

*UPDATE

QZHT_UPDATE_TYPE: A *UPDATE type is described.

*PUBLISH

QZHT_PUBLISH_TYPE: A *PUBLISH type is described.

HTTP Server 357

*SAME

QZHT_NO_CHANGE_CHAR: The current type is not changed.

Note: If a type (that is different than the current type) is specified, certain information (for the

current description type) is discarded if it cannot be mapped to values for the new

description type.

THDP0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from THDP0100

format

136 88 Binary(4) Cache request queue

priority

140 8C Binary(4) Trigger queue collapse

policy

THDP0200 format field descriptions:

Note: If the current description type is not *UPDATE, all information currently stored for the trigger

handler description (that is not mapped to one of the following entries) is discarded.

Cache request queue priority

Specifies the trigger handler priority value when submitting requests to the cache targets. Lower

values indicate higher priority. The value must be greater that 0 and less than 231 (or 2.147x109),

or equal to one of the special values described below. The default value is 231 (the lowest

priority).

 Special values and their meanings are as follows:

 -1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *UPDATE, the current value is

not changed. If the current description type is not *UPDATE, the default value is used.

Note: Triggered cache manager servers queue the trigger handler requests to the cache targets

and process them according to queue priority. Requests from trigger handlers with higher

priority are processed before requests from trigger handlers with lower priority. The trigger

handler queue priority can be changed while servers are active by using the -chspriority

command in a trigger message.

Trigger queue collapse policy

Specifies if identical triggers waiting on the request queue, for this trigger handler, are collapsed.

The value must equal one of the special values described below. The default value is 1

(QZHT_YES).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Identical triggers are collapsed.

0 QZHT_DEFAULT: The default value is used.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *UPDATE, the current value is

not changed. If the current description type is not *UPDATE, the default value is used.

358 iSeries: IBM HTTP Server

Note: Only triggers using the -objects keyword can be collapsed. Identical triggers are those

having an identical set of listed objects. The order of the listed objects is not important.

Once a trigger handler begins processing a trigger, it is not collapsed.

THDP0300 format:

 Offset Type Field

Dec Hex

0 0 Everything from THDP0100

format

136 88 Char(32) Object dependency graph

168 A8 Char(32) Rule set

200 C8 Binary(4) Offset to traversal edge

name

204 CC Binary(4) Length of traversal edge

name

208 D0 Binary(4) Offset to default included

file

212 D4 Binary(4) Length of default included

file

216 D8 Binary(4) Include dependency

information

220 DC Binary(4) Include triggered file

information

224 E0 Binary(4) Include cached file

information

Char(*) Traversal edge type

Char(*) Default include file

THDP0300 format field description:

Note: If the current description type is not *PUBLISH, all information currently stored for the trigger

handler description (that is not mapped to one of the following entries) is discarded.

Default included file

The name of a file the trigger handler includes, by global default, as a replacement for included

files that have not been triggered (when a local default file is not specified or available). The file

name must be left justified and padded with blanks if necessary. The default value is null,

indicating that a global default file name is not specified for this trigger handler description.

Note: If the value is null, Offset to default included file must equal 0 (QZHT_NONE), -1

(QZHT_DEFAULT) or -2 (QZHT_NO_CHANGE). See Offset to default included file for

more details. The file specified as a global default must be triggered (at runtime) before it

can be used.

Include cached file information

Specifies if a list of names for all files sent to cache targets, as a result of handling original trigger

requests, is included in successful process completion messages. The value must equal one of the

special values described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: A list of names is included.

HTTP Server 359

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: A list of names is not included.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current value is

not changed. If the current description type is not *PUBLISH, the default value is used.

Include dependency information

Specifies if information concerning all dependent files, assembled into triggered files as a result of

handling original trigger request, is included in successful process completion messages. The

value must equal one of the special values described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Information is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Information is not included.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current value is

not changed. If the current description type is not *PUBLISH, the default value is used.

Include triggered file information

Specifies if a list of names for all files triggered, as a result of handling original trigger requests,

is included in successful process completion messages. The value must equal one of the special

values described below. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: A list of names is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: A list of names is not included.

-1 QZHT_DEFAULT: The default value is used.

-2 QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current value is

not changed. If the current description type is not *PUBLISH, the default value is used.

Length of default included file

The length of information for the Default included file entry.

Note: If Offset to traversal edge type equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Length of traversal edge type

The length of the information for the Traversal edge type entry.

Note: If Offset to traversal edge type equals 0 (QZHT_NONE), -1 (QZHT_DEFAULT), or -2

(QZHT_NO_CHANGE), this value must equal 0.

Object dependency graph

The name of an object dependency graph description associated with the triggered cache

manager server referenced by the new trigger handler description and used later, at server

startup, to identify which object dependency graph is used by the handler to record and obtain

object dependency information. The value must be an object dependency graph description name,

or one of the special values described below (left justified and padded with blanks if necessary).

The default setting is to reference the description currently designated as the default object

dependency graph description for the triggered cache manager server.

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default is referenced.

360 iSeries: IBM HTTP Server

*SAME

QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current reference

is not changed. If the current description type is not *PUBLISH, the default description is

referenced.

Note: An object dependency graph description is required. An escape message is sent if the

referenced description does not currently exist, or if *DEFAULT is specified and there is

currently no default object dependency graph description for the server.

Offset to default included file

The offset from the beginning of the request variable to the Default included file data, in bytes.

The value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value for Default included file is used.

-2 QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current file name,

if any, is not changed for Default included file. If the current description type is not

*PUBLISH, the default value is used for Default included file.

Offset to traversal edge type

The offset from the beginning of the request variable to the Traversal edge type data, in bytes.

The value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Same as -1 (QZHT_DEFAULT).

-1 QZHT_DEFAULT: The default value for Traversal edge type is used.

-2 QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current name is

not changed for Traversal type edge. If the current description type is not *PUBLISH, the

default name is used for Traversal edge type.

Rule set

The name of a rule set associated with the triggered cache manager server referenced by the new

trigger handler description and used later, at server startup, to identify which publishing rules

are used by the handler. The value must be a rule set name, or one of the special values

described below (left justified and padded with blanks if necessary).

 Special values and their meanings are as follows:

*DEFAULT

QZHT_DEFAULT_CHAR: The default rule set currently associated with the triggered

cache manager server is referenced.

*NONE

QZHT_NONE_CHAR: No rule set is referenced by the trigger handler.

*SAME

QZHT_NO_CHANGE: If the current description type is *PUBLISH, the current reference

if any, is not changed. If the current description type is not *PUBLISH, the default Rule

Set currently associated with the triggered cache manager server is referenced.

Note: Triggers that specify files that do not match any publishing rules, in the specified rule set,

are processed according to the default publishing rule. That is, they are read from the data

source and sent to all cache targets (they are not parsed). An empty rule set has the same

HTTP Server 361

affect as not specifying a rule set at all. An escape message is sent if the referenced

description does not currently exist, or if *DEFAULT is specified and there is currently no

default rule set for the server.

Traversal edge type

The name of an object dependency graph (ODG) edge type used by the trigger handler to

determine object dependencies when assembling files. The edge type name must be left justified

and padded with blanks if necessary. The default name is composition.

Note: The name of an object dependency graph (ODG) edge type used by the trigger handler to

determine object dependencies when assembling files. The edge type name must be left

justified and padded with blanks if necessary. The default name is composition.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7222 E

A default &1 is not designated for triggered cache manager server &2.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

TCM7293 E

A &1 using the name &2 already exists for triggered cache manager server &3.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C1 E

Triggered cache manager &1 type is not valid.

TCM72C2 E

Triggered cache manager description type &1 cannot be specified when using data format &2.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Create Triggered Cache Manager Server (QzhtCrtTCMServer) API:

362 iSeries: IBM HTTP Server

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtCrtTCMServer API to create triggered cache manager servers. Configuration information

associated with servers is stored separately for each server. The API is a callable service implemented as

an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to create a new triggered cache manager servers.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Request variable.

request variable format

INPUT: CHAR(8)

 The format name of Request variable data. The following values must be used:

v INDP0100: Basing server information for server data.

error code

I/O: CHAR(*)

 The structure in which to return error information.

INDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Binary(4) Autostart property

36 24 Binary(4) Local TCP port

40 28 Char(32) Basing server

Field descriptions:

HTTP Server 363

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Server name

The name used by the new triggered cache manager server (left justified and padded with blanks

if necessary).

Note: Server names must be unique.

Autostart property

Specifies if the new triggered cache manager server is to start when startup of *AUTOSTART

triggered cache manager servers is requested. Usually *AUTOSTART servers are requested to

start when TCP/IP is started, however they may also be requested via the STRTCPSVR command

or QzhtStrTCMServer API. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The new server is to start when startup

of *AUTOSTART servers is requested.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The new server is not to start when

startup of *AUTOSTART servers is requested.

-1 QZHT_DEFAULT: The default value is used.

Local TCP port

The TCP port number used by the new triggered cache manager server. The value must be

greater than 0 and less than 65536, or equal the special value described below. The default value

is 7049.

 The special value and its meaning is as follows:

 -1 QZHT_DEFAULT: The default value is used.

Note: Triggered cache manager servers use the same port number for all IP interfaces.

Basing server

The name of an existing triggered cache manager server from which all configuration data is

obtained and used to create the new triggered cache manager server (left justified and padded

with blanks if necessary). The value must be the name of an existing triggered cache manager

server, or one of the special values described below. If the *DEFAULT special value is used, the

default configuration is used to create the new triggered cache manager server.

 The special value and its meaning is as follows:

*Default

QZHT_DEFAULT_CHAR: The default configuration is used for the new server.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

364 iSeries: IBM HTTP Server

TCM70F0 E

Unknown error occurred while processing request.

TCM7103 E

User QTCM is not authorized to the configuration file for the basing triggered cache manager

server &1.

TCM7193 E

A configuration file for the basing triggered cache manager server &1 was not found.

TCM72C3 E

Value passed at offset &1 is not valid.

TCM4937 E

Triggered cache manager server using name &1 already exists.

TCM74C0 E

Triggered cache manager server name is not valid.

TCM734C3 E

Basing triggered cache manager server name is not valid.

Delete Triggered Cache Manager Server Status (QzhtDltTCMServer) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(*)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtDltTCMServer API to delete triggered cache manager servers including all associated

configuration information and all object dependency graph (ODG) data files. The API is a callable service

implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to the pass information used to delete an existing triggered cache manager

server.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

HTTP Server 365

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

request variable format

INPUT: CHAR(8)

 The format name of request variable data. The following values must be used:

v INNP0100: Basic Server name format.

error code

I/O: CHAR(*)

 The structure in which to return error information.

INNP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

Field description:

Server name

The name used to identify which triggered cache manager server is deleted (left justified and

padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7301 E

User QTCM is not authorized to triggered cache manager server &1.

TCM7390 E

Triggered cache manager server &1 not found.

TCM73C3 E

Triggered cache manager server &1 is active.

TCM7401 E

User QTCM is not authorized to server data for triggered cache manager server &1.

TCM74C0 E

Triggered cache manager server name is not valid.

366 iSeries: IBM HTTP Server

TCM7701 E

User QTCM is not authorized to object dependency graph data for triggered cache manager

server &1.

End Triggered Cache Manager Server (QzhtEndTCMServer) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 Request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINOPS

Threadsafe: Yes

Use the QzhtEndTCMServer API to end triggered cache manager servers. The API is a callable service

implemented as an ILE entry point within the QZHTINOPS *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks: None.

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable user ID to pass information used to end active triggered cache manager servers.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Request variable.

request variable format

INPUT: CHAR(8)

 The format name of Request variable data. The following values must be used:

v INNP0100: Basic server name format.

error code

I/O:CHAR(*)

 The structure in which to return error information.

INNP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

Field description:

HTTP Server 367

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Server name

The name used to identify which triggered cache manager server is stopped (left justified and

padded with blanks if necessary). The value must specify a server name, or be one of the special

values described below.

 Special values and their meanings are as follows:

*ALL QZHT_ALL_CHAR: All triggered cache manager servers are to stopped.

Error messages:

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7390 E

Triggered cache manager server &1 not found.

TCM73C0 E

Triggered cache manager server &1 is not active.

TCM7401 E

User QTCM is not authorized to server data for triggered cache manager server &1.

TCM74C0 E

Triggered cache manager server name is not valid.

Get Triggered Cache Manager Server Status (QzhtGetTCMServerStatus) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name I/O Char(32)

5 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtGetTCMServerStatus API retrieves the current status (or state) of triggered cache manager servers

along with their respective autostart property. The API is a callable service implemented as an ILE entry

point within QZHTINCONF *SRVPGM in QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks: None.

368 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

 The variable used to return the information indicating the status and autostart property of

triggered cache manager servers.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of Receiver variable data. The following values must be used:

v INSG0100: Basic status information format for triggered cache manager servers.

server name

INPUT: CHAR(32)

 The name used to identify the server for which the status information is returned (left justified

and padded with blanks if necessary). The value must specify a server name, or be one of the

special values described below.

 The special value and its meaning is as follows:

*ALL QZHT_ALL_CHAR: Status information for all triggered cache manager servers returned.

error code

I/O:CHAR(*)

 The structure in which to return error information.

INSG0100 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Binary(4) Offset to server entries

12 C Binary(4) Number of server entries

16 10 Binary(4) Length of server entry

Server entries

Note: The following entries are repeated for each set of server data returned.

Char(32) Server name

Binary(4) Autostart property

Binary(4) Current state

Binary(4) Local TCP port

Field descriptions:

Bytes returned

The number of information bytes returned to the caller of the API.

Bytes available

The number of information bytes available for return to the caller of the API.

HTTP Server 369

Note: If this value is greater than the value of Bytes Returned, the receiver variable was not large

enough to return all information.

Offset to server entries

The offset from the beginning of the receiver variable to the Server entries data, in bytes.

Number of server entries

The number of entries returned in server entries.

Note: If no servers exist, the returned value equals 0 (QZHT_NONE).

Length of server entry

The length of the information for each entry in server entries.

Server name

The name of the triggered cache manager server (left justified and padded with blanks if

necessary).

Autostart property

Indicates whether the new triggered cache manager server is to start when startup of

*AUTOSTART triggered cache manager servers is requested. Usually *AUTOSTART servers are

requested to start when TCP/IP is started, however they may also be requested via the

STRTCPSVR command or QzhtStrTCMServer API.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The server is set to start when startup of

*AUTOSTART servers is requested.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The server is not set to start when startup

of *AUTOSTART servers is requested.

Current state

The current sate of the triggered cache manager server identified by Server name. The possible

values are:

 1 QZHT_INACTIVE: The server is not active.

2 QZHT_STARTING: The server is in the process of starting up.

3 QZHT_ACTIVE: The server is active.

4 QZHT_ENDING: The server is in the process of shutting down.

Local TCP port

The number of one of the TCP ports used by the triggered cache manager server. The value will

be greater than 0 and less than 65536.

Note: Triggered cache manager servers use the same port number for all IP interfaces.

Error messages:

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the format specified.

TCM7035 E

Server parameter is not valid.

370 iSeries: IBM HTTP Server

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7390 E

TCM server instance server &1 not found.

TCM74C0 E

TCM server instance server name is not valid.

Remove Triggered Cache Manager Acknowledgment Target Description

(QzhtRmvTCMAckTargetDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRmvTCMAckTargetDesc API to remove acknowledgment target descriptions associated with

triggered cache manager servers. Trigger handler descriptions, currently referencing the removed

acknowledgment target description, are not changed however they are no longer be valid the next time

the servers are started. The API is a callable service implemented as an ILE entry point within the

QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to remove an existing acknowledgment target

description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v DNIP0100: Identity information format for configuration descriptions.

error code

I/O: CHAR(*)

HTTP Server 371

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The structure in which to return error information.

DNIP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

Field descriptions:

Description name

The name used to identify the removed acknowledgment target description (left justified and

padded with blanks if necessary).

Note: An escape message is sent if the description is removed while referenced by other

descriptions. An escape message is sent if the description is removed while being

referenced by other descriptions.

Server name

The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Remove Triggered Cache Manager Cache Target Description (QzhtRmvTCMCacheTargetDesc) API:

372 iSeries: IBM HTTP Server

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRmvTCMCacheTargetDesc API to remove cache target descriptions associated with triggered

cache manager servers. Trigger handler descriptions, currently referencing the cache target description,

are removed (not changed), however they are no longer be valid the next time the servers are started.

The API is a callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in

the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to add an existing cache target description. See

Description identity formats for more information.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v DNIP0100: Identity information format for configuration descriptions.

error code

I/O: CHAR(*)

 The structure in which to return error information.

DNIP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

Field descriptions:

HTTP Server 373

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Description name

The removed cache target description name (left justified and padded with blanks if necessary).

Note: An escape message is sent if the description is removed while being referenced by other

descriptions.

Server name

INPUT: CHAR(32)

 The name used to identify the triggered cache manager server for which the new description is

associated (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Remove Triggered Cache Manager Data Source Description (QzhtRmvTCMDataSourceDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

374 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Use the QzhtRmvTCMDataSourceDesc API to remove data source descriptions associated with triggered

cache manager servers. Trigger handler descriptions currently referencing the removed data source

descriptions are not changed, however they are no longer valid after the servers are started. The API is a

callable service implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM

*LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to remove a data source description. See

Description identity formats for more information.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Request variable.

request variable format

INPUT: CHAR(8) The format name of the Request variable data. The following values must be

used:

v DSDP0100: Basic information format for configuration descriptions.

Note: See Description identity formats for more information.

error code

I/O: CHAR(*)

 The structure in which to return error information.

DSDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Data source description

name

Field descriptions:

Note: Data source descriptions are added using default values for all unspecified values according to the

type specified by Data source type). See other data source description formats for details regarding

these default values.

Data source description name

The name used by the new data source description (left justified and padded with blanks if

necessary).

Note: An escape message is sent if the description is removed while being referenced by trigger

handler descriptions.

HTTP Server 375

Server name

The name used to identify the triggered cache manager server for which the description is

removed (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Remove Triggered Cache Manager Host Description (QzhtRmvTCMHostDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtRmvTCMHostDesc API removes host descriptions associated with triggered cache manager

servers. Data source, cache target, and acknowledgement target descriptions currently referencing the

removed host descriptions are not changed, however they are no longer be valid the next time the servers

are started.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

376 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to remove an existing host description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for the request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v DNIP0100: Identity information format for configuration descriptions.

error code

I/O: CHAR(*)

 The structure in which to return error information.

DNIP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

Field descriptions:

Description name

The name of the removed host description (left justified and padded with blanks if necessary).

Note: An escape message is sent if the description is removed.

Server name

The name used to identify the triggered cache manager server for which the description is

removed (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Server error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703 E

Error code parameter is not valid.

HTTP Server 377

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed at offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Remove Triggered Cache Manager Object Dependency Graph Description (QzhtRmvTCMODGDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtRmvTCMODGDesc API removes object dependency graph descriptions associated with triggered

cache manager servers. Trigger handler descriptions, currently referencing the removed object

dependency graph description, are not changed, however they are no longer be valid the next time the

servers are started.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to remove an existing object dependency graph

description.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for the request variable.

request variable format

INPUT: CHAR(8)

378 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The format name of the request variable data. The following values must be used:

v DNIP0100: Identity information format for configuration descriptions.

error code

I/O: CHAR(*)

 The structure in which to return error information.

OGDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

OGDP0100 format field descriptions:

Description name

The name of the removed object dependency graph description (left justified and padded with

blanks if necessary).

Note: An escape message is sent if the description is removed while it is being referenced by

other descriptions.

Server name

The name used to identify the triggered cache manager server for which the description is

removed (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed at offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

HTTP Server 379

Remove Triggered Cache Manager Publishing Rule (QzhtRmvTCMPublishingRule) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtRmvTCMPublishingRule API removes publishing rules associated with triggered cache manager

servers. Rule Sets currently referencing the removed publishing rule are not changed, however they are

no longer valid the next time that the servers are started. The API is a callable service implemented as an

ILE entry point within the QZHTINOPS *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to remove an existing publishing rule.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for the request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v DNIP0100: Identity information format for configuration descriptions.

error code

I/O: CHAR(*)

 The structure in which to return error information.

DNIP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

DNIP0100 format field descriptions:

380 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Description name

The name of the publishing rule (left justified and padded with blanks if necessary).

Note: An escape message is sent if the description is removed while it is being referenced by

other descriptions.

Server name

The name used to identify the triggered cache manager server for which the description is

removed (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Remove Triggered Cache Manager Rule Set (QzhtRmvTCMRuleSet) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

HTTP Server 381

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The QzhtRmvTCMRuleSet API removes rule sets associated with triggered cache manager servers. Trigger

handler descriptions currently referencing the rule set removed description are not changed, however

they are no longer be valid the next time that the servers are started. The API is a callable service

implemented as an ILE entry point within the QZHTINOPS *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to remove an existing rule set.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for the request variable.

request variable format

INPUT: CHAR(8)

 The format name of the request variable data. The following values must be used:

v DNIP0100: Identity information format for configuration descriptions.

error code

I/O: CHAR(*)

 The structure in which to return error information.

DNIP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

DNIP0100 format field descriptions:

Description name

The name of the rule set (left justified and padded with blanks if necessary).

Note: An escape message is sent if the description is removed while it is being referenced by

other descriptions.

Server name

The name used to identify the triggered cache manager server for which the description is

removed (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

382 iSeries: IBM HTTP Server

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 E

Triggered cache manager &1 name is not valid.

TCM72C3 E

Value passed to offset &1 is not valid.

TCM74C0 E

Triggered cache manager server name is not valid.

Remove Triggered Cache Manager Trigger Handler Description (QzhtRmvTCMTriggerHandlerDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRmvTCMTriggerHandlerDesc API to remove trigger handler descriptions associated with

triggered cache manager servers. Trigger handler descriptions that are removed are no longer utilized by

the triggered cache manager servers the next time they are started. The API is a callable service

implemented as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass the information used to remove an existing trigger handler description.

HTTP Server 383

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for the request variable.

request variable format

INPUT: CHAR(8)

 The format name of the Request variable data. The following values must be used:

v INDP0100: Basic information format for configuration descriptions.

error code

I/O: CHAR(*)

 The structure in which to return error information.

INDP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

32 20 Char(32) Description name

Field descriptions:

Description name

The name of the removed trigger handler description (left justified and padded with blanks if

necessary).

Server name

The name used to identify the triggered cache manager server from which the description is

removed (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the specified format.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 D

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 D

A configuration file for triggered cache manager server &1 was not found.

TCM72C0 D

Triggered cache manager &1 name is not valid.

384 iSeries: IBM HTTP Server

TCM72C3 D

Value passed to offset &1 is not valid.

TCM74C0 D

Triggered cache manager server name is not valid.

Retrieve Triggered Cache Manager Acknowledgment Target Description (QzhtRtvTCMAckTargetDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRtvTCMAckTargetDesc API to retrieve information from acknowledgment target

descriptions associated with triggered cache manager servers. The API is a callable service implemented

as an ILE entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

 The variable used to return acknowledgment target description information. See

Acknowledgment target description formats for more information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of Receiver variable data. The following values must be used:

v ATDG0100: Basic information format for an acknowledgment target description.

v ATDG0200: Detailed information format for an *HTTP1 type acknowledgment target

description.

v ATDG0210: Detailed information format for an *HTTP2 type acknowledgment target

description.

HTTP Server 385

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

server name

INPUT: CHAR(32)

 The name used to identify the triggered cache manager server from which information is

retrieved (left justified and padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify the retrieved acknowledgment target description information (left

justified and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

ATDG0100 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Acknowledgement target

description name

72 40 Char(10) Acknowledgement target

type

82 52 Char(2) Reserved

84 56 Binary(4) Default property

88 58 Binary(4) Number of threads

92 5C Binary(4) Initial state

ATDG0100 format field descriptions:

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

The number of information bytes returned to the caller of the API.

Acknowledgement target description name

The acknowledgment target description name (left justified and padded with blanks if necessary).

Acknowledgement target type

The acknowledgment target description type (left justified and padded with blanks if necessary).

The value returned is one of the special values below.

 Special values and their meanings are as follows:

*HTTP1

QZHT_HTTP_TYPE1

*HTTP2

QZHT_HTTP_TYPE2

386 iSeries: IBM HTTP Server

Default property

Indicates if the description is a current default acknowledgment target description for the

triggered cache manager server specified in Server name. The returned value equals one of the

special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is a current default

acknowledgment target description for this server.

-1 QZHT_DEFAULT: The description is not a current default acknowledgment target

description.

Note: Multiple default acknowledgment target descriptions are possible.

Initial state

Indicates if the triggered cache manager server message processor, for this acknowledgment

target, is enabled or disabled at server startup. The returned value equals one of the special

values described below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The message processor is enabled at

server startup.

-1 QZHT_DEFAULT: The message processor is disabled at server startup.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when sending

completion messages to this acknowledgment target. The value must be greater than 0 and less

than 231 (or 2.147x109).

Server name

The name of the triggered cache manager server for which the description is associated (left

justified and padded with blanks if necessary).

ATDG0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from ATDG0100

format

96 60 Char(256) HTTP IP interface

352 160 Binary(4) HTTP TCP port

356 164 Binary(4) Offset to HTTP URI root

360 168 Binary(4) Length of HTTP URI root

364 16C Binary(4) HTTP keepalive

368 170 Binary(4) Timeout

Char(*) HTTP URI root

ATDG0200 format field descriptions:

HTTP IP interface

The IP host name or address of the system hosting an HTTP server that accepts completion

messages (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com) or dotted address (for example, 192.168.3.57).

HTTP Server 387

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after completion messages are

sent. The value must equal one of the special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

HTTP TCP port

The TCP port of HTTP Server acknowledgment target. The value must be greater than 0 and less

than 65536.

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server acknowledgment target.

HTTP URI root

The path of HTTP Server URI that defines the root of this acknowledgment target (left justified

and padded with blanks if necessary).

Note: All completion message requests sent to the acknowledgment target are prepended with

this path.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below. The default value is 0 (QZHT_DISABLED).

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

ATDP0210 format:

 Offset Type Field

Dec Hex

0 0 Everything from ATDG0100

format

96 60 Char(32) HTTP host

128 80 Binary(4) HTTP TCP port

132 84 Binary(4) Offset to HTTP URI root

136 88 Binary(4) Length of HTTP URI root

140 8C Binary(4) HTTP keepalive

144 90 Binary(4) Timeout

Char(*) HTTP URI root

388 iSeries: IBM HTTP Server

ATDP0210 format field descriptions:

HTTP host

The name of a host description referenced by the acknowledgment target description and used, at

server startup, to obtain information about the system hosting an HTTP server accepting

completion messages. The value must be a host description name (left justified and padded with

blanks if necessary).

Note: See HTTP TCP port for more information. The referenced host description may or may not

currently exist. It is possible that it was removed or associated with a different triggered

cache manager server after this acknowledgment target description was last modified.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data transfer. The value

must equal one of the special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536.

Note: The TCP port number is used in combination with information obtained at server startup

from the host description specified in HTTP host to establish communication with HTTP

Server acknowledgment target.

HTTP URI root

The path of HTTP Server URI that defines the root of this acknowledgment target (left justified

and padded with blanks if necessary).

Note: All requests to send completion messages to this acknowledgment target are prepended

with this path.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

Error messages:

TCM7001 E

User &1 is not authorized.

HTTP Server 389

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

Retrieve Triggered Cache Manager Basic Configuration (QzhtRtvTCMBasicConfig) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRtvTCMBasicConfig API to retrieve the basic configuration information for a triggered cache

manager server. The API is a callable service implemented as an ILE entry point within the

QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

390 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The variable used to return the basic configuration information for the triggered cache manager

server.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of receiver variable data. The following values must be used:

v INDG0200: Detailed information format for server data.

server name

INPUT: CHAR(32)

 The name used to identify the triggered cache manager server from which the configuration

information is retrieved (left justified and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

INDG0200 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Binary(4) Autostart property

44 2C Binary(4) Local TCP port

48 30 Binary(4) Offset to root directory

52 34 Binary(4) Length of root directory

56 38 Binary(4) Maximum number of

entries

60 3C Binary(4) Defer time between retries

64 40 Binary(4) Memory buffer size

Binary(4) Root directory

Field descriptions:

Autostart property

Specifies if the new triggered cache manager server is to start when startup of *AUTOSTART

triggered cache manager servers, is requested. Usually *AUTOSTART servers are requested to

start when TCP/IP is started, however they may also be requested via the STRTCPSVR command

or QzhtStrTCMServer API. The default value is 0 (QZHT_NO).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The server is set to start when startup of

*AUTOSTART servers is requested.

HTTP Server 391

2 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The server is not set to start when startup

of *AUTOSTART servers is requested.

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

The number of information bytes returned to the caller of the API.

Defer time between retries

The number of seconds the triggered cache manager server waits between retry attempts for a

failing action. The value returned is greater than 0 and less than 231 (or 2.147x109), or equal to the

following special value: 0 QZHT_NONE: No defer time is used.

Length of root directory

The length of the information for the root directory entry.

Local TCP port

The number of one of the TCP ports used by the triggered cache manager server. The return

value is greater than 0 and less than 65536.

Maximum number of entries

The maximum number of time the triggered cache manager server attempts to retry a failing

action. The return value is greater than -1 and less than 231 (or 2.147x109), or equal to one of the

special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: Failing actions are not retried.

-3 QZHT_NOMAX: Retry failing actions until successful.

Memory buffer size

The maximum amount of working data the triggered cache manager server attempts to store in

memory, in bytes. The return value is greater than -1 and less than 231 (or 2.147x109) bytes.

Offset to root directory

The offset from the beginning of the request variable to the root directory data, in bytes.

Root directory

The name of the local file system directory in which the triggered cache manager server

maintains its persistent record of incoming transactions, left justified and padded with blanks if

necessary.

Server name

The name of the triggered cache manager server for which the configuration information is

retrieved (left justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

392 iSeries: IBM HTTP Server

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

Retrieve Triggered Cache Manager Cache Target Description (QzhtRtvTCMCacheTargetDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRtvTCMCacheTargetDesc API to retrieve information from cache target descriptions

associated with triggered cache manager servers. The API is a callable service implemented as an ILE

entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

 The variable used to return cache target description information. See Cache target description

formats for more information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

HTTP Server 393

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The format name of Receiver variable data. The following values must be used:

v CTDG0100: Basic information format for a cache target description.

v CTDG0200: Detailed information format for an *IFS type cache target description.

v CTDG0300: Detailed information format for an *HTTP1 type cache target description.

v CTDG0310: Detailed information format for an *HTTP2 type cache target description.

v CTDG0500: Detailed information format for an *ECCP1 type cache target description.

v CTDG0510: Detailed information format for an *ECCP2 type cache target description.

Note: See Cache target description formats for more information.

server name

INPUT: CHAR(32)

 The name used to identify the triggered cache manager server from which the configuration

information is retrieved (left justified and padded with blanks if necessary).

description name

CHAR(32)

 The name used to identify which cache target description information is retrieved (left justified

and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

CTDG0100 format:

Note: When the cache target description type is unknown, use the CTDG0100 format and the basic

information (including cache target type) is returned. You may then use the returned cache target

type to call the API and return detailed information about the cache target description (using one

of the detailed information formats).

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Cache target description

name

72 48 Char(10) Cache target type

82 52 Char(2) Reserved

84 54 Binary(4) Default property

88 58 Binary(4) Number of threads

92 5C Binary(4) Initial state

CTDG0100 format field descriptions:

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

394 iSeries: IBM HTTP Server

Bytes returned

The number of information bytes returned to the caller of the API.

Cache target description name

The cache target description name (left justified and padded with blanks if necessary).

Cache target type

The cache target description type (left justified and padded with blanks if necessary). The

returned value equals one of the special values below.

 Special values and their meanings are as follows:

*IFS QZHT_IFS_TYPE

*HTTP1

QZHT_HTTP_TYPE1

*HTTP2

QZHT_HTTP_TYPE2

*ECCP1

QZHT_ECCP_TYPE1

*ECCP2

QZHT_ECCP_TYPE2

Default property

Specifies if the new description is a default cache target description for the triggered cache

manager server specified in Server name. The value must equal one of the special values

described below. The default value is 0 (QZHT_NO).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is a default cache target

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not a default cache

target description.

Note: Multiple default cache target descriptions are possible.

Initial state

Specifies the state that the triggered cache manager server request processor, for this cache target,

is in at server startup. The value must equal one of the special values described below.

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The request processor is enabled at server

startup.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The request processor is disabled at

server startup.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests sent to this cache target. The value must be greater that 0 and less than 231 (or 2.147x109).

Server name

The name of the triggered cache manager server from which the configuration information is

retrieved (left justified and padded with blanks if necessary).

HTTP Server 395

CTDG0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDG0100

format

96 60 Binary(4) Offset to local directory

root

100 64 Binary(4) Length of local directory

root

Char(*) Local directory root

CTDG0200 format field descriptions:

Length of local directory root

The length of the information for the Local directory root entry.

Local directory root

The path to the local file system directory that defines the root for this cache target (left justified

and padded with blanks if necessary).

Note: All file requests send to the cache target have this path prepended to the file name, even if

an absolute file path is specified.

Offset to local directory root

The offset from the beginning of the receiver variable to the Local directory root data, in bytes.

CTDG0300 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDG0100

format

96 60 Char(256) HTTP IP interface

352 160 Binary(4) HTTP TCP port

356 164 Binary(4) Offset to HTTP URI root

360 168 Binary(4) Length of HTTP URI root

364 16C Binary(4) HTTP keepalive

368 170 Binary(4) Timeout

Char(*) HTTP URI root

CTDG0300 format field descriptions:

HTTP IP interface

The IP host name or address of the system hosting an HTTP server cache target. The value must

be a host name (for example, server.mycompany.com), dotted address (for example, 192.168.3.57)

(left justified and padded with blanks if necessary).

Note: See HTTP TCP port for more information.

396 iSeries: IBM HTTP Server

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536.

Note: The TCP port number is used in combination with the IP host name or address in HTTP IP

interface to establish communication with HTTP Server cache target.

HTTP URI root

The path of HTTP Server URI that is the root of this cache target (left justified and padded with

blanks if necessary).

Note: All file requests from this cache target have this path inserted into the URI, even if an

absolute file path is specified.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

CTDG0310 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDG0100

format

96 60 Char(32) HTTP host

128 80 Binary(4) HTTP TCP port

132 84 Binary(4) Offset to HTTP URI root

136 88 Binary(4) Length of HTTP URI root

140 8C Binary(4) HTTP keepalive

144 90 Binary(4) Timeout

HTTP Server 397

Offset Type Field

Dec Hex

Char(*) HTTP URI root

CTDG0310 format field descriptions:

HTTP host

The name of a host description associated with the triggered cache manager server that is

referenced by the new cache target description and used later, at server startup, to obtain

information about the system hosting an HTTP server cache target. The value must be a host

description name (left justified and padded with blanks if necessary).

Note: See HTTP TCP port for more information. The referenced host description may or may not

currently exist. It is possible that it was removed or associated with a different triggered

cache manager server after this cache target description was last modified.

HTTP keepalive

Specifies if connections to HTTP Server are kept open for reuse after data is transferred. The

value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

HTTP TCP port

The TCP port number upon which HTTP Server listens for incoming requests. The value must be

greater than 0 and less than 65536.

Note: The TCP port number is used in combination with the IP host name or address in HTTP

host to establish communication with HTTP Server cache target.

HTTP URI root

The path of HTTP Server URI that defines the root of this cache target (left justified and padded

with blanks if necessary).

Note: All file requests from this cache target have this path inserted into the URI, even if an

absolute file path is specified.

Length of HTTP URI root

The length of the information for the HTTP URI root entry.

Offset to HTTP URI root

The offset from the beginning of the request variable to the HTTP URI root data, in bytes.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

398 iSeries: IBM HTTP Server

CTFG0500 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDG0100

format

96 60 Char(32) ECCP IP interface

352 160 Char(10) ECCP TCP port

356 164 Char(2) HTTP cluster IP interface

612 264 Binary(4) HTTP cluster TCP port

616 268 Binary(4) Offset to HTTP cluster URI

root

620 26C Binary(4) Length of HTTP cluster

URI root

624 270 Char(256) ECCP keepalive

Char(*) HTTP cluster URI root

CTDG0500 format field descriptions:

ECCP IP interface

The IP host name or address of the backend IP interface to the network router hosting a web

server cluster cache target. The value must be a host name (for example, server.mycompany.com)

or dotted address (for example, 192.168.3.57) (left justified and padded with blanks if necessary).

Note: See ECCP TCP port for more information.

ECCP keepalive

Specifies if the connection to the network router is kept open for reuse after data is transferred.

The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

ECCP TCP port

The TCP port number upon which the network router listens for incoming requests. The value

must be greater than 0 and less than 65536.

Note: The TCP port number is used in combination with the IP host name or address, in ECCP

IP interface, to establish communications with the network router cache target.

HTTP cluster IP interface

The IP host name or address of the web server cluster from which the network router is hosting a

cache (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57).

Note: See HTTP cluster TCP port for more information.

HTTP Server 399

HTTP cluster TCP port

The number of the TCP port used by the triggered cache manager server to identify a particular

web server cluster cache. The value returned must be greater than 0 and less than 65536.

Note: The network router described by ECCP IP interface may host multiple web server caches.

The TCP port number returned here is used in combination with the IP address returned

in HTTP cluster IP interface to identify a particular web server cache when communicating

with the network router.

HTTP cluster URI root

The web server cluster URI path that defines the root of this cache target (left justified and

padded with blanks if necessary).

Note: All file requests sent to this cache target have this path inserted into the URI, even if an

absolute file path is specified.

Length of HTTP cluster URI root

The length of the information for the HTTP cluster URI root entry.

Offset to HTTP cluster URI root

The offset from the beginning of the receiver variable to the HTTP cluster URI root data, in bytes.

CTDG0510 format:

 Offset Type Field

Dec Hex

0 0 Everything from CTDG0100

format

96 60 Char(32) ECCP host

128 80 Binary(4) ECCP TCP port

132 84 Char(256) HTTP cluster IP interface

388 184 Binary(4) HTTP cluster TCP port

392 188 Binary(4) Offset to HTTP cluster URI

root

396 18C Binary(4) Length of HTTP cluster

URI root

400 190 Binary(4) ECCP keepalive

Char(*) HTTP cluster URI root

CTDG0510 format field descriptions:

ECCP host

The name of a host description associated with the triggered cache manager server referenced by

the new cache target description and used later, at server startup, to obtain information about the

network router hosting a web server cluster cache target. The value must be a host description

name (left justified and padded with blanks if necessary).

Note: See ECCP TCP port for more information. The referenced host description may or may not

currently exist. It is possible that it was removed or associated with a different triggered

cache manager server after this cache target description was last modified.

ECCP keepalive

Specifies if the connection to the network router is kept open for reuse after data is transferred.

The value must equal one of the special values described below. The default value is 0

(QZHT_DISABLED).

400 iSeries: IBM HTTP Server

1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The connection is kept open after data

transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The connection is closed after data

transfer.

ECCP TCP port

The TCP port number upon which the network router listens for incoming requests. The value

must be greater than 0 and less than 65536.

Note: The TCP port number is used in combination with the IP host name or address, obtained

at server startup, from the host description (specified in ECCP host) to establish

communication with the network router cache target.

HTTP cluster IP interface

The IP host name or address of the web server cluster from which the network router is hosting a

cache (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57).

Note: See HTTP cluster TCP port for more information.

HTTP cluster TCP port

The TCP port number used by the triggered cache manager server to identify a particular web

server cluster cache. The value must be greater than 0 and less than 65536.

Note: The network router using the address, described by ECCP host, may host multiple web

server caches. The TCP port number specified here is used in combination with the IP host

name or address in HTTP cluster IP interface to identify a particular web server cache

when communicating with the network router.

HTTP cluster URI root

The web server cluster URI path that is used to define the root of this cache target (left justified

and padded with blanks if necessary).

Note: All file requests sent to this cache target have this path inserted into the URI, even if an

absolute file path is specified.

Length of HTTP cluster URI root

The length of the information for the HTTP cluster URI root entry.

Offset to HTTP cluster URI root

The offset from the beginning of the receiver variable to the HTTP cluster URI root data, in bytes.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

HTTP Server 401

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

Retrieve Triggered Cache Manager Data Source Description (QzhtRtvTCMDataSourceDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRtvTCMDataSourceDesc API to retrieve information from data source descriptions

associated with triggered cache manager servers. The API is a callable service implemented as an ILE

entry point within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

 The variable used to return data source description information. See Data source description

formats for more information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of Receiver variable data. The following values must be used:

v DSDG0100: Basic information format for data source description.

402 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v DSDG0200: Detailed information format for an *IFS type data source description.

v DSDG0300: Detailed information format for an *HTTP1 type data source description.

v DSDG0310: Detailed information format for an *HTTP2 type data source description.

See Data source description formats for more information.

server name

INPUT: CHAR(32)

 The name used to identify the server from which information is retrieved (left justified and

padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

DSDG0100 format: When the data source description type is unknown, use the DSDG0100 format and

the basic information (including data source type) is returned. You may then use the returned data source

type to call the API again and return detailed information about the data source description using one of

the detailed information formats.

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Data source description

name

72 48 Char(10) Data source type

82 52 Char(2) Reserved

84 54 Binary(4) Default property

88 58 Binary(4) Number of threads

DSDG0100 format field descriptions:

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

The number of information bytes returned to the caller of the API.

Data source description name

The data source description name (left justified and padded with blanks if necessary).

Data source type

The data source description type (left justified and padded with blanks if necessary). The

returned value is one of the special values below.

 Special values and their meanings are as follows:

*IFS QZHT_IFS_TYPE

*HTTP1

QZHT_HTTP_TYPE1

HTTP Server 403

*HTTP2

QZHT_HTTP_TYPE2

Default property

Indicates whether the description is the current default data source description for the triggered

cache manager server specified in Server name. The returned value equals to one of the special

values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the current default for

this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the current default.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

requests that receive data from this data source. The value must be greater that 0 and less than

231 (or 2.147x109).

Server name

The name of the triggered cache manager server with which the description is associated (left

justified and padded with blanks if necessary).

DSDG0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDG0100

format

92 5C Binary(4) Offset to local directory

root

96 60 Binary(4) Length of local directory

root

Char(*) Local directory root

DSDG0200 format field descriptions:

Length of local directory root

The length of the information for the Local directory root entry.

Local directory root

The path to the local file system directory that defines the root for this data source (left justified

and padded with blanks if necessary).

Note: All file requests from this data source have this path prepended to the file name, even if an

absolute path for the file is specified.

Offset to local directory root

The offset from the beginning of the receiver variable to the Local directory root data, in bytes.

DSDG0300 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDG0100

format

404 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

92 5C Char(256) HTTP IP interface

348 15C Binary(4) HTTP TCP port

352 160 Binary(4) Offset to HTTP URI root

356 164 Binary(4) Length of HTTP URI root

360 168 Binary(4) HTTP keepalive

364 16C Binary(4) Timeout

Char(*) HTTP URI root

DSDG0300 format field descriptions:

HTTP IP interface

The IP host name or address of the system hosting an HTTP server data source (left justified and

padded with blanks if necessary). The returned value is either an IP host name (for example,

server.mycompany.com) or dotted IP address (for example, 192.168.3.57) (left justified and padded

with blanks if necessary).

Note: See HTTP TCP port for more information.

HTTP keepalive

Indicates whether the triggered cache manager server attempts to keep connections to HTTP

Server open for reuse after data is transferred. The returned value equals one of the special

values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The server attempts to keep connections

open after data transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The server closes each connection after

data transfer.

HTTP TCP port

The TCP listening port number used by HTTP Server data source. The value returned is greater

than 0 and less than 65536.

Note: The returned TCP port number is used in combination with the IP host name or address

returned in HTTP IP interface to establish communication with HTTP Server data source.

HTTP URI root

HTTP Server URI path that defines the root for this data source (left justified and padded with

blanks if necessary).

Note: All requests for files from this data source have this path inserted into the URI, even if an

absolute file path is specified.

Length of HTTP URI root

The length of the information returned for the HTTP URI root entry.

Offset to HTTP URI root

The offset from the beginning of the receiver variable to the HTTP URI root data, in bytes.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

HTTP Server 405

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

DSDG0310 format:

 Offset Type Field

Dec Hex

0 0 Everything from DSDP0100

format

92 5C Char(32) HTTP host

124 7C Binary(4) HTTP TCP port

128 80 Binary(4) Offset to HTTP URI root

132 84 Binary(4) Length of HTTP URI root

136 88 Binary(4) HTTP keepalive

140 8C Binary(4) Timeout

Char(*) HTTP URI root

DSDG0310 format field descriptions:

HTTP host

The name of the host description referenced by the data source description and used, at server

startup, to obtain information about the system hosting an HTTP Server data source. The

returned value is a host description name (left justified and padded with blanks if necessary).

Note: See HTTP TCP port for more information. The referenced host description may or may not

currently exist. It is possible that it was removed or associated with a different triggered

cache manager server after the data source description was last modified.

HTTP keepalive

Indicates whether the triggered cache manager server attempts to keep connections to HTTP

Server open for reuse after data is transferred. The returned value equals one of the special

values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The server attempts to keep connections

open after data transfer.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The server closes each connection after

data transfer.

HTTP TCP port

The TCP listening port number used by HTTP Server data source. The returned value is greater

than 0 and less than 65536.

Note: The returned TCP port number is used in combination with the IP host name or address

returned in HTTP host to establish communication with HTTP Server data source.

406 iSeries: IBM HTTP Server

HTTP URI root

HTTP Server URI path that defines the root for this data source (left justified and padded with

blanks if necessary).

Note: All requests for files from this data source have this path inserted into the URI, even if an

absolute file path is specified.

Length of HTTP URI root

The length of the information returned for the HTTP URI root entry.

Offset to HTTP URI root

The offset from the beginning of the receiver variable to the HTTP URI root data, in bytes.

Timeout

The number of seconds the triggered cache manager server waits before canceling a read

operation on sockets and ending transactions, with the HTTP host, in error. The value must be

greater than 0 and less than 231 (or 2.147x109), or equal to one of the special values described

below.

 Special values and their meanings are as follows:

 0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The time out operation is disabled. The

triggered cache manager server should never cancel a read operation.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

Retrieve Triggered Cache Manager Host Description (QzhtRtvTCMHostDesc) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

HTTP Server 407

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRtvTCMHostDesc API to retrieve information from host descriptions associated with

triggered cache manager servers. The API is a callable service implemented as an ILE entry point within

the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

 The variable used to return host description information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of Receiver variable data. The following values must be used:

v HSDG0100: Basic information format for a host description.

server name

INPUT: CHAR(32)

 The name used to identify the triggered cache manager server from which information is

retrieved (left justified and padded with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify the retrieved host description information (left justified and padded

with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

408 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

HSDG0100 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Host description name

72 48 Binary(4) Default property

76 4C Char(256) IP interface

Field descriptions:

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

The number of information bytes returned to the caller of the API.

Default property

Specifies if the new description is the default host description for the triggered cache manager

server specified in Server name. The value must equal to one of the special values described

below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the default host

description for this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the default host

description.

Note: Data source, cache target, and acknowledgment target descriptions, added or changed

using the *DEFAULT special value, reference the host description designated as default at

the time they are added or changed.

Host description name

The name used by the host description (left justified and padded with blanks if necessary).

IP interface

The IP host name or address of the system hosting servers used by the triggered cache manager

server (left justified and padded with blanks if necessary). The value must be a host name (for

example, server.mycompany.com), dotted address (for example, 192.168.3.57).

Server name

The name of the triggered cache manager server for which the description is associated (left

justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

HTTP Server 409

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 D

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 D

A configuration file for triggered cache manager server &1 was not found.

TCM7290 D

&1 &2 was not found for triggered cache manager server &3.

Retrieve Triggered Cache Manager Object Dependency Graph Description (QzhtRtvTCMODGDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtRtvTCMODGDesc API retrieves information from object dependency graph (ODG) descriptions

associated with triggered cache manager servers.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

OUTPUT: CHAR(*)

 The variable used to return object dependency graph description information.

410 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of Receiver variable data. The following values must be used:

v OGDG0100: Basic information format for an object dependency graph description.

server name

INPUT: CHAR(32)

 The name used to identify the server for which information is retrieved (left justified and padded

with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify which object dependency graph description information is retrieved

(left justified and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

OGDP0100 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Object dependency graph

description name

72 48 Binary(4) Default property

76 52 Binary(4) Allow API updates

Field descriptions:

Allow API updates

Indicates whether APIs are allowed to update the object dependency graph described by the

object dependency graph description. The value returned is one of the special values described

below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The object dependency graph is updated

using APIs via the triggered cache manager server, as well as from trigger handler

publish parsing.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The object dependency graph is not

updated using APIs via the triggered cache manager server. Only updates as a result of

trigger handler publish parsing are allowed.

HTTP Server 411

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

Number of bytes of information returned to the caller of the API.

Default property

Indicates whether the description is the current default object dependency graph description for

the triggered cache manager server specified in Server name. The returned value equals one of

the special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the current default for

this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the current default.

Object dependency graph description name

The name of the object dependency graph description (left justified and padded with blanks if

necessary).

Server name

The name of the triggered cache manager server with which the description is associated (left

justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the format specified.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is to authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1 &2 was not found for triggered cache manager server &3.

412 iSeries: IBM HTTP Server

Retrieve Triggered Cache Manager Publishing Rule (QzhtRtvTCMPublishingRule) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

The QzhtRtvTCMPublishingRule API retrieves information from publishing rules associated with

triggered cache manager servers. The API is a callable service implemented as an ILE entry point within

QZHTINCONF *SRVPGM in QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

INPUT: CHAR(*)

 The variable used to return publishing rule information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for receiver variable.

receiver variable format

INPUT: CHAR(8)

 The format name of the receiver variable data. The following values must be used:

v PRDG0100: Basic information format for a publishing rule.

server name

INPUT: CHAR(32)

 The name used to identify the server for which information is retrieved (left justified and padded

with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify the which publishing rule information is retrieved (left justified and

padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

HTTP Server 413

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

PRDG0100 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Publishing rule name

72 48 Binary(4) Offset to file extensions

76 4C Binary(4) Length of file extensions

80 50 Binary(4) Read from data source

84 54 Binary(4) Send data source version

88 58 Binary(4) Parse and assemble

92 5C Binary(4) Send assembled version

96 60 Binary(4) Offset to new file extension

100 64 Binary(4) Length of new file

extension

Char(*) File extensions

Char(*) New file extensions

PRDG0100 format field descriptions:

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

The number of bytes of information returned to the caller of the API.

File extensions

A list of file extensions used to identify files that are processed according to the publishing rule.

File extensions are listed as a string of characters, where each extension is separated by one space

(left justified and padded with blanks if necessary).

Note: File names are compared to file extensions starting at the last period in the file name.

Length of file extensions

The length of the information returned for the File extensions entry.

Length of new file extension

The length of the information returned for the New file extension entry.

New file extension

The string of characters used as a new extension to rename files after they have been assembled

and before they are sent to the cache targets (left justified and padded with blanks if necessary).

Note: If the value is null, Offset to new file extension equals 0 (QZHT_NONE), indicating that

the triggered cache manager server does not rename files prior to sending them to the

cache targets.

414 iSeries: IBM HTTP Server

Offset to new file extension

The offset from the beginning of the receiver variable to the New file extension data, in bytes.

The value returned is greater than 0 or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: The value is null for New file extensions.

Offset to file extensions

The offset from the beginning of the request variable to the File extensions data, in bytes.

Parse and assemble

Indicates if files matching this publishing rule are parsed for wrappers and includes, and possibly

sent through the page assembler. The returned value equals one of the special values described

below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Files matching this publishing rule are

parsed and possibly sent through the page assembler.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Files matching this publishing rule are

not parsed.

Note: Files that are not parsed are not sent through the page assembler.

Publishing rule name

The name of the publishing rule, left justified and padded with blanks if necessary.

Read from data source

Indicates if files matching this publishing rule are read from the data source when triggered. The

value returned is one of the special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Files matching this publishing rule are

read from the data source when triggered.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Files matching this publishing rule are

not read from the data source.

Send assembled version

Indicates if the assembled version of files matching this publishing rule are sent to cache targets

when triggered and processed. The returned value equals one of the special values described

below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Assembled versions of files matching this

publishing rule are sent to cache targets when triggered and processed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Assembled versions of files matching this

publishing rule are not sent to cache targets.

Send data source version

Indicates if the data source version of files matching this publishing rule (the version read from

the data source prior to assembly) are sent to cache targets when triggered and processed. The

value returned is one of the special values described below.

HTTP Server 415

Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Data source versions of files matching

this publishing rule are sent to cache targets when triggered and processed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Data source versions of files matching

this publishing rule are not sent to cache targets.

Server name

The name of the triggered cache manager server with which the description is associated (left

justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid.

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1&2 was not found for triggered cache manager server &3.

Retrieve Triggered Cache Manager Rule Set (QzhtRtvTCMRuleSet) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

416 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Threadsafe: Yes

The QzhtRtvTCMRuleSet API retrieves information from rule sets associated with triggered cache

manager servers. The API is a callable service implemented as an ILE entry point within the

QZHTINCONF *SRVPGM in the QTCM *LIB. The QTCM/H(QZHTINCONF) header file includes ILE C

prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

receiver variable

INPUT: CHAR(*)

 The variable used to return rule set information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of the receiver variable data. The following values must be used:

v RSDG0100: Basic information format for a rule set.

server name

INPUT: CHAR(32)

 The name used to identify the server for which information is retrieved (left justified and padded

with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify which rule set information is retrieved (left justified and padded with

blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

RSDG0100 format:

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Rule set name

72 48 Binary(4) Default property

76 52 Binary(4) Offset to publishing rules

80 56 Binary(4) Length of publishing rules

HTTP Server 417

Offset Type Field

Dec Hex

Char(*) Publishing rules

RSDG0100 format field descriptions:

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver variable was not large

enough to return all information.

Bytes returned

BINARY(4)

 The number of bytes of information returned to the caller of the API.

Default property

Indicates whether the description is the current default rule set for the triggered cache manager

server specified in Server name. The returned value equals one of the special values described

below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: The description is the current default for

this server.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: The description is not the current default.

Length of publishing rules

The length of the information returned for the Publishing rules entry.

Offset to publishing rules

The offset from the beginning of the receiver variable to the Publishing rules data, in bytes. The

value returned is greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: The value is null for Publishing rules.

Publishing rules

The list of publishing rules currently referenced are listed by name, separated by one (left

justified and padded with blanks if necessary).

Note: If the value is null, Offset to publishing rules equals 0 (QZHT_NONE), indicating that an

empty rule set is described. An empty rule set referenced by a trigger handler causes it to

process all triggers according to the default publishing rule.

Rule set object name

The name of the rule set (left justified and padded with blanks if necessary).

Server name

The name of the triggered cache manager server with which the description is associated (left

justified and padded with blanks if necessary).

Error messages:

TCM7001 E

User &1 is not authorized.

418 iSeries: IBM HTTP Server

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

&1&2 was not found for triggered cache manager server &3.

Retrieve Triggered Cache Manager Trigger Handler Description (QzhtRtvTCMTriggerHandlerDesc)

API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 receiver variable Output Char(*)

2 length of receiver variable Input Binary(4)

3 receiver variable format Input Char(8)

4 server name Input Char(32)

5 description name Input Char(32)

6 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINCONF

Threadsafe: Yes

Use the QzhtRtvTCMTriggerHandlerDesc API to retrieve information from trigger handlers associated

with triggered cache manager servers. The API is a callable service implemented as an ILE entry point

within the QZHTINCONF *SRVPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks:

v *IOSYSCFG special authority

Required parameter group:

HTTP Server 419

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

receiver variable

OUTPUT: CHAR(*)

 The variable used to return trigger handler description information.

length of receiver variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Receiver variable. This value must be

greater than or equal to 8.

receiver variable format

INPUT: CHAR(8)

 The format name of Receiver variable data. The following values must be used:

v THDG0100: Basic information format for a trigger handler description.

v THDG0200: Detailed information format for an *UPDATE type trigger handler description.

v THDG0300: Detailed information format for a *PUBLISH type trigger handler description.

server name

INPUT: CHAR(32)

 The name used to identify the server for which information is retrieved (left justified and padded

with blanks if necessary).

description name

INPUT: CHAR(32)

 The name used to identify which trigger handler description information is retrieved (left

justified and padded with blanks if necessary).

error code

I/O: CHAR(*)

 The structure in which to return error information.

THDG0100 format: When the trigger handler description type is unknown, use the THDG0100 format

and the basic information (including trigger handler type) is returned.

 Offset Type Field

Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 Char(32) Server name

40 28 Char(32) Trigger handler description

name

72 48 Char(10) Trigger handler type

82 52 Char(2) Reserved

84 54 Char(32) Data source

116 74 Binary(4) offset to cache targets

120 78 Binary(4) Length of cache targets

124 7C Binary(4) Offset to ack targets

128 80 Binary(4) Length of ack targets

132 84 Binary(4) Offset to nack targets

136 88 Binary(4) Length of nack targets

140 8C Binary(4) Number of threads

420 iSeries: IBM HTTP Server

Offset Type Field

Dec Hex

Char(*) Cache targets

Char(*) Ack targets

Char(*) Nack targets

THDG0100 format field descriptions:

Ack targets

A list of acknowledgment target descriptions referenced by the new trigger handler description

and used, at server startup, to obtain information as to where successful process completion

messages are sent. Descriptions must be listed by name, where each name is separated by one or

more spaces (left justified and padded with blanks if necessary).

Note: If a null list is returned, Offset to ack targets must equal 0 (QZHT_NONE), indicating no

acknowledgment target descriptions are currently referenced. Messages concerning

successful process completion of triggers referencing this handler are sent to all listed

acknowledgment targets.

Bytes available

The number of information bytes available for return to the caller of the API.

Note: If this value is greater than the value of Bytes returned, the receiver was not large enough

to return all information.

Bytes returned

The number of information bytes returned to the caller of the API.

Cache targets

The list of cache target descriptions referenced by the trigger handler descriptions and used, at

server startup, to obtain information about the cache targets to which the trigger handler sends

data. Returned descriptions must be listed by name, where each name is separated by one or

more spaces, left justified, and padded with blanks if necessary.

Note: If a null list is returned, Offset to cache targets must equal 0 (QZHT_NONE), indicating no

cache target descriptions are currently referenced. Data processed by this trigger handler is

sent to all listed cache targets.

Data source

The name of a data source description referenced by the new trigger handler description and

used, at server startup, to obtain information about the data source from which the trigger

handler retrieves data. The value must be a data source description name (left justified and

padded with blanks if necessary).

Length of ack targets

The length of the information returned for the Ack targets entry.

Length of cache targets

The length of the information returned for the Cache targets entry.

Length of nack targets

The length of the information returned for the Nack targets entry.

Nack targets

The list of acknowledgment target descriptions referenced by the new trigger handler description

and used, at server startup, to obtain information as to where failed process completion messages

are sent. Descriptions must be listed by name, where each name is separated by one or more

spaces, left justified, and padded with blanks if necessary.

HTTP Server 421

Note: If a null list is specified, Offset to nack targets must equal 0 (QZHT_NONE), indicating no

acknowledgment target descriptions are currently referenced. Messages concerning failed

trigger processes, referencing this handler, are sent to all listed acknowledgment targets.

Number of threads

The number of concurrent threads the triggered cache manager server spawns when processing

triggers that are sent to this trigger handler. The value must be greater that 0 and less than 231 (or

2.147x109).

Offset to ack targets

The offset from the beginning of the receiver variable to the Ack targets data, in bytes. The value

must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Ack targets indicating no acknowledgment

target descriptions are currently referenced.

Offset to cache targets

The offset from the beginning of the receiver variable to the Cache targets data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Cache targets indicating no cache target

descriptions are currently referenced.

Offset to nack targets

The offset from the beginning of the receiver variable to the Nack targets data, in bytes. The

value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: A null list is specified for Nack targets indicating no acknowledgment

target descriptions are currently referenced.

Server name

The name used to identify the triggered cache manager server for which the description is

associated (left justified and padded with blanks if necessary).

Trigger handler description name

The name of the trigger handler description (left justified and padded with blanks if necessary).

Trigger handler type

The trigger handler description type (left justified and padded with blanks if necessary). The

value must be one of the special values described below.

 Special values and their meanings are as follows:

*UPDATE

QZHT_UPDATE_TYPE

*PUBLISH

QZHT_PUBLISH_TYPE

422 iSeries: IBM HTTP Server

THDG0200 format:

 Offset Type Field

Dec Hex

0 0 Everything from THDP0100

format

144 90 Binary(4) Cache request queue

priority

148 94 Binary(4) Trigger queue collapse

policy

THDG0200 format field description:

Cache request queue priority

Specifies the trigger handler priority value when submitting requests to the cache targets. Lower

values indicate higher priority. The value must be greater that 0 and less than 231 (or 2.147x109).

Note: Triggered cache manager servers queue the trigger handler requests to the cache targets

and process them according to queue priority. Requests from trigger handlers with higher

priority are processed before requests from trigger handlers with lower priority. The trigger

handler queue priority can be changed while servers are active by using the -chspriority

command in a trigger message.

Trigger queue collapse policy

Specifies if identical triggers waiting on the request queue, for this trigger handler, are collapsed.

The value must equal one of the special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Identical triggers, waiting on the request

queue for this trigger, are collapsed.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Identical triggers are not collapsed.

Note: Only triggers using the -objects keyword can be collapsed. Identical triggers are those

having an identical set of listed objects. The order of the listed objects is not important.

Once a trigger handler begins processing a trigger, it is not collapsed.

THDG0300 format:

 Offset Type Field

Dec Hex

0 0 Everything from THDP0100

format

14 90 Char(32) Object dependency graph

176 B0 Char(32) Rule set

208 D0 Binary(4) Offset to traversal edge

name

212 D4 Binary(4) Length of traversal edge

name

216 D8 Binary(4) Offset to default included

file

220 DC Binary(4) Length of default included

file

HTTP Server 423

224 E0 Binary(4) Include dependency

information

228 E4 Binary(4) Include triggered file

information

22C E8 Binary(4) Include cached file

information

Char(*) Traversal edge type

Char(*) Default included file

THDG0300 format field descriptions:

Default included file

The name of a file the trigger handler includes, by global default, as a replacement for included

files that have not been triggered (when a local default file is not specified or available). The file

name must be left justified and padded with blanks if necessary.

Note: If the value is null, Offset to default included file must equal 0 (QZHT_NONE), indicating

that a global default file name is not specified for this trigger handler description. The file

specified as a global default must be triggered (at runtime) before it can be used.

Include cached file information

Specifies if a list of names for all files sent to cache targets, as a result of handling original trigger

requests, is included in successful process completion messages. The value must equal one of the

special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: A list of names is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: A list of names is not included.

Include dependency information

Specifies if information concerning all dependent files, assembled into triggered files as a result of

handling original trigger request, is included in successful process completion messages. The

value must equal one of the special values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: Information is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: Information is not included.

Include triggered file information

Specifies if a list of names for all files triggered, as a result of handling original trigger requests,

is included in successful process completion messages. The value must equal one of the special

values described below.

 Special values and their meanings are as follows:

 1 QZHT_YES, QZHT_TRUE, QZHT_ENABLED: A list of names is included.

0 QZHT_NO, QZHT_FALSE, QZHT_DISABLED: A list of names is not included.

Length of default included file

The length of information for the Default included file entry.

Length of traversal edge type

The length of the information returned for the Traversal edge type entry.

424 iSeries: IBM HTTP Server

Object dependency graph

The name of an object dependency graph description referenced by the trigger handler

description and used, at server startup, to identify which object dependency graph is used by the

handler to record and obtain object dependency information. The value must be an object

dependency graph description name (left justified and padded with blanks if necessary).

Offset to default included file

The offset from the beginning of the request variable to the Default included file data, in bytes.

The value must be greater than 0, or equal to one of the special values described below.

 Special values and their meanings are as follows:

 0 QZHT_NONE: The value is null for Default included file.

Offset to traversal edge type

The offset from the beginning of the request variable to the Traversal edge type data, in bytes.

Rule set

The name of a rule set referenced by the trigger handler description and used, at server startup,

to identify which publishing rules are used by the handler. The value must be a rule set name, or

one of the special values described below (left justified and padded with blanks if necessary).

 Special values and their meanings are as follows:

*NONE

QZHT_NONE_CHAR: No rule set is referenced by the trigger handler.

Note: Triggers that specify files that do not match any publishing rules, in the specified rule set,

are processed according to the default publishing rule. That is, they are read from the data

source and sent to all cache targets (they are not parsed). An empty rule set has the same

affect as not specifying a rule set at all.

Traversal edge type

The name of an object dependency graph (ODG) edge type used by the trigger handler to

determine object dependencies when assembling files. The edge type name must be left justified

and padded with blanks if necessary.

Note: Only edges of the specified type are traversed by this trigger handler to determine object

dependencies.

Error messages:

TCM7001 E

User &1 is not authorized.

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7032 E

Receiver variable format is not valid.

TCM7034 E

Length of receiver variable is not valid for the specified format.

TCM7035 E

Server parameter is not valid.

TCM7036 E

Description parameter is not valid.

TCM703E E

Error code parameter is not valid

HTTP Server 425

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for triggered cache manager server &1 was not found.

TCM7290 E

A &1 and &2 was not found for triggered cache manager server &3.

Start Triggered Cache Manager Server (QzhtStrTCMServer) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

 Required Parameter Group:

1 request variable Input Char(*)

2 length of request variable Input Binary(4)

3 request variable format Input Char(8)

4 error code I/O Char(*)

Library Name/Service Program: QTCM/QZHTINOPS

Threadsafe: Yes

Use the QzhtStrTCMServer API to start the triggered cache manager servers. The API is a callable service

implemented as an ILE entry point within the QZHTINOPS *SVRPGM in the QTCM *LIB.

The QTCM/H(QZHTINCONF) header file includes ILE C prototypes for this API.

Authorities and locks: None.

Required parameter group:

request variable

INPUT: CHAR(*)

 The variable used to pass information used to start existing triggered cache manager servers.

length of request variable

INPUT: BINARY(4)

 The number of bytes that the calling program provides for Request variable.

request variable format

INPUT: CHAR(8)

 The format name of Request variable data. The following values must be used:

v INNP0100: Basic server name format

error code

I/O:CHAR(*)

 The structure in which to return error information.

426 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

INNP0100 format:

 Offset Type Field

Dec Hex

0 0 Char(32) Server name

Field description:

Server name

The name used to identify which triggered cache manager server is started (left justified and

padded with blanks if necessary). The value must specify an server name, or be one of the special

values described below.

 Special values and their meanings are as follows:

*AUTOSTART

QZHT_AUTOSTART_CHAR: All triggered cache manager servers having the autostart

property set to ’1’ (QZHT_YES, QZHT_TRUE, QZHT_ENABLED) are started.

*ALL QZHT_ALL_CHAR: All triggered cache manager servers are started.

Error messages:

TCM7030 E

Severe error occurred while addressing parameter list.

TCM7031 E

Request variable format is not valid.

TCM7033 E

Length of request variable is not valid for the format specified.

TCM703E E

Error code parameter is not valid

TCM70F0 E

Unknown error occurred while processing request.

TCM7101 E

User QTCM is not authorized to the configuration file for triggered cache manager server &1.

TCM7190 E

A configuration file for the triggered cache manager server &1 was not found.

TCM7390 E

Triggered cache manager server &1 not found.

TCM74C0 E

Triggered cache manager server name is not valid.

TCM73C3 E

Triggered cache manager server &1 is active.

Add Config Object (QzuiAddConfigObject) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 427

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 cfg Input Binary(4)

2 obj_type Input Binary(4)

3 key Input Char(*)

4 key_size Input Binary(4)

5 val Input Char(*)

6 val_size Input Binary(4)

7 place Input Binary(4)

8 where Input Binary(4)

9 object Output Binary(4)

10 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiAddConfigObject API to add scope or directive to the configuration. It may be placed relative

to a directive or scope, at the end or beginning of the file, or at the beginning or end of a scope. A handle

to the object is returned allowing directives to be added to it.

Authorities and locks: None.

Required parameter group:

cfg INPUT:BINARY(4)

 Handle to the config.

obj_type

INPUT:BINARY(4)

 Type of object to add (0 = directive, 1 = scope).

key INPUT:CHAR(*)

 Keyword of scope or directive to add.

key_size

INPUT:BINARY(4)

 Size of key passed.

val INPUT:CHAR(*)

 Value for scope.

val_size

INPUT:BINARY(4)

 Size of value.

place INPUT:BINARY(4)

 Placement directive (0 = at the end of the file, 1 = at start of file, 2 = after �where�, 3 = before

�where�, 4 = at start of scope specified by �where�, 5 = at end of scope specified by �where�).

where INPUT:BINARY(4)

 Optional handle to scope or directive for scope placement.

object OUTPUT:BINARY(4)

 Handle of the object added.

errcode

I/O:CHAR(*)

428 iSeries: IBM HTTP Server

Error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3C1D E

Input variable length in parameter &1 not valid.

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA106 E

Input configuration handle not valid.

HTPA121 E

Object handle in parameter &1 not valid.

HTPA122 E

Object handle in parameter &1 not a scope.

HTPA124 E

Combination of insertion position and relative object not valid.

HTPA126 E

Keyword &1 not valid for object type.

Change Config Object Value (QzuiChangeConfigObject) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 cfg Input Binary(4)

2 object Input Binary(4)

3 value Input Char(*)

4 value_size Input Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiChangeConfigObject API to change the value portion of a scope or directive. The value is

considered anything after the keyword. For example, in the directive �BrowserMatch Mozilla/2

nokeepalive�, the keyword is �BrowserMatch� and the value is �Mozilla/2 nokeepalive�.

Authorities and locks: None.

Required parameter group:

cfg INPUT:BINARY(4)

HTTP Server 429

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Handle to the config.

object INPUT:BINARY(4)

 Handle to the scope or directive to be changed.

value INPUT:CHAR(*)

 New value for the object.

value_size

INPUT:BINARY(4)

 Size of value.

errcode

I/O:CHAR(*)

 Error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA106 E

Input configuration handle not valid.

HTPA121 E

Object handle in parameter &1 not valid.

HTPA125 E

Value &1 not valid for keyword &2.

Change Apache Server Instance Data (QzuiChangeInstanceData) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 name Input Char(10)

2 idata Input Char(*)

3 idata_size Input Binary(4)

4 format Input Char(8)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiChangeInstanceData API to change the information contained in the instance file. The idata

information is retrieved in the format specified by INSD0110.

Authorities and locks:

v *EXECUTE authority to the QUSRSYS library

430 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v *OBJOPR, *OBJMGT, *ADD, and *DLT authority to the QUSRSYS/QATMHINSTC file

Required parameter group:

name INPUT:CHAR(10)

 Name of the server instance from which data is retrieved.

idata INPUT:CHAR(*)

 Buffer in format INSD0110 containing instance file date.

idata_size

INPUT:BINARY(4)

 Length of instance data passed.

format

INPUT:CHAR(8)

 Format of the instance data (INSD0110).

errcode

I/O:CHAR(*)

 Error information structure.

INSD0110 format: This data format is used by the QzuiCreateInstance, QzuiGetInstanceData, and

QzuiChangeInstanceData APIs.

 Offset Type Field

0 Char(10) Autostart

10 Binary(4) Threads

14 Binary(4) CCSID

18 Char(10) Outgoing table name

28 Char(10) Outgoing table library

38 Char(10) Incoming table name

48 Char(10) Incoming table library

58 Char(512) Config file (full path)

570 Char(512) Server root path

Field description:

Note: In the descriptions below, *GLOBAL indicates that the global server parameter value for this field

is used by the instance, and *CFG indicates that the value from the named configuration file is

used. All character strings are padded with blanks as necessary, and are NOT null terminated.

Autostart

Indicates if the instance starts automatically. It is a 10 character string that contains *NO, *YES, or

*GLOBAL.

Threads

The number of threads to use for this instance. It is an integer from 0 to 999, where 0 means the

*CFG value.

CCSID

The character set to be used by the instance. It is an integer from 0 to 65533, where 0 means

*GLOBAL.

HTTP Server 431

Outgoing table name

The name of the table object to use as the EBCDIC to ASCII conversion table for outgoing data. It

is a 10 character name or *GLOBAL.

Outgoing table library

The library containing the EBCDIC to ASCII table. This field is blank if the outgoing table name

is *GLOBAL.

Incoming table name

The name of the table object to use as the ASCII to EBCDIC conversion table for incoming data. It

is a 10 character name or *GLOBAL.

Incoming table library

The library containing the ASCII to EBCDIC table. This field is blank if the incoming table name

is *GLOBAL.

Config file (full path)

The path to the server instance configuration file.

Server root path

The path to the server root.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C1D E

Input variable length in parameter &1 not valid. CPF3C21 E

CPF3C21 E

Format name &1 not valid.

CPF3CF1 E

Error code parameter not valid.

CPF9822 E

Not authorized to file &1 in library &2.

CPFB602 E

Cannot open file.

HTPA001 E

Input parameter &1 not valid.

HTPA101 E

Server instance &1 not found or is unreadable.

HTPA102 E

Unable to update server instance &1.

HTPA103 E

Value in field &1 of the instance data structure not valid.

HTPA127 E

Server instance &1 is not a HTTP Server (powered by Apache) type instance.

Close Apache Config File (QzuiCloseConfig) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

432 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 cfg Input Binary(4)

2 write Input Binary(4)

3 fname Input Char(*)

4 fname_size Input Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiCloseConfig API to optionally write the memory copy of the configuration out to the file and

then free the memory copy. If the filename is specified, the configuration is written to that file, otherwise

it is written to the original file.

Authorities and locks:

v If the file is closed without write, no authority is needed

v *X authority to each directory in the path of the specified group file

v *RW authority to the group file for a writelock value of 1

Required parameter group:

cfg INPUT:BINARY(4)

 Handle to the config to be closed.

write INPUT:BINARY(4)

 Has the following values: 0 = no write, 1 = write.

fname INPUT:CHAR(*)

 Path and name of config file to be written (optional).

fname_size

INPUT:BINARY(4)

 Length of file name (0 for no file name).

errcode

I/O:CHAR(*)

 Error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C1D E

Input variable length in a parameter &1 not valid.

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA120 E

Unable to update server configuration &1.

Create Apache Server Instance (QzuiCreateInstance) API:

HTTP Server 433

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 name Input Char(10)

2 idata Input Char(*)

3 idata_size Input Binary(4)

4 format Input Char(8)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiCreateInstance API to create a new server instance file for the parameters passed to it.

Authorities and locks:

v *EXECUTE and *ADD authority to the QUSRSYS library

v *OBJOPR, *ADD, *DLT, and either *OBJMGT or *OBJALTER authority to the QUSRSYS/QATMHINSTC

file

Required parameter group:

name INPUT:CHAR(10)

 The name of the instance to be created.

idata INPUT:CHAR(*)

 The instance data.

idata_size

INPUT:BINARY(4)

 The length of the instance data.

format

INPUT:CHAR(8)

 The format of the instance data (INSD0110).

 See “INSD0110 format” on page 431 for more information.

errcode

I/O:CHAR(*)

 The error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3CF1 E

Error code parameter not valid.

CPF9822 E

Not authorized to file &1 in library &2.

434 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

HTPA001 E

Input parameter &1 not valid.

HTPA102 E

Unable to update server instance &1.

HTPA103 E

Value in field &1 of the instance data structure not valid.

Find Config Object (QzuiFindConfigObject) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 cfg Input Binary(4)

2 fdata Input Char(*)

3 fdata_size Input Binary(4)

4 format Input Char(8)

5 object Output Binary(4)

6 val Output Char(*)

7 val_size Input Binary(4)

8 val_actlen Output Binary(4)

9 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiFindConfigObject API to search HTTP Server (powered by Apache) configuration file for the

object (and possibly value) specified and returns a handle to it. If �start� is not specified, the

configuration file scope is used. If a value is specified, the value is tokenized and compared with the

tokens of the matching keywords. For example, if the keyword is �BrowserMatch� and the value is

�Mozilla/2� the search would find �BrowserMatch Mozilla/2 nokeepalive�. Also, the �val� field would

contain �Mozilla/2 nokeepalive�. You need only pass the object type and keyword. For example, to find a

�Port� directive, set the object type to 1, the keyword to �Port� and fdata_size to 8. If the value field is

not needed, set �val_size� to 0.

Authorities and locks: None.

Required parameter group:

cfg INPUT:BINARY(4)

 Handle to the configuration file.

fdata INPUT:CHAR(*)

 Find data in format CFGF0110.

fdata_size

INPUT:BINARY(4)

 Size of Find data format buffer.

format

INPUT:CHAR(8)

 Name of format (CFGF0110).

HTTP Server 435

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

object OUTPUT:BINARY(4)

 Handle to the object found (-1 indicates not found).

val OUTPUT:CHAR(*)

 Contains the whole value of the configuration object found.

val_size

INPUT:BINARY(4)

 Size of value buffer.

val_actlen

OUTPUT:BINARY(4)

 Actual size of value.

errcode

I/O:CHAR(*)

 Error information structure.

CFGF0110 format: This data format is used by QzuiFindConfigObject powered by Apache API.

 Offset Type Field

0 Binary(4) Object type (0=directive, 1=scope)

4 Char(40) Keyword object to search for

(required)

44 Binary(4) Case sensitive (0=insensitive,

1=sensitive)

48 Binary(4) Where to search (0=entire

configuration, 1=with scope specified

in ″Start″, 2=start search at object

specified in ″Start″, 3=start search at

scope specified in object start)

52 Binary(4) Start - the search start handle (0 if no

start is to be used)

56 Binary(4) Value when searching (0=no, 1=yes)

60 Char(100) Value of object to search for

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3C1D E

Input variable length in parameter &1 not valid.

CPF3C21 E

Format name &1 not valid.

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

436 iSeries: IBM HTTP Server

HTPA106 E

Input configuration handle not valid.

HTPA121 E

Object handle in parameter &1 not valid.

HTPA122 E

Object handle in parameter &1 not a scope.

HTPA123 E

No matching object found.

Get Apache Server Instance Data (QzuiGetInstanceData) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 name Input Char(10)

2 buf Output Char(*)

3 buf_size Input Binary(4)

4 format Input Char(8)

5 buf_actlen Output Binary(4)

6 running Output Binary(4)

7 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiGetInstanceData API to retrieve the data from a specified server instance file. The data

information is returned in the format specified by INSD0110. See “INSD0110 format” on page 431 for

more information.

Authorities and locks:

v *EXECUTE authority to the QUSRSYS library

v *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group:

name INPUT:CHAR(10)

 Name of the server instance from which data is retrieved.

buf OUTPUT:CHAR(*)

 Buffer in format INSD0110 containing instance file data.

buf_size

INPUT:BINARY(4)

 Length of instance data buffer.

format

INPUT:CHAR(8)

 Format of the instance data (INSD0110).

 See “INSD0110 format” on page 431 for more information.

HTTP Server 437

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

buf_actlen

OUTPUT:BINARY(4)

 Actual length of instance data returned.

running

OUTPUT:BINARY(4)

 Indicates if the instance is currently running (1 = running).

errcode

I/O:CHAR(*)

 Error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3C1D E

Input variable length in parameter &1 not valid.

CPF3C21 E

Format name &1 not valid.

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA101 E

Server instance &1 not found or is unreadable.

HTPA127 E

Server instance &1 is not a HTTP Server (powered by Apache) type instance.

Get Server Instance Names (QzuiGetInstanceNames) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 buf Output Char(*)

2 buf_size Input Binary(4)

3 format Input Char(8)

4 buf_actlen Output Binary(4)

5 count Output Binary(4)

6 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiGetInstanceNames API to return a list of instance names, the type of instance and the running

status of the instance.

438 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Authorities and locks:

v *EXECUTE authority to the QUSRSYS library

v *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group:

buf OUTPUT:CHAR(*)

 Buffer to hold instance names and running data.

buf_size

INPUT:BINARY(4)

 Size of buffer passed.

format

INPUT:CHAR(8)

 Format of instance name data (INSN0110).

buf_actlen

OUTPUT:BINARY(4)

 Number of bytes of data placed in buf.

count OUTPUT:BINARY(4)

 Total number of instance names.

errcode

I/O:CHAR(*)

 Error information structure.

INSN0110 format: This data format is used by QzuiGetInstanceNames HTTP Server (powered by Apache)

API.

 Offset Type Field

0 Char(10) Instance name

10 Char(2) Reserved

14 Binary(4) Running status

18 Binary(4) Instance type (0 = HTTP Server

(original), 1 = HTTP Server (powered

by Apache))

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3C1D E

Input variable length in parameter &1 not valid.

CPF3C21 E

Format name &1 not valid.

HTPA001 E

Input parameter &1 not valid.

HTTP Server 439

Get Instance Type (QzuiGetInstanceType) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 name Input Char(10)

2 itype Output Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiGetInstanceType API to return the type of instance the specified instance corresponds to. If the

file is not a valid instance file, a –1 is returned.

Authorities and locks:

v *EXECUTE authority to the QUSRSYS library

v *OBJOPR and *READ authority to the QUSRSYS/QATMHINSTC file

Required parameter group:

name INPUT:CHAR(10)

 The name of the instance.

itype OUTPUT:BINARY(4)

 The type of instance (-1 = Invalid, 0 = Original, 1 = Apache)

errcode

I/O:CHAR(*)

 The error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3CF1 E

Error code parameter not valid.

CPF9822 E

Not authorized to file &1 in library &2.

HTPA101 E

Server instance &1 not found or is unreadable.

Open Apache Config File (QzuiOpenConfig) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

440 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 name Input Char(*)

2 namelength Input Binary(4)

3 writelock Input Binary(4)

4 cfg Output Binary(4)

5 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiOpenConfig API to cause the configuration file specified to be read into memory and a

handle is returned. This handle is used in subsequent API calls to manipulate directives and scopes

within the file.

Authorities and locks:

v *X authority to each directory in the path of the specified group file

v *WX authority to the last directory in the path that will contain the group file path

Required parameter group:

name INPUT:CHAR(*)

 File name (including path) to the configuration file to be opened.

namelength

INPUT:BINARY(4)

 Length of the file name.

writelock

INPUT:BINARY(4)

 Has the following values: 0 = no lock, 1 = exclusive write lock will be put on config file.

cfg OUTPUT:BINARY(4)

 Handle to the memory copy of the config file.

errcode

I/O:CHAR(*)

 Error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3C19 E

Error occurred with receiver variable specified.

CPF3C1D E

Input variable length in parameter &1 not valid.

CPF3CF1 E

Error code parameter not valid.

CPFB602 E

Cannot open file.

HTPA001 E

Input parameter &1 not valid.

HTTP Server 441

HTPA104 E

Server configuration not found or is unreadable.

Remove Config Object (QzuiRemoveConfigObject) API:

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Note: This API is for HTTP Server (powered by Apache)

 Required Parameter Group:

1 cfg Input Binary(4)

2 object Input Binary(4)

3 errcode I/O Char(*)

Threadsafe: Yes

Use the QzuiRemoveConfigObject API to remove the specified directive or scope from the configuration. If

a scope is removed, all the directives within it are removed also.

Authorities and locks: None.

Required parameter group:

cfg INPUT:BINARY(4)

 Handle to the config.

object INPUT:BINARY(4)

 Handle to the object to be removed.

errcode

I/O:CHAR(*)

 Error information structure.

Error messages:

CPF3C17 E

Error occurred with input data parameter.

CPF3CF1 E

Error code parameter not valid.

HTPA001 E

Input parameter &1 not valid.

HTPA106 E

Input configuration handle not valid.

HTPA121 E

Object handle in parameter &1 not valid.

Compatibility with other APIs

This topic provides information about API compatibility. The Server API is compatible with other APIs,

such as CGI. You can run your existing CGI programs on all the server’s operating systems.

Porting CGI programs: Here are a few guidelines for porting CGI applications that are written in ILE C

to use the Server API:

442 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

1.

2. Remove your main() entry point or rename it so you can build a service program.

3. Eliminate global variables or protect them with a mutual exclusion semaphore.

4. Change the following calls in your programs:

v v Change printf() header calls to HTTPD_set().

v v Change printf() data calls to HTTPD_write().

v v Change getenv() calls to HTTPD_extract().

Note: This returns deallocated memory, so you must free the result.
5. Remember, that the server runs in a multi-threaded environment and your application functions must

be threadsafe. If the functions are re-entrant, performance will not decrease.

6. Do not forget to set the Content-Type header if you are using HTTPD_write() to send data back to the

client.

7. Check your code for memory leaks.

8. Think about your error paths. If you generate error messages yourself and send them back as HTML,

you should return HTTPD_OK from your service functions.

Authentication and Authorization: Authentication is the verification of the security tokens that are

associated with this request. Authorization is the process using the security tokens to determine if the

requester has access to the resource. In HTTP Server, authentication is part of the authorization process; it

occurs only when authorization is required.

If your Server API application provides its own authorization process, it will override the default server

authorization and authentication. Therefore, if you have Authorization directives in your configuration

file, the application functions associated with them must also handle any necessary authentication. The

predefined HTTPD_authenticate() function is provided to assist you with this.

There are three ways you can provide for authentication in your authorization application functions:

v Write your own separate authorization and authentication application functions. In your configuration

file, use both the Authorization and the Authentication directives to specify these functions. Be sure to

include HTTPD_authenticate() in your authorization application function.

When the Authorization step is run, it performs your authorization application function which, in turn,

calls your authentication application function.

v Write your own authorization application function but have it call the default server authentication. In

your configuration file, use the Authorization directive to specify your function. In this case, you will

not need the Authenticate directive. Be sure to include HTTPD_authenticate() in your authorization

application function.

When the Authorization step is run, it performs your authorization application function which, in turn,

calls the default server authentication.

v Write your own authorization application function and include all your authentication processing right

into it. Do not use HTTPD_authenticate() in your authorization application function. In your

configuration file, use the Authorization directive to specify your function. In this case, you will not

need the Authentication directive.

When the Authentication step is run, it performs your authorization application function and any

authentication it included.

If your Server API application does not provide its own authorization process, you can still provide

customized authentication. To do this, write your own authentication application function. In your

configuration file, use the Authentication directives to specify your function. In this case, you do not

need the Authorization directive.

Notes:

1.

HTTP Server 443

2. If you do not have any Authorization directives in your configuration file, or their specified

application functions decline to handle the request, the server’s default authorization will

occur.

3. If you do have Authorization directives in your configuration file and their application

functions include HTTPD_authenticate(), the server calls any authentication functions specified

in the Authentication directives. If you do not have any Authentication directives defined, or

their specified application functions decline to handle the request, the server’s default

authentication will occur.

4. If you do have Authorization directives in your configuration file but their application

functions do not include HTTPD_authenticate(), no authentication functions will be called by

the server. You must code your own authentication processing as part of your authorization

application functions or make your own calls to other authentication modules.

5. HTTP Server automatically generates the challenge (by prompting the browser to return user

ID and password) if you return 401 or 407 from your authorization exit. However, you must

still configure a protection setup so that this will occur correctly.

Environment variables: You can use environment variables in the predefined functions HTTPD_extract()

and HTTPD_set(). They represent values you can extract from a client request or values you can set or

create when processing a client request. The supported environment variables for HTTP Server are can be

found in the IBM iSeries Information Center. The environment variables have been divided into two

groups: Non-SSL and SSL and by HTTP Server type.

Overview of the Server API

This topic provides an overview of the Server API. The Server API allows you to extend the base

functions of HTTP Server (original).

You can write extensions to do customized processing, such as:

v Enhance the basic authentication or replace it with a site-specific process.

v Add error handling routines to track problems or alert for serious conditions.

v Detect and track information that comes in from the requesting client, such as server referrals and user

agent code.

General procedure for writing Server API programs: Before you start writing your Server API

programs, you need to understand how the HTTP Server works. The server performs a sequence of steps

for each client request that it processes. Your program can run and make function calls at any of these

steps. You need to decide where in the basic server request process you want to add customized

functions. For example, do you want the server to do something after it reads a client request but before

it performs any other processing? Or, maybe you want the server to perform special routines during

authentication and then after it sends the requested file.

You can instruct the server to call the application functions in your program at the appropriate processing

step. You can do this by using the API directives in your server configuration file.

Guidelines: Use the following guidelines when creating Server API programs:

v If compiling on OS/400 with Integrated Language Environment (ILE) C, ensure that you include

QHTTPSVR in the library list.

v Give each of your application functions a unique function name and call the server predefined

functions as needed. Be sure to include HTAPI.h and to use the HTTPD_LINKAGE macro in your

function definitions to avoid abending the server. This macro ensures that all functions use the same

calling conventions.

v The server runs in a multi-threaded environment; therefore, your application functions must be

threadsafe. If your application is re-entrant, performance will not decrease.

v Keep the actions in your applications to a thread scope. Do not perform any actions as a process scope,

such as exit or change user ID.

444 iSeries: IBM HTTP Server

v Eliminate global variables or protect them with a mutual exclusion semaphore.

v Do not forget to set the Content-Type header if you are using HTTPD_write() to send data back to the

client.

v You also must take into consideration the Content-Encoding header when you use HTTPD_write() to

send data back to the client.

v Always check your return codes and provide conditional processing where necessary.

v Compile and then create your service program by using CRTSRVPGM. When using CRTSRVPGM, you

must bind to QZHBIAPI *SRVPGM that is in the QHTTPSVR library.

v Add Server API directives to your configuration file so that you can associate your program’s

application functions with the appropriate step. There is a separate directive for each server request

processing step. You must stop and restart the server for the new directives take effect.

v Test your program rigorously. HTTP Server is a threaded server requiring more rigorous testing than

you would for a forked server. HTTP Server calls your program directly making the server and

program run in the same process space. Any errors in your program can stop the server.

Basic server request process: You can break down the basic server request process into a number of

steps, based on the type of processing the server is performing during that phase. Each step includes a

juncture at which a specified part of your program can run. The Server API directives in your

configuration file, indicate which of your application functions you want called during a request process

step.

Your compiled program exists as a service program. As the server proceeds through its request process

steps, it calls the application functions associated with each step, until one of the functions indicates it

has handled the request. If you have more than one of your application functions indicated for a

particular step, your functions are called in the order in which they appear in the configuration file.

If the request is not handled by an application function (either you did not include a Server API directive

or your application function for that step returned HTTP_NOACTION), the server performs the default

action for that step.

Note: This is true for all steps except the Service step; the Service step does not have a default action.

The following list indicates the purpose of each step and defines the processing order.

Server Initialization

Performs initialization functions before any client requests are read.

PreExit

Performs processing after a request is read but before anything else is done. If this step returns an

indication that the request was processed (HTTP_OK), only the Data Filter, Log and PostExit

steps, in the request process are performed.

Authentication

Decodes, verifies, and stores security tokens.

Name Translation

Translates the virtual path (from URL) to the physical path.

Authorization

Uses stored security tokens to check the physical path (protections, acls) and generates the

WWW-Authenticate headers required for basic authentication. If you write your own application

function to replace this step, you must generate these headers yourself.

Object Type

Locates the file system object that is indicated by the path.

Service

Satisfies the request (such as, send the file or run the CGI)

HTTP Server 445

Data Filter

Gives write access to the outgoing data stream.

Log Allows transaction logging.

Error Allows customized responses to error conditions.

PostExit

Allows cleanup of resources that are allocated for request processing.

Server Termination

Allows cleanup processing when an orderly shutdown or restart occurs.

Application functions: Use the following function prototype syntax to write your own program

functions for the defined request steps.

Each of your functions must fill in the return code parameter with a value that indicates the action that is

taken.

v HTTP_NOACTION (value of 0) means no action that is taken.

v Otherwise, one of the valid HTTP return codes is expected, indicating that the application function

handled the step. As a result, no other application functions are called to handle that step of this

request.

The function prototypes for each request step show the format to use and explain the type of processing

they can perform. You must give your functions unique names and can choose your own naming

conventions. For ease of association, these names relate to the server’s request processing steps.

Server Initialization

void

HTTPD_LINKAGE ServerInit(

 unsigned char *handle, unsigned long *major_version,

 unsigned long *minor_version, long *return_code);

This function is called once when your module is loaded during server initialization. This is your

opportunity to perform initialization before any requests have been accepted. Although all server

initialization functions are called, error return codes from this step cause the server to ignore all

other functions that are configured in this program.

PreExit

void

HTTPD_LINKAGE PreExit(

 unsigned char *handle, long *return_code);

This function is called after the request is read, but before any processing has occurred.

 All server-predefined functions are valid during this step.

Authentication

void

HTTPD_LINKAGE Authentication(

 unsigned char *handle, long *return_code);

This function allows user verification of the security tokens. This step is performed based on the

authentication scheme.

 Only HTTP_extract() and HTTPD_set() are valid during this step.

Name Translation

void

HTTPD_LINKAGE NameTrans(

 unsigned char *handle, long *return_code);

446 iSeries: IBM HTTP Server

This function provides a mechanism for mapping URLs to objects.

 Only HTTPD_extract() and HTTPD_set() are valid during this step.

Authorization

void

HTTPD_LINKAGE Authorization(

 unsigned char *handle, long *return_code);

This function verifies that the identified object may be returned to the client. If you are doing

basic authentication, you must generate the required WWW-Authentication headers.

 Only HTTPD_extract() and HTTPD_set() are valid functions during this step.

Object Type

void

HTTPD_LINKAGE ObjType(

 unsigned char *handle, long *return_code);

This step checks to see if the object exists and performs object typing.

 Only HTTPD_extract() and HTTPD_set() are valid during this step.

Service

void

HTTPD_LINKAGE Service(

 unsigned char *handle, long *return_code);

This function satisfies the request, if not satisfied in the PreExit.

 All server-predefined functions are valid during this step. Refer to the Enable directive in the

HTTP Server for iSeries Webmaster’s Guide, GC41-5435 for information.

Data Filter

Filters data as a stream class, which means that each of its functions acts like a segment of pipe

down which data flows. For this step, you must use three application functions:

void

HTTPD_LINKAGE open(

 unsigned char *handle, long *return_code);

This function performs any initialization (such as buffer allocation) that is required to process the

data for this stream. An error return code causes this filter to abort.

void

HTTPD_LINKAGE write(

 unsigned char *handle, unsigned char *data,

 unsigned long *length, long *return_code);

This function processes the data and calls the server’s write function with the new or changed

data. The application must not attempt to free the buffer passed to it nor expect the server to free

the buffer it receives.

void

HTTPD_LINKAGE close(

 unsigned char *handle, long *return_code);

This function performs any cleanup (such as flushing and freeing the buffer) required to complete

processing the data for this stream.

Log

void

HTTPD_LINKAGE Log(

 unsigned char *handle, long *return_code);

HTTP Server 447

This function is called after each request is processed and the communication to the client is

closed, regardless of the success or failure of the request processing. Only HTTPD_extract() and

HTTPD_set() are valid during this step.

Error

void

HTTPD_LINKAGE Error(

 unsigned char *handle, long *return_code);

This function is called only when an error is encountered and provides an opportunity to

customize the response.

PostExit

void

HTTPD_LINKAGE PostExit(

 unsigned char *handle, long *return_code);

This function is called, regardless of the success or failure of the request, so that you can clean up

any resources that are allocated by your application to process the request.

Server Termination

void

HTTPD_LINKAGE ServerTerm(

 unsigned char *handle, long *return_code);

This function is processed when an orderly shutdown or restart of the server occurs. It allows

you to clean up resources that are allocated during the Server Initialization step. Do not call any

HTTP_* functions in this step (the results are unpredictable). If you have more than one Server

API directive in your configuration file for Server Termination, they will all be called.

HTTP return codes and values: These return codes follow the HTTP specification that is published by

the World Wide Web Consortium at URL: http://www.w3.org/pub/WWW/Protocols/

. Your

application functions should return one of these values.

 Table 11. Return codes

Value Return Code

0 HTTP_NOACTION

100 HTTP_CONTINUE

101 HTTP_SWITCHING_PROTOCOLS

200 HTTP_OK

201 HTTP_CREATED

202 HTTP_ACCEPTED

203 HTTP_NON_AUTHORITATIVE

204 HTTP_NO_CONTENT

205 HTTP_RESET_CONTENT

206 HTTP_PARTIAL_CONTENT

300 HTTP_MULTIPLE_CHOICES

301 HTTP_MOVED_PERMANENTLY

302 HTTP_MOVED_TEMPORARILY

303 HTTP_SEE_OTHER

304 HTTP_NOT_MODIFIED

305 HTTP_USE_PROXY

448 iSeries: IBM HTTP Server

http://www.w3.org/pub/WWW/Protocols/

Table 11. Return codes (continued)

Value Return Code

400 HTTP_BAD_REQUEST

401 HTTP_UNAUTHORIZED

403 HTTP_FORBIDDEN

404 HTTP_NO_FOUND

405 HTTP_METHOD_NOT_ALLOWED

406 HTTP_NOT_ACCEPTABLE

407 HTTP_PROXY_UNAUTHORIZED

408 HTTP_REQUEST_TIMEOUT

409 HTTP_CONFLICT

410 HTTP_GONE

411 HTTP_LENGTH_REQUIRED

412 HTTP_PRECONDITION_FAILED

413 HTTP_ENTITY_TOO_LARGE

414 HTTP_URI_TOO_LONG

415 HTTP_BAD_MEDIA_TYPE

500 HTTP_SERVER_ERROR

501 HTTP_NOT_IMPLEMENTED

502 HTTP_BAD_GATEWAY

503 HTTP_SERVICE_UNAVAILABLE

504 HTTP_GATEWAY_TIMEOUT

505 HTTP_BAD_VERSION

Predefined functions and macros: You can call the server’s predefined functions and macros from your

own application functions. You must use their predefined names and follow the format that is described

in this section. Note that the parameter descriptions use the letter �i� to indicate input, the letter �o� to

indicate output, and �i/o� to indicate that a parameter is both input and output.

Each of these functions returns one of the HTTPD return codes, depending on the success of the request.

HTTPD_authenticate()

Authenticates a user ID and password. Valid only in PreExit, Authenticate, and Authorization

steps.

void

HTTPD_authenticate(

 unsigned char *handle, /* i; handle */

 long *return_code); /* o; return code */

HTTPD_attributes

Extracts the attributes of a file. Valid in all steps.

 The name of the file and the buffer containing the attributes are in the default CCSID of the job.

void

HTTPD_attributes(

 unsigned char *handle, /* i; handle (NULL right now) */

 unsigned char *name, /* i; name of the file */

 unsigned long *name_length, /* i; length of the name */

 unsigned char *value, /* o; buffer containing attributes*/

 unsigned long *value_length, /* i/o;size of buffer/length of attributes*/

 long *return_code); /* o; return code */

HTTP Server 449

HTTPD_extract()

Extracts the value of a variable associated with this request. The valid variables you can use for

the name parameter are the same as those used in the CGI. This function is valid in all steps,

however not all variables are.

 The CCSID of the name of the value to extract and the buffer in which to put the value depends

upon the step and the CGI mode. For all steps except Service, these parameters are in the default

CCSID of the job. For the Service step, the CGI mode determines the CCSID. For the

%%MIXED%% CGI mode, these fields are in EBCDIC CCSID 37. For all other CGI modes, these

fields are in the default CCSID of the job.

void

HTTPD_extract(

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of value to extract /*

 unsigned long *name_length, /* i; length of the name */

 unsigned char *value, /* o; buffer in which to put value */

 unsigned long *value_length, /* i/o; buffer size/length of value */

 long *return_code); /* o; return code */

If this function returns the HTTPD_BUFFER_TOO_SMALL return code, the buffer size you

requested was not big enough for the extracted value. In this case, the function does not fill in

the buffer but does update value_length with the buffer size you would need in order to

successfully extract this value. Retry the extract with a buffer that is at least as big as the returned

value_length.

Note: Server API programs gain access to information about a particular HTTP request by

examining predefined variables. This information is obtained from the server using the

HTTPD_extract() function. The PASSWORD variable used when basic authentication is

requested. This password is associated with a user that is defined in a validation list

(*VLDL) or the password for a user profile on the server. Encryption may not be the same

for those VLDL’s that must do two-way encryption and are in QUSRSYS. The two cannot

be interchanged.

