
iSeries

Performance

Version 5 Release 3

ERserver

���

iSeries

Performance

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 137.

Fifth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722-SS1)

and IBM Performance Tools for iSeries (product number 5722-PT1) and to all subsequent releases and modifications

until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC)

models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Performance 1

What’s new in V5R3 2

What’s new: Monitors 2

What’s new: Collection Services 3

What’s new: Performance Tools licensed program 5

What’s new: PM iSeries 8

What’s new: Performance explorer 9

Print this topic 9

Plan for performance 10

Set system benchmarks 11

Determine when and how to expand your system 11

Determine when to use simultaneous

multithreading 12

Select a performance management strategy . . . 13

Set up your environment to manage performance . 14

Manage iSeries(TM) performance 15

Track performance 15

Research a performance problem 16

Display performance data 21

Tune performance 22

Manage e-business performance 25

Applications for performance management 29

Collection Services 32

Intelligent Agents 65

Performance data files 83

iSeries(TM) Navigator monitors 87

Graph history 95

IBM Performance Management for eServer iSeries 96

Performance Tools 111

Performance explorer 121

iDoctor for iSeries 128

Performance Trace Data Visualizer (PTDV) . . 129

Performance Management APIs 129

“Work with” commands for OS/400

performance 129

Extended Adaptive Cache 130

Workload Estimator for iSeries 132

iSeries(TM) Navigator for Wireless 132

PATROL for iSeries (AS/400) - Predict 133

Scenarios: Performance 133

Related information 133

Appendix. Notices 137

Trademarks 139

Terms and conditions for downloading and

printing publications 139

Code disclaimer information 140

© Copyright IBM Corp. 1998, 2005 iii

iv iSeries: Performance

Performance

How much do you invest in managing the performance of your system? The needs of your business

change, sometimes sooner than you expect. To respond to business changes effectively, your system must

change too. Managing your system, at first glance, might seem like just another time-consuming job. But

the investment pays off soon because the system runs more efficiently, and this is reflected in your

business. It is efficient because changes are planned and managed.

Managing performance on an iSeries(TM) server can be a complex task that requires a thorough

understanding of iSeries work management. Understanding all the different processes that affect system

performance can be challenging for the inexperienced user. Resolving performance problems requires the

effective use of a large suite of tools, each with its own unique set of requirements and supported

functions. Even after you have gathered and analyzed performance data, knowing what to do with that

information can be daunting.

This topic will guide you through the tasks and tools associated with performance management.

“What’s new in V5R3” on page 2
This topic describes what information is new or significantly changed in this release.

“Print this topic” on page 9
If you prefer a printed version of this information, go here to print the PDF.

“Plan for performance” on page 10
Setting performance objectives for your iSeries server will allow you to have measurable

performance benchmarks to compare your performance data. This topic will explain how to set

those benchmarks and how to use them later.

“Set up your environment to manage performance” on page 14
iSeries servers include powerful applications for managing system performance. However, they

must be properly configured in order to meet the specific needs of your unique business

environment. Learn how to configure applications to routinely collect, monitor, and analyze

performance data.

“Manage iSeries(TM) performance” on page 15
Performance management is necessary to optimize utilization of your computer system by

measuring current capabilities, recognizing trends, and making appropriate adjustments to satisfy

end user and management requirements such as response time or job throughput. It is needed to

maintain business efficiency and avoid prolonged suspension of normal business activities.

Therefore, managing performance is part of your daily operations.

“Applications for performance management” on page 29
Managing performance on iSeries systems requires the use of a variety of specialized applications.

Each of these applications offers a specific insight into system performance. This topic explains

several applications and the intended use of each application.

“Scenarios: Performance” on page 133
One of the best ways to learn about performance management is to see examples that illustrate how

you can use these applications or tools in your business environment. Find out about these

examples.

“Related information” on page 133
IBM(R) related information contains technical, know-how, and “how to” information.

© Copyright IBM Corp. 1998, 2005 1

Note: This topic contains code examples. Read the “Code disclaimer information” on page 140 for

important legal information.

What’s new in V5R3

Here is what is new for this release:

v “What’s new: Monitors”

Find out about the new monitor support and the changes to the existing monitors.

v “What’s new: Collection Services” on page 3

Read about the changes to the performance database files and about the new Collection Services

function.

v “What’s new: Performance Tools licensed program” on page 5

Read about the changes to the reports.

v “What’s new: PM iSeries” on page 8

Read about how PM eServer(TM) iSeries automatically collects data.

v “What’s new: Performance explorer” on page 9

Read about the changes to the performance explorer database files and about the new function.

v Capacity on Demand

The Capacity on Demand topic has moved to Systems Management —> Capacity on Demand.

v “Intelligent Agents” on page 65

iSeries(TM) Navigator provides system administrators with an easy way to manage one or more ABLE

(Agent Building and Learning Environment) agents running on a single system or across different

systems.

What’s new: Monitors

Here is what is new for this release:

You can use the new time zone system value (QTIMZON) to set your system time for a specific time

zone. The Management Central monitors assume that the local system time (on the endpoint system) is

configured correctly. If this does not occur, several metrics will never trigger. To ensure that your

Management Central monitors process the correct local time, use the new time zone system value

(QTIMZON) to ensure that the current time zone on your endpoint system matches your local time zone.

Now you can select to have thresholds for file monitors and message monitors automatically reset when

your trigger command is run. When you define a threshold and specify a command to be run when the

threshold is triggered, you just select Automatically reset after trigger command has run.

The CPU Utilization (Average) metric and CPU Utilization (Interactive Feature) metric changed their

calculation methods to use the CPU utilization values instead of using the current calculation based on

CPU count. In addition, the CPU Utilization (Average) metric can now go above 100% for partitions that

support uncapped processors, so the associated range of the graph will also accommodate percentages

greater than 100.

New fields were added to the system monitor metrics Disk Arm Utilization (Average), Disk Arm

Utilization (Maximum), Disk Storage (Average), and Disk Storage (Maximum). These new fields provide

information about a multipath disk unit, which is a unit that has multiple redundant paths from the

system to the disk unit. Each path has a unique resource name.

v Multipath unit indicates that the resource represents a multipath disk unit.

v Initial path of multipath unit indicates that the resource represents the initial path of a multipath disk

unit.

v Production copy of a remotely mirrored independent ASP indicates that the disk unit is in a

production copy of a remotely mirrored independent ASP.

2 iSeries: Performance

v Mirror copy of a remotely mirrored independent ASP indicates that the disk unit is in a mirror copy

of a remotely mirrored independent ASP.

Job notification
You can use the notification function of the Advanced Job Scheduler to notify yourself, or others that you

specify, if CPU utilization reaches a specified threshold. See, “Scenario: Job monitor with Advanced Job

Scheduler notification” on page 92 for more about how this function works.

What’s new: Collection Services

Here is what is new for this release:

CL commands

You now have the ability to start and end a performance collection with CL commands. You can

also change the Collection Services properties with the CFGPFRCOL command. Use the

CHKPFRCOL command to determine the current status of the Collection Services server job.

v Start Performance Collection (STRPFRCOL)

v End Performance Collection (ENDPFRCOL)

v Configure Performance Collection (CFGPFRCOL)

v Check Performance Collection (CHKPFRCOL)

New data and methodology for calculating CPU utilization

Read about the new method for “Reporting CPU utilization” on page 114 that is associated with

partial processor partitions and dynamic configuration changes. This topic covers the following

areas:

v The HVLPTASK is no longer reported by any system interface including the QAPMJOBx files.

v Collection Services no longer cycles when the configuration for the partition changes.

v The QAPMSYSCPU data is no longer scaled.

v What you see on prior releases if data is created from a V5R3 *MGTCOL management collection

object.

Configured capacity

New support for logical partitions enables partitions to exceed their “Reporting configured capacity”

on page 116 in situations where other partitions are not using all of their configured capacity.

Data port services

Collection Services now reports performance data obtained from data port services. This data can be

helpful in understanding the performance of clients of data port services, such as remote

independent ASP mirroring. When an independent ASP is mirrored remotely, data is written to the

local independent ASP. The data is sent at the same time by using data port services to the

corresponding independent ASP on the remote system. Performance on the local system could be

affected negatively if the path to the remote independent ASP is slow. The data port services

performance data provides information on the performance of this path. The data is recorded in the

QAPMDPS file.

You can specify to collect data port services data from iSeries(TM) Navigator. A new category, DPS -

Data port services, was added to the Available categories/Categories to collect field on the

Collection Services dialog. The category is included in the *STANDARDP and *ENHCPCPLN

profiles. You can also include the category in a custom profile.

Performance 3

Cross-partition performance data

For V5R3, Collection Services provides the framework to “Collecting performance data across

partitions” on page 59 regardless of the operating system, for example, the partitions can be running

OS/400(R), AIX(R) or Linux(TM). The IBM(R) Director Server component of IBM Director

Multiplatform must be installed and running on the partition that is running Collection Services.

IBM(R) Director Agent must be installed on the partitions from which you want to collect data.

Collection Services collects the data from each partition, and PM iSeries summarizes the data. For

information about the Linux operating systems that you can use for cross-partition performance

data, see this Informational APAR: II13986.

You can collect logical partition data from iSeries Navigator. A new category, Logical partition, was

added to the Available categories/Categories to collect field on the Collection Services dialog. The

category is included in the *STANDARD, *STANDARDP, and *ENHCPCPLN profiles. You can also

include the category in a custom profile.

Graph History
Prior to V5R3 you could obtain graph data in three ways. One, if graph data was available for a

specific time range, it was returned. Two, if no graph data was available, but the raw data was

available and the retention period was great enough for the graph data to be obtained from the raw

data, then the raw data was dynamically converted to graph data and returned. Three, if no graph

data was still available, the summarized data was returned. Beginning in V5R3, the dynamic

conversion of raw data to graph data was eliminated. You can use the Create graph data now

option to create your graph data.

Performance database files
The following table shows the new and changed database files.

 Database file Description

QAPMCONF v New record keys that provide additional partition

configuration information (SP).

v New records added to provide the physical system

view of the number of on demand processors, on

demand processors available, on demand memory, and

on demand memory available.

v The interactive capacity granularity was increased

from .1% to .01%. This change affects the records for

GKEY IT and IL.

v The record for GKEY PC now supports 255 partitions.

Previously, it supported 99 partitions.

QAPMDISK Collection Services now reports the following new disk

performance data: indicates whether the disk unit is in a

parity set (DSPS), indicates whether disk unit is in a high

availability parity set (DSHAPS), indicates that the

resource represents a multipath disk unit (DSMU),

indicates that the resource represents the initial path of a

multipath disk unit (DSIP), indicates that the disk unit is

in a production copy of a remotely mirrored independent

ASP (DSPC), and indicates that the disk unit is in a

mirror copy of a remotely mirrored independent ASP

(DSMC). In these cases, a multipath disk unit is a unit

that has multiple redundant paths from the system to the

disk unit. Each path has a unique resource name.

QAPMDPS A new file that reports data port services performance

data.

4 iSeries: Performance

rzahxqapmconf.htm
rzahxqapmdisk.htm
rzahxqapmdps.htm

Database file Description

QAPMIOPD v Change to file description that states data is reported

for Network Server (*IPCS category) and I/O adapters

(*IOPBASE category).

v New data type added.

v New field added (XINWSD).

v Change in description of INTSEC field.

v Virtual I/O data was added to the file. For virtual I/O

adapters on hosting partitions (partitions that provide

the physical resources), data is provided about the I/O

activity that occurs within this partition due to virtual

device support that it provides on behalf of guest

partitions.

QAPMJOBMI New fields that support pages allocated (JBPGA), pages

deallocated (JBPGD), and current user (JBCUSR).

QAPMJOBS New fields that support pages allocated (JBPGA), pages

deallocated (JBPGD), and current user (JBCUSR). New

fields that support file system counters and journal

counters. (These fields were added to QAPMJOBMI in

the previous release.)

QAPMJSUM A new job type, INF (Interactive feature) was added to

the JSCBKT field.

QAPMLPAR A new file that reports logical partition data if IBM

Director Server licensed program is installed and running

on the partition that is running Collection Services.

QAPMSYS New fields added that report the data for a partition’s

availability and usage metrics.

QAPMSYSCPU The individual CPU data that is reported in this file

(SCPU01...32) changed for shared processor partitions.

The data is no longer scaled for either capped or

uncapped partitions. Previously, this data was scaled to

match the configured whole virtual processors reported

in field SCTNUM. A new field reports the current

number of active processors (SCTACT).

QAPMSYSTEM v The description for SMXDU was changed from

maximum disk utilization to the largest utilization of

all single path disk units and all paths of multipath

disk units.

v New fields added that report the data for a partition’s

availability and usage metrics.

v New field, SYNUAL, added that reports the number of

times that a noncached user authority lookup was

performed.

v The description for SYAUTH was changed from

authority lookup count to object authority checks.

What’s new: Performance Tools licensed program

This topic highlights changes to the Performance Tools licensed program for V5R3.

Batch and interactive CPU utilization
The process for “5250 online transaction processing (OLTP)” on page 117 is based upon a new bucket in

QAPMJSUM that is provided by Collection Services. iSeries(TM) Access jobs can run either as batch or as

Performance 5

rzahxqapmiopd.htm
rzahxqapmjobmi.htm
rzahxqapmjobs.htm
rzahxqapmjsum.htm
rzahxqapmlpar.htm
rzahxqapmsys.htm
rzahxqapmsyscpu.htm
rzahxqapmsystem.htm

interactive, but in previous releases all of the jobs were included in the CA4 bucket, which is charged to

the Interactive CPU utilization column. A new category was added to the System Report, iSeries Access -

Batch under the Non-interactive workload subsection. Additionally, the DDM server jobs were moved

from the Interactive workload subsection to the Non-interactive workload subsection because they do not

represent interactive workload.

New methodology for calculating CPU utilization
Collection Services uses new metrics that allow for better “Reporting CPU utilization” on page 114 by

using shared processor pools. The new metrics are adjusted when configuration changes are applied to

the partition. The new methodology eliminates the task of computing available CPU time. The concept of

HVLPTASK and CPU scaling to whole virtual processors in shared processor environments does not exist

anymore. The CPU values shown in Performance Tools represents the actual utilization in terms of

processor units. Data that was collected in previous releases is converted by the Convert Performance

Data (CVTPFRDTA) command to apply to the new methodology.

Component Report

v Virtual Processors (GKEY 13), Processor Units (GKEY PU), and Int Threshold (GKEY IT) metrics from

the QAPMCONF file were added to the header section.

v A plus sign (+) was added next to the Unit column of the Disk Utilization section to identify multipath

disk units. A letter H following the unit number indicates that the disk unit is in a high availability

parity set. If no letter displays then the disk unit is a regular parity set.

v A column was added to the Component Interval Activity section to show the amount of time exceeding

the Interactive Threshold, which is the time, in seconds, during which the interactive usage exceeds the

configured Interactive Threshold. Amount of time exceeding the Interactive Threshold is a new field,

SYIFTE, in the QAPMSYSTEM file. The Interactive Threshold is the percent of the total system CPU for

interactive work. New this release, the interactive threshold value can change through the data

collection period by reconfiguring the partition and is now in the SYIFTA field in the QAPMSYSTEM

file.

v Dash signs (-) display under the High Disk and Unit columns when performance data is not available

for the requested interval in the QAPMDISK file.

v A new column was added to the Component Interval Activity section to show the uncapped CPU time

available for the system. This data is reported only for performance data that is collected on uncapped

partitions.

System Report

v DDM server jobs were moved from the Interactive Workload subsection to the Non-Interactive

Workload subsection.

v A new category for iSeries Access - Batch jobs was added to the Non-Interactive Workload section.

v Virtual Processors (GKEY 13), Processor Units (GKEY PU), and Int Threshold (GKEY IT) metrics from

the QAPMCONF file were added to the header section.

v The DDM server job statistics are no longer shown in the first part of the Resource Utilization section.

The first part of the Resource Utilization section continues to show statistics for Interactive jobs like

Interactive, System/36(TM), MRT, iSeries Access, and Pass-through.

v The DDM server job statistics are no longer shown in the Interactive Resource Utilization Expansion

subsection of the Resource Utilization Expansion section. The DDM server job statistics are now shown

in the Non-Interactive Resource Utilization Expansion subsection.

v A plus sign (+) was added next to the Unit column of the Disk Utilization section to identify multipath

disk units. A letter H following the unit number indicates that the disk unit is in a high availability

parity set. If no letter displays then the disk unit is a regular parity set.

v Two rows were added to the Workload section. One to show information about the amount of time

exceeding the Interactive Threshold and the other to show the shared processors pool utilization in

terms of a percentage. The shared processor pool utilization row displays only for performance data

that is collected on partitions using a shared processor pool.

6 iSeries: Performance

Miscellaneous reports

v A plus sign (+) was added next to the Unit column of the Disk Utilization section to identify multipath

disk units. A letter H following the unit number indicates that the disk unit is in a high availability

parity set. If no letter displays then the disk unit is a regular parity set.

v A column was added to the Interactive Job Detail and Non-Interactive Job Detail sections of the Job

Interval Report to show the current user of the job collected by Collection Services in the QAPMJOBMI

file.

Performance advisor
Enhancements include changes to existing metrics to give more accurate recommendations and to add

new metrics to analyze and give recommendations related to newer functions.

v Provide recommendations for Interactive Feature Utilization, Point-to-Point Protocol (PPP) activity, and

TCP/IP activity.

v Update guidelines for CPU utilization, system metrics, and disk service time.

Display Performance Data display

v A new column was added to the Select Time Intervals to Display display to show the Interactive

Feature Utilization (Int Feat Util). Dash signs (-) display under the High Dsk and Unit columns when

performance data is not available for the requested interval in the QAPMDISK file.

v A field was added to the Display Performance Data display to show the percent of the processing

capacity that is assigned for interactive work (Int Threshold). This information is taken from the IT

field of the QAPMCONF file.

v Two fields were added to the Display Performance Data display to show the Virtual Processors (GKEY

13) and Processor Units (GKEY PU) metrics from the QAPMCONF file.

v A row was added to the Display Performance Data display to show the percentage of interactive

capacity used by the system (Interactive Feature Utilization).

v A row was added to the Display Performance Data display to show the interactive CPU time in

seconds over the threshold (Time exceeding Int CPU Threshold (in seconds)).

v Option 6 (Wait detail) was added to the Display Jobs display, which shows the wait time statistics, in

seconds, for the requested job or task.

Analyze Performance Data display

v A new column was added to the Select Time Intervals to Analyze display to show the Interactive

Feature Utilization (Int Feat Util). Dash signs are displayed under High Dsk and Unit columns when

performance data is not available for the requested interval in the QAPMDISK file.

v A field was added to the Display Recommendations display to show the percent of the processing

capacity that is assigned for interactive work (Int Threshold). This information is taken from the IT

field of the QAPMCONF file.

v Two fields were added to the Display Recommendations display to show the Virtual Processors (GKEY

13) and Processor Units (GKEY PU) metrics from the QAPMCONF file.

Perform menu

v The Collection Services options from the Perform menu, Option 2 (Collect performance data), now take

advantage of the new performance collection CL commands. Previously, these options used the

collector APIs. These options now use the following CL commands:

– Option 1 (Start Performance Collection): Start Performance Collection (STRPFRCOL)

– Option 2 (Configure Performance Collection): Configure Performance Collection (CFGPFRCOL)

– Option 3 (End Performance Collection): End Performance Collection (ENDPFRCOL)
v A new column was added to the Select Time Intervals display to show the Interactive Feature

Utilization (Int Feat Util). Dash signs (-) are displayed under the High Disk and Unit columns when

performance data is not available for the requested interval in the QAPMDISK file.

Performance 7

Work with System Activity (WRKSYSACT) command
This command was changed to calculate and show values consistent with the other performance tools.

The CPU utilization in WRKSYSACT does not scale to whole virtual processors anymore. The

HVLPTASK job is excluded from the list of tasks that consume CPU. In addition, WRKSYSACT was

enhanced to show CPU values higher than 100% for uncapped processors, instead of capping the CPU

utilization to 99.9%

Performance Tools plug-in for iSeries Navigator

v High Disk Utilization graph now excludes intervals with no disk information.

v The User Pool Faults/Second graph was enhanced to graph more than one pool, with one line per

pool. There are two options for the User Pool Faults/second graph, which you can access by selecting

Preferences from the Graphs menu. The options are:

– Graph the top 10 pools with the highest fault rate, depending on the time period you select.

– Graph specific pools that you select.

This enhancement helps performance analysts view the impact that changes in the size of pools has on

fault rates and also gives them a better understanding of pool activity in general.

v A new graph was added to show the Interactive Feature Utilization metric when it is provided by

Collection Services. Interactive Feature Utilization, along with Time Exceeding Interactive CPU

Threshold metrics will display in the Summary window and the Interactive Threshold to Data

Properties page if the information is available in the collection.

v Library and member name added to Display Performance Data window title to accommodate the

situation where more than one window is opened.

v A new metric, Uncapped CPU% Available, was added to the Total CPU Utilization graph.

What’s new: PM iSeries

Here is what is new for this release:

The Performance Management/400 name was changed to IBM(R) Performance Management for

iSeries(TM) (PM

iSeries or PM iSeries). PM iSeries was chosen to better reflect

the functions in the reports and tools that have changed over recent years to support the new functions

in the iSeries.

The Universal Connection replaces IBM Global Network(R) (IGN) support for transmitting data.

Prior to V5R3, you could choose to omit the HvLp* job from the Omit Jobs from Top Ten display. In

V5R3 the HvLp* job is no longer included when you do an upgrade. This change does not affect the data

when you perform a migration.

Cross-partition performance data

For V5R3, Collection Services provides the framework to collect data from a partition regardless of the

operating system, for example, the partitions can be running AIX(R) or Linux(TM). The IBM Director Server

licensed program must be installed and running on the partition that is running Collection Services.

Direction agents must be installed on the partitions. Collection Services collects the data from each

partition, and PM iSeries summarizes the data.

You can specify to collect logical partition data from iSeries Navigator. A new category, Logical partition,

was added to the Available categories/Categories to collect field on the Collection Services dialog. The

category is included in the *STANDARD, *STANDARDP, and *ENHCPCPLN profiles. You can also

include the category in a custom profile.

For the most current information about the PM iSeries reports, go to the PM eServer iSeries Web site

.

8 iSeries: Performance

http://www.ibm.com/eserver/iseries/pm400

What’s new: Performance explorer

Here is what is new for this release:

CL commands

Add PEX Definition (ADDPEXDFN)

v Add threads/tasks option (ADDTHDOPT)
Specifies what types of threads and tasks should be included in the Performance Explorer session

based on the creation time of the threads and tasks relative to the start time of the Performance

Explorer session.

v Added Randomize element to INTERVAL parameter. You can specify *FIXED or *VARY values.

v Added Event format element to Base events (BASEVT) parameter and Communications events

(CMNEVT) parameter
The event format describes what data is collected for this event. *FORMAT1 provides the data used for

most data analysis. The other formats allow for collection of other data related to these events. Values

other than *FORMAT1 are valid for only the *PMCO and *SWOQ events. For all other events,

*FORMAT1 will be used regardless of what format is specified.

v Added Save/Restore events (SAVRSTEVT) parameter.
Specifies which save/restore events are included in the definition.

Add PEX Filter (ADDPEXFTR)

v Added Java(TM) trigger parameter (JVATRG)
If a Java method entry event (*JVAENTRY) occurs that matches this trigger specification, then

performance explorer collects all events specified in the performance explorer definition used for the

active performance explorer session. The events are collected only for the thread where the trigger

occurs.

v Added Java class filter parameter (JVACLSFTR)
Specifies the Java package and class to be used as compare values for the Java class filter.

Print this topic

To view or download the PDF version of the performance topic, select Performance (about 1700 KB). This

PDF does not include the performance database table information or the sample Performance Tools

reports.

To view or download the PDF version of the performance database table information, select Performance

database tables (about 3600 KB).

To view or download the PDF version of the Performance Tools report information, select Performance

Tools reports (about 850 KB).

You can also view or download these related topics:

v Management Central (about 250 KB) includes information about how to set up your endpoint systems

and system groups, as well as information about all the ways the Management Central function can

help you streamline your server administration tasks, such as:

– Manage users and groups

– Package and send data

– Run commands
v Work Management (about 660 KB) describes these work management concepts:

– Daily work management

– The structure of your system

– How work gets done

Performance 9

rzahx.pdf
rzahxtbls.pdf
rzahxtbls.pdf
rzahxptrpts.pdf
rzahxptrpts.pdf

– Schedule your tasks or jobs with Advanced Job Scheduler.

You can also view or print PDFs from the “Related information” on page 133 topic.

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2.

Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using

Netscape Communicator.

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the

Adobe Web site (www.adobe.com/products/acrobat/readstep.html)

.

Plan for performance

Planning your system’s performance requires you to set performance objectives, create benchmarks based

on those objectives, and plan for your system’s growth. This section guides you through the necessary

steps in planning your system’s performance.

When planning your system’s performance, you will need to fully understand the business requirements

your system is addressing and be able to translate those business needs into performance objectives. Keep

in mind that as the business needs evolve, the performance objectives must also evolve.

Perhaps the best way to start is to estimate the maximum hourly and daily interactive transaction

throughput required of your computer system during your peak business periods. After that, you can

decide what average response time is acceptable to your local and remote workstations. You should think

about how long your regular batch processes take, and how to schedule them so that they complete in

time to achieve your business requirements.

You can then establish a base set of statistics, which should then be documented in a performance

objective plan containing:

v The peak transactions per hour

v The peak transactions per day

v Acceptable average response time for local workstations

v Peak interactive transactions

v A list of the major scheduled batch jobs with times when they will be run and their expected duration

v A list of other unscheduled batch jobs that may be required

To plan for performance, complete the following tasks:

“Set system benchmarks” on page 11
Setting good system benchmarks will give you performance data for a properly tuned system. These

performance benchmarks from both before and after system changes provide important information

for both troubleshooting and planning.

10 iSeries: Performance

http://www.adobe.com/products/acrobat/readstep.html

“Determine when and how to expand your system”
As your business needs change, your system must also change. To prepare for any changes, you will

want to model the current system and then see what would happen if the system, the configuration,

or the workload were changed.

“Determine when to use simultaneous multithreading” on page 12
Simultaneous multithreading allows sharing of process facilities to run two applications or two

threads of the same application at the same time. Find out more about this concept.

“Select a performance management strategy” on page 13
Different business needs require different performance management strategies. Here are three basic

business models and their suggested performance management strategies.

Set system benchmarks

You should establish system benchmarks before any major change in the system configuration, for

example adding a new interactive application or performing a system upgrade. Maintaining accurate

benchmark information can provide essential troubleshooting information. At a minimum, benchmarks

should include current collection objects from “Collection Services” on page 32. Depending on your

environment you may need to maintain more detailed information using “Performance explorer” on page

121.

Setting up a benchmark requires:

v That the correct iSeries(TM) configuration is available

v That the application and the data are representative and valid

v That the correct version of all programs and software to be used are available

v That the required number of users and workstations are available to run the test

v That the transactions are well defined for each user

Running meaningful benchmarks for interactive workloads is almost impossible without special

equipment that allows you to simulate a user at a workstation. To run a batch benchmark is, of course,

not as complex a task as to test performance of interactive applications, and the first three points above

are still valid for this type of test. However, setting system benchmarks on concurrent batch and

interactive work, which is frequently the actual customer environment, also requires the appropriate

number of users and workstations.

IBM(R) developed a benchmark called the Three-in-One Benchmark to mirror the real-world demands

facing IT companies. The Three-In-One Benchmark

clearly demonstrates that the iSeries server is an

excellent solution for today’s small and medium businesses, which helps them run the applications they

need without worrying about performance.

Determine when and how to expand your system

As your business needs evolve, so do your system needs. To plan for future system needs and growth,

you will need to determine what would happen if the system, the configuration, or the workload were

changed. This process is called trend analysis and should be done monthly. As your system approaches

resource capacity guidelines, you may want to gather this data more frequently.

Trend analysis should be done separately for interactive and batch environments. If your company uses a

certain application extensively, you may want to perform a trend analysis for the application. Another

environment that may be important to track would be the end-of-month processing. It is important that

you collect trend analysis data consistently. If your system’s peak workload hours are between 10:00 AM

and 2:00 PM and you collect trend analysis data for this time period, do not compare this data to data

collected from other time periods.

Performance 11

http://www.ibm.com/servers/eserver/iseries/hardware/threeinone

To do a proper job of capacity planning and performance analysis, you must collect, analyze, maintain,

and archive performance data. IBM(R) offers several tools that help you with your capacity planning,

resource estimating, and sizing:

“IBM Performance Management for eServer iSeries” on page 96
PM iSeries completely automates collecting data, analyzing data, and archiving data and provides

you with summarized performance and capacity information that is easy to understand. PM iSeries

helps you plan for and manage system resources through ongoing analysis of key performance

indicators. This function ships with the OS/400(R) licensed program. There is nothing that you need

to do other than activate the function and periodically check that the data is being collected and

transmitted to IBM. All collection sites are network secure, and the PM iSeries service transmits only

nonproprietary performance data to IBM. The time of the transfer is completely under your control.

“Workload Estimator for iSeries” on page 132
The Workload Estimator is a tool that helps you size your system needs based on estimated

workloads for specific workload types. Through a web-based application, you can size the upgrade

to the required iSeries system that accommodates your existing system’s utilization, performance,

and growth as reported by PM iSeries. As an additional option, sizings can also include capacity for

adding specific applications like Domino(R), Java(TM), and WebSphere(R), or the consolidation of

multiple AS/400(R) or iSeries traditional OS/400 workloads on one system. This capability allows

you to plan for future system requirements based on existing utilization data coming from your

own system.

“PATROL for iSeries (AS/400) - Predict” on page 133
This product helps manage iSeries performance by automating many of the routine administration

tasks required for high availability and optimal performance. Additionally, it offers detailed capacity

planning information to help you plan the growth of your iSeries environment.

See “Select a performance management strategy” on page 13 for more information about creating and

implementing a performance strategy.

Determine when to use simultaneous multithreading

Although an operating system gives the impression that it is concurrently executing a very large number

of tasks, each processor in a symmetric multiprocessor (SMP) traditionally executes a single task’s

instruction stream at any moment in time. The QPRCMLTTSK system value controls whether to enable

the individual SMP processors to concurrently execute multiple instruction streams. Each instruction

stream belongs to separate tasks or threads. When enabled, each individual processor is concurrently

executing multiple tasks at the same time. The effect of its use will likely increase the performance

capacity of a system or improve the responsiveness of a multithreaded application. Running multiple

instruction streams at the same time does not improve the performance of any given task. As is the case

with any performance recommendations, results vary in different environments.

The way that multithreading is done depends on the hardware model, and therefore, the performance

capacity gains will vary.

5xx models support this approach through a concept called

simultaneous multithreading (SMT). This approach, called hyperthreading on some Intel(R) processors,

shares processor facilities to execute each task’s instructions at the same time. Older processors use an

approach called hardware multithreading (HMT). In the hardware multithreading approach, the hardware

switches between the tasks on any long processing delay event, for example, a cache miss. Some models

do not support any form of multithreading, which means the QPRCMLTTSK system value has no

performance effect.

Because the QPRCMLTTSK system value enables the parallel use of shared processor resources, the

performance gains depend highly on the application and the model. Refer to the iSeries(TM) Performance

Capabilities Reference

for guidelines about what performance gains might be expected through its

use. In some cases, some applications are better served by disabling this system value.

12 iSeries: Performance

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

Select a performance management strategy

Developing a good performance management strategy will help you manage your system’s performance.

Your performance management strategy depends in a large part on the amount of time you can afford to

spend managing performance. If you are working with a small company, you may be managing many

different aspects of your business and cannot devote many hours to managing performance. Many large

companies employ performance specialists to keep their systems tuned and running effectively.

For determining a basic performance management strategy and for identifying which performance

applications to use, classify your company in one of three categories: small business, mid-sized business,

and large business. The business resources vary for each size, and your management strategy will vary

accordingly.

Small business
A small business most likely has fewer resources to devote to managing performance than a larger

business. For that reason, use as much automation as possible. You use PM iSeries(TM) to have your

performance data sent directly to IBM where it will be compiled and generated into reports for you. This

not only saves you time, but IBM also makes suggestions to you when your iSeries server needs an

upgrade.

The following is a list of recommended performance applications for a small business:

 “Collection Services” on page 32

Collect sample data at user-defined intervals for later analysis.

“Graph history” on page 95

Display performance data collected with Collection Services.

“IBM Performance Management for eServer iSeries” on page 96

Automate the collection, archival, and analysis of system performance data.

“Performance Tools” on page 111

Gather, analyze, and maintain system performance information.

“iSeries(TM) Navigator monitors” on page 87

Observe graphical representations of iSeries system performance, and automate responses to predefined events or

conditions.

Mid-sized business
The mid-sized business probably has more resources devoted to managing performance than the small

business. You may still want to automate as much as possible and can also benefit from using PM iSeries.

The following is a list of recommended performance applications for a mid-sized business:

 “Collection Services” on page 32

Collect sample data at user-defined intervals for later analysis.

“Graph history” on page 95

Display performance data collected with Collection Services.

“IBM Performance Management for eServer iSeries” on page 96

Automate the collection, archival, and analysis of system performance data.

“Performance Tools” on page 111

Gather, analyze, and maintain system performance information.

Performance 13

“iSeries(TM) Navigator monitors” on page 87

Observe graphical representations of iSeries system performance, and automate responses to predefined events or

conditions.

“Performance explorer” on page 121

Collect detailed information about a specific application or system resource.

Large business
The large business has resources devoted to managing performance.

The following is a list of recommended performance applications for a large business:

 “Collection Services” on page 32

Collect sample data at user-defined intervals for later analysis.

“Graph history” on page 95

Display performance data collected with Collection Services.

“IBM Performance Management for eServer iSeries” on page 96

Automate the collection, archival, and analysis of system performance data.

“Performance Tools” on page 111

Gather, analyze, and maintain system performance information.

“iSeries(TM) Navigator monitors” on page 87

Observe graphical representations of iSeries system performance, and automate responses to predefined events or

conditions.

“Performance explorer” on page 121

Collect detailed information about a specific application or system resource.

“iDoctor for iSeries” on page 128

Analyze trace data to improve system and application performance.

“Performance Trace Data Visualizer (PTDV)” on page 129

View trace data from a Java(TM) application.

Set up your environment to manage performance

The iSeries(TM) server includes several tools that regularly collect system performance data and monitor

your system for performance trends and potential problems. Your unique requirements and environment

will determine both the tools you choose to invest in and the configuration choices you should make.

Effectively setting up your system will allow you to do accurate capacity planning as your system grows

and to resolve performance problems when they occur.

Use the following topics to learn about and configure tools that will collect, monitor, and analyze your

system performance.

“Collection Services” on page 32
Collection Services manages the routine collection of your system performance data. This tool

regularly collects data and creates archives called collection objects. These collection objects may be

accessed directly by some tools or converted into sets of database files for analysis with your own

custom queries or by other tools and reports. Because Collection Services mainly provides data for

14 iSeries: Performance

other applications, the other tools you are using will significantly affect your configuration choices,

including how frequently you collect data, the types of data you collect, and the length of time you

will keep the data on your system.

“IBM Performance Management for eServer iSeries” on page 96
PM iSeries uses Collection Services to gather non-proprietary performance data, and sends it to

IBM(R) for storage and expert analysis. This eliminates the need to store and maintain it yourself.

You can then access detailed reports and recommendations about your system’s performance with a

web browser.

“iSeries(TM) Navigator monitors” on page 87
The monitors included in iSeries Navigator use Collection Services data to track the elements of

system performance of specific interest to you. Moreover, they can take specified actions when

certain events, such as the percentage of CPU utilization or the status of a job, occur. Use this topic

to learn how to use these monitors and how to set them up on your system.

Manage iSeries(TM) performance

Successfully managing performance ensures that your system is efficiently using resources and that your

server provides the best possible services to your users and to your business needs. Moreover, effective

performance management can help you quickly respond to changes in your system and can save you

money by postponing costly upgrades and service fees.

Understanding the factors that affect system performance helps you respond to problems and make better

long-term plans. Effective planning can prevent potential performance problems from developing and

ensures that you have the system capacity to handle your current and growing workloads.

Use the following topics to learn how to maintain your system’s performance and to resolve performance

problems.

“Track performance”
Tracking your system performance over time allows you to plan for your system’s growth and

ensures that you have data to help isolate and identify the cause of performance problems. Learn

which applications to use and how to routinely collect performance data.

“Research a performance problem” on page 16
There are many options available to help you identify and resolve performance problems. Learn

how to use the available tools and reports that can help you find the source of the performance

problem.

“Display performance data” on page 21
After you have collected performance data, learn how to display the data using the most

appropriate tool for your purposes.

“Tune performance” on page 22
When you have identified a performance problem, you will want to tune the system to fix it.

“Manage e-business performance” on page 25
Managing performance in an e-business environment introduces several new problems for the

OS/400(R) administrator. Refer to this topic for information and resources to help you plan for, track,

and improve performance for your e-business applications.

Track performance

Tracking system performance for the iSeries(TM) server helps you identify trends that can help you tune

your system configuration and make the best choices about when and how to upgrade your system.

Performance 15

Moreover, when problems occur, it is essential to have performance data from before and after the

incident to narrow down the cause of the performance problem, and to find an appropriate resolution.

The iSeries server includes several applications for tracking performance trends and maintaining a

historical record of iSeries performance data. Most of these applications use the data collected by

Collection Services. You can use Collection Services to watch for trends in the following areas:

v Trends in system resource utilization. You can use this information to plan and specifically tailor

system configuration changes and upgrades.

v Identification of stress on physical components of the configuration.

v Balance between the use of system resource by interactive jobs and batch jobs during peak and normal

usage.

v Configuration changes. You can use Collection Services data to accurately predict the effect of changes

like adding user groups, increased interactive jobs, and other changes.

v Identification of jobs which may be causing problems with other activity on the system

v

Utilization level and trends for available communication lines.

The following tools will help you monitor your system performance over time:

“Collection Services” on page 32
Collection services gathers performance data at user-defined time intervals and then stores this

information in collection objects on your system. Many of the other tools, including monitors, Graph

history, PM iSeries, and many functions in the Performance Tools licensed program, rely on these

collection objects for their data.

