
iSeries

Pthread APIs

Version 5 Release 3

���

iSeries

Pthread APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 295.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Pthread APIs 1

Before you get started with Pthreads 1

Pthread APIs 1

APIs 7

pthread_attr_destroy()—Destroy Thread Attributes

Object 7

Authorities and Locks 7

Parameters 7

Return Value 7

Error Conditions 7

Related Information 7

Example 7

pthread_attr_getdetachstate()—Get Thread Attributes

Object Detachstate 9

Authorities and Locks 9

Parameters 9

Return Value 9

Error Conditions 9

Related Information 9

Example 10

pthread_attr_getinheritsched()—Get Thread

Attribute Object Inherit Scheduling Attributes . . . 11

Authorities and Locks 11

Parameters 11

Return Value 11

Error Conditions 11

Related Information 11

Example 12

pthread_attr_getschedparam()—Get Thread

Attributes Object Scheduling Parameters 13

Authorities and Locks 13

Parameters 13

Return Value 13

Error Conditions 13

Related Information 14

Example 14

pthread_attr_init()—Initialize Thread Attributes

Object 15

Authorities and Locks 15

Parameters 15

Return Value 15

Error Conditions 15

Related Information 15

Example 15

pthread_attr_setdetachstate()—Set Thread Attributes

Object Detachstate 17

Authorities and Locks 17

Parameters 17

Return Value 17

Error Conditions 17

Related Information 17

Example 18

pthread_attr_setinheritsched()—Set Thread Attribute

Inherit Scheduling Attributes 19

Authorities and Locks 19

Parameters 19

Return Value 19

Error Conditions 20

Related Information 20

Example 20

pthread_attr_setschedparam()—Set Thread

Attributes Object Scheduling Parameters 21

Authorities and Locks 21

Parameters 22

Return Value 22

Error Conditions 22

Related Information 22

Example 22

pthread_cancel()—Cancel Thread 23

Authorities and Locks 24

Parameters 24

Return Value 24

Error Conditions 25

Related Information 25

Example 25

pthread_cleanup_peek_np()—Copy Cleanup

Handler from Cancellation Cleanup Stack 26

Authorities and Locks 26

Parameters 27

Return Value 27

Error Conditions 27

Related Information 27

Example 27

pthread_cleanup_pop()—Pop Cleanup Handler off

of Cancellation Cleanup Stack 28

Authorities and Locks 29

Parameters 29

Return Value 29

Related Information 29

Example 29

pthread_cleanup_push()—Push Cleanup Handler

onto Cancellation Cleanup Stack 30

Authorities and Locks 31

Parameters 31

Return Value 31

Related Information 31

Example 31

pthread_clear_exit_np()—Clear Exit Status of Thread 33

Authorities and Locks 33

Parameters 33

Return Value 33

Error Conditions 33

Related Information 33

Example 34

pthread_condattr_destroy()—Destroy Condition

Variable Attributes Object 35

Authorities and Locks 36

Parameters 36

Return Value 36

Error Conditions 36

Related Information 36

Example 36

© Copyright IBM Corp. 1998, 2005 iii

pthread_condattr_getpshared()—Get Process Shared

Attribute from Condition Attributes Object 37

Authorities and Locks 37

Parameters 37

Return Value 38

Error Conditions 38

Related Information 38

Example 38

pthread_condattr_init()—Initialize Condition

Variable Attributes Object 38

Authorities and Locks 39

Parameters 39

Return Value 39

Error Conditions 39

Related Information 39

Example 39

pthread_condattr_setpshared()—Set Process Shared

Attribute in Condition Attributes Object 40

Authorities and Locks 40

Parameters 40

Return Value 41

Error Conditions 41

Related Information 41

Example 41

pthread_cond_broadcast()—Broadcast Condition to

All Waiting Threads 49

Authorities and Locks 49

Parameters 49

Return Value 49

Error Conditions 50

Related Information 50

Example 50

pthread_cond_destroy()—Destroy Condition

Variable 51

Authorities and Locks 52

Parameters 52

Return Value 52

Error Conditions 52

Related Information 52

Example 52

pthread_cond_init()—Initialize Condition Variable 53

Authorities and Locks 54

Parameters 54

Return Value 54

Error Conditions 54

Related Information 54

Example 54

pthread_cond_signal()—Signal Condition to One

Waiting Thread 55

Authorities and Locks 56

Parameters 56

Return Value 56

Error Conditions 56

Related Information 56

Example 56

pthread_cond_timedwait()—Timed Wait for

Condition 58

Authorities and Locks 59

Parameters 59

Return Value 59

Error Conditions 59

Related Information 60

Example 60

pthread_cond_wait()—Wait for Condition 62

Authorities and Locks 62

Parameters 62

Return Value 63

Error Conditions 63

Related Information 63

Example 63

pthread_create()—Create Thread 65

Usage Notes 66

Authorities and Locks 66

Parameters 66

Return Value 66

Error Conditions 66

Related Information 67

Example 67

pthread_delay_np()—Delay Thread for Requested

Interval 68

Authorities and Locks 69

Parameters 69

Return Value 69

Error Conditions 69

Related Information 69

Example 69

pthread_detach()—Detach Thread 71

Authorities and Locks 71

Parameters 71

Return Value 71

Error Conditions 71

Related Information 71

Example 72

pthread_equal()—Compare Two Threads 73

Authorities and Locks 73

Parameters 73

Return Value 73

Error Conditions 73

Related Information 73

Example 73

pthread_exit()—Terminate Calling Thread 74

Authorities and Locks 75

Parameters 76

Return Value 76

Error Conditions 76

Related Information 76

Example 76

pthread_extendedjoin_np()—Wait for Thread with

Extended Options 77

Authorities and Locks 78

Parameters 78

Return Value 78

Error Conditions 78

Related Information 78

Example 78

pthread_getcancelstate_np()—Get Cancel State . . . 80

Authorities and Locks 80

Parameters 80

Return Value 80

Error Conditions 80

Related Information 81

Example 81

iv iSeries: Pthread APIs

pthread_getconcurrency()—Get Process Concurrency

Level 82

Authorities and Locks 82

Parameters 83

Return Value 83

Error Conditions 83

Related Information 83

pthread_getpthreadoption_np()—Get Pthread

Run-Time Option Data 83

Authorities and Locks 84

Parameters 84

Return Value 84

Error Conditions 85

Related Information 85

Example 85

pthread_getschedparam()—Get Thread Scheduling

Parameters 86

Authorities and Locks 86

Parameters 87

Return Value 87

Error Conditions 87

Related Information 87

Example 87

pthread_getspecific()—Get Thread Local Storage

Value by Key 88

Authorities and Locks 88

Parameters 88

Return Value 88

Error Conditions 89

Related Information 89

Example 89

pthread_getthreadid_np()—Retrieve Unique ID for

Calling Thread 91

Authorities and Locks 91

Parameters 91

Return Value 92

Error Conditions 92

Related Information 92

Example 92

pthread_getunique_np()—Retrieve Unique ID for

Target Thread 93

Authorities and Locks 94

Parameters 94

Return Value 94

Error Conditions 94

Related Information 94

Example 94

pthread_get_expiration_np()—Get Condition

Expiration Time from Relative Time 96

Authorities and Locks 96

Parameters 96

Return Value 96

Error Conditions 96

Related Information 96

Example 97

pthread_is_initialthread_np()—Check if Running in

the Initial Thread 98

Authorities and Locks 99

Parameters 99

Return Value 99

Error Conditions 99

Related Information 99

Example 99

pthread_is_multithreaded_np()—Check Current

Number of Threads 100

Authorities and Locks 100

Parameters 100

Return Value 101

Error Conditions 101

Related Information 101

Example 101

pthread_join()—Wait for and Detach Thread . . . 102

Authorities and Locks 103

Parameters 103

Return Value 103

Error Conditions 103

Related Information 103

Example 103

pthread_join_np()—Wait for Thread to End . . . 104

Authorities and Locks 105

Parameters 105

Return Value 105

Error Conditions 105

Related Information 105

Example 105

pthread_key_create()—Create Thread Local Storage

Key 107

Authorities and Locks 107

Parameters 107

Return Value 107

Error Conditions 107

Related Information 108

Example 108

pthread_key_delete()—Delete Thread Local Storage

Key 109

Authorities and Locks 109

Parameters 109

Return Value 109

Error Conditions 110

Related Information 110

Example 110

pthread_kill()—Send Signal to Thread 111

Authorities and Locks 111

Parameters 112

Return Value 112

Error Conditions 112

Related Information 112

Example 112

pthread_lock_global_np()—Lock Global Mutex . . 114

Authorities and Locks 114

Parameters 114

Return Value 114

Error Conditions 114

Related Information 115

Example 115

pthread_mutexattr_destroy()—Destroy Mutex

Attributes Object 117

Authorities and Locks 117

Parameters 117

Return Value 117

Error Conditions 117

Related Information 117

Contents v

Example 117

pthread_mutexattr_getkind_np()—Get Mutex Kind

Attribute 119

Authorities and Locks 119

Parameters 119

Return Value 119

Error Conditions 119

Related Information 119

Example 120

pthread_mutexattr_getname_np()—Get Name from

Mutex Attributes Object 121

Authorities and Locks 121

Parameters 121

Return Value 122

Error Conditions 122

Related Information 122

Example 122

pthread_mutexattr_getpshared()—Get Process

Shared Attribute from Mutex Attributes Object . . 123

Authorities and Locks 123

Parameters 123

Return Value 124

Error Conditions 124

Related Information 124

Example 124

pthread_mutexattr_gettype()—Get Mutex Type

Attribute 125

Mutex Types 125

Authorities and Locks 126

Parameters 126

Return Value 126

Error Conditions 126

Related Information 126

Example 126

pthread_mutexattr_init()—Initialize Mutex

Attributes Object 129

Authorities and Locks 129

Parameters 129

Return Value 129

Error Conditions 129

Related Information 129

Example 129

pthread_mutexattr_setkind_np()—Set Mutex Kind

Attribute 131

Authorities and Locks 131

Parameters 131

Return Value 131

Error Conditions 131

Related Information 131

Example 132

pthread_mutexattr_setname_np()—Set Name in

Mutex Attributes Object 133

Authorities and Locks 133

Parameters 133

Return Value 133

Error Conditions 134

Related Information 134

Example 134

pthread_mutexattr_setpshared()—Set Process

Shared Attribute in Mutex Attributes Object . . . 135

Authorities and Locks 135

Parameters 135

Return Value 135

Error Conditions 135

Related Information 136

Example 136

pthread_mutexattr_settype()—Set Mutex Type

Attribute 137

Mutex Types 137

Authorities and Locks 138

Parameters 138

Return Value 138

Error Conditions 138

Related Information 138

Example 138

pthread_mutex_destroy()—Destroy Mutex 139

Authorities and Locks 139

Parameters 139

Return Value 139

Error Conditions 140

Related Information 140

Example 140

pthread_mutex_init()—Initialize Mutex 141

Authorities and Locks 141

Parameters 142

Return Value 142

Error Conditions 142

Related Information 142

Example 142

pthread_mutex_lock()—Lock Mutex 143

Mutex Types 144

Authorities and Locks 145

Parameters 145

Return Value 145

Error Conditions 145

Related Information 145

Example 145

(data corruption without locking example) . . 147

pthread_mutex_timedlock_np()—Lock Mutex with

Time-Out 147

Mutex Types 148

Authorities and Locks 149

Parameters 149

Return Value 149

Error Conditions 149

Related Information 149

Example 149

pthread_mutex_trylock()—Lock Mutex with No

Wait 151

Mutex Types 151

Authorities and Locks 152

Parameters 152

Return Value 152

Error Conditions 152

Related Information 152

Example 152

pthread_mutex_unlock()—Unlock Mutex 155

Mutex Types 155

Authorities and Locks 156

Parameters 156

Return Value 156

Error Conditions 156

vi iSeries: Pthread APIs

Related Information 156

Example 156

pthread_once()—Perform One-Time Initialization 157

Authorities and Locks 158

Parameters 158

Return Value 158

Error Conditions 158

Related Information 158

Example 158

pthread_rwlockattr_destroy()—Destroy Read/Write

Lock Attribute 160

Authorities and Locks 160

Parameters 160

Return Value 160

Error Conditions 160

Related Information 160

Example 160

pthread_rwlockattr_getpshared()—Get Pshared

Read/Write Lock Attribute 162

Authorities and Locks 162

Parameters 162

Return Value 162

Error Conditions 162

Related Information 163

Example 163

pthread_rwlockattr_init()—Initialize Read/Write

Lock Attribute 170

Authorities and Locks 170

Parameters 170

Return Value 170

Error Conditions 170

Related Information 170

Example 171

pthread_rwlockattr_setpshared()—Set Pshared

Read/Write Lock Attribute 171

Authorities and Locks 171

Parameters 171

Return Value 171

Error Conditions 172

Related Information 172

Example 172

pthread_rwlock_destroy()—Destroy Read/Write

Lock 172

Authorities and Locks 173

Parameters 173

Return Value 173

Error Conditions 173

Related Information 173

Example 173

pthread_rwlock_init()—Initialize Read/Write Lock 174

Authorities and Locks 174

Parameters 174

Return Value 174

Error Conditions 175

Related Information 175

Example 175

pthread_rwlock_rdlock()—Get Shared Read Lock 177

Read/Write Lock Deadlocks 177

Upgrade / Downgrade a Lock 177

Authorities and Locks 178

Parameters 178

Return Value 178

Error Conditions 178

Related Information 178

Example 179

pthread_rwlock_timedrdlock_np()—Get Shared

Read Lock with Time-Out 179

Read/Write Lock Deadlocks 180

Upgrade / Downgrade a Lock 180

Authorities and Locks 180

Parameters 180

Return Value 180

Error Conditions 180

Related Information 181

Example 181

pthread_rwlock_timedwrlock_np()—Get Exclusive

Write Lock with Time-Out 183

Read/Write Lock Deadlocks 184

Upgrade / Downgrade a Lock 184

Authorities and Locks 184

Parameters 184

Return Value 184

Error Conditions 184

Related Information 185

Example 185

pthread_rwlock_tryrdlock()—Get Shared Read

Lock with No Wait 187

Read/Write Lock Deadlocks 187

Upgrade / Downgrade a Lock 187

Authorities and Locks 188

Parameters 188

Return Value 188

Error Conditions 188

Related Information 188

Example 188

pthread_rwlock_trywrlock()—Get Exclusive Write

Lock with No Wait 190

Read/Write Lock Deadlocks 190

Upgrade / Downgrade a Lock 191

Authorities and Locks 191

Parameters 191

Return Value 191

Error Conditions 191

Related Information 191

Example 192

pthread_rwlock_unlock()—Unlock Exclusive Write

or Shared Read Lock 193

Authorities and Locks 194

Parameters 194

Return Value 194

Error Conditions 194

Related Information 194

Example 195

pthread_rwlock_wrlock()—Get Exclusive Write

Lock 195

Read/Write Lock Deadlocks 196

Upgrade / Downgrade a Lock 196

Authorities and Locks 196

Parameters 196

Return Value 196

Error Conditions 196

Related Information 197

Contents vii

Example 197

pthread_self()—Get Pthread Handle 197

Authorities and Locks 198

Parameters 198

Return Value 198

Error Conditions 198

Related Information 198

Example 198

pthread_setcancelstate()—Set Cancel State 199

Authorities and Locks 200

Parameters 200

Return Value 200

Error Conditions 200

Related Information 200

Example 200

pthread_setcanceltype()—Set Cancel Type 201

Authorities and Locks 202

Parameters 202

Return Value 202

Error Conditions 202

Related Information 202

Example 203

pthread_setconcurrency()—Set Process Concurrency

Level 204

Authorities and Locks 204

Parameters 204

Return Value 205

Error Conditions 205

Related Information 205

pthread_setpthreadoption_np()—Set Pthread

Run-Time Option Data 205

Authorities and Locks 206

Parameters 206

Return Value 206

Error Conditions 206

Related Information 206

Example 206

pthread_setschedparam()—Set Target Thread

Scheduling Parameters 208

Authorities and Locks 209

Parameters 209

Return Value 209

Error Conditions 209

Related Information 209

Example 209

pthread_setspecific()—Set Thread Local Storage by

Key 211

Authorities and Locks 211

Parameters 211

Return Value 211

Error Conditions 212

Related Information 212

Example 212

pthread_set_mutexattr_default_np()—Set Default

Mutex Attributes Object Kind Attribute 214

Authorities and Locks 214

Parameters 214

Return Value 214

Error Conditions 214

Related Information 215

pthread_sigmask()—Set or Get Signal Mask . . . 215

Authorities and Locks 216

Parameters 216

Return Value 216

Error Conditions 216

Related Information 216

Example 216

pthread_signal_to_cancel_np()—Convert Signals to

Cancel Requests 219

Authorities and Locks 219

Parameters 219

Return Value 220

Error Conditions 220

Related Information 220

Example 220

pthread_testcancel()—Create Cancellation Point 222

Authorities and Locks 222

Parameters 222

Return Value 222

Error Conditions 223

Related Information 223

Example 223

pthread_test_exit_np()—Test Thread Exit Status 224

Authorities and Locks 225

Parameters 225

Return Value 225

Error Conditions 225

Related Information 225

Example 225

pthread_trace_init_np()—Initialize or Re-initialize

pthread tracing 227

Authorities and Locks 228

Parameters 228

Return Value 228

Error Conditions 228

Related Information 228

Example 229

PTHREAD_TRACE_NP()—Macro to optionally

execute code based on trace level 233

Authorities and Locks 234

Parameters 234

Return Value 234

Error Conditions 234

Related Information 235

Example 235

pthread_unlock_global_np()—Unlock Global Mutex 239

Authorities and Locks 239

Parameters 239

Return Value 239

Error Conditions 239

Related Information 239

Example 240

sched_yield()—Yield Processor to Another Thread 240

Authorities and Locks 240

Parameters 240

Return Value 240

Error Conditions 240

Related Information 240

Example 241

Unsupported Pthread APIs 242

pthread_atfork()—Register Fork Handlers 243

viii iSeries: Pthread APIs

pthread_atfork_np()—Register Fork Handlers with

Extended Options 243

pthread_attr_getguardsize()—Get Guard Size . . . 243

pthread_attr_getschedpolicy()—Get Scheduling

Policy 243

pthread_attr_getscope()—Get Scheduling Scope . . 243

pthread_attr_getstackaddr()—Get Stack Address 244

pthread_attr_getstacksize()—Get Stack Size . . . 244

pthread_attr_setguardsize()—Set Guard Size . . . 244

pthread_attr_setschedpolicy()—Set Scheduling

Policy 244

pthread_attr_setscope()—Set Scheduling Scope . . 245

pthread_attr_setstackaddr()—Set Stack Address . . 245

pthread_attr_setstacksize()—Set Stack Size 245

pthread_mutexattr_getprioceiling()—Get Mutex

Priority Ceiling Attribute 245

pthread_mutexattr_getprotocol()—Get Mutex

Protocol Attribute 246

pthread_mutexattr_setprioceiling()—Set Mutex

Priority Ceiling Attribute 246

pthread_mutexattr_setprotocol()—Set Mutex

Protocol Attribute 246

pthread_mutex_getprioceiling()—Get Mutex

Priority Ceiling 246

pthread_mutex_setprioceiling()—Set Mutex Priority

Ceiling 246

Chapter 2. Concepts 249

What are Pthreads? 249

Primitive data types for Pthreads 249

Feature test macros for Pthreads 250

OS/400 Pthreads versus the POSIX standard, the

Single UNIX Specification, and other threads

implementations 250

All thread definitions in pthread.h 251

Unsupported preprocessor and feature test macros 251

Unsupported constants 252

Unsupported cancellation points 252

Example 252

Unsupported sysconf() configuration variables . . 253

Thread priority and scheduling 253

Thread ID vs. Pthread Handle (pthread_t) 254

Thread ID value and size 254

Mutexes return EDEADLK when re-locked by

owner 254

Return values from thread start routines are not

integers 255

Example 255

Threads do not necessarily start before

pthread_create() returns 256

Initial thread is special, cannot pthread_exit() . . . 257

Pthread APIs cause asynchronous signals

initialization 257

Not all jobs can create threads; pthread_create()

fails with EBUSY 258

Read/write locks are recursive 258

Shared read/write locks are released at thread

termination 258

Read/write locks can be upgraded/downgraded 258

Read/write locks do not favor writers 260

Spawn API provides more POSIX-like process

model 260

C++ destructors and Pthread termination 260

Example 261

Unhandled exceptions terminate the thread (not

the process) 263

Example 264

Exceptions vs. Asynchronous signals vs. ANSI C

signals 265

Example 266

Example Output 268

Example 268

Mutexes can be named to aid in application debug 271

Header files for Pthread functions 271

Where to Find Header Files 271

Pthread glossary 272

A 272

C 272

D 273

E 273

G 273

I 273

J 273

M 273

N 274

O 274

P 274

R 274

S 274

T 275

Other Sources of Pthread Information 276

Writing and compiling threaded programs . . . 276

Using the _MULTI_THREADED preprocessor

definition 277

Running threaded programs 277

SPAWN CL command, QUSRTOOL example . . . 278

Creating the SPAWN command 278

Troubleshooting Pthread errors 278

Cannot find header files pthread.h or qp0ztype.h

or qp0zptha.h 278

Thread creation (pthread_create()) fails with

EBUSY or 3029 279

Mixing thread models or API sets 279

Reserved fields must be binary zero 280

Powerful OS/400 cleanup mechanisms allow

application deadlock (cancel_handler and C++

automatic destructors) 280

Important 281

Recommendations 281

Thread creation using C++ methods as target does

not work 282

Example 283

MCH3402 from pointer returned by pthread_join() 284

Example 284

Information on the Pthread API examples 285

File check.h used by API examples programs 286

Thread management APIs 286

Thread specific storage APIs 289

Thread cancellation APIs 289

Mutex synchronization APIs 290

Condition variable synchronization APIs 292

Contents ix

Read/write lock synchronization APIs 293

Signals APIs 294

Appendix. Notices 295

Trademarks 296

Terms and conditions for downloading and

printing publications 297

Code disclaimer information 298

x iSeries: Pthread APIs

Chapter 1. Pthread APIs

Before you get started with Pthreads

Many details in Multithreaded applications will affect your interpretation of how the Pthread APIs work.

Multithreaded applications also contains important general information about threads. The information

includes how process architecture and process behavior change when running a threaded program, what

parts of the system are not available for use when running a threaded program, and tips on performance

and debugging of threaded jobs.

Programming with Pthreads

v Pthread concepts and references

– “What are Pthreads?” on page 249

– “Primitive data types for Pthreads” on page 249 — Naming conventions for primitive data types in

threaded programs.

– “Feature test macros for Pthreads” on page 250 — Descriptions of supported and unsupported

feature test macros.

– “OS/400 Pthreads versus the POSIX standard, the Single UNIX Specification, and other threads

implementations” on page 250

– “Header files for Pthread functions” on page 271

– “Pthread glossary” on page 272 — Definitions of some common Pthread terms.

– “Other Sources of Pthread Information” on page 276
v Pthread programming basic tasks — Information to get you started with Pthreads programming.

– “Writing and compiling threaded programs” on page 276

– “Running threaded programs” on page 277
v “Troubleshooting Pthread errors” on page 278 — Descriptions of common errors users encounter when

programming with Pthreads.

Pthread APIs

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285. See Code disclaimer information for information pertaining to code examples.

For information about specific groups of Pthread APIs, see:

v “Thread management APIs” on page 286
v “Thread specific storage APIs” on page 289
v “Thread cancellation APIs” on page 289
v “Mutex synchronization APIs” on page 290
v “Condition variable synchronization APIs” on page 292
v “Read/write lock synchronization APIs” on page 293
v “Signals APIs” on page 294
v “Unsupported Pthread APIs” on page 242

The Pthread APIs are:

v “pthread_atfork()—Register Fork Handlers” on page 243 (Register Fork Handlers)

v “pthread_atfork_np()—Register Fork Handlers with Extended Options” on page 243 (Register Fork

Handlers with Extended Options)

© Copyright IBM Corp. 1998, 2005 1

aboutapis.htm#CODEDISCLAIMER

v “pthread_attr_destroy()—Destroy Thread Attributes Object” on page 7 (Destroy Thread Attributes

Object) destroys a thread attributes object and allows the system to reclaim any resources associated

with that thread attributes object.

v “pthread_attr_getdetachstate()—Get Thread Attributes Object Detachstate” on page 9 (Get Thread

Attributes Object Detachstate) returns the detach state attribute from the thread attributes object

specified.

v “pthread_attr_getguardsize()—Get Guard Size” on page 243 (Get Guard Size)

v “pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit Scheduling Attributes” on page 11

(Get Thread Attribute Object Inherit Scheduling Attributes) returns the inheritsched attribute from the

thread attributes object specified.

v “pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page 13 (Get

Thread Attributes Object Scheduling Parameters) returns the scheduling parameters attribute from the

thread attributes object.

v “pthread_attr_getschedpolicy()—Get Scheduling Policy” on page 243 (Get Scheduling Policy)

v “pthread_attr_getscope()—Get Scheduling Scope” on page 243 (Get Scheduling Scope)

v “pthread_attr_getstackaddr()—Get Stack Address” on page 244 (Get Stack Address)

v “pthread_attr_getstacksize()—Get Stack Size” on page 244 (Get Stack Size)

v “pthread_attr_init()—Initialize Thread Attributes Object” on page 15 (Initialize Thread Attributes

Object) initializes a thread attributes object to the default thread attributes.

v “pthread_attr_setdetachstate()—Set Thread Attributes Object Detachstate” on page 17 (Set Thread

Attributes Object Detachstate) sets the detach state of the thread attributes object.

v “pthread_attr_setguardsize()—Set Guard Size” on page 244 (Set Guard Size)

v “pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling Attributes” on page 19 (Set

Thread Attribute Inherit Scheduling Attributes) sets the inheritsched attribute in the thread attributes

object specified.

v “pthread_attr_setschedparam()—Set Thread Attributes Object Scheduling Parameters” on page 21 (Set

Thread Attributes Object Scheduling Parameters) sets the scheduling parameters in the thread

attributes object.

v “pthread_attr_setschedpolicy()—Set Scheduling Policy” on page 244 (Set Scheduling Policy)

v “pthread_attr_setscope()—Set Scheduling Scope” on page 245 (Set Scheduling Scope)

v “pthread_attr_setstackaddr()—Set Stack Address” on page 245 (Set Stack Address)

v “pthread_attr_setstacksize()—Set Stack Size” on page 245 (Set Stack Size)

v “pthread_cancel()—Cancel Thread” on page 23 (Cancel Thread) requests cancellation of the target

thread.

v “pthread_cleanup_peek_np()—Copy Cleanup Handler from Cancellation Cleanup Stack” on page 26

(Copy Cleanup Handler from Cancellation Cleanup Stack) returns a copy of the cleanup handler entry

that the next call to pthread_cleanup_pop() would pop.

v “pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28 (Pop

Cleanup Handler off of Cancellation Cleanup Stack) pops the last cleanup handler from the

cancellation cleanup stack.

v “pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30 (Push

Cleanup Handler onto Cancellation Cleanup Stack) pushes a cancellation cleanup routine onto the

calling threads cancellation cleanup stack.

v “pthread_clear_exit_np()—Clear Exit Status of Thread” on page 33 (Clear Exit Status of Thread) clears

the exit status of the thread.

v “pthread_condattr_destroy()—Destroy Condition Variable Attributes Object” on page 35 (Destroy

Condition Variable Attributes Object) destroys the condition variable attributes object specified by attr,

and indicates that any storage that the system has associated with the object be de-allocated.

2 iSeries: Pthread APIs

v “pthread_condattr_getpshared()—Get Process Shared Attribute from Condition Attributes Object” on

page 37 (Get Process Shared Attribute from Condition Attributes Object) retrieves the current setting of

the process shared attribute from the condition attributes object.

v “pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38 (Initialize

Condition Variable Attributes Object) initializes the condition variable attributes object specified by attr

to the default attributes.

v “pthread_condattr_setpshared()—Set Process Shared Attribute in Condition Attributes Object” on page

40 (Set Process Shared Attribute in Condition Attributes Object) sets the current pshared attribute for

the condition attributes object.

v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49 (Broadcast

Condition to All Waiting Threads) wakes up all threads that are currently waiting on the condition

variable specified by cond.

v “pthread_cond_destroy()—Destroy Condition Variable” on page 51 (Destroy Condition Variable)

destroys the condition variable specified by cond.

v “pthread_cond_init()—Initialize Condition Variable” on page 53 (Initialize Condition Variable)

initializes a condition variable object with the specified attributes for use.

v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55 (Signal Condition to

One Waiting Thread) wakes up at least one thread that is currently waiting on the condition variable

specified by cond.

v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58 (Timed Wait for Condition) blocks

the calling thread, waiting for the condition specified by cond to be signaled or broadcast to.

v “pthread_cond_wait()—Wait for Condition” on page 62 (Wait for Condition) blocks the calling thread,

waiting for the condition specified by cond to be signaled or broadcast to.

v “pthread_create()—Create Thread” on page 65 (Create Thread) creates a thread with the specified

attributes and runs the C function start_routine in the thread with the single pointer argument

specified.

v “pthread_delay_np()—Delay Thread for Requested Interval” on page 68 (Delay Thread for Requested

Interval) causes the calling thread to delay for the deltatime specified.

v “pthread_detach()—Detach Thread” on page 71 (Detach Thread) indicates that system resources for the

specified thread should be reclaimed when the thread ends.

v “pthread_equal()—Compare Two Threads” on page 73 (Compare Two Threads) compares two Pthread

handles for equality.

v “pthread_exit()—Terminate Calling Thread” on page 74 (Terminate Calling Thread) terminates the

calling thread, making its exit status available to any waiting threads.

v “pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77 (Wait for Thread

with Extended Options) waits for a thread to terminate, optionally detaches the thread, then returns

the threads exit status.

v “pthread_getcancelstate_np()—Get Cancel State” on page 80 (Get Cancel State) gets the current cancel

state of the thread.

v “pthread_getconcurrency()—Get Process Concurrency Level” on page 82 (Get Process Concurrency

Level) retrieves the current concurrency level for the process.

v “pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data” on page 83 (Get Pthread

Run-Time Option Data) gets option data from the pthread run-time for the process.

v “pthread_getschedparam()—Get Thread Scheduling Parameters” on page 86 (Get Thread Scheduling

Parameters) retrieves the scheduling parameters of the thread.

v “pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88 (Get Thread Local Storage

Value by Key) retrieves the thread local storage value associated with the key. pthread_getspecific()

may be called from a data destructor.

v “pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91 (Retrieve Unique ID

for Calling Thread) retrieves the unique integral identifier that can be used to identify the calling

thread in some context for application debugging or tracing support.

Chapter 1. Pthread APIs 3

v “pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93 (Retrieve a Unique ID for

Target Thread) retrieves the unique integral identifier that can be used to identify the thread in some

context for application debugging or tracing support.

v “pthread_get_expiration_np()—Get Condition Expiration Time from Relative Time” on page 96 (Get

Condition Expiration Time from Relative Time) computes an absolute time by adding the specified

relative time (delta) to the current system time.

v “pthread_is_initialthread_np()—Check if Running in the Initial Thread” on page 98 (Check if Running

in the Initial Thread) returns true or false, indicating if the current thread is the initial thread of the

process.

v “pthread_is_multithreaded_np()—Check Current Number of Threads” on page 100 (Check the Current

Number of Threads) returns true or false, indicating whether the current process has more than one

thread.

v “pthread_join()—Wait for and Detach Thread” on page 102 (Wait for and Detach Thread) waits for a

thread to terminate, detaches the thread, then returns the threads exit status.

v “pthread_join_np()—Wait for Thread to End” on page 104 (Wait for Thread to End) waits for a thread

to terminate, then returns the threads exit status, while leaving the data structures of the thread

available for a later call to pthread_join(), pthread_join_np(), pthread_detach(), or

pthread_extendedjoin_np()

v “pthread_key_create()—Create Thread Local Storage Key” on page 107 (Create Thread Local Storage

Key) creates a thread local storage key for the process and associates the destructor function with that

key.

v “pthread_key_delete()—Delete Thread Local Storage Key” on page 109 (Delete Thread Local Storage

Key) deletes a process-wide thread local storage key.

v “pthread_kill()—Send Signal to Thread” on page 111 (Send Signal to Thread) requests that the signal

sig be delivered to the specified thread.

v “pthread_lock_global_np()—Lock Global Mutex” on page 114 (Lock Global Mutex) locks a global

mutex provided by the pthreads run-time.

v “pthread_mutexattr_destroy()—Destroy Mutex Attributes Object” on page 117 (Destroy Mutex

Attributes Object) destroys a mutex attributes object and allows the system to reclaim any resources

associated with that mutex attributes object.

v “pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute” on page 119 (Get Mutex Kind Attribute)

retrieves the kind attribute from the mutex attributes object specified by attr.

v “pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object” on page 121 (Get Name

from Mutex Attributes Object) retrieves the name attribute associated with the mutex attribute specified

by attr.

v “pthread_mutexattr_getprioceiling()—Get Mutex Priority Ceiling Attribute” on page 245 (Get Mutex

Priority Ceiling Attribute)

v “pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute” on page 246 (Get Mutex Protocol

Attribute)

v “pthread_mutexattr_getpshared()—Get Process Shared Attribute from Mutex Attributes Object” on

page 123 (Get Process Shared Attribute from Mutex Attributes Object) retrieves the current setting of

the process shared attribute from the mutex attributes object.

v “pthread_mutexattr_gettype()—Get Mutex Type Attribute” on page 125 (Get Mutex Type Attribute)

retrieves the type attribute from the mutex attributes object specified by attr.

v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129 (Initialize Mutex Attributes

Object) initializes the mutex attributes object referenced by attr to the default attributes.

v “pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131 (Set Mutex Kind Attribute)

sets the kind attribute in the mutex attributes object specified by attr.

v “pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object” on page 133 (Set Name in

Mutex Attributes Object) changes the name attribute associated with the mutex attribute specified by

attr.

4 iSeries: Pthread APIs

v “pthread_mutexattr_setprioceiling()—Set Mutex Priority Ceiling Attribute” on page 246 (Set Mutex

Priority Ceiling Attribute)

v “pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute” on page 246 (Set Mutex Protocol

Attribute)

v “pthread_mutexattr_setpshared()—Set Process Shared Attribute in Mutex Attributes Object” on page

135 (Set Process Shared Attribute in Mutex Attributes Object) sets the current pshared attribute for the

mutex attributes object.

v “pthread_mutexattr_settype()—Set Mutex Type Attribute” on page 137 (Set Mutex Type Attribute) sets

the type attribute in the mutex attributes object specified by attr.

v “pthread_mutex_destroy()—Destroy Mutex” on page 139 (Destroy Mutex) destroys the named mutex.

v “pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling” on page 246 (Get Mutex Priority Ceiling)

v “pthread_mutex_init()—Initialize Mutex” on page 141 (Initialize Mutex) initializes a mutex with the

specified attributes for use.

v “pthread_mutex_lock()—Lock Mutex” on page 143 (Lock Mutex) acquires ownership of the mutex

specified.

v “pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling” on page 246 (Set Mutex Priority Ceiling)

v “pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147 (Lock Mutex with

Time-Out) acquires ownership of the mutex specified.

v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151 (Lock Mutex with No Wait)

attempts to acquire ownership of the mutex specified without blocking the calling thread.

v “pthread_mutex_unlock()—Unlock Mutex” on page 155 (Unlock Mutex) unlocks the mutex specified.

v “pthread_once()—Perform One-Time Initialization” on page 157 (Perform One-Time Initialization)

performs one time initialization based on a specific once_control variable.

v “pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute” on page 160 (Destroy Read/Write

Lock Attribute) destroys a read/write lock attributes object and allows the systems to reclaim any

resources associated with that read/write lock attributes object.

v “pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock Attribute” on page 162 (Get Pshared

Read/Write Lock Attribute) retrieves the current setting of the process shared attribute from the

read/write lock attributes object.

v “pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute” on page 170 (Initialize Read/Write

Lock Attribute) initializes the read/write lock attributes object referred to by attr to the default

attributes.

v “pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock Attribute” on page 171 (Set Pshared

Read/Write Lock Attribute) sets the current pshared attribute for the read/write attributes object.

v “pthread_rwlock_destroy()—Destroy Read/Write Lock” on page 172 (Destroy Read/Write Lock)

destroys the named read/write lock.

v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174 (Initialize Read/Write Lock)

initializes a new read/write lock with the specified attributes for use.

v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177 (Get Shared Read Lock) attempts to

acquire a shared read lock on the read/write lock specified by rwlock.

v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179 (Get Shared

Read Lock with Time-Out) attempts to acquire a shared read lock on the read/write lock specified by

rwlock.

v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183 (Get

Exclusive Write Lock with Time-Out) attempts to acquire an exclusive write lock on the read/write

lock specified by rwlock.

v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187 (Get Shared Read

Lock with No Wait) attempts to acquire a shared read lock on the read/write lock specified by rwlock.

Chapter 1. Pthread APIs 5

v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190 (Get Exclusive

Write Lock with No Wait) attempts to acquire an exclusive write lock on the read/write lock specified

by rwlock.

v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193 (Unlock

Exclusive Write or Shared Read Lock) unlocks a shared read or exclusive write lock held by the calling

thread.

v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195 (Get Exclusive Write Lock)

attempts to acquire an exclusive write lock on the read/write lock specified by rwlock.

v “pthread_self()—Get Pthread Handle” on page 197 (Get Pthread Handle) returns the Pthread handle of

the calling thread.

v “pthread_setcancelstate()—Set Cancel State” on page 199 (Set Cancel State) sets the cancel state to one

of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE and returns the old cancel state

into the location specified by oldstate (if oldstate is non-NULL).

v “pthread_setcanceltype()—Set Cancel Type” on page 201 (Set Cancel Type) sets the cancel type to one

of PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS and returns the old

cancel type into the location specified by oldtype (if oldtype is non-NULL)

v “pthread_setconcurrency()—Set Process Concurrency Level” on page 204 (Set Process Concurrency

Level) sets the current concurrency level for the process.

v “pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data” on page 205 (Set Pthread

Run-Time Option Data) sets option data in the pthread run-time for the process.

v “pthread_setschedparam()—Set Target Thread Scheduling Parameters” on page 208 (Set Target Thread

Scheduling Parameters) sets the scheduling parameters of the target thread.

v “pthread_setspecific()—Set Thread Local Storage by Key” on page 211 (Set Thread Local Storage by

Key) sets the thread local storage value associated with a key.

v “pthread_set_mutexattr_default_np()—Set Default Mutex Attributes Object Kind Attribute” on page 214

(Set Default Mutex Attributes Object Kind Attribute) sets the kind attribute in the default mutex

attribute object.

v “pthread_sigmask()—Set or Get Signal Mask” on page 215 (Set or Get Signal Mask) examines or

modifies the signal blocking mask for the current thread.

v “pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests” on page 219 (Convert Signals to

Cancel Requests) causes a pthread_cancel() to be delivered to the target thread when the first signal

specified in set arrives.

v “pthread_testcancel()—Create Cancellation Point” on page 222 (Create Cancellation Point) creates a

cancellation point in the calling thread.

v “pthread_test_exit_np()—Test Thread Exit Status” on page 224 (Test Thread Exit Status) returns the

current state of the thread along with its exit status.

v “pthread_trace_init_np()—Initialize or Re-initialize pthread tracing” on page 227 (Initialize or

Reinitialize Pthread Tracing) initializes or refreshes both the Pthreads library trace level and the

application trace level.

v “PTHREAD_TRACE_NP()—Macro to optionally execute code based on trace level” on page 233

(Execute Code Based on Trace Level (Macro)) is used to execute optional code based on the current

application trace level.

v “pthread_unlock_global_np()—Unlock Global Mutex” on page 239 (Unlock Global Mutex) unlocks a

global mutex provided by the pthreads run-time.

v “sched_yield()—Yield Processor to Another Thread” on page 240 (Yield Processor to Another Thread)

yields the processor from the currently executing thread to another ready-to-run, active thread of equal

or higher priority.

 Top | APIs by category

6 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

APIs

These are the APIs for this category.

pthread_attr_destroy()—Destroy Thread Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_attr_destroy(pthread_attr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_destroy() function destroys a thread attributes object and allows the system to reclaim

any resources associated with that thread attributes object. This does not have an effect on any threads

created using this thread attributes object.

Authorities and Locks

None.

Parameters

attr (Input) The address of the thread attributes object to be destroyed

Return Value

0 pthread_attr_destroy() was successful.

value pthread_attr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_destroy() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_init()—Initialize Thread Attributes Object” on page 15—Initialize Thread Attributes

Object

Example

See Code disclaimer information for information pertaining to code examples.

Chapter 1. Pthread APIs 7

aboutapis.htm#CODEDISCLAIMER

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void *threadfunc(void *parm)

{

 printf("Thread created using an default attributes\n");

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 printf("Create a thread using the attributes object\n");

 rc = pthread_create(&thread, &pta, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Create a thread using the default attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TAINI0

Create a thread attributes object

Create a thread using the attributes object

Create a thread using the default attributes

Destroy thread attributes object

Thread created using an default attributes

Thread created using an default attributes

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

8 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_attr_getdetachstate()—Get Thread Attributes Object

Detachstate

 Syntax:

 #include <pthread.h>

 int pthread_attr_getdetachstate(const pthread_attr_t *attr,

 int *detachstate);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_getdetachstate() function returns the detach state attribute from the thread attributes

object specified. The detach state of a thread indicates whether the system is allowed to free thread

resources when a thread terminates.