HTTP Server does not allow access to the PASSWORD variable if authorization is

configured which uses user profiles and passwords for authentication.

To prevent an application from obtaining a user profile password, HTTPD_extract() is

sensitive to the type of protect setups that are currently configured. If a protection setup is

configured with a password file of %%SYSTEM%% (protection requiring user profile

password), HTTP_extract() for PASSWORD returns HTTP_PARAMETER_ERROR and sets

the value parameter to *CONFLICT. Otherwise, HTTP_extract() returns the appropriate

value.

HTTPD_reverse_translate()

Translates a file system path to a URL. Valid in all steps.

 The name of the file system object and the buffer containing the URL are in the default CCSID of

the job.

void

HTTPD_reverse_translate(

 unsigned char *handle, /* i; handle (NULL right now) */

 unsigned char *name, /* i; name of the file system object */

 unsigned long *name_length, /* i; length of the name */

 unsigned char *value, /* o; buffer which contains the URL */

 unsigned long *value_length, /* i/o; size of buffer/length of URL */

 long *return_code); /* o; return code */

HTTPD_translate()

Translates a URL to a file system path. Valid in all steps.

450 iSeries: IBM HTTP Server

Translates a URL to a file system path. Valid in all steps. The CCSID for QUERY_STRING

depends upon the step and the CGI mode. For all steps except Service, these parameters are in

the default CCSID of the job. For the Service step, the CGI mode determines the CCSID. For the

%%MIXED%% CGI mode, these fields are in EBCDIC CCSID 37. For all other CGI modes, these

fields are in the default CCSID of the job.The CCSID for QUERY_STRING depends upon the step

and the CGI mode. For all steps except Service, these parameters are in the default CCSID of the

job. For the Service step, the CGI mode determines the CCSID. For the %%MIXED%% CGI mode,

these fields are in EBCDIC CCSID 37. For all other CGI modes, these fields are in the default

CCSID of the job.

void

HTTPD_translate(

 unsigned char *handle, /* i; handle (NULL right now) */

 unsigned char *name, /* i; name of the URL */

 unsigned long *name_length, /* i; length of the name */

 unsigned char *url_value, /* o; buffer containing translated URL */

 unsigned long *url_value_length, /* i/o; buffer size/length of translated URL */

 unsigned char *path_trans, /* o; buffer containing PATH_TRANSLATED */

 unsigned long *path_trans_length,/* i/o; size of buffer/length of PATH_TRANSLATED */

 unsigned char *query_string, /* o; buffer containing QUERY_STRING*/

 unsigned long *query_string_length,/* i/o; size of buffer/length of QUERY_STRING*/

 long *return_code); /* o; return code */

HTTPD_set()

Sets the value of a variable associated with this request. The valid variables you can use for the

name parameter are the same as those are used by the CGI program.

 Note that you can also create variables with this function. If any variables you create are prefixed

by �HTTP_�, they are sent as headers in the response, without the �HTTP_� prefix. For example,

if you want to see a Location header, use HTTPD_set() with the variable name

HTTP_LOCATION.

 This function is valid in all steps, however not all variables are.

 The CCSID of the name of the value to set and the buffer which contains the value depends upon

the step and the CGI mode. For all steps except Service, these parameters are in the default

CCSID of the job. For the Service step, if you are not setting a variable with the �HTTP�_prefix,

then the default CCSID of the job is used. For setting variables prefixed by �HTTP_� in the

Service step, the CGI output mode determines the CCSID to be used. For %%MIXED%% mode,

both are in EBCDIC 37. For other CGI modes, they are in the default CCISID of the job.

void

HTTPD_set(

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of the value to set */

 unsigned long *name_length, /* i; length of the name */

 unsigned char *value, /* i; buffer containing the value */

 unsigned long *value_length, /* i; length of value */

 long *return_code); /* o; return code */

HTTPD_file()

Sends a file to satisfy this request. Valid only in PreExit, Service, NameTrans, Error, and DataFilter

steps.

 The name of the file to send is in the default CCSID of the job.

void

HTTPD_file(

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of file to send */

 unsigned long *name_length, /* i; length of the name */

 long *return_code); /* o; return code */

HTTPD_exec()

Runs a script to satisfy this request. Valid in PreExit, Service, NameTrans, and Error steps.

HTTP Server 451

The name of the script to run is in the default CCSID of the job.

void

HTTPD_LINKAGE

HTTPD_exec(

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of script to run */

 unsigned long *name_length, /* i; length of the name */

 long *return_code); /* o; return code */

HTTPD_read()

This function reads the body of the client’s request. It uses HTTPD_ extract for headers. This

function is valid only in the PreExit, Service, and Data Filter steps.

 For the Service step, the data CCSID is determined by the CGI mode. For %%MIXED%% the data

is in the default job CCSID and any encoded sequences are the EBCDIC representation of the

ASCII character. For %%EBCDIC%% and %%EBCDIC_JCD%% modes, the data is in the default

CCSID of the job (including the escape sequences). For %%BINARY%% mode, no conversion is

performed. For all other steps, this is the default job CCSID.

void

HTTPD_read(

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; buffer in which to place data */

 unsigned long *value_length, /* i/o; buffer size/length of data */

 long *return_code); /* o; return code */

HTTPD_write()

Writes the body of the response. Uses HTTPD_set and HTTPD_extract for headers. Valid in the

PreExit, Service, NameTrans, Error, and Data Filter steps.

 If you do not use HTTPD_set() to set the content type before the first time you call this function,

the server assumes you are sending a CGI data stream.

 You may need to use HTTPD_set() to set the CGI environment variable CONTENT_ENCODING

to the appropriate code page for the content of your response before you send the data to the

client.

 For the Service step, the data to send is in the default job CCSID for %%MIXED%% and

%%EBCDIC%% CGI output modes unless overridden by a character CCSID tag on the

content_type header. The data is %%BINARY%% mode, so it is assumed to be binary.

void

HTTPD_write(

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to send */

 unsigned long *value_length, /* i; length of the data */

 long *return_code); /* o; return code */

HTTPD_log_error()

Writes a string to the server’s error log.

 The string passed to HTTPD_log_error must be EBCDIC (CCSID 37) data. The server converts the

strinbg to the CCSID of the error log file.

void

HTTPD_LINKAGE

HTTPD_log_error(

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to write */

 unsigned long *value_length, /* i; length of the data */

 long *return_code); /* o; return code */

HTTPD_log_trace()

Writes a string to the server’s trace log.

 The string passed to HTTPD_log_trace must be EBCDIC (CCSID 37) data.

452 iSeries: IBM HTTP Server

void

HTTPD_LINKAGE

HTTPD_log_trace

 unsigned char *handle, /* i; handle (NULL right now) */

 unsigned char *value, /* i; data to write */

 unsigned long *value_length, /* i; length of the data */

 long *return_code); /* o; return code */

HTTPD_restart()

Restarts the server after all active requests have been processed. Valid only in ServerInit and

ServerTerm steps.

void

HTTPD_restart(

 long *return_code); /* o; return code */

HTTPD_proxy()

Makes a proxy request. Valid in PreExit and Service steps.

Note: This is a completion function; the response is complete after this function.

The name of the URL for the proxy request and the body of the request are in the default CCSID

of the job.

void

HTTPD_LINKAGE

HTTPD_proxy(

 unsigned char *handle, /* i; handle (NULL right now) */

 unsigned char *url_name, /* i; url for the proxy request */

 unsigned long *name_length, /* i; length of the url */

 unsigned char *request_body, /* i; body of the request */

 unsigned long *body_length, /* i; length of the body */

 long *return_code); /* o; return code */

Note: Once an HTTPD_ function returns, it is safe for you to free any memory you passed with

it.

Return codes: The server fills in the return code parameter with one of these values depending on the

success of the request.

 Table 12. Return code parameters

Return code parameter Description

-1 HTTPD_UNSUPPORTED

The function is not supported.

0 HTTPD_SUCCESS

The function succeeded, and the output fields are valid.

1 HTTPD_FAILURE

The function failed.

2 HTTPD_INTERNAL_ERROR

The function encountered an internal error and cannot continue processing this

request.

3 HTTPD_PARAMETER_ERROR

You may have added one or more incorrect parameters. For example, the

variable you tried to extract is unknown.

4 HTTPD_STATE_CHECK

The function is not valid in this step.

HTTP Server 453

Table 12. Return code parameters (continued)

Return code parameter Description

5 HTTPD_READ_ONLY

Returned only by HTTP_set(). The application can not set the variable.

6 HTTPD_BUFFER_TOO_SMALL

Returned only by HTTPD_extract(). The provided buffer was too small.

7 HTTPD_AUTHENTICATION_FAILED

Returned only by HTTPD_authenticate(). Examine the HTTP_RESPONSE and

HTTP_REASON variables for more information.

9 HTTPD_EOF

Returned only by HTTPD_read(). This return code indicates the end of the

request body.

9 HTTPD_ABORT_REQUEST

The request has been aborted because the client has provided an entity that did

not match the condition that is specified by the request.

10 HTTPD_REQUEST_SERVICED

Returned by HTTP_proxy. This return code indicates that the program that

called the function completed the response for this request.

11 HTTPD_RESPONSE_ALREADY_COMPLETED

The function failed because the response for that request completed processing.

Server API configuration directives

This topic provides information about the Server API. Each step in the request process has a

configuration directive that allows you to indicate which of your application functions you want called

and run during that step. You can add these directives to your server’s configuration file by manually

editing it or by using the Server API Request Processing form in the IBM Web Administration for iSeries

interface.

Server API usage notes: Here are some notes to consider when using the Server API:

v When appropriate, you can indicate that you want your application function called for all URL

requests or only for URL requests that match a specified mask.

v You can also have your Authentication functions called for every request or just for those with a type

of Basic.

v The Server API directives, except for the Service and NameTrans directives, can be in any order in the

configuration file. You do not need to include every Server API directive. If you do not have an

application function for a particular step, just omit the corresponding directive.

v The Service and NameTrans directives work like the Exec directive and are dependent on its

occurrence and placement relative to other mapping directives within the configuration file. This means

that the server processes the Service, NameTrans, Map, Pass, Exec, Redirect, and Fail directives in their

sequential order within the configuration file. When it successfully maps a URL to a file, it does not

read or process any other of these directives.

v You can also have more than one configuration directive for a step. For example, you could include

two NameTrans directives, each pointing to a different application function. When the server performs

the name translation step, it will process your name translation functions in the order in which they

appear in the configuration file.

v Multiple IP configuration (using a trailing IP address or template) is supported only for the Service and

NameTrans directives.

454 iSeries: IBM HTTP Server

v If the server fails to load a specific application function or you have a ServerInit directive that does not

return an OK return code, no other application functions for that compiled Server API program will be

called. Any processing specific to that program which was done up to this point is ignored. Other

Server API programs that you include in these directives, and their application functions, are not

affected.

Server API directives and syntax:

 Table 13. Directives, variables, and access path

Directive Variable Access path

ServerInit /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name init_string

PreExit /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Authentication type /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

NameTrans /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name IP_address_templete

Authorization /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

ObjectType /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Service /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name* IP_address_template

Data Filter /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name:

function_name:function_name

Log /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Error /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

PostExit /URL /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

ServerTeam /QSYS.LIB/MYLIB/MYGWAPI.SRVPGM:function_name

Server API directive variables: The variables in these directives have the following meanings:

type Used only with the Authentication directive. This variable determines if your application function

is called. Valid values are:

Basic Application function is called only for basic authentication requests.

* Application function is called for all requests.

/URL Determines for which URLs your application function is called. URL specifications in these

directives are virtual (they do not include the protocol) but a slash (/) precedes them. For

example, /www.ics.raleigh.ibm.com is correct, but http://www.ics.raleigh.ibm.com is not. Valid

values are:

A specific URL

Application function is called only for that URL.

URL template

Application function is called only for URLs that match the template. You can specify a

template as /URL*,/*, or *.

Note: An URL template is required with the Service directive if you want path

translation to occur.

/path/file

The fully qualified file name of your compiled program.

:function_name

The name you gave your application function within your program.

 In the DataFilter directive, you must supply the names of the open, write, and close

functions.

HTTP Server 455

The Service directive requires an asterisk (*) after the :function_name, if you want to have

access to path information.

init_string

Optional on the ServerInit directive, this can contain any arbitrary text you want to pass

to your application function. Use HTTPD_extract() to extract the text from the

INIT_STRING variable.

IP_address_template

Used only with the Service and NameTrans directives on servers that have more than one

IP address. This variable determines if your application function is called only for

requests that comes on a specific IP address or on a range of IP addresses.

Directives for HTTP Server

This topic provides information about the supported directives for HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The supported modules can be found in the HTTP Server directive finder.

See “Directives no longer supported on HTTP Server (powered by Apache)” on page 466 for modules no

longer supported for this version of HTTP Server.

Note: This information is provided for reference only. Use the IBM Web Administration for iSeries

interface to set up and manage your HTTP Server.

Directive list for HTTP Server

This topic provides information about the supported directives, in alphabetical order, for HTTP Server

(powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

For an alphabetical list of the modules, see “Directives for HTTP Server.” See the directives no longer

supported by HTTP Server (powered by Apache) for directives missing from this list.

Note: These directives are provided for reference information only. Use theIBM Web Administration for

iSeries interface to set up and manage your HTTP Server.

 “A” - “B” on page 457 - “C” on page 457 - “D” on page 458 - “E” on page 458 - “F” on page 459 - “G” on page 459 -

“H” on page 459 - “I” on page 459 - “J” on page 460 - “K” on page 460 - “L” on page 460 - “M” on page 461 - “N”

on page 461 - “O” on page 461 - “P” on page 461 - “R” on page 462 - “S” on page 463 - “T” on page 464 - “U” on

page 464 - “V” on page 464 - “W” on page 464

A

v “AcceptPathInfo” on page 531

v “AccessFileName” on page 532

v Action

v AddAlt

456 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiedirectivefinder.htm
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaieremoved_directives.htm
rzaieremoved_directives.htm
rzaiemod_actions.htm#action
rzaiemod_auto_index.htm#addalt

v AddAltByEncoding

v AddAltByType

v AddCharset

v AddClient

v “AddDefaultCharset” on page 532

v AddDescription

v AddEncoding

v AddHandler

v AddIcon

v AddIconByEncoding

v AddIconByType

v AddInputFilter

v AddLanguage

v AddOutputFilter

v “AddOutputFilterByType” on page 533

v AddType

v Alias

v AliasMatch

v Allow

v AllowCONNECT

v “AllowOverride” on page 534

v AlwaysDirectoryIndex

v “AppServer” on page 620

v AsAuthAuthoritative

v “AuthName” on page 534

v “AuthType” on page 535

B

v BrowserMatch

v BrowserMatchNoCase

C

v CacheDefaultExpire

v CacheDirLength

v CacheDirLevels

v CacheExpiryCheck

v CacheGcClean

v CacheGcDaily

v CacheGcInterval

v CacheGcMemUsage

v CacheGcUnused

v CacheIgnoreCacheControl

v CacheIgnoreNoLastMod

v CacheLastModifiedFactor

v CacheLocalFD

v CacheLocalFile

HTTP Server 457

rzaiemod_auto_index.htm#addaltbyencoding
rzaiemod_auto_index.htm#addaltbytype
rzaiemod_mime.htm#addcharset
rzaiemod_mime.htm#addclient
rzaiemod_auto_index.htm#adddescription
rzaiemod_mime.htm#addencoding
rzaiemod_mime.htm#addhandler
rzaiemod_auto_index.htm#addicon
rzaiemod_auto_index.htm#addiconbyencoding
rzaiemod_auto_index.htm#addiconbytype
rzaiemod_mime.htm#addinputfilter
rzaiemod_mime.htm#addlanguage
rzaiemod_mime.htm#addoutputfilter
rzaiemod_mime.htm#addtype
rzaiemod_alias.htm#alias
rzaiemod_alias.htm#aliasmatch
rzaiemod_access.htm#allow
rzaiemod_proxy.htm#allowconnect
rzaiemod_dir.htm#alwaysdirectoryindex
rzaiemod_as_auth.htm#asauthauthoritative
rzaiemod_setenvif.htm#BrowserMatch
rzaiemod_setenvif.htm#BrowserMatchNoCase
rzaiemod_cache.htm#cachedefaultexpire
rzaiemod_disk_cache.htm#cachedirlength
rzaiemod_disk_cache.htm#cachedirlevels
rzaiemod_cache.htm#cacheexpirycheck
rzaiemod_disk_cache.htm#cachegcclean
rzaiemod_disk_cache.htm#cachegcdaily
rzaiemod_disk_cache.htm#cachegcinterval
rzaiemod_disk_cache.htm#cachegcmemusage
rzaiemod_disk_cache.htm#cachegcunused
rzaiemod_cache.htm#cacheignorecachecontrol
rzaiemod_cache.htm#cacheignorenolastmod
rzaiemod_cache.htm#cachelastmodifiedfactor
rzaiemod_as_cache.htm#cachelocalfd
rzaiemod_as_cache.htm#cachelocalfile

v CacheLocalFileMmap

v CacheLocalSizeLimit

v CacheMaxExpire

v CacheMaxFileSize

v CacheMinFileSize

v CacheNegotiatedDocs

v CacheRoot

v CacheSize

v CacheTimeMargin

v CGIConvMode

v “CgiInitialUrl” on page 522

v CGIMultiThreaded

v CGIRecyclePersist

v “CookieDomain” on page 712

v “CookieExpires” on page 712

v “CookieName” on page 713

v “CookieStyle” on page 713

v “CookieTracking” on page 713

v CustomLog

D

v Dav

v DavDepthInfinity

v DavLockDB

v DavMinTimeout

v DavQsysLockDB

v DefaultFsCCSID

v DefaultIcon

v DefaultLanguage

v DefaultNetCCSID

v “DefaultType” on page 536

v “DeflateBufferSize” on page 578

v “DeflateCompressionLevel” on page 579

v “DeflateFilterNote” on page 579

v “DeflateMemLevel” on page 580

v “DeflateWindowSize” on page 580

v Deny

v “<Directory>” on page 536

v DirectoryIndex

v “<DirectoryMatch>” on page 538

v “DocumentRoot” on page 538

v DynamicCache

E

v “ErrorDocument” on page 539

v “ErrorLog” on page 541

458 iSeries: IBM HTTP Server

rzaiemod_as_cache.htm#cachelocalfilemmap
rzaiemod_as_cache.htm#cachelocalsizelimit
rzaiemod_cache.htm#cachemaxexpire
rzaiemod_cache.htm#cachemaxfilesize
rzaiemod_cache.htm#cacheminfilesize
rzaiemod_negotiation.htm#cachenegotiateddocs
rzaiemod_disk_cache.htm#cacheroot
rzaiemod_disk_cache.htm#cachesize
rzaiemod_cache.htm#cachetimemargin
rzaiemod_cgi.htm#cgiconvmode
rzaiemod_cgi.htm#cgimultithreaded
rzaiemod_cgi.htm#cgirecyclepersist
rzaiemod_log_config.htm#customlog
rzaiemod_dav.htm#dav
rzaiemod_dav.htm#davdepthinfinity
rzaiemod_dav.htm#davlockdb
rzaiemod_dav.htm#davmintimeout
rzaiemod_dav.htm#davqsyslockdb
rzaiemod_ap_charset.htm#defaultfsccsid
rzaiemod_auto_index.htm#defaulticon
rzaiemod_mime.htm#defaultlanguage
rzaiemod_ap_charset.htm#defaultnetccsid
rzaiemod_access.htm#deny
rzaiemod_dir.htm#directoryindex
rzaiemod_as_cache.htm#DynamicCache

v Example

v ExpiresActive

v ExpiresByType

v ExpiresDefault

F

v “FileETag” on page 543

v “<Files>” on page 544

v “<FilesMatch>” on page 545

v ForceLanguagePriority

v “ForceType” on page 545

v “FRCACacheLocalFileRunTime” on page 491

v “FRCACacheLocalFileSizeLimit” on page 492

v “FRCACacheLocalFileStartUp” on page 492

v “FRCACacheLocalSizeLimit” on page 493

v “FRCACookieAware” on page 493

v “FRCAEnableFileCache” on page 493

v “FRCAEnableProxy” on page 494

v “FRCAEndofURLMarker” on page 494

v “FRCAMaxCommBufferSize” on page 495

v “FRCAMaxCommTime” on page 495

v “FRCAProxyCacheEntitySizeLimit” on page 495

v “FRCAProxyCacheExpiryLimit” on page 496

v “FRCAProxyCacheRefreshInterval” on page 496

v “FRCAProxyCacheSizeLimit” on page 497

v “FRCAProxyPass” on page 497

v “FRCARandomizeResponse” on page 498

v “FRCACustomLog” on page 651

G

v GroupFile

H

v HACGI

v HAModel

v Header

v HeaderName

v “HostNameLookups” on page 546

v “HotBackup” on page 547

I

v “IdentityCheck” on page 547

v “<IfDefine>” on page 548

v “<IfModule>” on page 548

v ImapBase

v ImapDefault

HTTP Server 459

rzaiemod_expires.htm#expiresactive
rzaiemod_expires.htm#expiresbytype
rzaiemod_expires.htm#expiresdefault
rzaiemod_negotiation.htm#forcelanguagepriority
rzaiemod_as_auth.htm#groupfile
rzaiemod_ha.htm#hacgi
rzaiemod_ha.htm#hamodel
rzaiemod_headers.htm#header
rzaiemod_auto_index.htm#headername
rzaiemod_imap.htm#imapbase
rzaiemod_imap.htm#imapdefault

v Imaplist

v “Include” on page 549

v IndexIgnore

v IndexOptions

v IndexOrderDefault

J

v JkAsfTomcat

v JkLogFile

v JkLogLevel

v JkMount

v JkMountCopy

v JkWorkersFile

K

v “KeepAlive” on page 549

v “KeepAliveTimeout” on page 550

L

v LanguagePriority

v LDAPConfigFile

v LDAPRequire

v LDAPInclude

v ldap.AppId

v ldap.application.authType

v ldap.application.DN

v ldap.application.password.stashFile

v ldap.cache.timeout

v ldap.group.memberAttributes

v ldap.group.name.filter

v ldap.group.url

v ldap.idleConnection.timeout

v ldap.NTDomain

v ldap.ObjectClass

v ldap.realm

v ldap.search.timeout

v ldap.transport

v ldap.url

v ldap.user.authType

v ldap.user.name.fieldSep

v ldap.user.name.filter

v ldap.version

v ldap.waitToRetryConnection.interval

v “<Limit>” on page 550

v “<LimitExcept>” on page 551

v “LimitRequestBody” on page 551

460 iSeries: IBM HTTP Server

rzaiemod_imap.htm#imapmenu
rzaiemod_auto_index.htm#indexignore
rzaiemod_auto_index.htm#indexoptions
rzaiemod_auto_index.htm#indexorderdefault
rzaiemod_jk.htm#jkasftomcat
rzaiemod_jk.htm#jklogfile
rzaiemod_jk.htm#jkloglevel
rzaiemod_jk.htm#jkmount
rzaiemod_jk.htm#jkmountcopy
rzaiemod_jk.htm#jkworkersfile
rzaiemod_negotiation.htm#languagepriority
rzaiemod_ibm_ldap.htm#configFile
rzaiemod_ibm_ldap.htm#Require
rzaiemod_ibm_linc.htm#include
rzaiemod_ibm_ldap.htm#appid
rzaiemod_ibm_ldap.htm#applicationAuthType
rzaiemod_ibm_ldap.htm#applicationDN
rzaiemod_ibm_ldap.htm#applicationPasswordStashFile
rzaiemod_ibm_ldap.htm#cacheTimeout
rzaiemod_ibm_ldap.htm#groupMemberAttributes
rzaiemod_ibm_ldap.htm#groupNameFilter
rzaiemod_ibm_ldap.htm#groupUrl
rzaiemod_ibm_ldap.htm#idleConnectionTimeout
rzaiemod_ibm_ldap.htm#ntdomain
rzaiemod_ibm_ldap.htm#objectclass
rzaiemod_ibm_ldap.htm#realm
rzaiemod_ibm_ldap.htm#searchTimeout
rzaiemod_ibm_ldap.htm#transport
rzaiemod_ibm_ldap.htm#url
rzaiemod_ibm_ldap.htm#userAuthType
rzaiemod_ibm_ldap.htm#userNameFieldSep
rzaiemod_ibm_ldap.htm#userNameFilter
rzaiemod_ibm_ldap.htm#version
rzaiemod_ibm_ldap.htm#waitToRetryConnectionInterval

v “LimitRequestFields” on page 552

v “LimitRequestFieldsize” on page 552

v “LimitRequestLine” on page 552

v “LimitXMLRequestBody” on page 553

v “Listen” on page 553

v “ListenBacklog” on page 554

v LiveLocalCache

v LmIntervalTime

v LmMaxReactivation

v LmResponseTime

v LmUrlCheck

v “LmUrlCheckBackup” on page 603

v LoadModule

v “<Location>” on page 554

v “<LocationMatch>” on page 555

v “LogCycle” on page 556

v LogFormat

v “LogLength” on page 557

v “LogLevel” on page 558

v “LogMaint” on page 558

v “LogTime” on page 560

M

v MapMatch

v MaxCGIJobs

v “MaxKeepAliveRequests” on page 560

v MaxPersistentCGI

v MaxPersistentCGITimeout

v MaxThreadedCGIJobs

v MetaDir

v MetaFiles

v MetaSuffix

v ModMimeUsePathInfo

v MultiviewsMatch

N

v “NameVirtualHost” on page 561

v NoProxy

O

v “Options” on page 561

v Order

P

v PassEnv

v PasswdFile

HTTP Server 461

rzaiemod_as_cache.htm#livelocalcache
rzaiemod_ha.htm#lmintervaltime
rzaiemod_ha.htm#lmmaxreactivation
rzaiemod_ha.htm#lmresponsetime
rzaiemod_ha.htm#lmurlcheck
rzaiemod_so.htm#loadmodule
rzaiemod_log_config.htm#logformat
rzaiemod_alias.htm#mapmatch
rzaiemod_cgi.htm#maxcgijobs
rzaiemod_cgi.htm#maxpersistentcgi
rzaiemod_cgi.htm#maxpersistentcgitimeout
rzaiemod_cgi.htm#maxthreadedcgijobs
rzaiemod_cern_meta.htm#metadir
rzaiemod_cern_meta.htm#metafiles
rzaiemod_cern_meta.htm#metasuffix
rzaiemod_mime.htm#modmimeusepathinfo
rzaiemod_mime.htm#multiviewsmatch
rzaiemod_proxy.htm#noproxy
rzaiemod_access.htm#order
rzaiemod_env.htm#passenv
rzaiemod_as_auth.htm#passwdfile

v PersistentCGITimeout

v “ProfileToken” on page 563

v <Proxy>

v ProxyBlock

v ProxyCacheOnly

v ProxyDomain

v ProxyErrorOverride

v <ProxyMatch>

v ProxyMaxForwards

v ProxyNoCache

v ProxyNoConnect

v ProxyPass

v ProxyPassReverse

v ProxyPreserveHost

v ProxyReceiveBufferSize

v ProxyRemote

v ProxyRequests

v ProxyReverse

v ProxyTimeout

v ProxyVia

R

v ReadmeName

v Redirect

v RedirectMatch

v RedirectPermanent

v RedirectTemp

v RequestHeader

v RemoveCharset

v RemoveClient

v RemoveEncoding

v RemoveHandler

v RemoveInputFilter

v RemoveLanguage

v RemoveOutputFilter

v RemoveType

v Require

v RewriteBase

v RewriteCond

v RewriteEngine

v RewriteLog

v RewriteLogLevel

v RewriteMap

v RewriteOptions

v RewriteRule

462 iSeries: IBM HTTP Server

rzaiemod_cgi.htm#persistentcgitimeout
rzaiemod_proxy.htm#proxy
rzaiemod_proxy.htm#proxyblock
rzaiemod_proxy.htm#proxycacheonly
rzaiemod_proxy.htm#proxydomain
rzaiemod_proxy.htm#proxyerroroverride
rzaiemod_proxy.htm#proxymatch
rzaiemod_proxy.htm#proxymaxforwards
rzaiemod_proxy.htm#proxynocache
rzaiemod_proxy.htm#proxynoconnect
rzaiemod_proxy.htm#proxypass
rzaiemod_proxy.htm#proxypassreverse
rzaiemod_proxy.htm#proxypreservehost
rzaiemod_proxy.htm#proxyreceivebuffersize
rzaiemod_proxy.htm#proxyremote
rzaiemod_proxy.htm#proxyrequests
rzaiemod_proxy.htm#proxyreverse
rzaiemod_proxy.htm#proxytimeout
rzaiemod_proxy.htm#proxyvia
rzaiemod_auto_index.htm#readmename
rzaiemod_alias.htm#redirect
rzaiemod_alias.htm#redirectmatch
rzaiemod_alias.htm#redirectperm
rzaiemod_alias.htm#redirecttemp
rzaiemod_headers.htm#requestheader
rzaiemod_mime.htm#removecharset
rzaiemod_mime.htm#removeclient
rzaiemod_mime.htm#removeencoding
rzaiemod_mime.htm#removehandler
rzaiemod_mime.htm#removeinputfilter
rzaiemod_mime.htm#removelanguage
rzaiemod_mime.htm#removeoutputfilter
rzaiemod_mime.htm#removetype
rzaiemod_access.htm#require
rzaiemod_rewrite.htm#RewriteBase
rzaiemod_rewrite.htm#RewriteCond
rzaiemod_rewrite.htm#RewriteEngine
rzaiemod_rewrite.htm#RewriteLog
rzaiemod_rewrite.htm#RewriteLogLevel
rzaiemod_rewrite.htm#RewriteMap
rzaiemod_rewrite.htm#RewriteOptions
rzaiemod_rewrite.htm#RewriteRule

v “RuleCaseSense” on page 563

S

v “Satisfy” on page 564

v Script

v ScriptAlias

v ScriptAliasMatch

v ScriptLog

v ScriptLogBuffer

v ScriptLogLength

v “SendBufferSize” on page 564

v “ServerAdmin” on page 565

v “ServerAlias” on page 565

v “ServerName” on page 566

v “ServerPath” on page 567

v “ServerRoot” on page 567

v “ServerSignature” on page 568

v “ServerTokens” on page 568

v “ServerUserID” on page 569

v SetEnv

v SetEnvIf

v SetEnvIfNoCase

v “SetHandler” on page 570

v “SetInputFilter” on page 570

v “SetOutputFilter” on page 571

v SSIEndTag

v SSIErrorMsg

v SSIStartTag

v SSITimeFormat

v SSIUndefinedEcho

v SSLAppName

v SSLAuthType

v SSLCacheDisable

v SSLCacheEnable

v SSLCipherBan

v SSLCipherRequire

v SSLCipherSpec

v SSLClientAuth

v SSLClientAuthGroup

v SSLClientAuthRequire

v SSLClientCertDisable

v SSLClientCertEnable

v SSLDenySSL

v SSLDisable

v SSLEnable

HTTP Server 463

rzaiemod_actions.htm#script
rzaiemod_alias.htm#scriptalias
rzaiemod_alias.htm#scriptaliasmatch
rzaiemod_cgi.htm#scriptlog
rzaiemod_cgi.htm#scriptlogbuffer
rzaiemod_cgi.htm#scriptloglength
rzaiemod_env.htm#setenv
rzaiemod_setenvif.htm#SetEnvIf
rzaiemod_setenvif.htm#SetEnvIfNoCase
rzaiemod_include.htm#ssiendtag
rzaiemod_include.htm#ssierrormessage
rzaiemod_include.htm#ssistarttag
rzaiemod_include.htm#ssitimeformat
rzaiemod_include.htm#ssiundefinedecho
rzaiemod_ibm_ssl.htm#sslappname
rzaiemod_ibm_ssl.htm#sslauthtype
rzaiemod_ibm_ssl.htm#sslcachedisable
rzaiemod_ibm_ssl.htm#sslcacheenable
rzaiemod_ibm_ssl.htm#sslcipherban
rzaiemod_ibm_ssl.htm#sslcipherrequire
rzaiemod_ibm_ssl.htm#sslcipherspec
rzaiemod_ibm_ssl.htm#sslclientauth
rzaiemod_ibm_ssl.htm#sslclientauthgroup
rzaiemod_ibm_ssl.htm#sslclientauthrequire
rzaiemod_ibm_ssl.htm#sslclientcertdisable
rzaiemod_ibm_ssl.htm#sslclientcertenable
rzaiemod_ibm_ssl.htm#ssldenyssl
rzaiemod_ibm_ssl.htm#ssldisable
rzaiemod_ibm_ssl.htm#sslenable

v SSLRequireSSL

v SSLUpgrade

v SSLVersion

v SSLV2Timeout

v SSLV3Timeout

v StartCGI

v StartThreadedCGI

v SuffixCaseSense

T

v “ThreadsPerChild” on page 571

v “TimeOut” on page 571

v TransferLog

v TypesConfig

U

v UnsetEnv

v “UseCanonicalName” on page 572

v UseJCD

v UserDir

v UserID

v “UseShutdown” on page 573

V

v VirtualDocumentRoot

v VirtualDocumentRootIP

v “<VirtualHost>” on page 573

v VirtualScriptAlias

v VirtualScriptAliasIP

W

v “WASInstance” on page 620

Directive term definitions for HTTP Server (powered by Apache)

This topic provides information about the directive terms used for HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Each configuration directive is described using the following attributes:

 Module: directive existence

Syntax: directive_name arguments

Default: directive_name default_value

Context: context_list

Override: directive override activation

Origin: origin

Usage Considerations: important usage considerations required in the server configuration file

464 iSeries: IBM HTTP Server

rzaiemod_ibm_ssl.htm#sslrequiressl
rzaiemod_ibm_ssl.htm#sslupgrade
rzaiemod_ibm_ssl.htm#sslversion
rzaiemod_ibm_ssl.htm#sslv2timeout
rzaiemod_ibm_ssl.htm#sslv3timeout
rzaiemod_cgi.htm#startcgi
rzaiemod_cgi.htm#StartThreadedCGI
rzaiemod_mime.htm#suffixcasesense
rzaiemod_log_config.htm#transferlog
rzaiemod_mime.htm#typesconfig
rzaiemod_env.htm#unsetenv
rzaiemod_ap_charset.htm#usejcd
rzaiemod_userdir.htm#userdir
rzaiemod_as_auth.htm#userid
rzaiemod_vhost_alias.htm#virtualdocumentroot
rzaiemod_vhost_alias.htm#virtualdocumentrootip
rzaiemod_vhost_alias.htm#virtualscriptalias
rzaiemod_vhost_alias.htm#virtualscriptaliasip
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Example: example of directive and its arguments

Module

This attribute identifies the module the directive is associated with.

Syntax

This attribute indicates the format of the directive as it would appear in a configuration file. This syntax

is directive-specific, so refer to the text of the directive’s other attributes for details. Strings should be

quoted. The string (″word1 word2″) contains spaces. If the strings do not contain spaces they do not need

to be quoted.

Default

This attribute specifies if the directive has a default value. For example, if you omit the directive from

your configuration entirely, HTTP Server will behave as though you set it to a particular value. If there is

no default value, this attribute says ″none″.

Context

This attribute indicates where in the server’s configuration the directive is supported. It’s a

comma-separated list of one or more of the following values:

server config

The directive is valid in the global server configuration.

virtual host

The directive is valid in <VirtualHost> containers.

directory

The directive is valid in <Directory>, <Location>, and <Files> containers, subject to the

restrictions outlined in the ″“Fundamental directive, context, and server area concepts on HTTP

Server (powered by Apache)” on page 7″ topic.

directory (but not location)

The directive is valid in <Directory>, <Files> containers, subject to the restrictions outlined in the

″“Fundamental directive, context, and server area concepts on HTTP Server (powered by

Apache)” on page 7″ topic, but is not valid in the <Location> container.

.htaccess

The directive is valid in per-directory .htaccess files. It may not be processed, however, depending

upon the overrides currently active. For more information on how to use .htaccess files, see the

Apache HTTP Server Project

Web site.

Not in Limit

The directive is not valid in <Limit> containers, subject to the restrictions outline in the

″“Fundamental directive, context, and server area concepts on HTTP Server (powered by

Apache)” on page 7″ topic.

All The directive is valid in all contexts.

Note: The directive is only allowed within its supported context; if you try to use it elsewhere, you will

receive a configuration error that will either prevent the server from handling requests, or will

keep the server from starting. The valid context for a directive is actually the result of a ″Boolean

OR″ of all of the listed contexts. In other words, a directive that is marked as being valid in ″server

config, .htaccess″ can be used in the server configuration file and in .htaccess files, but not within

any <Directory> or <VirtualHost> containers.

HTTP Server 465

http://httpd.apache.org/

Override

This attribute indicates which configuration override must be active in order for the directive to be

processed when it appears in a .htaccess file. If the directive’s context does not permit it to appear in

.htaccess files, this attribute is none.

Origin

This attribute indicates if the directive is new for iSeries HTTP Server (powered by Apache), modified

for iSeries HTTP Server (powered by Apache), or an unmodified Apache directive. Possible values for

this attribute include:

iSeries

A new directive created for the iSeries HTTP Server (powered by Apache).

Modified

An Apache server directive modified to support the iSeries HTTP Server (powered by Apache).

Apache

An unmodified Apache server directive.

Usage Considerations

This attribute specifies if important usage considerations such as a LoadModule are required in the server

configuration file prior to using the directive. If this attribute is not available, the directive does not

require any usage considerations.

Example

This attribute specifies at least one example for directives that take a file path name as an argument. It

will include both a root example and a QSYS.LIB example, if both apply.

Directives no longer supported on HTTP Server (powered by Apache)

This topic provides information about what directives are no longer supported by HTTP Server (powered

by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The following directives are no longer supported on HTTP Server (powered by Apache).

Directives

v “AddModule”

v “ClearModuleList” on page 467

v “IconPath” on page 467

v “Port” on page 468

AddModule:

 Module: core

Syntax: AddModule module [module ...]

Default: none

Context: server config

Override: none

466 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Origin: Apache

Example: AddModule mod_cgi

The AddModule directive allows the server to activate specific modules in the server after a

ClearModuleList has been performed. The server comes with a pre-loaded list of active modules. Only

those modules are valid. A list of valid modules can be obtained using the ’-l’ option on the command

line. The example above would activate the module mod_cgi. If this module is already active then the

directive will be ignored.

Parameter: module

v Module is any valid module in the pre-loaded list that came with the HTTP Server.

 See also “ClearModuleList.”

ClearModuleList:

 Module: core

Syntax: ClearModuleList

Default: none

Context: server config

Override: none

Origin: Apache

Example: ClearModuleList

The ClearModuleList directive will clear the built-in list of active modules provided by the server. To

reactivate this module list use the “AddModule” on page 466 directive.

IconPath:

 Module: mod_auto_index

Syntax: IconPath

Default: IconPath /icons

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: iSeries

Example: IconPath /myicons/small/

The IconPath directive to specify URL information to be added at the beginning of each icon-URL

specified on the following directives:

v AddIcon

v AddIconByType

v AddIconByEncoding

v DefaultIcon

The value that you specify on this directive is added to the icon-URL value on each of the other

directives to form the full request URL for each icon. The following path and directory is the default

location for icons:

/QIBM/ProdData/HTTPA/icons

Special Usage Considerations:

v You must enable your server for serving the icons from the default location by adding the following

statement to your configuration:

Alias /icons /QIBM/ProdData/HTTPA/icons

HTTP Server 467

v You must use this directive in your configuration before any of the other icon directives that are to use

the path (DefaultIcon, AddIcon, AddIconByType, and AddIconByEncoding).

For example, a configuration containing:

Alias /icons/small /QIBM/ProdData/HTTPA/icons/small

IconPath /icons/small/

AddIcon blank.gif ^^BLANKICON^^

This causes the server to generate a request for the directory list icon as /icons/small/blank.gif. The

server uses the alias directive to resolve the request to the proper file. This is different from Apache than

on other platforms.

On another platform you would use:

Alias /icons /full/icon/path

AddIcon /icons/blank.gif ^^BLANKICON^^

IconPath is an iSeries specific directive for Apache; therefore, precautions must be taken if the Apache

configuration file is modified manually. On the iSeries, you would use:

Alias /icons /QIBM/ProdData/HTTPA/icons

AddIcon blank.gif ^^BLANKICON^^

Since IconPath is set to /icons/ by default, it will be prepended to ’blank.gif’ when the AddIcon directive

is used.

Port:

 Module: core

Syntax: Port number

Default: Port 80

Context: server config

Override: none

Origin: Apache

Example: Port 8080

The Port directive has two behaviors:

v In the absence of any Listen directives specifying a port number, a Port directive given in the ″main

server″ (for example, outside any <VirtualHost> section) sets the network port on which the server

listens. If there are any Listen directives specifying the port number then Port has no effect on what

address the server listens at. The use of the Listen directive causes all Port directives to be ignored.

v The Port directive sets the SERVER_PORT environment variable (for CGI and SSI), and is used when

the server must generate a URL that refers to itself (for example when creating an external redirect to

itself). This behavior is modified by UseCanonicalName.

In no event does a Port setting affect what ports a VirtualHost responds on, the VirtualHost directive

itself is used for that. The primary behavior of Port should be considered to be similar to that of the

ServerName directive. The ServerName and Port together specify what you consider to be the canonical

address of the server. (See also UseCanonicalName.)

Parameter: number

v Where number is a number from 0 to 65535; some port number (especially below 1024) are

reserved for particular protocols. The standard port for http protocol is 80.

Note: The “Listen” on page 553 directive is used as an alterative to Port.

468 iSeries: IBM HTTP Server

Module mod_access

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_access provides access control based on a client’s hostname or IP address.

Directives

v “Allow”

v “Deny” on page 470

v “Order” on page 470

v “Require” on page 471

Allow:

 Module: mod_access

Syntax: allow from all | env=[!]envvar | host [host ...]

Default: none

Context: directory, .htaccess

Override: Limit

Origin: Apache

Example: allow from all

Example: allow from env=go_away

Example: allow from 10.10.10.10 .ibm.com

The Allow directive affects which hosts can access a given directory.

Parameter: host

v If all, all hosts are allowed access.

v If full or partial domain-name, hosts whose names match or end in this string are allowed access.

v If full IP address, only IP address of a host are allowed access.

v If partial IP address, only the first 1 to 3 bytes of an IP address, for subnet restriction.

v If network/netmask, a network a.b.c.d. And a netmask w.x.y.z. Can be used for fine-grained

subnet restriction (for example, 10.2.0.0/255.255.0.0).

v If network/nnn CIDR specification, it is similar to the previous case, except the netmask consists

of nnn higher-order 1 bits (for example, 10.1.0.0/16 is the same as 10.1.0.0/255.255.0.0).

Note: This compares whole components, ibm.com would not match QIBMibm.com.

 The allow from env option controls access to a directory by the existence (or nonexistence) of an

environment variable. For example:

BrowserMatch ^KnockKnock/2.0 let_me_in

<Directory /docroot>

 order deny,allow

 deny from all

 allow from env=let_me_in

</Directory>

In this case browsers with the user-agent string KnockKnock/2.0 will be allowed access, and all others

will be denied.

HTTP Server 469

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

See also “Deny,” “Order,” and BrowserMatch.

Deny:

 Module: mod_access

Syntax: deny from all | env=[!]envvar | host [host ...]

Default: none

Context: directory, .htaccess

Override: Limit

Origin: Apache

Example: deny from env=go_away

Example: deny from 10.10.10.10 .ibm.com

The deny directive affects which hosts can access a given directory.

Parameter: host

v If all, all hosts are denied access.

v If full or partial domain-name, hosts whose names match or end in this string are denied access.

v If full IP address, only IP address of a host are denied access.

v If partial IP address, only the first 1 to 3 bytes of an IP address, for subnet restriction.

v If network/netmask, a network a.b.c.d. And a net mask w.x.y.z. Can be used for fine-grained

subnet restriction (for example, 10.2.0.0/255.255.0.0).

v If network/nnn CIDR specification, it is similar to the previous case, except the netmask consists

of nnn higher-order 1 bits (for example, 10.1.0.0/16 is the same as 10.1.0.0/255.255.0.0).

Note: This compares whole components (ibm.com would not match QIBMibm.com).

 The deny from env option controls access to a directory by the existence (or nonexistence) of an

environment variable. For example:

BrowserMatch ^BadRobot/0.9 go_away

<Directory /docroot>

 order allow,deny

 allow from all

 deny from env=go_away

</Directory>

In this case browsers with the user-agent string BadRobot/0.9 will be denied access, and all others will be

allowed.

See also “Allow” on page 469 and “Order.”

Order:

 Module: mod_access

Syntax: order ordering

Default: order deny,allow

Context: directory, .htaccess

Override: Limit

Origin: Modified

Example: order deny,allow

The order directive controls the order in which Allow and Deny directives are evaluated. .

Parameter: ordering

470 iSeries: IBM HTTP Server

v If deny,allow, the deny directives are evaluated before the allow directives (the initial state is

OK).

v If allow,deny, the allow directives are evaluated before the deny directives (the initial state is

FORBIDDEN).

v If mutual-failure, only those hosts which appear on the allow list and do not appear on the deny

list are granted access (the initial state is irrelevant).

 Keywords may only be separated by a comma; no whitespace is allowed between them. Note: that in all

cases every allow and deny statement is evaluated, there is no ″short-circuiting″. For Example:

order deny,allow

deny from all

allow from .ibm.com

In this example, the first container’s intent is to keep everyone out. The next container overrides for the

appropriate subdirectory.

<Directory/>

 Order deny,allow

 deny from all

 allow from none

</Directory>

Alias /root /bobtest/xyz/html

<Directory /bobtest/xyz/html/>

 Order allow,deny

 allow from all

 Authtype Basic

 AuthName "root and %%SYSTEM%%"

 PasswdFile %%SYSTEM%%

 Require valid-user

 UserID %%SYSTEM%%

</Directory>

Hosts in the ibm.com domain are allowed access; all other hosts are denied access.

Require:

 Module: mod_access

Syntax: require entity-name entity entity...

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: Apache

Example: require group admin

This directive selects which authenticated users can access a directory.

Parameter: entity-name entity entity...

v If require user userid userid, then only the named users can access the directory.

v If require group groupname groupname, then only users in the named groups can access the

directory.

v If require valid-user, then all valid users can access the directory.

 Require must be accompanied by AuthName and AuthType directives, and directives such as PasswdFile

and GroupFile (to define users and groups) in order to work correctly. For example:

HTTP Server 471

AuthType Basic

AuthName "Restricted Directory"

PasswdFile web/users

GroupFile /web/groups

require group admin

Access controls which are applied in this way are effective for all methods. This is what is normally

desired. If you want to apply access controls only to specific methods, while leaving other methods

unprotected, then place the require statement into a <Limit> section.

Access controls can be used in a named protection setup. To implement a named protection setup, place

all of the access control directives in a file. Use the Include directive to include the file in your

<Directory>, <File>, or <Location> context. This allows users that want to use the same type of

protection setup within multiple contexts to add an include statement inside of each context.

Note: The require valid-user directive parameter should NOT be configured in the same context as any

require user or require group directive parameters. The require directives are processed in order

(from top to bottom) as they appear in the configuration file. Since require valid-user allows access

to any authenticated user, the require valid-user directive parameter effectively overrides the

presence of any require user or require group directives.

Module mod_actions

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_actions provides for executing CGI scripts based on media type or request method.

Directives

v “Action”

v “Script” on page 473

Action:

 Module: mod_actions

Syntax: Action action-type cgi-script

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: Action application/x-www-form-urlencoded /cgi-bin/file.pgm

The Action directive adds an action, which will activate CGI script when action-type is triggered by the

request.

Parameter One: action-type

v The action-type can be either a handler or a MIME content type. It sends the URL and file path

of the requested document using the standard CGI PATH_INFO and PATH_TRANSLATED

environment variables. See “Handler for HTTP Server (powered by Apache)” on page 755 for

more information on handlers.

Parameter Two: CGI-script

472 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v The CGI-script can be any valid CGI script or other resource that is capable of handling the

requested action-type.

Script:

 Module: mod_actions

Syntax: Script method CGI-script

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Example: Script PUT /cgi-bin/bob.pgm

The Script directive adds an action, which will activate CGI-script when a file is requested using the

method of method. It sends the URL and file path of the requested document using the standard CGI

PATH_INFO and PATH_TRANSLATED environment variables. Method names are case-sensitive, so

Script PUT and Script put have two entirely different effects.

Parameter One: method

v The method names listed can be one or more of the following: GET, POST, PUT, DELETE,

CONNECT, OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK and

UNLOCK. User defined method names can also be used. The method name is case-sensitive. If

GET is used it will also handle HEAD requests.

Parameter Two: CGI-script

v The CGI-script can be any valid CGI script or other resource that is capable of handling the

requested method.

Note: The CGI-script command defines default actions only. If a CGI script is called, or some other

resource that is capable of handling the requested method internally, it will do so. Also note that

CGI script with a method of GET will only be called if there are query arguments present (for

example, bob.html?hi). Otherwise, the request will proceed normally.

Module mod_alias

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_alias provides mapping for different parts of the host filesystem in the document tree

and also for URL redirection.

Directives

v “Alias” on page 474

v “AliasMatch” on page 474

v “MapMatch” on page 475

v “Redirect” on page 475

v “RedirectMatch” on page 476

v “RedirectPermanent” on page 477

v “RedirectTemp” on page 478

v “ScriptAlias” on page 478

HTTP Server 473

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v “ScriptAliasMatch” on page 479

Alias:

 Module: mod_alias

Syntax: Alias url-path directory-filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: Alias /image /QIBM/UserData/pub/image

Example: Alias /httpfile/ /QSYS.LIB/AS400LIB.LIB/HTML.FILE/

This directive allows documents to be stored in the local filesystem other than under the

“DocumentRoot” on page 538. URLs with a (%-decoded) path beginning with the value of the URL-path

parameter will be mapped to local files beginning with the value of directory-filename. Alias also allows

you to hide the file system path from users, enhancing both security of your server and the ability to

change the filesystem structure or paths without impacting the end users.

Parameter One: url-path

v The url-path paramter is any valid URL path. If you include a trailing ’/’ in the URL path, then

the server will require a trailing ’/’ in order to expand the alias. That is, if you use ’Alias

/icons/ /www/images/iSeries/icons/’ then the URL ’/icon’ will not be aliased.

Parameter Two: directory-filename

v The directory-filename parameter is any valid directory/filename combination on the system.

Note: You may need to specify additional “<Directory>” on page 536 containers that cover the

destination of aliases. Aliasing occurs before <Directory> containers are checked, so only the

destination of aliases are affected. “<Location>” on page 554 containers are run through once

before aliases are performed, so they will apply.

See “ScriptAlias” on page 478 for more information.

AliasMatch:

 Module: mod_alias

Syntax: AliasMatch regex directory-filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: AliasMatch ^/icons(.*) /www/images/HTTP_Server/icons$1

Example: AliasMatch ^/lib/docs(.*) /QSYS.LIB/DOCLIB.LIB/HTMLDOC.FILE/$1.MBR

This directive is equivalent to “Alias,” but makes use of standard regular expressions, instead of simple

prefix matching. The supplied regular expression is matched against the URL, and if it matches, the

server will substitute any parenthesized matches into the given string and use it as a filename.

Parameter One: regex

v The regex parameter is a regular expression that is matched against the URL. Subexpressions

are grouped within parentheses. Then parenthetically enclosed regular expressions will be

substituted in a subsequent $n statement.

Parameter Two: directory-filename

474 iSeries: IBM HTTP Server

v The directory-filename parameter is any valid directory/filename that is supported on the iSeries.

If there is a $ symbol (followed by a digit) that is not a substitution variable in the

directory-filename parameter, or there is an & symbol in the directory-filename parameter that is

part of the directory or filename, the symbol must be escaped (\).

 If the directory-filename is /usr/local/apache/icons&gifs/ the & would need to be escaped as follows on

the AliasMatch directive:

AliasMatch ^/icons(.*) /usr/local/apache/icons\gifs/

If the directory-filename is /usr/local/apache/icon$1/ the $ would need to be escaped as follows on the

AliasMatch directive:

AliasMatch ^/icons(.*) /usr/local/apache/icon\$1/

See “Regular expression notation for HTTP Server” on page 752 for more information.

MapMatch:

 Module: mod_alias

Syntax: MapMatch regex URI

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: MapMatch ^/icons(.*) /www/apache/icons\&gifs/

The MapMatch directive uses standard regular expressions to change a URI to a different URI. The

supplied regular expression is matched against the URL, and if it matches, the server will substitute any

parenthesized matches into the given string and use it as the URI. This is not a terminating directive. The

server will use the new URI as input to Alias, Redirect or other MapMatch directives.

Parameter One: regex

v The regex paramter is a regular expression that is matched against the URL. Subexpressions are

grouped within parentheses. The parenthetically enclosed regular expressions will be

substituted in a subsequent $n statement.

Parameter Two: URI

v The URI paramater is any valid URI that is supported on the iSeries. If there is a $ symbol

(followed by a digit) that is not a substitution variable in the URI parameter, or there is an &

symbol in the URI parameter that is part of the URI, the symbol must be escaped (\).

 If the target URI is /www/apache/icons\&gifs/ the & would need to be escaped as follows on the

MapMatch directive:

MapMatch ^/icons(.*) /www/apache/icons\&gifs/

If the target URI is /www/apache/icon$1/ the $ would need to be escaped as follows on the MapMatch

directive:

MapMatch ^/icons(.*) /www/apache/icon\$1/

See “Regular expression notation for HTTP Server” on page 752 for more information.

Redirect:

 Module: mod_alias

Syntax: Redirect [status] url-path url

Default: none

HTTP Server 475

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: Redirect /service http://foo2.bar.com/service

The Redirect directive maps an old URL into a new one. The new URL is returned to the client, who then

attempts to access the page with the new address. URL-path is a (%-decoded) path; any requests for

documents beginning with this path will be returned with a redirect error to a new (%-encoded) URL

beginning with url.

Parameter One: status

v The status parameter is used to return the below HTTP status codes:

 Status Description

permanent Returns a permanent redirect status (301) indicating

that the resource has moved permanently.

temp Returns a temporary redirect status (302). This is

the default.

seeother Returns a ″See Other″ status (303) indicating that

the resource has been replaced.

gone Returns a ″Gone″ status (410) indicating that the

resource has been permanently removed. When this

status is used the url argument should be omitted.

If no status argument is given, the redirect will be ″temporary″ (HTTP status 302). This

indicates to the client that the resource has moved temporarily. Other status codes can be

returned by giving the numeric status code as the value of status. If the status is between 300

and 399, the url argument must be present, otherwise it must be omitted. Regardless, any

HTTP status given must be known to HTTP Server.

Parameter Two: url-path

v If the url-path has a trailing slash (’/’), the url should also have a trailing slash. If the url-path

does not contain a trailing slash, the url should not either. Double check the designated url-path

and the url, or a double-slash (’//’) may appear in the resulting URL. The url-path must be an

absolute path, not a relative path, even when used with .htaccess files or inside of

“<Directory>” on page 536 containers. The url-path must match the requested resource exactly

or be a proper ancestor of it.

Parameter Three: url

v The url parameter should be a complete URL string, including the scheme (’http://...’) and the

’server:host’ portion. When the status parameter is ″gone″, the url argument should be omitted.

Note: Redirect directives take precedence over Alias and ScriptAlias directives, regardless of their order

in the configuration file.

RedirectMatch:

 Module: mod_alias

Syntax: RedirectMatch [status] regex url

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RedirectMatch (.*)\.gif$ http://www.anotherserver.com$1.jpg

476 iSeries: IBM HTTP Server

This directive is equivalent to “Redirect” on page 475, but makes use of standard regular expressions,

instead of simple prefix matching. The supplied regular expression is matched against the URL, and if it

matches, the server will substitute any parenthesized matches into the given string and use it as a

filename.

Parameter One: status

v The status parameter is used to return the below HTTP status codes:

 Status Description

permanent Returns a permanent redirect status (301) indicating

that the resource has moved permanently.

temp Returns a temporary redirect status (302). This is

the default.

seeother Returns a ″See Other″ status (303) indicating that

the resource has been replaced.

gone Returns a ″Gone″ status (410) indicating that the

resource has been permanently removed. When this

status is used the url argument should be omitted.

If no status argument is given, the redirect will be ″temporary″ (HTTP status 302). This

indicates to the client that the resource has moved temporarily. Other status codes can be

returned by giving the numeric status code as the value of status. If the status is between 300

and 399, the url argument must be present, otherwise it must be omitted. Regardless, any

HTTP status given must be known to HTTP Server.

Parameter Two: regex

v The regex parameter is aregular expression that is matched against the URL. Subexpressions are

grouped within parentheses. Then, parenthetically enclosed regular expressions will be

substituted in a subsequent $n statement.

Parameter Three: url

v The url parameter should be a complete URL string, including the scheme (’http://...’) and the

’server:port’ portion. If there is a $ symbol (followed by a digit) that is not a substitution

variable in the url parameter, or there is a & symbol in the url parameter that is part of the

URL, the symbol must be escaped (\).

 If the URL to redirect to is http://www.anotherserver.com/cgi-bin/welcome.cgi?parm1=login
&parm2=mainlist the & would need to be escaped as follows on the RedirectMatch directive:

RedirectMatch(.*) http://www.anotherserver.com/cgi-bin/welcome.cgi?parm1=login\&parm2=mainlist

If the URL to redirect to is http://www.anotherserver.com/htdocs/welcome$2login.html the $2 would

need to be escaped as follows on the RedirectMatch directive:

RedirectMatch (.*) http://www.anotherserver.com/htdocs/welcome\$2login.html

See “Regular expression notation for HTTP Server” on page 752 for more information.

RedirectPermanent:

 Module: mod_alias

Syntax: RedirectPermanent url-path url

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RedirectPermanent /payroll http://payroll.server.com/payroll

HTTP Server 477

The RedirectPermanent directive notifies the client that the Redirect is permanent (status 301). This is the

exact equivalent to Redirect permanent.

Parameter One: url-path

v The url-path parameter is any valid URL path. If you include a trailing ’/’ in the URL path,

then the server will require a trailing ’/’ in order to expand the alias. That is, if you use ’Alias

/icons/ /www/images/iSeries/icons/’ then the URL ’/icon’ will not be aliased.

Parameter Two: url

v The url parameter should be a complete URL string, including the scheme (’http://...’) and the

’server:host’ portion. When the status parameter is ″gone″, the url argument should be omitted.

 See “Regular expression notation for HTTP Server” on page 752 for more information.

RedirectTemp:

 Module: mod_alias

Syntax: RedirectTemp url-path url

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RedirectTemp /service http://foo2.bar.com/service

The RedirectTemp directive notifies the client that the Redirect is only temporary (status 302). This is the

exact equivalent to Redirect temp.

Parameter One: url-path

v The url-path parameter is any valid URL path. If you include a trailing ’/’ in the URL path,

then the server will require a trailing ’/’ in order to expand the alias. That is, if you use ’Alias

/icons/ /www/images/iSeries/icons/’ then the URL ’/icon’ will not be aliased.

Parameter Two: url

v The url parameter should be a complete URL string, including the scheme (’http://...’) and the

’server:host’ portion. When the status parameter is ″gone″, the url argument should be omitted.

 See “Regular expression notation for HTTP Server” on page 752 for more information.

ScriptAlias:

 Module: mod_alias

Syntax: ScriptAlias url-path directory-filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: ScriptAlias /cgi-bin/ /web/cgi-bin/

Example: ScriptAlias /cgi-bin/ /QSYS.LIB/QSYSCGI.LIB/

The ScriptAlias directive has the same behavior as the “Alias” on page 474 directive, except that in

addition it marks the target directory as containing CGI scripts, and then executes the CGI program.

URLs with a (%-decoded) path beginning with url-path will be mapped to scripts beginning with

directory-filename. Additional “<Directory>” on page 536 containers that cover the destination of the

ScriptAlias may need to be specified. Aliasing occurs before <Directory> containers are checked, so only

the destination of Aliases are affected.

478 iSeries: IBM HTTP Server

Parameter One: url-path

v The url-path parameter is any valid url-path. It must end with a slash (’/’) character so that any

files in the directory will be routed.

Parameter Two: directory-filename

v The directory-filename parameter is any valid directory/filename on the iSeries.

Note: If the URL ends in a slash (″/″) character, the ScriptAlias must also end in a slash character.

ScriptAliasMatch:

 Module: mod_alias

Syntax: ScriptAliasMatch regex directory-filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: ScriptAliasMatch ^/cgi-bin/(.*)\.cgi /QSYS.LIB/QSYSCGI.LIB/$1.PGM

This directive is equivalent to “ScriptAlias” on page 478, but makes use of standard regular expressions,

instead of simple prefix matching. The supplied regular expression is matched against the URL, and if it

matches, the server will substitute any parenthesized matches into the given string and use it as a

filename.

Parameter One: regex

v The regex parameter is a regular expression that is matched against the URL. Subexpressions

are grouped within parentheses. Then, parenthetically enclosed regular expressions will be

substituted in a subsequent $n statement.

Parameter Two: directory-filename

v This is any valid directory/filename that is supported on the iSeries. If there is a $ symbol

(followed by a digit) that is not a substitution variable in the directory-filename parameter, or

there is a & symbol in the directory-filename parameter that is part of the directory or

filename, the symbol must be escaped (\).

 If the directory-filename is /usr/local/apache/cgi-bin&sym/$1.pgm, where the $1 is a substitution

variable, the & would need to be escaped as follows on the ScriptAliasMatch directive:

ScriptAliasMatch ^/cgi-bin/(.*)\.cgi /usr/local/apache/cgi-bins\&sym/$1.pgm

If the directory-filename is /usr/local/apache/cgi-bin$2sym/ $1.pgm, where the $1 is a substitution

variable, the $2 would need to be escaped as follows on the ScriptAliasMatch directive:

ScriptAliasMatch ^/cgi-bin/(.*)\.cgi /usr/local/apache/cgi-bin\$2sym/$1.pgm

Module mod_ap_charset

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_ap_charset provides support for performing ASCII to EBCDIC and EBCDIC to ASCII

codepage conversions.

HTTP Server 479

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Directives

v “DefaultFsCCSID”

v “DefaultNetCCSID” on page 481

v “UseJCD” on page 481

DefaultFsCCSID:

 Module: core

Syntax: DefaultFsCCSID server-character-set-identification-number

Default: dependent on server settings

Context: server config

Override: none

Origin: iSeries

Example: DefaultFsCCSID 37

The DefaultFsCCSID directive specifies the CCSID that your server runs under, the server character set

environment, and the EBCDIC CCSID that is used when the server converts:

v Input request data for user CGI programs or Apache modules.

v Output response data from user CGI programs, or Apache modules, to be sent back to the requester

(client browser).

A configuration file can contain more than one DefaultFsCCSID directive, but the last directive in the

configuration file determines the CCSID.

If the HTTP Server startup value -fsccsid is specified on the STRTCPSVR command or as a parameter on the

HTTP Administration’s start server , the value specified overrides all other settings and is used for the

server CCSID.

If there is no startup value specified, but there is a DefaultFsCCSID directive in the configuration file, the

directive value will be used for the server CCSID.

If there is no startup value specified and there is no DefaultFsCCSID directive in the configuration file,

then the QCCSID system value is used. If the QCCSID system value is set to 65535, then the server job

will be started with that CCSID. However, the CCSID that the server actually uses for conversions will be

the job default ccsid which is set to an appropriate value based on the language (LANGID) of the server

job.

To display the CCSID of the server, complete the following task:

1. Start a 5250 session on your iSeries.

2. Type WRKACTJOB (Work Active Job).

3. Type a 5 (Work with...) next to your server job.

4. Type a 2 (Display job definition attributes) on the Work with Job screen.

5. Page down until you see the job CCSID fields.

Example

In this case, the QCCSID system value was used to start the server job. We see that the

Coded character set identifier is 65535. However, the Default coded character set identifier

has been set to 37 because the Language identifier is ENU (United States English). The

server will use CCSID 37 as the EBCDIC CCSID.

Language identifier : ENU

Country or region identifier : US

Coded character set identifier : 65535

Default coded character set identifier : 37

480 iSeries: IBM HTTP Server

DefaultNetCCSID:

 Module: mod_ap_charset

Syntax: DefaultNetCCSID client-character-set-identification-number

Default: DefaultNetCCSID 819

Context: server config

Override: none

Origin: iSeries

Example: DefaultNetCCSID 819

The DefaultNetCCSID directive specifies the client character set environment and defines the ASCII

CCSID that is used when converting:

v Input request data for user CGI programs or Apache modules.

v When serving EBCDIC documents and no ASCII CCSID can be deduced from the file CCSID.

v Output response data from user CGI programs, or Apache modules, to be sent back to the requester

(client browser).

Parameter: server-character-set-identification-number

v The server-character-set-identification-number is an integer value.

 A configuration file can contain more than one DefaultNetCCSID directive, but the last directive in the

configuration file determines the CCSID.

UseJCD:

 Module: mod_ap_charset

Syntax: UseJCD On | Off

Default: UseJCD Off

Context: server config

Override: none

Origin: iSeries

Example: UseJCD Off

This directive is used to instruct the server to perform Japanese codepage detection on the request body.

Japanese browsers can potentially send data in one of three code pages, JIS (ISO-2022-JP), S-JIS

(PC-Windows), or EUC (UNIX®). If this directive is set to On, the server uses a well-known JCD utility to

determine which codepage to use (if not explicitly specified by a charset tag) to convert the request body.

Parameter: On | Off

v When On is specified, the server uses a well-known JCD utility to determine which codepage

to use (if not explicitly specified by a charset tag) to convert the request body.

v When Off is specified, Japanese codepage detection on the request body is disabled.

 This directive is intended for module writers that need the server to detect JCD on the request body. CGI

writers can use the CGIConvMode value ″EBCDIC_JCD″ to instruct the server to perform JCD.

Module mod_arm4_ap20

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 481

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Summary

The module mod_arm4_ap20 uses the ARM (Application Response Measurement) 4.0 APIs to classify

requests and record the time spent for each one. Configuring these directives enables ARM services for

the IBM HTTP Server.

To enable ARM on IBM HTTP Server, perform these steps:

1. Ensure that the EWLM managed server is configured and started, and that it is communicating

properly with its EWLM domain manager.

2. Ensure that IBM HTTP Server is installed and configured.

3. Ensure you have the latest required PTFs installed for EWLM to monitor the HTTP Server for iSeries

application.

4. Add the following directives to the configuration file:

LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

ArmLoadLibrary /QSYS.LIB/QSYS2.LIB/LIBARM4.SRVPGM

To edit the configuration file, follow these steps:

a. Start the IBM Web Administration for iSeries interface.

b. Click the Manage tab.

c. Click the HTTP Servers subtab.

d. Select your HTTP Server (powered by Apache) from the Server list.

e. Expand Tools.

f. Click Edit Configuration File.

Note: The line mode editor functions as a simple text editor only and does not error check any

changes to the configuration file.

g. Click OK when you finish editing the configuration file.

h. Stop and restart the HTTP Server.

For more information on eWLM, see Enterprise Workload Manager in the eServer Information Center.

Directives

v “ArmApplicationName”

v “ArmInstrumentHandler” on page 483

v “ArmLoadLibrary” on page 483

v “ArmTransactionName” on page 483

ArmApplicationName:

 Module: mod_arm4_ap20

Syntax: ArmApplicationName application_name

Default: ArmTransactionName ″IBM Webserving Plugin″

Context: server

Override: none

Origin: iSeries

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement should be as

follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmApplicationName ″IBM Webserving Plugin″

This directive specifies the application name registered with the ARM (Application Response

Measurement) Agent.

482 iSeries: IBM HTTP Server

http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/ewlminfo/kickoff.htm

ArmInstrumentHandler:

 Module: mod_arm4_ap20

Syntax: ArmInstrumentHandler on|off

Default: ArmInstrumentHandler off

Context: server

Override: none

Origin: iSeries

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement should be as

follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmInstrumentHandler off

When the ArmInstrumentHandler directive is turned on, arm_block|unblock_transaction is called across

content handlers.

ArmLoadLibrary:

 Module: mod_arm4_ap20

Syntax: ArmLoadLibrary arm4-api-service-program-name

Default: ArmLoadLibrary /QSYS.LIB/QSYS2.LIB/LIBARM4.SRVPGM

Context: server

Override: none

Origin: iSeries

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement should be as

follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmLoadLibrary /QSYS.LIB/QSYS2.LIB/LIBARM4.SRVPGM

This directive is needed to activate the eWLM (Enterprise Workload Management) instrumentation

module for HTTP Server (powered by Apache). It uses the ARM (Application Response Measurement) 4.0

APIs to classify requests and record the time spent for each one.

ArmTransactionName:

 Module: mod_arm4_ap20

Syntax: ArmTransactionName transaction_name

Default: ArmTransactionName WebRequest

Context: server

Override: none

Origin: iSeries

Usage: A LoadModule is required in the configuration file prior to using the directive. The statement should be as

follows: LoadModule arm4_module /QSYS.LIB/QHTTPSVR.LIB/QZSRARM.SRVPGM

Example: ArmTransactionName WebRequest

This directive specifies the transaction name registered with the ARM (Application Response

Measurement) agent.

Module mod_as_auth

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

HTTP Server 483

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The module mod_as_auth provides user authentication using iSeries system profiles, Internet users

(through validation lists), or LDAP users.

Directives

v “AsAuthAuthoritative”

v “GroupFile”

v “PasswdFile” on page 485

v “UserID” on page 485

AsAuthAuthoritative:

 Module: mod_as_auth

Syntax: AsAuthAuthoritative On | Off

Default: AsAuthAuthoritative On

Context: directory

Override: none

Origin: iSeries

Example: AsAuthAuthoritative Off

Setting the AsAuthAuthoritative directive explicitly to off allows for both authentication and

authorization to be passed on to lower level modules (if there is no userid or rule matching the supplied

userid).

Parameter: On | Off

v When On is specified, both authentication and authorization are not allowed to be passed on to

lower level modules (if there is no userid or rule matching the supplied userid).

v When Off is specified, allows for both authentication and authorization to be passed on to

lower level modules (if there is no userid or rule matching the supplied userid).

 If a userid appears in an authentication realm other than those supported by the iSeries (for example,

System Userid), or if a valid Require directive applies to more than one module, the first module verifies

the credentials and no access is passed on regardless of the AsAuthAuthoritative setting.

GroupFile:

 Module: mod_as_auth

Syntax: GroupFile filename

Default: none

Context: directory

Override: none

Origin: iSeries

Example: GroupFile /docs/restrict.group

The GroupFile directive sets the name of a GroupFile to use for a protection setup. Group files are used

to classify users into various groups. A protection setup can use groups on limit directives. If a protected

directory contains an ACL file, the rules in the ACL file can also use the groups that you define in the

group file.

Parameter: filename

v The filename parameter is any valid filename of the iSeries.

Note: The GroupFile directive is case-sensitive. If the filename is incorrectly cased, the GroupFile

directive will not work properly. Since iSeries user profiles are not case-sensitive, the entries in the

484 iSeries: IBM HTTP Server

GroupFile will be treated as non-case-sensitive if the PasswdFile directive is set to %%SYSTEM%%.

For all other values of PasswdFile, the values in the GroupFile will be treated as case-sensitive.

To work correctly this directive must be accompanied by “PasswdFile,” “AuthType” on page 535, and

Require.

PasswdFile:

 Module: mod_as_auth

Syntax: PasswdFile passfile [passfile passfile ...]

Default: none

Context: directory

Override: none

Origin: iSeries

Example: PasswdFile %%SYSTEM%%

Example: PasswdFile ″QUSRSYS/MY_USERS QGPL/DOC_USERS″

The PasswdFile directive specifies where the passwords (or certificates) are stored for authentication.

Parameter: passfile

The different values supported by the passfile parameter value are:

%%SYSTEM%%

The passfile parameter can be in the %%SYSTEM%% format. Using this value

indicates that the server should use the iSeries User Profile support to validate

username/password.

%%LDAP%%

The passfile can also be in the %%LDAP%% format to validate the LDAP server

that has been defined to the server.

%%KERBEROS%%

The passfile parameter should be set to %%KERBEROS%% when the directive

AuthType Kerberos is configured.

passfile [passfile passfile ...]

The passfile parameter can be formatted to fit the Internet user list. To use this

format, specify QUSRSYS/MY_USERS as the filename. The HTTP Server (powered

by Apache) allows a space separated list of Internet User lists (for example:

’library/vldl library/fort’).

 This directive may be configured multiple times in a container. The directives are processed from the first

to the last occurrence.

To work correctly this directive must be accompanied by AuthType, AuthName, and Require.

UserID:

 Module: mod_as_auth

Syntax: Userid user-profile | %%SERVER%% | %%CLIENT%%

Default: none

Context: directory

Override: none

Origin: iSeries

Example: UserID WEBUSER

Example: UserID %%SERVER%%

Example: UserID %%CLIENT%%

HTTP Server 485

rzaiemod_access.htm#require
rzaiemod_core.htm#authtype
rzaiemod_core.htm#authname
rzaiemod_access.htm#require

The UserID directive specifies the iSeries system profile to the server. For a protected resource (one for

which Protection directives are defined), the UserID directive specifies which iSeries system profile the

server temporarily swaps to while serving that resource. The directive must be a valid user profile.

Parameter: user-profile | %%SERVER%% | %%CLIENT%%

v For user-profile, a valid iSeries system profile must be specified. The value ’QSECOFR’ cannot

be specified on the directive. The profile that issued the STRTCPSVR command to start HTTP

Server (powered by Apache) must have *USE authority to the profile specified on all of the

UserID directives and other directives. All UserID directives (and directives specified for a

protected resource) are verified during startup. If any UserID directive, or any other directive,

does not satisfy the rules listed here, the server instance does not start and a message is sent to

the user’s interactive job log.

v Entering %%SERVER%% uses the default profile QTMHHTTP unless the ServerUserId

directive is specified.

v Entering %%CLIENT%% causes the user profile from the request to be used on the swap. If

Kerberos is specified for the AuthType directive, the server will use Enterprise Identity

Mapping (EIM) to attempt to match the user ID associated with the server ticket with an

iSeries system profile. If there is no iSeries system profile associated with the server ticket user

ID, the HTTP request will fail. This value cannot be used for LDAP or Validation lists

authentication. If is valid for iSeries profiles, client certificates, and Kerberos.

 The profile that issued the STRTCPSVR command to start HTTP Server (powered by Apache) must have

*USE authority to the profile specified on all of the UserID directives and other directives. All UserID

directives (and directives specified for a protected resource) are verified during startup. If any UserID

directive, or any other directive, does not satisfy the rules, the server instance does not start and a

message is sent to the user’s interactive joblog.

Note: Because HTTP Server (powered by Apache) swaps to the profile that you specify on the UserID

directive, you should be careful what profile you specify. For example, if you create a profile

MIGHTY1 that is of the class *SECOFR and use this profile on the UserID directive, then whenever

the server invokes a swap to that profile, all iSeries authority checking for the requested resource is

based on that profile.

When HTTP Server (powered by Apache) is running under the QTMHHTTP profile (the QTMHHTTP

profile is the default) and a UserID directive is not in effect, the server switches to the QTMHHTP1

profile before starting a CGI program. However, when a CGI program is running on servers where the

UserID directive is in effect or within a protection setup where the UserID directive has been specified,

the program is run under the specified profile, unless the profile is QTMHHTTP. In which case,

QTMHHTP1 is used. If the profile does not have authority to the specified program, the request is

rejected.

There are two special values you can use on the UserID directive. Entering %%SERVER%% uses the

default profile QTMHHTTP unless a protection setup has a different UserID specified. Entering

%%CLIENT%% causes the server to challenge the client on each and every request for a user ID and

password.

See also ServerUserID.

Module mod_as_cache for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

486 iSeries: IBM HTTP Server

rzaiemod_core.htm#serveruserid
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Summary

The module mod_as_cache provides support for caching frequently referenced files. It can be used to

cache file content, file descriptors or both, or mmap the file.

Directives

v “CacheLocalFD”

v “CacheLocalFile” on page 488

v “CacheLocalFileMmap” on page 488

v “CacheLocalFilePublic” on page 489

v “CacheLocalFileSizeLimit” on page 489

v “CacheLocalSizeLimit” on page 490

v “DynamicCache” on page 490

v “FRCACacheLocalFileRunTime” on page 491

v “FRCACacheLocalFileSizeLimit” on page 492

v “FRCACacheLocalFileStartUp” on page 492

v “FRCACacheLocalSizeLimit” on page 493

v “FRCACookieAware” on page 493

v “FRCAEnableFileCache” on page 493

v “FRCAEnableProxy” on page 494

v “FRCAEndofURLMarker” on page 494

v “FRCAMaxCommBufferSize” on page 495

v “FRCAMaxCommTime” on page 495

v “FRCAProxyCacheEntitySizeLimit” on page 495

v “FRCAProxyCacheExpiryLimit” on page 496

v “FRCAProxyCacheRefreshInterval” on page 496

v “FRCAProxyCacheSizeLimit” on page 497

v “FRCAProxyPass” on page 497

v “FRCARandomizeResponse” on page 498

v “LiveLocalCache” on page 498

CacheLocalFD:

 Module: mod_as_cache

Syntax: CacheLocalFD filename

Default: none

Context: server config

Override: none

Origin: iSeries

Example: CacheLocalFD some_image.gif

The CacheLocalFD directive is used to specify the names of ASCII/BINARY stream files whose

descriptors you want to cache at server startup. The file is opened (share read) and remains open while

the server is active. The configuration file can contain multiple directive occurrences. Include a separate

directive for each file that you want to remain open. By keeping your most frequently requested

files/images opened at server startup, you can improve your server’s response time for those files. For

example, if you open your server’s welcome page files at startup, the server can handle requests for the

page much more quickly than if it had to open the files each time they are requested.

Parameter: filename

HTTP Server 487

v The filename parameter specifies the names of ASCII/BINARY stream files whose descriptors

are cached at server startup.

 The advantage of using CacheLocalFD directive over CacheLocalFile is that it does not cache the content

of the file, and therefore does not allocate a large amount of memory, yet provides similar performance.

The disadvantage of using CacheLocalFD directive over CacheLocalFile is that it only caches the file

descriptors of ASCII/BINARY stream files and it keeps the file open (share read) while the server is

active.

The LiveLocalCache directive setting does not apply to this directive and if a cached file is updated, the

cached entity is discarded and the updated file is served from the file system. If a cached file is modified

while at the same time being served, the content of the response body is unpredictable.

Note: You can use an asterisk (’*’) as a wildcard character on the file names (for example, CacheLocalFD

*.gif). File name matching is not recursive through subdirectories. The server will only cache files

in the specified directory. No files in subdirectories are affected.

CacheLocalFile:

 Module: mod_as_cache

Syntax: CacheLocalFile filename

Default: none

Context: server config

Override: none

Origin: iSeries

Example: CacheLocalFile bobwelcome.html

The CacheLocalFile directive is used to specify the names of files that you want to load into the server’s

memory each time that you start the server, and is the recommended file cache method. You can have

multiple occurrences of this directive in the configuration file. Include a separate directive for each file

that you want to load into memory. By keeping your most frequently requested files loaded in the

server’s memory, you can improve your server’s response time for those files. For example, if you load

your server’s welcome page into memory at startup, the server can handle requests for the page much

more quickly than if it had to read the file from the file system.

Parameter: filename

v The filename parameter specifies the names of files that you want to load into the server’s

memory each time that you start the server.

Note: You can use an asterisk (’*’) as a wildcard character on the file names (for example, CacheLocalFile

*.html). File name matching is not recursive through subdirectories. The server will only cache files

in the specified directory. No files in subdirectories are affected.

CacheLocalFileMmap:

 Module: mod_as_cache

Syntax: CacheLocalFileMmap filename

Default: none

Context: server config

Override: none

Origin: iSeries

Example: CacheLocalFileMmap bobwelcome.html

The CacheLocalFileMmap directive is used to specify the names of files that you want to map to the

server’s memory each time that you start the server. This directive is similar to the CacheLocalFile

488 iSeries: IBM HTTP Server

directive. Whereas CacheLocalFile allocates storage and copies (read/write) the content of the file to the

allocated storage, CacheLocalFileMmap maps the file content to the process storage space without

actually allocating storage.

The LiveLocalCache directive setting does not apply to this directive and if a cached file is updated, the

cached entity is discarded and the updated file is served from the file system. If a cached file is modified

while at the same time being served, the content of the response body is unpredictable.

Parameter: filename

v The filename parameter specifies the names of files that you want to map to the server’s

memory each time that you start the server.

 You can have multiple occurrences of this directive in the configuration file. Include a separate directive

for each file that you want to load into memory. By keeping your most frequently requested files mapped

in the server’s address space, you can improve your server’s response time for those files. For example, if

you map your server’s welcome at startup, the server can handle requests for the page much more

quickly than if it had to read the file from the file system.

Note: You can use an asterisk (*) as a wildcard character on the file names (for example,

CacheLocalFileMmap *.html). File name matching is not recursive through subdirectories. The

server will only cache files in the specified directory. No files in subdirectories are affected. The

relative/absolute path rules apply to this directive, meaning that a path that begins without a

leading (/) character is considered to be absolute. Otherwise, the path is based on the server’s

document root.

CacheLocalFilePublic:

 Module: mod_as_cache

Syntax: CacheLocalFilePublic filename

Default: none

Context: server

Override: none

Origin: iSeries

Example: CacheLocalFilePublic bobwelcome.html

The CacheLocalFilePublic directive is used to specify the names of files that you want to load into the

server’s memory each time that you start the server. The files cached here are files that are served

without any server authentication. This directive is used by SSL sites which have pages that are publicly

available. This simulates the FRCA function completed by the server for non-SSL publicly available files.

You can have multiple occurrences of this directive in the configuration file. Include a separate directive

for each file that you want to load into memory. By keeping your most frequently requested public files

loaded in the server’s memory, you can improve your server’s response time for those files. For example,

if you load your server’s welcome page into memory at startup, the server can handle requests for the

page much more quickly than if it had to read the file from the file system.

Note: You can use an asterisk (’’*’’) as a wildcard character on the file names, (for example,

CacheLocalFile *.html).

File name matching is not recursive through subdirectories. The server only caches files in the specified

directory. No files in subdirectories are affected. There is no authentication or authorization done before

any files in this cache are served.

CacheLocalFileSizeLimit:

 Module: mod_as_cache

Syntax: CacheLocalFileSizeLimit size

HTTP Server 489

Default: CacheLocalFileSizeLimit 90000

Context: server config

Override: none

Origin: iSeries

Example: CacheLocalFileSizeLimit 5000000

The CacheLocalFileSizeLimit directive is used to specify, in bytes, the largest file that will be placed in the

local memory cache. A file larger than the value specified for CacheLocalFileSizeLimit will not be placed

in the cache. This prevents the cache from being filled by only a small number of very large files. The

upper limit for this directive is capped at 16,000,000. If you specify a larger value the value 16,000,000

will be used.

CacheLocalSizeLimit:

 Module: mod_as_cache

Syntax: CacheLocalSizeLimit size

Default: CacheLocalSizeLimit 2000

Context: server config

Override: none

Origin: iSeries

Example: CacheLocalSizeLimit 25000

The CacheLocalSizeLimit directive is used to specify the maximum amount of memory, in kilobytes, that

you want to allow for file caching. You must specify the files that you want cached with the

CacheLocalFile directive or by setting DynamicCache to on. The number you specify is the upper limit

(the maximum upper limits three gigabytes); the storage is allocated as a file is cached.

Parameter: size

v The size parameter specifies the maximum amount of memory, in kilobytes, that you want to

allow for file caching.

Note: CacheLocalSizeLimit can help limit your cache size when you are using the wildcard

character to specify the files on the CacheLocalFile directive.

DynamicCache:

 Module: mod_as_cache

Syntax: DynamicCache on | off

Default: DynamicCache off

Context: server config

Override: none

Origin: iSeries

Example: DynamicCache on

The DynamicCache directive is used to specify if you want the server to dynamically cache frequently

accessed files. Setting the dynamic cache directive to ″on″ instructs the server to cache the most

frequently accessed files. This results in better performance and system throughput.

Parameter: on | off

v If the parameter is set to on the server will dynamically cache frequently accessed files.

v If the parameter is set to off the server will not dynamically cache frequently accessed files.

Note: Note requires links.If you know the files that are frequently accessed or you have a large number

of files, then it is better to use CacheLocalFile, CacheLocalFD, or CacheLocalFileMmap to cache

them at server startup.

490 iSeries: IBM HTTP Server

FRCACacheLocalFileRunTime:

 Module: mod_as_cache

Syntax: FRCACacheLocalFileRunTime filename

Default: none

Context: server config

Override: none

Origin: iSeries

Example: FRCACacheLocalFileRunTime /www/html/index.html

The FRCACacheLocalFileRunTime directive specifies the name of a file that you want to load into the

SLIC NFC during server run time if and when it is requested by a client. The configuration file can

contain multiple directive occurrences.

Parameter: filename

v The filename parameter value specifies the name of a file that you want to load into the SLIC

NFC during server run time if and when it is requested by a client.

 During server run time, the below example caches the specified file in FRCA NFC if it is requested by a

client.

FRCACacheLocalFileRunTime /www/html/index.html

Note: You can use an asterisk (*) as a wild card character on the file name. Filename matching is not

recursive through subdirectories. The server only caches files in the specified directory. No files in

other sub directories are affected.

During server run time, the below example caches in the FRCA NFC any .gif file in the /www/images

directory that is requested by a client. For example,

FRCACacheLocalFileRunTime /www/images/*.gif

Note: You can use an asterisk (*) as a wild card character on the file name. Filename matching is not

recursive through subdirectories. The server will only cache files in the specified directory and its

subdirectories.

During server run time, the below example will dynamically cache in the SLIC NFC (based on the file

usage) any file that is in a directory path that starts with /www/imag and its subdirectories. For

example,

FRCACacheLocalFileRunTime /www/imag*

Note: If directory name begins with / it is absolute, otherwise it is relative to the server’s document root.

During server run time, the below example will dynamically cache in the SLIC NFC (based on the file

usage) any file in any directory.

FRCACacheLocalFileRunTime /*

Note: If a directory name begins with / it is absolute, otherwise it is relative to the server’s document

root.

For caching files at the server run time, only specify the path name of the files that are intended for

public viewing. That is, do not specify or configure file names containing sensitive information which is

not intended for general users. FRCACacheLocalFileRunTime only caches files that do not require

conversion. (IFS binary or ASCII files).

HTTP Server 491

FRCACacheLocalFileSizeLimit:

 Module: mod_as_cache

Syntax: FRCACacheLocalFileSizeLimit size

Default: FRCACacheLocalFileSizeLimit 92160

Context: server config

Override: none

Origin: iSeries

Example: FRCACacheLocalFileSizeLimit 32000

The FRCACacheLocalFileSizeLimit directive specifies the maximum file size (in bytes) that you want to

allow for file caching. The directive can control cache storage for a number of smaller files when using

wild card characters to specify files in the FRCACacheLocalFileStartUp and FRCACacheLocalFileDynamic

directives

Parameter: size

v The size parameter value specifies the maximum file size (in bytes) that you want to allow for

file caching.

 The below example allows only caching of files that are equal to or less than 32000 bytes. Files greater

than 32000 bytes are not cached.

FRCACacheLocalFileSizeLimit 32000

FRCACacheLocalFileStartUp:

 Module: mod_as_cache

Syntax: FRCACacheLocalFileStartUp filename

Default: none

Context: server config

Override: none

Origin: iSeries

Example: FRCACacheLocalFileStartUp /www/html/index.html

The FRCACacheLocalFileStartUp directive specifies the file name that you want to load into the SLIC

NFC each time you start the server. The configuration file can contain multiple directive occurrences.

Parameter: filename

v The filename parameter value specifies the file name that you want to load into the SLIC NFC

each time you start the server.

 The below example caches a specific file.

FRCACacheLocalFileStartUp /www/html/index.html

Note: You can use an asterisk (*) as a wild card character on the file name. Filename matching is not

recursive through subdirectories. The server only caches files in the specified directory. No files in

other sub directories are affected.

The below example caches all .gif files in the /www/images directory.

FRCACacheLocalFileStartUp /www/images/*.gif

Note: If a directory name begins with / it is absolute, otherwise it is relative to the server’s document

root.

492 iSeries: IBM HTTP Server

FRCACacheLocalFileStartUp only caches files that do not require conversion. (IFS binary or ASCII files).

FRCA Proxy does not perform authentication or authorization checking. Therefore, do not specify or

configure file names containing sensitive information that is not intended for public viewing.

FRCACacheLocalSizeLimit:

 Module: mod_as_cache

Syntax: FRCACacheLocalSizeLimit size

Default: FRCACacheLocalSizeLimit 2000

Context: server config

Override: none

Origin: iSeries

Example: FRCACacheLocalSizeLimit 5000

The FRCACacheLocalSizeLimit directive specifies the maximum amount of storage (in kilobytes) that you

want to allow for FRCA file caching.

Parameter: size

v The size parameter value specifies the maximum amount of storage (in kilobytes) that you

want to allow for FRCA file caching.

 The below example caches files until the accumulated size reaches 5000 kilobytes.

FRCACacheLocalSizeLimit 5000

Note: The specified value is the upper limit, the actual amount of allocated storage is the accumulated

size of the cached files. This directive can limit the cache size when using wild card character to

specify the files in the FRCACacheLocalFileStartUp directive.

If the specified directive size is greater than the amount of available storage in the FRCA network file

cache, the FRCA network file only caches as many files as it has space for.

FRCACookieAware:

 Module: mod_as_cache

Syntax: FRCACookieAware <path>

Default: none

Context: server config

Override: none

Origin: iSeries

Example: FRCACookieAware /some_path_segment

This FRCACookieAware directive indicates URL prefix for which the cookie should be included in cache

lookup. This directive makes it possible to serve a cached entity only for the requests with the same

cookie

Parameter: <path>

v The <path> parameter value specifies a valid path name.

FRCAEnableFileCache:

 Module: mod_as_cache

Syntax: FRCAEnableFileCache on | off

Default: FRCAEnableFileCache off

Context: server config

Override: none

HTTP Server 493

Origin: iSeries

Example: FRCAEnableFileCache on

The FRCAEnableFileCache directive enables or disables FRCA file caching support for the specified

server.

Parameter: on | off

v If the parameter value is on, FRCA file caching support is enabled for the specified server.

v If the parameter value is off, all other FRCA file cache related directives in the configuration file

are ignored.

Note: FRCA does not perform authentication or authorization checking for the HTTP requests that are

served from the FRCA cache.

FRCAEnableProxy:

 Module: mod_as_cache

Syntax: FRCAEnableProxy on | off

Default: FRCAEnableProxy off

Context: server config, virtual host

Override: none

Origin: iSeries

Example: FRCAEnableProxy on

The FRCAEnableFileCache directive enables or disables FRCA proxy support.

Parameter: on | off

v If the parameter value is on, FRCA proxy support is enabled for the specified container.

v If the parameter value is off, only FRCA directives in the server configuration section are

ignored. If FRCAEnableProxy is set to off in a virtual host container, only FRCA directives in

that virtual host container are ignored.

 FRCA proxy does not perform authentication or authorization checking for the HTTP requests that are

served by the FRCA Proxy support.

Note: Virtual host containers do not inherit the FRCAEnableProxy setting from the server configuration.

FRCAEndofURLMarker:

 Module: mod_as_cache

Syntax: FRCAEndofURLMarker <string>

Default: none

Context: server config

Override: none

Origin: iSeries

Example: FRCAEndofURLMarker ###″

Example: FRCAEndofURLMarker eou

Example: FRCAEndofURLMarker #eou#

The FRCAEndofURLMarker directive specifies the unique string that identifies the end of URLs. Suppose

a link in an html page is http://some.org/some_path/some_parms###. Before the client sends this

request to the server, it may pad the URL with data such as client_padded_data. The some.org server will

receive the path /some_path/some_parms###client_padded_data.

494 iSeries: IBM HTTP Server

By specifying FRCAEndofURLMarker ###″, FRCA support can identify the end of the original URL (link)

before it was modified or padded by the client.

Parameter: <string>

v The <string> parameter value specifies a string of one or more characters including #, $.

FRCAMaxCommBufferSize:

 Module: mod_as_cache

Syntax: FRCAMaxCommBufferSize size

Default: FRCAMaxCommBufferSize 8000

Context: server config

Override: none

Origin: Apache

Example: FRCAMaxCommBufferSize 4000000

The FRCAMaxCommBufferSize directive sets the communication buffer size (in bytes) in FRCA for

performance. The data being sent to HTTP Server (powered by Apache) consists of log data, message

data, and collection services data. FRCA will buffer the size of data specified until the buffer is full. Once

the buffer is full, the data will be transmitted to Apache for processing.

Parameter: size

v The size parameter value sets the communication buffer size (in bytes) in FRCA for

performance.

FRCAMaxCommTime:

 Module: mod_as_cache

Syntax: FRCAMaxCommTime time

Default: FRCAMaxCommTime 120

Context: server config

Override: none

Origin: Apache

Example: FRCAMaxCommTime 240

The FRCAMaxCommTime directive sets the maximum number of seconds to wait before the data buffer

is sent from FRCA to HTTP Server (powered by Apache). The data being sent to HTTP Server consists of

log data, message data, and collection services data. Once the time limit has been reached, the data will

be transmitted to HTTP Server for processing. Valid values include integers 0 through 65,535.

Parameter: time

v The time parameter value sets the maximum number of seconds to wait before the data buffer

is sent from FRCA to HTTP Server (powered by Apache).

FRCAProxyCacheEntitySizeLimit:

 Module: mod_as_cache

Syntax: FRCAProxyCacheEntitySizeLimit size

Default: FRCAProxyCacheEntitySizeLimit 92160

Context: server config

Override: none

Origin: iSeries

Example: FRCAProxyCacheEntitySizeLimit 8000

HTTP Server 495

The FRCAProxyCacheEntitySizeLimit directive specifies the maximum proxy response entity size (in

bytes) for FRCA to cache.

Parameter: size

v The size parameter value specifies the maximum proxy response entity size (in bytes) for FRCA

to cache.

 The below example only allows caching of proxy responses that are equal to, or less than, 8000 bytes.

FRCAProxyCacheEntitySizeLimit 8000

FRCAProxyCacheExpiryLimit:

 Module: mod_as_cache

Syntax: FRCAProxyCacheExpiryLimit <time>

Default: FRCAProxyCacheExpiryLimit 86400

Context: server config

Override: none

Origin: iSeries

Example: FRCAProxyCacheExpiryLimit 3600

The FRCAProxyCacheExpiryLimit directive sets the expiration (in seconds) for FRCA proxy cached HTTP

documents. Expiry time for FRCA proxy cached HTTP documents will be set to at most nnn number of

seconds into the future. FRCA proxy cached HTTP documents can be at most nnn seconds out of date. If

the expire header is present with the document in the response, then the lower of the two values is used.

Parameter: <time>

v The <time> parameter value sets the expiration (in seconds) for FRCA proxy cached HTTP

documents.

 FRCA proxy cached HTTP documents are limited by the specified time interval (in seconds). This

restriction is enforced even if an expiration date is supplied with the HTTP document.

FRCAProxyCacheRefreshInterval:

 Module: mod_as_cache

Syntax: FRCAProxyCacheRefreshInterval <proxy> <time>

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Example: FRCAProxyCacheRefreshInterval /mirror/ibm/test 30

The FRCAProxyCacehRefreshInterval directive sets the time period (in seconds) to use each cached entity,

for the specified URI, before refreshing the cache.

Parameter One: <path>

v The <path> parameter value specifies the URI associated with cached entity.

Parameter Two: <time>

v The <time> parameter value sets the time period (in seconds) to use each cached entity, for the

specified URI, before refreshing the cache. Possible values include integers 0 through

2,147,483,647.

Note: If the value specified for <time> is zero, then the document for the specified path are always

current. That is the document is not cached.

496 iSeries: IBM HTTP Server

FRCA proxy cached HTTP documents are limited by the specified interval (in seconds). This restriction is

enforced even if an expiration date is supplied with the HTTP document.

FRCAProxyCacheSizeLimit:

 Module: mod_as_cache

Syntax: FRCAProxyCacheSizeLimit size

Default: FRCAProxyCacheSizeLimit 2000

Context: server config

Override: none

Origin: iSeries

Example: FRCAProxyCacheSizeLimit 5000

The FRCAProxyCacheSizeLimit directive specifies the maximum amount of storage (in kilobytes) that

FRCA proxy caching uses for the specified server.

Parameter One: size

v The size parameter value specifies the maximum amount of storage (in kilobytes) that FRCA

proxy caching uses for the specified server.

 The below example caches proxy response entities until the accumulated size reaches 5000 kilobytes.

FRCAProxyCacheSizeLimit 5000

Note: The specified value is the upper limit; the actual amount of allocated storage is the accumulated

proxy entity cache size.

FRCAProxyPass:

 Module: mod_as_cache

Syntax: FRCAProxyPass <path> <URL>

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Example: FRCAProxyPass /mirror/foo/ http://foo.com/

The FRCAProxyPass directive allows remote servers to map into the local server space. The local server

does not act as a proxy in the conventional sense; it acts a mirror of the remote server.

Parameter One: <path>

v The <path> parameter value specifies the name of a local virtual path. The value is case

sensitive.

Parameter Two: <URL>

v The <URL> parameter value specifies the partial URL for the remote server.

 If the local server address is http://ibm.com/ then FRCAProxyPass /mirror/ibm1/ http://ibm1.com/

causes a local request for the http://ibm.com/mirror/ibm1/location to be internally converted into a

proxy request of http://ibm1.com/location.

Note: FRCA Proxy does not perform authentication or authorization checking. Therefore, do not specify

or configure paths or URLs that would result in responses with sensitive information that is not

intended for public viewing.

HTTP Server 497

FRCARandomizeResponse:

 Module: mod_as_cache

Syntax: FRCARandomizeResponse <path> <string> <nnn> <mmm>

Default: none

Context: server config

Override: none

Origin: iSeries

Example: FRCARandomizeResponse /some_path/fileNNN.html NNN 1 1000

Example: FRCARandomizeResponse /some_path/fileXXX.html XXX 200 300

The FRCARandomizeResponse directive specifies the path template, the replacement string marker, and

the random number range that you would like FRCA to randomly use when selecting and serving files of

that template. For example, if you have 1000 files with names file1.html through file1000.html. By

configuring FRCARandomizeResponse /document_root_alias_path/fileNNN.html NNN 1 1000 and

requesting the URL http://some_host:port/dirpath/fileNNN.html, FRCA will randomly select and serve

one of the 1000 files.

Parameter One: <path>

v The <path> parameter value specifies valid paths in the form of /some_path_segment/
some_partial_file_name#.ext where ″#″ is replaced with a randomly generated number by

FRCA before serving the response.

Parameter Two: <string>

v Text <string> parameter value specifies the replacement string marker (″NNN″) in the path.

Parameter Three: <nnn>

v The <nnn> parameter value specifies the lower limit for random numbers.

Parameter Four: <mmm>

v The <mmm> parameter value specifies the upper limit for random numbers.

LiveLocalCache:

 Module: mod_as_cache

Syntax: LiveLocalCache on | off

Default: LiveLocalCache on

Context: server config

Override: none

Origin: iSeries

Example: LiveLocalCache off

The LiveLocalCache directive is used to specify if the cache is updated when a cached file is modified.

Set this directive to ″on″ if you want users, requesting a cached file, to receive the file with the latest

updates. Setting this directive to ″off″ is the optimum setting for performance. When LiveLocalCache

directive is set to ″on″, before responding to a request for a file that is stored in memory, the server

checks to see if the file has changed since the server was started. If the file has changed, the server

responds to this request with the updated file. The server then deletes the older file version from

memory. Restart the server to load the new file into memory.

Parameter: on | off

v If the parameter value is set to on, the cache is updated when a cached file is modified.

v If the parameter value is set to off, the cache is not updated when a cached file is modified.

498 iSeries: IBM HTTP Server

Module mod_asis for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module allows file types to be defined such that HTTP Server sends them without adding HTTP

headers. mod_asis supports EBCDIC files. The module converts file content from EBCDIC to ASCII. This

can be used to send any kind of data from the server, including redirects and other special HTTP

responses, without requiring a cgi-script.