“Graph history” on page 95
Graph history displays performance data collected with Collection Services over a specified period

of time through a graphical user interface (GUI). The length of time available for display depends

on how long you are retaining the collection objects, and whether you are using PM iSeries.

“IBM Performance Management for eServer iSeries” on page 96
PM iSeries automates the collection, archival, and analysis of system performance data and returns

clear reports to help you manage system resources and capacity.

Research a performance problem

Most of the tools that collect or analyze performance use either trace or sample data. Collection Services

regularly collects sample data on a variety of system resources. Several tools analyze or report on this

sample data, and you can use this to get a broader view of system resource utilization and to answer

many common performance questions. For more detailed performance information, several tools generate

trace-level data. Often, trace-level data can provide detailed information about the behavior and resource

consumption of jobs and applications on your system. Performance Explorer and the STRPFRTRC

command are two common tools for generating trace data.

For example, if your system is running slowly, you might use the system monitor to look for problems. If

you see that the CPU utilization is high, you could identify any jobs that seem to be using an unusually

large amount of resources. Then, you may be able to correct the problem by making configuration

changes. However, some problems will require additional information. To get detailed information about

that job’s performance you could start a performance explorer session, gather detailed information about

that job’s behavior on the iSeries(TM) system, and potentially make changes to the originating program.

To learn more about collecting performance data, use the following topics to learn how and when to use

some of the performance management applications.

“Identify performance problem” on page 17
Learn the common steps involved with identifying a performance problem.

16 iSeries: Performance

“Identify and resolve common performance problems”
Many different performance problems often affect common areas of the iSeries system. Learn how to

research and resolve problems in common areas,

for example, backup and recovery.

“Collect system performance data” on page 19
Collection Services regularly collects information about system performance. Often, analyzing

performance data begins with this information.

“Collect information about system resource utilization” on page 19
Several tools monitor how resources like CPU, disk space, interactive capacity, and many other

elements, are being used. You can use these tools to start identifying problem areas.

“Collect information about an application’s performance” on page 19
An application may be performing slowly for a variety of reasons. You can use several of the tools

included in OS/400(R) and other licensed programs to help you get more information.

“Scenario: Improve system performance after an upgrade or migration” on page 21
In this scenario, you have just upgraded or migrated your system and it now appears to be running

slower than before. This scenario will help you identify and fix your performance problem.

Identify performance problem

When trying to identify a performance problem, it is important to assess whether the hardware

configuration is adequate to support the workload. Is there enough CPU capacity? Is the main storage

sufficient for the different types of applications? Answering these questions first, perhaps through

capacity modeling techniques, prevents needless effort later.

With an understanding of the symptoms of the problem and the objectives to be met, the analyst can

formulate a hypothesis that may explain the cause of the problem. The analyst can use commands and

tools available with the OS/400(R) operating system and the Performance Tools licensed program to

measure the system performance.

Reviewing the measured data helps to further define the problem and helps to validate or reject the

hypothesis. Once the apparent cause or causes have been isolated, a solution can be proposed. When you

handle one solution at a time, you can redesign and test programs. Again, the analyst’s tools can, in

many cases, measure the effectiveness of the solution and look for possible side effects.

To achieve optimum performance, you must recognize the interrelationship among the critical system

resources and attempt to balance these resources, namely CPU, disk, main storage, and for

communications, remote lines. Each of these resources can cause a performance degradation.

Improvements to system performance, whether to interactive throughput, interactive response time, batch

throughput, or some combination of these, may take many forms, from simply adjusting activity level or

pool size to changing the application code itself. In this instance, an activity level is a characteristic of a

subsystem that specifies the maximum number of jobs that can compete at the same time for the

processing unit.

Identify and resolve common performance problems

When performance problems occur on the iSeries(TM) server, they often affect certain areas of the system

first. Refer to the following table for some methods available for researching performance on these system

areas. Many of these areas are available as system monitor metrics. However, there are several other ways

to access information about them.

Performance 17

rzahxmonconmetrics.htm

Area Description Available tools

Processor load Determine if there are too many jobs

on the system or if some jobs are using

a large percentage of processor time.

v Work with Active Jobs (WRKACTJOB)

command.

v Work with System Activity (WRKSYSACT)

command, which is part of Performance Tools

licensed program.

v The work management function in iSeries

Navigator.

v CPU utilization metrics within the iSeries

Navigator system monitor.

Main storage Investigate faulting and the

wait-to-ineligible transitions.

v Work with Disk Status (WRKDSKSTS) command

v Disk storage metrics within the iSeries

Navigator system monitor

v Work with System Status (WRKSYSSTS)

command

v The Memory Pools function under Work

Management in iSeries Navigator.

Disk Determine if there are too few arms or

if the arms are too slow.

v Work with Disk Status (WRKDSKSTS)

command.

v Disk arm utilization metrics within the iSeries

Navigator system monitor.

v Performance Tools System and Component

report.

Communications Find slow lines, errors on the line, or

too many users for the line.

v Performance Tools Component Report.

v LAN utilization metrics within the iSeries

Navigator system monitor.

IOPs Determine if any IOPs are not balanced

or if there are not enough IOPs.

v Performance Tools Component Report.

v IOP utilization metrics within the iSeries

Navigator system monitor.

Software Investigate locks and mutual exclusions

(mutexes).

v Performance Tools Locks report

v Performance Tools Trace report

v Work with Object Locks (WRKOBJLCK)

command.

v In iSeries Navigator, right-click on the suspect

job under Work Management, and select Details

—> Locked Objects.

Backup and

recovery

Investigate areas that affect backup

and recovery and save and restore

operations.

v iSeries Performance Capabilities Reference

(Save/Restore Performance chapter)

v Why does my backup take so long after I restart

my server?

v Why do my backups take longer after I upgrade

to a new release?

v Why do my backups take longer after I change

hardware on my server?

18 iSeries: Performance

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

Collect system performance data

Collecting data is an important step toward improving performance. When you collect performance data,

you gather information about your server that can be used to understand response times and throughput.

It is a way to capture the performance status of the server, or set of servers, involved in getting your

work done. The collection of data provides a context, or a starting point, for any comparisons and

analysis that can be done later. When you use your first data collections, you have a benchmark for

future improvements and a start on improving your performance today. You can use the performance

data you collect to make adjustments, improve response times, and help your systems achieve peak

performance. Performance problem analysis often begins with the simple question: “What changed?”

Performance data helps you answer that question.

You can use Collection Services to collect performance data, create performance files with the Create

Performance Data (CRTPFRDTA) command, convert them to current release with Convert Performance

Data (CVTPFRDTA) command or through the Performance Tools plugin in iSeries(TM) Navigator, and

then create reports or create your own queries by using the information in the performance database files.

For more information about performance data, see the following:

“Collection Services” on page 32
See how to collect performance data for analysis and how to customize your collections.

“Performance data files” on page 83
Find an overview of the performance database files that are available to you and see detailed field

data for each performance database file.

In addition, you can use either the Performance Management APIs or the “What’s new: Collection

Services” on page 3 to start, end, and cycle collections, as well as to change and retrieve system

parameters for the data collected.

Collect information about system resource utilization

Many tools are available to help you monitor and track the way the iSeries(TM) server and your

applications are using the available resources. You can use this information as a starting point for

problem analysis, and to identify trends that will help you with capacity planning and managing the

growth of your system.

See the following topics to learn how and when to use these tools:

“iSeries(TM) Navigator monitors” on page 87
The monitors included in iSeries Navigator provide current and recent data on a wide variety of

metrics. Additionally, you can configure them to take a specified action when certain events occur.

““Work with” commands for OS/400 performance” on page 129
OS/400 includes several important functions to help you manage and maintain system performance.

“IBM Performance Management for eServer iSeries” on page 96
PM iSeries uses Collection Services to gather non-proprietary performance data and sends it to

IBM(R) for storage and expert analysis. This eliminates the need to store and maintain it yourself.

You can then access detailed reports and recommendations about your system’s performance and

trend analysis with a web browser.

Collect information about an application’s performance

Collecting information about an application’s performance is quite different from collecting information

about system performance. Collecting application information can be done only with certain performance

applications such as Performance Explorer, Performance Trace Data Visualizer (PTDV), and iDoctor.

Performance 19

Alternately, you can get an overview of application performance by using the “iSeries(TM) Navigator

monitors” on page 87 to track individual server performance and “Performance Tools” on page 111 to

track and analyze server jobs.

Note: Collecting an application’s performance data can significantly affect the performance of your

system. Before beginning the collection, make sure you have tried all other collection options.

“Performance explorer” on page 121

This tool helps find the causes of performance problems that cannot be identified by using tools that

do general performance monitoring. As your computer environment grows both in size and in

complexity, it is reasonable for your performance analysis to gain in complexity as well. The

performance explorer addresses this growth in complexity by gathering data on complex

performance problems.

Performance explorer is designed for application developers who are interested in understanding or

improving the performance of their programs. It is also useful for users who are knowledgeable in

performance management to help identify and isolate complex performance problems.

“Performance Trace Data Visualizer (PTDV)” on page 129

This tool is a Java(TM) application that can be used for performance analysis of applications running

on iSeries. PTDV works with the performance explorer function of the OS/400(R) operating system

to allow the analyst to view program flows and get details (such as CPU time, current system time,

number of cycles, and number of instructions) summarized by trace, job, thread, and procedures.

When visualizing Java application traces, additional details such as the number and type of objects

created, as well as information about Java locking behavior, can be displayed. There is also support

for performance explorer events generated by the WebSphere(R) Application Server. PTDV allows

sorting of columns, exporting of data, and many levels of data summarization.

For more information, go to the Performance Trace Data Visualizer

Web site.

“iDoctor for iSeries” on page 128
The PEX Analyzer function in iDoctor includes a software tool specifically geared towards analyzing

trace data to improve system and application performance. This detailed analysis gives a low-level

summary of disk operations, CPU utilization, file-open operations, machine interface (MI) programs,

wait states, disk space consumption, and much more. The client component is an iSeries Navigator

plugin that allows a user to condense and display iSeries trace data graphically.

Start Performance Trace (STRPFRTRC) command
OS/400 includes a command to collect multi-programming and transaction data. This command

collects the data that STRPFRMON collected in previous releases. After running this command, you

can export the data to a database file with the “Dump trace data.”

Dump trace data: Deciding when to dump trace data is a significant decision because the dump affects

system performance. The Dump Trace (DMPTRC) command puts information from an internal trace table

into a database file. It is not good to dump trace data during peak activity on a loaded system or within

a high priority (interactive) job. You can delay a trace dump, but you want to dump the data before you

forget that it exists. If the trace table becomes cleared for any reason, you lose the trace data. However,

delaying the dump slightly and then using the DMPTRC command to dump the trace in a batch job can

preserve performance for the users.

To dump trace data, issue the following command:

 DMPTRC MBR(member-name) LIB(library-name)

You must specify a member name and a library name in which to store the data. You can collect

sample-based data with “Collection Services” on page 32 at the same time that you collect trace

20 iSeries: Performance

http://www.alphaworks.ibm.com/tech/ptdv

information. When you collect sample data and trace data together like this, you should place their data

into consistently named members. In other words, the names that you provide in the CRTPFRDTA

TOMBR and TOLIB parameters should be the same as the names that you provide in the DMPTRC MBR

and LIB parameters.

Scenario: Improve system performance after an upgrade or migration

You recently upgraded your iSeries(TM) server to the newest release. After completing the upgrade and

resuming normal operations, your system performance has decreased significantly. You would like to

identify the cause of the performance problem and restore your system to normal performance levels.

Isolate changes

Several problems may result in decreased performance after upgrading the operating system. You can use

the performance management tools included in OS/400(R) and Performance Tools licensed program

(5722-PT1) to get more information about the performance problem and to narrow down suspected

problems to a likely cause.

1. Check CPU utilization. Occasionally, a job will be unable to access some of its required resources after

an upgrade. This may result in a single job consuming an unacceptable amount of the CPU resources.

v Use WRKSYSACT, WRKSYSSTS, WRKACTJOB, or iSeries Navigator system monitors to find the

total CPU utilization.

v If CPU utilization is high, for example, greater than 90%, check the amount of CPU utilized by

active jobs. If a single job is consuming more than 30% of the CPU resources, it may be missing file

calls or objects. You can then refer to the vendor, for vendor-supplied programs, or the job’s owner

or programmer for additional support.
2. Start a performance trace with the STRPFRTRC command, and then use the “Performance Tools

reports” on page 118 to identify and correct the following possible problems:

v If the page fault rate for the machine pool is higher than 10 faults/second, give the machine pool

more memory until the fault rate falls below this level.

v If the disk utilization is greater than 40%, look at the waiting and service time. If these values are

acceptable, you may need to reduce workload to manage priorities.

v If the IOP utilization is greater than 60%, add an additional IOP and assign some disk resource to

it.

v If the page faults in the user pool are unacceptably high, refer to the topic “Automatically tune

performance” on page 24.
3. Run the “Performance Tools reports” on page 118 and refer to the Seize lock conflict report. If the

number of seize or lock conflicts is high, ensure that the access path size is set to 1TB. If the seize or

lock conflicts are on a user profile, and if the referenced user profile owns many objects, reduce the

number of objects owned by that profile.

4. Run “iDoctor for iSeries” on page 128 with the Task switch option for five minutes. Then analyze the

resulting trace data with the task switch monitor. Identify and resolve any of the following:

v Jobs waiting for CPU

v Jobs faulting

v Seize conflicts

For more information about resolving performance problems after a major system change, refer to the

iSeries Performance Capabilities Reference

.

Display performance data

Displaying performance data helps you analyze your system’s performance more accurately. Performance

data can be displayed in many different ways; however, you may find a certain performance application

more appropriate in some situations. Most applications display data collected with either “Collection

Performance 21

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

Services” on page 32 or from a performance trace. The best way to access that data depends on whether

you are attempting to resolve a performance problem, are monitoring your system performance to plan

for future growth, or are identifying trends.

Display near real-time performance data

Use the following tools to display current or very recent performance information:

““Work with” commands for OS/400 performance” on page 129
There are many commands in the base operating system that will let you view current information

about specific areas of system performance.

“Performance Tools plug-in” on page 113
The Performance Tools licensed program includes a plug-in for iSeries(TM) Navigator that displays

performance data from Collection Services collection objects. You can also view detailed information

about the jobs on the system and print Performance Tools reports.

“iSeries(TM) Navigator monitors” on page 87
These monitors display performance data for many system elements. Monitor data is based on the

collection objects, and will display data as it is collected, according to the collection interval in

Collection Services.

Display historical performance data

Use the following tools to view data that is stored on your system:

“IBM Performance Management for eServer iSeries” on page 96
PM iSeries automates the collection, archival, and analysis of system performance data and returns

clear reports to help you manage system resources and capacity.

“Graph history” on page 95
Graph history provides a graphical display of up to a week’s worth of performance data depending

on the retention period in Collection Services. With PM iSeries, Graph History can display much

longer periods of data collection.

Tune performance

The primary aim of performance tuning is to allow your servers to make the best use of the system

resources, and to allow workloads to run as efficiently as possible. Performance tuning is a way to adjust

the performance of the system either manually or automatically. Many options exist for tuning your

system. Each system environment is unique in that it requires you to observe performance and make

adjustments that are best for your environment; in other words, you are required to do routine

performance monitoring. For more information about the performance monitoring steps that must

precede performance tuning, see “Manage iSeries(TM) performance” on page 15.

IBM(R) also offers a tool that allows you to improve both the I/O subsystem and system response times

by reducing the number of physical I/O requests that are read from disk. Learn how you can “Extended

Adaptive Cache” on page 130.

In addition, you may also want to consider some tuning options that allow processes and threads to

achieve improved affinity for memory and processor resources. See the Thread affinity system value for

more information. To find out about simultaneous multithreading, see the Processor multitasking system

value.

For more information about performance tuning, select from the following topics:

22 iSeries: Performance

“Basic performance tuning”
To tune your system’s performance, you need to set up your initial tuning values, observe the

system performance, review the values, and determine what to tune.

“Automatically tune performance” on page 24
Most users should set up the system to make performance adjustment automatically. When new

systems are shipped, they are configured to adjust automatically.

Basic performance tuning

To begin tuning performance, you must first set initial tuning values by determining your initial machine

and user pool sizes. Then, you can begin to observe the system performance.

Set initial tuning values
Setting initial tuning values includes the steps you take to initially configure the system pool sizes and

activity levels to tune your system efficiently. The initial values are based on estimates; therefore, the

estimates may require further tuning while the system is active. The following steps set the initial tuning

values:

v Determine initial machine pool size

v Determine initial user pool sizes

Observe system performance
To observe the system performance, you can use the Work with System Status (WRKSYSSTS), Work with

Disk Status (WRKDSKSTS), and Work with Active Jobs (WRKACTJOB) commands. With each observation

period, you should examine and evaluate the measurements of system performance against your

performance goals.

1. Remove any irregular system activity. Irregular activities that may cause severe performance

degradation are, for example, interactive program compilations, communications error recovery

procedures (ERP), open query file (OPNQRYF), application errors, and sign-off activity.

2. Use the WRKSYSSTS, WRKDSKSTS, and WRKACTJOB commands to display performance data. You

can also use the Performance Tools command, Work with System Activity (WRKSYSACT), to display

performance data.

3. Allow the system to collect data for a minimum of 5 minutes.

4. Evaluate the measures of performance against your performance goals. Typical measurements include:

v Interactive throughput and response time, available from the WRKACTJOB display.

v Batch throughput. Observe the auxiliary input/output (AuxIO) and CPU percentage (CPU%) values

for active batch jobs.

v Spooled throughput. Observe the auxiliary input/output (AuxIO) and CPU percentage (CPU%)

values for active writers.
5. If you observe performance data that does not meet your expectations, tune your system based on the

new data. Be sure to:

v Measure and compare all key performance measurements.

v Make and evaluate adjustments one at a time.

Review performance
Once you have set good tuning values, you should periodically review them to ensure your system

continues to do well. Ongoing tuning consists of observing aspects of system performance and adjusting

to recommended guidelines.

To gather meaningful statistics, you should observe system performance during typical levels of activity.

For example, statistics gathered while no jobs are running on the system are of little value in assessing

system performance. If performance is not satisfactory in spite of your best efforts, you should evaluate

the capabilities of your configuration. To meet your objectives, consider the following:

v Processor upgrades

Performance 23

v Additional storage devices and controllers

v Additional main storage

v Application modification

By applying one or more of these approaches, you should achieve your objectives. If, after a reasonable

effort, you are still unable to meet your objectives, you should determine whether your objectives are

realistic for the type of work you are doing.

Determine what to tune
If your system performance has degraded and needs tuning, refer to “Research a performance problem”

on page 16 to identify the source of the performance problem and to make specific corrections.

Automatically tune performance

The system can set performance values automatically to provide efficient use of system resources. You

can set up the system to tune system performance automatically by:

v Adjusting storage pool sizes and activity levels

v Adjusting storage pool paging

Adjusting storage pool sizes and activity levels
Use the QPFRADJ system value to control automatic tuning of storage pools and activity levels. This

value indicates whether the system should adjust values at system restart (IPL) or periodically after

restart.

You can set up the system to adjust performance at IPL, dynamically, or both.

v To set up the system to tune only at system restart (IPL), select Configuration and Service -> System

Values -> Performance in iSeries(TM) Navigator. Click the Memory Pools tab and select At system

restart under Automatically adjust memory pools and activity levels. This is equivalent to setting the

QPFRADJ system value to 1.

v To set up the system to make storage pool adjustments at system restart (IPL) and to make storage

pool adjustments periodically after restart, select Configuration and Service -> System Values ->

Performance in iSeries Navigator. Click the Memory Pools tab and select both At system restart and

Periodically after restart under Automatically adjust memory pools and activity levels. This is

equivalent to setting the QPFRADJ system value to 2.

v To set up the system to make storage pool adjustments periodically after restart and not at system

restart (IPL), select Configuration and Service -> System Values -> Performance in iSeries Navigator.

Click the Memory Pools tab and select Periodically after restart under Automatically adjust memory

pools and activity levels. This is equivalent to setting the QPFRADJ system value to 3.

The storage pool values are not reset at system restart (IPL) to the initial values.

Adjusting storage pool paging
The dynamic tuning support provided by the system automatically adjusts pool sizes and activity levels

for shared pools to improve the performance of the system. This tuning works by moving storage from

storage pools that have minimal use to pools that would benefit from more storage. This tuning also sets

activity levels to balance the number of threads in the pool with the storage allocated for the pool. To

adjust the system, the tuner uses a guideline that is calculated based on the number of threads.

When dynamic adjustment is in effect, the following performance values are changed automatically to the

appropriate settings:

v Machine (*MACHINE) memory pool size (QMCHPOOL system value)

v Base (*BASE) memory pool activity level (QBASACTLVL system value)

v Pool size and activity level for the shared pool *INTERACT

v Pool size and activity level for the shared pool *SPOOL

24 iSeries: Performance

v Pool sizes and activity levels for the shared pools *SHRPOOL1-*SHRPOOL60

When dynamic adjustment is in effect (the QPFRADJ system value is set to 2 or 3), the job QPFRADJ that

runs under profile QSYS is seen as active on the system.

For more information about memory pools, see Memory Pools.

Manage e-business performance

Performance in an e-business environment presents several complex problems to the iSeries(TM) system

administrator. In addition to routine tuning on the iSeries server, administrators must also monitor and

optimize the hardware and services supporting their e-business transactions.

The following topics can help you become familiar with some of the important considerations for

maximizing your server’s e-business performance, and will provide links to additional resources for

detailed recommendations and examples.

“Client performance”
While the iSeries system administrator often has little control of the client-side of the e-business

network, you can use these recommendations to ensure that client devices are optimized for an

e-business environment.

“Network performance” on page 26
The network design, hardware resources and traffic pressure often have a significant effect on the

performance of e-business applications. You can use this topic for information on how to optimize

network performance, and tune iSeries communication resources.

“Java(TM) performance in OS/400(R)” on page 26
OS/400 provides several configuration options and resources for optimizing the performance of Java

applications or services on the iSeries server. Use this topic to learn about the Java environment in

OS/400, and how to get the best possible performance from Java-based applications.

“IBM HTTP Server performance” on page 27
The IBM(R) HTTP server is often an important part of e-business performance on the iSeries server.

IBM provides several options and configuration choices that allow you to get the most out of this

server.

“WebSphere performance” on page 28
WebSphere Application Server is the e-business application deployment environment of choice for

the iSeries server. Use this topic to learn how to plan for and optimize performance in a WebSphere

environment.

In addition to these specific recommendations, administrators should also be familiar with the following

topics:

v Work management

v Java for iSeries

v HTTP server

v Domino(R) for iSeries sizing and performance tuning

Client performance

Clients consisting of a PC with a web browser often represent the e-business component that

administrators have the least direct control over. However, these components still have a significant affect

on the end-to-end response time for web applications.

To help ensure high-end performance, client PCs should:

Performance 25

http://www.redbooks.ibm.com/abstracts/sg245162.html

v Have adequate memory. Resource intensive applets, and interfaces using complex forms and graphics

may also place demands on the client’s processor.

v Utilize a high-speed and optimized network connection. Many communication adapters on a client PC

may function while they are not optimized for their network environment. For more information refer

to the documentation for your communication hardware.

v Use browsers that fully support the required technologies. Moreover, browser support and performance

should be a major concern when designing the web interface.

Network performance

The network often plays a major role in the response time for web applications. Moreover, the

performance impact for network components is often complex and difficult to measure because network

traffic and the available bandwidth may change frequently and are affected by influences the system

administrator may not have direct control over. However, there are several resources available to help

you monitor and tune the communication resources on your iSeries(TM) server.

Refer to the following topics for more information:

“Collection Services” on page 32
Collection Services collects performance data for communication resources at regular intervals. Of

particular interest, the performance data files QAPMTCP and QAPMTCPIFC store information

about TCP servers. You can reference this data by querying the files directly, or by using the reports

included in the Performance Tools licensed program.

“iSeries(TM) Navigator monitors” on page 87
You can use the system monitors to provide information about how system resources, including

communications hardware, are being used on an iSeries server. In particular, the line utilization and

IOP metrics within the system monitor can provide valuable data about network performance.

“Track performance” on page 15
Several applications and tools allow you to routinely collect performance data for communication

resources on the server and to monitor their performance over time.

iSeries Performance Capabilities Reference

The Performance Capabilities Reference provides detailed information, reports and examples that

can help you configure or tune your server for optimal performance. In particular, see chapter 5:

Communications Performance to help you plan for and manage communication resources.

iSeries Network.com

This web site hosts many resources for optimizing your network plan and resources. In particular,

refer to the articles “Cultivate your AS/400(R) Networks” and “8 tools for better network

performance.”

Java(TM) performance in OS/400(R)

Java is often the language of choice for web-based applications. However, Java applications may require

some optimization, both of the OS/400 execution environment and of the Java application, to get optimal

performance.

Use the following resources to learn about the Java environment in OS/400 and the available tips and

tools for analyzing and improving Java performance.

26 iSeries: Performance

rzahxqapmtcp.htm
rzahxqapmtcpifc.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www.iseriesnetwork.com/resources/artarchive/index.cfm

Java performance
There are several important configuration choices and tools to help you get the best performance

from Java-based applications.

“Collect information about an application’s performance” on page 19
There are several tools available to help you monitor and tune an applications performance in

OS/400. Use this topic to learn how to use performance traces, performance explorer (PEX), and

similar tools, to help you measure and improve application performance.

iSeries(TM) Performance Capabilities Reference

The Performance Capabilities Reference provides detailed information, reports and examples that

can help you configure or tune your server for optimal performance. In particular, see chapter 7:

Java Performance, to help you optimize the performance of Java applications, and learn performance

tips for programming in Java.

Java and WebSphere(R) performance in OS/400

Use this Redbook to learn how to plan for and configure your operating environment to maximize

Java and WebSphere performance, and to help you collect and analyze performance data.

WebSphere J2EE application development for the IBM(R) eServer(TM) iSeries server

This Redbook provides in introduction to J2EE, and offers suggestions and examples to help you

successfully implement J2EE applications on the server.

In addition to performance information, the Java topic provides resources for developing and deploying

Java applications on the server.

IBM HTTP Server performance

IBM(R) HTTP server for iSeries(TM) can play an important role in the end-to-end performance of your

web-based applications, and several new improvements allow you to effectively monitor and improve

web server performance. In particular the new Fast Response Caching Accelerator (FRCA) may allow you

to significantly improve HTTP server performance, particularly in predominantly static environments.

Refer to the following resources for information on how to maximize HTTP server performance.

“Collection Services” on page 32
You can use Collection Services to collect HTTP server performance data and monitor the results

over time. The performance data files QAPMHTTPB and QAPMHTTPD store HTTP server data for

each collection interval. QAPMHTTPB provides basic information, while QAPMHTTPD provides

more detailed statistics. You can query these data files directly, or refer to the System and

Component reports in the Performance Tools Licensed Program.

IBM HTTP Server for iSeries
Refer to this topic for information on setting up, configuring, and managing an HTTP server on the

iSeries. This topic also includes descriptions of the latest enhancements, like the Fast Response

Caching Accelerator (FRCA), to this product.

iSeries Performance Capabilities Reference

Performance 27

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www.redbooks.ibm.com/abstracts/sg246256.html
http://www.redbooks.ibm.com/abstracts/sg246559.html
rzahxqapmhttpb.htm
rzahxqapmhttpd.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

The Performance Capabilities Reference provides detailed information, reports, and examples that

can help you configure or tune your iSeries server for optimal performance. In particular, see

chapter 6: Web Server and Web Commerce, for HTTP server performance specifications, planning

information, and performance tips.

HTTP server (Powered by Apache)

Use this Redbook to get an in-depth description of HTTP Server (Powered by Apache) on OS/400(R),

including examples for configuring HTTP Server in common usage scenarios.

AS/400(R) HTTP Server Performance and Capacity Planning

Use this Redbook to learn about HTTP server impacts on performance tuning and planning. This

publication also includes suggestions for using iSeries performance management tools to collect,

interpret, and respond to web server performance data.

WebSphere performance

Managing iSeries(TM) server performance in a WebSphere(R) environment presents several challenges to

the iSeries administrator. Web-based transactions may consume more resources, and consume them

differently than traditional communication workloads.

Refer to the following topics and resources to learn how to plan for optimal performance, and adjust

server resources in a WebSphere environment.

WebSphere Application Server performance considerations

This web site provides resources for each version of WebSphere Application Server on the iSeries

server, including many useful performance tips and recommendations. This resource is particularly

valuable for environments using servlets, Java(TM) Server Pages (JSPs) and Enterprise Java Beans

(EJBs).

DB2(R) UDB/WebSphere Performance Tuning Guide

This Redbook provides an introduction to both the WebSphere and DB2 environments, and offers

suggestions, examples, and solutions to common performance problems that can help you optimize

WebSphere and DB2 performance.

Java and WebSphere performance in OS/400(R)

Use this Redbook to learn how to plan for and configure you operating environment to maximize

Java and WebSphere performance, and to help you collect and analyze performance data.

WebSphere V3 Performance Tuning Guide

28 iSeries: Performance

http://www.redbooks.ibm.com/abstracts/sg246716.html
http://www.redbooks.ibm.com/abstracts/sg245645.html
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/PerformanceConsiderations.html
http://www.redbooks.ibm.com/abstracts/sg246417.html
http://www.redbooks.ibm.com/abstracts/sg246256.html
http://www.redbooks.ibm.com/abstracts/sg245657.html

This Redbook offers detailed recommendations and examples for optimizing WebSphere V3

performance on the iSeries server.

iSeries Performance Capabilities Reference

The Performance Capabilities Reference provides detailed information, reports and examples that

can help you configure or tune your server for optimal performance. In particular, see chapter 6:

Web Server and Web Commerce, for WebSphere specific performance tips.

For other WebSphere and e-business information resources, refer to the topic WebSphere e-business

administration.

Applications for performance management

Many of the applications for performance management have several functions. Knowing exactly which

component of the available suite of applications best suits a given situation can be complex. The

following topics provide detailed information about each of the performance management applications,

including selection, use, and configuration.

As shown in the following figure, basically there are two performance collection functions on the

iSeries(TM) servers:

v Collection Services, which collects interval data at the system and job level. You can run this

continuously to know what is happening with your system. The interval data that is collected is either

application defined or user defined.

v Performance explorer, which collects detailed data at the program and application level. It also traces

the flow of work in an application and can be used to diagnose difficult performance problems. The

data that is collected is by application-defined performance explorer trace points, such as with

Domino(R), NetServer, or WebSphere(R).

Both collection functions deposit their data into management collection objects. You can convert the data

from the management collection objects by using the Create Performance Data (CRTPFRDTA) command

for Collection Services data or by using the Create Performance Explorer Data (CRTPEXDTA) command

for the performance explorer data.

This topic introduces the performance management applications that are available to work with either the

Collection Services data or the performance explorer data.

Performance 29

http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

“Collection Services” on page 32
Collection Services gathers performance data at user-defined time intervals and then stores this

information in collection objects on your system. Many of the other tools, including monitors, graph

history, PM iSeries, and many functions in the Performance Tools licensed program, rely on these

collection objects for their data.

“Intelligent Agents” on page 65
The Intelligent Agents console for iSeries Navigator provides system administrators with an easy

way to manage one or more ABLE (Agent Building and Learning Environment) agents running on a

single system or across different systems.

“Performance data files” on page 83
You can generate database files from the collection objects maintained by Collection Services. Use

this topic to find the names, descriptions and attributes of these database files.

“iSeries(TM) Navigator monitors” on page 87
Monitors display current information about the performance of your systems. Additionally, you can

use them to carry out predefined actions when a specific event occurs. You can use the system,

message, job, file, and B2B transaction monitors to display and monitor information about your

systems. The system and job monitors use the performance data collected by Collection Services.

“Graph history” on page 95
Graph history provides a graphical display of performance data collected by Collection Services

over a specified period of time.

30 iSeries: Performance

“IBM Performance Management for eServer iSeries” on page 96
PM iSeries automates the collection, archival, and analysis of system performance data and returns

reports to help you manage system resources and capacity. PM iSeries uses the performance data

collected by Collection Services.

“Performance Tools” on page 111
The Performance Tools licensed program includes many features to help you gather, analyze, and

maintain system performance information. This includes assistance in managing performance over a

distributed network, collecting and reporting on both summary and trace data, and capacity

planning. Performance Tools uses the performance data collected by Collection Services (sample

data) and the trace data obtained from the Start Performance Trace (STRPFRTRC) command and the

End Performance Trace (ENDPFRTRC) command.

“Performance explorer” on page 121
Performance explorer collects more detailed information about a specific application, program or

system resource, and provides detailed insight into a specific performance problem. This includes

the capability both to perform several types and levels of traces and to run detailed reports.

“iDoctor for iSeries” on page 128
The iDoctor for iSeries plugin consists of a variety of software tools for managing performance, for

example, PEX Analyzer for detailed trace data analysis and Job Watcher for trace-level information

about a job’s behavior.

“Performance Trace Data Visualizer (PTDV)” on page 129
Performance Trace Data Visualizer for iSeries (PTDV) is a Java(TM) application that can be used for

performance analysis of applications running on iSeries.

“Performance Management APIs” on page 129
The Performance Management APIs provide services to manage collections. These APIs start, end,

and cycle collections, and they change and retrieve system parameters for the data collected. Many

of the Performance Management APIs use the performance data collected by Collection Services.

““Work with” commands for OS/400 performance” on page 129
OS/400 includes several important functions to help you manage and maintain system performance.

“Extended Adaptive Cache” on page 130
Extended Adaptive Cache can improve system performance by collecting disk usage data, and then

using those statistics to create a large cache, effectively reducing the physical I/O requests for the

disk.

“Workload Estimator for iSeries” on page 132
Workload Estimator helps you plan the size and timing requirements of your next upgrade. This

tool is often used with PM iSeries to analyze trends in system performance and helps you efficiently

manage the growth and expansion of your iSeries server.

“iSeries(TM) Navigator for Wireless” on page 132
iSeries Navigator for Wireless allows you to monitor performance data over a wireless connection,

using a personal digital assistant (PDA), Internet-ready telephone, or traditional Web browser. The

iSeries Navigator for Wireless uses the performance data collected by Collection Services.

“PATROL for iSeries (AS/400) - Predict” on page 133
PATROL for iSeries (AS/400) - Predict helps manage iSeries performance by automating many of

the routine administration tasks required for high availability and optimal performance.

Additionally, this product offers detailed capacity planning information to help you plan the growth

of your iSeries environment.

Performance 31

Collection Services

Use Collection Services to collect performance data for later analysis by the Performance Tools for

iSeries(TM) licensed program or other performance report applications, iSeries Navigator monitors, and the

graph history function. (If you prefer viewing real-time performance data, system monitors provide an

easy-to-use graphical interface for monitoring system performance.) Collection Services collects data that

identifies the relative amount of system resource used by different areas of your system. Use Collection

Services to:

v Easily manage your collection objects

v Collect performance data continuously and automatically with minimal system overhead

v Control what data is collected and how the data is used

v Move performance data between releases without converting the data

v Create performance data files that are used by Performance Tools

v Integrate your own programs to collect user-defined performance data into Collection Services.

How Collection Services works

Collection Services replaces the OS/400(R) performance monitor, which was called by the Start

Performance Monitor (STRPFRMON) command. The Performance Monitor (STRPFRMON command) has

not been available since V4R5. When you used the OS/400 performance monitor, your data was collected

into as many as 30 database files.

Collection Services capabilities introduce a new process of collecting performance data. Collection

Services stores your data for each collection in a single collection object, from which you can create as

many different sets of database files as you need. This means a lower system overhead when collecting

performance data. Even if you elect to create the database files during collection, you still experience a

performance advantage over the OS/400 performance monitor because Collection Services uses a lower

priority (50) batch job to update these files. The reduction in collection overhead makes it practical to

collect performance data in greater detail and at shorter intervals on a continuous basis. Collection

Services enables you to establish a network-wide system policy for collecting and retaining performance

data and to implement that policy automatically. For as long as you retain the management collection

objects, if the need arises, you have the capability to look back and analyze performance-related events

down to the level of detail that you collected.

32 iSeries: Performance

Collection Services allows you to gather performance data with little or no observable impact on system

performance. You can use iSeries Navigator to configure Collection Services to collect the data you want

as frequently as you want to gather it. A collection object, *MGTCOL, serves as an efficient storage

medium to hold large quantities of performance data. Once you have configured and started Collection

Services, performance data is continuously collected. When you need to work with performance data,

you can copy the data you need into a set of performance database files.

The figure above provides an overview of the following Collection Services elements:

User interfaces
Several methods exist that allow you to access the different elements of Collection Services. For

example, you can use CL commands, APIs, and the iSeries Navigator interface.

General properties
General properties define how a collection should be accomplished and they control automatic

collection attributes.

Data categories
Data categories identify the types of data to collect. You can configure categories independently to

control what data is collected and how often the data is collected.

Collection profiles
Collection profiles provide a means to save and activate a particular category configuration.

Performance collector
The performance collector uses the general properties and category information to control the

collection of performance data. You can start and stop the performance collector, or configure it to

run automatically.

Performance 33

Collection Object
The collection object, *MGTCOL, serves as an efficient storage medium for large quantities of

performance data.

Create Performance Data (CRTPRFDTA) command
The CRTPFRDTA command processes data that is stored in the management collection object and

generates the performance database files.

Performance database
The database files store the data that is processed by the CRTPFRDTA command. The files can be

divided into these categories: Performance data files that contain time interval data, configuration

data files, trace data files.

For an illustration of how Collection Services and system and job monitors work together on the

system, refer to “System and job monitor interaction with Collection Services” on page 35

How to start Collection Services

You can start Collection Services by using any of the following methods. However, the information in the

Performance topic focuses on iSeries Navigator methods.

 Starting method Description

Start Performance Collection

(STRPFRCOL)

Use the STRPFRCOL command to start the system-level collection of

performance data by Collection Services.

iSeries Navigator Perform a variety of Collection Services tasks by using iSeries Navigator. The

table that follows below lists these tasks and links you to information about

how to complete them.