The detach state specifies one of PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

The default detach state (DEFAULT_DETACHSTATE) is PTHREAD_CREATE_JOINABLE.

Authorities and Locks

None.

Parameters

attr

 (Input) The address of the thread attributes object

detachstate

 (Output) The address of the variable to contain the returned detach state

Return Value

0 pthread_attr_getdetachstate() was successful.

value pthread_attr_getdetachstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getdetachstate() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_setdetachstate()—Set Thread Attributes Object Detachstate” on page 17

Chapter 1. Pthread APIs 9

v “pthread_detach()—Detach Thread” on page 71—Detach Thread
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

 int state;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 printf("Get detach state\n");

 rc = pthread_attr_getdetachstate(&pta, &state);

 checkResults("pthread_attr_getdetachstate()\n", rc);

 printf("The thread attributes object indicates: ");

 switch (state) {

 case PTHREAD_CREATE_DETACHED:

 printf("DETACHED\n");

 break;

 case PTHREAD_CREATE_JOINABLE:

 printf("JOINABLE\n");

 break;

 }

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TAGDS0

Create a thread attributes object

Get detach state

The thread attributes object indicates: JOINABLE

Destroy thread attributes object

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

10 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit

Scheduling Attributes

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_getinheritsched(const pthread_attr_t *attr,

 int *inheritsched);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_getinheritsched() function returns the inheritsched attribute from the thread attributes

object specified. The inheritsched attribute is one of PTHREAD_EXPLICIT_SCHED or

PTHREAD_INHERIT_SCHED. The default inheritsched attribute is PTHREAD_EXPLICIT_SCHED,

with a default priority of zero.

Use the inheritsched parameter to inherit or explicitly specify the scheduling attributes when creating new

threads.

Authorities and Locks

None.

Parameters

attr (Input) Address of thread creation attributes

inheritsched

(Output) Address of the variable to receive the inheritsched attribute

Return Value

0 pthread_attr_getinheritsched() was successful.

value pthread_attr_getinheritsched() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getinheritsched() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling Attributes” on page 19

Chapter 1. Pthread APIs 11

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <except.h>

#include "check.h"

void showInheritSched(pthread_attr_t *attr) {

 int rc;

 int inheritsched;

 rc = pthread_attr_getinheritsched(attr, &inheritsched);

 checkResults("pthread_attr_getinheritsched()\n", rc);

 switch(inheritsched) {

 case PTHREAD_EXPLICIT_SCHED:

 printf("Inherit Sched - PTHREAD_EXPLICIT_SCHED\n");

 break;

 case PTHREAD_INHERIT_SCHED:

 printf("Inherit Sched - PTHREAD_INHERIT_SCHED\n");

 break;

 default:

 printf("Invalid inheritsched attribute!\n");

 exit(1);

 }

 return;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t attr;

 char c;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 rc = pthread_attr_init(&attr);

 checkResults("pthread_attr_init()\n", rc);

 showInheritSched(&attr);

 rc = pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);

 checkResults("pthread_attr_setinheritsched()\n", rc);

 showInheritSched(&attr);

 rc = pthread_attr_destroy(&attr);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPGIS0

Inherit Sched - PTHREAD_EXPLICIT_SCHED

Inherit Sched - PTHREAD_INHERIT_SCHED

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

12 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_attr_getschedparam()—Get Thread Attributes Object

Scheduling Parameters

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_getschedparam(const pthread_attr_t *attr,

 struct sched_param *param);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_getschedparam() function returns the scheduling parameters attribute from the thread

attributes object. The default OS/400 scheduling policy is SCHED_OTHER and cannot be changed to

another scheduling policy.

The sched_policy field of the param parameter is always returned as SCHED_OTHER. The sched_priority

field of the param structure is set to the priority of the target thread at the time of the call.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another

mechanism (outside of the pthread APIs) to set the priority of a thread. If you do,

pthread_getschedparam() returns only the information that was set by the pthread interfaces.

(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks

None.

Parameters

attr (Input) The address of the thread attributes object

param (Output) The address of the variable to contain the returned scheduling parameters

Return Value

0 pthread_attr_getschedparam() was successful.

value pthread_attr_getschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getschedparam() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Chapter 1. Pthread APIs 13

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v The <sched.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_setschedparam()—Set Thread Attributes Object Scheduling Parameters” on page 21

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <sched.h>

#include <stdio.h>

#include "check.h"

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

 struct sched_param param;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 printf("Get scheduling parameters\n");

 rc = pthread_attr_getschedparam(&pta, ¶m);

 checkResults("pthread_attr_getschedparam()\n", rc);

 printf("The thread attributes object indicates: ");

 printf("priority %d\n", param.sched_priority);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TAGSP0

Create a thread attributes object

Get scheduling parameters

The thread attributes object indicates: priority 0

Destroy thread attributes object

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

14 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_attr_init()—Initialize Thread Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_attr_init(pthread_attr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_init() function initializes a thread attributes object to the default thread attributes. The

thread attributes object can be used in a call to pthread_create() to specify attributes of the new thread.

Authorities and Locks

None.

Parameters

attr (Input/Output) The address of the thread attributes object to be initialized

Return Value

0 pthread_attr_init() was successful.

value pthread_attr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_destroy()—Destroy Thread Attributes Object” on page 7
v “pthread_create()—Create Thread” on page 65—Create Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void *threadfunc(void *parm)

{

Chapter 1. Pthread APIs 15

aboutapis.htm#CODEDISCLAIMER

printf("Thread created using an default attributes\n");

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 printf("Create a thread using the attributes object\n");

 rc = pthread_create(&thread, &pta, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Create a thread using the default attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TAINI0

Create a thread attributes object

Create a thread using the attributes object

Create a thread using the default attributes

Destroy thread attributes object

Thread created using an default attributes

Thread created using an default attributes

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

16 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_attr_setdetachstate()—Set Thread Attributes Object

Detachstate

 Syntax:

 #include <pthread.h>

 int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_setdetachstate() function sets the detach state of the thread attributes object. The detach

state of a thread indicates whether the system is allowed to free thread resources (including but not

limited to thread exit status) when the thread terminates. Some resources (like automatic storage) are

always freed when a thread ends.

The detach state specifies one of PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.

The default detach state (DEFAULT_DETACHSTATE) is PTHREAD_CREATE_JOINABLE.

Authorities and Locks

None.

Parameters

attr (Input) The address of the thread attributes object.

detachstate

(Output) The detach state, one of PTHREAD_CREATE_JOINABLE or

PTHREAD_CREATE_DETACHED.

Return Value

0 pthread_attr_setdetachstate() was successful.

value pthread_attr_setdetachstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_setdetachstate() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_getdetachstate()—Get Thread Attributes Object Detachstate” on page 9—Get Thread

Attributes Object Detachstate

Chapter 1. Pthread APIs 17

v “pthread_detach()—Detach Thread” on page 71—Detach Thread
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void showDetachState(pthread_attr_t *a)

{

 int rc=0;

 int state=0;

 printf("Get detach state\n");

 rc = pthread_attr_getdetachstate(a, &state);

 checkResults("pthread_attr_getdetachstate()\n", rc);

 printf("The thread attributes object indicates: ");

 switch (state) {

 case PTHREAD_CREATE_DETACHED:

 printf("DETACHED\n");

 break;

 case PTHREAD_CREATE_JOINABLE:

 printf("JOINABLE\n");

 break;

 }

 return;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a default thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 showDetachState(&pta);

 printf("Set the detach state\n");

 rc = pthread_attr_setdetachstate(&pta, PTHREAD_CREATE_DETACHED);

 checkResults("pthread_attr_setdetachstate()\n", rc);

 showDetachState(&pta);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TASDS0

Create a default thread attributes object

Get detach state

18 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

The thread attributes object indicates: JOINABLE

Set the detach state

Get detach state

The thread attributes object indicates: DETACHED

Destroy thread attributes object

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling

Attributes

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_setinheritsched(pthread_attr_t *attr,

 int *inheritsched);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_setinheritsched() function sets the inheritsched attribute in the thread attributes object

specified. The inheritsched attribute should be one of PTHREAD_EXPLICIT_SCHED or

PTHREAD_INHERIT_SCHED. The default inheritsched attribute is PTHREAD_EXPLICIT_SCHED,

with a default priority of zero.

Use the inheritsched attribute to inherit or explicitly specify the scheduling attributes when creating new

threads.

Authorities and Locks

None.

Parameters

attr (Input) Address of thread creation attributes

inheritsched

(Output) Address of the variable to receive the inheritsched attribute

Return Value

0 pthread_attr_setinheritsched() was successful

value pthread_attr_setinheritsched() was not successful. value is set to indicate the error condition

Chapter 1. Pthread APIs 19

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_attr_setinheritsched() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit Scheduling Attributes” on page

11—Get Thread Attribute Object Inherit Scheduling Attributes
v “pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page

13—Get Thread Attributes Object Scheduling Parameters

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <except.h>

#include "check.h"

void showInheritSched(pthread_attr_t *attr) {

 int rc;

 int inheritsched;

 rc = pthread_attr_getinheritsched(attr, &inheritsched);

 checkResults("pthread_attr_getinheritsched()\n", rc);

 switch(inheritsched) {

 case PTHREAD_EXPLICIT_SCHED:

 printf("Inherit Sched - PTHREAD_EXPLICIT_SCHED\n");

 break;

 case PTHREAD_INHERIT_SCHED:

 printf("Inherit Sched - PTHREAD_INHERIT_SCHED\n");

 break;

 default:

 printf("Invalid inheritsched attribute!\n");

 exit(1);

 }

 return;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t attr;

 char c;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 rc = pthread_attr_init(&attr);

 checkResults("pthread_attr_init()\n", rc);

 showInheritSched(&attr);

 rc = pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);

 checkResults("pthread_attr_setinheritsched()\n", rc);

20 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

showInheritSched(&attr);

 rc = pthread_attr_destroy(&attr);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPSIS0

Inherit Sched - PTHREAD_EXPLICIT_SCHED

Inherit Sched - PTHREAD_INHERIT_SCHED

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_attr_setschedparam()—Set Thread Attributes Object

Scheduling Parameters

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_setschedparam(pthread_attr_t *attr,

 const struct sched_param *param);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_attr_setschedparam() function sets the scheduling parameters in the thread attributes object.

The supported OS/400 scheduling policy is SCHED_OTHER. Attempting to set the sched_policy field of

the param parameter other than SCHED_OTHER causes the EINVAL error. The sched_priority field of the

param parameter must range from PRIORITY_MIN to PRIORITY_MAX or the ENOTSUP error occurs.

All reserved fields in the scheduling parameters structure must be binary zero or the EINVAL error

occurs.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another

mechanism (outside of the pthread APIs) to set the priority of a thread. If you do,

pthread_getschedparam() returns only that information that was set by the pthread interfaces

(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks

None.

Chapter 1. Pthread APIs 21

#TOP_OF_PAGE
aplist.htm

Parameters

attr (Input/Output) The address of the thread attributes object

param (Input) Address of the variable containing the scheduling parameters

Return Value

0 pthread_attr_setschedparam() was successful.

value pthread_attr_setschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_setschedparam() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ENOTSUP]

 The value specified for the priority argument is not supported.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v The <sched.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page

13—Get Thread Attributes Object Scheduling Parameters

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <sched.h>

#include <stdio.h>

#include "check.h"

#define BUMP_PRIO 1

static int thePriority = 0;

void showSchedParam(pthread_attr_t *a)

{

 int rc=0;

 struct sched_param param;

 printf("Get scheduling parameters\n");

 rc = pthread_attr_getschedparam(a, ¶m);

 checkResults("pthread_attr_getschedparam()\n", rc);

 printf("The thread attributes object indicates priority: %d\n",

 param.sched_priority);

 thePriority = param.sched_priority;

 return;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

22 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

struct sched_param param;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 showSchedParam(&pta);

 memset(¶m, 0, sizeof(param));

 if (thePriority + BUMP_PRIO <= PRIORITY_MAX_NP) {

 param.sched_priority = thePriority + BUMP_PRIO;

 }

 printf("Setting scheduling parameters\n");

 rc = pthread_attr_setschedparam(&pta, ¶m);

 checkResults("pthread_attr_setschedparam()\n", rc);

 showSchedParam(&pta);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TASSP0

Create a thread attributes object

Get scheduling parameters

The thread attributes object indicates priority: 0

Setting scheduling parameters

Get scheduling parameters

The thread attributes object indicates priority: 0

Destroy thread attributes object

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cancel()—Cancel Thread

 Syntax:

 #include <pthread.h>

 int pthread_cancel(pthread_t thread);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

Chapter 1. Pthread APIs 23

#TOP_OF_PAGE
aplist.htm

The pthread_cancel() function requests cancellation of the target thread. The target thread is cancelled,

based on its ability to be cancelled.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes

the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the

thread changes the cancelability, calls a function that is a cancellation point, or calls pthread_testcancel(),

thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon

immediately, interrupting the thread with its processing.

Note: You should not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype() in your application. See the

common user errors section of this document for more information.

The following functions are cancellation points:

v pthread_cond_timedwait()

v pthread_cond_wait()

v pthread_delay_np()

v pthread_join()

v pthread_join_np()

v pthread_extendedjoin_np()

v pthread_testcancel()

After action is taken for the target thread to be cancelled, the following events occur in that thread.

1. The thread calls cancellation cleanup handlers with cancellation disabled until the last cancellation

cleanup handler returns. The handlers are called in Last In, First Out (LIFO) order.

2. Data destructors are called for any thread-specific data entries that have a non NULL value for both

the value and the destructor.

3. When the last cancellation cleanup handler returns, the thread is terminated and a status of

PTHREAD_CANCELED is made available to any threads joining the target.

4. Any mutexes that are held by a thread that terminates, are abandoned and are no longer valid.

Subsequent calls by other threads that attempt to acquire the abandoned mutex

(pthread_mutex_lock() or pthread_mutex_trylock()) fail with an EOWNERTERM error.

5. Application visible process resources are not released. This includes but is not limited to mutexes, file

descriptors, or any process level cleanup actions.

A cancellation cleanup handler should not exit by longjmp() or siglongjmp().

In the OS/400 implementation of threads, the initial thread is special. Termination of the initial thread by

pthread_exit(), pthread_cancel() or any other thread termination mechanism terminates the entire

process.

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle to the target thread

Return Value

0 pthread_cancel() was successful.

value pthread_cancel() was not successful. value is set to indicate the error condition.

24 iSeries: Pthread APIs

Error Conditions

If pthread_cancel() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ESRCH]

 No thread could be found that matched the thread ID specified.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28—Pop

Cleanup Handler off of Cancellation Cleanup Stack
v “pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30—Push

Cleanup Handler onto Cancellation Cleanup Stack
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State
v “pthread_setcanceltype()—Set Cancel Type” on page 201—Set Cancel Type

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void *threadfunc(void *parm)

{

 printf("Entered secondary thread\n");

 while (1) {

 printf("Secondary thread is looping\n");

 pthread_testcancel();

 sleep(1);

 }

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Entering testcase\n");

 /* Create a thread using default attributes */

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(2);

 printf("Cancel the thread\n");

 rc = pthread_cancel(thread);

 checkResults("pthread_cancel()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

Chapter 1. Pthread APIs 25

aboutapis.htm#CODEDISCLAIMER

sleep(3);

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Create thread using the NULL attributes

Entered secondary thread

Secondary thread is looping

Secondary thread is looping

Cancel the thread

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cleanup_peek_np()—Copy Cleanup Handler from Cancellation

Cleanup Stack

 Syntax:

 #include <pthread.h>

 int pthread_cleanup_peek_np(pthread_cleanup_entry_np_t *entry);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_cleanup_peek_np() function returns a copy of the cleanup handler entry that the next call to

pthread_cleanup_pop() would pop. The handler remains on the cancellation cleanup stack after the call

to pthread_cleanup_peek_np().

During this thread cancellation cleanup, the thread calls cancellation cleanup handlers with cancellation

disabled until the last cancellation cleanup handler returns. The handlers are called in Last In, First Out

(LIFO) order. Automatic storage for the invocation stack frame of the function that registered the handler

is still present when the cancellation cleanup handler is executed.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical

scope (that is, same level of brackets {}).

The pthread_cleanup_peek_np() function has no scoping rules.

Note: This function is not portable.

Authorities and Locks

None.

26 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Parameters

None.

Return Value

0 pthread_cleanup_peek_np() was successful.

value pthread_cleanup_peek_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cleanup_peek_np() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ENOENT]

 The cancellation cleanup stack is empty.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28—Pop

Cleanup Handler off of Cancellation Cleanup Stack
v “pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30—Push

Cleanup Handler onto Cancellation Cleanup Stack
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void cleanupHandler1(void *arg) { printf("In Handler 1\n"); return; }

void cleanupHandler2(void *arg) { printf("In Handler 2\n"); return; }

void cleanupHandler3(void *arg) { printf("In Handler 3\n"); return; }

int args[3] = {0,0,0};

int main(int argc, char **argv)

{

 int rc=0;

 pthread_cleanup_entry_np_t entry;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Check for absence of cleanup handlers\n");

 rc = pthread_cleanup_peek_np(&entry);

 if (rc != ENOENT) {

 printf("pthread_cleanup_peek_np(), expected ENOENT\n");

 exit(1);

 }

 printf("Push some cancellation cleanup handlers\n");

 pthread_cleanup_push(cleanupHandler1, &args[0]);

 pthread_cleanup_push(cleanupHandler2, &args[1]);

Chapter 1. Pthread APIs 27

aboutapis.htm#CODEDISCLAIMER

printf("Check for cleanupHandler2\n");

 rc = pthread_cleanup_peek_np(&entry);

 checkResults("pthread_cleanup_peek_np(2)\n", rc);

 if (entry.handler != cleanupHandler2 ||

 entry.arg != &args[1]) {

 printf("Did not get expected handler(2) information!\n");

 exit(1);

 }

 pthread_cleanup_push(cleanupHandler3, &args[2]);

 printf("Check for cleanupHandler3\n");

 rc = pthread_cleanup_peek_np(&entry);

 checkResults("pthread_cleanup_peek_np(3)\n", rc);

 if (entry.handler != cleanupHandler3 ||

 entry.arg != &args[2]) {

 printf("Did not get expected handler(3) information!\n");

 exit(1);

 }

 pthread_cleanup_pop(0);

 pthread_cleanup_pop(0);

 pthread_cleanup_pop(0);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCLPP0

Check for absence of cleanup handlers

Push some cancellation cleanup handlers

Check for cleanupHandler2

Check for cleanupHandler3

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation

Cleanup Stack

 Syntax:

 #include <pthread.h>

 void pthread_cleanup_pop(int execute);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

28 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

The pthread_cleanup_pop() function pops the last cleanup handler from the cancellation cleanup stack. If

the execute parameter is nonzero, the handler is called with the argument specified by the

pthread_cleanup_push() call with which the handler was registered.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical

scope (that is, same level of brackets {}).

When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the cancellation cleanup

handlers are called with the argument specified by the pthread_cleanup_push() call that the handler was

registered with.

During this thread cancellation cleanup, the thread calls cancellation cleanup handlers with cancellation

disabled until the last cancellation cleanup handler returns. The handlers are called in Last In, First Out

(LIFO) order. Automatic storage for the invocation stack frame of the function that registered the handler

is still present when the cancellation cleanup handler is executed.

When a cancellation cleanup handler is called because of a call to pthread_cleanup_pop(1), the

cancellation cleanup handler does not necessarily run with cancellation disabled. The cancellation state

and cancellation type are not changed by a call to pthread_cleanup_pop(1).

A cancellation cleanup handler should not exit using longjmp() or siglongjmp(). If a cleanup handler

takes an exception, the exception condition is handled and ignored and processing continues. You can

look in the job log of the job to see exception messages generated by cancellation cleanup handlers.

Authorities and Locks

None.

Parameters

execute

(Input) Boolean value indicating whether the cancellation cleanup handler should be executed

Return Value

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30—Push

Cleanup Handler onto Cancellation Cleanup Stack
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void cleanupHandler(void *arg)

{

 printf("In the cleanup handler\n");

}

void *threadfunc(void *parm)

Chapter 1. Pthread APIs 29

aboutapis.htm#CODEDISCLAIMER

{

 printf("Entered secondary thread, you should see the cleanup handler\n");

 pthread_cleanup_push(cleanupHandler, NULL);

 sleep(1); /* Simulate more code here */

 pthread_cleanup_pop(1);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 /* Create a thread using default attributes */

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCLPO0

Create thread using the NULL attributes

Entered secondary thread, you should see the cleanup handler

In the cleanup handler

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cleanup_push()—Push Cleanup Handler onto Cancellation

Cleanup Stack

 Syntax:

 #include <pthread.h>

 void pthread_cleanup_push(void (*routine)(void *), void *arg);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_cleanup_push() function pushes a cancellation cleanup routine onto the calling threads

cancellation cleanup stack. When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the

cancellation cleanup handlers are called with the argument arg.

30 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

The cancellation cleanup handlers are also called when they are removed from the cancellation cleanup

stack by a call to pthread_cleanup_pop() and a non-zero execute argument is specified.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical

scope (that is, same level of brackets {}).

When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the cancellation cleanup

handlers are called with the argument specified by the pthread_cleanup_push() call that the handler was

registered with.

During this thread cancellation cleanup processing, the thread calls cancellation cleanup handlers with

cancellation disabled until the last cancellation cleanup handler returns. The handlers are called in Last

In, First Out (LIFO) order. Automatic storage for the invocation stack frame of the function that registered

the handler are still present when the cancellation cleanup handler is executed.

When a cancellation cleanup handler is called because of a call to pthread_cleanup_pop(1), the

cancellation cleanup handler does not necessarily run with cancellation disabled. The cancellation state

and cancellation type are not changed by a call to pthread_cleanup_pop(1).

A cancellation cleanup handler should not exit using longjmp() or siglongjmp(). If a cleanup handler

takes an exception, the exception condition is handled and ignored and processing continues. You can

look in the job log of the job to see exception messages generated by cancellation cleanup handlers.

Authorities and Locks

None.

Parameters

routine

(Input) The cancellation cleanup routine

arg (Input) Argument that is passed to the start routine if it is called

Return Value

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28—Pop

Cleanup Handler off of Cancellation Cleanup Stack
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void cleanupHandler(void *arg)

{

 printf("In the cleanup handler\n");

}

Chapter 1. Pthread APIs 31

aboutapis.htm#CODEDISCLAIMER

void *threadfunc(void *parm)

{

 printf("Entered secondary thread\n");

 pthread_cleanup_push(cleanupHandler, NULL);

 while (1) {

 pthread_testcancel();

 sleep(1);

 }

 pthread_cleanup_pop(0);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 /* Create a thread using default attributes */

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(2);

 printf("Cancel the thread\n");

 rc = pthread_cancel(thread);

 checkResults("pthread_cancel()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(3);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCLPU0

Create thread using the NULL attributes

Entered secondary thread

Cancel the thread

In the cleanup handler

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

32 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_clear_exit_np()—Clear Exit Status of Thread

 Syntax:

 #include <pthread.h

 int pthread_clear_exit_np(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_clear_exit_np() function clears the exit status of the thread. If the thread is currently exiting

due to a call to pthread_exit() or is the target of a pthread_cancel(), then pthread_clear_exit_np() can be

used in conjunction with setjmp(), longjmp(), and pthread_setcancelstate() to prevent a thread from

terminating, and `handle’ the exit condition.

The only supported way to prevent thread exit during the condition in which pthread_exit() was called,

or action is being taken for the target of a pthread_cancel() is shown in the example. It consists of using

longjmp() from a cancellation cleanup handler back into some thread routine that is still on the

invocation stack. From that routine, the functions pthread_clear_exit_np(), and pthread_setcancelstate()

are used to restore the state of the thread before the condition that was causing the thread exit.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

None.

Return Value

0 pthread_clear_exit_np() was successful.

value pthread_clear_exit_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_clear_exit_np() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The thread is not currently exiting

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread

Chapter 1. Pthread APIs 33

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <except.h>

#include <setjmp.h>

#include "check.h"

int threadStatus=1;

void cleanupHandler(void *p)

{

 jmp_buf *j = (jmp_buf *)p;

 /* Warning, it is quite possible that using combinations of */

 /* setjmp(), longjmp(), pthread_clear_exit_np(), and */

 /* pthread_setcancelstate() to handle thread exits or */

 /* cancellation could result in looping or non-cancelable */

 /* threads if done incorrectly. */

 printf("In cancellation cleanup handler. Handling the thread exit\n");

 longjmp(*j, 1);

 printf("The exit/cancellation was not stopped!\n");

 return;

}

void *threadfunc(void *parm)

{

 jmp_buf j;

 int rc, old;

 printf("Inside secondary thread\n");

 if (setjmp(j)) {

 /* Returned from longjmp after stopping the thread exit */

 /* Since longjmp was called from within the cancellation */

 /* cleanup handler, we must clear the exit state of the */

 /* thread and reset the cancelability state to what it was */

 /* before the cancellation cleanup handlers were called */

 /* (Cancellation cleanup handlers are called with */

 /* thread cancellation disabled) */

 printf("Stopped the thread exit, now clean up the states\n");

 printf("Clear exit state\n");

 rc = pthread_clear_exit_np();

 checkResults("pthread_clear_exit_np()\n", rc);

 printf("Restore cancel state\n");

 rc = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old);

 checkResults("pthread_setcancelstate()\n", rc);

 /* This example was successful */

 threadStatus = 0;

 }

 else {

 printf("Pushing cleanup handler that will stop the exit\n");

 pthread_cleanup_push(cleanupHandler, &j);

 /* This exit will be stopped by cleanupHandler2 and the */

 /* pthread_clear_exit_np() that is done above */

 pthread_exit(__VOID(threadStatus));

 printf("Did not expect to get here! Left status as 1.\n");

 pthread_cleanup_pop(0);

 }

 pthread_exit(__VOID(threadStatus));

}

int main(int argc, char **argv)

{

34 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

pthread_t thread;

 int rc=0;

 char c;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread that will demonstrate handling an exit\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 if (__INT(status) != 0) {

 printf("Got an unexpected return status from the thread!\n");

 exit(1);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCEXIT0

Create thread that will demonstrate handling an exit

Inside secondary thread

Pushing cleanup handler that will stop the exit

In cancellation cleanup handler. Handling the thread exit

Stopped the thread exit, now clean up the states

Clear exit state

Restore cancel state

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_condattr_destroy()—Destroy Condition Variable Attributes

Object

 Syntax:

 #include <pthread.h>

 int pthread_condattr_destroy(pthread_condattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_condattr_destroy() function destroys the condition variable attributes object specified by attr,

and indicates that any storage that the system has associated with the object be de-allocated. Destroying a

condition variable object in no way affects any of the condition variables that were created with that

object.

Chapter 1. Pthread APIs 35

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

attr (Input) The address of the condition variable attributes object to be destroyed

Return Value

0 pthread_condattr_destroy() was successful.

value pthread_condattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_destroy() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38—Initialize

Condition Variable Attributes Object
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_cond_t cond;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_condattr_t attr;

 printf(“Entering testcase\n”);

 printf(“Create a default condition attribute\n”);

 rc = pthread_condattr_init(&attr);

 checkResults(“pthread_condattr_init\n”, rc);

 printf(“Create the condition using the condition attributes object\n”);

 rc = pthread_cond_init(&cond, &attr);

 checkResults(“pthread_cond_init()\n”, rc);

 printf(“- At this point, the condition with its default attributes\n”);

 printf(“- Can be used from any threads that want to use it\n”);

 printf(“Destroy cond attribute\n”);

 rc = pthread_condattr_destroy(&attr);

 checkResults(“pthread_condattr_destroy()\n”, rc);

 printf(“Destroy condition\n”);

 rc = pthread_cond_destroy(&cond);

36 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

checkResults(“pthread_cond_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create a default condition attribute

Create the condition using the condition attributes object

- At this point, the condition with its default attributes

- Can be used from any threads that want to use it

Destroy cond attribute

Destroy condition

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_condattr_getpshared()—Get Process Shared Attribute from

Condition Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_condattr_getpshared(const pthread_condattr_t *attr, int *pshared);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_condattr_getpshared() function retrieves the current setting of the process shared attribute

from the condition attributes object. The process shared attribute indicates whether the condition that is

created using the condition attributes object can be shared between threads in separate processes

(PTHREAD_PROCESS_SHARED) or shared only between threads within the same process

(PTHREAD_PROCESS_PRIVATE).

Even if the condition in storage is accessible from two separate processes, it cannot be used from both

processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for condition attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable that contains the condition attributes object

Chapter 1. Pthread APIs 37

#TOP_OF_PAGE
aplist.htm

pshared

(Output) Address of the variable to contain the pshared attribute result

Return Value

0 pthread_condattr_getpshared() was successful.

value pthread_condattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_getpshared() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_condattr_init()—Initialize Condition Variable Attributes Object”—Initialize Condition Variable

Attributes Object
v “pthread_condattr_setpshared()—Set Process Shared Attribute in Condition Attributes Object” on page

40—Set Process Shared Attribute in Condition Attributes Object
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable

Example

See Code disclaimer information for information pertaining to code examples.

See the example for “Example” on page 41.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_condattr_init()—Initialize Condition Variable Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_condattr_init(pthread_condattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_condattr_init() function initializes the condition variable attributes object specified by attr to

the default attributes. The condition variable attributes object is used to create condition variables with

the pthread_cond_init() function.

38 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

attr (Output) The address of the variable to contain the condition variable attributes object

Return Value

0 pthread_condattr_init() was successful.

value pthread_condattr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_condattr_destroy()—Destroy Condition Variable Attributes Object” on page 35—Destroy

Condition Variable Attributes Object
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_cond_t cond;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_condattr_t attr;

 printf("Entering testcase\n");

 printf("Create a default condition attribute\n");

 rc = pthread_condattr_init(&attr);

 checkResults("pthread_condattr_init\n", rc);

 printf("Create the condition using the condition attributes object\n");

 rc = pthread_cond_init(&cond, &attr);

 checkResults("pthread_cond_init()\n", rc);

 printf("- At this point, the condition with its default attributes\n");

 printf("- Can be used from any threads that want to use it\n");

 printf("Destroy cond attribute\n");

 rc = pthread_condattr_destroy(&attr);

 checkResults("pthread_condattr_destroy()\n", rc);

 printf("Destroy condition\n");

 rc = pthread_cond_destroy(&cond);

Chapter 1. Pthread APIs 39

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_cond_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Create a default condition attribute

Create the condition using the condition attributes object

- At this point, the condition with its default attributes

- Can be used from any threads that want to use it

Destroy cond attribute

Destroy condition

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_condattr_setpshared()—Set Process Shared Attribute in

Condition Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_condattr_setpshared(pthread_condattr_t *attr,

 int pshared);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_condattr_setpshared() function sets the current pshared attribute for the condition attributes

object. The process shared attribute indicates whether the condition that is created using the condition

attributes object can be shared between threads in separate processes (PTHREAD_PROCESS_SHARED)

or shared between threads within the same process (PTHREAD_PROCESS_PRIVATE).

Even if the condition is in storage that is accessible from two separate processes, it cannot be used from

both processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for condition attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable containing the condition attributes object

40 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pshared

(Input) One of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE

Return Value

0 pthread_condattr_setpshared() was successful.

value pthread_condattr_setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_setpshared() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_condattr_getpshared()—Get Process Shared Attribute from Condition Attributes Object” on

page 37—Get Process Shared Attribute from Condition Attributes Object
v “pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38—Initialize

Condition Variable Attributes Object
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <spawn.h>

#include <sys/wait.h>

#include <unistd.h>

#include <sys/shm.h>

#include "check.h"

typedef struct {

 int eventOccured;

 int numberWaiting;

 int wokeup;

 int reserved[1];

 pthread_cond_t cond;

 pthread_mutex_t mutex; /* Protects this shared data and condition

*/

} shared_data_t;

extern char **environ;

shared_data_t *sharedMem=NULL;

pid_t childPid=0;

int childStatus=-99;

int shmid=0;

/* Change this path to be the path to where you create this example program */

#define MYPATH "/QSYS.LIB/QP0WTEST.LIB/TPCOSP0.PGM"

#define NTHREADSTHISJOB 2

#define NTHREADSTOTAL 4

void parentSetup(void);

Chapter 1. Pthread APIs 41

aboutapis.htm#CODEDISCLAIMER

void childSetup(void);

void parentCleanup(void);

void childCleanup(void);

void *parentThreadFunc(void *parm)

{

 int rc;

 rc = pthread_mutex_lock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 /* Under protection of the lock, increment the count */

 ++sharedMem->numberWaiting;

 while (!sharedMem->eventOccured) {

 printf("PARENT - Thread blocked\n");

 rc = pthread_cond_wait(&sharedMem->cond, &sharedMem->mutex);

 checkResults("pthread_cond_wait()\n", rc);

 }

 printf("PARENT - Thread awake!\n");

 /* Under protection of the lock, decrement the count */

 --sharedMem->numberWaiting;

 /* After incrementing the wokeup flage and unlocking the mutex */

 /* we no longer use the shared memory, the parent could destroy */

 /* it. We indicate we are finished with it using the wokeup flag */

 ++sharedMem->wokeup;

 rc = pthread_mutex_unlock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 return NULL;

}

void *childThreadFunc(void *parm)

{

 int rc;

 rc = pthread_mutex_lock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 /* Under protection of the lock, increment the count */

 ++sharedMem->numberWaiting;

 while (!sharedMem->eventOccured) {

 printf("CHILD - Thread blocked\n");

 rc = pthread_cond_wait(&sharedMem->cond, &sharedMem->mutex);

 checkResults("pthread_cond_wait()\n", rc);

 }

 printf("CHILD - Thread awake!\n");

 /* Under protection of the lock, decrement the count */

 --sharedMem->numberWaiting;

 /* After incrementing the wokeup flage and unlocking the mutex */

 /* we no longer use the shared memory, the parent could destroy */

 /* it. We indicate we are finished with it using the wokeup flag*/

 ++sharedMem->wokeup;

 rc = pthread_mutex_unlock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADSTHISJOB];

 int parentJob=0;

42 iSeries: Pthread APIs

/* If we run this from the QSHELL interpreter on the system, we want */

 /* it to be line buffered even if we run it in batch so the output between */

 /* parent and child is intermixed. */

 setvbuf(stdout,NULL,_IOLBF,4096);

 /* Determine if we are running in the parent or child */

 if (argc != 1 && argc != 2) {

 printf("Incorrect usage\n");

 printf("Pass no parameters to run as the parent testcase\n");

 printf("Pass one parameter `ASCHILD’ to run as the child testcase\n");

 exit(1);

 }

 if (argc == 1) {

 parentJob = 1;

 }

 else {

 if (strcmp(argv[1], "ASCHILD")) {

 printf("Incorrect usage\n");

 printf("Pass no parameters to run as the parent testcase\n");

 printf("Pass one parameter `ASCHILD’ to run as the child testcase\n");

 exit(1);

 }

 parentJob = 0;

 }

 /* PARENT ***/

 if (parentJob) {

 printf("PARENT - Enter Testcase - %s\n", argv[0]);

 parentSetup();

 printf("PARENT - Create %d threads\n", NTHREADSTHISJOB);

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_create(&threadid[i], NULL, parentThreadFunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 rc = pthread_mutex_lock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 while (sharedMem->numberWaiting != NTHREADSTOTAL) {

 printf("PARENT - Waiting for %d threads to wait, "

 "currently %d waiting\n",

 NTHREADSTOTAL, sharedMem->numberWaiting);

 rc = pthread_mutex_unlock(&sharedMem->mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 sleep(1);

 rc = pthread_mutex_lock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 }

 printf("PARENT - wake up all of the waiting threads...\n");

 sharedMem->eventOccured = 1;

 rc = pthread_cond_broadcast(&sharedMem->cond);

 checkResults("pthread_cond_signal()\n", rc);

 printf("PARENT - Wait for waking threads and cleanup\n");

 while (sharedMem->wokeup != NTHREADSTOTAL) {

 printf("PARENT - Waiting for %d threads to wake, "

 "currently %d wokeup\n",

 NTHREADSTOTAL, sharedMem->wokeup);

 rc = pthread_mutex_unlock(&sharedMem->mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 sleep(1);

 rc = pthread_mutex_lock(&sharedMem->mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 }

Chapter 1. Pthread APIs 43

parentCleanup();

 printf("PARENT - Main completed\n");

 exit(0);

 }

 /* CHILD ***/

 {

 void *status=NULL;

 printf("CHILD - Enter Testcase - %s\n", argv[0]);

 childSetup();

 printf("CHILD - Create %d threads\n", NTHREADSTHISJOB);

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_create(&threadid[i], NULL, childThreadFunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 /* The parent will wake up all of these threads using the */

 /* pshared condition variable. We will just join to them... */

 printf("CHILD - Joining to all threads\n");

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_join(threadid[i], &status);

 checkResults("pthread_join()\n", rc);

 if (status != NULL) {

 printf("CHILD - Got a bad status from a thread, "

 "%.8x %.8x %.8x %.8x\n", status);

 exit(1);

 }

 }

 /* After all the threads are awake, the parent will destroy */

 /* the condition and mutex. Do not use it anymore */

 childCleanup();

 printf("CHILD - Main completed\n");

 }

 return 0;

}

/***/

/* This function initializes the shared memory for the job, */

/* sets up the environment variable indicating where the shared*/

/* memory is, and spawns the child job. */

/* */

/* It creates and initializes the shared memory segment, and */

/* It initializes the following global variables in this */

/* job. */

/* sharedMem */

/* childPid */

/* shmid */

/* */

/* If any of this setup/initialization fails, it will exit(1) */

/* and terminate the test. */

/* */

/***/

void parentSetup(void)

{

 int rc;

 /***/

 /* Create shared memory for shared_data_t above */

 /* attach the shared memory */

 /* set the static/global sharedMem pointer to it */

 /***/

 printf("PARENT - Create the shared memory segment\n");

 rc = shmget(IPC_PRIVATE, sizeof(shared_data_t), 0666);

44 iSeries: Pthread APIs

if (rc == -1) {

 printf("PARENT - Failed to create a shared memory segment\n");

 exit(1);

 }

 shmid = rc;

 printf("PARENT - Attach the shared memory\n");

 sharedMem = shmat(shmid, NULL, 0);

 if (sharedMem == NULL) {

 shmctl(shmid, IPC_RMID, NULL);

 printf("PARENT - Failed to attach shared memory\n");

 exit(1);

 }

 /***/

 /* Initialize the mutex/condition and other shared memory data */

 /***/

 {

 pthread_mutexattr_t mattr;

 pthread_condattr_t cattr;

 printf("PARENT - Init shared memory mutex/cond\n");

 memset(sharedMem, 0, sizeof(shared_data_t));

 /* Process Shared Mutex */

 rc = pthread_mutexattr_init(&mattr);

 checkResults("pthread_mutexattr_init()\n", rc);

 rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);

 checkResults("pthread_mutexattr_setpshared()\n", rc);

 rc = pthread_mutex_init(&sharedMem->mutex, &mattr);

 checkResults("pthread_mutex_init()\n", rc);

 /* Process Shared Condition */

 rc = pthread_condattr_init(&cattr);

 checkResults("pthread_condattr_init()\n", rc);

 rc = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);

 checkResults("pthread_condattr_setpshared()\n", rc);

 rc = pthread_cond_init(&sharedMem->cond, &cattr);

 checkResults("pthread_cond_init()\n", rc);

 }

 /**/

 /* Set and environment variable so that the child can inherit */

 /* it and know the shared memory ID */

 /**/

 {

 char shmIdEnvVar[128];

 sprintf(shmIdEnvVar, "TPCOSP0_SHMID=%d\n", shmid);

 rc = putenv(shmIdEnvVar);

 if (rc) {

 printf("PARENT - Failed to store env var %s, errno=%d\n",

 shmIdEnvVar, errno);

 exit(1);

 }

 printf("PARENT - Stored shared memory id of %d\n", shmid);

 }

 /**/

 /* Spawn the child job */

 /**/

 {

 inheritance_t in;

 char *av[3] = {NULL, NULL, NULL};

 /* Allow thread creation in the spawned child */

Chapter 1. Pthread APIs 45

memset(&in, 0, sizeof(in));

 in.flags = SPAWN_SETTHREAD_NP;

 /* Set up the arguments to pass to spawn based on the */

 /* arguments passed in */

 av[0] = MYPATH;

 av[1] = "ASCHILD";

 av[2] = NULL;

 /* Spawn the child that was specified, inheriting all */

 /* of the environment variables. */

 childPid = spawn(MYPATH, 0, NULL, &in, av, environ);

 if (childPid == -1) {

 /* spawn failure */

 printf("PARENT - spawn() failed, errno=%d\n", errno);

 exit(1);

 }

 printf("PARENT - spawn() success, [PID=%d]\n", childPid);

 }

 return;

}

/***/

/* This function attaches the shared memory for the child job, */

/* It uses the environment variable indicating where the shared*/

/* memory is. */

/* */

/* If any of this setup/initialization fails, it will exit(1) */

/* and terminate the test. */

/* */

/* It initializes the following global variables: */

/* sharedMem */

/* shmid */

/***/

void childSetup(void)

{

 int rc;

 printf("CHILD - Child setup\n");

 /**/

 /* Set and environment variable so that the child can inherit */

 /* it and know the shared memory ID */

 /**/

 {

 char *shmIdEnvVar;

 shmIdEnvVar = getenv("TPCOSP0_SHMID");

 if (shmIdEnvVar == NULL) {

 printf("CHILD - Failed to get env var \"TPCOSP0_SHMID\", errno=%d\n",

 errno);

 exit(1);

 }

 shmid = atoi(shmIdEnvVar);

 printf("CHILD - Got shared memory id of %d\n", shmid);

 }

 /***/

 /* Create shared memory for shared_data_t above */

 /* attach the shared memory */

 /* set the static/global sharedMem pointer to it */

 /***/

 printf("CHILD - Attach the shared memory\n");

 sharedMem = shmat(shmid, NULL, 0);

 if (sharedMem == NULL) {

 shmctl(shmid, IPC_RMID, NULL);

 printf("CHILD - Failed to attach shared memory\n");

 exit(1);

46 iSeries: Pthread APIs

}

 return;

}

/***/

/* wait for child to complete and get return code. */

/* Destroy mutex and condition in shared memory */

/* detach and remove shared memory */

/* set the child’s return code in global storage */

/* */

/* If this function fails, it will call exit(1) */

/* */

/* This function sets the following global variables: */

/* sharedMem */

/* childStatus */

/* shmid */

/***/

void parentCleanup(void)

{

 int status=0;

 int rc;

 int waitedPid=0;

 /* Even though there is no thread left in the child using the */

 /* contents of the shared memory, before we destroy the mutex */

 /* and condition in that shared memory, we will wait for the */

 /* child job to complete, we know for 100% certainty that no */

 /* threads in the child are using it then. */

 printf("PARENT - Parent cleanup\n");

 /* Wait for the child to complete */

 waitedPid = waitpid(childPid,&status,0);

 if (rc == -1) {

 printf("PARENT - waitpid failed, errno=%d\n", errno);

 exit(1);

 }

 childStatus = status;

 /* Cleanup resources */

 rc = pthread_mutex_destroy(&sharedMem->mutex);

 checkResults("pthread_mutex_destroy()\n", rc);

 rc = pthread_cond_destroy(&sharedMem->cond);

 checkResults("pthread_cond_destroy()\n", rc);

 /* Detach/Remove shared memory */

 rc = shmdt(sharedMem);

 if (rc) {

 printf("PARENT - Failed to detach shared memory, errno=%d\n", errno);

 exit(1);

 }

 rc = shmctl(shmid, IPC_RMID, NULL);

 if (rc) {

 printf("PARENT - Failed to remove shared memory id=%d, errno=%d\n",

 shmid, errno);

 exit(1);

 }

 shmid = 0;

 return;

}

/***/

/* Detach the shared memory */

/* At this point, there is no serialization, so the contents */

/* of the shared memory should not be used. */

/* */

/* If this function fails, it will call exit(1) */

/* */

Chapter 1. Pthread APIs 47

/* This function sets the following global variables: */

/* sharedMem */

/***/

void childCleanup(void)

{

 int rc;

 printf("CHILD - Child cleanup\n");

 rc = shmdt(sharedMem);

 sharedMem = NULL;

 if (rc) {

 printf("CHILD - Failed to detach shared memory, errno=%d\n", errno);

 exit(1);

 }

 return;

}

Output:

This example was run under the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets

descriptors 0, 1, and 2 as the standard files; the parent and child I/O is directed to the console. When run

in the QShell Interpreter, the output shows the intermixed output from both parent and child processes

and gives a feeling for the time sequence of operations occurring in each job.