Usage

In the server configuration file, define a new mime type called httpd/send-as-is . For example:

AddType httpd/send-as-is asis

This defines the .asis file extension as being of the new httpd/send-as-is mime type. The contents of any

file with a .asis extension are then be sent by HTTP Server to the client with almost no changes. Clients

will need HTTP headers to be attached. A Status: header is also required; the data should be the 3-digit

HTTP response code, followed by a textual message.

Here is an example of a file whose contents are sent asis, telling the client that a file has redirected.

Status: 301 Now where did I leave that URL

Location: http://xyz.abc.com/roch/bar.html

Content-type: text/html

<HTML>

<HEAD>

<TITLE>Fred’s Page</TITLE>

</HEAD>

<BODY>

<H1>Fred’s exceptionally wonderful page has moved to

Joe’s site.

</H1>

</BODY>

</HTML>

Note: The server adds a Date: and Server: header to the data returned to the client.

Module mod_autoindex for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_autoindex provides for automatic directory indexing. The index of a directory can come

from one of two sources:

v A file written by the user, typically called index.html. The “DirectoryIndex” on page 582 directive sets

the name of this file. This is controlled by mod_dir.

HTTP Server 499

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v A listing generated by the server. The other directives control the format of this listing. The AddIcon,

AddIconByEncoding and AddIconByType are used to set a list of icons to display for various file types;

for each file listed, the first icon listed that matches the file is displayed. These are controlled by

mod_autoindex.

If the FancyIndexing keyword is present on the IndexOptions directive, the column headers are links that

control the order of the display. If you select a header link, the listing will be regenerated, sorted by the

values in that column. Selecting the same header repeatedly toggles between ascending and descending

order.

For all mod_autoindex directives that specify a file name (AddDescription, AddIcon, and so on), case

sensitivity is handled based on the file system. If the object is in the QOpenSys file system, the name is

handled in a case sensitive manner. If the object is a file system other than QOpenSys, the name is

handled in a case insensitive manner.

Note: When the display is sorted by ″Size″, it is the actual size of the files that’s used, not the displayed

value - so a 1010-byte file will always be displayed before a 1011-byte file (if in ascending order)

even though the size of both files could be displayed as ″1K″.

Directives

v “AddAlt”

v “AddAltByEncoding” on page 501

v “AddAltByType” on page 501

v “AddDescription” on page 501

v “AddIcon” on page 502

v “AddIconByEncoding” on page 503

v “AddIconByType” on page 503

v “DefaultIcon” on page 503

v “HeaderName” on page 504

v “IndexIgnore” on page 504

v “IndexOptions” on page 505

v “IndexOrderDefault” on page 508

v “ReadmeName” on page 508

AddAlt:

 Module: mod_autoindex

Syntax: AddAlt string file [file...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddAlt ″IMG″ jpg gif

The AddAlt directive sets the alternate text to display for automatic directory indexing.

Parameter One: string

v The string parameter is enclosed in double quotes (″...″). This alternate text is displayed if the

client is image-incapable or has image loading disabled.

Parameter Two: file

v The file parameter is either ^^DIRECTORY^^ for child directories, ^^PARENT^^ for parent

directories, ^^BLANKICON^^ for blank lines (to format the list correctly), a file extension, a

500 iSeries: IBM HTTP Server

wildcard expression, a partial file, or a complete filename. It could also be a QSYS.LIB member

type if this directive is being used to set alternate text for QSYS.LIB members. For example:

AddAlt "IMG" .jpg .gif

AddAlt " " ^^BLANKICON^^

AddAlt "BAK" *~

Note: This directive is not supported in “<Location>” on page 554 containers.

AddAltByEncoding:

 Module: mod_autoindex

Syntax: AddAltByEncoding string MIME-encoding [MIME-encoding...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddAltByEncoding ″CMP″ x-compress

The AddAltByEncoding directive sets the alternate text to display for a file, instead of an icon, for

automatic directory indexing.

Parameter One: string

v The string parameter is enclosed in double quotes (″...″). This alternate text is displayed if the

client is image-incapable or has image loading disabled.

Parameter Two: MIME-encoding

v The MIME-encoding parameter is a valid content-encoding, such as x-compress.

Note: This directive is not supported in “<Location>” on page 554 containers.

AddAltByType:

 Module: mod_autoindex

Syntax: AddAltByType string MIME-type [MIME-type ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddAltByType ″HTM″ text/html

The AddAltByType directive sets the alternate text to display for a file, instead of an icon, for automatic

directory indexing.

Parameter One: string

v The string parameter is enclosed in double quotes (″...″). This alternate text is displayed if the

client is image-incapable or has image loading disabled.

Parameter Two: MIME-type

v The MIME-type parameter is a valid content-type, such as text/html.

Note: This directive is not supported in “<Location>” on page 554 containers.

AddDescription:

 Module: mod_autoindex

Syntax: AddDescription string file [file...]

HTTP Server 501

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddDescription ″Famous People″ /web/pics/famous*

Example: AddDescription ″My pictures″ /QSYS.LIB/MYLIB/MYFILE.FILE/pic*

The AddDescription directive sets the description to display for a file, for automatic directory indexing.

File is a file extension, partial filename, QSYS.LIB member type, wildcard expression or full filename for

files to describe. String is enclosed in double quotes (″). For example:

AddDescription "The planet Mars" /web/pics/mars.gif

By default, the description field is 23 bytes wide. Seven more bytes may be added if the directory is

covered by an IndexOptions SuppressSize, and 19 bytes may be added if IndexOptions

SuppressLastModified is in effect. The widest this column can be is therefore 49 bytes, unless configured

differently using IndexOptions DescriptionMaxWidth.

The DescriptionWidth IndexOptions keyword allows you to adjust this width to any arbitrary size.

The following order of precedence will be used to search for a directory listing file description. The first

mechanism from this list that applies will be used to generate the file description:

1. The file matches one of those specified on an AddDescription directive. The string from the directive

is displayed. This option is the least CPU intensive.

2. The file system contains a description for the file. The file system description information is displayed.

Note that if the file is a QSYS.LIB member, the member text is displayed.

3. If IndexOptions ScanHTMLTitles is configured, the title is extracted from HTML documents for fancy

indexing. This is CPU and disk intensive.

Note: Descriptive text defined with AddDescription may contain HTML markup, such as tags and

character entities. If the width of the description column should happen to truncate a tagged

element (such as cutting off the end of a bold phrase), the results may affect the rest of the

directory listing. This directive is not supported in “<Location>” on page 554 containers.

AddIcon:

 Module: mod_autoindex

Syntax: AddIcon icon name [name ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddIcon (IMG,icons/image) .gif .jpg

The AddIcon directive sets the icon to display next to a file ending in name for automatic directory

indexing.

Parameter One: icon

v The icon parameter is either a (%-escape) relative URL to the icon or of the format (alttext,url)

where alttext is the text tag given for an icon for non-graphical browsers.

Parameter Two: name

v The name parameter is either ^^DIRECTORY^^ for child directories, ^^PARENT^^ for parent

directories, ^^BLANKICON^^ for blank lines (to format the list correctly), a file extension, a

wildcard expression, a partial file or a complete filename. For example

502 iSeries: IBM HTTP Server

AddIcon (IMG,icons/image) .gif .jpg

AddIcon (PAR, icons/parent .gif) ^^PARENT^^

AddIcon /dir.gif ^^DIRECTORY^^

AddIcon backup.gif *~

 “AddIconByType” should be used in preference to AddIcon, when possible.

Note: This directive is not supported in “<Location>” on page 554 containers.

AddIconByEncoding:

 Module: mod_autoindex

Syntax: AddIconByEncoding icon MIME-encoding [MIME-encoding ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddIconByEncoding /compress.xbm x-compress

The AddIConByEncoding directive sets the icon to display next to files with MIME-encoding for

automatic directory indexing.

Parameter One: icon

v The icon parameter is either a (%-escaped) relative URL to the icon or of the format (alttext,url)

where alttext is the text tag five for an icon for non-graphical browsers.

Parameter Two: MIME-encoding

v The MIME-encoding parameter is a wildcard expression matching required content-encoding.

Note: This directive is not supported in “<Location>” on page 554 containers.

AddIconByType:

 Module: mod_autoindex

Syntax: AddIconByType icon MIME-type [MIME-type ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: AddIconByType (IMG,image.gif) image/*

The AddIconByType directive sets the icon to display next to files of type MIME-type for FancyIndexing.

Icon is either a (%-escaped) relative URL to the icon, or of the format (alttext,url) where alttext is the text

tag given for an icon for non-graphical browsers.

Parameter One: icon

v The icon parameter is either a (%-escaped) relative URL to the icon or of the format (alttext,url)

where alttext is the text tag given for an icon for non-graphical browsers.

Parameter Two: MIME-type

v The MIME-type parameter is a wildcard expression matching the required MIME types.

Note: This directive is not supported in “<Location>” on page 554 containers.

DefaultIcon:

 Module: mod_autoindex

HTTP Server 503

Syntax: DefaultIcon url

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Modified

Example: DefaultIcon /icon/unknown.gif

The DefaultIcon directive sets the icon to display for files when no specific icon is known, for automatic

directory indexing.

Parameter: url

v The url parameter is either a (%-escaped) relative URL to the icon or of the format (alttext,url)

where alttext is the text tag given for an icon for non-graphical browsers. For example:

DefaultIcon (UNK,unknown.gif)

Note: This directive is not supported in “<Location>” on page 554 containers.

HeaderName:

 Module: mod_autoindex

Syntax: HeaderName filename

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: HeaderName headerfile

Example: HeaderName PREAMBLE.MBR

The HeaderName directive sets the name of the file that will be inserted at the top of the index listing.

Parameter: filename

v The filename parameter is the name of the file to include.

 Filename is treated as a URI path relative to the one used to access the directory being indexed, and must

resolve to a document with a major content type of ″text″ (for example, text/html, text/plain). This

means that filename may refer to a CGI script if the script’s actual file type (as opposed to its output) is

marked as text/html such as with a directive like:

AddType text/html .cgi

Content negotiation will be performed if the MultiViews option is enabled. See “Content negotiation for

HTTP Server (powered by Apache)” on page 11 for more information.

If filename resolves to a static text/html document (not a CGI script) and the Includes Option is enabled,

the file will be processed for server-side includes. See mod_include for more information.

See also “ReadmeName” on page 508.

Note: This directive is not supported in “<Location>” on page 554 containers.

IndexIgnore:

 Module: mod_autoindex

Syntax: IndexIgnore file [file ...]

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

504 iSeries: IBM HTTP Server

rzaiemod_include.htm

Override: Indexes

Origin: Apache

Example: IndexIgnore README .htaccess

Example: IndexIgnore README.MBR

The IndexIgnore directive adds to the list of files to hide when listing a directory. Multiple IndexIgnore

directives add to the list, rather than the replacing the list of ignored files. By default, the dot directory (.)

is ignored.

Parameter: file

v The file parameter is a file extension, QSYS.LIB member type, partial filename, wildcard

expression or full filename for files to ignore.

Note: This directive is not supported in “<Location>” on page 554 containers.

IndexOptions:

 Module: mod_autoindex

Syntax: IndexOptions [+|-]option [+|-]option ...

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: IndexOptions FancyIndexing ShowOwner FoldersFirst

The IndexOptions directive specifies the behavior of the directory indexing.

Parameter: option

v The option parameter can be one of the following:

 Parameter Description

DescriptionWidth= [n] v The DescriptionWidth keyword allows you to specify the width of the

description column in characters.

v -DescriptionWidth (or unset) allows mod_autoindex to calculate the best

width.

v DescriptionWidth=n fixes the column width to n bytes wide.

v DescriptionWidth=* grows the column to the width necessary to

accommodate the longest description string.

See “AddDescription” on page 501 for information on truncating.

FancyIndexing This turns on fancy indexing of directories. With FancyIndexing, the column

headers are links that control the order of the display. If you select a header

link, the listing will be regenerated, sorted by the values in that column.

Selecting the same header repeatedly toggles between ascending and

descending order.

Note: When the display is sorted by ″Size″, it is the actual size of the files

that’s used, not the displayed value. Regardless of the ShowSmallFileBytes

option setting, a 1010-byte file will always be displayed before a 1011-byte file

(if in ascending order) even though the size of both files could be displayed as

″1K″.

HTTP Server 505

Parameter Description

FoldersFirst If this option is enabled, subdirectories in a FancyIndexed listing will always

appear first, followed by normal files in the directory. The listing is broken

into two components, the files and the subdirectories, and each is sorted

separately and then displayed (subdirectories-first). For instance, if the sort

order is descending by name, and FoldersFirst is enabled, subdirectory Zed

will be listed before subdirectory Beta, which will be listed before normal files

Gamma and Alpha. This option only has an effect if FancyIndexing is also

enabled.

IconsAreLinks This makes the icons part of the anchor for the filename, for fancy indexing.

IconHeight=[pixels] Presence of this option, when used with IconWidth, will cause the server to

include HEIGHT and WIDTH attributes in the IMG tag for the file icon. This

allows browser to precalculate the page layout without having to wait until all

the images have been loaded. If no value is given for the option, it defaults to

the standard height of the icons supplied with HTTP Server software.

IconWidth=[pixels] Presence of this option, when used with IconHeight, will cause the server to

include HEIGHT and WIDTH attributes in the IMG tag for the file icon. This

allows browser to precalculate the page layout without having to wait until all

the images have been loaded. If no value is given for the option, it defaults to

the standard width of the icons supplied with HTTP Server software.

IgnoreClient This option causes mod_autoindex to ignore all query variables from the

client, including sort order (implies SuppressColumnSorting).

NameWidth=[n | *] The NameWidth keyword allows you to specify the width of the filename

column in characters. If the keyword value is ’*’, then the column is

automatically sized to the length of the longest filename in the display. The

minimum value allowed is 5.

NameMinWidth=[n] The NameMinWidth keyword allows you to specify the minimum width that

will always be reserved for the filename column in characters. The default

setting is 15. The minimum value allowed is 5. If NameMinWidth is greater

than NameWidth, then the filename column will have a

length=NameMinWidth.

ScanHTMLTitles This enables the extraction of the title from HTML documents for fancy

indexing. If the file does not have a description given by AddDescription then

HTTP Server will read the document for the value of the TITLE tag. This is

CPU and disk intensive.

SelectiveDirAccess This option causes the server to return directory listings only for directories

that contain a wwwbrws file. The contents of the wwwbrws file are not

important. The server only checks for its existence. The object is a member

name of an iSeries physical file or a type of object in an integrated file system

directory. For case-sensitive file systems such as /QOpenSys, the wwwbrws

name is lowercase.

Note: SelectiveDirAccess is an iSeries specific option. This specific option

works on a per directory basis. You must specify the ± SelectiveDirAccess on

a Directory container.

ShowOwner This determines whether directory listings should include the owner ID for

each file.

SuppressColumnSorting If specified, HTTP Server will not make the column headings in a

FancyIndexed directory listing into links for sorting. The default behavior is

for them to be links; selecting the column heading will sort the directory

listing by the values in that column.

SuppressDescription This will suppress the file description in fancy indexing listings. See

“AddDescription” on page 501 for information about setting the file

description. See also the DescriptionWidth index option to limit the size of the

description column.

506 iSeries: IBM HTTP Server

Parameter Description

SuppressHTMLPreamble If the directory actually contains a file specified by the “HeaderName” on

page 504 directive, the module usually includes the contents of the file after a

standard HTML preamble (<HEAD>, <HEAD>, and so on). The

SuppressHTMLPreamble option disables this behavior, causing the module to

start the display with the header file contents. The header file must contain

appropriate HTML instructions in this case. If there is no header file, the

preamble is generated as usual.

SuppressIcon This suppresses the display of icons on directory listings. The default is that

no options are enabled.

SuppressLastModified This will suppress the display of the last modification date, in fancy indexing

listings.

SuppressRules This will suppress the horizontal rule lines (HR tags) in directory listings.

Combining both SuppressIcon and SuppressRules yields proper HTML 3.2

output, which by the final specification prohibits IMG and HR tags from the

PRE block (used to format FancyIndexed listings).

SuppressSize This will suppress the file size in fancy indexing listings.

TrackModified This returns the Last-Modified and ETag values for the listed directory in the

HTTP header. It is only valid if the operating system and file system return

appropriate stat() results. Some UNIX systems do so, as do OS/2’s JFS and

Win32’s NTFS volumes. OS/2® and Win32 FAT volumes, for example, do not.

Once this feature is enabled, the client or proxy can track changes to the list of

files when they perform a HEAD request. Note some operating systems

correctly track new and removed files, but do not track changes for sizes or

dates of the files within the directory. Changes to the size or date stamp of an

existing file will not update the Last-Modified header on all UNIX platforms.

If this is a concern, leave this option disabled.

VersionSort The VersionSort keyword causes files containing version numbers to sort in a

natural way. Strings are sorted as usual, except that substrings of digits in the

name and description are compared according to their numeric value. For

example:

v ibm-1.7

v ibm-1.7.2

v ibm-1.7.12

v ibm-1.8.2

v ibm-1.8.2a

v ibm-1.12

If the number starts with a zero, then it is considered to be a fraction:

v ibm-1.001

v ibm-1.002

v ibm-1.030

v ibm-1.04

 Notes on IndexOptions directives:

v Multiple IndexOptions directives for a single directory are merged together.

v The directive allows incremental syntax (i.e., prefixing keywords with ’+’ or ’-’).

Whenever a ’+’ or ’-’ prefixed keyword is encountered, it is applied to the current IndexOptions settings

(which may have been inherited from an upper-level directory). However, whenever an non-prefixed

keyword is processed, it clears all inherited options and any incremental settings encountered so far.

Consider the following example:

HTTP Server 507

IndexOptions +ScanHTMLTitles -IconsAreLinks FancyIndexing

IndexOptions +SuppressSize

The net effect is equivalent to IndexOptions FancyIndexing +SuppressSize, because the non-prefixed

FancyIndexing discarded the incremental keywords before it, but allowed them to start accumulating

again afterward. To unconditionally set the IndexOptions for a particular directory, clearing the inherited

settings, specify keywords without either ’+’ or ’-’ prefixes.

Note: This directive is not supported in “<Location>” on page 554 containers.

IndexOrderDefault:

 Module: mod_autoindex

Syntax: IndexOrderDefault [ascending | descending] [name | date | size | owner | description] [CaseSense |

NoCaseSense]

Default: IndexOrderDefault Ascending Name CaseSense

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Modified

Example: IndexOrderDefault descending size

The IndexOrderDefault directive is used in combination with the FancyIndexing index option. By default,

FancyIndexed directory listings are displayed in ascending order by filename; the IndexOrderDefault

allows you to change this initial display order.

IndexOrderDefault takes two required arguments and a third optional argument.

Parameter One: ascending | descending

v The ascending and descending parameter indicates the direction of the sort.

Parameter Two: name | date | size | owner | description

v The name, date, size, owner, and description parameter arguments must be used and identifies the

primary key. The secondary key is always ascending filename.

Parameter Three: CaseSense | NoCaseSense

v The CaseSense and NoCaseSense parameters are optional third keywords that allow you to

choose if the column sort is case sensitive. This keyword is valid if the second keyword is

name, owner or description only. If the second keyword is date or size, then this parameter is

ignored. The default for keyword is CaseSense.

 You can force a directory listing to only be displayed in a particular order by combining this directive

with the SuppressColumnSorting index option; this will prevent the client from requesting the directory

listing in a different order.

Note: This directive is not supported “<Location>” on page 554 containers. The directive may be

inherited in a “<Directory>” on page 536 context, but not in a “<VirtualHost>” on page 573

context.

ReadmeName:

 Module: mod_autoindex

Syntax: ReadmeName filename

Default: none

Context: server config, virtual host, directory (but not location), .htaccess

Override: Indexes

Origin: Apache

Example: ReadMeName readme

508 iSeries: IBM HTTP Server

Example: ReadMeName README.MBR

The ReadmeName directive sets the name of the file that will be appended to the end of the index listing.

Parameter: filename

v The filename parameter is the name of the file to include and is taken to be relative to the

location being indexed. Details of how its handled may be found under the description of the

“HeaderName” on page 504 directive, which uses the same mechanism as ReadmeName.

Note: This directive is not supported in “<Location>” on page 554 containers.

Module mod_cern_meta for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_cern_meta provides for CERN httpd meta file semantics.

Directives

v “MetaFiles”

v “MetaDir”

v “MetaSuffix” on page 510

MetaFiles:

 Module: mod_cern_meta

Syntax: MetaFiles on | off

Default: MetaFiles off

Context: directory

Override: none

Origin: Apache

Example: MetaFiles on

This directive allows you to emulate the CERN Meta file semantics. Meta files are HTTP headers that can

be output in addition to the normal range of headers for each file accessed. They appear like the .asis

files, and are able to influence the Expires: header.

Parameter: on | off

v Turns on or off the meta file processing on a per-directory basis.

MetaDir:

 Module: mod_cern_meta

Syntax: MetaDir directoryname

Default: MetaDir .web

Context: directory

Override: none

Origin: Apache

Example: MetaDir .meta Specifies the name of the

HTTP Server 509

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Specifies the name of the directory where HTTP Server can find meta information files. The directory is

usually a hidden subdirectory of the directory that contains the file being accessed. Set directory name to

″.″ in order to look in the same directory as the file. Hidden directories begin with ″.″ so the default

directory will be hidden.

Parameter: directoryname

v The directoryname parameter specifies the name of the directory in which HTTP Server can find

meta information files.

MetaSuffix:

 Module: mod_cern_meta

Syntax: MetaSuffix suffix

Default: MetaSuffix .meta

Context: directory

Override: none

Origin: Apache

Example: MetaSuffix .stuff

Specifies the file name suffix for the file containing the meta information. A request will cause the server

to look in the file with the MetaSuffix in the “MetaDir” on page 509 directory, and will use its contents to

generate additional MIME header information.

Parameter: suffix

v The suffix parameter is the file name suffix of the file containing the meta information.

Module mod_cache for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module contains directives that define support for the HTTP Proxy function which includes the

proxy caching function.

Cache Expiry Times

Cache expiry times are different than expiry times provided in HTTP response data. Cache expiry times

are calculated by caching agents (such as a proxy server), whereas expiry times in HTTP response data

are provided by content servers (for example, via HTTP Expires headers). If cacheable data from content

servers contains expiry times, a caching agent (or proxy) must use cache expiry times that are no later

than the corresponding data expiry times. In other words, caching agents may not serve data from cache

after it has expired, however they may stop serving it from cache prior to such time.

If content servers do not provide expiry times for cacheable data, the caching agent (or proxy) may try to

use other response information to calculate acceptable cache expiry times, or it may use some arbitrary

default value, as determined by the administrator.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under

“Criteria for Local Proxy Cache” on page 511.

The proxy function follows these rules to determine which directive settings to use to calculate cache

expiry times for HTTP proxy response data stored in the local proxy cache.

510 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

1. If HTTP response data contains expiry times (via Expires header for HTTP requests only) these times

are also used as cache expiry times.

2. If HTTP response data does not contain expiry times, but does contain information pertaining to

when it was last modified (via Last-Modified header for HTTP requests, or MDTM command for FTP

requests), the CacheLastModifiedFactor and CacheMaxExpire directive settings are used to calculate

cache expiry times.

3. If HTTP response data does not contain expiry times, nor does it contain information pertaining to

when it was last modified, the CacheDefaultExpire directive setting is used to calculate arbitrary cache

expiry times.

Note: The first rule has one exception. If response code 304 (Not Modified) is received for HTTP

requests, Expires headers (if any) are not used to set new cache expiry time. The second rule is

applied (for 304 responses) if last modified times from cached data are available to recalculate new

cache expiry times. If last modified times are not available from cached data, the third rule is

applied.

Criteria for Local Proxy Cache

When configured, the server handles certain requests using the proxy function to obtain data from remote

servers, which it then serves as HTTP proxy response data. It does this when acting as either a forward

proxy or a reverse proxy (see ProxyRequests or ProxyReverse). By default, the proxy function obtains and

handles data separately for each request. The server may be made more efficient, however, by using a

local proxy cache to store HTTP proxy response data locally, which it then serves multiple times for

multiple requests. The server is more efficient since remote servers need only be contacted when data in

the local proxy cache expires.

Not all response data obtained by the server is cached and served for multiple requests, due mostly for

reasons involving privacy, version control (frequency of change), and negotiable content. This type of

response data is not considered cacheable and must be obtained from remote servers for each request.

Standard Criteria

Standard criteria for the server’s local proxy cache and proxy function, in regards to response data

obtained using specified protocols, is described in the following lists. This criteria is used to determine

whether HTTP proxy response data is cacheable and may be served multiple times for multiple requests.

HTTP response data:

v Only data requested using the GET method is cacheable.

v Only data received on a request that does not end with a ’/’ is cacheable.

– 200 (OK)

– 203 (Non Authoritative)

– 300 (Multiple Choices)

– 301 (Moved Permanently)

– 304 (Not Modified)
v If data contains an Expires header, the header must be valid.

Note: This does not apply to data that does not contain an Expires header.

v If data contains an Expires header, the header must not specify a time that has already past (according

to local system time).

v If data contains an Expires header, the expiration time must be greater than the configured minimum

expiration time.

v Data received with response code 200 (OK) must contain either a Last-Modified header or an ETag

header. This requirement is waived if on is specified for the CacheIgnoreNoLastMod directive.

HTTP Server 511

v Data received with response code 304 (Not Modified) is not cacheable if a previous version is not

already in cache.

v If data contains a Cache-Control header, the header must not specify the value ″no-store″ or ″private″.

v If data contains a Pragma header, the header must not specify the value ″no-cache″.

v If the request provides an Authorization header (possibly used by the remote server), response data

must contain a Cache-Control header that specifies one or more of the following values: ″s-maxage″,

″must-revalidate″ or ″public″.

v If data contains a Content-Length header, the header must not specify a value that exceeds the

minimum or maximum data size limits set by the CacheMinFileSize and CacheMaxFileSize directives.

See Additional Criteria for more information.

FTP response data:

v Only data requested using the GET method is cacheable.

v Data is only cached if LIST or RETR commands return one of the following response codes:

– 125 (OK, Data Transfer Starting)

– 150 (OK, Opening Data Connection)

– 226 (OK, Closing Data Connection)

– 250 (OK)

Note: The LIST command is used to retrieve directory listings. The RETR command is used to retrieve

data files.

v Data must contain information for an HTTP Last-Modified header (produced via MDTM command

with response code 213, see Notes: below). This requirement is waived if on is specified for the

CacheIgnoreNoLastMod directive.

v If data contains information for an HTTP Content-Length header (produced via SIZE command with

response code 213), the header must not specify a value that exceeds the minimum or maximum data

size limits set by the CacheMinFileSize and CacheMaxFileSize directives, respectively. See Additional

Criteria for more information.

HTTPS (or SSL-tunneling over HTTP) response data:

v Data requested using SSL-tunneling over HTTP is not cacheable.

No other protocols are supported by the proxy function.

Additional Criteria

Additional criteria for the server’s local proxy cache and proxy functions may be imposed by the function

providing underlying cache support. Currently, this includes only the disk cache function.

The following list describes additional restrictions on HTTP proxy response data stored in a local proxy

cache, imposed by the mod_disk_cache module:

v Cache data must not exceed the minimum or maximum data size limits set by the CacheMinFileSize

and CacheMaxFileSize directives. This restriction applies regardless of Content-Length header values (if

any) in HTTP proxy response data.

v Data with cache expiry times that will expire within the minimum time margin set by the

CacheTimeMargin directive is not cached. This restriction applies to HTTP proxy response data, using

cache expiry times calculated according to rules described in the Cache Expiry Times. See

mod_disk_cache for other restriction that may apply.

Directives

v “CacheDefaultExpire” on page 513

v “CacheExpiryCheck” on page 514

512 iSeries: IBM HTTP Server

v “CacheIgnoreCacheControl” on page 514

v “CacheIgnoreNoLastMod” on page 515

v “CacheLastModifiedFactor” on page 516

v “CacheMaxExpire” on page 517

v “CacheMaxFileSize” on page 518

v “CacheMinFileSize” on page 518

v “CacheTimeMargin” on page 519

CacheDefaultExpire:

 Module: mod_cache

Syntax: CacheDefaultExpire period

Default: CacheDefaultExpire 3600

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDefaultExpire 3

The CacheDefaultExpire directive specifies the default number of seconds in which cacheable HTTP

proxy response data will be set to expire within the local proxy cache, starting from the time it is

obtained by the server.

Parameter: period

v The period parameter defines the default cache expiry period, in seconds.

This setting is used to calculate arbitrary cache expiry times for HTTP proxy response data stored in

the local proxy cache. See Cache Expiry Times for more information on how the server determines

which settings to use to calculate cache expiry times. See the CacheIgnoreNoLastMod directive for

information relating to how cache criteria may be waived for this setting to take affect.

If this setting is used, cache expiry times are calculated by adding the specified number of seconds

to the time that data is received by the proxy function.

Example:

ProxyRequests on

CacheRoot proxyCache

CacheDefaultExpire 3600

CacheMaxExpire 86400

CacheLastModifiedFactor 0.3

 In the example, if a cacheable data is retrieved from a server that does not provide an expiry time (via

HTTP Expires header), nor does it indicate when the data was last modified (via HTTP Last-Modified

header, or FTP MDTM command), the server will cache and serve the data for 3600 seconds (since

CacheDefaultExpire is set to 3600 and ″on″ is specified for CacheIgnoreNoLastMod). If an expiry time or

last-modified time is provided, CacheDefaultExpire would not be used (see Cache Expiry Times).

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under

Criteria for Local Proxy Cache.

v Setting ProxyRequests and ProxyReverse to off negates this directive.

v Setting ProxyNoConnect to on negates this directive.

v This directive is used only if CacheRoot is set.

HTTP Server 513

CacheExpiryCheck:

 Module: mod_cache

Syntax: CacheExpiryCheck on | off

Default: CacheExpiryCheck on

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheExpiryCheck on

The CacheExpiryCheck directive specifies whether the server is to observe cache expiry times when

cached data is requested using the disk cache function (see CacheRoot).

Parameter: on | off

v If on is specified (the default), the server will perform and apply all cache expiry time

checks for data currently available in cache.

v If off is specified, cache expiry times will not be observed and cached data (if any) will

always be available.

 Cache expiry time checks may be disabled (off) when the content of the cache is managed by an

application or process other than the server itself. If the content of the cache is not managed by an

application or process other than the server, this setting must be set to on (the default) to prevent the disk

cache function from making expired data appear valid.

Note: When the disk cache function is used to support a local proxy cache, this setting determines

whether cache expiry times are observed for the proxy function. Once cached, data is usually

available from cache until its respective cache expiry times has passed. However, if cache expiry

time checks are disabled (CacheExpiryCheck off), the proxy function will serve cached HTTP proxy

response data regardless of whether it has expired. This effectively causes the disk cache function

to ignore cache expiry times calculated using the CacheDefaultExpire, CacheMaxExpire, and

CacheLastModifiedFactor directives for a local proxy cache, as well as any expiry time provided

via Expires headers (for HTTP requests).

See the CacheRoot directive for more information on how the disk cache function is used to support a

local proxy cache.

CacheIgnoreCacheControl:

 Module: mod_cache

Syntax: CacheIgnoreCacheControl on | off

Default: CacheIgnoreCacheControl off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheIgnoreCacheControl on

The CacheIgnoreCacheControl directive specifies whether the server is to observe certain cache

controlling request headers (for example, Cache-Control and Pragma) when handling requests using the

proxy function.

Parameter: on | off

514 iSeries: IBM HTTP Server

v If on is specified, the server will not observe cache controlling request headers.

v If off is specified (the default), the server will observe cache controlling request headers

when HTTP proxy response data is available from the local proxy cache.

 By default, the server observes certain cache controlling request headers (for example, ″Cache-Control :

no-store″ and ″Pragma : no-cache″) when handling requests using the proxy function. If such headers are

present in HTTP request data sent to the server, the proxy function will not serve HTTP proxy response

data from the local proxy cache since these headers indicate that cached data is not wanted. However, if

on is specified for this setting, the proxy function will ignore cache controlling request headers and serve

HTTP proxy response data from cache, if it is available.

v Setting ProxyRequests and ProxyReverse to off negates this directive.

v This directive is used only if CacheRoot is set.

CacheIgnoreNoLastMod:

 Module: mod_cache

Syntax: CacheIgnoreNoLastMod on | off

Default: CacheIgnoreNoLastMod off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheIgnoreNoLastMod on

The CacheIgnoreNoLastMod directive specifies whether the server may cache HTTP proxy response data

in the local proxy cache, if it does not contain a Last-Modified header or an ETag header.

Parameter: on | off

v If off is specified (the default), the server requires either an ETag header or a

Last-Modified header to be present in all HTTP proxy response data cached in the local

proxy cache.

v If on is specified, the server will not require an ETag header or Last-Modified header to be

present in HTTP proxy response data cached in the local proxy cache.

By default, if data does not contain either an ETag header or a Last-Modified header, the

server does not consider it cacheable. Specifying on for this setting waives this criteria. See

Criteria for Local Proxy Cache for more information.

Example One:

ProxyRequests on

CacheRoot proxyCache

CacheIgnoreNoLastMod off

CacheDefaultExpire 1

In the example, if data is received from a server that does not provide an expiry time (via

HTTP Expires header), nor does it have an ETag or Last-Modified header, it is not

considered cacheable since off is specified for CacheIgnoreNoLastMod. The server serves the

data for the current request, but does not cache it for subsequent requests. The settings for

CacheDefaultExpire is not used.

Example Two:

ProxyRequests on

CacheRoot proxyCache

CacheIgnoreNoLastMod on

CacheDefaultExpire 1

HTTP Server 515

In this example, if data is received from a server that does not provide an expiry time (via

HTTP Expires header), nor does it have an ETag or Last-Modified header (as in example

one), it is still considered cacheable since on is specified for CacheIgnoreNoLastMod. The

server serves the data for the current request, and may calculate a cache expiry time using

CacheDefaultExpire to cache it for subsequent requests, assuming it satisfies all other cache

criteria.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under

Criteria for Local Proxy Cache.

v Setting ProxyRequests and ProxyReverse to off negates this directive.

v Setting ProxyNoConnect to on negates this directive.

v This directive is used only if CacheRoot is set.

CacheLastModifiedFactor:

 Module: mod_cache

Syntax: CacheLastModifiedFactor factor

Default: CacheLastModifiedFactor 0.1

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheLastModifiedFactor 0.3

The CacheLastModifiedFactor directive specifies a multiplication factor used in the formula:

period = time-since-last-modification *<factor>

Parameter: factor

v The factor parameter specifies the multiplication factor used in the formula (described

above) to calculate cache expiry times.

This formula is used and setting is used along with CacheMaxExpire to calculate cache

expiry times for HTTP proxy response data store in the local proxy cache, based on when

the data was last modified. See Cache Expiry Times for more information on how the server

determines which settings to use when calculating cache expiry times.

 If this setting is used, cache expiry times are calculated by adding the lesser of the

calculated period (using the formula above) and the period specified for CacheMaxExpire to

the time that data is received by the proxy function. Using this method, data that has not

changed recently is served from cache longer than data that has changed recently, since its

last-modified time is older and will produce a greater cache expiry period. This assumes

that both responses yield calculated cache expiry periods that are less than the

CacheMaxExpire directive setting.

Example:

ProxyRequests on

CacheRoot proxyCache

CacheMaxExpire 86400

CacheLastModifiedFactor 0.3

In this example, if cacheable data is received from a server that does not provide an expiry

time (via HTTP Expires header), but does indicate that the data was last changed 10 hours

ago (via HTTP Last-Modified header, or FTP MDTM command), the server would calculate

a period of 3 hours using CacheLastModifiedFactor (10 * 0.3) and would cache and serve the

data for the same period of time since it is less than the maximum limit of 24 hours set by

CacheMaxExpire.

516 iSeries: IBM HTTP Server

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under

Criteria for Local Proxy Cache.

If a similar response for this example indicates that the data was last changed 8 days ago (or 192 hours),

the server would calculate a period of 57.6 hours using CacheLastModifiedFactor (192 * 0.3), but it would

cache and serve the data for a period of only 24 hours since CacheMaxExpire sets a limit on the

maximum period for the CacheLastModifiedFactor formula.

v Setting ProxyRequests and ProxyReverse to off negates this directive.

v Setting ProxyNoConnect to on negates this directive.

v This directive is used only if CacheRoot is set.

CacheMaxExpire:

 Module: mod_cache

Syntax: CacheMaxExpire period

Default: CacheMaxExpire 86400

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMaxExpire 43200

The CacheMaxExpire directive specifies the maximum number of seconds in which cacheable HTTP

proxy response data will be set to expire within the local proxy cache (when the

CacheLastModifiedFactor directive setting is used). This setting has no affect on other settings used to

calculate cache expiry times.

Parameter: period

v The period parameter specifies the maximum cache expiry period, in seconds, that may be

used when expiry times are calculated using the CacheLastModifiedFactor directive

setting.

This setting is used along with the CacheLastModifiedFactor directive setting to calculate

expiry times for HTTP proxy response data stored in the local proxy cache, based on

when data was last modified. See Cache Expiry Times for more information on how the

server determines which settings to use when calculating cache expiry times. If this

setting is used, cache expiry times are calculated by adding the lesser of the specified

period and the period calculated using CacheLastModifiedFactor to the time that data is

received by the proxy function.

Example

ProxyRequests on

CacheRoot proxyCache

CacheMaxExpire 86400

CacheLastModifiedFactor 0.3

In this example, if cacheable data is received from a server that does not provide an expiry

time (via HTTP Expires header), but does indicate that the data was last changed 5 days ago

(via HTTP Last-Modified header, or FTP MDTM command), the server would calculate a

period of 1.5 days using CacheLastModifiedFactor (5 * 0.3), but it would cache and serve the

data for a period of only 86400 seconds (1 day) since CacheMaxExpire sets a maximum limit

of 86400 seconds.

Note: Response data is considered cacheable for the proxy function if it satisfies criteria described under

Criteria for Local Proxy Cache.

v

HTTP Server 517

v Setting ProxyRequests and ProxyReverse to off negates this directive.

v Setting ProxyNoConnect to on negates this directive.

v This directive is used only if CacheRoot is set

CacheMaxFileSize:

 Module: mod_cache

Syntax: CacheMaxFileSize size

Default: CacheMaxFileSize 1000000

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM, disk_cache_module

/QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMaxFileSize 4000000

The CacheMaxFileSize directive specifies the maximum amount of data that may be stored in the proxy

disk cache for a single URL, in bytes. This setting effectively placing a maximum data size limit on

individual cache entries. If the disk cache function is disabled (see CacheRoot), this setting has no affect.

Parameter: size

v The size parameter specifies the maximum number of bytes allowed for cache data entries.

A minimum document size limits specified using CacheMinFileSize.

Notes for local proxy cache:

When the disk cache function is used to support a local proxy cache, this setting places a

maximum data size limit on HTTP proxy responses which remain in the cache after cache

maintenance has run. See the CachGcDaily or CacheGcInterval directives for more

information on how the disk cache maintenance function is used to support a local proxy

cache.

Example

ProxyRequests on

CacheRoot proxyCache

CacheMaxFileSize 5000000

CacheMinFileSize 400000

For this example, if 7.2 megabytes of cacheable HTTP proxy response data is available for a

single proxy request but will be removed during the next cache maintenance cycle since it is

larger than the 5000000 byte maximum data size limit imposed by CacheMaxFileSize. A 3.8

megabyte HTTP proxy response may be cached for subsequent proxy requests and will

remain in the cache after the cache maintenance cycle has run since it is smaller than the

5000000 byte maximum data size limit and larger than the 400000 byte minimum data size

limit (set by CacheMinFileSize).

 If the values specified for CacheMinFileSize and CacheMaxFileSize are changed once they have been used

to cache data, the server will discard existing cache data that does not adhere to the new limits when it

runs disk cache maintenance. See CachGcDaily or CacheGcInterval for more details on the disk cache

maintenance process.

CacheMinFileSize:

 Module: mod_cache

Syntax: CacheMinFileSize size

Default: CacheMinFileSize 1

Context: server config, virtual host

518 iSeries: IBM HTTP Server

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM, LoadModule

disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheMinFileSize 40

The CacheMinFileSize directive specifies the minimum amount of data that may be stored in the proxy

disk cache for a single URL, in bytes. This setting effectively places a minimum data size limit on

individual cache entries. If the disk cache function is disabled (see CacheRoot), this setting has no affect.

Parameter: size

v The size parameter specifies the minimum number of bytes allowed for cache data

entries.

A maximum document size limits specified using CacheMaxFileSize.

Notes for local proxy cache:

When the disk cache function is used to support a local proxy cache, this setting places a minimum

data size limit on HTTP proxy responses which remain in the cache after cache maintenance has

run. See CachGcDaily and CacheGcInterval directives for more details on the how the disk cache

maintenance function is used to support a local proxy cache.

Example

ProxyRequests on

CacheRoot proxyCache

CacheMaxFileSize 5000000

CacheMinFileSize 400000

For this example, if 240 kilobytes of cacheable HTTP proxy response data is available for a

single proxy request, but will be removed during the next cache maintenance cycle since it

is less than the 400000 byte minimum data size limit imposed by CacheMinFileSize. A 2.7

megabyte HTTP proxy response may be cached for subsequent proxy requests and will

remain in the cache after the cache maintenance cycle has run since it is larger than the

400000 byte minimum data size limit and smaller than the 5000000 byte maximum data size

limit (set by CacheMaxFileSize).

 If the values specified for CacheMinFileSize and CacheMaxFileSize are changed once they have been used

to cache data, the server will discard existing cache data that does not adhere to the new limits when it

runs disk cache maintenance. See CachGcDaily or CacheGcInterval for more details on the disk cache

maintenance process.

v If set greater than CacheMaxFileSize, the size parameter will be ignored and the default value will be

used.

v The default for this directive is dependent on the value set for CacheMaxFileSize. If CacheMaxFileSize

is set greater than 200 the default for this directive is 200, otherwise the default is 0.

CacheTimeMargin:

 Module: mod_cache

Syntax: CacheTimeMargin period

Default: CacheTimeMargin 120

Context: server config, virtual host

Override: none

Origin: Apache

HTTP Server 519

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheTimeMargin 300

The CacheTimeMargin directive specifies the minimum number of seconds remaining prior to data

expiration, as indicated in the expires response header, in order for data to be cached by the server using

the disk cache function. If the disk cache function is disabled (see CacheRoot), this setting has no affect.

Parameter: period

v The period parameter specifies the minimum time margin for cache update requests (in

seconds).

The server calculates cache time margins (or periods) for cache update requests by

subtracting the current system time from the computed expiry time. Data for cache

update requests that produce cache time margins, that are less than the specified

minimum time margin is not cached by the server.

Notes for local proxy cache:

The disk cache function uses CacheDefaultExpire, CacheLastModifiedFactor, and CacheMaxExpire

directives which may produce cache time margins that are less than the minimum time margin

specified by the CacheTimeMargin directive. In this case, the CacheTimeMargin directive will also

be used to determine if the file will be cached. See the CacheRoot directive for more information on

how the disk cache function is used to support a local proxy cache.

Example

ProxyRequests on

CacheRoot proxyCache

CacheTimeMargin 120

 In this example, if cacheable HTTP proxy response data is available, the data will be served (by proxy),

but it will not be cached for subsequent proxy requests if set to expire in less than 120 seconds

(CacheTimeMargin 120). If the HTTP proxy response data is set to expire in more than two minutes, the

data will be served (by proxy) and will also be cached for subsequent proxy requests.

Module mod_cgi for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_cgi provides for execution of CGI scripts. This module will process any file with mime

type application/x-httpd-cgi. Any file that has the mime type application/x-httpd-cgi or handler

cgi-script will be treated as a CGI script, and run by the server, with its output being returned to the

client. Files acquire this type either by having a name containing an extension defined by the “AddType”

on page 662 directive, or by being in a “ScriptAlias” on page 478 directory.

When the server invokes a CGI script, it will add a variable called DOCUMENT_ROOT to the

environment. This variable will contain the value of the “DocumentRoot” on page 538 configuration

variable.

CGI Environment variables

520 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The server will set the CGI environment variables as described in the CGI specification

with the

following provisions. See “Environment variables on HTTP Server” on page 766 for a list of environment

variables.

REMOTE_HOST

This will only be set if “HostNameLookups” on page 546 is set to double (it is off by default), and

if a reverse DNS lookup of the accessing hosts address indeed finds a host name.

REMOTE_IDENT

This will only be set if “IdentityCheck” on page 547 is set to on and the accessing host supports

the ident protocol.

Note: The contents of this variable cannot be relied upon because it can easily be faked. If there

is a proxy between the client and the server, the variable is not useful.

REMOTE_USER

This will only be set if the CGI script is subject to authentication.

 CGI Debug

Debugging CGI scripts has traditionally been difficult, mainly because it has not been possible to study

the output (standard output and error) for scripts which are failing to run properly. However, the iSeries

runs CGI programs in previously started jobs (not prestart jobs) and it also reuses these jobs to run many

CGI program invocations. Therefore, debugging your CGI program is simple. You simply need to find the

job that runs CGI programs. It will have a jobname the same as the server instance name. The joblog will

contain either HTP2001 or HTP2002 indicating whether it is a CGI single threaded only job, or a CGI

multi-thread capable job. If you use a dedicated server instance, when you invoke your CGI from a

browser, the first job in the WRKACTJOB list for CGI, will be the job chosen to run the CGI request.

Therefore, you can use STRSRVJOB against this job and STRDBG against your CGI program. From here,

you have full debug capabilities provided with the iSeries debugger. You can also use standard error

(stderr) for debug information. The information written to STDERR is written to the ScriptLog if one is

configured or to the ErrorLog if a ScriptLog is not configured.

ScriptLog Format

When configured, the ScriptLog logs any CGI that does not execute properly. Each CGI script that fails to

operate causes several lines of information to be logged. The first two lines are always of the format:

%% [time] request-line %% HTTP-status CGI-script-filename

If the error is that CGI script cannot be run, the log file will contain an extra two lines:

%%error error-message

Alternatively, if the error is the result of the script returning incorrect header information (often due to a

bug in the script), the following information is logged:

%request All HTTP request headers received POST or PUT entity (if any) %response

All headers output by the CGI script %stdout CGI standard output %stderr CGI standard error

Note: The %stdout and %stderr parts may be missing if the script did not output anything on standard

output or standard error

Directives

v “CGIConvMode” on page 522

v “CgiInitialUrl” on page 522

v “CGIMultiThreaded” on page 523

v “CGIRecyclePersist” on page 524

HTTP Server 521

|

http://hoohoo.ncsa.uiuc.edu/cgi/

v “MaxCGIJobs” on page 524

v “MaxPersistentCGI” on page 524

v “MaxPersistentCGITimeout” on page 525

v “MaxThreadedCGIJobs” on page 525

v “PersistentCGITimeout” on page 526

v “ScriptLog” on page 526

v “ScriptLogBuffer” on page 527

v “ScriptLogLength” on page 527

v “StartCGI” on page 527

v “StartThreadedCGI” on page 528

v “ThreadedCgiInitialUrl” on page 529

CGIConvMode:

 Module: mod_cgi

Syntax: CGIConvMode mode

Default: CGIConvMode EBCDIC

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: iSereis

Example: CGIConvMode BINARY

The CGIConvMode directive is used to specify the conversion mode that your server will use when

processing CGI programs.

Parameter: mode

v Valid modes include the following:

 Mode Description

EBCDIC The server converts everything into the EBCDIC CCSID of the job. In

addition, the server converts escaped octets from ASCII to EBCDIC.

The server assumes the header output and encoded characters ″%xx″ are in

the EBCDIC CCSID of the job or default fsCCSID. The server assumes that

the body output is in the default EBCDIC CCSID of the server job unless

specified otherwise using the Content-type header.

EBCDIC_JCD The server will use the Japanese Codepage Detection utility to determine

which Japanese ASCII CCSID to convert from. Otherwise, this option is the

same as the EBCDIC option.

BINARY The server performs no conversion on QUERY_STRING or STDIN data.

Environment variables are encoded in the job’s EBCDIC CCSID.

The server expects the header output and encoded characters ″%xx″ in

ASCII. The server assumes that the body output is in ASCII unless specified

otherwise using the Content-type header. This differs from no parse header

CGI in that the server will still build the HTTP headers and perform

conversion on the body output if necessary.

CgiInitialUrl:

 Module: mod_cgi

Syntax: CgiInitialUrl url userid

Default: none

522 iSeries: IBM HTTP Server

|

||
|
|

Context: server config

Override: none

Origin: iSeries

Example: CgiInitialUrl /qsys.lib/qsyscgi.lib/db2www.pgm/mymacros/macro.ndm/initial *

Example: CgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm QTMHHTP1

Example: CgiInitialUrl /QOpenSys/mypacedir/pacecgi USER1

Example: CgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm?init=yes

This directive is used to load and initialize CGI programs when the server starts. At server startup, when

we are processing the StartCgi directive, we are starting jobs to run CGI programs in. This new directive

will enable the server to run a CGI request to the CGI job enabling the CGI program to be loaded and

initialized. This is beneficial for Net.Data users and other CGI programs built to use ″named″ activation

groups. The initialization of the ″named″ activation group is a performance issue that the first user of the

CGI job has to endure. This function will enable the performance issue to be moved to when the server

starts, so the first user does not have to pay the performance penalty.

If there are no StartCgi directives, an error will be posted and the server will not start.

Parameter One: url

v The url parameter value is actually the physical path URL, not the logical path URL. It

should not be fully qualified (do not use http://system:port/). It must start with a / and

contains the physical path to the CGI program and any path info needed by the CGI

program, including query-string. If a URL is specified that is not valid, the server will not

start.

Parameter Two: userid

v The userid parameter value is either a valid iSeries userid or * where * means all of the

userids specified on the StartCgi directive. To check for valid values, follow the rules for

iSeries user profiles. The userid is optional.

CGIMultiThreaded:

 Module: mod_cgi

Syntax: CGIMultiThreaded on | off

Default: CGIMultiThreaded off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: iSeries

Example: CGIMultiThreaded on

The CGIMultiThreaded directive is used to specify whether your CGI programs should be run in a job

that is multiple thread capable. HTTP Server uses a pool of pre-started jobs for handling CGI requests.

Multiple threaded programs must run in a multiple thread-capable job. The job pool that the job runs in

is specified at job startup time. Once the job has started, it cannot be changed to another job pool. Not all

iSeries APIs are thread safe, some will issue an error if used in a multiple thread-capable job. This

happens even if the program does not actually have multiple threads running. Because of this, HTTP

Server must default to non-multiple thread capable jobs for CGI programs for compatibility reasons. If

your CGI program uses multiple threads, it must run in a multiple thread capable job. If your CGI does

not need multiple threads, you should run it in the single threaded CGI job for performance reasons. This

directive has no impact on CGI programs written in JAVA. JAVA CGI programs are always run in a job

that is multiple thread capable. You should only use this directive in your non-Java CGI program that

requires multiple threads.

HTTP Server 523

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

|
|
|

|

CGIRecyclePersist:

 Module: mod_cgi

Syntax: CGIRecyclePersist on | off

Default: CGIRecyclePersist off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: iSeries

Example: CGIRecyclePersist on

The CGIRecyclePersist directive instructs the server what should be done with the job that was being

used by a persistent CGI when the persistent CGI exits persistence normally.

Parameter: on | off

v The on value indicates that the server can reuse this job for other CGI requests. When this

is used, the persistent CGI program is responsible for cleaning up any static data from the

persistent CGI transaction. The server will not perform any action other than to remove

all environment variables, to clean up any static data. Before using this setting, the CGI

programmer need to verify that it does indeed clean up its static data.

v The off value indicates that the server will not reuse this job for other CGI requests. This

is the default behavior.

MaxCGIJobs:

 Module: mod_cgi

Syntax: MaxCGIJobs number

Default: MaxCGIJobs 40 or value of the ThreadsPerChild directive

Context: server config

Override: none

Origin: iSeries

Example: MaxCGIJobs 50

The MaxCGI directive is used to set the maximum number of CGI jobs that the server will concurrently

use. The server will only run CGI programs in jobs where the user profile for the CGI job matches the

user profile that the request is to run under. If you protect your CGI programs with many different

dummy iSeries profiles (profiles with no password) or use %%CLIENT%% (each user has their own

iSeries profile and it is used to run the CGI program), then you may want to use this directive to allow

the server to start more CGI jobs to handle the CGI programs. The server does reuse the CGI jobs, but

only when the profile for the CGI program matches the profile for the CGI job. If you see the server

ending and starting CGI jobs regularly, then you may want to use this directive to allow the server to use

more CGI jobs. This would improve the capacity and performance of your system and server.

Parameter: number

v The number parameter accepts any positive number. If an invalid value is used, or the

number is smaller than the value of the ThreadsPerChild directive, then the server will

use a default of (value of ThreadsPerChild). If ThreadsPerChild directive is not present,

then the default of this directive will be set to 40.

MaxPersistentCGI:

 Module: mod_cgi

Syntax: MaxPersistentCGI number

Default: MaxPersistentCGI 40

Context: server config

Override: none

524 iSeries: IBM HTTP Server

Origin: iSeries

Example: MaxPersistentCGI 50

The MaxPersistentCGI directive is used to set the maximum number of active persistent CGI jobs that

you want to have active at one time.

Parameter: number

v The number parameter sets the maximum number of active persistent CGI jobs that are

active at any one time.

MaxPersistentCGITimeout:

 Module: mod_cgi

Syntax: MaxPersistentCGITimeout number

Default: MaxPersistentCGITimeout 1200

Context: server config

Override: none

Origin: iSeries

Example: MaxPersistentCGITimeout 1800

The MaxPersistentCGITimeout directive specifies the maximum number of seconds that a CGI program

can use when overriding the PersistentCGITimeout directive.

Parameter: number

v The number parameter value must be greater than 1 second.

MaxThreadedCGIJobs:

 Module: mod_cgi

Syntax: MaxThreadedCGIJobs number

Default: MaxThreadedCGIJobs 40 or the value of ThreadsPerChild directive

Context: server config

Override: none

Origin: iSeries

Example: MaxThreadedCGIJobs 50

The MaxThreadedCGIJobs directive is used to set the maximum number of multiple thread capable CGI

jobs that the server will concurrently use. The server will only run multiple thread capable CGI programs

in jobs where the user profile for the multiple thread capable CGI job matches the user profile that the

request is to run under. If you protect your multiple thread capable CGI programs with many different

dummy iSeries profiles (profiles with no password) or use %%CLIENT%% (each user has their own

iSeries profile and it is used to run the multiple thread capable CGI program), then you may want to use

this directive to allow the server to start more multiple thread capable CGI jobs to handle the multiple

thread capable CGI programs. The server does reuse the CGI jobs, but only when the profile for the

multiple thread capable CGI program matches the profile for the multiple thread capable CGI job. If you

see the server ending and starting multiple thread capable CGI jobs regularly, then you may want to use

this directive to allow the server to use more multiple thread capable CGI jobs. This would improve the

capacity and performance of your system and server.

Parameter: number

v The number parameter value can be any positive number. If an invalid value is used, or

the number is smaller than the value of the ThreadsPerChild directive, then the server

will use a default of (value of ThreadsPerChild). If ThreadsPerChild directive is not

present, then the default of this directive will be set to 40.

HTTP Server 525

PersistentCGITimeout:

 Module: mod_cgi

Syntax: PersistentCGITimeout number

Default: PersistentCGITimeout 300

Context: server config

Override: none

Origin: iSeries

Example: PersistentCGITimeout 120

This directive specifies the number of seconds that your server waits for a client response before ending a

persistent CGI session. The CGI program can override the value that you specify on a request-by-request

basis.

Parameter: number

v The number parameter can be any amount of time greater than 1 second.

ScriptLog:

 Module: mod_cgi

Syntax: ScriptLog filename

Default: none

Context: server config

Override: none

Origin: Modified

Example: ScriptLog /QIBM/userdata/httpa/(instance name)

The ScriptLog directive sets the Common Gateway Interface (CGI) script error logfile. If no ScriptLog is

given, no CGI error log is created. If a ScriptLog is given, any CGI errors are logged into the filename

given as the argument. If this is a relative file or path, it is taken relative to the server root.

This log will be opened as the user the child processes run as, for example the user specified in the main

User directive. This means that either the directory the script log is in needs to be writable by that user or

the file needs to be manually created and set to be writable by that user. If you place the script log in

your main logs directory, do not change the directory permissions to make it writable by the user the

child processes run as.

Note: The script logging is meant to be a debugging feature when writing CGI scripts, and is not meant

to be activated continuously on running servers. It is not optimized for speed or efficiency, and

may have security problems if used in a manner other than that for which it was designed.

Behavior

If the filename does not begin with a slash (’/’) then it is assumed to be relative to the ServerRoot.

If the path ends with a ’/’ character, then the path is considered to be the directory that will contain the

log file.

All file systems supported by HTTP Server (original) for logs will be supported. The ScriptLog file will be

created with the same CCSID as defaultFSCCSID. The data will be written to the log file in binary.

Therefore, the customer’s data will be written to the ScriptLog without conversion. Information from the

CGI request will not need to be translated, as the data will already be in the defaultFSCCSID.

526 iSeries: IBM HTTP Server

ScriptLogBuffer:

 Module: mod_cgi

Syntax: ScriptLogBuffer size

Default: ScriptLogBuffer 1024

Context: server config

Override: none

Origin: Apache

Example: ScriptLogBuffer 512

The ScriptLogBuffer directive limits the size of any PUT or POST entity body that is logged to the file.

This prevents the log file from growing too big too quickly (the case if large bodies are being received).

Parameter: size

v The size parameter is measured in bytes and consists of any positive integer. By default,

up to 1024 bytes are logged, but the value can be changed with this directive.

ScriptLogLength:

 Module: mod_cgi

Syntax: ScriptLogLength size

Default: ScriptLogLength 10385760

Context: server config

Override: none

Origin: iSeries

Example: ScriptLogLength 1024000

The ScriptLogLength directive can be used to limit the size in bytes of the Common Gateway Interface

(CGI) script log file. Since the log file logs a significant amount of information per CGI error (all request

headers, all script output) it can grow to be quite large. To prevent problems due to unbounded growth,

this directive can be used to set a maximum file-size for the CGI logfile. If the file exceeds this size, no

more information will be written to it.

Parameter: size

v The size parameter is measured in bytes. This is any positive number.

StartCGI:

 Module: mod_cgi

Syntax: StartCGI number userid

Default: none

Context: server config

Override: none

Origin: iSeries

Example: StartCGI 5 USER1

The StartCGI directive specifies the number of CGI jobs that are spawned by the server when it starts up

and the iSeries user profile to use in these jobs. This allows you to have the server prestart CGI jobs

when the server starts so the users do not incur the performance hit of starting a new job. It also allows

you to start up jobs for different user profiles. The userid is optional and should only be used to protect

your CGI programs so that they run under the %%CLIENT%% profile or under a dummy iSeries profile

(a profile with no password).

HTTP Server 527

The cumulative number from all occurrences of this directive cannot exceed MaxCGIJobs, if it does, the

server will not start. If the user profile parameter is not specified, the default server profile (QTMHHTP1)

or the value from the global ServerUserID directive is used.

If you are using %%CLIENT%% as the profile in the protection of the CGI programs (meaning that each

user authenticates with an iSeries user profile), then it should be noted that %%CLIENT%% is not a valid

value on this directive. Using iSeries profiles like this should only be done in an intranet or highly secure

server because you would not want to give just anyone an iSeries user profile. Therefore, you would

know how many users and also their user profile name, thus you would need to decide how many users

will be doing CGI requests and how many concurrent CGI requests you want each user to be able to do.

Then you could specify multiple StartCGI directives, one for each user, specifying the number of

concurrent CGI requests you expect that user to do.

Note: This will NOT limit the number of concurrent CGI requests. This will simply allow CGI jobs to be

started at server startup time so the user does not have to incur the performance hit of starting up

a new job when they run their first CGI program.

StartThreadedCGI:

 Module: mod_cgi

Syntax: StartThreadedCGI number userid

Default: none

Context: server config

Override: none

Origin: iSeries

Example: StartThreadedCGI 3

Example: StartThreadedCGI 5 USER1

The Start ThreadedCGI directive specifies the number of multiple thread capable CGI jobs that are

spawned by the server when it starts up and the iSeries user profile to use in these jobs. This allows you

to have the server prestart CGI jobs when the server starts so the users do not incur the performance hit

of starting a new job. It also allows you to start up jobs for different user profiles. The userid is optional

and should only be used to protect your multiple thread capable CGI programs so that they run under

the %%CLIENT%% profile or under a dummy iSeries profile (a profile with no password).

The cumulative number from all occurrences of this directive cannot exceed MaxThreadedCGIJobs, if it

does, the server will not start. If the user profile parameter is not specified, the default server profile

(QTMHHTP1) or the value from the global ServerUserID directive is used.

If you are using %%CLIENT%% as the profile in the protection of the multiple thread capable CGI

programs (meaning that each user authenticates with an iSeries user profile), then it should be noted that

%%CLIENT%% is not a valid value on this directive. Using iSeries profiles like this should only be done

in an intranet or highly secure server because you would not want to give just anyone an iSeries user

profile. Therefore, you would know how many users and also their user profile name, thus you would

need to decide how many users will be doing CGI requests and how many concurrent multiple thread

capable CGI requests you want each user to be able to do. Then you could specify multiple

StartThreadedCGI directives, one for each user, specifying the number of concurrent multiple thread

capable CGI requests you expect that user to do.

Note: This will NOT limit the number of concurrent multiple thread capable CGI requests. This will

simply allow multiple thread capable CGI jobs to be started at server startup time so the user does

not have to incur the performance hit of starting up a new job when they run their first multiple

thread capable CGI program.

528 iSeries: IBM HTTP Server

ThreadedCgiInitialUrl:

 Module: mod_cgi

Syntax: ThreadedCgiInitialUrl url userid

Default: none

Context: server

Override: none

Origin: iSeries

Example: ThreadedCgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm QTMHHTTP

Example: ThreadedCgiInitialUrl /QOpenSys/mypacedir/pacecgi

Example: ThreadedCgiInitialUrl /qsys.lib/cgi.lib/mycgi.pgm?init=yes USER1

This directive is used to load and initialize threaded CGI programs when the server starts. At server

startup, when processing the StartThreadedCgi directive, jobs are started to run CGI programs in. This

directive enables the server to run a CGI request to the CGI job enabling the CGI program to be loaded

and initialized. This function enables performance issues to be moved to when the server starts, so the

first user does not have diminished performance. If a Java CGI program is used, the server ignores it and

log a message in the error log.

If there are no StartThreadedCgi directives, an error is posted and the server does not start.

Module core for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

These directives control the core function of HTTP Server (powered by Apache).

Directives

v “AcceptPathInfo” on page 531

v “AcceptThreads” on page 531

v “AccessFileName” on page 532

v “AddDefaultCharset” on page 532

v “AddOutputFilterByType” on page 533

v “AllowEncodedSlashes” on page 533

v “AllowOverride” on page 534

v “AuthName” on page 534

v “AuthType” on page 535

v “DefaultType” on page 536

v “<Directory>” on page 536

v “<DirectoryMatch>” on page 538

v “DocumentRoot” on page 538

v “EnableSendfile” on page 539

v “ErrorDocument” on page 539

v “ErrorLog” on page 541

v “ErrorLogFormatDDS” on page 543

v “FileETag” on page 543

HTTP Server 529

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v “<Files>” on page 544

v “<FilesMatch>” on page 545

v “ForceType” on page 545

v “ForensicLog” on page 545

v “HostNameLookups” on page 546

v “HotBackup” on page 547

v “IdentityCheck” on page 547

v “<IfDefine>” on page 548

v “<IfModule>” on page 548

v “Include” on page 549

v “KeepAlive” on page 549

v “KeepAliveTimeout” on page 550

v “<Limit>” on page 550

v “<LimitExcept>” on page 551

v “LimitRequestBody” on page 551

v “LimitRequestFields” on page 552

v “LimitRequestFieldsize” on page 552

v “LimitRequestLine” on page 552

v “LimitXMLRequestBody” on page 553

v “Listen” on page 553

v “ListenBacklog” on page 554

v “<Location>” on page 554

v “<LocationMatch>” on page 555

v “LogCycle” on page 556

v “LogLength” on page 557

v “LogLevel” on page 558

v “LogMaint” on page 558

v “LogMaintHour” on page 560

v “LogTime” on page 560

v “MaxKeepAliveRequests” on page 560

v “NameVirtualHost” on page 561

v “Options” on page 561

v “ProfileToken” on page 563

v “RuleCaseSense” on page 563

v “Satisfy” on page 564

v “SendBufferSize” on page 564

v “ServerAdmin” on page 565

v “ServerAlias” on page 565

v “ServerName” on page 566

v “ServerPath” on page 567

v “ServerRoot” on page 567

v “ServerSignature” on page 568

v “ServerTokens” on page 568

v “ServerUserID” on page 569

v “SetHandler” on page 570

530 iSeries: IBM HTTP Server

v “SetInputFilter” on page 570

v “SetOutputFilter” on page 571

v “ThreadsPerChild” on page 571

v “TimeOut” on page 571

v “UseCanonicalName” on page 572

v “UseShutdown” on page 573

v “<VirtualHost>” on page 573

AcceptPathInfo:

 Module: core

Syntax: AcceptPathInfo On | Off | Default

Default: AcceptPathInfo Default

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: AcceptPathInfo On

The AcceptPathInfo directive controls whether requests that contain trailing pathname information, that

follows an actual filename or nonexistent file in an existing directory, are accepted or rejected. The trailing

pathname information can be made available to scripts in the PATH_INFO environment variable.

For example, assume the location /test/ points to a directory that contains only the single file here.html.

Requests for /test/here.html/more and /test/nothere.html/more both collect /more as PATH_INFO.

Parameter: On | Off | Default

v When set to On, a request will be accepted if a leading path component maps to a file that

exists. The above example /test/here.html/more will be accepted if /test/here.html maps to a

valid file.

v When set to Off, a request will only be accepted if it maps to a literal path that exists. Therefore

a request with trailing pathname information after the true filename such as

/test/here.html/more in the above example will return a 404 NOT FOUND error.

v When set to Default, the treatment of requests with trailing pathname information is

determined by the handler responsible for the request. The core handler for normal files

defaults to rejecting PATH_INFO. Handlers that serve scripts, such as cgi-script and isapi-isa,

generally accept PATH_INFO by default.

 The primary purpose of the AcceptPathInfo directive is to allow you to override the handler’s choice of

accepting or rejecting PATH_INFO. This override is required, for example, when you use a filter (such as

INCLUDES) to generate content based on PATH_INFO. The core handler would usually reject the

request. You can use the following configuration to enable such a script:

<Files "mypaths.shtml">

Options +Includes

SetOutputFilter INCLUDES

AcceptPathInfo on

</Files>

AcceptThreads:

 Module: mod_core

Syntax: AcceptThreads number

Default: AcceptThreads 4

Context: server config

Override: none

HTTP Server 531

Origin: iSeries

Example: AcceptThreads 5

The AcceptThreads directive specifies the maximum number of accept threads per server child process. If

a value is not specified, the server will use a limit of four accept threads. The accept threads are used to

accept new connections from the client. This number may need to be changed to reflect the number of

concurrent connections which are being accepted. If a large number of connections to the Web server start

at approximately the same time, the number of accept threads may need to be adjusted to a higher value.

Note: The accept threads are created at startup time. The process never creates additional threads.

Parameter: number

v The number parameter value specifies the maximum number of accept threads per server

child process. Valid values include 1 through 20.

AccessFileName:

 Module: core

Syntax: AccessFileName filename [filename ...]

Default: AccessFileName .htaccess

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: AccessFileName index.html

When returning a document to the client, the server looks for the first access control file in the list of

names in every document directory path. This only happens if the access control files are enabled for the

directory. For example:

AccessFileName .acl

Before returning the document /QIBM/UserData/web/index.html, the server will read /.acl,

/QIBM/.acl, /QIBM/UserData/.acl and /QIBM/UserData/web/.acl for directives, unless they have been

disabled with the following:

<Directory/>

 AllowOverride None

</Directory>

Parameter: filename

v Filename is any valid filename on the iSeries.

 If multiple occurrences of this directive are configured in a container, only the last occurrence is

processed. All other occurrences are ignored.

See also “AllowOverride” on page 534.

AddDefaultCharset:

 Module: core

Syntax: AddDefaultCharset on | off | charset

Default: AddDefaultCharset off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: iSeries

Example: AddDefaultCharset off

532 iSeries: IBM HTTP Server

The AddDefaultCharset directive specifies the character set name that will be added to any response that

does not have a parameter on the content type in the HTTP headers. This will override any character set

specified, in the document body, by a META tag.

Parameter: on | off | charset

v AddDefaultCharset on enables HTTP Server’s internal default charset of iso-8859-1 as required

by the directive.

v AddDefaultCharset off disables this functionality.

v Alternate charset can be specified, for example, AddDefaultCharset on utf-8.

AddOutputFilterByType:

 Module: core

Syntax: AddOutputFilterByType filtername content-type

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddOuputFilterByType INCLUDES text/html

The AddOutputFilterByType directive matches the MIME content-type of files to a filter which will

process responses from the server before they are sent to the client. All files of the given content-type will

be processed through the filter filtername. This is in addition to all defined filters, including those defined

in the “SetOutputFilter” on page 571 directive.

Parameter One: filtername

v The name of a filter which will process responses from the server before they are sent to the

client.

Parameter Two: content-type

v Any valid MIME-type.

AllowEncodedSlashes:

 Module: mod_core

Syntax: AllowEncodedSlashes on | off

Default: AllowEncodedSlashes off

Context: server config, virtual host

Override: none

Origin: Apache

Example: AllowEncodedSlashes on

The AllowEncodedSlashes directive allows URLs which contain encoded path separators (%2F for / and

additionally %5C for \ on according systems) to be used. Normally, such URLs are refused with a 404

(Not found) error. Turning AllowEncodedSlashes on is useful when used in conjunction with PATH_INFO

environment variable.

Note: Allowing encoded slashes does not imply decoding. Occurrences of %2F or %5C (only on

according systems) will be left as such in the otherwise decoded URL string.

Parameter: on | off

v The on parameter value specifies that URLs with encoded path separators can be used.

v The off parameter value specifies that URLs with encoded path separators will result in a

404 (Not found) error.

HTTP Server 533

AllowOverride:

 Module: core

Syntax: AllowOverride override [override ..]

Default: AllowOverride none

Context: directory, Not in Limit

Override: none

Origin: Modified

Example: AllowOverride all

When the server finds an .htaccess file (as specified by “AccessFileName” on page 532) it needs to know

which directives declared in that file can override earlier access information.

Parameter: override

v Override can be set to one or more of the following

 Override Description

None The server will not read the file.

All The server will allow all directives.

AuthConfig Allow use of the authorization directives such as AuthName, AuthType, “PasswdFile” on page

485 and Require.

FileInfo Allow use of the directives controlling document types such as AddEncoding, AddLanguage,

AddType, “DefaultType” on page 536, “ErrorDocument” on page 539 and LanguagePriority.

Indexes Allow use of the directives controlling directory indexing such as AddDescription, AddIcon,

AddIconByEncoding, AddIconByType, DefaultIcon, DirectoryIndex, IndexOptions,

HeaderName, IndexIgnore, IndexOptions and ReadmeName.

Limit Allow use of the directives controlling host access such as “Allow” on page 469, “Deny” on

page 470 and “Order” on page 470.

Options Allow use of the directives controlling specific directory features such as “Options” on page

561.

Note: The use of .htaccess is not supported in QDLS and QSYS. For these file systems the override value

must be None to avoid errors that keep a Web page from being served.

AuthName:

 Module: core

Syntax: AuthName auth-domain

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: Modified

Example: AuthName ″IBM Server″

The AuthName directive sets the name of the authorization realm for a directory. This realm is given to

the client during basic authentication to inform the user about which username and password to send. To

work properly this directive must be accompanied by “AuthType” on page 535 Basic, and “Require” on

page 471, and directives such as “PasswdFile” on page 485.

Parameter: auth-domain

v The auth-domain parameter values specifies a single argument; if the realm name contains

spaces, it must be enclosed in double quotation marks.

534 iSeries: IBM HTTP Server

rzaiemod_access.htm#require
rzaiemod_mime.htm#addencoding
rzaiemod_mime.htm#addlanguage
rzaiemod_mime.htm#addtype
rzaiemod_negotiation.htm#languagepriority
rzaiemod_auto_index.htm#adddescription
rzaiemod_auto_index.htm#addicon
rzaiemod_auto_index.htm#addiconbyencoding
rzaiemod_auto_index.htm#addiconbytype
rzaiemod_auto_index.htm#defaulticon
rzaiemod_dir.htm#directoryindex
rzaiemod_auto_index.htm#indexoptions
rzaiemod_auto_index.htm#headername
rzaiemod_auto_index.htm#indexignore
rzaiemod_auto_index.htm#indexoptions
rzaiemod_auto_index.htm#readmename

AuthType:

 Module: core

Syntax: AuthType type

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: Modified

Example: AuthType Basic

Example: AuthType SSL

Example: AuthType Kerberos

Example: AuthType KerberosOrBasic

The AuthType directive selects the type of user authentication for a directory. For Basic authentication to

work properly this directive must be accompanied by “AuthName” on page 534 and “Require” on page

471. If Kerberos is specified, the Require directive must be specified and the PasswdFile directive should

be included and set to %%KERBEROS%%. The AuthName, LDAPConfigFile, and LDAPRequire directives

may be configured in the same container, but will be ignored.

Parameter: type

v The type parameter value specifies the type of user authentication for a directory. Valid values

include:

Basic Configuring ″AuthType Basic″ specifies that the server protects resources based on a

user ID and password. The user will be prompted for a user ID and password the first

time a request is made for a resource protected by this directive. This directive may be

used on either a secure or a non-secure HTTP session. On a non-secure HTTP session,

the user ID and password are encoded, but not encrypted.

Note: Note: In order to use the directive ″SSLAuthType CertOrBasic″, the AuthType

directive must be specified with a value of type Basic.

SSL Configuring ″AuthType SSL″ specifies that the server will protect resources based on a

SSL client certificate that is associated with a user ID. See the SSLAuthType directive

for more information.

Note: In order to use the directive ″SSLAuthType Cert″, the AuthType directive must

be specified with a value of type SSL.

Kerberos

Configuring ″AuthType Kerberos″ specifies that the server will accept a server ticket

from a Kerberos-enabled client to authenticate a user.

KerberosOrBasic

Configuring ″AuthType KerberosOrBasic″ specifies that the server will give a basic

authentication prompt to those browsers who are either not in a kerberos domain, not

using Microsoft Internet Explorer, or if kerberos authentication fails for a Microsoft

Internet Explorer browser in a kerberos realm. If the browser is Microsoft Internet

Explorer configured for kerberos, and in a kerberos domain with the correct kerberos

principal and keytab entries, there will be no prompt (uses kerberos HTTP negotiation).

To work correctly the intersection of directives for ″Kerberos″ and ″Basic″ authority

must be used. Kerberos specific directives will not work, because basic authentication

can not use kerberos validation. These directives are required when using

KerberosOrBasic:

– “AuthName” on page 534

– PasswdFile SYSTEM

HTTP Server 535

– Require validuser, or Require user kerbuser@DOMAIN.COM as400userid or Require

group groupname or GroupFile pathtogroupfile

Notes:

– The group file must include both the kerberos principal and the as400userid. For

example Groupfile: productionusers: johndoe@WIN2003.DOMAIN.COM, jdoe

– If you do not use the validuseryou must include both the kerberos client principal

and the as400 userid to which it maps.

– To specify this directive, you must have your Microsoft Internet Explorer set to

enable integrated windows authentication.

 If you want to have SSL certificate checking, it is recommended that AuthType be set to type SSL.

DefaultType:

 Module: core

Syntax: DefaultType MIME-type

Default: DefaultType text/plain

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: DefaultType image/gif

There will be times when the server is asked to provide a document whose type cannot be determined by

its MIME types mappings. The server must inform the client of the document content-type, so in the

event of an unknown type it uses the DefaultType.

Parameter: MIME-type

v The MIME-type value specifies the document content-type.

 For example:

DefaultType image/gif

This would be appropriate for a directory which contained many gif images with filenames missing the

.gif extension. This would also be useful for documents in the QSYS.LIB file system, so you do not have

to set the member type field.

<Directory>:

 Module: core

Syntax: <Directory directory> ... </Directory>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: <Directory /usr/local/httpd/htdocs>

<Directory> and </Directory> are used to enclose a group of directives that only apply to the named

directory and subdirectories of that directory. Any directive that is allowed in a directory context may be

used.

Parameter: directory

v A directory is either the full path to a directory or a wildcard string. Refer to

“<DirectoryMatch>” on page 538 for details regarding wildcard strings. Full path directory

example:

536 iSeries: IBM HTTP Server

<Directory /usr/local/httpd/htdocs>

Options Indexes

FollowSymLinks

</Directory>

 If multiple (non-regular expression) directory sections match the directory (or its parents) containing a

document, then the directives are applied in the order of shortest match first, interspersed with the

directives from the .htaccess files. See “AccessFileName” on page 532for more information. For example:

<Directory />

 AllowOverride None

</Directory>

<Directory /home/*>

 AllowOverride FileInfo

</Directory>

For access to the document /home/web/dir/doc.html the steps are:

v Apply directive AllowOverride None (disabling .htaccess files).

v Apply directive AllowOverride FileInfo (for directory /home/web).

v Apply any FileInfo directives in /home/web/.htaccess.

Regular expressions are not considered until all of the normal sections have been applied. Then all of the

regular expressions are tested in the order they appeared in the configuration file. For example:

<Directory ~ abc$>

... directives here ..

</Directory>

Suppose that the filename being accessed is /home/ABC/public_html/ABC/index.html. The server

considers each of /, /home, /home/ABC, /home/ABC/public_html and /home/ABC/public_html/ABC

in that order. The regular expression would not be considered until all normal <Directory> and .htaccess

files have been applied. Then the regular expression will match on /home/ABC/public_html/ABC and

be applied.

Notes:

v The default HTTP Server access for <Directory /> is Allow from All. This means that HTTP

Server will serve any file mapped from a URL. The GUI directory wizard automatically creates

a root directory that denies access to all and doesn’t allow htaccess file usage:

<Directory />

 Options None

 AllowOverride None

 order deny,allow

 deny from all

</Directory>

Then override this for directories you want accessible. See the “Security tips for HTTP Server”

on page 38 or “User profiles and required authorities for HTTP Server” on page 40 pages for

more details. <Directory> directives can only be in virtual host and the server configuration see

context above.Previously, <Directory> containers were used to enclose groups of directives that

applied to proxy requests by appending the prefix ″proxy:″ to the beginning of the specified

directory name. This is no longer supported. The server now has proxy containers for this

purpose. The proxy now ignores directives enclosed in directory (or file) containers, and uses

proxy containers. See <Proxy> and <ProxyMatch> for more information.

v Directives within location containers (if matched) take precedence over directives within

directory containers. See “<Location>” on page 554 and “<LocationMatch>” on page 555

directives for more information on location containers.

HTTP Server 537

rzaiemod_proxy.htm#proxy
rzaiemod_proxy.htm#proxymatch

<DirectoryMatch>:

 Module: core

Syntax: <DirectoryMatch regex> ... </DirectoryMatch>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: <DirectoryMatch ″^/www/.*/[0-9]{3}″>

<DirectoryMatch> and </DirectoryMatch> are used to enclose a group of directives that only apply to

the named directory and subdirectories of that directory. It is the same as <Directory>; however, it takes

an argument as a regular expression. For example:

<DirectoryMatch "^/www/.*/[0-9]{3}">

This would match directories in /www/ that consisted of three numbers.

Note: The argument to DirectoryMatch does not need to be in quotes unless the regular expression

includes a space character.

Parameter: regex

v Regex is a UNIX-style regular expression that is matched against the URL. Subexpressions are

grouped within parentheses. Then, parenthetically enclosed regular expressions will be

substituted in a subsequent $n statement.

 See also “<Directory>” on page 536.

DocumentRoot:

 Module: core

Syntax: DocumentRoot directory-path

Default: DocumentRoot /QIBM/UserData/HTTPA/htdocs

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: DocumentRoot /QIBM/UserData/mydocs

The DocumentRoot directive sets the directory from which HTTP Server will serve files. If the URL is not

matched by a directive like Alias, the server appends the path from the requested URL to the document

root and makes the path to the document.

Parameter: directory-path

v Directory-path is any valid directory path on the iSeries.

 For example:

DocumentRoot /usr/web

An access to http://www.my.host.com/index.html refers to /usr/web/index.html.

If the DocumentRoot directive is used in the server context and the directory does not exist, the server

will not start. If the DocumentRoot directive is used in a virtual host context and the directory does not

exist, that virtual host will inherit the document root from the server context (the server will start).

538 iSeries: IBM HTTP Server

EnableSendfile:

 Module: core

Syntax: EnableSendfile on|off

Default: EnableSendfile on

Context: server, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: EnableSendfile On

This directive controls whether httpd may use the sendfile support from the kernel to transmit file

contents to the client. By default, when the handling of a request requires no access to the data within a

file (for example, when delivering a static file) Apache uses sendfile to deliver the file contents without

ever reading the file if the operating system supports it. This sendfile mechanism avoids separate read

and send operations, and buffer allocations.

ErrorDocument:

 Module: core

Syntax: ErrorDocument error-code document

Default: none

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: FileInfo

Origin: Modified

Example: ErrorDocument 404 /cgi-bin/bad_urls.html

Example: ErrorDocument 500 http://QIBM.example.com/cgi-bin/tester

Example: ErrorDocument 404 /cgi-bin/bad_urls.html

Example: ErrorDocument 401 /subscription_info.html

Example: ErrorDocument 403 ″Sorry, cannot allow you access today.″

In the event of a problem or error, HTTP Server can be configured to do one of four things:

1. Output a simple hard coded error message.

2. Output a customized message.

3. Redirect to a local URL to handle the problem/error.

4. Redirect to an external URL to handle the problem/error.

The first option is the default, while options 2 through 4 are configured using the ErrorDocument

directive, which is followed by HTTP Server response code and a message or URL.

For option 3, the document parameter must begin with a ’/’ character and it is assumed to be relative to

DocumentRoot. If the document parameter contains a ’:’ character it is assumed to be an external URL

(option 4). If neither of these are true, option 2 is assumed.

Parameter One: error-code

v The error-code parameter specifies the error code associated with a hard coded error message, a

customized message, a local URL, or an external URL that handles the problem/error.

Parameter Two: document

v The document parameter specifies a hard coded error message, a customized message, a local

URL, or an external URL that handles the problem/error.

 Messages in this context begin with a single quote (″), which does not form part of the message itself. The

server will sometimes offer additional information regarding the problem/error.

HTTP Server 539

URLs can begin with a slash (/) for local URLs, or be a full URL which the client can resolve. For

example:

ErrorDocument 500 http://QIBM.example.com/cgi-bin/tester

ErrorDocument 404 /cgi-bin/bad_urls.html

ErrorDocument 401 /subscription_info.html

ErrorDocument 403 "Sorry cannot allow you access today.

Note: When you specify an ErrorDocument that points to a remote URL (for example, anything with a

method such as ″http″ in front of it) the server will send a redirect to the client to tell it where to

find the document, even if the document ends up being on the same server. This has several

implications, the most important being that if you use an ″ErrorDocument 401″ directive then it

must refer to a local document. This results from the nature of the HTTP basic authentication

scheme.

Apache on the iSeries allows error code keywords on this directive, in addition to HTTP response codes.

This will allow customers more granularity in their error page customization. To do this, the syntax for

ErrorDocument was enhanced to also allow one of these key words as the error_code. Valid keywords,

their equivalent HTTP response codes and the cause are as follows:

 Error code Error meaning

okredirect 302 The document has moved.

badrequest 400 The request is not valid.

badscript 400 The requested script file could not be processed; the request was invalid in some way.

connectfail 400 The server could not connect to the requested partner on the requested port.

nopartner 400 The server could not connect to the requested host name due to bad syntax or an

unknown host.

proxyfail 400 or 502 The client tried to use the server as a proxy and, although this is allowed, it did not

work. Possibly the destination server doesn’t exist or is busy.

proxyrmterror (any code

>= 400)

The server received a response code from a remote server that indicates a remote server

problem and the proxy error override function has been invoked (see

ProxyErrorOverride for more details).

unknownmethod 400 The request did not include a recognized method.

notauthorized 401 The request requires a user ID and password. Either the user ID and password sent by

the client are not valid for this request or the client did not send a user ID and

password.

notmember 401 The requested file has a protection rule listing valid user IDs and passwords and the

user ID of the requesting client is not included in the list.

pwchanged 401 The password is invalid.

pwexpired 401 The password for the user ID has expired.

badredirect 403 The server is trying to redirect the request and the Redirect directive is invalid or

contains a loop.

baduser 403 The client requested a user’s home directory that does not exist.

byrule 403 A directive (such as deny or allow directive) or rule was specified that will not allow

this request.

dirbrowse 403 The request specified a directory that is turned off for browsing.

dotdot 403 The client request specified a parent (/.../) directory which is not allowed.

ipmask 403 The client’s IP address is not a vlid IP address for the request.

ipmaskproxy 403 The client is trying to use the server as a proxy, however the client is not included in

the list of host names or IP addresses that are allowed to do so.

methoddisabled 403 The method requested has been disabled.

540 iSeries: IBM HTTP Server

rzaiemod_proxy.htm#proxyerroroverride

Error code Error meaning

noacl 403 Cannot access the .htaccess file.

noentry 403 The user is not included in the list of valid users for this request.

notallowed 403 The server found the requested file but the protection setup of the server prevented

access.

openfailed 403 The file or directory has access restrictions for the current user.

multifail 404 The requested file could not be found on the server.

proxynotauth 407 The request requires a user ID and password for the proxy. Either the user ID and

password sent by the client are not valid for this request or the client did not send a

user ID and password.

proxynotmember 407 The requested file has a protection rule listing valid user IDs and passwords and the

user ID sent by the client is not included in that list.

proxypwchanged 407 The password sent by the client is not valid for the proxy.

proxypwexpired 407 The password sent by the client has expired.

preconfail 412 A precondition specified by the client on this request was not met. For example, this

could result from HTTP/1.1 request that contains a condition ″if-not-modified-since

xxx″.

badrange 416 The request either has an invalid content range header or it has incorrect information in

the content range header for the file being processed.

upgrade 426 The request was received for a file which must be accessed through SSL. An upgrade to

SSL is required before accessing this resource.

scriptio 500 The client requested a CGI script but the server cannot get it to process input or

output. The script may contain invalid code.

scriptnotfound 500 The client requested a CGI script that cannot be found.

scriptstart 500 The client requested a CGI script that the server can find but cannot be started. The

script may contain invalid code.

systemerror 500 An internal error occurred.

noformat 501 The server cannot interpret the format of the file it is trying to serve. The file may be

corrupted or have an unknown or invalid file extension.

An example - a customer puts the following into their configuration file:

ErrorDocument byrule "Sorry cannot allow you access."

ErrorDocument openfailed "You do not have authority to this file."

When an HTTP response code of 403 (FORBIDDEN) occurs and it is determined that the reason is the

client is on the deny list, the response back to the browser will be ″Sorry cannot allow you access″. If,

however, the 403 response code is a result of the user not having authority to the file, the message will be

″You do not have authority to this file″. This gives the user more granularity to customize error responses

to the client.

ErrorLog:

 Module: core

Syntax: ErrorLog filename-or-pipe | off | *off

Default: ErrorLog logs/error_log

Context: server config, virtual host

Override: none

Origin: Apache

Example: IFS example relative to server root: ErrorLog logs/errorlog

Example: Piped log example: ErrorLog |/QSYS.LIB/MYLIB.LIB/ERRPIPE.PGM

HTTP Server 541

Example: QSYS example: ErrorLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

The ErrorLog directive sets the name of the file to which the server will log any errors it may encounter.

If the filename does not begin with a slash (/) then it is assumed to be relative to the “ServerRoot” on

page 567. Specifying a value of off or *off will cause the server to not log errors.

Parameter: filename-or-pipe | off | *off

v The filename parameter is relative to the ServerRoot or a full path to the file.

v A pipe (|) followed by a program to spawn to handle the error log information. Data written

to the pipe from the server will be in the FSCCSID that is in use by the server.

v The off or *off value turns off error reading.

Note: A new program will not be started for a VirtualHost if it inherits the ErrorLog from the main

server. The program is specified in the form ″qsys.lib/xxx.lib/xxx.pgm″.

All messages logged to the Error log will be logged in the primary language installed for the IBM HTTP

Server. The error log file will be created with a coded character set identifier (CCSID) that is compatible

with the language. The CCSID value is an ASCII CCSID.

It is recommended that you allow the server to create the log file. Specifically:

v For IFS files, the user must create the directories that contain the log file and must grant the

QTMHHTTP user write access to the directory. The server will create the log file.

v For QSYS.LIB logs, the user must create the library that contains the logs. The server will create the file

and members in the specified library.

v If the filename does not begin with a slash (/) then it is assumed to be relative to the ServerRoot.

v If “LogCycle” on page 556 is active and if the path ends without a ’/’ character, then the path is

considered to be the complete log file name. In that case, the server will add an extension in the format

QCYYMMDDHH, where these variables have the following values:

– Q is a default value that indicates to the server that this is a log file.

– C is the century indicator (0 for pre-2000, 1 for post-2000)

– YY is the year indicator

– MM is the month indicator

– DD is the day indicator HH is the hour indicator (00 = 00:00 (midnight), 23=23:00)

Note: Will not be generated for file system QDL.

For example, a path of ″/logs/errorlog″ results in a file such as ″/logs/errorlog.Q100030300″.
v If “LogCycle” on page 556 is active and if the path ends with a ’/’ character, then the path is

considered to be the directory that will contain the log file. In that case, the server will create log files

named in the QCYYMMDDHH format. For example, a path of ″/logs/errorlog/″ results in a file such

as ″/logs/errorlog/Q100030300″.

v If “LogCycle” on page 556 is active and the log file is in the QSYS file system, the name must end it

the file component of the IFS path. Example:

Config file directives

LogCycle Daily

ErrorLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

The resulting daily log rollover files will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR

v “LogCycle” on page 556 Hourly is not valid if the log file is in the QDLS file system as that file system

only supports 8 character file names and 3 character extensions.

542 iSeries: IBM HTTP Server

v If “LogCycle” on page 556 is not active, no special naming is used. The name of the log file given on

the ErrorLog directive is used as given for the name of the log file. If the name is a directory, a default

name of http.log will be concatenated to the directory name to create the log file. For example:

Config file directives

LogCycle Off

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

Security:

See “Security tips for HTTP Server” on page 38 details on why your security could be compromised if

the directory where log files are stored is writable by anyone other than the user that starts the server. If

a program is used, then it will be run under the user who started httpd. This will be root if the server

was started by root (be sure that the program is secure).

See also “LogLevel” on page 558.

ErrorLogFormatDDS:

 Module: core

Syntax: ErrorLogFormatDDS on | off

Default: ErrorLogFormatDDS off

Context: server, virtual host, not in limit

Override: none

Origin: iSeries

Example: ErrorLogFormatDDS on

The ErrorLogFormatDDS directive is used to specify whether the server should log information to the

ErrorLog in the OS/400 data description specification (DDS) format. This directive provides equivalent

error logging function to the HTTP Server (original) DDS LogFormat.

If the parameter is set to on, the server creates a DDS log file and each record contains the format

described by file QHTTPSVR/QAZHBERR. When the parameter is on, the path name specified on the

ErrorLog directive must be the internal file system syntax for a file in the QSYS.LIB file system, or a

server start up error results. To view a description of the fields within a log file created with DDS format,

use the command DSPFFD FILE(QHTTPSVR/QAZHBERR).

By default, the iSeries logs in Apache’s standard ErrorLog format.

FileETag:

 Module: core

Syntax: FileETag component ...

Default: FileETag All

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: FileETag INode MTime Size

The FileETag directive configures the file attributes that are used to create the ETag (entity tag) response

header field when the document is based on a file. The ETag value is used in cache management to save

network bandwidth. In Apache 1.3.22 and earlier, the ETag value was always formed from the file’s

inode, size, and last-modified time (mtime). The FileETag directive allows you to choose which of these

(if any) should be used.

HTTP Server 543

Parameter: component

v INode indicates the file’s inode number will be included in the calculation.

Note: INode is the file ID number for the object. This number uniquely identifies the object

within a file system. It is part of the stat structure (the st_ino field of the stat structure).

v MTime indicates the date and time the file was last modified will be included.

v Size indicates the number of bytes in the file will be included.

v All indicates all available fields will be used (equivalent to ’FileETag INode MTime Size’).

v None indicates that if a document is file-based, no ETag field will be included in the response.

 The INode, MTime, and Size keywords may be prefixed with either ’+’ or ’-’, which allow changes to be

made to the default setting inherited from a higher level context. Any keyword appearing without such a

prefix immediately and completely cancels the inherited setting.

If a directory’s configuration includes ’FileETag INode MTime Size’, and a subdirectory’s includes

’FileETag -INode’, the setting for that subdirectory (which will be inherited by any sub-subdirectories that

don’t override it) will be equivalent to ’FileETag MTime Size’.

The MTime attribute (if specified) may be used by remote proxy servers to calculate cache expiry times

in the event that document expiry times are not available or provided.

See CacheLastModifiedFactor for more information.

<Files>:

 Module: core

Syntax: <Files filename> ... </Files>

Default: none

Context: server config, virtual host, .htaccess, Not in Limit

Override: none

Origin: Apache

Example: <Files index.html>

The <Files> directive provides for access control by filename. It is comparable to the “<Directory>” on

page 536 directive and “<Location>” on page 554 directives. It should be matched with a </Files>.

Directives given within this section will be applied to any object with a base-name (last component of

filename) matching the specified filename. <Files> sections are processed in the order they appear in the

configuration file, after the <Directory> sections and .htaccess files are read, but before <Location>

sections. Note that <Files> can be nested inside <Directory> sections to restrict the portion of the file

system.

Parameter: filename

v The filename parameter should include a filename or a wildcard string where ’?’ matches any

single character and ’*’ matches any sequences of characters. For example:

<Files index.html>

 Order allow,deny

 allow from all

</Files>

v Extended regular expressions can also be used, with the addition of the ’~’ character.

Note: Unlike <Directory> and <Location> sections, <Files> sections can be used inside .htaccess files.

This allows users to control access to their own files, at a file-by-file level. See “Security tips for

HTTP Server” on page 38 and “User profiles and required authorities for HTTP Server” on page 40

for more details.

544 iSeries: IBM HTTP Server

rzaiemod_cache.htm#cachelastmodifiedfactor

<FilesMatch>:

 Module: core

Syntax: <FilesMatch regex> ... </FilesMatch>

Default: none

Context: server config, virtual host, .htaccess, Not in Limit

Override: none

Origin: Apache

Example: <FilesMatch ″\.(gif|jpe?g|png)$″>

The <FilesMatch> directive provides for access control by filename, in the same way “<Files>” on page

544 directive does. The <FilesMatch> directive, however, accepts a regular expression. For example:

<FilesMatch "\.(gif|jpe?g|png)$">

This would match most common Internet graphic formats.

Note: The argument to <FilesMatch> does not need to be in quotes unless the regular expression

includes a space character.

Parameter: regex

v Regex is a UNIX-style regular expression that is matched against the URL. Subexpressions are

grouped within parentheses. Then, parenthetically enclosed regular expressions will be

substituted in a subsequent $n statement.

ForceType:

 Module: core

Syntax: ForceType media_ type

Default: none

Context: directory, .htaccess

Override: FileInfo

Origin: Apache

Example: ForceType image/gif (forces all files in the container to be treated as a GIF file)

The ForceType directive forces all matching files to be served as the content type given by media type

when they are placed into an .htaccess file, a <Directory>, or <Location> section.

Parameter: media_type

v The media_type parameter is a MIME type/subtype to which all files in the directory will be

forced.

Note: The core directives ForceType and “SetHandler” on page 570 are used to associate all the files in a

given container (<Location>, <Directory>, or <Files>) with a particular MIME-type or handler.

These settings override any filename extension mappings defined in mod_mime.

ForensicLog:

 Module: core

Syntax: ForensicLog pathto logfile

Default: none

Context: server

Override: none

Origin: Apache

Example: ForensicLog logs/forensic_log

HTTP Server 545

This module provides for forensic logging of client requests. Logging is done before and after processing

a request, so the forensic log contains two log lines for each request. The forensic logger is very strict. The

format is fixed. You cannot modify the logging format at runtime. Each request is logged two times. The

first time after receiving the headers. The second log entry is written after the request processing at the

same time when normal logging occurs. To identify each request, a unique request ID is assigned. This

forensic ID can be cross logged in the normal transfer log using the %{forensic-id}n format string. If you

are using mod_unique_id its generated ID will be used.

The first line logs the forensic ID, the request line and all received headers, separated by pipe characters

(|). A sample line follows:

+yQtJf8CoAB4AAFNXBIEAAAAA|GET /manual/de/images/down.gif HTTP/1.1|Host:localhost%3

a8080|User-Agent:Mozilla/5.0 (X11; U; Linux i686; en-US; rv%3a1.6) Gecko/20040216

Firefox/0.8|Accept:image/png

Note: The examples are wrapped for display purposes only.

The plus character at the beginning indicates that this is first log line of this request. The second line just

contains a minus character and the id again:

-yQtJf8CoAB4AAFNXBIEAAAAA

The check_forensic script takes as its argument the name of the logfile. It looks for the ± ID pairs and

issues an error if a request was not completed.

HostNameLookups:

 Module: core

Syntax: HostNameLookups on | off | double

Default: HostNameLookups off

Context: server config, virtual host, directory, Not in Limit

Override: none

Origin: Apache

Example: HostNameLookups on

The HostNameLookups directive enables DNS lookups so the host names can be logged (and passed to

CGIs/SSIs in the REMOTE_HOST environment variable).

Parameter: on | off | double

v The on value enables DNS lookups so the host names can be logged (and passed to CGIs/SSIs

in the REMOTE_HOST environment variable).

v The default off value saves on the network traffic for those sites that do not truly need the

reverse lookup. Heavily loaded sites should leave this directive set to off, since DNS lookups

can take a considerable amount of time.

v The value double refers to doing double-reverse DNS. That is, after a reverse lookup is

performed, a forward lookup is then performed on that command. At least one of the IP

addresses in the forward lookup must match the Original address. When mod_access is used

for controlling access by hostname, regardless of the setting, a double reverse lookup will be

performed. This is necessary for security.

Note: The result of this double-reverse isn’t generally available unless you set HostnameLookups double.

For example, if you only set HostnameLookups on and a request is made to an object that is

protected by hostname restrictions, regardless of whether the double-reverse fails or not, CGIs will

still be passed to the single-reverse result in REMOTE_HOST.

546 iSeries: IBM HTTP Server

HotBackup:

 Module: core

Syntax: HotBackup on | off

Default: HotBackup on

Context: server config

Override: none

Origin: iSeries

Example: HotBackup on

The HotBackup directive is used to specify whether or not a hot backup server should be started at the

server startup time. With the hot backup server active, if the primary server job abnormally terminates,

the hot backup will immediately take over and act as the primary and continue servicing requests. A new

hot backup is automatically created, in the background, within one minute. However, if more than five

consecutive server failures occur within a ten minute time period, no additional hot backups will be

created and the server will fail. The server is allowed to fail in this situation to avoid system degradation,

since the hot backup processing can consume system resources.

If the primary server process failure is not due to the network, all user connections remain active during

the hot backup take over and the end users do not detect the loss of server; however, some HTTP

requests in transient may be lost. If the failure is due to the loss of network, the server must be restarted.

For a full backup recovery, including system and network failures, refer to highly available Web server.

Parameter: on | off

v When set to on, if the primary server job abnormally terminates, the hot backup will

immediately take over and act as the primary and continue servicing requests.

v With HotBackup off, only one multithreaded server child process is started.