Performance Management APIs Use Performance Management APIs to start, customize, end, and cycle

collections. In addition, you can use the APIs to work with the management

collection objects or define your own transactions.

Traditional menu options Type GO PERFORM in the character-based interface and select option 2

(Collect performance data) from the Performance Tools main menu. For

additional information, go to the Performance Tools book

.

“Activate PM iSeries” on page 99 PM iSeries automates the start of Collection Services and then creates the

database files during collection.

Collection Services tasks

You can use Collection Services and iSeries Navigator to perform a variety of data collection tasks as

shown in the following table.

 Task Description

Start Collection Services in a

variety of ways

Create a customized performance data collection on an individual system or

groups of systems with specific performance metrics. You can also use a Start

Collector API in your startup program to start performance data collections

automatically. For more information about how to perform these tasks, refer to

the online help. Detailed task help is available from the iSeries Navigator

window. Just click Help from the menu bar and select Help Topics. Select What

can I do with . . .? to find out what you can do and where you need to be in

the iSeries Navigator window to make it happen.

34 iSeries: Performance

Task Description

“Create database files from

Collection Services data” on page

38

Learn how to control what data gets collected as you create database files. For

example, you can use Collection Services to automate the creation of

performance database files or you can create database files from the collection

object, where the data is stored after it has been collected. In addition, you can

use these database files with PM iSeries or with the Performance Tools licensed

program, or you can create your own queries to run against these files.

See “Performance data files” on page 83 to find out what database files are

available to you, as well as what field-level data is included in each file.

“Customize data collections” on

page 40

Customize your data collections. Find information about controlling what

performance data you collect and how often that data gets collected. You can

also find information about important “Time zone considerations for Collection

Services” on page 41.

“User-defined categories in

Collection Services” on page 41

You can collect performance data from user applications by writing an exit

program and integrating it into Collection Services. You can then collect this

data during routine collection intervals and store it in collection objects.

“Manage collection objects” on

page 50

Find the information you need to manage collection objects, including the

contents of collection objects, how long collection objects are saved, and what

you can do with collection objects.

“Collect information about an

application’s performance” on

page 19

Collection Services collects sample data. However, it does not collect trace data.

Refer to this topic to learn how to collect trace data.

“User-defined transactions” on

page 51

Collection Services provides APIs that allow you to define your own

transactions.

“Collecting performance data

across partitions” on page 59

Collection Services can collect performance data from your iSeries partitions,

regardless of the operating system running on the partition. PM iSeries will then

aggregate the data before it is sent to IBM(R) for analysis.

“Find wait statistics for a job,

task, or thread” on page 64

Identify the cause and duration of wait time experienced by a job, task or

thread

“Understanding disk consumption

by Collection Services” on page

64

The amount of disk space consumed by Collection Services varies significantly

depending on collection interval and retention period you have selected. Refer

to this topic to help you plan for Collection Services disk consumption.

System and job monitor interaction with Collection Services

Collection services is both a valuable tool for performance analysis as a stand alone application and as

a utility used by other applications for the collection of performance data. Sometimes, performance

analysis causes confusion when trying to determine which application is responsible for activity you may

see on your system. One easy rule to remember for this issue is that even if it looks like those other

applications are busy, there is one and only one data collection occurring on the system at any given

time.

The following scenarios explain the different combinations between system monitors and job monitors

and Collection Services and what Collection Services displays.

Collection Services is collecting data using the default values

In this scenario, there are no system monitors or job monitors active on the system. When viewing the

Collection Services properties page and the *MGTCOL object properties view, you see something similar

to the following:

Performance 35

Both Collection Services and a system monitor are started

This scenario shows that Collection Services had already started at some point, and later someone started

a system monitor to collect CPU Utilization (Average) metric data at 30-second intervals. Notice in the

*MGTCOL object properties view that the collection interval for System Level Data, Job MI Data, and Job

OS Data categories changed from 15 minutes to 30 seconds. This demonstrates that the same *MGTCOL

object is being used, and only those categories necessary to calculate information for a given metric were

changed to collect at the new interval.

36 iSeries: Performance

Collection Services stopped and system monitor remains started

In this scenario, Collection Services was stopped and the system monitor remains started and continues

to collect data necessary to calculate the graph metrics.

Observe the following:

v The Collection Services properties page shows a status of System collection stopped. Collecting for

applications only.

v The *MGTCOL object properties page shows that data collection has ended for all categories except for

those necessary to calculate the graph metric data.

v The Collection Services list view shows the *MGTCOL object with a status of Collecting.... This might

be confusing; therefore, to get the status of Collection Services, look at the Collection Services

Properties page.

Performance 37

Create database files from Collection Services data

Collection Services places the data you collected into management collection objects. To use this data, you

must first place the data in a special set of database files. To create database files automatically as data is

collected, simply select Create database files on the Start Collection Services dialog. You can also

“Create database files from an existing collection object” on page 40 when you want to export data to

them from an existing management collection object.

You have many options that allow you to create database files.

v When you use Collection Services to collect performance data, you can create database files

automatically as data is collected.

v You can create database files from the management collection object, where the data is stored after it

has been collected. You can use the Create Performance Data (CRTPFRDTA) command to create a set of

38 iSeries: Performance

performance database files from performance information stored in a management collection

(*MGTCOL) object. You can use either the iSeries(TM) Navigator interface or the CRTPFRDTA

command.

v You can activate PM iSeries, which automates the start of Collection Services and then creates the

database files during collection.

You can use the database files that you have created with the Performance Tools for iSeries licensed

program or other applications to produce performance reports. You can collect the performance data on

one system and then move the management collection object (*MGTCOL) to another system to generate

the performance data files and run the Performance Tools reports. This action allows you to analyze the

performance data on another system without affecting the performance of the source system. For more

information about Performance Tools, see the Performance Tools book

.

Storing data in management collection objects instead of in database files

Why should you store the data in management collection objects instead of in the database files that you

need to run your reports? Because you can manage the management collection objects separately from

the database files, you can collect your performance data in small collection intervals (such as 5-minute

intervals) and then create your database files with a longer sampling interval (such as 15-minute

intervals).

From a single management collection object, you can create many different sets of database files for

different purposes by specifying different data categories, different ranges of time, and different sampling

intervals.

For example, you might collect performance data on the entire set of categories (all data, or the Standard

plus protocol profile) in 5-minute collection intervals for 24 hours. From that one management collection

object, you can create different sets of database files for different purposes. You could create one set of

database files to run your normal daily performance reports. These files might contain data from all

categories with a sampling interval of 15 minutes. Then, to analyze a particular performance problem,

you could create another set of database files. These files might contain only data for a single category

that you need to analyze, a specific time period within the 24 hours, and a more granular sampling

interval of 5 minutes.

In addition, the single management collection object allows you to manage the data as a single object

rather than as many files. The single collection object allows you to move the performance data between

releases without converting the data. As long as you retain the collection objects, you can look back and

analyze the performance-related events down to the level of detail that you collected.

Export the collected data

To export performance data from a management collection object to database files, follow these steps:

1. In iSeries Navigator, either select an endpoint system under Management Central or select a system

to which you have a direct connection under My Connections (or your active environment).

2. Expand Configuration and Service.

3. Click Collection Services.

4. Right-click the management collection object that you want to export to database files and select

Create Database Files.

5. On the Create Database Files dialog, select the categories from the collection object to include in the

database files. You can also select a different time period and sampling interval, as long as the

collection object contains data to support your selections.

6. Click OK.

Performance 39

Create database files from an existing collection object: You can export performance data from an

existing management collection object to database files. Follow these steps:

1. Expand Configuration and Service for the system from which performance data is being collected.

2. Select Collection Services.

3. Right-click the management collection object from which you want to export data to the database

files.

4. You can first select Properties to display the characteristics of the data in the collection object. On the

Data properties page, you can see the categories of data collected in this collection object as well as

the intervals at which they were collected. You can use this information in selecting the data that you

want to export. When you have reviewed this information, click OK.

5. Right-click the management collection object again and select Create Database Files. Complete the

fields using the online help.

6. Click OK.

After you convert the data in the database files, you can use the “Performance Tools” on page 111 or

other applications to produce performance reports.

Customize data collections

When you use Collection Services to “Collection Services” on page 32, you control what data is collected

and how often it is collected. You can select from the collection profiles that are provided. The Standard

profile corresponds to the settings for system data in the OS/400(R) performance monitor function that

was provided by the Start Performance Monitor (STRPFRMON) command in previous releases. The

Standard plus protocol profile corresponds to the STRPFRMON command settings for all data. Or you

can select Custom to create your own customized profile. There are also several other profiles available,

refer to the online help for detailed descriptions. For your customized profile, you can select from a list of

available data categories, such as System CPU, Local Response Time, Disk Storage, and IOPs

(input/output processors).

For each category of data that you collect, you can specify how often the data will be collected. For many

categories, you will want to select the default collection interval, which you can set from predefined

settings between 15 seconds and 60 minutes. (The recommended setting is 15 minutes.)

Note: When the default value is set to any specified time, all categories except those categories with

explicit time intervals, such as, disk storage, input/output processors, and communications-related

categories, use the specified time.

The collected data is stored in a management collection object (type *MGTCOL) called a collection. To

prevent these management collection objects from becoming too large, the collection must be cycled at

regular intervals. Cycling a collection means to create a new collection object and begin storing data in it

at the same time data collection stops in the original collection object. You can specify any interval from

one hour to 24 hours, depending on how you plan to use the data.

To customize Collection Services on a system, follow these steps:

1. In iSeries(TM) Navigator, select either an endpoint system under Management Central or a system to

which you have a direct connection under My Connections (or your active environment).

2. Expand Configuration and Service.

3. Right-click Collection Services and select Properties.

4. On the General page, you may want to specify a retention period longer than the default of 1 day.

Collection Services may delete management collection objects and the data they contain from the

system at any time after the retention period has expired. When the management collection object is

created, an expiration date is assigned to it. Even if you move the collection object to another library,

Collection Services will delete the object after it expires. You can specify Permanent if you do not

want Collection Services to assign an expiration date to new collection objects. You will then have to

delete these collection objects manually.

40 iSeries: Performance

To view the “Graph history” on page 95, you must specify a Collection retention period of either

Graph or Summary. When you specify these options, you can take advantage of the historical

reporting capabilities, which allow you to do metric comparisons for multiple systems over extended

periods of time.
You can also specify the path of the location where you want to store your collections, how often you

want to cycle collections, and the default collection interval. You can select to create database files

automatically during collection.

5. Click the Data to Collect tab.

6. For Collection profile to use, select Custom. You can specify the collection interval for each category

you select for your customized list.

7. Click OK to save your customized values.

Once you have customized Collection Services to the settings you prefer, you can right-click Collection

Services again and select Start Collection Services to begin collecting performance data.

Time zone considerations for Collection Services: When you review and analyze performance data, the

actual local time of the collection can be significant. For example, you may need to be sure which data

was collected during the busiest period of the day so that it represents the heaviest workload experienced

by the system under review. If some of the systems from which you collect performance data are located

in different time zones, you should be aware of these considerations:

v When you start Collection Services for a system group, you start Collection Services at the same time

on all systems in the group. Any differences in system time and date settings due to some systems

being located in different time zones are not taken into account.

v If you start Collection Services with the Management Central scheduler, the time at which the

scheduler starts the task is based on the system time and date of your central system in Management

Central.

v The management collection objects for each endpoint system reflect start and end times based on the

QTIME and QUTCOFFSET (coordinated universal time offset) system values of that endpoint system

and your central system. If the endpoint system is in a different time zone from your central system,

and these system values are correctly set on both systems, the start and end times reported for

collection objects are the actual times on the endpoint system. In other words, the start and end times

reflect the value of QTIME on the endpoint system as it was at the actual point in time when those

events occurred.

v The scheduling of a performance collection can cross a boundary from standard time to daylight saving

time or from daylight saving time to standard time. If so, this time difference should be taken into

account when scheduling the start time. Otherwise, the actual start and end times can be an hour later

or earlier than expected. In addition, the reported start and end times for management collection

objects are affected by this difference unless the QUTCOFFSET system value is adjusted each time the

change to and from daylight saving time takes effect.

For more information about using Collection Services to collect performance data, see “Collection

Services” on page 32.

User-defined categories in Collection Services

The user-defined categories function in “Collection Services” on page 32 enables applications to integrate

performance data collection into Collection Services. This allows you to gather data from an application

by writing a data collection program, registering it, and integrating it with Collection Services. Collection

Services will then call the data collection program at every collection interval, and will store the data in

the collection object. You should use the Collection Object APIs listed below to access the data stored in

the collection object. You may access the data in real-time, as it is being collected, or for as long as the

collection object is retained.

To implement this function, you need to:

Performance 41

1. Develop a program to collect performance data for a new category in Collection Services. Refer to

“Collection program recommendations and requirements” for more information.

2. Create a job description for your collection program. The job description QPMUSRCAT in QGPL

provides an example, but does not represent default values or recommendations.

3. Register the new category and specify the data collection program. See the API descriptions for more

information:

v Register: QypsRegCollectorDataCategory

v De-register: QypsDeregCollectorDataCategory

After you register the category, Collection Services includes it in the list of available collection

categories.

4. Add the category to your Collection Services profile, and then cycle Collection Services

5. Develop a program to query the collection object. See the API descriptions for more information:

v Retrieve active management collection object name: QpmRtvActiveMgtcolName (Used only for

querying the collection object in real-time.)

v Retrieve management collection object attributes: QpmRtvMgtcolAttrs

v Open management collection object: QpmOpenMgtcol

v Close management collection object: QpmCloseMgtcol

v Open management collection object repository: QpmOpenMgtcolRepo

v Close management collection object repository: QpmCloseMgtcolRepo

v Read management collection object data: QpmReadMgtcolData

Your customized collection program now runs at each collection interval, and the collected data is

archived in the collection objects.

You can also implement the Java(TM) versions of these APIs. The required Java classes are included in

ColSrv.jar, in the integrated file system (IFS) directory QIBM/ProdData/OS400/CollectionServices/lib.

Java applications should include this file in their classpath. For more information about the Java

implementation, refer to the Javadocs in the Information Center, or download the javadocs in a .zip file.

For an example implementation, see “Example: Implementing user-defined categories” on page 44

Query the collection object in real-time

If your application needs to query the collection object in real-time, it will need to synchronize the

queries with Collection Services. To do this, the application should create a data queue and register it

with Collection Services. Once registered, the collector sends a notification for each collection interval and

for the end of the collection cycle. The application should maintain the data queue, including removing

the data queue when finished, and handling abnormal termination. To register and de-register the data

queue, refer to the following API descriptions:

v Add collector notification: QypsAddCollectorNotification

v Remove collector notification: QypsRmvCollectorNotification

Collection program recommendations and requirements: Collection Services calls the data collection

program once during the start of a collection cycle, once for each collection interval, and again at the end

of the collection cycle. The data collection program must perform any data collection and return that data

to a data buffer provided by Collection Services. In addition to providing a data buffer, Collection

Services also provides a work area, which allows the data collection program to maintain some state

information between collection intervals.

The data collection program should collect data as quickly as possible and should perform minimal

formatting. The program should not perform any data processing or sorting. Although data from the

user-defined category is not converted into database files, Collection Services may run the CRTPFRDTA

42 iSeries: Performance

index.html
colobj_Javadoc_zip.zip

command automatically and add the data from the collection object to database files at the end of each

collection interval. If the data collection program cannot complete its tasks within the collection interval,

the CRTPFRDTA command does not run properly.

You may create the data collection program in several environments:

v *PGM for OPM languages. This environment may not be used to query the collection object and may

result in poor performance. However, it is supported for older programming languages.

v *SRVPGM, an entry point in a service program. This is for ILE languages.

v *JVAPGM, the required Java(TM) classes are included in ColSrv.jar. This file is included in the IFS at

QIBM/ProdData/OS400/CollectionServices/lib. Download the javadocs .zip file and open index.html

for a description of the Java implementations of the APIs.

Collection Services sends the following requests to the data collection program:

 Request Description

Start collection The data collection program should initialize any interfaces or resources used during data

collection. Optionally, it may also initialize a work area, provided by Collection Services,

that preserves state information between collection intervals. If you want to include a

control record prior to the collected data, the data collection program may also write a

small amount of data to the data buffer. Typically, this control record would be used during

data processing to help interpret the data.

Collection interval Collection Services sends an interval request for each collection interval. The data collection

program should collect data and return it in the data buffer. Collection Services then writes

that data to the interval record in the collection object.

If the amount of data is too large for the data buffer, the data collection program should set

a “More data” flag. This action causes Collection Services to send another interval request

with a modifier indicating that it is a continuation. Collection Services resets the more data

flag before each call. This process is repeated until all the data is moved into the collection

object.

End of collection When the collection for the category containing the data collection program ends, Collection

Services sends this request. The data collection program should perform any cleanup and

can optionally return a collection control record. The data collection program should also

send a return code that indicates the result of the collection.

Clean up and

terminate (Shutdown)

Collection Services sends this request if an abnormal termination is necessary. Operating

system resources are freed automatically when the data collection program job ends, but

any other shutdown operations should be performed by the data collection program. The

data collection program can receive this request at any time.

For a detailed description of these parameters, the work area, data buffer, and return codes, refer to the

header file QPMDCPRM, which is located in QSYSINC.

Data storage in collection objects

Collection objects have a repository for each data collection category. This repository gets created by

Collection Services when collections for that category are started. Each repository consists of the

following records:

 Record Description

Control This optional record can be the first or last record that results from the data collection

program, and may occur in both positions. Typically, it should contain any information

needed to interpret the record data.

Interval Each collection interval creates an interval record, even if it is empty. The interval record

contains the data written to the data buffer during the collection interval. It must not

exceed 4 GB in size.

Performance 43

javadoc.zip

Record Description

Stop Collection Services automatically creates this record to indicate the end of a data collection

session. If the collections for the user-defined category were restarted without ending or

cycling Collection Services, you can optionally include a control record followed by

additional interval records after the stop record.

Example: Implementing user-defined categories: The following sample programs illustrate how you

can use the provided APIs to integrate customized data collections into Collection Services.

v “Example: data collection program”

v “Example: Program to register the data collection program” on page 47

v “Example: Program to query the collection object” on page 48

Code example disclaimer

IBM(R) grants you a nonexclusive copyright license to use all programming code examples from which

you can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Example: data collection program: The following program collects some test data and stores it in a data

buffer, which Collection Services copy to the collection object. For more information about the collection

program, refer to “Collection program recommendations and requirements” on page 42

Note: Read the “Code disclaimer information” on page 140 for important legal information.

C++ sample code

#include “string.h” // memcpy(), memset(), strlen()

#include “stdio.h” // printf()

#include “qpmdcprm.h” // data collection program interface

#include “time.h”

extern “C”

void DCPentry(Qpm_DC_Parm_t *request, char *dataBuffer,

 char *workArea, int *returnCode)

{

 static char testData[21] = “Just some test stuff”;

 int i;

44 iSeries: Performance

/* Print contents of request structure */

 printf(“DCP called with parameters:\n”);

 printf(“ format name: \”%8.8s\“; category name: \”%10.10s\“;\n”,

 request->formatName, request->categoryName);

 printf(“ rsvd1: %4.4X; req type: %d; req mod: %d; buffer len: %d;\n”,

 *(short *)(request->rsvd1), request->requestType,

 request->requestModifier, request->dataBufferLength);

 printf(“ prm offset: %d; prm len: %d; work len: %d; rsvd2: %8.8X;\n”,

 request->parmOffset, request->parmLength, request->workAreaLength,

 *(int *)(request->rsvd2));

 printf(“ rec key: \”%8.8s\“; timestamp: %8.8X %8.8X;\n”,

 request->intervalKey,

 *(int *)(request->intervalTimestamp),

 *(int *)(request->intervalTimestamp + 4));

 printf(“ return len: %d; more data: %d; rsvd3: %8.8X %8.8X;\n”,

 request->bytesProvided, request->moreData,

 *(int *)(request->rsvd3),

 *(int *)(request->rsvd3 + 4));

 switch (request->requestType)

 {

 /* Write control record in the beginning of collection */

 case PM_DOBEGIN:

 printf(“doBegin(%d)\n”, request->requestModifier);

 switch (request->requestModifier)

 {

 case PM_CALL_NORMAL:

 memcpy(dataBuffer, testData, 20);

 *(int *)workArea = 20;

 request->moreData = PM_MORE_DATA;

 request->bytesProvided = 20;

 break;

 case PM_CALL_CONTINUE:

 if (*(int *)workArea < 200)

 {

 memcpy(dataBuffer, testData, 20);

 *(int *)workArea += 20;

 request->moreData = PM_MORE_DATA;

 request->bytesProvided = 20;

 }

 else

 {

 *(int *)workArea = 0;

 request->moreData = PM_NO_MORE_DATA;

 request->bytesProvided = 0;

 }

 break;

 default:

 *returnCode = -1;

 return;

 }

 break;

 /* Write control record in the end of collection */

 case PM_DOEND:

 printf(“doEnd(%d)\n”, request->requestModifier);

 switch (request->requestModifier)

 {

 case PM_CALL_NORMAL:

 memcpy(dataBuffer, testData, 20);

 *(int *)workArea = 20;

 request->moreData = PM_MORE_DATA;

 request->bytesProvided = 20;

 break;

Performance 45

case PM_CALL_CONTINUE:

 if (*(int *)workArea < 200)

 {

 memcpy(dataBuffer, testData, 20);

 *(int *)workArea += 20;

 request->moreData = PM_MORE_DATA;

 request->bytesProvided = 20;

 }

 else

 {

 *(int *)workArea = 0;

 request->moreData = PM_NO_MORE_DATA;

 request->bytesProvided = 0;

 }

 break;

 default:

 *returnCode = -1;

 return;

 }

 break;

 /*Write interval record */

 case PM_DOCOLLECT:

 printf(“doCollect(%d)\n”, request->requestModifier);

 for (i = 0; i < 10000; i++)

 dataBuffer[i] = i % 256;

 request->bytesProvided = 10000;

 switch (request->requestModifier)

 {

 case PM_CALL_NORMAL:

 *(time_t *)(workArea + 4) = time(NULL);

 *(int *)workArea = 1;

 request->moreData = PM_MORE_DATA;

 break;

 case PM_CALL_CONTINUE:

 *(int *)workArea += 1;

 if (*(int *)workArea < 20)

 request->moreData = PM_MORE_DATA;

 else

 {

 *(time_t *)(workArea + 8) = time(NULL);

 printf(“doCollect() complete in %d secs (%d bytes transferred)\n”,

 *(time_t *)(workArea + 8) - *(time_t *)(workArea + 4), 10000 * 20);

 request->moreData = PM_NO_MORE_DATA;

 }

 break;

 default:

 *returnCode = -1;

 return;

 }

 break;

 /* Clean-up and terminate */

 case PM_DOSHUTDOWN:

 printf(“doShutdown\n”);

 *returnCode = 0;

 return;

 break;

 default:

 *returnCode = -1;

 return;

46 iSeries: Performance

break;

 }

}/* DCPentry() */

Example: Program to register the data collection program: The following program registers the data collection

program from the previous example with Collection Services. After running, Collection Services displays

the data collection program in the list of data collection categories.

Note: Read the “Code disclaimer information” on page 140 for important legal information.

C++ sample code

#include “stdlib.h”

#include “stdio.h”

#include “string.h”

#include “qypscoll.cleinc”

int main(int argc, char *argv[])

{

 int CCSID = 0;

 int RC = 0;

 Qyps_USER_CAT_PROGRAM_ATTR *pgmAttr;

 Qyps_USER_CAT_ATTR catAttr;

 char collectorName[11] = “*PFR ”;

 char categoryName[11] = “TESTCAT ”;

 char collectorDefn[11] = “*CUSTOM ”; /* Register to *CUSTOM profile only */

 if (argc > 2)

 {

 int len = strlen(argv[2]);

 if (len > 10) len = 10;

 memset(categoryName, ’ ’, 10);

 memcpy(categoryName, argv[2], len);

 }

 if (argc < 2 || *argv[1] == ’R’)

 {

 pgmAttr = (Qyps_USER_CAT_PROGRAM_ATTR *)malloc(4096);

 memset(pgmAttr, 0x00, sizeof(pgmAttr));

 pgmAttr->fixedPortionSize = sizeof(Qyps_USER_CAT_PROGRAM_ATTR);

 memcpy(pgmAttr->programType, “*SRVPGM ”, 10);

 memcpy(pgmAttr->parameterFormat, “PMDC0100”, 8);

 memcpy(pgmAttr->ownerUserId, “USERID ”, 10);

 memcpy(pgmAttr->jobDescription, “QPMUSRCAT QGPL ”, 20);

 memcpy(pgmAttr->qualPgmSrvpgmName, “DCPTEST LIBRARY ”, 20);

 pgmAttr->workAreaSize = 123;

 pgmAttr->srvpgmEntrypointOffset = pgmAttr->fixedPortionSize;

 pgmAttr->srvpgmEntrypointLength = 8;

 pgmAttr->categoryParameterOffset = pgmAttr->srvpgmEntrypointOffset +

 pgmAttr->srvpgmEntrypointLength;

 pgmAttr->categoryParameterLength = 10;

 /* Set entry point name */

 memcpy((char *)(pgmAttr) + pgmAttr->srvpgmEntrypointOffset,

 “DCPentry”, pgmAttr->srvpgmEntrypointLength); /* Set parameter string */

 memcpy((char *)(pgmAttr) + pgmAttr->categoryParameterOffset,

 “1234567890”, pgmAttr->categoryParameterLength);

 memset(&catAttr, 0x00, sizeof(catAttr));

 catAttr.structureSize = sizeof(Qyps_USER_CAT_ATTR);

 catAttr.minCollectionInterval = 0;

 catAttr.maxCollectionInterval = 0;

 catAttr.defaultCollectionInterval = 30; /* Collect at 30 second interval */

 memset(catAttr.qualifiedMsgId, ’ ’, sizeof(catAttr.qualifiedMsgId));

Performance 47

memcpy(catAttr.categoryDesc,

 “12345678901234567890123456789012345678901234567890”, sizeof(catAttr.categoryDesc));

 QypsRegCollectorDataCategory(collectorName,

 categoryName,

 collectorDefn,

 &CCSID,

 (char*)pgmAttr,

 (char*)&catAttr,

 &RC

);

 }

 else

 if(argc >= 2 && *argv[1] == ’D’)

 QypsDeregCollectorDataCategory(collectorName, categoryName, &RC);

 else

 printf(“Unrecognized option\n”);

}/* main() */

Example: Program to query the collection object: The following sample program illustrates how to query the

data stored in the collection object using the Java(TM) classes shipped in the ColSrv.jar file in

QIBM/ProdData/OS400/CollectionServices/lib.

Note: Read the “Code disclaimer information” on page 140 for important legal information.

Java sample code

import com.ibm.iseries.collectionservices.*;

class testmco2

{

 public static void main(String argv[])

 {

 String objectName = null;

 String libraryName = null;

 String repoName = null;

 MgtcolObj mco = null;

 int repoHandle = 0;

 int argc = argv.length;

 MgtcolObjAttributes

 attr = null;

 MgtcolObjRepositoryEntry

 repoE = null;

 MgtcolObjCollectionEntry

 collE = null;

 int i,j;

 if (argc < 3)

 {

 System.out.println(“testmco2 objectName libraryName repoName”);

 System.exit(1);

 }

 objectName = argv[0];

 libraryName = argv[1];

 repoName = argv[2];

 if (! objectName.equals(“*ACTIVE”))

 mco = new MgtcolObj(objectName, libraryName);

 else

 try

 {

 mco = MgtcolObj.rtvActive();

 } catch (Exception e)

 {

48 iSeries: Performance

System.out.println(“rtvActive(): Exception ” + e);

 System.exit(1);

 }

 System.out.println(“Object name = ” + mco.getName());

 System.out.println(“Library name = ” + mco.getLibrary());

 try

 {

 attr = mco.rtvAttributes(“MCOA0100”);

 } catch (Exception e)

 {

 System.out.println(“rtvAttributes(): MCOA0100: Exception ” + e);

 System.exit(1);

 }

 System.out.println(“MCOA0100: Object ” + mco.getLibrary() + “/” + mco.getName());

 System.out.println(“ size = ” + attr.size + “ retention = ” + attr.retentionPeriod +

 “ interval = ” + attr.dftInterval + “ time created = ” + attr.timeCreated +

 “ time updated = ” + attr.timeUpdated);

 System.out.println(“ serial = ” + attr.logicalPSN + “ active = ” + attr.isActive +

 “ repaired = ” + attr.isRepaired + “ summary = ” + attr.sumStatus +

 “ repo count = ” + attr.repositoryCount);

 if (attr.repositoryInfo != null)

 for(i = 0; i < attr.repositoryCount; i++)

 {

 repoE = attr.repositoryInfo[i];

 System.out.println(“ name = ” + repoE.name + “ category = ” + repoE.categoryName +

 “ size = ” + repoE.size);

 for(j = 0; j < repoE.collectionInfo.length; j++)

 {

 collE = repoE.collectionInfo[j];

 System.out.println(“ startTime = ” + collE.startTime + “ endTime = ” + collE.endTime +

 “ interval = ” + collE.interval);

 }

 }

 try

 {

 attr = mco.rtvAttributes(“MCOA0200”);

 } catch (Exception e)

 {

 System.out.println(“rtvAttributes(): MCOA0200: Exception ” + e);

 System.exit(1);

 }

 System.out.println(“MCOA0200: Object ” + mco.getLibrary() + “/” + mco.getName());

 System.out.println(“ size = ” + attr.size + “ retention = ” + attr.retentionPeriod +

 “ interval = ” + attr.dftInterval + “ time created = ” + attr.timeCreated +

 “ time updated = ” + attr.timeUpdated);

 System.out.println(“ serial = ” + attr.logicalPSN + “ active = ” + attr.isActive +

 “ repaired = ” + attr.isRepaired + “ summary = ” + attr.sumStatus +

 “ repo count = ” + attr.repositoryCount);

 if (attr.repositoryInfo != null)

 for(i = 0; i < attr.repositoryCount; i++)

 {

 repoE = attr.repositoryInfo[i];

 System.out.println(“ name = ” + repoE.name + “ category = ” + repoE.categoryName +

 “ size = ” + repoE.size);

 for(j = 0; j < repoE.collectionInfo.length; j++)

 {

 collE = repoE.collectionInfo[j];

 System.out.println(“ startTime = ” + collE.startTime + “ endTime = ” + collE.endTime +

 “ interval = ” + collE.interval);

 }

 }

 if (repoName.equals(“NONE”))

Performance 49

return;

 try

 {

 mco.open();

 } catch (Exception e)

 {

 System.out.println(“open(): Exception ” + e);

 System.exit(1);

 }

 try

 {

 repoHandle = mco.openRepository(repoName, “MCOD0100”);

 } catch (Exception e)

 {

 System.out.println(“openRepository(): Exception ” + e);

 mco.close();

 System.exit(1);

 }

 System.out.println(“repoHandle = ” + repoHandle);

 MgtcolObjReadOptions readOptions = new MgtcolObjReadOptions();

 MgtcolObjRecInfo recInfo = new MgtcolObjRecInfo();

 readOptions.option = MgtcolObjReadOptions.READ_NEXT;

 readOptions.recKey = null;

 readOptions.offset = 0;

 readOptions.length = 0;

 while (recInfo.recStatus == MgtcolObjRecInfo.RECORD_OK)

 {

 try

 {

 mco.readData(repoHandle, readOptions, recInfo, null);

 } catch (Exception e)

 {

 System.out.println(“readData(): Exception ” + e);

 mco.close();

 System.exit(1);

 }

 if(recInfo.recStatus == MgtcolObjRecInfo.RECORD_OK)

 {

 System.out.print(“Type = ” + recInfo.recType);

 System.out.print(“ Key = ” + recInfo.recKey);

 System.out.println(“ Length = ” + recInfo.recLength);

 }

 }/* while ... */

 mco.closeRepository(repoHandle);

 mco.close();

 }/* main() */

}/* class testmco2 */

Manage collection objects

When you use Collection Services to “Collection Services” on page 32, each collection is stored in a single

object. You can see a summary of the data in any management collection object by following these steps:

1. In iSeries(TM) Navigator, select either an endpoint system under Management Central or a system to

which you have a direct connection under My Connections (or your active environment).

2. Expand Configuration and Service.

3. Select Collection Services.

50 iSeries: Performance

4. Right-click any management collection object in the list and select Properties to see general

information about that collection and a summary of the data that it contains.

You can right-click any collection object and select “Create database files from Collection Services data”

on page 38 to specify the data categories, the range of time within the collection period, and the sampling

interval that you want to include in the database files.

You can right-click any collection object and select “Graph history” on page 95 to graphically view the

data in the management collection object.

Delete or keep old management collection objects

You can delete a collection object from the system by right-clicking the object and selecting Delete. If you

do not delete the objects manually, Collection Services will delete them automatically after the expiration

date and time.

Collection Services deletes only cycled management collection objects. A status of Cycled means that

Collection Services has stopped collecting data and storing it in the object. The status of each

management collection object is shown in the list of collection objects when you expand Configuration

and Service and select Collection Services.

Collection Services deletes the cycled collection objects that have reached their expiration date and time

the next time it starts or cycles a collection. The expiration date is associated with the management

collection object. Even if you move the collection object to another library, Collection Services will delete

the object after it expires.

The expiration date for each management collection object is shown in the Properties for that collection

object. To keep the object on the system longer, you simply change the date on the Properties page.

Right-click any management collection object in the list and select Properties to see the information about

that collection. You can specify Permanent if you do not want Collection Services to delete your

management collection objects for you.

User-defined transactions

Collection Services and performance explorer collect performance data that you define in your

applications. With the provided APIs, you can integrate transaction data into the regularly scheduled

sample data collections using Collection Services, and get trace-level data about your transaction by

running performance explorer.

For detailed descriptions and usage notes, refer to the following API descriptions:

v Start transaction: QYPESTRT, qypeStartTransaction

v End transaction: QYPEENDT, qypeEndTransaction

v Log transaction: QYPELOGT, qypeLogTransaction (Used only by performance explorer)

v Add trace point: QYPEADDT, qypeAddTracePoint (Used only by performance explorer)

Note: You only need to instrument your application once. Collection Services and performance explorer

use the same API calls to gather different types of performance data.

Integrating user-defined transaction data into Collection Services

You can select user-defined transactions as a category for collection in the Collection Services

configuration. Collection Services then collects the transaction data at every collection interval and stores

that data in the collection object. The CRTPFRDTA command exports this data to the user-defined

transaction performance database file, QAPMUSRTNS. Collection Services organizes the data by

transaction type. You can specify as many transaction types as you require; however, Collection services

will only report the first fifteen transaction types. Data for additional transaction types is combined and

Performance 51

rzahxqapmusrtns.htm

stored as a *OTHER transaction type. At every collection interval, Collection Services creates one record

for each type of transaction for each unique job. For a detailed description, refer to the usage notes in the

Start transaction API.

Collection Services gathers general transaction data, such as the transaction response time. You can also

include up to 16 optional application-defined counters that can track application specific data like the

number of SQL statements used for the transaction, or other incremental measurements. Your application

should use the Start transaction API to indicate the beginning of a new transaction, and should include a

corresponding End transaction API to deliver the transaction data to Collection Services. For more

information, refer to the QAPMUSRTNS file description and the API descriptions.

For a sample implementation, refer to the examples in “C++ example: Integrating user-defined

transactions into Collection Services” or “Java(TM) example: Integrating user-defined transactions into

Collection Services” on page 56(TM).

Note: Read the “Code disclaimer information” on page 140 for important legal information.

Collecting trace information for user-defined transactions with performance explorer

You can use the start, end, and log transaction APIs during a performance explorer session to create a

trace record. Performance Explorer stores system resource utilization, such as CPU utilization, I/O and

seize/lock activity, for the current thread in these trace records. Additionally, you may choose to include

application-specific performance data, and then send it to performance explorer in each of these APIs.

You can also use the add trace point API to identify application-specific events for which performance

explorer should collect trace data.

To start a performance explorer session for your transactions, specify *USRTRNS on the (OSEVT)

parameter of your “Performance explorer” on page 121 definition. After entering the ENDPEX command,

performance explorer writes the data supplied by the application to the QMUDTA field in the

QAYPEMIUSR performance explorer database file. System-supplied performance data for the start, end,

and any log records is stored in the QAYPEMIUSR and QAYPETIDX database files.

For a detailed description, refer to the API descriptions and the usage notes in the Start transaction API

description.

C++ example: Integrating user-defined transactions into Collection Services: The following C++

example program shows how to use the Start transaction and End transaction APIs to integrate

user-defined transaction performance data into Collection Services.

Note: Read the “Code disclaimer information” on page 140 for important legal information.

//**

// tnstst.C

//

// This example program illustrates the use

// of the Start/End Transaction APIs (qypeStartTransaction,

// qypeEndTransaction).

//

//

// This program can be invoked as follows:

// CALL lib/TNSTST PARM(’threads’ ’types’ ’transactions’ ’delay’)

// where

// threads = number of threads to create (10000 max)

// types = number of transaction types for each thread

// transactions = number of transactions for each transaction

// type

// delay = delay time (millisecs) between starting and

// ending the transaction

//

// This program will create “threads” number of threads. Each thread

52 iSeries: Performance

// will generate transactions in the same way. A thread will do

// “transactions” number of transactions for each transaction type,

// where a transaction is defined as a call to Start Transaction API,

// then a delay of “delay” millisecs, then a call to End Transaction

// API. Thus, each thread will do a total of “transactions” * “types”

// number of transactions. Each transaction type will be named

// “TRANSACTION_TYPE_nnn” where nnn ranges from 001 to “types”. For

// transaction type n, there will be n-1 (16 max) user-provided

// counters reported, with counter m reporting m counts for each

// transaction.

//

// This program must be run in a job that allows multiple threads

// (interactive jobs typically do not allow multiple threads). One

// way to do this is to invoke the program using the SBMJOB command

// specifying ALWMLTTHD(*YES).