The QShell interpreter allows you to run multithreaded programs as if they were interactive. See the

QShell documentation for a description of the QIBM_MULTI_THREADED shell variable, which allows

you to start multithreaded programs.

The QShell Interpreter is option 30 of Base OS/400.

PARENT - Enter Testcase - QP0WTEST/TPCOSP0

PARENT - Create the shared memory segment

PARENT - Attach the shared memory

PARENT - Init shared memory mutex/cond

PARENT - Stored shared memory id of 862

PARENT - spawn() success, [PID=2651]

PARENT - Create 2 threads

PARENT - Thread blocked

PARENT - Waiting for 4 threads to wait, currently 1 waiting

PARENT - Thread blocked

CHILD - Enter Testcase - QP0WTEST/TPCOSP0

CHILD - Child setup

CHILD - Got shared memory id of 862

CHILD - Attach the shared memory

CHILD - Create 2 threads

CHILD - Thread blocked

CHILD - Joining to all threads

CHILD - Thread blocked

PARENT - wake up all of the waiting threads...

PARENT - Wait for waking threads and cleanup

PARENT - Waiting for 4 threads to wake, currently 0 wokeup

PARENT - Thread awake!

CHILD - Thread awake!

PARENT - Thread awake!

CHILD - Thread awake!

CHILD - Child cleanup

CHILD - Main completed

PARENT - Parent cleanup

PARENT - Main completed

48 iSeries: Pthread APIs

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cond_broadcast()—Broadcast Condition to All Waiting

Threads

 Syntax:

 #include <pthread.h>

 int pthread_cond_broadcast(pthread_cond_t *cond);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_cond_broadcast() function wakes up all threads that are currently waiting on the condition

variable specified by cond. If no threads are currently blocked on the condition variable, this call has no

effect.

When the threads that were the target of the broadcast wake up, they contend for the mutex that they

have associated with the condition variable on the call to pthread_cond_timedwait() or

pthread_cond_wait().

The signal and broadcast functions can be called by a thread whether or not it currently owns the mutex

associated with the condition variable. If predictable scheduling behavior is required from the

applications viewpoint however, the mutex should be locked by the thread calling pthread_cond_signal()

or pthread_cond_broadcast().

Note: For dependable use of condition variables, and to ensure that you do not lose wake up operations

on condition variables, your application should always use a boolean predicate and a mutex with the

condition variable.

Authorities and Locks

None.

Parameters

cond (Input) Pointer to the condition variable that is to be broadcast to

Return Value

0 pthread_cond_broadcast() was successful.

value pthread_cond_broadcast() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 49

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_cond_broadcast() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable
v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to

One Waiting Thread
v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
v “pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

/* For safe condition variable usage, must use a boolean predicate and */

/* a mutex with the condition. */

int conditionMet = 0;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

#define NTHREADS 5

void *threadfunc(void *parm)

{

 int rc;

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 while (!conditionMet) {

 printf("Thread blocked\n");

 rc = pthread_cond_wait(&cond, &mutex);

 checkResults("pthread_cond_wait()\n", rc);

 }

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADS];

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create %d threads\n", NTHREADS);

 for(i=0; i<NTHREADS; ++i) {

 rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

50 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_create()\n", rc);

 }

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 /* The condition has occured. Set the flag and wake up any waiting threads */

 conditionMet = 1;

 printf("Wake up all waiting threads...\n");

 rc = pthread_cond_broadcast(&cond);

 checkResults("pthread_cond_broadcast()\n", rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 printf("Wait for threads and cleanup\n");

 for (i=0; i<NTHREADS; ++i) {

 rc = pthread_join(threadid[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 pthread_cond_destroy(&cond);

 pthread_mutex_destroy(&mutex);

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Create 5 threads

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Wake up all waiting threads...

Wait for threads and cleanup

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cond_destroy()—Destroy Condition Variable

 Syntax:

 #include <pthread.h>

 int pthread_cond_destroy(pthread_cond_t *cond);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

Chapter 1. Pthread APIs 51

#TOP_OF_PAGE
aplist.htm

The pthread_cond_destroy() function destroys the condition variable specified by cond. If threads are

currently blocked on the condition variable, the pthread_cond_destroy() fails with the EBUSY error.

Authorities and Locks

None.

Parameters

cond (Input) Address of the condition variable to destroy

Return Value

0 pthread_cond_destroy() was successful.

value pthread_cond_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_destroy() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EBUSY]

 The condition variable was in use.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast

Condition to All Waiting Threads
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable
v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to

One Waiting Thread
v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
v “pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_cond_t cond;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t attr;

 printf(“Entering testcase\n”);

 printf(“Create the condition using the condition attributes object\n”);

 rc = pthread_cond_init(&cond, NULL);

 checkResults(“pthread_cond_init()\n”, rc);

52 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf(“- At this point, the condition with its default attributes\n”);

 printf(“- Can be used from any threads that want to use it\n”);

 printf(“Destroy condition\n”);

 rc = pthread_cond_destroy(&cond);

 checkResults(“pthread_cond_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create the condition using the condition attributes object

- At this point, the condition with its default attributes

- Can be used from any threads that want to use it

Destroy condition

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cond_init()—Initialize Condition Variable

 Syntax:

 #include <pthread.h>

 int pthread_cond_init(pthread_cond_t *cond,

 const pthread_condattr_t *attr);

 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_cond_init() function initializes a condition variable object with the specified attributes for

use. The new condition may be used immediately for serializing threads. If attr is specified as NULL, all

attributes are set to the default condition attributes for the newly created condition.

With these declarations and initialization:

pthread_cond_t cond2;

pthread_cond_t cond3;

pthread_condattr_t attr;

pthread_condattr_init(&attr);

The following four condition variable initialization mechanisms have equivalent function:

pthread_cond_t cond1 = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_init(&cond2, NULL);

pthread_cond_init(&cond3, &attr);

All four condition variables are created with the default condition attributes.

Chapter 1. Pthread APIs 53

#TOP_OF_PAGE
aplist.htm

Every condition variable must eventually be destroyed with pthread_cond_destroy().

Once a condition variable is created, it cannot be validly copied or moved to a new location. If the

condition variable is copied or moved to a new location, the new object is not valid and cannot be used.

Attempts to use the new object cause the EINVAL error.

Static initialization using the PTHREAD_COND_INITIALIZER does not immediately initialize the

mutex. Instead, on first use, the functions pthread_cond_wait(), pthread_cond_timedwait(),

pthread_cond_signal(), and pthread_cond_broadcast() branch into a slow path and cause the

initialization of the condition. Due to this delayed initialization, the results of calling

pthread_cond_destroy() on a condition variable that was initialized using static initialization and not

used yet cause pthread_cond_destroy() to fail with the EINVAL error.

Authorities and Locks

None.

Parameters

cond (Output) The address of the condition variable to initialize

attr (Input) The address of the condition attributes object to use for initialization

Return Value

0 pthread_cond_init() was successful.

value pthread_cond_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast

Condition to All Waiting Threads
v “pthread_cond_destroy()—Destroy Condition Variable” on page 51—Destroy Condition Variable
v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to

One Waiting Thread
v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
v “pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_cond_t cond1 = PTHREAD_COND_INITIALIZER;

pthread_cond_t cond2;

54 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

pthread_cond_t cond3;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_condattr_t attr;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create the default cond attributes object\n”);

 rc = pthread_condattr_init(&attr);

 checkResults(“pthread_condattr_init()\n”, rc);

 printf(“Create the all of the default conditions in different ways\n”);

 rc = pthread_cond_init(&cond2, NULL);

 checkResults(“pthread_cond_init()\n”, rc);

 rc = pthread_cond_init(&cond3, &attr);

 checkResults(“pthread_cond_init()\n”, rc);

 printf(“- At this point, the conditions with default attributes\n”);

 printf(“- Can be used from any threads that want to use them\n”);

 printf(“Cleanup\n”);

 pthread_condattr_destroy(&attr);

 pthread_cond_destroy(&cond1);

 pthread_cond_destroy(&cond2);

 pthread_cond_destroy(&cond3);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCOI0

Create the default cond attributes object

Create the all of the default conditions in different ways

- At this point, the conditions with default attributes

- Can be used from any threads that want to use them

Cleanup

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cond_signal()—Signal Condition to One Waiting Thread

 Syntax:

 #include <pthread.h>

 int pthread_cond_signal(pthread_cond_t *cond);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

Chapter 1. Pthread APIs 55

#TOP_OF_PAGE
aplist.htm

The pthread_cond_signal() function wakes up at least one thread that is currently waiting on the

condition variable specified by cond. If no threads are currently blocked on the condition variable, this

call has no effect.

When the thread that was the target of the signal wakes up, it contends for the mutex that it has

associated with the condition variable on the call to pthread_cond_timedwait() or pthread_cond_wait().

The signal and broadcast functions can be called by a thread whether or not it currently owns the mutex

associated with the condition variable. If predictable scheduling behavior is required from the

applications viewpoint, however, the mutex should be locked by the thread that calls

pthread_cond_signal() or pthread_cond_broadcast().

Note: For dependable use of condition variables, and to ensure that you do not lose wake-up operations

on condition variables, your application should always use a Boolean predicate and a mutex with the

condition variable.

Authorities and Locks

None.

Parameters

cond (Input) Address of the condition variable to be signaled

Return Value

0 pthread_cond_signal() was successful.

value pthread_cond_signal() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_signal() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The condition specified is not valid.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast

Condition to All Waiting Threads
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable
v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
v “pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

56 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* For safe condition variable usage, must use a boolean predicate and */

/* a mutex with the condition. */

int workToDo = 0;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

#define NTHREADS 2

void *threadfunc(void *parm)

{

 int rc;

 while (1) {

 /* Usually worker threads will loop on these operations */

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 while (!workToDo) {

 printf(“Thread blocked\n”);

 rc = pthread_cond_wait(&cond, &mutex);

 checkResults(“pthread_cond_wait()\n”, rc);

 }

 printf(“Thread awake, finish work!\n”);

 /* Under protection of the lock, complete or remove the work */

 /* from whatever worker queue we have. Here it is simply a flag */

 workToDo = 0;

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 }

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADS];

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create %d threads\n”, NTHREADS);

 for(i=0; i<NTHREADS; ++i) {

 rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 for(i=0; i<5; ++i) {

 printf(“Wake up a worker, work to do...\n”);

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 /* In the real world, all the threads might be busy, and */

 /* we would add work to a queue instead of simply using a flag */

 /* In that case the boolean predicate might be some boolean */

 /* statement like: if (the-queue-contains-work) */

 if (workToDo) {

 printf(“Work already present, likely threads are busy\n”);

 }

 workToDo = 1;

 rc = pthread_cond_signal(&cond);

 checkResults(“pthread_cond_broadcast()\n”, rc);

Chapter 1. Pthread APIs 57

rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock()\n”, rc);

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 }

 printf(“Main completed\n”);

 exit(0);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCOS0

Create 2 threads

Thread blocked

Thread blocked

Wake up a worker, work to do...

Thread awake, finish work!

Thread blocked

Wake up a worker, work to do...

Thread awake, finish work!

Thread blocked

Wake up a worker, work to do...

Thread awake, finish work!

Thread blocked

Wake up a worker, work to do...

Thread awake, finish work!

Thread blocked

Wake up a worker, work to do...

Thread awake, finish work!

Thread blocked

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cond_timedwait()—Timed Wait for Condition

 Syntax:

 #include <pthread.h>

 #include <time.h>

 int pthread_cond_timedwait(pthread_cond_t *cond,

 pthread_mutex_t *mutex,

 const struct timespec *abstime);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_cond_timedwait() function blocks the calling thread, waiting for the condition specified by

cond to be signaled or broadcast to.

58 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

When pthread_cond_timedwait() is called, the calling thread must have mutex locked. The

pthread_cond_timedwait() function atomically unlocks the mutex and performs the wait for the

condition. In this case, atomically means with respect to the mutex and the condition variable and other

access by threads to those objects through the pthread condition variable interfaces.

If the wait is satisfied or times out, or if the thread is canceled, before the thread is allowed to continue,

the mutex is automatically acquired by the calling thread. If mutex is not currently locked, an

EPERM

error results. You should always associate only one mutex with a condition at a time. Using two

different mutexes with the same condition at the same time could lead to unpredictable serialization in

your application.

The time to wait is specified by the abstime parameter as an absolute system time at which the wait

expires. If the current system clock time passes the absolute time specified before the condition is

signaled, an ETIMEDOUT error results. After the wait begins, the wait time is not affected by changes to

the

system clock.

Although time is specified in seconds and nanoseconds, the system has approximately millisecond

granularity. Due to scheduling and priorities, the amount of time you actually wait might be slightly

more or less than the amount of time specified.

The current absolute system time can be retrieved as a timeval structure using the

system clock

interface gettimeofday(). The timeval structure can easily have a delta value added to it and be converted

to a timespec structure. The MI time interfaces can be used to retrieve the current system time. The MI

time also needs to be converted to a timespec structure before use by pthread_cond_timedwait() using

the Qp0zConvertTime() interface.

This function is a cancellation point.

Note: For dependable use of condition variables, and to ensure that you do not lose wake-up operations

on condition variables, your application should always use a Boolean predicate and a mutex with the

condition variable.

Authorities and Locks

For successful completion, the mutex lock associated with the condition variable must be locked before

you call pthread_cond_timedwait().

Parameters

cond (Input) Address of the condition variable to wait for

mutex (Input) Address of the locked mutex associated with the condition variable

abstime

(Input) Address of the absolute system time at which the wait expires

Return Value

0 pthread_cond_timedwait() was successful.

value pthread_cond_timedwait() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_timedwait() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

Chapter 1. Pthread APIs 59

The value specified for the argument is not correct.

[EPERM]

 The mutex specified is not locked by the caller.

[ETIMEDOUT]

 The wait timed out without being satisfied.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast

Condition to All Waiting Threads
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable
v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to

One Waiting Threads
v “pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <qp0z1170.h>

#include <time.h>

#include <pthread.h>

#include “check.h”

/* For safe condition variable usage, must use a boolean predicate and */

/* a mutex with the condition. */

int workToDo = 0;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

#define NTHREADS 3

#define WAIT_TIME_SECONDS 15

void *threadfunc(void *parm)

{

 int rc;

 struct timespec ts;

 struct timeval tp;

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 /* Usually worker threads will loop on these operations */

 while (1) {

 rc = gettimeofday(&tp, NULL);

 checkResults(“gettimeofday()\n”, rc);

 /* Convert from timeval to timespec */

 ts.tv_sec = tp.tv_sec;

 ts.tv_nsec = tp.tv_usec * 1000;

 ts.tv_sec += WAIT_TIME_SECONDS;

 while (!workToDo) {

 printf(“Thread blocked\n”);

 rc = pthread_cond_timedwait(&cond, &mutex, &ts);

 /* If the wait timed out, in this example, the work is complete, and */

 /* the thread will end. */

 /* In reality, a timeout must be accompanied by some sort of checking */

 /* to see if the work is REALLY all complete. In the simple example */

60 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* we will just go belly up when we time out. */

 if (rc == ETIMEDOUT) {

 printf(“Wait timed out!\n”);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 pthread_exit(NULL);

 }

 checkResults(“pthread_cond_timedwait()\n”, rc);

 }

 printf(“Thread consumes work here\n”);

 workToDo = 0;

 }

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADS];

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create %d threads\n”, NTHREADS);

 for(i=0; i<NTHREADS; ++i) {

 rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 printf(“One work item to give to a thread\n”);

 workToDo = 1;

 rc = pthread_cond_signal(&cond);

 checkResults(“pthread_cond_signal()\n”, rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock()\n”, rc);

 printf(“Wait for threads and cleanup\n”);

 for (i=0; i<NTHREADS; ++i) {

 rc = pthread_join(threadid[i], NULL);

 checkResults(“pthread_join()\n”, rc);

 }

 pthread_cond_destroy(&cond);

 pthread_mutex_destroy(&mutex);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCOT0

Create 3 threads

Thread blocked

One work item to give to a thread

Wait for threads and cleanup

Thread consumes work here

Thread blocked

Thread blocked

Thread blocked

Chapter 1. Pthread APIs 61

Wait timed out!

Wait timed out!

Wait timed out!

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_cond_wait()—Wait for Condition

 Syntax:

 #include <pthread.h>

 int pthread_cond_wait(pthread_cond_t *cond,

 pthread_mutex_t *mutex);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_cond_wait() function blocks the calling thread, waiting for the condition specified by cond to

be signaled or broadcast to.

When pthread_cond_wait() is called, the calling thread must have mutex locked. The

pthread_cond_wait() function atomically unlocks mutex and performs the wait for the condition. In this

case, atomically means with respect to the mutex and the condition variable and another threads access

to those objects through the pthread condition variable interfaces.

If the wait is satisfied, or if the thread is canceled, before the thread is allowed to continue, the mutex is

automatically acquired by the calling thread. If mutex is not currently locked, an

EPERM

error

results. You should always associate only one mutex with a condition at a time. Using two different

mutexes with the same condition at the same time could lead to unpredictable serialization issues in your

application.

This function is a cancellation point.

Note: For dependable use of condition variables, and to ensure that you do not lose wake up operations

on condition variables, your application should always use a boolean predicate and a mutex with the

condition variable.

Authorities and Locks

For successful completion, the mutex lock associated with the condition variable is must be locked prior

to calling pthread_cond_wait().

Parameters

cond (Input) Address of the condition variable to wait on

mutex (Input) Address of the mutex associated with the condition variable

62 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_cond_wait() was successful.

value pthread_cond_wait() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_wait() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EPERM]

 The mutex specified is not locked by the caller.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast

Condition to All Waiting Threads
v “pthread_cond_init()—Initialize Condition Variable” on page 53—Initialize Condition Variable
v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to

One Waiting Thread
v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

/* For safe condition variable usage, must use a boolean predicate and */

/* a mutex with the condition. */

int conditionMet = 0;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

#define NTHREADS 5

void *threadfunc(void *parm)

{

 int rc;

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 while (!conditionMet) {

 printf(“Thread blocked\n”);

 rc = pthread_cond_wait(&cond, &mutex);

 checkResults(“pthread_cond_wait()\n”, rc);

 }

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 return NULL;

}

Chapter 1. Pthread APIs 63

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADS];

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create %d threads\n”, NTHREADS);

 for(i=0; i<NTHREADS; ++i) {

 rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 /* The condition has occured. Set the flag and wake up any waiting threads */

 conditionMet = 1;

 printf(“Wake up all waiting threads...\n”);

 rc = pthread_cond_broadcast(&cond);

 checkResults(“pthread_cond_broadcast()\n”, rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock()\n”, rc);

 printf(“Wait for threads and cleanup\n”);

 for (i=0; i<NTHREADS; ++i) {

 rc = pthread_join(threadid[i], NULL);

 checkResults(“pthread_join()\n”, rc);

 }

 pthread_cond_destroy(&cond);

 pthread_mutex_destroy(&mutex);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create 5 threads

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Wake up all waiting threads...

Wait for threads and cleanup

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

64 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_create()—Create Thread

 Syntax:

 #include <pthread.h>

 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

 void *(*start_routine)(void *), void *arg);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_create() function creates a thread with the specified attributes and runs the C function

start_routine in the thread with the single pointer argument specified. The new thread may, but does not

always, begin running before pthread_create() returns. If pthread_create() completes successfully, the

Pthread handle is stored in the contents of the location referred to by thread.

If the start_routine returns normally, it is as if there was an implicit call to pthread_exit() using the return

value of start_routine as the status. The function passed as start_routine should correspond to the

following C function prototype:

void *threadStartRoutinName(void *);

If the thread attributes object represented by attr is modified later, the newly created thread is not

affected. If attr is NULL, the default thread attributes are used.

With the following declarations and initialization,

pthread_t t;

void *foo(void *);

pthread_attr_t attr;

pthread_attr_init(&pta);

the following two thread creation mechanisms are functionally equivalent:

rc = pthread_create(&t, NULL, foo, NULL);

rc = pthread_create(&t, &attr, foo, NULL);

The cancellation state of the new thread is PTHREAD_CANCEL_ENABLE. The cancellation type of the

new thread is PTHREAD_CANCEL_DEFERRED.

The signal information maintained in the new thread is as follows:

v The signal mask is inherited from the creating thread.

v The set of signals pending for the new thread is empty.

If you attempt to create a thread in a job that is not capable of starting threads, pthread_create() fails

with the EBUSY error. If you attempt to create a thread from a location in which thread creation is not

allowed, pthread_create() fails with the EBUSY error. See the pthread_getpthreadoption_np() function,

option PTHREAD_OPTION_THREAD_CAPABLE_NP, for details about how to determine whether

thread creation is currently allowed in your process.

Chapter 1. Pthread APIs 65

In the OS/400 implementation, the initial thread is special. Termination of the initial thread by

pthread_exit() or any other thread termination mechanism terminates the entire process.

The OS/400 implementation does not set a hard limit on the number of threads that can be created. The

PTHREAD_THREADS_MAX macro is implemented as a function call, and returns different values

depending on the administrative setting of the maximum number of threads for the process. The default

is NO MAX and has the numeric value of 2147483647 (0x7FFFFFFF). Realistically, the number of threads

is limited by the amount of storage available to the job.

Currently, thread creation is not allowed after process termination has been started. For example, after a

call to exit(), destructors for C++ static objects, functions registered with atexit() or CEE4RAGE() are

allowed to run. If these functions attempt to create a thread, pthread_create() fails with the EBUSY error.

Similar failures occur if other mechanisms are used to call pthread_create() after process termination has

started.

Usage Notes

1. If you attempt to create a thread in a job that is not capable of starting threads or for some other

reason, thread creation is not allowed, and pthread_create() fails with the EBUSY error.

2. For the best performance during thread creation, you should always use pthread_join() or

pthread_detach(). This allows resources to be reclaimed or reused when the thread terminates.

3. The OS/400 implementation of threads allows the user ID to be changed on a per-thread basis. If, at

the time the application creates the first thread, the application has not associated a process user

identity with the job, the system uses the identity of the current user to set the process user identity

for the job. The process user identity is used by some operating system support when operations that

require authorization checks are done against a multithreaded job from outside that job. The

application can set the process user identity using the Set Job User Identify (QWTSJUID) or

QwtSetJuid() Set Job User Identity APIs. See the Security APIs for more details.

Authorities and Locks

None.

Parameters

thread (Output) Pthread handle to the created thread

attr (Input) The thread attributes object containing the attributes to be associated with the newly

created thread. If NULL, the default thread attributes are used.

start_routine

(Input) The function to be run as the new threads start routine

arg (Input) An address for the argument for the threads start routine

Return Value

0 pthread_create() was successful.

value pthread_create() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_create() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EAGAIN]

66 iSeries: Pthread APIs

QWTSJUID.htm
QWTSETJU.htm
sec.htm

The system did not have enough resources to create another thread or the maximum number of

threads for this job has been reached.

[EBUSY]

 The system cannot allow thread creation in this process at this time.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_detach()—Detach Thread” on page 71—Detach Thread
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

typedef struct {

 int value;

 char string[128];

} thread_parm_t;

void *threadfunc(void *parm)

{

 thread_parm_t *p = (thread_parm_t *)parm;

 printf("%s, parm = %d\n", p->string, p->value);

 free(p);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_attr_t pta;

 thread_parm_t *parm=NULL;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread attributes object\n");

 rc = pthread_attr_init(&pta);

 checkResults("pthread_attr_init()\n", rc);

 /* Create 2 threads using default attributes in different ways */

 printf("Create thread using the NULL attributes\n");

 /* Set up multiple parameters to pass to the thread */

 parm = malloc(sizeof(thread_parm_t));

 parm->value = 5;

 strcpy(parm->string, "Inside secondary thread");

 rc = pthread_create(&thread, NULL, threadfunc, (void *)parm);

 checkResults("pthread_create(NULL)\n", rc);

 printf("Create thread using the default attributes\n");

 /* Set up multiple parameters to pass to the thread */

 parm = malloc(sizeof(thread_parm_t));

 parm->value = 77;

 strcpy(parm->string, "Inside secondary thread");

 rc = pthread_create(&thread, &pta, threadfunc, (void *)parm);

Chapter 1. Pthread APIs 67

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_create(&pta)\n", rc);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&pta);

 checkResults("pthread_attr_destroy()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPCRT0

Create a thread attributes object

Create thread using the NULL attributes

Create thread using the default attributes

Destroy thread attributes object

Inside secondary thread, parm = 77

Inside secondary thread, parm = 5

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_delay_np()—Delay Thread for Requested Interval

 Syntax:

 #include <pthread.h>

 #include <time.h>

 int pthread_delay_np(const struct timespec *deltatime);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_delay_np() function causes the calling thread to delay for the deltatime specified.

Although time is specified in seconds and nanoseconds, the system has approximately millisecond

granularity. Due to scheduling and priorities, the amount of time you actually wait might be slightly

more or less than the amount of time specified.

During the time that the thread is blocked in pthread_delay_np(), any asynchronous signals that are

delivered to the thread have their actions taken. After the signal action (such as running a signal

handler), the wait resumes if the specified interval has not yet elapsed.

The pthread_delay_np() function is a cancellation point.

Note:This function is not portable.

68 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

interval

(Input) Address of the timespec structure containing the interval to wait

Return Value

0 pthread_delay_np() was successful.

value pthread_delay_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_delay_np() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <qp0z1170.h>

#include <time.h>

#include <pthread.h>

#include "check.h"

#define NTHREADS 5

void *threadfunc(void *parm)

{

 int rc;

 struct timespec ts = {0, 0};

 /* 5 and 1/2 seconds */

 ts.tv_sec = 5;

 ts.tv_nsec = 500000000;

 printf("Thread blocked\n");

 rc = pthread_delay_np(&ts);

 if (rc != 0) {

 printf("pthread_delay_np() - return code %d\n", rc);

 return (void*)&rc;

 }

 printf("Wait timed out!\n");

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

Chapter 1. Pthread APIs 69

aboutapis.htm#CODEDISCLAIMER

pthread_t threadid[NTHREADS];

 void *status;

 int fail=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create %d threads\n", NTHREADS);

 for(i=0; i<NTHREADS; ++i) {

 rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait for threads and cleanup\n");

 for (i=0; i<NTHREADS; ++i) {

 rc = pthread_join(threadid[i], &status);

 checkResults("pthread_join()\n", rc);

 if (status != NULL) {

 fail = 1;

 }

 }

 if (fail) {

 printf("At least one thread failed!\n");

 exit(1);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPDLY0

Create 5 threads

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Wait for threads and cleanup

Thread blocked

Wait timed out!

Wait timed out!

Wait timed out!

Wait timed out!

Wait timed out!

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

70 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_detach()—Detach Thread

 Syntax:

 #include <pthread.h>

 int pthread_detach(pthread_t thread);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_detach() function indicates that system resources for the specified thread should be reclaimed

when the thread ends. If the thread is already ended, resources are reclaimed immediately. This routine

does not cause the thread to end. After pthread_detach() has been issued, it is not valid to try to

pthread_join() with the target thread.

Eventually, you should call pthread_join() or pthread_detach() for every thread that is created joinable

(with a detach state of PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources

associated with the thread. Failure to join to or detach threads that can be joined causes memory and

other resource leaks until the process ends.

If thread does not represent a valid undetached thread, pthread_detach() will return ESRCH.

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle to the target thread

Return Value

0 pthread_detach() was successful.

value pthread_detach() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_detach() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ESRCH]

 No item could be found that matches the specified value.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Chapter 1. Pthread APIs 71

v “pthread_create()—Create Thread” on page 65—Create Thread
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

#include "check.h"

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using attributes that allow join or detach\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 sleep(5);

 printf("Detach the thread after it terminates\n");

 rc = pthread_detach(thread);

 checkResults("pthread_detach()\n", rc);

 printf("Detach the thread again (expect ESRCH)\n");

 rc = pthread_detach(thread);

 if (rc != ESRCH) {

 printf("Got an unexpected result! rc=%d\n",

 rc);

 exit(1);

 }

 printf("Second detach fails correctly\n");

 /* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPDET0

Create thread using attributes that allow join or detach

Inside secondary thread

Detach the thread after it terminates

Detach the thread again (expect ESRCH)

Second detach fails correctly

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

72 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_equal()—Compare Two Threads

 Syntax:

 #include <pthread.h>

 int pthread_equal(pthread_t t1, pthread_t t2);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_equal() function compares two Pthread handles for equality.

Authorities and Locks

None.

Parameters

t1 (Input) Pthread handle for thread 1

t2 (Input) Pthread handle for thread 2

Return Value

0 The Pthread handles do not refer to the same thread.

1 The Pthread handles refer to the same thread.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_self()—Get Pthread Handle” on page 197—Get Pthread Handle
v “pthread_create()—Create Thread” on page 65—Create Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_t theThread;

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 theThread = pthread_self();

 return NULL;

}

Chapter 1. Pthread APIs 73

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using default attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Check if global vs local pthread_t are equal\n");

 if (!pthread_equal(thread, theThread)) {

 printf("Unexpected results on pthread_equal()!\n");

 exit(1);

 }

 printf("pthread_equal returns true\n");

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPEQU0

Create thread using default attributes

Inside secondary thread

Check if global vs local pthread_t are equal

pthread_equal returns true

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_exit()—Terminate Calling Thread

 Syntax:

 #include <pthread.h>

 void pthread_exit(void *status);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_exit() function terminates the calling thread, making its exit status available to any waiting

threads. Normally, a thread terminates by returning from the start routine that was specified in the

pthread_create() call which started it. An implicit call to pthread_exit() occurs when any thread returns

from its start routine. (With the exception of the initial thread, at which time an implicit call to exit()

occurs). The pthread_exit() function provides an interface similar to exit() but on a per-thread basis.

74 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Note that in the OS/400 implementation of threads, the initial thread is special. Termination of the initial

thread by pthread_exit() or any thread termination mechanism terminates the entire process.

The following activities occur in this order when a thread terminates by a return from its start routine or

pthread_exit() or thread cancellation:

1. Any cancellation cleanup handlers that have been pushed and not popped will be executed in reverse

order with cancellation disabled.

2. Data destructors are called for any thread specific data entries that have a non NULL value for both

the value and the destructor.

3. The thread terminates.

4. Thread termination may possibly cause the system to run OS/400 cancel handlers (registered with the

#pragma cancel_handler directive), or C++ destructors for automatic objects.

5. If thread termination is occurring in the initial thread, it will cause the system to terminate all other

threads, then run C++ static object destructors, activation group cleanup routines and atexit()

functions.

6. Any mutexes that are held by a thread that terminates, become `abandoned’ and are no longer valid.

Subsequent calls by other threads that attempt to acquire the abandoned mutex though

pthread_mutex_lock() will deadlock. Subsequent calls by other threads that attempt to acquire the

abandoned mutex through pthread_mutex_trylock() will return EBUSY.

7. No release of any application visible process resources occur. This includes but is not limited to

mutexes, file descriptors, or any process level cleanup actions.

Do not call pthread_exit() from a cancellation cleanup handler or destructor function that was called as a

result of either an implicit or explicit call to pthread_exit(). If pthread_exit() is called from a cancellation

cleanup handler, the new invocation of pthread_exit() will continue cancellation cleanup processing using

the next cancellation cleanup handler that was pushed. If pthread_exit() is called from a data destructor,

the new invocation of pthread_exit() will skip all subsequent calls to any data destructors (regardless of

the number of destructor iterations that have completed), and terminate the thread.

Cleanup handlers and data destructors are not called when the application calls exit() or abort() or

otherwise terminates the process. Cleanup handlers and data destructors are not called when a thread

terminates by any proprietary OS/400 mechanism other than the Pthread interfaces.

The meaning of the status parameter is determined by the application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED

will be made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator

intervention or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP

will be made available.

No address error checking is done on the status parameter. Do not call pthread_exit() with, or return the

address of, a variable in a threads automatic storage. This storage will be unavailable after the thread

terminates.

Note: If pthread_exit() is called by application code after step 3 in the above list, pthread_exit() will fail

with the CPF1F81 exception. This indicates that the thread is already considered terminated by the

system, and pthread_exit() cannot continue. If your code does not handle this exception, it will appear as

if the call to pthread_exit() was successful.

Authorities and Locks

None.

Chapter 1. Pthread APIs 75

Parameters

status (Input) exit status of the thread

Return Value

pthread_exit() does not return.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_create()—Create Thread” on page 65—Create Thread
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

int theStatus=5;

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 pthread_exit(__VOID(theStatus));

 return __VOID(theStatus); /* Not needed, but this makes the compiler smile */

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using attributes that allow join\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Wait for the thread to exit\n");

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 if (__INT(status) != theStatus) {

 printf("Secondary thread failed\n");

 exit(1);

 }

 printf("Got secondary thread status as expected\n");

 printf("Main completed\n");

 return 0;

}

Output:

76 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Enter Testcase - QP0WTEST/TPEXIT0

Create thread using attributes that allow join

Wait for the thread to exit

Inside secondary thread

Got secondary thread status as expected

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_extendedjoin_np()—Wait for Thread with Extended Options

 Syntax:

 #include <pthread.h>

 int pthread_extendedjoin_np(pthread_t thread, void **status,

 pthread_joinoption_np_t *options);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_extendedjoin_np() function waits for a thread to terminate, optionally detaches the thread,

then returns the threads exit status.

If the options parameter is specified as NULL or the contents of the pthread_joinoption_np_t structure

represented by options parameter is binary 0, then the behavior of pthread_extendedjoin_np() is

equivalent to pthread_join().

The deltatime field of the options parameter can be used to specify the amount of elapsed time to wait

before the wait times out. If the wait times out, the ETIMEDOUT error is returned and the thread is not

detached. For an infinite wait, specify a seconds value of 0, and a nanoseconds value of 0.

The leaveThreadAllocated field of the options parameter can be used to specify that the

pthread_extendedjoin_np() function should NOT implicitly detach the thread when the join completes

successfully. If the leaveThreadAllocated option is used, the thread should later be detached using

pthread_join(), pthread_detach(), or pthread_extendedjoin_np() without specifying the

leaveThreadAllocated option.

The reserved fields of the options parameter are for use by possible future extensions to

pthread_extendedjoin_np(). If any reserved fields of the options parameter are not zero, the EINVAL

error is returned.

If the status parameter is NULL, the threads exit status is not returned.

The meaning of the threads exit status (value returned to the status memory location) is determined by

the application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED

is made available.

Chapter 1. Pthread APIs 77

#TOP_OF_PAGE
aplist.htm

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator

intervention, or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP

is made available.

Eventually, you should call pthread_join(), pthread_detach() or pthread_extendedjoin_np() without

specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of

PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.

Failure to join to or detach joinable threads causes memory and other resource leaks until the process

ends.

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle to the target thread

status (Input/Output) Address of the variable to receive the thread’s exit status

options

(Input) Address of the join options structure specifying optional behavior of this API.

Return Value

0 pthread_extendedjoin_np() was successful.

value pthread_extendedjoin_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_extendedjoin_np() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ESRCH]

 The thread specified could not be found.

[ETIMEDOUT]

 The time specified in the deltatime field of the options parameter elapsed without the target thread

terminating.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_detach()—Detach Thread” on page 71—Detach Thread
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread
v “pthread_join_np()—Wait for Thread to End” on page 104—Wait for Thread to End

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <unistd.h>

78 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#include <string.h>

#include <errno.h>

#include <stdio.h>

#include "check.h"

static void *thread(void *parm)

{

 printf("Entered thread\n");

 sleep(10);

 printf("Ending thread\n");

 return __VOID(42);

}

int main (int argc, char *argv[])

{

 pthread_joinoption_np_t joinoption;

 void *status;

 int rc;

 pthread_t t;

 printf("Entering testcase %s\n", argv[0]);

 printf("Create thread using attributes that allow join\n");

 rc = pthread_create(&t, NULL, thread, NULL);

 checkResults("pthread_create()\n", rc);

 memset(&joinoption, 0, sizeof(pthread_joinoption_np_t));

 joinoption.deltatime.tv_sec = 3;

 joinoption.leaveThreadAllocated = 1;

 printf("Join to the thread, timeout in 3 seconds, no implicit detach\n");

 rc = pthread_extendedjoin_np(t, &status, &joinoption);

 if (rc != ETIMEDOUT) {

 printf("Join did not timeout as expected! rc=%d\n", rc);

 exit(1);

 }

 /* Call pthread_extendedjoin_np the same as a normal */

 /* pthread_join() call. */

 /* i.e. Implicit Detach is done, and Infinite wait */

 printf("Normal join to the thread\n");

 rc = pthread_extendedjoin_np(t, &status, NULL);

 checkResults("pthread_extendedjoin_np(no-options)\n", rc);

 if (__INT(status) != 42) {

 printf("Got the incorrect thread status!\n");

 exit(1);

 }

 printf("Main completed\n");

 return(0);

}

Output

Entering testcase QP0WTEST/TPJOINE0

Create thread using attributes that allow join

Join to the thread, timeout in 3 seconds, no implicit detach

Entered thread

Normal join to the thread

Ending thread

Main completed

Chapter 1. Pthread APIs 79

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_getcancelstate_np()—Get Cancel State

 Syntax:

 #include <pthread.h>

 int pthread_getcancelstate_np(int *cancelState);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_getcancelstate_np() function gets the current cancel state of the thread. Cancel state is either

PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE. For more information on cancelability,

see “Thread cancellation APIs” on page 289.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes

the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the

thread changes the cancelability, calls a function that is a cancellation point, or calls pthread_testcancel(),

thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon

immediately, interrupting the thread with its processing.

Notes:

1. Your application should not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user

errors section of this document for more information.

2. This function is not portable.

Authorities and Locks

None.

Parameters

cancelstate

(Output) Address of the variable to receive the cancel state.