Note: When a server is configured as highly available (HAModel directive is specified), HotBackup

behaves as if it is set to ’off’ and can not be overwritten.

IdentityCheck:

 Module: core

Syntax: IdentityCheck on | off

Default: IdentityCheck off

Context: server config, virtual host, directory, Not in Limit

Override: none

Origin: Apache

Example: IdentityCheck on

The IdentityCheck directive enables compliant logging of the remote user name for each connection,

where the client machine runs identd or something similar. This information is logged in the access log.

Parameter: on | off

v When set to on, the server will attempt to identify the client’s user by querying the identd

daemon of the client host. Identd will, when given a socket number, reveal which user created

that socket. That is, the username of the client on his home machine. Since the information

provided is entirely under the control of the client’s machine, this information should not be

trusted in any way except for rudimentary usage tracking.

v When set to off, the server does not attempt to identify the client’s user.

Note: This can cause serious latency problems accessing your server since every request requires one of

these lookups to be performed. When firewalls are involved each lookup might possibly fail and

HTTP Server 547

add 30 seconds of latency to each hit. So in general this is not very useful on public servers

accessible from the Internet. This directive controls the identd field of the W3C common or

extended log format.

A CustomLog, TransferLog or FRCACustomLog must be configured before this directive will take affect.

If IdentityCheck is configured in a directory or location container, the CustomLog, TransferLog or

FRCACustomLog must be configured in the server context where the directory or location container

resides for it to take affect. Also for this directive to be used in the CustomLog, TransferLog, or

FRCACustomLog, the LogFormat for these has to specify ″%l″ (lower case L) in the format.

See “Module mod_log_config for HTTP Server (powered by Apache)” on page 648 for information on log

formats.

<IfDefine>:

 Module: core

Syntax: IfDefine [!]parameter-name> ... </IfDefine>

Default: none

Context: server config

Override: none

Origin: Apache

Example: <IfDefine LDAP>

The <IfDefine test> ... </IfDefine> section is used to mark directives that are conditional. The directives

within an IfDefine section are only processed if the test is true. If the test is false, everything between the

start and end markers is ignored.

The test in the <IfDefine> section directive can be one of the two forms:

v parameter-name

v !parameter-name

In the former case, the directives between the start and end markers are only processed if the parameter

named parameter-name is defined. The second format reverses the test, and only processes the directives if

parameter-name is not defined.

Parameter: parameter-name

v The parameter-name parameter is defined as given on the STRTCPSVR command line vie

-Dparameter, at the time the server was started. <IfDefine> sections are nestable, which can be

used to implement simple mutliple-parameter tests. For example:

STRTCPSVR ’-DLDAP’

in the instance configuration

<IfDefine LDAP>

 LoadModule ldap_module /QSYS.LIB/QHTTPSVR.LIB/MOD_LDAP.SRVPGM

</IfDefine>

<IfModule>:

 Module: core

Syntax: <IfModule [!]module-name> ... </IfModule>

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: <IfModule test>

548 iSeries: IBM HTTP Server

The <IfModule> directive is used to mark directives that are conditional. The directives within an

<IfModule> section are only processed if the test is true. If the test is false, everything between the start

and end markers is ignored.

The test in <IfModule> section directive can be one of two forms:

v module-name

v !module-name

Parameter: module-name

v The module-name parameter is a module name as given as the file name of the module at the

time it was compiled. For example:

mod_rewrite.c

 <IfModule> sections are nestable which can be used to implement simple multiple-module tests.

Include:

 Module: core

Syntax: Include filename

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Example: Include none/mydirectory/myfile

The Include directive allows inclusion of other configuration files from within the server configuration

files. The filename can be either a relative or absolute path.

Parameter: filename

v The filename value identifies other configuration files from within the server configuration files.

Note: The filename specified with this directive must be in a file in the Root or QOpenSys file systems.

Other file systems are not supported.

KeepAlive:

 Module: core

Syntax: KeepAlive on | off

Default: KeepAlive on

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: KeepAlive off

The KeepAlive directive enables keep-alive support (also known as persistent connections).

Parameter: on | off

v When set to on, the directive enables keep-alive support (also known as persistent connections).

v When set to off, keep-alive support (also known as persistent connections) is disabled.

 Persistent connections enable a single TCP connection to be used for multiple HTTP requests. Normally,

each HTTP request uses a separate connection. Reusing a single connection reduces the connection

open/close overhead, thereby improving performance for that client. However with dynamic content,

HTTP Server 549

depending on your Web applications, using persistent connections can reserve server resources for each

client, thereby reducing the throughput of your server as a whole. Therefore, care should be taken when

modifying persistent connection related settings.

Set to off to disable persistent connections, on to enable. If the KeepAlive directive value is not off or zero,

on is assumed.

See also “KeepAliveTimeout” and “MaxKeepAliveRequests” on page 560.

KeepAliveTimeout:

 Module: core

Syntax: KeepAliveTimeout seconds

Default: KeepAliveTimeout 300

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: KeepAliveTimeout 500

The KeepAliveTimeout directive is related to persistent connections and determines the number of

seconds HTTP Server waits for a subsequent request before closing the connection. The KeepAlive

directive must be set to on, enabling persistent connections, for this directive to take effect. It is

recommended that this value be set high enough to prevent time outs. Note that this is related to the

time between requests and not during requests. Once a request is received, the connection timeout setting

(set by the TimeOut directive) applies. The connection time-out applies until request processing is

complete and (until the next request is received) the persistent connections related timer setting is

applied.

Parameter: seconds

v The seconds value determines the number of seconds HTTP Server waits for a subsequent

request before closing the connection.

 See also “KeepAlive” on page 549, “MaxKeepAliveRequests” on page 560, and “TimeOut” on page 571.

<Limit>:

 Module: core

Syntax: <Limit method method ... > ... </Limit>

Default: none

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: none

Origin: Modified

Example: <Limit GET PUT>

The purpose of the <Limit> directive is to restrict the effect of the access controls to the nominated HTTP

methods. For all other methods, the access restrictions that are enclosed in the <Limit> bracket will have

no effect. The following example applies the access control only to the methods POST, PUT, and DELETE,

leaving all other methods unprotected:

<Limit POST PUT DELETE>

 require valid-user

</Limit>

Access controls are normally effective for all access methods, and this is the usual desired behavior. In the

general case, access control directives should not be placed within a <Limit> section.

Parameter: method

550 iSeries: IBM HTTP Server

v Method names listed can be one or more of the following: GET, POST, PUT, DELETE,

CONNECT, OPTIONS, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK

and UNLOCK. The method name is case sensitive. If GET is used it will also restrict HEAD

requests.

<LimitExcept>:

 Module: core

Syntax: <LimitExcept method method ... > ... </LimitExcept>

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Modified

Example: <LimitExcept GET >

<LimitExcept> and </LimitExcept> are used to enclose a group of access control directives which will

then apply to any HTTP access method not listed in the arguments; for example, it is the opposite of a

“<Limit>” on page 550 section and can be used to control both standard and nonstandard-unrecognized

methods. See “<Limit>” on page 550 for more details.

Parameter: method

v Method names listed can be one or more of the following: GET, POST, PUT, DELETE,

CONNECT, OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY,

MOVE, LOCK and UNLOCK. The method name is case sensitive. If GET is specified, HEAD

is also allowed (not restricted).

LimitRequestBody:

 Module: core

Syntax: LimitRequestBody number

Default: LimitRequestBody 0

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: none

Origin: Apache

Example: LimitRequestBody 100

The LimitRequestBody directive allows the user to set a limit on the allowed size (in bytes) of an HTTP

Request message body within the context in which the directive is given (server, per-directory, per-file or

per-location). If the client Request exceeds that limit, the server will return an error response instead of

servicing the Request. The size of a normal Request message body will vary greatly depending on the

nature of the resource and the methods allowed on that resource. CGI scripts typically use the message

body for passing form information to the server. Implementations of the PUT method will require a value

at least as large as any representation that the server wants to accept for that resource.

This directive gives the server administrator greater control over abnormal client Request behavior, which

may be useful for avoiding some forms of denial-of-service attacks.

Parameter: number

v The number parameter is an integer which represents the set limit on the allowed size (in bytes)

of an HTTP Request message body within the context in which the directive is given (server,

per-directory, per-file or per-location). The default value of ’0’ (zero) indicated unlimited

allowed size.

 For example, to limit the size of an uploaded file to 100K use the following:

LimitRequestBody 10240

HTTP Server 551

LimitRequestFields:

 Module: core

Syntax: LimitRequestFields number

Default: LimitRequestFields 100

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: LimitRequestFields 800

The LimitRequestFields directive allows the server administrator to modify the limit on the number of

Request header fields allowed in an HTTP Request. A server needs this value to be larger than the

number of fields that a normal client Request might include. The number of Request header fields used

by a client rarely exceeds 20, but this may vary among different client implementations, often depending

upon the extent to which a user has configured their browser to support detailed content negotiation.

Optional HTTP extensions are often expressed using Request header fields.

This directive gives the server administrator greater control over abnormal client Request behavior, which

may be useful for avoiding some forms of denial-of-service attacks. The value should be increased if

normal clients see an error response from the server that indicates too many fields were sent in the

Request.

Parameter: number

v The number parameter is an integer from 0 (meaning unlimited) to 32767 bytes. The default

value is 100.

LimitRequestFieldsize:

 Module: core

Syntax: LimitRequestFieldsize number

Default: LimitRequestFieldsize 8190

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: LimitRequestFieldsize 8000

The LimitRequestFieldsize directive allows the server administrator to reduce the limit on the allowed

size of an HTTP Request header field below the normal input buffer size compiled with the server. A

server needs this value to be large enough to hold any one header field from a normal client Request.

The size of a normal Request header field will vary greatly among different client implementations, often

depending upon the extent to which a user has configured their browser to support detailed content

negotiation.

This directive gives the server administrator greater control over abnormal client Request behavior, which

may be useful for avoiding some forms of denial-of-service attacks. Under normal conditions, the value

should not be changed from the default.

Parameter: number

v A number is an integer from 0 to 8190 (in bytes).

LimitRequestLine:

 Module: core

Syntax: LimitRequestLine number

Default: LimitRequestLine 8190

552 iSeries: IBM HTTP Server

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: LimitRequestLine 8000

The LimitRequestLine directive allows the server administrator to reduce the limit on the allowed size of

a client’s HTTP Request-line below the normal input buffer size compiled with the server. Since the

Request-line consists of the HTTP method, URI, and protocol version, the LimitRequestLine directive

places a restriction on the length of a Request-URI allowed for a Request on the server. A server needs

this value to be large enough to hold any of its resource names, including any information that might be

passed in the query part of a GET Request.

This directive gives the server administrator greater control over abnormal client Request behavior, which

may be useful for avoiding some forms of denial-of-service attacks. Under normal conditions, the value

should not be changed from the default.

Parameter: number

v A number is an integer from 0 to 8190 (in bytes).

LimitXMLRequestBody:

 Module: core

Syntax: LimitXMLRequestBody number

Default: LimitXMLRequestBody 1000000

Context: server config, virtual host, directory (but not location), .htaccess, Not in Limit

Override: none

Origin: Apache

Example: LimitXMLRequestBody 1000000

The LimitXMLRequestBody directive limits (in bytes) the maximum size of an XML-based request body.

Parameter: number

v A number is an integer from 0 (meaning unlimited) to 2,147,483,647 (2 gigabytes).

Listen:

 Module: core

Syntax: Listen [IP address:] port number

Default: none

Context: server config

Override: none

Origin: Apache

Example: Listen 8000

Example: Listen 8000 FRCA

Note: FRCA support for the Listen directive is not available for V5R1 and earlier releases of HTTP Server.

The Listen directive instructs HTTP Server to listen to more than one IP address or port; by default the

server responds to requests on all IP interfaces. It tells the server to accept incoming requests on the

specified IP address or address-and-port combinations. If the first format is used, with an IP address

number only, the server listens to the given IP address. If an IP address is given as well as a port, the

server will listen on the given port and interface.

Parameter One: IP address

v The IP address parameter specifies a fully qualified IP address.

HTTP Server 553

Parameter Two: port number

v The port number parameter is optional and if specified as word ″FRCA″, implies the incoming

connections on the specified IP address and port are eligible to be monitored and served by

FRCA cache support.

Note: FRCA does not support SSL. Therefore, do not specify FRCA option for IP addresses and

ports that are used for SSL connections.

 Multiple Listen directives may be used to specify a number of addresses and ports to listen to. The server

will respond to requests from any of the listed addresses and ports.

To make the server accept connections on both port 80 and port 8000, use:

Listen 80

Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use:

Listen 194.170.2.1:80

Listen 194.170.2.5:8000

To make the FRCA monitor and intercept connections on a specified interface and port numbers, use:

Listen 194.170.2.5:8000 FRCA

In the above example, since the optional parameter FRCA is specified, FRCA will be enabled for the

specified IP address and port.

ListenBacklog:

 Module: core

Syntax: ListenBacklog backlog

Default: ListenBacklog 511

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: ListenBacklog 400

The ListenBacklog sets the maximum length of the queue for pending connections. Generally no tuning is

needed; however, on some systems it is desirable to increase this when under a TCP SYN flood attack.

Parameter: backlog

v The backlog parameter is an integer value that sets the maximum length of the queue for

pending connections.

<Location>:

 Module: core

Syntax: <Location url> ... </Location>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example:

Alias /a /b

<Location /a>

554 iSeries: IBM HTTP Server

The <Location> directive limits the scope of the enclosed directives by URL (the URL is the virtual path

used to access a resource), and is similar to the “<Directory>” on page 536 and <Proxy> directives, and

starts a subsection which is terminated with a </Location> directive. Everything that is syntactically

allowed in <Directory> is also allowed in <Location> (except a sub-“<Files>” on page 544 section).

However some directives, most notably the “AllowOverride” on page 534 directive and two of its options

(FollowSymLinks and SymLinksIfOwnerMatch) do not belong in <Location>. <Location> sections are

processed in the order they appear in the configuration file (as opposed to <Directory> sections which are

processed from the least match to the best match). They are processed after the <Directory> and <Proxy>

sections, after .htaccess files are read, and after the <Files> sections. See “<Directory>” on page 536,

<Proxy>, “<Files>” on page 544, and “AllowOverride” on page 534 directives for more information on

<Directory>, <Proxy>, and <Files> containers and access files.

Parameter : url

v The url parameter consists of a URL.

For all origin (non-proxy) requests, the URL to be matched is of the form /path/. The URL

should not include the http://servername prefix. For proxy requests, the matched URL is of

the form http://servername/path (you must include the prefix).

The URL may use wildcards in a wildcard string. ’?’ matches any single character; ’*’ matches

any sequence of characters.

Note: URLs do not have to line up with the file system. <Location> operates completely outside the file

system.

Extended regular expressions can also be used, with the addition of the ~ character. For example:

<Location ~ "/(extra|special)/data">

This would match URLs that contained the substring ″/extra/data″ or ″/special/data″. The directive

“<LocationMatch>” behaves identical to the regex version of <Location>. The <Location> functionality is

especially useful when combined with the “SetHandler” on page 570 directive. For example, to enable

origin requests, but allow them only from browsers at QIBM.com, you might use:

<Location /Origin>

 SetHandler server-Origin

 order deny,allow

 deny from all

 allow from .QIBM.com

</Location>

Note: The slash character has special meaning depending on where in a URL it appears. People may be

used to its behavior in the file system where multiple adjacent slashes are frequently collapsed to a

single slash (for example, /home///QIBM is the same as /home/QIBM). For <Location> this is not

necessarily true. The <LocationMatch> directive and the regex version of <Location> require you

to explicitly specify multiple slashes if that is your intention. For example, <LocationMatch ^/ABC>

would match the request URL /ABC but not the request URL //ABC. The (non-regex) <Location>

directive behaves similarly when used for proxy requests. But when (non-regex) <Location> is

used for non-proxy requests it will implicitly match multiple slashes with a single slash. For

example, if you specify <Location /ABC/def> and the request is to /ABC//def, the request will

match the location.

<LocationMatch>:

 Module: core

Syntax: <LocationMatch regex> ... </LocationMatch>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

HTTP Server 555

rzaiemod_proxy.htm#proxy
rzaiemod_proxy.htm#proxy

Example: <LocationMatch ″/(extra|special)/data″>

The <LocationMatch> directive provides for access control by URL. This directive works in an identical

manner to the “<Location>” on page 554 directive. However, it takes a regular expression as an argument

instead of a simple string.

Parameter: regex

v The regex parameter is a UNIX-style regular expression that is matched against the URL.

 For example:

<LocationMatch "/(extra|special)/data">

This would match URLs that contained the substring ″/extra/data″ or ″/special/data″.

Note: The argument to LocationMatch does not need to be in quotes unless the regular expression

includes a space character.

LogCycle:

 Module: core

Syntax: LogCycle Off | Hourly | Daily | Weekly | Monthly

Default: LogCycle Daily

Context: server config, Not in Limit

Override: none

Origin: iSeries

Example: LogCycle Monthly

The LogCycle directive controls the server’s log cycle. This refers to how often the server will close all log

files and open new files with a new date/time stamp.

Parameter: Off | Hourly | Daily | Weekly | Monthly

v If Off is specified, one continuous log file is generated. Log files are not rolled over.

v If Hourly is specified, log files are closed and a new one created at the end of each hour.

v If Daily is specified, log files are closed and a new one created at midnight each day.

v If Weekly is specified, log files are closed and a new one created at midnight each Sunday

morning. Weekly may not work correctly if the system is not using the Gregorian calendar (this

would be similar to the help behind system value QDAYOFWEEK).

v If Monthly is specified, log files are closed and a new one created at midnight on the first day

of the month.

Note: Daily and monthly log rollovers will always occur at midnight. Hourly rollovers will occur at the

top of the hour. At the end of a log cycle, HTTP Server will roll over all logs. That means that it

will flush all entries to the log file, close the current logs, and create a log file with a timestamp for

the next log cycle.

If LogCycle is active and the path defined on an ErrorLog, CustomLog, TransferLog, or FRCACustomLog

directive ends without a (/) character, then the path is considered to be the complete log file name. In

that case, the server will add an extension to the given file with the format QCYYMMDDHH, where

these variables have the following values:

v Q is a default value that indicates to the server that this is a log file.

v C is the century indicator (0 for pre-2000, 1 for post-2000)

v YY is the year indicator

v MM is the month indicator

556 iSeries: IBM HTTP Server

v DD is the day indicator

v HH is the hour indicator (00 = 00:00 (midnight), 23=23:00)

Note: HH will not be generated for file system QDLS.

For example, a path of ″/logs/errorlog″ results in a file such as ″/logs/errorlog.Q100030300″.

If LogCycle is active and the path defined on an ErrorLog, CustomLog, TransferLog, or FRCACustomLog

directive ends with a (/) character, then the path is considered to be the directory that will contain the

log file. In that case, the server will create log files named in the QCYYMMDDHH format. For example, a

path of ″/logs/errorlog/″ created on March 3, 2001 results in a file such as ″/logs/errorlog/Q101030300″.

If LogCycle is active and the path defined on an ErrorLog, CustomLog, TransferLog, or FRCACustomLog

directive is in the QSYS file system, the name must end with the file component of the IFS path. Fore

example:

Config file directives

LogCycle Daily

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE common

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

If LogCycle is not active, no special naming is used. The name of the log file given on an ErrorLog,

CustomLog, TransferLog, or FRCACustomLog directive is used as given for the name of the log file.

If LogCycle Weekly is specified, rollover will occur when QDAYOFWEEK is equal to *SUN. However, if

the system is not using the Gregorian calendar, this value may not be set correctly and the logs may not

get rolled over as expected.

LogCycle Hourly is not valid if the log file is in the QDLS file system as that file system only supports 8

character file names and 3 character extensions.

LogLength:

 Module: core

Syntax: LogLength number-of-bytes

Default: LogLength 0

Context: server config, Not in Limit

Override: none

Origin: iSeries

Example: LogLength 1000000

The LogLength directive limits the size of any defined log file. To prevent problems due to unbounded

growth of log files, this directive can be used to set an maximum file-size for log files. If the file exceeds

this size, no more information will be written to it until logs and alertable message HTP8433 will be sent

to QSYSOPR. The server will automatically restart logging requests when the logs are rolled over to the

next log cycle. This directive can be specified multiple times in the configuration file.

Parameter: number-of-bytes

v The number-of-bytes parameter is an integer value that sets the maximum size limit of the log

file. When any defined log file (those defined with CustomLog, TransferLog,

FRCACustomLog, or ErrorLog directives) exceeds this value, no more information will be

logged until log rollover occurs. An alertable message TCP7201 will be sent to QSYSOPR. A

value of 0 means there is no limit. If ’LogCycle Off’ is specified and a non-zero value is

HTTP Server 557

specified for LogLength, when the LogLength size is reached no more logging will be done

(even on starts and restarts of the server instance) since the same file will be used every time.

Security notes:

v Security could be compromised if the directory where log files are stored is writable by

anyone other than the user that starts the server.

v If a program is used, then it will be run under the user who started httpd. Be sure that

the program is secure.

LogLevel:

 Module: core

Syntax: LogLevel level

Default: LogLevel warn

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: LogLevel debug

The LogLevel directive adjusts the verbosity of the messages recorded in the error logs. See the

“ErrorLog” on page 541 directive for more information.

Parameter: level

 The following levels are available, in order of decreasing significance:

v If emerg, system is unusable messages (″Child cannot open lock file. Exiting.″).

v If alert, action must be taken immediately messages (″getpwuid: couldn’t determine user name

from uid.″).

v If crit, critical conditions messages (″Socket: Failed to get socket, exiting child.″).

v If error, error conditions messages (″Premature end of script headers.″).

v If warn, warning conditions messages (″Child process 1234 did not exit, sending another

SIGHUP.″). If notice, normal but significant conditions messages (″httpd: caught SIGBUS,

attempting to dump core in...″).

v If info, informational messages (″Server seems busy, (you may need to increase StartServers or

Min/MaxSpareServers)...″).

v If debug, debug-level messages (″Opening config file...″).

 When a particular level is specified, messages from all other levels of higher significance will be reported

as well. For example, when LogLevel info is specified, then messages with log levels of notice and warn

will also be posted. Using a level of at least crit is recommended.

LogMaint:

 Module: core

Syntax: LogMaint path_to_file expire size_limit

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Example: LogMaint logs/access_log 10 2000000

558 iSeries: IBM HTTP Server

Note: If this directive is not present, log maintenance is not performed. If the directive is present, all

parameters are required. Values of 0 for expire and size_limit have a special meaning of no limit. If a

LogMaint directive with values of 0 for both expire and size_limits specified, no log maintenance

will be done on the specified file.

The LogMaint directive allows you perform log maintenance on the specified file and its derivatives.

When log maintenance is performed on a file, it is purged from the system. Derivatives consist of either

the path_to_file name provided, concatenated with the extension ″.Qcyymmdd″, or ″Qcyymmdd″ if the

provided path_to_file value was a directory. LogCycle must be active in order to enable derivatives.

A separate LogMaint directive is required in the server configuration for each CustomLog or ErrorLog

that requires log maintenance. The recommended way to configure maintenance is to match the path

configured on the LogMaint directive with the path specified on the associated CustomLog or ErrorLog

directive.

Parameter One: path_to_file

v The path_to_file value specifies the IFS-style path (for example, /QSYS.LIB/MYHTTP.LIB/
MYLOGS.FILE) of the log file to be included in log maintenance. Refer to the “LogCycle” on

page 556 directive for more information on log file names and extensions.

Parameter Two: expire

v The expire value specifies an integer value indicating the number of days before a log file

expires. Files older than this value are to be removed. A value of 0 means the log file will

never expire. The age of the error log file is determined by the file creation date (as reported by

the operating system). The file name suffix, such as errorlog.Q100082213, is not used to

determine the age of the file. Files that are currently open and active in the server instance will

not be removed.

Parameter Three: size_limit

v The size_limit value specifies an integer value indicating the maximum aggregate size of log

files with the name path_to_file. When the combined size of the log files exceeds this value in

bytes, files are deleted starting with the oldest file. Eligible files are deleted until the collective

size is less than or equal to the value specified on this directive. A value of 0 means there is no

size limit. Note that it is possible for the aggregate size of log files to exceed the total

size_limit. This is possible due to the fact that the size of any open log files are not included in

the size_limit total. Users should take this into account when they are calculating a value for

size limit, and when setting a maximum value for the LogLength directive.

 If both expire and size_limit are configured to non-zero values, the expired files are purged first. If the

size_limits still exceeded after expired files are purged, the server continues purging files (oldest files

first) until the collective log size is equal to or less than the size_limit.

Note: If invalid values are used for expire or size_limit, an error message will be placed into the job log

and the HTTP Server will not start.

The following example of log maintenance will be performed on the logs/access_log file and its

derivatives (see below for details). The files will expire after 10 days. In addition, if the total limit exceeds

2,000,000 bytes, log maintenance will be performed.

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log common

LogMaint logs/access_log 10 2000000

The following example of log maintenance will be performed on the /QSYS.LIB/MYHTTP.LIB/
MYLOGS.FILE/Q* files. The files will expire after 25 days and there is no total limit on the size of the

files.

HTTP Server 559

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /QSYS.LIB/MYHTTP.LIB/MYLOGS.FILE common

LogMaint /QSYS.LIB/MYHTTP.LIB/MYLOGS.FILE 25 0

Only one occurrence of this directive can exist per server or virtual host container. If the directive occurs

more than once, the last one specified in the server or virtual host is used.

Note: If LogCycle is configured to Off, then log maintenance is not performed.

LogMaintHour:

 Module: core

Syntax: LogMaintHour variable

Default: LogMaintHour 0

Context: server config, virtual host

Override: none

Origin: iSeries

Example: LogMaintHour 3

The LogMaintHour directive may be used to control which hour of the day log maintenance occurs. The

default is for log maintenance to occur at midnight. Log maintenance always occurs at the beginning of

the hour. By using this directive, which hour of the day maintenance will occur can be controlled, to do

maintenance in the early morning or in the evening after the normal work day is done.

LogTime:

 Module: core

Syntax: LogTime LocalTime | GMT

Default: LogTime LocalTime

Context: server config, virtual host, Not in Limit

Override: none

Origin: iSeries

Example: LogTime GMT

The LogTime directive specifies whether your log should record entrees using local time or Greenwich

Mean Time (GMT). This directive affects timestamps for log entries only.

Parameter: LocalTime | GMT

v LocalTime indicates the local time for log entry timestamps.

v GMT indicates the Greenwich Mean Time for log entry timestamp.

MaxKeepAliveRequests:

 Module: core

Syntax: MaxKeepAliveRequests number

Default: MaxKeepAliveRequests 100

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: MaxKeepAliveRequests 50

The MaxKeepAliveRequests directive limits the number of requests allowed per connection when

“KeepAlive” on page 549 is on. If it is set to 0, unlimited requests will be allowed.

Parameter: number

560 iSeries: IBM HTTP Server

v The number parameter specifies an integer value that limits the number of requests allowed per

connection when KeepAlive is on.

 See “KeepAlive” on page 549, and “KeepAliveTimeout” on page 550.

NameVirtualHost:

 Module: core

Syntax: NameVirtualHost address[:port]

Default: none

Context: server config

Override: none

Origin: Apache

Example: NameVirtualHost 10.1.1.1

The NameVirtualHost directive is a required directive if you want to configure name-based virtual hosts.

Parameter: address

v The address parameter consists of an IP address or hostname. Although address can be a

hostname, it is recommended that you always use an IP address. For example:

NameVirtualHost 10.22.33.44

 With the NameVirtualHost directive you specify the address to which your name-based virtual host

names resolve. If you have multiple name-based hosts on multiple addresses, repeat the directive for each

address.

Note: The ″main server″ and any _default_ servers will never be served for a request to a

NameVirtualHost IP Address (unless for some reason you specify NameVirtualHost but then do

not define any VirtualHosts for that address).

Optionally you can specify a port number on which the name-based virtual hosts should be used, for

example:

NameVirtualHost 10.22.33.44:8080

Options:

 Module: core

Syntax: Options [+|-]option [[+|-]option ...]

Default: Options all

Context: server config, virtual host, directory (but not location), .htaccess

Override: none

Origin: Apache

Example: Options +Indexes +FollowSymLinks

The Options directive controls which server features are available in a particular directory.

Parameter : option

v The option parameter can be set to one or more of the following:

 Option Description

None None of the extra features are enabled.

All All options except for MultiViews. This is the

default setting.

ExecCGI Execution of CGI scripts is permitted.

HTTP Server 561

Option Description

Follow SymLinks The server will follow symbolic links in this

directory.

Note: Even though the server follow the SymLink,

it does not change the pathname used to match

against <Directory> sections. This option gets

ignored if set inside <Location> sections.

Includes Server-side includes are permitted.

IncludesNOEXEC Server-side includes are permitted, but the #exec

command and #include of CGI scripts are disabled.

Indexes If a URL which maps to a directory is requested

and there is no DirectoyIndex (for example,

index.html) in that directory, then the server will

return a formatted listing of the directory.

MultiViews Content negotiated MultiViews are allowed. See

“Content negotiation for HTTP Server (powered by

Apache)” on page 11 for more information.

SymLinksIfOwnerMatch The server will only follow symbolic links for

which the target file or directory is owned by the

same user id as the link.

Note: This option is ignored if set inside a

<Location> sections.

 Normally, if multiple Options could apply to a directory, then the most specific one is taken complete; the

options are not merged. However if all the options on the Options directive are preceded by a + or -

symbol, the options are merged. Any options preceded by a + are added to the options currently in force;

any options preceded by a - are removed from the options currently in force.

For example, without any + and - symbols:

<Directory /web/docs>

 Options Indexes FollowSymLinks

</Directory>

<Directory /web/docs/spec>

 Options Includes

</Directory>

Then only Includes will be set for the /web/docs/spec directory. However if the second Options directive

uses the + and - symbols:

<Directory /web/docs>

 Options Indexes FollowSymLinks

</Directory>

<Directory /web/docs/spec>

 Options +Includes -Indexes

</Directory>

Then the options FollowSymLinks and Includes are set for the /web/docs/spec directory.

Note: Using -IncludesNOEXEC or -Includes disables server-side includes completely regardless of the

previous setting. The default in the absence of any other settings is All.

The option +IncludesNOEXEC can be used instead of +Includes. If the previous is specified, then the SSI

Exec tag is not processed during SSI processing.

562 iSeries: IBM HTTP Server

ProfileToken:

 Module: core

Syntax: ProfileToken on | off

Default: ProfileToken off

Context: directory

Override: AuthConfig

Origin: iSeries

Example: ProfileToken on

The Profile Tokens directive creates a 32-byte value called the Profile Token. This token is used the same

way as a userid/password combination to identify/authenticate a user, and prevents passing these values

in the clear. The Profile Token value can be used on any of the iSeries security APIs that accept a Profile

Token as input.

Parameter: on | off

v If on is specified, and basic authentication is performed successfully, the userid/password is

passed in by the user (only an iSeries user) to generate a Profile Token. A Profile Token is not

generated if this parameter is set to off, or if basic authentication was not successful.

The Profile Token is accessible in a CGI program via the HTTP_AS_AUTH_PROFILETKN

environment variable. The HTTP_AS_AUTH_PRFILETKN environment variable is not set if a

Profile Token is not generated.

The Profile Token is accessible in HTTP Server (powered by Apache) modules via the headers

section (r->headers_in field), which is an internal representation of the HTTP request structure.

The profile token is stored as the AS_Auth_ProfileTkn header in the headers section. HTTP

Server (powered by Apache) modules can then retrieve this Profile Token and either use it, or

pass it on to another application. The AS_Auth_ProfileTkn header is not created if a Profile

Token is not generated.

RuleCaseSense:

 Module: core

Syntax: RuleCaseSense on | off

Default: RuleCaseSense off

Context: server config

Override: none

Origin: iSeries

Example: RuleCaseSense on

The RuleCaseSense directive is used to control how requested URLs are handled.

Parameter: on | off

v When on is specified, the URLs are treated as case sensitive. This means that an exact match

with case is required.

v When off is specified, the URLs are treated as case insensitive. Paths on directives and

requested URLs are internally converted to upper case before they are compared.

 The default value for the case sensitivity is off. Rules that map the same value in different cases to

different things, for example ABC to XYZ, will not work correctly when RuleCaseSense is off. This type of

mapping is not recommended.

When using protection for any URL, it is recommended that you set this directive to off. This ensures that

all variations in case for your URLs are protected. If you do not protect any of your site, then this

directive can be either on or off. Setting it to Off allows your users to specify any case on their URLs and

enables them to see your site.

HTTP Server 563

If you use the QOpenSys file system, you will have to be careful to match the case of your file system in

your directives. You will also need to be aware that case differences matter when serving files from the

case sensitive file system. You should only turn this directive on when absolutely necessary.

RuleCaseSense affects the processing of the incoming URL in the ″URL Fixup″ and ″URL translation″

server phases. These phases manipulate the incoming URL and do not necessarily relate to other

directives. RuleCaseSense affects the following directives: Alias, AliasMatch, RewriteBase, RewriteCond,

RewriteMap, RewriteRule, ScriptAlias, and ScriptAliasMatch

Satisfy:

 Module: core

Syntax: Satisfy any | all

Default: Satisfy all

Context: directory, .htaccess

Override: AuthConfig

Origin: Modified

Example: Satisfy any

The Satisfy directive establishes access policy if both allow and require are used. The parameter can be

either ’all’ or ’any’. This directive is only useful if access to a particular area is being restricted by both

username/password and client host address.

Parameter: any | all

v In this case, the default behavior all requires that the client passes the address access restriction

and enters a valid username and password.

v With the any option, the client will be granted access if they either pass the host restriction or

enter a valid username and password. This can be used to password restrict an area, but to let

clients from particular addresses in without prompting for a password.

 The Require directive has to indicate Satisfy is not required every time AuthType is used, but if ″Satisfy

Any″ is used, then you must also use Allow, Require, AuthType AuthName and PasswdFile in order for

the Satisfy to work correctly. For example:

Order allow,deny

Allow from All

Satisfy Any

AuthType Basic

AuthName "Realm can go here"

PasswdFile %%SYSTEM%%

Require valid-user

Note: If you are using SSL Authentication the satisfy directive should be set to any. The all option allows

for SSL Authentication, and also authentication with userid and passwords. You do not want to

use the Require directive if SSLClientAuth equals zero (0). In this case, the Satisfy directive should

not be used with ″Allow from All″ and ″SSLClientAuth 0″.

See also “Require” on page 471 and mod_access.

SendBufferSize:

 Module: core

Syntax: SendBufferSize bytes

Default: SendBufferSize 0

Context: server config

Override: none

Origin: Apache

564 iSeries: IBM HTTP Server

rzaiemod_alias.htm#alias
rzaiemod_alias.htm#aliasmatch
rzaiemod_rewrite.htm#RewriteBase
rzaiemod_rewrite.htm#RewriteCond
rzaiemod_rewrite.htm#RewriteMap
rzaiemod_rewrite.htm#RewriteRule
rzaiemod_alias.htm#scriptalias
rzaiemod_alias.htm#scriptaliasmatch

Example: SendBufferSize 4000

The SendBufferSize directive tells the server to set the TCP buffer size to the number of specified bytes.

The TCP send buffer size provides a limit on the number of outgoing bytes that are buffered by TCP.

Once this limits reached, attempts to send additional bytes may result in the application blocking until

the number of outgoing bytes buffered drops below this limit. The number of outgoing buffered bytes is

decremented when the remote system acknowledges the sent data.

Parameter: bytes

v The bytes parameter is a number that is greater or equal to 512. The default of this directive is

set to 0 (the default iSeries TCP value).

ServerAdmin:

 Module: core

Syntax: ServerAdmin email-address

Default: none

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: ServerAdmin www-admin@myserver.com

The ServerAdmin directive specifies the e-mail address to be used in trailing footer lines for hard coded

error messages returned to clients. The specified value is used in hypertext link references generated by

the server when ″email″ is specified for the “ServerSignature” on page 568 directive.

Parameter: email-address

v The email-address parameter specifies a valid email address.

 For example,

ServerAdmin www-admin@server.ibm.com

Note: This setting is not used if ServerSignature is not set to ″email″, or for errors handled by custom

error messaging (see “ErrorDocument” on page 539 for more details on custom error messaging).

ServerAlias:

 Module: core

Syntax: ServerAlias host1 [host2 ...]

Default: none

Context: virtual host

Override: none

Origin: Apache

Example: ServerAlias ibm.com * .ibm.com

The ServerAlias directive allows servers to be accessible by more than one name. For example, HTTP

Server might want to be accessible as ibm.org, or ftp.ibm.org, assuming the IP addresses pointed to the

same server. In fact, one might want it so that all addresses at ibm.org were picked up by the server. This

is possible with the ServerAlias directive placed inside the “<VirtualHost>” on page 573 section.

Parameter: host

v The host parameter specifies a hostname. Note that you can use ’*’ and ’?’ as wildcard

characters.

HTTP Server 565

For example,

<VirtualHost 10.22.33.55>

 ServerAdmin webmaster@host.QIBM.com

 DocumentRoot /usr/web/host.QIBM.com

 ServerName host.QIBM.com

 ServerAlias ibm.com *.ibm.org

 ErrorLog logs/host.QIBM.com-error_log

 TransferLog logs/host.QIBM.com-access_log

</VirtualHost>

You may need ServerAlias if you are serving local users who do not always include the domain name.

For example, if local users are familiar with typing ″www″ or ″www.physics″ then you will need to add

ServerAlias www www.physics. It isn’t possible for the server to know what domain the client uses for

their name resolution because the client doesn’t provide that information in the request.

The ServerAlias directive sets the alternate names for a host, for use with name-based virtual hosts.

If multiple occurrences of this directive are configured in a container, only the last occurrence is

processed. All other occurrences are ignored.

ServerName:

 Module: core

Syntax: ServerName fully-qualified-domain-name [:port]

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Example: ServerName www.example.com

The ServerName directive sets the server hostname. This setting is used when creating redirection URLs.

If it is not specified, the server attempts to deduce the server name from its own IP address; however,

this may not work reliably or may not return the preferred hostname.

Parameter: fully-qualified-domain-name

v The fully-qualified-domain-name parameter sets the server hostname.

 For example,

ServerName simple.example.com:80

<VirtualHost 10.1.2.3>

 ServerAdmin webmaster@host.QIBM.com

 DocumentRoot /usr/web/host.QIBM.com

 ServerName host.QIBM.com

 ErrorLog logs/host.QIBM.com-error_log

 TransferLog logs/host.QIBM.com-access_log

</VirutalHost>

This would be used if the canonical (main) name of the actual machine were simple.example.com. If you

are using name-based virtual hosts, the ServerName inside a “<VirtualHost>” on page 573 section

specifies what hostname must appear in the request’s Host: header to match this virtual host.

This directive allows a port to be added to the server name. This allows an administrator to assign the

canonical port at the same time that the canonical name is assigned. If no port is specified, HTTP Server

(powered by Apache) implies port 80 for http:// and port 443 for https:// requests. This setting also

specifies the server name used when trailing footer lines are added to hard coded error messages (see

“ServerSignature” on page 568).

566 iSeries: IBM HTTP Server

Note: TCP/IP must be properly configured to recognize all possible server hostnames. See the

configuration chapter in TCP/IP Configuration and Reference

for more information.

See also “UseCanonicalName” on page 572, “NameVirtualHost” on page 561 and “ServerAlias” on page

565.

ServerPath:

 Module: core

Syntax: ServerPath pathname

Default: none

Context: virtual host, Not in Limit

Override: none

Origin: Apache

Example: ServerPath /sub1/

The ServerPath directive sets the legacy URL pathname for a host, for use with name-based virtual hosts.

Parameter: pathname

v The pathname parameter sets the legacy URL pathname for a host, for use with name-based

virtual hosts.

 For example, an HTTP server exists with two name-based virtual hosts. In order to match the correct

virtual host a client must send the correct Host: header. Old HTTP/1.0 clients do not send such a header

and the server has no clue what virtual host the client tried to reach (and serves the request from the

primary virtual host). To provide as much backward compatibility as possible, create a primary virtual

host that returns a single page containing links with an URL prefix to the name-based virtual hosts.

A request to the URL http://www.sub1.domain.tld/sub1/ is always served from the sub1-virtual host. A

request to the URL http://www.sub1.domain.tld/ is only served from the sub1-virtual host if the client

sent a correct Host: header. If no Host: header is sent, the client gets the information page from the

primary host. Note that there is one exception: a request to http://www.sub2.domain.tld/sub1/ is also

served from the sub1-virtual host if the client did not send a Host: header. The RewriteRule directives are

used to make sure that a client who sent a correct Host: header can use both URL variants (for example,

with or without the URL prefix).

ServerRoot:

 Module: core

Syntax: ServerRoot directory-path

Default: none

Context: server config

Override: none

Origin: Apache

Example: ServerRoot /www/webserver

The ServerRoot directive sets the directory in which the server lives. Typically it will contain the

subdirectories conf/ and logs/. Relative paths for other configuration files are taken as relative to this

directory.

The directory-path parameter must specify a path in either the root (’/’) or QOpenSys file system.

Parameter: directory-path

v The directory-path parameter sets the directory in which the server lives.

HTTP Server 567

http://publib.boulder.ibm.com/pubs/html/as400/v5r1/ic2924/books/c4154204.pdf
rzaiemod_rewrite.htm#rewriterule

ServerSignature:

 Module: core

Syntax: ServerSignature on | off | email

Default: ServerSignature off

Context: server config, virtual host, directory, .htaccess, Not in Limit

Override: none

Origin: Apache

Example: ServerAdmin www-admin@myserver.com

Example: ServerSignature on

The ServerSignature directive specifies if trailing footer lines are to be generated for hard coded error

messages returned to clients. When requests pass through a chain of servers, this feature is useful to

identify which server generated the error message. The default value is off.

Parameter: on | off | email

v If on is specified, trailing footer lines containing the server name and version information are

added to hard coded error messages.

v If off is specified (the default), trailing footer lines are suppressed and only hard coded error

messages are returned.

v If email is specified, trailing footer lines are added and look identical to those generated when

on is specified, however the server name is also a hypertext link that references the server

administrator’s e-mail address.

 The value used for server name is that specified by the “ServerName” on page 566 directive of the

serving virtual host or server. The value used for version information is that specified by the

“ServerTokens” directive. The value used for server administrator’s e-mail address is that specified by the

“ServerAdmin” on page 565 directive.

For example, the value used for server name is that specified by the ServerName directive of the serving

virtual host or server. The value used for version information is that specified by the ServerTokens

directive. The value used for server administrator’s e-mail address is that specified by the ServerAdmin

directive.

For example,

ServerAdmin www-admin@myserver.com

ServerSignature email

Note: This setting is not used for errors handled by custom error messaging (see “ErrorDocument” on

page 539 for more details on custom error messaging).

ServerTokens:

 Module: core

Syntax: ServerTokens Major | Minor | Minimal | OS | Full | Prod

Default: ServerTokens Prod

Context: server config

Override: none

Origin: Apache

Example: ServerToken Full

The ServerTokens directive specifies which form of the Server: header value is included in response

headers sent to clients. The value may consist of a minimal description of the server, a description with a

generic OS-type included, a description that includes information about compiled-in modules, or a simple

product description.

568 iSeries: IBM HTTP Server

Parameter: Major | Minor | Minimal | OS | Full | Prod

v If Major is specified, the server sends: ″Server : Apache/2″

v If Minor is specified, the server sends: ″Server : Apache/2.0″

v If Minimal is specified, the server sends: ″Server: Apache″

v If OS is specified, the server sends: ″Server: Apache (iSeries)″

v If Full is specified, the server sends: ″Server: Apache (iSeries) MymMod/1.2″

v If Prod is specified, the server sends: ″Server: Apache″

 This setting also specifies the version information used when trailing footer lines are added to hard

coded error messages (see “ServerSignature” on page 568).

Note: This setting applies to the entire server, and cannot be enabled or disabled on a

virtualhost-by-virtualhost basis.

ServerUserID:

 Module: core

Syntax: ServerUserID user_profile

Default: ServerUserID QTMHHTTP

Context: All

Override: AuthConfig

Origin: iSeries

Example: ServerUserID webmaster

The ServerUserID directive specifies the user profile that the HTTP Server will run under.

Note: If directive UserId is set and authentication is performed in a context, and UserId specifies

%%SERVER%%, then directive ServerUserID will be used for that context. ServerUserID is

inherited through all contexts unlike UserId. If authentication is performed and directive UserId is

set to any value other than %%SERVER%%, then ServerUserID is overridden by UserId. If

authentication is not performed at all, then ServerUserID is used from the correct context.

Parameter: user_profile

v The user_profile parameter must be a valid user profile. This profile must be authorized to all

the directories, files, and other server resources accessed by the Web server unless the server is

configured to swap to another profile for specific requests or directories.

This directive is now valid in all contexts. If userid is set and authentication is performed in a

context, and the UserID value is set to %%SERVER%%, then ServerUserID will be used for that

context. The ServerUserID is inherited through all contexts unlike UserID. If authentication is

performed and the UserID directive is set to something other than %%SERVER%%, then

ServerUserID is overridden by the UserID. If authentication is not performed at all, then

ServerUserID is used from the correct context. This allows for specific and unique user id

security models for separate virtual hosts, locations, directories, files or .htaccess, allowing for

more security control (specific access versus ″global″) over the resources served by the HTTP

Server.

Note: The profile must be authorized to all the directories, files, and other server resources accessed by

the HTTP Server unless the server is configured to swap to another profile for specific requests or

directories. In order to start the server you must have authority to the specified profile.

See also “UserID” on page 485.

HTTP Server 569

|

|
|
|
|
|
|
|
|
|

SetHandler:

 Module: core

Syntax: SetHandler handler-name

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SetHandler imap-file

The SetHandler directive forces all matching files to be parsed through the handler given by

handler-name. . This happens when it is placed into an .htaccess file or a “<Directory>” on page 536 or

“<Location>” on page 554 section. For example, if you had a directory you wanted to be parsed entirely

as imagemap rule files, regardless of extension, you might put the following into an .htaccess file in that

directory: See “Handler for HTTP Server (powered by Apache)” on page 755 for more information

SetHandler imap-file

Parameter: handler-name

v The handler-name parameter is the name of the handler that will parse files in this directory.

Note: The core directives ForceType and SetHandler are used to associate all the files in a given container

(<Location>, <Directory>, or <Files>) with a particular MIME-type or handler. These settings

override any filename extension mappings defined in mod_mime.

SetInputFilter:

 Module: core

Syntax: SetInputFilter filter [filter ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SetInputFilter gzip

The SetInputFilter directive sets the filters that process client requests when they are received by the

server. Parameter One: filter

Parameter: filter

v The filter parameter sets the filters that process client requests when they are received by the

server.

 For example,

<Directory /www/data/>

 SetInputFilter gzip

</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in which they

should process the content.

The order of the arguments determines the order in which the filters process the content. The first filter in

the list processes content first, followed by the second in the list, and so on until all filters in the list have

processed the content.

See the Apache HTTP Server Version 2.0 Filters

documentation for more information regarding

filters.

570 iSeries: IBM HTTP Server

http://httpd.apache.org/docs-2.0/filter.html

SetOutputFilter:

 Module: core

Syntax: SetOuputFilter filter [filter ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: SetOutputFilter INCLUDES

The SetOutputFilter directive sets the filters that process responses from the server before they are sent to

the client.

Parameter: filter

v The filter parameter sets the filters that process responses from the server before they are sent

to the client.

 For example, the following configuration will process all files in the /www/data/ directory for

server-side includes:

<Directory /www/data/>

 SetOutputFilter INCLUDES

</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in which they

should process the content.

The order of the arguments determines the order in which the filters process the content. The first filter in

the list processes content first, followed by the second in the list, and so on until all filters in the list have

processed the content.

See the Apache HTTP Server Version 2.0 Filters

documentation for more information regarding

filters.

ThreadsPerChild:

 Module: core

Syntax: ThreadsPerChild number

Default: ThreadsPerChild 40

Context: server config

Override: none

Origin: Apache

Example: ThreadsPerChild

Use this directive to specify the maximum number of threads per server child process. If you do not

specify a value for the directive, it inherits the global HTTP Server setting and uses the maximum listed

value.

Parameter: number

v The number value is an integer value that specifies the maximum number of threads per server

child process. The default global HTTP Server value is 40.

TimeOut:

 Module: core

Syntax: TimeOut number

HTTP Server 571

http://httpd.apache.org/docs-2.0/filter.html

Default: TimeOut 300

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: TimeOut 500

The TimeOut directive defines the amount of time (in seconds) HTTP Server will wait for:

1. The amount of time between receipt of TCP packets on a request.

2. The amount of time between ACKs on transmissions of TCP packets in responses.

Parameter: number

v The number value is an integer value that specifies defines the amount of time (in seconds)

HTTP Server will wait.

UseCanonicalName:

 Module: core

Syntax: UseCanonicalName on | off | DNS

Default: UseCanonicalName on

Context: server config, virtual host, directory, Not in Limit

Override: Options

Origin: Apache

Example: UseCanonicalName off

In many situations HTTP Server has to construct a self-referential URL. That is, a URL that refers back to

the same server.

Parameter: on | off | DNS

v When set to on, HTTP Server will use the ServerName directive to construct a canonical name

for the server. This name is used in all self-referential URLs, and for the values of

SERVER_NAME and SERVER_PORT environment variables in CGIs.

v When set to off, HTTP Server will form self-referential URLs using the hostname and port

supplied by the client if any are supplied (otherwise it will use the canonical name). These

values are the same that are used to implement name based virtual hosts, and are available

with the same clients. The CGI variables SERVER_NAME and SERVER_PORT will be

constructed from the client supplied values as well.

An example where this may be useful is on an intranet server where you have users

connecting to the machine using short names such as www. You’ll notice that if the users type

a shortname, and a URL which is a directory, such as http://www/splat, without the trailing

slash then HTTP Server will redirect them to http://www.domain.com/splat/. If you have

authentication enabled, this will cause the user to have to reauthenticate twice (once for www

and once again for www.domain.com). But if UseCanonicalName is set off, then HTTP Server

will redirect to http://www/splat/.

v The DNS setting is intended for use with mass IP-based virtual hosting to support clients that

do not provide a Host: header. With this option HTTP Server does a reverse DNS lookup on

the server IP address that the client connected to in order to work out self-referential URLs.

Important: If CGIs make assumptions about the values of SERVER_NAME they may be broken by this

option. The client is essentially free to give whatever value they want as a hostname. But if

the CGI is only using SERVER_NAME to construct self-referential URLs then it should be

fine.

See also “ServerName” on page 566.

572 iSeries: IBM HTTP Server

UseShutdown:

 Module: core

Syntax: UseShutdown On | Off

Default: UseShutdown Off

Context: server config

Override: none

Origin: Apache

Example: UseShutdown On

This directive instructs the HTTP Server to use shutdown on the socket connections.

<VirtualHost>:

 Module: core

Syntax: VirtualHost address[:port] ...> ... </VirtualHost>

Default: none

Context: server config, Not in Limit

Override: none

Origin: Apache

Example: <VirtualHost 10.22.33.44 > ... </VirtualHost>

The term Virtual Host refers to the practice of maintaining more than one server on a server, as

differentiated by their apparent hostname (or server name). For example, it is often desirable for

companies sharing a web server to have their own domains, with web servers accessible as

www.company1.com and www.company2.com, without requiring the user to know any extra path

information.

Parameter One: address

v The address parameter specifies a fully qualified IP address or hostname.

Parameter Two: port

v The port parameter specifies a port number. This parameter is optional.

 HTTP Server (powered by Apache) supports two types of virtual hosting, they are IP-based Virtual Host

and Name-based Virtual Host (the latter variant of virtual hosts is sometimes called host-based or non-IP

virtual hosts). As the term IP-based indicates, the server must have a different IP address for each

IP-based virtual host. This can be achieved by the server having several physical network connections, or

by use of virtual interfaces that are supported by most modern operating systems.

While the approach with IP-based Virtual Hosts works well, it is not the most elegant solution because a

dedicated IP address is needed for every virtual host (and it is difficult to implement on some machines).

The benefits of using name-based virtual host support is a practically unlimited number of servers, ease

of configuration and use, and no additional hardware or software requirements. The main disadvantage

is that the client must support the protocol. The latest browser versions (for example, HTTP 1.1) do, but

there are still older browsers (for example, HTTP 1.0) in use that do not. This may cause problems,

although a possible solution is addressed below.

Using non-IP Virtual Hosts

The notable difference between IP-based and name-based virtual host configurations is the

NameVirtualHost directive. The directive specifies an IP address and should be used as a target for

name-based virtual hosts.

HTTP Server 573

For example, suppose that both www.domain.tld and www.otherdomain.tld point at the IP address

111.22.33.44. You can add to one of HTTP Server (powered by Apache) configuration files code similar to

the following:

NameVirtualHost 111.22.33.44

<VirtualHost 111.22.33.44>

 ServerName www.domain.tld

 DocumentRoot /www/domain

</VirtualHost>

<VirtualHost 111.22.33.44>

 ServerName www.otherdomain.tld

 DocumentRoot /www/otherdomain

</VirtualHost>

Of course, any additional directives can (and should) be placed into the <VirtualHost> section; all that is

needed is to make sure that the names www.domain.tld and www.otherdomain.tld are pointing to the IP

address 111.22.33.44.

Note: When you specify an IP address in a NameVirtualHost directive, requests to that IP address are

only served by matching <VirtualHost> tags. The ″main server″ never serves from the specified IP

address. If you start to use virtual hosts, you should not use the ″main server″ as an independent

server, but rather use it as a place for configuration directives that are common for all your virtual

hosts. In other words, you should add a <VirtualHost> section for every server (hostname) you

want to maintain on your server.

Additionally, you may want a server to be accessible by more than one name. For example, you may

want a server to be accessible as domain.tld, or www2.domain.tld (assuming the IP addresses pointed to

the same server). In fact, you may want all addresses at domain.tld assigned to the server. This is

possible with the ServerAlias directive, placed inside the <VirtualHost> section. For example:

ServerAlias domain.tld *.domain.tld

Note: You can use * and ? as wild-card characters.

You might also need ServerAlias if you are serving local users who do not always include the domain

name. For example, if local users are familiar with typing ″www″ or ″www.foobar″ then you will need to

add ServerAlias www www.foobar. It isn’t possible for the server to know what domain the client uses for

their name resolution because the client doesn’t provide that information in the request. The ServerAlias

directive provides a means for pointing different hostnames to the same virtual host.

<VirtualHost> and </VirtualHost> are used to enclose directives that apply only to a particular virtual

host. Any directive that is allowed in a virtual host context may be used. When the server receives a

document request on a particular virtual host, it uses the configuration directives enclosed in the

<VirtualHost> section. The address parameter may be on of the following:

v The virtual host IP address

v A fully qualified domain name for the virtual host IP address. More than one IP address may be

specified. This is used when a machine responds to the same name on two different interfaces.

Note: The use of <VirtualHost> does not affect what addresses the server listens on. You may need to

ensure that HTTP Server is listening on the correct addresses using the Listen directive.

See “Fundamental directive, context, and server area concepts on HTTP Server (powered by Apache)” on

page 7, or refer to module mod_vhost_alias for further details of how different sections are combined

when a request is received.

574 iSeries: IBM HTTP Server

rzaiemod_vhost_alias.htm

Module mod_dav for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module provides class 1 and class 2 WebDAV (Web-based Distributed Authoring and Versioning)

functionality for HTTP Server (powered by Apache). This extension to the HTTP protocol allows creating,

moving, copying, and deleting resources and collections on a remote web server.

In order for WebDAV to function, you have to have your LoadModules, Dav provider, and either

DavLockDB or DavQsysLockDB (depending on your provider) in your configuration file. If any of these

elements are missing, your server will not start.

To use DAV at all, your configuration file must include:

LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

To use DAV for root/QOpenSys, in addition to the above, your configuration file must include:

LoadModule dav_fs_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAVF.SRVPGM

To use DAV in QSYS, your configuration file must include:

LoadModule dav_qsys_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAVQS.SRVPGM

Note: You’ll need two LoadModules to use DAV. If you want to DAV-enable both IFS and QSYS, you’ll

need three LoadModules.

Directives

v “Dav”

v “DavDepthInfinity” on page 576

v “DavLockDB” on page 577

v “DavMinTimeout” on page 577

v “DavQsysLockDB” on page 578

Dav:

 Module: mod_dav

Syntax: Dav on | off | [provider name]

Default: Dav off

Context: directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

Example: Dav on

The Dav directive enables the WebDAV HTTP methods for the given container. You may want to add a

<Limit> clause inside the location directive to limit access to Dav-enabled locations.

Parameter: on | off | [provider name]

HTTP Server 575

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v When on is specified, WebDAV HTTP methods are enabled for the given container, using the

default provider ″filesystem″.

v When off is specified, WebDAV HTTP methods are disabled for the given container.

v The optional provider name parameter is used to specify the Dav provider for a directory or

location. There are no Server restrictions on the number or types of characters in the provider

name. The provider name used on the Dav directive is case sensitive.

 The values on and off are not case sensitive.

Example 1:

DavLockDB /tmp/DavLock

LoadModule dav_module /qsys.lib/qhttpsvr.lib/qzsrdav.srvpgm

LoadModule dav_fs_module /qsys.lib/qhttpsvr.lib/qzsrdavf.srvpgm

<Location /foo>

 Dav on

</Location>

Example 2:

DavQsysLockDB mylib/DavLock

LoadModule dav_module /qsys.lib/qhttpsvr.lib/qzsrdav.srvpgm

LoadModule dav_qsys_module /qsys.lib/qhttpsvr.lib/qzsrdavqs.srvpgm

<Directory /qsys.lib/webserver.lib*>

 Dav qsys

</Directory>

If you specify ″Dav on″ in a directory, you will get the default provider ″filesystem″.

The Dav directive does not override like other directory-scoped directives. You cannot turn Dav on in one

directory, and then turn it off in a sub-directory. You also cannot change providers in a sub-directory. You

will receive runtime errors if this happens. The following examples are invalid and will cause the HTTP

Server to generate a runtime error:

<Directory />

 AllowOverride None

 Order Deny,Allow

 Deny From all

 Dav filesystem

 </Files>

 Dav off

 </Files>

</Directory>

Another invalid example:

<Directory /www/parentDirectory>

 Dav filesystem

<Directory>

<Directory /www/parentDirectory/childDirectory>

 Dav off

</Directory>

Note: If you want to Dav-enable filesystems other than root or QOpenSys, you will have to specify your

provider’s name on the directive to get the desired behavior. As the server is shipped, the only

valid provider names are ″filesystem″ and ″qsys″. Filesystem supports root, QOpenSys (and other

UNIX-like filesystems); qsys supports QSYS objects.

DavDepthInfinity:

 Module: mod_dav

Syntax: DavDepthInfinity on | off

576 iSeries: IBM HTTP Server

Default: DavDepthInfinity off

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

Example: DavDepthInfinity on

The DavDepthInfinity directive allows the processing of PROPFIND requests containing the header

’Depth: Infinity’. Because this type of request could constitute a denial-of-service attack, by default it is

not allowed.

Parameter: on | off

v When on is specified, processing of PROPFIND requests containing the header ’Depth: Infinity’

is allowed.

v When off is specified, processing of PROPFIND requests containing the header ’Depth: Infinity’

is not allowed.

DavLockDB:

 Module: mod_dav

Syntax: DavLockDB filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule dav_fs_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAVF.SRVPGM

Example: DavLockDB /tmp/DavLock

The DavLockDB directive specifies the full path to the lock database, excluding an extension. The default

(file system) implementation of mod_dav uses a SDBM database to track user locks.

Parameter: filename

v The filename parameter specifies the full path to the lock database, excluding an extension.

 This directive is required if you are using Dav with the default (filesystem) provider. For example,

DavLockDB /tmp/DavLock

DavMinTimeout:

 Module: mod_dav

Syntax: DavMinTimeout seconds

Default: DavMinTimeout 0

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule dav_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAV.SRVPGM

Example: DavMinTimeout 600

The DavMinTimeout directive specifies, in seconds, the minimum lock timeout to return to a client.

Microsoft Web Folders defaults to a timeout of 120 seconds; the DavMinTimeout can override this to a

higher value (like 600 seconds) to reduce the chance of the client losing the lock due to network latency.

HTTP Server 577

When a client requests a DAV resource lock, it can also specify a time when the lock will be

automatically removed by the server. This value is only a request, and the server can ignore it or inform

the client of an arbitrary value. The maximum value for minutes is 166; the maximum value for seconds

is 9999.

Parameter: seconds

v The seconds parameter is any integer value from 0 to 9999.

DavQsysLockDB:

 Module: mod_dav

Syntax: DAVQsysLockDB library/filename

Default: none

Context: server config, virtual host

Override: none

Origin: Modified

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule dav_qsys_module /QSYS.LIB/QHTTPSVR.LIB/QZSRDAVQS.SRVPGM

Example: DAVQsysLockDB mylib/LockDB

The DAVQsysLockDB directive specifies the library qualified database file that the QSYS repository

manager uses to track user locks of QSYS resources. The library must exist. The names of the library and

file must follow the QSYS file system naming rules.

Parameter: library/filename

v The library/filename parameter specifies the library qualified database file that the QSYS

repository manager uses to track user locks of QSYS resources.

Module mod_deflate for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

Module mod_deflate specifies compression and decompression functions using filters, MIME types,

environment variables, and HTTP responses. Compressed output is transferred to requesting client

browsers at a higher rate of speed than uncompressed output. Compression and decompression is

implemented by the DEFLATE filter, located in module mod_deflate. See Apache HTTP Server Version

2.0 Documentation

for additional information and examples on configuring the Apache server to

use compression.

Directives

v “DeflateBufferSize”

v “DeflateCompressionLevel” on page 579

v “DeflateFilterNote” on page 579

v “DeflateMemLevel” on page 580

v “DeflateWindowSize” on page 580

DeflateBufferSize:

 Module: mod_deflate

578 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://httpd.apache.org/docs-2.0/mod/mod_deflate.html
http://httpd.apache.org/docs-2.0/mod/mod_deflate.html

Syntax: DeflateBufferSize value

Default: DeflateBufferSize 8096

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateBufferSize 8096

The DeflateBufferSize directive specifies the size of the fragments that zlib should compress at one time.

Parameter: value

v The value parameter specifies the size, in bytes, of the fragments that zlib should

compress at one time.

DeflateCompressionLevel:

 Module: mod_deflate

Syntax: DeflateCompressionLevel value

Default: DeflateCompressionLevel 6

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateCompressionLevel 5

The DeflateCompressionLevel directive specifies what level of compression should be used.

Parameter: value

v The value parameter value specifies the level of compression. The higher the value, the

greater the compression.

Note: Higher compression levels require additional CPU time.

DeflateFilterNote:

 Module: mod_deflate

Syntax: DeflateFilterNote [type] notename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateFilterNote ratio

Example: DeflateFilterNote Ratio ratio

Example: DeflateFilterNote Input input

Example: DeflateFilterNote input input

The DeflateFilterNote directive specifies that a note about compression ratios should be attached to the

request. The note is used for statistical purposes by adding a value to your access log.

Parameter One: type

HTTP Server 579

v The type parameter value specifies what type of data is added to the note for logging. The

parameter value is not case-sensitive. Possible values include:

Input Store the byte count of the filter’s input stream in the note.

Output

Store the byte count of the filter’s output stream in the note.

Ratio Store the compression ratio (output/input * 100) in the note. This is the default, if

the type argument is omitted.

Parameter Two: notename

v The notename parameter value specifies the note name entered in the log. The notename

value is not required to match the type value. Blank characters are not valid.

Example: accurate logging

DeflateFilterNote Input instream

DeflateFilterNote Output outstream

DeflateFilterNote Ratio ratio

LogFormat ’"%r" %{outstream}n/%{instream}n (%{ratio}n%%)’ deflate

CustomLog logs/deflate_log deflate

DeflateMemLevel:

 Module: mod_deflate

Syntax: DeflateMemLevel value

Default: DeflateMemLevel 9

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateMemLevel 8

The DeflateMemLevel directive specifies how much memory should be used for zlib for compression.

Parameter: value

v The value parameter value specifies how much memory should be used for zlib

compression. Each value is equal to 16K. For example, a value of 1 equates to 16K, while

a value of 8 equates to 128K.

DeflateWindowSize:

 Module: mod_deflate

Syntax: DeflateWindowSize value

Default: DeflateWindowSize 15

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: deflate_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: DeflateWindowSize 14

The DeflateWindowSize directive specifies the zlib compression window size.

Parameter: value

v The value parameter value specifies the level of compression window size. The higher the

value, the greater the compression window size.

580 iSeries: IBM HTTP Server

Note: Higher compression levels require additional CPU time.

Module mod_dir for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_dir provides ″trailing slash″ redirects and serving directory index files. The index of a

directory can come from one of two sources:

v A file written by the user, typically called index.html. The name of this file is set by the DirectoryIndex

directive . This directive is controlled by module mod_dir.

v A list generated by the server through mod_auto_index. See mod_auto_index for more information.

The two functions are separated so you can completely remove (or replace) automatic index generation.

By default, a trailing slash (’/’) redirect is issued when the server receives a request for a URL

http://servername/QIBM/dirname where dirname is a directory. Directories require a trailing slash, so

mod_dir issues a redirect to http://servername/QIBM/dirname/.

The AlwaysDirectoryIndex directive controls how the server will respond to directory requests.

Directives

v “AlwaysDirectoryIndex”

v “DirectoryIndex” on page 582

AlwaysDirectoryIndex:

 Module: mod_dir

Syntax: AlwaysDirectoryIndex on | off

Default: Always DirectoryIndex on

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: iSeries

Example: AlwaysDirectoryIndex off

The AlwaysDirectoryIndex directive specifies if you want the server to always handle directory requests

by first searching the directory for an index (Welcome) file.

Parameter: on | off

v The on parameter sets the server to always search the directory for an index file, regardless of

whether a trailing slash (’/’) exists in the URL. The DirectoryIndex directive specifies the

names of the files that the server recognizes as index (Welcome) files.

v The off parameter sets the server to first check the last character of requests that refer to iSeries

files, QDLS folders, or integrated file system directories for the slash (’/’) character. If the

directory request ends with a slash, the server searches the directory for an index file. If the

directory request does not end with a slash, the server attempts to return a directory listing

(rather then doing a ″trailing slash″ redirect).

HTTP Server 581

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_auto_index.htm

If the server does not find an index file, or AlwaysWelcome is set to off and the directory request does

not end in a slash, “Options” on page 561 controls whether or not the server responds to the request with

a directory listing.

DirectoryIndex:

 Module: mod_dir

Syntax: DirectoryIndex local-url [local-URL ...]

Default: DirectoryIndex index.html

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: DirectoryIndex bob.html index.html

The DirectoryIndex directive sets the list of resources to look for, when the client requests an index of the

directory by specifying a / at the end of the a directory name. Local-URL is the (%-encoded) URL of a

document on the server relative to the requested directory; it is usually the name of a file in the directory.

Several URLs may be given, in which case the server will return the first one that it finds. If none of the

resources exist and the Indexes option is set, the server will generate its own listing of the directory.

Parameter: local-url

v The local-url parameter is the (%-encoded) URL of a document on the server relative to the

requested directory; it is usually the name of a file in the directory. For example:

DirectoryIndex index.html

 A request for http://myserver/docs/ would return http://myserver/docs/index.html if it exists, or it

would list the directory if it did not exist.

The documents do not need to be relative to the directory. For example:

DirectoryIndex index.html index.txt /cgi-bin/index.pl

This would cause the CGI script /cgi-bin/index.pl to be run if neither index.html or index.txt existed in a

directory. This same idea will also work for QSYS.LIB files. For example, if the directory index is stored

in /QSYS.LIB/MYLIB.LIB/MYFILE.FILE/INDEX.MBR, you would need to specify DirectoryIndex

Index.mbr.

This directive may be configured multiple times in a container. The directives are processed from the first

to the last occurrence.

Module mod_disk_cache for HTTP Server (powered by Apache)

This topic describes the module mod_disk_cache for HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Two Phase Disk Cache Maintenance

The server may take each iteration of the disk cache maintenance process through one or two phases,

depending on how much maintenance is needed. In the first phase, the server will examine the file

system directories for the disk cache function and discard data that no longer complies with the current

server configuration settings. It will also discard unused or unmodified data according to the criteria set

by CacheGcClean or CacheGcUnused directives. File names and expiration times for the remaining data

will be collected and the total amount of space allocated for them will be tallied. If the tally is above the

582 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

maximum disk storage limit (set by CacheSize), the server will go into phase two. If the tally is at or

below the maximum disk storage limit, the server will stop the current iteration of the maintenance

process. If the server takes the current iteration into the second phase, information collected in the first

phase for the remaining data is sorted according to cache expiry time. The server will then discard

remaining data, by order of expiration (soonest to latest), until the amount of allocated space is at or

below the maximum disk storage limit.

The following steps summarize the disk cache maintenance process:

Phase One:

1. Data files are examined, one by one, starting at the directory root specified by CacheRoot.

2. Data files not complying with settings specified for CacheDirLevels, CacheDirLength,

CacheMinFileSize, and CacheMaxFileSize are discarded.

3. Unused or unmodified data matching the criteria set by CacheGcClean and CacheGcUnused

directives is discarded.

4. File names and expiration times for remaining data is collected.

5. The total amount of space allocated for remaining data is determined. Phase two is entered if

this total is greater than that specified by CacheSize. If not, phase two is skipped and

maintenance completes (until the next iteration).

Phase Two:

1. Information collected in phase one for remaining data is sorted according to cache expiry

times.

2. Data is discarded, by order of expiration (soonest to latest), until the total amount of allocated

space is at or below that specified by CacheSize.

Note: The server stops collecting information for remaining data when it reaches the maximum amount

of memory allowed for disk cache maintenance (set by CacheGcMemUsage). If the server reaches

this limit in phase one, it may not have recorded enough information for phase two to bring the

total amount of space allocated for the cache down to the limit specified by the CacheSize directive

in one iteration of the disk cache maintenance process. In this case, a warning message is written

to the server log and the server completes maintenance and waits for the next disk cache

maintenance iteration.

Directives

v “CacheDirLength”

v “CacheDirLevels” on page 584

v “CacheGcClean” on page 585

v “CacheGcDaily” on page 587

v “CacheGcInterval” on page 588

v “CacheGcMemUsage” on page 589

v “CacheGcUnused” on page 590

v “CacheRoot” on page 591

v “CacheSize” on page 593

CacheDirLength:

 Module: mod_disk_cache

Syntax: CacheDirLength length

Default: CacheDirLength 2

Context: server config, virtual host

Override: none

Origin: Apache

HTTP Server 583

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDirLength 4

The CacheDirLength directive specifies the number of characters in subdirectory names used by the disk

cache function to store data.

Parameter: length

v The length parameter specifies the number of characters in subdirectory names used by

the disk cache function. The specified value multiplied by the value specified for the

CacheDirLevels directive must be less than or equal to 20.

 If the values specified for CacheDirLevels and CacheDirLength are changed once they have been used to

cache data, the server will discard all existing cache data when it runs disk cache maintenance since the

file paths used to store data no longer adhere to the new values. See the CacheGcDaily or

CacheGcInterval directives for more details on disk cache maintenance.

v This directive is used only if CacheRoot is set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheDirLength directive.

CacheDirLevels:

 Module: mod_disk_cache

Syntax: CacheDirLevels levels

Default: CacheDirLevels 3

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheDirLevels 3

The CacheDirLevels directive specifies the number of directory levels used by the disk cache function to

store data.

Parameter: levels

v The length parameter specifies the number of directory levels used by the disk cache

function. The specified value multiplied by the value specified for the CacheDirLength

directive must be less than or equal to 20.

A hash algorithm is used to generate unique and seemingly random character strings from

hash keys (or URLs) provided for data stored in cache. These character strings are used to

build unique file system path names. Data is stored in the file system using these path

names, relative to the directory root specified by the CacheRoot directive. This setting

specifies how many directory levels are used, while the CacheDirLength directives specifies

the length of each subdirectory name, with remaining characters simply used for file names.

The server uses the hash algorithm and directory levels to improve the performance of the

server when working with a potentially large number of data files.

Example 1

CacheRoot /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache

CacheDirLevels 3

CacheDirLength 1

The above example indicates that a hash key such as ftp://ibm.com/document.html may be

used to build a directory path such as /x/3/_/9sj4t2svBA where x, 3, and _ are three

584 iSeries: IBM HTTP Server

subdirectory names (CacheDirLevels 3) each having a length of one character

(CacheDirLength 1). The remaining characters, 9sj4t2svBA, are used for file names.

Example 2

CacheRoot /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache

CacheDirLevels 5

CacheDirLength 2

The above example indicates that the same hash key described for example one

(ftp://ibm.com/document.html) may be used to build a directory path such as

/x3/_9/sj/4t/2s/vBA where x3, _9, sj, 4t, and 2s are five subdirectory names

(CacheDirLevels 5) each having a length of two characters (CacheDirLength 2). The

remaining characters, vBA, are used for file names.

 Directory paths generated in this process are relative to the directory root defined by the CacheRoot

directive. Therefore, for example one (above), two files, one named 9sj4t2svBA.data and the other named

9sj4t2svBA.header will be created to store data using the hash key ftp://ibm.com/document.html. Both

files will reside within the /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache/x/3/_ directory. For

example two (above), the two files will be named vBA.data and vBA.header and will reside within the

/QOpenSys/QIBM/UserData/HTTPA/CacheRoot/MyCache/x3/_9/sj/4t/2s directory using the same hash key.

Directory length and level limits:

Since the hash algorithm generates an exponential number of directories using this schema, a limit must

be set upon the values that CacheDirLevels and CacheDirLength may have. The limits described as such:

 CacheDirLevels * CacheDirLength <= 20

The maximum number of directory levels multiplied by the maximum length of each subdirectory must

be less than or equal to 20. If not, the server will fail to activate at startup.

If the values specified for CacheDirLevels and CacheDirLength are changed once they have been used to

cache data, the server will discard all existing cache data when it runs disk cache maintenance since the

file paths used to store data no longer adhere to the new values. See the CacheGcDaily or

CacheGcInterval directives for more details on disk cache maintenance.

v This directive is used only if CacheRoot is set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheDirLevels directive.

CacheGcClean:

 Module: mod_disk_cache

Syntax: CacheGcClean hash-key-criteria period

Default: CacheGcClean *43200 (minutes, or 30 days)

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheGcClean http://www.ibm.com /* 21600

The CacheGcClean directive specifies a complete URL or URL match expression and a maximum period

value used to identify and remove data from cache that has not been updated (or written to cache)

within the number of specified minutes. Multiple CacheGcClean directives are allowed. If disk cache

maintenance is disabled, this setting has no affect and the cache may grow without bound, unless

managed by some application or process other than the server.

HTTP Server 585

This directive is similar to the CacheGcUnused directive, however the former distinguishes when data

was last written (or saved) to cache, not when it was last served from cache.

Parameter One: hash-key-criteria

v The hash-key-criteria parameter accepts a complete URL or URL match expression used to

identify cached data by hash key. Complete URLs do not contain asterisks (*) or question

marks (?) and must match hash keys URLs completely (see example two). URL match

expressions contain one or more asterisks (*) or question marks (?) used as wildcards to

match multiple hash keys. For example: http://ibm.com/*, *://ibm.com/*, or

ftp://server?.ibm.com/* (see example one).

Parameter Two: period

v The period parameter specifies the maximum amount of time (in minutes) that matched

data may remain cached.

Cached data for the disk caching function is identified by comparing hash keys with the value

specified for the hash-key-criteria parameter. Matched data that has not been updated (or written to

cache) within the number of minutes specified by the corresponding period parameter is discarded

by the server during phase one of the disk cache maintenance process. Matched data that has been

updated within the number of specified minutes is not affected. Unmatched data is not affected. See

“Two Phase Disk Cache Maintenance” on page 582 for details concerning the disk cache

maintenance process.

Example 1: URL match expressions

 CacheRoot serverCache

 CacheGcClean *://ibm.com/* 43200

 CacheGcClean ftp://server?.ibm.com/* 20160

For this example, the first CacheGcClean directive ensures cached data with hash keys (or

URLs) that match the expression *://ibm.com/* and has not been updated within the past

43200 minutes (or 30 days) is discarded during phase one of the cache maintenance process.

The second CacheGcClean directive ensures cached data with hash keys (or URLs) that

match the expression ftp://server?.ibm.com/* and has not been updated within the past

20160 minutes (or 2 weeks) is discarded.

 Example one uses CacheGcClean directives with URL match expressions to manage data

stored in cached using the disk cache function (CacheRoot serverCache). For the expression

://ibm.com/, the first wildcard (*) is used to match one or more characters in hash keys

preceding the characters //ibm.com/. The second wildcard (*) is used to match one or more

characters succeeding the characters //ibm.com/. Hash keys that match this expression, for

example, include http://ibm.com/public/welcome.html and ftp://ibm.com/patch.zip. For

the expression ftp://server?.ibm.com/*, the first wildcard (?) is used to match any single

character between ftp://server and .ibm.com/. The second wildcard (*) is used to match

one or more characters succeeding the characters .ibm.com/. Hash keys that match this

expression, for example, include ftp://server1.ibm.com/whitepaper.pdf and

ftp://server5.ibm.com/downloads/driver.exe.

Example Two: Complete URL

 CacheRoot serverCache

 CacheGcClean ftp://server5.ibm.com/downloads/application.zip 7200

For this example, the CacheGcClean directive uses a complete URL to ensure cached data

with the hash key ftp://server5.ibm.com/downloads/application.zip is discarded during

phase one of the disk cache maintenance process if it has not been updated within the past

7200 minutes (or 5 days). No other data will be matched since complete URLs identify a

single hash key.

586 iSeries: IBM HTTP Server

The server detects updates to cached data for the disk caching function by comparing the

″Data change date/time″ values of data file attributes. These are commonly referred to as

last-modified times. When data is updated within cache, the corresponding last-modified

times record the date and time that the last update was made.
v This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.

v This directive is used only if CacheRoot is set.

v Disk cache maintenance may occur at regular time periods for CacheGcInterval and at a particular time

of day for CacheGcDaily if both are set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheGcClean directive.

CacheGcDaily:

 Module: mod_disk_cache

Syntax: CacheGcDaily time-of-day | off

Default: CacheGcDaily 03:00

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheGcDaily 23

The CacheGcDaily directives specifies whether the server is to perform disk cache maintenance, at a

particular time, when the disk cache function is enabled. If the disk cache function is disabled (the

default), this setting has no affect and the server does not perform disk cache maintenance. The default

value is 3:00 (3:00 am local system time).

Parameter: time-of-day | off

v The time-of-day parameter accepts a value in the HH:MM:SS format (24 hour clock) where

HH is an hour value (0 to 23), MM is a minute value (0 to 59), and SS is a second value

(0 to 59). A minute (MM) or second (SS) value is not required. If a minute value is not

specified, maintenance will commence at the beginning of the hour specified by the hour

value (see example two). Likewise, if a second value is not specified, maintenance will

commence at the specified number of minutes past the hour (see example one).

v If off is specified, maintenance will not be performed based on a particular time of day

(see example three).

If off is not specified, the server will perform cache maintenance every day, starting at the

specified local system time (if disk caching is enabled, see examples one and two). If off is

specified, the server will not perform disk cache maintenance at a specific time of day,

however it may perform disk cache maintenance at regular time intervals, if a maintenance

period is set using the CacheGcInterval directive. If off is specified, and a maintenance

period is not specified using CacheGcInterval, the server will never perform disk cache

maintenance (see example three).

Example 1

 CacheRoot dataCache

 CacheGcDaily 15:55

Example 2

CacheRoot dataCache

CacheGcDaily 9

Example 3

CacheRoot dataCache

CacheGcDaily off

HTTP Server 587

For example one, the server will perform cache maintenance every day at 15:55 (or 3:55 pm local

system time). For example two, the server will perform cache maintenance every day at 9:00 (or 9:00

am local system time). For example three, the server will not perform disk cache maintenance since

CacheGcDaily is set to off, and CacheGcInterval is not specified.

 See “Two Phase Disk Cache Maintenance” on page 582 for details concerning the disk cache maintenance

process.

v Disk cache maintenance may occur at time intervals for CacheGcInterval and at a particular time of

day for CacheGcDaily if both are set.

v This directive is used only if CacheRoot is set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheGcDaily directive.

For the configuration shown below, garbage collection is performed at 1:30 AM and again at 2:30

AM.

Example:

CacheRoot dataCache

CacheGcDaily 01:30:00

 <VirtualHost ...>

 CacheGcDaily 02:30 00

 </Virtual Host>

CacheGcInterval:

 Module: mod_disk_cache

Syntax: CacheGcInterval period

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheGcInterval 8100

The CacheGcInterval directive specifies whether the server is to perform disk cache maintenance, at

regular time intervals, when the disk cache function is enabled. Maintenance for this setting will

commence at the time the server is started, and repeat every number of specified seconds, until the server

is ended. If the disk cache function is disabled (the default), this setting has no affect and the server does

not perform disk cache maintenance.

Parameter: period

v The period parameter specifies a period for cache maintenance cycles, in seconds. The

value may include a decimal to indicate fractional hours. For example, use

CacheGcInterval 5400 to perform cache maintenance every 5400 seconds (every 90

minutes).

If this directive is not used (not specified), the server will not perform disk cache maintenance at

regular time intervals, however it may at a particular time of day, if such a time is specified using

the CacheGcDaily directive. If this directive is not used (not specified), and CacheGcDaily is set to

off, the server will never perform disk cache maintenance (see example two).

Example 1

CacheRoot dataCache

CacheGcInterval 9900

588 iSeries: IBM HTTP Server

Example 2

CacheRoot dataCache

CacheGcDaily offexample

For example one, the server will perform disk cache maintenance every 9900 seconds (every 2 hours

and 45 minutes), starting from the time the server is started. For example two, the server will not

perform disk cache maintenance since CacheGcDaily is set to off, and CacheGcInterval is not

specified.

 See “Two Phase Disk Cache Maintenance” on page 582 for details concerning the disk cache maintenance

process.

v Disk cache maintenance may start at regular time intervals for CacheGcInterval and at a particular time

of day for CacheGcDaily if both are set.

v This directive is used only if CacheRoot is set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheGcInterval directive.

CacheGcMemUsage:

 Module: mod_disk_cache

Syntax: CacheGcMemUsage size

Default: CacheGcMemUsage 5000000

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheGcMemUsage 3000000

The CacheGcMemUsage directive specifies the maximum amount of system memory, in bytes, the server

is to use to collect information for phase two of the disk cache maintenance process. See Two Phase Disk

Cache Maintenance for details concerning the disk cache maintenance process.

Parameter: size

v The size parameter specifies, in bytes, the amount of main store memory that the server

may use for phase two of the disk cache maintenance process.

When the amount of system memory consumed for phase two of the disk cache maintenance

process reaches the value specified for the size parameter, the server stops collecting information for

remaining data in cache but continues to do the other tasks for phase one until finished. If the

server takes disk cache maintenance into phase two, only the information collected in phase one is

used. This will not include information for all remaining cached data if the size parameter is not

large enough.

Example

CacheRoot dataCache

CacheGcDaily 5:00

CacheGcMemUsage 200000

For this example, the server will perform disk cache maintenance every day at 5:00

(CacheGcDaily 5:00). During phase one maintenance, the server records file names and

expiration times for data remaining cached, until it consumes 200000 bytes of memory

(CacheGcMemUsage 200000). After this limits reached, the server continues to perform the

other phase one tasks. After all phase one tasks are complete, the server performs phase two

maintenance (if needed) using whatever information it was able to collect in phase one.
v This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.

HTTP Server 589

v Cache maintenance may occur at time intervals for CacheGcInterval and at a particular time of day for

CacheGcDaily if both are set.

v This directive is used only if CacheRoot is set, and cache maintenance is enabled.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheGcMemUsage

directive.

CacheGcUnused:

 Module: mod_disk_cache

Syntax: CacheGcUnused hash-key-criteria period

Default: CacheGcUnused * 1209600 (seconds, or 2 weeks)

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheGcUnused http://www.ibm.com/* 432000

The CacheGcUnused directive specifies a complete URL or URL match expression and a maximum

period value used to identify and remove data from cache that has not been used (or served from cache)

within the number of specified seconds. Multiple CacheGcUnused directives are allowed. If disk cache

maintenance is disabled (see “CacheGcDaily” on page 587 or “CacheGcInterval” on page 588), this setting

has no affect and the cache may grow without bound, unless managed by some application or process

other than the server itself.

This directive is similar to the “CacheGcClean” on page 585 directive, however the latter does not

distinguish when data was last served from cache, but rather when it was last written (or saved) to

cache.

Parameter One: hash-key-criteria

v The hash-key-criteria parameter accepts a complete URL or URL match expression used to

identify cache data by hash key. Complete URLs do not contain asterisks (*) or question

marks (?) and must match hash keys completely (see example two). URL match

expressions contain one or more asterisks (*) or question marks (?) as wildcards to match

multiple hash keys. For example, http://* or ftp://server?.ibm.com/* (see example

one).

Parameter Two: period

v The period parameter specifies the maximum amount of time (in seconds) that matched

data may remain cached.

Cached data for the disk caching function is identified for this setting by comparing hash keys with

the value specified for the hash-key-criteria parameter. Matched data that has not been used (or

served from cache) within the number of seconds specified by the corresponding period parameter

are discarded by the server during phase one of the disk cache maintenance process. Matched data

that has been used within the number of specified seconds is not affected. Unmatched documents

are not affected. See “Two Phase Disk Cache Maintenance” on page 582 for details concerning the

disk cache maintenance process.

Example 1: URL match expressions

CacheRoot serverCache

CacheGcUnused http://* 25929000

CacheGcUnused ftp://server?.ibm.com/* 1209600

For this example, the first CacheGcUnused directive ensures that cached data with hash

keys (or URLs) that match the expression http://* and has not been updated within the

590 iSeries: IBM HTTP Server

past 25929000 seconds (or 30 days) are discarded during phase one of the disk cache

maintenance process. The second CacheGcClean directive ensures that cached data with

hash keys (or URLs) that match the expression ftp://server?.ibm.com/* and has not been

updated within the past 1209600 seconds (or 2 weeks) is discarded.

 Example one uses CacheGcUnused directives with URL match expressions to manage data

stored in cache using the disk caching function (CacheRoot serverCache). For the expression

http://*, the wildcard (*) is used to match one or more characters in hash keys preceding

the characters http://. This expression matches all hash keys starting with the characters

http://. For the expression ftp://server?.ibm.com/*, the first wildcard (?) is used to match

any single character in hash keys between ftp://server and .ibm.com/. The second

wildcard (*) is used to match one or more characters in hash keys succeeding the characters

.ibm.com/. Hash keys that match this expression, for example, include

ftp://server1.ibm.com/

whitepaper.pdf and ftp://server5.ibm.com/downloads/driver.exe.

Example 2: Complete URL

ProxyRequests on

CacheRoot serverCache

CacheGcUnused ftp://server5.ibm.com/downloads/application.zip 432000

For this example, the CacheGcUnused directive uses a complete URL to ensure cached data

with the hash key ftp://ftpserver.ibm.com/downloads/application.zip is discarded

during phase one of the disk cache maintenance process if it has not been requested within

the past 432000 seconds (or 5 days). No other data will be matched since complete URLs

identify a single hash key.

 The server detects requests for cached data for the disk caching function by comparing the

″Last access date/time″ values of data file attributes. These are commonly referred to as

last-accessed times. When data is served from cache, the corresponding last-accessed times

record the date and time that the last request was served.
v This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.

v Cache maintenance may occur at regular time periods for CacheGcInterval and at a particular time of

day for CacheGcDaily if both are set.

v This directive is used only if CacheRoot is set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheGcUnused directive.

CacheRoot:

 Module: mod_disk_cache

Syntax: CacheRoot directory

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheRoot webProxyCache

The CacheRoot directive enables the disk cache function and specifies the name of the file system

directory root. Setting this directive also enables disk cache maintenance for the CacheGcDaily directive,

by default, and the CacheGcInterval directive. See the “CacheGcDaily” on page 587 or “CacheGcInterval”

on page 588 directives for more details on disk cache maintenance.

Parameter: directory

HTTP Server 591

v The directory parameter accepts a file system path name to specify the file system

directory root for the disk cache function (see directory root limits below).

The disk cache function provides underlying cache support for a local proxy cache and user written

modules, using local file system space (disk space). The server must have *RWX data authorities

and *ALL object authorities to the specified directory.

A hash algorithm is used to generate unique and seemingly random path names based on hash keys

(or URLs) provided for data stored in cache (see CacheDirLength and CacheDirLevels). Data is

stored in the local file system using these path names, relative to the specified directory root. Since

the algorithm generates case sensitive path names, CacheRoot must specify a directory within the

QOpenSys (case sensitive) file system. For this reason the following limits are placed on the

directory root:

Directory root limits:

v If the directory parameter specifies an absolute path it must start with

/QOpenSys/QIBM/UserData/HTTPA/CacheRoot, otherwise the proxy will fail to

activate at startup.

v If the directory parameter does not specify an absolute path (does not start with a ’/’), it

will be assumed to be relative to the following: /QOpenSys/QIBM/UserData/HTTPA/
CacheRoot

The directory will be created if it does not exist prior to server startup. Only the last

directory in the path will be created. All other directories in the path must previously exist.

For example, if ″CacheRoot abc/def″ is configured, the server will create directory

″/QOpenSys/QIBM/UserData/HTTPA/CacheRoot/ABC/def″.

Example 1: Absolute Path

CacheRoot /QOpenSys/QIBM/UserData/HTTPA/CacheRoot/proxyCache

ProxyRequests on

Example 2: Relative Path

CacheRoot proxyCache

ProxyRequests on

Example 3: Relative Path (with disk cache function unavailable for proxy data)

CacheRoot cache

ProxyRequests on

Example 4: Bad Path

CacheRoot /MyServerCache

For example one, CacheRoot enables the disk cache function (CacheRoot /QOpenSys/QIBM/
UserData/HTTPA/CacheRoot/proxyCache) , ProxyRequests specifies that the proxy function is

enabled to handle forward proxy requests (ProxyRequests on). With these directive settings, HTTP

proxy response data is cached and maintained within the /QOpenSys/QIBM/UserData/HTTPA/
CacheRoot/proxyCache directory using disk cache function support. See the ProxyRequests directive

for more information on handling proxy requests and caching HTTP proxy response data.

For example two, the disk cache function is enabled (CacheRoot proxyCache), the proxy function is

enabled (ProxyRequests on), and the local proxy cache is enabled. With these directive settings,

HTTP proxy response data is cached and maintained within the proxyCache directory, relative to the

/QOpenSys/QIBM/UserData/HTTPA/CacheRoot/ directory. This directory is the same one

described in example one, simply specified as a relative path name rather than an absolute path

name. Either specification is acceptable.

592 iSeries: IBM HTTP Server

For example three, the disk cache function is enabled (CacheRoot cache), and the proxy function is

enabled (ProxyRequests on), however the local proxy cache is disabled. With these directive settings,

the disk cache function is not used to cache data for the proxy function, but may be used to cache

data for user written modules.

For example four, the directory specified for CacheRoot is not valid since an absolute path within

/QOpenSys/QIBM/UserData/HTTPA/CacheRoot/ is not specified. With this configuration the

server will generate an error message(s) at startup and fail to activate.

v This directive is required when ProxyNoConnect is set to on.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheRoot directive.

CacheSize:

 Module: mod_disk_cache

Syntax: CacheSize size

Default: CacheSize 50000000

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule disk_cache_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: CacheSize 8550

The CacheSize directive specifies the maximum amount of system storage space allocated for the disk

cache function (in kilobytes). Although actual usage may exceed this setting, the server will discard data

when it runs disk cache maintenance until the total allocated cache space is at or below this setting. If

disk cache maintenance is disabled, this setting has no affect and the cache may grow without bound,

unless managed by some application or process other than the server itself. See “CacheGcDaily” on page

587 or “CacheGcInterval” on page 588 for more details on the disk cache maintenance process.

Parameter: size

v The size parameter specifies the maximum number of kilobytes allocated for the disk

cache function. Depending on the expected server traffic volume, and values set for

CacheGcInterval or CacheGcDaily, use a size value that is at least twenty to forty percent

lower than the available space.

 The disk cache function uses the local file system to store data. Therefore, space allocated for this cache is

used to maintain directory structures and file attributes as well as to store cache data. It also includes

unused space within file system storage blocks allocated to files and directories. Therefore, the total

amount of system storage allocated for the cache will always be greater than the total amount of actual

cache data. This setting sets a limit for the total amount of allocated space, not a limit for the total

amount of actual cache data.

v This directive is negated when off is specified for CacheGcDaily and CacheGcInterval is not specified.

v This directive is used only if CacheRoot is set.

Note: HTTP Server (powered by Apache) does not support inheritance for the CacheSize directive.

HTTP Server 593

Module mod_env for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module allows the HTTP Server CGI and SSI environment to inherit environment variables.

Directives

v “PassEnv”

v “SetEnv”

v “UnsetEnv” on page 595

PassEnv:

 Module: mod_env

Syntax: PassEnv variable [variable ...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: PassEnv LD_LIBRARY_PATH

The PassEnv directive specifies one or more environment variables to pass to the CGI scripts. The

variables originate from the server’s own environment. See “Environment variables on HTTP Server” on

page 766 for more information.

Parameter: variable

v The variable parameter is any valid environment variable.

SetEnv:

 Module: mod_env

Syntax: SetEnv variable [value]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Examples:

v SetEnv SPECIAL_PATH /QIBM/bin

v SetEnv QIBM_CGI_LIBRARY_LIST ″MIME;CGIURL;CGILIBL″

The SetEnv directive allows you to set an environment variable that is passed on to CGI scripts. See

“Environment variables on HTTP Server” on page 766 for more information.

Parameter One: variable

v The variable parameter is any valid EBCDIC characters except the equal sign (=), the

null-terminator (X’00’) and blank (X’40’). The name must be enclosed in quotation marks if it

contains any non-alphanumeric character.

Parameter Two: [value]

594 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v The [value] parameter is optional and can include partial URLs. The case is preserved when

lowercase characters are specified. Valid values include all EBCDIC characters. The value must

be enclosed in quotation marks if it contains any non-alphanumeric character or blanks.

Lowercase characters for the library names will not work if this directive is used to change the

library list. When changing the library list values, the libraries need to be separated by a

semicolon.

UnsetEnv:

 Module: mod_env

Syntax: UnsetEnv variable [variable ...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: UnsetEnv LD_LIBRARY_PATH

The UnsetEnv directive removes one or more environment variables from those passed on to CGI scripts.

See “Environment variables on HTTP Server” on page 766 for more information.

Parameter: variable

v The variable parameter is any valid environment variable.

Module mod_example for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_example provides a simple example to demonstrate the use of the Apache APIs.

Directive

v “Example”

Example:

 Module: mod_example

Syntax: Example

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Options

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule example_module /QSYS.LIB/QHTTPSVR.LIB/QZSREXAMPL.SRVPGM

Example: Example

This directive sets a demonstration flag. The example module’s content handler displays the flag. There

are no arguments. If you browse a URL to which the example content-handler applies, the routines

within the module and how and in what order they were called to service the document request are

displayed.

HTTP Server 595

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Module mod_expires for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module controls the setting of the Expires HTTP header in server responses. The expiration date can

be set relative to either the time that the source file was last modified, or relative to the time that the

client accessed the server.

The Expires HTTP header is an instruction to the client regarding the document’s validity and

persistence. If cached, the document may be retrieved from the cache rather than from the source until

the allocated time has passed. After this occurs, the cache copy is considered ″expired″ and a new copy

must be obtained from the source.

Alternate Interval Syntax

The ExpiresDefault and ExpiresByType directives can also be defined in a more readable syntax of the

form:

ExpiresDefault "<base> [plus] {<num> <type>}*"

ExpiresByType type|encoding "<base> [plus] {<num> <type>}*"

The <base> argument is one of the following:

v access

v now (equivalent to ’access’)

v modification

The [plus] keyword is optional. The <num> argument should be an integer value [acceptable to atoi()],

and <type> is one of the following:

v years

v months

v weeks

v days

v hours

v minutes

v seconds

For example, any of the following directives can be used to make documents expire 1 month after being

accessed, by default:

ExpiresDefault "access plus 1 month"

ExpiresDefault "access plus 4 weeks"

ExpiresDefault "access plus 30 days"

Note: Time is stored in seconds. The value month is actually calculated as 60*60*24*30 seconds. Keep in

mind that one month is equal 30 days, and 4 weeks is only equal to 28 days. If you specify 52

weeks, it is calculated as 362 days instead of 365 days.

The expiry time can be fine-tuned by adding several <num> and <type> arguments. For example:

ExpiresByType text/html"access plus 1 month 15 days 2 hours"

ExpiresByType image/gif "modification plus 5 hours 3 minutes"

596 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Note: If you use a modification date based setting, the Expires header will not be added to content that

does not come from a file on disk. This is due to the fact that there is no modification time for

such content.

Directives

v “ExpiresActive”

v “ExpiresByType”

v “ExpiresDefault” on page 598

ExpiresActive:

 Module: mod_expires

Syntax: ExpiresActive on | off

Default: ExpiresActive off

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ExpiresActive on

The ExpiresActive directive enables or disables the generation of the Expires header for the document

realm in question. If this directive is found in an .htaccess file it only applies to documents generated

from that directory.

Parameter: on | off

v If set to on, an Expires header will be added to served documents according to criteria set by

the ExpiresByType and ExpiresDefault directives.

v If set to off, an Expires header will not be generated for any document in the realm (unless

overridden at a lower level, such as an .htaccess file overriding a server config file).

Note: This directive does not guarantee that an Expires header will be generated. If the criteria is not

met, no header will be sent, and the effect will be as though this directive was never specified.

ExpiresByType:

 Module: mod_expires

Syntax: ExpiresByType MIME-type code seconds | ″<base> [plus] <num> <type>″

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ExpiresByType image/gif A2592000

Example: ExpiresByType text/html ″access plus 30 days″

The ExpiresByType directive defines the value of the Expires header generated for documents of the

specified type (for example, text/html). The second argument sets the number of seconds that will be

added to a base time to construct the expiration date.

The base time is either the last modification time of the file, or the time of the client’s access to the

document. Whether access time or modification time should be used is specified by the code field. M

means that the file’s last modification time should be used as the base time, and A means the client’s

access time should be used.

The difference in effect is between the A and the M is minimal. If M is used, all current copies of the

document in all caches will expire at the same time. This could be useful for something like a weekly

HTTP Server 597

notice that is always found at the same URL. If A is used, the date of expiration is different for each

client. This could be useful for image files that do not change very often, particularly for a set of related

documents that all refer to the same images (for example, the images will be accessed repeatedly within

a relatively short time span).

Parameter One: code

v The code parameter specifies has two arguments. Specify A if the expiration time should be

calculated from the time the resource was accessed. Specify M if the expiration time should be

calculated from the last modified date of the resource.

Parameter Two: seconds

v The seconds parameter is a number of seconds until the resource expires.

 You can also specify the expiration time calculation using the alternate interval syntax. For example:

#enable expirations

ExpiresActive on

#expire GIF images after a month in the clients cache

ExpiresByType image/fig A2592000

#HTML documents are good for a week from the time they were changed

ExpiresByType text/html M604800

Note: This directive only has effect if ExpiresActive On has been specified. It overrides, for the specified

MIME type only, any expiration date set by the ExpiresDefault directive. If you use a modification

date based setting, the Expires header will not be added to content that does not come from a file

on disk. This is due to the fact that there is no modification time for such content.

ExpiresDefault:

 Module: mod_expires

Syntax: ExpiresDefault code seconds| ″<base> [plus] <num> <type>″

Default: none

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ExpiresDefault A2592000

Example: ExpiresDefault ″access plus 1 month″

The ExpiresDefault directive sets the default algorithm for calculating the expiration time for all

documents in the affected realm. It can be overridden on a type-by-type basis by the ExpiresByType

directive. See the description of the ExpiresByType directive for details about the syntax of the argument,

and the alternate syntax description as well.