//

//**

#define _MULTI_THREADED

// Includes

#include “pthread.h”

#include “stdio.h”

#include “stdlib.h”

#include “string.h”

#include “qusec.h”

#include “lbcpynv.h”

#include “qypesvpg.h”

// Constants

#define maxThreads 10000

// Transaction pgm parm structure

typedef struct

{

 int types;

 int trans;

 int delay;

} tnsPgmParm_t;

// Error code structure

typedef struct

{

 Qus_EC_t error;

 char Exception_Data[100];

} error_code_t;

//**

//

// Transaction program to run in each secondary thread

//

//**

void *tnsPgm(void *parm)

{

 tnsPgmParm_t *p = (tnsPgmParm_t *)parm;

 char tnsTyp[] = “TRANSACTION_TYPE_XXX”;

 char pexData[] = “PEX”;

 unsigned int pexDataL = sizeof(pexData) - 1;

 unsigned long long colSrvData[16] = {1,2,3,4,5,6,7,8,

 9,10,11,12,13,14,15,16};

 unsigned int colSrvDataL;

 char tnsStrTim[8];

 struct timespec ts = {0, 0};

Performance 53

error_code_t errCode;

 _DPA_Template_T target, source; // Used for LBCPYNV MI instr

 unsigned int typCnt;

 unsigned int tnsCnt;

 int rc;

 // Initialize error code

 memset(&errCode, 0, sizeof(errCode));

 errCode.error.Bytes_Provided = sizeof(errCode);

 // Initialize delay time

 ts.tv_sec = p->delay / 1000;

 ts.tv_nsec = (p->delay % 1000) * 1000000;

 // Loop doing transactions

 for (tnsCnt = 1; tnsCnt <= p->trans; tnsCnt++)

 {

 for (typCnt = 1; typCnt <= p->types; typCnt++)

 {

 // Set number field in transaction type

 source.Type = _T_UNSIGNED;

 source.Length = 4;

 source.reserved = 0;

 target.Type = _T_ZONED;

 target.Length = 3;

 target.reserved = 0;

 _LBCPYNV(tnsTyp + 17, &target, &typCnt, &source);

 // Set Coll Svcs data length in bytes

 colSrvDataL = (typCnt <= 16) ? (typCnt - 1) : 16;

 colSrvDataL = colSrvDataL * 8;

 // Call Start Transaction API

 qypeStartTransaction(tnsTyp,

 (unsigned int *)&tnsCnt,

 pexData,

 (unsigned int *)&pexDataL,

 tnsStrTim,

 &errCode);

 // Delay specified amount

 rc = pthread_delay_np(&ts);

 // Call End Transaction API

 qypeEndTransaction(tnsTyp,

 (unsigned int *)&tnsCnt,

 pexData,

 (unsigned int *)&pexDataL,

 tnsStrTim,

 (unsigned long long *)&colSrvData[0],

 (unsigned int *)&colSrvDataL,

 &errCode);

 }

 }

 return NULL;

}

//**

//

// Main program to run in primary thread

//

54 iSeries: Performance

//**

void main(int argc, char *argv[])

{

 // Integer version of parms

 int threads; // # of threads

 int types; // # of types

 int trans; // # of transactions

 int delay; // Delay in millisecs

 pthread_t threadHandle[maxThreads];

 tnsPgmParm_t tnsPgmParm;

 int rc;

 int i;

 // Verify 4 parms passed

 if (argc != 5)

 {

 printf(“Did not pass 4 parms\n”);

 return;

 }

 // Copy parms into integer variables

 threads = atoi(argv[1]);

 types = atoi(argv[2]);

 trans = atoi(argv[3]);

 delay = atoi(argv[4]);

 // Verify parms

 if (threads > maxThreads)

 {

 printf(“Too many threads requested\n”);

 return;

 }

 // Initialize transaction pgm parms (do not modify

 // these while threads are running)

 tnsPgmParm.types = types;

 tnsPgmParm.trans = trans;

 tnsPgmParm.delay = delay;

 // Create threads that will run transaction pgm

 for (i=0; i < threads; i++)

 {

 // Clear thread handle

 memset(&threadHandle[i], 0, sizeof(pthread_t));

 // Create thread

 rc = pthread_create(&threadHandle[i], // Thread handle

 NULL, // Default attributes

 tnsPgm, // Start routine

 (void *)&tnsPgmParm); // Start routine parms

 if (rc != 0)

 printf(“pthread_create() failed, rc = %d\n”, rc);

 }

 // Wait for each thread to terminate

 for (i=0; i < threads; i++)

 {

 rc=pthread_join(threadHandle[i], // Thread handle

 NULL); // No exit status

 }

} /* end of Main */

Performance 55

Java(TM) example: Integrating user-defined transactions into Collection Services: The following Java

example program shows how to use the Start transaction and End transaction APIs to integrate

user-defined transaction performance data into Collection Services.

Note: Read the “Code disclaimer information” on page 140 for important legal information.

import com.ibm.iseries.collectionservices.PerformanceDataReporter;

// parameters:

// number of TXs per thread

// number of threads

// log|nolog

// enable|disable

// transaction seconds

public class TestTXApi

{

 static TestTXApiThread[] thread;

 static private String[] TxTypeString;

 static private byte[][] TxTypeArray;

 static private String TxEventString;

 static private byte[] TxEventArray;

 static

 {

 int i;

 // initialize transaction type strings and byte arrays

 TxTypeString = new String[20];

 TxTypeString[0] = “Transaction type 00”;

 TxTypeString[1] = “Transaction type 01”;

 TxTypeString[2] = “Transaction type 02”;

 TxTypeString[3] = “Transaction type 03”;

 TxTypeString[4] = “Transaction type 04”;

 TxTypeString[5] = “Transaction type 05”;

 TxTypeString[6] = “Transaction type 06”;

 TxTypeString[7] = “Transaction type 07”;

 TxTypeString[8] = “Transaction type 08”;

 TxTypeString[9] = “Transaction type 09”;

 TxTypeString[10] = “Transaction type 10”;

 TxTypeString[11] = “Transaction type 11”;

 TxTypeString[12] = “Transaction type 12”;

 TxTypeString[13] = “Transaction type 13”;

 TxTypeString[14] = “Transaction type 14”;

 TxTypeString[15] = “Transaction type 15”;

 TxTypeString[16] = “Transaction type 16”;

 TxTypeString[17] = “Transaction type 17”;

 TxTypeString[18] = “Transaction type 18”;

 TxTypeString[19] = “Transaction type 19”;

 TxTypeArray = new byte[20][];

 for (i = 0; i < 20; i++)

 try

 {

 TxTypeArray[i] = TxTypeString[i].getBytes(“Cp037”);

 } catch(Exception e)

 {

 System.out.println(“Exception \”“ + e + ”\“ when converting”);

 }

 }/* static */

56 iSeries: Performance

public static void main(String[] args)

 {

 int numberOfTXPerThread;

 int numberOfThreads;

 boolean log;

 boolean enable;

 int secsToDelay;

 // process parameters

 if (args.length >= 5)

 try

 {

 numberOfTXPerThread = Integer.parseInt(args[0]);

 numberOfThreads = Integer.parseInt(args[1]);

 if (args[2].equalsIgnoreCase(“log”))

 log = true;

 else

 if (args[2].equalsIgnoreCase(“nolog”))

 log = false;

 else

 {

 System.out.println(“Wrong value for 3rd parameter!”);

 System.out.println(“\tshould be log|nolog”);

 return;

 }

 if (args[3].equalsIgnoreCase(“enable”))

 enable = true;

 else

 if (args[3].equalsIgnoreCase(“disable”))

 enable = false;

 else

 {

 System.out.println(“Wrong value for 4th parameter!”);

 System.out.println(“\tshould be enable|disable”);

 return;

 }

 secsToDelay = Integer.parseInt(args[4]);

 } catch (Exception e)

 {

 System.out.println(“Oops! Cannot process parameters!”);

 return;

 }

 else

 {

 System.out.println(“Incorrect Usage.”);

 System.out.println(“The correct usage is:”);

 System.out.println(“java TestTXApi numberOfTXPerThread numberOfThreads

 log|nolog enable|disable secsToDelay”);

 System.out.println(“\tlog will make the program cut 1 log transaction per start / end pair”);

 System.out.println(“\tdisable will disable performance collection to minimize overhead”);

 System.out.print(“\nExample: \”java TestTXApi 10000 100 log enable 3\“ will call ”);

 System.out.println(“cause 10000 transactions for each of 100 threads”);

 System.out.println(“with 3 seconds between start and end of transaction”);

 System.out.println(“Plus it will place additional log call and will enable reporting.”);

 return;

 }

 System.out.println(“Parameters are processed:”);

 System.out.println(“\tnumberOfTxPerThread = ” + numberOfTXPerThread);

 System.out.println(“\tnumberOfThreads = ” + numberOfThreads);

 System.out.println(“\tlog = ” + log);

 System.out.println(“\tenable = ” + enable);

Performance 57

System.out.println(“\tsecsToDelay = ” + secsToDelay);

 // cause initialization of a PerformanceDataReporter class

 {

 PerformanceDataReporter pReporter = new PerformanceDataReporter();

 pReporter.enableReporting();

 }

 TestTXApi t = new TestTXApi();

 System.out.println(“\nAbout to start ...”);

 t.prepareTests(numberOfTXPerThread, numberOfThreads, log, enable, secsToDelay);

 long startTime = System.currentTimeMillis();

 t.runTests(numberOfThreads);

 // wait for threads to complete

 for (int i = 0; i < numberOfThreads; i++)

 try

 {

 thread[i].join();

 } catch(Exception e)

 {

 System.out.println(“***Exception \”“ + e + ”\“ while joining thread ” + i);

 }

 long endTime = System.currentTimeMillis();

 System.out.println(“\nTest runtime for ” + (numberOfTXPerThread * numberOfThreads) +

 “ TXs was ” + (endTime - startTime) + “ msec”);

 }/* main() */

 private void prepareTests(int numberOfTxPerThread,

 int numberOfThreads, boolean log, boolean enable, int secsToDelay)

 {

 System.out.println(“Creating ” + numberOfThreads + “ threads”);

 thread = new TestTXApiThread[numberOfThreads];

 for (int i = 0; i < numberOfThreads; i++)

 thread[i] = new TestTXApiThread(i, numberOfTxPerThread,

 log, enable, secsToDelay);

 }/* prepareTests() */

 private void runTests(int numberOfThreads)

 {

 for (int i = 0; i < numberOfThreads; i++)

 thread[i].start();

 }/* runTests() */

 private class TestTXApiThread extends Thread

 {

 private int ordinal;

 private int numberOfTxPerThread;

 private boolean log;

 private boolean enable;

 private int secsToDelay;

 private PerformanceDataReporter pReporter;

 private long timeStamp[];

 private long userCounters[];

 public TestTXApiThread(int ordinal, int numberOfTxPerThread,

58 iSeries: Performance

boolean log, boolean enable, int secsToDelay)

 {

 super();

 this.ordinal = ordinal;

 this.numberOfTxPerThread = numberOfTxPerThread;

 this.log = log;

 this.enable = enable;

 this.secsToDelay = secsToDelay;

 pReporter = new PerformanceDataReporter(false);

 if (enable)

 pReporter.enableReporting();

 timeStamp = new long[1];

 userCounters = new long[16];

 for (int i = 0; i < 16; i++)

 userCounters[i] = i;

 }/* constructor */

 public void run()

 {

 int i;

 for (i = 0; i < numberOfTxPerThread; i++)

 {

 pReporter.startTransaction(TxTypeArray[i%20], i, TxTypeArray[i%20], 20, timeStamp);

// pReporter.startTransaction(TxTypeArray[i%20], i, TxTypeString[i%20], timeStamp);

 if (log)

 pReporter.logTransaction(TxTypeArray[i%20], i, TxTypeArray[i%20], 20);

// pReporter.logTransaction(TxTypeArray[i%20], i, TxTypeString[i%20]);

 if (secsToDelay > 0)

 try

 {

 Thread.sleep(secsToDelay * 1000);

 } catch(Exception e) { }

 pReporter.endTransaction(TxTypeArray[i%20], i, TxTypeArray[i%20], 20, timeStamp,

 userCounters);

// pReporter.endTransaction(TxTypeArray[i%20], i, TxTypeString[i%20], timeStamp,

// userCounters);

 }

 }/* run() */

 }/* class TestTXApiThread */

}/* class TestTXApi */

Collecting performance data across partitions

IBM(R) Performance Management for

iSeries(TM) (PM eServer(TM) iSeries or PM iSeries)

automatically triggers Collection Services to gather nonproprietary performance and capacity data from

your server and then sends the data to IBM for analysis. One of the analyses PM iSeries provides is to

plot the growth of the system to determine when an upgrade may be necessary. For a system that is not

partitioned, this is a very straightforward process. However, if your system has been partitioned into

multiple OS/400(R) partitions, the data arrives at IBM from each partition separately, which makes

forming a reliable view of the entire system performance more difficult. If the partitions are running

AIX(R) or Linux(TM), or if any of the OS/400(R) partitions have PM iSeries(R) turned off, then no data is

sent, which makes forming a view of the entire system nearly impossible.

To address these problems, Collection Services, with IBM Director Multiplatform, can now retrieve data

about CPU usage and number of processors available from your iSeries partitions regardless of the

operating system running on them. PM iSeries summarizes the data before it gets shipped to IBM.

Providing a cross-partition view of CPU utilization will help you and IBM do a much better job of

Performance 59

managing your system resources. This includes balancing workload across the current set of processors as

well as being able to plan for the purchase of more or faster processors when necessary.

How does it work?

The graphic below illustrates how the collection of CPU utilization data across logical partitions works.

The “central system” has the IBM Director Server installed on an OS/400 partition that is running

Collection Services with the *LPAR category selected. Each of the other partitions must have the IBM

Director Agent installed and configured so that IBM Director Server can collect performance data from

them. Each partition must also have the Director Multiplatform extension for Collection Services installed.

IBM Director Server retrieves the CPU utilization data for each partition, including itself, at regular

intervals and stores that data in the Collection Services *MGTCOL object. The data is then processed and

written to the QAPMLPAR database file. Finally, PM iSeries collects and aggregates the data and prepares

to transmit it to IBM. Although this graphic shows Management Central and IBM Electronic Service

Agent(TM) (ESA) set up to transmit data on the same partition as the IBM Director Server and Collection

Services, the transmission mechanism to IBM could actually be running on a completely different system

and still be set up to gather the cross-partition data from PM iSeries and send it to IBM, business as

usual.

60 iSeries: Performance

rzahxqapmlpar.htm

Performance 61

Key

Dir Srvr = IBM Director Server
Dir Agnt = IBM Director Agent
Col Srv = Collection Services
MC = Management Central
ESA = IBM Electronic Service Agent
Ext for Col Srv = Director Multiplatform extension for Collection Services
RETAIN = Remote technical assistance information network
URSF = Universal remote support facility
MRPD = Machine Reported Product Data

Set it up

The following list provides you with an overview of the steps you must complete to collect performance

data across logical partitions:

 1. Ensure your IP network is properly configured for all partitions on the same physical system.

 2. Ensure you are running a supported operating system on each partition for which you want to

collect performance data:

v OS/400, version 5 release 3

v AIX 5L(TM), version 5.3

v Red Hat Enterprise Linux(TM) AS, version 3.0, for IBM PowerPC(R)

v SUSE LINUX(TM) Enterprise Server 8 for IBM pSeries(R) and IBM iSeries

v SUSE LINUX(TM) Enterprise Server 9 for IBM pSeries(R) and IBM iSeries
 3. Ensure that you have applied the following Collection Services PTF fixes to the partition that will act

as your management server:

v SI12971

v SI13838 (superseded by SI16328)

v SI15131 (superseded by SI16499)

v SI16328 (Linux support)

v SI16499 (AIX support)

For the latest information about Collection Services cross-partition support for Linux operating

systems, see the informational APAR II13986.

Go to Fix Central for the latest PTF fixes.

 4. Use the Virtualization Engine(TM) to install IBM Director Server on the OS/400 partition that you

want to act as the management server. Consider the management server the central control point

that communicates to managed systems, devices, and Collection Services. When the Virtualization

Engine installation wizard is complete, IBM Director Server and IBM Director Agent are installed on

the OS/400 partition that you want to act as the management server.

 5. Install IBM Director Agent on the partitions that you want to be managed by IBM Director Server.

These partitions must be on the same physical system as the partition where IBM Director Server is

installed.

 6. Install IBM Director Console on the system that you want to function as your Director Multiplatform

management console.

 7. Complete the required configuration steps:

a. Authorize users for OS/400 on the management partition.

b. Start Director Multiplatform on each partition.

c. Start IBM Director console on your management console.

d. In IBM Director Console, add each partition on which you want to monitor performance by

right-clicking in the Group Contents pane and selecting New > IBM Director Systems.

62 iSeries: Performance

http://www.ibm.com/eserver/iseries/support/supporthome.nsf/Document/10000083
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicaminstallserver.htm
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicaminstallagent.htm
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicaminstallconsole.htm
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicamauthorizeos400users.htm
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicamstartdirector.htm
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicamstartconsole.htm

e. After you have added each partition, request access to manage the partition. In the Group

Contents pane right-click the partition and select Request Access.
 8. On the OS/400 management partition, install the Director Multiplatform extension for Collection

Services by copying the necessary files for Collection Services from the Collection Services directory

to the appropriate Director Multiplatform directory. The Collection Service files are

ColSrvLparDataExt.TWGExt, ColSrvLparDataSubagt.TWGSubagent, and ColSrvDir.jar. Copy the

Collection Services files using the following commands:

CPY OBJ(’/qibm/proddata/os400/collectionservices/lib/ColSrvLparDataExt.TWGExt’)

 TODIR(’/qibm/userdata/director/classes/extensions’)

CPY OBJ(’/qibm/proddata/os400/collectionservices/lib/ColSrvLparDataSubagt.TWGSubagent’)

 TODIR(’/qibm/userdata/director/classes/extensions’)

CPY OBJ(’/qibm/proddata/os400/collectionservices/lib/ColSrvDir.jar’)

 TODIR(’/qibm/userdata/director/classes’)

 9. Distribute the Collection Services files from the management partition to the OS/400 partitions from

which you plan to collect performance data. You can do this by File Transfer Protocol (FTP) with the

binary option, or by mapping a drive and copying the files to the file system, or by any other

distribution mechanism that you might have in place. You can access the files on the OS/400

management partition in the directory, /qibm/proddata/os400/collectionservices/lib.

a. Distribute ColSrvLparDataExt.TWGExt to the Director Multiplatform extensions directory,

/qibm/userdata/director/classes/extensions, on the OS/400 partition that you want to manage.

b. Distribute ColSrvLparDataSubagt.TWGSubagent to the Director Multiplatform extensions

directory, /qibm/userdata/director/classes/extensions, on the OS/400 partition that you want to

manage.

c. Distribute ColSrvDir.jar to Director Multiplatform classes directory,

/qibm/userdata/director/classes, on the OS/400 partition that you want to manage.
10. On each Linux(TM) partition, install the Director Multiplatform extension for Collection Services by

installing the Collection Services RPM file, ColSrvDirExt-5.3.0-1.ppc64.rpm.

a. Distribute the Collection Services RPM file from the management partition to the Linux(TM)

partitions from which you plan to collect performance data. You can do this by File Transfer

Protocol (FTP) with the binary option, or by mapping a drive and copying the files to the file

system, or by any other distribution mechanism that you might have in place. You can use Qshell

to access the RPM file in the OS/400 management partition directory,

/qibm/proddata/os400/collectionservices/lib/ColSrvDirExt-5.3.0-1.ppc64.rpm.

b. On each Linux(TM) partition, run the following command from the directory where the RPM file

exists:

rpm -Uhv --force ColSrvDirExt-5.3.0-1.ppc64.rpm

11. On each AIX(R) partition, install the Director Multiplatform extension for Collection Services by

installing the Collection Services package, aix-ColSrvDirExt-5.3.bff.

a. Distribute the Collection Services package file from the management server to the AIX(R)

partitions from which you plan to collect performance data. You can do this by File Transfer

Protocol (FTP) with the binary option, or by mapping a drive and copying the files to the file

system, or by any other distribution mechanism that you might have in place. You can use Qshell

to access the package file in the OS/400 management partition directory,

/qibm/proddata/os400/collectionservices/lib/aix-ColSrvDirExt-5.3.bff.

b. On each AIX(R) partition, run the following command from the directory where the BFF file

exists:

installp -Fac -d aix-ColSrvDirExt-5.3.bff ColSrvDirExt

12. In IBM Director Console, update the collection inventory on each partition by right-clicking the

partition and selecting Perform Inventory Collection.

13. “Activate PM iSeries” on page 99, which automates the start of Collection Services and then creates

the database files during collection. If PM iSeries is already running, use the following Start

Performance Collection (STRPFRCOL) command:

Performance 63

STRPFRCOL CYCCOL(*YES)

Related information

v IBM Director Multiplatform

v “IBM Performance Management for eServer iSeries” on page 96

v IBM Virtualization Engine

v Management Central

v Partitioning the server

v “Send PM iSeries(TM) data with Service Agent over Extreme Support (Universal Connection)” on page

100

Find wait statistics for a job, task, or thread

During the running of a job, task, or thread, conditions arise that cause that process to wait (for

example, while the system resolves a lock or hold on a required object). Collection Services can collect

data on the cause and duration of the time a process spends waiting.

For more information about using and accessing this information, refer to the Performance database files

QAPMJOBWT and QAPMJOBWTD.

Note: To query these files, your system CCSID ID must be set to your primary language (as opposed to

65535 -binary data).

Understanding disk consumption by Collection Services

The amount of disk resource Collection Services consumes varies greatly depending on the settings

that you use. For illustration purposes, assume that Collection Services is used daily and cycles at

midnight, causing each *MGTCOL object to contain one day’s worth of data collection. Next, establish a

base size for one day’s worth of data collection by using the default properties for Collection Services. A

standard plus protocol profile with an interval value of 15 minutes can collect 500 MB of data in a

*MGTCOL object. The size actually collected per day using the default properties can vary greatly

depending on system size and usage. The 500 MB example might represent a higher-end system that is

heavily used.

 Interval rate Intervals per collection Multiplier Size in MB

15 minutes 96 1 500

The size of one day’s worth of data is directly proportional to the number of intervals collected per

collection period. For example, changing the interval rate from 15 minutes to 5 minutes increases the

number of intervals by a factor of 3 and increases the size by the same factor.

 Interval rate Intervals per collection Multiplier Size in MB

15 minutes 96 1 500

5 minutes 288 3 1500

To continue this example, the following table shows the size of one *MGTCOL object produced each day

by Collection Services at each interval rate, using the default standard plus protocol profile.

 Interval rate Intervals per collection Multiplier Size in MB

15 minutes 96 1 500

5 minutes 288 3 1500

64 iSeries: Performance

http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/idirinfo/eicamkickoff.htm
http://publib.boulder.ibm.com/eserver/v1r1/en_US/info/veicinfo/eicarkickoff.htm
rzahxqapmjobwt.htm
rzahxqapmjobwtd.htm

Interval rate Intervals per collection Multiplier Size in MB

1 minutes 1440 15 7500

30 seconds 2880 30 15000

15 Seconds 5760 60 30000

The size of a *MGTCOL object, in this example, can vary from 500 MB to 30 GB depending on the rate of

collection. You can predict a specific system’s disk consumption for one day’s collection interval through

actual observation of the size of the *MGTCOL objects created, using the default collection interval of 15

minutes and the standard plus protocol profile as the base and then using the multiplier from the above

table to determine the disk consumption at other collection intervals. For example, if observation of the

*MGTCOL object size reveals that the size of the object for a day’s collection is 50 MB for 15-minute

intervals, then you could expect Collection Services to produce *MGTCOL objects with a size of 3 GB

when collecting data at 15-second intervals.

Note: Use caution when considering a collection interval as frequent as 15 seconds. Frequent collection

intervals can adversely impact system performance.

Retention period

The retention period also plays a significant role in the amount of disk resource that Collection Services

consumes. The default retention period is one day. However, practically speaking, given the default

values, a *MGTCOL object is deleted on the third day of collection past the day on which it was created.

Thus, on the third day of collection there is two days’ worth of previously collected data plus the current

day’s data on the system. Using the table above, this translates into having between 1 GB and 1.5 GB of

disk consumption at 15-minute intervals, and 60 to 90 GB of disk consumption at 15-second intervals on

the system during the third day and beyond.

The formula to calculate disk consumption based on the retention period value is:

(Retention period in days + 2.5) * Size of one day’s collection = Total Disk Consumption

Note: 2.5 corresponds to two days of previous collection data, and an average of the current day (2 days

+ 1/2 day).

Using the above tables and formula, a retention period of 2 weeks gives you a disk consumption of 8.25

GB at 15-minute intervals and 495 GB at 15-second intervals for the example system.

It is important to understand the disk consumption by Collection Services to know the acceptable

collection interval and retention period for a given system. Knowing this can ensure that disk

consumption will not cause system problems. Remember to consider that a system monitor or a job

monitor can override a category’s collection interval to graph data for a monitor. A system administrator

must ensure that monitors do not inadvertently collect data at intervals that will cause excess data

consumption.

Intelligent Agents

Intelligent agents are Java(TM)-based software components that are capable of learning certain behaviors

over time through complex autonomic algorithms. Intelligent agents can have many different capabilities,

from simply monitoring for certain events to more complex actions like analyzing network problems,

preventing unplanned system restarts, or managing storage. Although the goal of using agents is to

Performance 65

simplify the system administrators tasks through autonomic computing, system administrators still need

a way of starting, stopping, responding to, and monitoring the actions of their agents.

The Intelligent Agents console for iSeries(TM) Navigator provides system administrators with an easy way

to manage one or more ABLE (Agent Building and Learning Environment) agents running on a single

system or across different systems. After the agent console connects to the agent services that exist across

your domain, you can monitor and work with any number of pre-configured agents on any of the

systems in your domain.

“Intelligent Agent concepts”
The Intelligent Agents console uses ABLE agents running on or across a distributed agent platform.

Find out more about ABLE agents, and the agent services that make up the distributed platform.

“Develop Agents” on page 68
Create and customize your own agent to perform the tasks that you desire. The ABLE toolkit and its

associated documentation provide a working development environment and a template agent that

can be used as a guide for developing your own agents.

“Set up your agent environment” on page 70
Before you can begin managing your agents with the Intelligent Agents console, you will need to

configure your agents and agent services (the agent platform) to run on or across the systems in

your environment. A Secure environment requires Kerberos and additional platform configuration.

“Manage agents” on page 79
Use the agent console to connect to your domain and begin managing your agents. Find out how to

control the level of automation associated with your agents, and easily respond to requests and

track agent history.

Intelligent Agent concepts

Concepts:

“ABLE agents”
The Intelligent Agents console for iSeries(TM) Navigator works with ABLE (Agent Building and

Learning Environment) agents. ABLE is a Java(TM) framework and a toolkit used for building

multiagent intelligent autonomic systems.

“Agent platform” on page 67
Agent Services live on your system or across your distributed platform, and are responsible for the

life cycle, security, and behavior of your agent.

ABLE agents: The Intelligent Agents console for iSeries(TM) Navigator works with Agent Building and

Learning Environment (ABLE) agents. ABLE agents are Java(TM) objects capable of automating tasks

through the use of rule-based reasoning and learning certain behaviors over time by using data mining

algorithms contained in the ABLE component library. ABLE is a Java framework and toolkit used for

building multiagent intelligent autonomic systems, and provides specific support for developing agents

that work with the iSeries Navigator Intelligent Agent platform and console. Intelligent agents developed

using ABLE can have the following capabilities:

v Learn from experience and predict future states

v Analyze metric data using classification and clustering algorithms to detect complex states and

diagnose problems

v Interface with other autonomic components via web services

v Reason using domain-specific Java application objects

v Use powerful machine reasoning, including: Boolean forward and backward chaining, predicate logic

(Prolog), Rete’-based pattern match, and fuzzy systems

v Have autonomous (proactive) behavior and goals

66 iSeries: Performance

v Correlate events into situations, reason, and take actions

The ABLE toolkit contains several examples of how to design your own agent, and an iSeries template

agent is included that you can use as a model when developing your own agent. To create an agent that

can be fully managed from the console, the agent should extend AbleEServerDefaultAgent. For more

information on developing ABLE agents, and obtaining the ABLE toolkit and its corresponding

documentation, see: “Develop Agents” on page 68

Agent platform: The Intelligent Agents console in iSeries(TM) Navigator requires an agent platform be

configured on your system, or across a distributed network. An agent platform is nothing more than a set

of Java(TM) Virtual Machines, or agent pools, that run the services and agents of the platform. The

platform is defined by a preferences file called ableplatform.preferences. This file lists the location (system

and port) of each agent pool (JVM), the services that will run on or across the platform, and the agents

that are allowed to run in the platform. If security is configured, the preferences file also lists the

Kerberos user and service principals used to authenticate each service, agent, and user that is part of the

platform.

Agent services, which can exist on any of the systems across your distributed platform, are responsible

for the life cycle, security, and behavior of your agent. Agents running on the same system or distributed

agents running across different systems use the defined set of platform services for different tasks such as

getting a unique name, looking up other agents in a directory, logging, and passing messages to another

agent.

The following services are made available to the agents running on or across a platform and to the users

connected to the platform:

v Naming Service

This service provides the creation of a globally unique name among all other pieces in the distributed

platform. The Naming service also provides security for the platform when security is turned on.

Performance 67

Kerberos is used when starting the platform to authenticate all services, pools, and users. Throughout

the life of the platform, this service will also act as the trusted third party to secure all interactions

between the platform’s agents, services, and users.

v Directory Service

When an agent wants to make itself known to other services and agents across the platform, it creates

an agent description and registers this description to the directory service. After the agent is registered,

descriptions can be modified and removed.

v Lifecycle Service

This service is used to manage agents. Agents can be created, started, suspended, resumed and

destroyed through this service.

v Transport Service

This service provides locators for parts of the platform. Inter-agent communication is also made

available by this service.

v Logging Service

A running agent may encounter a problem that requires outside intervention. The Logging Service

creates and logs requests, and handles the corresponding answers that are sent back to it from the

request. The progress of an agent can also be logged to this service for others to view.

v eServer(TM) Job Service

The different services and jobs of the platform register their job entry to this service. This service

provides critical information about the platform when the platform is running on an iSeries.

v Persistence Service

Services and agents may use this service to persist valuable information. The Naming, Directory,

Lifecycle, Logging and Job Services can be backed up and stored in a Database when the Persistence

Service is configured .

Develop Agents

You can use the Agent Building and Learning Environment (ABLE) toolkit to develop your own hybrid

intelligent agents. This Java(TM) framework has its own rule language (ARL) and its own GUI-based

interactive development environment, the Able Agent Editor; both are provided to assist in the

construction of Able agents.

ABLE 2.0
Both the ABLE toolkit and complete ABLE documentation are available to download in .zip

packages.

The iSeries(TM) Navigator Intelligent Agents console ships with a template agent that you can use as a

guideline for developing agents to work with the console. The source code for

AbleEserverTemplateAgent is stored in ableplatform.jar, located in QIBM/ProdData/OS400/Able.

AbleEserverTemplateAgent makes use of many of the features available when developing agents using

the ABLE framework. It demonstrates how an agent would create a set of capabilities that could be

managed through the console. It includes a Customize panel that can be used to alter agent settings and

an About panel that is used to display information about the agent. It also shows how an agent uses the

Logging Service to log requests and history entries that can be displayed and responded to through the

console.

Agent Capabilities
The EServerTemplateAgent has the following capabilities:

v Time Monitor
The agent will watch for minute and hour changing events and take action. There are four different

situations that the agent will follow depending on what the capability is set to, or how the user

responds to a request if one is logged:

1. Log the change without telling the time.

2. Log the change with telling the time as a long.

68 iSeries: Performance

rzahxabletoolkit.htm

3. Log the change with telling the time in MM/DD/YY format

4. Do nothing
v Duplicate Request

The agent will watch for multiple hour and minute change requests. There are two different situation

that the agent will follow with this capability if a duplicate is found.

1. Create a duplicate request

2. Do not create a duplicate request

Customization Panel
The agent supplies a customization panel that allows you to adjust the interval at which the agent will

check if the minute or hour has changed.

Figure 1: An example use of the Customization Panel

About Panel
The agent supplies an about panel that allows you to provide detailed information about the agent.

Figure 2: Viewing the template agent’s about panel

Performance 69

Set up your agent environment

The iSeries(TM) Navigator Intelligent Agents console functions by connecting to an agent platform running

on your system, or across a distributed network. The “Agent platform” on page 67 defines the agent

pools (JVMs) that your agent services and agents will run in. Before you begin setting up your agent

platform, you will need to determine your security preferences. A secure platform requires that you

configure Kerberos. The following topics provide detailed steps for setting up your agent platform and

configuring security:

“Configure your agent platform”
Before you begin using the Intelligent Agents console in iSeries Navigator, you first need to

configure the agent platform.

“Secure your agent environment” on page 73
It is strongly recommended that you use Kerberos user and service principals to authenticate users,

agent pools, and agent services to one another on or across a secure platform or distributed

platform.

“Start the agent platform” on page 78
After you define the agent platform and optionally secure your platform, you will need to start all

the Java(TM) Virtual Machines associated with your agent services using iSeries CL commands.

Configure your agent platform: This topic provides a brief overview of the agent platform, and then

provides detailed configuration steps for modifying the platform preferences file.

Agent platform overview: To manage agents using the intelligent agents console, you must first define,

secure, and start an agent platform that the console will connect to. An agent platform is nothing more

than a set of Java(TM) Virtual Machines, or agent pools, that run the services and agents of the platform.

The ableplatform.preferences and able.preferences files are used to define a platform.

In its simplest form, with security turned off, ableplatform.preferences defines:

v The location (system and port) of each Pool.

v The services that will run in the platform.

v The agents that are allowed to run in the platform.

Once the agent platform is set up, the services that run on or across the platform allow an agent to

receive a unique name, look up other agents in a directory, log history or requests, pass messages to one

another, or control the state of an agent. For a conceptual overview of the distributed platform and more

information about the available agent services, see the following concept article: “Agent platform” on

page 67.

Define the agent platform: To begin configuring your platform, you must define your agent pools, agent

services, permitted agents, and add Kerberos security principals by modifying the following file:

ableplatform.preferences.

The default location of ableplatform.preferences is QIBM/ProdData/OS400/Able.

Note: Multiple platforms can be configured, and you need to ensure that your platform does not reside at

the same location as an existing platform using the same port. See the “Start the agent platform” on page

78 topic for more details.

The following code samples taken from ableplatform.preferences provide examples of how to modify the

platform preferences:

70 iSeries: Performance

Note:When you open the file and begin making changes to the content, understand that small errors and

misspellings will cause the agent platform to fail, and there is currently no easy way to debug your

mistakes. Avoid commenting out properties that are unused, commenting out an unused property can

cause the platform to fail. For example, if you choose to run the platform with security turned off, do not

comment out the principal properties through the file.

1. Define agent pools
A platform is nothing more than a set of distributed Java Virtual Machines. Each JVM is called an

agent pool, and each JVM or pool can host multiple services and agents (an agent pool does not have

to host service, it could be used to run just agents). You must define the location of each of your Java

Virtual Machines (agent pools) in the preferences file by specifying the IP address (fully qualified

system name) and port. Also, specify an Alias (any unique name) for each agent pool. When security

is turned on, you must associate a service principal with each agent pool; for more information about

using Kerberos service principals, see the “Secure your agent environment” on page 73 topic. The

following is an example of how a set of agent pools could be defined:

#--

Java Virtual Machines

#--

AgentPool.1.Alias = Pool1

AgentPool.1.IpAddress = systemname.ibm.com

AgentPool.1.Port = 55551

AgentPool.1.Principal = servicePrincipal1

AgentPool.2.Alias = Pool2

AgentPool.2.IpAddress = systemname.ibm.com

AgentPool.2.Port = 55552

AgentPool.2.Principal = servicePrincipal1

AgentPool.3.Alias = Pool3

AgentPool.3.IpAddress = systemname.ibm.com

AgentPool.3.Port = 55553

AgentPool.3.Principal = servicePrincipal2

#--

2. Define agent services
Define the agent services that you want to run on the platform, and specify the alias of the agent pool

you want them to run in. Each agent service must point to a factory; the factory is a Java Class that

creates the agent service. The Persistence service is used to restart a platform to its previous state.

Specify to turn persistence on or off. If you turn persistence on, you must specify a Database, Table

and Schema so that persistence has a location to store backed up data on. You can also specify a value

for the PersistenceRetry property. If the persistence service fails and you specified a value of 5000 for

the PersistenceRetry property, it will attempt to retry every 5000 milliseconds. The following code

example shows how three different services, Directory, Logging, and Persistence could be defined:

Services=Agent-Directory-Service,Agent-Logging-Service, Persistence-Service

Agent-Directory-Service.AgentPool = Pool1

Agent-Directory-Service.Factory = com.ibm.able.platform.RMIVerifiableDirectoryServiceFactory

Agent-Directory-Service.Persistence = off

Agent-Directory-Service.PersistenceDatabase = *LOCAL

Agent-Directory-Service.PersistenceTable = qahadir

Agent-Directory-Service.PersistenceSchema = QUSRSYS

Agent-Directory-Service.PersistenceRetry = 5000

Agent-Logging-Service.AgentPool = Pool1

Agent-Logging-Service.Factory = com.ibm.able.platform.RmiAgentLoggingServiceFactory

Agent-Logging-Service.Persistence = off

Agent-Logging-Service.PersistenceDatabase = *LOCAL

Agent-Logging-Service.PersistenceTable = qahalog

Agent-Logging-Service.PersistenceSchema = QUSRSYS

Agent-Logging-Service.PersistenceRetry = 5000

Agent-Logging-Service.Properties = history-log-max : 100

Performance 71

Note: You can specify to control performance by adding a history-log-max property to the Logging

service. If you specify history-log-max=100, each agent will keep only its 100 most current history

logs.