Return Value

0 pthread_getcancelstate_np() was successful.

value pthread_getcancelstate_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getcancelstate_np() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

80 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State
v “pthread_setcanceltype()—Set Cancel Type” on page 201—Set Cancel Type
v “pthread_testcancel()—Create Cancellation Point” on page 222—Create Cancellation Point

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <except.h>

#include <setjmp.h>

#include "check.h"

void showCancelState(void);

int threadStatus=42;

void showCancelState(void)

{

 int state, rc;

 rc = pthread_getcancelstate_np(&state);

 checkResults("pthread_getcancelstate_np()\n", rc);

 printf("current cancel state is %d\n", state);

}

void cleanupHandler2(void *p)

{

 printf("In cancellation cleanup handler\n");

 showCancelState();

 return;

}

void *threadfunc(void *parm)

{

 int rc, old;

 printf("Inside secondary thread\n");

 showCancelState();

 pthread_cleanup_push(cleanupHandler2, NULL);

 threadStatus = 0;

 printf("Calling pthread_exit() will allow cancellation "

 "cleanup handlers to run\n");

 pthread_exit(__VOID(threadStatus));

 pthread_cleanup_pop(0);

 return __VOID(-1);

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 char c;

 void *status;

Chapter 1. Pthread APIs 81

aboutapis.htm#CODEDISCLAIMER

printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread that will demonstrate pthread_getcancelstate_np()\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 if (__INT(status) != threadStatus) {

 printf("Got an unexpected return status from the thread!\n");

 exit(1);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPGETCANS0

Create thread that will demonstrate pthread_getcancelstate_np()

Inside secondary thread

current cancel state is 0

Calling pthread_exit() will allow cancellation cleanup handlers to run

In cancellation cleanup handler

current cancel state is 1

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_getconcurrency()—Get Process Concurrency Level

 Syntax:

 #include <pthread.h>

 int pthread_getconcurrency();

 Service Program Name: QP0WTCBH

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_getconcurrency() function retrieves the current concurrency level for the process. A value of

0 indicates that the threads implementation chooses the concurrency level that best suits the application.

A concurrency level greater than zero indicates that the application wishes to inform the system of its

desired concurrency level.

The concurrency level is not used by the OS/400 threads implementation. Each user thread is always

bound to a kernel thread.

Authorities and Locks

None.

82 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Parameters

None.

Return Value

value pthread_getconcurrency() returns the current concurrency level.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_setconcurrency()—Set Process Concurrency Level” on page 204—Set Process Concurrency

Level

 API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data

 Syntax:

 #include <pthread.h>

 int pthread_getpthreadoption_np(pthread_option_np_t *optionData);

 Service Program Name: QP0WTCBH

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_getpthreadoption_np() function gets option data from the pthread run-time for the process.

Input and output data is specified and returned uniquely based on the specified optionData. See the table

below for details about input and output. The option field in the optionData parameter is always required.

Other fields may be input, output, or ignored, based on the specific option used.

For all options, every reserved field in the structure represented by optionData must be binary zero or the

EINVAL error is returned. Unless otherwise noted for an option, the target field in the option parameter is

always ignored.

The currently supported options, the data they represent, and the valid operations are as follows:

Chapter 1. Pthread APIs 83

#TOP_OF_PAGE
aplist.htm

option field of the option parameter Description

PTHREAD_OPTION_POOL_NP When a thread terminates and it is detached or joined to,

certain data structures from the pthreads run-time are

maintained in a pool for possible reuse by future threads.

This improves performance for creating threads.

Typically, an application should not be concerned with

this storage pool. Use this option to determine what the

current maximum size of the allowed storage pool is.

The optionValue field of the optionData parameter is set to

the current maximum number of thread structures,

which is maintained in the storage pool. By default, the

maximum size of the storage reuse pool contains enough

room for 512 thread structures.

PTHREAD_OPTION_POOL_CURRENT_NP When a thread terminates and it is detached or joined to,

certain data structures from the pthreads run-time are

maintained in a pool for possible reuse by future threads.

This improves performance for creating threads.

Typically, an application should not be concerned with

this storage pool. Use this option to determine how

many thread structures are currently in the storage pool.

The optionValue field of the optionData parameter is set to

the current number of thread structures, which are

contained in the storage pool. By default, the storage

pool contains no thread structures. When a thread

terminates and is detached or joined to and the current

size of the pool is less than the maximum size, the

thread structure is added to the pool.

PTHREAD_OPTION_THREAD_CAPABLE_NP Not all OS/400 jobs can start threads at all times. Use

this option to determine whether thread creation is

currently allowed for your process. The optionValue field

of the optionData parameter is set to indicate whether

thread creation is currently allowed. The field is set to 0

to indicate that thread creation is not allowed, the field

will be set to 1 to indicate thread creation is allowed. If

thread creation is not allowed, pthread_create() fails with

the EBUSY error. See pthread_create() for more details.

Authorities and Locks

None.

Parameters

option (Input/Output) Address of the variable containing option information and to contain output

option information.

Return Value

0 pthread_getpthreadoption_np() was successful.

value pthread_getpthreadoption_np() was not successful. value is set to indicate the error condition.

84 iSeries: Pthread APIs

Error Conditions

If pthread_getpthreadoption_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data” on page 205—Set Pthread

Run-Time Option Data

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void *threadfunc(void *parm)

{

 printf("Inside the thread\n");

 return NULL;

}

void showCurrentSizeOfPool(void)

{

 int rc;

 pthread_option_np_t opt;

 memset(&opt, 0, sizeof(opt));

 opt.option = PTHREAD_OPTION_POOL_CURRENT_NP;

 rc = pthread_getpthreadoption_np(&opt);

 checkResults("pthread_getpthreadoption_np()\n", rc);

 printf("Current number of thread structures in pool is %d\n",

 opt.optionValue);

 return;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 pthread_option_np_t opt;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 memset(&opt, 0, sizeof(opt));

 opt.option = PTHREAD_OPTION_POOL_NP;

 rc = pthread_getpthreadoption_np(&opt);

 checkResults("pthread_getpthreadoption_np()\n", rc);

 printf("Current maximum pool size is %d thread structures\n",

 opt.optionValue);

Chapter 1. Pthread APIs 85

aboutapis.htm#CODEDISCLAIMER

showCurrentSizeOfPool();

 printf("Joining to the thread may it to the storage pool\n");

 rc = pthread_join(thread, NULL);

 checkResults("pthread_join()\n", rc);

 showCurrentSizeOfPool();

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPGEtopT

Create thread using the NULL attributes

Current maximum pool size is 512 thread structures

Current number of thread structures in pool is 0

Joining to the thread may it to the storage pool

Inside the thread

Current number of thread structures in pool is 1

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_getschedparam()—Get Thread Scheduling Parameters

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_getschedparam(pthread_t thread, int *policy,

 struct sched_param *param);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_getschedparam() function retrieves the scheduling parameters of the thread. The default

OS/400 scheduling policy is SCHED_OTHER and cannot be changed to another scheduling policy.

The sched_policy field of the param parameter is always returned as SCHED_OTHER. The sched_priority

field of the param structure is set to the priority of the target thread at the time of the call.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another

mechanism (other than the pthread APIs) to set the priority of a thread. If you do,

pthread_getschedparam() returns only that information that was set by the pthread interfaces such as

pthread_setschedparam() or a modification of the thread attribute using pthread_attr_setschedparam().

Authorities and Locks

None.

86 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Parameters

thread (Input) Pthread handle representing the target thread

policy (Output) Address of the variable to contain the scheduling policy

param (Output) Address of the variable to contain the scheduling parameters

Return Value

0 pthread_getschedparam() was successful.

value pthread_getschedparam was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getschedparam() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_setschedparam()—Set Target Thread Scheduling Parameters” on page 208—Set Target Thread

Scheduling Parameters

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <sched.h>

#include <stdio.h>

#include "check.h"

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 struct sched_param param;

 int policy;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using default attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Get scheduling parameters\n");

 rc = pthread_getschedparam(thread, &policy, ¶m);

 checkResults("pthread_getschedparam()\n", rc);

 printf("The thread scheduling parameters indicate:\n"

 "policy = %d\n", policy);

Chapter 1. Pthread APIs 87

aboutapis.htm#CODEDISCLAIMER

printf("priority = %d\n",

 param.sched_priority);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPGSP0

Create thread using default attributes

Get scheduling parameters

The thread scheduling parameters indicate:

policy = 0

priority = 0

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_getspecific()—Get Thread Local Storage Value by Key

 Syntax:

 #include <pthread.h>

 void *pthread_getspecific(pthread_key_t key);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_getspecific() function retrieves the thread local storage value associated with the key.

pthread_getspecific() may be called from a data destructor.

The thread local storage value is a variable of type void * that is local to a thread, but global to all of the

functions called within that thread. It is accessed by the key.

Authorities and Locks

None.

Parameters

key (Input) The thread local storage key returned from pthread_key_create()

Return Value

value pthread_getspecific() was successful. value is set to indicate the current thread specific data

pointer stored at the key location.

88 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

NULL pthread_getspecific() returned the null thread specific data value stored at the key location or the

key was out of range.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_key_create()—Create Thread Local Storage Key” on page 107—Create Thread Local Storage

Key
v “pthread_key_delete()—Delete Thread Local Storage Key” on page 109—Delete Thread Local Storage

Key
v “pthread_setspecific()—Set Thread Local Storage by Key” on page 211—Set Thread Local Storage by

Key

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 3

pthread_key_t tlsKey = 0;

void globalDestructor(void *value)

{

 printf("In the globalDestructor\n");

 free(value);

 pthread_setspecific(tlsKey, NULL);

}

void showGlobal(void)

{

 void *global;

 pthread_id_np_t tid;

 global = pthread_getspecific(tlsKey);

 pthread_getunique_np((pthread_t *)global, &tid);

 printf("showGlobal: global data stored for thread 0x%.8x%.8x\n",

 tid);

}

void *threadfunc(void *parm)

{

 int rc;

 int *myThreadDataStructure;

 pthread_t me = pthread_self();

 printf("Inside secondary thread\n");

 myThreadDataStructure = malloc(sizeof(pthread_t) + sizeof(int) * 10);

 memcpy(myThreadDataStructure, &me, sizeof(pthread_t));

 pthread_setspecific(tlsKey, myThreadDataStructure);

 showGlobal();

 pthread_exit(NULL);

}

int main(int argc, char **argv)

{

Chapter 1. Pthread APIs 89

aboutapis.htm#CODEDISCLAIMER

pthread_t thread[NUMTHREADS];

 int rc=0;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread local storage key\n");

 rc = pthread_key_create(&tlsKey, globalDestructor);

 checkResults("pthread_key_create()\n", rc);

 /* The key can now be used from all threads */

 printf("Create %d threads using joinable attributes\n",

 NUMTHREADS);

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Join to threads\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Delete a thread local storage key\n");

 rc = pthread_key_delete(tlsKey);

 checkResults("pthread_key_delete()\n", rc);

 /* The key and any remaining values are now gone. */

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPGETS0

Create a thread local storage key

Create 3 threads using joinable attributes

Join to threads

Inside secondary thread

showGlobal: global data stored for thread 0x000000000000000b

In the globalDestructor

Inside secondary thread

showGlobal: global data stored for thread 0x000000000000000d

In the globalDestructor

Inside secondary thread

showGlobal: global data stored for thread 0x000000000000000c

In the globalDestructor

Delete a thread local storage key

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

90 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread

 Syntax:

 #include <pthread.h>

 pthread_id_np_t pthread_getthreadid_np(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_getthreadid_np() function retrieves the unique integral identifier that can be used to identify

the calling thread in some context for application debugging or tracing support.

In some implementations, the thread ID is equivalent to the pthread_t type. In the OS/400

implementation, the pthread_t is an opaque Pthread handle. For the ability to identify a thread using a

thread ID (unique number), the pthread_getunique_np() and pthread_getthreadid_np() interfaces are

provided.

The OS/400 machine implementation of threads provides a 64-bit thread ID. The thread ID is returned as

a structure containing the high and low order 4 bytes of the 64-bit ID. This allows applications created by

compilers that do not yet support 64-bit integral values to effectively use the 64-bit thread ID.

If your code requires the unique integer identifier for the calling thread often, or in a loop, the

pthread_getthreadid_np() function can significantly improve performance over the combination of

pthread_self() and pthread_getunique_np() calls that provide equivalent behavior.

For example:

pthread_id_np_t tid;

tid = pthread_getthreadid_np();

is significantly faster than these calls, but provides the same behavior.

pthread_id_np_t tid;

pthread_t self;

self = pthread_self();

pthread_getunique_np(&self, &tid);

As always, if you are calling any function too often, you can improve performance by storing the results

in a variable or passing to other functions that require the results.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

None.

Chapter 1. Pthread APIs 91

Return Value

The pthread_id_np_t structure identifying the thread

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_self()—Get Pthread Handle” on page 197—Get Pthread Handle
v “pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93—Retrieve Unique ID for

Target Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 3

void *threadfunc(void *parm)

{

 printf("Thread 0x%.8x %.8x started\n", pthread_getthreadid_np());

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 pthread_id_np_t tid;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Main Thread 0x%.8x %.8x\n", pthread_getthreadid_np());

 printf("Create %d threads using joinable attributes\n",

 NUMTHREADS);

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 pthread_getunique_np(&thread[i], &tid);

 printf("Created thread 0x%.8x %.8x\n", tid);

 }

 printf("Join to threads\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Main completed\n");

 return 0;

}

Output:

92 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Enter Testcase - QP0WTEST/TPGETT0

Main Thread 0x00000000 0000006c

Create 3 threads using joinable attributes

Created thread 0x00000000 0000006d

Thread 0x00000000 0000006d started

Created thread 0x00000000 0000006e

Created thread 0x00000000 0000006f

Join to threads

Thread 0x00000000 0000006f started

Thread 0x00000000 0000006e started

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_getunique_np()—Retrieve Unique ID for Target Thread

 Syntax:

 #include <pthread.h>

 int pthread_getunique_np(pthread_t *thread, pthread_id_np_t *id);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_getunique_np() function retrieves the unique integral identifier that can be used to identify

the thread in some context for application debugging or tracing support.

In some implementations, the thread ID is equivalent to the pthread_t type. In the OS/400

implementation, the pthread_t is an opaque Pthread handle. For the ability to identify a thread using a

thread ID (unique number), the pthread_getunique_np() and pthread_getthreadid_np() interfaces are

provided.

The OS/400 machine implementation of threads provides a 64-bit thread ID. The thread ID is returned as

a structure containing the high and low order 4 bytes of the 64-bit ID. This allows applications created by

compilers that do not yet support 64-bit integral values to effectively use the 64-bit thread ID.

If your code requires the unique integer identifier for the calling thread often, or in a loop, the

pthread_getthreadid_np() function can significantly improve performance over the combination of

pthread_self() and pthread_getunique_np() calls that provide equivalent behavior.

For example:

pthread_id_np_t tid;

tid = pthread_getthreadid_np();

is significantly faster than these calls, but provides the same behavior.

Chapter 1. Pthread APIs 93

#TOP_OF_PAGE
aplist.htm

pthread_id_np_t tid;

pthread_t self;

self = pthread_self();

pthread_getunique_np(&self, &tid);

As always, if you are calling any function too often, you can improve performance by storing the results

in a variable or passing to other functions that require the results.

Note:This function is not portable.

Authorities and Locks

None.

Parameters

thread (Input) Address of the thread to retrieve the unique integer ID for

id (Output) Address of the thread ID structure to contain the 64-bit thread ID.

Return Value

0 pthread_getunique_np() was successful.

value pthread_getunique_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getunique_np() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271
v “pthread_self()—Get Pthread Handle” on page 197—Get Pthread Handle
v “pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91—Retrieve Unique ID

for Calling Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 3

void *threadfunc(void *parm)

{

 pthread_id_np_t tid;

 pthread_t me = pthread_self();

 pthread_getunique_np(&me, &tid);

 printf("Thread 0x%.8x %.8x started\n", tid);

 return NULL;

}

94 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 pthread_id_np_t tid;

 int i=0;

 pthread_t me = pthread_self();

 printf("Enter Testcase - %s\n", argv[0]);

 pthread_getunique_np(&me, &tid);

 printf("Main Thread 0x%.8x %.8x\n", tid);

 printf("Create %d threads using joinable attributes\n",

 NUMTHREADS);

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 pthread_getunique_np(&thread[i], &tid);

 printf("Created thread 0x%.8x %.8x\n", tid);

 }

 printf("Join to threads\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPGETU0

Main Thread 0x00000000 0000006c

Create 3 threads using joinable attributes

Created thread 0x00000000 0000006d

Thread 0x00000000 0000006d started

Created thread 0x00000000 0000006e

Created thread 0x00000000 0000006f

Join to threads

Thread 0x00000000 0000006f started

Thread 0x00000000 0000006e started

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 1. Pthread APIs 95

#TOP_OF_PAGE
aplist.htm

pthread_get_expiration_np()—Get Condition Expiration Time from

Relative Time

 Syntax:

 #include <pthread.h>

 #include <time.h>

 int pthread_get_expiration_np(const struct timespec *delta,

 struct timespec *abstime);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_get_expiration_np() function computes an absolute time by adding the specified relative

time (delta) to the current system time. The resulting absolute time output in the abstime parameter can be

used as the expiration time in a call to pthread_cond_timedwait().

The current system time is retrieved from the

system clock.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

delta (Input) Elapsed time to add to the current system time

abstime

(Output) Address of the returned value representing the expiration time

Return Value

0 pthread_get_expiration_np() was successful.

value pthread_get_expiration_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_get_expiration_np() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition

96 iSeries: Pthread APIs

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <qp0z1170.h>

#include <time.h>

#include <pthread.h>

#include “check.h”

/* For safe condition variable usage, must use a boolean predicate and */

/* a mutex with the condition. */

int workToDo = 0;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int failStatus=99;

#define NTHREADS 2

#define WAIT_TIME_SECONDS 3

void *threadfunc(void *parm)

{

 int rc;

 struct timespec delta;

 struct timespec abstime;

 int retries = 2;

 pthread_id_np_t tid;

 tid = pthread_getthreadid_np();

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 while (retries--) {

 delta.tv_sec = WAIT_TIME_SECONDS;

 delta.tv_nsec = 0;

 rc = pthread_get_expiration_np(&delta, &abstime);

 checkResults(“pthread_get_expiration_np()\n”, rc);

 while (!workToDo) {

 printf(“Thread 0x%.8x %.8x blocked\n”, tid);

 rc = pthread_cond_timedwait(&cond, &mutex, &abstime);

 if (rc != ETIMEDOUT) {

 printf(“pthread_cond_timedwait() - expect timeout %d\n”, rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 return __VOID(failStatus);

 }

 /* Since there is no code in this example to wake up any */

 /* thread on the condition variable, we know we are done */

 /* because we have timed out. */

 break;

 }

 printf(“Wait timed out! tid=0x%.8x %.8x\n”, tid);

 }

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_lock()\n”, rc);

 return __VOID(0);

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADS];

 void *status;

Chapter 1. Pthread APIs 97

aboutapis.htm#CODEDISCLAIMER

int results=0;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create %d threads\n”, NTHREADS);

 for(i=0; i<NTHREADS; ++i) {

 rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 printf(“Wait for threads and cleanup\n”);

 for (i=0; i<NTHREADS; ++i) {

 rc = pthread_join(threadid[i], &status);

 checkResults(“pthread_join()\n”, rc);

 if (__INT(status) == failStatus) {

 printf(“A thread failed!\n”);

 results++;

 }

 }

 pthread_cond_destroy(&cond);

 pthread_mutex_destroy(&mutex);

 printf(“Main completed\n”);

 return results;

}

Output:

Enter Testcase - QP0WTEST/TPGETEX0

Create 2 threads

Wait for threads and cleanup

Thread 0x00000000 000002ab blocked

Thread 0x00000000 000002ac blocked

Wait timed out! tid=0x00000000 000002ab

Thread 0x00000000 000002ab blocked

Wait timed out! tid=0x00000000 000002ac

Thread 0x00000000 000002ac blocked

Wait timed out! tid=0x00000000 000002ab

Wait timed out! tid=0x00000000 000002ac

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_is_initialthread_np()—Check if Running in the Initial Thread

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_is_initialthread_np(void);

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_is_initialthread_np() function returns true or false, indicating if the current thread is the

initial thread of the process. A return value true (non 0) indicates that the calling thread is the initial

thread. A return value of false (0) indicates that the calling thread is running in a secondary thread.

98 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Note: This function is not portable.

Authorities and Locks

None.

Parameters

None.

Return Value

0 The calling thread is a secondary thread.

value The calling thread is the initial thread.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271
v “pthread_is_multithreaded_np()—Check Current Number of Threads” on page 100

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 1

void *function(void *parm)

{

 printf("Inside the function\n");

 if (pthread_is_initialthread_np()) {

 printf("In the initial thread\n");

 }

 else {

 printf("In a secondary thread\n");

 }

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create %d threads\n", NUMTHREADS);

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, function, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Main: Currently %d threads\n",

 pthread_is_initialthread_np() + 1);

 }

 printf("Join to threads\n");

Chapter 1. Pthread APIs 99

aboutapis.htm#CODEDISCLAIMER

for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 function(NULL);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPISIN0

Create 1 threads

Join to threads

Inside the function

In a secondary thread

Inside the function

In the initial thread

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_is_multithreaded_np()—Check Current Number of Threads

 Syntax:

 #include <pthread.h>

 unsigned int pthread_is_multithreaded_np(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_is_multithreaded_np() function returns true or false, indicating whether the current process

has more than one thread. A return value of zero indicates that the calling thread is the only thread in the

process. A value not equal to zero, indicates that there were multiple other threads in the process at the

time of the call to pthread_is_multithreaded_np().

The total number of threads currently in the process can be determined by adding 1 to the return value

of pthread_is_multithreaded_np().

Note: This function is not portable.

Authorities and Locks

None.

Parameters

None.

100 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Return Value

0 No other threads exist in the process.

value There are currently value+1 total threads in the process.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_is_initialthread_np()—Check if Running in the Initial Thread” on page 98—Check if Running

in the Initial Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 3

void *threadfunc(void *parm)

{

 int myHiId;

 int myId;

 pthread_t me = pthread_self();

 printf("Inside the New Thread\n");

 sleep(2); /* Sleep is not a very robust way to serialize threads */

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int theHiId=0;

 int theId=0;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create %d threads\n", NUMTHREADS);

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Main: Currently %d threads\n",

 pthread_is_multithreaded_np() + 1);

 }

 printf("Join to threads\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 if (rc = pthread_is_multithreaded_np()) {

 printf("Error: %d Threads still exist!\n", rc+1);

 exit(1);

Chapter 1. Pthread APIs 101

aboutapis.htm#CODEDISCLAIMER

}

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPISMT0

Create 3 threads

Main: Currently 2 threads

Main: Currently 3 threads

Main: Currently 4 threads

Join to threads

Inside the New Thread

Inside the New Thread

Inside the New Thread

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_join()—Wait for and Detach Thread

 Syntax:

 #include <pthread.h>

 int pthread_join(pthread_t thread, void **status);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_join() function waits for a thread to terminate, detaches the thread, then returns the threads

exit status.

If the status parameter is NULL, the threads exit status is not returned.

The meaning of the threads exit status (value returned to the status memory location) is determined by

the application, except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED

is made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator

intervention or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP

is made available.

Eventually, you should call pthread_join(), pthread_detach() or pthread_extendedjoin_np() without

specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of

PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.

Failure to join to or detach joinable threads causes memory and other resource leaks until the process

ends.

102 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle to the target thread

status (Output) Address of the variable to receive the thread’s exit status

Return Value

0 pthread_join() was successful.

value pthread_join() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_join() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ESRCH]

 The thread specified could not be found.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_detach()—Detach Thread” on page 71—Detach Thread
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77—Wait for Thread

with Extended Options
v “pthread_join_np()—Wait for Thread to End” on page 104—Wait for Thread to End

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

int okStatus = 34;

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 return __VOID(okStatus);

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using attributes that allow join\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

Chapter 1. Pthread APIs 103

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_create()\n", rc);

 printf("Wait for the thread to exit\n");

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 if (__INT(status) != okStatus) {

 printf("Secondary thread failed\n");

 exit(1);

 }

 printf("Got secondary thread status as expected\n");

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPJOIN0

Create thread using attributes that allow join

Wait for the thread to exit

Inside secondary thread

Got secondary thread status as expected

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_join_np()—Wait for Thread to End

 Syntax:

 #include <pthread.h>

 int pthread_join_np(pthread_t thread, void **status);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_join_np() function waits for a thread to terminate, then returns the threads exit status, while

leaving the data structures of the thread available for a later call to pthread_join(), pthread_join_np(),

pthread_detach(), or pthread_extendedjoin_np()

If the status parameter is NULL, the thread’s exit status is not returned.

The meaning of the threads exit status (value returned to the status memory location) is determined by

the application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED

is made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator

intervention, or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP

is made available.

104 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Eventually, you should call pthread_join(), pthread_detach(), or pthread_extendedjoin_np() without

specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of

PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.

Failure to join to or detach joinable threads causes memory and other resource leaks until the process

ends.

Note:This function is not portable.

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle to the target thread

status (Output) Address of the variable to receive the thread’s exit status

Return Value

0 pthread_join_np() was successful.

value pthread_join_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_join_np() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ESRCH]

 The thread specified could not be found.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_detach()—Detach Thread” on page 71—Detach Thread
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77—Wait for Thread

with Extended Options
v “pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

int okStatus = 12;

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 return __VOID(okStatus);

}

Chapter 1. Pthread APIs 105

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using attributes that allow join\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Wait for the thread to exit\n");

 rc = pthread_join_np(thread, &status);

 checkResults("pthread_join_np()\n", rc);

 if (__INT(status) != okStatus) {

 printf("Secondary thread failed\n");

 exit(1);

 }

 printf("With pthread_join_np(), we can join repeatedly\n");

 rc = pthread_join_np(thread, &status);

 checkResults("pthread_join_np()\n", rc);

 if (__INT(status) != okStatus) {

 printf("Secondary thread failed\n");

 exit(1);

 }

 printf("Got secondary thread status as expected\n");

 /* Eventually, we should use pthread_join() or pthread_detach() */

 rc = pthread_detach(thread);

 checkResults("pthread_detach()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPJOINN0

Create thread using attributes that allow join

Wait for the thread to exit

Inside secondary thread

With pthread_join_np(), we can join repeatedly

Got secondary thread status as expected

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

106 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_key_create()—Create Thread Local Storage Key

 Syntax:

 #include <pthread.h>

 int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_key_create() function creates a thread local storage key for the process and associates the

destructor function with that key. After a key is created, that key can be used to set and get per-thread

data pointer. When pthread_key_create() completes, the value associated with the newly created key is

NULL.

When a thread terminates, if both the value and the destructor associated with a thread local storage key

are not NULL, the destructor function is called. The stored pointer associated with the key is set to NULL

before the call to the destructor funciton. The parameter passed to the destructor function when it is

called is the value of the pointer before it was set to NULL that is associated with that key in the thread

that is terminating.

After calling the destructors, if there are still non NULL values in the thread associated with the keys, the

process is repeated. After PTHREAD_DESTRUCTOR_ITERATIONS attempts to destroy the thread local

storage, no further attempts are made for that thread local storage value/key combination.

Do not call pthread_exit() from a destructor function.

A destructor function is not called as a result of the application calling pthread_key_delete().

Authorities and Locks

None.

Parameters

key (Output) The address of the variable to contain the thread local storage key

destructor

(Input) The address of the function to act as a destructor for this thread local storage key

Return Value

0 pthread_key_create() was successful.

value pthread_key_create() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_key_create() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

Chapter 1. Pthread APIs 107

[EINVAL]

 The value specified for the argument is not correct.

[EAGAIN]

 The system did not have enough resources, or the maximum of PTHREAD_KEYS_MAX would

have been exceeded.

[ENOMEM]

 Not enough memory to create the key.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88—Get Thread Local Storage

Value by Key
v “pthread_key_delete()—Delete Thread Local Storage Key” on page 109—Delete Thread Local Storage

Key
v “pthread_setspecific()—Set Thread Local Storage by Key” on page 211—Set Thread Local Storage by

Key

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <sched.h>

#include <stdio.h>

#include "check.h"

pthread_key_t tlsKey = 0;

void globalDestructor(void *value)

{

 printf("In the data destructor\n");

 free(value);

 pthread_setspecific(tlsKey, NULL);

}

int main(int argc, char **argv)

{

 int rc=0;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread local storage key\n");

 rc = pthread_key_create(&tlsKey, globalDestructor);

 checkResults("pthread_key_create()\n", rc);

 /* The key can now be used from all threads */

 printf("- The key can now be used from all threads\n");

 printf("- in the process to storage thread local\n");

 printf("- (but global to all functions in that thread)\n");

 printf("- storage\n");

 printf("Delete a thread local storage key\n");

 rc = pthread_key_delete(tlsKey);

 checkResults("pthread_key_delete()\n", rc);

108 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* The key and any remaining values are now gone. */

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPKEYC0

Create a thread local storage key

- The key can now be used from all threads

- in the process to storage thread local

- (but global to all functions in that thread)

- storage

Delete a thread local storage key

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_key_delete()—Delete Thread Local Storage Key

 Syntax:

 #include <pthread.h>

 int pthread_key_delete(pthread_key_t key);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_key_delete() function deletes a process-wide thread local storage key. The

pthread_key_delete() function does not run any destructors for the values associated with key in any

threads. After a key is deleted, it may be returned by a subsequent call to pthread_key_create().

An attempt to delete a key that is out of range or not valid fails with EINVAL. An attempt to delete a

valid key that has already been deleted or has not been returned from pthread_key_create() fails with

ENOENT.

Authorities and Locks

None.

Parameters

key (Input) The thread local storage key returned from pthread_key_create()

Return Value

0 pthread_key_delete() was successful.

value pthread_key_delete() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 109

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_key_delete() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

A destructor function is not called as a result of the application calling pthread_key_delete().

[EINVAL]

 The value specified for the argument is not correct.

[ENOENT]

 An entry for the key is not currently allocated.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88—Get Thread Local Storage

Value by Key
v “pthread_key_create()—Create Thread Local Storage Key” on page 107—Create Thread Local Storage

Key
v “pthread_setspecific()—Set Thread Local Storage by Key” on page 211—Set Thread Local Storage by

Key

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_key_t tlsKey = 0;

void globalDestructor(void *value)

{

 printf("In global data destructor\n");

 free(value);

 pthread_setspecific(tlsKey, NULL);

}

int main(int argc, char **argv)

{

 int rc=0;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread local storage key\n");

 rc = pthread_key_create(&tlsKey, globalDestructor);

 checkResults("pthread_key_create()\n", rc);

 /* The key can now be used from all threads */

 printf("Delete a thread local storage key\n");

 rc = pthread_key_delete(tlsKey);

 checkResults("pthread_key_delete()\n", rc);

 printf("- The key should not be used from any thread\n");

 printf("- after destruction.\n");

110 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* The key and any remaining values are now gone. */

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPKEYD0

Create a thread local storage key

Delete a thread local storage key

- The key should not be used from any thread

- after destruction.

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_kill()—Send Signal to Thread

 Syntax:

 #include <pthread.h>

 #include <signal.h>

 int pthread_kill(pthread_t thread, int sig);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_kill() function requests that the signal sig be delivered to the specified thread. The signal to

be sent is specified by sig and is either zero or one of the signals from the list of defined signals in the

<signal.h> header file. If sig is zero, error checking is performed, but no signal is sent to the target thread.

A thread can use pthread_kill() to send a signal to itself. If the signal is not blocked or ignored, at least

one pending unblocked signal is delivered to the sender before pthread_kill() returns. If there are no

other pending unblocked signals, the delivered signal is sig.

The pthread_kill() API in no way changes the effect or scope of a signal. Even though a signal can be

sent to a specific thread using the pthread_kill() API, the behavior that occurs when the signal is

delivered is unchanged.

For example, sending a SIGKILL signal to a thread using pthread_kill() ends the entire process, not

simply the target thread. SIGKILL is defined to end the entire process, regardless of the thread it is

delivered to, or how it is sent.

Authorities and Locks

None.

Chapter 1. Pthread APIs 111

#TOP_OF_PAGE
aplist.htm

Parameters

thread (Input) Pthread handle of the target thread

sig (Input) The signal number to be delivered or zero to validate the pthread_t

Return Value

0 pthread_kill() was successful.

value pthread_kill() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_kill() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.

[ESRCH]

 No thread could be found that matched the thread ID specified.

[EINVAL]

 The value specified for the argument is not correct.

[ENOTSIGINIT]

 The process is not enabled for signals.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_sigmask()—Set or Get Signal Mask” on page 215—Set or Get Signal Mask
v “pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests” on page 219—Convert Signals to

Cancel Requests

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <signal.h>

#include “check.h”

#define NUMTHREADS 3

void sighand(int signo);

void *threadfunc(void *parm)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 int rc;

 pthread_getunique_np(&self, &tid);

 printf(“Thread 0x%.8x %.8x entered\n”, tid);

 errno = 0;

 rc = sleep(30);

 if (rc != 0 && errno == EINTR) {

 printf(“Thread 0x%.8x %.8x got a signal delivered to it\n”,

 tid);

 return NULL;

 }

 printf(“Thread 0x%.8x %.8x did not get expected results! rc=%d, errno=%d\n”,

 tid, rc, errno);

112 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

return NULL;

}

int main(int argc, char **argv)

{

 int rc;

 int i;

 struct sigaction actions;

 pthread_t threads[NUMTHREADS];

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Set up the alarm handler for the process\n”);

 memset(&actions, 0, sizeof(actions));

 sigemptyset(&actions.sa_mask);

 actions.sa_flags = 0;

 actions.sa_handler = sighand;

 rc = sigaction(SIGALRM,&actions,NULL);

 checkResults(“sigaction\n”, rc);

 for(i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&threads[i], NULL, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 sleep(3);

 for(i=0; i<NUMTHREADS; ++i) {

 rc = pthread_kill(threads[i], SIGALRM);

 checkResults(“pthread_kill()\n”, rc);

 }

 for(i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(threads[i], NULL);

 checkResults(“pthread_join()\n”, rc);

 }

 printf(“Main completed\n”);

 return 0;

}

void sighand(int signo)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 pthread_getunique_np(&self, &tid);

 printf(“Thread 0x%.8x %.8x in signal handler\n”,

 tid);

 return;

}

Output:

Enter Testcase - QP0WTEST/TPKILL0

Set up the alarm handler for the process

Thread 0x00000000 0000000c entered

Thread 0x00000000 0000000d entered

Thread 0x00000000 0000000e entered

Thread 0x00000000 0000000c in signal handler

Thread 0x00000000 0000000c got a signal delivered to it

Thread 0x00000000 0000000d in signal handler

Thread 0x00000000 0000000d got a signal delivered to it

Thread 0x00000000 0000000e in signal handler

Thread 0x00000000 0000000e got a signal delivered to it

Main completed

Chapter 1. Pthread APIs 113

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_lock_global_np()—Lock Global Mutex

 Syntax:

 #include <pthread.h>

 int pthread_lock_global_np(void);

 Service Program Name: QP0WTCBH

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_lock_global_np() function locks a global mutex provided by the pthreads run-time. The

global mutex is a recursive mutex with a name of ″QP0W_GLOBAL_MTX″. The global mutex is not

currently used by the pthreads run-time to serialize access to any system resources, and is provided for

application use only.

The maximum number of recursive locks by the owning thread is 32,767. After which, attempts to lock

the mutex will return the ERECURSE error.

Note: This function is not portable

Authorities and Locks

None.

Parameters

None.

Return Value

0 pthread_lock_global_np() was successful.

value pthread_lock_global_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_lock_global_np() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ERECURSE]

 The recursive mutex cannot be recursively locked again.

114 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_unlock_global_np()—Unlock Global Mutex” on page 239

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

/*

 This example shows the corruption that can result if no

 serialization is done and also shows the use of

 pthread_lock_global_np(). Call this test with no parameters

 to use pthread_lock_gloabl_np() to protect the critical data,

 between more than one (possibly unrelated) functions.

 Use 1 or more parameters to skip locking and

 show data corruption that occurs without locking.

 */

#define LOOPCONSTANT 50000

#define THREADS 10

int i,j,k,l;

int uselock=1;

void secondFunction(void)

{

 int rc;

 if (uselock) {

 rc = pthread_lock_global_np();

 checkResults("pthread_lock_global_np()\n", rc);

 }

 --i; --j; --k; --l;

 if (uselock) {

 rc = pthread_unlock_global_np();

 checkResults("pthread_unlock_global_np()\n", rc);

 }

}

void *threadfunc(void *parm)

{

 int loop = 0;

 int rc;

 for (loop=0; loop<LOOPCONSTANT; ++loop) {

 if (uselock) {

 rc = pthread_lock_global_np();

 checkResults("pthread_lock_global_np()\n", rc);

 }

 ++i; ++j; ++k; ++l;

 secondFunction();

 ++i; ++j; ++k; ++l;

 if (uselock) {

 rc = pthread_unlock_global_np();

 checkResults("pthread_unlock_global_np()\n", rc);

 }

 }

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t threadid[THREADS];

 int rc=0;

 int loop=0;

Chapter 1. Pthread APIs 115

aboutapis.htm#CODEDISCLAIMER

printf("Enter Testcase - %s\n", argv[0]);

 printf("Give any number of parameters to show data corruption\n");

 if (argc != 1) {

 printf("A parameter was specified, no serialization is being done!\n");

 uselock = 0;

 }

 if (uselock) {

 rc = pthread_lock_global_np();

 checkResults("pthread_lock_global_np() (main)\n", rc);

 }

 printf("Creating %d threads\n", THREADS);

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_create(&threadid[loop], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 sleep(5);

 if (uselock) {

 rc = pthread_unlock_global_np();

 checkResults("pthread_unlock_global_np() (main)\n", rc);

 }

 printf("Wait for results\n");

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_join(threadid[loop], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("\nUsing %d threads and LOOPCONSTANT = %d\n",

 THREADS, LOOPCONSTANT);

 printf("Values are: (should be %d)\n", THREADS * LOOPCONSTANT);

 printf(" ==>%d, %d, %d, %d\n", i, j, k, l);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPMTXGLB0

Give any number of parameters to show data corruption

Creating 10 threads

Wait for results

Using 10 threads and LOOPCONSTANT = 50000

Values are: (should be 500000)

 ==>500000, 500000, 500000, 500000

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

116 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_destroy()—Destroy Mutex Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_destroy() function destroys a mutex attributes object and allows the system to

reclaim any resources associated with that mutex attributes object. This does not have an effect on any

mutexes created using this mutex attributes object.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object to be destroyed

Return Value

0 pthread_mutexattr_destroy() was successful.

value pthread_mutexattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_destroy() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129—Initialize Mutex Attributes

Object
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_mutex_t mutex;

Chapter 1. Pthread APIs 117

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 printf(“Entering testcase\n”);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init\n”, rc);

 printf(“Create the mutex using a mutex attributes object\n”);

 rc = pthread_mutex_init(&mutex, &mta);

 checkResults(“pthread_mutex_init(mta)\n”, rc);

 printf(“- At this point, the mutex with its default attributes\n”);

 printf(“- Can be used from any threads that want to use it\n”);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Destroy mutex\n”);

 rc = pthread_mutex_destroy(&mutex);

 checkResults(“pthread_mutex_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Create the mutex using a mutex attributes object

- At this point, the mutex with its default attributes

- Can be used from any threads that want to use it

Destroy mutex attribute

Destroy mutex

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

118 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_getkind_np(const pthread_mutexattr_t *attr,

 int *kind);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_getkind_np() function retrieves the kind attribute from the mutex attributes object

specified by attr. The mutex kind attribute is used to create mutexes with different behaviors.

The kind returned is one of PTHREAD_MUTEX_NONRECURSIVE_NP or

PTHREAD_MUTEX_RECURSIVE_NP.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutes.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

kind (Output) Address of the variable to receive the kind attribute

Return Value

0 pthread_mutexattr_getkind_np() was successful.

value pthread_mutexattr_getkind_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getkind_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.

Chapter 1. Pthread APIs 119

v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129—Initialize Mutex Attributes

Object
v “pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131—Set Mutex Kind Attribute
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

void showKind(pthread_mutexattr_t *mta) {

 int rc;

 int kind;

 printf(“Check kind attribute\n”);

 rc = pthread_mutexattr_getkind_np(mta, &kind);

 checkResults(“pthread_mutexattr_getpshared()\n”, rc);

 printf(“The pshared attributed is: ”);

 switch (kind) {

 case PTHREAD_MUTEX_NONRECURSIVE_NP:

 printf(“PTHREAD_MUTEX_NONRECURSIVE_NP\n”);

 break;

 case PTHREAD_MUTEX_RECURSIVE_NP:

 printf(“PTHREAD_MUTEX_RECURSIVE_NP\n”);

 break;

 default :

 printf(“! kind Error kind=%d !\n”, kind);

 exit(1);

 }

 return;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 int pshared=0;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init()\n”, rc);

 showKind(&mta);

 printf(“Change mutex kind attribute\n”);

 rc = pthread_mutexattr_setkind_np(&mta, PTHREAD_MUTEX_RECURSIVE_NP);

 checkResults(“pthread_mutexattr_setkind()\n”, rc);

 showKind(&mta);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

120 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Enter Testcase - QP0WTEST/TPMTXAKN0

Create a default mutex attribute

Check kind attribute

The pshared attributed is:

PTHREAD_MUTEX_NONRECURSIVE_NP

Change mutex kind attribute

Check kind attribute

The pshared attributed is:

PTHREAD_MUTEX_RECURSIVE_NP

Destroy mutex attribute

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutexattr_getname_np()—Get Name from Mutex Attributes

Object

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_getname_np(const pthread_mutexattr_t *attr, char *name);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_getname_np() function retrieves the name attribute associated with the mutex

attribute specified by attr. The buffer specified by name must be at least 16 characters in length. If the

length of the mutex name is less than or equal to 15 characters, it is null terminated in the output buffer.