Parameter One: code

v The code parameter specifies has two arguments. Specify A if the expiration time should be

calculated from the time the resource was accessed. Specify M if the expiration time should be

calculated from the last modified date of the resource.

Parameter Two: seconds

v The seconds parameter is a number of seconds until the resource expires.

Note: If you use a modification date based setting, the Expires header will not be added to content that

does not come from a file on disk. This is due to the fact that there is no modification time for

such content.

598 iSeries: IBM HTTP Server

Module mod_ha for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_ha contains directives that define support for the highly available HTTP Server

function.

Directives

v “HACGI”

v “HAModel”

v “LmExitProgram” on page 600

v “LmIntervalTime” on page 601

v “LmMaxReactivation” on page 601

v “LmResponseTime” on page 602

v “LmUrlCheck” on page 602

v “LmUrlCheckBackup” on page 603

HACGI:

 Module: mod_ha

Syntax: HACGI on | off

Default: HACGI off

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: HACGI on

The HACGI directive specifies if CGI programs in a directory can be highly available. The CGI programs

in the specified directory must use the highly available HTTP Server APIs.

Parameter: on | off

v The on parameter value specifies CGI programs in a directory can be highly available.

v The off parameter value specifies CGI programs in a directory are not high available.

HAModel:

 Module: mod_ha

Syntax: HAModel model

Default: none

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: HAModel PrimaryBackupWithIpTakeover

Example: HAModel PrimaryBackupWithDispatcher

HTTP Server 599

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Example: HAModel PurePeer

The HAModel directive establishes which highly available model is to be used

(PrimaryBackupWithIpTakeover, PrimaryBackupWithDispatcher, or PurePeer).

Parameter: model

v The PrimaryBackupWithIpTakeover parameter value specifies that the highly available Web

server runs on the primary and all backup nodes. The backup node or nodes are in a idle

state, ready to become the primary Web server should the primary Web server fail

(failover), or a switchover takes place.

v The PrimaryBackupWithDispatcher parameter value specifies that the highly available Web

server runs on the primary and all backup nodes. The backup nodes are in an idle state

and all client requests are served by the primary node. A network dispatcher (for example

the IBM WebSphere Edge Server) sends client requests to the Web server.

v The PurePeer parameter value specifies that all highly available nodes are in an active

state and serve client requests. A network dispatcher (for example the IBM WebSphere

Edge Server) evenly distributes requests to different cluster nodes. This guarantees

distribution of resources in case of heavy load. Linear scalability is not guaranteed

beyond a small number of nodes. After some number of nodes are added, scalability can

disappear, and the cluster performance can deteriorate.

 See “Highly available Web server cluster on HTTP Server” on page 17 for more information regarding

highly available Web server models.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel PrimaryBackupWithIPTakeover

LmUrlCheck http://hostname/web/docs/spec/wscheck.html

LmIntervalTime 100

LmMaxReactivation 5

LmResponseTime 300

Note: When a server is configured as highly available (HAModel directive is specified), “HotBackup” on

page 547 behaves as if it is set to ’off’ and can not be overwritten.

LmExitProgram:

 Module: mod_ha

Syntax: LmExitProgram libraryname programname

Default: none

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: LmExitProgram httptest exitpgm

The LmExitProgram directive configures a QSYS program that is started by the Liveness monitor

whenever it initiates a change in the HA model of a server instance from the primary model or to the

primary model. When the server instance is going to become the primary HA server instance, then this

program is called with a parameter of ’1’. When the current HA primary server instance is no longer

going to be the primary instance, then this program is called with a parameter of ’0’. For example a

program can be created which will start or end a job, depending on the function of the server.

Parameter One: libraryname

600 iSeries: IBM HTTP Server

v The libraryname parameter value specifies the name of the library to be used. The

parameter value can be up to 10 characters and must follow the rules for iSeries library

names.

Parameter Two: programname

v The programname parameter value specifies the name of the program to be used. The

parameter value can be up to 10 characters and must also follow the iSeries rules for

program names in a library.

Note: Only QSYS library/program can be used.

LmIntervalTime:

 Module: mod_ha

Syntax: LmIntervalTime interval

Default: LmIntervalTime 15

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: LmIntervalTime 30

The LmIntervalTime directive is used by the Liveness Monitor to specify how often (in seconds, between

performing Web server Liveness checks (HEAD or GET)) a liveness check should be performed on the

server. The LmResponseTime and LmIntervalTime directives are independent. One sends out checks

(LmIntervalTime), while the other tests for responses (LmResponseTime). The LmResponseTime value

should always be larger than the LmIntervalTime value. It is recommended that LmResponseTime be at

least 3 times larger than LmIntervalTime.

Parameter: integer

v The interval parameter value specifies how often (in seconds, between performing Web

server Liveness checks (HEAD or GET)) a liveness check should be performed on the

server. Valid values include integers between 0 and 4,294,967,295.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel PrimaryBackupWithIPTakeover

LmUrlCheck http://hostname/web/docs/spec/wscheck.html

LmIntervalTime 100

LmMaxReactivation 5

LmResponseTime 300

LmMaxReactivation:

 Module: mod_ha

Syntax: LmMaxReactivation integer

Default: LmMaxReactivation 3

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: LmMaxReactivation 5

The LmMaxReactivation directive specifies how many times the Liveness Monitor should attempt to

reactivate the Web server after a detected failure.

HTTP Server 601

Parameter: integer

v The integer parameter value specifies how many times the Liveness Monitor should

attempt to reactivate the Web server after a detected failure. Valid values include integers

between 0 and 2,147,483,647

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel PrimaryBackupWithIPTakeover

LmUrlCheck http://hostname/web/docs/spec/wscheck.html

LmIntervalTime 100

LmMaxReactivation 5

LmResponseTime 300

LmResponseTime:

 Module: mod_ha

Syntax: LmResponseTime interval

Default: LmResponseTime 120

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: LmResponseTime 60

The LmResponseTime directive specifies how long the Liveness Monitor should wait for a response from

the Web server before taking appropriate action (based on the other Liveness Monitor directive settings).

The LmResponseTime and LmIntervalTime directives are independent. One sends out checks

(LmIntervalTime), while the other tests for responses (LmResponseTime). The LmResponseTime value

should always be larger than the LmIntervalTime value. It is recommended that LmResponseTime be at

least 3 times larger than LmIntervalTime.

Parameter: interval

v The interval parameter value specifies how long the Liveness Monitor should wait for a

response from the Web server before taking appropriate action (based on the other

Liveness Monitor directive settings).

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel PrimaryBackupWithIPTakeover

LmUrlCheck http://hostname/web/docs/spec/wscheck.html

LmIntervalTime 100

LmMaxReactivation 5

LmResponseTime 300

LmUrlCheck:

 Module: mod_ha

Syntax: LmUrlCheck URL

Default: LmUrlCheck http://

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: LmUrlCheck http://194.170.2.5:8000/web/docs/spec/wscheck.html

602 iSeries: IBM HTTP Server

The LmUrlCheck directive specifies a fully qualified URL that is used by the Liveness Monitor to perform

liveness checks on HTTP Server. Specifying a domain name is not valid for this directive. Only one IP

address can be specified in a highly available HTTP Server configuration.

Note: This is a required directive for highly available and must exist in the global server configuration

context and not in a container. See “HAModel” on page 599 and “Highly available Web server

cluster on HTTP Server” on page 17 for additional details.

Parameter: URL

v The URL parameter value specifies a fully qualified URL that is used by the Liveness

Monitor to perform liveness checks on the server. Only one IP address can be specified in

a highly available server configuration. Specifying a domain name is not valid for this

parameter. The IP Address must be the same address as specified with the Listen

directive. The default port number is 80

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel PrimaryBackupWithIPTakeover

LmUrlCheck http://194.170.2.5:8000/web/docs/spec/wscheck.html

LmIntervalTime 20

LmMaxReactivation 3

LmResponseTime 60

 Specify https when the HTTP Server instance is configured to receive client requests using only secure

sockets. The IP address must be the same as the IP address that was specified in the virtual host

container for the SSL application. The default port number for SSL is 443.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel PrimaryBackupWithIPTakeover

LmUrlCheck https://194.170.2.5:8008/web/docs/spec/wscheck.html

LmIntervalTime 20

LmMaxReactivation 3

LmResponseTime 60

LmUrlCheckBackup:

 Module: mod_ha

Syntax: LmUrlCheckBackup URL

Default: none

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: LmUrlCheckBackup http://194.170.2.5:8008/web/docs/spec/wscheck.html

The LmUrlCheckBackup directive specifies a fully qualified URL that is used by the Liveness Monitor to

perform liveness checks on the HA backup server instance. If this directive is not configured, then the

URL passed is the URL parameter value specified on the LmUrlCheck directive.

For example, if the server is configured to run Payment Manager, only one instance of Payment Manager

can be active in the cluster at any given time. If the URL on the LmUrlCheck directive specifies a URL for

the Payment Manager, then this same URL will not work for the HA backup server instance, so the

LmUrlCheckBackup directive needs to be configured to use a non-Payment Manager URL.

Note: This directive is ignored when HAModel PurePeer is configured.

Parameter: URL

HTTP Server 603

v The URL parameter value specifies a fully qualified URL that is used by the Liveness

Monitor to perform liveness checks on the HTTP Server when the server is currently the

HA backup server. The use of a domain name is not a valid parameter with this directive.

Only one IP address can be specified in a High Availability server configuration (i.e.

Listen 194.170.2.5:xxxxxx <virtual host 194.170.2.5:yyyyyy>). The IP Address must be the

same address as specified with the Listen directive. The default port number is 80.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel Primary/BackupWithIPTakeover

LmUrlCheck http://194.170.2.5:8008/web/docs/spec/wscheck.html

LmUrlCheckBackup http://194.170.2.5:8008/web/docs/spec/wscheckbackup.html

LmIntervalTime 20

LmMaxReactivation 3

LmResponseTime 60

 Specify https when the HTTP Server instance is configured to receive client requests using only secure

sockets. The IP address must be the same as the IP address that was specified in the virtual host

container for the SSL application. The default port number for SSL is 443.

Example

LoadModule ha_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HAModel Primary/BackupWithIPTakeover

LmUrlCheck http://194.170.2.5:8008/web/docs/spec/wscheck.html

LmUrlCheckBackup https://194.170.2.5:8008/web/docs/spec/wscheckbackup.html

LmIntervalTime 20

LmMaxReactivation 3

LmResponseTime 60

Note: This directive is ignored when HAModel PurePeer is configured.

Module mod_headers for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The headers module allows for the customization of HTTP response headers. The module allows headers

to be merged, replaced or removed.

Directives

v “Header”

v “RequestHeader” on page 606

Header:

 Module: mod_headers

Syntax: Header [condition] action header value [env=[!]environment-variable]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: Header append Author ″John P. Doe″

Example: Header unset Author

Example: Header echo ^TS*

604 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Example: Header echo Host

The Header directive can replace, merge or remove HTTP response headers. The action performed by this

module is determined by the first parameter. This parameter is followed by a header name, which can

include the final colon, but it is not required. Case is also ignored. For add, append, and set, a value is

given as the third parameter. If this value contains spaces, it should be surrounded by double quotes. For

″unset″, no value should be given.

Note:The [condition] parameter was introduced with Apache 2.0.52. It did not exist prior to this release

on iSeries.

Order of Processing

The Header directive can occur almost anywhere within the server configuration. It is valid in the main

server config and virtual host contexts, inside <Directory>, <Location>, and <Files> contexts and within

.htaccess files.

The Header directives are processed in the following order:

1. main server

2. virtual host

3. <Directory> sections and .htaccess

4. <Location>

5. <Files>

Order is important. These two headers have a different effect if reversed. For example:

Header append Author "John P. Doe"

Header unset Author

This way the Author header is not set. If reversed, the Author header is set to ″John P. Doe″. The Header

directives are processed just before the response is sent by its handler. This means that some headers, that

are added just before the response is sent, cannot be changed or overridden. This includes headers such

as Date and Server.

Parameter One: condition

v The condition parameter is an optional parameter which can be one of the following values:

 Condition Description

onsuccess The Header directive will only effect responses with a status code of

2xx.

always The Header directive will effect all responses, including 2xx.

Parameter Two: action

v The action parameter can be one of the following values:

 Action Description

set The response header is set, replacing any previous header with this

name.

append The response header is appended to any existing header of the same

name. When a new value is merged onto an existing header it is

separated from the existing header with a comma. This is the HTTP

standard way of giving a header multiple values.

HTTP Server 605

Action Description

add The response header is added to the existing set of headers, even if this

header already exists. This can result in two (or more) headers having

the same name. This can lead to unforeseen consequence, and in

general, ″append″ should be used instead.

unset The response header of this name is removed, if it exists. If there are

multiple headers of the same name, all will be removed.

echo Request headers with this name are echoed back in the response

headers. Header may be a regular expression. Echo without any

parameters echoes back all the request headers in the response.

Parameter Three: header

v The HTTP Response header parameter to be set, appended, or unset with this directive. There is

no validity checking of the header, which allows the use of experimental headers.

Parameter Four: value

v The value parameter may be a character string, a string containing format specifiers or a

combination of both and specifies the value of the header to be set. It is only valid for set, add

and append. There is no validity checking of the value specified, which allows the use of

experimental headers values. All characters and escaped characters, such as ’\n’, are allowed in

the value string. If value contains spaces, it should be surrounded by double quotes. The

following format specifiers are supported in value:

%t The time the request was received in Universal Coordinated Time since the epoch (Jan.

1, 1970) measured in microseconds. The value is preceded by ″t=″.

%D The time from when the request was received to the time the headers are sent on the

wire. This is a measure of the duration of the request. The value is preceded by ″D=″.

%{ENVVAR}e

The contents of the environment variable ENVVAR.
Other format strings, such as %s, will receive an error and the server will not start.

Parameter Five: env=[!]environment-variable

v Optional: The envvar parameter specified in the env=[!]envvar clause can be any character or

numeric value. When the Header directive is used with the add, append, or set argument, a

fourth argument may be used to specify conditions under which the action will be taken. If the

environment variable specified in the env=... argument exists (or if the environment variable

does not exist and env=!... is specified) then the action specified by the Header directive will

take effect. Otherwise, the directive will have no effect on the request. See the environment

variable directives for details on naming environment variables.

 The Header directives are processed just before the response is sent to the network. This means that it is

possible to set or override most headers, except for those headers added by the header filter.

RequestHeader:

 Module: mod_headers

Syntax: RequestHeader action header value

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: RequestHeader set Accept-Encoding ″gzip

Example: RequestHeader unset Referer

606 iSeries: IBM HTTP Server

The RequestHeader directive can replace, merge or remove HTTP request headers. The header is

modified just before the content handler is run, allowing incoming headers to be modified. The action it

performs is determined by the first argument.

This argument is followed by a header name, which can include the final colon, but it is not required.

Case is ignored. For add, append, and set, a value is given as the third argument. If this value contains

spaces, it should be surrounded by double quotes. For unset, no value should be given.

Order of Processing

The RequestHeader (and Header) directives can occur almost anywhere within the server configuration.

It is valid in the main server config and virtual host sections, inside <Directory>, <Location>, and <Files>

sections, and whithin .htaccess files.

The RequestHeader directives are processed in the following order:

1. main server

2. virtual host

3. <Directory> sections and .htaccess

4. <Location>

5. <Files>

Order is important. These two headers have a different effect if reversed:

RequestHeader append MirrorID "mirror 12"

RequestHeader unset MirrorID

This way round, the MirrorID header is not set. If reversed, the MirrorID header is set to ″mirror 12″.

The RequestHeader directive is processed just before the request is run by its handler in the fixup phase.

This should allow headers generated by the browser, or by Apache input filters to be overridden or

modified. For example,

RequestHeader append MirrorID "mirror 12"

Parameter One: action

v The action parameter can be one of the following values:

 Action Description

set The request header is set, replacing any previous header with this name.

append The request header is appended to any existing header of the same

name. When a new value is merged into an existing header, it is

separated from the existing header with a comma. This is the HTTP

standard way of giving a header multiple values.

add The request header is added to the existing set of headers, even if this

header already exists. This can result in two (or more) headers having

the same name. This can lead to unforeseen consequences, and in general

append should be used instead.

unset The request header of this name is removed, if it exists. If there are

multiple headers of the same name, all will be removed.

Parameter Two: header

v The HTTP Response header parameter to be set, appended, or unset with this directive. There is

no validity checking of the header, which allows the use of experimental headers.

Parameter Three: value

HTTP Server 607

v The value parameter can have any valid character string as a value and specifies the value of

the header to be set. It is only valid for set, add and append. There is no validity checking of

the value specified, which allows the use of experimental headers values. All characters and

escaped characters are allowed in this string. If this value contains spaces, it should be

surrounded by double quotes.

Module mod_ibm_linc for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_ibm_linc supports the LDAPInclude directive that allows HTTP Server to access a

Lightweight Directory Access Protocol (LDAP) directory and to query the directory in a database fashion

to obtain HTTP configuration information. The LDAPInclude directive requires a file that contains the

directives necessary to contact the LDAP server. This can be the same filename that is used on the

LdapConfigFile directive. See the mod_ibm_ldap module for details on the directives necessary to contact

an LDAP server.

If the LDAPInclude directive is placed in the server configuration file, the following directive must be

specified prior to its use:

LoadModule ibm_ldap_include /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Directive

v “LDAPInclude”

LDAPInclude:

 Module: mod_ibm_linc

Syntax: LDAPInclude filename filter attribute

Default: none

Context: server config, virtual host, directory

Override: none

Origin: iSeries

Example: LDAPInclude /QIBM/UserData/HTTPA/LDAP/ldap.prop (cn=web) binProperty

LDAPInclude directive is used to retrieve HTTP configuration information that is stored in an LDAP

directory. The LDAP server is contacted using information from the configuration file provided, and an

LDAP search is performed using the filter. Once information is returned from the LDAP search, the

values of the attributes are then used as part of the HTTP configuration file.

The same filename that is used on an LDAPConfigFile directive may also be used for the LDAPInclude

directive.

Parameter One: filename

v The filename parameter is the name of the file that contains LDAP directives required to

connect to an LDAP server.

Parameter Two: filter

v The filter parameter is the search string that is passed from HTTP Server to the LDAP server to

return an LDAP entry.

Parameter Three: attribute

608 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_ibm_ldap.htm#configFile

v The attribute parameter is the name of the LDAP attribute whose value is some arbitrary part

of HTTP Server configuration file.

Module mod_ibm_ldap for HTTP Server (powered by Apache)

This module contains directives that allow HTTP Server to access an Lightweight Directory Access

Protocol (LDAP) directory and to query the directory in a database fashion to obtain authentication

information.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

These directives provide the server with information regarding the LDAP Servers in which HTTP Server

configuration (see mod_ibm_linc) and authentication information may be stored. You can put these

directives in a file and then include that file in your server configuration file using the LdapConfigFile

directive. If these directives are placed in the configuration file, the following directive must be specified

prior to their use:

LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Directives

v “ldap.AppId”

v “ldap.application.authType” on page 610

v “ldap.application.DN” on page 610

v “ldap.application.password.stashFile” on page 611

v “ldap.cache.timeout” on page 611

v “ldap.group.memberAttributes” on page 612

v “ldap.group.name.filter” on page 612

v “ldap.group.url” on page 612

v “ldap.idleConnection.timeout” on page 613

v “ldap.NTDomain” on page 614

v “ldap.ObjectClass” on page 614

v “ldap.realm” on page 615

v “ldap.search.timeout” on page 615

v “ldap.transport” on page 615

v “ldap.url” on page 616

v “ldap.user.authType” on page 616

v “ldap.user.name.fieldSep” on page 617

v “ldap.user.name.filter” on page 617

v “ldap.version” on page 618

v “ldap.waitToRetryConnection.interval” on page 618

v “LDAPConfigFile” on page 618

v “LDAPRequire” on page 619

ldap.AppId:

 Module: mod_ibm_ldap

Syntax: ldap.AppId application_ID

Default: none

Context: directory, .htaccess

HTTP Server 609

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.AppId QIBM_HTTP_SERVER_SRVINST1

The ldap.AppId directive is used to enable SSL connections to the LDAP server. An Application ID that

has been obtained and associated with a certificate through Digital Certificate Manager (DCM) is

supplied with this directive. The application ID is then used when making an SSL connection to the

LDAP server to validate that the server can make a secure connection. The Application ID provided may

be the same Application ID that is used elsewhere in HTTP Server.

The ldap.AppId directive is required if ldap.transport is SSL.

Parameter: application_ID

v The application_ID parameter is an application ID obtained from DCM for this HTTP

Server instance.

ldap.application.authType:

 Module: mod_ibm_ldap

Syntax: ldap.application.authType authtype

Default: ldap.application.authType Basic

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.application.authType None

The ldap.application.authtype directive is used to specify the method used to authenticate HTTP Server

application to the LDAP server. The possible values are None and Basic.

For Basic authentication, the ldap.application.DN and the ldap.application.password.stashFile directives

are required to identify HTTP Server.

Parameter: authtype

v The authtype parameter specifies the method used to authenticate HTTP Server

application to the LDAP server. Valid values are Basic, or None.

1. If None is selected, HTTP Server connects using anonymous access, if permitted by the

LDAP server.

2. If Basic authentication is chosen, HTTP Server is required to identify itself to the

LDAP server by using a Distinguished Name and password.

ldap.application.DN:

 Module: mod_ibm_ldap

Syntax: ldap.application.DN Distinguished_Name

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.application.DN cn=Administrator

610 iSeries: IBM HTTP Server

The ldap.application.DN directive specifies the Distinguished Name (DN) HTTP Server uses to

authenticate to the LDAP server.

When using ldap.application.authType Basic, the directive ldap.application.password.stashFile should be

used with ldap.application.DN. Unless the LDAP server allows anonymous access, the connection

between HTTP Server and the LDAP server will not be made without a valid password.

Parameter: Distinguished_Name

v The Distinguished_Name parameter is a character string representing the Distinguished

Name used by HTTP Server to authenticate to the LDAP server.

ldap.application.password.stashFile:

 Module: mod_ibm_ldap

Syntax: ldap.application.password.stashFile filename

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.application.password.stashFile /QIBM/UserData/HTTPA/LDAP/websrv1/lcfg1.stash

The ldap.application.password.stashFile directive specifies the file that contains the encoded password

used by HTTP Server to authenticate to the LDAP server when ldap.application.authType is Basic. The

configuration tools create, encode, and name the filename.

Parameter: filename

v The filename parameter is the name of a file containing the encoded password used to

authenticate HTTP Server to the LDAP server.

ldap.cache.timeout:

 Module: mod_ibm_ldap

Syntax: ldap.cache.timeout seconds

Default: ldap.cache.timeout 600 (10 minutes)

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.cache.timeout 300

The ldap.cache.timeout directive specifies the maximum length of time (in seconds) that these cached

results may be used. After ldap.cache.timeout seconds, the cache elements are discarded, and subsequent

requests cause a search of the LDAP server. Results of a search of an LDAP server are cached in local

HTTP Server storage to save the time of executing another LDAP search in a short period of time.

Parameter: seconds

v The seconds parameter is the length of time, in seconds, for the server to retain the results

of successful LDAP searches.

HTTP Server 611

ldap.group.memberAttributes:

 Module: mod_ibm_ldap

Syntax: ldap.group.memberAttributes ″attributes″

Default: ldap.group.memberAttributes ″member uniquemember″

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.group.memberAttributes ″member″

The ldap.group.memberAttributes directive specifies the attribute names that are used to extract members

from a group entry in an LDAP directory. The values of these attributes must be the distinguished names

of the members of the group.

This directive is used in conjunction with the ldap.group.name.filter and the LDAPRequire directives to

allow users in specific groups access to a resource.

Parameter: attributes

v The attributes parameter is the group attribute names used to extract users from an LDAP

group entry.

 If multiple occurrences of this directive are configured in a container, only the last occurrence is

processed. All other occurrences are ignored.

ldap.group.name.filter:

 Module: mod_ibm_ldap

Syntax: ldap.group.name.filter filter

Default: ldap.group.name.filter (&(cn=%v)(|(objectclass=groupofnames)(objectclass=groupofuniquenames)))

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.group.name.filter (&(cn=%v)(objectclass=groupofnames))

The ldap.group.name.filter directive specifies the filter that is used to convert, via an LDAP search

request, a group name to a unique DN. The unique DN for the group is then used to allow individual

users who are members of the group to access their source. The default value is ″(&(cn=
%v)(|(objectclass=groupofnames)(objectclass=groupofuniquenames)))″, where %v is a substitution

variable for the group name.

This directive is used in conjunction with the ldap.group.memberAttributes and the LDAPRequire

directives to allow users in specific groups access to a resource.

Parameter: filter

v The filter parameter is a valid LDAP search filter that will return a unique DN for a

given group name.

ldap.group.url:

 Module: mod_ibm_ldap

Syntax: ldap.group.url ldap://hostname:port/BaseDN

Default: none

612 iSeries: IBM HTTP Server

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.group.url ldap://www-5.ibm.com/o=deltawing,c=au

The ldap.group.url directive tells HTTP Server the location of the LDAP server that is being used for

authentication of users in groups. Hostname is the hostname of the LDAP server. The DNS name or the

IP address is used to identify the host where the LDAP server resides. The port is optional. If not

specified, port 389 will be assumed if using TCP/IP connections, and 636 will be used for SSL

connections to the LDAP server. The BaseDN provides the starting point for searches of the LDAP

directory.

If the ldap.group.url is not present in the configuration file, the ldap.url value is used. If the same host,

port and BaseDN are the same for group searches, as they are for user searches, you do not need to

specify ldap.group.url.

Parameter One: hostname

v The hostname parameter is the DNS name or IP address of the host where the LDAP

server is located.

Parameter Two: port

v The port parameter is the port on which the LDAP server listens. It is optional. If not

present, and the transport is TCP, the well-known LDAP port 389 is assumed. If the

transport is SSL, the well-known LDAP SSL port 636 will be assumed.

Parameter Three: BaseDN

v The BaseDN parameter is the starting point for searches of the LDAP directory for group

information.

Note: The ldap.group.url value is case sensitive. For example, the following value is not valid:

ldap.group.url LdaP://www-5.ibm.com/o=deltawing,c= au. However, the following value is valid:

ldap.group.url ldap://www-5.ibm.com/o=deltawing,c= au.

ldap.idleConnection.timeout:

 Module: mod_ibm_ldap

Syntax: ldap.idleConnection.timeout seconds

Default: ldap.idleConnection.timeout 600 (10 minutes)

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.idleConnection.timeout 900

The ldap.idleConnection.timeout directive is used to determine the time that idle connections to the

LDAP server are kept open. This improves performance by saving the path length necessary to open

connections if there are several requests of the LDAP server in a short period of time.

Parameter: seconds

v The seconds parameter is the length of time, in seconds, that an idle connection should

remain open.

HTTP Server 613

ldap.NTDomain:

 Module: mod_ibm_ldap

Syntax: ldap.NTDomain domainname

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.NTDomain ″cn=myexchServer″

Since Microsoft Windows NT® authenticates differently than the other industry LDAP servers, this

directive was added to configure the Microsoft Windows NT domain name. This directive should only be

used when a Microsoft Exchange Server is being used and the authentication requires that

ldap.NTDomain be specified. This directive should not be used in other cases.

Use of this directive allows an HTTP Server to access a Microsoft Exchange Server version 5.0 or 5.5 by

means of Lightweight Directory Access Protocol (LDAP). It may be necessary to use this directive if this

product is used to perform LDAP authentication of HTTP requests.

Directive ldap.NTDomain can be specified two different ways. The format may be dependent on the

Microsoft Exchange Server.

If the Exchange Server requires the account to look like ″cn=NTAccount, cn=NTDomain″, use the format:

ldap.NTDomain "cn=exchServer"

If the Exchange Server requires the account in the form (″dc=NTDomain, cn=NTAccount″), use the

format:

ldap.NTDomain "dc=exchServer"

When this directive is present, HTTP Server appends the information in the ldap.NTDomain directive to

the DN used when authenticating a user to the LDAP server.

ldap.ObjectClass:

 Module: mod_ibm_ldap

Syntax: ldap.ObjectClass objectclass

Default: ldap.ObjectClass eProperty

Context: directory, .htaccess

Override: AuthCfg

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule IBM_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.ObjectClass applicationProcess

The ldap.ObjectClass directive is used to publish configuration information to the LDAP server. The

object class is used as an entry to the LDAP server and describes the content and purpose of an object in

the LDAP directory tree. The configuration information may then be retrieved using the LDAPInclude

directive.

Parameter: objectclass

v The objectclass parameter is the name of the object class to be used as the entry in the

LDAP directory. The object class used should have a binary file attribute value.

614 iSeries: IBM HTTP Server

ldap.realm:

 Module: mod_ibm_ldap

Syntax: ldap.realm ″label″

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.realm ″HTTP Auth Server″

The ldap.realm directive is used to identify the LDAP configuration in error log messages. If a server uses

different LDAP servers or different LDAP base DNs for different directories, ldap.realm will identify this

particular LDAP configuration.

Parameter: label

v The label parameter can be a character string describing this LDAP configuration.

ldap.search.timeout:

 Module: mod_ibm_ldap

Syntax: ldap.search.timeout seconds

Default: ldap.search.timeout 10

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.search.timeout 30

The ldap.search.timeout directive supplies the maximum amount of time (in seconds) to wait for an

LDAP search request to complete. This prevents HTTP Server from waiting on a request to a slow LDAP

server.

Parameter: seconds

v The seconds parameter is the length of time, in seconds, for the server to wait for an

LDAP search request to complete.

ldap.transport:

 Module: mod_ibm_ldap

Syntax: ldap.transport transport

Default: ldap.transport TCP

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.transport SSL

The ldap.transport directive is used to specify the transport used to communicate with the LDAP server.

The LDAP server can communicate over either TCP/IP or SSL connections.

HTTP Server 615

If ldap.transport is set to SSL, then the ldap.AppId directive must be set, or HTTP Server will be unable

to make the connection to the LDAP server.

Parameter: transport

v The transport parameter specifies the transport to be used for communication with the

LDAP server. Valid values are ’TCP’ or ’SSL’.

ldap.url:

 Module: mod_ibm_ldap

Syntax: ldap.url ldap://hostname:port/baseDN

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.url ldap://www-6.ibm.com:1636/ou=Payroll,o=Company,c=US

The ldap.url directive tells HTTP Server the location of the LDAP server that is being used for

authentication or configuration. Hostname is the hostname of the LDAP server. The DNS name or the IP

address is used to identify the host where the LDAP server resides. The port is optional. If not specified,

port 389 will be assumed if using TCP/IP connections, and 636 will be used for SSL connections to the

LDAP server. The BaseDN provides the starting point for searches of the LDAP directory.

This directive is required when using LDAP for authentication or configuration.

The ldap.url directive will be used for all searches, unless a different value is provided with the

ldap.group.url directive. If an ldap.group.url directive is present, its value is used to search for groups

Parameter One: hostname

v The hostname parameter is the DNS name or IP address of the host where the LDAP

server is located.

Parameter Two: port

v The port parameter is the port on which the LDAP server listens. It is optional. If not

present, and the transport is TCP, the well-known LDAP port 389 is assumed. If the

transport is SSL, the well-known LDAP SSL port 636 will be assumed.

Parameter Three: baseDN

v The baseDN parameter is the starting point for searches of the LDAP directory.

Note: The ldap.url value is case sensitive. For example, the following value is not valid: ldap.url

LdaP://www-5.ibm.com/o=deltawing,c= au. However, the following value is valid: ldap.url

ldap://www-5.ibm.com/o=deltawing,c= au.

ldap.user.authType:

 Module: mod_ibm_ldap

Syntax: ldap.user.authType authtype

Default: ldap.user.authType Basic

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.user.authType Basic

616 iSeries: IBM HTTP Server

The ldap.user.authtype directive is used to specify the method used to authenticate the user requesting an

HTTP resource to the LDAP server. Basic is the only possible value. During basic authentication, the user

is prompted to enter a username and password.

Parameter: authtype

v The authtype parameter specifies the method used to authenticate the user requesting an

HTTP resource to the LDAP server. ’Basic’ is the only valid value.

ldap.user.name.fieldSep:

 Module: mod_ibm_ldap

Syntax: ldap.user.name.fieldSep ″separators″

Default: ldap.user.name.fieldSep ″ \t,″

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.user.name.fieldSep ″ \t,/″

The ldap.user.name.fieldSep directive specifies the characters that are considered valid field separator

characters when parsing the user name into fields. The fields are then put into a filter and used on an

LDAP search request. For example, if ’/’ is the only valid field separator, and the user entered ″Joe

Smith/Acme″, then the first field is set to ″Joe Smith″ and the second field is set to ″Acme″.

Parameter: separators

v The separators parameter is the valid separator characters used to delimit fields.

 If multiple occurrences of this directive are configured in a container, only the last occurrence is

processed. All other occurrences are ignored.

ldap.user.name.filter:

 Module: mod_ibm_ldap

Syntax: ldap.user.name.filter filter

Default: ldap.user.name.filter(&(objectclass=person)(|(cn=%v1 %v2)(uid=%v1)))

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.user.name.filter (&(objectclass=person)(uid=%v1))

The ldap.user.name.filter directive specifies the filter that is used to convert, via an LDAP search request,

a user name to a unique DN. The DN is then used to authenticate the user making the HTTP request.

The default value is ″(&(objectclass=person)(|(cn=%v1 %v2)(uid=%v1))″, where %v1 and %v2 are

substitution variables for the words the user entered at the browser.

This directive is used when ldap.user.authType is Basic.

Parameter: filter

v The filter parameter is a valid LDAP search filter that will return a unique DN for a

given user name.

HTTP Server 617

ldap.version:

 Module: mod_ibm_ldap

Syntax: ldap.version version

Default: ldap.version 3

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.version 2

The ldap.version directive is used to specify the version of LDAP to use to communicate with the LDAP

server. The default version used by HTTP Server is version 3. If your LDAP server is not at version 3, use

this directive to set it to 2.

Parameter: version

v The version parameter specifies the version of the LDAP to be used. Valid versions are ’2’

or ’3’.

ldap.waitToRetryConnection.interval:

 Module: mod_ibm_ldap

Syntax: ldap.waitToRetryConnection.interval seconds

Default: ldap.waitToRetryConnection.interval 30

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: ldap.waitToRetryConnection.interval 60

If an LDAP server is down, HTTP Server may have degraded performance because it will be continually

trying to connect. The ldap.waitToRetryConnection.interval directive gives the length of time (in seconds)

to wait between failed attempts to connect to the LDAP server.

Parameter: seconds

v The seconds parameter is the length of time, in seconds, for the server to wait between

attempts to connect to the LDAP server.

LDAPConfigFile:

 Module: mod_ibm_ldap

Syntax: LDAPConfigFile filename

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: LDAPConfigFile /QIBM/UserData/HTTPA/ldap/ldapSvr1.conf

The LDAPConfigFile directive provides a filename that contains the LDAP directives necessary to access

an LDAP server. It allows the LDAP directives to be grouped into a file so they may easily be referenced

618 iSeries: IBM HTTP Server

in any container in HTTP Server configuration file by using the LDAPConfigFile directive. An example

file can be found in /QIBM/ProdData/HTTPA/conf/ldap.prop

All LDAP directives except LDAPRequire may be put into the file.

Parameter: filename

v The filename parameter is the filename that contains other LDAP directives.

LDAPRequire:

 Module: mod_ibm_ldap

Syntax: LDAPRequire type [groupname | filter]

Default: none

Context: directory, .htaccess

Override: AuthCfg

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Example: LDAPRequire filter (&(objectclass=person)(ou=Payroll)(cn=*))

The LDAPRequire directive is used to restrict access to a resource controlled by LDAP authentication to

members of a group. It can either use groups defined in LDAP by using the ″group″ parameter, or it can

use an LDAP filter to assemble a group of users with a similar quality.

The LDAPRequire directive may not be put into an LDAP configuration file, it must be in the server

configuration file. For LDAP, this can be used instead of the GroupFile directive.

Parameter One: type

v Valid values for the type parameter include ’group’ or ’filter’.

v Group should be used for LDAP group entries.

v Filter should be used when grouping users by other qualities.

Parameter Two: groupname | filter

v The groupname parameter is the name of a group as defined in the LDAP directory.

v The filter parameter is a valid filter that may be used to determine if a user meets

qualifications to be authenticated.

Module mod_ibm_si for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_ibm_si specifies behavior between associated HTTP Server (powered by Apache)

servers and WebSphere Application Servers.

Directives

v “AppServer” on page 620

v “WASInstance” on page 620

HTTP Server 619

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

AppServer:

 Module: mod_ibm_si

Syntax: AppServer server_name [*ALL start | nostart] [end | noend]

Default: none

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule isi_module /QSYS.LIB/QHTTPSVR.LIB/QZISI.SRVPGM

Example: AppServer ITD start end

Example: AppServer ADMIN start noend

Example: AppServer NODO nostart noend

The AppServer directive is only effective if directive WASInstance declares the WAS instance name for

the application server. The AppServer directive specifies the load module to start the application server

when the HTTP Server (powered by Apache) is started. The AppServer directive also ends the application

server when the same HTTP Server (powered by Apache) is stopped. More than one directive is allowed

but with different HTTP Server (powered by Apache) names.

Note: For duplicate names, the last one is specified and used by the server configuration.

Parameter One: server_name

v The server_name parameter value specifies the HTTP Server (powered by Apache) to be

associated with the application server.

Parameter Two: *ALL

v The *ALL parameter specifies that this directive applies to all application servers

associated with the instance named on the WASInstance directive. For example, AppServer

*ALL start end

Parameter Three: start | nostart |

v The start parameter value specifies the application server to start when the associated

HTTP Server (powered by Apache) starts.

v The nostart parameter value specifies the application server to not start when the

associated HTTP Server (powered by Apache) starts.

Parameter Four: end | noend

v The end parameter value specifies the application server to end when the associated HTTP

Server (powered by Apache) ends.

v The noend parameter value specifies the application server to not end when the associated

HTTP Server (powered by Apache) ends.

WASInstance:

 Module: mod_ibm_si

Syntax: WASInstance name ProductID ProductID_option

Default: none

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule isi_module /QSYS.LIB/QHTTPSVR.LIB/QZISI.SRVPGM

Example: WASInstance SYSINST 5722XXX 2

Example: WASInstance ITD 5722IWE 2

Example: WASInstance DEFAULT 5733WS5 2

620 iSeries: IBM HTTP Server

The WASInstance directive specifies the application server instance and the associated product and

product option. The directive typically has an accompanying AppServer directive.

Parameter One: name

v The name parameter value is the name of the application server. Mixed case is allowed.

Parameter Two: ProductID

v The ProductId parameter value specifies the product. Valid values include:

– 5722IWE

– 5722WS5

– 5722E51

– 5722XXX (intended for system instance application serer, SYSINST)

Parameter Three: ProductID_option

v The ProductID_options parameter value specifies any valid product options. The option

number is a number from 0 to 99 where 0 is *BASE. Valid values include:

– 2 for ProductID parameter value 5722IWE (WAS Express, V5R3)

– 2 for ProductID parameter value 5733WS5 (WAS Base, V5R3)

– 2 for ProductID parameter value 5722E51

– 5 for ProductID parameter value 5733WS5 (WAS ND; future release)

Module mod_ibm_ssl for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Configuration details

The module mod_ibm_ssl directives provide the server with information on the extent of the SSL

authentication required for access to the server by the client. When configuring the server for SSL, it is

best to use virtual hosts if the server is to be both SSL and non-SSL. The default behavior for SSL is

SSLDisable, which causes the server to not do any SSL processing for each server or virtual host which

does not specify SSLEnable. If SSL processing is required, then a SSL Virtual Host should be set up to

handle this. The SSL port should be specified on the <Virtual Host> directive, with the SSLEnable and

SSLAppName located inside the virtual host container. Each resource for which SSL processing is desired

should be located inside the SSL virtual host container. This prevents the resource from being accessed

through a non-SSL port and served when SSL is not used. If the resource is located outside the SSL

virtual host container, and is located in the main server, it is still possible to access the resource through

SSL. Any SSL directives are handled if the resource is requested on a SSL port, but the SSL directives,

with the exception of the SSLRequireSSL directive, are ignored if the resource is requested on a non-SSL

port. Unless the resource is configured to handle both SSL authentication and non-SSL authentication, the

results in this case may not be what is desired. If a resource must be accessed only through a SSL port

the SSLRequireSSL directive can be placed in the resource container, and any request for that resource

that is received from a non_SSL port is rejected.

When configuring a resource for SSL authentication, the behavior of other directives affects how the SSL

directives behave. The primary concerns are when SSLAuthType is configured. There are other directives

that need to be set in order for SSL to behave as expected. If SSLAuthType Cert is specified, this tells the

server to check for a certificate, and authenticate the user based on the information in that certificate. This

should be the only authentication necessary for this resource. In order to ensure this, AuthType SSL and

Satisfy Any needs to be configured in the resource container. This results in the desired behavior.

HTTP Server 621

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

When configuring a resource for SSLAuthType CertOrBasic, this tells the server to check for a certificate

and authenticate the user based on the information in that certificate. If this authentication fails, then the

server authenticates the user based on any other type of authentication that is configured for that

resource. In most cases, this is Basic authentication, which requests a user ID and password from the

client, and the user is authenticated based on this information received from the client, but may also be

LDAP authentication if indicated in the configuration of that resource. In order for the SSLAuthType

CertOrBasic to function properly, Satisfy Any, AuthType Basic, and Require needs to be configured in the

resource container.

If there are CGI programs that will be using SSL, the environment variable HTTPS_PORT must be set in

the configuration file. The SetEnv HTTPS_PORT port-number directive is used for this.

Directives

v “SSLAppName”

v “SSLAuthType” on page 623

v “SSLCacheDisable” on page 624

v “SSLCacheEnable” on page 624

v “SSLCipherBan” on page 625

v “SSLCipherRequire” on page 626

v “SSLCipherSpec” on page 627

v “SSLClientAuth” on page 628

v “SSLClientAuthGroup” on page 628

v “SSLClientAuthRequire” on page 630

v “SSLClientCertDisable” on page 631

v “SSLClientCertEnable” on page 631

v “SSLDenySSL” on page 632

v “SSLDisable” on page 632

v “SSLEnable” on page 632

v “SSLEngine” on page 633

v “SSLProxyAppName” on page 633

v “SSLProxyEngine” on page 634

v “SSLProxyVerify” on page 634

v “SSLProxyVersion” on page 635

v “SSLRequireSSL” on page 636

v “SSLUpgrade” on page 636

v “SSLVersion” on page 637

v “SSLV2Timeout” on page 637

v “SSLV3Timeout” on page 638

SSLAppName:

 Module: mod_ibm_ssl

Syntax: SSLAppName server_application_name

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLAppName QIBM_HTTP_SERVER_APACHE

622 iSeries: IBM HTTP Server

The SSLAppName directive is used for the following reasons:

v unique label to identify the server as an application that intends to use SSL

v to keep track of the registered name used by the server

v to identify the server when association of a server certificate with a secure application is done in the

Digital Certificate Manager (DCM)

v to identify the server to the SSL API’s so that the SSL API’s can use the certificate that is associated

with the server

This registration of the secure application and the creation of the SSLAppName is done automatically

when the system administrator enables SSL for the server using the IBM Web Administration for iSeries

interface. The association of a server certificate with the application is accomplished by the system

administrator using DCM. After a secure application is registered, and before attempting to start the

server with SSL enabled, the user must use DCM to assign a server certificate to the corresponding secure

application. Since this directive is valid at the virtual host level, the server may have more than one

certificate assigned, with each virtual host having a different application name. The specified value on

this directive is the name of the application that the server or virtual host is known as. If the server

certificate association for the application name is not configured through DCM, then the SSL connection

cannot be initialized and the server will not start.

Note: There is a configured limit of 64 secure application environments (SSLAppName’s) that can be

active at once. To increase this limit contact customer support.

Parameter: server_application_name

v The server_application_name parameter value specifies the name of the application that the

server or virtual host.

SSLAuthType:

 Module: mod_ibm_ssl

Syntax: SSLAuthType option

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLAuthType cert

The SSLAuthType directive is used to specify the type certificate validation/authentication required for

access to a directory. This option is used to ensure that a certificate received from the client is associated

with a user ID or an Internet User validation list. If this is not the case, the client may be prompted for

the user ID.

Parameter: option

v The option parameter value can be one of the following:

Cert This option indicates to the server that the certificate received from the client

must be in an Internet User list or be associated with an iSeries user ID

convention. Note : If SSLAuthType Cert is specified, then AuthType should be set

to SSL.

CertOrBasic

This option indicates to the server that the certificate, if there is one, that is

received from the client may be associated with a user ID or may be in an

HTTP Server 623

Internet User validation list. If it is not, then the client is authenticated based on

the value of HTTP Server AuthType directive. In order to simulate HTTP Server

(original) behavior of AuthType CertOrBasic, HTTP Server (powered by Apache)

AuthType directive must be Basic. This will cause the client to be prompted for a

user ID and password, and this provided user ID and password will then be used

to access the directory/file. If SSLAuthType CertOrBasic is used, then AuthType

should be set to Basic.

 The certificate does not need to be valid. This directive only refers to the existence of a certificate. If the

certificate must be valid, then the SSLClientCertEnable directive must also be specified.

There are no default values for this directive. If the directive is not used, then if a certificate is present,

association with a user ID or Internet User validation list is not checked. This directive’s scope is the

directory level. This directive is only to be specified once for a directory. Any subsequent uses of this

directive override any previously specified values.

This directive may be used in conjunction with the SSLClientCertEnable directive. This will cause very

specific behavior to occur, depending on the value specified on the SSLAuthType directive. If the

SSLClientCert directive is used in addition to SSLAuthType Cert, the certificate received from the client

must be valid, as well as associated with a user ID or in an Internet User validation list. If the

SSLClientCert directive is used in addition to SSLAuthType CertOrBasic, a certificate must be received

from the client, but does not need to be associated with a user ID or in an Internet User validation list. If

the association is not present, the client will be authenticated based on the protection setup (basic or

ldap).

This directive also interacts with the PasswdFile directive. This directive is used to help determine the

type of certificate authentication to be used. If the PasswdFile directive is set to %%SYSTEM%%, then the

certificate received from the client must be associated with an iSeries user profile in order for it the client

to be authenticated. If the PasswdFile directive is set to an internet user list, then the certificate received

must be in the internet user list in order for the client to be authenticated. Again, this authentication is

only required if the Cert option is selected on the SSLAuthType directive. Otherwise it is only optional.

SSLCacheDisable:

 Module: mod_ibm_ssl

Syntax: SSLCacheDisable

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLCacheDisable

The SSLCacheDisable directive will cause SSL session ID caching to be disabled. The effect of this

directive will depend on the location of the directive. If the directive is located in the configuration file

for the main server, SSL session ID caching will not be done for the server. If the directive is located in a

<Virtual Host> container, then SSL session ID caching will not be done for the virtual host. The directive

located at the server level can be overridden for a particular virtual host using the SSLCacheEnable

directive. Directives SSLV2Timeout and SSLV3Timeout will be ignored when SSLCacheDisable is set.

Note: This directive does not contain parameters.

SSLCacheEnable:

 Module: mod_ibm_ssl

624 iSeries: IBM HTTP Server

Syntax: SSLCacheEnable

Default: SSLCacheEnable

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLCacheEnable

The SSLCacheEnable directive will cause SSL session ID caching to be enabled. The effect of this directive

will depend on the location of the directive. If the directive is located in the configuration file for the

main server, SSL session ID caching will be done for the server. If the directive is located in a <Virtual

Host> container, then SSL session ID caching will be done for the virtual host. The directive located at the

server level can be overridden for a particular virtual host using the SSLCacheDisable directive. A

abbreviated handshake will be done whenever a handshake is necessary. Directives SSLV2Timeout and

SSLV3Timeout will be ignored.

Note: This directive does not contain parameters.

SSLCipherBan:

 Module: mod_ibm_ssl

Syntax: SSLCipherBan string

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLCipherBan 3A

Example: SSLCipherBan SSL_RSA_WITH_3DES_EDE_CBC_SHA

The SSLCipherBan directive allows for banning access to a directory based on the cipher that is

negotiated during the SSL handshake. A set of ciphers can either be defaulted or specified using the

SSLCipherSpec directive. The cipher list then can be shortened for a specific directory. This directive will

enforce a greater level of security through the use of cipher specs.

The SSLCipherBan directive will directly interact with the SSLCipherRequire directive. If a negotiated

cipher is listed on the ban list, then the request will be rejected, even if the cipher is also on the require

list.

Parameter: string

v The string parameter value specifies the cipher to be used. Either the short name or the

long name in the table below may be specified.

 Table 14. Version 2 ciphers

Long name Short name

SSL_WITH_3DES_EDE_CBC_MD5 27

SSL_WITH_RC4_128_MD5 21

SSL_WITH_RC2_CBC_128_MD5 23

SSL_WITH_DES_CBC_MD5 26

SSL_EXPORT_WITH_RC4_40_MD5 22

HTTP Server 625

Table 14. Version 2 ciphers (continued)

Long name Short name

SSL_EXPORT_WITH_RC2_CBC_40_MD5 24

 Table 15. Version 3 and TLS ciphers

Long name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA 35

SSL_RSA_WITH_RC4_128_MD5 34

SSL_RSA_WITH_DES_CBC_SHA 39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 36

SSL_RSA_WITH_NULL_SHA 32

SSL_RSA_WITH_NULL_MD5 31

SSLCipherRequire:

 Module: mod_ibm_ssl

Syntax: SSLCipherRequire string

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLCipherRequire ″27″

Example: SSLCipherRequire SSL_WITH_3DES_EDE_CBC_MD5

The SSLCipherRequire directive allows for the user to require that certain ciphers to be negotiated with

the client during the SSL handshake. Specifying that a subset of ciphers are required will force a greater

level of security for a particular directory which may not be required for all directories. The ciphers listed

here may or may not be listed using the SSLCipherSpec directive.

Parameter: string

v The string parameter value specifies the cipher to be used. Either the short name or the

long name in the table below may be specified.

 Table 16. Version 2 ciphers

Long name Short name

SSL_WITH_3DES_EDE_CBC_MD5 27

SSL_WITH_RC4_128_MD5 21

SSL_WITH_RC2_CBC_128_MD5 23

SSL_WITH_DES_CBC_MD5 26

SSL_EXPORT_WITH_RC4_40_MD5 22

SSL_EXPORT_WITH_RC2_CBC_40_MD5 24

626 iSeries: IBM HTTP Server

Table 17. Version 3 and TLS ciphers

Long name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA 35

SSL_RSA_WITH_RC4_128_MD5 34

SSL_RSA_WITH_DES_CBC_SHA 39

SSL_RSA_EXPORT_WITH_RC4_40_MD5 33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 36

SSL_RSA_WITH_NULL_SHA 32

SSL_RSA_WITH_NULL_MD5 31

Note: The short and long names can be quoted. For example, SSLCipherRequire

″SSL_WITH_3DES_EDE_CBC_MD5″.

SSLCipherSpec:

 Module: mod_ibm_ssl

Syntax: SSLCipherSpec string

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLCipherSpec ″3A″

Text

Parameter: string

v The string parameter value specifies the cipher to be used. Either the short name or the

long name in the table below may be specified.

 Table 18. Version 2 ciphers

Long name Short name

SSL_WITH_3DES_EDE_CBC_MD5 27

SSL_WITH_RC4_128_MD5 21

SSL_WITH_RC2_CBC_128_MD5 23

SSL_WITH_DES_CBC_MD5 26

SSL_EXPORT_WITH_RC4_40_MD5 22

SSL_EXPORT_WITH_RC2_CBC_40_MD5 24

 Table 19. Version 3 and TLS ciphers

Long name Short name

SSL_RSA_WITH_3DES_EDE_CBC_SHA 3A

SSL_RSA_WITH_RC4_128_SHA 35

SSL_RSA_WITH_RC4_128_MD5 34

SSL_RSA_WITH_DES_CBC_SHA 39

HTTP Server 627

Table 19. Version 3 and TLS ciphers (continued)

Long name Short name

SSL_RSA_EXPORT_WITH_RC4_40_MD5 33

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 36

SSL_RSA_WITH_NULL_SHA 32

SSL_RSA_WITH_NULL_MD5 31

 The order of the SSLCipherSpec directives is important. The cipher suite list passed to SSL is created by

putting the first cipher listed in the configuration file at the top of the cipher suite list. SSL uses this list

as the preferred order of ciphers.

This directive works in conjunction with the SSLVersion directive during the SSL handshake. The values

specified for the SSLCipherSpec directive must correspond with the value specified on the SSLVersion

directive. If this directive is not used, a default cipher suite list is used.

Note: The short and long names can be quoted. For example, SSLCipherSpec ″3A″.

SSLClientAuth:

 Module: mod_ibm_ssl

Syntax: SSLClientAuth type

Default: SSLClientAuth none

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientAuth 2

The SSLClientAuth directive is used to indicate the type of client-side SSL certificate validation is

required for the server.

Parameter: type

v The type parameter value specifies the client-side SSL certificate validation required for

the server. Valid values include:

0 or none

No client certificate is required.

1 or optional

The client may present a valid certificate.

2 or required

The client must present a valid certificate.

 The default value of this directive is 0, or none, indicating that no certificate is requested or required from

the client. If an incorrect value is specified, an error message is issued and the server will not start. A

value of 1, or optional, will cause the server to request a certificate from the client, and the SSL connection

will be made even if a certificate is not received. A value of 1 does not require the certificate received

from the client to be valid. A value of 2, or required, will cause the server to request a certificate from the

client. If a valid certificate is not received, the client request will be rejected.

SSLClientAuthGroup:

 Module: mod_ibm_ssl

628 iSeries: IBM HTTP Server

Syntax: SSLClientAuthGroup groupname attribute-expression

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientAuthGroup IBMpeople Org = IBM

The SSLClientAuthGroup directive is used to define a group name to a set of specific client certificate

attributes to be used on the SSLClientAuthRequire directive. To indicate the attributes, a validated

certificate must be presented before the server will allow access to the directory.

Parameter One: groupname

v The groupname parameter value specifies the group name for the client certificate. A group

name cannot include spaces.

Parameter Two: attribute-expression

v The attribute-expression parameter value specifies the attribute for a validated certificate

to be used for client authentication. Either the long name or the short name may be used

in this directive. Valid values include:

 Table 20. Attribute values

Long name Short name

IssuerStateOrProvince IST

IssuerCommonName ICN

IssuerOrgUnit IOU

IssuerCountry IC

IssuerLocality IL

IssuerOrg IO

IssuerEmail IE

IssuerPostalCode IPC

StateOrProvince ST

CommonName CN

OrgUnit OU

Country C

Locality L

Org O

PostalCode PC

SerialNumber SN

Note: The short and long names can be quoted. For example, SSLClientAuthGroup

IBMpeople ″Org = IBM″.

The user specifies a logic string of specific client certificate attributes and a group name is assigned

to these attributes. Multiple subexpressions can be logically ANDed , ORed, or NOTed to configure

the desired group of client certificate attributes. Valid equalities include ’=’ and ’!=’.

Example One

SSLClientAuthGroup IBMpeople Org=IBM

HTTP Server 629

Example Two

SSLClientAuthGroup MNIBM ST=MN && Org=IMB

SSLClientAuthRequire:

 Module: mod_ibm_ssl

Syntax: SSLClientAuthRequire attribute-expression

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientAuthRequire group != IBMpeople && ST= MN

The SSLClientAuthRequire directive is used to provide a specific client certificate attributes, or groups of

attributes, that must be validated before the server will allow access to the directory. If the certificate

received does not have a particular attribute, then we do not check for an attribute match. Even if the

matching value is ″ ″, this may still not be the same as not having the attribute there at all. Any attribute

specified on the SSLClientAuthRequire and not available on the certificate causes the request to be

rejected.

The following is a list of the attribute values that may be specified on this directive:

 Table 21. Attribute values

Long name Short name

IssuerStateOrProvince IST

IssuerCommonName ICN

IssuerOrgUnit IOU

IssuerCountry IC

IssuerLocality IL

IssuerOrg IO

IssuerEmail IE

IssuerPostalCode IPC

StateOrProvince ST

CommonName CN

OrgUnit OU

Country C

Locality L

Org O

PostalCode PC

SerialNumber SN

Either the long name or the short name may be used in this directive.

The user specified a logic string of specific client certificate attributes. Multiple subexpressions can be

logically ANDed , ORed, or Noted to configure the desired client certificate attributes. Valid logical

symbols include ’=’ and ’!=’. The user may also specify a group name, configured on the

SSLClientAuthGroup, that allows a group of attributes to be configured.

630 iSeries: IBM HTTP Server

Multiple SSLClientAuthRequire directives may be specified for each directory, and each attribute

specified is used to check the attributes in the client certificate. Multiple directives place a logical AND on

the attributes specified with the directives.

Example 1: SSLClientAuthRequire (CommonName=″John Doe″ || StateOrProvince=MN) && Org !=IBM

Example 2: SSLClientAuthRequire group!=IBMpeople && ST=MN

Note: The short and long names can be quoted. For example, SSLClientAuthRequire group != IBMpeople

&& ″ST= MN″

SSLClientCertDisable:

 Module: mod_ibm_ssl

Syntax: SSLClientCertDisable

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientCertDisable

The SSLClientCertDisable directive indicates to the server that a valid certificate is not required in order

to access this directory.

This directive may be used in conjunction with the SSLAuthType directive. If specified in addition to the

SSLAuthTypeCert directive, the certificate received only needs to be associated with a user ID or an

Internet user.

This directive negates the SSLClientCertEnable directive.

SSLClientCertEnable:

 Module: mod_ibm_ssl

Syntax: SSLClientCertEnable

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLClientCert Enable

The SSLClientCertEnable directive indicates to the server that a valid certificate is required in order to

access this directory.

This directive may be used in conjunction with the SSLAuthType directive.

If specified in addition to the SSLAuthTypeCert directive, the certificate received needs to be valid, as

well as associated with a user ID or an Internet user. This directive is negated by the

SSLClientCertDisable directive.

HTTP Server 631

SSLDenySSL:

 Module: mod_ibm_ssl

Syntax: SSLDenySSL

Default: none

Context: directory, .htaccess

Override: AuthConfig

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLDenySSL

The SSLDenySSL directive will deny access to the directory when SSL is used for the request. This

directive interacts somewhat with the SSLRequireSSL directive. If a directory has both the SSLRequireSSL

and the SSLDenySSL directives specified, then the last directive in the directory scope will take effect.

Since this directive is scoped to a directory, a server or a virtual host may also have SSLRequireSSL for

some directories, but SSLDenySSL for other directories. Also, more specific directory container directives

will override previously specified directives for a less specific directory.

Example:

<Directory /ABC>

 SSLRequireSSL

</Directory>

<Directory /ABC/DEF>

 SSLDenySSL

</Directory>

This example will require SSL for directory /ABC, but deny SSL for directory /ABC/DEF.

SSLDisable:

 Module: mod_ibm_ssl

Syntax: SSLDisable

Default: SSLDisable

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLDisable

The SSLDisable directive causes SSL to be disabled for the server or virtual host. The effect of this

directive will depend on the location of the directive. If the directive is located in the configuration file

for the main server, SSL will not be allowed for the server. If the directive is located in a <Virtual Host>

container, then SSL will not be allowed for the virtual host. The directive located at the server level can

be overridden for a particular virtual host using the SSLEnable directive.

SSLEnable:

 Module: mod_ibm_ssl

Syntax: SSLEnable

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

632 iSeries: IBM HTTP Server

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLEnable

The SSLEnable directive will cause SSL to be enabled. The effect of this directive will depend on the

location of the directive. If the directive is located in the configuration file for the main server, SSL will be

required for the server. If the directive is located in a <Virtual Host> container, then SSL will be required

for the virtual host. The directive, located at the server level, can be overridden for a particular virtual

host using the SSLDisable directive. This directive requires that the directive SSLAppName be set.

Note: Some applications need SetEnv HTTPS_PORT <port> configured when SSLEnable is configured.

SSLEngine:

 Module: mod_ibm_ssl

Syntax: SLEngine On | Off | Optional

Default: SSLEngine Off

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: The server must be restarted prior to using the directive. A LoadModule is required in the

configuration file prior to using the directive. The statement should be as follows: LoadModule ibm_ssl_module

/QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLEngine On

The SSLEngine directive toggles the usage of SSL processing. If SSLEngine On is specified, SSL processing

is enabled. If SSLEngine Off is specified, SSL processing is disabled. If SSLEngine Optional is specified,

SSL processing is turned on to handle upgrading a non-SSL connection to an SSL connection. The effect

of this directive depends on the location of the directive. If the directive is located in the configuration

file for the main server, the type of SSL processing is set for the entire server. If the directive is located in

a <VirtualHost> container, then the type of SSL processing is set for only that virtual host. If this directive

is set at the server level, it can be overridden for a particular virtual host by specifying the other allowed

option. SSLEngine On is equivalent to SSLEnable, SSLEngine Off is equivalent to SSLDisable, and

SSLEngine Optional is equivalent to SSLUpgrade. These directives can be used interchangeably. The

SSLEngine directive is being added in order to be compatible with Apache’s mod_ssl.

If SSLEngine On or SSLEngine Optional is configured, the directive SSLAppName must also be

configured.

See also SSLEnable, SSLDisable, SSLUpgrade, and SSLAppName.

Parameter: seconds

v The seconds parameter has a valid value range of 1 to 86400 seconds. If the value

specified is greater than 86400, or less than 1, then the default value of 86400 seconds will

be used as the timeout value. This value is used for negotiated SSLVersion 3, or TLS

Version 1, sessions.

SSLProxyAppName:

 Module: mod_ibm_ssl

Syntax: SSLProxyAppName server_application_name

Default: none

Context: server, virtual host

Override: none

Origin: iSeries

HTTP Server 633

Usage Considerations: The server must be restarted prior to using the directive.

Example: SSLProxyAppName QIBM_HTTP_CLIENT_APACHE

The SSLProxyAppName directive is used to:

v to uniquely label the proxy server as a client application that intends to use SSL to a remote content

server.

v to keep track of the registered name used by the proxy server.

v to identify the server when association of a client certificate with a secure application is done in the

Digital Certificate Manager (DCM).

v to identify the server to the SSL API’s so that the SSL API’s can use the certificate that is associated

with the server.

The registration of the secure client application and the creation of the SSLProxyAppName is done

automatically when the system administrator enables the SSL Proxy engine for the server using the HTTP

Server configuration GUI. The association of a client certificate with the application is accomplished by

the system administrator using DCM: after a secure client application is registered, and before attempting

to start the server with the SSL proxy engine enabled and SSLProxyAppName configured, the user must

use DCM to assign a client certificate to the corresponding secure application. Since this directive is valid

at the virtual host level, the server may have more than one certificate assigned, with each virtual host

having a different application name. The specified value on this directive is the name of the application

that the server or virtual host is known as. If both the SSLProxyAppName directive and the

SSLProxyMachineCertificateFile directive are configured for the server, then the SSLProxyAppName

directive is used to identify the client certificate and the handshake processing.

SSLProxyEngine:

 Module: mod_ibm_ssl

Syntax: SSLProxyEngine On | Off

Default: SSLProxyEngine Off

Context: server, virtual host

Override: none

Origin: Apache

Usage Considerations: The server must be restarted prior to using the directive. This directive requires that either the

SSLProxyAppName directive or the SSLProxyMachineCertificateFile be configured. Use of the

SSLProxyMachineCertificateFile directive is required if the remote content server does not require a client certificate

to be sent by the proxy server during the handshake process. If a certificate will be required by the remote content

server, then the SSLProxyAppName should be used to identify the client certificate to use on the handshake.

Example: SSLProxyEngine On

The SSLProxyEngine directive toggles the usage of SSL connections to be used by the proxy to connect to

the content server. This is usually used inside a <VirtualHost> section to enable SSL/TLS for proxy usage

in a particular virtual host.

SSLProxyVerify:

 Module: mod_ibm_ssl

Syntax: SSLProxyVerify | 1 | Optional | 2 | Required

Default: SSLProxyVerify Required

Context: server, virtual host

Override: none

Origin: Apache

634 iSeries: IBM HTTP Server

Example:

1. SSLProxyVerify 2

2. SSLProxyVerify Required

The SSLProxyVerify directive is used to indicate the type of server-side SSL certificate validation is

required by the proxy server. The following values are valid for the SSLProxyVerify directive:

v (1 or Optional) - The content server may present a valid certificate.

v (2 or Required) - The content server must present a valid, trusted certificate.

The default value of this directive is 2 or Required, indicating that the content server certificate must be

valid and have a trusted root. If an incorrect value is specified, an error message is issued and the server

will not start.

The proxy server requires a certificate to be received from the content server. However, this certificate

may be expired, or not be trusted by the server CA, as configured on the SSLProxyAppName directive or

the SSLProxyMachineCertificatePath directive. This will result in a handshake failure if 2 or Required is

configured.

A value of 1 or Optional, will cause the proxy server to allow for an expired content server certificate, or

allow for the consent server certificate to not be trusted by the server application ID configured. This will

result in the handshake completing successfully.

SSLProxyVersion:

 Module: mod_ibm_ssl

Syntax: SSLProxyVersion SSLV2 | SSLV3 | TLSV1 | TLSV1_SSLV3 | ALL

Default: SSLProxyVersion ALL

Context: server, virtual host

Override: none

Origin: Modified

Example: SSLVersion TLSV1

The SSLProxyVersion directive specifies the SSL version that is negotiated with the remote content server

during the SSL agreement that takes place when connecting the Apache proxy server to the content

server via the SSL protocol. The version specified must be negotiated or access to content server is

denied.

There are five possible values for this directive:

SSLV2 SSL Version 2.0 only

SSLV3 SSL Version 3.0 only

TLSV1

TLS Version 1.0 only

TLSV1_SSLV3

TLS Version 1.0 with SSL V3.0 compatibility

ALL (default)

TLS Version 1.0 with SSLV2.0 & SSL V3.0 compatibility

 The server defaults to ALL indicating that the server accepts any version that is negotiated.

HTTP Server 635

SSLRequireSSL:

 Module: mod_ibm_ssl

Syntax: SSLRequireSSL

Default: none (if neither SSLRequireSSL or SSLDenySSL are configured, the client may access the container using a

secure or non-secure connection)

Context: directory, .htaccess

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLRequireSSL

The SSLRequireSSL directive will deny access to the directory whenever SSL is not used for the request.

This is used to ensure that the client uses the SSL protocol to access a directory, and helps protect the

resources in the directory from being accessed, even though there may be errors in the server

configuration.

This directive interacts with the SSLDenySSL directive. If a directory has both the SSLRequireSSL and the

SSLDenySSL directives specified, the last directive in the directory scope will take effect. Since this

directive is scoped to a directory, a server or a virtual host may also have SSLRequireSSL for some

directories, but SSLDenySSL for other directories. Also, more specific directory container directives will

override previously specified directives for a less specific directory.

Example:

<Directory /ABC>

 SSLRequireSSL

</Directory>

<Directory /ABC/DEF>

 SSLDenySSL

</Directory>

This example will require SSL for directory /ABC, but deny SSL for directory /ABC/DEF.

SSLUpgrade:

 Module: mod_ibm_ssl

Syntax: SSLUpgrad

Default: none

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLUpgrade

The SSLUpgrade directive enables a server to support a client request to upgrade a normal non-SSL

connection to a Transport Layer Security (TLS) connection (for a single request). This directive’s

effectiveness will depend on the directive location. If the directive is located in the main server

configuration file, any connection to the server will be eligible for a TLS upgrade. If the directive is

located in a <Virtual Host> container, only the connection to that virtual host will be eligible for the

upgrade. The directive, located at the server level, can be overridden for a particular virtual host using

the SSLDisable or SSLEnable directives. SSLUpgrade requires that the directive SSLAppName is defined.

636 iSeries: IBM HTTP Server

The SSLVersion directive is affected by SSLUpgrade. If SSLUpgrade is configured, the SSLVersion that is

negotiated on the handshake will only be TLS. The SSLVersion specified in the configuration file will be

ignored.

The SSLCipherSpec directive is also affected by SSLUpgrade. If SSLUpgrade is configured, only

SSLV3/TLS ciphers are allowed. If SSLCipherSpec specifies SSL version 2 ciphers, these ciphers will be

ignored, and only configured SSLV3/ TLS ciphers will be allowed. If there are no SSLV3/TLS ciphers

configured, the defined default system cipher list will be used.

The SSLRequireSSL directive may be configured for a resource that is accessed through an upgraded

connection. If the upgrade is requested as a part of the request through the use of the upgrade header,

the SSLRequireSSL directive will be enforced before the connection is upgraded. This will allow the

request to be processed, since the connection will be upgraded to SSL before the request has been

handled, and the reply has been sent.

The SSLDenySSL directive will be enforced in the same manner as the SSLRequireSSL directive. If the

request for the resource is received along with the upgrade header request, the request will be denied

with a 403, Forbidden, response returned to the client, since the request will be processed after the

connection has been upgraded.

SSLVersion:

 Module: mod_ibm_ssl

Syntax: SSLVersion version

Default: SSLVersion ALL

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLVersion TLSV1

he SSLVersion directive specifies the SSL version that will be negotiated with the client during the SSL

handshake. The version specified must be negotiated or access to specified resource will be denied.

There are five possible values for this directive:

 Table 22. Directive values

Value Description

SSLV2 SSL Version 2.0 only

SSLV3 SSL Version 3.0 only

TLSV1 TLS Version 1.0 only

TLSV1_SSLV3 TLS Version 1.0 with SSL Version 3.0 compatibility

ALL TLS Version 1.0 with SSL Version 2.0 and SSL Version 3.0 compatability

The server will default to ALL indicating that the server will accept any version that is negotiated.

SSLV2Timeout:

 Module: mod_ibm_ssl

Syntax: SSLV2Timeout seconds

Default: SSLV2Timeout 100

Context: server config, virtual host

HTTP Server 637

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLV2Timeout 32

The SSLV2Timeout directive specifies the timeout value for the session ID caching done by sockets that

will be used on the SSL session. This directive indicates the number of seconds in which the internal SSL

session identifier will expire. The session identifier is maintained by sockets. It allows caching of

handshake information in order to allow for a shortened handshake to be done if the timeout value has

not been reached. Lower values are safer but slower, because the complete handshake will be done after

each timeout. If client certificates are being requested by the server, they will also be required to be

represented at each timeout.

Parameter: seconds

v The seconds parameter has a valid value range of 1 to 100 seconds. If the value specified

is greater than 100, or less than 1, then the default value of 100 seconds will be used as

the timeout value. This value is used for negotiated SSL Version 2 sessions.

SSLV3Timeout:

 Module: mod_ibm_ssl

Syntax: SSLV3Timeout seconds

Default: SSLV3Timeout 86400

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows: LoadModule ibm_ssl_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVSSL.SRVPGM

Example: SSLV3Timeout 32

The SSLV3Timeout directive specifies the timeout value for the session ID caching done by sockets that

will be used on the SSL session. This directive indicates the number of seconds in which the internal SSL

session identifier will expire. The session identifier is maintained by sockets, and allows caching of

handshake information in order to allow for a shortened handshake to be done if the timeout value has

not been reached. Lower values are safer, but also slower, as the complete handshake will be done after

each timeout. If client certificates are being requested by the server, they will also be required to be

represented at each timeout.

Parameter: seconds

v The seconds parameter has a valid value range of 1 to 86400 seconds. If the value

specified is greater than 86400, or less than 1, then the default value of 86400 seconds will

be used as the timeout value. This value is used for negotiated SSLVersion 3, or TLS

Version 1, sessions.

Module mod_imap for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

638 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The module mod_imap provides for .map files, replacing the functionality of the imagemap CGI

program. Any directory or document type configured to use the handler imap-file (using either

AddHandler or SetHandler) will be processed by this module. This module is in the default HTTP Server

distribution. The following directive will activate files ending with Map as imagemap files:

AddHandler imap-file map

Note: The following is still supported:
AddType application/x-httpd-imap map

Features

v URL references relative to the Referer: information

v Default <BASE> assignment through a new map directive base

v No need for imagemap.conf file

v Point references

v Configurable generation of imagemap lists

See “Additional information on Imagemap files” on page 640 for more information on Imagemaps.

Directives

v ImapBase

v ImapDefault

v Imaplist

ImapBase:

 Module: mod_imap

Syntax: ImapBase map | referer | URL

Default: ImapBase map

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: ImapBase map

The ImapBase directive sets the default base used in the imagemap files. Its value is overridden by a base

directive within the imagemap file. If not present, the base defaults to http://servername/.

Parameter: map | referer | URL

v The map parameter is equivalent to the URL of the imagemap file itself. No coordinates are

sent with this, so a list will be generated unless Imaplist is set to none.

v The referer parameter is equivalent to the URL of the referring document. Defaults to

http://servername/ if no Referer.

v The URL parameter can be relative or absolute URL. Relative URLs can contain ’..’ syntax and

will be resolved relative to the base value . The base value itself will not resolved according to

the current value. The statement base mailto: will work properly, though.

ImapDefault:

 Module: mod_imap

Syntax: ImapDefault error | nocontent | map | referer | URL

Default: ImapDefault nocontent

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

HTTP Server 639

Example: ImapDefault nocontent

The ImapDefault directive sets the default used in the imagemap files. Its value is overridden by a

default directive within the imagemap file. If not present, the default action is nocontent, which means

that a 204 No Content is sent to the client. In this case, the client should continue to display the original

page.

Parameter: error | nocontent | map | referer | URL

v The error parameter fails with a 500 Server Error. Valid for all but base , but sort of useless for

anything but default.

v The nocontent parameter sends a status code of 204 No Content, telling the client to keep the

same page displayed. Valid for all but base.

v The map parameter is equivalent to the URL of the imagemap file itself. No coordinates are

sent with this, so a list will be generated unless Imaplist is set to none.

v The referer parameter is equivalent to the URL of the referring document. Defaults to

http://servername/ if no Referer.

v The URL parameter can be relative or absolute URL. Relative URLs can contain ’..’ syntax and

will be resolved relative to the base value . The base value itself will not resolved according to

the current value. However, the statement base mailto: will work properly.

Imaplist:

 Module: mod_imap

Syntax: Imaplist none | formatted | semiformatted | unformatted

Default: Imaplist formatted

Context: server config, virtual host, directory, .htaccess

Override: Indexes

Origin: Apache

Example: Imaplist formatted

The Imaplist directive determines the action taken if an imagemap file is called without valid coordinates.

Parameter: none | formatted | semiformatted | unformatted

v The none parameter means no list is generated and the default action is performed

v The formatted parameter generates a formatted list is the simplest list. Comments in the

imagemap file are ignored. A level one header is printed, then an hrule, then the links, each on

a separate line. The list has a consistent, plain look close to that of a directory listing.

v The semiformatted parameter generates a semiformatted list, comments are printed where they

occur in the imagemap file. Blank lines are turned into HTML breaks. No header or hrule is

printed, but otherwise the list is the same as a formatted list.

v The unformatted parameter generates an unformatted list, comments are printed, blank lines are

ignored. Nothing is printed that does not appear in the imagemap file. All breaks and headers

must be included as comments in the imagemap file. This gives you the most flexibility over

the appearance of your lists, but requires you to treat your map files as HTML instead of

plaintext.

Additional information on Imagemap files: The lines in the imagemap files can have one of several

formats:

directive value [x,y ...]

directive value "list text" [x,y ...]

directive value x,y ... "list text"

640 iSeries: IBM HTTP Server

The directive is one of base, default, poly, circle, rect, or point. The value is an absolute or relative URL,

or one of the special values listed below. The coordinates are x,y pairs separated by whitespace. The

quoted text is used as the text of the link if a imagemap list is generated. Lines beginning with ’#’ are

comments.

Imagemap File Directives

There are six directives allowed in the imagemap file. The directives can come in any order, but are

processed in the order they are found in the imagemap file.

v base directive - Has the effect of <BASE HREF=″value″>. The non-absolute URLs of the map-file are

taken relative to this value. The base directive overrides ImapBase as set in a .htaccess file or in the

server configuration files. In the absence of an ImapBase configuration directive, base defaults to

http://server_name/.

v base_uri - Is synonymous with base. Note that a trailing slash on the URL is significant.

v default directive - The action taken if the coordinates given do not fit any of the poly, circle or rect

directives, and there are no point directives. Defaults to nocontent in the absence of an ImapDefault

configuration setting, causing a status code of 204 No Content to be returned. The client should keep

the same page displayed.

v poly directive - Takes three to one-hundred points, and is obeyed if the user selected coordinates fall

within the polygon defined by these points.

v circle directive - Takes the center coordinates of a circle and a point on the circle. Is obeyed if the user

selected point is with the circle.

v rect directive - Takes the coordinates of two opposing corners of a rectangle. Obeyed if the point

selected is within this rectangle.

v point directive - Takes a single point. The point directive closest to the user selected point is obeyed if

no other directives are satisfied. Note that default will not be followed if a point directive is present

and valid coordinates are given.

Values

The values for each of the directives can any of the following:

v URL - The URL can be relative or absolute URL. Relative URLs can contain ’..’ syntax and will be

resolved relative to the base value . The base value itself will not resolved according to the current

value. The statement base mailto: will work properly, though.

v Map - Equivalent to the URL of the imagemap file itself. No coordinates are sent with this, so a list

will be generated unless Imaplist is set to none.

v list - Synonymous with map.

v Referer - Equivalent to the URL of the referring document. Defaults to http://servername/ if no

Referer:

v nocontent - Sends a status code of 204 No Content, telling the client to keep the same page displayed.

Valid for all but base.

v Error - Fails with a 500 Server Error. Valid for all but base , but sort of useless for anything but default.

Coordinates

0,0 200,200 - A coordinate consists of an x and a y value separated by a comma. The coordinates are

separated from each other by whitespace. To accommodate the way Lynx handles imagemaps, should a

user select the coordinate 0,0, it is as if no coordinate had been selected.

Quoted Text

list Text - After the value or after the coordinates, the line optionally may contain text within double

quotes. This string is used as the text for the link if a list is generated:

HTTP Server 641

list text

If quoted text is not present, the name of the link will be used as the text:

http://QIBM.com

It is impossible to escape double quotes within this text.

Example Mapfile

#Comments are printed in a ’formatted’ or ’semiformatted’ list.

#And can contain html tags. <hr>

base referer

poly map "Could I have a list, please?" 0,0 0,10 10,10 10,0

rect .. 0,0 77,27 "the directory of the referer"

circle http://www.ibmdc.com/lincoln/feedback/ 195,0 305,27

rect another_file "in same directory as referer" 306,0 419,27

point http://www.ibmda.com/ 100,100

point http://www.ibmdb.com/ 200,200

rect mailto:me@ibm.com 100,150 200,0 "Bugs?"

Referencing your mapfile

Module mod_include for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_include provides for server-parsed html documents.

Note: A configuration change is required in order for mod_include to work correctly. Previously,

mod_include was a handler, and the config file had a AddHandler server-parsed .htmls directive in

order to define mod_include as a handler for extensions of .htmls. mod_include is now a filter.

Thus, the AddHandler directive no longer applies. Directive AddOutputFilter must be used and

associated with a file extension, much like directive AddHandler. For example:
AddOutputFilter INCLUDES .shtml

Enabling Server-Side Includes

Server-Side Includes (SSI) are implemented by the INCLUDES filter. If documents containing SSI

directives are given the extension .shtml, the following directives makes the HTTP Server parse and

assign the resulting documents as MIME type text/html. For example:

AddType text/html .shtml

AddOutputFilter INCLUDE .sthml

The following directive must be given for the directories containing the shtml files (typically in a

<Directory> section, but this directive is also valid .htaccess files if AllowOverride Options is set). For

example:

Options +Includes

See the “Options” on page 561 directive for more information.

Note: The iSeries system does not support XBitHack to enable server-side includes.

642 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Directives

v “SSIEndTag”

v “SSIErrorMsg”

v “SSIStartTag”

v “SSITimeFormat” on page 644

v “SSIUndefinedEcho” on page 644

SSIEndTag:

 Module: mod_include

Syntax: SSIEndTag string

Default: SSIEndTag ″-->″

Context: server config, virtual host

Override: none

Origin: Apache

Example: SSIEndTag ″-->″

The SSIEndTag directive changes the string that mod_include looks for to mark the end of a include

command.

Parameter: string

v The string parameter represents the string that mod_include looks for to mark the end of a

include command.

SSIErrorMsg:

 Module: mod_include

Syntax: SSIErrorMsg string

Default: SSIErrorMsg ″[an error occurred while processing this directive]″

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: SSIErrorMsg ″This is the default error message″

This SSIErrorMsg directive defines the default error message that is used when an error is encountered

while processing SSI tags in a file. This configuration directive can be used instead of the config errmsg

SSI tag.

Parameter: string

v The string parameter defines the default error message that is used when an error is

encountered while processing SSI tags in a file. For example:

SSIErrorMsg "This is the default error message"

SSIStartTag:

 Module: mod_include

Syntax: SSIStartTag string

Default: SSIStartTab ″<!--#″

Context: server config, virtual host

Override: none

Origin: Apache

Example: SSIStartTab ″<!--#″

HTTP Server 643

The SSIEndTag directive changes the string that mod_include looks for to mark an include element to

process. You may want to use this option if have 2 servers parsing the output of a file (each processing

different commands, possibly at different times).

Parameter: string

v The string parameter represents the string that mod_include looks for to mark an include

element to process.

SSITimeFormat:

 Module: mod_include

Syntax: SSITimeFormat strftime string

Default: SSITimeFormat ″%A, %d-%b-%Y %H:%M:%S %Z″

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: SSITimeFormat ″%H:%M:%S %m-%d-%y″

The SSITimeFormat directive defines the default dates/times format that are returned to the browser

while processing SSI tags. This configuration directive can be used instead of the config timefmt SSI tag.

Parameter: strftime string

v The strftime string parameter defines the default dates/times format that are returned to the

browser while processing SSI tags. For example,

SSITimeFormat "%H:%M:%S %m-%d-%y"

 See “Server-side include commands for HTTP Server” on page 782 for a list of supported server-side

include directives.

Note: HTTP Server (powered by Apache) does not support the %Z (time zone) format.

SSIUndefinedEcho:

 Module: mod_include

Syntax: SSIUndefinedEcho string

Default: SSIUndefinedEcho ″(none)″

Context: server config, virtual host

Override: none

Origin: Apache

Example: SSIUndefinedEcho ″The value on an SSI Echo request is not defined″

The SSIUndefinedEcho directive is used to define the default message that is used when an ″echo″ SSI

tag is requesting a variable whose value has not been set.

Parameter: string

v The string parameter defines the default message that is used when an ″echo″ SSI tag is

requesting a variable whose value has not been set.

Module mod_jk for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

644 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Summary

The modules mod_jk provides five directives used to communicate with the ASF Tomcat Servlet Engine.

These directives go into the HTTP Server (powered by Apache) server configuration file (httpd.conf). Any

mod_jk directive usage must be preceded by loading the Service Program that supports mod_jk. The

following LoadModule must be in the configuration file prior to the use of any mod_jk directives.

LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Directives

v “JkAsfTomcat”

v “JkLogFile”

v “JkLogLevel” on page 646

v “JkMount” on page 646

v “JkMountCopy” on page 647

v “JkWorkersFile” on page 647

JkAsfTomcat:

 Module: mod_jk

Syntax: JkAsfTomcat On | Off

Default: JkAsfTomcat On

Context: server config

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Example: JkAsfTomcat Off

The JkAsfTomcat directive allows ASF Tomcat to be turned off without deleting particular ASF Tomcat

directives from the HTTP Server (powered by Apache) configuration file.

Parameter: On | Off

v When set to On, ASF Tomcat is enabled.

v When set to Off, it appears to the user as if ASF Tomcat was never enabled.

 URL requests are not redirected to the ASF Tomcat servlet engine.

JkLogFile:

 Module: mod_jk

Syntax: JkLogFile directory-filename

Default: none

Context: server config

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Example: JkLogFile /QIBM/UserData/HTTPA/tomcat/logs/tomcat.log

The JkLogFile directive is used to describe the full path and file name of the mod_jk log file. For

example:

JkLogFile /QIBM/UserData/HTTPA/tomcat/logs/tomcat.log

HTTP Server 645

The log file describes the flows of header and data between the HTTP Server (powered by Apache) and

the ASF Tomcat servlet engine. It does not contain information relative to what happens after a request is

forwarded to the servlet engine. This information is obtained by looking at the ASF Tomcat servlet engine

log files. The specified log file is never purged or wrapped. The file may need to be periodically purged

by the administrator.

Parameter: directory-filename

v The directory-filename parameter specifies the directory path and filename for the log file that

describes the flows of header and data between the HTTP Server (powered by Apache) and the

ASF Tomcat servlet engine.

 The directive supports both the Root and QOpenSys file systems.

JkLogLevel:

 Module: mod_jk

Syntax: JkLogLevel log-level

Default: JkLogLevel emerg

Context: server config

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Example: JkLogLevel error

The JkLogLevel directive is used to describe what detail of logging should occur to the log file defined by

JkLogFile.

Parameter: log-level

v The log-level parameter describes what detail of logging should occur to the log file defined by

JkLogFile. The possible log level values are:

– debug

– info

– error

– emerg

These values correspond to the HTTP Server (powered by Apache) logging level descriptions.

JkMount:

 Module: mod_jk

Syntax: JkMount URL-path workername

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Example: JkMount /servlet/* workerajp12

The JkMount directive specifies which URI contexts are sent to a ASF Tomcat worker. The mod_jk

module supplies the code to enable the different workers.

Parameter One: URL-path

646 iSeries: IBM HTTP Server

v The URL-path parameter used by this directive is compared to the incoming URL from the

client browser to determine if the client URL must be forward to the ASF Tomcat servlet

engine.

Parameter Two: workername

v The workername can include the following characters: alpha, numeric, dash (-), underscore (_),

percent (%), and question mark (?). The JkWorkersFile directive points to a file that provides a

mapping between a worker name and a valid worker type. The worker type determines

whether the worker is an in-process or out-of-process worker.

 The directive URL path can assume three different forms: exact match, context match and suffix match.

All URL path forms must be preceded by a forward slash (/) character (for instance, /Example,

/Example/* or /Example/*.jsp).

v Exact match is used when JkMount must match exactly to a URL path in the client URL. For example,

for an incoming client URL of http://systemname:port/example/SampleServlet, JkMount identifies the

URL path then the HTTP Server (powered by Apache) forwards the URL request to the ASF Tomcat

worker jniworker. The directive displays in the form:

JkMount /example/SampleServlet jniworker

JkMount /SampleServlet jniworker

v Context match forwards client URL requests that have URL paths matching the directive URL path.

This form supports the use of the wildcard character (*). For example, with an incoming client URL of

http://systemname:port/server1/example/samples/ExampleServlet, JkMount identifies the URL path then the

HTTP Server (powered by Apache) forwards all URL requests with a /example subcontext to the ASF

Tomcat worker System1worker. The directive displays in the form:

JkMount /example/* System1worker

v Suffix match forwards client URL requests that have a particular suffix. The form is used to support

JSPs that are given in the client URL with a suffix of .jsp. For example:

JkMount /*.jsp System1worker

All client URL requests that have a .jsp suffix are forwarded to worker System1worker for processing.

JkMountCopy:

 Module: mod_jk

Syntax: JkMountCopy On | Off

Default: JkMountCopy Off

Context: virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Example: JkMountCopy On

The JkMountCopy directive indicates whether the base server mount points should be copied to the

virtual server. Any mount points defined outside <VirtualHost> </VirtualHost> are inherited by the

virtual host.

Parameter: On | Off

v When set to On, the base server mount points are copied to the virtual server.

v When set to Off, the base server mount points are not copied to the virtual server.

JkWorkersFile:

 Module: mod_jk

Syntax: JkWorkersFile directory-filename

HTTP Server 647

Default: none

Context: server config

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule mod_jk /QSYS.LIB/QHTTPSVR.LIB/QZTCJK.SRVPGM

Example: JkWorkersFile /home/Tomcat/conf/workers.properties

The JkWorkersFile directive is used to define the name of a file that contains configuration information

(that describes how mod_jk module attaches to the ASF Tomcat servlet engine). The two interfaces, used

to support the connection between HTTP Server (powered by Apache) and ASF Tomcat, are JNI (Java

Native Interface) and sockets connections. The JNI interface is used for an in-process ASF Tomcat server.

An in-process ASF Tomcat server will startup at the same time as the HTTP Server (powered by Apache).

The sockets interface is for use with an out-of-process ASF Tomcat server. With an out-of-process ASF

Tomcat server, the server could be on the same system or on a different system.

Parameter: directory-filename

v The directory-filename parameter defines the directory path and filename for the file that

contains configuration information (that describes how mod_jk module attaches to the ASF

Tomcat servlet engine).

 There is no default; this directive must be specified or ASF Tomcat will not function. The typical file

name is workers.properties.

This directive supports both the Root and QOpenSys file systems.

Module mod_log_config for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_log_config provides for logging of the requests made to the server, using the Common

Log Format or a user-specified format. There are 3 directives that control log file creation in this module.

The TransferLog, LogFormat, and CustomLog directives are used for log file creation. The TransferLog

directive is used to create a log file. The LogFormat directive is used to set a custom format. The

CustomLog directive to define a log file and format in one go. The TransferLog and CustomLog

directives can be used multiple times in each server to cause each request to be logged to multiple files.

The other directives in this module control log file archiving. See “Log formats for HTTP Server (powered

by Apache)” on page 29 for information on the log file formats supported on HTTP Server (powered by

Apache).

Use with virtual hosts

If a “<VirtualHost>” on page 573 section does not contain any TransferLog or CustomLog directives, the

logs defined for the main server will be used. If it does contain one or more of these directives, requests

serviced by this virtual host will only be logged in the log files defined within its definition, not in any of

the main server’s log files. See the examples below.

Security considerations

648 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

See “Security tips for HTTP Server” on page 38 for details on why your security could be compromised if

the directory where log files are stored is writable by anyone other than the user that starts the server.

Directives

v “CustomLog”

v “FRCACustomLog” on page 651

v “LogFormat” on page 653

v “TransferLog” on page 654

CustomLog:

 Module: mod_log_config

Syntax: CustomLog file-or-pipe format-or-nickname [env=[!]environment-variable]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: The directive can be specified multiple times in the same configuration file. This is how one

would generate multiple log files for the same server instance. For example, if you want an access log, agent log, and

referer log, you could specify this directive three separate times with a different file and format. Log files created

with CustomLog will be created a CCSID of DefaultNetCCSID for IFS.

Example: See below.

The CustomLog directive is used to log requests to the server. A log format is specified, and the logging

can optionally be made conditional on request characteristics using environment variables.

Parameter One: file-or-pipe

v The file-or-pipe value indicates the filename to which log records should be written. This is used

exactly like the argument to TransferLog; that is, it is either a full path or relative to the current

server root. If a pipe is specified, it would be the name of a program that would receive the log

file information on standard in. A pipe is specified by using the pipe character (|) followed by

a path to the program name (no space between them). The program name can be either a path

to a QSYS program object or an IFS path to a symbolic link. The symbolic link would then link

to a QSYS program. Data written to the pipe from the server will be in the FSCCSID that is in

use by the server.

Parameter Two: format-or-nickname

v If the value is format, it specifies a format for each line of the log file. The options available for

the format are exactly the same as for the argument of the LogFormat directive. If the format

includes any spaces (which it will in almost all cases) they should be enclosed in double

quotes. If the argument is nickname, that nickname will tie back to a LogFormat directive with

the same specified nickname.

If the nickname ″DDS″ is specified, the server will create a DDS log file and each record will

contain the format described by file QHTTPSVR/QAZHBLOG. When the second argument is

″DDS″, a path name to a file in the QSYS.LIB file system must also be specified. When ″DDS″

is specified, it is not necessary to use the Logformat directive to define the format. The

nickname ″DDS″ is a special nickname that is predefined in HTTP Server.

Parameter Three: [env=[!]environment-variable]

v The optional env= clause controls whether a particular request will be logged in the specified

file or not. If the specified environment variable is set for the request (or is not set, in the case

of a ’env=!name’ clause), then the request will be logged. Environment variables can be set on

a per-request basis using the mod_setenvif and/or mod_rewrite modules.

There is no way to specify conditional logging for requests handled by Fast Response Cache

Accelerator (FRCA). That is, environment variable conditions have no affect on the selection of

HTTP Server 649

FRCA requests that are logged. If FRCA is being used and a FRCACustomLog is not

configured, all requests handled by FRCA will be logged in the CustomLog. The environment

variable conditions continue to apply to requests not served from FRCA.

 For example, if you want to record requests for all GIF images on your server in a separate log file, but

not your main log, you can use:

SetEnvIf Request_URI \.gif$ fig-image

CustomLog gif-requests.log common env-gif-image

CustomLog nongif-requests.log common env=!gif-image

Examples of CustomLog:

CustomLog with format nickname

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log common

CustomLog in QSYS with format nickname

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /QSYS.LIB/MYLIB.LIB/MYLOG.FILE common

CustomLog with explicit format string

CustomLog logs/access_log "%h %l %u %t \"%r\" %>s %b"

CustomLog with env specified

SetEnvIf Request_URI \.gif$ gif-image

CustomLog gif-requests.log common env=gif-image

CustomLog nongif-requests.log common env=!gif-image

CustomLog defining a piped log

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog |/QSYS.LIB/MYLIB.LIB/CUSTOMPIPE.PGM common

For IFS files, the user must create the directories that contain the log file and must grant the QTMHHTTP

user write access to the directory. For QSYS.LIB logs, the user must create the library that contains the

logs. The server will create the file and members in the specified library.

Note: It is recommended that HTTP Server create the QSYS.LIB log file. If the QSYS.LIB log file is

created with a record length that is too small, log information may be truncated and lost. By

default the server creates all QSYS.LIB log files with a record size of 512 or greater.

If the filename does not begin with a slash (/) then it is assumed to be relative to the ServerRoot. If

“LogCycle” on page 556 is active and if the path ends without a (/) character, then the path is considered

to be the complete log file name. In this case, the server will add an extension in the format

QCYYMMDDHH, where these variables have the following values:

v Q is a default value that indicates to the server that this is a log file.

v C is the century indicator (0 for pre-2000, 1 for post-2000).

v YY is the year indicator.

v MM is the month indicator.

v DD is the day indicator.

v HH is the hour indicator (00 = 00:00 (midnight), 23=23:00).

Note: This variable will not be generated for filesystem QDLS

For example, a path of ″/logs/errorlog″ results in a file such as ″/logs/errorlog.Q100030300″.

If “LogCycle” on page 556 is active and if the path ends with a (/) character, then the path is considered

to be the directory that will contain the log file. In this case, the server will create log files named in the

QCYYMMDDHH format. For example, a path of ″/logs/errorlog/″ results in a file such as

650 iSeries: IBM HTTP Server

″/logs/errorlog/Q100030300″. If “LogCycle” on page 556 is active and the logfile is in the QSYS

filesystem, the name must end in the file component of the IFS path. Example:

Config file directives

LogCycle Daily

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE common

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

“LogCycle” on page 556 Hourly is not valid if the logfile is in the QDLS filesystem as that filesystem only

supports 8 character file names and 3 character extensions. For QDLS, the path given on the CustomLog

directive must be a directory. For example

CustomLog /QDLS/MYPATH/LOGS/ common

If “LogCycle” on page 556 is not active, no special naming is used. The name of the log file given on the

CustomLog directive is used as given for the name of the log file. If the name is a directory, a default

name of http.log will be concatenated to the directory name to create the log file. For example:

Config file directives

LogCycle Off

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

Security: See “Security tips for HTTP Server” on page 38 for details on why your security could be

compromised if the directory where log files are stored is writable by anyone other than the

user that starts the server. If a program is used, then it will be run under the user who started

httpd. This will be root if the server was started by root (be sure that the program is secure).

FRCACustomLog:

 Module: mod_log_config

Syntax: FRCACustomLog file-or-pipe file format-or-nickname

Default: none

Context: server config

Override: none

Origin: iSeries

Usage Considerations: The directive can be specified multiple times in the same configuration file. This is how one

would generate multiple log files for the same server instance. For example, if you want an access log, agent log, and

referer log, you could specify this directive three separate times with a different file and format. Log files created

with CustomLog will be created a CCSID of DefaultNetCCSID for IFS.

Example: See below.

The FRCACustomLog directive is used to log FRCA requests to the server.

Parameter One: file-or-pipe file

v The file-or-pipe file value indicates the filename to which log records should be written. It is

either a full path or relative to the current server root. If a pipe is specified, it would be the

name of a program that would receive the log file information on standard in. A pipe is

specified by using the pipe character ″|″ followed by a path to the program name (no space

between them). The program name can be either a path to a QSYS program object or an IFS

path to a symbolic link. The symbolic link would then link to a QSYS program. Note that data

written to the pipe from the server will be in the FSCCSID that is in use by the server.

Parameter Two: format-or-nickname

HTTP Server 651

v The format-or-nickname argument specifies a format or nickname for each line of the log file .

If it is a format, it specifies a format for each line of the log file. The options available for the

format are exactly the same as for the argument of the LogFormat directive. If the format

includes any spaces (which it will in almost all cases) they should be enclosed in double

quotes. If the argument is a nickname, that nickname will tie back to a LogFormat directive

with the same specified nickname.

If the nickname ″DDS″ is specified, the server will create a DDS log file and each record will

contain the format described by file QHTTPSVR/QAZHBLOG. When the second argument is

″DDS″ a path name to a file in the QSYS.LIB file system must also be specified. When ″DDS″ is

specified, it is not necessary to use the Logformat directive to define the format. The nickname

″DDS″ is a special nickname that is pre-defined in the server. See directive Logformat for

additional considerations for the DDS nickname.

 Examples of FRCACustomLog:

FRCACustomLog with format nickname

LogFormat "%h %l %u %t \"%r\" %>s %b" common

FRCACustomLog logs/FRCAaccess_log common

FRCACustomLog in QSYS with format nickname

LogFormat "%h %l %u %t \"%r\" %>s %b" common

FRCACustomLog /QSYS.LIB/MYLIB.LIB/MYFRCALOG.FILE common

CustomLog in QSYS with DDS format

FRCACustomLog /QSYS.LIB/MYLIB.LIB/FRCADDSLOG.FILE DDS

FRCACustomLog with explicit format string

FRCACustomLog logs/FRCAaccess_log "%h %l %u %t \"%r\" %>s %b"

FRCACustomLog defining a piped log

LogFormat "%h %l %u %t \"%r\" %>s %b" common

FRCACustomLog |/QSYS.LIB/MYLIB.LIB/PIPELOG.PGM common

For IFS log files and QSYS log files, the user must create the directories that contain the log file and must

grant the QTMHHTTP user write access to the directory. For QSYS.LIB logs, the user must create the

library that contains the logs. The server will create the file and members in the specified library.

Note: It is recommended that HTTP Server create the QSYS.LIB log file. If the QSYS.LIB log file is

created with a record length that is too small, log information may be truncated and lost. By

default the server creates all QSYS.LIB log files with a record size of 512 or greater.

If the filename does not begin with a slash (/) then it is assumed to be relative to the ServerRoot. If

“LogCycle” on page 556 is active and if the path ends without a (/) character, then the path is considered

to be the complete log file name. In this case, the server will add an extension in the format

QCYYMMDDHH, where these variables have the following values:

v Q is a default value that indicates to the server that this is a log file.

v C is the century indicator (0 for pre-2000, 1 for post-2000).

v YY is the year indicator.

v MM is the month indicator.

v DD is the day indicator.

v HH is the hour indicator (00 = 00:00 (midnight), 23=23:00).

Note: this variable will not be generated for filesystem QDLS

For example, a path of ″/logs/errorlog″ results in a file such as ″/logs/errorlog.Q100030300″.