Persistence-Service.AgentPool = Pool1

Persistence-Service.Factory = com.ibm.able.platform.RmiPlatformPersistenceServiceFactory

Persistence-Service.Properties =

persistence-driver : com.ibm.db2.jdbc.app.DB2Driver,

persistence-protocol : jdbc,

persistence-subProtocol : db2,

blob-type : BLOB,

persistence-dbFlushTime : 1000,

persistence-dbResetAll : off

The Persistence service provides backup and recovery for your agent platform. To use persistence

with agent services running on or across your platform, you need to define several

Persistence-Service.Properties:

v persistence-driver
Defines the JDBC driver that the persistence service will use. By default the persistence-driver is set

to use the native DB2(R) driver.

v persistence-protocol and subProtocol
Defines the database protocol that the persistence service will use. By default the protocol is set to

jdbc and the subProtocol is set to db2.

v blob-type
Defines the blob type associated with the JDBC driver you are using. The default for DB2 is set to

BLOB, but if you choose to use a different database like CloudScape for example, you would define

blob type as blob-type : LONG VARBINARY.

v persistence-dbFlushTime
Specifies the rate at which you want the persistence service to flush data to the database in

milliseconds.
v persistence-dbResetAll

If you specify to turn this property on, when you restart the platform all previously persisted data

will be cleared from the database.
3. Define permitted agents

You must define all of the agents that you want to allow access to the platform and the agent services

running on or across the platform. The following is an example of how an agent could be defined.

More details about each agent property are listed after the following example:

Agent.1.Alias=Agent1

Agent.1.AutonomyLevel=Medium

Agent.1.ClassName=com.ibm.able.platform.examples.EServerTemplateAgent

Agent.1.ConstructorArgs=String:agentName

Agent.1.EligiblePrincipals=principalAlias1, principalAlias2

Agent.1.EligibleAgentPools=pool1, pool2, pool3

Agent.1.InitArgs=

Agent.1.LastChangedDate=January 11, 2003 11:11am

Agent.1.Type=Tester1

Agent.1.Vendor=IBM1

Agent.1.Version=1.1

v Alias
Provide a unique name for your agent. This name will be used by the agent console.

v AutonomyLevel
Specify the agents initial autonomy level. A user can change this setting from the console.

Determine the level of independence you want to associate with your agent, and set the automation

level accordingly. The higher you set the automation level, the less your agent will request

permission to take an action. If you set an agent to High automation, it will perform most actions

without requesting a response first. If you are concerned about an agent’s behavior, you may want

to lower the automation level, (increasing the frequency by which the agent requests permission to

take action), by changing the setting to Medium automation.

72 iSeries: Performance

v ClassName
Specifies the the actual agent Java Class.

v ConstructorArgs
Allows you to provide arguments in the properties file that you want to pass to your agent.

v EligiblePrincipals
When security is turned on, you must define who has authority to start an instance of your agent

by associating one or more user principal aliases with each agent; for more information about using

Kerberos service principals, see the “Secure your agent environment” topic.
v EligibleAgentPools

Specify the alias of one or more agent pools that you want to use to run your agents on the

platform.
v InitArgs

Allows you to pass in any Init arguments to your agent from the preferences file.
4. Secure your agent platform

After you have defined your agent pools, agent services, and permitted agents, you may want to

configure security on the platform. For more information on Kerberos principals, trustlevels, and how

they are used and defined to secure the agent platform, see: “Secure your agent environment”

After you have defined your agent pools, agent services, and permitted agents, and optionally set up

security, you need to “Start the agent platform” on page 78

Secure your agent environment: Platform security can be turned on or off. If you choose to run on or

across a platform that has security turned off, anyone can deregister or modify another person’s agent

descriptions. Anyone can change the capabilities or state of any agent. Anyone can remove or answer any

requests, even if they are not their own. Agents can potentially take destructive actions when being used

incorrectly or by the wrong user. To ensure that agents are used the way they were intended, security

features have been added to the infrastructure of the platform.

When security is turned on, agents and services will be able to authenticate and authorize every action

that is taken on or across the platform. An agent can only deregister or alter its own agent description, an

agent must authorize all answered requests and capability changes, and a certain authority level will be

required to alter the state of an agent. The use of an agent can be limited to certain users and locations.

When security is turned on, every action that occurs can be traced back to a known user so platform

authentication and authorization can occur.

If you choose to secure your agent platform, you can turn security on by changing the Security property

to Security=on in the able.preferences file that defines your platform.

Before you turn on security, you need to configure ensure the following steps have been performed:

1. “Configure your platform to use Kerberos”
The intelligent agent platform uses Kerberos principals to authenticate users and services on or across

the agent platform. Authentication of principals is completed through a centralized server called a key

distribution center (KDC), and in V5R3, a native Kerberos KDC is provided on iSeries(TM).

2. “Configure platform security” on page 76
When security is turned on, ableplatform.preferences acts as a policy file for the security of the

platform it defines. The following topic provides steps for configuring principals, trustlevels, and

permissions.

Configure your platform to use Kerberos: The intelligent agent platform uses Kerberos principals to

authenticate users and services throughout the agent platform. Kerberos protocol, developed by

Massachusetts Institute of Technology, allows a principal (a user or service) to prove its identity to

another service within an insecure network. Authentication of principals is completed through a

centralized server called a key distribution center (KDC). The KDC authenticates a user with a Kerberos

Performance 73

ticket. These tickets prove the principal’s identity to other services in a network. After a principal is

authenticated by these tickets, they can exchange encrypted data with a target service.

The platform uses Kerberos to authenticate user signon and initial platform startup. To use Kerberos to

secure your platform, you must either find an existing KDC, or create a working KDC that all parts of

the platform will use. Every system running a piece of the platform and every PC running a console that

connects to this platform must be configured to use this KDC. You need to list all Kerberos principals in

the ableplatform.preferences file that are used by the platform to authenticate users and services. Each

platform Java(TM) Virtual Machine (agent pool) will have a service principal associated with it, and each

user logging onto the platform from a console will need a user principal. All of these principals will need

to be added to the KDC.

1. Find or create a usable Kerberos key distribution center (KDC)
The agent platform does not require a KDC on 0S/400(R), a KDC running on any platform will work.

If you cannot find an existing KDC to use, you can create your own. In V5R3, OS/400 supports a

native Kerberos server in OS/400 PASE. You can configure and manage a Kerberos server from your

iSeries(TM) system. To configure a Kerberos server in OS/400 PASE, complete the following tasks:

a. In a character-based interface, type: call QP2TERM. This command opens an interactive shell

environment that allows you to work with OS/400 PASE applications.
b. At the command line, enter: export PATH=$PATH:/usr/krb5/sbin. This command points to the

Kerberos scripts that are necessary to run the executable files.
c. At the command line, enter: config.krb5 -S -d iseriesa.myco.com -r MYCO.COM. This command

updates the krb5.config file with the domain name and realm for the Kerberos server, creates the

Kerberos database within the integrated file system, and configures the Kerberos server in OS/400

PASE. You will be prompted to add a database Master Password and a password for the

admin/admin principal which is used to administer the Kerberos server.
d. At the command line, enter: /usr/krb5/sbin/start.krb5 to start the servers.

For more information on how to configure a KDC on iSeries, see Configure a Kerberos server in

OS/400 PASE.

2. Configure systems in your agent environment to use Kerberos
After you create a Kerberos server (KDC), you need to individually configure each client PC that will

attempt to connect to the secure platform, and each iSeries system in your agent platform to point to

your Kerberos server (KDC).
v Configure your client PC

To configure a client PC, you need to create a text file called krb5.conf in the security folder of the

JVM that runs your iSeries Navigator intelligent agents console located here (where C: is the drive

your Client Access driver is installed on):

C:\Program Files\IBM\Client Access\JRE\Lib\Security

. The krb5.conf file tells all JVMs started from this JRE which KDC to use when dealing with

Kerberos. The following is an example of what a generic krb5.conf file might look like if the KDC

realm was KDC_REALM.PASE.COM and was found on system1.ibm.com:

[libdefaults]

 default_realm = KDC_REALM.PASE.COM

 default_tkt_enctypes = des-cbc-crc

 default_tgs_enctypes = des-cbc-crc

[realms]

 KDC_REALM.PASE.COM = {

 kdc = system1.rchland.ibm.com:88

 }

[domain_realm]

 .rchland.ibm.com = KDC_REALM.PASE.COM

74 iSeries: Performance

v Configure your iSeries system
To point your iSeries system to your KDC, you need to modify the following file:

/QIBM/userdata/OS400/networkauthentication/krb5.conf

The krb5.conf file tells all JVMs started from this JRE which KDC to use when dealing with

Kerberos. The following is an example of what a generic krb5.conf file might look like on the

iSeries if the KDC realm was KDC_REALM.PASE.COM and was found on system1.ibm.com:

??(libdefaults??)

 default_realm = KDC_REALM.PASE.COM

??(appdefaults??)

??(realms??)

 KDC_REALM.PASE.COM = {

 kdc = system1.rchland.ibm.com:88

 }

??(domain_realm??)

 system1.rchland.ibm.com = KDC_REALM.PASE.COM

For more detailed instructions on how to point your iSeries to the KDC you have created, see

Configure network authentication.
3. Acquire Kerberos user and service principals

After you configure a KDC, you will need to create the user and service principals you plan to use to

secure the platform, and register these principals to the KDC:

Service Principals:
Each agent pool (JVM) defined in ableplatform.preferences must have a service principal

associated with it. Service principals are specific to the system that they will run on, so they

must include that system name and be in the following format:

ServicePrincipalName/systemName@KDCRealm. Each of the agent pools on the platform can

use the same service principal, or you can specify that each pool use its own service principal. If

each of your agent pools have different authority levels, then different principals should be used

for each different authority level.

User Principals:
Each user that you want to allow to connect to the secure platform through the console will

need a user principal. User principals can be associated with each agent definition listed in

ableplatform.preferences. A user principal can connect to a platform from the console,

regardless of the system the console is running on. Because of this, a user principal only needs to

include the principal name and the KDC realm the principal belongs to:

UserPrincipalName@KDCRealm.

You need to add a principal to the KDC for each Service and User principal that your platform will

use. The following steps will help you add your principals to your KDC if you are using the native

KDC on iSeries:

a. In a character-based interface, type: call QP2TERM.

b. At the command line, enter: export PATH=$PATH:/usr/krb5/sbin. This command points to the

Kerberos scripts that are necessary to run the executable files.

c. At the command line, type: kadmin -p admin/admin, and press Enter.

d. Sign in with administrator’s password.

e. At the command line:

v To add service principals for Pools running on an iSeries:
addprinc -pw secret servicePrincipalName/iSeries fully qualified host name@REALM

v To add user principals:
addprinc -pw secret jonesm. This creates a principal for a user to log in from a console.

Performance 75

v To add service principals for Pools running on a PC:
addprinc -requires_preauth -e des-cbc-crc:normal -pw host/pc1.myco.com.

If you are using the native KDC on iSeries, see the following topics for more information on how to

add principals to your KDC:

If you are adding Service principals for Pools that will be running on an iSeries, see:
Add OS/400 principals to the Kerberos server
If you are adding User principals or Service principals for Pools that will be running on a PC,

see:

Create Host principals for Window s 2000 workstations and users.
4. Add service principals to each keytab file

When starting up a secure platform each agent pool will use the principal that it was defined to start

with, and use it to authenticate itself. This requires each Pool JVM to have access to valid Kerberos

credentials for the principal it is using. The iSeries STRAGTSRV command will handle this, as long as

there is an entry in the keytab file for the principal that is being used. Follow these steps to add an

entry to the keytab file for each service principal that is to run on each of your platform systems:
If you are running the native KDC on iSeries:

a. In a character-based interface, type: STRQSH. This command starts the qsh shell interpreter.
b. Enter the following command (where ServicePrincipal is the name of the service principal you

want to add, system@KDCRealm is the fully qualified iSeries system name and Kerberos realm,

and where thePassword is the password associated with your service principal):

keytab add ServicePrincipal/system@KDCRealm -p thePassword

After you set up your KDC and create your user and service principals, you need to “Configure platform

security.”

Configure platform security: Before you begin, ensure that you have “Configure your platform to use

Kerberos” on page 73.

When security is turned on, ableplatform.preferences acts as a policy file for the security of the platform

it defines. The following steps provide examples for how principals, trustlevels, and permissions could be

configured:

1. Define User and Service principals
After you acquire user and service principals, and register them with your KDC, you need to add

these principals to ableplatform.preferences. When security is turned on, a user must be defined with

a valid Kerberos user principal to gain access to the platform, and all agent services and agent pools

must have a valid Kerberos service principal assigned to them. Add the user or service principals you

have registered with your KDC, and specify an alias for each principal (the alias can be any unique

name you want to use):
#--

Principals

#--

Principal.1.Alias = servicePrincipal1

Principal.1.Principal = name1/systemName@REALM

Principal.2.Alias = servicePrincipal2

Principal.2.Principal = name2/systemName@REALM

Principal.3.Alias = userPrincipal1

Principal.3.Principal = name1@REALM

Principal.4.Alias = userPrincipal2

Principal.4.Principal = name2@REALM

2. Define trust levels
After you add user and service principals, you need to define the trustlevel associated with each

principal. A trust level is associated with a principal to help define the capabilities of a user or service

on the platform. Associating a trust level with a principal is also a way to group principals. The same

76 iSeries: Performance

trust level can be associate with multiple user and service principals. Add the principal alias you

assigned to your service and user principals in step 1, (comma delineated), to the trust level you want

to associate it with, and provide a unique name for trust level alias:

#--

Trust Levels

#--

TrustLevel.1.Alias = HighlyTrusted

TrustLevel.1.Principals = servicePrincipal1,userPrincipal1

TrustLevel.2.Alias = SomewhatTrusted

TrustLevel.2.Principals = servicePrincipal2,userPrincipal2

3. Associate service principals with Agent Pools
A distributed platform can span multiple ports on multiple systems. Each agent pool defines where

one part (Java(TM) Virtual Machines) or the platform will run. Each agent pool entry contains an alias,

an IP Address, a port, and a service principal alias. The principal alias specifies what service principal

this pool will be associated with. Add the service principal alias you defined above that you want to

associate with your agent pool:

#--

Agent Pools (Java Virtual Machines)

#--

AgentPool.1.Alias = Pool1

AgentPool.1.IpAddress = systemname.ibm.com

AgentPool.1.Port = 55551

AgentPool.1.Principal = servicePrincipal1

AgentPool.2.Alias = Pool2

AgentPool.2.IpAddress = systemname.ibm.com

AgentPool.2.Port = 55552

AgentPool.2.Principal = servicePrincipal1

AgentPool.3.Alias = Pool3

AgentPool.3.IpAddress = systemname.ibm.com

AgentPool.3.Port = 55553

AgentPool.3.Principal = servicePrincipal2

4. Define agent start-up authority
Define which users have the capability to start each of the agents defined on your secure platform.

Add one or more user principal aliases to the EligiblePrincipal parameter:

#--

Permitted Agents

#--

Agent.1.Alias=Agent1

Agent.1.AutonomyLevel=Medium

Agent.1.ClassName=com.ibm.able.platform.examples.EServerTemplateAgent

Agent.1.ConstructorArgs=String:AgentName1

Agent.1.EligiblePrincipals=userPrincipal1,userPrincipal2

Agent.1.EligibleAgentPools=Pool2,Pool3

Agent.1.InitArgs=

Agent.1.LastChangedDate=January 11, 2003 11:11am

Agent.1.Type=Tester1

Agent.1.Vendor=IBM1

Agent.1.Version=1.1

5. Define the algorithm and provider
You need to define the algorithm and provider of the KeyPairs the platform will use. By default, the

preferences file will contain the following setting:

#--

Cryptography parameters

#--

CryptographyAlgorithm = DSA

CryptographyProvider = IBMJCE

Performance 77

After you add the necessary security data to ableplatform.preferences, save your changes. Turning on

security for the platform once it is correctly configured is as simple as opening able.preferences that

defines your platform, and changing the Security property to Security=on. If you are running an

unsecured platform, you will need to “Start the agent platform” for security changes to take effect.

Start the agent platform: After you have “Configure your agent platform” on page 70 and optionally

configured “Secure your agent environment” on page 73, you need to start the agent platform. Because

the platform is made up of one or more Java(TM) Virtual Machines, to start the platform you need to start

all of the JVMs that make up the platform.

The following instructions provide information on how to start the agent platform on an iSeries(TM):

Start the agent platform on an iSeries: The following commands handle the starting and stopping of an

agent platform on an iSeries:
STRAGTSRV (Start Agent Services) and ENDAGTSRV (End Agent Services)

v STRAGTSRV (Start Agent Services)
When you run STRAGTSRV a separate JVM will be started for each pool on the system you are

running the command from. This command starts a QAHASBMTER job that will find all of the JVMs

(agent pools) that need to be started. When it discovers an agent pool, it will start a separate

QAHASBMTEE job for each pool. Once the command has completed successfully, there should be a

separate QAHAPLTFRM job in QSYSWRK with a status of SIGW for each pool. STRAGTSRV has the

following keywords:

PREFDIR
Sets the location of the following files: able.preferences and ableplatform.preferences. Leaving the

PREFDIR parameter at the default value will start or end the platform defined by the

ableplatform.preferences and able.preferences file in the /QIBM/ProdData/OS400/able/ directory.

Multiple platforms could be started on the same system by using the PREFDIR parameter to

point to different directories. When doing this you must be careful that two platforms do not

overlap at all by using the same ports on a system.
HOMEDIR
Sets the location of the home directory
ClASSPATH
Allows you to add any additional classpath that each JVM should include. STRAGTSRV

automatically sets the default classpath to:

classpath=

/QIBM/ProdData/Java400/:/qibm/proddata/os400/able:

/qibm/proddata/os400/able/ableplatform.jar:

/qibm/proddata/os400/able/able.jar:

/qibm/proddata/os400/able/ablebeans.jar:

/qibm/proddata/os400/able/jas.jar:

/qibm/proddata/os400/able/Jlog.jar:

/qibm/proddata/os400/Java400/ext/ibmjgssiseriesprovider.jar:

/qibm/proddata/os400/jt400/lib/jt400Native.jar:

/qibm/proddata/os400/Java400/ext/db2_classes.jar:

/qibm/proddata/os400/able/auifw.jar:

SBMJOBUSER
Runs a JVM (agent pool) with a different profile than the current profile you are calling the command

with:

PoolIdentifier
The pool that should run with a different profile.
User Profile
The profile you want to use to start the agent pool (PoolIdentifier).

78 iSeries: Performance

v ENDAGTSRV (End Agent Services)
Ends all of the platform JVMs on this system that are specified as agent pools in the file

ableplatform.preferences. This command starts a QAHAPLTEND job that will find and end all agent

pools. ENDAGTSRV has the following keywords:

PREFDIR
Sets the location of the following files: able.preferences and ableplatform.preferences. Leaving the

PREFDIR parameter at the default value will start or end the platform defined by the

ableplatform.preferences and able.preferences file in the /QIBM/ProdData/OS400/able/ directory.

Multiple platforms could be started on the same system by using the PREFDIR parameter to

point to different directories. When doing this you must be careful that two platforms do not

overlap at all by using the same ports on a system.

Note: If you have trouble starting or ending the agent platform, you can turn on tracing for the startup

programs by adding or setting the QAHA_TRACE system environment variable to ’1’. This will create

log files in QUSRSYS/QAAHALOG. Files named QSBR<job number>, QSBE<job number, and QEND<job

number> will be created for each QAHASBMTER, QAHASBMTEE, and QAHAPLTEND job that has run.

Manage agents

The Intelligent Agents console for iSeries(TM) is a powerful management tool that allows you to work

with your agents, and ensure that they are behaving in a manner that meets your expectations. To

display the Intelligent Agents node in iSeries Navigator, select View—>Intelligent Agents from the main

menu.

Figure 1: Working with agents in iSeries Navigator

After you set up your agent environment, you can begin working with the agent console by connecting

to your host system (or systems) and creating an instance of an agent to run on that system. Use the

console to start, stop, suspend, delete, respond to, and view history of the agents running on your system

or systems. You can also use the console to set up limitations on what actions an agent can perform

automatically and what actions require permission.

Performance 79

“Agent Automation”
The agent console gives you the capability to control and customize an agents behavior by

associating a level of automation with that agent.

“Agent Communication” on page 82
Easily track and respond to agents that are requesting confirmation or permission to take action.

“Agent history” on page 82
The agent console logs a history of all your agents actions.

Agent Automation: The Intelligent Agents console provides a way for you to control the automated

actions an agent can take.

To view an agents capabilities, and change an agent’s automation setting in iSeries(TM) Navigator, follow

these steps:

1. Expand Intelligent Agents.

2. Expand your intelligent agents platform.

3. Select All Agents.

4. Right-click the agent you want to work with and select Properties

5. Select the Automation tab to display the agent’s currently configured automation level.

6. Click Capabilities to display a list of the actions this agent can take, and the automation level

associated with these capabilities.

80 iSeries: Performance

Figure 1: Viewing the automation level associated with the capabilities of a TimeMonitor agent

Every agent has a set of capabilities that define what kinds of actions that agent can perform. The agent

console displays an agent’s available capabilities associated with the agent’s corresponding automation

level. Each automation level setting (High automation, Medium automation, Low automation, and

Custom automation) will change the states (Automate, Ask first, Never ask) of the available capabilities

for the agent.

For example, If an agent has the capability to clear log files when full, when you change the level of

automation from High automation to Medium automation, the agent’s capability will change from a

state of Automate to a state of Ask first. The agent will now request permission before it deletes a log

file.

Specifying an agent’s automation level will determine if an agent automatically performs an action, asks

before performing an action, or never performs an action. The possible automation values are:

v High automation
The agent will perform most actions automatically, but will ask before performing certain destructive

actions. Depending on the agent, certain actions may require that the agent always request outside

intervention before it performs that action, even when set to High automation.
v Medium automation

The agent will perform some actions automatically, and will ask before performing some actions.

Depending on the agent, certain actions may require that the agent always request outside intervention

before it performs that action, even when set to Medium automation.

Performance 81

v Low automation
The agent will rarely perform any actions automatically. The agent will almost always request outside

intervention before it performs any action.

v Custom automation
The agent will automate, ask first, or never perform actions according to how the capabilities are

manually configured.

Agent Communication: If the automation setting associated with an agent’s capability is set to Ask first,

before an agent performs an action, the agent will request a response from a user. Some agents will

always request a response, regardless of their current automation setting. When an agent requests a

response or is waiting to perform an action, the agent’s Status field displays: Needs response.

To respond to an agent in iSeries(TM) Navigator:

1. Expand Intelligent Agents.

2. Expand your intelligent agents platform.

3. Select All Agents.

4. Right-click the agent and select Respond....

5. Select the response you want to work with and click

the Respond button.

6. The agent will display the problem it is currently

seeking a response for. Select a response from the list

of possible responses in the Response field, and click

OK.

Figure 1: Responding to your agent’s request

You can also view a list of all current requests by selecting Current Requests under the main Intelligent

Agents menu.

Agent history: The agent console allows you to view the history of a agent’s requests and actions. The

history does not display current requests, only requests and actions that have been responded to. The

history log is limited to 1000 entries, and will clear the oldest entry for each new entry that exceeds 1000.

82 iSeries: Performance

Figure 1: Viewing the history of an agent’s requests and actions

To view an agent’s history in iSeries(TM) Navigator, follow these steps:

1. Expand Intelligent Agents.

2. Expand your intelligent agents platform.

3. Select All Agents.

4. Right-click the agent that you want to view history on, and select History.

Performance data files

Performance data is a set of information about the operation of a system (or network of systems) that can

be used to understand response time and throughput. You can use performance data to make

adjustments to programs, system attributes, and operations. These adjustments can improve response

times and throughputs. Adjustments can also help you to predict the effects of certain changes to the

system, operation, or program.

“Collection Services” on page 32 collects performance data into a management collection object

(*MGTCOL). The Create Performance Data (CRTPFRDTA) command processes data from that collection

object and stores the result into performance database files. The database files are divided into the

following categories:

Performance data files containing time interval data
These files contain performance data that is collected each interval. See “Performance data files

containing time interval data” on page 84 data for a list of these files, with a brief description and a

link to complete information about each file. To understand where the data in these files comes

from, refer to “Performance data files: Collection Services system category and file relationships” on

page 86. When viewing these files, you might also find the “Performance data files: File

abbreviations” on page 85 useful.

Configuration data files
Configuration data is collected once per session. To understand where the data in these files comes

from, refer to “Performance data files: Collection Services system category and file relationships” on

page 86. You can find the QAPMCONF, QAPMHDWR, and QAPMSBSD files in the configuration

data files.

Performance 83

rzahxconfigdata.htm
rzahxconfigdata.htm

Trace data files
Trace data is collected only when you choose to do so. You can find the QAPMDMPT file in the

trace data files.

Additional field information such as number of bytes and buffer position is available by using the

Display File Field Description (DSPFFD) command available on the system. For example, type the

following on any command line:

DSPFFD file(QSYS/QAPMCONF)

For more information about iSeries(TM) performance, see “Performance,” on page 1

Performance data files containing time interval data

To view complete information about a performance data file, select the file you want to view from the list

below (shown in alphabetical order).

 File Description

QAPMAPPN APPN data

QAPMASYN Asynchronous statistics (one per link)

QAPMBSC Binary synchronous statistics (one per link)

QAPMBUS Bus counters (one per bus)

QAPMCIOP Communications IOP data (one per IOP)

QAPMDDI Distributed Digital Interface (DDI) data (one per link)

QAPMDIOP Storage device IOP data (one per IOP)

QAPMDISK Disk storage data (one per read/write head)

QAPMDOMINO Domino(TM) for iSeries(TM) data (one record per domino server)

QAPMDPS Data port services

QAPMECL Token-ring file entries (one per link)

QAPMETH Ethernet statistics (one per link)

QAPMFRLY Frame relay data (one per link)

QAPMHDLC HDLC statistics (one per link)

QAPMHTTPB Basic data for IBM(R) HTTP server (powered by Apache) (one per server)

QAPMHTTPD Detailed data for IBM HTTP server (powered by Apache) (one per server component)

QAPMIDLC Integrated services digital network data link control file entries (one per link)

QAPMIOPD Extended IOP data

(network server and virtual I/O data)

QAPMJOBMI MI job data (one record per job, task, or thread). You might find information about

task type extenders useful when using this document

QAPMJOBOS Job operating system data (one record per job)

QAPMJOBS and

QAPMJOBL

Job data (one record per job, task, or thread)

QAPMJOBWT Job, task, and thread wait conditions

QAPMJOBWTD A description of the counter sets found in file QAPMJOBWT.

QAPMJSUM Job summary data by job group (one record per job group)

QAPMLAPD Integrated services digital network LAPD file entries (one per link)

QAPMLIOP Twinaxial workstation controller data (one per physical controller)

QAPMLPAR Logical partition (one record per logical partition)

QAPMMIOP Multifunction IOP (one per IOP)

84 iSeries: Performance

rzahxtracedata.htm
rzahxqapmappn.htm
rzahxqapmasyn.htm
rzahxqapmbsc.htm
rzahxqapmbus.htm
rzahxqapmciop.htm
rzahxqapmddi.htm
rzahxqapmdiop.htm
rzahxqapmdisk.htm
rzahxqapmdomino.htm
rzahxqapmdps.htm
rzahxqapmecl.htm
rzahxqapmeth.htm
rzahxqapmfrly.htm
rzahxqapmhdlc.htm
rzahxqapmhttpb.htm
rzahxqapmhttpd.htm
rzahxqapmidlc.htm
rzahxqapmiopd.htm
rzahxqapmjobmi.htm
rzahxtasktypeext.htm
rzahxqapmjobos.htm
rzahxqapmjobs.htm
rzahxqapmjobs.htm
rzahxqapmjobwt.htm
rzahxqapmjobwtd.htm
rzahxqapmjsum.htm
rzahxqapmlapd.htm
rzahxqapmliop.htm
rzahxqapmlpar.htm
rzahxqapmmiop.htm

File Description

QAPMPOOL and

QAPMPOOLL

Main storage data (one per system storage pool)

QAPMPOOLB Storage pool data (one per pool)

QAPMPOOLT Storage pool tuning data (one per pool)

QAPMPPP Point-to-Point Protocol data (one per link)

QAPMRESP Local workstation response time (one per workstation)

QAPMRWS Remote workstation response time

QAPMSAP TRLAN, Ethernet, DDI, and Frame Relay SAP file entries (one per SAP entry)

QAPMSNA SNA data

QAPMSNADS SNADS data (one per SNADS job)

QAPMSTND DDI station data

QAPMSTNE Ethernet station file entries

QAPMSTNL Token-ring station file entries

QAPMSTNY Frame relay station file entries

QAPMSYS and QAPMSYSL System performance data

QAPMSYSCPU System CPU usage data

QAPMSYSTEM System-level performance data

QAPMTCP TCP/IP data

QAPMTCPIFC TCP/IP data for individual TCP/IP interfaces

QAPMUSRTNS User-defined transaction data (Each job has one record for each type of transaction)

QAPMX25 X.25 statistics (one per link)

Performance data files: File abbreviations

The “Performance data files” on page 83 use abbreviations in the field and byte data tables. These

abbreviations include:

 Abbreviation Description

Primary files These files are related to and generated from the category.

C Character in the Attributes column.

H Hexadecimal in the Attributes column.

PD Packed decimal in the Attributes column.

Z Zoned decimal in the Attributes column.

IOP Input/output processor or I/O processor. The processors that control the activity between the

host system and other devices, such as disks, display stations, and communication lines.

DCE Data circuit-terminating equipment.

MAC Medium-access control. An entity in the communications IOP.

LLC Logical link control. An entity in the communications IOP.

Beacon frame A frame that is sent when the ring is inoperable.

Type II frame A connection-oriented frame (information frame) used by Systems Network Architecture (SNA).

I-frame An information frame.

B The DDS binary data type of 4 digits, which is 2 bytes, in the Attributes column.

Performance 85

rzahxqapmpool.htm
rzahxqapmpool.htm
rzahxqapmpoolb.htm
rzahxqapmpoolt.htm
rzahxqapmppp.htm
rzahxqapmresp.htm
rzahxqapmrws.htm
rzahxqapmsap.htm
rzahxqapmsna.htm
rzahxqapmsnads.htm
rzahxqapmstnd.htm
rzahxqapmstne.htm
rzahxqapmstnl.htm
rzahxqapmstny.htm
rzahxqapmsys.htm
rzahxqapmsyscpu.htm
rzahxqapmsystem.htm
rzahxqapmtcp.htm
rzahxqapmtcpifc.htm
rzahxqapmusrtns.htm
rzahxqapmx25.htm

Performance data files: Collection Services system category and file relationships

When you collect performance data using “Collection Services” on page 32, the data is stored in a

management collection (*MGTCOL) object. The CRTPFRDTA command exports data from that

management collection object and then writes the data to the “Performance data files” on page 83. Each

type of data that can be independently controlled and collected by Collection Services is represented by a

data category. Each data category contains or provides data that is written to one or more performance

data files. For a database file or member to be created, the category (or group of categories) that the file

or member is dependent on must exist and be processed by CRTPFRDTA. The table below identifies the

category-to-file relationships. There are three types of relationships:

 Relationship Description

Primary files These files are related to and generated from the category.

Compatibility files These files are logical files that join primary files to provide performance

database compatibility with the previous file structure. If the system

generates all participating files (primary categories), compatibility files are

also generated.

Secondary files These files are related to and contain some data that is derived from data

contained in the category or in the primary file. However, they are not

controlled by that category.

Users should note the following:

1. The CRTPFRDTA command generates a database file only when that file is a primary file for the

selected category.

2. If a primary file is listed for multiple categories, you must select each of those categories to generate

the file.

3. If a primary file for one category is listed as a secondary file for another category, you must select the

second category to ensure complete information in your generated database file. For example, as

shown in the table below, to generate a complete database file for QAPMECL, you must select both

*CMNBASE and *CMNSTN.

4. The system generates compatibility files only when it generates all associated primary files.

The table below illustrates the relationships between system categories and performance database files.

 Category Primary files Compatibility files Secondary files

*SYSBUS QAPMBUS

*POOL QAPMPOOLB QAPMPOOLL

*POOLTUNE QAPMPOOLT QAPMPOOLL

*HDWCFG QAPMHDWR

*SUBSYSTEM QAPMSBSD

*SYSCPU QAPMSYSCPU QAPMSYSL

*SYSLVL QAPMSYSTEM QAPMSYSL

*JOBMI QAPMJOBMI
QAPMJOBWT
QAPMJOBWTD
QAPMJSUM

QAPMJOBL
QAPMSYSL

QAPMSYSTEM

*JOBOS QAPMJOBOS
QAPMJSUM

QAPMJOBL
QAPMSYSL

QAPMSYSTEM

*SNADS QAPMSNADS

*DISK QAPMDISK QAPMSYSTEM

86 iSeries: Performance

*IOPBASE

QAPMIOPD

QAPMLIOP
QAPMDIOP
QAPMCIOP
QAPMMIOP

*IPCS QAPMIOPD
QAPMTSK

*CMNBASE QAPMASYN
QAPMBSC
QAPMDDI
QAPMECL
QAPMETH
QAPMFRLY
QAPMHDLC
QAPMIDLC
QAPMLAPD
QAPMPPP
QAPMX25

*CMNSTN QAPMSTND
QAPMSTNE
QAPMSTNL
QAPMSTNY
none

QAPMDDI
QAPMETH
QAPMECL
QAPMFRLY
QAPMX25

*CMNSAP QAPMSAP

*LCLRSP QAPMRESP

*APPN QAPMAPPN

*SNA QAPMSNA

*EACACHE none QAPMDISK (see note)

*TCPBASE QAPMTCP

*TCPIFC QAPMTCPIFC

*DOMINO QAPMDOMINO

*HTTP QAPMHTTPB
QAPMHTTPD

*USRTNS QAPMUSRTNS

*DPS QAPMDPS

*LPAR QAPMLPAR

Note:

This category is not selectable by CRTPFRDTA. However, it causes additional data to be reported by the *DISK

category.

iSeries(TM) Navigator monitors

The monitors included in iSeries Navigator use “Collection Services” on page 32 data to track the

elements of system performance of specific interest to you. Moreover, they can take specified actions

when certain events, such as the percentage of CPU utilization or the status of a job, occur. You can use

monitors to see and manage system performance as it happens across multiple systems and groups of

systems.

Performance 87

#NOTE

With the monitors, you can start a monitor, and then turn to other tasks on your server, in iSeries

Navigator, or on your PC. In fact, you could even turn your PC off. iSeries Navigator continues

monitoring and performing any threshold commands or actions you specified. Your monitor runs until

you stop it. You can also use monitors to manage performance remotely by accessing them with

“iSeries(TM) Navigator for Wireless” on page 132.

iSeries Navigator provides the following types of monitors:

System monitor
Collect and display performance data as it happens or up to 1 hour. Detailed graphs help you visualize

what is going on with your servers as it happens. Choose from a variety of metrics (performance

measurements) to pinpoint specific aspects of system performance. For example, if you are monitoring

the average CPU utilization on your server, you can click any collection point on the graph to see a

details chart that shows the 20 jobs with the highest CPU utilization. Then, you can right-click any of

these jobs to work directly with the job.

Job monitor
Monitor a job or a list of jobs based on job name, job user, job type, subsystem, or server type. Choose

from a variety of metrics to monitor the performance, status, or error messages for a job. To work directly

with a job, just right-click the job from the list that is shown in the Job Monitor window.

Message monitor
Find out whether your application completes successfully or monitor for specific messages that are

critical to your business needs. From the Message Monitor window, you can see the details of a message,

reply to a message, send a message, and delete a message.

B2B activity monitor
If you have an application like Connect for iSeries configured, you can use a B2B activity monitor to

monitor your B2B transactions. You can view a graph of active transactions over time, and you can run

commands automatically when thresholds are triggered. You can search for and display a specific

transaction as well as view a bar graph of the detailed steps of that specific transaction.

File monitor
Monitor one or more selected files for a specified text string, for a specified size, or for any modification

to the file.

To find out more about monitors, see the following topics:

“Monitor concepts”
Monitors can display real-time performance data. Additionally, they can continually monitor your

system in order to run a selected command when a specified threshold is reached. Learn how

monitors work, what they can monitor, and how they can respond to a given performance situation.

“Configure a monitor” on page 89
You can configure a monitor in iSeries Navigator. Use this topic to learn how to set up a monitor

and how to configure it to take the best advantage of the available options.

“Scenarios: iSeries(TM) Navigator monitors” on page 89
This topic provides scenarios that show how you can use some of the different types of monitors to

look at specific aspects of your system’s performance.

Monitor concepts

The system monitors display the data stored in the collection objects that are generated and maintained

by “Collection Services” on page 32. The system monitors display data as it is collected, for up to one

88 iSeries: Performance

hour. To view longer periods of data, you should use “Graph history” on page 95. You can change the

frequency of the data collection in the monitor properties, which overrides the settings in Collection

Services.

You can use monitors to track and research many different elements of system performance and can have

many different monitors running simultaneously. When used together, the monitors provide a

sophisticated tool for observing and managing system performance. For example, when implementing a

new interactive application, you might use a system monitor to prioritize a job’s resource utilization, a

job monitor to watch for and handle any problematic jobs, and a message monitor to alert you if a

specified message occurs on any of your systems.

Setting thresholds and actions

When you create a new monitor, you can specify actions you want to occur when the system metric

reaches a specified threshold level, or an event occurs. When threshold levels or events occur, you can

choose to run an OS/400(R) command on the endpoint systems, such as sending a message or holding a

job queue. Additionally, you may choose to have the monitor carry out several predefined actions such as

updating the event log and alerting you by either sounding an alarm on your PC or launching the

monitor. Finally, you can automatically reset the monitor by specifying a second threshold level which

causes the monitor to resume normal activity when it is reached.

Configure a monitor

System monitors are highly interactive tools that you can use to gather and display real-time performance

data from your endpoint systems. Creating a new monitor is a quick and easy process that begins at the

New Monitor window:

1. In iSeries(TM) Navigator, expand Management Central, select Monitors, right-click System, and then

select New Monitor.

2. Specify a monitor name. From the New Monitor-General page specify a name for your monitor.

Provide a brief description so you can find the monitor in a list of monitors.

3. Select metrics. Use the New Monitor-Metrics page to select your metrics. You can monitor any

number of metrics on any number of endpoint systems or system groups.

4. View and change your metric information. Use the New Monitor-Metrics page to edit the properties

for each metric. You can edit the collection interval, maximum graphing value, and display time for

each metric you select.