By default, each pthread_mutex_t has the name “QP0WMTX UNNAMED” associated with it. The name

attribute is used by various OS/400 system utilities to aid in debugging and service. One example is the

WRKJOB command, which has a `work with mutexes’ menu choice to show which mutexes are currently

locked and which mutexes are being waited for.

If you should give unique names to all mutexes created to aid in debugging deadlock or performance

problems. Use the CL command WRKJOB, option 20, to help debug mutex deadlocks.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

name (Output) Address of a 16-byte character buffer to receive the name

Chapter 1. Pthread APIs 121

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_mutexattr_getname_np() was successful.

value pthread_mutexattr_getname_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getname_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129—Initialize Mutex Attributes

Object
v “pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object” on page 133—Set Name in

Mutex Attributes Object
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 char mutexname[16];

 printf(“Entering testcase\n”);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init\n”, rc);

 memset(mutexname, 0, sizeof(mutexname));

 printf(“Find out what the default name of the mutex is\n”);

 rc = pthread_mutexattr_getname_np(&mta, mutexname);

 checkResults(“pthread_mutexattr_getname_np()\n”, rc);

 printf(“The default mutex name will be: %.15s\n”, mutexname);

 printf(“- At this point, mutexes created with this attribute\n”);

 printf(“- will show up by name on many OS/400 debug and service screens\n”);

 printf(“- The default attribute contains a special automatically\n”);

 printf(“- incrementing name that changes for each mutex created in \n”);

 printf(“- the process\n”);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

122 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Output:

Entering testcase

Create a default mutex attribute

Find out what the default name of the mutex is

The default mutex name is: QP0WMTX UNNAMED

- At this point, mutexes created with this attribute

- will show up by name on many OS/400 debug and service screens

- The default attribute contains a special automatically

- incrementing name that changes for each mutex created in

- the process

Destroy mutex attribute

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutexattr_getpshared()—Get Process Shared Attribute from

Mutex Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr, int *pshared);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_getpshared() function retrieves the current setting of the process shared attribute

from the mutex attributes object. The process shared attribute indicates whether the mutex that is created

using the mutex attributes object can be shared between threads in separate processes

(PTHREAD_PROCESS_SHARED) or shared between threads within the same process

(PTHREAD_PROCESS_PRIVATE).

Even if the mutex in storage is accessible from two separate processes, it cannot be used from both

processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for mutex attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable that contains the mutex attributes object

pshared

(Output) Address of the variable to contain the pshared attribute result

Chapter 1. Pthread APIs 123

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_mutexattr_getpshared() was successful.

value pthread_mutexattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getpshared() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129—Initialize Mutex Attributes

Object
v “pthread_mutexattr_setpshared()—Set Process Shared Attribute in Mutex Attributes Object” on page

135—Set Process Shared Attribute in Mutex Attributes Object
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

void showPshared(int pshared) {

 printf(“The pshared attribute is: ”);

 switch (pshared) {

 case PTHREAD_PROCESS_PRIVATE:

 printf(“PTHREAD_PROCESS_PRIVATE\n”);

 break;

 case PTHREAD_PROCESS_SHARED:

 printf(“PTHREAD_PROCESS_SHARED\n”);

 break;

 default :

 printf(“! pshared Error !\n”);

 exit(1);

 }

 return;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 int pshared=0;

 printf(“Entering testcase\n”);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init()\n”, rc);

 printf(“Check pshared attribute\n”);

 rc = pthread_mutexattr_getpshared(&mta, &pshared);

 checkResults(“pthread_mutexattr_getpshared()\n”, rc);

124 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

showPshared(pshared);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Check pshared attribute

The pshared attribute is: PTHREAD_PROCESS_PRIVATE

Destroy mutex attribute

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutexattr_gettype()—Get Mutex Type Attribute

 Syntax:

 #include <pthread.h>

 int pthread_mutexatttr_gettype(const pthread_mutexattr_t *attr,

 int *type);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_gettype() function retrieves the type attribute from the mutex attributes object

specified by attr. The mutex type attribute is used to create mutexes with different behaviors.

The type returned is one of PTHREAD_MUTEX_DEFAULT, PTHREAD_MUTEX_NORMAL,

PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or

PTHREAD_MUTEX_OWNERTERM_NP.

The default mutex type (or PTHREAD_MUTEX_DEFAULT) is PTHREAD_MUTEX_NORMAL.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already

held mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a

deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutex.

Chapter 1. Pthread APIs 125

#TOP_OF_PAGE
aplist.htm

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held

mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the

EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks

for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm

mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was

held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an

orphaned mutex, the lock request fails with the EOWNERTERM error.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

type (Output) Address of the variable to receive the type attribute

Return Value

0 pthread_mutexattr_gettype() was successful.

value pthread_mutexattr_gettype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexatttr_gettype() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129—Initialize Mutex Attributes

Object
v “pthread_mutexattr_settype()—Set Mutex Type Attribute” on page 137—Set Mutex Type Attribute
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

int showType(pthread_mutexattr_t *mta) {

 int rc;

 int type;

 printf(“Check type attribute\n”);

 rc = pthread_mutexattr_gettype(mta, &type);

 checkResults(“pthread_mutexattr_gettype()\n”, rc);

126 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf(“The type attributed is: ”);

 switch (type) {

 case PTHREAD_MUTEX_NORMAL:

 printf(“PTHREAD_MUTEX_NORMAL (DEFAULT)\n”);

 break;

 case PTHREAD_MUTEX_RECURSIVE:

 printf(“PTHREAD_MUTEX_RECURSIVE\n”);

 break;

 case PTHREAD_MUTEX_ERRORCHECK:

 printf(“PTHREAD_MUTEX_ERRORCHECK\n”);

 break;

 case PTHREAD_MUTEX_OWNERTERM_NP:

 printf(“PTHREAD_MUTEX_OWNERTERM_NP\n”);

 break;

 default :

 printf(“! type Error type=%d !\n”, type);

 exit(1);

 }

 return type;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 int type=0;

 pthread_mutex_t mutex;

 struct timespec ts;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init()\n”, rc);

 printf(“Change mutex type attribute to recursive\n”);

 rc = pthread_mutexattr_settype(&mta, PTHREAD_MUTEX_RECURSIVE);

 checkResults(“pthread_mutexattr_settype()\n”, rc);

 showType(&mta);

 rc = pthread_mutexattr_setname_np(&mta, “RECURSIVE ONE”);

 checkResults(“pthread_mutexattr_setname_np()\n”, rc);

 printf(“Create the named, recursive mutex\n”);

 rc = pthread_mutex_init(&mutex, &mta);

 checkResults(“pthread_mutex_init()\n”, rc);

 printf(“Lock the named, recursive mutex\n”);

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock() 1\n”, rc);

 printf(“ReLock the named, recursive mutex\n”);

 rc = pthread_mutex_lock(&mutex);

 checkResults(“pthread_mutex_lock() 2\n”, rc);

 printf(“Trylock the named, recursive mutex\n”);

 rc = pthread_mutex_trylock(&mutex);

 checkResults(“pthread_mutex_trylock()\n”, rc);

 printf(“Timedlock the named, recursive mutex\n”);

 ts.tv_sec = 5;

 ts.tv_nsec = 0;

 rc = pthread_mutex_timedlock_np(&mutex, &ts);

 checkResults(“pthread_mutex_timedlock_np()\n”, rc);

 printf(“Sleeping for a short time holding the recurive mutex\n”);

 printf(“Use DSPJOB, option 19 to see the held mutex\n”);

Chapter 1. Pthread APIs 127

sleep(30);

 printf(“Unlock the mutex 4 times\n”);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock() 1\n”, rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock() 2\n”, rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock() 3\n”, rc);

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock() 4\n”, rc);

 printf(“Cleanup\n”);

 rc = pthread_mutex_destroy(&mutex);

 checkResults(“pthread_mutex_destroy()\n”, rc);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output

Enter Testcase - QP0WTEST/TPMTXTYP0

Create a default mutex attribute

Change mutex type attribute to recursive

Check type attribute

The type attributed is: PTHREAD_MUTEX_RECURSIVE

Create the named, recursive mutex

Lock the named, recursive mutex

ReLock the named, recursive mutex

Trylock the named, recursive mutex

Timedlock the named, recursive mutex

Sleeping for a short time holding the recurive mutex

Use DSPJOB, option 19 to see the held mutex

Unlock the mutex 4 times

Cleanup

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

128 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_init()—Initialize Mutex Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_init(pthread_mutexattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_init() function initializes the mutex attributes object referenced by attr to the

default attributes. The mutex attributes object can be used in a call to pthread_mutex_init() to create a

mutex.

Authorities and Locks

None.

Parameters

attr (Input/Output) Address of the variable to contain the mutex attributes object

Return Value

0 pthread_mutexattr_init() was successful.

value pthread_mutexattr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_destroy()—Destroy Mutex Attributes Object” on page 117—Destroy Mutex

Attributes Object
v “pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

Chapter 1. Pthread APIs 129

aboutapis.htm#CODEDISCLAIMER

pthread_mutex_t mutex;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 printf(“Entering testcase\n”);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init\n”, rc);

 printf(“Create the mutex using a mutex attributes object\n”);

 rc = pthread_mutex_init(&mutex, &mta);

 checkResults(“pthread_mutex_init(mta)\n”, rc);

 printf(“- At this point, the mutex with its default attributes\n”);

 printf(“- Can be used from any threads that want to use it\n”);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Destroy mutex\n”);

 rc = pthread_mutex_destroy(&mutex);

 checkResults(“pthread_mutex_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Create the mutex using a mutex attributes object

- At this point, the mutex with its default attributes

- Can be used from any threads that want to use it

Destroy mutex attribute

Destroy mutex

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

130 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_setkind_np(pthread_mutexattr_t *attr,

 int kind);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_setkind_np() function sets the kind attribute in the mutex attributes object

specified by attr. The mutex kind attribute is used to create mutexes with different behaviors.

The kind set may be one of PTHREAD_MUTEX_NONRECURSIVE_NP or

PTHREAD_MUTEX_RECURSIVE_NP.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutes. The maximum number of recursive locks by the owning thread is 32,767.

Note: This function is not portable

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

kind (Input) Variable containing the kind attribute.

Return Value

0 pthread_mutexattr_setkind_np() was successful.

value pthread_mutexattr_setkind_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setkind_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute” on page 119—Get Mutex Kind Attribute

Chapter 1. Pthread APIs 131

v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

void showKind(pthread_mutexattr_t *mta) {

 int rc;

 int kind;

 printf(“Check kind attribute\n”);

 rc = pthread_mutexattr_getkind_np(mta, &kind);

 checkResults(“pthread_mutexattr_getpshared()\n”, rc);

 printf(“The pshared attributed is: ”);

 switch (kind) {

 case PTHREAD_MUTEX_NONRECURSIVE_NP:

 printf(“PTHREAD_MUTEX_NONRECURSIVE_NP\n”);

 break;

 case PTHREAD_MUTEX_RECURSIVE_NP:

 printf(“PTHREAD_MUTEX_RECURSIVE_NP\n”);

 break;

 default :

 printf(“! kind Error kind=%d !\n”, kind);

 exit(1);

 }

 return;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 int pshared=0;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init()\n”, rc);

 showKind(&mta);

 printf(“Change mutex kind attribute\n”);

 rc = pthread_mutexattr_setkind_np(&mta, PTHREAD_MUTEX_RECURSIVE_NP);

 checkResults(“pthread_mutexattr_setkind()\n”, rc);

 showKind(&mta);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPMTXAKN0

Create a default mutex attribute

Check kind attribute

The pshared attributed is:

PTHREAD_MUTEX_NONRECURSIVE_NP

Change mutex kind attribute

Check kind attribute

132 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

The pshared attributed is:

PTHREAD_MUTEX_RECURSIVE_NP

Destroy mutex attribute

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutexattr_setname_np()—Set Name in Mutex Attributes

Object

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_setname_np(pthread_mutexattr_t *attr, const char *name);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_setname_np() function changes the name attribute associated with the mutex

attribute specified by attr. The buffer specified by name must contain a null terminated string of 15

characters or less in length (not including the NULL). If the length of name is greater than 15 characters,

the excess characters are ignored. If name is null, the mutex name attribute is reset to the default.

By default, each pthread_mutex_t has the name “QP0WMTX UNNAMED” associated with it. The name

attribute is used by various OS/400 system utilities to aid in debug and service. One example is the

WRKJOB command, which has a `work with mutexes’ menu choice to show which mutexes are currently

locked and which mutexes are being waited for.

If you should give unique names to all mutexes created to aid in debugging deadlock or performance

problems. Use the CL command WRKJOB, option 20, to help debug mutex deadlocks.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

name (Input) Address of a null terminated character buffer containing the name

Return Value

0 pthread_mutexattr_setname_np() was successful.

value pthread_mutexattr_setname_np() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 133

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_mutexattr_setname_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object” on page 121—Get Name

from Mutex Attributes Object
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 char mutexname[16];

 printf(“Entering testcase\n”);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init\n”, rc);

 memset(mutexname, 0, sizeof(mutexname));

 printf(“Find out what the default name of the mutex is\n”);

 rc = pthread_mutexattr_getname_np(&mta, mutexname);

 checkResults(“pthread_mutexattr_getname_np()\n”, rc);

 printf(“The default mutex name will be: %.15s\n”, mutexname);

 printf(“- At this point, mutexes created with this attribute\n”);

 printf(“- will show up by name on many OS/400 debug and service screens\n”);

 printf(“- The default attribute contains a special automatically\n”);

 printf(“- incrementing name that changes for each mutex created in \n”);

 printf(“- the process\n”);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Find out what the default name of the mutex is

The default mutex name will be: QP0WMTX UNNAMED

The new mutex name will be: <My Mutex>

Destroy mutex attribute

Main completed

134 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutexattr_setpshared()—Set Process Shared Attribute in

Mutex Attributes Object

 Syntax:

 #include <pthread.h>

 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,

 int pshared);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_setpshared() function sets the current pshared attribute for the mutex attributes

object. The process shared attribute indicates whether the mutex that is created using the mutex attributes

object can be shared between threads in separate processes (PTHREAD_PROCESS_SHARED) or shared

between threads within the same process (PTHREAD_PROCESS_PRIVATE).

Even if the mutex in storage is accessible from two separate processes, it cannot be used from both

processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for mutex attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable containing the mutex attributes object

pshared

(Input) One of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE

Return Value

0 pthread_mutexattr_setpshared() was successful.

value pthread_mutexattr_setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setpshared() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

Chapter 1. Pthread APIs 135

#TOP_OF_PAGE
aplist.htm

The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_getpshared()—Get Process Shared Attribute from Mutex Attributes Object” on

page 123—Get Process Shared Attribute from Mutex Attributes Object
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include “check.h”

void showPshared(pthread_mutexattr_t *mta) {

 int rc;

 int pshared;

 printf(“Check pshared attribute\n”);

 rc = pthread_mutexattr_getpshared(mta, &pshared);

 checkResults(“pthread_mutexattr_getpshared()\n”, rc);

 printf(“The pshared attributed is: ”);

 switch (pshared) {

 case PTHREAD_PROCESS_PRIVATE:

 printf(“PTHREAD_PROCESS_PRIVATE\n”);

 break;

 case PTHREAD_PROCESS_SHARED:

 printf(“PTHREAD_PROCESS_SHARED\n”);

 break;

 default :

 printf(“! pshared Error !\n”);

 exit(1);

 }

 return;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 int pshared=0;

 printf(“Entering testcase\n”);

 printf(“Create a default mutex attribute\n”);

 rc = pthread_mutexattr_init(&mta);

 checkResults(“pthread_mutexattr_init()\n”, rc);

 showPshared(&mta);

 printf(“Change pshared attribute\n”);

 rc = pthread_mutexattr_setpshared(&mta, PTHREAD_PROCESS_SHARED);

 checkResults(“pthread_mutexattr_setpshared()\n”, rc);

 showPshared(&mta);

 printf(“Destroy mutex attribute\n”);

 rc = pthread_mutexattr_destroy(&mta);

 checkResults(“pthread_mutexattr_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

136 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Output:

Entering testcase

Create a default mutex attribute

Check pshared attribute

The pshared attribute is: PTHREAD_PROCESS_PRIVATE

Change pshared attribute

The pshared attribute is: PTHREAD_PROCESS_SHARED

Destroy mutex attribute

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutexattr_settype()—Set Mutex Type Attribute

 Syntax:

 #include <pthread.h>

 int pthread_mutexatttr_settype(pthread_mutexattr_t *attr,

 int type);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutexattr_settype() function sets the type attribute in the mutex attributes object specified

by attr. The mutex type attribute is used to create mutexes with different behaviors.

The type will be one of PTHREAD_MUTEX_DEFAULT, PTHREAD_MUTEX_NORMAL,

PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or

PTHREAD_MUTEX_OWNERTERM_NP or the EINVAL error will be returned.

The default mutex type (or PTHREAD_MUTEX_DEFAULT) is PTHREAD_MUTEX_NORMAL.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already

held mutex, or to lock a mutex that was held by another thread when that thread terminated result in a

deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread re-locks an already held

mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the

EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks

for deadlock conditions that occur when a thread re-locks an already held mutex. If a thread attempts to

Chapter 1. Pthread APIs 137

#TOP_OF_PAGE
aplist.htm

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm

mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was

held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an

orphaned mutex, the lock request fails with the EOWNERTERM error.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

type (Input) Address of the type attribute to be set.

Return Value

0 pthread_mutexattr_settype() was successful.

value pthread_mutexattr_settype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexatttr_settype() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_gettype()—Get Mutex Type Attribute” on page 125—Get Mutex Type Attribute
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

Example

See Code disclaimer information for information pertaining to code examples.

See “Example” on page 126 for an example.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

138 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_mutex_destroy()—Destroy Mutex

 Syntax:

 #include <pthread.h>

 int pthread_mutex_destroy(pthread_mutex_t *mutex);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutex_destroy() function destroys the named mutex. The destroyed mutex can no longer be

used.

If pthread_mutex_destroy() is called on a mutex that is locked by another thread, the request fails with

an EBUSY error. If the calling thread has the mutex locked, any other threads waiting for the mutex

using a call to pthread_mutex_lock() at the time of the call to pthread_mutex_destroy() fails with the

EDESTROYED error.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the

mutex. Instead, on first use, pthread_mutex_lock() or pthread_mutex_trylock() branches into a slow path

and causes the initialization of the mutex. Because a mutex is not just a simple memory object and

requires that some resources be allocated by the system, an attempt to call pthread_mutex_destroy() or

pthread_mutex_unlock() on a mutex that has statically initialized using PTHREAD_MUTEX_INITIALER

and was not yet locked causes an EINVAL error.

Every mutex must eventually be destroyed with pthread_mutex_destroy(). The machine eventually

detects the error if a mutex is not destroyed, but the storage is deallocated or corrupted. The machine

then creates LIC log synchronization entries that indicate the failure to help debug the problem. Large

numbers of these entries can affect system performance and hinder debug capabilities for other system

problems. Always use pthread_mutex_destroy() before freeing mutex storage to prevent these debug LIC

log entries.

Note: Once a mutex is created, it cannot be validly copied or moved to a new location.

Authorities and Locks

None.

Parameters

mutex (Input) Address of the mutex to be destroyed

Return Value

0 pthread_mutex_destroy() was successful.

value pthread_mutex_destroy() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 139

Error Conditions

If pthread_mutex_destroy() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EBUSY]

 The mutex is currently owned by another thread.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex
v “pthread_mutex_lock()—Lock Mutex” on page 143—Lock Mutex
v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151—Lock Mutex with No Wait
v “pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_mutex_t mutex;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 printf("Entering testcase\n");

 printf("Create the mutex using the NULL attributes (default)\n");

 rc = pthread_mutex_init(&mutex, NULL);

 checkResults("pthread_mutex_init(NULL)\n", rc);

 printf("Destroy all mutexes\n");

 pthread_mutex_destroy(&mutex);

 checkResults("pthread_mutex_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Create the mutex using the NULL attributes (default)

Destroy all mutexes

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

140 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_mutex_init()—Initialize Mutex

 Syntax:

 #include <pthread.h>

 int pthread_mutex_init(pthread_mutex_t *mutex,

 const pthread_mutexattr_t *attr);

 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutex_init() function initializes a mutex with the specified attributes for use. The new

mutex may be used immediately for serializing critical resources. If attr is specified as NULL, all

attributes are set to the default mutex attributes for the newly created mutex.

With these declarations and initialization:

pthread_mutex_t mutex2;

pthread_mutex_t mutex3;

pthread_mutexattr_t mta;

pthread_mutexattr_init(&mta);

The following three mutex initialization mechanisms have equivalent function.

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init(&mutex2, NULL);

pthread_mutex_init(&mutex3, &mta);

All three mutexes are created with the default mutex attributes.

Every mutex must eventually be destroyed with pthread_mutex_destroy(). The machine eventually

detects the error if a mutex is not destroyed. Large numbers of these entries can affect system

performance. Always use pthread_mutex_destroy() before freeing or reusing mutex storage.

Once a mutex is created, it cannot be validly copied or moved to a new location. If the mutex is copied

or moved to a new location, the new object is not valid and cannot be used. Attempts to use the new

object result in the EINVAL error.

Note: Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize

the mutex. Instead, on first use, the pthread_mutex_lock() or pthread_mutex_trylock() functions branch

into a slow path and cause the initialization of the mutex. Because a mutex is not just a simple memory

object and requires that some resources be allocated by the system, an attempt to call

pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically initialized using

PTHREAD_MUTEX_INITIALER and was not yet locked causes an EINVAL error.

Authorities and Locks

None.

Chapter 1. Pthread APIs 141

Parameters

mutex (Input) The address of the variable to contain a mutex object.

attr (Input) The address of the variable containing the mutex attributes object.

Return Value

0 pthread_mutex_init() was successful.

value pthread_mutex_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ENOMEM]

 The system cannot allocate the resources required to create the mutex.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex
v “pthread_mutex_lock()—Lock Mutex” on page 143—Lock Mutex
v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151—Lock Mutex with No Wait
v “pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t mutex2;

pthread_mutex_t mutex3;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_mutexattr_t mta;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a default mutex attribute\n");

 rc = pthread_mutexattr_init(&mta);

 checkResults("pthread_mutexattr_init\n", rc);

 printf("Create the mutexes using the default mutex attributes\n");

 printf("First mutex created via static PTHREAD_MUTEX_INITIALIZER\n");

 printf("Create the mutex using the NULL attributes (default)\n");

 rc = pthread_mutex_init(&mutex3, NULL);

 checkResults("pthread_mutex_init(NULL)\n", rc);

142 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Create the mutex using a mutex attributes object\n");

 rc = pthread_mutex_init(&mutex2, &mta);

 checkResults("pthread_mutex_init(mta)\n", rc);

 printf("- At this point, all mutexes can be used with their\n");

 printf("- default attributes from any threads that want to\n");

 printf("- use them\n");

 printf("Destroy all mutexes\n");

 pthread_mutex_destroy(&mutex);

 pthread_mutex_destroy(&mutex2);

 pthread_mutex_destroy(&mutex3);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPMTXINI0

Create a default mutex attribute

Create the mutexes using the default mutex attributes

First mutex created via static PTHREAD_MUTEX_INITIALIZER

Create the mutex using the NULL attributes (default)

Create the mutex using a mutex attributes object

- At this point, all mutexes can be used with their

- default attributes from any threads that want to

- use them

Destroy all mutexes

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutex_lock()—Lock Mutex

 Syntax:

 #include <pthread.h>

 int pthread_mutex_lock(pthread_mutex_t *mutex);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutex_lock() function acquires ownership of the mutex specified. If the mutex currently is

locked by another thread, the call to pthread_mutex_lock() blocks until that thread relinquishes

ownership by a call to pthread_mutex_unlock().

If a signal is delivered to a thread while that thread is waiting for a mutex, when the signal handler

returns, the wait resumes. pthread_mutex_lock() does not return EINTR like some other blocking

function calls.

Chapter 1. Pthread APIs 143

#TOP_OF_PAGE
aplist.htm

Use the CL command WRKJOB, option 20, to help you debug mutex deadlocks.

Destroying a held mutex is a common way to serialize destruction of objects that are protected by that

mutex. This action is allowed. The call to pthread_mutex_lock() may fail with the EDESTROYED error if

the mutex is destroyed by the thread that was currently holding it.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the

mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or

pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a

mutex is not just a simple memory object and requires that some resources be allocated by the system, an

attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically

initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked causes an EINVAL error.

A pthread mutex is a structure of type pthread_mutex_t that implement a behavior based on the Pthread

mutexes. An MI mutex is a structure built into the machine that implement a similar sort of serialization

construct.

The maximum number of recursive locks by the owning thread is 32,767. When this number is exceeded,

attempts to lock the mutex return the ERECURSE error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already

held mutex, or to lock a mutex that was held by another thread when that thread terminated, result in a

deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held

mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the

EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks

for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm

mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was

held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an

orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads

that wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has

occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20 shows the thread as in a condition wait. Displaying the call stack shows

that the function deadlockOnOrphanedMutex is in the call stack.

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever.

The pthreads run-time simulates the deadlock that has occurred in your application. When you are

attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as

in a condition wait. Displaying the call stack will show that the function deadlockOnAlreadyHeldMutex

is in the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

144 iSeries: Pthread APIs

Authorities and Locks

None.

Parameters

mutex (Input) The address of the mutex to lock

Return Value

0 pthread_mutex_lock() was successful.

value pthread_mutex_lock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_lock() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EDESTROYED]

 While waiting for the mutex lock to be satisfied, the mutex was destroyed.

[EOWNERTERM]

 A thread terminated the holding of the mutex, and the mutex is an ownerterm mutex type.

[EDEADLK]

A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.

 [ERECURSE]

 The recursive mutex cannot be recursively locked again.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex
v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151—Lock Mutex with No Wait
v “pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147—Lock Mutex with

Time-Out
v “pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

/*

 This example shows the corruption that can result if no

 serialization is done and also shows the use of

 pthread_mutex_lock(). Call it with no parameters

 to use pthread_mutex_lock() to protect the critical section,

 or 1 or more parameters to show data corruption that occurs

 without locking.

 */

#define LOOPCONSTANT 100000

Chapter 1. Pthread APIs 145

aboutapis.htm#CODEDISCLAIMER

#define THREADS 10

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int i,j,k,l;

int uselock=1;

void *threadfunc(void *parm)

{

 int loop = 0;

 int rc;

 for (loop=0; loop<LOOPCONSTANT; ++loop) {

 if (uselock) {

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 }

 ++i; ++j; ++k; ++l;

 if (uselock) {

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 }

 }

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t threadid[THREADS];

 int rc=0;

 int loop=0;

 pthread_attr_t pta;

 printf("Entering testcase\n");

 printf("Give any number of parameters to show data corruption\n");

 if (argc != 1) {

 printf("A parameter was specified, no serialization is being done!\n");

 uselock = 0;

 }

 pthread_attr_init(&pta);

 pthread_attr_setdetachstate(&pta, PTHREAD_CREATE_JOINABLE);

 printf("Creating %d threads\n", THREADS);

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_create(&threadid[loop], &pta, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait for results\n");

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_join(threadid[loop], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Cleanup and show results\n");

 pthread_attr_destroy(&pta);

 pthread_mutex_destroy(&mutex);

 printf("\nUsing %d threads and LOOPCONSTANT = %d\n",

 THREADS, LOOPCONSTANT);

 printf("Values are: (should be %d)\n", THREADS * LOOPCONSTANT);

 printf(" ==>%d, %d, %d, %d\n", i, j, k, l);

 printf("Main completed\n");

 return 0;

}

146 iSeries: Pthread APIs

Output:

Entering testcase

Give any number of parameters to show data corruption

Creating 10 threads

Wait for results

Cleanup and show results

Using 10 threads and LOOPCONSTANT = 100000

Values are: (should be 1000000)

 ==>1000000, 1000000, 1000000, 1000000

Main completed

Output:

(data corruption without locking example)

Entering testcase

Give any number of parameters to show data corruption

A parameter was specified, no serialization is being done!

Creating 10 threads

Wait for results

Cleanup and show results

Using 10 threads and LOOPCONSTANT = 100000

Values are: (should be 1000000)

 ==>883380, 834630, 725131, 931883

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_mutex_timedlock_np()—Lock Mutex with Time-Out

 Syntax:

 #include <pthread.h>

 #include <time.h>

 int pthread_mutex_timedlock_np(pthread_mutex_t *mutex,

 const struct timespec *deltatime);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutex_timedlock_np() function acquires ownership of the mutex specified. If the mutex is

currently locked by another thread, the call to pthread_mutex_timedlock_np() will block until the

specified deltatime has elapsed or the holding thread relinquishes ownership by a call to

pthread_mutex_unlock().

Performing a pthread_mutex_timedlock_np() wait for a mutex has different semantics related to signal

handling than the pthread_mutex_lock() function. If a signal is delivered to a thread while that thread is

performing a timed wait for a mutex, the signal is held pending until either the mutex is acquired or the

Chapter 1. Pthread APIs 147

#TOP_OF_PAGE
aplist.htm

time-out occurs. At that time the signal handler will run, when the signal handler returns,

pthread_mutex_timedlock_np() will return the results of the timed mutex wait.

Use the CL command WRKJOB, option 20 for a screen that will aid in debugging mutex deadlocks.

Destroying a held mutex is a common way to serialize destruction of objects that are protected by that

mutex, and is allowed. The call to pthread_mutex_timedlock_np() may fail with the EDESTROYED

error if the mutex is destroyed by the thread that was currently holding it.

Note that mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately

initialize the mutex. Instead, on first use, pthread_mutex_timedlock_np(), pthread_mutex_lock() or

pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a

mutex is not just a simple memory object, and requires that some resources be allocated by the system,

an attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that has was

statically initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked will result in an

EINVAL error.

A pthread mutex is a structure of type pthread_mutex_t that implement a behavior based on the Pthread

mutexes. An MI mutex is a structure built into the machine that implement a similar sort of serialization

construct.

The maximum number of recursive locks by the owning thread is 32,767. After which, attempts to lock

the mutex will return the ERECURSE error.

Note: This function is not portable

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already

held mutex, or to lock a mutex that was held by another thread when that thread terminated result in a

deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread re-locks an already held

mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the

EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks

for deadlock conditions that occur when a thread re-locks an already held mutex. If a thread attempts to

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm

mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was

held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an

orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads

that wait for that mutex will block forever, or until the specified deltatime has elapsed. The pthreads

run-time simulates the deadlock that has occurred in your application. When attempting to debug these

deadlock scenarios, the CL command WRKJOB, option 20 will show the thread as in a condition wait.

Displaying the call stack will show that the function deadlockedOnOrphanedMutex or

timedDeadlockOnOrphanedMutex is in the call stack.

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever, or

until the specified deltatime has elapsed. The pthreads run-time simulates the deadlock that has occurred

148 iSeries: Pthread APIs

in your application. When attempting to debug these deadlock scenarios, the CL command WRKJOB,

option 20 will show the thread as in a condition wait. Displaying the call stack will show that the

function deadlockOnAlreadyHeldMutex or timedDeadlockOnAlreadyHeldMutex is in the call stack.

In order to change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

None.

Parameters

mutex (Input) The address of the mutex to lock

Return Value

0 pthread_mutex_timedlock_np() was successful.

value pthread_mutex_timedlock_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_timedlock_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EDESTROYED]

 While waiting for the mutex lock to be satisfied, the mutex was destroyed.

[EBUSY]

 The attempt to lock the mutex timed out because the mutex was already locked.

[EOWNERTERM]

 A thread terminated holding the mutex, and the mutex is an ownerterm mutex type.

[EDEADLK]

 A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.

[ERECURSE]

 The recursive mutex cannot be recursively locked again.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex
v “pthread_mutex_lock()—Lock Mutex” on page 143—Lock Mutex
v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151—Lock Mutex with No Wait
v “pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See Code disclaimer information for information pertaining to code examples.

Chapter 1. Pthread APIs 149

aboutapis.htm#CODEDISCLAIMER

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void *threadFunc(void *parm)

{

 int rc;

 int i;

 struct timespec deltatime;

 deltatime.tv_sec = 5;

 deltatime.tv_nsec = 0;

 printf("Timed lock the mutex from a secondary thread\n");

 rc = pthread_mutex_timedlock_np(&mutex, &deltatime);

 if (rc != EBUSY) {

 printf("Got an incorrect return code from pthread_mutex_timedlock_np\n");

 }

 printf("Thread mutex timeout\n");

 return 0;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Acquire the mutex in the initial thread\n");

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc),

 printf("Create a thread\n");

 rc = pthread_create(&thread, NULL, threadFunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Join to the thread\n");

 rc = pthread_join(thread, NULL);

 checkResults("pthread_join()\n", rc);

 printf("Destroy mutex\n");

 pthread_mutex_destroy(&mutex);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPMTXTIM0

Acquire the mutex in the initial thread

Create a thread

Join to the thread

Timed lock the mutex from a secondary thread

Thread mutex timeout

Destroy mutex

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

150 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutex_trylock()—Lock Mutex with No Wait

 Syntax:

 #include <pthread.h>

 int pthread_mutex_trylock(pthread_mutex_t *mutex);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutex_trylock() function attempts to acquire ownership of the mutex specified without

blocking the calling thread. If the mutex is currently locked by another thread, the call to

pthread_mutex_trylock() returns an error of EBUSY.

A failure of EDEADLK indicates that the mutex is already held by the calling thread.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the

mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or

pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a

mutex is not just a simple memory object and requires that some resources be allocated by the system, an

attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically

initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked causes an EINVAL error.

The maximum number of recursive locks by the owning thread is 32,767. When this number is exceeded,

attempts to lock the mutex return the ERECURSE error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already

held mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a

deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held

mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the

EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks

for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm

mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was

held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an

orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads

that wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has

Chapter 1. Pthread APIs 151

occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows

that the function deadlockOnOrphanedMutex is in the call stack.

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever.

The pthreads run-time simulates the deadlock that has occurred in your application. When you are

attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as

in a condition wait. Displaying the call stack shows that the function deadlockOnAlreadyHeldMutex is

in the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

None.

Parameters

mutex (Input) Address of the mutex to lock

Return Value

0 pthread_mutex_trylock() was successful.

value pthread_mutex_trylock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_trylock() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EBUSY]

 The mutex is currently locked by another thread.

 A thread terminated while holding the mutex, and the mutex is an ownerterm mutex type.

 A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.

[ERECURSE]

 The recursive mutex cannot be recursively locked again.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex
v “pthread_mutex_lock()—Lock Mutex” on page 143—Lock Mutex
v “pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147—Lock Mutex with

Time-Out
v “pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See Code disclaimer information for information pertaining to code examples.

152 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#include <pthread.h>

#include <stdio.h>

#include <errno.h>

#include “check.h”

/*

 This example simulates a number of threads working on a parallel

 problem. The threads use pthread_mutex_trylock() so that

 they do not spend time blocking on a mutex and instead spend more

 of the time making progress towards the final solution. When

 trylock fails, the processing is done locally, eventually to

 be merged with the final parallel solution.

 This example should complete faster than the example for

 pthread_mutex_lock() in which threads solve the same parallel

 problem but spend more time waiting in resource contention.

 */

#define LOOPCONSTANT 100000

#define THREADS 10

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int i,j,k,l;

void *threadfunc(void *parm)

{

 int loop = 0;

 int localProcessingCompleted = 0;

 int numberOfLocalProcessingBursts = 0;

 int processingCompletedThisBurst = 0;

 int rc;

 for (loop=0; loop<LOOPCONSTANT; ++loop) {

 rc = pthread_mutex_trylock(&mutex);

 if (rc == EBUSY) {

 /* Process continue processing the part of the problem */

 /* that we can without the lock. We do not want to waste */

 /* time blocking. Instead, we’ll count locally. */

 ++localProcessingCompleted;

 ++numberOfLocalProcessingBursts;

 continue;

 }

 /* We acquired the lock, so this part of the can be global*/

 checkResults(“pthread_mutex_trylock()\n”, rc);

 /* Processing completed consist of last local processing */

 /* plus the 1 unit of processing this time through */

 processingCompletedThisBurst = 1 + localProcessingCompleted;

 localProcessingCompleted = 0;

 i+=processingCompletedThisBurst; j+=processingCompletedThisBurst;

 k+=processingCompletedThisBurst; l+=processingCompletedThisBurst;

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“pthread_mutex_unlock()\n”, rc);

 }

 /* If any local processing remains, merge it with the global*/

 /* problem so our part of the solution is accounted for */

 if (localProcessingCompleted) {

 rc = pthread_mutex_lock(&mutex);

 checkResults(“final pthread_mutex_lock()\n”, rc);

 i+=localProcessingCompleted; j+=localProcessingCompleted;

 k+=localProcessingCompleted; l+=localProcessingCompleted;

 rc = pthread_mutex_unlock(&mutex);

 checkResults(“final pthread_mutex_unlock()\n”, rc);

 }

 printf(“Thread processed about %d%% of the problem locally\n”,

 (numberOfLocalProcessingBursts * 100) / LOOPCONSTANT);

Chapter 1. Pthread APIs 153

return NULL;

}

int main(int argc, char **argv)

{

 pthread_t threadid[THREADS];

 int rc=0;

 int loop=0;

 pthread_attr_t pta;

 printf(“Entering testcase\n”);

 pthread_attr_init(&pta);

 pthread_attr_setdetachstate(&pta, PTHREAD_CREATE_JOINABLE);

 printf(“Creating %d threads\n”, THREADS);

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_create(&threadid[loop], &pta, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 printf(“Wait for results\n”);

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_join(threadid[loop], NULL);

 checkResults(“pthread_join()\n”, rc);

 }

 printf(“Cleanup and show results\n”);

 pthread_attr_destroy(&pta);

 pthread_mutex_destroy(&mutex);

 printf(“\nUsing %d threads and LOOPCONSTANT = %d\n”,

 THREADS, LOOPCONSTANT);

 printf(“Values are: (should be %d)\n”, THREADS * LOOPCONSTANT);

 printf(“ ==>%d, %d, %d, %d\n”, i, j, k, l);

 printf(“Main completed\n”);

 return 0;

}

Output:

Entering testcase

Creating 10 threads

Wait for results

Thread processed about 100% of the problem locally

Thread processed about 90% of the problem locally

Thread processed about 88% of the problem locally

Thread processed about 94% of the problem locally

Thread processed about 93% of the problem locally

Thread processed about 96% of the problem locally

Thread processed about 90% of the problem locally

Thread processed about 91% of the problem locally

Thread processed about 81% of the problem locally

Thread processed about 76% of the problem locally

Cleanup and show results

Using 10 threads and LOOPCONSTANT = 100000

Values are: (should be 1000000)

 ==>1000000, 1000000, 1000000, 1000000

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

154 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutex_unlock()—Unlock Mutex

 Syntax:

 #include <pthread.h>

 int pthread_mutex_unlock(pthread_mutex_t *mutex);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_mutex_unlock() function unlocks the mutex specified. If the calling thread does not

currently hold the mutex (via a previous call to pthread_mutex_lock(), pthread_mutex_trylock(), or

pthread_mutex_timedlock_np()) the unlock request fails with the EPERM error.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the

mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or

pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a

mutex is not just a simple memory object and requires that some resources be allocated by the system, an

attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically

initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked causes an EINVAL error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already

held mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a

deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the

mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held

mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the

EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks

for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm

mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was

held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an

orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads

that wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has

occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows

that the function deadlockOnOrphanedMutex is in the call stack.

Chapter 1. Pthread APIs 155

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever.

The pthreads run-time simulates the deadlock that has occurred in your application. When you are

attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as

in a condition wait. Displaying the call stack shows that the function deadlockOnAlreadyHeldMutex is

in the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

For successful completion, the mutex lock must be held before you call pthread_mutex_unlock().

Parameters

mutex (Input) Address of the mutex to unlock

Return Value

0 pthread_mutex_unlock() was successful.

value pthread_mutex_unlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_unlock() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EPERM]

 The mutex is not currently held by the caller.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex
v “pthread_mutex_lock()—Lock Mutex” on page 143—Lock Mutex
v “pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147—Lock Mutex with

Time-Out
v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151—Lock Mutex with No Wait

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int main(int argc, char **argv)

{

 int rc=0;

 printf("Entering testcase\n");

156 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Lock the mutex\n");

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 /* All other threads will be blocked from the resource here */

 printf("Unlock the mutex\n");

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 printf("Destroy the mutex\n");

 rc = pthread_mutex_destroy(&mutex);

 checkResults("pthread_mutex_destroy()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Lock the mutex

Unlock the mutex

Destroy the mutex

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_once()—Perform One-Time Initialization

 Syntax:

 #include <pthread.h>

 int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_once() function performs one time initialization based on a specific once_control variable. The

init_routine is called only one time when multiple calls to pthread_once() use the same once_control.

The once_control variable is not set until the init_routine returns. If the init_routine is a cancellation point

and the thread calling the init_routine by pthread_once() is cancelled, the once_control variable will not be

set and a subsequent call to pthread_once() using that once_control variable will result in another call to

the init_routine.

You must initialize the once_control variable to PTHREAD_ONCE_INIT prior to calling pthread_once()

with it.