If “LogCycle” on page 556 is active and if the path ends with a (/) character, then the path is considered

to be the directory that will contain the log file. In this case, the server will create log files named in the

652 iSeries: IBM HTTP Server

QCYYMMDDHH format. For example, a path of ″/logs/errorlog/″ results in a file such as

″/logs/errorlog/Q100030300″. If “LogCycle” on page 556 is active and the logfile is in the QSYS

filesystem, the name must end in the file component of the IFS path. Example:

Config file directives

LogCycle Daily

LogFormat "%h %l %u %t \"%r\" %>s %b" common

FRCACustomLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE common

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

“LogCycle” on page 556 Hourly is not valid if the logfile is in the QDLS filesystem as that filesystem only

supports 8 character file names and 3 character extensions. Also for QDLS, the path given on the

FRCACustomLog directive must be a directory. For example:

FRCACustomLog /QDLS/MYPATH/LOGS/ common

The resulting log files would be /QDLS/MYPATH/LOGS/Qcyymmdd.

If “LogCycle” on page 556 is not active, no special naming is used. The name of the log file given on the

FRCACustomLog directive is used as given for the name of the log file. If the name is a directory, a

default name of http.log will be concatenated to the directory name to create the log file. For example:

Config file directives

LogCycle Off

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

If FRCACustomLog is in the configuration, FRCA requests will be logged to the file specified on the

FRCACustomLog directive. All non-FRCA related requests will be logged to any other custom logs

configured with the CustomLog directive. Example:

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog logs/access_log common

FRCACustomLog logs/FRCAaccess_log common

All FRCA requests will be logged to logs/FRCAaccess_log and all non-FRCA requests will be logged to

logs/access_log. If FRCACustomLog is not specified in the configuration of the server instance, ALL

requests are logged to any custom logs configured with CustomLog including FRCA requests.

LogFormat:

 Module: mod_log_config

Syntax: LogFormat format [nickname]

Default: LogFormat ″%h %l %u %t \″%r\″ %s %b″

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: The directive can be specified multiple times in the same configuration file. This is how one

would generate multiple log file formats. For example, if you want an access log, agent log, and referer log, you

could specify this directive three separate times to define the formats of your log files.

Example: LogFormat ″%h %l %u %t \″%r\″ %s %b \″%{Referer}i\″ \″%{User-agent}i\″″

The LogFormat directive sets the format of the default log file named by the TransferLog directive. See

the section on Custom Log Formats for details on the format arguments. If you include a nickname for

the format on the directive line, you can use that nickname in FRCACutomLog and CustomLog directives

rather than repeating the entire format string.

HTTP Server 653

Parameter One: format

v The format parameter sets the format of the default log file named by the TransferLog directive.

See the section on Custom Log Formats for details on the format arguments.

Parameter Two: [nickname]

v The optional nickname parameter allows you to include a nickname for the format on the

directive line.

 A LogFormat directive that defines a nickname does nothing else. That is, it only defines the nickname, it

doesn’t actually apply the format and make it the default.

If LogFormat is used without a nickname, then any TransferLog directive that does not specify a format

will use the format defined with this directive, if it happened to be the most recent LogFormat directive

in the configuration file. If another LogFormat directive (without a nickname) is placed in the

configuration file, then that format becomes the new log format to be used on subsequent TransferLog

directives.

The nickname ″DDS″ is a log format reserved for use in configuring data description specification (DDS)

log files. The server will automatically recognize this format and create a DDS log file based on

QHTTPSVR/QAZHBLOG. The ″DDS″ nickname should not be used when defining a new LogFormat. A

LogFormat directive with a nickname of ″DDS″ will be ignored by the server. The server will assume a

DDS file in QSYS.LIB when the ″DDS″ nickname appears on the CustomLog or FRCACustomLog

directives.

See “Log formats for HTTP Server (powered by Apache)” on page 29 for information on the log file

formats supported on HTTP Server (powered by Apache).

TransferLog:

 Module: mod_log_config

Syntax: TransferLog file-or-pipe

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: The directive can be specified multiple times in the same configuration file. This is how one

would generate multiple log files for the same server instance. For example, if you want an access log, agent log, and

referer log, you could specify this directive three separate times with a different file and most recent LogFormat. Log

files created with CustomLog will be created as a CCSID of DefaultNetCCSID for IFS.

Example: TransferLog logs/access_log

The TransferLog directive adds a log file in the format defined by the most recent LogFormat directive, or

Common Log Format. This is only if no other default format has been specified.

Parameter: file-or-pipe

v The file-or-pipe parameter specifies either a filename relative to the ServerRoot or a program to

pipe to. Use the pipe symbol (|) followed by a program to receive the log information in its

standard input. Data written to the pipe from the server will be in the FSCCSID that is in use

by the server. The new program will not be started for a VirtualHost if it inherits the

TransferLog from the main server.

 Examples of TransferLog:

IFS example

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

TransferLog logs/access_log

654 iSeries: IBM HTTP Server

QSYS example

LogFormat "%h %l %u %t \"%r\" %>s %b"

TransferLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

Piped log example

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

TransferLog |/QSYS.LIB/MYLIB.LIB/TRANSPIPE.PGM

For IFS files, the user must create the directories that contain the log file and must grant the QTMHHTTP

user write access to the directory. For QSYS.LIB logs, the user must create the library that contains the

logs. The server will create the file and members in the specified library. If the filename does not begin

with a slash (/) then it is assumed to be relative to the ServerRoot. If LogCycle is active and if the path

ends without a (/) character, then the path is considered to be the complete log file name. In this case,

the server will add an extension in the format QCYYMMDDHH, where these variables have the

following values:

v Q is a default value that indicates to the server that this is a log file.

v C is the century indicator (0 for pre-2000, 1 for post-2000).

v YY is the year indicator.

v MM is the month indicator.

v DD is the day indicator.

v HH is the hour indicator (00 = 00:00 (midnight), 23=23:00).

Note: this variable will not be generated for filesystem QDLS

For example, a path of ″/logs/errorlog″ results in a file such as ″/logs/errorlog.Q100030300″.

If “LogCycle” on page 556 is active and if the path ends with a (/) character, then the path is considered

to be the directory that will contain the log file. In this case, the server will create log files named in the

QCYYMMDDHH format. For example, a path of ″/logs/errorlog/″ results in a file such as

″/logs/errorlog/Q100030300″. If “LogCycle” on page 556 is active and the logfile is in the QSYS

filesystem, the name must end in the file component of the IFS path. For example:

Config file directives

LogCycle Daily

LogFormat "%h %l %u %t \"%r\" %>s %b" common

TransferLog /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE

The resulting daily log rollovers will be of the form /QSYS.LIB/MYLIB.LIB/MYLOGS.FILE/
Qcyymmddhh.MBR.

“LogCycle” on page 556 Hourly is not valid if the logfile is in the QDLS filesystem as that filesystem only

supports 8 character file names and 3 character extensions. If “LogCycle” on page 556 is not active, no

special naming is used. The name of the log file given on the TransferLog directive is used as given for

the name of the log file. If the name is a directory, a default name of http.log will be concatenated to the

directory name to create the log file. For example:

Config file directives

LogCycle Off

LogFormat "%h %l %u %t \"%r\" %>s %b" common

CustomLog /logs/path/ common

The resulting log file will be /logs/path/http.log.

Note: See “Security tips for HTTP Server” on page 38 for details on why your security could be

compromised if the directory where log files are stored is writable by anyone other than the user

that starts the server. If a program is used, then it will be run under the user who started httpd.

This will be root if the server was started by root (be sure that the program is secure).

Note: When possible, you should use “CustomLog” on page 649 in place of TransferLog.

HTTP Server 655

Module mod_log_io for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module provides the logging of input and output number of bytes received and sent per request.

The numbers reflect the actual bytes received on the network, which then takes into account the headers

and bodies of requests and responses. The counting is done before SSL/TLS on input and after SSL/TLS

on output. The numbers will correctly reflect any changes made by encryption.

This module requires Module mod_log_config, and is loaded by default. No LoadModule statement is

required.

This module adds two new logging formats. The characteristics of the request itself are logged by placing

"%" directives in the format string, which are replaced in the log file by the values as follows:

Format String Description %...I

Bytes received, including request and headers, cannot be zero (%...O). Bytes sent, including headers,

cannot be zero.

Format String Description

 String Description

%...I Bytes received, including request and headers, cannot be zero.

%...O Bytes sent, including headers, cannot be zero.

Example: Combined I/O log format

"%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\" %I %O"

Module mod_mime for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_mime associates the request filename’s extensions (for example, .html) with the file’s

behavior (handlers and filters) and content (mime-type, language, character set and encoding). This

module is used to determine various bits of ″meta information″ with files by their filename extensions.

This information relates to the content of the document to its mime-type, language, character set and

encoding. This information is sent to the browser, and participates in content negotiation. The user’s

preferences are respected when choosing one of several possible files to serve. In addition, a handler can

be set for a document that determines how the document will be processed within the server. See

“Module mod_negotiation for HTTP Server (powered by Apache)” on page 668 for more information

regarding content negotiation.

656 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The directives AddCharset, AddClient, AddEncoding, AddHandler, AddLanguage, and AddType are all

used to map file extensions onto the meta-information for that file. Respectively they set the character set,

content-encoding, handler, content-language, browser, and MIME-type (content-type) of documents.

In addition, mod_mime may define the document handler that controls which module or script will serve

the document. With the introduction of filters, mod_mime can also define the filters that the the content

should be processed through (for example, the Includes output filter for server side scripting) and what

filters the client request and POST content should be processed through (the input filters).

The directives AddHandler, AddOutputFilter, and AddInputFilter control the modules or scripts that

serve the document. The MultiviewsMatch directive allows mod_negotiation to consider these file

extensions when testing Multiviews matches.

The directive TypesConfig is used to specify a file that also maps extensions onto MIME types. Most

administrators use the provided mime.types file that associates common filename extensions with IANA

registered content types. The current list is maintained at http://www.isi.edu/in-notes/iana/

assignments/media-types/media-types

.

The core directives ForceType and SetHandler are used to associate all the files in a given container

(<location>, <directory>, or <files>) with a particular MIME-type or handler. These settings override any

filename extension mappings defined in mod_mime.

Note that changing the type or encoding of a file does not change the value of the Last-Modified header.

Therefore, previously cached copies may still be used by a client or proxy, with the previous headers. If

you change the meta-information (language, content type, character set or encoding) you may need to

update affected files (updating their last modified date) to ensure that all visitors are receiving the

corrected content headers.

Files with Multiple Extensions

Files can have more than one extension, and the order of the extensions is normally irrelevant. For

example, if the file welcome.html.fr maps onto content type text/html and then language French, the file

welcome.fr.html will map onto exactly the same information. The only exception to this is if an extension

is given which HTTP Server (powered by Apache) does not handle. In this case it will forget about any

information it obtained from extensions to the left of the unknown extension. For example, if the

extensions fr and html are mapped to the appropriate language and type, but extension xxx is not

assigned to anything, then the file welcome.fr.xxx.html will be associated with content-type text/html but

no language.

If more than one extension is given that maps onto the same type of meta-information, then the one to

the right will be used. For example, if ″.gif″ maps to the MIME-type image/gif and ″.html″ maps to the

MIME-type text/html, then the file welcome.gif.html will be associated with the MIME-type ″text/html″.

When a file with multiple extensions gets associated with both a MIME-type and a handler be careful.

This will usually result in the module associating a request with the handler. For example, if the .imap

extension is mapped to the handler ″imap-file″ (from mod_imap) and the .html extension is mapped to

the MIME-type ″text/html″, then the file world.imap.html will be associated with both the ″imap-file″

handler and ″text/html″ MIME-type. When it is processed, the imap-file handler will be used, and it will

be treated as a mod_imap imagemap file.

Directives

v “AddCharset” on page 658

v “AddClient” on page 658

v “AddEncoding” on page 659

HTTP Server 657

http://www.isi.edu/in-notes/iana/assignments/media-types/media-types
http://www.isi.edu/in-notes/iana/assignments/media-types/media-types

v “AddHandler” on page 659

v “AddInputFilter” on page 660

v “AddLanguage” on page 661

v “AddOutputFilter” on page 661

v “AddType” on page 662

v “DefaultLanguage” on page 662

v “ModMimeUsePathInfo” on page 662

v “MultiviewsMatch” on page 663

v “RemoveCharset” on page 664

v “RemoveClient” on page 664

v “RemoveEncoding” on page 665

v “RemoveHandler” on page 665

v “RemoveInputFilter” on page 666

v “RemoveLanguage” on page 666

v “RemoveOutputFilter” on page 666

v “RemoveType” on page 667

v “SuffixCaseSense” on page 667

v “TypesConfig” on page 668

AddCharset:

 Module: mod_mime

Syntax: AddCharset charset extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddCharset ISO-2022-JP .jis

The AddCharset directive maps the given filename extensions to the specified content charset. Charset is

the MIME charset parameter of filenames containing extension. This mapping is added to any already in

force, overriding any mappings that already exist for the same extension.

This directive is useful for informing the client about the character encoding of the document so it can be

interpreted and displayed appropriately. It also used for content negotiation. Content Negotiation is

where the server returns one from several documents based on the client’s charset preference.

Parameter One: charset

v The charset parameter value is any valid MIME character set.

Parameter Two: extension

v The extension parameter value is any character string that is a valid file extension.

 See “Module mod_negotiation for HTTP Server (powered by Apache)” on page 668 for more information.

AddClient:

 Module: mod_mime

Syntax: AddClient user-agent extension

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

658 iSeries: IBM HTTP Server

Origin: iSeries

Example: AddClient Mozilla/2.0 .moz

Example: AddClient IBM* .ibm

The AddClient directive binds files with a particular extension to the type and version of the browser

(user-agent) that is sending the request. This is often referred to as Automatic Browser Detection. All

HTTP requests contain a User-Agent header that identifies the client browser. Based on this User-Agent

header, the server can respond with a specific version of the resource (with the extension specified) that is

especially appropriate for the client browser.

Parameter One: user-agent

v The user-agent parameter value matched in the User-Agent header of the incoming

request. This is case-sensitive. The asterisk may be used as a wildcard character.

Parameter Two: extension

v The extension parameter value is the file extension that should be associated with the

browser. Wildcards cannot be used.

AddEncoding:

 Module: mod_mime

Syntax: AddEncoding MIME-enc extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddEncoding x-gzip gz

The AddEncoding directive maps the given filename extensions to the specified encoding type. MIME-enc

is the MIME encoding that is used for documents containing the extension. This mapping is added to any

already in force, overriding any mappings that already exist for the same extension.

Old clients expect x-gzip and x-compress, however the standard dictates that they’re equivalent to gzip

and compress respectively. HTTP Server (powered by Apache) does content encoding comparisons by

ignoring any leading x-. When responding with an encoding the HTTP Server will use whatever form

(for example., x-QIBM or QIBM) the client requested. If the client didn’t specifically request a particular

form, the server will use the form given by the AddEncoding directive. In conclusion you should always

use x-gzip and x-compress for these two specific encodings. More recent encodings, such as deflate

should be specified without the x-.

Parameter One: MIME-enc

v The MIME-enc parameter value should be set to a content-encoding supported by

HTTP/1.1. Currently, these values are ’gzip’, ’compress’ and ’deflate’.

Parameter Two: extension

v The extension parameter value is any string that is a valid file extension.

AddHandler:

 Module: mod_mime

Syntax: AddHandler handler-name extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

HTTP Server 659

Example: AddHandler cgi-script cgi

The AddHandler directive maps the filename extensions to handler handler-name. This mapping is

added to any already in force, overriding any mappings that already exist for the same extension. For

example, to activate CGI scripts with the file extension ″.cgi″, you might use:

AddHandler cgi-script cgi

 Once this has been put into your configuration file, any file containing the ″.cgi″ extension will be treated

as a CGI program.

Parameter One: handler-name

v The handler-name parameter value is the name of the handler (program) that will process

the request.

Parameter Two: extension

v The extension parameter value is any character string that is a valid file extension.

 AddHandler can also be used to configure the use of Server Side Includes. This is done with the

following directive combination:

AddType text/html .shtml

AddHandler server-parsed .shtml

 See “Handler for HTTP Server (powered by Apache)” on page 755 for more information.

AddInputFilter:

 Module: mod_mime

Syntax: AddInputFilter filter extension [extension ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: AddInputFilter gzip .zip

The AddInputFilter directive maps the filename extensions extension to the filters that will process client

requests and POST input (when they are received by the server). This is in addition to any filters defined

elsewhere, including the SetInputFilter directive. This mapping is merged over any already in force,

overriding any mappings that already exist for the same extension.

If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension can

be specified with or without a leading dot.

Parameter One: filter

v The filter parameter value is the process that is applied to data that is sent or received by

the server.

Parameter Two: extension

v The extension parameter value is any character string that is a valid file extension.

Example

<Directory/www/data/>

AddInputFilter gzip Zip

</Directory>

 See the Apache Software Foundation filter documentation

for more information.

660 iSeries: IBM HTTP Server

http://httpd.apache.org/docs-2.0/filter.html

AddLanguage:

 Module: mod_mime

Syntax: AddLanguage MIME-lang extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddLanguage Fr Fr

The AddLanguage directive maps the given filename extensions to the specified content language.

MIME-lang is the MIME language of filenames containing extension. This mapping is added to any

already in force, overriding any mappings that already exist for the same extension.

Even though the content language is reported to the client, the browser is unlikely to use this

information. The AddLanguage directive is more useful for content negotiation, where the server returns

one from several documents based on the client’s language preference.

If multiple language assignments are made for the same extension, the last one encountered is the one

that is used.

Parameter One: MIME-lang

v The MIME-lang parameter value is any valid MIME-language designation.

Parameter Two: value

v The extension parameter value is any character string that is a valid file extension.

 See “Module mod_negotiation for HTTP Server (powered by Apache)” on page 668 for more information.

AddOutputFilter:

 Module: mod_mime

Syntax: AddOutputFilter filter extension [extension ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: AddOutputFilter INCLUDES shtml

The AddOutputFilter directive maps the filename extensions extension to the filters that process

responses from the server (before they are sent to the client). This is in addition to any filters defined

elsewhere, including the SetOutputFilter directive. This mapping is merged over any already in force,

overriding any mappings that already exist for the same extension.

For example, the following configuration will process all .shtml files for server-side includes.

AddOutputFilter INCLUDES shtml

 If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension can

be specified with or without a leading dot.

Parameter One: filter

v The filter parameter value is the process that is applied to data that is sent or received by

the server.

Parameter Two: extension

v The extension parameter value is any character string that is a valid file extension.

HTTP Server 661

See the Apache Software Foundation filter documentation

for more information.

AddType:

 Module: mod_mime

Syntax: AddType MIME-type extension [extension...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: AddType image/gif GIF

The AddType directive maps the given filename extensions onto the specified content type. MIME-type is

the MIME type to use for filenames containing extension. This mapping is added to any already in force,

overriding any mappings that already exist for the same extension. This directive can be used to add

mappings not listed in the MIME types file. It is recommended that new MIME types be added using the

AddType directive rather than changing the TypesConfig file.

Parameter One: MIME-type

v The MIME-type parameter value is any valid MIME-type.

Parameter Two: extension

v The extension parameter value is any character string that is a valid file extension.

DefaultLanguage:

 Module: mod_mime

Syntax: DefaultLanguage MIME-lang

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: DefaultLanguage en-US

The DefaultLanguage directive tells HTTP Server that all files in the directive’s scope (for example, all

files covered by the current <Directory> container) that don’t have an explicit language extension

configured by AddLanguage should be considered to be in the specified MIME-lang language. This

allows entire directories to be marked as containing Dutch content, for instance, without having to

rename each file. Note that unlike using extensions to specify languages, DefaultLanguage can only

specify a single language.

If no DefaultLanguage directive is in force, and a file does not have any language extensions configured

by AddLanguage, then that file will be considered to have no language attribute.

Parameter: MIME-lang

v The MIME-langparameter value is any valid MIME-language designation.

 See “Module mod_negotiation for HTTP Server (powered by Apache)” on page 668 for more information.

ModMimeUsePathInfo:

 Module: mod_mime

Syntax: ModMimeUsePathInfo on | off

Default: ModMimeUsePathInfo off

Context: directory

662 iSeries: IBM HTTP Server

http://httpd.apache.org/docs-2.0/filter.html

Override: none

Origin: Apache

Example: ModMimeUsePathInfo on

The ModMimeUsePathInfo directive is used to combine the filename with the path_info URL component

to apply mod_mime’s directives to the request. The default value is off, meaning the path_info

component is ignored. This directive is recommended when you have a virtual filesystem.

For example, if ModMimeUsePathInfo is set to on, then a request for /bar/file.shtml where /bar is a

Location, mod_mime will treat the incoming request as /bar/file.shtml and directives like

AddOutputFilter INCLUDES .shtml will add the INCLUDES filter to the request. If

ModMimeUsePathInfo is not set, the INCLUDES filter will not be added.

Parameter: on | off

v The on parameter value specifies that filenames will be combines with path_info URL

components.

v The off parameter value specifies that the path_info component is ignored.

Example

ModMimeUsePathInfo on

If you have a request for /myfile/more.shtml where myfile is an existing file containing SSI,

and AcceptPathInfo is set on in order to accept the actual file ″myfile″ as the requested file,

and ModMimeUsePathInfo is on, mod_mime will treat the incoming request as SSI and

directives like AddOutputFilter INCLUDES .shtml will add the INCLUDES filter to the

request. If ModMimeUsePathInfo is not set, the INCLUDES filter will not be added. When

ModMimeUsePathInfo is set, the trailing path name can be used to determine the content

type of the existing file.

MultiviewsMatch:

 Module: mod_mime

Syntax: MultiviewsMatch NegotiatedOnly | Handlers | Filters | Any

Default: MultiviewsMatch NegotiatedOnly

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: MultiviewsMatch Handlers

Example: MultiviewsMatch Handlers Filters

The MultiviewsMatch directive permits three different behaviors for mod_negotiation’s Multiviews

feature. Multiviews allows a request for a file (index.html for example) to match any negotiated

extensions following the base request (for example, index.html.en, index.html.fr, or index.html.gz).

Parameter: NegotiatedOnly | Handlers | Filters | Any

v The NegotiatedOnly parameter value specifies that every extension following the base

name must correlate to a recognized mod_mime extension for content negotiation (for

example, Charset, Content-Type, Language, or Encoding). This is the strictest

implementation with the fewest unexpected side effects, and is the default behavior.

v The Handlers and Filters parameter value set the MultiviewsMatch directive to either

Handlers, Filters, or both option keywords. If all other factors are equal, the smallest file

will be served (for example, in deciding between index.html.cgi of 500 characters and

index.html.pl of 1000 bytes, the .cgi file would be served). Users of .asis files might prefer

to use the Handler option, if .asis files are associated with the asis-handler.

HTTP Server 663

v The Any parameter value specifies that any extensions to match, even if mod_mime

doesn’t recognize the extension. This was the behavior in Apache 1.3, and can cause

unpredictable results, such as serving .old or .bak files the webmaster never expected to

be served.

RemoveCharset:

 Module: mod_mime

Syntax: RemoveCharset extension [extension...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: RemoveCharset .ext

The RemoveCharset directive removes any character set associations for files with the given extensions.

This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or

the server configuration files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The

extension can be specified with or without a leading dot.

RemoveClient:

 Module: mod_mime

Syntax: RemoveClient extension [extension...]

Default: none

Context: directory, .htaccess

Override: none

Origin: iSeries

Example: RemoveClient .moz

The RemoveClient directive removes any client (browser) associations for files with the given extensions.

This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or

the server config files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Example

/work/.htaccess:

RemoveClient .moz

 If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension can

be specified with or without a leading dot. This removes any special handling of .moz files in the /work/

directory (and any subdirectories), thereby disabling automatic browser detection for files in this

directory. The extension argument is case-insensitive, and can be specified with or without a leading dot.

Note: RemoveClient directives are processed after any “AddClient” on page 658 directives, so it is

possible they may undo the effects of the latter if both occur within the same directory

configuration.

664 iSeries: IBM HTTP Server

RemoveEncoding:

 Module: mod_mime

Syntax: RemoveEncoding extension [extension...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: RemoveEncoding .gz

The RemoveEncoding directive removes any encoding associations for files with the given extensions.

This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or

the server config files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Example

/work/.htaccess:

AddEncoding x-gzip .gz

AddType text/plain .asc

<Files *.gz.asc>

 RemoveEncoding .gz

</Files>

The example will cause work.gz to be marked as encoded with the gzip method, but cause

work.gz.asc to be marked as an unencoded plaintext file.

Note: RemoveEncoding directives are processed after any AddEncoding directives, so it is possible they

may undo the effects of the latter if both occur within the same directory configuration. If

SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The extension

can be specified with or without a leading dot.

RemoveHandler:

 Module: mod_mime

Syntax: RemoveHandler extension [extension...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Usage Considerations: RemoveHandler .html

Example: example

The RemoveHandler directive removes any handler associations for files with the given extensions. This

allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the

server config files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Example

/QIBM/.htaccess: AddHandler server-parsed .html

/QIBM/bar/.htaccess: RemoveHandler .html

The example has the effect of returning .html files in the /QIBM/bar directory to being

treated as normal files, rather than as candidates for parsing.

HTTP Server 665

RemoveInputFilter:

 Module: mod_mime

Syntax: RemoveInputFilter extension [extension ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: RemoveInputFilter .ext

The RemoveInputFilter directive removes any input filter associations for files with the given extensions.

This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or

the server configuration files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The

extension can be specified with or without a leading dot.

RemoveLanguage:

 Module: mod_mime

Syntax: RemoveLanguage extension [extension ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: RemoveLanguage Fr

The RemoveLanguage directive removes any language associations for files with the given extensions.

This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or

the server configuration files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The

extension can be specified with or without a leading dot.

RemoveOutputFilter:

 Module: mod_mime

Syntax: RemoveOutputFilter extension [extension ...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: RemoveOutputFilter .ext

The RemoveOutputFilter directive removes any output filter associations for files with the given

extensions. This allows .htaccess files in subdirectories to undo any associations inherited from parent

directories or the server configuration files.

Parameter: extension

666 iSeries: IBM HTTP Server

v The extension parameter value is any character string that is a valid file extension.

Note: If SuffixCaseSense is on (default is off), then the extension argument is case-insensitive. The

extension can be specified with or without a leading dot.

RemoveType:

 Module: mod_mime

Syntax: RemoveType extension [extension...]

Default: none

Context: directory, .htaccess

Override: none

Origin: Apache

Example: RemoveType .cgi

The RemoveType directive removes any MIME type associations for files with the given extensions. This

allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the

server config files.

Parameter: extension

v The extension parameter value is any character string that is a valid file extension.

Example

/work/.htaccess:

RemoveType .cgi

The example removes any special handling of .cgi files in the /work/ directory (and any

beneath it), causing the files to be treated as the default type.

Note: RemoveType directives are processed after any AddType directives, so it is possible they may undo

the effects of the latter if both occur within the same directory configuration. If SuffixCaseSense is

on (default is off), then the extension argument is case-insensitive. The extension can be specified

with or without a leading dot.

SuffixCaseSense:

 Module: mod_mime

Syntax: SuffixCaseSense on | off

Default: SuffixCaseSense off

Context: server config

Override: none

Origin: iSeries

Example: SuffixCaseSense on

The SuffixCaseSense directive is used to specify whether the server should distinguish between uppercase

and lowercase characters when it has to compare file extensions to the extension patterns on the

following directives:

v AddType

v AddClient

v AddEncoding

v AddLanguage

v AddCharset

v AddHandler

v AddInputFilter

HTTP Server 667

v AddOutputFilter

v RemoveType

v RemoveClient

v RemoveEncoding

v RemoveLanguage

v RemoveCharset

v RemoveHandler

v RemoveInputFilter

v RemoveOutputFilter

By default, the iSeries will not be sensitive to the case of the extensions.

Parameter: on | off

v The on parameter value specifies the server will be sensitive to the case of file extensions.

v The off parameter value specifies the server will not be sensitive to the case of file

extensions.

TypesConfig:

 Module: mod_mime

Syntax: TypesConfig filename

Default: TypesConfig /QIBM/UserData/HTTPA/conf/mime.types

Context: server config

Override: none

Origin: Apache

Example: TypesConfig /conf/mime2.types

The TypesConfig directive sets the location of the MIME types configuration file. Filename is relative to

the ServerRoot. This file sets the default list of mappings from filename extensions to content types;

changing this file is not recommended. Use the AddType directive instead. The file contains lines in the

format of the arguments to an AddType command:

MIME-type extension [extension ...]

 Blank lines, and lines beginning with a hash character (#) are ignored.

Parameter: filename

v The filename parameter value is a filename where the MIME-type file can be located. This

filename must be relative to the “ServerRoot” on page 567. This restricts the file to the IFS

file system.

Module mod_negotiation for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

Content negotiation is the selection of the document that best matches the clients capabilities from one of

several available documents. There are two implementations of content negotiation:

v A type-map (a file with the handler type-map) which explicitly lists the files containing the variants.

668 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v A MultiViews search (enabled by the MultiViews “Options” on page 561) where the server does an

implicit filename pattern match and makes a choice from the results.

See “Content negotiation for HTTP Server (powered by Apache)” on page 11 for more information.

Type maps

A type map has the same format as RFC822 mail headers. It contains document descriptions separated by

blank lines, with lines beginning with a pound sign (’#’) are treated as comments. A document

description consists of several header records. Records may be continued on multiple lines if the

continuation lines start with spaces. The leading space will be deleted and the lines concatenated. A

header record consists of a keyword name, which always ends in a colon, followed by a value.

Whitespace is allowed between the header name and value, and between the tokens of value. The

headers allowed are:

 Header Description

Content-Encoding The encoding of the file. The server only recognizes

encoding that is defined by an AddEncoding directive.

This normally includes the encoding x-compress for

compress’ed files, and x-gzip for gzip’ed files. The x-

prefix is ignored for encoding comparisons.

Content-Language The language of the variant, as an Internet standard

language tag (RFC 1766). An example is en, meaning

English.

Content-Length The length of the file, in bytes. If this header is not

present, then the actual length of the file is used.

Content-Type The MIME media type of the document, with optional

parameters. Parameters are separated from the media

type and from one another by a semicolon, with a syntax

of name=value. Common parameters include:

Parameter One: level

v The level parameter is an integer specifying

the version of the media type. For text/html,

this defaults to ’2’, otherwise ’0’.

Parameter Two: qs

v The qs parameter is a floating-point number

with a value in the range of ’0.0’ to ’1.0’,

indicating the relative quality of this variant

compared to the other available variants,

independent of the client’s capabilities. For

example, a ’.jpeg’ file is usually of higher

source quality than an ’.ascii’ file it is

attempting to represent a photograph.

However, if the resource being represents is

ASCII art, then an ASCII file would have a

higher source quality than a ’.jpeg’ file. All Qs

values therefore specific to a given source. For

example:

Content-Type: image/jpeg; Qs=0.8

URL The path to the file containing this variant, relative to the

map file.

MultiViews

HTTP Server 669

A MultiViews search is enabled by the MultiViews Option. If the server receives a request for

/some/dir/QIBM and /some/dir/QIBM does not exist, then the server reads the directory looking for

all files named QIBM.* , and effectively makes up a type map which names all those files, assigning them

the same media types and content-encodings it would have if the client had asked for one of them by

name. It then chooses the best match to the client’s requirements, and returns that document.

Directives

v “CacheNegotiatedDocs”

v “ForceLanguagePriority”

v “LanguagePriority” on page 671

CacheNegotiatedDocs:

 Module: mod_negotiation

Syntax: CacheNegotiatedDocs on | off

Default: CacheNegotiatedDocs off

Context: server config, virtual host

Override: none

Origin: Apache

Example: CacheNegotiatedDocs on

The CacheNegotiatedDocs directive allows content-negotiated documents requested using HTTP/1.0 to

be cached by proxy servers.

Parameter: on | off

v Setting this directive to on could mean that clients behind proxies may retrieve versions of the

documents that are not the best match for their abilities. The purpose of this directive is to

make cache more efficient. This directive only applies to requests which come from HTTP/1.0

browsers. HTTP/1.1 provides much better control over the caching of negotiated documents,

and this directive has no effect in responses to HTTP/1.1 requests.

ForceLanguagePriority:

 Module: mod_negotiation

Syntax: ForceLanguagePriority None | Prefer | Fallback [Prefer | Fallback]

Default: ForceLanguagePriority None

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: See below.

The ForceLanguagePriority directive uses the given LanguagePriority to satisfy negotiation where the

server could otherwise not return a single matching document.

Parameter: None | Prefer | Fallback

v The Prefer parameter uses LanguagePriority to serve one valid result, rather than returning an

HTTP result 300 (MULTIPLE CHOICES) when there are several equally valid choices. If the

directives below were given, and the user’s Accept-Language header assigned en and de each

as quality .500 (equally acceptable) then the first matching variant (en) will be served.

LanguagePriority en Fr de

ForceLanguagePriority Prefer

v The Fallback parameter uses LanguagePriority to serve a valid result, rather than returning an

HTTP result 406 (NOT ACCEPTABLE). If the directives below were given, and the user’s

670 iSeries: IBM HTTP Server

Accept-Language only permitted an en language response, but such a variant isn’t found, then

the first variant from the LanguagePriority list is served.

LanguagePriority en Fr de

ForceLanguagePriority Fallback

 Both options, Prefer and Fallback, may be specified, so either the first matching variant from

LanguagePriority will be served if more that one variant is acceptable, or the first available document

will be served if none of the variants match the client’s acceptable list of languages.

Note: When specifying both Prefer and Fallback options, the behavior is the same regardless of the order

in which they are specified.

See DefaultLanguage, AddLanguage and “LanguagePriority”for more information.

LanguagePriority:

 Module: mod_negotiation

Syntax: LanguagePriority MIME-lang [MIME-lang...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: LanguagePriority en Fr de

The LanguagePriority directive sets the precedence of language variants for the case where the client does

not express a preference when handling a MultiViews request. The list of MIME-lang are in order of

decreasing preference.

Parameter: MIME-lang

v The MIME-lang parameter is any Internet standard language tag or MIME language

designation.

 This directive may be configured multiple times in a container. The directives are processed from the first

to the last occurrence.

Note: This directive only has an effect if a best language cannot be determined by any other means. If

the client expresses a language preference, this directive has no effect on the file selected during

content negotiation.

Module mod_proxy for HTTP Server (powered by Apache)

This module contains directives that define support for the HTTP Proxy function.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Directives for forward proxy function are as follows:

 Required: ProxyRequests

 Optional: AllowCONNECT, ProxyBlock, ProxyDomain, ProxyReceiveBufferSize, ProxyVia

Directives for reverse proxy function are as follows:

 Required: ProxyPass

 Optional: ProxyBlock, ProxyPassReverse, ProxyReceiveBufferSize, ProxyVia

HTTP Server 671

rzaiemod_mime.htm#defaultlanguage
rzaiemod_mime.htm#addlanguage
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Directives for proxy chaining function are as follows:

 Required: ProxyRemote

 Optional: NoProxy, (see forward or reverse proxy, above, for additional directives).

For a detailed description of these proxy functions and how they may be used, see “Proxy server types

and uses for HTTP Server (powered by Apache)” on page 31.

Note: The mod_proxy directives require the following LoadModules in HTTP Server configuration file:

 LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Directives

v “AllowCONNECT”

v “NoProxy” on page 673

v “<Proxy>” on page 674

v “ProxyBadHeader” on page 676

v “ProxyBlock” on page 676

v “ProxyCacheOnly” on page 677

v “ProxyDomain” on page 678

v “ProxyErrorOverride” on page 679

v “<PorxyMatch>” on page 680

v “ProxyMaxForwards” on page 681

v “ProxyNoCache” on page 683

v “ProxyNoConnect” on page 684

v “ProxyPass” on page 685

v “ProxyPassReverse” on page 687

v “ProxyPreserveHost” on page 688

v “ProxyReceiveBufferSize” on page 689

v “ProxyRemote” on page 690

v “ProxyRequests” on page 691

v “ProxyReverse” on page 692

v “ProxyTimeout” on page 692

v “ProxyVia” on page 693

AllowCONNECT:

 Module: mod_proxy

Syntax: AllowCONNECT port_list

Default: AllowCONNECT 443 563

Context: server config, virtual host

Override: none

Origin: Apache

672 iSeries: IBM HTTP Server

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

 LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

 LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: AllowCONNECT 443 563 1070 8088

The AllowCONNECT directive specifies a list of port numbers the server allows clients to specify when

using the CONNECT method. Clients use the CONNECT method when HTTPS connections are

requested and proxy tunneling over HTTP is in effect. By default, only the default HTTPS port (443) and

the default SNEWS port (563) are enabled. Use this directive to override the default and only allow

connections that use one of the listed ports.

Parameter: port_list

v The port_list parameter can consist of a string of port numbers separated by spaces (see

example).

Example

AllowCONNECT 443 563 1070 8088

 ProxyBlock may be used to block incoming requests prior to this directive’s consideration.

 Setting ProxyRequests to off negates this directive.

This directive may be configured multiple times in a container. The directives are processed from

the first to the last occurrence.

NoProxy:

 Module: mod_proxy

Syntax: NoProxy domain | subnet | ipaddr | hostname [domain | subnet | ipaddr | hostname ...]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: NoProxy .mycompany.com 192.168.112.0/21

The NoProxy directive specifies a list of domains, subnets, IP addresses, and/or hosts (in any

combination) separated by spaces. Multiple NoProxy directives are allowed. Items in each list are used to

match requests for which the server should attempt to handle directly rather than going through a

remote proxy server (specified using the ProxyRemote directive). When a client sends a request that

matches one or more listed items, the server attempts to connect directly to the server specified in the

URL rather than to a remote proxy (specified by ProxyRemote) to chain the request.

Parameter: domain | subnet | ipaddr | hostname

v A domain is a partially qualified DNS domain name, preceded by a period. It represents a

group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes

of the hostnames are all ending in Domain).

v A subnet is a partially qualified Internet address in a numeric (dotted quad) form,

optionally followed by a slash (/) and the netmask, specified as the number of significant

HTTP Server 673

bits in the subnet. It is used to represent a subnet of hosts that can be reached over a

common network interface. In the absence of the explicit netmask it is assumed that

omitted (or zero valued) trailing digits specify the mask. In this case, the netmask can

only be multiples of ’8 bits’ wide. For example, the subnet ’192.168.0.0’ with an implied

netmask of ’16’ valid bits (sometimes used in the netmask form 255.255.0.0.).

v An ipaddr represents a fully qualified Internet address in numeric (dotted quad) form.

Usually this address represents a host, but there need not necessarily be a DNS domain

name connected with the address. For example: 192.168.123.7

v A hostname is a fully qualified DNS domain name that can be resolved to one or more IP

addresses via the DNS domain name service. It represents a logical host (in contrast to

domain, see above) and must be resolvable to at least one ipaddr (or often to a list of

hosts with different IP addresses).

Example

ProxyRemote * http://firewall.mycompany.com:81

NoProxy .mycompany.com 192.168.112.0/21

v ProxyBlock may be used to block incoming requests prior to consideration for this directive.

v This directive is commonly used in conjunction with the ProxyRemote and ProxyDomain directives for

directing proxy requests within intranets.

v Setting ProxyNoConnect to on negates this directive.

This directive may be configured multiple times in a container. The directives are processed from the first

to the last occurrence.

Note: Hostname and domain name comparisons are done without regard to the case, and are always

assumed to be anchored in the root of the DNS tree.

<Proxy>:

 Module: mod_proxy

Syntax: <Proxy criteria> ... </Proxy>

Default: none

Context: server config, virtual host, Not in Limit

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: Forward proxy

<Proxy http://www.ibm.com/>

 Allow from All

 Order Allow,Deny

</Proxy>

Example: Reverse proxy

<Proxy /docs/>

 Allow from All

 Order Allow,Deny

</Proxy>

The <Proxy> and </Proxy> directives are used to enclose (or contain) a group of directives that apply

only to proxy requests that match the specified criteria. Multiple proxy containers are allowed, however

they may not be nested. Requests that do not match container criteria are outside the context of the

674 iSeries: IBM HTTP Server

enclosed directives. Any directive allowed within a directory context is also allowed within a proxy

context (see <Directory> for details on directory containers).

Parameter: criteria

v The criteria parameter accepts a partial URL or virtual directory path used to identify

requests to which the enclosed directives apply. Partial URLs are used to identify both

forward and reverse proxy requests. A match is considered by comparing request URL

strings to the specified criteria string, starting with the first character. A match is made if

the two strings are identical, up to the length of the criteria string.

Refer to <ProxyMatch> for details regarding the use of regular expression criteria for

proxy containers.

Directives within proxy containers apply only to matched requests handled by the proxy

function (including both forward and reverse proxy). Requests not handled by the proxy

function are not affected by directives within proxy containers.

Example One

<Proxy /user/local/httpd/htdocs>

 Allow from All

 Order Allow,Deny

</Proxy>

Note: Previously, directory containers were used to enclose groups of directives that applied

to proxy requests by appending the prefix ″proxy:″ to the beginning of the directory

name criteria specified for <Directory> or <DirectoryMatch> directives. This is no

longer supported. The proxy function now ignores directives enclosed in <Directory>

(or <File>) containers.

Directives within <Location> containers (if matched) take precedence over directives within

<Proxy> containers. See <Location> or <LocationMatch> for more information on

<Location> containers.

 When request URLs match criteria strings of multiple proxy containers, directives within all

matched containers are combined and applied. <Proxy> sections are processed in the order

they appear in the configuration file. The following is an example of how directives are

combined and applied according to order.

Example Two: Forward Proxy

ProxyRequest on

<Proxy http://>

 Deny from All

 ServerSignature on

</Proxy>

<Proxy http"//www.ibm.com/>

 Allow from All

</Proxy>

For this example, a request for http://www.ibm.com/docs/whitepaper.pdf matches criteria

specified for both proxy containers, therefore the server applies the directives within both

containers. Since the criteria specified for the second container (<Proxy http://
www.ibm.com/>) is more specific (a better match) than the criteria specified for the first

container (<Proxy http://>) directives enclosed within the second container take precedence.

The request is therefore allowed since the second container has an ″Allow from All″

directive. The ServerSignature directive would be applied to this request as well (if needed).

A request for http://web.samples.org/welcome.htm, however, only matches the criteria for

the first container, and is therefore denied since this container has a ″Deny from All″

directive.

HTTP Server 675

If request URLs match criteria strings for one or more <Proxy> directives as well as regular

expression criteria for one or more <ProxyMatch> directives, the server applies matched

<Proxy> and <ProxyMatch> container directives in the order they appear in the

configuration file.

Example:

ProxyRequest on

<Proxy http://www.ibm.com/>

 Allow from All

</Proxy>

<ProxyMatch ^(.*)>

 Deny from All

</ProxyMatch>

A request for http://www.ibm.com/welcome.html matches criteria specified for both proxy

containers, therefore the server applies the directives within both containers. Directives for

the <Proxy> container are applied first, then directives for the <ProxyMatch> container. Due

to the order that directives are applied, the request is denied since the ″Deny from All″

directive (from the <ProxyMatch> container) is applied last, eveh though the <Proxy>

container is a more exact match.

Note: Setting ProxyRequests to off does not negate this directive. It is available regardless of the forward

proxy state.

ProxyBadHeader:

 Module: mod_proxy

Syntax: ProxyBadHeader IsError | Ignore | StartBody

Default: ProxyBadHeader IsError

Context: server, virtual host

Override: none

Origin: Apache

Example: ProxyBadHeader Ignore

This directive tells the server how to handle a bad header line in a response. The value ignore means the

proxy ignores the bad header and continues. The value IsError means that the proxy fails out on the

request. The value StartBody means that proxy (if it has seen other headers before this bad one) starts

sending the rest of the headers as body and hopes that the server can handle it.

ProxyBlock:

 Module: mod_proxy

Syntax: ProxyBlock word | host | domain [word | host | domain ...]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyBlock somecompany.com www-1.ibm.com www-2.ibm.com

The ProxyBlock directive specifies a list of words, hosts, and/or domains (in any combination), separated

by spaces. Multiple ProxyBlock directives are allowed. Requests to sites whose URLs contain matched

676 iSeries: IBM HTTP Server

words, hosts, or domains are blocked by the server. At startup the server attempts to determine list item

IP addresses, that may be host names, and records them for a match test.

Parameter: word | host | domain

v A word can be any keyword (for example, ProxyBlock hello server good-bye).

v A host is a fully qualified DNS domain name that can be resolved to one or more IP

addresses via the DNS domain name service. It represents a logical host (in contrast to

domain, see below) and must be resolvable to at least one IP address (or often to a list of

hosts with different IP addresses), otherwise it is simply treated as a word (see above).

v A domain is a partially qualified DNS domain name, preceded by a period. It represents a

group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes

of the hostnames are all ending in Domain).

Example

ProxyBlock ibm.com www-1.ibm.com www-2.ibm.com server hello

The ’www-2.ibm.com’ would also be matched if referenced by IP address since the server

records addresses at startup for a match test. Note that either ’ibm.com’ or ’ibm’ is sufficient

to match both ’www-1.ibm.com’ and ’www-2.ibm.com’ by word. However, their

corresponding IP addresses would not be blocked since the server could not determine their

addresses without having their hostnames specifically listed.

Note: " ProxyBlock *" effectively blocks requests to all sites and therefore should be avoided.

ProxyCacheOnly:

 Module: mod_proxy

Syntax: ProxyCacheOnly word | host | domain [word | host | domain ...]

Default: none (meaning cache all documents satisfying other caching directives)

Context: server config, virtual host

Override: none (meaning cache all documents satisfying other caching directives)

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyCacheOnly ibm.com www-1.ibm.com www-2.ibm.com

The ProxyCacheOnly directive specifies a list of words, hosts, and domains (in any combination),

separated by spaces. Multiple ProxyCacheOnly directives are allowed. Listed items are used to match

requests for which the server should cache documents if caching is enabled. The server may then serve

cached documents for subsequent requests. The server will also attempt to determine list item IP

addresses and records them for a match test.

f this directive is absent, all documents satisfying all other caching directives (for example,

ProxyNoCache, CacheMaxFileSize, CacheMinFileSize, etc.) are cached. If this directive is present, only

documents from matched words, hosts, or domains are cached (as long as they also satisfy all other

caching directives).

Parameter: word | host | domain

v A word can be any keyword (for example, ProxyCacheOnly hello server good-bye).

v A host is a fully qualified DNS domain name that can be resolved to one or more IP

addresses via the DNS domain name service. It represents a logical host (in contrast to

HTTP Server 677

domain, see below) and must be resolvable to at least one IP address (or often to a list of

hosts with different IP addresses), otherwise it is simply treated as a word (see above).

v A domain is a partially qualified DNS domain name, preceded by a period. It represents a

group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes

of the hostnames are all ending in Domain).

Example

ProxyCacheOnly ibm.com www-1.ibm.com sample.server.edu

For this example, ’sample.server.edu’ would also be matched if referenced by IP address

since the server records addresses at startup for a match test. Note that ’sample’, ’server’,

’edu’, ’sample.server’, or ’server.edu’ is sufficient to match ’sample.server.edu’ by word,

however documents for requests using IP addresses corresponding to ’sample.server.edu’

would not be cached since the server could not determine the addresses unless the

hostname is specifically listed.
v CacheMinFileSize, CacheMaxFileSize, and CacheTimeMargin may make documents ineligible for cache

prior to consideration for this directive.

v ProxyNoCache provides counter function. Documents matching a previous ProxyNoCache template in

the configuration will not be cached, regardless of whether they match a subsequent ProxyCacheOnly

template. In other words, a ProxyNoCache directive may override a ProxyCacheOnly directive if

configured prior to the ProxyCacheOnly directive.

v This directive is used only if CacheRoot is set.

v Setting ProxyNoConnect to off negates this directive.

Note: "ProxyCacheOnly *" enables caching for all documents if not preceded and matched by a

ProxyNoCache directive.

ProxyDomain:

 Module: mod_proxy

Syntax: ProxyDomain domain

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyDomain .mycompany.com

The ProxyDomain directive specifies the default domain to which the server belongs when acting as a

forward proxy server. If a request specifies a host without a domain name, the server sends a response

that redirects the client to the host with the configured domain appended. Possible values include all

domain names starting with a dot (or period) and consisting only of the characters AZ, AZ, ’.’ (dot), ’-’

(dash), and 0-9.

Parameter: domain

v The domain is a partially qualified DNS domain name, preceded by a period. It represents

a group of hosts that logically belong to the same DNS domain or zone (that is, the

suffixes of the hostnames are all ending in Domain).

678 iSeries: IBM HTTP Server

Example

ProxyRemote * http://firewall.mycompany.com:81

NoProxy .mycompany.com 192.168.112.0/21

ProxyDomain .mycompany.com

For this example, if an unqualified request for http://myserver/ comes in, the server will

redirect the client to a fully qualified host name using the default domain. That is, the client

will be redirected to http://myserver.mycompany.com/.
v ProxyBlock may be used to block incoming requests prior to consideration for this directive.

v This directive is commonly used in conjunction with the NoProxy and ProxyRemote directives for

directing proxy requests within intranets.

v Setting ProxyRequests to off negates this directive

ProxyErrorOverride:

 Module: mod_proxy

Syntax: ProxyErrorOverride on | off

Default: ProxyErrorOverride off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyErrorOverride on

The ProxyErrorOverride directive specifies if the server is to override error response codes and message

text sent by remote servers to enable local error messaging for remote server problems. If disabled (the

default), all responses sent by remote servers (including errors) are relayed to clients (local error

messaging is not used). If enabled, server related error codes and messages sent by remote servers (codes

greater than or equal to 400) are overridden and local error messaging is used to send responses that

pertain to the local server, rather than the remote server. Non-server related error codes (codes less than

400) are not affected by this directive and are always relayed to clients.

Parameter: on | off

v If off, is specified (the default), all response codes and messages sent by remote servers are

relayed to clients (unaltered).

v If on is specified, error response codes and messages sent by remote servers relating to

server problems are overridden and local error messaging is used to send responses to

clients.

By default, local error messaging will send hardcoded messages to clients. However, it may

be configured to send custom web pages as well, or to redirect certain errors to local CGI

programs (or servlets) or remote servers to handle. When ProxyErrorOverride is used in

conjunction with ErrorDocument support, custom responses may be sent to clients when

proxy requests fail due to remote server problems. This is useful for reverse proxy setups

where remote server problems need to be concealed from clients or when web sites must

have a common error reporting appearance. It may be used, however, for any proxy setup

where remote server errors need to be handled in a certain (customized) manner.

 For example, suppose the local server has address http://www.ibm.com/ and the following

directives are setup for reverse proxy:

HTTP Server 679

ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

ProxyErrorOverride on

ErrorDocument proxyrmterror /cgi-bin/proxyerr.pgm

Now further suppose the local server was sent the request http://www.ibm.com/docs/
whitepaper.html. The ProxyPass directive will cause the request to be internally converted

into a request for http://pubserver.ibm.com/public/documentation/whitepaper.html. The

proxy function will then be invoked to retrieve /public/documentation/whitepaper.html

from pubserver.ibm.com. The remote server (pubserver.ibm.com) then has an error that

causes it to return response code 500 (internal error) to the local server (www.ibm.com).

Since ProxyErrorOverride is enabled, the local server overrides the response code (along

with any message text) and enables local error messaging to handle the response.

Furthermore, since ErrorDocument is setup for such a response (proxyrmterror), the error is

passed to the cgi program /cgi-bin/proxyerr.pgm which handles the problem by sending a

customized error page to the client.

 In this example of a reverse proxy request process, internal server errors from a remote

server (pubserver.ibm.com) are concealed from the client since local error messaging is

enabled for proxy requests on www.ibm.com. Similar handling may be setup for forward

proxy scenarios as well.
v If custom error messages are not defined (not enabled via ErrorDocument), local error messaging may

still be used to send hardcoded messages pertaining to the local server.

v Setting ProxyRequests to off does not negate this directive. It is available regardless of the forward

proxy state.

<PorxyMatch>:

 Module: mod_proxy

Syntax: <ProxyMatch criteria> ... </ProxyMatch>

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: Reverse proxy

ProxyReverse on

ProxyPass /docs/v4r4m0/ http://pubserver.ibm.com/public/v4r4m0/

<ProxyMatch "^http://pubserver.ibm.com/public/v[0-9]r[0-9]m[0-9]/(.*)">

 Allow from All

 Order Allow,Deny

</ProxyMatch>

Example: Forward proxy

<ProxyMatch "^/v[0-9]r[0-9]m[0-9]/docs/*">

 Allow from All

 Order Allow,Deny

</ProxyMatch>

The <ProxyMatch> directive is used to enclose a group of directives that apply only to proxy requests

that match the specified criteria. Multiple proxy containers are allowed, however they may not be nested.

Requests that do not match container criteria are outside the context of the enclosed directives. Any

directive allowed within a directory context is also allowed within a proxy context.

680 iSeries: IBM HTTP Server

Parameter: criteria

v The criteria parameter accepts a UNIX-style extended regular expression used to identify

requests to which the enclosed directives apply. Expressions are used to identify both

forward and reverse proxy requests. A match is considered by comparing request URL

strings to the specified expression. Subexpressions are grouped within parentheses. Then,

parenthetically enclosed regular expressions are substituted in a subsequent $n statement.

A match is made if the URL string matches the expression using regular expression logic.

For reverse proxy, the specified expression must match the new outgoing URL.

Proxy containers defined by <ProxyMatch> directives (including the directives enclosed by

them) are handled in the same way as those defined by <Proxy> directives. The only

difference is in how the criteria is specified and handled using regular expressions (for

<ProxyMatch>) rather than string literals (for <Proxy>). Refer to <Proxy> for further details

regarding proxy containers.

 For example, suppose the local server has address http://as400.ibm.com/ and the following

directives are setup for reverse proxy:

Example

ProxyPass /v4r3m0/docs/ http://pubserver.ibm.com/public/vrm430/

ProxyPass /v4r4m0/docs/ http://pubserver.ibm.com/public/vrm440/

ProxyPass /v4r5m0/docs/ http://pubserver.ibm.com/public/vrm450/

ProxyPass /v5r1m0/docs/ http://pubserver.ibm.com/public/vrm510/

<ProxyMatch "^http://pubserver.ibm.com/public/v[0-9]r[0-9]m[0-9]/(.*)">

 AuthName "iSeries Document Server"

 AuthType Basic

 Require group admin

 PasswdFile QUSRSYS/DOC_USERS

 GroupFile /groups/doc_readers

</ProxyMatch>

For this example, a request for /v4r5m0/docs/manual.html is identified as a proxy request

since it matches the third ProxyPass statement (ProxyPass /v4r5m0/docs/

http://pubserver.ibm.com/public/vrm450/). Once identified as a proxy request, it is

compared against criteria specified for the proxy container (ProxyMatch

″^http://pubserver.ibm.com/public/v[0-9]r[0-9]m[0-9]/(.*)″) using regular expression logic.

A match is made and the server applies the directives within the container that requires the

client to provide basic authentication credentials (AuthType Basic). If the client is

authenticated (PasswdFile QUSRSYS/DOC_USERS) and authorized (GroupFile

/groups/doc_readers, or Require group admin) the request will be internally converted into

a request for http://publicserver.ibm.com/public/vrm450/manual.html and further handled

by the proxy function (see “ProxyPass” on page 685 for more information on reverse proxy).

If the client is not authenticated or authorized, the request fails.

v The client is authenticated if a valid userid and password is provided, according to the

PasswdFile directive.

v The client is authorized if the userid (or group) is allowed access, according to the

GroupFile or Require directives.

Notice that in the above example the directives enclosed in the proxy container will apply to

requests matching any of the ProxyPass directives since the regular expression criteria

(specified for <ProxyMatch>) matches all four virtual directory path names specified for

ProxyPass.

v Setting ProxyRequests to off does not negate this directive. It is available regardless of the

forward proxy state.

ProxyMaxForwards:

 Module: mod_proxy

HTTP Server 681

Syntax: ProxyMaxForwards maximum

Default: ProxyMaxForwards 10

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyMaxForwards 8

The ProxyMaxForwards directive specifies the value the server is to use when adding Max-Forwards

request headers to requests that do not contain a Max-Forwards header. When the server receives

requests that do not contain a Max-Forwards header, it automatically adds one using the specified value.

This setting is not used for requests that already contain a Max-Forwards header.

Parameter: maximum

v The maximum parameter accepts an integer value between 1 and 2,147,483,648 to specify

the value the server is to use when it adds Max-Forwards request headers to proxy

requests.

The server uses Max-Forwards headers to prevent infinite proxy loops, and possibly certain

types of denial of service attacks. This is accomplished by ensuring that a Max-Forwards

header is set for all requests to control the maximum number of times it can be forwarded

(or passed to subsequent servers).

 When the server receives requests containing a Max-Forwards header, it will continue to

process the requests only if the value for the header is greater than 0 (zero). If the value is

greater than zero, the server decrements it and continues to process the request. If the

request subsequently needs to be forwarded to another server, the Max-Forwards header is

sent with the decremented value. This process is repeated until the request is fulfilled (or

rejected) by a server, or until the value for the Max-Forwards header reaches zero. Once the

value reaches zero (or less), the server will not forward the request and will respond

immediately (see example, request 3) with the following response codes:

v If TRACE method is used, 200 (OK) is returned as well as any trace data.

v If OPTIONS method is used, 200 (OK) is returned as well as any options data.

v If any other method is used, 502 (BAD_GATEWAY) is returned as well as the server’s

customized error page for ″proxyfail″ (if enabled, see “ErrorDocument” on page 539).

This setting is used for both forward and reverse proxy requests.

Example: Forward Proxy

ProxyRequests on

ProxyMaxForwards 8

For this example, consider the following three requests:

Request 1

GET http://docserver.ibm.com/manual.pdf HTTP/1.0

For this request, the server will use the value specified for ProxyMaxForwards (8) to

add the new header ″Max-Forwards : 8″ to the request (since it is not already

present), and then forward it to docserver.ibm.com as:

GET /manual.pdf HTTP/1.0

Max-Forwards : 8

682 iSeries: IBM HTTP Server

Request 2

GET http://docserver.ibm.com/manual.pdf HTTP/1.0

Max-Forwards : 3

For this request, the server will decrement the value for the Max-Forwards header to

2, and then forward the request to docserver.ibm.com as:

GET /manual.pdf HTTP/1.0

Max-Forwards : 2

In this case, the value specified for ProxyMaxForwards is not used since the request

already contained a Max-Forwards header.

Request 3

GET http://docserver.ibm.com/manual.pdf HTTP/1.0

Max-Forwards : 0

For this request, the server will immediately return response code 502

(BAD_GATEWAY) since the request cannot be forwarded any further due to the

Max-Forwards header value. In this case, docserver.ibm.com is never contacted.
v Setting ProxyRequests to off does not negate this directive. It is available regardless of the forward

proxy state.

ProxyNoCache:

 Module: mod_proxy

Syntax: ProxyNoCache word | host | domain

Default: absent [meaning cache all files satisfying other caching directives]

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyNoCache ibm.com www-1.ibm.com sample.example.edu

The ProxyNoCache directive specifies a list of words, hosts, and domains (in any combination), separated

by spaces. HTTP and non-passworded FTP documents from matched words, hosts or domains are not

cached by the proxy server. The proxy module will also attempt to determine IP addresses of list items,

that may be hostnames during startup, and cache them for a match test. If this directive is absent, all

documents satisfying all other caching directives (for example: ProxyCacheOnly, CacheMaxFileSize,

CacheMinFileSize, etc.) are cached. If this directive is present, documents from matched words, hosts or

domains are not cached.

Parameter: word | host | domain

v A word can consist of any combination of keywords (for example, ProxyNoCache hello

server good-bye).

v The host is a fully qualified DNS domain name that can be resolved to one or more IP

address via the DNS domain name service. It represents a logical host (in contrast to

domain, see above) and must be resolvable to at least one IP address (or often to a list of

hosts with different IP addresses).

v The domain is a partially qualified DNS domain name, preceded by a period. It represents

a list of hosts that logically belong to the same DNS domain or zone (that is, the suffixes

of the hostnames are all ending in Domain).

HTTP Server 683

Example

ProxyNoCache ibm.com www-1.ibm.com sample.example.edu

The ’sample.example.edu’ would also be matched if referenced by IP address. Note that

’example ’ is sufficient to match ’example.edu’.
v ProxyCacheOnly provides counter function. Documents matching a previous ProxyCacheOnly template

in the configuration will be cached, regardless of whether they match a subsequent ProxyNoCache

template. In other words, a ProxyCacheOnly directive may override a ProxyNoCache directive if

configured prior to the ProxyNoCache directive.

v This directive is used only if CacheRoot is set.

v Setting ProxyRequests to off negates this directive.

Note: "ProxyNoCache *" disables caching for all documents if not preceded by the ProxyCacheOnly

directive, however garbage collection is not affected.

ProxyNoConnect:

 Module: mod_proxy

Syntax: ProxyNoConnect on | off

Default: ProxyNoConnect off

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyNoConnect off

The ProxyNoConnect directive specifies if the proxy is to connect to remote content servers to retrieve

documents. If the server is not allowed to connect to remote content servers, it can only serve documents

from cache.

Parameter: on | off

v If off is specified, the server may serve documents from cache (if enabled) as well as issue

outgoing requests to remote servers to retrieve servable documents (see Example 1,

below).

v If set to on is specified, the proxy may only serve documents from cache (if enabled). It

will not establish outgoing connections with remote servers. CacheRoot is required if on is

specified (see Example 2, below).

Example 1

ProxyRequests on

ProxyNoConnect off

CacheRoot /QOpenSys/UserData/HTTPA/CacheRoot/myproxy

In this example, the proxy may serve documents from cache as well as issue outgoing

requests to remote servers.

Example 2

ProxyRequests on

ProxyNoConnect on

CacheRoot /QOpenSys/UserData/HTTPA/CacheRoot

684 iSeries: IBM HTTP Server

In this example, the proxy may only serve documents from cache. Documents will not be

retrieved from remote servers since outgoing connections are not permitted. Since the server

is not permitted to retrieve documents, items in cache must be managed by another

application or process other than the server itself.
v CacheRoot is required if this directive is set to on.

v The ProxyNoConnect directive causes the AllowCONNECT directive to be ineffective. If

ProxyNoConnect is present, and AllowCONNECT is also specified, then even if the AllowCONNECT

allows a SSL connection to be made on a specific port, the ProxyNoConnect directive dictates that no

connections are allowed.

ProxyPass:

 Module: mod_proxy

Syntax: ProxyPass path [url | !]

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example:

ProxyPass /docs/confidential/ !

ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

The ProxyPass directive specifies information used either to identify and map requests into the space of

remote servers, or to prevent requests from being mapped into the space of remote servers, when the

reverse proxy function is enabled. Multiple ProxyPass directives are allowed. When enabled, the server

does not act as a proxy in the conventional sense, but appears to be a mirror of remote servers by

transforming requests that match specified (virtual) directory paths into proxy requests using a

corresponding partial URL. If the reverse proxy function is not enabled, this directive has no affect (see

“ProxyReverse” on page 692).

Parameter One: path | url

v The path parameter is the name of a local virtual path. When the directive is placed

outside a location container, the first parameter accepts a directory name used to identify

requests to be handled by the proxy function. The directory name does not need to

specify an existing directory, it may be a name used only as a virtual directory for the

server.

v The url parameter is a partial URL for the remote server. When the directive is placed

inside a location container, the first parameter accepts a partial URL used to transform

matched requests (for the location container) into proxy requests. When matched, the

portion of the original request URL that matches the location container criteria is replaced

with the specified partial URL. Mapped requests are then handled by the proxy function

(see example two).

Parameter Two: url | !

v The url | ! parameter is used when the directive is placed outside a location container,

the second parameter accepts a partial URL or the negation operator (!). Partial URLs are

used to transform matched requests into proxy requests by replacing the portion of the

original request URL that matches the path parameter (parameter one) with the specified

partial URL (parameter two). Mapped requests are then handled by the proxy function.

The negation operator is used to prevent requests that match the path parameter

HTTP Server 685

(parameter one) from being mapped and handled by the proxy function, even though

they may match a succeeding ProxyPass directive. Example one, below, shows both

partial URLs and the negation operator being used for multiple ProxyPass directives.

v When the directive is placed inside a location container a second parameter cannot be

specified.

The server functions as a reverse proxy by mapping requests for documents inside virtual

directories (specified by the path parameter or location container criteria) into the space of remote

servers (specified by the url parameter). It then retrieves the documents (via proxy), and serves

them while making it appear to the client as if they originated from the local server.

The negation operator (!) is used to prevent specific virtual subdirectories to be mapped into the

space of remote servers, while allowing higher level (parent) directories to be mapped. Order is

important in these situations. ProxyPass directives using the negation operator to prevent specific

virtual subdirectories from being mapped must be placed before those mapping higher level

(parent) directories (see example one).

uppose the local server has address http://iseries.ibm.com/:

Example 1

ProxyReverse on

ProxyPass /docs/v4r5m0/ http://pubserver.ibm.com/public/v4r5m0/

ProxyPass /docs/archives/confidential/ !

ProxyPass /docs/archives/private/ !

ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/documents/example

For this example, since the reverse proxy function is enabled (ProxyReverse on), the first

ProxyPass directive will cause a local request for /docs/v4r5m0/manual.html to be

internally transformed into a request for http://pubserver.ibm.com/public/v4r5m0/
manual.html. The proxy function will then be used to retrieve /public/v4r5m0/manual.html

from pubserver.ibm.com and return the document to the requesting client. In this way, a

virtual /docs/v4r5m0/ directory on the local server (as400.ibm.com) appears as a mirror of

the /public/v4r5m0/ directory of the remote server (pubserver.ibm.com). A request for

/docs/archives/20020101.log will be handled in a similar way, using the last ProxyPass

directive (ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/documents/).

However, a request for /docs/archives/confidential/secrets.txt will not be handled by the

proxy function since the second ProxyPass directive prohibits any request for documents

within the /docs/archives/confidential/ virtual subdirectory. Likewise, the third ProxyPass

directive prohibits any request for documents within the /docs/archives/private/ virtual

subdirectory.

 The following example shows the ProxyPass directive being used within a location container

to obtain results similar to example 1.

Example Two

ProxyReverse on

<Location /docs/v4r5m0/>

 ProxyPass http://pubserver.ibm.com/public/v4r5m0/

</Location>

ProxyPass /docs/archives/confidential/ !

ProxyPass /docs/archives/private/ !

ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/documents/

Notice the first ProxyPass directive is placed within a location container and specifies only

one parameter. A local request for /docs/v4r5m0/manual.html is identified by matching the

location container criteria (/docs/v4r5m0/), transformed into a request for

http://pubserver.ibm.com/public/v4r5m0/manual.html by replacing the matched portion

with the ProxyPass parameter, and handled by the proxy function in the same way

described for example one.

686 iSeries: IBM HTTP Server

v “ProxyPassReverse” may be used to handle HTTP redirect responses from remote servers.

v Setting “ProxyReverse” on page 692 to off negates this directive.

v Setting “ProxyRequests” on page 691 to off does not negate this directive. It is available regardless of

the forward proxy state.

ProxyPassReverse:

 Module: mod_proxy

Syntax: ProxyPassReverse path | url

Default: none

Context: server config, virtual host, directory

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPassReverse /docs/ http://pubserver.ibm.com/public/documentation/

The ProxyPassReverse directive may specify a directory path and a partial URL used to identify and

adjust URLs in response headers returned to the client (via proxy). Multiple ProxyPassReverse directives

are allowed. The server adjusts the values for URI, Location, and Content-Location response headers

according to the specified values.

Parameter One: path | url

v The path parameter is the name of a local virtual path. When the directive is placed

outside a location container, the first parameter accepts a directory name used to adjust

response header values. If URLs specified in response headers match the url parameter

(parameter two), the portion that matches is replaced with the specified directory name.

Adjusted headers are then returned to the client. The directory name does not need to

specify an existing directory, it may be a name used only as a virtual directory for the

server.

v The url parameter is a partial URL for the remote server. When the directive is placed

inside a location container, the first parameter accepts a partial URL used to identify

URLs in URI, Location, and Content-Location response headers returned to the server as

requested by the proxy function. If any of these request headers match the specified

partial URL, the portion that matches is replaced with the directory name specified for the

location container. Adjust headers are then returned to the client.

Parameter Two: url

v The url parameter is a partial URL for the remote server. When the directive is placed

outside a location container, the second parameter accepts a partial URL used to identify

URLs in URI, Location, and Content-Location response headers returned to the server as

requested by the proxy function.

v When the directive is placed inside a location container a second parameter cannot be

specified.

This directive provides support to be used in applications when it is essential that clients are not

directed to use URLs that bypass the proxy function. It is mainly intended to provide additional

function for reverse proxy, however it may also be applied to forward proxy requests handled by

the server.

Suppose the local server has address http://iseries.ibm.com:

HTTP Server 687

Example

ProxyReverse on

ProxyPass /docs/v4r4m0/ http://pubserver.ibm.com/public/v4r4m0/

ProxyPass /docs/v4r5m0/ http://pubserver.ibm.com/public/v4r5m0/

ProxyPass /docs/v5r1m0/ http://pubserver.ibm.com/public/v5r1m0/

ProxyPassReverse /docs/ http://pubserver.ibm.com/public/

ProxyPass /docs/archives/ http://pubserver.ibm.com/archives/

For this example, since the reverse proxy function is enabled (ProxyReverse on), a request

for /docs/v4r4m0/api_reference.htm will be internally transformed into a proxy request for

http://pubserver.ibm.com/public/v4r4m0/API_reference.htm (the functionality the first

ProxyPass directive provides here). The use of ProxyPassReverse adjusts URLs in URI,

Location, and Content-Location response headers from pubserver.ibm.com. Therefore, when

the server’s request is subsequently redirected by pubserver.ibm.com with the following

response:

301 "Permanently Moved"

Location: http://pubserver.ibm.com/public/archives/440/API_reference.htm

{other response headers}

{optional body text}

The server changes the matching portion of the URL in the Location header

(http://pubserver.ibm.com/public/) to the virtual server path (/docs/) before sending the

following (adjusted) response to the client:

301 "Permanently Moved"

Location: http://as400.ibm.com/docs/archives/440/API_reference.htm

{other response headers}

{optional body text}

In this way, any new request the client sends due to the redirect response (301 ″Permanently

Moved″) is directed back to the proxy since the Location header is adjusted. The back end

server and path name (http://pubserver.ibm.com/public/) remain hidden from the client.
v This directive is only useful when used in conjunction with the “ProxyPass” on page 685 directive.

v Setting “ProxyReverse” on page 692 to off negates this directive.

v Setting “ProxyRequests” on page 691 to off does not negate this directive. It is available regardless of

the proxy state.

ProxyPreserveHost:

 Module: mod_proxy

Syntax: ProxyPreserveHost on | off

Default: ProxyPreserveHost off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyPreserveHost on

The ProxyPreserveHost directive specifies whether the server is to preserve Host: headers when handling

requests using the reverse proxy function.

Parameter: on | off

688 iSeries: IBM HTTP Server

v If off is specified (the default), the server generates Host: headers for requests handled by

the reverse proxy function, using the hostname (and optionally a port number) specified

for the ProxyPass or RewriteRule directives.

v If on is specified, the server uses Host: headers sent with requests, rather than generating

Host: headers, and uses the hostname (and optional port) specified for the ProxyPass or

RewriteRule directives only to route the request.

Suppose, for example, the local server has the address http://as400.ibm.com/ with the following

directive set up for reverse proxy:

Example

ProxyPass /docs/ http://pubserver.ibm.com:8080/public/documentation/

ProxyPreserveHost on

The server in this example is sent the following request:

GET /docs/manual.html HTTP/1.0

Host: virtual-host.ibm.com

{other request headers}

{optional body text}

The ProxyPass directive will cause the request to be internally transformed into a request for

http://pubserver.ibm.com:8080/public/documentation/manual.html, and the

ProxyPreserveHost directive will cause the Host: header to be preserved and passed by the

proxy function, resulting in the following request sent to pubserver.ibm.com:

GET /public/documentation/manual.html HTTP/1.0

Host: virtual-host.ibm.com

{other request headers}

{optional body text}

If off were specified for ProxyPreserveHost, the Host: header would not be preserved. The

server, in this case, would generate a Host: header, resulting in the following request:

GET /public/documentation/manual.html HTTP/1.0

Host: pubserver.ibm.com:8080

{other request headers}

{optional body text}

v “ProxyPassReverse” on page 687 may be used to handle HTTP redirect responses from remote servers.

v Setting “ProxyReverse” on page 692 to off negates this directive.

v Setting “ProxyRequests” on page 691 to off does not negate this directive. It is available regardless of

the forward proxy state.

ProxyReceiveBufferSize:

 Module: mod_proxy

Syntax: ProxyReceiveBufferSize bytes

Default: ProxyReceiveBufferSize 0

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

HTTP Server 689

Example: ProxyReceiveBufferSize 2048 The ProxyReceiveBufferSize directive specifies an explicit network buffer size

for outgoing HTTP and FTP connections (for increased throughput). This directive effectively overrides the server’s

default TCP/IP buffer size. Possible values include 0 (zero) and all positive integers greater than or equal to 512 (the

maximum value is 2,147,483,647 bytes). The value 0 (zero) indicates the system’s default buffer size should be used.

Parameter: bytes

v The bytes parameter has to be greater than ’512’ or set to ’0’ to indicate that the system’s

default buffer size should be used.

ProxyRemote:

 Module: mod_proxy

Syntax: ProxyRemote match remote-server

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyRemote ftp http://ftpproxy.mydomain.com:8080

The ProxyRemote directive defines remote proxies for the local server. Multiple ProxyRemote directives

are allowed. When a client sends a request that matches a ProxyRemote directive, the local server

connects to the remote proxy server specified in the directive, rather than to the server specified in the

URL. The remote proxy server retrieves the requested document and returns it to the local server, who in

turn returns it to the client. This is referred to as a ″proxy chain″ since more than one proxy is used.

Proxy chains are useful in cases where multiple caches are used, or when the local server doesn’t support

the protocol (or schema) specified in the URL and must chain the request to a proxy that does support

the protocol. Proxy chains may also be useful in cases where certain requests must be chained to another

proxy server in order to get through a firewall or route across a virtual private network.

Parameter One: match

v The match parameter is either the name of a URL scheme that the remote proxy server

supports, a partial URL that can be used to distinguish requests that should be chained

from requests that need not be chained, or ’*’ to indicate the remote proxy server should

be contacted (or chained) for all requests.

Parameter Two: remote-server

v The remote-server parameter is a partial URL for the remote server.

Syntax: <remote-server>=<protocol>://<hostname>[:port]

Where <protocol> is the protocol that should be used to communicate with the remote

server. Only HTTP is supported by this module.

Example 1

ProxyRemote ftp http://ftpproxy.server.com:8080

Example 2

ProxyRemote http://server.com/ http://mirrorserver.com:8000

Example 3

ProxyRemote * http://server.com

690 iSeries: IBM HTTP Server

In example 1, the server will forward (or chain) all FTP requests, encapsulated as yet another HTTP

proxy request, to the server named ftpproxy.server.com (port 8080), which then handles the request

and returns the document to the local server.

In example 2, the server will forward all requests that match the partial URL http://server.com/ to

the server named mirrorserver.com (port 8000).

In example 3, all requests will be forwarded to the server named server.com.

v “ProxyBlock” on page 676 may be used to block incoming requests prior to consideration for this

directive.

v Requests matching a “NoProxy” on page 673 directive are not chained.

v This directive is commonly used in conjunction with “NoProxy” on page 673 and “ProxyDomain” on

page 678 for directing proxy requests within intranets.

v Setting ProxyNoConnect to on negates this directive.

ProxyRequests:

 Module: mod_proxy

Syntax: ProxyRequests on | off

Default: ProxyRequests off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyRequests on

The ProxyRequest directive allows or prevents the server from functioning as a forward proxy.

Parameter: on | off

v If set to off , the server does not function as a forward proxy (see Example 1, below).

v If set to on, the server functions as a forward proxy and accepts proxy requests. All other

directives for the mod_proxy module are in effect.

Example 1

ProxyRequests off

Example 2

 ProxyRequests on

 CacheRoot /QOpenSys/UserData/HTTPA/CacheRoot

Example 3

 ProxyRequests on

 ProxyNoConnect on

 CacheRoot /QOpenSys/UserData/HTTPA/CacheRoot

Example 4

 ProxyRequests on

 CacheExpiryCheck off

 CacheRoot /QOpenSys/UserData/HTTPA/CacheRoot

v If CacheRoot is set, the proxy also activates its caching function and may serve documents from cache

(by default) as well as issue direct outgoing requests (by default) (see Example 2, above). Expiry

checking for cached documents is performed (by default).

HTTP Server 691

v If CacheRoot is set and “ProxyNoConnect” on page 684 is set to on, the proxy activates its caching

function but will only serve documents from cache. It will not issue outgoing requests (see Example 3,

above). Expiry checking for cached documents is performed.

v If CacheRoot is set and “CacheExpiryCheck” on page 514 is set to off, the proxy activates its caching

function but will not check expiry times for cached documents. Expired documents may be served

from cache (see Example 4, above).

v Setting “ProxyRequests” on page 691 to off negates all directives for the mod_proxy module, except for

the “ProxyPass” on page 685 and “ProxyPassReverse” on page 687 directives.

Note: CacheRoot is required when ProxyNoConnect is set to on.

ProxyReverse:

 Module: mod_proxy

Syntax: ProxyReverse on | off

Default: ProxyReverse on

Context: server config, virtual host

Override: none

Origin: iSeries

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyReverse off

The ProxyReverse directive specifies whether the server may function as a reverse proxy to handle

requests. The reverse proxy function is enabled by default, however other directives must specify how

the server identifies and maps requests for reverse proxy. If off is specified, the reverse proxy function is

disabled, and directives that apply the function (ProxyPass and RewriteRule directives using the ’proxy’

flag) are ineffective. See “ProxyPass” on page 685 and “RewriteRule” on page 702 for more details on

reverse proxy.

Parameter: on | off

v If set to off , the server does not function as a reverse proxy (see Example 1).

v If set to on, the server functions as a reverse proxy to handle requests identified and

mapped for reverse proxy

Example 1

ProxyReverse off

ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

For example one, the reverse proxy function is disabled. The ProxyPass directive is ineffective.

In the following example, the reverse proxy function is enabled. The server functions as a reverse

proxy to handle requests that match the path specified for the ProxyPass directive.

Example 2

ProxyReverse on

ProxyPass /docs/ http://pubserver.ibm.com/public/documentation/

 See “ProxyPass” on page 685 for more details.

ProxyTimeout:

 Module: mod_proxy

692 iSeries: IBM HTTP Server

Syntax: ProxyTimeout period

Default: none (the general server timeout value is used)

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyTimeout 300

The ProxyTimeout directive specifies the maximum number of minutes the server will wait for responses

from remote servers when handling proxy requests. If not specified, the general server timeout value is

used (see the “TimeOut” on page 571 directive).

Parameter: period

v The period parameter accepts an integer value between 1 and 2,147,483,648 to specify the

maximum period of time the server should wait for responses from remote servers (in

seconds).

If a response is not received in the specified number of seconds, the server will cancel the request

and return response code 504 (Gateway timeout).

Example

ProxyTimeout 120

For this example, the server will wait up to 120 seconds (or 2 minute) for responses from

remote servers.
v “ProxyPassReverse” on page 687 may be used to handle HTTP redirect responses from remote servers.

v Setting “ProxyReverse” on page 692 to off negates this directive.

v Setting “ProxyRequests” on page 691 to off does not negate this directive. It is available regardless of

the forward proxy state.

ProxyVia:

 Module: mod_proxy

Syntax: ProxyVia off | on | full | block

Default: ProxyVia off

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the configuration file prior to using the directive. The statement

should be as follows:

LoadModule proxy_connect_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_ftp_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_http_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

LoadModule proxy_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: ProxyVia on

The ProxyVia directive controls the server’s use of the Via: HTTP header. Its intended use is to control the

flow of proxy requests along a chain of servers. See RFC2068 (HTTP/1.1) for an explanation of Via:

header lines.

Parameter: off | on | full | block

HTTP Server 693

v If set to off (the default value), no special processing is performed. The proxy does not

include a Via: header line, however any existing Via: headers from other proxy servers are

kept intact.

v If set to on , each request and reply will get a Via: header line added for the current host.

The proxy includes its own, abbreviated Via: header line. Any additional Via: header lines

from other proxy servers are kept intact.

v If set to full, each generated Via: header line will additionally have HTTP Server (powered

by Apache) version shown on the Via: comment field. The proxy includes its own, full

Via: header (containing the proxy’s version description). Any additional Via: header lines

from other proxy servers are kept intact.

v If set to block, every proxy request will have all its Via: header lines removed. No new

Via: header will be generated. The proxy does not include a Via: header and removes all

existing Via headers from other proxy servers.

 A server may be a participant in a proxy chain even though it is not specifically configured to chain its

own requests. For this reason, it may be necessary to control the server’s use of the Via: HTTP header

even though it is not specifically configured for proxy chaining (see “ProxyRemote” on page 690 for more

details about proxy chains).

Module mod_rewrite for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module allows you to control URL access to your HTTP Server.

For example, to prevent a particular user agent called Web crawler from accessing any pages on the

server. To do this, include the following directives in your configuration:

RewriteEngine on

RewriteCond %{HTTP_USER_AGENT} ^Webcrawler

RewriteRule ^.*$ - [F,L]

 The first line enables the rewrite engine. The second line provides a test that returns true if the

HTTP_USER_AGENT string starts with the letters Web crawler. If the second line is true, then the third

line takes any URL string and returns a forbidden message to the client.

Directives

v “RewriteBase”

v “RewriteCond” on page 695

v “RewriteEngine” on page 699

v “RewriteLog” on page 699

v “RewriteLogLevel” on page 699

v “RewriteMap” on page 700

v “RewriteOptions” on page 701

v “RewriteRule” on page 702

RewriteBase:

 Module: mod_rewrite

694 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Syntax: RewriteBase Base_URL

Default: RewriteBase physical directory path

Context: directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteBase /xyz

The RewriteBase directive explicitly sets the base URL for per-directory rewrites. As you will see below,

RewriteRule can be used in per-directory config files (.htaccess). There it will act locally (for example, the

local directory prefix is stripped at this stage of processing and your rewriting rules act only on the

remainder). At the end it is automatically added back to the path.

When a substitution occurs for a new URL, this module has to re-inject the URL into the processing

server. To be able to do this it needs to know what the corresponding URL-prefix or URL-base is. By

default this prefix is the corresponding filepath itself. At most, Web sites URLs are not directly related to

physical filename paths, so this assumption is usually incorrect. In this case, you have to use the

RewriteBase directive to specify the correct URL-prefix.

Note: If your webserver’s URLs are not directly related to physical file paths, you have to use

RewriteBase in every .htaccess file where you want to use RewriteRule directives.

Assume the following per-directory configuration file (/abc/def is the physical path of /xyz, and the

server has the ’Alias /xyz /ABC/def’ established).

RewriteEngine On

RewriteBase /xyz

RewriteRule ^old\.html$ new.html

In the above example, a request to /xyz/old.html is correctly rewritten to the physical file

/ABC/def/new.html.

RewriteCond:

 Module: mod_rewrite

Syntax: RewriteCond TestString CondPattern [flags]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteCond %{HTTP_USER_AGENT} ^Mozilla.*

The RewriteCond directive defines a rule condition. Precede a RewriteRule directive with one or more

RewriteCond directives. The following rewriting rule is only used if its pattern matches the current state

of the URI and if these additional conditions apply.

Parameter One: TestString

v The TestString parameter can contain the following expanded constructs in addition to plain

text:

– RewriteRule backreferences: These are backreferences of the form.

$N (0 <= N <= 9) that provide access to the grouped sections (those in parenthesis) of

the pattern from the corresponding RewriteRule directive (the one following the

current RewriteCond directives).
– RewriteCond backreferences: These are backreferences of the form.

HTTP Server 695

%N 0 <= N <= 9) that provide access to the grouped sections (those in parenthesis) of

the pattern from the last matched RewriteCond directive in the current conditions
– RewriteMap expansions: These are expansions of the form.

${mapname:key|default}

See “RewriteMap” on page 700 for more details.
– Server-Variables: These are variables of the form

%{ NAME_OF_VARIABLE }

Where NAME_OF_VARIABLE can be a string taken from the following list:

HTTP headers

- HTTP_USER_AGENT

- HTTP_REFERRER

- HTTP_COOKIE

- HTTP_FORWARDED

- HTTP_HOST

- HTTP_PROXY_CONNECTION

- HTTP_ACCEPT

Connection and Request

- REMOTE_ADDR

- REMOTE_HOST

- REMOTE_USER

- REMOTE_IDENT

- REQUEST_METHOD

- SCRIPT_FILENAME

- PATH_INFO

- QUERY_STRING

- AUTH_TYPE

Server Internals

- DOCUMENT_ROOT

- SERVER_ADMIN

- SERVER_NAME

- SERVER_ADDR

- SERVER_PORT

- SERVER_PROTOCOL

- SERVER_SOFTWARE

System

- TIME_YEAR

- TIME_MON

- TIME_DAY

- TIME_HOUR

- TIME_MIN

- TIME_SEC

- TIME_WDAY

- TIME

Special

696 iSeries: IBM HTTP Server

- API_VERSION

- THE_REQUEST

- REQUEST_URI

- REQUEST_FILENAME

- IS_SUBREQ

Tip:

1. The variables SCRIPT_FILENAME and REQUEST_FILENAME contain the

same value (the value of the filename field of the internal request_rec

structure of the server). The first name is just the commonly known CGI

variable name while the second is the consistent counterpart to

REQUEST_URI (which contains the value of the URI field of request_rec).

2. There is the special format: %{ENV:variable} where variable can be any

environment variable. This is looked-up via internal structures and (if not

found there) via getenv() from the server process.

3. There is the special format: %{HTTP:header} where header can be any

HTTP MIME-header name. This is looked-up from the HTTP request.

Example: %{HTTP:Proxy-Connection} is the value of the HTTP header

``Proxy-Connection:’’.

4. There is the special format %{LA-U:variable} for look-aheads that perform

an internal (URL-based) sub-request to determine the final value of variable.

Use this when you want to use a variable for rewriting (which is actually

set later in an API phase and thus is not available at the current stage). For

instance when you want to rewrite according to the REMOTE_USER

variable from within the per-server context (httpd.conf file) you have to use

%{LA-U:REMOTE_USER} because this variable is set by the authorization

phases that come after the URL translation phase where mod_rewrite

operates. On the other hand, because mod_rewrite implements its

per-directory context (.htaccess file) via the Fixup phase of the API and

because the authorization phases come before this phase, you just can use

%{REMOTE_USER} there.

5. There is the special format: %{LA-F:variable} that performs an internal

(filename-based) sub-request to determine the final value of variable. Most

of the time this is the same as LA-U above.

Parameter Two: CondPattern

v The CondPattern parameter is the condition pattern (a regular expression) that is applied to the

current instance of the TestString. TestString is evaluated and then matched against

CondPattern.

CondPattern is a standard Extended Regular Expression with some additions:

1. You can prefix the pattern string with a ’!’ character (exclamation mark) to specify a

non-matching pattern.

2. There are some special CondPattern variants. Instead of real regular expression strings you

can also use one of the following:

<CondPattern

Treats the CondPattern as a plain string and compares it lexically to TestString. True

if TestString is lexically lower than CondPattern.

>CondPattern

Treats the CondPattern as a plain string and compares it lexically to TestString. True

if TestString is lexically greater than CondPattern.

=CondPattern

Treats the CondPattern as a plain string and compares it lexically to TestString. True

HTTP Server 697

if TestString is lexically equal to CondPattern (the two strings are exactly equal,

character by character). If CondPattern is just ″″ (two quotation marks) this

compares TestString to the empty string.

-d Treats the TestString as a pathname and tests if it exists and is a directory.

-f Treats the TestString as a pathname and tests if it exists and is a regular file.

-s Treats the TestString as a pathname and tests if it exists and is a regular file with

size greater than zero.

-l Treats the TestString as a pathname and tests if it exists and is a symbolic link.

-F Checks if TestString is a valid file and accessible via all the server’s

currently-configured access controls for that path. This uses an internal subrequest

to determine the check.

-U Checks if TestString is a valid URL and accessible via all the server’s

currently-configured access controls for that path. This uses an internal subrequest

to determine the check.

Note: All of these tests can also be prefixed by an exclamation mark (’!’) to negate their

meaning.

Parameter Three: flags

v The flags parameter is appended to the CondPattern parameter. The flags parameter is a comma

-serapertaed list of the following flags:

nocase|NC

This makes the test case-insensitive (there is no difference between ’A-Z’ and AZ both

in the expanded TestString and the CondPattern). This flag is effective only for

comparisons between TestString and CondPattern. It has no effect on filesystem and

subrequest checks.

ornext|OR

Use this to combine rule conditions with a local OR instead of the implicit AND.

Typical example:

RewriteCond %{REMOTE_HOST} ^host1.* [OR]

RewriteCond %{REMOTE_HOST} ^host2.* [OR]

RewriteCond %{REMOTE_HOST} ^host3.*

RewriteRule ...some special stuff for any of these hosts...

Without this flag you would have to write the cond/rule three times.

 To rewrite the Homepage of a site according to the ``User-Agent:’’ header of the request, you can use the

following:

RewriteCond %{HTTP_USER_AGENT} ^Mozilla.*

RewriteRule ^/$ /homepage.max.html [L]

RewriteCond %{HTTP_USER_AGENT} ^Lynx.*

RewriteRule ^/$ /homepage.min.html [L]

RewriteRule ^/$ /homepage.std.html [L]

If you use Netscape Navigator as your browser (which identifies itself as ’Mozilla’), then you get the max

homepage, which includes Frames and so on. If you use the Lynx browser (which is Terminal-based),

then you get the min homepage, which contains no images, no tables, and so on. If you use any other

browser you get the standard homepage.

698 iSeries: IBM HTTP Server

RewriteEngine:

 Module: mod_rewrite

Syntax: RewriteEngine on | off

Default: RewriteEngine off

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteEngine on

The RewriteEngine directive enables or disables the runtime rewriting engine. You can use this directive

to disable the module instead of commenting out all the RewriteRule directives.

Parameter: on | off

v If set to on runtime processing is enabled. If it is set to off runtime processing is disabled and

this module does not runtime processing at all.

Note: By default, rewrite configurations are not inherited. This means that you need to have the

RewriteEngine on for each virtual host in which you want to use it.

RewriteLog:

 Module: mod_rewrite

Syntax: RewriteLog filename

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: RewriteLog ″/usr/local/var/apache/logs/rewrite.log″

The RewriteLog directive sets the name of the file to which the server logs any rewriting actions it

performs. The directive should occur only once per server configuration.

Parameter One: filename

v The filename parameter is any valid filename that QTMHHTTP has authority to write to. If the

name does not begin with a slash (’/’) then it is assumed to be relative to the Server Root. For

example,

RewriteLog "/usr/local/var/apache/logs/rewrite.log"

Note: To disable the logging of rewriting actions it is not recommended to set Filename to /dev/null,

because although the rewriting engine does not then output to a logfile, it still creates the logfile

output internally. This will slow down the server with no advantage to the administrator. To

disable logging either remove or comment out the RewriteLog directive or use RewriteLogLevel 0!

in your configuration.

RewriteLogLevel:

 Module: mod_rewrite

Syntax: RewriteLogLevel Level

Default: RewriteLogLevel 0

Context: server config, virtual host

Override: none

Origin: Apache

Example: RewriteLogLevel 3

HTTP Server 699

The RewriteLogLevel directive sets the level of the rewriting logfile.

Parameter: Level

v The Level parameter sets the level of the rewriting logfile. The default level 0 means no

logging, while 9 means that practically all actions are logged. For example,

RewriteLogLevel 3

To disable the logging of rewriting actions simply set Level to 0. This disables all rewrite action

logs.

Note: Using a high value for Level will slow down your server dramatically. Use the rewriting logfile at

a Level greater than 2 only for debugging purposes.

RewriteMap:

 Module: mod_rewrite

Syntax: RewriteMap MapName MapType:MapSource

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Example: RewriteMap servers rnd:/path/to/file/map.txt

The RewriteMap directive defines a Rewriting Map that can be used inside rule substitution strings by

the mapping-functions to insert or substitute fields through a key lookup. The source of this lookup can

be of various types.

Parameter: MapName

v The MapName parameter is the name of the map and is used to specify a mapping-function for

the substitution strings of a rewriting rule via one of the following constructs:

${ MapName : LookupKey }

${ MapName : LookupKey | DefaultValue }

When such a construct occurs the map MapName is consulted and the key LookupKey is

looked-up. If the key is found, the map-function construct is substituted by SubstValue. If the

key is not found then it is substituted by DefaultValue or by the empty string if no

DefaultValue was specified. The following combinations for MapType and MapSource can be

used:

Standard Plain Text

MapType: txt, MapSource: Path to a file

 This is the standard rewriting map feature where the MapSource is a plain text file

containing either blank lines, comment lines (starting with a ’#’ character) or pairs like

the following (one per line): MatchingKey SubstituionValue.

 File example:

map.txt -- rewriting map

Ralf.B.Jones rbj # Operator

Mr.Joe.Average joe # Mr. Average

Directive example:

RewriteMap real-to-user txt:/path/to/file/map.txt

Randomized Plain Text

MapType: rnd, MapSource: Path to a file

700 iSeries: IBM HTTP Server

This is identical to the Standard Plain Text variant above but with a special

post-processing feature. After looking up a value it is parsed according to the contained

horizontal bar (|) characters which mean ″or″. In other words, the horizontal bars

indicate a set of alternatives from which the actual returned value is randomly chosen.

This feature was designed for load balancing in a reverse proxy situation where the

looked up values are server names.

 File example:

map.txt -- rewriting map

static www1|www2|www3|www4

dynamic www5|www6

Directive example:

RewriteMap servers rnd:/path/to/file/map.txt

Internal Function

MapType: int, MapSource: Internal Apache function

 The following internal functions are valid:

toupper

Converts the looked up key to all upper case.

tolower

Converts the looked up key to all lower case.

escape Translates special characters in the looked up key to hex-encodings.

unescape

Translates hex-encodings in the looked up key back to special characters.

 The RewriteMap directive can occur more than once. For each mapping function use one RewriteMap

directive to declare its rewriting mapfile. While you cannot declare a map in a per-directory context, it is

possible to use this map in a per-directory context.

Note: The prg and dbm MapTypes are not supported.

RewriteOptions:

 Module: mod_rewrite

Syntax: RewriteOptions Option

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteOptions inherit

The RewriteOptions directive sets some special options for the current per-server or per-directory

configuration.

Parameter: Option

v The Option parameter strings can be one of the following:

inherit

This forces the current configuration to inherit the configuration of the parent. In

per-virtual-server context this means that the maps, conditions and rules of the

main server are inherited. In per-directory context this means that conditions and

rules of the parent directory’s .htaccess configuration are inherited.

HTTP Server 701

MaxRedirects=number

This forces a request to terminate after reaching a maximum number of redirects

and responds with a 500 Internal Server Error. The number parameter value is the

maximum number of redirects allowed. This prevents endless loops of internal

redirects issued by per-directory RewriteRules. If additional internal redirects are

required, increase the default to the desired value. For example, RewriteOptions

MaxRedirects=13.

RewriteRule:

 Module: mod_rewrite

Syntax: RewriteRule pattern substitution [flags]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: RewriteRule ^/ABC(.*) /def$1 [PT]

The RewriteRule directive is the real rewriting workhorse. The directive can occur more than once. Each

directive then defines one single rewriting rule. The definition order of these rules is important, because

this order is used when applying the rules at run-time.

Parameter One: pattern

v The pattern parameter can be an extended regular expression which gets applied to the current

URL. Here ``current’’ means the value of the URL when this rule gets applied. This may not be

the originally requested URL, because any number of rules may already have matched and

made alterations to it. See “Environment variables on HTTP Server” on page 766 for more

information.

v Additionally in mod_rewrite the not character (’!’) is a possible pattern prefix. This gives you

the ability to negate a pattern; to say, for instance: ``if the current URL does not match this

pattern’’. This can be used for exceptional cases, where it is easier to match the negative

pattern, or as a last default rule.

Note: When using the not character to negate a pattern you cannot have grouped wild card parts in the

pattern. This is impossible because when the pattern does not match, there are no contents for the

groups, and you cannot use $N in the substitution string.

Parameter Two: substitution

v The substitution parameter is the string which is substituted for (or replaces) the original URL

for which Pattern matched. Beside plain text you can use back-references $N to the

RewriteRule pattern, back-references %N to the last matched RewriteCond pattern,

server-variables as in rule condition test-strings (%{VARNAME}) and mapping-function calls

(${mapname:key|default}).

v Back-references are $N (N=0..9) identifiers which will be replaced by the contents of the Nth

group of the matched Pattern. The server-variables are the same as for the TestString of a

RewriteCond directive. The mapping-functions come from the RewriteMap directive and are

explained there. These three types of variables are expanded in the order of the above list. As

already mentioned above, all the rewriting rules are applied to the Substitution (in the order of

definition in the config file). The URL is completely replaced by the Substitution and the

rewriting process goes on until there are no more rules unless explicitly terminated by a L flag

- see below.

v There is a special substitution string named ’-’ which means: NO substitution. It is useful to

provide rewriting rules which only match some URLs but do no substitution, for example, in

conjunction with the C (chain) flag to be able to have more than one pattern to be applied

before a substitution occurs.

702 iSeries: IBM HTTP Server

Note: You can even create URLs in the substitution string containing a query string part. Just use a

question mark inside the substitution string to indicate that the following stuff should be

re-injected into the QUERY_STRING. When you want to erase an existing query string, end the

substitution string with just the question mark. There is a special feature: When you prefix a

substitution field with http://thishost[:thisport] then mod_rewrite automatically strips it out. This

auto reduction on implicit external redirect URLs is a useful and important feature when used in

combination with a mapping-function which generates the hostname part. Have a look at the first

example in the example section below to understand this.

Remember, an unconditional external redirect to your own server will not work with the prefix

http://thishost because of this feature. To achieve such a self-redirect, you have to use the R-flag (see

below).

Parameter Three: flags

v The flags parameter can additionally be set to special [flags] for Substitution by appending

[flags] as the third argument to the RewriteRule directive. Flags is a comma separated list of

the following flags:

redirect|R [=code]

Prefix Substitution with http://thishost[:thisport]/ (which makes the new URL a URI)

to force a external redirection. If no code is given an HTTP response of 302 (MOVED

TEMPORARILY) is used. If you want to use other response codes in the range 300-400

just specify them as a number or use one of the following symbolic names: temp

(default), permanent, seeother. Use it for rules which should canonicalize the URL and

give it back to the client, for example, translate ``/~’’ into ``/u/’’ or always append a

slash to /u/user, etc.

Note: When you use this flag, make sure that the substitution field is a valid URL. If

not, you are redirecting to an invalid location! And remember that this flag itself

only prefixes the URL with http://thishost[:thisport]/, rewriting continues.

Usually you also want to stop and do the redirection immediately. To stop the

rewriting you also have to provide the ’L’ flag.

forbidden|F

This forces the current URL to be forbidden, for example, it immediately sends back an

HTTP response of 403 (FORBIDDEN). Use this flag in conjunction with appropriate

RewriteConds to conditionally block some URLs.

gone|G

This forces the current URL to be gone, for example, it immediately sends back an

HTTP response of 410 (GONE). Use this flag to mark pages which no longer exist as

gone.

proxy|P

This flag forces the substitution part to be internally forced as a proxy request and

immediately (for example, rewriting rule processing stops here) put through the proxy

module. You have to make sure that the substitution string is a valid URI (for example,

typically starting with http://hostname) which can be handled by HTTP Server proxy

module. If not you get an error from the proxy module. Use this flag to achieve a more

powerful implementation of the ProxyPass directive, to map some remote stuff into the

name space of the local server.

Note: To use this functionality make sure you have the proxy module loaded into your

HTTP Server configuration (for example, via LoadModule directive).

last|L Stop the rewriting process here and don’t apply any more rewriting rules. (This

corresponds to the Perl last command or the break command from the C language.)

HTTP Server 703

rzaiemod_proxy.htm
rzaiemod_proxy.htm

Use this flag to prevent the currently rewritten URL from being rewritten further by

following rules. For example, use it to rewrite the rootpath URL (’/’) to a real one, for

example, ’/e/www/’.

next|N

Re-run the rewriting process (starting again with the first rewriting rule). Here the URL

to match is again not the original URL but the URL from the last rewriting rule. (This

corresponds to the Perl next command or the continue command from the C language.)