5. Set threshold commands. Use the Thresholds tab on the Metrics page to enable thresholds and

specify commands to run on the endpoint system whenever thresholds are triggered or reset.

6. Set threshold actions. Use the New Monitor-Actions page to specify the actions you want to occur

when a metric threshold is triggered or reset.

7. Select your systems and groups. Use the New Monitor-Systems and Groups page to select the

endpoint systems or system groups where you want to start a monitor.

After you have created your monitor, right-click the monitor name and select Start to run the monitor

and begin working with monitor graphs.

Scenarios: iSeries(TM) Navigator monitors

The monitors included in iSeries Navigator provide a powerful set of tools for researching and managing

system performance. For an overview of the types of monitors provided by iSeries Navigator, see

“iSeries(TM) Navigator monitors” on page 87.

For detailed usage examples and sample configurations, see the following scenarios:

“Scenario: System monitor” on page 90
See an example system monitor that alerts you if the CPU utilization gets too high and temporarily

holds any lower priority jobs until more resources become available.

Performance 89

rzahxmonconmetrics.htm

“Scenario: Job monitor for CPU utilization” on page 91
See an example job monitor that tracks the CPU utilization of a specified job and alerts the job’s

owner if CPU utilization gets too high.

“Scenario: Job monitor with Advanced Job Scheduler notification” on page 92
See an example job monitor that sends an e-mail to an operator when the threshold limit of a job is

exceeded.

“Scenario: Message monitor” on page 94
See an example message monitor that displays any inquiry messages for your message queue that

occur on any of your iSeries servers. The monitor opens and displays the message as soon as it is

detected.

Scenario: System monitor:

 Situation

As a system administrator, you need to ensure that the iSeries(TM) system has enough resources to meet

the current demands of your users and business requirements. For your system, CPU utilization is a

particularly important concern. You would like the system to alert you if the CPU utilization gets too

high and to temporarily hold any lower priority jobs until more resources become available.

To accomplish this, you can set up a system monitor that sends you a message if CPU utilization exceeds

80%. Moreover, it can also hold all the jobs in the QBATCH job queue until CPU utilization drops to 60%,

at which point the jobs are released, and normal operations resume.

 Configuration example

To set up a system monitor, you need to define what metrics you want to track and what you want the

monitor to do when the metrics reach specified levels. To define a system monitor that accomplishes this

goal, complete the following steps:

1. In iSeries Navigator, expand Management Central > Monitors, right-click System Monitor, and select

New Monitor...

2. On the General page, enter a name and description for this monitor.

3. Click the Metrics tab, and enter the following values:

a. Select the CPU Utilization Basic (Average), from the list of Available Metrics, and click Add. CPU

Utilization Basic (Average) is now listed under Metrics to monitor, and the bottom portion of the

window displays the settings for this metric.

b. For Collection interval, specify how often you would like to collect this data. This will override

the Collection Services setting. For this example, specify 30 seconds.

c. To change the scale for the vertical axis of the monitor’s graph for this metric, change the

Maximum graphing value. To change the scale for the horizontal axis of the graph for this metric,

change the value for Display time.

d. Click the Threshold 1 tab for the metrics settings, and enter the following values to send an

inquiry message if the CPU Utilization is greater than or equal to 80%:

1) Select Enable threshold.

2) For the threshold trigger value, specify >= 80 (greater than or equal to 80 percent busy).

3) For Duration, specify 1 interval.

4) For the OS/400(R) command, specify the following:

SNDMSG MSG(’Warning,CPU...’) TOUSR(*SYSOPR) MSGTYPE(*INQ)

90 iSeries: Performance

5) For the threshold reset value, specify < 60 (less than 60 percent busy). This will reset the

monitor when CPU utilization falls below 60%.
e. Click the Threshold 2 tab, and enter the following values to hold all the jobs in the QBATCH job

queue when CPU utilization stays above 80% for five collection intervals:

1) Select Enable threshold.

2) For the threshold trigger value, specify >= 80 (greater than or equal to 80 percent busy).

3) For Duration, specify 5 intervals.

4) For the OS/400 command, specify the following:

HLDJOBQ JOBQ(QBATCH)

5) For the threshold reset value, specify < 60 (less than 60 percent busy). This will reset the

monitor when CPU utilization falls below 60%.

6) For Duration, specify 5 intervals.

7) For the OS/400 command, specify the following:

RLSJOBQ JOBQ(QBATCH)

This command releases the QBATCH job queue when CPU utilization stays below 60% for 5

collection intervals.
4. Click the Actions tab, and select Log event in both the Trigger and Reset columns. This action creates

an entry in the event log when the thresholds are triggered and reset.

5. Click the Systems and groups tab to specify the systems and groups you want to monitor.

6. Click OK to save the monitor.

7. From the list of system monitors, right-click the new monitor and select Start.

 Results

The new monitor displays the CPU utilization, with new data points being added every 30 seconds,

according to the specified collection interval. The monitor automatically carries out the specified

threshold actions, even if your PC is turned off, whenever CPU utilization reaches 80%.

Note: This monitor tracks only CPU utilization. However, you can include any number of the available

metrics in the same monitor, and each metric can have its own threshold values and actions. You can also

have several system monitors that run at the same time.

Scenario: Job monitor for CPU utilization:

 Situation

You are currently running a new application on your iSeries(TM) server, and you are concerned that some

of the new interactive jobs are consuming an unacceptable amount of resources. You would like the

owners of the offending jobs to be notified if their jobs ever consume too much of the CPU capacity.

You can set up a job monitor to watch for the jobs from the new application and send a message if a job

consumes more than 30% of the CPU capacity.

 Configuration example

To set up a job monitor, you need to define which jobs to watch for, what job attributes to watch for, and

what the monitor should do when the specified job attributes are detected. To set up a job monitor that

accomplishes this goal, complete the following steps:

1. In iSeries Navigator, expand Management Central > Monitors, right-click Job monitor, and select

New Monitor...

Performance 91

2. On the General page, enter the following values:

a. Specify a name and description for this monitor.

b. On the Jobs to monitor tab, enter the following values:

1) For the Job name, specify the name of the job you want to watch for (for example,

MKWIDGET).

2) For Subsystem, specify QINTER.

3) Click Add.

3. Click the Metrics tab, and enter the following information:

a. In the Available metrics list, expand Summary Numeric Values, select CPU Percent Utilization,

and click Add.

b. On the Threshold 1 tab for the metrics settings, enter the following values:

1) Select Enable trigger.

2) For the threshold trigger value, specify >= 30 (greater than or equal to 30 percent busy).

3) For Duration, specify 1 interval.

4) For the OS/400(R) trigger command, specify the following:

SNDMSG MSG(’Your job is exceeding 30% CPU capacity’) TOUSR(&OWNER)

5) Click Enable reset.

6) For the threshold reset value, specify < 20 (less than 20 percent busy).
4. Click the Collection Interval tab, and select 15 seconds. This will override the Collection Services

setting.

5. Click the Actions tab, and select Log event in both the Trigger and Reset columns.

6. Click the Servers and groups tab, and select the servers and groups you want to monitor for this job.

7. Click OK to save the new monitor.

8. From the list of job monitors, right-click the new monitor and select Start.

 Results

The new monitor checks the QINTER subsystem every 15 seconds, and if the job MKWIDGET is

consuming more than 30 percent of the CPU, the monitor sends a message to the job’s owner. The

monitor resets when the job uses less than 20% CPU capacity.

Scenario: Job monitor with Advanced Job Scheduler notification:

 Situation

You are currently running an application on your iSeries(TM) server, and you want to be notified if the

CPU utilization reaches the specified threshold.

If the Advanced Job Scheduler is installed on the endpoint system, you can use the Send Distribution

using JS (SNDDSTJS) command to notify someone by e-mail when the threshold is exceeded. For

instance, you could specify that the notification escalate to the next person if the intended recipient does

not respond by stopping the message. You could create on-call schedules and send the notification to

only those people that are on-call. You can also send the notification to multiple e-mail addresses.

 Job monitor configuration example

This example uses the SNDDSTJS command to send a message to a recipient named OPERATOR, which

is a user-defined list of e-mail addresses. You can also specify an e-mail address instead of a recipient or

both. To set up a job monitor that accomplishes this goal, complete the following steps:

92 iSeries: Performance

1. In iSeries Navigator, expand Management Central > Monitors, right-click Job monitor, and select

New Monitor...

2. On the General page, enter the following values:

a. Specify a name and description for this monitor.

b. On the Jobs to monitor tab, enter the following values:

1) For the Job name, specify the name of the job you want to watch for (for example,

MKWIDGET).

2) For Subsystem, specify QINTER.

3) Click Add.

3. Click the Metrics tab, and enter the following information:

a. In the Available metrics list, expand Summary Numeric Values, select CPU Percent Utilization,

and click Add.

b. On the Threshold 1 tab for the metrics settings, enter the following values:

1) Select Enable trigger.

2) For the threshold trigger value, specify >= 30 (greater than or equal to 30 percent busy).

3) For Duration, specify 1 interval.

4) For the OS/400(R) trigger command, specify the following:

SNDDSTJS RCP(OPERATOR) SUBJECT(’Job monitor trigger’) MSG(’Job &JOBNAME is still running!’)

5) Click Enable reset.

6) For the threshold reset value, specify < 20 (less than 20 percent busy).
4. Click the Collection Interval tab, and select 15 seconds. This will override the Collection Services

setting.

5. Click the Actions tab, and select Log event in both the Trigger and Reset columns.

6. Click the Servers and groups tab, and select the servers and groups you want to monitor for this job.

7. Click OK to save the new monitor.

8. From the list of job monitors, right-click the new monitor and select Start.

 Message monitor configuration example

If you use a message monitor, you can send the message text to the recipient. Here is an example of a CL

program that retrieves the message text and sends an e-mail to all on-call recipients with the SNDDSTJS

command.

PGM PARM(&MSGKEY &TOMSGQ &TOLIB)

DCL &MSGKEY *CHAR 4

DCL &TOMSGQ *CHAR 10

DCL &TOLIB *CHAR 10

DCL &MSGTXT *CHAR 132

RCVMSG MSGQ(&TOLIB/&TOMSGQ) MSGKEY(&MSGKEY)

 RMV(*NO) MSG(&MSGTXT)

 MONMSG CPF0000 EXEC(RETURN)

SNDDSTJS RCP(*ONCALL) SUBJECT(’Message queue trigger’) MSG(&MSGTXT)

 MONMSG MSGID(CPF0000 IJS0000)

ENDPGM

This is the command that would call the CL program:

CALL SNDMAIL PARM(’&MSGKEY’ ’&TOMSG’ ’&TOLIB’)

Performance 93

Results

The monitor checks the QINTER subsystem every 15 seconds, and if the job MKWIDGET is consuming

more than 30 percent of the CPU, the monitor sends an e-mail to the operator. The monitor resets when

the job uses less than 20% CPU capacity.

See Work with notification for more information on the Advanced Job Scheduler notification function.

Scenario: Message monitor:

 Situation

You company has several iSeries(TM) servers running, and it is time-consuming to check your message

queue for each system. As a system administrator, you need to be aware of inquiry messages as they

occur across your system.

You can set up a message monitor to display any inquiry messages for your message queue that occur on

any of your iSeries systems. The monitor opens and displays the message as soon as it is detected.

 Configuration example

To set up a message monitor, you need to define the types of messages you would like to watch for and

what you would like the monitor to do when these messages occur. To set up a message monitor that

accomplishes this goal, complete the following steps:

1. In iSeries Navigator, expand Management Central > Monitors, right-click Message monitor, and

select New Monitor...

2. On the General page, enter a name and description for this monitor.

3. Click the Messages tab, and enter the following values:

a. For Message queue to monitor, specify QSYSOPR.

b. On the Message set 1 tab, select Inquiry for Type, and click Add.

c. Select Trigger at the following message count, and specify 1 message.
4. Click the Collection Interval tab, and select 15 seconds.

5. Click the Actions tab, and select Open monitor.

6. Click the Systems and groups tab, and select the systems and groups you would like to monitor for

inquiry messages.

7. Click OK to save the new monitor.

8. From the list of message monitors, right-click the new monitor and select Start.

 Results

The new message monitor displays any inquiry messages sent to QSYSOPR on any of the iSeries servers

that are monitored.

Note: This monitor responds to only inquiry messages sent to QSYSOPR. However, you can include two

different sets of messages in a single monitor, and you can have several message monitors that run at the

same time. Message monitors can also carry out OS/400(R) commands when specified messages are

received.

94 iSeries: Performance

Graph history

Graph history provides a graphical view of performance data collected over days, weeks, months, or

years with “Collection Services” on page 32. You do not need to have a system monitor running to view

performance data. As long as you use Collection Services to collect data, you can view the Graph History

window.

v “Graph history concepts”
The amount of historical data available to graph history depends largely on the collection retention

value in Collection Services, and on whether “IBM Performance Management for eServer iSeries” on

page 96(TM) is enabled. See this topic for a description of the available options for managing and

displaying records of performance data.

v “Use graph history”
Graph history is accessible through iSeries Navigator. See this topic for step-by-step instructions.

For more information about monitoring system performance, see the “Track performance” on page 15

topic.

Graph history concepts

Graph history displays data contained in the collection objects created by “Collection Services” on page

32. Therefore, the type and amount of data available is dependent on your Collection Services

configuration.

The amount of data that is available to be graphed is determined by the settings that you selected from

the Collection Services properties, specifically the collection retention period. Use iSeries(TM) Navigator to

“Activate PM iSeries” on page 99 over multiple systems. When you activate PM iSeries, you can use the

graph history function to see data that was collected days ago, weeks ago, or months ago. You go beyond

the real-time monitor capabilities, and have access to summary or detailed data. Without PM iSeries

enabled, the graph data field supports 1 to 7 days. With PM iSeries enabled, you define how long your

management collection objects remain on the system:

v Detailed data
The length of time that management collection objects remain in the file system before they are deleted.

You can select a specific time period in hours or days, or you can select Permanent. If you select

Permanent, the management collection objects will not be automatically deleted.

v Graph data
The length of time that the details and properties data that is shown in the Graph History window

remains in the system before it is deleted. If you do not start PM iSeries, you can specify one to seven

days. If you do start PM iSeries, you can specify 1 to 30 days. The default is one hour.

v Summary data
The length of time that the data collection points of a graph can be displayed in the Graph History

window or remain in the system before they are deleted. No details or properties data is available. You

must start PM iSeries to enable the summary data fields. The default is one month.

Use graph history

Graph history is included in iSeries(TM) Navigator. To view the graph history of the data that you are

monitoring with “Collection Services” on page 32, do these steps:

1. Follow the iSeries Navigator online help for starting Collection Services on either a single system or

on a system group.

2. From the Start Collection Services - General page, select Start IBM(R) Performance Management for

eServer(TM) iSeries if needed.

3. Make changes to the other values for the collection retention period.

4. Click OK.

5. You can view the graph history by right-clicking either a system monitor or a Collection Services

object and selecting Graph History.

6. Click Refresh to see the graphical view.

Performance 95

Once you have launched a graph history, a window displays a series of graphed collection points. These

collection points on the graph line are identified by three different graphics that correspond to the three

levels of data that are available:

v A square collection point represents data that includes both the detailed information and properties

information.

v A triangular collection point represents summarized data that contains detailed information.

v A circular collection point represents data that contains no detailed information or properties

information.

IBM Performance Management for eServer iSeries

IBM(R) Performance Management for eServer(TM) iSeries(TM) (PM

iSeries or PM iSeries) is

automated and self-managing, which allows for easy use. PM iSeries automatically triggers Collection

Services to gather the nonproprietary performance and capacity data from your server and then sends the

data to IBM. All collection sites are network secure, and the time of the transfer is completely under your

control. When you send your data to IBM, you eliminate the need to store all the trending data yourself.

IBM stores the data for you and provides you with a series of “PM iSeries reports” on page 111 and

graphs that show your server’s growth and performance. You can access your reports electronically using

a traditional browser. These reports can help you plan for and manage system resources through ongoing

analysis of key performance indicators.

The IBM Operational Support Services for PM iSeries offering includes a set of reports, graphs, and

profiles that help you maximize current application and hardware performance (by using performance

trend analysis). This offering also helps you better understand (by using capacity planning) how your

business trends relate to the timing of required hardware upgrades such as CPU or disk. Capacity

planning information is provided by trending system utilization resources and throughput data, which

can be thought of as an early warning system for your servers. Think of PM iSeries as a virtual resource

that informs you about the “health” of your system.

PM iSeries uses less than 1 percent of your central processing unit (CPU). It uses approximately 58 MB of

disk space, which depends on your hardware model and the size of your collection intervals.

“PM iSeries concepts”
Learn about the functions and benefits PM iSeries can provide and about important implementation

considerations.

“Configure PM iSeries” on page 98
To start using PM iSeries, you need to activate it, set up a transmission method that allows you to

send data and receive reports, and, finally, customize data collection and storage.

“Manage PM iSeries” on page 108
Now that you have set up your network, you can perform a variety of tasks with PM iSeries.

“PM iSeries reports” on page 111
The iSeries server can be configured to send Collection Services data directly to IBM with PM

iSeries. IBM then generates several reports that you can either view on the Web or have sent directly

to you. Activating PM iSeries to automatically generate your reports not only saves you time and

resources, but also allows you to plan ahead by forecasting your future growth needs.

PM iSeries concepts

PM iSeries(TM) uses Collection Services to gather the nonproprietary performance and capacity data from

your server and then sends the data to IBM(R). This information can include CPU utilization and disk

capacity, response time, throughput, application and user usage. When you send your data to IBM, you

eliminate the need to store all the trending data yourself. IBM stores the data for you and provides you

with a series of reports and graphs that show your server’s growth and performance. You can access your

reports electronically using a traditional browser.

96 iSeries: Performance

“Benefits of PM iSeries”
PM iSeries can help make managing system resources and capacity planning significantly easier.

Learn more specific ways to utilize PM iSeries.

“Operational Support Services for PM iSeries offering”
PM iSeries offers a wide range of options. Use this information to decide which combination of

services best suits your needs.

“Data collection considerations for PM iSeries”
PM iSeries uses “Collection Services” on page 32 to gather performance data. Learn how PM iSeries

and Collection Services work together to provide the data you need.

Benefits of PM iSeries: When you use the PM iSeries(TM) function, you receive these benefits:

v Helps you avoid unfortunate surprises.
You avoid disappointing surprises. You are in control over managing the growth and performance of

your system, which means that you manage the system. Your system does not manage you.

v Saves you time.
You eliminate the labor intensive and expensive tasks of collecting and reporting performance data by

doing it automatically. This benefit gives you the advantage of focusing your resources on managing

your system and applications.

v Allows you to plan ahead for maximum efficiency.
You can proactively plan for the financial requirements to keep your system running at its peak

efficiency.

v Provides easy to understand information.
You understand the information, which in turn makes it easy for you to present to senior management

when asked the question, “Why do we need to upgrade?”

v Allows you to forecast the future.
You can make projections of your data processing growth based on factual trend information.

v Allows you to identify system problems.
PM iSeries data enables you to identify performance bottlenecks.

v Allows you to help estimate the size of your next upgrade.

You can upload PM iSeries data to the Workload Estimator for iSeries

for sizing your next

upgrade.

See “IBM Performance Management for eServer iSeries” on page 96 to learn more about what you need

to do before using PM iSeries.

Operational Support Services for PM iSeries offering: You can receive your graphs and reports either

electronically or in printed form. You can receive electronic graphs monthly. You receive printed graphs

monthly or quarterly. The PM iSeries(TM) service fee varies depending on how often you choose to receive

your performance information and your choice of format, electronically or in printed form. Some of these

report options are free, and some are not. The marketing and services organizations in each country can

give you details on the support that is available. Visit the PM eServer iSeries Web site

for

information on the free and fee options.

See “IBM Performance Management for eServer iSeries” on page 96 to learn more about what you need

to do before using this function.

Data collection considerations for PM iSeries: The most important requirement for establishing an

accurate trend of the system utilization, workload, and performance measurements is consistency. Ideally,

performance data should be collected 24 hours per day. Because of the relationship between PM

iSeries(TM) and Collection Services, you need to be aware of the implications that can occur when you are

using PM iSeries.

Performance 97

http://www.ibm.com/eserver/iseries/pm400/news/newshome.htm
http://www.as400.ibm.com/pm400/

Here are some guidelines to help you define your collections when you are using PM iSeries:

v Select the QMPGDATA library to store your data.
The Location to store collections field uses the default value /QSYS.LIB/QMPGDATA.LIB when PM

iSeries is active. If you replace QMPGDATA with some other value, PM iSeries cycles the collection on

the hour and changes it back to QMPGDATA. If you want to collect data into a different library,

change where PM iSeries looks for data. Type GO PM400 from the command line, select option 3

(Work with Customization), and change the library name.

v Collect data continuously with Collection Services.
PM iSeries satisfies this requirement by collecting data 24 hours a day with Collection Services. PM

iSeries collects performance data at 15-minute intervals. PM iSeries uses the 15-minute interval default,

but does not change what the interval is set to. A 15-minute interval is the recommended interval.

v Select the Standard plus protocol profile.
Standard plus protocol is the default value for the collection profile. The collection profile indicates

what data is collected. The data categories in the standard plus protocol profile correspond to the *ALL

value for the DATA parameter on the Start Performance Monitor (STRPFRMON) command. If you

change this to any other value, PM iSeries changes it back on the hour. This is true even if you select

Custom and include all categories. The change takes effect immediately. The collection does not cycle

(unless required to do so for other reasons). This action is done to gather enough information for PM

iSeries reports.

v Avoid making interim changes to collection parameters when PM iSeries is active.
For example, when you activate PM iSeries, the Create database files during collection field is

checked as the default value. If you change this, PM iSeries changes it back to the default value on the

hour. The change takes effect immediately. The collection does not cycle (unless required to do so for

other reasons).

v Ending Collection Services
You can end Collection Services at any time from iSeries Navigator. If you end Collection Services, the

following considerations apply when PM iSeries is running:

– The PM iSeries scheduler starts Collection Services at the beginning of the next hour.

– Days with little or no data collected are not included in trend calculations. Therefore, you should

not interrupt Collection Services often.

If you do not want to start Collection Services, you can “Turn off PM iSeries momentarily” on page 110.

Configure PM iSeries

PM iSeries(TM) automates the collection of performance data through Collection Services. You can specify

which library to put the data in as long as the library resides on the base auxiliary storage pool (ASP).

The library should not be moved to an independent auxiliary storage pool because an independent

auxiliary storage pool can be varied off, which stops the PM iSeries collection process. PM iSeries creates

the library during activation if the library does not already exist.

To begin using PM iSeries, you need to perform the following tasks:

“Activate PM iSeries” on page 99
PM iSeries ships with OS/400(R), but you must activate it to use its collecting capabilities.

“Determine which PM iSeries transmission method to use” on page 99
Determine how you want to send data. You can either gather your data with the Management

Central inventory function and send the data with Electronic Service Agent (Extreme Support) or

you can have PM iSeries gather the data and send it over the SNA protocol.

“Customize PM iSeries” on page 106
Now that you have set up your network, you may need to customize PM iSeries to fit your needs.

98 iSeries: Performance

Activate PM iSeries: You must start PM iSeries(TM) to take advantage of its data collecting capabilities.

You can start PM iSeries by using any one of the following methods:

Use iSeries Navigator
Use iSeries Navigator to activate PM iSeries over multiple systems. When you activate PM iSeries, you

can use the “Graph history” on page 95 function to see data that was collected days ago, weeks ago, or

months ago. You go beyond the real-time monitor capabilities. You have access to summary data or

detailed data. Without PM iSeries enabled, the graph data field supports 1 to 7 days. With PM iSeries

enabled, you choose the length of time to retain the data.

To start PM iSeries from iSeries Navigator, do the following steps:

1. In iSeries Navigator, expand the system where you want to start PM iSeries.

2. Expand Configuration and Service.

3. Right-click Collection Services.

4. Select PM eServer iSeries.

5. Select Start.

6. Select the systems on which you want to start PM iSeries.

7. Click OK.

Reply to message CPAB02A in the QSYSOPR message queue
When the QSYSWRK subsystem starts, this message asks if you want to activate PM iSeries.

1. From the character-based interface, reply with a G to the message in QSYSOPR “Do you want to

activate PM eServer iSeries? (I G C).” QSYSOPR message queue receives the message that PM

eServer(TM) iSeries is activated.

2. Update your contact information. Issue the GO PM400 command and specify option 1.

Issue the Configure PM eServer iSeries (CFGPM400) command
From the character-based interface, you can issue the Configure PM eServer iSeries (CFGPM400)

command.

You can proceed to the next step in the setup process, which is to “Determine which PM iSeries

transmission method to use”(R).

For an overview of iSeries performance topics, see “Performance,” on page 1.

Determine which PM iSeries transmission method to use: Since V5R1, the PM iSeries(TM) transmission

process has taken advantage of the network configuration that you perform with Management Central to

set up a central system and endpoint systems. However, you can still use the character-based interface to

configure PM iSeries. Choose which transmission method you want to use:

v “Send PM iSeries(TM) data with Service Agent over Extreme Support (Universal Connection)” on page

100
If you choose this transmission method, you need to configure PM iSeries to have data gathered by the

Management Central inventory function. Perform this configuration for PM iSeries if your servers have

V4R5 or later of the operating system installed (you must also have the Universal Connection fixes

applied). You would choose this method if you use Extreme Support.

v “Sending data with SNA protocol” on page 100
If you choose this transmission method, you need to configure PM iSeries by using the character-based

interface. PM iSeries gathers your data and transmits it by using SNA. Perform this configuration for

PM iSeries if your servers have OS/400(R) V4R5 or earlier installed.

Once you have implemented which transmission method you want to use, you are ready to do the other

tasks to “Manage PM iSeries” on page 108.

Performance 99

Send PM iSeries(TM) data with Service Agent over Extreme Support (Universal Connection): PM iSeries uses

Collection Services to gather the nonproprietary performance and capacity data from your server. After

you have collected this data, you can use Electronic Service Agent(TM) over Extreme Support to send the

data to IBM(R).

To take advantage of these capabilities, you must have V5R1 or V5R2 installed on your servers or V4R5

with the Universal Connection fixes applied. Here are the steps to follow to configure for PM iSeries:

1. “Activate PM iSeries” on page 99
You must start PM iSeries to take advantage of its data collecting capabilities.

2. Set up your Management Central network.
Define which server is your central system and which servers are your endpoint systems. You can use

this network hierarchy to send your data from your endpoint systems to a central location before

sending the data to IBM.

3. Connect to IBM to transmit your data with the Universal Connection.
This is the connection that Management Central will use to transmit the PM iSeries data to IBM. In

previous releases, you used the electronic customer support (ECS) connection that ran over SNA.

When you use the Universal Connection, you can transmit your data over TCP/IP.

4. “Gather PM iSeries performance data”
Use the Management Central inventory function to gather your data.

5. Send your data to IBM.
Use the Electronic Service Agent, which is available under Extreme Support in the Management

Central hierarchy, to send your data to IBM. The Electronic Service Agent uses the Universal

Connection.

You can also “Sending data with SNA protocol.”

Once you have configured PM iSeries, you are ready to do the other tasks to “Manage PM iSeries” on

page 108.

Gather PM iSeries performance data: You can use Management Central to gather your PM iSeries(TM)

performance data if you have done the following tasks:

1. “Activate PM iSeries” on page 99

2. Configured the Universal Connection

3. Set up your Management Central network

4. Verified that the Electronic Service Agent is installed on your system or accessible from your system.

To gather PM iSeries performance data on an endpoint system or system group, follow these steps:

1. In iSeries Navigator, expand Management Central.

2. Expand Endpoint Systems or System Groups.

3. Right-click an endpoint system or a system group, and select Inventory.

4. Select Collect.

5. Select one or more inventories to collect. In this case, you would select PM iSeries performance data.

6. If you want an action to run on the central system when collection completes, select the action from

the list.

7. Click OK to start collecting the data immediately or click Schedule to specify when to collect the

data.

Once you have configured your servers, you are ready to do the other tasks to “Manage PM iSeries” on

page 108.

Sending data with SNA protocol: If you choose not to take advantage of “Send PM iSeries(TM) data with

Service Agent over Extreme Support (Universal Connection),” you can still use the character-based

100 iSeries: Performance

interface to transmit data. PM iSeries(TM) asks you a series of questions about the configuration and use

of your servers. The Configure PM eServer iSeries display asks you questions about how you want your

servers to send and receive PM iSeries performance data. The first part of the process involves setting up

your network. The second part asks you how you want to transmit your data. When you use the

character-based interface, you can use a direct dial line to transmit data.

Follow these steps to send data with SNA:

1. “Activate PM iSeries” on page 99
You must start PM iSeries to take advantage of its data collecting capabilities.

2. Select which network configuration you want to use.

Determine which network configuration you will use to transmit data. Choose how you connect to

IBM(R) by using “Set a direct dial line for PM iSeries” on page 107, an existing Internet Service

Provider (ISP), or a virtual private network (VPN). If you want to use ISP or VPN, you must

configure a Universal Connection.

If you decide to use the direct dial line to report data to IBM, you have several choices as to how you

configure your network. Select which configuration is appropriate for your network, and perform the

steps outlined for that particular configuration from the Configure PM eServer iSeries display:

v As a “PM iSeries network for a single server” that sends its data directly to IBM.

v As a “PM iSeries network for a host server” on page 102, which means that you want your server

to receive performance data from other servers (remote servers) and then forward the data to IBM.

The host server cannot be at a release level that is earlier than other servers. In other words, the

host server must be at the same release level or later than other servers.

v As a “PM iSeries network for a remote server” on page 102, which means that you can send

performance data to a host server. You identify on the Configure PM eServer iSeries display that

you need a remote server, and then use option 5 (Work with remote iSeries systems) from the PM

eServer iSeries menu to define your remote servers.
3. “Work with remote servers” on page 103

If you choose to set up your network for a host server, you need to identify those servers that will

send their data to your host server. You can ignore this step if you are using a single server or a

remote server.

4. “Customize PM iSeries” on page 106
After you have configured your network, you need to establish the global parameters for the

operation of the PM iSeries software. You need to define the PM iSeries data telephone number if you

would like to connect to IBM with a direct dial line.

Once you have configured your servers, you are ready to do the other tasks for “Manage PM iSeries” on

page 108.

PM iSeries network for a single server: A single server sends its data directly to IBM(R). Here are the steps

that you need to follow to configure PM iSeries(TM) for a single server only if PM iSeries gathers data and

transmits data over SNA. From the Configure PM eServer iSeries (CFGPM400) display on your server:

1. Type CFGPM400 from the command line.

2. Specify *YES for the Send performance data to IBM field.

3. Specify *NO for the Receive performance data field.

4. Accept the default library of QMPGDATA.

5. If you specify *YES for Send performance data to IBM, you see additional information that indicates

whether the appropriate communications objects exist. If the objects do not exist, PM iSeries creates

the communications objects for you for transmission. Respond appropriately to the additional

displays.

6. Type your company’s contact information on the Work with Contact Information display.

Performance 101

If you decide that the single server setup is not what you want, you can choose another “Sending data

with SNA protocol” on page 100.

Once you have configured your servers, you are ready to do the other tasks to “Manage PM iSeries” on

page 108.

PM iSeries network for a host server: A host server receives performance data from other servers and then

forwards the data to IBM(R). Here are the steps that you need to follow to configure PM iSeries(TM) for a

host server only if PM iSeries gathers data and transmits data over SNA:

1. From the Configure PM eServer(TM) iSeries display on your host server

v Type CFGPM400 from the command line.

v Specify *YES for the Send performance data to IBM field.

v Specify *YES for the Receive performance data field.

v Accept the default library of QMPGDATA.
2. From the Work with Remote iSeries Systems display on your host server

v Press F6 (Create) to identify which servers will send their data to your host server.

v Complete the fields and press Enter.

Note: The following situation occurs only if PM iSeries gathers data and transmits data over SNA. If you

have a network of systems, it is recommended that you use the Universal Connection and Management

Central in iSeries Navigator to gather and transmit the data for those systems.

PM iSeries automatically schedules the transmission of data from the primary server to IBM the day after

data is received from a remote server. If the automatic scheduling does not fit your work management

scheme, you can manually schedule the transmission of the data from the primary server.

Here is a tip that you should keep in mind when scheduling the transmission of your data. Throughout

the week, evenly schedule the transmission of data to the primary server. This action minimizes the

performance impact on the primary server. For example, in a network of twelve servers, you might have

three groups of four systems. You can schedule each group to send their data on Monday, Wednesday,

and Friday. This evenly distributes the amount of data that is sent to the primary server.

If you decide that the host server setup is not what you want, you can choose another “Sending data

with SNA protocol” on page 100.

Once you have configured your servers, you are ready to do the other tasks to “Manage PM iSeries” on

page 108.

PM iSeries network for a remote server: A remote server sends its performance data to a host server. Here

are the steps that you need to follow to configure PM iSeries(TM) for a remote server only if PM iSeries

gathers data and transmits data over SNA. From the Configure PM eServer iSeries display (CFGPM400)

on your remote server, do these steps:

1. Type CFGPM400 from the command line.

2. Specify *NO for the Send performance data to IBM field.

3. Specify *NO for the Receive performance data field.

4. Accept the default library of QMPGDATA.

Note: If you have a network of systems, it is recommended that you use the inventory function of iSeries

Navigator to gather your data and then transmit the data for those systems over the Universal

Connection.

If you decide that the remote server setup is not what you want, you can choose another “Sending data

with SNA protocol” on page 100.

102 iSeries: Performance

Once you have configured your servers, you are ready to do the other tasks to “Manage PM iSeries” on

page 108.

Work with remote servers: In some sites, a host server in a network sends the required performance data

to IBM(R) for processing. When you use a host server network, you have the other servers in the network

send their performance data to this host server for transmission to IBM. To set up your network to use a

host server, you must identify the other remote servers and set the schedule for their data transmission.

The Work with Remote iSeries(TM) Systems display enables you to define these other servers.

Notes:

1. You do not have to use this display if you are setting up your network as a remote server or as a

single server. You perform this task only if PM iSeries gathers data and transmits data over SNA.

2. If you have a network of systems, it is recommended that you use the inventory function of iSeries

Navigator to gather your data and then transmit the data for those systems over the Universal

Connection.

Follow these steps to define your remote servers:

1. Type GO PM400 from the command line.

2. Type a 5 (Work with remote iSeries systems) from the PM eServer(TM) iSeries Menu and press Enter.

You do not see a remote server displayed initially. You must create a new remote location.

3. Create a new remote location by pressing F6 (Create).

4. Record the values for the following information. Use the Display Network Attributes (DSPNETA)

command to display these values from the remote system.

v Local network ID

v Default local location

The Work with Remote iSeries Systems display shows a list of remote servers. This list includes the

status for the servers (active or inactive) and the descriptions for each server.

5. Create or change the description for a remote site server by using the PM eServer iSeries Remote Site

Maintenance display or the Change Remote Site iSeries display. The remote location name must be

unique between remote servers.

PM iSeries automatically schedules the transmission of data from the primary server to IBM the day after

data is received from a remote server. If the automatic scheduling does not fit your work management

scheme, you can manually schedule the transmission of the data from the primary server. To manually

schedule the transmission of data, see “Schedule jobs with PM iSeries” on page 109

The PM iSeries software assumes that you defined the Advanced Peer-to-Peer Networking (APPN) link

between the server that receives data (the host server) and the server that sends data (the remote server).

If your system has the system value QCRTAUT (Create default public authority) set to *EXCLUDE or

*USE, you should see “Create a device description for PM iSeries” on page 105 for information on how to

define your controller descriptions. If your network does not meet these assumptions, see “Work with

remote servers in a non-APPN network” for information about creating device pairs to support the

connection to each remote server.

Once you have defined your remote servers, you are ready to “Customize PM iSeries” on page 106 to use

a specific line connection.

Work with remote servers in a non-APPN network: The primary server receives PM iSeries(TM) data from

other servers and then sends the data to IBM(R). The remote server sends PM iSeries data to the primary

server. The following information assumes that the controllers that are referred to have previously been

defined.

Performance 103

You need to create device pairs to support the connection to each remote server only if PM iSeries gathers

data and transmits data over SNA.

1. Use the Create Device Description (APPC) (CRTDEVAPPC) command. On the remote server, type

CRTDEVAPPC. Press F4 to prompt for the parameters, and define the values with the following

information:

 Remote system

DEVD(Q1PLOC) Specifies the name of the device description.

RMTLOCNAME(Q1PLOC) Specifies the name of the remote location.

ONLINE(*YES) Specifies whether this device is varied online when the

system is started or restarted.

LCLLOCNAME(Q1PRMxxx) Specifies the local location name. Q1PRMxxx matches the

RMTLOCNAME of the primary server, where xxx is

unique for each remote location.

CTL(yyyyyy) Specifies the name of the attached controller, where

yyyyyy is a controller that attaches to the primary server.

MODE(Q1PMOD) Specifies the mode name.

APPN(*NO) Specifies if the device is APPN-capable.

2. Specify the following information on the primary server. At the command line, type CRTDEVAPPC.

Press F4 to prompt for the parameters, and define the values with the following information:

 Primary server

DEVD(Q1PRMxxx) Specifies the name of the device description. The name

that is used here matches the device description name for

the remote system.

RMTLOCNAME(Q1PRMxxx) Specifies the name of the remote location. The name that

is used here matches the LCLLOCNAME value of the

remote server, where xxx is unique for each remote

location.

ONLINE(*YES) Specifies whether this device is varied online when the

system is started or restarted.

LCLLOCNAME(Q1PLOC) Specifies the local location name. This value matches the

RMTLOCNAME of the remote server.

CTL(aaaaaa) Specifies the name of the attached controller, where

aaaaaa is a controller that attaches to the remote server.

MODE(Q1PMOD) Specifies the mode name.

APPN(*NO) Specifies if device is APPN-capable.

3. Vary on the devices (Vary Configuration (VRYCFG) command) after you define the APPC devices. On

the remote server, type VRYCFG. Press F4 to prompt for the parameters.

104 iSeries: Performance

Vary on remote system

CFGOBJ(Q1PLOC) Specifies the configuration object.

CFGTYPE(*DEV) Specifies the type of configuration object.