The function passed as init_routine must correspond to the following C function prototype:

Chapter 1. Pthread APIs 157

#TOP_OF_PAGE
aplist.htm

void initRoutine(void);

Authorities and Locks

None.

Parameters

once_control

(Input) The control variable associated with this initialization.

init_routine

(Input) A function pointer to a routine that takes no parameters and returns no value.

Return Value

0 pthread_once() was successful.

value pthread_once() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_once() was not successful, the error condition returned usually indicates one of the following

errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 3

int number = 0;

int okStatus = 777;

pthread_once_t onceControl = PTHREAD_ONCE_INIT;

void initRoutine(void)

{

 printf("In the initRoutine\n");

 number++;

}

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 pthread_once(&onceControl, initRoutine);

 return __VOID(okStatus);

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i=NUMTHREADS;

 void *status;

158 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Enter Testcase - %s\n", argv[0]);

 for (i=0; i < NUMTHREADS; ++i) {

 printf("Create thread %d\n",

 i);

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 for (i=0; i < NUMTHREADS; ++i) {

 printf("Wait for thread %d\n", i);

 rc = pthread_join(thread[i], &status);

 checkResults("pthread_join()\n", rc);

 if (__INT(status) != okStatus) {

 printf("Secondary thread failed\n");

 exit(1);

 }

 }

 if (number != 1) {

 printf("An incorrect number of 1 one-time init routine was called!\n");

 exit(1);

 }

 printf("One-time init routine called exactly once\n");

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPONCE0

Create thread 0

Create thread 1

Create thread 2

Wait for thread 0

Inside secondary thread

In the initRoutine

Inside secondary thread

Wait for thread 1

Wait for thread 2

Inside secondary thread

One-time init routine called exactly once

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 1. Pthread APIs 159

#TOP_OF_PAGE
aplist.htm

pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute

 Syntax:

 #include <pthread.h>

 int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlockattr_destroy() function destroys a read/write lock attributes object and allows the

systems to reclaim any resources associated with that read/write lock attributes object. This does not

have an effect on any read/write lock already created using this read/write lock attributes object.

Authorities and Locks

None.

Parameters

attr (Input) Address of the read/write lock attributes object to be destroyed

Return Value

0 pthread_rwlockattr_destroy() was successful.

value pthread_rwlockattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_destroy() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute” on page 170—Initialize Read/Write

Lock Attribute
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

160 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

pthread_rwlock_t rwlock1;

pthread_rwlock_t rwlock2 = PTHREAD_RWLOCK_INITIALIZER;

int main(int argc, char **argv)

{

 int rc=0;

 pthread_rwlockattr_t attr;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Create a default rwlock attribute\n”);

 rc = pthread_rwlockattr_init(&attr);

 checkResults(“pthread_rwlockattr_init()\n”, rc);

 printf(“Use the rwlock attributes to created rwlocks here\n”);

 rc = pthread_rwlock_init(&rwlock1, &attr);

 checkResults(“pthread_rwlock_init()\n”, rc);

 printf(“The rwlock1 is now ready for use.\n”);

 printf(“The rwlock2 that was statically initialized was ready when\n”

 “the main routine was entered\n”);

 printf(“Destroy rwlock attribute\n”);

 rc = pthread_rwlockattr_destroy(&attr);

 checkResults(“pthread_rwlockattr_destroy()\n”, rc);

 printf(“Use the rwlocks\n”);

 rc = pthread_rwlock_rdlock(&rwlock1);

 checkResults(“pthread_rwlock_rdlock()\n”, rc);

 rc = pthread_rwlock_wrlock(&rwlock2);

 checkResults(“pthread_rwlock_wrlock()\n”, rc);

 rc = pthread_rwlock_unlock(&rwlock1);

 checkResults(“pthread_rwlock_unlock(1)\n”, rc);

 rc = pthread_rwlock_unlock(&rwlock2);

 checkResults(“pthread_rwlock_unlock(2)\n”, rc);

 printf(“Destroy the rwlocks\n”);

 rc = pthread_rwlock_destroy(&rwlock1);

 checkResults(“pthread_rwlock_destroy(1)\n”, rc);

 rc = pthread_rwlock_destroy(&rwlock2);

 esults(“pthread_rwlock_destroy(2)\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPRWLAI0

Create a default rwlock attribute

Use the rwlock attributes to created rwlocks here

The rwlock is now ready for use.

The rwlock that was statically initialized was ready when

the main routine was entered

Destroy rwlock attribute

Use the rwlocks

Destroy the rwlocks

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 1. Pthread APIs 161

#TOP_OF_PAGE
aplist.htm

pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock

Attribute

 Syntax:

 #include <pthread.h>

 int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *attr,

 int *pshared);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlockattr_getpshared() function retrieves the current setting of the process shared attribute

from the read/write lock attributes object. The process shared attribute indicates whether the read/write

lock that is created using the read/write lock attributes object can be shared between threads in separate

processes (PTHREAD_PROCESS_SHARED) or shared only between threads within the same process

(PTHREAD_PROCESS_PRIVATE).

Even if the read/write lock in storage is accessible from two separate processes, it cannot be used from

both processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for read/write lock attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable that contains the read/write lock attributes object

pshared

(Output) Address of the variable to contain the pshared attribute result

Return Value

0 pthread_rwlockattr_getpshared() was successful.

value pthread_rwlockattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_getpshared() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

162 iSeries: Pthread APIs

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute” on page 170—Initialize Read/Write

Lock Attribute
v “pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock Attribute” on page 171—Set Pshared

Read/Write Lock Attribute
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <spawn.h>

#include <sys/wait.h>

#include <unistd.h>

#include <sys/shm.h>

#include "check.h"

typedef struct {

 int protectedResource;

 pthread_rwlock_t rwlock;

} shared_data_t;

extern char **environ;

shared_data_t *sharedMem=NULL;

pid_t childPid=0;

int childStatus=-99;

int shmid=0;

/* Change this path to be the path to where you create this example program */

#define MYPATH "/QSYS.LIB/QP0WTEST.LIB/TPRWLSH0.PGM"

#define NTHREADSTHISJOB 2

#define NTHREADSTOTAL 4

void parentSetup(void);

void childSetup(void);

void parentCleanup(void);

void childCleanup(void);

void *childReaderThreadFunc(void *parm)

{

 int rc;

 int retries = 5;

 while (retries--) {

 rc = pthread_rwlock_rdlock(&sharedMem->rwlock);

 checkResults("pthread_rwlock_rdlock()\n", rc);

 /* Under protection of the shared read lock, read the resource */

 printf("CHILD READER - current protectedResource = %d\n",

 sharedMem->protectedResource);

 sleep(1);

 printf("CHILD READER - unlock\n");

 rc = pthread_rwlock_unlock(&sharedMem->rwlock);

 checkResults("pthread_rwlock_unlock()\n", rc);

 }

 return NULL;

}

void *parentWriterThreadFunc(void *parm)

{

Chapter 1. Pthread APIs 163

aboutapis.htm#CODEDISCLAIMER

int rc;

 rc = pthread_rwlock_wrlock(&sharedMem->rwlock);

 checkResults("pthread_rwlock_rdlock()\n", rc);

 /* Under protection of the exclusive write lock, write the resource */

 ++sharedMem->protectedResource;

 printf("PARENT WRITER - current protectedResource = %d\n",

 sharedMem->protectedResource);

 sleep(5);

 printf("PARENT WRITER - unlock\n");

 rc = pthread_rwlock_unlock(&sharedMem->rwlock);

 checkResults("pthread_rwlock_unlock()\n", rc);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid[NTHREADSTHISJOB];

 int parentJob=0;

 void *status=NULL;

 /* If we run this from the QSHELL interpreter on the system, we want */

 /* it to be line buffered even if we run it in batch so the output between*/

 /* parent and child is intermixed. */

 setvbuf(stdout,NULL,_IOLBF,4096);

 /* Determine if we are running in the parent or child */

 if (argc != 1 && argc != 2) {

 printf("Incorrect usage\n");

 printf("Pass no parameters to run as the parent testcase\n");

 printf("Pass one parameter `ASCHILD’ to run as the child testcase\n");

 exit(1);

 }

 if (argc == 1) {

 parentJob = 1;

 }

 else {

 if (strcmp(argv[1], "ASCHILD")) {

 printf("Incorrect usage\n");

 printf("Pass no parameters to run as the parent testcase\n");

 printf("Pass one parameter `ASCHILD’ to run as the child testcase\n");

 exit(1);

 }

 parentJob = 0;

 }

 /* PARENT ***/

 if (parentJob) {

 printf("PARENT - Enter Testcase - %s\n", argv[0]);

 parentSetup();

 printf("PARENT - Create %d threads\n", NTHREADSTHISJOB);

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_create(&threadid[i], NULL, parentWriterThreadFunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_join(threadid[i], NULL);

164 iSeries: Pthread APIs

checkResults("pthread_create()\n", rc);

 if (status != NULL) {

 printf("PARENT - Got a bad status from a thread, "

 "%.8x %.8x %.8x %.8x\n", status);

 exit(1);

 }

 }

 parentCleanup();

 printf("PARENT - Main completed\n");

 exit(0);

 }

 /* CHILD ***/

 {

 printf("CHILD - Enter Testcase - %s\n", argv[0]);

 childSetup();

 printf("CHILD - Create %d threads\n", NTHREADSTHISJOB);

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_create(&threadid[i], NULL, childReaderThreadFunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 /* The parent will wake up all of these threads using the */

 /* pshared condition variable. We will just join to them... */

 printf("CHILD - Joining to all threads\n");

 for (i=0; i<NTHREADSTHISJOB; ++i) {

 rc = pthread_join(threadid[i], &status);

 checkResults("pthread_join()\n", rc);

 if (status != NULL) {

 printf("CHILD - Got a bad status from a thread, "

 "%.8x %.8x %.8x %.8x\n", status);

 exit(1);

 }

 }

 /* After all the threads are awake, the parent will destroy */

 /* the read/write lock. Do not use it anymore */

 childCleanup();

 printf("CHILD - Main completed\n");

 }

 return 0;

}

/***/

/* This function initializes the shared memory for the job, */

/* sets up the environment variable indicating where the shared*/

/* memory is, and spawns the child job. */

/* */

/* It creates and initializes the shared memory segment, and */

/* It initializes the following global variables in this */

/* job. */

/* sharedMem */

/* childPid */

/* shmid */

/* */

/* If any of this setup/initialization fails, it will exit(1) */

/* and terminate the test. */

/* */

/***/

void parentSetup(void)

{

 int rc;

 /***/

 /* Create shared memory for shared_data_t above */

Chapter 1. Pthread APIs 165

/* attach the shared memory */

 /* set the static/global sharedMem pointer to it */

 /***/

 printf("PARENT - Create the shared memory segment\n");

 rc = shmget(IPC_PRIVATE, sizeof(shared_data_t), 0666);

 if (rc == -1) {

 printf("PARENT - Failed to create a shared memory segment\n");

 exit(1);

 }

 shmid = rc;

 printf("PARENT - Attach the shared memory\n");

 sharedMem = shmat(shmid, NULL, 0);

 if (sharedMem == NULL) {

 shmctl(shmid, IPC_RMID, NULL);

 printf("PARENT - Failed to attach shared memory\n");

 exit(1);

 }

 /***/

 /* Initialize the read/write lock and other shared memory data */

 /***/

 {

 pthread_rwlockattr_t rwlattr;

 printf("PARENT - Init shared memory and read/write lock\n");

 memset(sharedMem, 0, sizeof(shared_data_t));

 /* Process Shared Read/Write lock */

 rc = pthread_rwlockattr_init(&rwlattr);

 checkResults("pthread_rwlockattr_init()\n", rc);

 rc = pthread_rwlockattr_setpshared(&rwlattr, PTHREAD_PROCESS_SHARED);

 checkResults("pthread_rwlockattr_setpshared()\n", rc);

 rc = pthread_rwlock_init(&sharedMem->rwlock, &rwlattr);

 checkResults("pthread_rwlock_init()\n", rc);

 }

 /**/

 /* Set and environment variable so that the child can inherit */

 /* it and know the shared memory ID */

 /**/

 {

 char shmIdEnvVar[128];

 sprintf(shmIdEnvVar, "TPRWLSH0_SHMID=%d\n", shmid);

 rc = putenv(shmIdEnvVar);

 if (rc) {

 printf("PARENT - Failed to store env var %s, errno=%d\n",

 shmIdEnvVar, errno);

 exit(1);

 }

 printf("PARENT - Stored shared memory id of %d\n", shmid);

 }

 /**/

 /* Spawn the child job */

 /**/

 {

 inheritance_t in;

 char *av[3] = {NULL, NULL, NULL};

 /* Allow thread creation in the spawned child */

 memset(&in, 0, sizeof(in));

 in.flags = SPAWN_SETTHREAD_NP;

 /* Set up the arguments to pass to spawn based on the */

 /* arguments passed in */

 av[0] = MYPATH;

166 iSeries: Pthread APIs

av[1] = "ASCHILD";

 av[2] = NULL;

 /* Spawn the child that was specified, inheriting all */

 /* of the environment variables. */

 childPid = spawn(MYPATH, 0, NULL, &in, av, environ);

 if (childPid == -1) {

 /* spawn failure */

 printf("PARENT - spawn() failed, errno=%d\n", errno);

 exit(1);

 }

 printf("PARENT - spawn() success, [PID=%d]\n", childPid);

 }

 return;

}

/***/

/* This function attaches the shared memory for the child job, */

/* It uses the environment variable indicating where the shared*/

/* memory is. */

/* */

/* If any of this setup/initialization fails, it will exit(1) */

/* and terminate the test. */

/* */

/* It initializes the following global variables: */

/* sharedMem */

/* shmid */

/***/

void childSetup(void)

{

 int rc;

 printf("CHILD - Child setup\n");

 /**/

 /* Set and environment variable so that the child can inherit */

 /* it and know the shared memory ID */

 /**/

 {

 char *shmIdEnvVar;

 shmIdEnvVar = getenv("TPRWLSH0_SHMID");

 if (shmIdEnvVar == NULL) {

 printf("CHILD - Failed to get env var \"TPRWLSH0_SHMID\", errno=%d\n",

 errno);

 exit(1);

 }

 shmid = atoi(shmIdEnvVar);

 printf("CHILD - Got shared memory id of %d\n", shmid);

 }

 /***/

 /* Create shared memory for shared_data_t above */

 /* attach the shared memory */

 /* set the static/global sharedMem pointer to it */

 /***/

 printf("CHILD - Attach the shared memory\n");

 sharedMem = shmat(shmid, NULL, 0);

 if (sharedMem == NULL) {

 shmctl(shmid, IPC_RMID, NULL);

 printf("CHILD - Failed to attach shared memory\n");

 exit(1);

 }

 return;

}

/***/

/* wait for child to complete and get return code. */

Chapter 1. Pthread APIs 167

/* Destroy read/write lock in shared memory */

/* detach and remove shared memory */

/* set the child’s return code in global storage */

/* */

/* If this function fails, it will call exit(1) */

/* */

/* This function sets the following global variables: */

/* sharedMem */

/* childStatus */

/* shmid */

/***/

void parentCleanup(void)

{

 int status=0;

 int rc;

 int waitedPid=0;

 /* Even though there is no thread left in the child using the */

 /* contents of the shared memory, before we destroy the */

 /* read/write lock in that shared memory, we will wait for the */

 /* child job to complete, we know for 100% certainty that no */

 /* threads in the child are using it then, because the child */

 /* is terminated. */

 printf("PARENT - Parent cleanup\n");

 /* Wait for the child to complete */

 waitedPid = waitpid(childPid,&status,0);

 if (rc == -1) {

 printf("PARENT - waitpid failed, errno=%d\n", errno);

 exit(1);

 }

 childStatus = status;

 /* Cleanup resources */

 rc = pthread_rwlock_destroy(&sharedMem->rwlock);

 checkResults("pthread_rwlock_destroy()\n", rc);

 /* Detach/Remove shared memory */

 rc = shmdt(sharedMem);

 if (rc) {

 printf("PARENT - Failed to detach shared memory, errno=%d\n", errno);

 exit(1);

 }

 rc = shmctl(shmid, IPC_RMID, NULL);

 if (rc) {

 printf("PARENT - Failed to remove shared memory id=%d, errno=%d\n",

 shmid, errno);

 exit(1);

 }

 shmid = 0;

 return;

}

/***/

/* Detach the shared memory */

/* At this point, there is no serialization, so the contents */

/* of the shared memory should not be used. */

/* */

/* If this function fails, it will call exit(1) */

/* */

/* This function sets the following global variables: */

/* sharedMem */

/***/

void childCleanup(void)

{

 int rc;

 printf("CHILD - Child cleanup\n");

168 iSeries: Pthread APIs

rc = shmdt(sharedMem);

 sharedMem = NULL;

 if (rc) {

 printf("CHILD - Failed to detach shared memory, errno=%d\n", errno);

 exit(1);

 }

 return;

}

Output:

This example was run under the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets

descriptors 0, 1, 2 as the standard files, the parent and child I/O is directed to the console. When run in

the QShell Interpreter, the output shows the intermixed output from both parent and child processes, and

gives a feeling for the time sequence of operations occurring in each job.

The QShell interpreter allows you to run multithreaded programs as if they were interactive. See the

QShell documentation for a description of the QIBM_MULTI_THREADED shell variable which allows

you to start multithreaded programs.

The QShell Interpreter is option 30 of Base OS/400.

PARENT - Enter Testcase - QP0WTEST/TPRWLSH0

PARENT - Create the shared memory segment

PARENT - Attach the shared memory

PARENT - Init shared memory and read/write lock

PARENT - Stored shared memory id of 7

PARENT - spawn() success, [PID=584]

PARENT - Create 2 threads

PARENT WRITER - current protectedResource = 1

CHILD - Enter Testcase - QP0WTEST/TPRWLSH0

CHILD - Child setup

CHILD - Got shared memory id of 7

CHILD - Attach the shared memory

CHILD - Create 2 threads

CHILD - Joining to all threads

PARENT WRITER - unlock

PARENT WRITER - current protectedResource = 2

PARENT WRITER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - current protectedResource = 2

PARENT - Parent cleanup

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - current protectedResource = 2

CHILD READER - unlock

CHILD READER - unlock

CHILD - Child cleanup

CHILD - Main completed

PARENT - Main completed

Chapter 1. Pthread APIs 169

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute

 Syntax:

 #include <pthread.h>

 int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlockattr_init() function initializes the read/write lock attributes object referred to by attr

to the default attributes. The read/write lock attributes object can be used in a call to

pthread_rwlock_init() to create a read/write lock.

Authorities and Locks

None.

Parameters

attr (Output) Address of the variable to contain the read/write lock attributes object

Return Value

0 pthread_rwlockattr_init() was successful.

value pthread_rwlockattr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute” on page 160—Destroy Read/Write

Lock Attribute
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock

170 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Example

See Code disclaimer information for information pertaining to code examples.

See the “Example” on page 160.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock

Attribute

 Syntax:

 #include <pthread.h>

 int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlockattr_setpshared() function sets the current pshared attribute for the read/write

attributes object. The process shared attribute indicates whether the read/write lock that is created using

the read/write lock attributes object can be shared between threads in separate processes

(PTHREAD_PROCESS_SHARED) or shared only between threads in the same process

(PTHREAD_PROCESS_PRIVATE).

Even if the read/write lock in storage is accessible from two separate processes, it cannot be used from

both processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable containing the read/write lock attributes object

pshared

(Input) One of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE

Return Value

0 pthread_rwlockattr_setpshared() was successful.

value pthread_rwlockattr_setpshared() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 171

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_rwlockattr_setpshared() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute” on page 170—Initialize Read/Write

Lock Attribute
v “pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock Attribute” on page 162—Get Pshared

Read/Write Lock Attribute
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

See the “Example” on page 163.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlock_destroy()—Destroy Read/Write Lock

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_destroy() function destroys the named read/write lock. The destroyed read/write

lock can no longer be used.

If pthread_rwlock_destroy() is called on a read/write lock on a mutex that is locked by another thread

for either reading or writing, the request fails with an EBUSY error.

If pthread_rwlock_destroy() is used by a thread when it owns the read/write lock, and other threads are

waiting for the read/write lock to become available (with calls to pthread_rwlock_rdlock(),

pthread_rwlock_wrlock(), pthread_rwlock_timedrdlock_np() or pthread_rwlock_timedwrlock_np()

APIs), the read/write lock is destroyed safely, and the waiting threads wake up with the EDESTROYED

172 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

error. Threads calling pthread_rwlock_tryrdlock() or pthread_rwlock_trywrlock() return with either the

EBUSY or EINVAL error, depending on when they called those functions.

Once a read/write lock is created, it cannot be validly copied or moved to a new location.

Authorities and Locks

None.

Parameters

rwlock

(Input) Address of the read/write lock to be destroyed

Return Value

0 pthread_rwlock_destroy() was successful.

value pthread_rwlock_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_destroy() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

See the “Example” on page 175.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 1. Pthread APIs 173

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_rwlock_init()—Initialize Read/Write Lock

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_init(pthread_rwlock_t *rwlock,

 const pthread_rwlockattr_t *attr);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_init() function initializes a new read/write lock with the specified attributes for use.

The new read/write lock may be used immediately for serializing critical resources. If attr is specified as

NULL, all attributes are set to the default read/write lock attributes for the newly created read/write

lock.

With these declarations and initializations:

pthread_rwlock_t rwlock2;

pthread_rwlock_t rwlock3;

pthread_rwlockattr_t attr;

pthread_rwlockattr_init(&attr);

The following three read/write lock initialization mechanisms have equivalent function.

pthread_rwlock_t rwlock1 = PTHREAD_RWLOCK_INITIALIZER;

pthread_rwlock_init(&rwlock2, NULL);

pthread_rwlock_init(&rwlock, &attr);

All three read/write locks are created with the default read/write lock attributes.

Every read/write lock must eventually be destroyed with pthread_rwlock_destroy(). Always use

pthread_rwlock_destroy() before freeing or reusing read/write lock storage.

Authorities and Locks

None.

Parameters

rwlock

(Output) The address of the variable to contain a read/write lock

attr (Input) The address of the variable containing the read/write lock attributes object

Return Value

0 pthread_rwlock_init() was successful.

value pthread_rwlock_init() was not successful. value is set to indicate the error condition.

174 iSeries: Pthread APIs

Error Conditions

If pthread_rwlock_init() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute” on page 170—Initialize Read/Write

Lock Attribute
v “pthread_rwlock_destroy()—Destroy Read/Write Lock” on page 172—Destroy Read/Write Lock

Example

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_rwlock_t rwlock;

void *rdlockThread(void *arg)

{

 int rc;

 printf(“Entered thread, getting read lock\n”);

 rc = pthread_rwlock_rdlock(&rwlock);

 checkResults(“pthread_rwlock_rdlock()\n”, rc);

 printf(“got the rwlock read lock\n”);

 sleep(5);

 printf(“unlock the read lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Secondary thread unlocked\n”);

 return NULL;

}

void *wrlockThread(void *arg)

{

 int rc;

 printf(“Entered thread, getting write lock\n”);

 rc = pthread_rwlock_wrlock(&rwlock);

 checkResults(“pthread_rwlock_wrlock()\n”, rc);

 printf(“Got the rwlock write lock, now unlock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Secondary thread unlocked\n”);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread, thread1;

 printf(“Enter Testcase - %s\n”, argv[0]);

Chapter 1. Pthread APIs 175

printf(“Main, initialize the read write lock\n”);

 rc = pthread_rwlock_init(&rwlock, NULL);

 checkResults(“pthread_rwlock_init()\n”, rc);

 printf(“Main, grab a read lock\n”);

 rc = pthread_rwlock_rdlock(&rwlock);

 checkResults(“pthread_rwlock_rdlock()\n”,rc);

 printf(“Main, grab the same read lock again\n”);

 rc = pthread_rwlock_rdlock(&rwlock);

 checkResults(“pthread_rwlock_rdlock() second\n”, rc);

 printf(“Main, create the read lock thread\n”);

 rc = pthread_create(&thread, NULL, rdlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 printf(“Main - unlock the first read lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Main, create the write lock thread\n”);

 rc = pthread_create(&thread1, NULL, wrlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 sleep(5);

 printf(“Main - unlock the second read lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Main, wait for the threads\n”);

 rc = pthread_join(thread, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_join(thread1, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_rwlock_destroy(&rwlock);

 checkResults(“pthread_rwlock_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPRWLINI0

Main, initialize the read write lock

Main, grab a read lock

Main, grab the same read lock again

Main, create the read lock thread

Main - unlock the first read lock

Main, create the write lock thread

Entered thread, getting read lock

got the rwlock read lock

Entered thread, getting write lock

Main - unlock the second read lock

Main, wait for the threads

unlock the read lock

Secondary thread unlocked

Got the rwlock write lock, now unlock

Secondary thread unlocked

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

176 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_rwlock_rdlock()—Get Shared Read Lock

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_rdlock() function attempts to acquire a shared read lock on the read/write lock

specified by rwlock.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread

holds an exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared

read or exclusive write lock.

If no threads are holding an exclusive write lock on the read/write lock, the calling thread successfully

acquires the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be

successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by

a thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock()

a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If

threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently

hold a shared read lock, the shared read lock request is granted.

If the read/write lock is destroyed while pthread_rwlock_rdlock() is waiting for the shared read lock, the

EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and

the thread resumes waiting.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or

exclusive write lock will not be successful. In this case, the attempt to acquire the lock will deadlock. If a

thread ends while holding a read lock, the system automatically releases the read lock.

For the pthread_rwlock_rdlock() function, the pthreads run-time simulates the deadlock that has

occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows

that the function deadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read

lock request is granted. After the shared read lock request is granted, the calling thread holds both the

Chapter 1. Pthread APIs 177

shared read and the exclusive write lock for the specified read/write lock object. If the thread calls

pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write

locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was

held by the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done

before all write locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() unlock the

shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another.

See “Shared read/write locks are released at thread termination” on page 258.

Authorities and Locks

None.

Parameters

rwlock

(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_rdlock() was successful.

value pthread_rwlock_rdlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_rdlock() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EDESTROYED]

 The lock was destroyed while waiting.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock
v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared

Read Lock with Time-out
v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get

Exclusive Write Lock with Time-out
v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait
v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait
v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock

Exclusive Write or Shared Read Lock
v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

178 iSeries: Pthread APIs

Example

See Code disclaimer information for information pertaining to code examples.

See the “Example” on page 175.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with

Time-Out

 Syntax:

 #include <pthread.h>

 #include <time.h>

 int pthread_rwlock_timedrdlock_np(pthread_rwlock_t *rwlock,

 const struct timespec *deltatime);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_timedrdlock_np() function attempts to acquire a shared read lock on the read/write

lock specified by rwlock. If the shared read lock cannot be acquired in the deltatime specific,

pthread_rwlock_timedrdlock_np() returns the EBUSY error.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread

holds an exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared

read or exclusive write lock.

If no threads are holding an exclusive write lock on the read/write lock, the calling thread successfully

acquires the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be

successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by

a thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock()

a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If

threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently

hold a shared read lock, the shared read lock request is granted.

If the read/write lock is destroyed while pthread_rwlock_timedrdlock_np() is waiting for the shared

read lock, the EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and

the thread resumes waiting. For a timed wait, when the thread resumes waiting after the signal handler

runs, the wait time is reset. For example, suppose a thread specifies that it should wait for a lock for 5

Chapter 1. Pthread APIs 179

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

seconds, and a signal handler runs in that thread after 2.5 seconds. After returning from the signal

handler, the thread will resume its wait for another 5 seconds. The resulting wait is longer than the

specified 5 seconds.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or

exclusive write lock will not succeed. In this case, the attempt to acquire the lock will return the EBUSY

error after the specified time elapses for the lock operation. If a thread ends while holding a read lock,

the system automatically releases the read lock.

For the pthread_rwlock_timedrdlock_np() function, the pthreads run-time simulates the deadlock that

has occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows

that the function timedDeadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read

lock request is granted. After the shared read lock request is granted, the calling thread holds both the

shared read and the exclusive write lock for the specified read/write lock object. If the thread calls

pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write

locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was

held by the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done

before all write locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() will unlock

the shared read locks.

You can use this behavior to allow your application to upgrade or downgrade one lock type to another.

See “Read/write locks can be upgraded/downgraded” on page 258.

Authorities and Locks

None.

Parameters

rwlock

(Input) The address of the read/write lock

deltatime

(Input) The number of seconds and nanoseconds to wait for the lock before returning an error

Return Value

0 pthread_rwlock_timedrdlock_np() was successful.

value pthread_rwlock_timedrdlock_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_timedrdlock_np() was not successful, the error condition returned usually indicates

one of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EBUSY]

 The lock could not be acquired in the time specified.

180 iSeries: Pthread APIs

[EDESTROYED]

 The lock was destroyed while waiting.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock
v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock
v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get

Exclusive Write Lock with Time-Out
v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait
v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait
v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock

Exclusive Write or Shared Read Lock
v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *rdlockThread(void *arg)

{

 int rc;

 int count=0;

 struct timespec ts;

 /* 1.5 seconds */

 ts.tv_sec = 1;

 ts.tv_nsec = 500000000;

 printf(“Entered thread, getting read lock with timeout\n”);

 Retry:

 rc = pthread_rwlock_timedrdlock_np(&rwlock, &ts);

 if (rc == EBUSY) {

 if (count >= 10) {

 printf(“Retried too many times, failure!\n”);

 exit(EXIT_FAILURE);

 }

 ++count;

 printf(“RETRY...\n”);

 goto Retry;

 }

 checkResults(“pthread_rwlock_rdlock() 1\n”, rc);

 sleep(2);

 printf(“unlock the read lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Secondary thread complete\n”);

 return NULL;

}

Chapter 1. Pthread APIs 181

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Main, get the write lock\n”);

 rc = pthread_rwlock_wrlock(&rwlock);

 checkResults(“pthread_rwlock_wrlock()\n”, rc);

 printf(“Main, create the timed rd lock thread\n”);

 rc = pthread_create(&thread, NULL, rdlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 printf(“Main, wait a bit holding the write lock\n”);

 sleep(5);

 printf(“Main, Now unlock the write lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Main, wait for the thread to end\n”);

 rc = pthread_join(thread, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_rwlock_destroy(&rwlock);

 checkResults(“pthread_rwlock_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPRWLRD0

Main, get the write lock

Main, create the timed rd lock thread

Main, wait a bit

Entered thread, getting read lock with timeout

RETRY...

RETRY...

RETRY...

Main, Now unlock the write lock

Main, wait for the thread to end

unlock the read lock

Secondary thread complete

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

182 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with

Time-Out

 Syntax:

 #include <pthread.h>

 #include <time.h>

 int pthread_rwlock_timedwrlock_np(pthread_rwlock_t *rwlock,

 const struct timespec *deltatime);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_timedwrlock_np() function attempts to acquire an exclusive write lock on the

read/write lock specified by rwlock. If the exclusive write lock cannot be acquired in the deltatime specific,

pthread_rwlock_timedwrlock_np() returns the EBUSY error.

Only one thread can hold an exclusive write lock on a read/write lock object. If any thread holds an

exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared read or

exclusive write lock.

If no threads are holding an exclusive write lock or shared read lock on the read/write lock, the calling

thread successfully acquires the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can

be successfully acquired by the calling thread. If more than one exclusive write lock is successfully

acquired by a thread on a read/write lock object, that thread is required to successfully call

pthread_rwlock_unlock() a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If

threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently

hold a shared read lock, the subsequent attempts to acquire a shared read lock request are granted, while

attempts to acquire the exclusive write lock wait.

If the read/write lock is destroyed while pthread_rwlock_timedwrlock_np() is waiting for the shared

read lock, the EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and

the thread resumes waiting. For a timed wait, when the thread resumes waiting after the signal handler

runs, the wait time is reset. For example, suppose a thread specifies that it should wait for a lock for 5

seconds, and a signal handler runs in that thread after 2.5 seconds. After returning from the signal

handler, the thread resumes its wait for another 5 seconds. The resulting wait is longer than the specified

5 seconds.

Chapter 1. Pthread APIs 183

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or

exclusive write lock will not succeed. In this case, the attempt to acquire the lock returns the EBUSY

error after the specified time elapses for the lock operation. If a thread ends while holding a read lock,

the system automatically releases the read lock.

For the pthread_rwlock_timedwrlock_np() function, the pthreads run-time simulates the deadlock that

has occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows

that the function timedDeadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and no other threads

are holding a shared read lock, the exclusive write request is granted. After the exclusive write lock

request is granted, the calling thread holds both the shared read and the exclusive write lock for the

specified read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or more

shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If

more than one outstanding exclusive write lock was held by the thread, a matching number of successful

calls to pthread_rwlock_unlock() must be done before all write locks are unlocked. At that time,

subsequent calls to pthread_rwlock_unlock() unlock the shared read locks.

You can use this behavior to allow your application to upgrade or downgrade one lock type to another.

See “Read/write locks can be upgraded/downgraded” on page 258

Authorities and Locks

None.

Parameters

rwlock

(Input) The address of the read/write lock

deltatime

(Input) The number of seconds and nanoseconds to wait for the lock before returning an error

Return Value

0 pthread_rwlock_timedwrlock_np() was successful.

value pthread_rwlock_timedwrlock_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_timedwrlock_np() was not successful, the error condition returned usually indicates

one of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EBUSY]

 The lock could not be acquired in the time specified.

[EDESTROYED]

 The lock was destroyed while waiting.

184 iSeries: Pthread APIs

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock
v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock
v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared

Read Lock with Time-Out
v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait
v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait
v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock

Exclusive Write or Shared Read Lock
v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *wrlockThread(void *arg)

{

 int rc;

 int count=0;

 struct timespec ts;

 /* 1.5 seconds */

 ts.tv_sec = 1;

 ts.tv_nsec = 500000000;

 printf(“%.8x %.8x: Entered thread, getting write lock with timeout\n”,

 pthread_getthreadid_np());

 Retry:

 rc = pthread_rwlock_timedwrlock_np(&rwlock, &ts);

 if (rc == EBUSY) {

 if (count >= 10) {

 printf(“%.8x %.8x: Retried too many times, failure!\n”,

 pthread_getthreadid_np());

 exit(EXIT_FAILURE);

 }

 ++count;

 printf(“%.8x %.8x: RETRY...\n”, pthread_getthreadid_np());

 goto Retry;

 }

 checkResults(“pthread_rwlock_wrlock() 1\n”, rc);

 printf(“%.8x %.8x: Got the write lock\n”, pthread_getthreadid_np());

 sleep(2);

 printf(“%.8x %.8x: Unlock the write lock\n”,

 pthread_getthreadid_np());

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“%.8x %.8x: Secondary thread complete\n”, pthread_getthreadid_np());

 return NULL;

}

Chapter 1. Pthread APIs 185

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread, thread2;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Main, get the write lock\n”);

 rc = pthread_rwlock_wrlock(&rwlock);

 checkResults(“pthread_rwlock_wrlock()\n”, rc);

 printf(“Main, create the timed write lock threads\n”);

 rc = pthread_create(&thread, NULL, wrlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 rc = pthread_create(&thread2, NULL, wrlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 printf(“Main, wait a bit holding this write lock\n”);

 sleep(3);

 printf(“Main, Now unlock the write lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Main, wait for the threads to end\n”);

 rc = pthread_join(thread, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_join(thread2, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_rwlock_destroy(&rwlock);

 checkResults(“pthread_rwlock_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPRWLWR0

Main, get the write lock

Main, create the timed write lock threads

Main, wait a bit holding this write lock

00000000 00000017: Entered thread, getting write lock with timeout

00000000 00000018: Entered thread, getting write lock with timeout

00000000 00000017: RETRY...

00000000 00000018: RETRY...

Main, Now unlock the write lock

Main, wait for the threads to end

00000000 00000017: Got the write lock

00000000 00000018: RETRY...

00000000 00000018: RETRY...

00000000 00000017: Unlock the write lock

00000000 00000017: Secondary thread complete

00000000 00000018: Got the write lock

00000000 00000018: Unlock the write lock

00000000 00000018: Secondary thread complete

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

186 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_tryrdlock() function attempts to acquire a shared read lock on the read/write lock

specified by rwlock. If the shared read lock cannot be acquired immediately, pthread_rwlock_tryrdlock()

returns the EBUSY error.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread

holds an exclusive write lock on a read/write lock object, no other threads will be allowed to hold a

shared read or exclusive write lock.

If there are no threads holding an exclusive write lock on the read/write lock, the calling thread will

successfully acquire the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be

successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by

a thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock()

a matching number of times.

With a large number of readers, and relatively few writers, there is the possibility of writer starvation. If

there are threads waiting for an exclusive write lock on the read/write lock and there are threads that

currently hold a shared read lock, the shared read lock request will be granted.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or

exclusive write lock will not be successful. In this case, the attempt to acquire the lock will return the

EBUSY error. If a thread ends while holding a read lock, the system automatically releases the read lock.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read

lock request will be granted. After the shared read lock request is granted, the calling thread holds both

the shared read, and the exclusive write lock for the specified read/write lock object. If the thread calls

pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write

locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was

held by the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done

before all write locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() will unlock

the shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another.

See “Read/write locks can be upgraded/downgraded” on page 258.

Chapter 1. Pthread APIs 187

Authorities and Locks

None.

Parameters

rwlock

(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_tryrdlock() was successful.

value pthread_rwlock_tryrdlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_tryrdlock() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EBUSY]

 The lock could not be immediately acquired.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock
v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock
v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared

Read Lock with Time-Out
v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get

Exclusive Write Lock with Time-Out
v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait
v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock

Exclusive Write or Shared Read Lock
v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *rdlockThread(void *arg)

{

 int rc;

 int count=0;

 printf(“Entered thread, getting read lock with mp wait\n”);

 Retry:

188 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

rc = pthread_rwlock_tryrdlock(&rwlock);

 if (rc == EBUSY) {

 if (count >= 10) {

 printf(“Retried too many times, failure!\n”);

 exit(EXIT_FAILURE);

 }

 ++count;

 printf(“Could not get lock, do other work, then RETRY...\n”);

 sleep(1);

 goto Retry;

 }

 checkResults(“pthread_rwlock_tryrdlock() 1\n”, rc);

 sleep(2);

 printf(“unlock the read lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Secondary thread complete\n”);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Main, get the write lock\n”);

 rc = pthread_rwlock_wrlock(&rwlock);

 checkResults(“pthread_rwlock_wrlock()\n”, rc);

 printf(“Main, create the try read lock thread\n”);

 rc = pthread_create(&thread, NULL, rdlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 printf(“Main, wait a bit holding the write lock\n”);

 sleep(5);

 printf(“Main, Now unlock the write lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Main, wait for the thread to end\n”);

 rc = pthread_join(thread, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_rwlock_destroy(&rwlock);

 checkResults(“pthread_rwlock_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output

Enter Testcase - QP0WTEST/TPRWLRD1

Main, get the write lock

Main, create the try read lock thread

Main, wait a bit holding the write lock

Entered thread, getting read lock with mp wait

Could not get lock, do other work, then RETRY...

Could not get lock, do other work, then RETRY...

Could not get lock, do other work, then RETRY...

Chapter 1. Pthread APIs 189

Could not get lock, do other work, then RETRY...

Could not get lock, do other work, then RETRY...

Main, Now unlock the write lock

Main, wait for the thread to end

unlock the read lock

Secondary thread complete

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_trywrlock() function attempts to acquire an exclusive write lock on the read/write

lock specified by rwlock. If the exclusive write lock cannot be immediately acquired,

pthread_rwlock_timedwrlock_np() returns the EBUSY error.

Only one thread can hold an exclusive write lock on a read/write lock object. If any thread holds an

exclusive write lock on a read/write lock object, no other threads will be allowed to hold a shared read

or exclusive write lock.

If there are no threads holding an exclusive write lock or shared read lock on the read/write lock, the

calling thread will successfully acquire the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can

be successfully acquired by the calling thread. If more than one exclusive write lock is successfully

acquired by a thread on a read/write lock object, that thread is required to successfully call

pthread_rwlock_unlock() a matching number of times.

With a large number of readers, and relatively few writers, there is the possibility of writer starvation. If

there are threads waiting for an exclusive write lock on the read/write lock and there are threads that

currently hold a shared read lock, the subsequent attempts to acquire a shared read lock request will be

granted, while attempts to acquire the exclusive write lock will return the EBUSY error.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or

exclusive write lock will not be successful. In this case, the attempt to acquire the lock will return the

EBUSY error. If a thread ends while holding a read lock, the system automatically releases the read lock.

190 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and there are no

other threads holding a shared read lock, the exclusive write request will be granted. After the exclusive

write lock request is granted, the calling thread holds both the shared read, and the exclusive write lock

for the specified read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or

more shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked

first. If more than one outstanding exclusive write lock was held by the thread, a matching number of

successful calls to pthread_rwlock_unlock() must be done before all write locks are unlocked. At that

time, subsequent calls to pthread_rwlock_unlock() will unlock the shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another.

See “Read/write locks can be upgraded/downgraded” on page 258.

Authorities and Locks

None.