Use this flag to restart the rewriting process, for example, to immediately go to the top

of the loop. But be careful not to create an infinite loop.

chain|C

This flag chains the current rule with the next rule (which itself can be chained with

the following rule, etc.). This has the following effect: if a rule matches, then processing

continues as usual, for example, the flag has no effect. If the rule does not match, then

all following chained rules are skipped. For instance, use it to remove the ``.www’’

part inside a per-directory rule set when you let an external redirect happen (where the

``.www ’’ part should not occur).

type|T=MIME-type

Force the MIME-type of the target file to be MIME-type. For instance, this can be used

to simulate the mod_alias directive ScriptAlias which internally forces all files inside

the mapped directory to have a MIME type of ``application/x-httpd-cgi’’.

nosubreq|NS

This flag forces the rewriting engine to skip a rewriting rule if the current request is an

internal sub-request. For instance, sub-requests occur internally in HTTP Server when

mod_include tries to find out information about possible directory default files

(index.xxx). On sub-requests it is not always useful and even sometimes causes a

failure if the complete set of rules are applied. Use this flag to exclude some rules.

Whenever you prefix some URLs with CGI-scripts to force them to be processed by the

CGI-script, the chance is high that you will run into problems (or even overhead) on

sub-requests. In these cases, use this flag.

nocase|NC

This makes the Pattern case insensitive, for example, there is no difference between AZ

and AZ when Pattern is matched against the current URL.

qsappend|QSA

This flag forces the rewriting engine to append a query string part in the substitution

string to the existing one instead of replacing it. Use this when you want to add more

data to the query string via a rewrite rule.

passthrough|PT

This flag forces the rewriting engine to set the URI field of the internal request_rec

structure to the value of the filename field. This flag is used to be able to post-process

the output of RewriteRule directives by Alias, ScriptAlias, Redirect, etc. - directives

from other URI-to-filename translators. A trivial example to show the semantics: If you

want to rewrite /ABC to /def via the rewriting engine of mod_rewrite and then /def

to /ghi with mod_alias:

RewriteRule ^/ABC(.*) /def$1 [PT]

Alias /def /ghi

If you omit the PT flag then mod_rewrite will do its job fine, for example, it rewrites

uri=/ABC/... to filename=/def/... as a full API-compliant URI-to-filename translator

should do. Then mod_alias comes and tries to do a URI-to-filename transition which

will not work.

704 iSeries: IBM HTTP Server

Note: You have to use this flag if you want to intermix directives of different modules

which contain URL-to-filename translators. The typical example is the use of

mod_alias and mod_rewrite.

skip|S=num

This flag forces the rewriting engine to skip the next num rules in sequence when the

current rule matches. Use this to make pseudo if-then-else constructs: The last rule of

the then-clause becomes skip=N where N is the number of rules in the else-clause.

(This is not the same as the ’chain|C’ flag.)

env|E=VAR:VAL

This forces an environment variable named VAR to be set to the value VAL, where

VAL can contain regexp backreferences $N and %N which will be expanded. You can

use this flag more than once to set more than one variable. The variables can be later

dereferenced in many situations, but usually from within SSI (via <!--#echo

var=″VAR″-->) or CGI (for example $ENV{’VAR’}). Additionally you can dereference it

in a following RewriteCond pattern via %{ENV:VAR}. Use this to strip but remember

information from URLs.

Note: Never forget that Pattern is applied to a complete URL in per-server configuration files. But in

per-directory configuration files, the per-directory prefix (which always is the same for a specific

directory!) is automatically removed for the pattern matching and automatically added after the

substitution has been done. This feature is essential for many sorts of rewriting, because without

this prefix stripping you have to match the parent directory which is not always possible. There is

one exception: If a substitution string starts with ``http://’’ then the directory prefix will not be

added and an external redirect or proxy throughput (if flag P is used) is forced. To enable the

rewriting engine for per-directory configuration files you need to set RewriteEngine On in these

files and Option FollowSymLinks must be enabled. If the override of FollowSymLinks is disabled

for a user’s directory, then you cannot use the rewriting engine. This restriction is needed for

security reasons.

Possible substitution combinations and meanings:

 Given rule Resulting substitution

^/somepath(.*) otherpath$1 not supported

^/somepath(.*) otherpath$1 [R] not supported

^/somepath(.*) otherpath$1 [P] not supported

^/somepath(.*) /otherpath$1 /otherpath/pathinfo

^/somepath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection

^/somepath(.*) /otherpath$1 [P] not supported

^/somepath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

^/somepath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection

^/somepath(.*) http://thishost/otherpath$1 [P] not supported

^/somepath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo via external redirection

^/somepath(.*) http://otherhost/otherpath$1 [R] ^/somepath(.*) http://otherhost/otherpath$1 [R]

^/somepath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo via internal proxy

^localpath(.*) otherpath$1 /somepath/otherpath/pathinfo

^localpath(.*) otherpath$1 [R] http://thishost/somepath/otherpath/pathinfo via external

redirection

^localpath(.*) otherpath$1 [P] not supported

^localpath(.*) /otherpath$1 /otherpath/pathinfo

HTTP Server 705

Given rule Resulting substitution

^localpath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection

^localpath(.*) /otherpath$1 [P] not supported

^localpath(.*) http://thishost/otherpath$1 /otherpath/pathinfo

^localpath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection

^localpath(.*) http://thishost/otherpath$1 [P] not supported

^localpath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo via external redirection

^localpath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo via external redirection (the

[R] flag is redundant)

^localpath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo via internal proxy

If you wanted to rewrite URLs of the form / Language /~ Realname /.../ File into /u/ Username

/.../ File . Language, you would take the rewrite mapfile from above and save it under

/path/to/file/map.txt. Then we only have to add the following lines to HTTP Server configuration file:

RewriteLog /path/to/file/rewrite.log

RewriteMap real-to-user txt:/path/to/file/map.txt

RewriteRule ^/([^/]+)/~([^/]+)/(.*)$ /u/${real-to-user:$2|nobody}/$3.$1

Module mod_setenvif for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The mod_setenvif module allows you to set environment variables if different aspects of the request

match regular expressions that you specify. These variables can be used by other parts of the server to

make decisions about actions to be taken.

The directives are considered in the order they appear in the configuration. So more complex sequences

can be used, such as this example, which sets Netscape if the browser is Mozilla but not MSIE.

BrowserMatch ^Mozilla netscape

BrowserMatch MSIE !netscape

Directives

v “BrowserMatch”

v “BrowserMatchNoCase” on page 707

v “SetEnvIf” on page 708

v “SetEnvIfNoCase” on page 709

BrowserMatch:

 Module: mod_setenvif

Syntax: BrowserMatch regex envar[=value] [...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: BrowserMatch ^Mozilla forms jpeg=yes browser=netscape

706 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

BrowserMatch defines environment variables based on the User-Agent HTTP request header field. The

first argument should be a POSIX.2 extended regular expression (similar to an egrep-style regex). The rest

of the arguments give the names of variables to set, and optional values to which they should be set.

These take the form of the following:

v varname

v !varname

v varname=value

See “Environment variables on HTTP Server” on page 766 for more information.

In the first form, the value will be set to ″1″. The second will remove the given variable if already

defined, and the third will set the variable to the value given by value. If a User-Agent string matches

more than one entry, they will be merged. Entries are processed in the order in which they appear, and

later entries can override earlier ones. For example:

BrowserMatch ^Mozilla forms jpeg=yes browser=netscape

BrowserMatch ^Mozilla/[2-3]" tables agif frames javascript

BrowserMatch MSIE !javascript

In the above example, if the User-Agent field is Mozilla, the environment variables forms, jpeg=yes and

browser=netscape will be set. If the request is Mozilla/2 or Mozilla/3, then in addition to the

environment variables on the first BrowserMatch directive, the variables tables, agif, frames and javascript

will be set.

Note: The regular expression string is case-sensitive. For case-insensitive matching, see

“BrowserMatchNoCase.” BrowserMatch and “BrowserMatchNoCase” are special cases of

“SetEnvIf” on page 708 and “SetEnvIfNoCase” on page 709. The following two lines have the same

effect:
BrowserMatchNoCase Robot is_a_robot

SetEnvIfNoCase User-Agent Robot is_a_robot

Parameter One: regex

v The regex parameter is a case-sensitive POSIX.2 extended regular expression. This gives the

user the ability to select variants on the User-Agent field, such as using some wildcarding to

group versions of a client browser. See “Environment variables on HTTP Server” on page 766

for more information.

Parameter Two: envvar[=value]

v The envvar[=value] parameter gives the names of the variables to set and, optional, values to

which they should be set. The case is preserved when lowercase characters are specified. Valid

values include all EBCDIC characters. The value must be enclosed in quotation marks if it

contains any non-alphanumeric character or blanks.

BrowserMatchNoCase:

 Module: mod_setenvif

Syntax: BrowserMatchNoCase regex envar[=value] [...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: BrowserMatchNoCase ibm platform=ibm

BrowserMatchNoCase is semantically identical to “BrowserMatch” on page 706. However, it provides for

case-insensitive matching. For example:

HTTP Server 707

BrowserMatchNoCase mac platform=ibm

BrowserMatchNoCase win platform=windows

“BrowserMatch” on page 706 and BrowserMatchNoCase are special cases of “SetEnvIf” and

“SetEnvIfNoCase” on page 709. The following two lines have the same effect:

BrowserMatchNoCase Robot is_a_robot

SetEnvIfNoCase User-Agent Robot is_a_robot

Parameter One: regex

v The regex parameter is a case-insensitive POSIX.2 extended regular expression. This gives the

user the ability to select variants on the User-Agent field, such as using some wildcarding to

group version of a client browser. See “Environment variables on HTTP Server” on page 766

for more information.

Parameter Two: envvar[=value]

v The envvar[=value] parameter gives the names of variables to set and, optionally, values to

which they should be set. They can take the form of ’varname’, ’!varname’ or ’varname=value’.

The case is preserved when lowercase characters are specified. Valid values include all EBCDIC

characters. The value must be enclosed in quotation marks if it contains any non-alphanumeric

character or blanks.

SetEnvIf:

 Module: mod_setenvif

Syntax: SetEnvIf attribute regex envar[=value] [...]

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: SetEnvIf Request_URI ″\.gif$″ object_is_image=gif

SetEnvIf defines environment variables based on attributes of the request. These attributes can be the

values of various HTTP request header fields or of other aspects of the request. See RFC2068 for more

information.

Note: To view the RFC listed above, visit the RFC index search engine

located on the RFC editor

web site. Search for the RFC number you want to view. The search engine results display the

corresponding RFC title, author, date, and status.

 Attribute Description

Remote_Host The hostname (if available) of the client making the request.

Remote_Addr The IP address of the client making the request.

Remote_User The authenticated username (if available).

Request_Method The name of the method being used (GET, POST).

Request_Protocol The name of the method being used (GET, POST).

Request_URI The portion of the URL following the scheme and host portion.

Some of the more commonly used request header field names include Host, User-Agent, and Referrer.

If the attribute name does not match any of the special keywords, or any of the request’s header field

names, it is tested as the name of an environment variable in the list of those associated with the request.

This allows SetEnvIf directives to test against the result of prior matches.

708 iSeries: IBM HTTP Server

http://www.rfc-editor.org/rfcsearch.html
http://www.rfc-editor.org/

Only those environment variables defined by earlier SetEnvIf[NoCase] directives are available for testing

in this manner. Earlier means that they were defined in a broader context (such as server-wide) or

previously in the current directive’s context. For example:

SetEnvIf Request_URI "\.gif$" object_is_image=gif

SetEnvIf Request_URI "\.jpg$" object_is_image=jpg

SetEnvIf Request_URI "\.xbm$" object_is_image=xbm

:

SetEnvIf Referrer www\.mydomain\.com intra_site_referral

:

SetEnvIf object_is_image xbm XBIT_PROCESSING=1

The first three will set the environment variable object_is_image if the request was for an image file, and

the fourth sets intra_site_referral if the referring page was somewhere on the www.mydomain.com Web

site. The 5th statement of the example sets XBIT processing, if the environment variable object_is_image

was set by the directive.

Parameter One: attribute

v The attribute parameter is the attribute of the request, such as an HTTP header value. The

attribute can also be an environment variable that was set by an earlier SETENVIF directive.

Parameter Two: regex

v The regex parameter is a case-sensitive POSIX.2 extended regular expression. This gives the

user the ability to select variants on the Attribute field, such as using some wildcarding to

group related values, and use those to set the environment variables. See “Environment

variables on HTTP Server” on page 766 for more information.

Parameter Three: envvar[=value]

v The envvar[=value] gives the names of variables to set and, optionally, values to which they

should be set. They take the form of ’varname’, ’!varname’ or ’varname=value’. The case is

preserved when lowercase characters are specified. Valid values include all EBCDIC characters.

The value must be enclosed in quotation marks if it contains any non-alphanumeric character

or blanks.

SetEnvIfNoCase:

 Module: mod_setenvif

Syntax: SetEnvIfNoCase attribute regex envar[=value] [...]

Default: none

Context: server config, virtual host, directory .htaccess

Override: none

Origin: Apache

Example: SetEnvIfNoCase Host IBM\.Org site=ibm

SetEnvIfNoCase is semantically identical to “SetEnvIf” on page 708, and differs only in that the regular

expression matching is performed in a case-insensitive manner. For example:

SetEnvIfNoCase Host QIBM\.Org site=ibm

This will cause the site variable to be set to ’ibm’ if the HTTP request header field Host: was included

and contained QIBM.Org, qibm.org, or any other combination.

Parameter One: attribute

v The attribute parameter is the attribute of the request, such as an HTTP Header value. The

attribute can also be an environment variable that was set by an earlier setenvif directive.

Parameter Two: regex

v The regex parameter is a case-sensitive POSIX.2 extended regular expression. This gives the

user the ability to select variants on the Attribute field, such as using some wildcarding to

HTTP Server 709

group related values, and use those to set the environment variables. See “Environment

variables on HTTP Server” on page 766 for more information.

Parameter Three: envvar[=value]

v The envvar[=value] parameter gives the names of variables to set and, optionally, values to

which they should be set. They take the form of ’varname’, ’!varname’ or ’varname=value’. The

case is preserved when lowercase characters are specified. Valid values include all EBCDIC

characters. The value must be enclosed in quotation marks if it contains any non-alphanumeric

character or blanks.

Module mod_so for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_so provides for loading of executable code and modules into the HTTP Server at

startup or restart time. On the iSeries server, the loaded code comes from a service program object with a

.SRVPGM extension.

Directive

v “LoadModule”

LoadModule:

 Module: mod_so

Syntax: LoadModule module filename

Default: none

Context: server config

Override: none

Origin: Apache

Example: LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

The LoadModule directive links in the object file filename and adds the module structure named module

to the list of active modules.

Parameter One: module

v The module parameter is the name of the external variable of type module is the iSeries file.

Parameter Two: filename

v The filename parameter must be an iSeries service program.

The following example loads ibm_ldap in QZSRVLDAP service program into the current HTTP

Server:

 LoadModule ibm_ldap_module /QSYS.LIB/QHTTPSVR.LIB/QZSRVLDAP.SRVPGM

Module mod_userdir for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

710 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Summary

The module mod_userdir provides for user-specific directories.

Directive

v “UserDir”

UserDir:

 Module: mod_userdir

Syntax: UserDir directory [directory ...] | enabled username [username ...] | disabled [username...]

Default: UserDir public_html

Context: server config, virtual host

Override: mod_userdir

Origin: Apache

Example: UserDir WWW

Example: UserDir enable lewis thomas

Example: UserDir disable sherman fazio

Example: UserDir disable

The UserDir directive sets the real directory in a user’s home directory to use when a request for a

document for a user is received. The user’s home directory is based on the HOMEDIR setting of the

user’s iSeries user profile. Directory is one of the following:

Parameter: directory

v The name of a directory or a pattern such as those shown below.

v The keyword disabled. This turns off all username-to-directory translations except those

explicitly named with the enabled keyword (see below).

v The keyword disabled followed by a space-delimited list of usernames. Usernames that appear

in such a list will never have directory translation performed, even if they appear in an

enabled clause.

v The keyword enabled followed by a space-delimited list of usernames. These usernames will

have directory translation performed even if a global disable is in effect, but not if they also

appear in a disabled clause. Note: the keyword enabled without a list of usernames is not

valid.

Note: The UserDir directive is not inherited by virtual hosts when it is set in the global server

configuration.

 If neither the enabled nor the disabled keywords appear in the UserDir directive, the argument is treated

as a filename pattern (or list of filename patterns), and is used to turn the name into a directory

specification. For example, assume that the HOMEDIR parameter of the iSeries user profile ″bob″ is set to

/home/bob. A request for http://www.QIBM.com/~bob/one/two.html will be translated to:

UserDir public_html -> /home/bob/public_html/one/two.html

UserDir /usr/web -> /usr/web/bob/one/two.html

UserDir /home/*/www -> /home/bob/www/one/two.html

The following directives will send redirects to the client:

UserDir http://www.QIBM.com/users -> http://www.QIBM.com/users/home/bob/one/two.html

UserDir http://www.QIBM.com/*/usr -> http://www.QIBM.com/home/bob/usr/one/two.html

Note: Use caution when using this directive; for instance, ″UserDir ./″ would map ″/~root″ to ″/″ -

which is most likely undesirable. It is strongly recommended that your configuration include a

″UserDir disabled root″ declaration. If multiple UserDir directives without disable or enable

keywords occur in a configuration, the last one is used.

HTTP Server 711

See <Directory> and “Security tips for HTTP Server” on page 38 for more information.

Module mod_usertrack for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

This module provides support for tracking users through the use of cookies.

Note: Netscape 4.x (Communicator) and above can use two or four digit dates. Netscape 3.x and below

will only accept two digit dates. To ensure the expiration date is legible to the client’s browser use

two digit dates.

Directives

v “CookieDomain”

v “CookieExpires”

v “CookieName” on page 713

v “CookieStyle” on page 713

v “CookieTracking” on page 713

CookieDomain:

 Module: mod_usertrack

Syntax: CookieDomain domain

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: CookieDomain .mydomain.com

The CookieDomain directive controls the setting of the domain to which the tracking cookie applies. If

not present, no domain is included in the cookie header field. The domain string must begin with a dot,

and must include at least one embedded dot. That is, .ibm.com is legal, but ibm.com and .com are not.

Parameter: domain

v A domain is a partially qualified DNS domain name, preceded by a period. It represents a

group of hosts that logically belong to the same DNS domain or zone (that is, the suffixes of

the hostnames are all ending in Domain).

CookieExpires:

 Module: mod_usertrack

Syntax: CookieExpires expiry-period

Default: none

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: CookieExpires 120

712 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The CookieExpires directive sets an expiry time on the cookie generated by the usertrack module. If this

directive is not used, cookies last only for the current browser session.

Parameter: expiry-period

v The expiry-period specifies the time, in seconds, the cookie should remain.

CookieName:

 Module: mod_usertrack

Syntax: CookieName token

Default: CookieName Apache

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: CookieName ABCDE19

The CookieName directive allows you to change the name of the cookie. The cookie name is used for

tracking purposes. You must specify a valid cookie name; results are unpredictable if you use a name

containing unusual characters. Valid characters include A-Z, a-z, 0-9, ’_’ and ’-’.

Parameter: token

v The token parameter allows you to change the name of the cookie.

CookieStyle:

 Module: mod_usertrack

Syntax: CookieStyle Netscape | Cookie | Cookie2 | RFC2109 | RFC2965

Default: CookieStyle Netscape

Context: server config, virtual host, directory, .htaccess

Override: none

Origin: Apache

Example: CookieStyle Cookie

This CookieStyle directive controls the format of the cookie header field.

Parameter: Netscape | Cookie | Cookie2 | RFC2109 | RFC2965

v Netscape is the original, but now deprecated, syntax. This is the default, and the syntax HTTP

Server (powered by Apache) has historically used.

v Cookie or RFC2109 is the syntax that superseded the Netscape syntax.

v Cookie2 or RFC2965 is the most current cookie syntax.

Note: Not all clients can understand all of these formats. You should use the most current one that is

generally acceptable to your users’ browsers.

CookieTracking:

 Module: mod_usertrack

Syntax: CookieTracking on | off

Default: Compiling mod_usertrack will not activate cookies by default.

Context: server config, virtual host, directory, .htaccess

Override: FileInfo

Origin: Apache

Example: CookieTracking on

HTTP Server 713

The CookieTracking directive allows you to send a user-tracking cookie for all new requests. This

directive can be used to turn this behavior on or off on a per-server or per-directory basis.

Parameter: on | off

v With CookieTracking on, the server starts sending a user-tracking cookie for all new requests.

v With CookieTracking off, the server does not send a user-tracking cookie for all new requests.

Module mod_vhost_alias for HTTP Server (powered by Apache)

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Summary

The module mod_vhost_alias provides support for dynamically configured mass virtual hosting.

Virtual hosting

The term Virtual Host refers to the practice of maintaining more than one server on one machine or

server instance, as differentiated by their apparent hostname (or server instance name). For example, it is

often desirable for companies sharing a web server to have their own domains, with web servers

accessible as www.company1.com and www.company2.com, without requiring the user to know extra

path information.

HTTP Server (powered by Apache) supports two types of virtual hosting, they are IP-based Virtual Host

and Name-based Virtual Host. As the term IP-based indicates, the server must have a different IP address

for each IP-based virtual host. This can be achieved by the machine having several physical network

connections, or by use of virtual interfaces that are supported by most modern operating systems.

While the approach with IP-based Virtual Hosts works well, it is not the most elegant solution, because a

dedicated IP address is needed for every virtual host and is hard to implement on some machines. The

HTTP/1.1 protocol contains a method for the server to identify what name it is being addressed as.

The benefits of using the name-based virtual host support is a practically unlimited number of servers,

ease of configuration and use, and no additional hardware or software requirements. The main

disadvantage is that the client must support this part of the protocol. The latest versions of most

browsers (e.g. HTTP 1.1) do, but there are still old browsers (e.g. HTTP 1.0) in use that do not. This can

cause problems, although a possible solution is addressed below.

Using non-IP virtual hosts

The notable difference between IP-based and name-based virtual host configuration is the

NameVirtualHost directive that specifies an IP address that should be used as a target for name-based

virtual hosts. For example, suppose that both www.domain.tld and www.otherdomain.tld point at the IP

address 111.22.33.44. Simply add to one of the configuration files (most likely httpd.conf or srm.conf)

code similar to the following:

NameVirtualHost 111.22.33.44

<VirtualHost 111.22.33.44>

ServerName www.domain.tld

DocumentRoot /www/domain

</VirtualHost>

714 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

<VirtualHost 111.22.33.44>

ServerName www.otherdomain.tld

DocumentRoot /www/otherdomain

</VirtualHost>

Of course, any additional directives can (and should) be placed into the <VirtualHost> section. To make

this work, make sure that the names www.domain.tld and www.otherdomain.tld are pointing to the IP

address 111.22.33.44

Note: When you specify an IP address in a NameVirtualHost directive, requests to that IP address are

only served by matching <VirtualHost>s. The main server is never served from the specified IP

address. If you start to use virtual hosts you should stop using the main server as an independent

server and use it as a place for configuration directives that are common for all your virtual hosts.

In other words, you should add a <VirtualHost> section for every server (hostname) you want to

maintain on your server.

Additionally, many servers may want to be accessible by more than one name. For example, the example

server might want to be accessible as domain.tld, or www2.domain.tld, assuming the IP addresses

pointed to the same server. In fact, one might want it so that all addresses at domain.tld were picked up

by the server. This is possible with the ServerAlias directive, placed inside the <VirtualHost> section. For

example:

ServerAlias domain.tld *.domain.tld

Note: You can use * and ? as wild-card characters.

You might also need ServerAlias if you are serving local users who do not always include the domain

name. For example, if local users are familiar with typing ″www″ or ″www.example″ then you will need

to add ServerAlias www www.example. It isn’t possible for the server to know what domain the client

uses for their name resolution because the client doesn’t provide that information in the request. The

ServerAlias directive provides a means for different hostnames to point to the same virtual host.

Dynamic virtual hosting

A virtual host is defined by two pieces of information: its IP address, and the contents of the Host:

header in the HTTP request. The dynamic mass virtual hosting technique is based on automatically

inserting this information into the pathname of the file that is used to satisfy the request. This is done

most easily using mod_vhost_alias.

A couple of things need to be `faked’, that being specific parameters with incorrect parameter values, to

make the dynamic virtual host look like a normal one. The most important is the server name which is

used by HTTP Server to generate a self referencing URLs. It is configured with the ServerName directive,

and it is available to CGIs via the SERVER_NAME environment variable. The actual value used at run

time is controlled by the UseCanonicalName setting. With UseCanonicalName off the server name comes

from the contents of the Host: header in the request. With UseCanonicalName DNS it comes from a

reverse DNS lookup of the virtual host’s IP address. The former setting is used for name-based dynamic

virtual hosting, and the latter is used for IP-based hosting. If HTTP Server cannot work out the server

name because there is no Host: header or the DNS lookup fails then the value configured with

ServerName is used instead.

The other thing to `fake’ is the document root (configured with DocumentRoot and available to CGIs via

the DOCUMENT_ROOT environment variable). This setting is used by the core module when mapping

URIs to filenames, but when the server is configured to do dynamic virtual hosting that job is taken over

by the mod_vhost_alias module. If any CGIs or SSI documents make use of the DOCUMENT_ROOT

environment variable they will therefore get a misleading value; there is not any way to change

DOCUMENT_ROOT dynamically.

HTTP Server 715

Motivation for dynamic virtual hosting

The techniques described here are of interest if your httpd.conf contains many <VirtualHost> sections

that are substantially the same. For example:

NameVirtualHost 10.22.33.44

<VirtualHost 10.22.33.44>

ServerName www.customer-1.com

DocumentRoot /www/hosts/www.customer-1.com/docs

ScriptAlias /cgi-bin/ /www/hosts/www.customer-1.com/cgi-bin

</VirtualHost>

<VirtualHost 10.22.33.44>

ServerName www.customer-2.com

DocumentRoot /www/hosts/www.customer-2.com/docs

ScriptAlias /cgi-bin/ /www/hosts/www.customer-2.com/cgi-bin

</VirtualHost>

comment line

<VirtualHost 10.22.33.44>

ServerName www.customer-N.com

DocumentRoot /www/hosts/www.customer-N.com/docs

ScriptAlias /cgi-bin/ /www/hosts/www.customer-N.com/cgi-bin

</VirtualHost>

The basic idea is to replace all of the static <VirtualHost> configuration with a mechanism that works it

out dynamically. This has a number of advantages:

1. Your configuration file is smaller so HTTP Server starts faster and uses less memory.

2. Adding virtual hosts is simply a matter of creating the appropriate directories in the filesystem and

entries in the DNS - you do not need to configure or restart HTTP Server (powered by Apache).

The main disadvantage is that you cannot have a different log file for each virtual host; however if you

have very many virtual hosts then doing this is dubious anyway because it eats file descriptors. It is

better to log to a pipe or a fifo and arrange for the process at the other end to distribute the logs to the

customers (it can also accumulate statistics).

A request for http://www.example.isp.com/directory/file.html will be satisfied by the file:

/usr/local/apache/vhosts/isp.com/e/x/a/example/directory/file.html.

A more even spread of files can be achieved by hashing from the end of the name, for example:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

The example request would come from /usr/local/apache/vhosts/isp.com/e/l/p/example/directory/
file.html. Alternatively you might use:

VirtualDocumentRoot /usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+

The example request would come from /usr/local/apache/vhosts/isp.com/e/x/a/mple/directory/
file.html.

Simple dynamic virtual hosts

This extract from httpd.conf implements the virtual host arrangement outlined in the Motivation section

above, but in a generic fashion using mod_vhost_alias.

get the server name from the Host: header

UseCanonicalName off

this log format can be split per-virtual-host based on the first field

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

CustomLog logs/access_log vcommon

include the server name in the filenames used to satisfy requests

VirtualDocumentRoot /www/hosts/%0/docs

VirtualScriptAlias /www/hosts/%0/cgi-bin

716 iSeries: IBM HTTP Server

This configuration can be changed into an IP-based virtual hosting solution by just turning

UseCanonicalName off into UseCanonicalName DNS. The server name that is inserted into the filename

is then derived from the IP address of the virtual host.

A virtually hosted homepages system

This is an adjustment of the above system tailored for an ISP’s homepages server. Using a slightly more

complicated configuration we can select substrings of the server name to use in the filename so that e.g.

the documents for www.user.isp.com are found in /home/user/. It uses a single cgi-bin directory instead

of one per virtual host.

all the preliminary stuff is the same as above, then

include part of the server name in the filenames

VirtualDocumentRoot /www/hosts/%2/docs

single cgi-bin directory

ScriptAlias /cgi-bin/ /www/std-cgi/

There are examples of more complicated VirtualDocumentRoot settings in the mod_vhost_alias

documentation. Using more than one virtual hosting system on the same server With more complicated

setups you can use HTTP Server’s normal <VirtualHost> directives to control the scope of the various

virtual hosting configurations. For example, you could have one IP address for homepages customers and

another for commercial customers with the following setup. This can of course be combined with

conventional <VirtualHost> configuration sections.

UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory /www/commercial>

Options FollowSymLinks

AllowOverride All

</Directory>

<Directory /www/homepages>

Options FollowSymLinks

AllowOverride None

</Directory>

<VirtualHost 10.22.33.44>

ServerName www.commercial.isp.com

CustomLog logs/access_log.commercial vcommon

VirtualDocumentRoot /www/commercial/%0/docs

VirtualScriptAlias /www/commercial/%0/cgi-bin

</VirtualHost>

<VirtualHost 10.22.33.45>

ServerName www.homepages.isp.com

CustomLog logs/access_log.homepages vcommon

VirtualDocumentRoot /www/homepages/%0/docs

ScriptAlias /cgi-bin/ /www/std-cgi/

</VirtualHost>

Use more than one virtual hosting system on the same server

With more complicated setups you can use HTTP Server’s normal <VirtualHost> directives to control the

scope of the various virtual hosting configurations. For example, you could have one IP address for

homepages customers and another for commercial customers with the following setup. This can of course

be combined with conventional <VirtualHost> configuration sections.

UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory /www/commercial>

Options FollowSymLinks

AllowOverride All

</Directory>

HTTP Server 717

<Directory /www/homepages>

Options FollowSymLinks

AllowOverride None

</Directory>

<VirtualHost 10.22.33.44>

ServerName www.commercial.isp.com

CustomLog logs/access_log.commercial vcommon

VirtualDocumentRoot /www/commercial/%0/docs

VirtualScriptAlias /www/commercial/%0/cgi-bin

</VirtualHost>

<VirtualHost 10.22.33.45>

ServerName www.homepages.isp.com

CustomLog logs/access_log.homepages vcommon

VirtualDocumentRoot /www/homepages/%0/docs

ScriptAlias /cgi-bin/ /www/std-cgi/

</VirtualHost>

Directory name interpolation

All the directives in this module interpolate (insert) a string into a pathname. The interpolated string may

either be the server name (see “UseCanonicalName” on page 572 for more information) or the IP address

of the virtual host on the server in dotted-quad format. The interpolation is controlled by specifiers

inspired by UNIX printf which have a number of formats:

 Specifier Description

%% Insert a % sign

%p Insert the port number of the virtual host

%N.M Insert (part of) the interpolated string

N and M are used to specify substrings of the interpolated string. N selects from the period separated

components of the interpolated string, and M selects characters within whatever N has selected. M is

optional and defaults to zero if it is not present. The period (.) must be present if and only if M is

present. The interpretation is as follows:

 N.M interpretation Description

0 The whole number.

1 The first part.

2 The second part.

-1 The last part.

-2 The next to last part.

2+ The second and all subsequent parts.

-2+ The next to last part and all preceding parts.

1+ and -1+ The same as 0 (zero).

If N or M is greater than the number of parts available a single underscore is interpolated.

For a simple name-based virtual hosts you might use the following directives in your server

configuration file:

UseCanonicalName off

VirtualDocumentRoot

/usr/local/www.example.isp.com/vhosts/%0

A request for http://www.example.com/directory/file.html will be satisfied by the

file /usr/local/www.example.isp.com/vhosts/www.example.com/directory/file.html.

718 iSeries: IBM HTTP Server

For a very large number of virtual hosts it is a good idea to arrange the files to reduce the size of the

vhosts directory. To do this you might use the following in your configuration file:

UseCanonicalName off

VirtualDocumentRoot

/usr/local/www.example.isp.com/vhosts/%3+/%2.1/%2.2/%2.3/%2

A request for http://www.example.isp.com/directory/file.html will be satisfied by

the file /usr/local/www.example.isp.com/isp.com/e/x/a/example/directory/file.html.

A more even spread of files can be achieved by hashing from the end of the name, for example:

VirtualDocumentRoot

/usr/web/www.example.isp.com/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2

The example request would come from /usr/web/www.example.isp.com/vhosts/isp.com/e/l/p/
example/directory/file.html. Alternatively you might use:

VirtualDocumentRoot

/usr/local/www.example.isp.com/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+

The example request would come from /usr/web/www.example.isp.com/vhosts/isp.com/e/x/a/mple/
directory/file.html. For IP-based virtual hosting you might use the following in your configuration file:

UseCanonicalName DNS

VirtualDocumentRootIP /usr/local/www.example.isp.com/vhost/%1/%2/%3/%4/docs

VirtualScriptAliasIP

/usr/local/www.example.isp.com/vhost/%1/%2/%3/%4/cgi-bin

A request for http://www.example.isp.com/directory/file.html would be satisfied by the file

/usr/local/www.example.isp.com/10/20/30/40/docs/directory/file.html if the IP address of

www.example.com were 10.20.30.40. A request for http://www.example.isp.com/cgi-bin/script.pl would

be satisfied by executing the program /usr/local/www.example.isp.com/10/20/30/40/cgi-bin/script.pl.

The LogFormat directives %V and %A are useful in conjunction with this module. See “LogFormat” on

page 653 for more information.

Directives

v “VirtualDocumentRoot”

v “VirtualDocumentRootIP” on page 720

v “VirtualScriptAlias” on page 721

v “VirtualScriptAliasIP” on page 722

VirtualDocumentRoot:

 Module: mod_vhost_alias

Syntax: VirtualDocumentRoot interpolated-directory

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: See below.

The VirtualDocumentRoot directive allows you to determine where the server will finds your documents

based on the value of the server name. The result of expanding interpolated-directory is used as the root

of the document tree in a similar manner to the DocumentRoot disabled. See “DocumentRoot” on page

538 for more information.

HTTP Server 719

If interpolated-directory is none then VirtualDocumentRoot is disabled. This directive cannot be used in

the same context as VirtualDocumentRootIP. See “VirtualDocumentRootIP” for more information.

Parameter: interpolated-directory

v The interpolated-directory parameter the full path to a directory.

 For example, a simple dynamic virtual host:

LocalModule directive required

LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

get the server name from the Host: header

UseCanonicalName off

this log format can be split per-virtual-host based on the first field

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

CustomLog logs/access_log vcommon

include the server name in the filenames used to satisfy requests

VirtualDocumentRoot /www/web/%0/docs

The next example is an adjustment of the above, system tailored for an ISP’s homepage server. Using a

slightly more complicated configuration we can select substrings of the server name to use in the

filename so that e.g. the documents for www.user.isp.com are found in /home/user/. It uses a single

cgi-bin directory instead of one per virtual host:

LocalModule directive required

LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

all the preliminary stuff is the same as above, then

include part of the server name in the filenames

VirtualDocumentRoot /usr/web/hosts/%2/docs

single cgi-bin directory

ScriptAlias /cgi-bin/ /usr/web/std-cgi/

Note: This configuration can be changed into an IP-based virtual hosting solution by just turning

UseCanonicalName off into UseCanonicalName DNS. The server name that is inserted into the

filename is then derived from the IP address of the virtual host. See “UseCanonicalName” on page

572 for more information.

VirtualDocumentRootIP:

 Module: mod_vhost_alias

Syntax: VirtualDocumentRootIP interpolated-directory

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: See VirtualDocumentRoot.

More complicated setups can use the server’s normal <VirtualHost> directives to control the scope of the

various virtual hosting configurations. For example, you could have one IP address for home page

customers and another for commercial customers with the following directives. This can of course be

combined with conventional <VirtualHost> configuration sections.

Parameter: interpolated-directory

v The interpolated-directory parameter the full path to a directory.
UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory /usr/web/commercial>

Options FollowSymLinks

720 iSeries: IBM HTTP Server

AllowOverride All

</Directory>

<Directory /usr/web/homepages>

Options FollowSymLinks

AllowOverride None

</Directory>

LocalModule directive required

LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

<VirtualHost 10.22.33.44>

ServerName www.commercial.isp.com

CustomLog logs/access_log.commercial vcommon VirtualDocumentRoot /usr/web/commercial/%0/docs

VirtualScriptAlias /usr/web/commercial/%0/cgi-bin

</VirtualHost>

<VirtualHost 10.22.33.45>

ServerName www.homepages.isp.com

CustomLog logs/access_log.homepages vcommon

VirtualDocumentRoot /usr/web/homepages/%0/docs

ScriptAlias /cgi-bin/ /usr/web/std-cgi/

</VirtualHost>

More efficient IP-based virtual hosting:

In the first example note that it is easy to turn it into an IP-based virtual hosting setup. Unfortunately

that configuration is not very efficient because it requires a DNS lookup for every request. This can be

avoided by laying out the filesystem according to the IP addresses themselves rather than the

corresponding names and changing the logging similarly. HTTP Server will not usually need to work out

the server name and a DNS lookup. For example:

Get the server name from the reverse DNS of the IP address

UseCanonicalName DNS

LocalModule directive required

LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

include the IP address in the logs so they may be split

LogFormat "%A %h %l %u %t \"%r\" %s %b" vcommon

CustomLog logs/access_log vcommon

include the IP address in the filenames

VirtualDocumentRootIP /usr/web/hosts/%0/docs

VirtualScriptAliasIP /usr/web/hosts/%0/cgi-bin

The VirtualDocumentRootIP directive is like the VirtualDocumentRoot directive, except that it uses the IP

address of the server end of the connection instead of the server name. See “VirtualDocumentRoot” on

page 719 for more information.

VirtualScriptAlias:

 Module: mod_vhost_alias

Syntax: VirtualScriptAlias interpolated-directory

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: See below.

Using more than one virtual hosting system on the same server instance:

HTTP Server 721

More complicated setups use the server’s normal <VirtualHost> directives to control the scope of the

various virtual hosting configurations. For example, you could have one IP address for homepages

customers and another for commercial customers with the following directives. This can of course be

combined with conventional <VirtualHost> configuration sections.

Parameter: interpolated-directory

v The interpolated-directory parameter the full path to a directory.
UseCanonicalName off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory/usr/web/commercial>

Options FollowSymLinks

AllowOverride All

</Directory>

<Directory /usr/web/homepages>

Options FollowSymLinks

AllowOverride None

</Directory>

LocalModule directive required

LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

<VirtualHost 10.22.33.44>

ServerName www.commercial.isp.com

CustomLog logs/access_log.commercial vcommon

VirtualDocumentRoot /usr/web/commercial/%0/docs

VirtualScriptAlias /usr/web/commercial/%0/cgi-bin

</VirtualHost>

<VirtualHost 10.22.33.45>

ServerName www.homepages.isp.com

CustomLog logs/access_log.homepages vcommon

VirtualDocumentRoot /usr/web/homepages/%0/docs

ScriptAlias /cgi-bin/ /usr/web/std-cgi/

</VirtualHost>

Note: The VirtualScriptAlias directive allows you to specify the directory path where the server will find

CGI scripts in a similar manner to “VirtualDocumentRoot” on page 719 does for other documents.

In this case the target directory of the CGI scripts must be named ″cgi-bin″. For example:
VirtualScriptAlias /user/web/commercial/%0/cgi-bin

VirtualScriptAliasIP:

 Module: mod_vhost_alias

Syntax: VirtualScriptAliasIP interpolated-directory

Default: none

Context: server config, virtual host

Override: none

Origin: Apache

Usage Considerations: A LoadModule is required in the config file prior to using the directive. The statement should

be as follows: LoadModule vhost_alias_module /QSYS.LIB/QHTTPSVR.LIB/QZSRCORE.SRVPGM

Example: See “VirtualScriptAlias” on page 721.

The VirtualScriptAliasIP directive is like the “VirtualScriptAlias” on page 721 directive, except that it uses

the IP address of the server end of the connection instead of the server name.

Parameter: interpolated-directory

722 iSeries: IBM HTTP Server

v The interpolated-directory parameter the full path to a directory.

Common Gateway Interface

This topic provides information about Common Gateway Interfaces (CGI).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Overview of CGI

This topic provides information about CGI. Common Gateway Interface (CGI) is a standard, supported

by almost all web servers, that defines how information is exchanged between a web server and an

external program (CGI program).

The CGI specification dictates how CGI programs get their input and how they produce any output. CGI

programs process data that is received from browser clients. For example, the client fills out a form and

sends the information back to the server. Then the server runs the CGI program.

Programs that are called by the server must conform to the server CGI interface in order to run properly.

We will describe this in further detail later in this chapter.

The administrator controls which CGI programs the system can run by using the server directives. The

server recognizes a URL that contains a request for a CGI program, commonly called a CGI script.

Depending on the server directives, the server calls that program on behalf of the client browser.

The server supports CGI programs that are written in C++, REXX, Java, ILE C, ILE RPG, and ILE

COBOL. It also supports multi-thread CGI programs in all of these languages capable of multiple threads.

You need to compile programs that are written in programming languages. Compiled programs typically

run faster than programs that are written in scripting languages. On the other hand, those programs that

are written in scripting languages tend to be easier to write, maintain, and debug.

The functions and tasks that CGI programs can perform range from the simple to the very advanced. In

general, we call those that perform the simple tasks CGI scripts because you do not compile them. We

often call those that perform complex tasks gateway programs. In this manual, we refer to both types as

CGI programs.

Given the wide choice of languages and the variety of functions, the possible uses for CGI programs

seem almost endless. How you use them is up to you. Once you understand the CGI specification, you

will know how servers pass input to CGI programs and how servers expect output.

There are many uses for CGI programs. Basically, you should design them to handle dynamic

information. Dynamic in this context refers to temporary information that is created for a one-time use

and not stored as a static Web page. This information may be a document, an e-mail message, or the

results of a conversion program.

For detailed information about CGI APIs, see Chapter 8, “HTTP Server Application Programming

Interfaces” on page 51.

CGI and Dynamic Documents: There are many types of files that exist on the web. Primarily they fall

into one of the following categories:

v Images

v Multimedia

HTTP Server 723

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

v Programs

v HTML documents

Servers break HTML documents into two distinct types:

v Static

v Dynamic

Static documents exist in non-changing source form on the web server. You should create Dynamic

documents as temporary documents to satisfy a specific, individual request.

Consider the process of �serving� these two types of documents. Responding to requests for static

documents is fairly simple. For example, Jill User accesses the Acme web server to get information on the

Pro-Expert gas grill. She clicks on Products, then on Grills, and finally on Pro-Expert. Each time Jill clicks

on a link, the web browser uses the URL that is attached to the link to request a specific document from

the web server. The server responds by sending a copy of the document to Jill’s browser.

What if Jill decides that, she wants to search through the information on the Acme web server for all

documents that contain information on Acme grills? Such information could consist of news articles,

press releases, price listings, and service agreements. This is a more difficult request to process. This is

not a request for an existing document. Instead, it is a request for a dynamically generated list of

documents that meet certain criteria. This is where CGI comes in.

You can use a CGI program to parse the request and search through the documents on your web server.

You can also use it to create a list with hypertext links to each of the documents that contain the specified

word or string.

Uses for CGI: HTML allows you to access resources on the Internet by using other protocols that are

specified in the URL. Examples of such protocols are mailto, ftp, and news. If you code a link with

mailto that is followed by an e-mail address, the link will result in a generic mail form.

What if you wanted your customers to provide specific information, such as how often they use the web?

Or how they heard about your company? Rather than using the generic mailto form, you can create a

form that asks these questions and more. You can then use a CGI program to interpret the information,

include it in an e-mail message, and send it to the appropriate person.

You do not need to limit CGI programs to processing search requests and e-mail. You can use them for a

wide variety of purposes. Basically, anytime you want to take input from the reader and generate a

response, you can use a CGI program. The input may even be apparent to the reader. For example, many

people want to know how many other people have visited their home page. You can create a CGI

program that keeps track of the number of requests for your home page. This program can display the

new total each time someone links to your home page.

Environment variables

Before you begin writing your CGI program, you need to understand the format in which the server will

pass the data. The server receives the URL-encoded information and, depending on the type of request,

passes the information to the CGI program. The server does this by using environment variables,

command line arguments, or standard input.

A CGI application program should be able to handle a NULL value when getting an environment

variable. For example, when the CGI program is trying to do a getenv(�CONTENT_LENGTH�) and the

method is GET, the value would be returned NULL. This is because CONTENT_LENGTH is only defined

in method POST (to describe the length of standard input).

724 iSeries: IBM HTTP Server

The supported environment variables for HTTP Server are can be found in the IBM iSeries Information

Center. The environment variables have been divided into two groups: Non-SSL and SSL and by HTTP

Server type.

Requests from Standard Search (ISINDEX) Documents: ISINDEX is an HTML tag that identifies the

document as a standard search document and causes the browser to automatically generate an entry

field. When information is sent from an ISINDEX document, the server takes the appended data (the

information following the ?), breaks it at the pluses (+), and sends the data to the CGI program as

command line arguments (argv). For example:

<ISINDEX>

Note: It is possible to write CGI programs that display all environment variables. At times these

variables may include sensitive data such as user IDs and passwords for various products.

Consequently, you must be careful about displaying environment variables in your CGI programs,

and you must be careful about who has access to them.

CGI program considerations for HTTP Server (original)

You need to understand that the security environment defined by the server configuration directives that

apply to your CGI programs. If the CGI program is covered by a protection directive that calls for basic

authentication, the user must supply a user ID and password before the CGI program is allowed to run.

The other protection subdirectives determine the following:

v How the server validates the user ID and password

v What security environment the CGI program runs in

The subdirectives might tell the browser to treat the user ID as a user profile and to validate the

password against it. In addition, the Userid subdirective might be used to cause the server job to run

under a specified user profile or the one the user entered. The following example protection setup would

cause the user ID to be treated as a user profile, and to switch to that profile when starting the CGI

program:

Protection example1 {

AuthType Basic

Userid %%CLIENT%%

PasswdFile %%SYSTEM%%

}

If Userid %%SERVER%% had been specified, the CGI program will run under the QTMHHTP1 user

profile. If Userid FRED had been specified, the CGI program would run under the FRED user profile.

Alternatively, the PasswdFile subdirective can identify a validation list. For example:

PasswdFile qgpl/valist1

Internet User Lists contain a set of user IDs, their associated password, and optionally other

application-specific information. In this example, the server would authenticate the user by comparing

the specified user ID and password against the specified Internet User List. If the user ID exists in the

Internet User List and the password matches, the CGI program would run under the QTMHHTP1 user

profile.

Internet User Lists can be created through the CRTVLDL command. CGI or other programs can add,

remove, find, or change entries through a set of APIs documented in the programming topic in the iSeries

400 Information Center. By using Internet User Lists, the CGI program can “register” users and associate

other information with each entry while at the same time using the basic authentication functions of the

server to authenticate requests.

HTTP Server 725

Guidelines for writing cluster-enabled CGIs

By understanding the guidelines for writing cluster-ennabled CGIs, you can avoid potential problems

with your CGI code.

All CGI programs existing today are cluster-disabled. A CGI program developer should follow the

following rules when writing cluster-enabled CGI programs:

v Write the CGI in such a way that running them with the same state more than once does not cause any

problem.

v Store the CGI program’s state between client’s requests only in the Web server.

v Use only cluster-safe mechanisms. For example, if a CGI program uses shared memory (which is

currently not a cluster-safe mechanism), the macro is almost certainly cluster-disabled.

 Table 23. CGI problems and solutions. This table identifies potential problem areas and suggests a solution:

Potential problems Solutions

When the stateful CGI is run with the same state more

than once, its correctness is not ensured.

Rewrite the CGI so that it can run with the same state

more than once.

The stateful CGI accesses shared memory. Eliminate the use of shared memory.

The stateful CGI generates session handles ignoring

session handles passed by the Web server.

Rewrite the CGI to use session handles passed by the

Web server.

There are two categories of high availability Web server programming models to consider when writing

high availability CGI programs or enabling an existing CGI program for use as a high availability CGI

program. The two categories are:

v Primary/backup

v Peer model

For the primary/backup, follow these additional guidelines:

The stateful data is saved by the high availability CGI program by calling the QzhbCgiSendState API. To

retrieve any stateful data that has been stored use the QzhbCgiRecvState API. The QzhbCgiRecvState API

returns stateful information when the environment variable QZHBRECOVERY is set and

QZHBHA_MODEL is equal to PRIMARYBACKUP. If the QZHBRECOVERY is not set, then the CGI

program should not use the QzhbCgiRecv State API. You must write a persistent CPI that maintains the

data in static variables. If the environment variable QZHBRECOVERY is set, retrieve the data using the

QzhbCgiRecvState API and restore the static variables.

The Web server still limits the total number of persistent CGIs (both cluster-enabled and cluster-disabled)

using the MaxPersistentCGI directive.

For the Peer model, follow these additional guidelines:

The stateful data is saved by the high availability CGI program by calling the QzhbCgiSendState API. To

retrieve any stateful data that has been stored use the QzhbCgiRecvState API. The QzhbCgiRecvState API

must be used with each new request to retrieve any stateful data that has been stored for a previous high

availability CGI program invocation. In this model your CGI program must not save stateful data in

static variables.

If QZHBHA_MODEL is PUREPEER the CGI is expected to restore its state, to serve the request, and to

return its new state to the Web server. When the Web server receives the new CGI’s state, it stores the

state (which will be passed to the CGI with the subsequent request), returns the response to the client,

and terminates the CGI job. Consider a cluster-enabled persistent CGI program. The concept of

persistency is kept, but its implementation is absolutely changed. A cluster-enabled persistent CGI

program does not stay in the CGI job during a session; it is invoked each time a request comes in.

726 iSeries: IBM HTTP Server

However, the concept of persistency is kept due to CGI’s state (and the state of the Web server regarding

the CGI) stored in the CHT and always passed to the CGI program with subsequent requests.

Overview of High Availability CGI

High availability CGI programs use APIs to preserve the CGI’s state between successive client requests. A

High availability CGI program stores its state data on the Web server and can retrieve its state even after

a failure or switchover of the HTTP Server or system.

Although maintaining a CGI program’s state across multiple requests is a concept used by both Persistent

CGI and High availability CGI programs, the mechanisms used by the two types of programs are

significantly different and a High Availability CGI program should not be confused with a Persistent CGI

program.

During the configuration of an Web server, the server administrator indicates whether CGI programs are

allowed to be cluster-enabled High Availability CGI programs. If the server receives a request for a CGI

program that is allowed to be Highly Available (HA), the Web server passes to the CGI an environment

variable that indicates the CGI may be cluster-enabled. The server also creates and passes a unique

session handle to the CGI. The CGI program must then acknowledge that it is a cluster-enabled HA CGI

program to the server, otherwise the server will regard the CGI as not being cluster-enabled.

The Web server associates a HA CGI program’s state with the unique session handle that was passed as

an environment variable to the CGI. If a request to run the CGI is sent to the Web server, and the

requested URL includes the specific session handle, the Web server will be able to correctly restore the

previous state of the CGI. For this reason it is important that the session handle appear in all URLs that

were generated by the HA CGI program to be returned to the client.

An HA CGI program will use two APIs to maintain its state. To store state information on the Web

server, the CGI calls the API QzhbCgiSendState. To receive its previous state from the Web server, the

CGI should call the API QzhbRecvState.

Using directives for security and access control for HTTP Server (original)

The server administrator controls the behavior of the server. The server will not do anything that the

server administrator has not explicitly configured it to do.

Several features of the server ensure that the administrator maintains this control:

v The default fail rule means that only requests that are authorized by the web administrator are

honored; other requests will fail.

v Explicit CGI enablement means that no CGI programs will run unless specifically authorized.

v Only CGI programs are run.

v Only the read HTTP methods GET, POST, and HEAD are supported.

The default fail rule: The server rejects, by default, all incoming requests unless the URL, as translated

by any preceding Map directives, matches a Pass, Redirect, or Exec directive that has been explicitly

coded by the server administrator:

v A match with a Pass directive enables the server to serve a document.

v A match with a Redirect directive causes the server to return a 302 response, found in the HTTP

response to the client application. This HTTP response header field contains a location with the redirect

request. The HTTP request that matches a Redirect directive causes no data to be accessed. A

subsequent request generated by a client could cause data to be accessed.

v A match with an Exec directive enables the server to run a CGI program on behalf of the client.

v A match with a Service directive enables the server to run a server API program on behalf of the client.

HTTP Server 727

Explicit CGI enablement: The server will not run a user-defined CGI program unless the server

administrator has explicitly enabled it by coding an Exec directive. The server administrator can, for

example, limit CGI requests to a specific library in QSYS.LIB.

Important: It is the server administrator’s responsibility to verify that any CGI program that is enabled

does not violate the customer’s security policies for the system on which the server is

running. IBM recommends that the HTTP administrator move the DB2WWW *PGM (the

Net.Data CGI program) from the QHTTPSVR library to its own CGI library. This allows users

to run the CGI program while limiting access to the QHTTPSVR library. Do not move any

Include files from the QHTTPSVR library.

Server runs only CGI programs: To run properly, programs that are called by the server must conform

to the server CGI interface. When the server is enabled to call a particular program on behalf of a remote

HTTP client application, the program is called and the output is returned through the server CGI

interface.

Overview of Persistent CGI

Persistent CGI is an extension to the CGI interface that allows a CGI program to remain active across

multiple browser requests and maintain a session with that browser client. This allows files to be left

open, the state to be maintained, and long running database transactions to be committed or rolled-back

based on end-user input.

The CGI program must be written using named activation groups which allows the program to remain

active after returning to the server. The CGI program notifies the server it wants to remain persistent

using the �Accept-HTSession� CGI header as the first header it returns. This header defines the session

ID associated with this instance of the CGI program and is not returned to the browser. Subsequent URL

requests to this program must contain the session ID as the first parameter after the program name. The

server uses this ID to route the request to that specific instance of the CGI program. The CGI program

should regenerate this session ID for each request. It is strongly recommended that you use Secure

Sockets Layer (SSL) for persistent and secure business transaction processing.

Named Activation Groups: CGI programs can be built using named activation groups by specifying a

name on the ACTGRP parameter of the CRTPGM or CRTSRVPGM commands. In doing this, the initial

call to the program within the job will still have the startup cost of activating the program. However, an

activation group is left active after the program has exited normally. All storage associated with that

program is still allocated and in �last-used� state. The program is not initialized when it is called again.

In addition, for the ILE C runtime, all settings are in �last-used� state, such as signal(), strtok(). The

RCLACTGRP command is used to end a named activation group. Use the DSPJOB OPTION(*ACTGRP)

command to display all the activation groups for the job. All ILE languages running on the server can

use this mechanism to enable persistence for their CGI programs.

For additional information about activation groups see the, ILE Concepts, SC41-5606 book.

Accept-HTSession CGI Header: This header specifies the session handle associated with this instance of

the Persistent CGI program. This session handle is used to route back subsequent requests to that

program and must be unique, or the server will not honor the persistence request. A message is logged in

the error log of the server.

Accept-HTSession = "Accept-HTSession" ":" handle

When the server receives this header, the CGI job servicing the request will be reserved in a persistent

state. Only requests coming in with that session handle in the URL are routed back to that instance of the

CGI program. The URL must be in the following format:

/path/cgi-name/handle/rest/of/path

Where handle is an exact match of the handle provided in the �Accept-HTSession� CGI header for the

program cgi-name.

728 iSeries: IBM HTTP Server

Note: The cgi-name that is being resolved is the name as it appears in the URL. It is not necessarily the

actual name of the program being started on the system. This is to remain consistent with the

name resolution performed by the server.

HTTimeout CGI Header: The HTTimeout header is for the CGI program to define the amount of time, in

minutes, that this CGI program wants to wait for a subsequent request. If not specified, the value

specified on the PersistentCGITimeout directive is used. If specified, it takes precedence over the

PersistentCGITimeout directive, but the server will not wait longer than the time specified on the

MaxPersistentCGITimeout directive. This allows individual CGI programs to give users more time to

respond to lengthy forms or explanations. However, it still gives the server ultimate control over the

maximum time to wait.

HTTimeout = "HTTimeout" ":" minutes

The time-out value is a non-negative decimal integer, representing the time in minutes. This header must

be preceded by an �Accept-HTSession� header, if not, it is ignored. If you omit the header, the default

time-out value for the server is used. When a CGI program is ended because of a time-out, a message is

logged in the error log of the server.

Considerations for using Persistent CGI Programs: You should be aware of the following

considerations when using persistent CGI programs:

v The web administrator can limit the number of persistent CGI programs that the server supports by

using the MaxPersistentCGI configuration directive.

v There are some job or thread-level resources that the server code running in the CGI job usually

manipulates (directly or indirectly) on behalf of CGI programs. The following attributes will

(potentially) change across calls:

– Environment variables the server sets

– Stdin/Stdout/Stderr file descriptors

– User profile

– Library list
v The server will not set the rest of the job attributes set by the server, and therefore, will maintain state

across calls if changed by the CGI program. Note, however, that the CGI program must restore the

initial state of these values before ending its persistence in order to guarantee compatibility across

subsequent server requests:

– Job Language, Country, CCSID

– Job Priority

– Printer/Output Queue

– Message Logging

– Environment variables set by the CGI program
v For added security, web server administrators can protect their persistent CGI programs using

registered Internet users, thereby forcing authentication by the user before processing each request.

Persistent CGI Program Example: The program example located under Developer Resources,

http://www.ibm.com/eserver/iseries/http , displays a counter that is increased each time the Persistent

CGI program is called.

Common gateway interface (CGI) programs for the HTTP Server

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 729

http://www.ibm.com/eserver/iseries/http
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Common Gateway Interface (CGI) is a standard that defines how information is exchanged between a

Web server and an external program (CGI program).

The functions and tasks that CGI programs can perform range from the simple to the very advanced and

come in two different types, GGI script and gateway program. CGI scripts are used to perform simple

tasks and do not require to be compiled. The more complex tasks are most commonly referred to as

gateway programs. In general, both types are referred to as CGI programs.

Regardless of the type of CGI program, both are designed to handle dynamic information. Dynamic, in

this context, refers to temporary information that is created for a one-time use and not stored as a static

Web page. This information may be a document, an e-mail message, or the results of a conversion

program. You must to compile gateway programs before using them. Compiled programs typically run

faster than programs that are written in scripting languages. On the other hand, those programs that are

written in scripting languages tend to be easier to write, maintain, and debug.

The CGI specification dictates how CGI programs receive input and how output is produced. A common

use of CGI programs is to process data that is received from browser clients. For example, the client fills

out a form and sends the information back to the server. Then the server runs the CGI program.

Programs that are called by the server must conform to the server CGI interface in order to run properly.

The administrator controls which CGI programs the system can run by using the server directives. The

server recognizes a URL that contains a request for a CGI program, commonly called a CGI script.

Depending on the server directives, the server calls that program on behalf of the client browser. The

server supports CGI programs that are written in C++, REXX, Java, ILE C, ILE RPG, and ILE COBOL. It

also supports multi-thread CGI programs in all of these languages capable of multiple threads.

For detailed information about CGI APIs, see “Application programming interfaces (APIs) for HTTP

Server” on page 218.

CGI and dynamic documents

There are many types of files that exist on the Web. Primarily they fall into one of the following

catagories:

v images

v multimedia

v programs

v HTML documets

Servers break HTML documets into two distinct types:

v static

v dynamic

Static documents exist in non-changing source form on the web server. You should create Dynamic

documents as temporary documents to satisfy a specific, individual request.

Consider the process of �serving� these two types of documents. Responding to requests for static

documents is fairly simple. For example, Jill User accesses the Acme web server to get information on the

Pro-Expert gas grill. She clicks on Products, then on Grills, and finally on Pro-Expert. Each time Jill clicks

on a link, the web browser uses the URL that is attached to the link to request a specific document from

the web server. The server responds by sending a copy of the document to Jill’s browser.

What if Jill decides that she wants to search through the information on the Acme web server for all

documents that contain information on Acme grills? Such information could consist of news articles,

press releases, price listings, and service agreements. This is a more difficult request to process. This is

730 iSeries: IBM HTTP Server

not a request for an existing document. Instead, it is a request for a dynamically generated list of

documents that meet certain criteria. This is where CGI comes in.

CGI programs may be used to parse the request and search through the documents on your web server.

You can also use it to create a list with hypertext links to each of the documents that contain the specified

word or string.

Uses for CGI

HTML allows you to access resources on the Internet by using other protocols that are specified in the

URL. Examples of such protocols are mailto, ftp, and news. If you code a link with mailto that is

followed by an e-mail address, the link will result in a generic mail form.

What if you wanted your customers to provide specific information, such as how often they use the web?

Or how they heard about your company? Rather than using the generic mailto form, you can create a

form that asks these questions and more. You can then use a CGI program to interpret the information,

include it in an e-mail message, and send it to the appropriate person.

You do not need to limit CGI programs to processing search requests and e-mail. You can use them for a

wide variety of purposes. Basically, anytime you want to take input from the reader and generate a

response, you can use a CGI program. The input may even be apparent to the reader. For example, many

people want to know how many other people have visited their home page. You can create a CGI

program that keeps track of the number of requests for your home page. This program can display the

new total each time someone links to your home page.

For general information on CGI programs see http://hoohoo.ncsa.uiuc.edu/cgi/

.

The CGI Process

Usually CGI programs are referred to from within HTML documents. In general, the HTML document

format defines the environment variables that specify the passing of information. When you design the

layout of your HTML document, you must keep in mind how a CGI program might affect the look of

your document. Developing the CGI program along with the HTML document will help you avoid many

design mistakes.

Overview: The CGI process involves three players: The web browser, the web server, and the CGI

program. To exemplify how CGI programs for online forms work, let us assume that the web browser

has already requested and obtained an HTML form.

1. The user clicks buttons or enters information in fields, and then clicks on an HTML button to submit

the request.

2. The web browser then sends the data to the web server in an encoded format. For example, the data

might consist of responses on an HTML form.

3. When the web server receives data, it converts the data to a format compliant with the CGI

specification for input and sends it to the CGI program.

4. The CGI program then decodes and processes the data.

5. The system sends this response back to the web server in a form that is compliant with the CGI

specification for output.

6. The web server then interprets the response and forwards it to the web browser.

Note: If a CGI application program must change HTTP Server job attributes while processing, the CGI

program must restore the attributes to their initial values before the CGI program ends. Failure to

restore job attributes that are changed in the CGI program will result in unpredictable responses to

future server requests. For example, a CGI program that requires a library in the library list needs

to add the library to the library list. The CGI program must remove the library list before the CGI

program ends.

HTTP Server 731

http://hoohoo.ncsa.uiuc.edu/cgi/

The following HTML form illustrates the various types of fields:

Note: The CGIXMP.EXE program referred to in this sample is just an example; it is not shipped with the

server product.
<HTML>

<HEAD>

<TITLE>CGIXMP Test Case</TITLE>

</HEAD>

<BODY>

<H1>CGI Sample Test Case</H1>

Fill in the following fields and press APPLY.

The values you enter will

be read by the CGIXMP.EXE program and displayed in a simple HTML

form which is generated dynamically by the program.

<P> <HR>

<form method=POST action="/cgi-bin/cgixmp">

<P>

<H3>Checkbox Field</H3>

<P>

<PRE>

<input type="checkbox" name="var1" value="123">

Check to set variable VAR1 to 123

<input type="checkbox" name="var2" value="XyZ" checked>

Check to set variable VAR2 to XyZ

</PRE>

<P>

<H3>Radio Button Field</H3>

<P>

<PRE>

<input type="radio" name="var3" value="1">

Select to set variable VAR3 to 1

<input type="radio" name="var3" value="2">

Select to set variable VAR3 to 2

<input type="radio" name="var3" value="3" checked>

Select to set variable VAR3 to 3

<input type="radio" name="var3" value="4">

Select to set variable VAR3 to 4

</PRE>

<P>

<H3>Single selection List Field</H3>

<P>

<PRE>

Select a value for variable VAR4 <select size=1 name="var4">

<option>0<option>1<option>2<option>3

<option>4<option>5</select>

</PRE>

<P>

<H3>Text Entry Field</H3>

<P>

<PRE>

Enter value for variable VAR5 <input type="text" name="var5"

size=20 maxlength=256 value="TEST value">

</PRE>

<P>

<H3>Multiple selection List Field</H3>

<P>

<PRE>

Select a value for variable VAR6

<select multiple size=2 name="var6">

<option>Ford<option>Chevrolet<option>Chrysler<option>

Ferrari<option>Porsche

</select>

</PRE>

<P>

<H3>Password Field</H3>

<P>

732 iSeries: IBM HTTP Server

<PRE>

Enter Password

<input type="password" name="pword" size=10 maxlength=10>

</PRE>

<P>

<H3>Hidden Field</H3>

<P>

<input type="hidden" name="hidden" value="Text not shown on form...">

<P>

<PRE>

<input type="submit" name="pushbutton" value="Apply">

<input type="reset" name="pushbutton" value="Reset">

<HR>

</PRE>

</FORM>

</BODY>

</HTML>

Sending Information to the Server: When you fill out a form, the web browser sends the request to the

server in a format that is described as URL-encoded. The web browser also performs this function

whenever you enter a phrase in a search field and click on the submission button. In URL-encoded

information:

v The URL starts with the URL of the processing program.

v A question mark (?) precedes attached data, such as name=value information from a form, which the

system appends to the URL.

v A plus sign (+) represents spaces.

v A percent sign (%) that is followed by the American National Standard Code for Information

Interchange (ASCII) hexadecimal equivalent of the symbol represents special characters, such as a

period (.) or slash (/).

v An ampersand (&) separates fields and sends multiple values for a field such as check boxes.

Note: The method attribute specifies how the server sends the form information to the program. You use

the GET and POST methods in the HTML file to process forms. The GET method sends the

information through environment variables. You will see the information in the URL after the �?�

character. The POST method passes the data through standard input.

The main advantage of using the GET method is that you can access the CGI program with a

query without using a form. In other words, you can create canned queries that pass parameters to

the program. For example, if you want to send the previous query to the program directly, you can

do the following:

YourCGI Program

The main advantage to the POST method is that the query length can be unlimited so you do not

have to worry about the client or server truncating data. The query string of the GET method

cannot exceed 4 KB.

Data Conversions on CGI Input and Output: The server can perform ASCII to EBCDIC conversions

before sending data to CGI programs. This is needed because the Internet is primarily ASCII-based and

the iSeries server is an extended binary-coded decimal interchange code (EBCDIC) server. The server can

also perform EBCDIC to ASCII conversions before sending data back to the browser. You must provide

data to a CGI program through environment variables and standard-input (stdin). HTTP and HTML

specifications allow you to tag text data with a character set (charset parameter on the Content-Type

header). However, this practice is not widely in use today (although technically required for HTTP1.0/1.1

compliance). According to this specification, text data that is not tagged can be assumed to be in the

default character set ISO-8859-1 (US-ASCII). The server correlates this character set with ASCII coded

character set identifier (CCSID) 819.

HTTP Server 733

For more information related to CCSIDs, national language support, and international application

development, see the Globalization topic in the iSeries Information Center.

HTTP Server (powered by Apache): You can configure HTTP Server (powered by Apache) to control which

mode is used by specifying the CGIConvMode directive in different contexts, such as server config or

directory:

CGIConvMode Mode

Where Mode is one of the following:

 BINARY

 EBCDIC

 EBCDIC_JCD

Note: For compatibility, HTTP Server (powered by Apache) also supports HTTP Server (original) modes.

If you are writing new CGI programs for HTTP Server (powered by Apache), use BINARY,

EBCDIC, or EBCIDIC_JCD.

When using one of HTTP Server (original) modes with HTTP Server (powered by Apache), you must

specify both the input and output modes in the directive.

CGI Environment Variables: In addition, the system provides the following CGI environment variables to

the CGI program:

v CGI_MODE - which input conversion mode the server is using (%%MIXED%%, %%EBCDIC%%,

%%BINARY%%, %%EBCDIC_JCD%%, EBCDIC, BINARY, or EBCIDIC_JCD)

v CGI_ASCII_CCSID - from which ASCII CCSID was used to convert the data

v CGI_EBCDIC_CCSID - which EBCDIC CCSID the data was converted into

v CGI_OUTPUT_MODE - which output conversion mode the server is using (%%MIXED%%,

%%EBCDIC%%, %%BINARY%, EBCDIC, or BINARY)

The supported environment variables for HTTP Server are can be found in the IBM iSeries Information

Center. The environment variables have been divided into two groups: Non-SSL and SSL and by HTTP

Server type.

CGI Input Conversion Modes:

 Table 24. Conversion action for text in CGI Stdin. This table summarizes the type of conversion that is performed by

the server for each CGI mode.

CGI_MODE Conversion Stdin

encoding

Environment

variable

Query_String

encoding

argv encoding

BINARY or %%BINARY%% None No

conversion

FsCCSID No conversion No conversion

EBCDIC or %%EBCDIC%% NetCCSID to

FsCCSID

FsCCSID FsCCSID FsCCSID FsCCSID

%%EBCDIC%% or

%%EBCDIC_JCD%% with

charset tag received

Calculate target

EBCDIC CCSID

based on

received ASCII

charset tag

EBCDIC

equivalent of

received

charset

FsCCSID FsCCSID FsCCSID

EBCDIC_JCD or

%%EBCDIC_JCD%%

Detect input

based on

received data.

Convert data to

FsCCSID

Detect ASCII

input based

on received

data.

Convert data

to FsCCSID.

FsCCSID Detect ASCII

input based on

received data.

Convert data to

FsCCSID.

Detect ASCII

input based on

received data.

Convert data to

FsCCSID

734 iSeries: IBM HTTP Server

Table 24. Conversion action for text in CGI Stdin (continued). This table summarizes the type of conversion that is

performed by the server for each CGI mode.

CGI_MODE Conversion Stdin

encoding

Environment

variable

Query_String

encoding

argv encoding

%%MIXED%%

(Compatibility mode)

NetCCSID to

FsCCSID

(receive charset

tag is ignored)

FsCCSID

with ASCII

escape

sequence

CCSID 37 CCSID 37 with

ASCII escape

sequence

CCSID 37 with

ASCII escape

sequence

EBCDIC or EBCDIC_JCD Calculate target

EBCDIC CCSID

based on

received ASCII

charset tag

EBCDIC

equivalent of

received

charset

FsCCSID EBCDIC

equivalent of

received charset

EBCDIC

equivalent of

received charset

HTTP Server (original)

%%MIXED%%

This mode is the default mode of operation for HTTP Server (original). The system converts

values for CGI environment variables to EBCDIC CCSID 37, including QUERY_STRING. The

system converts stdin data to the CCSID of the job. However, the system still represents the

encoded characters “%xx” by the ASCII 819 octet. This requires the CGI program to convert these

further into EBCDIC to process the data. For more information, see symptom, Special characters

are not being converted or handled as expected in Chapter 6, “Troubleshooting your CGI

programs” on page 43.

%%EBCDIC%%

In this mode, the server will convert everything into the EBCDIC CCSID of the job. The server

checks the Entity bodies for a charset tag. If found, the server will convert the corresponding

ASCII CCSID to the EBCDIC CCSID of the job. If the server does not find a charset tag, it uses

the value of the DefaultNetCCSID configuration directive as the conversion CCSID. In addition,

the system converts escaped octets from ASCII to EBCDIC, eliminating the need to perform this

conversion in the CGI program.

%%BINARY%%

In this mode, QueryString and stdin data is left in ASCII as it was sent by the browser. The CGI

program must be written to convert all data as needed. All other environment variables are in the

DefaultFSCCID, the default CCSID of the job.

%%EBCDIC_JCD%%

Japanese browsers can potentially send data in one of three code pages, JIS (ISO-2022-JP), S-JIS

(PC-Windows), or EUC (UNIX). In this mode, the server uses a well-known JCD utility to

determine which codepage to use (if not explicitly specified by a charset tag) to convert stdin

data.

HTTP Server (powered by Apache)

BINARY

The BINARY mode, deliversQueryString and stdin to the CGI program in ASCII, exactly as it was

received form the client. The environment variables are in the DefaultFSCCSID, the default job

CCSID including the name QUERY_STRING =.

EBCDIC

The EBCDIC mode, delivers all of the information to the CGI program in the DefaultFsCCSID,

the default CCSID of the job. This mode gives the CGI programmer a more consistent EBCDIC

mode than was present in HTTP Server (original). The ASCII CCSID of the QueryString or stdin

data is determined from a charset tag on the content type header if present, otherwise the

DefaultNetCCSID is used.

HTTP Server 735

EBCDIC_JCD

The EBCDIC_JCD mode is the same as the EBCDIC mode except that a well-known Japanese

codepage detection algorithm is used to determine the ASCII CCSID when the charset tag is not

present. Japanese browsers can potentially send data in one of three code pages, JIS (ISO-2022-JP),

S-JIS (PC-Windows), or EUC (UNIX).

DBCS Considerations: URL-encoded forms containing DBCS data could contain ASCII octets that

represent parts of DBCS characters. The server can only convert non-encoded character data. This means

that it must un-encode the double-byte character set (DBCS) stdin and QUERY_STRING data before

performing the conversion. In addition, it has to reassemble and re-encode the resulting EBCDIC

representation before passing it to the CGI program. Because of this extra processing, CGI programs that

you write to handle DBCS data may choose to receive the data as BINARY and perform all conversions

to streamline the entire process.

Using the EBCDIC_JCD mode: The EBCDIC_JCD mode determines what character set is being used by

the browser for a given request. This mode is also used to automatically adjust the ASCII/EBCDIC code

conversions used by the web server as the request is processed.

After auto detection, the %%EBCDIC_JCD%% or EBCDIC_JCD mode converts the stdin and

QUERY_STRING data from the detected network CCSID into the correct EBCDIC CCSID for Japanese.

The default conversions configured for the server instance are overridden. The DefaultFsCCSID directive

or the -fsccsid startup parameter specifies the default conversions. The startup FsCCSID must be a

Japanese CCSID.

The possible detected network code page is Shift JIS, eucJP, and ISO-2022-JP. The following are the

associated CCSIDs for each code page:

Shift JIS

=========

CCSID 932: IBM PC (old JIS sequence, OS/2 J3.X/4.0, IBM Windows J3.1)

CCSID 942: IBM PC (old JIS sequence, OS/2 J3.X/4.0)

CCSID 943: MS Shift JIS (new JIS sequence, OS/2 J4.0

MS Windows J3.1/95/NT)

eucJP

=====

CCSID 5050: Extended UNIX Code (Japanese)

ISO-2022-JP

===========

CCSID 5052: Subset of RFC 1468 ISO-2022-JP (JIS X 0201 Roman and

JIS X 0208-1983) plus JIS X 0201 Katakana.

CCSID 5054: Subset of RFC 1468 ISO-20220JP (ASCII and JIS X 0208-1983)

plus JIS X 0201 Katakana.

The detected network CCSID is available to the CGI program. The CCSID is stored in the

CGI_ASCII_CCSID environment variable. When JCD can not detect, the default code conversion is done

as configured (between NetCCSID and FsCCSID).

Since the code page of Stdin and QUERY_STRING are encoded according to the web client’s outbound

code page, we recommend using the following configuration value combinations when you use the

EBCDIC_JCD or %%EBCDIC_JCD%% mode.

Startup FsCCSID Startup NetCCSID Description

--------------- ---------------- ----------------------

5026/5035 (See note 4) <-> 943 Default: MS Shift JIS

5026/5035 (See note 4) <-> 942 Default: IBM PC

5026/5035 (See note 4) <-> 5052/5054 Default: ISO-2022-JP

Using CCSID 5050(eucJP) for the startup NetCCSID, is not recommended. When 5050 is specified for the

startup NetCCSID, the default code conversion is done between FsCCSID and 5050. This means that if

JCD cannot detect a code page, JCD returns 5050 as the default network CCSID. Most browser’s use a

default outbound code page of Shift JIS or ISO-2022-JP, not eucJP.

736 iSeries: IBM HTTP Server

If the web client sends a charset tag, JCD gives priority to the charset tag. Stdout function is the same. If

the charset/ccsid tag is specified in the Content-Type field, stdout gives priority to charset/ccsid tag.

Stdout also ignores the JCD detected network CCSID.

Notes:

1. If startup NetCCSID is 932 or 942, detected network, Shift JIS’s CCSID is the same as startup

NetCCSID. Otherwise, Shift JIS’s CCSID is 943.

Startup NetCCSID Shift JIS (JCD detected CCSID)

---------------- ------------------------------

932 932

942 942

943 943

5052 943

5054 943

5050 943

2. Netscape Navigator 3.x sends the alphanumeric characters by using JIS X 0201 Roman escape

sequence (CCSID 5052) for ISO-2022-JP. Netscape Communicator 4.x sends the alphanumeric

characters by using ASCII escape sequence (CCSID 5054) for ISO-2022-JP.

3. JCD function has the capability to detect EUC and SBCS Katakana, but it is difficult to detect

them. IBM recommends that you do not use SBCS Katakana and EUC in CGI.

4. CCSID 5026 assigns lowercase alphabet characters on a special code point. This often causes a

problem with lowercase alphabet characters. To avoid this problem, do one of the following:

v Do not use lowercase alphabet literals in CGI programs if the FsCCSID is 5026.

v Use CCSID 5035 for FsCCSID.

v Use the Charset/CCSID tag as illustrated in the following excerpt of a CGI program:

main(){

printf("Content-Type: text/html; Charset=ISO-2022-JP\n\n");

...

}

v Do the code conversions in the CGI program. The following sample ILE C program converts

the literals into CCSID 930 (the equivalent to CCSID 5026):

main(){

printf("Content-Type: text/html\n\n);

#pragama convert(930)

printf("<html>");

printf("This is katakana code page\n");

#pragama convert(0)

...

}

v When the web client sends a charset tag, the network CCSID becomes the ASCII CCSID

associated with Multipurpose Internet Mail Extensions (MIME) charset header. The charset

tag ignores the JCD detected CCSID. When the Charset/ccsid tag is in the Content-Type

header generated by the CGI program, the JCD-detected CCSID is ignored by this

charset/ccsid. Stdout will not perform a conversion if the charset is the same as the MIME’s

charset. Stdout will not perform a conversion if the CCSID is ASCII. Stdout will perform

code conversion if the CCSID is EBCDIC. Because the environment variables and stdin are

already stored in FsCCSID, ensure that you are consistent between the FsCCSID and the

Content-Type header’s CCSID.

CGI Output Conversion Modes: The CgiConv mode includes an output mode. This section explains CGI

output conversion modes in more detail.

HTTP Server 737

Table 25. Conversion action and charset tag generation for text in CGI Stdout. This table summarizes the type of

conversion that is performed and the charset tag that is returned to the browser by the server.

CGI Stdout CCSID/Charset in HTTP header Conversion action Server reply charset tag

EBCDIC CCSID/Charset Calculate EBCDIC to

ASCII conversion based

on supplied EBCDIC

CCSID/Charset

Calculated ASCII charset

ASCII CCSID/Charset No conversion Stdout CCSID/Charset as

Charset

65535 No conversion None

None (CGIConvMode= %%BINARY%%,

%%BINARY/MIXED%%, or %%BINARY/EBCDIC%%)

Default Conversion -

FsCCSID to NetCCSID

NetCCSID as charset

None (CGIConvMode= BINARY or

%%BINARY/BINARY%%)

No conversion None

None (CGIConvMode= EBCDIC, %%EBCDIC%%,

%%EBCDIC/MIXED%%, or %%EBCDIC/EBCDIC%%)

Default Conversion -

FsCCSID to NetCCSID

NetCCSID as charset

None (CGIConvMode= EBDCID, EBCDIC_JCD,

%%EBCDIC%%, %%EBCDIC/MIXED%%, or

%%EBCDIC/EBDCID%% with charset tag received on

HTTP request)

Use inverse of conversion

calculated for stdin

Charset as received on HTTP

request

None (CGIConvMode= %%EBCDIC_JCD%%,

%%EBCDIC_JCD/MIXED%%, or %EBCDIC_JCD/
EBCDIC%%)

Use inverse of conversion

calculated by the Japanese

codepage detection

ASCII CCSID as charset

None (CGIConvMode= %%MIXED%% or

%%MIXED/MIXED%%)

Default Conversion -

FsCCSID to NetCCSID

None (compatibility mode)

Invalid CGI error 500 generated by server

HTTP Server (original) and HTTP Server (powered by Apache) also set an environment variable

CGI_OUTPUT_MODE to reflect the setting for the CGI output mode. It contains the CGI output

conversion mode the server is using for this request. Valid values are %%EBCDIC%%, %%MIXED%%,

%%BINARY%%, EBCDIC, BINARY, or EBCDIC_JCD. The program can use this information to determine

what conversion, if any, the server performs on CGI output.

HTTP Server (powered by Apache)

BINARY

In this mode HTTP header output is in CCSID 819 with the escape sequences also being the

ASCII representative of the ASCII code point. An example of a HTTP header that may contain

escape sequences is the Location header. The body is always treated as binary data and the server

performs no conversion.

EBCDIC

In this mode HTTP header output is in DefaultFsCCSID. However, the escape sequence must be

the EBCDIC representative of the EBCDIC code point for the 2 characters following the �%� in

the escape sequence. An example of a HTTP header that may contain escape sequences is the

Location header. The body (if the mime type is text/*) is assumed to be in the DefaultFsCCSID,

default CCSID of the job, unless specified otherwise in a charset or CCSID tag by the CGI

program.

EBCDIC_JCD

In this mode HTTP header output is in DefaultFsCCSID. However, the escape sequence must be

the EBCDIC representative of the EBCDIC code point for the 2 characters following the �%� in

the escape sequence. An example of a HTTP header that may contain escape sequences is the

738 iSeries: IBM HTTP Server

Location header. The body (if the mime type is text/*) is assumed to be in the DefaultFsCCSID,

default CCSID of the job, unless specified otherwise in a charset or CCSID tag by the CGI

program.

Returning Output from the Server: When the CGI program is finished, it passes the resulting response

to the server by using standard output (stdout). The server interprets the response and sends it to the

browser.

A CGI program writes a CGI header that is followed by an entity body to standard output. The CGI

header is the information that describes the data in the entity body. The entity body is the data that the

server sends to the client. A single newline character always ends the CGI header. The newline character

for ILE C is \n. For ILE RPG or ILE COBOL, it is hexadecimal ’15’. The following are some examples of

Content-Type headers:

Content-Type: text/html\n\n

Content-Type: text/html; charset=iso-8859-2\n\n

If the response is a static document, the CGI program returns either the URL of the document using the

CGI Location header or returns a Status header. The CGI program does not have an entity body when

using the Location header. If the host name is the local host, HTTP Server will retrieve the specified

document that the CGI program sent. It will then send a copy to the web browser. If the host name is not

the local host, the HTTP processes it as a redirect to the web browser. For example:

Location: http://www.acme.com/products.html\n\n

The Status header should have a Content_Type: and a Status in the CGI header. When Status is in the

CGI header, an entity body should be sent with the data to be returned by the server. The entity body

data contains information that the CGI program provides to a client for error processing. The Status line

is the Status with an HTTP 3 digit status code and a string of alphanumeric characters (A-Z, a-z, 0-9 and

space). The HTTP status code must be a valid 3 digit number from the HTTP/1.1 specification.

Note: The newline character \n ends the CGI header.
CONTENT-TYPE: text/html\n

Status: 600 Invalid data\n

\n

<html><head><title>Invalid data</title>

</head><body>

<h1>Invalid data typed</h1>

<pre>

The data entered must be valid numeric digits for id number

</pre>

</body></html>

How CGI Programs Work: Most CGI programs include the following three stages:

v Parsing CGI programs

v Data manipulation within a CGI program

v Response generation by a CGI program

Note: Any CGI program with a name that ends in _nph is considered a no parse header CGI program.

This means that the server does no conversions on the data and sends no headers back in the

response from the CGI program. The CGI programmer is in total control and is responsible for

parsing the request and then sending all of the necessary headers back with the response.

Parsing: Parsing is the first stage of a CGI program. In this stage, the program takes the data from

QUERY_STRING environment variable, command line arguments using argv() or standard input. When

the method is GET, the system reads the data from the QUERY_STRING environment variable or

command line arguments by using argv(). There is no way to determine the length of data in

QUERY_STRING. The system encodes the QUERY_STRING data in the request header.

HTTP Server 739

An example of data read in the QUERY_STRING variable (%%MIXED%% mode):

NAME=Eugene+T%2E+Fox&ADDR=etfox%40ibm.net&INTEREST=RCO

Parsing breaks the fields at the ampersands and decodes the ASCII hexadecimal characters. The results

look like this:

NAME=Eugene T. Fox

ADDR=etfox@ibm.net

INTEREST=RCO

You can use the QtmhCvtDb API to parse the information into a structure. The CGI program can refer to

the structure fields. If using %%MIXED%% input mode, the “%xx” encoding values are in ASCII and

must be converted into the “%xx” EBCDIC encoding values before calling QtmhCvtDb. If using

%%EBCDIC%% mode, the server will do this conversion for you. The system converts ASCII “%xx” first

to the ASCII character and then to the EBCDIC character. Ultimately, the system sets the EBCDIC

character to the “%xx” in the EBCDIC CCSID.

When the method is post, the system reads the data from standard input. Before the CGI attempts to read

standard input, it must check environment variables REQUEST_METHOD and CONTENT_LENGTH.

Read standard input only when the REQUEST_METHOD is POST. The read must specify no more than

CONTENT_LENGTH bytes. Attempts to specify more than CONTENT_LENGTH bytes on reading

standard input are not defined.

Data manipulation: Data manipulation is the second stage of a CGI program. In this stage, the program

takes the parsed data and performs the appropriate action. For example, a CGI program designed to

process an application form might perform one of the following functions:

1. Take the input from the parsing stage

2. Convert abbreviations into more meaningful information

3. Plug the information into an e-mail template

4. Use SNDDST to send the e-mail.

Response generation: Response generation is the final stage of a CGI program. In this stage, the program

formulates its response to the web server, which forwards it to the browser. The response contains MIME

headers that vary depending on the type of response. With a search, the response might be the URLs of

all the documents that met the search value. With a request that results in e-mail, the response might be a

message that confirms that the system actually sent the e-mail.

CGI Program Interface

A Web server passes information to CGI programs using environment variables. If the HTTP Method is

�POST� the CGI also obtains information from the Web Server through stdin. The CGI program uses

stdout to send its response back to the Web server. The response consists of a set of headers (such as

Content-Length and Content-Type) followed by the response body which is frequently HTML data.

The following environment variables are passed by the Web server to High Availability CGI programs:

v QZHBIS_FIRST_REQUEST

v QZHBIS_CLUSTER_ENABLED

v QZHBNEXT_SESSION_HANDLE

v QZHBRECOVERY

The �Cluster-Enabled� and �Accept-HTSession� headers should be returned in each response from a

High Availability CGI program. Cluster-Enabled:1

An error will result if the �Cluster-Enabled� header is returned by a CGI program with a value of �1�,

but the Web Server is not configured to allow that CGI program to be Highly available.

740 iSeries: IBM HTTP Server

When the Web server receives the �Cluster-Enabled� header with a value of �1�, the server will create a

new session entry and indicate that the session is cluster-enabled.

Cluster-enabled CGI programs will return the �Accept-HTSession� header to the Web server with a value

equal to the value passed to the CGI in the QZHBNEXT_SESSION_HANDLE environment variable. An

error will result if the value specified with �Accept-HTSession� does not match the value passed to the

CGI in QZHBNEXT_SESSION_HANDLE. For CGI programs that are not cluster-enabled, the

�Accept-HTSession� CGI header remains unmodified.

CGI Programs and Activation Groups

The following section is intended to give a brief overview of Activation Groups.

Note: It is very important to become familiar with the details of activation groups prior to developing or

porting a CGI application that will use this support.

Activation Groups: Program activation is the process that is used to prepare a program to run. The

system must activate ILE programs before they can be run. Program activation includes the allocation

and initialization of static storage for the program in addition to completing the binding of programs to

service programs. Activation Groups must be used when running persistent CGI.

Program activation is not a unique concept. All modern computer operating systems must perform

program initialization and load. What is unique to CGI programs on the iSeries server is the concept of

Activation Groups. All ILE programs and service programs are activated within an activation group. This

substructure contains the resources necessary to run the program. The resources that are contained and

are managed with an activation group include:

v Static and automatic program variables

v Dynamic storage

v Temporary data management resources (For example, open files and SQL cursors)

v Certain types of exception handlers and ending procedures

Run-time creation of ILE activation groups is controlled by specifying an activation group attribute when

your program or service program is created. The attribute is specified by using the ACTGRP parameter

on the CRTPGM or CRTSRVPGM command. The valid options for this attribute include user-named,

*NEW, and *CALLER. The following is a brief description of these options:

user-named

A named activation group allows you to manage a collection of ILE programs and ILE service

programs as one application. The activation group is created when it is first needed. All programs

and service programs that specify the same activation group name use it then.

*NEW The name for this activation group is selected by ILE and will always be unique. System-named

activation groups are always deleted when the high level language returns. *NEW is the standard

behavior that can be expected on other systems such as UNIX.

*CALLER

Specifying *CALLER causes the ILE program or service program to be activated within the

activation group of the calling program. A new activation group is never created with this

attribute.

Notes:

1. When you create a persistent CGI program, you must specify a named activation group.

2. CGI programs that are not persistent should not refer to job-level scoped resources.

For additional information about activation groups see, ILE Concepts, SC41-5606 book.

HTTP Server 741

CGI Considerations: There are advantages to running CGI programs in either a user-named or

*CALLER activation group. The performance overhead associated with activating a CGI every time that is

requested can be drastically reduced. It is important to understand that because the system does not

delete user-named activation groups, normal high level language end verbs cannot provide complete end

processing. For example, the system will not close open files, and the system will not return the static

and heap storage that are allocated by a program. The program must manage these resources explicitly.

This will be especially important when moving CGI programs that rely on end processing to function

properly.

Note: When you activate multi-threaded CGI on your web server, you get multiple thread support for

your CGI application Your CGI application must end all of its threads before returning to the

server. When using multi-thread capable CGI, you need to put the CGI program in a new or

named activation group.

The following section shows examples which will work fine running in a *NEW activation group,

however will cause problems if run in a user-named or *CALLER activation group.

Activation Group Problem Examples:

Note: The following examples are not general CGI programming examples. For general CGI

programming examples, see Chapter 7, “Sample programs (in Java, ILE C, and ILE RPG)” on page

49.

In the following example a CGI program when run in a *NEW activation group, would write Hello

World to the browser. What is important to understand is that this application is taking advantage of job

end processing to delete the stdio buffers that are used to buffer the stdout data.

You could build the following CGI program to run in either a user-named or *CALLER activation group.

In such an instance, the server will not process the information that was written to stdout. This will cause

the web browser to display a �Document Contains No Data� error message. Another application could

run again in the same activation group that properly erased stdout. In this instance, the data that has

been buffered from previous calls would be sent.

#include <stdio.h>

void main(void) {

/***/

/* Write header information. */

/***/

printf("Content-type: text/html\n\n");

/***/

/* Write header information. */

/***/

printf("Hello World\n");

}

End processing may not erase stdio buffers so the application must erase the stdout with a fflush(stdout)

call. The following example will work regardless of the activation group specification:

#include <stdio.h>

void main(void) {

/***/

/* Write header information. */

/***/

printf("Content-type: text/html\n\n");

/***/

/* Write header information. */

/***/

printf("Hello World\n");

/*---*/

742 iSeries: IBM HTTP Server

/* FIX: Flush stdout. */

/*---*/

fflush(stdout);

}

When run in a *NEW activation group, this example CGI would read CONTENT_LENGTH bytes of data

from stdin and write this back out to stdout. The system has allocated the buffer that is used to hold the

data with a malloc. Like the example that is previously shown, this application is relying on several

aspects of job end processing to function properly.

If this CGI program were built to run in either a user-named or *CALLER activation group, the following

problems would occur:

v As with the simple example that is previously shown, the application is not erasing stdout. This would

cause the web browser to display a �Document Contains No Data� error message. You could run

another application again in the same activation group that properly erased stdout. This would send

the data that has been buffered from previous calls.

v Stdin is buffered similar to stdout. If the contents of stdin are not erased, the stdin data on the second

and all following calls of the CGI program will be unpredictable and the contents may at times contain

information from subsequent requests.

v The heap storage allocated using malloc is not being freed. Over time, a memory leak error like this

could use significant amounts of memory. This is a common application error that only surfaces when

the application is not running in a *NEW activation group.
/***/

/* */

/* CGI Example program. */

/* */

/***/

#include

void main(void)

{

char* stdinBuffer;

char* contentLength;

int numBytes;

int bytesRead;

FILE* pStdin;

/**/

/* Write the header. */

/**/

printf("Content-type: text/html\n\n");

/**/

/* Get the length of data on stdin. */

/**/

contentLength = getenv("CONTENT_LENGTH");

if (contentLength != NULL) {

/***/

/* Allocate storage and clear the storage to hold the data. */

/***/

numBytes = atoi(contentLength);

stdinBuffer = (char*)malloc(numBytes+1);

if (stdinBuffer)

memset(stdinBuffer, 0x00, numBytes+1);

/***/

/* Read the data from stdin and write back to stdout. */

/***/

bytesRead = fread(stdinBuffer, 1, numBytes, pStdin);

stdinBufferþbytesRead+1þ = ’\0’;

printf("%s", stdinBuffer);

} else

printf("Error getting content length\n");

return;

}

HTTP Server 743

The following example shows the changes that would be required to this application to allow it to run in

a user-named or *CALLER activation group:

/***/

/* */

/* CGI Example program with changes to support user-named */

/* and *CALLER ACTGRP. */

/* */

/***/

#include

void main(void)

{

char* stdinBuffer;

char* contentLength;

int numBytes;

int bytesRead;

FILE* pStdin;

/**/

/* Write the header. */

/**/

printf("Content-type: text/html\n\n");

/**/

/* Get the length of data on stdin. */

/**/

contentLength = getenv("CONTENT_LENGTH");

if (contentLength != NULL) {

/***/

/* Allocate storage and clear the storage to hold the data. */

/***/

numBytes = atoi(contentLength);

stdinBuffer = (char*)malloc(numBytes+1);

if (stdinBuffer)

memset(stdinBuffer, 0x00, numBytes+1);

/*---*/

/* FIX 2: Reset stdin buffers. */

/*---*/

pStdin = freopen("", "r", stdin);

/***/

/* Read the data from stdin and write back to stdout. */

/***/

bytesRead = fread(stdinBuffer, 1, numBytes, pStdin);

stdinBufferþbytesRead+1þ = ’\0’;

printf("%s", stdinBuffer);

/*---*/

/* FIX 3: Free allocated memory. */

/*---*/

free(stdinBuffer);

} else

printf("Error getting content length\n");

/*---*/

/* FIX 1: Flush stdout. */

/*---*/

fflush(stdout);

return;

}

Set up CGI programs for HTTP Server (powered by Apache)

This topic describes how to set up your HTTP Server to use CGI programs.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

744 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The following discusses how to set up your HTTP Server (powered by Apache) to use your CGI

programs.

CGI settings:

You can set values associated with CGI jobs.

To set CGI settings, do the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select the context you want to work with from the Server area list.

5. Expand Server Properties.

6. Click Dynamic Content and CGI.

7. Click the General Settings tab in the form.

8. Depending on the server area you selected, enter the values associated with your CGI jobs.

9. Click OK.

Persistent CGI settings:

Persistent CGI is an extension to the CGI interface. It allows a CGI program to remain active across

multiple browser requests and maintain a client session.

To set persistent CGI settings, do the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select your HTTP Server (powered by Apache) from the Server list.

4. Select the context you want to work with from the Server area list.

5. Expand Server Properties.

6. Click Dynamic Content and CGI.

7. Click the Persistent CGI tab in the form.

8. Depending on the server are you selected, enter the values associated with the CGI jobs.

9. Click OK.

See the Developer Resources topic at http://www.ibm.com/eserver/iseries/http

for sample CGI

programs.

CGI in PASE for HTTP Server

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

If your CGI programs currently run on a Unix platform, they may run on the iSeries HTTP Server in

PASE. To do this, store your CGI programs in the QOpenSys file system. You should then verify that

your program will run in PASE. For more information on how to prepare your code and insure that it

will run effectively in PASE, see the Prepare programs to run in PASE topic. And finally, use the

ScriptAlias directive in the configuration file, httpd.conf, to map the URL to the program, as you would

with any CGI program.

HTTP Server 745

http://www.ibm.com/eserver/iseries/http
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_alias.htm#scriptalias

Note: CGI programs that reside in PASE must have file names that do not include the following

extensions which are reserved for non-PASE CGI programs:

v .rexx

v .pl

v .pgm

v .class

Sample CGI Program Configuration

This sample code shows one way to use the ScriptAlias directive to map your CGI program to a URL.

ScriptAlias /cgi-pase/ /QOpenSys/myserver/cgi-bin/

How to enable the server to run CGI programs

The iSeries server stores some CGI programs in QSYS.LIB. You can write the programs in C++, REXX,

Java, ILE C, ILE RPG, or ILE COBOL. If the UserID directive is not active, the server profile QTMHHTP1

needs access to the *PGM object and all objects the program accesses. If the UserID directive is active, the

UserID profile needs access to the *PGM object and all objects the program accesses. The Exec directive is

required in HTTP Server (original) configuration to run a CGI program on the server. The ScriptAlias

directive is required in HTTP Server (powered by Apache) configuration to run a CGI program on the

server.

Here is a summary of the steps you need to take to enable your server to run CGI programs:

 1. Decide for which CGI mode you will write your program.

 2. Write the C++, REXX, Java, ILE C, ILE RPG, or ILE COBOL program.

 3. Compile your program, if required.

 4. Create a directory structure for your program using MKDIR.

 5. Transfer your program to the new directory.

 6. If you are using HTML, set the source type using CHGPFM.

 7. Create the program object using CRTCMOD and CRTPGM.

 8. Ensure that your program has the correct authority using PUBLIC, QTMHHTTP or QTMHHTP1.

 9. Create a new server instance to associate with your program.

10. Make any changes to your server configuration file that are needed. For example, you need to add

the Exec or ScriptAlias directive at a minimum.

11. Start or restart the server.

12. Point your web browser to the URL for the HTML document on the server where hostname is the

fully qualified host domain name of your server.

http://hostname/sample

Note: For REXX programs, you only need to indicate the path and the file name in the EXEC or

ScriptAlias directive. REXX CGI execs must reside in database files named REXX or

QREXSRC. For example:

EXEC /REXX/* /QSYS.LIB/AS400CGI.LIB/QREXSRC.FILE/*

Or in HTTP Server (powered by Apache):

ScriptAlias /REXX /QSYS.LIB/AS400CGI.LIB/QREXSRC.FILE/*

The URL is :

http://hostname/REXX/samplecgi.REXX

Troubleshooting your CGI programs

You can use the Work with Active Jobs (WRKACTJOB) command to check on the status of server jobs.

746 iSeries: IBM HTTP Server

To start Work with Active Jobs command, type the following in during a 5250 session on a command

line:

WRKACTJOB SBS(QHTTPSVR) JOB(server_instance)

Where server_instance is the name of your HTTP Server instance.

When the server is not processing a request, the Work with Active Jobs display might be similar to

Figure 1:

 To find out if server jobs have ended abnormally, check the spooled files that contain the job logs

(QPJOBLOG) for the user profile QTMHHTTP.

The symptoms that are described in this section would be seen running a request to the server at a

browser.

Symptom: Connection abandoned, dropped, or no data sent

Note: Different browser issues different messages when no data is returned to the browser. Abandoned,

dropped or no data will be displayed at the browser.