STATUS(*ON) Specifies the status

4. Type option 5 on the PM eServer(TM) iSeries Menu to add Q1PRMxxx as a remote server. See “Work

with remote servers” on page 103 for instructions on how to add a remote server.

Now that you have finished configuring PM iSeries, see “Manage PM iSeries” on page 108 for other tasks

that you can perform with PM iSeries.

Create a device description for PM iSeries: The following steps are necessary on each remote server that has

the Create default public authority (QCRTAUT) system value set to *EXCLUDE or *USE. If QUSER does

not have *CHANGE authority to device description Q1PLOC, remote transmissions will fail. These steps

ensure that the device will not be created or deleted automatically.

Note: This task is necessary only if PM iSeries(TM) gathers data and transmits data over SNA.

If you allow the device to be created automatically, the device description is created with PUBLIC

*EXCLUDE or *USE authority, depending on the value set for QCRTAUT. Whether a device can be

created or deleted automatically is controlled by the controller. Refer to the following commands to

determine how these parameters are defined on the system:

v Create Controller Description (APPC) (CRTCTLAPPC) command

v Change Controller Description (APPC) (CHGCTLAPPC) command

v Display Controller Description (DSPCTLD) command

For systems that are not configured to use APPN, see “Work with remote servers in a non-APPN

network” on page 103 for information on how to create the device description.

The following information assumes that the controller that will be used to communicate with the host

server was defined previously on the remote server.

On the remote server, re-create device description Q1PLOC:

 VRYCFG CFGOBJ(Q1PLOC)

 CFGTYPE(*DEV)

 STATUS(*OFF)

 DLTDEVD DEVD(Q1PLOC)

 CRTDEVAPPC DEVD(Q1PLOC)

 RMTLOCNAME(Q1PLOC)

 ONLINE(*NO)

 LCLLOCNAME(name of remote system)

 RMTNETID(remote netid of primary (or central) system)

 CTL(name of controller that the device will be attached to)

 AUT(*EXCLUDE)

 CRTOBJAUT OBJ(Q1PLOC)

 OBJTYPE(*DEVD)

 USER(QUSER)

 AUT(*CHANGE)

 VRYCFG CFGOBJ(Q1PLOC)

 CFGTYPE(*DEV)

 STATUS(*ON)

Performance 105

Now that you have finished configuring PM iSeries, see “Manage PM iSeries” on page 108 for other tasks

that you can perform with PM iSeries.

Customize PM iSeries: The Work with PM eServer(TM) iSeries(TM) Customization display provides you

with the ability to:

Establish global parameters for the operation of PM iSeries software
The global parameters allow you to customize the following items. See the online help for a

description of these fields:

v Priority limits

v Trend and shift schedules

v Performance data library

v Removal specifications

Define your PM iSeries data telephone number
Outside the United States and Canada, you must provide PM iSeries with the telephone number of

the IBM(R) location that will receive your data. For most locations, PM iSeries tries to select the

correct telephone data number for your location when you initiate the configure PM iSeries process.

“Vary a line off and on with PM iSeries” on page 107
The PM eServer iSeries Line Control display allows PM iSeries to vary the line off, transmit the PM

iSeries data, and then put the line back in the connect pending state.

To customize the global parameters, do the following steps:

1. Type GO PM400 from the command line.

2. Type a 3 from the PM eServer iSeries menu to display the Work with PM eServer iSeries

Customization display and press Enter.

If you are using Collection Services to gather your PM iSeries data, you should take into account some

“Data collection considerations for PM iSeries” on page 97.

See “Manage PM iSeries” on page 108 for other tasks that you can perform with PM iSeries.

Verify the PM iSeries data number: If your server is using a direct dial connection to IBM(R), you must

verify that the PM iSeries(TM) telephone number is correct. The telephone number must also contain the

correct prefixes for your line.

Note: This is for SNA transmissions only.

To check the format of the telephone number of the electronic customer support line, do the following

steps:

1. Type

DSPDTAARA DTAARA(QUSRSYS/QESTELE)

and press Enter.

2. Determine the connection number prefix found in offset 0. For example, if offset 0 is ’T9:1800xxxxxxx’

the prefix is T9:.

3. Type

DSPDTAARA DTAARA(QUSRSYS/Q1PGTELE)

and press Enter.

4. Offset 0 (zero) is the dialing string that will be used. (The other numbers will not be used.)

106 iSeries: Performance

5. If you use your ECS line to order PTFs, you can compare the format in offset 0 (zero) to the format

used for the ECS line, CALL QESPHONE, make a note of the string being used, and compare it to the

value found in step 2.

The telephone numbers will be different but the prefix should be the same (that is, SST9:1800...,

SST:1800...and so forth).

If you need to change your telephone number, use the Change Data Area (CHGDTAARA) command:

Type CHGDTAARA, where DTAARA is Q1PGTELE, LIB is QUSRSYS, the substring starting position is

*ALL, and the New value is ’SST:18005475497’

Note: The new value should be your dialing prefix, followed by 18005475497 for U.S.A and Canada.

Now that you have completed your PM iSeries configuration, see “Manage PM iSeries” on page 108 for

the tasks that you can perform.

Set a direct dial line for PM iSeries: For most locations, PM iSeries(TM) tries to select the correct data

telephone number for your location. You should always “Verify the PM iSeries data number” on page 106

is correct. If you do not have information that contains the PM iSeries data telephone number and the

PM iSeries support number, contact your local IBM(R) support personnel. They can provide you with the

proper telephone numbers.

Note: This telephone number is not required if you are transmitting data through the Universal

Connection. You need this number only if you are using the direct dial line.

To define the PM iSeries data telephone number or to change the number, do the following steps:

1. Type GO PM400 from the command line.

2. Type a 3 from the PM eServer(TM) iSeries Menu to display the Work with PM eServer iSeries

Customization display and press Enter.

3. On this display, scroll forward until you see the section of the display that shows you the telephone

number fields.

4. Type the correct dialing sequence in the IBM PM eServer iSeries phone number field. For many IBM

modems, you are required to use the colon (:) character for dial tone.

Vary a line off and on with PM iSeries: Sometimes the line that PM iSeries(TM) uses is in the connect

pending state. This state does not allow PM iSeries to access the line to transmit data. The PM eServer(TM)

iSeries Line Control display allows PM iSeries to vary off the line, transmit the data, and then put the

line back in the connect pending state. When you use this display, you can change the PM iSeries

transmission task (Q1PCM1) to check for line status and vary off the appropriate line. Once the

transmission is complete, the same line is placed in a connect pending state.

Note: This task is necessary only if PM iSeries gathers data and transmits data over SNA.

To vary off and on a line, do the following steps:

1. Start the PM iSeries line monitoring function by typing PMLINMON from the command line. You

should see the PM eServer iSeries Line Control display.

2. Read the warning that is shown on the first display and press Enter.

3. Define the line, controller, and device combinations that PM iSeries needs to vary off.

4. Use the prompt Do you want PM eServer iSeries automatic line control active? as a master control

switch for the function. If you specify YES, the PM iSeries function is active. If you specify NO, the

function is disabled.

If you specify NO, you do not need to define the line control list again when you specify YES. You

can vary off and on a line by specifying the line only. You can vary off and on a line, controller, and

device by specifying all three descriptions.

Performance 107

5. Verify the line, controller, and device that you defined. Press Enter to see a summary of your choices.

6. Press Enter to confirm your choices or press F12 to return to the previous display to change your

entries.

You can also set up PM/400 line control by using the Configure PM eServer iSeries (CFGPM400)

command.

See “Manage PM iSeries” for additional tasks that you can perform with PM iSeries.

Manage PM iSeries

After you have set up your network to use PM iSeries(TM), you can perform the following tasks:

“Deactivate PM iSeries”
Learn how you can stop PM iSeries.

“Change PM iSeries contact information” on page 109
Learn how to change your contact information from the original settings.

“Schedule jobs with PM iSeries” on page 109
Learn how to schedule jobs with PM iSeries.

“Omit items from PM iSeries analysis” on page 110
Learn how to omit jobs, users, and communications lines when performing an analysis with PM

iSeries.

“Turn off PM iSeries momentarily” on page 110
Learn how you can stop PM iSeries momentarily.

“Display PM iSeries status” on page 110
Learn how to use iSeries Navigator or the PM eServer(TM) iSeries menu to display PM iSeries status.

“View PM iSeries reports” on page 111
See examples of the PM iSeries reports and explanations of how to interpret those reports.

“Graph history” on page 95
Graph history provides a graphical view of performance data that was collected over a specified

period of time. Find out how to view this data.

Deactivate PM iSeries: To stop PM iSeries(TM) from running, you can use either of the following

methods:

With iSeries Navigator

Perform the following steps:

1. In iSeries Navigator, expand the system where PM iSeries is running.

2. Expand Configuration and Service.

3. Right-click Collection Services.

4. Select PM eServer iSeries.

5. Select Stop.

6. Select the systems on which you want to stop PM iSeries.

7. Click OK.

With an API

108 iSeries: Performance

Use the End PM eServer iSeries (Q1PENDPM) API to deactivate PM iSeries.

See “Manage PM iSeries” on page 108 to learn about other tasks that you can perform.

Change PM iSeries contact information: During the configuration of the PM iSeries(TM) software, you

identified the contact person and provided mailing information for your organization. If at a later time,

you need to update the information, use the Work with Contact Information option to change that

information. To change the contact information, do the following steps:

1. Type GO PM400 from the command line.

2. Type a 1 from the PM eServer(TM) iSeries Menu and press Enter. The Work with Contact Information

display appears.

3. Change the contact information, as appropriate, and press Enter.

See “Manage PM iSeries” on page 108 for other tasks that you can perform.

Schedule jobs with PM iSeries: Integral to the PM iSeries(TM) software is a scheduler that automatically

starts the jobs that are necessary to support the PM iSeries performance data collection and analysis.

Part of the PM iSeries software activation process includes starting a job that is called Q1PSCH. This job,

in turn, starts other jobs as shown in the following table:

To access the PM iSeries scheduled jobs, do the following:

1. Type GO PM400 from the command line.

2. Type a 2 from the PM eServer(TM) iSeries Menu and press Enter. The Work with Automatically

Scheduled Jobs display appears.

3. You can change the status for each job from active to inactive. Type a 2 (Change) next to the job that

you want to change and press Enter. You are shown the Change Automatically Scheduled Jobs

display.

The following table shows you a list of the possible PM iSeries jobs.

 PM iSeries scheduled jobs

Job Schedule Function

Q1PTEST At activation Verifies that PM iSeries is activated

and then goes to inactive status.

Q1PCM1 Weekly Transmits the reduced performance

data to IBM(R). This job is active only

if you are using a direct dial line.

Q1PCM2 Daily Varies communications offline.

Q1PPMSUB Hourly Ensures that Collection Services is

collecting data.

Q1PDR Daily Performs data reduction and purges

performance data.

Q1PPG Monthly Purges reduced performance data.

Q1PCM3 As needed Varies communications offline after

direct dial transmission fails to vary

lines off.

Q1PCM4 As needed Accesses the PM iSeries data from

remote servers. This job is started

only if you have added remote

systems by using option 5 from the

PM eServer iSeries Menu.

Performance 109

Q1PPMCHK Every 4 hours Verifies that data collection is active.

Q1PMONTH Monthly Allows for monthly transmission if

you require an additional

transmission during the month. The

default value is set to inactive. This

job is available only if you are using

a direct dial line.

See “Manage PM iSeries” on page 108 to learn about other tasks that you can perform.

Omit items from PM iSeries analysis: The PM iSeries(TM) software application summary includes an

analysis of the top ten items for batch jobs, users, and communication lines. However, some jobs, users,

or communication lines are not appropriate for such an analysis. For example, you may want to exclude

jobs with longer than normal run times, such as autostart jobs, in the run-time category.

You can omit groups of batch jobs and users from the top ten analysis by using the generic omit function.

For example, to omit all jobs starting with MYAPP specify: MYAPP*

To work with omissions, do the following steps:

1. Type GO PM400 from the command line.

2. Type a 4 from the PM eServer(TM) iSeries Menu and press Enter. The Work with Top Ten Omissions

display appears.

3. Type the appropriate option number depending on which item you want to omit

v Type a 1 to work with jobs.

v Type a 2 to work with users.

v Type a 3 to work with communications lines.
4. Type a 1 in the appropriate field to omit either a user or a job from a particular category. In the case

of a communications line, type the name of the line and then type a 1 in the appropriate field.

See “Manage PM iSeries” on page 108 to learn about other tasks that you can perform.

Turn off PM iSeries momentarily: If you need to stop PM iSeries(TM) from verifying that Collection

Services is collecting data, you can use the scheduler job to change the date to a future date for the

Q1PPMSUB job.

1. Type GO PM400 from the command line.

2. Type a 2 (Work with automatically scheduled jobs).

3. Type a 2 (Change) next to the Q1PPMSUB job.

4. Change the date or time to a future date and time.

5. Press Enter. This change will momentarily stop PM iSeries from verifying that Collection Services is

collecting data. You must end what is currently being collected.

Note: PM iSeries will not start, cycle, or change Collection Services until the date and time to which you

set the Q1PPMSUB job has been reached.

See “Schedule jobs with PM iSeries” on page 109 to learn about other things that you can do with the

scheduler.

See “Manage PM iSeries” on page 108 to learn about other tasks that you can perform.

Display PM iSeries status: You can use either iSeries(TM) Navigator or the PM eServer(TM) iSeries Menu

on your server to display the status of PM iSeries. Use the IBM(R) Performance Management for eServer

iSeries Status dialog to view the overall status of PM iSeries on one or more servers or groups. For

110 iSeries: Performance

example, you are shown details as to whether PM iSeries is active. Use the PM eServer iSeries Menu to

view the Collection Services status, PM iSeries scheduler status, the performance data release, the last

transmission attempt, performance data members, and the performance data size.

To view the overall status for PM iSeries from iSeries Navigator, do the following steps:

1. In iSeries Navigator, expand an endpoint system or a system group.

2. Expand Configuration and Service.

3. Right-click Collection Services.

4. Select Performance Management eServer iSeries.

5. Select Status.

To view the detailed status for PM iSeries from the PM eServer iSeries menu, do the following steps:

1. Type GO PM400 from the command line.

2. Type a 6 from the command line and press Enter. See the online help for descriptions of each field.

See “Manage PM iSeries” on page 108 to learn about other tasks that you can perform.

View PM iSeries reports: The output of the PM iSeries(TM) offering is a set of management reports and

graphs on a monthly or quarterly basis. The PM iSeries offering has two “Operational Support Services

for PM iSeries offering” on page 97 for the reports.

The purpose of the reports and graphs is to give management a clear understanding of the current

performance of their servers and an accurate growth trend. To view each report and graph in detail and

learn about some of their benefits and uses, see the PM eServer iSeries Web site

.

See “Manage PM iSeries” on page 108 to learn about other tasks that you can perform.

PM iSeries reports

The server automatically records various statistics about its operating environment during the course of

normal operation. “Collection Services” on page 32 has the capability to consolidate these statistics. “IBM

Performance Management for eServer iSeries” on page 96 can collect and transmit these statistics to

IBM(R), which forms the basis for all PM iSeries(TM) reports that are produced. To produce these reports

for viewing on the Web or for printing, PM iSeries must be activated and these statistics must be

transmitted to IBM at least monthly or preferably more frequently.

The purpose of the reports and graphs is to give management a clear understanding of the current

performance of their servers and an accurate growth trend. To view each report and graph in detail and

learn about some of their benefits and uses, visit the PM eServer iSeries Web site

.

Performance Tools

The Performance Tools for iSeries(TM) licensed program allows you to analyze performance data in a

variety of ways. Performance Tools is a collection of tools and commands for viewing, reporting, and

graphing performance data. You can use Performance Tools for iSeries to view performance data collected

with “Collection Services” on page 32 or to view trace data collected with the Start Performance Trace

(STRPFRTRC) command. You can then summarize the data into a report to research a performance

problem on your system. You can also create graphs of the performance data to see resource utilization

over time.

Performance Tools for iSeries contains a base product and two features (Manager and Agent). The base

plus one of the features is required. For more information about the Manager and Agent features of

Performance Tools, see the “Manager and Agent feature comparison” on page 113 topic.

Performance 111

http://www.as400.ibm.com/pm400
http://www.ibm.com/eserver/iseries/pm400

“Performance Tools concepts”
Describes a variety of tools to help you collect and analyze performance information. Find detailed

information about exactly which tools perform which functions and how they work.

“Install and configure Performance Tools” on page 118
See this topic for installation and setup instructions.

“Performance Tools reports” on page 118
Performance Tools reports provide information on data that has been collected over time. Use these

reports to get additional information about the performance and use of system resources.

For more detailed information about how to use Performance Tools to collect data about the performance

of a system, job, or program, look in the Performance Tools book

. It also explains how to analyze

and print data to help identify and correct any problems.

Performance Tools concepts

The Performance Tools for iSeries(TM) licensed program analyzes two distinct types of performance data:

sample data and trace data. “Collection Services” on page 32 collects sample data, which is summary

data that is captured at regular time intervals. You collect sample data for trend analysis and performance

analysis. The data relates to things such as storage pools and response times. However, Collection

Services does not support the collection of trace data. Trace data is detailed data that you collect to gain

additional information about specific jobs and transactions. To collect trace data, you can use either the

Start Performance Trace (STRPFRTRC) command or performance explorer.

“Functions provided in Performance Tools”
Performance Tools includes a variety of applications for collecting, analyzing, and reporting

performance data. Knowing which functions are available, and which are best suited for a given

task can be complex. See this topic for a description of the functions included in this licensed

program.

“Manager and Agent feature comparison” on page 113
You can use the Manager and Agent features to efficiently divide required functions of Performance

Tools over a distributed environment. This topic contains a description of these two features, the

functions they each contain, and information about how to use them most effectively.

“Performance Tools plug-in” on page 113
You can view system resource utilization data in iSeries Navigator. You can view the data, graph it,

and summarize it into reports. Find information about how to access this function here.

“Reporting CPU utilization” on page 114
Find out how the total CPU that is consumed across virtual processors is reported.

“Reporting configured capacity” on page 116
Find out where the information for configured capacity is recorded.

“5250 online transaction processing (OLTP)” on page 117
Find out what is meant by 5250 online transaction processing and what jobs or threads are

associated with this work.

Functions provided in Performance Tools: Performance Tools includes reports, interactive commands,

and other functions. For example, Performance Tools includes the following:

 Tool Description

112 iSeries: Performance

Work with System Activity

(WRKSYSACT) command

The Work with System Activity (WRKSYSACT) command allows you to work

interactively with the jobs, threads and tasks currently running in the system.

The WRKSYSACT command reports system resource utilization, including CPU

utilization on a per-task basis for partitions that use a shared processing pool.

“Performance Tools plug-in” The Display Performance Data graphical user interface allows you to view

performance data, summarize the data into reports, display graphs to show

trends, and analyze the details of your system performance all from within

iSeries(TM) Navigator.

“Performance Tools reports” on

page 118

The reports organize Collection Services performance data in a logical and useful

format. The reports are discussed in detail in the Performance Tools book

.

Graphics function The Performance Tools graphics function allows you to work with performance

data in a graphical format. You can display the graphs interactively, or you can

print, plot, or save the data to a graphics data format (GDF) file for use by other

utilities. This tool is discussed in detail in the Performance Tools book

.

“Performance explorer” on page

121

Performance explorer is a data collection tool that helps you identify the causes

of performance problems that cannot be identified by sample data that was

collected by Collection Services or by doing general trend analysis. Use

performance explorer for detailed application analysis at a program, procedure,

module, or method level. For example, you can collect trace data on an

individual program or procedure CPU and I/O statistics or individual object I/O

characteristics. This tool is discussed in detail in the Performance Tools book

.

Manager and Agent feature comparison: Performance Tools is available with two separately installable

features. This topic explains the differences between the two features to help you decide which feature is

more appropriate for your applications.

Manager feature
The Performance Tools Manager feature is a full-function package, intended to be used on the central site

system in a distributed environment or on a single system. If you require analysis of trace data, viewing

data graphically, viewing system activity in real time, or managing and tracking system growth, the

Manager feature of the Performance Tools licensed program is more useful.

Agent feature
The Performance Tools Agent feature, with a subset of the Manager function, is a lower-priced package

with the more basic functions. In a distributed environment, the Agent feature works well for managed

systems in the network because the data can be sent to the Manager if detailed analysis is required. It is

also an effective tool for sites that need a reasonable level of self-sufficiency but have no expert skills

available.

The Agent feature of Performance Tools provides functions to simplify the collection, management, online

display, data reduction, and analysis of performance data. The “Performance explorer” on page 121

reporting function and its associated commands are included in the base option in the Performance Tools

for iSeries(TM) licensed program and, therefore, are available with either the Manager feature or the Agent

feature. The major Performance Tools functions not contained in the Agent feature are performance and

trace reports, performance utilities (job traces and the select file and access group), system activity

monitoring, and performance graphics.

Performance Tools plug-in: Performance Tools can display performance data from the Display

Performance Data graphical user interface (GUI), which is a plug-in for iSeries(TM) Navigator. From the

GUI, you can view performance data, summarize the data into reports, display graphs to show trends,

and analyze the details of your system performance.

Performance 113

Metrics
iSeries Navigator displays performance metrics over a selected interval of time. The performance metrics

you can view in the Graphs pane of the Display Performance Data GUI include:

v Transaction Count

v Transaction Response Time

v Total CPU Utilization

v Interactive CPU Utilization

v Batch CPU Utilization

v Interactive Feature Utilization

v High Disk Utilization

v Machine Pool Page Faults/Second

v User Pool Page Faults/Second

v Exceptions

The Details pane allows you to view detailed performance data for the selected time interval in a variety

of ways. To analyze your system performance, you can view job data, subsystem data, pool data, or disk

unit data.

Reports
In addition to viewing graphs and detail data, you can also print reports from the Display Performance

Data GUI. Performance reports allow you to research areas of the system that are causing performance

problems. You can run different reports to see where your system resources are being used. Printing

reports in Performance Tools is available only when option 1 (Manager feature) of Performance Tools for

iSeries (5722-PT1) is installed on the central system. For more information on the Manager feature, see the

“Manager and Agent feature comparison” on page 113 topic.

The reports you can print from the Display Performance Data GUI include:

v System

v Component

v Job

v Pool

v Resource

Accessing through iSeries Navigator
The Display Performance Data GUI is a plug-in for iSeries Navigator. If you have already installed the

plug-in, it can be accessed from iSeries Navigator by following these steps:

1. In iSeries Navigator, expand My Connections (or your active environment).

2. Expand the server that contains the performance data you want to view.

3. Expand Configuration and Service.

4. Right-click Collection Services, select Performance Tools, and then select Performance Data.

5. Select the performance data file that you want to display.

6. Click Display.

For more information on how to use the Display Performance Data GUI in iSeries Navigator, see the

iSeries Navigator online help.

Reporting CPU utilization:

Prior to V5R3, processor utilization was calculated as a percentage of the

available CPU time. Collection Services reported, in the performance database files, the time used on each

processor along with elapsed interval time. Users of this data, such as the Performance Tools reports and

displays, needed to add up the time used on each processor to get the total system CPU that was

114 iSeries: Performance

consumed. The available CPU time was calculated as the number of processors in the partition multiplied

by the duration of the data collection interval. Finally, the CPU time was divided by the calculated

available time to get the utilization percentages.

The problem with the previous methodology is that all users of the data assumed whole virtual

processors and depended on no changes to the configured capacities. Logical partitions with partial

processor capacities and the capability to do dynamic configuration no longer worked with this

methodology. Temporary solutions for minimizing the impacts of these problems included scaling the

utilization of the system processors to what would be reported for a whole number of processors and

cycling Collection Services when the configuration changed. Because the individual job CPU time was not

scaled, the additional time was accounted for by reporting it as being consumed by HVLPTASK. The

HVLPTASK task did not actually use CPU, but CPU time was shown to be consumed by HVLPTASK for

accounting purposes. The CPU time charged to HVLPTASK scaled the amount of work that was done by

real jobs, which resulted in the system CPU percent utilization going from 0 to 100 in direct proportion to

the amount of customer work that was performed.

In V5R3, Collection Services reports the total CPU that is consumed and the total CPU that is available to

the partition within the interval. The concept of HVLPTASK and CPU scaling to whole virtual processors

in shared processor environments does not exist. Collection Services no longer cycles the collection when

the configuration changes.

Collection Services now reports the total processor time that is consumed by the partition along with the

amount of processor time that was available to be consumed within the partition, regardless of the

number of virtual processors that are configured, the partition units that are configured, or how they

changed during the interval. To calculate utilization, users of this data divide the reported CPU

consumed by the available capacity. This method of calculating CPU utilization eliminates the

increasingly error-prone task of computing available CPU time. CPU utilization that is calculated with

these new metrics is accurate regardless of how many processing units (whole or fractional) exist, when

the processing units changed, or how often the units changed.

Several reasons account for this change in calculating CPU utilization. One reason is that with scaling

utilization for jobs or groups of jobs appeared to be much smaller than would be anticipated. This

concept is demonstrated in the example that follows. Another reason is that a configuration change could

make CPU reporting not valid. Traditionally, the number of CPUs was based on the value that was

configured at the beginning of a collection and an IPL was needed to change it. When dynamic

configuration was introduced, Collection Services cycled the collection to handle the configuration

changes, which assumed that changes would be infrequent. However, the more frequent the change, the

more cycling occurs. If the changes are too frequent, collecting performance data is not possible. Lastly,

even if the proper configuration data were reported and used for every interval, you would not know

what happened between the time the interval started and until it completed. Utilization would still be

calculated incorrectly in any interval where there was one or more configuration changes.

Example

Partition A has a capacity of 0.3 processor units and is defined to use one virtual processor. The collection

interval time is 300 seconds. The system is using 45 seconds of CPU (15 seconds by interactive jobs and

30 seconds by batch jobs). In this example, the available CPU time is 90 seconds (.3 of 300 seconds). The

total CPU utilization is 50%.

Prior to V5R3, when the numbers were scaled, system CPU usage is reported as 150 seconds. 150 seconds

divided by 300 seconds of interval time results in 50% utilization. The interactive utilization is 15 seconds

divided by 300 seconds, which is 5%. The batch utilization is 30 seconds divided by 300 seconds, which is

10%. The HVLPTASK is getting charged with 35% utilization (150 seconds minus 45 seconds), or 105

seconds divided by 300 seconds. These percentages give us a total of 50%.

Performance 115

Beginning in V5R3, the 45 seconds of usage is no longer scaled but is reported as is. The calculated CPU

time that is derived from the reported consumed CPU time divided by the reported available capacity is

50% (45 seconds divided by 90 seconds). The interactive utilization percentage is 17% (15 seconds divided

by 90 seconds). The batch utilization percentage is 33% (30 seconds divided by 90 seconds).

 Release Total CPU Interactive Batch HVLPTASK

OS/400(R) V5R2 or earlier 50% 5% 10% 35%

OS/400 V5R3 or later 50% 17% 33% N/A

Considerations

In V5R3, the Convert Performance Data (CVTPFRDTA) command performs normally. However, the data

in the converted files is changed to be consistent with the unscaled system CPU data (QAPMSYSCPU

database file). The results should be the same as if the data were collected on a V5R3 system, but the data

is different than the values that existed in the files in a prior release.

The existing and unchanged tools that calculate CPU utilization do not show the correct results for

shared processor partitions or partitions that have had configuration changes during data collection. This

includes those tools that use the performance database as well as those that use the QPMLPFRD API.

You can copy a V5R3 management collection object (*MGTCOL) to a prior release and generate the

database files. However, you should be aware of the following:

v The reported CPU data remains unscaled (shared processor environments). This means that the total

system CPU that is reported by the tools using virtual processors (including Performance Tools) is not

correct.

v A management collection object (*MGTCOL) that spans configuration changes will result in an

inaccurate calculation of the percentage of CPU during those intervals after the change occurred.

Reporting configured capacity:

The partition capacity values are determined initially when the

partition is started through the Hardware Management Console (HMC) using a Configuration Profile for

the partition and depends on the capacity resources available at the time. These initial values can be

altered through configuration changes while the partition is active. For more information about logical

partitions, see the shared processor pool topic.

Logical partitions enable some partitions to exceed their configured capacity in certain situations. During

these times, the processor utilization metrics of these partitions can be greater than 100% of the

configured capacity.

The usage and capacity information is recorded in the QAPMSYSTEM database file. The virtual processor

information is recorded in the QAPMSYSCPU database file. The following values summarize this

information:

Virtual processors
The number of processors that are assigned to a logical partition that is sharing processor capacity

of the shared processor pool. This value determines the number of concurrent processors that could

be active in the logical partition. This value is included in the iSeries(TM) performance database files

in a column named SCTACT.

Shared processor pool capacity available
Total processor capacity in the shared processor pool available for use by shared processor logical

partitions. This value is included in the iSeries performance database files in a column named

SYSPLA.

116 iSeries: Performance

rzahxqapmsystem.htm
rzahxqapmsyscpu.htm

If partitions configured as uncapped compete for available shared pool capacity in excess of the

guaranteed amount, the distribution of processor capacity is determined by the uncapped weight

assigned to the logical partition.

Shared processor capacity used
Total amount of shared processor capacity used by all active shared processor logical partitions.

Total amount of CPU used within the shared pool by all partitions that share the pool. This value is

included in the iSeries performance database files in a column named SYSPLU.

Partition guaranteed capacity
Processor capacity configured to a shared processor logical partition from the shared processor pool.

This value is included in the iSeries performance database files in a column named SYSCTA. The

5250 OLTP capacity configured is recorded in column named SYIFTA.

Partition processor utilization
Processor utilization by a logical partition. In a shared processor logical partition with uncapped

capacity, this value may exceed the guaranteed capacity if there is unused capacity in the shared

processor pool. This value is included in the iSeries performance database files in a column named

SYSPTU. The 5250 OLTP capacity used is recorded in column named SYIFUS.
The maximum processor capacity in a partition is determined by the number of virtual processors

configured.

Partition available capacity
The amount of processor capacity that could have been used by the logical partition. This value is

included in the iSeries performance database files in a column named SYSUTA. This is the processor

capacity utilized (SYSPTU) plus the unused capacity in the shared processor pool (SYSPLA), subject

to the following limits:

v The minimum is the configured (guaranteed) capacity

v The maximum is the capacity based on the number of virtual processors assigned to the partition

and pool.

5250 online transaction processing (OLTP):

The definitions for 5250 interactive and batch type work

changed in V5R3. The term 5250 online transaction processing (OLTP) replaces the term 5250 interactive

when discussing CPU utilization and system resource consumption. The new term recognizes the fact

that interactive is a more generic description of an application interface that is characterized by user

input and the associated responses. As a result, interactive can refer to:

v The familiar iSeries(TM) interactions through a 5250 session, a pass-through job, or a Telnet job.

v A workstation-based request from a Domino(R) mail or calendar or a browser-based application.

v Workloads that were historically considered interactive, such as, DDM.

Prior to V5R3, all OS/400(R) jobs are categorized into one of ten categories based on certain job attributes,

for example, DDM, CA4, and INT. Based on these categories, Performance Tools reports these jobs as

interactive or batch.

This approach for showing interactive and batch CPU utilization was not meaningful in the past because

some of the processor utilization in some categories was shown as belonging to both interactive and

batch. For example, iSeries Access jobs use both interactive and batch, depending on the function. Prior to

V5R3, these jobs were included in the CA4 category and listed as interactive. The DDM server jobs were

also listed as interactive.

Beginning in V5R3, an approach is implemented in the Performance Tools licensed program to better

distribute the workloads, depending on which processor capacity feature the CPU cycles were charged

against. The interactive CPU reporting now means those jobs whose CPU is allocated to the 5250 OLTP

Performance 117

processor capacity. As a result, the iSeries Access jobs are listed in the appropriate sections of the

Performance Tools reports. In addition, the DDM jobs move from the Interactive workload section of the

reports to the Non-interactive workload section.

Install and configure Performance Tools

To install Performance Tools, you need a user profile with save system (*SAVSYS) authority. You can use

the system operator profile to obtain this authority.

Performance Tools must run in a library named QPFR. If you have a library by this name on your

system, use the Rename Object (RNMOBJ) command to rename it before you install Performance Tools.

This step will ensure the proper operation of Performance Tools.

Use the following command to place the Performance Tools in library QPFR:

RSTLICPGM LICPGM(5722PT1) DEV(NAME) OPTION(*BASE)

You must then perform one of the following:

v If you have purchased the Manager feature, use the following command:

RSTLICPGM LICPGM(5722PT1) DEV(tape-device-name) OPTION(1)

v If you have purchased the Agent feature, use the following command:

RSTLICPGM LICPGM(5722PT1) DEV(NAME) OPTION(2)

If you have several CD-ROMs to install, the following situation may occur. After installing the first one,

you may receive a message saying that the licensed program is restored but no language objects were

restored. If this occurs, insert the next CD-ROM and enter the following:

RSTLICPGM LICPGM(5722PT1) DEV(NAME) RSTOBJ(*LNG) OPTION(*BASE)

Another method for installing the Performance Tools program is to type GO LICPGM and use the menu

options.

Performance Tools is a processor-based program. The usage type is concurrent, and the program is

installed with a usage limit *NOMAX.

This program is discussed in detail in the Performance Tools book

.

Performance Tools reports

The Performance Tools reports provide an easy way for you to look at your collected data and isolate

performance problems. After you have collected performance data over time, you can “Print the

performance reports” on page 120 the reports to see how and where system resources are being used. The

reports can direct you to specific application programs, users, or inefficient workloads that are causing

slower overall response times.

“Collection Services” on page 32 provides data for most of the Performance Tools reports with the

exception of the Transaction, Lock, and Trace reports. You must use the STRPFRTRC and ENDPFRTRC

commands to collect the “Collect information about an application’s performance” on page 19 for those

three reports.

The following list describes each report, gives a brief overview as to why you would use a particular

report, and links to samples of each report. In addition, each report is discussed in detail in the

Performance Tools book

.

 Overview of Performance Tools reports

118 iSeries: Performance

Report Description What is shown How you use the

information

System Uses Collection Services

data to provide an

overview of how the system

is operating. The report

contains summary

information on the

workload, resource use,

storage pool utilization,

disk utilization, and

communications. Run and

print this report often to

give you a general idea of

your system use.

System workload. The

report includes the database

capabilities data.

Workload projection

Component Uses Collection Services

data to provide information

about the same components

of system performance as a

System Report, but at a

greater level of detail. This

report helps you find which

jobs are consuming high

amounts of system

resources, such as CPU,

disk, and so on.

Resource use,

communications, system

and user jobs. The report

includes the database

capabilities data and the

Interactive Feature

utilization.

Hardware growth and

configuration processing

trends

Transaction Uses trace data to provide

detailed information about

the transactions that

occurred during the

performance data collection.

Workload and utilization of

CPU, disk, main storage,

transaction workload, object

contention

Workload projection, pool

configuration, application

design, file contention, and

program use

Lock Uses trace data to provide

information about lock and

seize conflicts during

system operation. With this

information you can

determine if jobs are being

delayed during processing

because of unsatisfied lock

requests or internal machine

seize conflicts. These

conditions are also called

waits. If they are occurring,

you can determine which

objects the jobs are waiting

for and the length of the

wait.

File, record, or object

contention by time; the

holding job or object name;

the requesting job or object

name

Problem analysis. Reduction

or elimination of object

contention.

Batch Trace Job Uses trace data to show the

progression of different job

types (for example, batch

jobs) traced through time.

Resources utilized,

exceptions, and state

transitions are reported.

Job class time-slice end and

trace data

Problem analysis and batch

job progress

Performance 119

rzahxsysrep.htm
rzahxcompreport.htm
rzahxtranrpt.htm
rzahxlockrpt.htm
rzahxtracereport.htm

Job Interval Uses Collection Services

data to show information

on all or selected intervals

and jobs, including detail

and summary information

for interactive jobs and for

noninteractive jobs. Because

the report can be long, you

may want to limit the

output by selecting the

intervals and jobs you want

to include.

Jobs by interval Job data

Pool Interval Uses Collection Services

data to provide a section on

subsystem activity and a

section on pool activity.

Data is shown for each

sample interval. Because the

report can be long, you may

want to limit the output by

selecting the intervals and

jobs you want to include.

Pools by interval Pool data

Resource Interval Uses Collection Services

data to provide resource

information on all or

selected intervals. Because

the report can be long, you

may want to limit the

output by selecting the

intervals you want to

include.

Resources by interval System resource use

Performance explorer and Collection Services are separate collecting agents. Each one produces its own

set of database files that contain grouped sets of collected data. You can run both collections at the same

time.

For a list of reports for other tools, see the following:

v “Performance explorer reports” on page 127

v “PM iSeries reports” on page 111

Print the performance reports: You can print reports using the performance data that you collected.

Prior to V5R1, Option 3 (Print performance report) displayed a list of performance members that were

located in the QAPMCONF file. This list included both sample data and trace data that was collected by

the Start Performance Monitor (STRPFRMON) command. Collection Services does not collect trace data.

However, you can use the STRPFRTRC and TRCINT commands to collect trace data. This data is located

in the QAPMDMPT file. Therefore, in V5R1 and later, you see two views of the Print Performance Report

display, one for sample data and one for trace data.

Note: If your trace data and sample data are both in the current library, you can use F20 to toggle

between the two Print Performance Report displays.

 After you have collected your data, you must create a set of performance data files from the performance

information stored in a management collection (*MGTCOL) object. Use the Create Performance Data

(CRTPFRDTA) command. After you have created the data files, you can request to print your reports.

120 iSeries: Performance

rzahxjobintervalreport.htm
rzahxpoolintervalreport.htm
rzahxresourceinterval.htm

Use the following commands to print reports for sample data that you collected with Collection Services:

v Print System Report (PRTSYSRPT)

v Print Component Report (PRTCPTRPT)

v Print Job Interval Report (PRTJOBRPT)

v Print Pool Report (PRTPOLRPT)

v Print Resource Report (PRTRSCRPT)

Use the following commands to print reports for trace data that you collected with the Start Performance

Trace (STRPFRTRC) and Trace Internal (TRCINT) commands:

v Print Transaction Report (PRTTNSRPT)

v Print Lock Report (PRTLCKRPT)

v Print Job Trace Report (PRTTRCRPT)

Note: You must use the End Performance Trace (ENDPFRTRC) command to stop the collection of

performance trace data and then optionally write performance trace data to a database file before

you can print the Transaction reports.