Parameters

rwlock

(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_trywrlock() was successful.

value pthread_rwlock_trywrlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_trywrlock() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EBUSY]

 The lock could not be acquired in the timed specified.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock
v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock
v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared

Read Lock with Time-Out
v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get

Exclusive Write Lock with Time-Out
v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait
v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock

Exclusive Write or Shared Read Lock
v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Chapter 1. Pthread APIs 191

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *wrlockThread(void *arg)

{

 int rc;

 int count=0;

 printf(“%.8x %.8x: Entered thread, getting write lock with timeout\n”,

 pthread_getthreadid_np());

 Retry:

 rc = pthread_rwlock_trywrlock(&rwlock);

 if (rc == EBUSY) {

 if (count >= 10) {

 printf(“%.8x %.8x: Retried too many times, failure!\n”,

 pthread_getthreadid_np());

 exit(EXIT_FAILURE);

 }

 ++count;

 printf(“%.8x %.8x: Go off an do other work, then RETRY...\n”,

 pthread_getthreadid_np());

 sleep(1);

 goto Retry;

 }

 checkResults(“pthread_rwlock_trywrlock() 1\n”, rc);

 printf(“%.8x %.8x: Got the write lock\n”, pthread_getthreadid_np());

 sleep(2);

 printf(“%.8x %.8x: Unlock the write lock\n”,

 pthread_getthreadid_np());

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“%.8x %.8x: Secondary thread complete\n”,

 pthread_getthreadid_np());

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread, thread2;

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Main, get the write lock\n”);

 rc = pthread_rwlock_wrlock(&rwlock);

 checkResults(“pthread_rwlock_wrlock()\n”, rc);

 printf(“Main, create the timed write lock threads\n”);

 rc = pthread_create(&thread, NULL, wrlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 rc = pthread_create(&thread2, NULL, wrlockThread, NULL);

 checkResults(“pthread_create\n”, rc);

 printf(“Main, wait a bit holding this write lock\n”);

 sleep(1);

192 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf(“Main, Now unlock the write lock\n”);

 rc = pthread_rwlock_unlock(&rwlock);

 checkResults(“pthread_rwlock_unlock()\n”, rc);

 printf(“Main, wait for the threads to end\n”);

 rc = pthread_join(thread, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_join(thread2, NULL);

 checkResults(“pthread_join\n”, rc);

 rc = pthread_rwlock_destroy(&rwlock);

 checkResults(“pthread_rwlock_destroy()\n”, rc);

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPRWLWR1

Main, get the write lock

Main, create the timed write lock threads

00000000 0000000d: Entered thread, getting write lock with timeout

00000000 0000000d: Go off an do other work, then RETRY...

Main, wait a bit holding this write lock

00000000 0000000e: Entered thread, getting write lock with timeout

00000000 0000000e: Go off an do other work, then RETRY...

00000000 0000000d: Go off an do other work, then RETRY...

Main, Now unlock the write lock

Main, wait for the threads to end

00000000 0000000e: Got the write lock

00000000 0000000d: Go off an do other work, then RETRY...

00000000 0000000e: Unlock the write lock

00000000 0000000e: Secondary thread complete

00000000 0000000d: Got the write lock

00000000 0000000d: Unlock the write lock

00000000 0000000d: Secondary thread complete

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read

Lock

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

Chapter 1. Pthread APIs 193

#TOP_OF_PAGE
aplist.htm

The pthread_rwlock_unlock() function unlocks a shared read or exclusive write lock held by the calling

thread.

A thread should call pthread_rwlock_unlock() once for each time that the thread successfully called

pthread_rwlock_rdlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),

pthread_rwlock_timedrdlock_np(), or pthread_rwlock_timedwrlock_np() to acquire a shared read or

exclusive write lock. For example, if a thread holds 4 shared read locks on a read/write lock object, the

thread must call pthread_rwlock_unlock() 4 times before the read/write lock becomes completely

unlocked.

If a thread holds both shared read and exclusive write locks for the specified read/write lock object, the

exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was held by

the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done before all

write locks are unlocked. When all write locks are unlocked, subsequent calls to

pthread_rwlock_unlock() unlock the shared read locks.

Authorities and Locks

For successful completion, either a shared read or exclusive write lock must be held on the read/write

lock before you call pthread_rwlock_unlock().

Parameters

rwlock

(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_unlock() was successful.

value pthread_rwlock_unlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_unlock() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EPERM]

 A shared read or exclusive write lock was not held by the calling thread and could not be

unlocked.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize Read/Write Lock
v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock
v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared

Read Lock with Time-Out
v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get

Exclusive Write Lock with Time-Out
v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait

194 iSeries: Pthread APIs

v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait
v “pthread_rwlock_wrlock()—Get Exclusive Write Lock”—Get Exclusive Write Lock

Example

See Code disclaimer information for information pertaining to code examples.

See any of the following examples:

v “Example” on page 188
v “Example” on page 192
v “Example” on page 181
v “Example” on page 185

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_rwlock_wrlock()—Get Exclusive Write Lock

 Syntax:

 #include <pthread.h>

 int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_rwlock_wrlock() function attempts to acquire an exclusive write lock on the read/write lock

specified by rwlock.

Only one thread can hold an exclusive write lock on a read/write lock object. If any thread holds an

exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared read or

exclusive write lock.

If no threads are holding an exclusive write lock or shared read lock on the read/write lock, the calling

thread successfully acquires the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can

be successfully acquired by the calling thread. If more than one exclusive write lock is successfully

acquired by a thread on a read/write lock object, that thread is required to successfully call

pthread_rwlock_unlock() a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If

threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently

hold a shared read lock, the subsequent attempts to acquire a shared read lock request are granted, while

attempts to acquire the exclusive write lock wait.

Chapter 1. Pthread APIs 195

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

If the read/write lock is destroyed while pthread_rwlock_wrlock() is waiting for the shared read lock,

the EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and

the thread resumes waiting.

Read/Write Lock Deadlocks

If a thread ends while holding of a write lock, the attempt by another thread to acquire a shared read or

exclusive write lock will not succeed. In this case, the attempt to acquire the lock does not return and will

deadlock. If a thread ends while holding a read lock, the system automatically releases the read lock.

For the pthread_rwlock_wrlock() function, the pthreads run-time simulates the deadlock that has

occurred in your application. When you are attempting to debug these deadlock scenarios, the CL

command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows

that the function timedDeadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and no other threads

are holding a shared read lock, the exclusive write request is granted. After the exclusive write lock

request is granted, the calling thread holds both the shared read, and the exclusive write lock for the

specified read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or more

shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If

more than one outstanding exclusive write lock was held by the thread, a matching number of successful

calls to pthread_rwlock_unlock() must be done before all write locks are unlocked. At that time,

subsequent calls to pthread_rwlock_unlock() unlock the shared read locks.

You can use this behavior to allow your application to upgrade or downgrade one lock type to another.

See “Read/write locks can be upgraded/downgraded” on page 258.

Authorities and Locks

None.

Parameters

rwlock

(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_wrlock() was successful.

value pthread_rwlock_wrlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_wrlock() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EDESTROYED]

 The lock was destroyed while waiting.

196 iSeries: Pthread APIs

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271
v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174—Initialize a Read/Write Lock
v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get a Shared Read Lock
v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get a Shared

Read Lock with Time-Out
v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get an

Exclusive Write Lock with Time-Out
v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get a Shared Read

Lock with No Wait
v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get an Exclusive

Write Lock with No Wait
v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock an

Exclusive Write or Shared Read Lock

Example

See Code disclaimer information for information pertaining to code examples.

See the “Example” on page 175 example.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_self()—Get Pthread Handle

 Syntax:

 #include <pthread.h>

 pthread_t pthread_self(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_self() function returns the Pthread handle of the calling thread. The pthread_self() function

does NOT return the integral thread of the calling thread. You must use pthread_getthreadid_np() to

return an integral identifier for the thread.

If your code requires the unique integer identifier for the calling thread often, or in a loop, the

pthread_getthreadid_np() function can provide significant performance improvements over the

combination of pthread_self(), and pthread_getunique_np() calls that provide equivalent behavior.

For example:

pthread_id_np_t tid;

tid = pthread_getthreadid_np();

Chapter 1. Pthread APIs 197

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

is significantly faster than these calls, but provides the same behavior.

pthread_id_np_t tid;

pthread_t self;

self = pthread_self();

pthread_getunique_np(&self, &tid);

As always, if you are calling any function too often, performance improvements can be gained by storing

the results in a variable and or passing to other functions which require the results.

Authorities and Locks

None.

Parameters

None.

Return Value

pthread_t

pthread_self() returns the Pthread handle of the calling thread.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_equal()—Compare Two Threads” on page 73—Compare Two Threads
v “pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91—Retrieve Unique ID

for Calling Thread
v “pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93—Retrieve Unique ID for

Target Thread

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_t theThread;

void *threadfunc(void *parm)

{

 printf("Inside secondary thread\n");

 theThread = pthread_self();

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Entering testcase\n");

 printf("Create thread using default attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

198 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* sleep() is not a very robust way to wait for the thread */

 sleep(5);

 printf("Check if the thread got its thread handle\n");

 if (!pthread_equal(thread, theThread)) {

 printf("Unexpected results on pthread_equal()!\n");

 exit(1);

 }

 printf("pthread_self() returned the thread handle\n");

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Create thread using default attributes

Inside secondary thread

Check if the thread got its thread handle

pthread_self() returned the thread handle

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_setcancelstate()—Set Cancel State

 Syntax:

 #include <pthread.h>

 int pthread_setcancelstate(int state, int *oldstate);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_setcancelstate() function sets the cancel state to one of PTHREAD_CANCEL_ENABLE or

PTHREAD_CANCEL_DISABLE and returns the old cancel state into the location specified by oldstate (if

oldstate is non-NULL).

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes

the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the

thread changes the cancelability, calls a function which is a cancellation point or calls

pthread_testcancel(), thus creating a cancellation point. When cancelability is asynchronous, all cancels

are acted upon immediately, interrupting the thread with its processing.

Note: It is recommended that your application not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user

errors section of this document for more information.

Chapter 1. Pthread APIs 199

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

state (Input) New cancel state (one of PTHREAD_CANCEL_ENABLE or

PTHREAD_CANCEL_DISABLE)

oldstate

(Output) Address of variable to contain old cancel state. (NULL is allowed)

Return Value

0 pthread_setcancelstate() was successful.

value pthread_setcancelstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setcancelstate() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v pthread_exit()—Terminate Calling Thread
v “pthread_setcanceltype()—Set Cancel Type” on page 201—Set Cancel Type
v “pthread_testcancel()—Create Cancellation Point” on page 222—Create Cancellation Point

Example

See Code disclaimer information for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

#include "check.h"

void *threadfunc(void *parm)

{

 int i = 0;

 printf("Entered secondary thread\n");

 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

 while (1) {

 printf("Secondary thread is looping\n");

 pthread_testcancel();

 sleep(1);

 if (++i == 5) {

 /* Since default cancel type is deferred, changing the state */

 /* will allow the next cancellation point to cancel the thread */

 printf("Cancel state set to ENABLE\n");

 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

 }

 } /* infinite */

 return NULL;

}

200 iSeries: Pthread APIs

users_18.htm#2
aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 printf("Entering testcase\n");

 /* Create a thread using default attributes */

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(3);

 printf("Cancel the thread\n");

 rc = pthread_cancel(thread);

 checkResults("pthread_cancel()\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(3);

 printf("Main completed\n");

 return 0;

}

Output:

Entering testcase

Create thread using the NULL attributes

Entered secondary thread

Secondary thread is looping

Secondary thread is looping

Secondary thread is looping

Cancel the thread

Secondary thread is looping

Secondary thread is looping

Cancel state set to ENABLE

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_setcanceltype()—Set Cancel Type

 Syntax:

 #include <pthread.h>

 int pthread_setcanceltype(int type, int *oldtype);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

Chapter 1. Pthread APIs 201

#TOP_OF_PAGE
aplist.htm

The pthread_setcanceltype() function sets the cancel type to one of PTHREAD_CANCEL_DEFERRED or

PTHREAD_CANCEL_ASYNCHRONOUS and returns the old cancel type into the location specified by

oldtype (if oldtype is non-NULL)

Cancelability consists of 3 separate states (disabled, deferred, asynchronous) that can be represented by 2

boolean values.

 Cancelability Cancelability State Cancelability Type

disabled PTHREAD_CANCEL_DISABLE PTHREAD_CANCEL_DEFERRED

disabled PTHREAD_CANCEL_DISABLE PTHREAD_CANCEL_ASYNCHRONOUS

deferred PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED

asynchronous PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_ASYNCHRONOUS

The default cancelability state is deferred.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes

the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the

thread changes the cancelability, calls a function which is a cancellation point or calls

pthread_testcancel(), thus creating a cancellation point. When cancelability is asynchronous, all cancels

are acted upon immediately, interrupting the thread with its processing.

Note: It is recommended that your application not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user

errors section of this document for more information.

Authorities and Locks

None.

Parameters

type (Input) New cancel type (one of PTHREAD_CANCEL_DEFERRED or

PTHREAD_CANCEL_ASYNCHRONOUS)

oldtype

(Output) Address of variable to contain old cancel type. (NULL is allowed)

Return Value

0 pthread_setcanceltype() was successful.

value pthread_setcanceltype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setcanceltype() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread

202 iSeries: Pthread APIs

v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
v “pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State
v “pthread_testcancel()—Create Cancellation Point” on page 222—Create Cancellation Point

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void cleanupHandler(void *parm)

{

 int rc;

 printf("Inside cleanup handler, unlock mutex\n");

 rc = pthread_mutex_unlock((pthread_mutex_t *)parm);

 checkResults("pthread_mutex_unlock\n", rc);

}

void *threadfunc(void *parm)

{

 int rc;

 int oldtype;

 printf("Entered secondary thread, lock mutex\n");

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 pthread_cleanup_push(cleanupHandler, &mutex);

 /* We must assume there is a good reason for async. cancellability */

 /* and also, we must assume that if we get interrupted, it is */

 /* appropriate to unlock the mutex. More than likely it is not */

 /* because we will have left some data structures in a strange state */

 /* if we are async. interrupted while holding the mutex */

 rc = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype);

 checkResults("pthread_setcanceltype()\n", rc);

 printf("Secondary thread is now looping\n");

 while (1) { sleep(1); }

 printf("Unexpectedly got out of loop!\n");

 pthread_cleanup_pop(0);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 /* Create a thread using default attributes */

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 /* sleep() is not a very robust way to wait for the thread */

 sleep(1);

 printf("Cancel the thread\n");

 rc = pthread_cancel(thread);

Chapter 1. Pthread APIs 203

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_cancel()\n", rc);

 rc = pthread_join(thread, &status);

 if (status != PTHREAD_CANCELED) {

 printf("Unexpected thread status\n");

 exit(1);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPSETCANT0

Create thread using the NULL attributes

Entered secondary thread, lock mutex

Secondary thread is now looping

Cancel the thread

Inside cleanup handler, unlock mutex

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_setconcurrency()—Set Process Concurrency Level

 Syntax:

 #include <pthread.h>

 int pthread_setconcurrency(int concurrency);

 Service Program Name: QP0WTCBH

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_setconcurrency() function sets the current concurrency level for the process.

A concurrency value of zero indicates that the threads implementation chooses the concurrency level that

best suits the application. A concurrency level greater than zero indicates that the application wants to

inform the system of its desired concurrency level.

The concurrency level is not used by the OS/400 threads implementation, but is stored for subsequent

calls to pthread_getconcurrency(). Each user thread is always bound to a kernel thread.

Authorities and Locks

None.

Parameters

concurrency

(Input) The new concurrency level for the process

204 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_setconcurrency() was successful.

value pthread_setconcurrency() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setconcurrency() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getconcurrency()—Get Process Concurrency Level” on page 82—Get Process Concurrency

Level

 API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data

 Syntax:

 #include <pthread.h>

 int pthread_setpthreadoption_np(pthread_option_np_t *optionData);

 Service Program Name: QP0WTCBH

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_setpthreadoption_np() function sets option data in the pthread run-time for the process.

Input data is specified uniquely based on the specified optionData. See the table below for details about

input and output. The option field in the optionData parameter is always required; other fields may be

input, output, or ignored, based on the specific option used.

For all options, every reserved field in the structure represented by optionData must be binary zero or the

EINVAL error is returned. Unless otherwise noted for an option, the target field in the option parameter is

always ignored, and the contents of the optionData structure is not changed by the

pthread_setpthreadoption_np() function.

The currently supported options, the data they represent, and the valid operations are as follows:

Chapter 1. Pthread APIs 205

#TOP_OF_PAGE
aplist.htm

option field of the option parameter Description

PTHREAD_OPTION_POOL_NP When a thread terminates and is detached or joined to,

certain data structures from the pthreads run-time are

maintained in a pool for possible reuse by future threads.

This improves performance for creating threads.

Typically, an application should not be concerned with

this storage pool. Use this option to set the current

maximum size of the allowed storage pool. The

optionValue field of the optionData parameter is used to

set the current maximum number of thread structures

that will be allowed in the storage pool. By default, the

optionValue field must be a valid integer greater than or

equal to zero, or the EINVAL error is returned. The

default maximum size of the storage reuse pool contains

enough room for 512 thread structures.

PTHREAD_OPTION_POOL_CURRENT_NP If the option field of the optionData parameter is set to

this option, the EINVAL error is returned.

PTHREAD_OPTION_THREAD_CAPABLE_NP If the option field of the optionData parameter is set to

this option, the EINVAL error is returned.

Authorities and Locks

None.

Parameters

option (Input/Output) Address of the variable containing option information and to contain output

option information

Return Value

0 pthread_getpthreadoption_np() was successful.

value pthread_getpthreadoption_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getpthreadoption_np() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data” on page 83—Get Pthread

Run-Time Option Data

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

206 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#include "check.h"

#define NUMTHREADS 5

void *threadfunc(void *parm)

{

 printf("Inside the thread\n");

 return NULL;

}

void showCurrentSizeOfPool(void) {

 int rc;

 pthread_option_np_t opt;

 memset(&opt, 0, sizeof(opt));

 opt.option = PTHREAD_OPTION_POOL_CURRENT_NP;

 rc = pthread_getpthreadoption_np(&opt);

 checkResults("pthread_getpthreadoption_np()\n", rc);

 printf("Current number of thread structures in pool is %d\n",

 opt.optionValue);

 return;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i=0;

 pthread_option_np_t opt;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create threads and prime the storage pool\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 }

 printf("Joining all threads at once so thread n does not reuse\n"

 "thread n-1’s data structures\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 showCurrentSizeOfPool();

 /* Set the maximum size of the storage pool to 0. I.e. No reuse of */

 /* pthread structures */

 printf("Set the max size of the storage pool to 0\n");

 memset(&opt, 0, sizeof(opt));

 opt.option = PTHREAD_OPTION_POOL_NP;

 opt.optionValue = 0;

 rc = pthread_setpthreadoption_np(&opt);

 checkResults("pthread_setpthreadoption_np()\n", rc);

 printf("Create some more threads. Each thread structure will come\n"

 "from the storage pool if it exists, but based on the max size of 0,\n"

 "the thread structure will not be allowed to be reused\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

 showCurrentSizeOfPool();

 rc = pthread_join(thread[i], NULL);

Chapter 1. Pthread APIs 207

checkResults("pthread_join()\n", rc);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPSEtopT

Create threads and prime the storage pool

Joining all threads at once so thread n does not reuse

thread n-1’s data structures

Inside the thread

Inside the thread

Inside the thread

Inside the thread

Inside the thread

Current number of thread structures in pool is 5

Set the max size of the storage pool to 0

Create some more threads. Each thread structure will come

from the storage pool if it exists, but based on the max size of 0,

the thread structure will not be allowed to be reused

Current number of thread structures in pool is 4

Inside the thread

Current number of thread structures in pool is 3

Inside the thread

Current number of thread structures in pool is 2

Inside the thread

Current number of thread structures in pool is 1

Inside the thread

Current number of thread structures in pool is 0

Inside the thread

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_setschedparam()—Set Target Thread Scheduling Parameters

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_setschedparam(pthread_t thread, int policy,

 const struct sched_param *param);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

208 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

The pthread_setschedparam() function sets the scheduling parameters of the target thread. The supported

OS/400 scheduling policy is SCHED_OTHER. An attempt to set the policy to a value other than this cause

the EINVAL error. The sched_priority field of the param parameter must range from PRIORITY_MIN to

PRIORITY_MAX or the ENOTSUP error occurs.

All reserved fields in the scheduling parameters structure must be binary 0 or the EINVAL error occurs.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another

mechanism (outside of the pthread APIs) to set the priority of a thread. If you do,

pthread_getschedparam() returns only that information that was set by the pthread interfaces

(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle of the target thread

policy (Input) Scheduling policy (must be SCHED_OTHER)

param (Input) Scheduling parameters

Return Value

0 pthread_setschedparam() was successful.

value pthread_setschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setschedparam() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ENOTSUP]

 The value specified for the priority argument is not supported.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getschedparam()—Get Thread Scheduling Parameters” on page 86—Get Thread Scheduling

Parameters

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <sched.h>

#include <stdio.h>

#include "check.h"

#define BUMP_PRIO 1

int thePriority = 0;

int showSchedParam(pthread_t thread)

Chapter 1. Pthread APIs 209

aboutapis.htm#CODEDISCLAIMER

{

 struct sched_param param;

 int policy;

 int rc;

 printf("Get scheduling parameters\n");

 rc = pthread_getschedparam(thread, &policy, ¶m);

 checkResults("pthread_getschedparam()\n", rc);

 printf("The thread scheduling parameters indicate:\n"

 "priority = %d\n", param.sched_priority);

 return param.sched_priority;

}

void *threadfunc(void *parm)

{

 int rc;

 printf("Inside secondary thread\n");

 thePriority = showSchedParam(pthread_self());

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 struct sched_param param;

 int policy = SCHED_OTHER;

 int theChangedPriority=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread using default attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 sleep(2); /* Sleep is not a very robust way to serialize threads */

 memset(¶m, 0, sizeof(param));

 /* Bump the priority of the thread a small amount */

 if (thePriority - BUMP_PRIO >= PRIORITY_MIN_NP) {

 param.sched_priority = thePriority - BUMP_PRIO;

 }

 printf("Set scheduling parameters, prio=%d\n",

 param.sched_priority);

 rc = pthread_setschedparam(thread, policy, ¶m);

 checkResults("pthread_setschedparam()\n", rc);

 /* Let the thread fill in its own last priority */

 theChangedPriority = showSchedParam(thread);

 if (thePriority == theChangedPriority ||

 param.sched_priority != theChangedPriority) {

 printf("The thread did not get priority set correctly, "

 "first=%d last=%d expected=%d\n",

 thePriority, theChangedPriority, param.sched_priority);

 exit(1);

 }

 sleep(5); /* Sleep is not a very robust way to serialize threads */

 printf("Main completed\n");

 return 0;

}

210 iSeries: Pthread APIs

Output:

Enter Testcase - QP0WTEST/TPSSP0

Create thread using default attributes

Inside secondary thread

Get scheduling parameters

The thread scheduling parameters indicate:

priority = 0

Set scheduling parameters, prio=-1

Get scheduling parameters

The thread scheduling parameters indicate:

priority = -1

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_setspecific()—Set Thread Local Storage by Key

 Syntax:

 #include <pthread.h>

 int pthread_setspecific(pthread_key_t key, const void *value);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_setspecific() function sets the thread local storage value associated with a key. The

pthread_setspecific() function may be called fromwithin a data destructor.

The thread local storage value is a variable of type void * that is local to a thread, but global to all of the

functions called within that thread. It is accessed by the key.

Authorities and Locks

None.

Parameters

key (Input) The thread local storage key returned from pthread_key_create().

value (Input) The pointer to store at the key location for the calling thread.

Return Value

0 pthread_setspecific() was successful.

value pthread_setspecific() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 211

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_setspecific() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the key is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88—Get Thread Local Storage

Value by Key
v “pthread_key_create()—Create Thread Local Storage Key” on page 107—Create Thread Local Storage

Key
v “pthread_key_delete()—Delete Thread Local Storage Key” on page 109—Delete Thread Local Storage

Key

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

#define NUMTHREADS 3

pthread_key_t tlsKey = 0;

void globalDestructor(void *value)

{

 printf("In global destructor\n");

 free(value);

 pthread_setspecific(tlsKey, NULL);

}

void showGlobal(void)

{

 void *global;

 pthread_id_np_t tid;

 global = pthread_getspecific(tlsKey);

 pthread_getunique_np((pthread_t *)global, &tid);

 printf("showGlobal: global data stored for thread 0x%.8x %.8x\n",

 tid);

}

void *threadfunc(void *parm)

{

 int rc;

 int *myThreadDataStructure;

 pthread_t me = pthread_self();

 printf("Inside secondary thread\n");

 myThreadDataStructure = malloc(sizeof(pthread_t) + sizeof(int) * 10);

 memcpy(myThreadDataStructure, &me, sizeof(pthread_t));

 pthread_setspecific(tlsKey, myThreadDataStructure);

 showGlobal();

 return NULL;

}

212 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a thread local storage key\n");

 rc = pthread_key_create(&tlsKey, globalDestructor);

 checkResults("pthread_key_create()\n", rc);

 /* The key can now be used from all threads */

 printf("Create %d threads using joinable attributes\n",

 NUMTHREADS);

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Join to threads\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Delete a thread local storage key\n");

 rc = pthread_key_delete(tlsKey);

 checkResults("pthread_key_delete()\n", rc);

 /* The key and any remaining values are now gone. */

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPSETS0

Create a thread local storage key

Create 3 threads using joinable attributes

Join to threads

Inside secondary thread

showGlobal: global data stored for thread 0x00000000 0000011a

In global destructor

Inside secondary thread

showGlobal: global data stored for thread 0x00000000 0000011b

In global destructor

Inside secondary thread

showGlobal: global data stored for thread 0x00000000 0000011c

In global destructor

Delete a thread local storage key

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 1. Pthread APIs 213

#TOP_OF_PAGE
aplist.htm

pthread_set_mutexattr_default_np()—Set Default Mutex Attributes

Object Kind Attribute

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_set_mutexattr_default_np(int kind);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_set_mutexattr_default_np() function sets the kind attribute in the default mutex attribute

object. The default mutex attributes object is used when pthread_mutex_init() is called to specify a NULL

pointer for the mutex attributes object parameter.

The kind set may be one of PTHREAD_MUTEX_NONRECURSIVE_NP or

PTHREAD_MUTEX_RECURSIVE_NP.

The pthread_set_mutexattr_default_np() function does not affect any currently existing mutex attributes

objects, nor does it affect the subsequent behavior of pthread_mutexattr_init() or the

PTHREAD_MUTEX_INITIALIZER macro.

Calls to pthread_set_mutexattr_default_np() change how the run-time of the threads creates default

mutexes for all code running in the current process. You can negatively affect other code in your process

that uses pthread mutexes by using this function.

Use of this function is not recommended because it can affect the creation of mutexes that your

application does not directly own.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

kind (Input) Variable containing the kind attribute

Return Value

0 pthread_set_mutexattr_default() was successful.

value pthread_set_mutexattr_default() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_set_mutexattr_default() was not successful, the error condition returned usually indicates one

of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.

214 iSeries: Pthread APIs

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131—Set Mutex Kind Attribute
v “pthread_mutex_init()—Initialize Mutex” on page 141—Initialize Mutex

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_sigmask()—Set or Get Signal Mask

 Syntax:

 #include <pthread.h>

 #include <signal.h>

 int pthread_sigmask(int how, const sigset_t *set,

 sigset_t *oset);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_sigmask() function examines or modifies the signal blocking mask for the current thread.

The signals SIGKILL or SIGStop cannot be blocked. Any attempt to use pthread_sigmask() to block

these signals is simply ignored, and no error is returned.

SIGFPE, SIGILL, and SIGSEGV signals that are not artificially generated by kill(), pthread_kill() or

raise() (that is, were generated by the system as a result of a hardware or software exception) are not

blocked.

If there are any pending unblocked signals after pthread_sigmask() has changed the signal mask, at least

one of those signals is delivered to the process before pthread_sigmask() returns.

If pthread_sigmask() fails, the signal mask of the thread is not changed.

The possible values for how, which are defined in the <signal.h> header file, are as follows:

SIG_BLOCK

 Indicates that the set of signals given by set should be blocked, in addition to the set currently

being blocked

SIG_UNBLOCK

 Indicates that the set of signals given by set should not be blocked. These signals are removed

from the current set of signals being blocked

Chapter 1. Pthread APIs 215

#TOP_OF_PAGE
aplist.htm

SIG_SETMASK

 Indicates that the set of signals given by set should replace the old set of signals being blocked

 The set parameter points to a signal set that contains the new signals that should be blocked or

unblocked (depending on the value of how), or it points to the new signal mask if the value of how is

SIG_SETMASK. If set is a NULL pointer, the set of blocked signals is not changed. If set is NULL, the

value of how is ignored.

The signal set manipulation functions (sigemptyset(), sigfillset(), sigaddset(), and sigdelset()) must be

used to establish the new signal set pointed to by set.

The pthread_sigmask() function determines the current signal set and returns this information in *oset. If

set is NULL, oset returns the current set of signals being blocked. When set is not NULL, the set of signals

pointed to by oset is the previous set.

Authorities and Locks

None.

Parameters

how (Input) The way in which the signal set is changed

set (Input) A pointer to a set of signals to be used to change the currently blocked set. This value can

be NULL

oset (Output) A pointer to the space where the previous signal mask is stored. This value can be

NULL

Return Value

0 pthread_sigmask() was successful.

value pthread_sigmask() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_sigmask() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[ENOTSIGINIT]

 The process is not enabled for signals.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_kill()—Send Signal to Thread” on page 111—Send Signal to Thread
v “pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests” on page 219—Convert Signals to

Cancel Requests

Example

See Code disclaimer information for information pertaining to code examples.

216 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <signal.h>

#include “check.h”

#define NUMTHREADS 3

void sighand(int signo);

void *threadfunc(void *parm)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 int rc;

 pthread_getunique_np(&self, &tid);

 printf(“Thread 0x%.8x %.8x entered\n”, tid);

 errno = 0;

 rc = sleep(30);

 if (rc != 0 && errno == EINTR) {

 printf(“Thread 0x%.8x %.8x got a signal delivered to it\n”,

 tid);

 return NULL;

 }

 printf(“Thread 0x%.8x %.8x did not get expected results! rc=%d, errno=%d\n”,

 tid, rc, errno);

 return NULL;

}

void *threadmasked(void *parm)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 sigset_t mask;

 int rc;

 pthread_getunique_np(&self, &tid);

 printf(“Masked thread 0x%.8x %.8x entered\n”, tid);

 sigfillset(&mask); /* Mask all allowed signals */

 rc = pthread_sigmask(SIG_BLOCK, &mask, NULL);

 checkResults(“pthread_sigmask()\n”, rc);

 errno = 0;

 rc = sleep(15);

 if (rc != 0) {

 printf(“Masked thread 0x%.8x %.8x did not get expected results! ”

 “rc=%d, errno=%d\n”,

 tid, rc, errno);

 return NULL;

 }

 printf(“Masked thread 0x%.8x %.8x completed masked work\n”,

 tid);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc;

 int i;

 struct sigaction actions;

 pthread_t threads[NUMTHREADS];

 pthread_t maskedthreads[NUMTHREADS];

 printf(“Enter Testcase - %s\n”, argv[0]);

 printf(“Set up the alarm handler for the process\n”);

Chapter 1. Pthread APIs 217

memset(&actions, 0, sizeof(actions));

 sigemptyset(&actions.sa_mask);

 actions.sa_flags = 0;

 actions.sa_handler = sighand;

 rc = sigaction(SIGALRM,&actions,NULL);

 checkResults(“sigaction\n”, rc);

 printf(“Create masked and unmasked threads\n”);

 for(i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&threads[i], NULL, threadfunc, NULL);

 checkResults(“pthread_create()\n”, rc);

 rc = pthread_create(&maskedthreads[i], NULL, threadmasked, NULL);

 checkResults(“pthread_create()\n”, rc);

 }

 sleep(3);

 printf(“Send a signal to masked and unmasked threads\n”);

 for(i=0; i<NUMTHREADS; ++i) {

 rc = pthread_kill(threads[i], SIGALRM);

 checkResults(“pthread_kill()\n”, rc);

 rc = pthread_kill(maskedthreads[i], SIGALRM);

 checkResults(“pthread_kill()\n”, rc);

 }

 printf(“Wait for masked and unmasked threads to complete\n”);

 for(i=0; i<NUMTHREADS; ++i) {

 rc = pthread_join(threads[i], NULL);

 checkResults(“pthread_join()\n”, rc);

 rc = pthread_join(maskedthreads[i], NULL);

 checkResults(“pthread_join()\n”, rc);

 }

 printf(“Main completed\n”);

 return 0;

}

void sighand(int signo)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 pthread_getunique_np(&self, &tid);

 printf(“Thread 0x%.8x %.8x in signal handler\n”,

 tid);

 return;

}

Output:

Thread 0x00000000 0000000d entered

Masked thread 0x00000000 0000000a entered

Thread 0x00000000 00000009 entered

Thread 0x00000000 0000000b entered

Masked thread 0x00000000 0000000e entered

Masked thread 0x00000000 0000000c entered

Send a signal to masked and unmasked threads

Wait for masked and unmasked threads to complete

Thread 0x00000000 00000009 in signal handler

Thread 0x00000000 00000009 got a signal delivered to it

Thread 0x00000000 0000000b in signal handler

Thread 0x00000000 0000000b got a signal delivered to it

Thread 0x00000000 0000000d in signal handler

Thread 0x00000000 0000000d got a signal delivered to it

218 iSeries: Pthread APIs

Masked thread 0x00000000 0000000a completed masked work

Masked thread 0x00000000 0000000e completed masked work

Masked thread 0x00000000 0000000c completed masked work

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests

 Syntax:

 #include <pthread.h>

 int pthread_signal_to_cancel_np(sigset_t *set, pthread_t *thread);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_signal_to_cancel_np() function causes a pthread_cancel() to be delivered to the target

thread when the first signal specified in set arrives.

All threads in the process should have the signals specified by set blocked from the time of the call to

pthread_signal_to_cancel_np() until the time when the pthread_cancel() is delivered to the target thread.

If pthread_signal_to_cancel_np() has been called, but a signal has not yet been converted to a

pthread_cancel(), a subsequent call to pthread_signal_to_cancel_np() overrides the first call.

The pthread_signal_to_cancel_np() function creates a service thread (called the SignalToCancel thread) to

perform the signal to cancel conversion. This conversion occurs asynchronously to the thread that called

pthread_signal_to_cancel_np().

The SignalToCancel thread blocks all signals and performs a sigwait() on the set of signals specified by

set. When sigwait() returns, indicating that one of the signals in set was synchronously received, the

SignalToCancel thread calls pthread_cancel() using the thread specified as the target.

Since the SignalToCancel thread processing occurs asynchronously, the caller of

pthread_signal_to_cancel_np() is not notified of errors that may occur during the processing of the

SignalToCancel thread. If the target thread has terminated or the signals specified by set are not valid, the

caller of pthread_signal_to_cancel_np() is not notified.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

set (Input) The set of signals that will be converted to pthread_cancel() requests

Chapter 1. Pthread APIs 219

#TOP_OF_PAGE
aplist.htm

thread (Input) The thread that will be canceled when a signal in set arrives

Return Value

0 pthread_signal_to_cancel_np() was successful.

value pthread_signal_to_cancel_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_signal_to_cancel_np() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_kill()—Send Signal to Thread” on page 111—Send Signal to Thread
v “pthread_sigmask()—Set or Get Signal Mask” on page 215—Set or Get Signal Mask

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <signal.h>

#include "check.h"

void sighand(int signo);

void cancellationCleanup(void *parm) { printf("Thread was canceled\n"); }

void *threadfunc(void *parm)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 int rc;

 int i=5;

 pthread_getunique_np(&self, &tid);

 printf("Thread 0x%.8x %.8x entered\n", tid);

 while (i--) {

 printf("Thread 0x%.8x %.8x looping\n",

 tid, rc, errno);

 sleep(2);

 pthread_testcancel();

 }

 printf("Thread 0x%.8x %.8x did not expect to get here\n",

 tid);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc;

 int i;

 pthread_t thread;

220 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

struct sigaction actions;

 sigset_t mask;

 void *status;

 pthread_t self;

 pthread_id_np_t tid;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Set up the alarm handler for the process\n");

 memset(&actions, 0, sizeof(actions));

 sigemptyset(&actions.sa_mask);

 actions.sa_flags = 0;

 actions.sa_handler = sighand;

 rc = sigaction(SIGALRM,&actions,NULL);

 checkResults("sigaction\n", rc);

 printf("Block all signals in the parent so they can be inherited\n");

 sigfillset(&mask); /* Mask all allowed signals */

 rc = pthread_sigmask(SIG_BLOCK, &mask, NULL);

 checkResults("pthread_sigmask()\n", rc);

 printf("Create thread that inherits blocking mask\n");

 /* Thread will inherit blocking mask */

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 /* Convert signals to cancels */

 rc = pthread_signal_to_cancel_np(&mask, &thread);

 checkResults("pthread_signal_to_cancel()\n", rc);

 sleep(3);

 self = pthread_self();

 pthread_getunique_np(&self, &tid);

 printf("Thread 0x%.8x %.8x sending a signal to the process\n", tid);

 kill(getpid(), SIGALRM);

 checkResults("kill()\n", rc);

 printf("Wait for masked and unmasked threads to complete\n");

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 if (status != PTHREAD_CANCELED) {

 printf("Got an incorrect thread status\n");

 return 1;

 }

 printf("The target thread was canceled\n");

 printf("Main completed\n");

 return 0;

}

void sighand(int signo)

{

 pthread_t self = pthread_self();

 pthread_id_np_t tid;

 pthread_getunique_np(&self, &tid);

 printf("Thread 0x%.8x %.8x in signal handler\n",

 tid);

 return;

}

Output:

Chapter 1. Pthread APIs 221

Enter Testcase - QP0WTEST/TPSIG2C0

Set up the alarm handler for the process

Block all signals in the parent so they can be inherited

Create thread that inherits blocking mask

Thread 0x00000000 00000007 entered

Thread 0x00000000 00000007 looping

Thread 0x00000000 00000007 looping

Thread 0x00000000 00000006 sending a signal to the process

Wait for masked and unmasked threads to complete

The target thread was canceled

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_testcancel()—Create Cancellation Point

 Syntax:

 #include <pthread.h>

 void pthread_testcancel(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_testcancel() function creates a cancellation point in the calling thread. If cancelability is

currently disabled, this function has no effect. For more information on cancelability, see “Thread

cancellation APIs” on page 289.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes

the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the

thread changes the cancelability, calls a function that is a cancellation point, or calls pthread_testcancel(),

thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon

immediately, interrupting the thread with its processing.

Note: You should not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user

errors section of this document for more information.

Authorities and Locks

None.

Parameters

None.

Return Value

None.

222 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State
v “pthread_setcanceltype()—Set Cancel Type” on page 201—Set Cancel Type

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

void cleanupHandler(void *parm) {

 printf("Inside cancellation cleanup handler\n");

}

void *threadfunc(void *parm)

{

 unsigned int i=0;

 int rc=0, oldState=0;

 printf("Entered secondary thread\n");

 pthread_cleanup_push(cleanupHandler, NULL);

 rc = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldState);

 checkResults("pthread_setcancelstate()\n", rc);

 /* Allow cancel to be pending on this thread */

 sleep(2);

 while (1) {

 printf("Secondary thread is now looping\n");

 ++i;

 sleep(1);

 /* pthread_testcancel() has no effect until cancelability is enabled.*/

 /* At that time, a call to pthread_testcancel() should result in the */

 /* pending cancel being acted upon */

 pthread_testcancel();

 if (i == 5) {

 printf("Cancel state set to ENABLE\n");

 rc = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,&oldState);

 checkResults("pthread_setcancelstate(2)\n", rc);

 /* Now, cancellation points will allow pending cancels

 to get through to this thread */

 }

 } /* infinite */

 pthread_cleanup_pop(0);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status=NULL;

 printf("Enter Testcase - %s\n", argv[0]);

 /* Create a thread using default attributes */

 printf("Create thread using the NULL attributes\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create(NULL)\n", rc);

Chapter 1. Pthread APIs 223

aboutapis.htm#CODEDISCLAIMER

sleep(1);

 printf("Cancel the thread\n");

 rc = pthread_cancel(thread);

 checkResults("pthread_cancel()\n", rc);

 rc = pthread_join(thread, &status);

 if (status != PTHREAD_CANCELED) {

 printf("Thread returned unexpected result!\n");

 exit(1);

 }

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPTESTC0

Create thread using the NULL attributes

Entered secondary thread

Cancel the thread

Secondary thread is now looping

Secondary thread is now looping

Secondary thread is now looping

Secondary thread is now looping

Secondary thread is now looping

Cancel state set to ENABLE

Secondary thread is now looping

Inside cancellation cleanup handler

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_test_exit_np()—Test Thread Exit Status

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_test_exit_np(void **status);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_test_exit_np() function returns the current state of the thread along with its exit status.

If the thread is currently processing an exit condition due to a call to pthread_exit() or cancellation due to

being the target of a pthread_cancel(), pthread_test_exit_np() returns PTHREAD_STATUS_EXIT_NP and

sets the exit status pointed to by the status parameter to be the current thread exit status.

224 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

If the thread is currently running and is not running cancellation cleanup handlers or data destructors

while terminating, pthread_test_exit_np() returns PTHREAD_STATUS_ACTIVE_NP, and does not

return the exit status.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

status Pointer to the parameter to receive the exit status if PTHREAD_STATUS_EXIT_NP is returned

Return Value

PTHREAD_STATUS_ACTIVE_NP

The thread is currently not exiting.