Cause: The system has incorrectly formatted a CGI program that writes data to standard output. The

data that is written to stdout may have one of the following problems:

v

v No data written to stdout

v No “Content-type”, “Location”, or “Status” line

v No new line character after HTTP response header

v No data after HTTP response header.

Solution: Write the data to stdout with “Content-type: ” line with two new line characters (“\n”) and the

data to be returned to the client. For example:
Content-type: text/plain\n

 \n

 This data is returned to the client

Cause: CGI program caused an exception message that was not handled by the CGI program.

 Work with Active Jobs AS400SYS

 10/22/97 16:35:38

CPU %: .4 Elapsed time: 00:02:01 Active jobs: 98

Type options, press Enter.

 2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message

 8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status

 DEFAULT QTMHHTTP BCH .0 PGM-QZHBHTTP TIMW

 DEFAULT QTMHHTTP BCI .0 TIMW

 DEFAULT QTMHHTTP BCI .0 TIMW

 DEFAULT QTMHHTTP BCI .0 TIMW

 Bottom

Parameters or command

===>

F3=Exit F5=Refresh F10=Restart statistics F11=Display elapsed data

F12=Cancel F23=More options F24=More keys

Figure 1. WRKACTJOB SBS(QHTTPSVR) Job(DEFAULT)

HTTP Server 747

Solution: Look at the active server job logs in Figure 1 on page 747. If the system does not indicate a

message in the joblog for the active server jobs, do a WRKSPLF QTMHHTTP. Check for server jobs

that ended when the system ran the CGI program. Change the program to monitor for the

message not being handled.

Cause: The program being called does not exist in the library.

Solution: Check the library for the correct name.

Cause: There is a bug in your user-created CGI program.

Solution: You need to set up a scaffolding environment to debug the CGI application prior to integration

with server:

1. Issue the command ENDTCPSVR *HTTP HTTPSVR(server_instance)

2. Issue the command STRTCPSVR *HTTP HTTPSVR(server_instance ’-minat 1 -maxat 1’)

Note: You also may need to change script_timeout and output_timeout to be larger. If you

are stepping through your code, it may take too long and script_timeout or

output_timeout may expire. This causes the server to terminate the job you are

debugging.

Ending and starting the server ensures that only one worker job is running.

a. Issue the command WRKACTJOB JOB(server_instance)

Three active jobs are displayed for this server instance. The first job in the list is always

the server instance server job (Function PGM-QZHBHTTP). The second and third jobs in

the list are the CGI program jobs. One is for single thread-capable CGI programs, and

the other is for multithread-capable CGI programs (Java).

Select option 10 to display the job log.

If your CGI program is single thread capable (not written in Java language), message

HTP2001 will be in the job log. If your CGI program is multithread capable (Java),

message HTP2002 will be in the job log.

Record the Number:, User:, and Job: values for your CGI program job.

Press F12.

Issue the command STRSRVJOB <Number/User/Job>.

b. For the user CGI program, issue the command STRDBG <usercgilib/cgipgm>

If the program accesses a database file on the server, you must specify UPDPROD(*YES).

See the help for the STRDBG command.

Note: You will need additional authority to troubleshoot the CGI program. For

example, you will need authority to the QTMHHTTP user profile.

c. Set breakpoints in the program.

d. On the browser, issue a URL that would run the CGI program.

The Pass and Exec directives that request the document and run a CGI program must

be in WRKHTTPCFG for HTTP Server (original).

e. After the system issues an HTTP request on the browser, return to the session that ran

STRSRVJOB. It should have stopped at a program breakpoint.

Ending and starting the server ensures that only one worker thread is running.
3. When finished with debug, reset the server values:

a. Issue the command ENDDBG

b. Issue the command ENDSRVJOB

c. Issue the command WRKACTJOB SBS(QHTTPSVR) JOBserver_instance

748 iSeries: IBM HTTP Server

d. Issue the command STRTCPSVR *HTTP HTTPSVR(server_instance)

Symptom: The system is not converting or handling special characters as expected

Cause: The browser inserts special characters using escape sequences which requires special handling by

the CGI program.

Solution: Browsers create escape sequences (ISO 8859) for special characters (for example, : . , ! @ # $ %

*, and so on.) These characters come into standard input or into the QUERY_STRING

environment variable in the form “%xx”, where “xx” is the two characters representing the

ASCII hexadecimal value. (For example, a comma comes in as “%2C”. For CGI input mode

%%MIXED%%, these three characters “%xx” are converted to EBCDIC, but the values of “xx”

are not changed to the corresponding EBCDIC code points.

There are two approaches to handling escape sequences:

1. Convert the EBCDIC representation of the ASCII escape sequence to an EBCDIC escape sequence or

use CGI input mode %%EBCDIC%%. This is necessary because the QtmhCvtDB API assumes that

escape sequences represent EBCDIC code points, and the API converts them to the corresponding

EBCDIC character. For example, %2C, which represents an ASCII comma, is converted to EBCDIC

X’2C’, which is not an EBCDIC comma.

2. Convert the EBCDIC representation of the ASCII escape sequence to the EBCDIC equivalent character.

The following approach outlined in the first conversion technique listed above:

Note: The hex representation of the %2C from the browser was 0x253243. When this escape sequence is

converted to EBCDIC, it ends up as 0x6CF2C3.

1. Convert the “xx” in “%xx” to the corresponding EBCDIC character. In this case 0xF2C3 is converted

to 0x2C.

2. For the first approach, convert the EBCDIC character to the two-byte form. Then you can reinsert the

two bytes back into the input stream in the same place they originally appeared. The 0x6B would be

converted to 0xF6C2, and the resultant escape sequence would be 0x6CF6C2. For the second

approach, leave the data in its EBCDIC form and replace the original escape sequence (three

characters) with the single character. In this case, replace 0x6CF2C3 with 0x6B.

Note: The CGI program should preserve an escape sequence that represents the character “%”.

3. Call QtmhCvtDB to convert the input stream.

Note: 7-bit ASCII CCSID 367 is standard on browsers.

Symptom: Error 403: Forbidden - Path not valid for this server

Whenever a “Forbidden - Path not valid for this server” occurs when running a CGI program, the

configuration directives have not been specified correctly.

Cause when a CGI program is requested: When a CGI program is requested on HTTP Server (original),

a Pass directive appears before an Exec directive. For

example:

Pass /qsys.lib/htmlcgi.lib/*

Exec /qsys.lib/htmlcgi.lib/*

In this example any programs in library htmlcgi will not run

because the Pass occurred before the Exec. Once a Pass

condition is true, then the server does not go further.

HTTP Server 749

Solution when a CGI program is requested: The best way to avoid this problem using HTTP Server

(original) is to use one of the following:

1. Use Exec and Pass directives with mapping:

Pass /doc/* qsys.lib/html.lib/*

Exec /cgi-bin/* qsys.lib/html.lib/*

2. Put the CGI programs in a separate library:

Exec /qsys.lib/htmlcgi.lib/*

Pass /qsys.lib/htmldoc.lib/html.file/*

The best way to avoid the same problem using HTTP

Server (powered by Apache) is to use one of the following:

1. Use Exec and Pass directives with mapping:

Alias /doc/ /qsys.lib/html.lib/

<Directory /qsys.lib/html.lib>

 Allow From All

 Order allow,deny

</Directory>

ScriptAlias /cgi-bin/ /qsys.lib/html.lib/

Example 2:

Alias /cgi-bin/ /qsys.lib/html.lib/

<Directory /qsys.lib/html.lib/>

 Allow From All

 order allow,deny

 AddHandler cgi-script .PGM

 Options +ExecCGI

</Directory>

2. Put the CGI programs in a separate library:

ScriptAlias /qsys.lib/htmlcgi.lib/ /qsys.lib/htmlcgi.lib/

<Directory /qsys.lib/htmlcgi.lib/>

 Allow From All

 order allow,deny

</Directory>

Alias /qsys.lib/htmldoc.lib/ /qsys.lib/html.file/

<Directory /qsys.lib/html.file/>

 Allow From All

 order allow,deny

</Directory>

Cause when a document is requested: When a document is requested on HTTP Server (original), an

Exec directive appears before a Pass directive. For example:

Exec /qsys.lib/html.lib/*

Pass /qsys.lib/html.lib/*

In this example any documents in library html will not be found

because the Exec occurred before the Pass.

Solution when a document is requested: Change the order of the directives to correct the problem. For

example:

Pass /qsys.lib/html.lib/*

Exec /qsys.lib/html.lib/*

Note: Since the value mapped /qsys.lib/html.lib/ is the same for both Pass and Exec, the combination

above would correct a problem with using an incorrect directive. It also would leave a directive in

the file that could never be used.

The best way to avoid this problem is to use one of the following:

1. Use Exec and Pass directives with mapping:

750 iSeries: IBM HTTP Server

Pass /doc/* qsys.lib/html.lib/*

Exec /cgi-bin/* qsys.lib/html.lib/*

2. Put the CGI programs in a separate library:

Exec /qsys.lib/htmlcgi.lib/*

Pass /qsys.lib/htmldoc.lib/html.file/*

Symptom: Error 500: Bad script request -- script ’/qsys.lib/qsyscgi.lib/progname.pgm’ not

found or not executable

Cause: Incorrect match of Exec rule.

This message can appear for the following reasons:

v The script does not exist.

v There is a problem with the script, for example, a send error or function check.

v The user QTMHHTP1 does not have authority to run this program.

Solution: See Description of “Forbidden - Path not valid for this server”.

Symptom: A browser request that runs a CGI program runs longer than expected. The

browser keeps waiting for a response

Cause: The CGI application that was running has taken a function check.

Solution: Look at the QSYSOPR message queue for a message that requires a reply sent from the CGI

program that was running. Note the statement where the program is failing. Use the procedure

described under “Symptom: Error 500”.

Symptom: A CGI written form is not cached in the browser

Using the back button on the browser results in a request to the server. The form contains no headers or

meta tags telling the browser to request (not cache) the page.

Cause: The server is sending a last-modified header.

Solution: Use the —nolastmod HTTP Server startup value to specify that the server should not send a

last-modified header.

Symptom: The configuration uses the CGIConvMode value of %%MIXED/MIXED%% and

the input characters your CGI program receives are incorrect

Cause: The file CCSID language for your server has characters that do not match the EBCDIC code page

37. Use the EBCDIC mode rather than the MIXED mode.

Solution: Configure CGIConvMode for %%EBCDIC/MIXED%%.

HTTP Server (powered by Apache) and Apache portable runtime

application programming interfaces

This topic provides information about the Apache portable runtime (APR) and application programming

interfaces (APIs).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

HTTP Server 751

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

The HTTP Server (powered by Apache) and Apache portable runtime (APR) application programming

interfaces (APIs) can be used to write cross-platform Apache modules. For information on how to

compile and configure an HTTP Server (powered by Apache) module, see Compile and configure

modules on HTTP Server (powered by Apache).

Links to the IBM HTTP Server (powered by Apache) and APR APIs are listed below. To write, compile,

and configure an HTTP Server (powered by Apache) module, you will need to use both APR Core and

HTTP Server (powered by Apache) APIs.

v APR Core APIs - The APR APIs are not application specific and may be used with different server

types and applications.

v HTTP Server (powered by Apache) APIs - The HTTP Server (powered by Apache) APIs are HTTP

Server (powered by Apache) specific and are not part of the APR APIs.

“Module mod_example for HTTP Server (powered by Apache)” on page 595 provides a simple example

of the use of the Apache APIs.

For general information on the Apache portable runtime, see http://apr.apache.org/

.

Regular expression notation for HTTP Server

This topic provides a general overview of regular expression notation.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A regular expression notation specifies a pattern of character strings. One or more regular expressions can

be used to create a matching pattern. Certain characters (sometimes called wildcards) have special

meanings. The table below describes the pattern matching scheme.

Regular expression pattern matching

 Pattern Description

string string with no special characters matches the values that contain the string.

[set] Match a single character specified by the set of single characters within the square

brackets.

[a-z] Match a character in the range specified within the square brackets.

[^abc] Match any single character not specified in the set of single characters within the square

brackets.

{n} Match exactly n times.

{n,} Match at least n times.

{n,m} Match at least n times, but no more than m times.

^ Match the start of the string.

$ Match the end of the string.

. Match any character (except Newline).

* Match zero or more of preceding character.

+ Match one or more of preceding character.

? Match one or zero of preceding character.

string1|string2 Match string1 or string2.

752 iSeries: IBM HTTP Server

apr_core_api/index.html
http_server_api/index.html
http://apr.apache.org/
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Pattern Description

\ Signifies an escape character. When preceding any of the characters that have special

meaning, the escape character removes any special meaning from the character. For

example, the backslash is useful to remove special meaning from a period in an IP

address.

(group) Group a character in a regular expression. If a match is found the first group can be

accessed using $1. The second group can be accessed using $2 and so on.

\w Match an alphanumeric character.

\s Match a white-space character.

\t Tab character.

\n Newline character.

\r Return character.

\f Form feed character.

\v Vertical tab character.

\a Bell character.

\e Escape character.

\Onn Octal character, for example \O76.

\xnn Hex character, for example \xff.

\cn Control character, for example \c[.

\l Lowercase next character.

\L Lowercase until \E.

\u Uppercase next character.

\U Uppercase until \E.

\E End modification.

\Q Quote until \E.

Examples of regular expression pattern matching

 Pattern Examples of strings that match

ibm ibm01, myibm, aibmbc

^ibm$ ibm

^ibm0[0-4][0-9]$ ibm000 through ibm049

ibm[3-8] ibm3, myibm4, aibm5b

^ibm ibm01, ibm

ibm$ myibm, ibm, 3ibm

ibm... ibm123, myibmabc, aibm09bcd

ibm*1 ibm1, myibm1, aibm1abc, ibmkkkkk12

^ibm0.. ibm001, ibm099, ibm0abcd

^ibm0..$ ibm001, ibm099

10.2.1.9 10.2.1.9, 10.2.139.6, 10.231.98.6

^10\.2\.1\.9$ 10.2.1.9

^10\.2\.1\.1[0-5]$ 10.2.1.10, 10.2.1.11, 10.2.1.12, 10.2.1.13, 10.2.1.14, 10.2.1.15

^192.\.168\..*\..*$ (All addresses on class B subnet 192.168.0.0)

HTTP Server 753

Pattern Examples of strings that match

^192.\.168\.10\..*$ (All addresses on class C subnet 192.168.10.0)

Set up third party modules for HTTP Server (powered by Apache)

This topic provides information about how to set up third party modules for your HTTP Server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The HTTP Server (powered by Apache) can extend its functionality in specific areas of your server using

modules. For example, a module could be configured to create a new type of authentication that is not

available with the shipped HTTP Server (powered by Apache). Before the module can be used by your

HTTP Server (powered by Apache), it must be compiled and saved in the QSYS directory. In addition, the

LoadModule directive must be entered in your server configuration file along with any specific context

required information. Follow the below directions to compile and use a new module.

1. Save the source code

Save the source code in your QSYS or IFS directory. All objects created from compiling and creating the

service program must be placed in the QSYS directory.

2. Compile the source code

Compile the source code using the CRTCMOD command. Before you compile the program, make sure

you have the correct programming language compiler installed on your iSeries (the most common

programming language used is C). Replace the text in the parenthesis () with your own information.

CRTCMOD MODULE(Destination module name and library for the compiled module object.)

 LOCALETYPE(*LOCALE)

 SRCSTMF(’IFS style path name to the file to be compiled.’)

 DEFINE(Preprocessor macros that take affect before the file is compiled.)

 INCDIR(’Directory or directories to add to the search path used by the

 compiler to find include files.’)

 LANGLVL(*EXTENDED)

Note: The LOCALETYPE must have *LOCALE as the value parameter.

At a minimum, you must specify AS400 in the DEFINE field so the compiler will handle AS/400

uniqueness.

At a minimum, you must specify ’/qibm/proddata/httpa/include’ in the INCDIR field. This is the

default directory for HTTP Server (powered by Apache) header files.

Correct any errors found while compiling. Continue to compile the source code until there are no errors.

Save the compiled module in the QSYS directory.

3. Create a service program

Create a service program using the CRTSRVPGM command. Replace the text in the parenthesis () with

your own information.

CRTSRVPGM SRVPGM(Destination service program name and library.)

 MODULE(Module or modules to be built into the service program. Same as CRTCMOD above.)

 EXPORT(Name of the data item to be exported.)

 BNDSRVPGM(Specifies other service programs needed to bind to when creating the service program.)

754 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_so.htm#loadmodule

Note: The EXPORT field can only have the value of either *ALL or *SRCFILE. If *SRCFILE is used, you

will need to have an export source file defining which data items or procedures need to be

exported and contain the name of the module structure (for example, cgi_module).

The BNDSRVPGM field must have, at a minimum, the following: (QHTTPSVR/QZSRAPR

QHTTPSVR/QZSRCORE QHTTPSVR/QZSRXMLP QHTTPSVR/QZSRSDBM). These values

will cover all the HTTP Sever (powered by Apache) APIs that may be used when building the

service program.

4. Add LoadModule to HTTP Server (powered by Apache) configuration file

Using the IBM Web Administration for iSeries interface, manually add the LoadModule directive to your

HTTP Server (powered by Apache) configuration.

1. Start the IBM Web Administration for iSeries interface.

2. Click the Manage tab.

3. Click the HTTP Servers subtab.

4. Select your HTTP Server (powered by Apache) from the Server list.

5. Expand Tools.

6. Click Edit Configuration File.

7. Add the following, where PATH is the directory in the QSYS directory and MODULE is the name of

your module:

LoadModule Module /QSYS.LIB/PATH/MODULE.SRVPGM

Note: Replace Module with the name module you named in CRTSRVPGM under the EXPORT field.

Replace the /DIRECTORY/PATH/MODULE.SRVPGRM with the directory path and the name

of your compiled service program.

It is suggested that you place the LoadModule directive as close to the beginning of the

configuration file as possible. If the new compiled directive is called before the LoadModule

directive, you will have an error.

8. Add any additional directives needed to the configuration file. Note that the compiled service

program, MOD_FOOTER, is located in the QSYS directory. The ″ . ″ represent existing lines in the

configuration file.

Example (replace MYLIB.LIB with your library name):

LoadModule footer_module /QSYS.LIB/MYLIB.LIB/MOD_FOOTER.SRVPGM

.

.

.

<Directory "/www/mydocs/htdocs">

 SetOutputFilter FOOTERFILTER

 FooterFile footer.hf

</Directory>

The FOOTERFILTER output filter and the FooterFile directive are defined in MOD_FOOTER, the

module that was compiled and configured.

9. Click OK.

When writing your own modules, the same steps above may be used. The Apache Software Foundation

(ASF)

provides basic information for writing your own modules.

Handler for HTTP Server (powered by Apache)

This topic provides a general overview of handlers.

HTTP Server 755

http://www.apache.org/
http://www.apache.org/

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

A handler is an internal representation of the action that is performed when a file or URL is requested.

Generally, files have implicit handlers, based on the file type. Normally, all files are simply served by the

server, but certain file types are handled separately. For example, you may use a type of

application/x-httpd-cgi to invoke CGI scripts.

Handlers are unrelated to file type. They are either based on filename extensions or on location. This

allows both a type and a handler to be associated with a file (see Files with Multiple Extensions).

Handlers are either built into the server, built into a module, or are added with the Action directive. The

built-in handlers are:

v default-handler: Send the file using the default_handler(), which is the handler used by default to

handle static content. (core)

v send-as-is: Send file with HTTP headers as is (mod_asis).

v cgi-script: Treat the file as a CGI script (mod_cgi).

v imap-file: Imagemap rule file (mod_imap).

v type-map: Parse as a type map file for content negotiation (mod_negotiation).

v proxy-server: Determine if file is local (mod_proxy)

Net.Data programs for the HTTP Server

This topic provides a general overview of Net.Data.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Net.Data is an application that runs on a server and allows you to easily create dynamic Web documents

that are called Web macros. Web macros that are created for Net.Data have the simplicity of HTML with

the functionality of CGI-BIN applications. Net.Data makes it easy to add live data to static Web pages.

Live data includes information that is stored in databases, files, applications, and system services.

Net.Data is a comprehensive web development environment for the creation of simple dynamic Web

pages or complex Web-based applications. These applications enable browser clients to access data from a

variety of sources, such as databases, applications, and system services. Net.Data consists of a program,

the Web macro processor, and one or more dynamic libraries, called language environments. The

executable input to Net.Data is the Web macro.

The Web macro processor communicates with the HTTP Server through its CGI-BIN interface. The server

uses TCP/IP to connect to the Internet. Like other CGI-BIN programs, Net.Data is typically stored in the

server’s CGI-BIN directory. Net.Data is accessed when a URL received by the server refers to the Web

macro processor operable, DB2WWW, in the CGI-BIN directory.

Language environments are the Web macro processor’s interface to your data and applications. Each

language environment provides a specific interface to a particular resource. For example, Net.Data

provides language environments to access DB2 databases, REXX, and other applications through the

SYSTEM language environment.

756 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
rzaiemod_mime.htm#multipleext
rzaiemod_actions.htm#action
rzaiemod_core.htm
rzaiemod_asis.htm
rzaiemod_cgi.htm
rzaiemod_imap.htm
rzaiemod_negotiation.htm
rzaiemod_proxy.htm
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

A Web macro is a file that contains a series of statements that are defined by the Net.Data Web macro

language. These statements can include standard HTML and language environment-specific statements

(for example, SQL statements) as well as macro directives. These statements act as instructions to the Web

macro processor, telling it how to construct dynamic Web pages.

When a URL is received by the server that refers to the Web macro processor program, the server starts

an instance of the Web macro processor. It then passes essential information, including the name of the

requested Web macro and the section of the macro to use. The Web macro processor then:

1. Reads and parses through the Web macro.

2. Interprets all the macro statements.

3. Dynamically builds the HTML page.

When a Web macro language %FUNCTION statement is encountered, the Web macro processor loads the

requested language environment-dynamic library (service program). It then passes language-specific

information to the language environment to be processed. The language environment processes the

information and returns the results to the Web macro processor.

After all parsing is done and language environment processing is completed, all that remains is pure

HTML text. This text can then be interpreted by any browser. The Web macro writer has complete control

over the level of HTML it uses and what HTML tags are applied. The Web macro processor imposes no

restrictions. The pure HTML text is passed back to the server, and the Web macro processor ends. The

resulting HTML text is passed to the browser where the user interacts with it. Further requests from this

user or any other user will result in the whole process just described taking place again.

For more detailed information about Net.Data, including how to configure Net.Data and how to write

Net.Data macros and language environments, see the Net.Data for iSeries home page

.

Java servlets and JSPs for the HTTP Server (powered by Apache)

This topic provides a general overview of Java servlets and Java server pages (JSPs).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Java servlets and JSPs are Java programs that run on the server and extend the capabilities of the Web

server by creating a framework for providing requests and or response services over the Web.

The IBM HTTP Server for iSeries provides a basic servlet engine for running entry level Java servlets and

JSPs. This servlet engine is a port of the Apache Software Foundation (ASF) Jakarta Tomcat. For general

information on Java servlets, JSPs, and Tomcat, see http://jakarta.apache.org/tomcat/index.html

.

WebSphere Application Server is IBM’s strategic Web application server and provides enterprise level

support for Java servlets, JSPs, and EJBs (Enterprise Java Beans). For more information on the IBM

WebSphere Application Server, see the IBM WebSphere Application Server for iSeries home page

.

For more in-depth technical information about Java servlet technology, see http://java.sun.com/

products/servlet/

.

HTTP Server 757

http://www.ibm.com/servers/eserver/iseries/software/netdata/
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://jakarta.apache.org/tomcat/index.html
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/

Troubleshoot

This topic lists common problems and solutions for the HTTP Server, the IBM Web Administration for

iSeries interface, and other features associated with the product.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

List of symptoms:

v “Symptom: Out-of-process ASF Tomcat server does not start or appears to start, but then stops”

v “Symptom: Error 404 on HTTP Server” on page 759

v “Symptom: HTTP Server has a slow response” on page 759

v “Symptom: Error 500 on HTTP Server” on page 759

v “Symptom: Cannot read or write to QUSRSYS/QATMHINSTC or QUSRSYS/QATMHASFT” on page

760

v “Symptom: HTTP Server on port 80 does not start” on page 760

v “Symptom: Web browser problems with HTTP Server” on page 761

v “Symptom: ADMIN server will not start” on page 762

v “Symptom: HTTP Server will not start or functions will not work” on page 762

v “Symptom: Unknown server type when working with HTTP Servers in ADMIN” on page 763

v “Symptom: All servers show status ’Stopped’” on page 763

v “Symptom: Cannot access ADMIN or some functions do not work” on page 763

v “Symptom: User Profile does not have *IOSYSCFG” on page 763

v “Symptom: Tomcat options not shown in the IBM Web Administration for iSeries interface” on page

763

v “Symptom: Error 500 when Tomcat settings in the IBM Web Administration for iSeries interface is

accessed” on page 763

v “Symptom: Cannot create new HTTP Server instance” on page 764

v “Symptom: Net.Data error” on page 764

v “Symptom: Error occurred opening file” on page 764

v “Symptom: Databases fail to deploy when configuring with the IBM Web Administration for iSeries

interface” on page 764

v “Symptom: WebSphere Portal authentication performance problems” on page 764

Note: Additional troubleshooting information may be found in the following documentation:

v WebSphere Portal Product Documentation

Web site

v WebSphere Application Server topic

v WebSphere Application Server - Express topic

v Business Applications topic

Symptom: Out-of-process ASF Tomcat server does not start or

appears to start, but then stops

Cause

A number of possible causes could be causing your out-of-process ASF Tomcat to not start. Check

the job log for the cause.

758 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www.ibm.com/websphere/portal/library/

Solution

Check the job log for a report on the possible problem and enable tracing.

 Check the job log:

1. On an iSeries command line, enter WRKACTJOB immediately after the server is started.

If the job is active, enter WRKACTJOB to work with the job and display the job log.

If the job is not active, enter WRKSPLF SELECT(QTMHHTTP) to find the name of the server and

display the spool file.

2. Check the ASF Tomcat logs. Inspect the tomcat.log, jvmstdout.txt, and jvmstderr.txt files for

possible information concerning the error.

Enable/disable tracing:

1. On an iSeries command line, enter ADDENVVAR ENVVAR(QIBM_ASFTOMCAT_TRACE) VALUE(10)

LEVEL(*SYS).

2. Restart the ADMIN server.

3. Start the out-of-process ASF Tomcat server.

4. Additional debug information is created for the job. If this information does not appear in a

spool file associated with the started job, then it may be accessed using the Dump User Trace

(DMPUSRTRC) command against the ADMIN server and the out-of-process ASF Tomcat server

jobs.

To disable tracing, continue with the next steps.

5. On an iSeries command line, enter RMVENVVAR ENVVAR(QIBM_ASFTOMCAT_TRACE).

6. Restart the ADMIN server.

7. Start the out-of-process ASF Tomcat server.

Symptom: Error 404 on HTTP Server

Cause

HTTP Server is not able to find the resource that was requested or the user profile on HTTP

Server does not have authority to the requested resource.

Solution

Check the following:

v Make sure the file exists.

v Make sure that the user profile used to access the resource has object authority. The user profile

QTMHHTTP is used by default. The user profile QTMHHTP1 is used by default when the

request is a CGI program.

Symptom: HTTP Server has a slow response

Solution

Refer to the following:

v “Manage server performance for HTTP Server (powered by Apache)” on page 140

Symptom: Error 500 on HTTP Server

Cause

A program on your HTTP Server has failed or there is an error in your CGI program.

Solution

Check the following:

v Check the error log, script error log, and CGI job logs for information on CGI failures.

HTTP Server 759

v If you have not used the IBM Web Administration for iSeries interface to create an HTTP

Server configuration, a required directive may be missing from the configuration file. View the

configuration file with the IBM Web Administration for iSeries interface for possible errors.

Symptom: Cannot read or write to QUSRSYS/QATMHINSTC or

QUSRSYS/QATMHASFT

Cause

The IBM Web Administration for iSeries interface uses the Java Toolbox for iSeries. When reading

and writing files in QSYS, the Java Toolbox sometimes uses the DDM server. In the IBM Web

Administration for iSeries interface, this results in problems reading or writing the

QUSRSYS/QATMHINSTC file containing HTTP Server definitions, or QUSRSYS/QATMHASFT

file containing out-of-process ASF Tomcat server definitions.

Solution

On an iSeries command line, enter STRTCPSVR *DDM.

Symptom: HTTP Server on port 80 does not start

Cause

By default, APACHEDFT server autostart setting is *GLOBAL. If, in addition, the global server

setting for autostart is ″Yes″, then APACHEDFT server will start during STRTCP command

processing. APACHEDFT server uses port 80 and may cause any other HTTP Server using port

80 to not start.

Solution

Do the following:

 If you HTTP Server does not start or appears to start, but then stops, check the following:

1. The cause of the problem may be in the job log. Use WRKACTJOB immediately after the

server is started. If the job is active, the enter WRKACTJOB to work with job and display the job

log. If the job is not active, then enter WRKSPLF SELECT(QTMHHTTP) to find the name of the

server and display the spool file.

2. If you have configured the error logs, then the cause of the problem may be in the error log.

For example, /www/myserver/logs/basic_error_log, where ″myserver″ is the name of your

HTTP Server.

Note: If the error messages have been customized, the error will not be identified in the same

manner as the above example.

3. If you have configured ASF Tomcat, then there may be error information logged in the ASF

Tomcat logs. Inspect the tomcat.log, jvmstdout.txt, and jvmstderr.txt for possible information

concerning the error

If these steps do not help, then try starting the server with verbose tracing. See Manage server

performance for HTTP Server (powered by Apache) for tracing.

 By default, APACHEDFT server autostart setting is *GLOBAL. If, in addition, the global server

setting for autostart is ″Yes″, then APACHEDFT will start during STRTCP command processing.

APACHEDFT server uses port 80 and may cause any other HTTP Server using port 80 to not

start. To avoid this condition, you can :

v Change APACHEDFT server configuration autostart setting to ″No″.

v Change APACHEDFT server configuration to use a port other than 80.

To change the autostart value on APACHEDFT server, do the following:

1. Click the Manage tab.

2. Click the HTTP Servers subtab.

3. Select APACHEDFT from the Server list.

760 iSeries: IBM HTTP Server

4. Expand Server Properties.

5. Click General Server Configuration.

6. Click the General Settings tab in the form.

7. Select No (instead of *GLOBAL or Yes) from the Autostart list.

8. Click OK.

To change the port number on APACHEDFT server, do the following:

 1. Click the Manage tab.

 2. Click the HTTP Servers subtab.

 3. Select APACHEDFT from the Server list.

 4. Expand Server Properties.

 5. Click General Server Configuration.

 6. Click the General Settings tab in the form.

 7. Select the IP address and port from the Server IP addresses and ports to listen on table.

 8. Enter a new value for the port number in the Port column.

 9. Click Continue.

10. Click OK.

As a final precaution, make sure APACHEDFT server is not started by doing the following:

1. Click the Manage tab.

2. Click the All Servers subtab.

3. Click the All HTTP Servers tab.

4. Select APACHEDFT from the table.

5. Click Stop.

Symptom: Web browser problems with HTTP Server

Cause

Your Web browser may not be configured correctly.

Solution

Below is a list of common problems and solutions for your Web browser.

Miscellaneous Microsoft Internet Explorer errors related to incorrect interpretation of HTTP/1.1

in response

Microsoft Internet Explorer sends requests in HTTP/1.1 format but seems to only accept

responses in HTTP/1.0 format. The work around is to tell HTTP Server the request came

in as HTTP/1.0 format.

 Fore example: BrowserMatch ″MSI 4\.0b2;″ downgrade-1.0 force-response-1.0

URL not found when clicking on a file in a directory listing from Netscape

If AlwaysDirectoryIndex is set to OFF and a URL for a directory without a trailing slash

is requested, then Netscape does not request the file relative to the director in which the

file exists in the resulting directory listing.

Microsoft Internet Explorer does not display customized error messages

If Internet Explorer is not displaying the customized error messages, check to see if the

preferences for the browser are set to show friendly HTTP error messages. Disable this

preference and the customized error massages should display properly.

When using HTTPS, Microsoft Internet Explorer shows pages that were cached when using

HTTP If the browser is showing cached pages instead of connecting to the server using SSL,

clear the browser’s cache.

HTTP Server 761

Prompted for password when using certificate for client authentication

If you are using a Certificate Authority that offers the option to protect the private key of

your certificate with a password (such as for the Microsoft Internet Explorer browser),

and you use the certificate for client authentication, you are prompted for the password

after about 2 minutes of idle time. This happens even if you have disabled SSLV2 in the

browser being used and in the server because you are trying to use the longer SSLV3

cache time-out interval. This is a security feature that protects your private key if you are

away form your client, even though it may look like an SSLV3 caching problem.

Certificate not recognized by browser

If you add a certificate to your browser, the browser may not recognize that there is a

new certificate until you restart your computer.

 For additional information see the Apache Software Foundations list of list of known problems with

clients

.

Symptom: ADMIN server will not start

Solution

Check to make sure you have the proper authorities. See “User profiles and required authorities

for HTTP Server” on page 40 for specific authority and profile information.

Symptom: HTTP Server will not start or functions will not work

Solution

General items to check:

1. Check /QIBM/UserData/HTTPA/admin/logs, HTTPAdmin.log, error_log, and any other logs

you may have. More information on the cause of the problem may be found there.

2. Use CHKPRDOPT to 57XXDG1, SS1, TC1 and JV1.

3. Check joblog for user QTMHHTTP.

4. Check QTMHHTTP and QTMHHTP1 user profiles.

5. Verify that *PUBLIC is not *EXCLUDEd from ’/’ (Use WRKLNK ’/’ and take option 9).

6. Verify that QSERVER and QUSRWRK subsystems are running.

Error messages:

Error ZSRV_MSG0358

Found in admin log. Verify that there is a host table entry in CFGTCP Option 10 that

matches the host + domain name in CFGTCP Option 12, and set ’Host Name Search

Priority’ to *LOCAL.

Error ZUI_50004 - ’no *IOSYSCFG authority’

Verify that user has *IOSYSCFG Authority. If *IOSYSCFG is granted by a GROUP profile,

verify that PTF SF65588 (V4R5) is applied. Check that there are NO user .jar files in the

/QIBM/ProdData directory path - this directory is for IBM use only.

Error HTP8015

Current group PTF for DG1 product is applied (SE01464 - Dup of SE02177).

Error CEE0200

Verify that 57XXJV1 Opt. 3 is installed (must be Option 3).

Error ZSRV_MSG0302 :User qsecofr:authentication failure for ″/″:1

Known problem with 128 character passwords on V5R1. HTTP servers cannot use 128

character passwords. You may be able to circumvent this problem by changing the

password in the user profile to CAPITAL letters and using CAPITAL letters to log into

the ADMIN screen.

762 iSeries: IBM HTTP Server

http://www.apache.org/docs/misc/known_client_problems.html
http://www.apache.org/docs/misc/known_client_problems.html

Symptom: Unknown server type when working with HTTP Servers in

ADMIN

Solution

Ensure that LOOPBACK and LOCALHOST are configured to resolve to 127.0.0.1 and can be

PINGed from the OS/400 command line. Verify that there are no exit programs for exit point

QIBM_QPWFS_FILE_SERV. Verify that QSERVER and QUSRWRK subsystems are running and

that current group PTF for DG1 product is applied.

Symptom: All servers show status ’Stopped’

Cause This problem was determined to be caused by an OEM security application that registers many

exit point programs.

Solution

Remove the application to eliminate the problem.

Symptom: Cannot access ADMIN or some functions do not work

Solution

Verify the following:

v Verify that user’s browser is not using a proxy to access the ADMIN server.

v Verify latest DG1 PTF’s.

v Verify that user profiles QTMHHTTP and QTMHHTP1 are not disabled.

Symptom: User Profile does not have *IOSYSCFG

Solution

In the HTTPAdmin.log you will find error: ’NoRouteToHostException’. Do the following:

v Verify that 127.0.0.1, LOOPBACK and LOCALHOST are configured and work.

Symptom: Tomcat options not shown in the IBM Web Administration

for iSeries interface

Solution

Do the following:

v Verify latest DG1 PTF’s

v Verify that AdminTc.jar is in: /QIBM/UserData/HTTPA/admin/webapps/HTTPAdmin/WEB-INF/lib.

This file can be found in /QIBM/ProdData/HTTPA/admin/pgm/. If so, the problem can be

circumvented by adding a SYMLNK.

v On the OS/400 command line, type the following:

ADDLNK OBJ(’/QIBM/ProdData/HTTPA/admin/pgm/AdminTc.jar’)+

NEWLNK(’/QIBM/UserData/HTTPA/admin/webapps/httpadmin/web-inf/lib/AdminTc.jar’)

Press Enter, then typethe following:

CHGOWN OBJ(’/QIBM/USerData/HTTPA/admin/webapps/HTTPAdmin/WEB-INF/lib/AdminTc.jar’)+

NEWOWN(QTMHHTTP) SYMLNK(*YES)

Symptom: Error 500 when Tomcat settings in the IBM Web

Administration for iSeries interface is accessed

Solution

Verify latest DG1 PTF’s and SI01832 are applied.

HTTP Server 763

Symptom: Cannot create new HTTP Server instance

Solution

Verify LOCALHOST , LOOPBACK and 127.0.0.1 exist and work.

Symptom: Net.Data error

Include object specified in /QIBM/ProdData/HTTPSVR/MRIXXX/Macro/qzhamsg.nds at line 208

Solution

Verify that directory /QIBM/ProdData/HTTPSVR/Macro/ contains only objects that are appropriate to

the current OS version .

Symptom: Error occurred opening file

Cause If your HTTP Server configuration uses the Rewrite directive and does not have the proper access

for QTMHHTTP configured, your server will not start.

Solution

Make sure QTMHHTTP has *RWX access authority to the /tmp directory.

Symptom: Databases fail to deploy when configuring with the IBM

Web Administration for iSeries interface

Cause This error occurs when the user ID selected as the WebSphere Portal database owner does not

have authority to the CHGJOB command. The configuration wizard requires this authority to

autoreply when the system would otherwise require a response from the user. Without this

authority, the create-all-db configuration task fails, and databases are not deployed.

 If databases fail to deploy when configuring WebSphere Portal with the IBM Web Administration

for iSeries interface, check the /QIBM/UserData/Webas5/Base/<instance>/logs/<instance>/
WPSWIZARD_<timestamp>_create-all-db.log log file for the following error:

[java] java.lang.RuntimeException: error when creating statement [CPF0006]

Errors occurred in command.

[java] java/lang/Throwable.(Ljava/lang/String;)V+4 (Throwable.java:85)

[java] java/lang/Exception.(Ljava/lang/String;)V+1 (Exception.java:33) [java]

java/lang/RuntimeException.(Ljava/lang/String;)V+1 (RuntimeException.java:38)

[java] com/ibm/wps/config/SqlProcessor.process([Ljava/lang/String;Ljava/lang/

String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)I+0

(SqlProcessor.java:78)

[java] com/ibm/wps/config/SqlProcessor.main([Ljava/lang/String;)V+0

(SqlProcessor.java:478)

Solution

Ensure the user ID selected as the WebSphere Portal database owner has authority to the

CHGJOB command.

Symptom: WebSphere Portal authentication performance problems

If you are experiencing performance problems when users are logging into Portal (the authentication

phase), the following indicators may help determine that the filters are causing these performance

problems:

v Your LDAP server is populated with a large number of entries.

v When you type WRKACTJOB in a console command line, QSQSRVR jobs are using an excessive amount of

CPU during the Portal authentication (sign on) phase.

v When two Portal users sign on concurrently, one sign on request takes two times as long as the other

request.

Cause You may encounter a performance problem if you configure a secure WebSphere Portal server

with LDAP. This problem only occurs if you use the Create WebSphere Portal wizard in the IBM

764 iSeries: IBM HTTP Server

Web Administration for iSeries interface. When configuring LDAP with the WebSphere Portal

wizard, the two LDAP fields LDAPUserFilter and LDAPGroupFilter are configured with default

values depending on the type of LDAP server being used. For example, if you are securing your

WebSphere Portal server using the IBM Directory Server, the two LDAP fields are set to

″(&(|(cn=%v)(uid=%v))(objectclass=person))″ and ″(&(cn=
%v)(|(objectclass=groupOfUniqueNames)(objectclass=groupOfNames)(objectclass=group)))″, respectively.

By configuring the fields with the default values, the WebSphere Portal wizard allows the

wpsadmin Portal administrator to successfully login and existing LDAP entries can be used once

the Portal server is successfully configured and secured. However, if the LDAP server has a large

number of entries, or if many additional users are added to the LDAP server, Portal’s

authentication performance may be noticeably impacted.

Solution

If you determine that the filters, as configured by the WebSphere Portal wizard, are causing

authentication performance problems, complete the following steps:

 1. Start the IBM Web Administration for iSeries interface.

 2. Click the Manage tab.

 3. Click the Application Servers subtab.

 4. Expand Tools.

 5. Click Launch Administrative Console.

 6. Login to the console and click OK.

 7. Expand Security.

 8. Expand User Registries.

 9. Click LDAP.

10. Click Advanced LDAP Settings in the Additional Properties table.
1. Edit the User Filter and the Group Filter properties values to more precise values to increase

authentication performance. For more information about this syntax, see the LDAP directory

service documentation and the WebSphere Portal Product Documentation

Web site.

2. Click OK.

3. Click Save to apply changes to the master configuration.

4. Click Save again on the next page.

Note: You may need to restart your WebSphere Application Server for these changes to take

affect.

Reference documentation for HTTP Server

This topic provides additional reference documentation for HTTP Server and the IBM Web

Administration for iSeries interface.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

See “Related information on HTTP Server” on page 788 for additional reference documentation.

CL commands for HTTP Server

This topic provides information about common command line (CL) commands for a 5250 session.

HTTP Server 765

http://www.ibm.com/websphere/portal/library/
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The following table summarizes the CL commands associated with the HTTP Server.

Note: As of V5R3, HTTP Server (original) is no longer supported.

 Command Description

CHGHTTPA Change HTTP Attributes - change the HTTP Server (original) global data.

CFGHTTPSCH Configure HTTP Search - perform various search administration tasks.

CFGTCPHTTP Configure TCP/IP HTTP - display a list of HTTP Server related commands.

ENDCHTSVR End Clustered Hash Table Server - end a clustered hash table (CHT) server job on one or more

nodes of a cluster.

ENDHTTPCRL End HTTP Crawl - stops or pauses an active crawling session.

ENDTCP End TCP/IP - stop TCP/IP.

ENDTCPSVR End TCP/IP Server - stop an HTTP Server.

RSMHTTPCRL Resume HTTP Crawl - start a paused crawling session.

STRCHTSVR Start Clustered Hash Table Server - start a job for a clustered hash table (CHT) server instance on

each of the specified node systems.

STRHTTPCRL Start HTTP Crawl - start a crawling session.

STRTCP Start TCP/IP - autostart an HTTP Server.

STRTCPSVR Start TCP/IP Server - start an HTTP server.

TRCTCPAPP Trace TCP/IP Application - capture trace information for the HTTP Server (powered by Apache).

The following table summarizes the CL commands associated with the highly available Web server

cluster function. See “Highly available Web server cluster on HTTP Server” on page 17 for more

information.

 Command Description

ADDCLUNODE Add Cluster Node Entry - add a node to the membership list of an existing cluster.

CHGCLUNODE Change Cluster Node Entry - change cluster membership information for a cluster node entry.

CHGCRGPRI Change Cluster Resource Group Primary - performs an administrative switchover of the cluster

resource group by changing the current roles of nodes in the recovery domain.

CRTCLU Create Cluster - create a new cluster of one or more nodes.

DSPCLUINF Display Cluster Information - display or print information about a cluster.

ENDCLUNOD End Cluster Node - end Cluster Resource Services on one or all the nodes in the membership list

of an existing cluster.

RMVCLUNODE Remove Cluster Node Entry - remove a node from a cluster.

STRCLUNOD Start Cluster Node - start Cluster Resource Services on a node in the cluster.

Environment variables on HTTP Server

This topic provides information about environment variables

766 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The supported environment variables for HTTP Server are listed here. The environment variables have

been divided into two groups: Non-SSL and SSL.

You can provide secure Web serving when you run HTTP traffic over the SSL protocol. To use SSL, your

server must have a digital certificate. This is how a retail company on the Internet allows users to look

through the merchandise without security. These same users then fill out order forms and send their

credit card numbers by using SSL. A browser that does not support HTTPS cannot request URLs by

using HTTP over SSL. The Non-SSL browsers will not allow the submission of forms that need secure

submission.

Not all environment variables are supported by both HTTP Server types. Make sure to check that the

environment variable is supported by your HTTP Server type.

Note: All headers sent by the client (such as Set-Cookie) are prefixed by ″HTTP_″, and their value can be

extracted. To access variables that are headers, prefix the variable name with ″HTTP_″. You can

also create new variables using the HTTP_set() predefined function. As of V5R3, HTTP Server

(original) is no longer supported.

 Variable Name Type HTTP Server

Type

Description

ACCEPT_RANGES Non-SSL original Server API only.

Used to accept ranges other than bytes.

Example: bytes

ALL_VARIABLES Non-SSL original (server

API only)

All the CGI environment variables.

AUTH_TYPE Non-SSL all If the server supports client authentication and the script

is a protected script, this environment variable contains

the method that is used to authenticate the client.

Example: Cert_Or_Basic

CGI_ASCII_CCSID Non-SSL all Contains the ASCII CCSID the server used when

converting CGI input data. If the server did not perform

any conversion, (for Example, in %%BINARY%% mode),

the server sets this value to the DefaultNetCCSID

configuration directive value.

Example: 819

CGI_EBCDIC_CCSID Non-SSL all Contains the EBCDIC CCSID under which the current

server job is running (DefaultFsCCSID configuration

directive). It also represents the current job CCSID that is

used during server conversion (if any) of CGI input data.

Example: 37

HTTP Server 767

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Variable Name Type HTTP Server

Type

Description

CGI_MODE Non-SSL all Contains the CGI conversion mode the server is using for

this request. The program can use this information to

determine what conversion, if any, was performed by the

server on CGI input data and what format that data is

currently in.

Example: %%EBCDIC%%

CGI_OUTPUT_MODE Non-SSL all Determines which output conversion mode the server is

using.

Example: %%EBCDIC%%

ClassPath Non-SSL Apache Used with the SetEnv or SetEnvIf directive to provide the

JavaClassPath for Java CGI programs.

Example: /directory1/directory1a:/directory2/:/
directory3/

CLIENT_ADDR Non-SSL original (server

API only)

The IP address for the client.

Example: 10.10.2.3

CLIENT_AUTH Non-SSL original (server

API only)

Defines client authentication as on or off.

Example ON.

CLIENTMETHOD Non-SSL original (server

API only)

The HTTP method that is used in the request.

CLIENT_NAME Non-SSL original (server

API only)

The host name of the machine making the request.

Example: SMITH

CLIENT_PROTOCOL Non-SSL original (server

API only)

The name and version of the protocol the client is using to

make the request.

Example: HTTP

CONNECTIONS Non-SSL original (server

API only)

The number of connections being served, or number of

active requests.

Example: 15

CONTENT_CHARSET Non-SSL original (server

API only)

The character set of the response for text/*.

Example: US ENGLISH

CONTENT_LENGTH Non-SSL all When the method of POST is used to send information,

this variable contains the number of characters. Servers

typically do not send an end-of-file flag when they

forward the information by using stdin. If needed, you

can use the CONTENT_LENGTH value to determine the

end of the input string.

Example: 7034

CONTENT_TYPE Non-SSL all When information is sent with the method of POST, this

variable contains the type of data included. You can create

your own content type in the server configuration file and

map it to a viewer.

Example: Application/x-www-form-urlencoded

CONTENT_TYPE_

PARAMETERS

Non-SSL original (server

API only)

The other MIME attributes, but not the character set.

768 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

DATE_GMT Non-SSL Apache (SSI only) The current date and time in Greenwich Mean Time.

Example: 2000/12/31:03:15:20

DATE_LOCAL Non-SSL Apache (SSI only) The current date and time in the local time zone.

Example: 2000/08/14:15:40:10

DOCUMENT_NAME Non-SSL all The file name of the document requested by the user.

Example: /www/myserver/htdocs/html/hello.html

DOCUMENT_PATH_

INFO

Non-SSL Apache (SSI only) Contains the additional path information as sent by the

Web browser for SSI.

Example: /wizard

DOCUMENT_ROOT Non-SSL all Sets the directory from which the HTTP Server will serve

files. The server appends the path from the requested URL

to the document root and makes the path to the

document.

Example: /www/myserver/htdocs

DOCUMENT_URI Non-SSL all The URI of the document requested by the user.

Example: /html/hello.html

Note: The DOCUMENT_URI and DOCUMENT_URL

environment variables are identical

DOCUMENT_URL Non-SSL all The URL of the document requested by the user.

Example: /html/hello.html

Note: The DOCUMENT_URI and DOCUMENT_URL

environment variables are identical.

DTW_IS_ALLOWED_

CLUSTER _ENABLED

Non-SSL original This is a single symbol (flag) containing TRUE or FALSE.

TRUE means the macro is allowed to be cluster-enabled

(its allowed to run across a cluster) and FALSE means the

macro is not allowed to be cluster-enabled (its not allowed

to run across a cluster). This variable is initialized by

Net.Data and cannot be modified. The macro is

cluster-enabled only if

DTW_IS_ALLOWED_CLUSTER_ENABLED is set to

″TRUE″ and the macro is persistent.

Example: TRUE

ERRORINFO Non-SSL original (server

API only)

Specifies the error code to determine the error page.

Example: 401

EXPIRES Non-SSL original (server

API only)

Defines the expiration for documents that are stored in a

proxy’s cache.

Example: Thu, 01 Dec 2002 16:00:00 GMT

FSCP Non-SSL all The EBCDIC CCSID used to translate the data.

Example: 37

GATEWAY_

INTERFACE

Non-SSL all Contains the version of CGI that the server is using.

Example: CGI/1.1

HTTP Server 769

Variable Name Type HTTP Server

Type

Description

HTTP_ACCEPT Non-SSL all Contains the list of MIME types the browser accepts.

Example: image/gif,image/x-xbitmap,image/jpeg,image/
pjeg,image/pgn,*/*

Note: The header lines received from the client, if any, are

placed into the environment variable with the prefix

HTTP_* followed by the header name. The header will

return the environment variable.

HTTP_ACCEPT_

CHARSET

Non-SS all Contains the list of character sets the browser accepts.

Example: iso-8859-1,*,utf-8

Note: The header lines received from the client, if any, are

placed into the environment variable with the prefix

HTTP_* followed by the header name. The header will

return the environment variable.

HTTP_ACCEPT_

ENCODING

Non-SSL all Contains the list of encoding protocols the browser

accepts. Example: gzip Note: The header lines received

from the client, if any, are placed into the environment

variable with the prefix HTTP_* followed by the header

name. The header will return the environment variable.

HTTP_ACCEPT_

LANGUAGE

Non-SSL all Contains the list of languages the browser accepts.

Example: de,fr,en

Note: The header lines received from the client, if any, are

placed into the environment variable with the prefix

HTTP_* followed by the header name. The header will

return the environment variable.

HTTP_CONNECTION Non-SSL all The header lines received from the client, if any, are

placed into the environment variable with the prefix

HTTP_* followed by the header name. The header will

return to the environment variable.

Example: Keep-Alive

HTTP_COOKIE Non-SSL all User defined cookie for the response.

Example: w3ibmTest=true

HTTP_HOST Non-SSL all Contains the HTTP host URL.

Example: IBM.COM

Note: The header lines received from the client, if any, are

placed into the environment variable with the prefix

HTTP_* followed by the header name. The header will

return the environment variable.

HTTP_REASON Non-SSL original (server

API only)

Sets the reason string in the HTTP response header.

Example: ″Not Modified″

HTTP_RESPONSE Non-SSL original (server

API only)

Sets the response code in the HTTPS response header.

Example: 304

770 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

HTTP_USER_AGENT Non-SSL all Contains the name of your browser (web client). It

includes the name and version of the browser, requests

that are made through a proxy, and other information.

Example: Mozilla/4.72 [en](WinNT;U)

Note: The header lines received from the client, if any, are

placed into the environment variable with the prefix

HTTP_* followed by the header name. The header will

return the environment variable.

IBM_CCSID_VALUE Non-SSL all The CCSID under which the current server job is running.

Example: 37

INIT_STRING Non-SSL original (server

API only)

The string specified on the ServerInit directive.

LAST_MODIFIED Non-SSL original (server

API only) and

Apache

The last modification date of the document requested by

the user.

Example: 2000/12/31:09:45:20

LOCAL_VARIABLES Non-SSL original (server

API only)

All the user-defined variables.

NETCP Non-SSL all The default ASCII CCSID used to translate the data.

Example: 819

PASSWORD Non-SSL original (server

API only)

For authentication, contains the decoded password.

Example: password Note: (iSeries passwords are not

returned) The HTTP Server (original) does not allow

access to the PASSWORD variable if the authorization is

configured which uses user profiles and passwords for

authentication. To prevent an application from obtaining a

user profile password, HTTPD_extract() is sensitive to the

type of protect setups that are currently configured. If a

protection setup is configured with a password file of

%%SYSTEM%% (protection requiring user profile

password), HTTP_extract() for PASSWORD returns

HTTP_PARAMETER_ERROR and sets the value

parameter to *CONFLICT. Otherwise, HTTP_extract()

returns the appropriate value.

PATH_INFO Non-SSL all Contains the additional path information as sent by the

web browser.

Example: /wizard

PATH_TRANSLATED Non-SSL all Contains the decoded or translated version of the path

information that is contained in PATH_INFO, which takes

the path and does any virtual-to-physical mapping to it.

Example: /wwwhome/wizard

PEAKCONNECTIONS Non-SSL original (server

API only)

Defines the peak number of connections the server allows.

Example: 45

PPATH Non-SSL original (server

API only)

The partially translated path.

Example: /wwwhome/wizard

HTTP Server 771

Variable Name Type HTTP Server

Type

Description

PROXY_ACCESS Non-SSL original (server

API only)

Defines whether the request is a proxy request or not.

Example: NO

PROXY_CONTENT_

LENGTH

Non-SSL original (server

API only)

The Content-Length header of the proxy request that is

made through HTTPD_proxy. When information is sent

with the method of POST, this variable contains the

number of characters. Servers typically do not send an

end-of-file flag when they forward the information by

using stdin. If required, you can use the

CONTENT_LENGTH value to determine the end of the

input string.

Example: 7034

PROXY_CONTENT_

TYPE

Non-SSL original (server

API only)

The Content-Type header of the proxy request that is

made through HTTPD_proxy. When information is sent

with the method of POST, this variable contains the type

of data included. You can create your own content type in

the server configuration file and map it to a viewer.

Example: application/x-www-form-urlencoded

PROXY_METHOD Non-SSL original (server

API only)

The method for the request that is made through

HTTPD_proxy. Example: GET

QUERY_STRING Non-SSL all When information is sent using a method of GET, this

variable contains the information in a query that follows

the ″?″. The string is coded in the standard URL format of

changing spaces to ″+″ and encoding special characters

with ″%xx″ hexadecimal encoding. The CGI program must

decode this information.

Example: NAME=Eugene+T%2E+Fox=etfox
%7Cibm.net=xyz

Note: The supported maximum size of QUERY_STRING

is 4K for HTTP Server (original) and 8K for HTTP Server

(powered by Apache).

QZHBHA_MODEL Non-SSL original Model of the highly available Web server.

Example: PRIMARYBACKUP

QZHBIS_FIRST_

REQUEST

Non-SSL original This environment variable indicates to a CGI program if

this is a subsequent request of some session. The Web

server sets this variable to 1 if this is not a subsequent

request of any session (this is potentially the first request

of a new session). The Web server sets this variable to 0 if

this is a subsequent request of some session.

Example: 0

772 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

QZHBIS_CLUSTER_

ENABLED

Non-SSL original This environment variable indicates to the CGI program

that the CGI program is allowed to be cluster-enabled if

the request does not belong to any existing session

(QZHBIS_FIRST_REQUEST is set to 1). This environment

variable indicates to the CGI program that the CGI

program is cluster-enabled (QZHBIS_FIRST_REQUEST set

to ″0″). When the Web server receives a first request to a

CGI, it decides if the CGI program is allowed to be

cluster-enabled. If the CGI program is allowed to be

cluster-enabled, the Web server sets the

QZHBIS_CLUSTER_ENABLED environment variable to 1;

otherwise the Web server does not define the

QZHBIS_CLUSTER_ENABLED environment variable.

When the Web server receives a subsequent request to a

CGI, it looks to see if the session is cluster-enabled. If the

session is cluster-enabled, the Web server sets the

QZHBIS_CLUSTER_ENABLED environment variable to 1;

otherwise the Web server does not define the

QZHBIS_CLUSTER_ENABLED environment variable.

Example: 1

QZHBNEXT_SESSION_

HANDLE

Non-SSL original This environment variable contains a new session handle

for a CGI program to use. If the CGI program is

cluster-disabled, it may ignore this session handle. The

Web server generates a session handle and sets the

QZHBNEXT_SESSION_HANDLE environment variable to

this value. If the CGI program decides to be

cluster-enabled, it must use the passed session handle in

the URLs of subsequent requests; otherwise, the Web

server will not associate subsequent requests with this

session.

Example: 8B739003AB741824899F0004AC009021

QZHBRECOVERY . Non-SSL original Contains whether the highly available Web server has

gone through a recovery (primary to backup or backup to

primary). If this environment variable is present, recovery

has occurred. If it is not present, then recovery has not

occurred

REDIRECT_QUERY_

STRING

Non-SSL Apache Contains QUERY_STRING from a re-directed request.

Example: NAME=Eugene+T%2E+Fox=etfox
%7Cibm.net=xyz

HTTP Server 773

Variable Name Type HTTP Server

Type

Description

REDIRECT_QUERY_

URL

Non-SSL Apache This environment variable is used in the primary/backup

models only. This environment variable is used to indicate

to a cluster-enabled CGI program that it should perform a

recovery operation (for example, restore its state). The

Web server passes a session handle to the CGI program

through the QZHBRECOVERY environment variable. The

Web server passes the CGI’s state to the CGI program. If

there is no recovery, this environment variable is

undefined. In the primary/backup model, the high

availability CGI is also treated as a persistent CGI. The

high availability CGI state information can also be

retained in the CGI job. The next request for the next step

in the CGI is automatically run in the same job. Therefore,

the CGI program can skip reading its state unless this

environment variable is defined.

Example: 4D868803AB731824899F0004AC009021

REFERRER Non-SSL Apache Contains the referrer.

Example: http://www.myserver.com/cgi-bin/

REFERRER_URL Non-SSL all Contains the referrer URL.

Example: http://WWW.MYSERVER.COM:8080/
perlSetEnv/

REMOTE_ADDR Non-SSL all Contains the IP address of the remote host (web browser)

that is making the request, if available.

Example: 10.10.2.3

REMOTE_HOST Non-SSL original Contains the host name of the web browser that is making

the request, if available.

Example: www.mybusiness.com

REMOTE_PORT Non-SSL Apache Contains the remote user port number.

Example: 3630

REMOTE_IDENT Non-SSL all Contains the user ID of the remote user.

Example: MyIdentityx

REMOTE_USER Non-SSL all If you have a protected script and the server supports

client authentication, this environment variable contains

the user name that is passed for authentication.

Example: SMITH

REQHDR Non-SSL original (server

API only)

Contains all of the headers received from the client

separated by Carriage Return/Line Feed (\r\n).

REQUEST_CONTENT_

LENGTH

Non-SSL original (server

API only)

When information is sent with the method of POST, this

variable contains the number of characters. The server

typically does not send an end-of-file flag when it

forwards the information by using stdin. If required, you

can use the CONTENT_LENGTH value to determine the

end of the input string.

Example: 7034

774 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

REQUEST_CONTENT_

TYPE

Non-SSL original (server

API only)

When information is sent with the method of POST, this

variable contains the type of data included. You can create

your own content type in the server configuration file and

map it to a viewer.

Example: application/x-www-form-urlencoded

REQUEST_METHOD Non-SSL all Contains the method (as specified with the METHOD

attribute in an HTML form) that is used to send the

request.

Example: GET

REQUEST_URI Non-SSL Apache Specifies URI to be requested.

Example: /cgi-bin/hello.pgm

RULE_FILE Non-SSL all Specifies rule file to be used.

Example: /www/myserver/conf/httpd.conf

SCRIPT_FILENAME Non-SSL Apache The file name of the document requested by the user.

Example: /QSYS.LIB/CGI.LIB/HELLO.PGM

SCRIPT_NAME Non-SSL all A virtual path to the program being run. Use this for

self-referring URLs.

Example: /cgi-bin/hello.pgm

SERVER_ADDR Non-SSL all Contains the address of the server.

Example: 10.10.2.3

SERVER_ADMIN Non-SSL Apache Contains information about the server administrator.

Example: [no address given]

SERVER_NAME Non-SSL all Contains the server host name or IP address of the server.

Example: 10.9.8.7

SERVER_PORT Non-SSL all Contains the port number to which the client request was

sent.

Example: 2001

SERVER_PROTOCOL Non-SSL all Contains the name and version of the information

protocol that is used to make the request.

Example: HTTP/1.0

SERVER_ROOT Non-SSL original Sets the directory in which the server lives. It will

typically contain the subdirectories like conf/ and logs/.

Paths for other configuration fields are taken as relative to

this directory.

Example: /myserver/main/

SERVER_SIGNATURE Non-SSL all Allows configuration of a trailing footer line under server

generated documents like error messages, mod_proxy ftp

directory listings, and mod_info output. Enabling the

footer line allows the user to tell which chained servers in

a proxy chain produced a returned error message.

Example: On

HTTP Server 775

Variable Name Type HTTP Server

Type

Description

SERVER_SOFTWARE Non-SSL all Contains the name and version of the information server

software that is answering the request.

Example: IBM-HTTP-SERVER/1.0

SSI_DIR Non-SSL all The path of the current file relative to SSI_ROOT. If the

current file is in SSI_ROOT, this value is ″/″.

Example: ssi_child_dir/

SSI_FILE Non-SSL all The file name of the current file.

Example: ssi_parent.shtml

SSI_INCLUDE Non-SSL all The value that is used in the include command that

retrieved this file. This is not defined for the topmost file.

Example: ssi_child_dir/ssi_child.shtml

SSI_PARENT Non-SSL all The path and file name of the include, relative to

SSI_ROOT.

Example: ssi_parent.shtml

SSI_ROOT Non-SSL all The path of the topmost file. All include requests must be

in this directory or a child of this directory.

Example: #echo var=SSI_DIR ->

Note: You can use echo to display a value set by the set

or global directives.

UNIQUE_ID Non-SSL Apache Provides a unique magic token and acts as the identifier

across all requests under very specific conditions.

Example: aK8YOAkFBZkAABsuEC4AAACB

URI Non-SSL original (server

API only)

The URL of the document requested by the user.

Example: /cgi-bin/hello.pgm

URL Non-SSL original (server

API only)

The URL of the document requested by the user.

Example: /cgi-bin/hello.pgm

USERID Non-SSL original (server

API only)

If you have a protected script and the server supports

client authentication, this environment variable contains

the user name that is passed for authentication.

Example: SMITH

USERNAME Non-SSL original (server

API only)

If you have a protected script and the server supports

client authentication, this environment variable contains

the user name that is passed for authentication.

Example: SMITH

HTTPS SSL all Returns ON if the system has completed an SSL

handshake. It returns OFF if the exchange of signals to set

up communications between two modems has failed.

Example: OFF

HTTPS_CIPHER SSL all This is the cipher that is used to negotiate with the client

on the SSL handshake.

Example: SSL_RSA_WITH_RC4_128_MD5

776 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

HTTPS_CLIENT_ CERT SSL all The entire certificate passed to the server from the client

browser when SSL client authentication is enabled. The

format of the certificate is a BASE64 encoded string that

represents the DER format of the X.509 certificate. As an

environment variable the BASE64 encoded string has been

converted to EBCDIC and must be converted back to

ASCII before it can be used for typical digital certificate

API’s.

Example: MIIC0DCCAbigAwIBAgIHOL2Yx...

HTTPS_CLIENT_

CERT_COMMON

_NAME

SSL all The common name from the client certificate’s

distinguished name.

Example: SMITH

HTTPS_CLIENT_

CERT_COUNTRY

SSL all The country code from the client certificate’s distinguished

name.

Example: US

HTTPS_CLIENT_

CERT_DN

SSL all The client certificate’s distinguished name.

Example: :cn=CAPTAIN,ou=downtown,o=fire

fighters,l=Minot,st=North Dakota,c=US

HTTPS_CLIENT_

CERT_EMAIL

SSL Apache The email of the client owning the certificate.

Example: me@mycompany.com

HTTPS_CLIENT_

CERT_ISSUER_

COMMON_NAME

SSL all The common came of the certificate authority that issued

the client’s certificate.

Example: SMITH

HTTPS_CLIENT_

CERT_ISSUER_

COUNTRY

SSL all The country code of the certificate authority that issued

the client’s certificate.

Example: US

HTTPS_CLIENT_

CERT_ISSUER_DN

SSL all The distinguished name of the certificate authority that

issued the client’s certificate.

Example: :cn=testsystem.ibm.com CA,ou=Test

Organization Unit,o=System test,

l=Rochester,st=Minnesota,c=US

HTTPS_CLIENT_

CERT_ISSUER_EMAIL

SSL all The e-mail address of the certificate authority that issued

the client’s certificate.

Example: me@mydomain.net

HTTPS_CLIENT_

CERT_ISSUER_

LOCALITY

SSL all The locality or city of the certificate authority that issued

the client’s certificate.

Example: New York

HTTPS_CLIENT_

CERT_ISSUER_ORG_

UNIT

SSL all The organizational unit of the certificate authority that

issued the client’s certificate.

Example: bird watchers

HTTPS_CLIENT_

CERT_ISSUER_

ORGANIZATION

SSL all The organization name of the certificate authority that

issued the client’s certificate.

Example: dove

HTTP Server 777

Variable Name Type HTTP Server

Type

Description

HTTPS_CLIENT_

CERT_ISSUER_

POSTAL_CODE

SSL Apache The postal code of the certificate authority that issued the

client’s certificate.

Example: 12344-6789

HTTPS_CLIENT_

CERT_ISSUER_STATE_

OR_PROVINCE

SSL all The state or province of the certificate authority that

issued the client’s certificate.

Example: North Dakota

HTTPS_CLIENT_

CERT_LEN

SSL all The length of the certificate passed in

HTTPS_CLIENT_CERT.

Example: 968

HTTPS_CLIENT_

CERT_LOCALITY

SSL all The locality or city of the client certificate’s distinguished

name.

Example: New York

HTTPS_CLIENT_

CERT_ORG_UNIT

SSL all The organization unit name from the client certificate’s

distinguished name.

Example: Pack234

HTTPS_CLIENT_

CERT_

ORGANIZATION

SSL all The organization name from the client certificate’s

distinguished name.

Example: Scouts

HTTPS_CLIENT_

CERT_POSTAL_CODE

SSL Apache The postal code assigned by the issueing certificate

authority.

Example: 80525

HTTPS_CLIENT_

CERT_SERIAL_NUM

SSL all The serial number assigned by the issuing certificate

authority.

Example: 3F:E4:83:81:02:D5:58

HTTPS_CLIENT_

CERT_STATE_OR_

PROVINCE

SSL all The state or province from the client certificate’s

distinguished name.

Example: Alberta

HTTPS_CLIENT_

ISSUER_EMAIL

SSL Apache Contains the email address of the Certificate Authority

that issued the certificate.

Example: jones@mydomain.net

HTTPS_KEYSIZE SSL all If a valid security product is installed and the SSLMode

directive is SSLMode=ON, this will be set to the size of

the bulk encryption key used in the SSL session.

Example: [128]

778 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

HTTPS_PORT SSL original original For HTTP Server (original), if a valid security product is

installed and the SSLMode directive is SSLMode=ON, this

environment variable contains the SSL port number the

server is listening on.

Example: 443

Note: HTTP Server (powered by Apache) must set this

environment variable in the configuration file. Add to

your config file ″SetEnv HTTPS_PORT nnnnn″ where

nnnnn is the https port matching the secure port for the

context that it applies to (server config or specific to

virtual host).

HTTPS_SESSION_ID SSL all Set to NULL by default when used with HTTP Server

(powered by Apache).

HTTPS_SESSION_

ID_NEW

SSL all If the value is TRUE, it indicates that a full handshake

was performed for this SSL session. If the value is FALSE,

it indicates that an abbreviated handshake was performed

for this SSL session.

Example: True

SSL_CIPHER SSL Apache This is the cipher that is used to negotiate with the client

on the SSL handshake.

Example: SSL_RSA_WITH_RC4_128_MD5

SSL_CLIENT_C SSL Apache The country code from the client certificate’s distinguished

name.

Example: USA

SSL_CLIENT_

CERTBODY

SSL Apache The entire certificate passed to the server from the client

browser when SSL Client authentication is enabled. The

format of the certificate is a BASE64 encoded string that

represents the DER format of the X.509 certificate. As an

environment variable the BASE64 encoded string has been

converted to EBCDIC and must be converted back to

ASCII before it can be used for typical digital certificate

API’s.

Example: MIIC0DCC big IB gIHOL2Yx...

SSL_CLIENT_

CERTBODYLEN

SSL Apache The length of the certificate passed in SSL_CLIENT_CERT.

Example: 828

SSL_CLIENT_

CERT_EMAIL

SSL Apache The email of the client owning the certificate.

Example: me@mycompany.com

SSL_CLIENT_CN SSL Apache The common name from the client certificate’s

distinguished name.

Example: SMITH

SSL_CLIENT_DN SSL Apache The client’s distinguished name.

Example: :cn=CAPTAIN,ou=downtown,o=fire

fighters,l=Minot,st=North Dakota,c=US

HTTPS_CLIENT_CERT_DN

:cn=CAPTAIN,ou=downtown,o=fire

fighters,l=Minot,st=North Dakota,c=US

HTTP Server 779

Variable Name Type HTTP Server

Type

Description

SSL_CLIENT_ICN SSL Apache The common name of the certificate authority that issued

the client’s certificate.

Example: SMITH

SSL_CLIENT_IC SSL Apache The country code of the certificate authority that issued

the client’s certificate.

Example: CA

SSL_CLIENT_IDN SSL Apache The distinguished name of the certificate authority that

issued the client’s certificate.

Example: :cn=testsystem.ibm.com CA,ou=Test

Organization Unit,o=System test,

l=Rochester,st=Minnesota,c=US

SSL_CLIENT_EMAIL SSL Apache The e-mail of the certificate authority that issued the

client’s certificate.

Example: me@mycompany.com

SSL_CLIENT_IL SSL Apache The locality of the certificate authority that issued the

client’s certificate.

Example: New York

SSL_CLIENT_IO SSL Apache The organization name of the certificate authority that

issued the client’s certificate.

Example: bird watchers

SSL_CLIENT_IOU SSL Apache The organizational unit of the certificate authority that

issued the client’s certificate.

Example: bird watchers

SSL_CLIENT_IPC SSL Apache The postal code of the certificate authority that issued the

client’s certificate.

Example: 55901

SSL_CLIENT_IST SSL Apache The state or province of the certificate authority that

issued the client’s certificate.

Example: MNA

SSL_CLIENT_L SSL Apache The locality or city of the client certificate’s distinguished

name.

Example: New York

SSL_CLIENT_

NEWSESSIONID

SSL Apache If the value is TRUE, it indicates that a full handshake

was performed for this SSL session. If the value is FALSE,

it indicates that an abbreviated handshake was performed

for this SSL session.

Example: True

SSL_CLIENT_O SSL Apache The organization name from the client certificate’s

distinguished name.

Example: bird watchers

780 iSeries: IBM HTTP Server

Variable Name Type HTTP Server

Type

Description

SSL_CLIENT_OU SSL Apache The organizational unit name from the client certificate’s

distinguished name.

Example: bird watchers

SSL_CLIENT_PC SSL Apache The postal code from the client certificate’s distinguished

name.

Example: 58401

SSL_CLIENT_

SERIALNUM

SSL Apache The serial number assigned by the issuing certificate

authority.

Example: 3F:E4:83:81:02:D5:58

SSL_CLIENT_

SESSIONID

SSL Apache If the value is TRUE, it indicates that a full handshake

was performed for this SSL session. If the value is FALSE,

it indicates that an abbreviated handshake was performed

for this SSL session.

Example: True

SSL_CLIENT_ST SSL Apache The state or province from the client certificate’s

distinguished name.

Example: North Dakota

SSL_PROTOCOL_

VERSION

SSL Apache The SSL protocol version negotiated on the SSL handshake

with the client.

Example: SSLV3

SSL_SERVER_C SSL Apache The country where the server is located in.

Example: Denmark

SSL_SERVER_CN SSL Apache The common name from the server certificate’s

distinguished name.

Example: WWW.MYDOMAIN.COM

SSL_SERVER_DN SSL Apache The server’s distinguished name.

Example:

:cn=TESTSYSTEM.IBM.COM,ou=MyTestOrganizationUnit,

o=Software test, l=Rochester,st=Minnesota,c=US

SSL_SERVER_EMAIL SSL Apache The e-mail address of the server certificate.

Example: me@mydomain.net

SSL_SERVER_L SSL Apache The locality of the server certificate’s distinguished name.

Example: New York

SSL_SERVER_OU SSL Apache The organization unit name from the server certificate’s

distinguished name.

Example: bird watchers

SSL_SERVER_O SSL Apache The organization name from the server certificate’s

distinguished name.

Example: bird watchers

HTTP Server 781

Variable Name Type HTTP Server

Type

Description

SSL_SERVER_ST SSL Apache The state or province from the server certificate’s

distinguished name.

Example: North Dakota

HTTP_AS_

AUTH_PROFILETKN

SSL and

Non-SSL

Apache A 32-bit value used to identify or authenticate the user.

See the ProfileToken directive for more information.

QIBM_CGI_

LIBRARY_LIST

Non-SSL Apache This variable is used to set the CGI jobs’ library list. The

variable can be set using the SetEnv directive. See the

SetEnv directive for more information.

Lotus Domino plug-in for HTTP Server (powered by Apache)

This topic provides information about the Lotus Domino plug-in for HTTP Server (powered by Apache).

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

With Domino 6 for iSeries, customers can take advantage of the HTTP Server (powered by Apache) to

forward HTTP traffic to their Domino 6 servers. A new plug-in service program QZSRVIHSAH is

provided with the HTTP Server product (5722DG1) as a PTF in OS/400 releases V5R2 and V5R1 to

provide this function.

See HTTP Server (powered by Apache) plug-in for Domino 6 on iSeries for more information

Server-side include commands for HTTP Server

This topic provides information about server-side include (SSI) commands for both the HTTP Server.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Server-side includes allow you to insert information into CGI programs and HTML documents that the

server sends to the client.

Server-side include commands for HTTP Server (powered by Apache)

HTTP Server (powered by Apache) SSI commands have the following format:

<--#command parameter="value -->

Note: There is a space before -->. The parameter value is normally enclosed in double quotes, but for

compatibility with the HTTP Server (original), double quotes are not required.

The following describes the SSI commands for HTTP Server (powered by Apache).

echo: This command prints one of the SSI or API variables. Dates are printed using config timefmt. The

attributes are:

var Specifies an environment variable name or CGI environment variable name.

782 iSeries: IBM HTTP Server

rzaiemod_core.htm#profiletoken
rzaiemod_env.htm#setenv
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://www-1.ibm.com/servers/eserver/iseries/domino/apache.html
http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

See the Environment variables on HTTP Server topic for a list of environment variables.

For example:
<!--#echo var="DATE_GMT" -->

encoding

Specifies how the server encodes special characters contained in the variable. If set to none, no

encoding is done. If set to url, then URL encoding (or %-encoding) is performed. If set to the

default of entity, then entity encoding is performed.

 For example:

<!--#echo encoding="none" -->

exec: This command calls a CGI program. The attributes are:

cgi Specifies the relative path and file name. For example:

<!--#exec cgi="/cgi-bin/counter.pgm" -->

fsize: This command prints the size of the specified file according to config sizefmt. The attributes are:

file Specifies the relative path and file name. For example:

<!--#fsize virtual="/include/include.htm" -->

virtual

Specifies the relative path and file name using URL encoding. For example:

<!--#fsize virtual="/include/include.htm" -->

flastmod: This command prints the last modification date of the specified file according to config

timefmt. The attributes are:

file Specifies the relative path and file name. For example:

<!--#flastmod file="/include/include.htm" -->

virtual

Specifies the relative path and file name using URL encoding. For example:

<!--#flastmod virtual="/include/include.htm" -->

global: This command is the same as the “set” command.

include: This command inserts the text of another file. Included files can be nested. The attributes are:

file Specifies the relative path and file name. For example:

<!--#include file="/include/include.htm" -->

virtual

Specifies the relative path and file name using URL encoding. For example:

<!--#include virtual="/include/include.htm" -->

printenv: This command prints all existing environment variables and their values. There are no

attributes. For example:

<!--#printenv -->

set: This command sets the value of an environment variable. The attributes are:

var Specifies an environment variable name.

 See “Environment variables on HTTP Server” on page 766 for a list of environment variables.

value Specifies the value to assign to the environment variable name. For example:

<!--#set var="var1" value="yes" -->

If you want to insert a special character in a string, precede it with a \. For example:

HTTP Server 783

<!--#set var="var1" value="\$Date_GMT" -->

Conditional commands: There are four conditional or flow control commands. The if command tests a

value. If the value is true, then processing continues with the next line. If the value is not true then

processing continues with an elif, else, or endif command. The elif and else commands are optional. The

if and elif commands have a parameter of expr. The expr parameter contains the test condition. An endif

command is required for every if command. For example:

<!--#if expr="$USER_AGENT = /MSIE/" -->

<P>You are using Internet Explorer.</P>

<!--#elif expr="$USER_AGENT = /Mozilla/" -->

<P>You are using Netscape.</P>

<!--#else -->

<P>You are not using Internet Explorer or Netscape.</P>

<!--#endif -->

The expr parameter can have one of the following forms:

 Condition Comments

string True if the string is not empty

string1 = string2 (equal) Compare string1 with string2. If string2 has the

form /string/, then it is compared as a regular

expression. See “Regular expression notation for

HTTP Server” on page 752 for more information.

string1 != string2 (not equal)

string1 < string2 (less than)

string1 <= string2 (less than or equal to)

string1 > string2 (greater than)

string1 > = string2 (greater than or equal to)

(test_condition) True if test_condition is true.

!test_condition True if test_condition is false.

Test_condition1 && test_condition2 True if both test_condition1 and test_condition2

are true.

Test_condition1 || test_condition2 True if either test_condition1 or test_condition2

are true.

Variable substitution: Values can be supplied in the following ways:

v Test can be supplied within a quoted string. For example:

<!--#config timefmt="%b%d%y" -->

For compatibility with HTTP Server (original), text can be supplied without a quoted string. For

example:

<!--#config timefmt=%b%d%y -->

v A literal dollar sign can be supplied in a string using a backslash. For example:

<!--#ifexpr="$a=\$test" -->

v A variable reference can be supplied within a character sequence using braces. For example:

<!--#set var="ABC" value="${REMOTE_HOST}_${REQUEST_METHOD}" -->

If REMOTE_HOST is equal to X and REQUEST_METHOD is equal to Y, then $ABC is equal to X_Y.

Note: For compatibility with HTTP Server (original), a variable name can also begin with an ampersand

(&).

Additional notes

Server-side includes look for the variable, echoes where the variable is found, and proceeds with the

function. You can have multiple variable references. When server-side includes encounter a variable

reference inside a server-side include directive, it attempts to resolve it on the server side. The following

784 iSeries: IBM HTTP Server

example escapes the & so that server-side includes do not recognize it as a variable. In the second line of

the example, the variable ″&index″ is a server-side variable and is used to construct the variable name

″var1″. The variable ê is a client side variable, so the & is escaped to create the value ″:frêd″

or ″fred″ with a circumflex over the e.

<!--#set var="index" value="1" -->

<!--#set var+"var&index;" value+"fr\êd" -->

<!--#echo var="var1" -->

The following characters can be escaped. Escape variables must be preceded with a backslash (\).

 Escape variable Meaning

\a Alert (bell)

\b Backslash

\f Form feed (new page)

\n New line

\r Carriage return

\t Vertical tab

\v Vertical tab

\’ Single quote mark

\’’ Double quote mark

\? Question mark

\\ Backslash

\- Hyphen

\. Period

\& Ampersand

Supported OS/400 file systems for Web content served by HTTP

Server

This topic provides information about supported OS/400 file system for Web content.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The HTTP Server can serve content from any of the following Integrated File System file systems:

v root (/)

v QSYS.LIB

v QOpenSys

v QDLS

v NFS

v QFileSvr.400

v QNetWare

v QNTC

v QOPT

v UDFS

HTTP Server 785

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

A file system provides the support that allows users and applications to access specific segments of

storage that are organized as logical units. These logical units are files, directories, libraries, and objects.

Each file system has a set of logical structures and rules for interacting with information in storage. These

structures and rules may be different from one file system to another. From the perspective of structures

and rules, the support for accessing database files and various other object types through libraries can be

thought of as a file system. Similarly, you can think of the support for accessing documents (which are

really stream files) through the folders structure as a separate file system.

As you decide from which file system to serve files, you might want to consider the following:

v Serving from the root (or /) directory gives you the fastest response times.

v Will the tools you use to maintain your site be compatible with the file system you choose?

v How easy must it be to move content from platform to platform?

Remember that any individual server can serve content (CGI scripts; HTML files; graphics such as .jpegs,

GIFs, and image maps; and so on) from many file systems at once. You can configure your server to

serve content from whatever file systems suit your needs.

See File systems in the integrated file system for more information about the integrated file system.

Before you start serving your content from the Integrated File System, you must ensure that the world

can access the files that you want to serve. You must grant the QTMHHTTP user profile or *PUBLIC the

following authorities and permissions to enable Web serving with IBM HTTP Server for iSeries:

v QTMHHTTP or *PUBLIC must have *USE authority to all library system objects that you intend to

serve.

v If you use any of the log directives with any Integrated File System directory name, the directory must

exist, and QTMHHTTP or *PUBLIC must have *RWX authority.

v The QTMHHTTP user profile or *PUBLIC must be granted *RX authority to all objects (HTML pages,

graphics, and so on) that you intend to serve.

v To use CGI programs to access any of the objects you serve, the QTMHHTP1 user profile or *PUBLIC

needs the same authority to the objects as QTMHHTTP.

Note: When considering from which file system to serve files, keep in mind that AllowOverride should

be None for QDLS.

Time formats for HTTP Server

This topic provides information about time formats for server-side includes.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

The following table contains formatting values used to specify time with server-side includes. See “Log

formats for HTTP Server (powered by Apache)” on page 29 and “Server-side include commands for

HTTP Server” on page 782 for proper use of the server-side include time format.

 Value Description Example

%% Replace with %. %

%a Replace with the abbreviated weekday name. Mon

%A Replace with the full weekday name. Monday

%b Replace with the abbreviated month name. Apr

786 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html

Value Description Example

%B Replace with the full month name. April

%c Replace with the date and time.

%C Replace with the century number (year divided by 100 and truncated).

%d Replace with the day of the month (01-31). 20

%D Insert the date as %m/%d/%y. 04/20/00

%e Insert the month of the year as a decimal number (01-12) 03

%E[cCzyY] If the alternative date and time format is not available, the %E

descriptions are mapped to their unextended counterparts. For example

%E is mapped to %C.

%Ec Replace with the alternative data and time representation.

%EC Replace with the name of the base year in the alternative representation.

%Ex Replace with the alternative data representation.

%EX Replace with the alternative time representation.

%Ey Replace with the offset from %EC (year only) in the alternative

representation.

%EY Replace with the full alternative year representation.

%h Replace with the abbreviated month name. This is the same as %b. Apr

%H Replace with the hour (23-hour clock) as a decimal number (00-23). 22

%I Replace with the hour (12-hour clock) as a decimal number(00-12). 04

%j Replace with the day of the year (001-366). 222

%m Replace with the month (01-12). 04

%M Replace with the minute (00-59). 24

%n Replace with a new line.

%O[deHlmMSUwWy] If the alternative date and time format is not available the %E descriptors

are mapped to their extended counterparts. For example %Od is mapped

to %d.

%Od Replace with the day of the month using the alternative numeric symbols.

Fill as needed with leading zeros if there is any alternative symbol for

zero otherwise with leading spaces.

%Oe Replace with the day of the month using the alternative numeric symbols

filled as needed with leading spaces.

%OH Replace with the hour (24 hour clock) using the alternative numeric

symbols.

%OI Replace with the hour (12 hour clock) using the alternative numeric

symbols.

%Om Replace with the month using the alternative numeric symbols.

%OM Replace with the minutes using the alternative numeric symbols.

%OS Replace with the seconds using the alternative numeric symbols.

%OU Replace with the week number of the year (Sunday as the first day of the

week, rules corresponding to %U) using alternative numeric symbols.

%Ow Replace with the weekday (Sunday=0) using the alternative numeric

symbols.

%OW Replace with the week number of the year (Monday as the first day of

the week) using the alternative numeric symbols.

HTTP Server 787

Value Description Example

%Oy Replace with the year (offset from %C) in the alternative representation

and using the alternative numeric symbols.

%p Replace with the local equivalent of AM or PM.

%r Replace with the string equivalent to %I:%M:%S %p.

%R Replace with the time in 24 hour notation (%H:%M).

%S Replace with seconds (00-61).

%t Replace with a tab.

%T Replace with a string equivalent to %H:%M:%S. 16:31:04

%u Replace with a weekday as a decimal number (1 to 7) with a 1

representing Monday.

3

%U Replace with the week number of the year (00-53) where Sunday is the

first day of the week.

24

%V Replace with the week number of the year (01-53) where Monday is the

first day of the week.

5

%w Replace with the weekday (0-6) where Sunday is 0. 0

%W Replace with the week number of the year (00-53) where Monday is the

first day of the week.

13

%x Replace with the appropriate date representation.

%X Replace with the appropriate time representation.

%y Replace with the year with the century. 02

%Y Replace with the year with the current century. 2002

%Z Valid only for HTTP Server (original). Replace with the name of the time

zone or no characters if the time zone is not known.

Related information on HTTP Server

Find additional information about the HTTP Server and Web serving.

Important: Information for this topic supports the latest PTF levels for HTTP Server for iSeries . It is

recommended that you install the latest PTFs to upgrade to the latest level of the HTTP

Server for iSeries. Some of the topics documented here are not available prior to this update.

See IBM Service

for more information.

Listed below are the iSeries manuals and IBM Redbooks™ (in PDF format), Web sites, and Information

Center (categories or) topics that relate to the IBM HTTP Server. You can view or print any of the PDFs.

Manuals

v iSeries Performance Capabilities Reference in the V5R1 iSeries Information Center

Redbooks

v HTTP Server Performance and Capacity Planning

v AS/400 Internet Security: Developing a Digital Certificate Infrastructure

v Implementation and Practical User of LDAP on the IBM eServer iSeries Server

788 iSeries: IBM HTTP Server

http://www.ibm.com/servers/eserver/iseries/software/http/services/service.html
http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/books/as4ppcp4.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245645.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245659.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246193.pdf

v Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and More

v Building AS/400 Internet-Based Applications with Java

v Porting UNIX Applications Using AS/400 PASE

v HTTP Server (powered by Apache): An Integrated Solution for IBM eServer iSeries Servers

Web sites

v IBM HTTP Server for iSeries product page

v IBM Net.Data for iSeries product page

v Apache HTTP Server Project

v IBM AlphaWorks

v IBM developerWorks®

v IBM PartnerWorld® e-business

v IBM Easy400 CGI WEB development tools for iSeries

v Ignite/400 e-business user group

Programming resources

v Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and More

v Building AS/400 Internet-Based Applications with Java

v Porting UNIX Applications Using AS/400 PASE

v IBM AlphaWorks

v IBM developerWorks tools, code, and tutorials

v IBM PartnerWorld e-business

v WebSphere Development Tools for iSeries

To save a PDF on your workstation for viewing or printing:

1. Open the PDF in your browser (click the link above).

2. In the list of your browser, click File.

3. Click Save As...

4. Navigate to the directory in which you would like to save the PDF.

5. Click Save.

If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the

Adobe Web site (http://www.adobe.com/prodindex/acroabat/readstep.html)

.

HTTP Server 789

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245402.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245337.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245970.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246716.pdf
http://www.ibm.com/servers/eserver/iseries/software/http/
http://www.ibm.com/servers/eserver/iseries/software/netdata/
http://httpd.apache.org/
http://www.alphaworks.ibm.com/tech/home
http://www.ibm.com/developerworks
http://www.as400.ibm.com/developer/ebiz/index.html
http://www-922.ibm.com/servers/eserver/iseries/easy400
http://www.ignite400.org/
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245402.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245337.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245970.pdf
http://www.alphaworks.ibm.com/tech/home
http://www.ibm.com/developerworks
http://www.as400.ibm.com/developer/ebiz/index.html
http://www.ibm.com/software/ad/wdt400/
http://www.adobe.com/products/acrobat/readstep.html

Legal notices for Apache Software Foundation on HTTP Server

The Apache Software Foundation has specific licensing agreements for the ASF Apache Web Server and

the ASF Jakarta Tomcat servlet engine.

v Apache license

v Apache Software Foundation Jakarta Tomcat servlet engine license

790 iSeries: IBM HTTP Server

license.txt
tomcatlicense.txt

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1997, 2005 791

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AIX

AS/400

DB2

DB2 Universal Database

Domino

792 iSeries: IBM HTTP Server

e(logo)server

eServer

i5/OS

IBM

iSeries

OS/400

Redbooks

Sametime

Tivoli

WebSphere

zSeries

Lotus, Freelance, and WordPro are trademarks of International Business Machines Corporation and Lotus

Development Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing information

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix. Notices 793

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

794 iSeries: IBM HTTP Server

����

Printed in USA

	Contents
	IBM HTTP Server for iSeries
	What's new for IBM HTTP Server for iSeries V5R3
	Printable PDF
	Concepts of functions of HTTP Server
	IBM Web Administration for iSeries
	Fundamental directive, context, and server area concepts on HTTP Server (powered by Apache)
	Directive categories of HTTP Server (powered by Apache)
	Supported directive context for HTTP Server (powered by Apache)
	Container types of HTTP Server (powered by Apache)
	Context and server area relationship
	Directives within containers
	How the directives are merged
	Using container directives

	Content negotiation for HTTP Server (powered by Apache)
	Content negotiation
	Using a type-map file
	MultiViews
	The negotiation methods
	Dimensions of negotiation
	The negotiation algorithm
	Editing quality values
	Media types and wildcards
	Variants with no language
	Extensions to transparent content negotiation
	Notes on hyperlinks and naming conventions
	Notes on caching

	Highly available Web server cluster on HTTP Server
	Primary/backup with takeover IP model
	Primary/backup with a network dispatcher model
	Peer model

	Real time server statistics
	Web Publishing with the PUT Method
	File compression for HTTP Server (powered by Apache)
	Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by Apache)
	Log formats for HTTP Server (powered by Apache)
	Proxy server types and uses for HTTP Server (powered by Apache)
	Forward proxy
	Reverse proxy
	Proxy chaining

	Web crawling on HTTP Server
	Webserver search engine on HTTP Server
	How it works
	Sample files
	National language considerations
	Browser and CL command interface for the Webserver search engine and Web crawler

	Security tips for HTTP Server
	Permissions on ServerRoot directories for HTTP Server
	Stopping users from overriding system wide settings for HTTP Server (powered by Apache)
	Protect server files by default for HTTP Server (powered by Apache)
	Server Side Includes for HTTP Server (powered by Apache)
	CGI for HTTP Server

	Kerberos for HTTP Server
	User profiles and required authorities for HTTP Server
	User profiles and required authorities for HTTP Server (powered by Apache)

	Validation list on HTTP Server
	About Tomcat
	Directory structure
	Log files
	Process description

	Triggered cache manager for HTTP Server
	Trigger messages for triggered cache manager on HTTP Server (powered by Apache)
	Trigger requests
	Trigger messages
	Queue policy
	Trigger responses
	Trigger status and message codes

	WebDAV for HTTP Server (powered by Apache)
	Virtual hosts on HTTP Server
	WebSphere Application Server for iSeries
	WebSphere Portal Express for iSeries

	Scenarios for HTTP Server
	JKL Toy Company creates an HTTP Server (powered by Apache)
	JKL Toy Company adds a new directory to HTTP Server (powered by Apache)
	JKL Toy Company adds user directories for HTTP Server (powered by Apache)
	JKL Toy Company enables cookie tracking on HTTP Server (powered by Apache)
	JKL Toy Company creates virtual hosts on HTTP Server (powered by Apache)
	JKL Toy Company adds password protection for HTTP Server (powered by Apache)
	JKL Toy Company adds dynamic content with server-side includes for HTTP Server (powered by Apache)
	JKL Toy company enables Secure Sockets Layer (SSL) protection on HTTP Server (powered by Apache)
	JKL Toy Company enables single signon for HTTP Server (powered by Apache)
	Scenario
	Details
	Prerequisites
	Step 2: Create a basic single signon configuration for iSeries A
	Step 3: Add principal names to the KDC
	Step 4: Add Kerberos keytab
	Step 5: Create home directory for John Day on iSeries A
	Step 6: Test network authentication service configuration on iSeries A
	Step 7: Create EIM identifier for John Day
	Step 8: Create a source association and target association for the new EIM identifier
	Step 9: Configure iSeries Access for Windows applications to use Kerberos authentication
	Step 11: Configure HTTP Server for single signon

	JKL Toy Company configures an in-process JSP with ASF Tomcat on HTTP Server (powered by Apache)
	JKL Toy Company configures an in-process servlet with ASF Tomcat on HTTP Server (powered by Apache)
	JKL Toy Company configures an in-process WAR file with ASF Tomcat on HTTP Server (powered by Apache)
	JKL Toy Company monitors Web server activity with logs on HTTP Server (powered by Apache)

	Tasks
	Getting started with the IBM Web Administration for iSeries interface
	Install and test the HTTP Server
	HTTP Server tasks
	Set up MIME types on HTTP Server (powered by Apache)
	Set up content and language negotiation for HTTP Server (powered by Apache)
	Set up customized error messages on HTTP Server (powered by Apache)
	Set up directory indexing and directory listing on HTTP Server (powered by Apache)
	Set up environment variables on HTTP Server (powered by Apache)
	Set up and administration of a highly available Web server cluster on HTTP Server (powered by Apache)
	Set up a highly available Web server using clustering CL commands for HTTP Server
	Set up a welcome or index page on HTTP Server (powered by Apache)
	Manually edit HTTP Server
	Manage HTTP Servers
	Manage addresses and ports for HTTP Server (powered by Apache)
	Manage backup files for HTTP Server
	Manage a directory on HTTP Server (powered by Apache)
	Manage highly available HTTP Server (powered by Apache)
	Manage ports for the administration (ADMIN) server on HTTP Server
	Manage server performance for HTTP Server (powered by Apache)

	Compression tasks
	Set up input decompression for HTTP Server (powered by Apache)
	Set up output compression for HTTP Server (powered by Apache)

	Fast Response Cache Accelerator tasks
	Set up Fast Response Cache Accelerator (FRCA) for HTTP Server (powered by Apache)

	Log and log file tasks
	Set up logs on HTTP Server (powered by Apache)

	Proxy tasks
	Set up forward proxy for HTTP Server (powered by Apache)
	Set up reverse proxy for HTTP Server (powered by Apache)
	Set up proxy chaining for HTTP Server (powered by Apache)

	Search tasks
	Manage document lists for the Webserver search engine on HTTP Server
	Set up a thesaurus dictionary for the Webserver search engine on HTTP Server
	Manage a thesaurus dictionary for the Webserver search engine on HTTP Server
	Manage search indexes for the Webserver search engine on HTTP Server
	Set up a document list for the Webserver search engine on HTTP Server
	Set up an options object for the Webserver search engine on HTTP Server
	Manage Web spiders, Web crawlers, and robots on HTTP Server
	Set up a URL mapping rules file for the Webserver search engine on HTTP Server
	Set up a URL object for the Webserver search engine on HTTP Server
	Set up the Webserver search engine on HTTP Server (powered by Apache)
	Set up validation lists for the Webserver search engine on HTTP Server

	Security tasks
	Set up password protection on HTTP Server (powered by Apache)
	Set up SSL for the administration (ADMIN) server for HTTP Server
	Set up to secure against a Telnet denial of service attack for HTTP Server

	Tomcat tasks
	Manage ASF Tomcat servers on HTTP Server (powered by Apache)
	Set up JSP files for out-of-process ASF Tomcat server on HTTP Server (powered by Apache)
	Set up servlets for out-of-process ASF Tomcat server on HTTP Server (powered by Apache)
	Set up WAR files for out-of-process ASF Tomcat server on HTTP Server (powered by Apache)

	Triggered cache manager tasks
	Set up triggered cache manager on HTTP Server (powered by Apache)

	WebDAV tasks
	Set up WebDAV for HTTP Server (powered by Apache)

	WebSphere tasks
	Manage WebSphere Application Server
	WebSphere Portal wizard worksheet

	Virtual host tasks
	Set up virtual hosts on HTTP Server (powered by Apache)

	Programming
	Application Programming Interface
	Application programming interfaces (APIs) for HTTP Server
	Compatibility with other APIs
	Overview of the Server API
	Server API configuration directives

	Directives for HTTP Server
	Common Gateway Interface
	Overview of CGI
	Environment variables
	CGI program considerations for HTTP Server (original)
	Guidelines for writing cluster-enabled CGIs
	Overview of High Availability CGI
	Using directives for security and access control for HTTP Server (original)
	Overview of Persistent CGI
	Common gateway interface (CGI) programs for the HTTP Server
	The CGI Process
	CGI Program Interface
	CGI Programs and Activation Groups
	Set up CGI programs for HTTP Server (powered by Apache)
	CGI in PASE for HTTP Server
	How to enable the server to run CGI programs
	Troubleshooting your CGI programs

	HTTP Server (powered by Apache) and Apache portable runtime application programming interfaces
	Regular expression notation for HTTP Server
	Set up third party modules for HTTP Server (powered by Apache)
	Handler for HTTP Server (powered by Apache)
	Net.Data programs for the HTTP Server
	Java servlets and JSPs for the HTTP Server (powered by Apache)

	Troubleshoot
	Symptom: Out-of-process ASF Tomcat server does not start or appears to start, but then stops
	Symptom: Error 404 on HTTP Server
	Symptom: HTTP Server has a slow response
	Symptom: Error 500 on HTTP Server
	Symptom: Cannot read or write to QUSRSYS/QATMHINSTC or QUSRSYS/QATMHASFT
	Symptom: HTTP Server on port 80 does not start
	Symptom: Web browser problems with HTTP Server
	Symptom: ADMIN server will not start
	Symptom: HTTP Server will not start or functions will not work
	Symptom: Unknown server type when working with HTTP Servers in ADMIN
	Symptom: All servers show status 'Stopped'
	Symptom: Cannot access ADMIN or some functions do not work
	Symptom: User Profile does not have *IOSYSCFG
	Symptom: Tomcat options not shown in the IBM Web Administration for iSeries interface
	Symptom: Error 500 when Tomcat settings in the IBM Web Administration for iSeries interface is accessed
	Symptom: Cannot create new HTTP Server instance
	Symptom: Net.Data error
	Symptom: Error occurred opening file
	Symptom: Databases fail to deploy when configuring with the IBM Web Administration for iSeries interface
	Symptom: WebSphere Portal authentication performance problems

	Reference documentation for HTTP Server
	CL commands for HTTP Server
	Environment variables on HTTP Server
	Lotus Domino plug-in for HTTP Server (powered by Apache)
	Server-side include commands for HTTP Server
	Server-side include commands for HTTP Server (powered by Apache)
	Additional notes

	Supported OS/400 file systems for Web content served by HTTP Server
	Time formats for HTTP Server

	Related information on HTTP Server
	Legal notices for Apache Software Foundation on HTTP Server

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing information