Performance explorer

Performance explorer is a data collection tool that helps the user identify the causes of performance

problems that cannot be identified by collecting data using Collection Services or by doing general trend

analysis. Two reasons to use performance explorer include:

v Isolating performance problems to the system resource, application, program, procedure, or method

that is causing the problem

v Analyzing the performance of applications

The collection functions and related commands of performance explorer are part of the OS/400(R) licensed

program. The reporting function and its associated commands are part of the base option in the

Performance Tools for iSeries(TM) licensed program and therefore, are available with either the Manager

feature or the Agent feature. The AS/400(R) Performance Explorer Tips and Techniques book

provides additional examples of the performance explorer functions and examples of the enhanced

performance explorer trace support.

Performance explorer is a tool that helps find the causes of performance problems that cannot be

identified by using tools that do general performance monitoring. As your computer environment grows

both in size and in complexity, it is reasonable for your performance analysis to gain in complexity as

well. The performance explorer addresses this growth in complexity by gathering data on complex

performance problems.

Note: Performance explorer is the tool you need to use after you have tried the other tools. It gathers

specific forms of data that can more easily isolate the factors involved in a performance problem;

however, when you collect this data, you can significantly affect the performance of your system.

This tool is designed for application developers who are interested in understanding or improving the

performance of their programs. It is also useful for users knowledgeable in performance management to

help identify and isolate complex performance problems.

To learn more about performance explorer, refer to any of the following performance explorer topics.

“Performance explorer concepts” on page 122
Performance explorer works by collecting detailed information about a specified system process or

resource. This topic explains how performance explorer works, and how best to use it.

Performance 121

http://www.redbooks.ibm.com/abstracts/sg244781.html

“Configure performance explorer” on page 127
To collect detailed trace information, you need to tailor performance explorer to work optimally

with the application process from which the trace is being taken.

“Performance explorer reports” on page 127
After you have collected performance data with a performance explorer session, you can view it by

running the included reports or by querying the database files directly.

For more detailed information, refer to the Performance Tools book

.

Performance explorer concepts

Like “Collection Services” on page 32, performance explorer collects data for later analysis. However,

they collect very different types of data. Collection Services collects a broad range of system data at

regularly schedules intervals, with minimal system resource consumption. In contrast, performance

explorer starts a session that collects trace-level data. This trace generates a large amount of detailed

information about about the resources consumed by an application, job, or thread. Specifically, you can

use Performance Explorer to answer specific questions about areas like system-generated disk I/O,

procedure calls, Java(TM) method calls, page faults, and other trace events

. It is the ability to collect

very specific and very detailed information that makes the performance explorer effective in helping

isolate performance problems. For example, Collection Services can tell you that disk storage space is

rapidly being consumed. You can use performance explorer to identify what programs and objects are

consuming too much disk space, and why.

Note: You can collect performance explorer data and Collections Services data at the same time.

How performance explorer works

The following figure should help you become familiar with the normal path through the performance

explorer. For details on each of these steps, see “Configure performance explorer” on page 127. The figure

shows a basic work cycle that consists of the following steps:

1. Define a performance explorer data collection. You can also add a filter to limit the amount of data

collected by specifying a compare value for specific events.

2. Start the performance explorer to collect the data based on your definition.

3. Run your program, command, or workload.

4. End the collection, which saves the collected data to a set of database files.

5. Create and print reports from the database files.

122 iSeries: Performance

http://www.iseries.ibm.com/perfmgmt/resource.htm

To learn more about performance explorer, refer to any of the following performance explorer topics.

“Performance explorer definitions”
The parameters and conditions that determine what data performance explorer collects and how it

collects it are configured and stored using performance explorer definitions. This topic explains how

to use these definitions and provides a sample illustrating a simple definition.

“Performance explorer database files” on page 125
The data that performance explorer collects is stored in performance explorer database files.

“Performance explorer benefits” on page 127
Performance explorer contains a variety of functions that can help gather and analyze detailed

performance information. This topic provides an overview of those various functions.

Performance explorer definitions: To collect performance explorer data, you need to tell performance

explorer what data to gather. You do this by using the Add Performance Explorer Definition

(ADDPEXDFN) command to create a performance explorer definition. After the definition is completed

and saved, you are ready to continue to the next task in the cycle of work.

Before creating a new definition, consider what kinds of information you want and the amount of detail

you need. The performance explorer provides the following types of data collection:

Statistics type definitions
Identifies applications and IBM(R) programs or modules that consume excessive CPU use or that

perform a high number of disk I/O operations. Typically, you use the statistical type to identify

programs that should be investigated further as potential performance bottlenecks.

v Good for first order analysis of OS/400(R) programs, procedures, and MI complex instructions.

– Gives number of invocations

– Gives both inline and cumulative CPU usage in microseconds

– Gives both inline and cumulative number of synchronous and asynchronous I/O

– Gives number of calls made
v Works well for short or long runs

v Size of the collected data is fairly small and constant for all runs

v Run time collection overhead of ILE procedures may be a problem due to the frequency of calls.

Although run time is degraded, the collected statistics are still accurate because Performance

Explorer removes most of the collection overhead from the data.

Performance 123

v Uses combined or separated data areas. The MRGJOB parameter on the ADDPEXDFN command

specifies whether all program statistics are accumulated in one data area, or kept separate (for

example, one data area for each job).

The statistics can be structured in either a hierarchical or flattened manner.

v A hierarchical structure organizes the statistics into a call tree form in which each node in the tree

represents a program procedure run by the job or task.

v A flattened structure organizes the statistics into a simple list of programs or procedures, each

with its own set of statistics.

Here is an example of a performance explorer statistics definition called MYSTATS that will show CPU

and disk resource usage on a per program or procedure level.

 ADDPEXDFN DFN(MYSTATS) /* The name of the definition. */

 TYPE(*STATS) /* The type of definition */

 JOB(*ALL) /*All Jobs */

 TASKS(*ALL) /*All tasks */

 DTAORG(*FLAT) /* Do not keep track of who calls who */

Profile type definitions
Identifies high-level language (HLL) programs that consume excessive CPU utilization based on

source program statement numbers. You can also identify a program that is constantly branching

between the start of the program and subroutines at the end of the program. If the program is large

enough, this constant jumping back and forth can cause excessive page fault rates on a system with

limited main storage.

v Program profile (specify TYPE(*PROFILE) and PRFTYPE(*PGM) on the ADDPEXDFN command)

– Gives detailed breakdown of where you are spending time within a set of programs within a

specific job.

– Can summarize the data by program, module, procedure, statement, or instruction.

– Size of collection is fairly small and constant regardless of length of run.

– Limit of 16 MI programs means that you should use this as a second order analysis tool.

– Can vary overhead by changing sample interval. An interval of 2 milliseconds seems a good

first choice for benchmarks.

– No restrictions on pane size due to the number of programs specified or the size of the

programs specified.

Here is an example of a performance explorer program profile definition called PGMPROF that

will show usage for a particular procedure.

 ADDPEXDFN DFN(PGMPROF) /* The name of the definition. */

 TYPE(*PROFILE) /* The type of definition */

 JOB(*ALL) /*All Jobs */

 PGM((MYLIB/MYPGM MYMODULE MYPROCEDURE)) /* The name of the program to monitor. */

 INTERVAL(1) /* 1-millisecond samples will be taken. */

v Job profile (specify the following on the ADDPEXDFN command: TYPE(*PROFILE) and

PRFTYPE(*JOB))

– Gives detailed breakdown of where you are spending time in the set of jobs or tasks of the

collection.

– Size of collection is relatively small but not constant. The size increases as the length of the run

increases.

– Can profile all jobs and tasks on the system or can narrow the scope of data collected to just a

few jobs or tasks of interest.

– Can vary overhead by changing sample interval. An interval of 2 milliseconds seems a good

first choice for benchmarks.

Here is an example of a performance explorer job profile definition called ALLJOBPROF that will

show usage for all your jobs.

124 iSeries: Performance

ADDPEXDFN DFN(ALLJOBPROF) /* The name of the definition. */

 TYPE(*PROFILE) /* The type of definition */

 PRFTYPE(*JOB) /* A job profile type will be monitored. */

 JOB(*ALL) /*All Jobs */

 TASKS(*ALL) /*All tasks */

 INTERVAL(1) /* 1-millisecond samples will be taken. */

Trace definitions
Gathers a historical trace of performance activity generated by one or more jobs on the system. The

trace type gathers specific information about when and in what order events occurred. The trace

type collects detailed reference information about programs, Licensed Internal Code (LIC) tasks,

OS/400 job, and object reference information.

v Some common trace events are:

– Program and procedure calls and returns

– Storage, for example, allocate and deallocate.

– Disk I/O, for example, read operations and write operations.

– Java(TM) method, for example, entry and exit.

– Java, for example, object create and garbage collection.

– Journal, for example, start commit and end commit.

– Synchronization, for example, mutex lock and unlock or semaphore waits.

– Communications, for example, TCP, IP, or UDP.
v Longer runs collect more data.

Here is an example of a performance explorer trace definition called DISKTRACE that will show usage

for all disk events.

 ADDPEXDFN DFN(DISKTRACE) /* The name of the definition. */

 TYPE(*TRACE) /* The type of definition */

 JOB(*ALL) /*All Jobs */

 TASKS(*ALL) /*All tasks */

 TRCTYPE(*SLTEVT) /* Only selected individual events and machine instructions

are included in the trace definition */

 SLTEVT(*YES) /* *SLTEVT allows you to specify individual machine instructions

and events to be specified in addition to the categories of events

available with the TRCTYPE parameter. */

 DSKEVT((*ALL)) /* All disk events are to be traced. */

Performance explorer database files: The following table shows the performance explorer data files

collected by the system when using data collection commands. Type the Display File Field Description

(DSPFFD) command as follows to view the contents for a single file:

DSPFFD FILE(xxxxxxxxx)

where xxxxxxxxx is the name of the file that you want to display.

 Type of information contained in file File name

Reference information QAYPEREF

General information QAYPERUNI

PMC selection QAYPEFQCFG

Basic configuration information QAYPECFGI

Machine interface (MI) complex instructions collected on QAYPELCPLX

Jobs collected on QAYPELJOB

Metrics to collect data on QAYPELMET

Machine interface (MI) program, module, or procedures

collected on

QAYPELMI

Performance 125

Type of information contained in file File name

Licensed Internal Code (LIC) modules to collect data on QAYPELLIC

Task names to collect data on QAYPELNAMT

Task number to collect data on QAYPELNUMT

Machine interface (MI) complex instructions mapping QAYPEMICPX

Event type and subtype mapping QAYPEEVENT

Hardware mapping data QAYPEHWMAP

Licensed Internal Code (LIC) address resolution mapping QAYPEPROCI

Segment address resolution mapping QAYPESEGI

Process and task resolution mapping QAYPETASKI

Common trace data for all events QAYPETIDX

Auxiliary storage management event data QAYPEASM

Base event data QAYPEBASE

Disk event data QAYPEDASD

Disk server event data QAYPEDSRV

Page fault event data QAYPEPGFLT

Resource management process event data QAYPERMPM

Resource management seize lock event data QAYPERMSL

Advanced 36(R) event data QAYPES36

Segment address range (SAR) data QAYPESAR

Unknown event data QAYPEUNKWN

Basic statistics data QAYPESTATS

Statistic profiling summary data QAYPEPSUM

Licensed Internal Code (LIC) bracketing data QAYPELBRKT

Machine interface (MI) user event data QAYPEMIUSR

Machine interface (MI) program bracketing data QAYPEMBRKT

Addresses of machine interface (MI) pointer QAYPEMIPTR

User-defined bracketing hook data QAYPEUSRDF

Hardware monitor data QAYPEHMON

Hardware monitor total data QAYPEHTOT

Release, version, modification level QRLVRM

Performance explorer level indicator QRLLVL

Performance explorer Java(TM) event data QAYPEJVA

Performance explorer Java class information data QAYPEJVCI

Performance explorer Java method information data QAYPEJVMI

Performance explorer Java name information data QAYPEJVNI

Synchronization event data QAYPESYNC

Communications event data QAYPECMN

File Serving event data QAYPEFILSV

Heap event data QAYPEHEAP

PASE event data QAYEPASE

Trace job equivalent event data QAYPETBRKT

126 iSeries: Performance

Type of information contained in file File name

Task switch event data QAYPETSKSW

Synchronization event data QAYPESYNC

Program profile data QAYPEPPANE

Performance explorer reports: Performance explorer gathers detailed information about a program or

job’s behavior and performance and stores this information in “Performance explorer database files” on

page 125. You can query these files with SQL, or by running one of several reports. You can generate four

different reports with performance explorer: Statistics, Profile, Trace, and Base reports. See “Performance

explorer definitions” on page 123 for information on why you would use a particular definition to

generate one of these reports. Each report is discussed in detail in the Performance Tools book

.

You can create and print performance explorer reports by using the Print Performance Explorer Report

(PRTPEXRPT) command. Use the OUTFILE parameter when you want to customize your Trace Report.

The following commands are examples for printing reports for each type of performance explorer data:

v Print a *STATS report sorting by the CPU time used

PRTPEXRPT MBR(MYSTATS) LIB(MYLIB) TYPE(*STATS) STATSOPT(*CPU)

v Print a profile report summarized by procedure

 PRTPEXRPT MBR(MYPROFILE) LIB(MYLIB) TYPE(*PROFILE) PROFILEOPT(*SAMPLECOUNT *PROCEDURE)

v Print a trace sorted by task ID

PRTPEXRPT MBR(MYTRACE) LIB(MYLIB) TYPE(*TRACE) TRACEOPT(*TASK)

Performance explorer stores its collected data in the QAVPETRCI file, which is located in the QPFR

library. Type the following command to view the contents for a single record:

 DSPFFD FILE(QPFR/QAVPETRCI)

Performance explorer benefits: Performance explorer has advantages for people who need detailed

performance analysis on an iSeries(TM) server. Using performance explorer you can:

v Determine what is causing a performance problem on the system down to the level of user, job, file,

object, thread, task, program, module, procedure, statement, or instruction address.

v Collect performance information on user-developed and system software.

v Do a detailed analysis on one job without affecting the performance of other operations on the system.

v Analyze data on a system other than the one on which it was collected. For example, if you collect

data on a managed system in your network, you can send it to the central site system for analysis.

Configure performance explorer

To configure performance explorer, follow these steps:

1. “Performance explorer definitions” on page 123 that informs the iSeries(TM) server which performance

data you want to collect. On the Add Performance Explorer Definition (ADDPEXDFN) display, specify

the collection type and a name for the definition. This definition is stored as a database member by

that name in the QAPEXDFN file in library QUSRSYS. The name that you specify is used on the Start

Performance Explorer (STRPEX) command.

2. Add a filter (ADDPEXFTR command). A performance explorer filter identifies the performance data

that is to be collected during a performance explorer session, and is meant to limit the amount of data

collected by specifying a compare value for specific events.

3. Start collecting data (STRPEX command). A job may be in more than one performance explorer

collection if the *PMCO event is not being collected. If the *PMCO event is being collected, then a job

can be in more than one collection only if all the collections have the same interval specification

(ADDPEXDFN INTERVAL() parameter).

Performance 127

4. Run your command, program, or workload for data that you want to analyze.

5. “Ending performance explorer” and save it to database files for analysis. Use the End Performance

Explorer (ENDPEX) command to stop the collection.

6. Analyze the performance data. The Print Performance Explorer Report (PRTPEXRPT) command,

included in the Performance Tools licensed program, provides unique reports for each type of data

(statistical, profile, trace profile, or trace). The other option for analysis is to write your own queries

over the set of database files.

All of the performance explorer commands can be accessed with one of the following methods:

v The command interface. Type the commands from the command line. All the commands are part of the

OS/400(R) operating system, except the Print Performance Explorer Report (PRTPEXRPT) command.

v The Performance Tools menu options.

To see a performance explorer work cycle, see “Performance explorer concepts” on page 122.

Ending performance explorer

To end the performance explorer session, use the End Performance Explorer (ENDPEX) command. The

ENDPEX command performs the following actions on the collected data:

v Places the collected data in files QAYPExxx in the library that you specify.
Use OPTION(*END) and DTAOPT(*LIB) to do this. The database member name for all the QAYPExxx

files uses the session name as the default unless you specify a name for the DTAMBR parameter. You

can specify RPLDTA(*NO) to erase data that was collected using this session name or RPLDTA(*YES)

to add the collected data to the existing data. Unless you are a very sophisticated user, use

RPLDTA(*NO).

v Places the collected data into a single IBM(R)-defined file.
Use OPTION(*END) and DTAOPT(*MGTCOL) to do this. Typically, you would use *MGTCOL only

under the direction of an IBM service representative. Specifying the *MGTCOL value on the DTAOPT

parameter saves the collection information into a management collection object. The management

collection object option should be used only if the data is going to be shipped to IBM. The performance

tools can analyze only the database files.

v Discards the collected data.
Use OPTION(*END) if you want to save the data or DTAOPT(*DLT) to discard any collected data. You

do this when you determine the collected data cannot be used. For example, one of the suspected jobs

did not start as expected. If you choose the *DLT option, the collected performance data for the session

is never saved.

v Suspends the collection session but does not end it.
Use OPTION(*SUSPEND) to do this. You can later start the data collection again by issuing the

STRPEX command with OPTION(*RESUME) for the specific session ID.

Note: If you forget the active collection session name, use the ENDPEX SSNID(*SELECT) command.

iDoctor for iSeries

iDoctor for iSeries(TM) is a suite of tools consisting of these components: Consulting Services, Job Watcher,

Java(TM) Watcher, PEX Analyzer, and PTDV.

Consulting Services
If you want expert consultants to analyze your system using one of the in-depth software tools from the

iDoctor for iSeries Suite (PEX Analyzer or Job Watcher), select the Consulting Services component.

Job Watcher
Job Watcher displays real-time tables and graphical data that represent, in a very detailed way, what a job

is doing and why it is not running. Job Watcher provides several different reports that provide detailed

job statistics by interval. These statistics allow you to determine things like CPU utilization, DASD

counters, waits, faults, call stack information, conflict information, and more.

128 iSeries: Performance

Java(TM) Watcher
Java Watcher provides invaluable information to aid in debugging some of the most complex problems in

the area of Java and WebSphere(R).

PEX Analyzer
PEX Analyzer evaluates the overall performance of your system and builds on what you have done with

the Performance Tools licensed program. The Analyzer condenses volumes of trace data into reports that

can be graphed or viewed to help isolate performance issues and reduce overall problem determination

time. The Analyzer provides an easy-to-use graphical interface for analyzing CPU utilization, physical

disk operations, logical disk input/output, data areas, and data queues. The Analyzer can also help you

isolate the cause of application slowdowns.

PTDV
The Performance Trace Data Visualizer for iSeries (PTDV) is a tool for processing, analyzing, and viewing

Performance Explorer collection trace data residing in performance explorer database files. PTDV is a free

component of iDoctor for iSeries.

Visit the iDoctor for iSeries

Web site for more information.

Performance Trace Data Visualizer (PTDV)

The Performance Trace Data Visualizer (PTDV) is a Java(TM) application that can be used for performance

analysis of applications running on iSeries(TM) servers. PTDV works with performance explorer in the

OS/400(R) base operating system to allow the analyst to view program flows and get details (such as CPU

time, current system time, number of cycles, and number of instructions) summarized by trace, job,

thread, and procedures. When visualizing Java application traces, additional details such as the number

and type of objects created and information about Java locking behavior can be displayed. There is also

support for performance explorer events generated by the WebSphere(R) Application Server. PTDV allows

sorting of columns, exporting of data, and many levels of data summarization.

For more information, go to the Performance Trace Data Visualizer

Web site.

Performance Management APIs

The performance management APIs allow you to collect and manage performance data using Collection

Services, performance collector, performance explorer, and PM iSeries(TM).

The Performance Management APIs include:

v Collection Services APIs

v Performance Collector APIs

v Performance Explorer (PEX) APIs

v IBM(R) Performance Management for eServer(TM) iSeries (PM iSeries) APIs

“Work with” commands for OS/400 performance

OS/400(R) includes a number of commands that can allow you to perform real-time monitoring of

performance data from the character-based interface. You can use these commands to answer specific

questions about system performance and to help you tune your system. For information about real-time

monitoring from iSeries(TM) Navigator, see “iSeries(TM) Navigator monitors” on page 87.

 Command Function

Work with Active Jobs

(WRKACTJOB)

Allows you to review and change the attributes and resource utilization of the

jobs running on your system.

Work with Disk Status

(WRKDSKSTS)

Display the performance information and attributes for system disk units.

Performance 129

http://www.as400service.ibm.com/i_dir/idoctor.nsf/iDoctor.html
http://www.alphaworks.ibm.com/tech/ptdv

Command Function

Work with System Status

(WRKSYSSTS)

Provides an overview of current system activity. Specifically, it displays the

number of jobs on the system and storage pool utilization information.

Work with System Activity

(WRKSYSACT)

Work with jobs and tasks on your system. This command is part of the

Performance Tools licensed program (PT1).

Work with Object Locks

(WRKOBJLCK)

Work with and display locks on a specified object, including locks waiting to be

applied.

Work with Shared Storage Pools

(WRKSHRPOOL)

Display the utilization information and change attributes of shared storage

pools, including machine and base pool.

Extended Adaptive Cache

Improve your iSeries(TM) system performance with Extended Adaptive Cache! Extended Adaptive Cache

is an advanced large read cache technology that improves both the I/O subsystem and system response

times by reducing the number of physical I/O requests that are read from disk. Extended Adaptive Cache

generates statistical information for the data and then uses a mix of management strategies to determine

which data to cache. Extended Adaptive Cache has proven to be highly effective on many types of

workloads.

To learn more, keep reading:

v “Extended Adaptive Cache Concepts”
Explore Extended Adaptive Cache. Find information about planning, restrictions, and important

considerations before you begin to use this tool.

v “Restrictions and considerations for Extended Adaptive Cache” on page 131
See what components Extended Adaptive Cache requires and learn more about what to expect.

Extended Adaptive Cache Concepts

Improve system performance with “Extended Adaptive Cache,” an advanced read cache technology that

improves both the I/O subsystem and system response times by reducing the number of physical I/O

requests that are read from disk. Extended Adaptive Cache not only improves the performance of

database-read actions, but of all read actions. This includes read actions that are generated by other

system components such as the Integrated xSeries(R) Server. It also works effectively in storage

subsystems that have device parity protection or mirrored protection. Extended Adaptive Cache has

proven to be highly effective on many types of workloads.

How the Extended Adaptive Cache works

Extended Adaptive Cache is integrated into the iSeries(TM) I/O subsystem. It operates at the disk

subsystem controller level and does not affect the iSeries system processor. The storage I/O adapter

manages the Extended Adaptive Cache by using a Read Cache Device (such as a solid state disk) to

provide the cache memory.

Extended Adaptive Cache generates statistical information for the data, and then uses a mix of

management strategies to determine which data to cache. The management of the cache is performed

automatically within the I/O adapter and is designed to cache data by using a predictive algorithm. The

algorithm considers how recently and how frequently the host has accessed a predetermined range of

data.

The design of Extended Adaptive Cache was based on specific data management strategies of the iSeries

server. Whether the disks are device parity protected, mirrored, or unprotected, the data stored on the

disks has a tendency to occur in bands. This means that there are physically contiguous areas of disk

storage where data is actively read, physically contiguous areas that are frequently written to, physically

contiguous areas that are both actively read and written to, or physically contiguous areas of storage that

are not frequently accessed.

130 iSeries: Performance

This “banding” of data is accounted for in the Extended Adaptive Cache design. The goal is to cache

bands characterized as read/write and read-only. A band that is characterized as write-only, while cached

in the storage subsystem write cache, remains largely unaffected by Extended Adaptive Cache. Extended

Adaptive Cache is also designed to not harm the performance of large blocks of data that are either

sequentially written or sequentially read. In this instance, the pre-fetch capability of the disks, as well as

other caches in the system, ensures a quick response time.

To learn more about what components are required, see “Restrictions and considerations for Extended

Adaptive Cache”

Restrictions and considerations for Extended Adaptive Cache: Before you begin using “Extended

Adaptive Cache Concepts” on page 130, you should do some initial planning to take into account any

restrictions or considerations that may pertain to your computing environment.

Restrictions

To use Extended Adaptive Cache, your system must have the following:

v One or more storage I/O adapters that support Extended Adaptive Cache (CCIN 2780 for systems

running V5R2 or later)

v Performance Tools for iSeries(TM) licensed program for viewing the reported information.

Extended Adaptive Cache is automatically enabled on supported I/O adapters. There is no controlled on

or off switch. Once the I/O adapter has been inserted into the subsystem, Extended Adaptive Cache is

activated. It takes approximately an hour for Extended Adaptive Cache to monitor the data flow and

populate the read cache memory. After an hour of running Extended Adaptive Cache, your system

should show improved performance (depending on your current workload) and increased I/O

throughput.

There are no restrictions for using Extended Adaptive Cache with regard to device parity protection and

mirrored protection for other disks under the I/O adapter. Finally, Extended Adaptive Cache is designed

specifically to complement iSeries Expert Cache, and may be used with or without it.

Considerations

Using the Extended Adaptive Cache allows you to attain a significant decrease in I/O response time and

increase in system I/O throughput in most environments. As is the general case with caches, the system

configuration and workload influence the effectiveness of Extended Adaptive Cache. Extended Adaptive

Cache performs at the storage subsystem level. It caches data for the set of disks that are within that

specific subsystem. Therefore, it is logical to add Extended Adaptive Cache to the most active and

performance-critical storage subsystems within the system. Extended Adaptive Cache is not considered a

pre-fetch type cache and therefore will not interfere with the read-ahead capabilities in the disk.

The larger the area of disk storage that is actively receiving I/O requests, the more selective Extended

Adaptive Cache is about deciding when to bring new data into cache. This adaptive ability allows

Extended Adaptive Cache to be effective on many workload types and sizes.

Start Extended Adaptive Cache: To start “Extended Adaptive Cache Concepts” on page 130 and

increase your system’s performance, purchase the Read Cache Device. Once the Read Cache Device has

been inserted into a disk slot on the subsystem, Extended Adaptive Cache will be activated. There is no

user-controlled on or off switch. It takes approximately an hour for Extended Adaptive Cache to monitor

the data flow and populate the Read Cache Device. After an hour of running Extended Adaptive Cache,

your system should show improved performance (depending on your current workload) and increased

I/O throughput.

To find out whether your iSeries(TM) system is capable of using Extended Adaptive Cache, see

“Restrictions and considerations for Extended Adaptive Cache.”

Performance 131

Get Extended Adaptive Cache

After deciding that you want Extended Adaptive Cache to improve your system’s performance, you must

purchase a Read Cache Device (RCD). Extended Adaptive Cache is automatically enabled through the

RCD.

To begin using Extended Adaptive Cache, you must have:

v One or more storage I/O adapters that support Extended Adaptive Cache (CCIN 2748 for systems

running V4R4 or later, or CCIN 2778 for systems running V5R1 or later, or CCIN 2757 for systems

running the latest release of V5R2).

v A Read Cache Device for each storage I/O adapter that Extended Adaptive Cache is to be activated on
(CCIN 6731 for systems running V4R4 or later).

Because Extended Adaptive Cache is automatically enabled through the RCD, there is no controlled on or

off switch. The RCD may be added without system interruption through concurrent maintenance. The

RCD resides in an internal disk slot and works with all other disk types and capacities. Be aware that all

data in the Extended Adaptive Cache is also guaranteed to be on the disks. In the unlikely event of an

RCD failure, there will be no data loss.

The Read Cache Device can be purchased wherever iSeries(TM) hardware is sold, or contact your local

IBM(R) representative.

Workload Estimator for iSeries

The Workload Estimator

helps you size system needs based on estimated workloads for specific

workload types. PM iSeries(TM) is an integrated OS/400(R) function that users under processor warranty

or on an IBM(R) maintenance agreement can activate for no additional charge. In return, you receive

capacity and performance analysis graphs useful in planning for and managing system growth and

performance.

The Workload Estimator and PM iSeries have been enhanced to work with one another. Through a

web-based application, you can size the upgrade to the required iSeries system that accommodates your

existing system’s utilization, performance, and growth as reported by PM iSeries. As an additional option,

sizings can also include capacity for adding specific applications like Domino(TM), Java(TM), and

WebSphere(R), or the consolidation of multiple AS/400(R) or iSeries traditional OS/400 workloads on one

system. This capability allows you to plan for future system requirements based on existing utilization

data coming from your own system.

iSeries(TM) Navigator for Wireless

iSeries Navigator for Wireless lets you remotely monitor system performance and status using an

Internet-ready telephone, a personal digital assistant (PDA) with a wireless modem, or a traditional Web

browser. With your wireless device, you can:

v Run commands across multiple systems

v Start and view system, job, and message monitors

v Work with jobs and messages from the monitors (hold, release, end, reply, get details)

v Manage integrated xSeries(R) servers

For an overview of how iSeries Navigator for Wireless can help you get started with remote monitoring,

see the topic iSeries Navigator for Wireless.

For complete and up-to-date information about remote monitoring, see the iSeries Navigator for Wireless

home page.

132 iSeries: Performance

http://www.ibm.com/eserver/iseries/pm400/news/newshome.htm
http://www.ibm.com/servers/eserver/iseries/navigator/pervasive.html

PATROL for iSeries (AS/400) - Predict

The PATROL for iSeries(TM) (AS/400(R)) - Predict product is a capacity planning tool that helps you

estimate future iSeries requirements to accommodate transaction throughput and application workload

increases. The estimation process is based on Collection Services data that provides resource utilization,

performance, and 5250 online transaction processing (interactive) response time information that is

measured on your iSeries server. The predictive analysis is performed through a graphical interface on a

PC workstation.

For more information, refer to the BMC products Web site.

Scenarios: Performance

One of the best ways to learn about performance management is to see examples illustrating how many

of the applications and functions can be used in a sample business environment. Use the following

scenarios and configuration examples to learn more about managing performance.

“Scenario: Improve system performance after an upgrade or migration” on page 21
In this scenario, you have just upgraded or migrated your system and it now appears to be running

slower than before. This scenario helps you identify and fix your performance problem.

“Scenario: System monitor” on page 90
See an example system monitor that alerts you if the CPU utilization gets too high and temporarily

holds any lower priority jobs until more resources become available.

“Scenario: Message monitor” on page 94
See an example message monitor that displays any inquiry messages for your message queue that

occur on any of your iSeries(TM) servers. The monitor opens and displays the message as soon as it

is detected.

“Scenario: Job monitor for CPU utilization” on page 91
See an example job monitor that tracks the CPU utilization of a specified job and alerts the job’s

owner if CPU utilization gets too high.

“Scenario: Job monitor with Advanced Job Scheduler notification” on page 92
See an example job monitor that sends an e-mail to an operator when the threshold limit of a job is

exceeded.

Related information

Listed below are the iSeries(TM) manuals (sometimes called “white books”) and IBM(R) Redbooks(TM), in

PDF format, that relate to the Performance topic. You can also view or print any of the following PDFs:

v Manuals

Performance Tools for iSeries

This book provides the programmer with the information needed to collect data about the system, job,

or program performance. It also includes tips for printing and analyzing performance data to identify

and correct inefficiencies that might exist as well as information about the Manager and Agent features.

v Web sites

– iSeries Performance Capabilities Reference

Performance 133

http://www.bmc.com/products
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

This reference provides highly technical information about server performance useful for

performance benchmarking, capacity planning, and planning for server performance.

–

Three-In-One Benchmark

IBM developed a benchmark called the Three-in-One Benchmark to mirror the real-world demands

facing IT companies. This report clearly demonstrates that the iSeries server is an excellent solution

for today’s small and medium businesses, which helps them run the applications they need without

worrying about performance.

–

Performance Management for IBM eServer iSeries

Performance Management provides the capabilities for customers to understand and manage the

performance of their computing environments. Read about the latest Performance Management

functions and tools on this web site.

v Redbooks:

– IBM eserver iSeries Universal Connection for Electronic Support and Services

This document introduces Universal Connection. It also explains how to use the variety of support

tools that report inventories of software and hardware on your machine to IBM so you can get

personalized electronic support, based on your system data.

– Lotus(R) Domino(R) for AS/400(R): Performance, Tuning, and Capacity Planning

This document describes a methodology for performance management. It includes setting up

performance objectives, collecting and reviewing performance data, tuning of resources, and

capacity planning. Performance guidelines and application design tips are also provided.

– AS/400 Performance Management

This document describes a methodology for performance management. It includes setting up

performance objectives, collecting and reviewing performance data, tuning of resources, and

capacity planning. Performance guidelines and application design tips are also provided.

– AS/400 HTTP Server Performance and Capacity Planning

The Internet and Web browser-based applications have had a profound effect on how organizations

distribute information, perform business processes, service customers, and reach new markets. This

book is intended for iSeries programmers, network and system management professionals, and

other information technologists who are responsible for designing, developing, and deploying

Web-based applications and information systems.

– Java(TM) and WebSphere(R) Performance on IBM eserver iSeries Servers

This document provides tips, techniques, and methodologies for working with Java and WebSphere

Application Server performance-related issues with a specific focus on iSeries servers.

–

Managing OS/400(R) with Operations Navigator V5R1, Volume 1: Overview and More

134 iSeries: Performance

http://www.ibm.com/servers/eserver/iseries/hardware/threeinone
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/
http://www.redbooks.ibm.com/abstracts/sg246224.html
http://www.redbooks.ibm.com/abstracts/sg245162.html
http://www.redbooks.ibm.com/abstracts/sg244735.html
http://www.redbooks.ibm.com/abstracts/sg245645.html
http://www.redbooks.ibm.com/abstracts/sg246256.html
http://www.redbooks.ibm.com/abstracts/sg246226.html

This volume presents an overview of Operations Navigator V5R1. It covers such things as managing

jobs, subsystems, job queues, and memory pools; monitoring system performance metrics; jobs and

messages; and Collection Services.

–

Managing OS/400 with Operations Navigator V5R1, Volume 5: Performance Management

This volume builds on the monitor, graph history, and Collection Services capabilities described in

Volume 1. This book shows how to use these functions in an application environment.

– AS/400 Performance Explorer Tips and Techniques

This document provides descriptions and detailed examples of the performance explorer capabilities

that were available for V3R6. Specific application examples and reports are provided.

– DB2(R) UDB/WebSphere Performance Tuning Guide

This document provides an overview of WebSphere Application Server architecture and its main

components and introduces some of its key application tuning parameters and system tuning

parameters.

–

Performance Management Tools

This IBM Redpaper is designed to help you understand the different iSeries performance

management tools at the IBM i5/OS V5R3M0 level, that are available to you and when to use them.

For complete information about iSeries performance, be sure to see the “Performance,” on page 1 topic.

Performance 135

http://www.redbooks.ibm.com/abstracts/sg246565.html
http://www.redbooks.ibm.com/abstracts/sg244781.html
http://www.redbooks.ibm.com/abstracts/sg246417.html
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/redp4026.html

136 iSeries: Performance

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM(R) may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 137

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

138 iSeries: Performance

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
AIX

AIX 5L
Domino
e(logo)server

eServer

Operating System/400
OS/400

IBM

iSeries

pSeries

xSeries

Lotus, Freelance, and WordPro are trademarks of International Business Machines Corporation and Lotus

Development Corporation in the United States, other countries, or both.

Java(TM) and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,

other countries, or both.

Linux(TM) is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM.

Appendix. Notices 139

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

IBM(R) grants you a nonexclusive copyright license to use all programming code examples from which

you can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

140 iSeries: Performance

����

Printed in USA

	Contents
	Performance
	What's new in V5R3
	What's new: Monitors
	What's new: Collection Services
	What's new: Performance Tools licensed program
	What's new: PM iSeries
	What's new: Performance explorer

	Print this topic
	Plan for performance
	Set system benchmarks
	Determine when and how to expand your system
	Determine when to use simultaneous multithreading
	Select a performance management strategy

	Set up your environment to manage performance
	Manage iSeries(TM) performance
	Track performance
	Research a performance problem
	Identify performance problem
	Identify and resolve common performance problems
	Collect system performance data
	Collect information about system resource utilization
	Collect information about an application's performance
	Scenario: Improve system performance after an upgrade or migration

	Display performance data
	Tune performance
	Basic performance tuning
	Automatically tune performance

	Manage e-business performance
	Client performance
	Network performance
	Java(TM) performance in OS/400(R)
	IBM HTTP Server performance
	WebSphere performance

	Applications for performance management
	Collection Services
	System and job monitor interaction with Collection Services
	Create database files from Collection Services data
	Customize data collections
	User-defined categories in Collection Services
	Manage collection objects
	User-defined transactions
	Collecting performance data across partitions
	Find wait statistics for a job, task, or thread
	Understanding disk consumption by Collection Services

	Intelligent Agents
	Intelligent Agent concepts
	Develop Agents
	Set up your agent environment
	Manage agents

	Performance data files
	Performance data files containing time interval data
	Performance data files: File abbreviations
	Performance data files: Collection Services system category and file relationships

	iSeries(TM) Navigator monitors
	Monitor concepts
	Configure a monitor
	Scenarios: iSeries(TM) Navigator monitors

	Graph history
	Graph history concepts
	Use graph history

	IBM Performance Management for eServer iSeries
	PM iSeries concepts
	Configure PM iSeries
	Manage PM iSeries
	PM iSeries reports

	Performance Tools
	Performance Tools concepts
	Install and configure Performance Tools
	Performance Tools reports

	Performance explorer
	Performance explorer concepts
	Configure performance explorer
	Ending performance explorer

	iDoctor for iSeries
	Performance Trace Data Visualizer (PTDV)
	Performance Management APIs
	“Work with” commands for OS/400 performance
	Extended Adaptive Cache
	Extended Adaptive Cache Concepts
	Get Extended Adaptive Cache

	Workload Estimator for iSeries
	iSeries(TM) Navigator for Wireless
	PATROL for iSeries (AS/400) - Predict

	Scenarios: Performance
	Related information

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