PTHREAD_STATUS_EXIT_NP

The thread is currently exiting.

value pthread_test_exit_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_test_exit_np() was not successful, the error condition returned usually indicates one of the

following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The values specified for the argument are not correct.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
v “pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include “check.h”

int checkStatusFailed1=0;

int missedHandler1=1;

int thread1Status=42;

void cleanupHandler1(void *arg)

{

 int rc;

 void *status;

 printf(“Thread 1 - cleanup handler\n”);

 missedHandler1=0;

 rc = pthread_test_exit_np(&status);

 if (rc != PTHREAD_STATUS_EXIT_NP) {

 printf(“Thread 1 - returned %d instead ”

 “of PTHREAD_STATUS_EXIT_NP\n”, rc);

Chapter 1. Pthread APIs 225

aboutapis.htm#CODEDISCLAIMER

checkStatusFailed1 = 1;

 return;

 }

 if (__INT(status) != thread1Status) {

 printf(“Thread 1 - status = %d\n”

 “Thread 1 - expected %d\n”,

 __INT(status), thread1Status);

 checkStatusFailed1=1;

 }

 printf(“Thread 1 - correctly got PTHREAD_STATUS_EXIT_NP ”

 “and thread exit status of %d\n”, thread1Status);

}

void *thread1func(void *parm)

{

 printf(“Thread 1 - Entered\n”);

 pthread_cleanup_push(cleanupHandler1, NULL);

 pthread_exit(__VOID(thread1Status));

 pthread_cleanup_pop(0);

 return __VOID(0);

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf(“Enter Testcase - %s\n”, argv[0]);

 rc = pthread_test_exit_np(&status);

 if (rc != PTHREAD_STATUS_ACTIVE_NP) {

 printf(“We should always be in an ACTIVE status here! rc=%d\n”,

 rc);

 exit(1);

 }

 printf(“Create the pthread_exit thread\n”);

 rc = pthread_create(&thread, NULL, thread1func, NULL);

 checkResults(“pthread_create()\n”, rc);

 rc = pthread_join(thread, &status);

 checkResults(“pthread_join()\n”, rc);

 if (__INT(status) != thread1Status) {

 printf(“Wrong status from thread 1\n”);

 }

 if (checkStatusFailed1 || missedHandler1) {

 printf(“The thread did not complete its test correctly! ”

 “ check=%d, missed=%d\n”,

 checkStatusFailed1, missedHandler1);

 exit(1);

 }

 printf(“Main completed\n”);

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPTEXIT0

Create the pthread_exit thread

Thread 1 - Entered

Thread 1 - cleanup handler

Thread 1 - correctly got PTHREAD_STATUS_EXIT_NP and thread exit status of 42

Main completed

226 iSeries: Pthread APIs

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

pthread_trace_init_np()—Initialize or Re-initialize pthread tracing

 Syntax:

 #include <pthread.h>

 int pthread_trace_init_np(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

The pthread_trace_init_np() API initializes or refreshes both the Pthreads library trace level and the

application trace level. The Pthreads library trace level is maintained internally by the Pthreads library,

while the application trace level is stored in the Qp0wTraceLevel external variable and can be used by the

PTHREAD_TRACE_NP() macro.

When a program or service program that uses the Pthread APIs causes the Pthread APIs to be loaded

(activated), the Pthreads library automatically calls the pthread_trace_init_np() function in order to

initialize tracing based on the value of the QIBM_PTHREAD_TRACE_LEVEL environment variable at

that time.

The application can call pthread_trace_init_np() at an arbitrary time during execution to initialize or

refresh the current Pthreads library tracing level and the application trace level. The trace level is set

based on the value of the QIBM_PTHREAD_TRACE_LEVEL environment variable at the time of the

call. The new tracing level is also returned.

The Pthreads library tracing level is used to control trace records written by the Pthreads library

functions at runtime. The following table describes the preprocessor macros representing the various trace

levels, the setting of the QIBM_PTHREAD_TRACE_LEVEL environment variable, and the conditions

that are traced.

 Trace Level EnvVar Description

PTHREAD_TRACE_NONE_NP ″QIBM_PTHREAD_TRACE_

LEVEL=0″
(or not set)

No tracing is performed by the

Pthreads library. Application tracing

may still be done.

PTHREAD_TRACE_ERROR_NP ″QIBM_PTHREAD_TRACE_

LEVEL=1″

Error level traces error conditions

and the causes of most error return

codes.

PTHREAD_TRACE_INFO_NP ″QIBM_PTHREAD_TRACE_

LEVEL=2″

Informational level traces error level

tracepoints, plus entry to and exit

from functions, parameters passed to

and return codes from functions,

major changes in control flow.

Chapter 1. Pthread APIs 227

#TOP_OF_PAGE
aplist.htm

Trace Level EnvVar Description

PTHREAD_TRACE_VERBOSE_NP ″QIBM_PTHREAD_TRACE_

LEVEL=3″

Verbose level traces informational

level tracepoints, plus detailed

information about application

parameters, threads and data

structures including information

about Pthreads library processing

information.

The application provides tracing support similar to the Pthreads library using the

PTHREAD_TRACE_NP() macro.

The PTHREAD_TRACE_NP() macro uses the external variable Qp0wTraceLevel. Qp0wTraceLevel may be

used directly by the application to set application trace level without effecting the current Pthread library

trace level. Set the value of Qp0wTraceLevel to one of PTHREAD_TRACE_NONE_NP,

PTHREAD_TRACE_ERROR_NP, PTHREAD_TRACE_INFO_NP, or

PTHREAD_TRACE_VERBOSE_NP.

The PTHREAD_TRACE_NP() macro can be used in conjunction with the following APIs to put trace

records into the user trace flight recorder. The following system APIs defined in the qp0ztrc.h header file:

v Qp0zUprintf - print formatted trace data

v Qp0zDump - dump formatted hex data

v Qp0zDumpStack - dump the call stack of the calling thread

v Qp0zDumpTargetStack - dump the call stack of the target thread

The trace records are written to the user trace flight recorder and can be accessed by the following CL

commands:

v DMPUSRTRC - dump the contents of a specified job’s trace

v CHGUSRTRC - change attributes (size, wrapping, clear) of a specified job’s trace

v DLTUSRTRC - delete the persistent trace object associated with a job’s trace

Authorities and Locks

None.

Parameters

None.

Return Value

value The new trace level. One of PTHREAD_TRACE_NONE_NP, PTHREAD_TRACE_ERROR_NP,

PTHREAD_TRACE_INFO_NP, or PTHREAD_TRACE_VERBOSE_NP.

Error Conditions

None.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.

v “PTHREAD_TRACE_NP()—Macro to optionally execute code based on trace level” on page

233—Execute code based on trace level (Macro)

228 iSeries: Pthread APIs

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <qp0ztrc.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

typedef struct {

 int threadSpecific1;

 int threadSpecific2;

} threadSpecific_data_t;

#define NUMTHREADS 2

pthread_key_t threadSpecificKey;

void foo(void);

void bar(void);

void dataDestructor(void *);

void *theThread(void *parm) {

 int rc;

 threadSpecific_data_t *gData;

 PTHREAD_TRACE_NP({

 Qp0zUprintf("Thread Entered\n");

 Qp0zDump("Global Data", parm, sizeof(threadSpecific_data_t));},

 PTHREAD_TRACE_INFO_NP);

 gData = (threadSpecific_data_t *)parm;

 rc = pthread_setspecific(threadSpecificKey, gData);

 checkResults("pthread_setspecific()\n", rc);

 foo();

 return NULL;

}

void foo() {

 threadSpecific_data_t *gData =

 (threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("foo(), threadSpecific data=%d %d\n",

 gData->threadSpecific1, gData->threadSpecific2);,

 PTHREAD_TRACE_INFO_NP);

 bar();

 PTHREAD_TRACE_NP(Qp0zUprintf("foo(): This is an error tracepoint\n");,

 PTHREAD_TRACE_ERROR_NP);

}

void bar() {

 threadSpecific_data_t *gData =

 (threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("bar(), threadSpecific data=%d %d\n",

 gData->threadSpecific1, gData->threadSpecific2);,

 PTHREAD_TRACE_INFO_NP);

 PTHREAD_TRACE_NP(Qp0zUprintf("bar(): This is an error tracepoint\n");

 Qp0zDumpStack("This thread’s stack at time of error in bar()");,

 PTHREAD_TRACE_ERROR_NP);

 return;

}

void dataDestructor(void *data) {

Chapter 1. Pthread APIs 229

aboutapis.htm#CODEDISCLAIMER

PTHREAD_TRACE_NP(Qp0zUprintf("dataDestructor: Free data\n");,

 PTHREAD_TRACE_INFO_NP);

 pthread_setspecific(threadSpecificKey, NULL); free(data);

 /* If doing verbose tracing we’ll even write a message to the job log */

 PTHREAD_TRACE_NP(Qp0zLprintf("Free’d the thread specific data\n");,

 PTHREAD_TRACE_VERBOSE_NP);

}

/* Call this testcase with an optional parameter ’PTHREAD_TRACING’ */

/* If the PTHREAD_TRACING parameter is specified, then the */

/* Pthread tracing environment variable will be set, and the */

/* pthread tracing will be re initialized from its previous value. */

/* NOTE: We set the trace level to informational, tracepoints cut */

/* using PTHREAD_TRACE_NP at a VERBOSE level will NOT show up*/

int main(int argc, char **argv) {

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 threadSpecific_data_t *gData;

 char buffer[50];

 PTHREAD_TRACE_NP(Qp0zUprintf("Enter Testcase - %s\n", argv[0]);,

 PTHREAD_TRACE_INFO_NP);

 if (argc == 2 && !strcmp("PTHREAD_TRACING", argv[1])) {

 /* Turn on internal pthread function tracing support */

 /* Or, use ADDENVVAR, CHGENVVAR CL commands to set this envvar*/

 sprintf(buffer, "QIBM_PTHREAD_TRACE_LEVEL=%d", PTHREAD_TRACE_INFO_NP);

 putenv(buffer);

 /* Refresh the Pthreads internal tracing with the environment */

 /* variables value. */

 pthread_trace_init_np();

 }

 else {

 /* Trace only our application, not the Pthread code */

 Qp0wTraceLevel = PTHREAD_TRACE_INFO_NP;

 }

 rc = pthread_key_create(&threadSpecificKey, dataDestructor);

 checkResults("pthread_key_create()\n", rc);

 for (i=0; i <NUMTHREADS; ++i) {

 PTHREAD_TRACE_NP(Qp0zUprintf("Create/start a thread\n");,

 PTHREAD_TRACE_INFO_NP);

 /* Create per-thread threadSpecific data and pass it to the thread */

 gData = (threadSpecific_data_t *)malloc(sizeof (threadSpecific_data_t));

 gData->threadSpecific1 = i;

 gData->threadSpecific2 = (i+1)*2;

 rc = pthread_create(&thread[i], NULL, theThread, gData);

 checkResults("pthread_create()\n", rc);

 PTHREAD_TRACE_NP(Qp0zUprintf("Wait for the thread to complete, "

 "and release their resources\n");,

 PTHREAD_TRACE_INFO_NP);

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 pthread_key_delete(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("Main completed\n");,

 PTHREAD_TRACE_INFO_NP);

 return 0;

}

Output

230 iSeries: Pthread APIs

Use CL command DMPUSRTRC to output the following tracing information that the example creates.

The DMPUSRTRC CL command causes the following information to be put into file

QTEMP/QAP0ZDMP or to standard output depending on the options used for the CL command.

Note the following:

v The trace records are indented and labeled based on thread id plus a microsecond timestamp at the

time the tracepoint was cut. In the following trace record, the value 00000018 indicates the thread ID of

the thread that created the tracepoint. The value 972456 indicates that the tracepoint occurred 972456

microseconds after the last timestamp indicator.

 00000018:972456 pthread_trace_init_np(): New traceLevel=2

v You can use the Pthread library tracepoints to debug incorrect calls to the Pthreads library from your

application.

v The following trace output occurs when the optional parameter ’PTHREAD_TRACING’ IS specified

when calling this program. The ’PTHREAD_TRACING’ parameter causes the pthread_trace_init_np()()

function to be used which initializes the Pthreads library tracing.

v There is significantly more information traced than the example shown in the documentation for the

PTHREAD_TRACE_NP() macro

v The function names for threads and data destructors are traced.

v The values for many Pthread API parameters are traced, allowing application debug.

v Some internal Pthread API information is traced at an information-level tracing when the control flow

information is critical.

User Trace Dump for job 097979/KULACK/PTHREADT. Size: 300K, Wrapped 0 times.

--- 11/09/1998 15:15:56 ---

 00000018:972456 pthread_trace_init_np(): New traceLevel=2

 00000018:972592 pthread_key_create(entry): dtor=a1000000 00000000 d161cc19 45001a00

 00000018:993920 destructor name is ’dataDestructor__FPv’

 00000018:994048 pthread_key_create(exit): newKey=0, rc=0

 00000018:994120 Create/start a thread

 00000018:994224 pthread_create(entry): thread=80000000 00000000 f11d9cc7 23000400

 00000018:994296 attr=00000000 00000000 00000000 00000000

 00000018:994376 start_routine=a1000000 00000000 d161cc19 45006980

 00000018:995320 routine name is ’theThread__FPv’

 00000018:995432 arg=80000000 00000000 e7c74b3e 04001cd0

 00000018:995992 pthread_create(status): Create a new thread

 00000018:996088 Joinable-1

 00000018:996152 PrioInheritSched-EXPLICIT Prio-0

 00000018:997488 pthread_create(exit): Success

 00000018:997632 tcb=80000000 00000000 feb52907 07001000

 00000018:997704 thread id=00000000 00000019 handle=00000007

 00000018:997792 Wait for the thread to complete, and release their resources

 00000018:997896 pthread_join_processor(entry): Target 00000000 00000019, Detach=1, time=00000000 sec, 00000000 nanosec.

 00000018:997968 statusp = 00000000 00000000 00000000 00000000

 00000019:998720 pthread_create_part2(status): run the new thread: 00000000 00000019

 00000019:998864 Thread Entered

 00000019:998984 E7C74B3E04:001CD0 L:0008 Global Data

 00000019:999144 E7C74B3E04:001CD0 00000000 00000002 *................*

 00000019:999240 pthread_setspecific(entry): value=80000000 00000000 e7c74b3e 04001cd0, key=0

 00000019:999320 pthread_getspecific(entry): key=0

 00000019:999392 foo(), threadSpecific data=0 2

 00000019:999464 pthread_getspecific(entry): key=0

 00000019:999536 bar(), threadSpecific data=0 2

 00000019:999600 bar(): This is an error tracepoint

 00000019:999664 Stack Dump For Current Thread

 00000019:999728 Stack: This thread’s stack at time of error in bar()

--- 11/09/1998 15:15:57 ---

 00000019:000304 Stack: Library / Program Module Stmt Procedure

 00000019:000472 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 00000019:000560 Stack: QSYS / QP0WPTHR QP0WPTHR 1008 : pthread_create_part2

 00000019:000656 Stack: KULACK / PTHREADT PTHREADT 19 : theThread__FPv

 00000019:000728 Stack: KULACK / PTHREADT PTHREADT 29 : foo__Fv

Chapter 1. Pthread APIs 231

00000019:000808 Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv

 00000019:000888 Stack: QSYS / QP0ZCPA QP0ZUDBG 87 : Qp0zDumpStack

 00000019:007416 Stack: QSYS / QP0ZSCPA QP0ZSCPA 276 : Qp0zSUDumpStack

 00000019:007504 Stack: QSYS / QP0ZSCPA QP0ZSCPA 287 : Qp0zSUDumpTargetStack

 00000019:007544 Stack: Completed

 00000019:007664 foo(): This is an error tracepoint

 00000019:007752 pthread_create_part2(status): return from start routine, status=00000000 00000000 00000000 00000000

 00000019:007816 pthread_cleanup(entry): Thread termination started

 00000019:007888 Qp0wTlsVector::invokeHandlers(entry):

 00000019:007952 Qp0wTlsVector::invokeHandler(invoke): key=0

 00000019:008040 dtor=a1000000 00000000 d161cc19 45001a00,

 00000019:010792 destructor name is ’dataDestructor__FPv’

 00000019:010920 arg=80000000 00000000 e7c74b3e 04001cd0

 00000019:011008 dataDestructor: Free data

 00000019:011096 pthread_setspecific(entry): value=00000000 00000000 00000000 00000000, key=0

 00000019:011184 pthread_cleanup(exit): returning

 00000018:011624 pthread_join_processor(status): target status=00000000 00000000 00000000 00000000, state=0x03, YES

 00000018:011752 Create/start a thread

 00000018:011880 pthread_create(entry): thread=80000000 00000000 f11d9cc7 23000430

 00000018:011952 attr=00000000 00000000 00000000 00000000

 00000018:012032 start_routine=a1000000 00000000 d161cc19 45006980

 00000018:013464 routine name is ’theThread__FPv’

 00000018:013576 arg=80000000 00000000 e7c74b3e 04001cd0

 00000018:013704 Qp0wTcb::Qp0wTcb(status): Tcb was reused: tcb=80000000 00000000 feb52907 07001000

 00000018:013784 pthread_create(status): Create a new thread

 00000018:013848 Joinable-1

 00000018:013912 PrioInheritSched-EXPLICIT Prio-0

 00000018:014736 pthread_create(exit): Success

 00000018:014912 tcb=80000000 00000000 feb52907 07001000

 00000018:014984 thread id=00000000 0000001a handle=00000007

 00000018:015072 Wait for the thread to complete, and release their resources

 00000018:015168 pthread_join_processor(entry): Target 00000000 0000001a, Detach=1, time=00000000 sec, 00000000 nanosec.

 00000018:015240 statusp = 00000000 00000000 00000000 00000000

 0000001A:015696 pthread_create_part2(status): run the new thread: 00000000 0000001a

 0000001A:015840 Thread Entered

 0000001A:015968 E7C74B3E04:001CD0 L:0008 Global Data

 0000001A:016128 E7C74B3E04:001CD0 00000001 00000004 *................*

 0000001A:016232 pthread_setspecific(entry): value=80000000 00000000 e7c74b3e 04001cd0, key=0

 0000001A:016304 pthread_getspecific(entry): key=0

 0000001A:016384 foo(), threadSpecific data=1 4

 0000001A:016456 pthread_getspecific(entry): key=0

 0000001A:016528 bar(), threadSpecific data=1 4

 0000001A:016584 bar(): This is an error tracepoint

 0000001A:016648 Stack Dump For Current Thread

 0000001A:016712 Stack: This thread’s stack at time of error in bar()

 0000001A:016904 Stack: Library / Program Module Stmt Procedure

 0000001A:017048 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 0000001A:017144 Stack: QSYS / QP0WPTHR QP0WPTHR 1008 : pthread_create_part2

 0000001A:017232 Stack: KULACK / PTHREADT PTHREADT 19 : theThread__FPv

 0000001A:018680 Stack: KULACK / PTHREADT PTHREADT 29 : foo__Fv

 0000001A:018760 Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv

 0000001A:018840 Stack: QSYS / QP0ZCPA QP0ZUDBG 87 : Qp0zDumpStack

 0000001A:018928 Stack: QSYS / QP0ZSCPA QP0ZSCPA 276 : Qp0zSUDumpStack

 0000001A:019000 Stack: QSYS / QP0ZSCPA QP0ZSCPA 287 : Qp0zSUDumpTargetStack

 0000001A:019040 Stack: Completed

 0000001A:019136 foo(): This is an error tracepoint

 0000001A:019224 pthread_create_part2(status): return from start routine, status=00000000 00000000 00000000 00000000

 0000001A:019288 pthread_cleanup(entry): Thread termination started

 0000001A:019352 Qp0wTlsVector::invokeHandlers(entry):

 0000001A:019424 Qp0wTlsVector::invokeHandler(invoke): key=0

 0000001A:019504 dtor=a1000000 00000000 d161cc19 45001a00,

 0000001A:021360 destructor name is ’dataDestructor__FPv’

 0000001A:021496 arg=80000000 00000000 e7c74b3e 04001cd0

 0000001A:021576 dataDestructor: Free data

 0000001A:021664 pthread_setspecific(entry): value=00000000 00000000 00000000 00000000, key=0

 0000001A:021752 pthread_cleanup(exit): returning

232 iSeries: Pthread APIs

00000018:022112 pthread_join_processor(status): target status=00000000 00000000 00000000 00000000, state=0x03, YES

 00000018:022272 pthread_key_delete(entry): key=0

 00000018:022336 pthread_key_delete(exit): rc=0

 00000018:022408 Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

PTHREAD_TRACE_NP()—Macro to optionally execute code based on

trace level

 Syntax:

 #include <pthread.h>

 PTHREAD_TRACE_NP(optionalCode, desiredTraceLevel);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: No

An application can use the PTHREAD_TRACE_NP() macro to execute optional code based on the

current application trace level. The optionalCode to be executed can include multiple statements and can

be surrounded by the C/C++ begin/end block operators (the curly brackets { }). The optionalCode can

include pre-condition or post-condition logic, tracepoint information, or any other desired C/C++

statements.

If the current application trace level is set to a level equal to or higher than the desiredTraceLevel, then the

code executes.

The current Pthread library trace level is set automatically when a program or service program that uses

the Pthread APIs causes the Pthread APIs to be loaded (activated) or when the application explicitly calls

the pthread_trace_init_np() function. In either case, the Pthreads library trace level is set based on the

value of the QIBM_PTHREAD_TRACE_LEVEL environment variable at that time.

If the preprocessor value PTHREAD_TRACE_NDEBUG is defined, then the call to

PTHREAD_TRACE_NP() is compiled out and does not generate any executable runtime code. Use

PTHREAD_TRACE_NDEBUG for production level code that should not perform any tracing, or leave

tracepoints in the code to assist user’s of your application.

The pthread_trace_init_np() API initializes or refreshes both the Pthreads library trace level and the

application trace level. The Pthreads library trace level is maintained internally by the Pthreads library,

while the application trace level is stored in the Qp0wTraceLevel external variable, and can be used by the

PTHREAD_TRACE_NP() macro.

The PTHREAD_TRACE_NP() macro uses the external variable Qp0wTraceLevel. Qp0wTraceLevel may be

used directly by the application to set application trace level without effecting the current Pthread library

trace level. Set the value of Qp0wTraceLevel to one of the following:

v PTHREAD_TRACE_NONE_NP

Chapter 1. Pthread APIs 233

#TOP_OF_PAGE
aplist.htm

v PTHREAD_TRACE_ERROR_NP

v PTHREAD_TRACE_INFO_NP

v PTHREAD_TRACE_VERBOSE_NP

For consistent tracing behavior, the application should use the following table as a guide to choosing

value of the desiredTraceLevel parameter.

 Desired Trace Level Description

PTHREAD_TRACE_NONE_NP The optionalCode always runs, even when the current trace level is

set to none. It is recommended that this level is only used at

development time.

PTHREAD_TRACE_ERROR_NP The optionalCode runs if the current trace level is set to an error level

or higher. Use the error level to trace error conditions and the

reasons for error return codes.

PTHREAD_TRACE_INFO_NP The optionalCode runs if the current trace level is set to an

informational level or higher. Use the informational level to trace

functions’ entry and exit, functions’ parameters and return codes

and major changes in control flow.

PTHREAD_TRACE_VERBOSE_NP The optionalCode runs if the current trace level is set to a verbose

level or higher. Use the Verbose level traces informational level

tracepoints, plus detailed information about application parameters,

threads and data structures including information about Pthreads

library processing information.

The PTHREAD_TRACE_NP() macro can be used in conjunction with the following APIs to put trace

records into the user trace flight recorder. The following system APIs defined in the qp0ztrc.h header file:

v Qp0zUprintf - print formatted trace data

v Qp0zDump - dump formatted hex data

v Qp0zDumpStack - dump the call stack of the calling thread

v Qp0zDumpTargetStack - dump the call stack of the target thread

The trace records are written to the user trace flight recorder and can be accessed by the following CL

commands:

v DMPUSRTRC - dump the contents of a specified job’s trace

v CHGUSRTRC - change attributes (size, wrapping, clear) of a specified job’s trace

v DLTUSRTRC - delete the persistent trace object associated with a job’s trace

Authorities and Locks

None.

Parameters

None.

Return Value

None.

Error Conditions

None.

234 iSeries: Pthread APIs

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_trace_init_np()—Initialize or Re-initialize pthread tracing” on page 227—Initialize or

Re-initialize pthread tracing

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <qp0ztrc.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

typedef struct {

 int threadSpecific1;

 int threadSpecific2;

} threadSpecific_data_t;

#define NUMTHREADS 2

pthread_key_t threadSpecificKey;

void foo(void);

void bar(void);

void dataDestructor(void *);

void *theThread(void *parm) {

 int rc;

 threadSpecific_data_t *gData;

 PTHREAD_TRACE_NP({

 Qp0zUprintf("Thread Entered\n");

 Qp0zDump("Global Data", parm, sizeof(threadSpecific_data_t));},

 PTHREAD_TRACE_INFO_NP);

 gData = (threadSpecific_data_t *)parm;

 rc = pthread_setspecific(threadSpecificKey, gData);

 checkResults("pthread_setspecific()\n", rc);

 foo();

 return NULL;

}

void foo() {

 threadSpecific_data_t *gData =

 (threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("foo(), threadSpecific data=%d %d\n",

 gData->threadSpecific1, gData->threadSpecific2);,

 PTHREAD_TRACE_INFO_NP);

 bar();

 PTHREAD_TRACE_NP(Qp0zUprintf("foo(): This is an error tracepoint\n");,

 PTHREAD_TRACE_ERROR_NP);

}

void bar() {

 threadSpecific_data_t *gData =

 (threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("bar(), threadSpecific data=%d %d\n",

 gData->threadSpecific1, gData->threadSpecific2);,

 PTHREAD_TRACE_INFO_NP);

Chapter 1. Pthread APIs 235

aboutapis.htm#CODEDISCLAIMER

PTHREAD_TRACE_NP(Qp0zUprintf("bar(): This is an error tracepoint\n");

 Qp0zDumpStack("This thread’s stack at time of error in bar()");,

 PTHREAD_TRACE_ERROR_NP);

 return;

}

void dataDestructor(void *data) {

 PTHREAD_TRACE_NP(Qp0zUprintf("dataDestructor: Free data\n");,

 PTHREAD_TRACE_INFO_NP);

 pthread_setspecific(threadSpecificKey, NULL); free(data);

 /* If doing verbose tracing we’ll even write a message to the job log */

 PTHREAD_TRACE_NP(Qp0zLprintf("Free’d the thread specific data\n");,

 PTHREAD_TRACE_VERBOSE_NP);

}

/* Call this testcase with an optional parameter ’PTHREAD_TRACING’ */

/* If the PTHREAD_TRACING parameter is specified, then the */

/* Pthread tracing environment variable will be set, and the */

/* pthread tracing will be re initialized from its previous value. */

/* NOTE: We set the trace level to informational, tracepoints cut */

/* using PTHREAD_TRACE_NP at a VERBOSE level will NOT show up*/

int main(int argc, char **argv) {

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 threadSpecific_data_t *gData;

 char buffer[50];

 PTHREAD_TRACE_NP(Qp0zUprintf("Enter Testcase - %s\n", argv[0]);,

 PTHREAD_TRACE_INFO_NP);

 if (argc == 2 && !strcmp("PTHREAD_TRACING", argv[1])) {

 /* Turn on internal pthread function tracing support */

 /* Or, use ADDENVVAR, CHGENVVAR CL commands to set this envvar*/

 sprintf(buffer, "QIBM_PTHREAD_TRACE_LEVEL=%d", PTHREAD_TRACE_INFO_NP);

 putenv(buffer);

 /* Refresh the Pthreads internal tracing with the environment */

 /* variables value. */

 pthread_trace_init_np();

 }

 else {

 /* Trace only our application, not the Pthread code */

 Qp0wTraceLevel = PTHREAD_TRACE_INFO_NP;

 }

 rc = pthread_key_create(&threadSpecificKey, dataDestructor);

 checkResults("pthread_key_create()\n", rc);

 for (i=0; i <NUMTHREADS; ++i) {

 PTHREAD_TRACE_NP(Qp0zUprintf("Create/start a thread\n");,

 PTHREAD_TRACE_INFO_NP);

 /* Create per-thread threadSpecific data and pass it to the thread */

 gData = (threadSpecific_data_t *)malloc(sizeof (threadSpecific_data_t));

 gData->threadSpecific1 = i;

 gData->threadSpecific2 = (i+1)*2;

 rc = pthread_create(&thread[i], NULL, theThread, gData);

 checkResults("pthread_create()\n", rc);

 PTHREAD_TRACE_NP(Qp0zUprintf("Wait for the thread to complete, "

 "and release their resources\n");,

 PTHREAD_TRACE_INFO_NP);

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 pthread_key_delete(threadSpecificKey);

236 iSeries: Pthread APIs

PTHREAD_TRACE_NP(Qp0zUprintf("Main completed\n");,

 PTHREAD_TRACE_INFO_NP);

 return 0;

}

Output

Use CL command DMPUSRTRC to output the following tracing information that the example creates.

The DMPUSRTRC CL command causes the following information to be put into file

QTEMP/QAP0ZDMP or to standard output depending on the options used for the CL command.

Note the following:

v The trace records are indented and labeled based on thread id plus a microsecond timestamp at the

time the tracepoint was cut. In the following trace record, the value 0000000D indicates the thread ID

of the thread that created the tracepoint. The value 133520 indicates that the tracepoint occurred 133520

microseconds after the last timestamp indicator.

 0000000D:133520 Create/start a thread

v You can use the Pthread library tracepoints to debug incorrect calls to the Pthreads library from your

application.

v The following trace output occurs when the optional parameter ’PTHREAD_TRACING’ is NOT

specified when calling this program. Since ’PTHREAD_TRACING’ is not specified, the application

directly sets the Qp0wTraceLevel external variable, causing only application level tracing to occur, and

skiping any Pthreads library tracing.

Chapter 1. Pthread APIs 237

User Trace Dump for job 096932/KULACK/PTHREADT. Size: 300K, Wrapped 0 times.

--- 11/06/1998 11:06:57 ---

 0000000D:133520 Create/start a thread

 0000000D:293104 Wait for the thread to complete, and release their resources

 0000000E:294072 Thread Entered

 0000000E:294272 DB51A4C80A:001CD0 L:0008 Global Data

 0000000E:294416 DB51A4C80A:001CD0 00000000 00000002 *................*

 0000000E:294496 foo(), threadSpecific data=0 2

 0000000E:294568 bar(), threadSpecific data=0 2

 0000000E:294624 bar(): This is an error tracepoint

 0000000E:294680 Stack Dump For Current Thread

 0000000E:294736 Stack: This thread’s stack at time of error in bar()

 0000000E:333872 Stack: Library / Program Module Stmt Procedure

 0000000E:367488 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 0000000E:371704 Stack: QSYS / QP0WPTHR QP0WPTHR 1008 : pthread_create_part2

 0000000E:371872 Stack: KULACK / PTHREADT PTHREADT 19 : theThread__FPv

 0000000E:371944 Stack: KULACK / PTHREADT PTHREADT 29 : foo__Fv

 0000000E:372016 Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv

 0000000E:372104 Stack: QSYS / QP0ZCPA QP0ZUDBG 87 : Qp0zDumpStack

 0000000E:379248 Stack: QSYS / QP0ZSCPA QP0ZSCPA 276 : Qp0zSUDumpStack

 0000000E:379400 Stack: QSYS / QP0ZSCPA QP0ZSCPA 287 : Qp0zSUDumpTargetStack

 0000000E:379440 Stack: Completed

 0000000E:379560 foo(): This is an error tracepoint

 0000000E:379656 dataDestructor: Free data

 0000000D:413816 Create/start a thread

 0000000D:414408 Wait for the thread to complete, and release their resources

 0000000F:415672 Thread Entered

 0000000F:415872 DB51A4C80A:001CD0 L:0008 Global Data

 0000000F:416024 DB51A4C80A:001CD0 00000001 00000004 *................*

 0000000F:416104 foo(), threadSpecific data=1 4

 0000000F:416176 bar(), threadSpecific data=1 4

 0000000F:416232 bar(): This is an error tracepoint

 0000000F:416288 Stack Dump For Current Thread

 0000000F:416344 Stack: This thread’s stack at time of error in bar()

 0000000F:416552 Stack: Library / Program Module Stmt Procedure

 0000000F:416696 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 0000000F:416784 Stack: QSYS / QP0WPTHR QP0WPTHR 1008 : pthread_create_part2

 0000000F:416872 Stack: KULACK / PTHREADT PTHREADT 19 : theThread__FPv

 0000000F:416952 Stack: KULACK / PTHREADT PTHREADT 29 : foo__Fv

 0000000F:531432 Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv

 0000000F:531544 Stack: QSYS / QP0ZCPA QP0ZUDBG 87 : Qp0zDumpStack

 0000000F:531632 Stack: QSYS / QP0ZSCPA QP0ZSCPA 276 : Qp0zSUDumpStack

 0000000F:531704 Stack: QSYS / QP0ZSCPA QP0ZSCPA 287 : Qp0zSUDumpTargetStack

 0000000F:531744 Stack: Completed

 0000000F:531856 foo(): This is an error tracepoint

 0000000F:531952 dataDestructor: Free data

 0000000D:532528 Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

238 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_unlock_global_np()—Unlock Global Mutex

 Syntax:

 #include <pthread.h>

 int pthread_unlock_global_np(void);

 Service Program Name: QP0WTCBH

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The pthread_unlock_global_np() function unlocks a global mutex provided by the pthreads run-time.

The global mutex is a recursive mutex with a name of “QP0W_GLOBAL_MTX”. The global mutex is not

currently used by the pthreads run-time to serialize access to any system resources, and is provided for

application use only.

Note: This function is not portable

Authorities and Locks

For successful completion, the global mutex lock must be held prior to calling

pthread_unlock_global_np().

Parameters

None.

Return Value

0 pthread_unlock_global_np() was successful.

value pthread_unlock_global_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_unlock_global_np() was not successful, the error condition returned usually indicates one of

the following errors. Under some conditions, the value returned could indicate an error other than those

listed here.

[EINVAL]

 The value specified for the argument is not correct.

[EPERM]

 The mutex is not currently held by the caller.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_lock_global_np()—Lock Global Mutex” on page 114—Lock Global Mutex

Chapter 1. Pthread APIs 239

Example

See Code disclaimer information for information pertaining to code examples.

See the “Example” on page 115 example.

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

sched_yield()—Yield Processor to Another Thread

 Syntax:

 #include <sched.h>

 int sched_yield(void);

 Service Program Name: QP0WPTHR

 Default Public Authority: *USE

 Threadsafe: Yes

 Signal Safe: Yes

The sched_yield() function yields the processor from the currently executing thread to another

ready-to-run, active thread of equal or higher priority.

If no threads of equal or higher priority are active and ready to run, sched_yield() returns immediately,

and the calling thread continues to run until its time has expired.

Authorities and Locks

None.

Parameters

None.

Return Value

0 sched_yield() was successful.

value sched_yield() was not successful. value is set to indicate the error condition.

Error Conditions

The sched_yield() API does not currently return an error.

Related Information

v The <pthread.h> header file. See “Header files for Pthread functions” on page 271.
v “pthread_getschedparam()—Get Thread Scheduling Parameters” on page 86—Get Thread Scheduling

Parameters

240 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <errno.h>

#include "check.h"

#define LOOPCONSTANT 1000

#define THREADS 3

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int i,j,k,l;

void *threadfunc(void *parm)

{

 int loop = 0;

 int localProcessingCompleted = 0;

 int numberOfLocalProcessingBursts = 0;

 int processingCompletedThisBurst = 0;

 int rc;

 printf("Entered secondary thread\n");

 for (loop=0; loop<LOOPCONSTANT; ++loop) {

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 /* Perform some not so important processing */

 i++, j++, k++, l++;

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 /* This work is not too important. Also, we just released a lock

 and would like to ensure that other threads get a chance in

 a more co-operative manner. This is an admittedly contrived

 example with no real purpose for doing the sched_yield().

 */

 sched_yield();

 }

 printf("Finished secondary thread\n");

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t threadid[THREADS];

 int rc=0;

 int loop=0;

 printf("Enter Testcase - %s\n", argv[0]);

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 printf("Creating %d threads\n", THREADS);

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_create(&threadid[loop], NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 }

 sleep(1);

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 printf("Wait for results\n");

 for (loop=0; loop<THREADS; ++loop) {

 rc = pthread_join(threadid[loop], NULL);

Chapter 1. Pthread APIs 241

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_join()\n", rc);

 }

 pthread_mutex_destroy(&mutex);

 printf("Main completed\n");

 return 0;

}

Output:

Enter Testcase - QP0WTEST/TPSCHY0

Creating 3 threads

Entered secondary thread

Entered secondary thread

Entered secondary thread

Wait for results

Finished secondary thread

Finished secondary thread

Finished secondary thread

Main completed

API introduced: V4R3

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Unsupported Pthread APIs

The following functions are not supported by the iSeries(TM) implementation of pthreads. These functions

are all defined and provided by the system. You can create and compile with these functions in your

application. If the unsupported functions are called, when the application runs the functions immediately

fail with the ENOSYS error, and your application can take the appropriate action, such as ignoring the

error and continuing.

v “pthread_atfork()—Register Fork Handlers” on page 243

v “pthread_atfork_np()—Register Fork Handlers with Extended Options” on page 243

v “pthread_attr_getguardsize()—Get Guard Size” on page 243

v “pthread_attr_getschedpolicy()—Get Scheduling Policy” on page 243

v “pthread_attr_getscope()—Get Scheduling Scope” on page 243

v “pthread_attr_getstackaddr()—Get Stack Address” on page 244

v “pthread_attr_getstacksize()—Get Stack Size” on page 244

v “pthread_attr_setguardsize()—Set Guard Size” on page 244

v “pthread_attr_setschedpolicy()—Set Scheduling Policy” on page 244

v “pthread_attr_setscope()—Set Scheduling Scope” on page 245

v “pthread_attr_setstackaddr()—Set Stack Address” on page 245

v “pthread_attr_setstacksize()—Set Stack Size” on page 245

v “pthread_mutexattr_getprioceiling()—Get Mutex Priority Ceiling Attribute” on page 245

v “pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute” on page 246

v “pthread_mutexattr_setprioceiling()—Set Mutex Priority Ceiling Attribute” on page 246

v “pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute” on page 246

v “pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling” on page 246

v “pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling” on page 246

242 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_atfork()—Register Fork Handlers

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_atfork(void (*prepare)(void),

 void (*parent)(void),

 void (*child)(void));

The pthread_atfork() function is not supported by this implementation. The function returns ENOSYS.

pthread_atfork_np()—Register Fork Handlers with Extended Options

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_atfork(int *userstate,

 void (*prepare)(void),

 void (*parent)(void),

 void (*child)(void));

The pthread_atfork_np() function is not supported by this implementation. The function returns ENOSYS.

pthread_attr_getguardsize()—Get Guard Size

 Syntax:

 #include <pthread.h>

 int pthread_attr_getguardsize(const pthread_attr_t *attr,

 size_t *guardsize);

The pthread_attr_getguardsize() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_getschedpolicy()—Get Scheduling Policy

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_getschedpolicy(pthread_attr_t *attr,

 int *policy);

The pthread_attr_getschedpolicy() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_getscope()—Get Scheduling Scope

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_getscope(pthread_attr_t *attr,

 int *contentionscope);

Chapter 1. Pthread APIs 243

The pthread_attr_getscope() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_getstackaddr()—Get Stack Address

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_getstackaddr(const pthread_attr_t *attr,

 void **stackaddr);

The pthread_attr_getstackaddr() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_getstacksize()—Get Stack Size

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_getstacksize(const pthread_attr_t *attr,

 size_t *stacksize);

The pthread_attr_getstacksize() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_setguardsize()—Set Guard Size

 Syntax:

 #include <pthread.h>

 int pthread_attr_setguardsize(pthread_attr_t *attr,

 size_t guardsize);

The pthread_attr_setguardsize() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_setschedpolicy()—Set Scheduling Policy

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_setschedpolicy(pthread_attr_t *attr,

 int policy);

The pthread_attr_setschedpolicy() function is not supported by this implementation. The function returns

ENOSYS.

244 iSeries: Pthread APIs

pthread_attr_setscope()—Set Scheduling Scope

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_setscope(pthread_attr_t *attr,

 int contentionscope);

The pthread_attr_setscope() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_setstackaddr()—Set Stack Address

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_setstackaddr(pthread_attr_t *attr,

 void *stackaddr);

The pthread_attr_setstackaddr() function is not supported by this implementation. The function returns

ENOSYS.

pthread_attr_setstacksize()—Set Stack Size

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_attr_setstacksize(pthread_attr_t *attr,

 size_t stacksize);

The pthread_attr_setstacksize() function is not supported by this implementation. The function returns

ENOSYS.

pthread_mutexattr_getprioceiling()—Get Mutex Priority Ceiling

Attribute

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr,

 int *prioceiling);

The pthread_mutexattr_getprioceiling() function is not supported by this implementation. The function

returns ENOSYS.

Chapter 1. Pthread APIs 245

pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr,

 int *protocol);

The pthread_mutexattr_getprotocol() function is not supported by this implementation. The function

returns ENOSYS.

pthread_mutexattr_setprioceiling()—Set Mutex Priority Ceiling Attribute

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,

 int prioceiling);

The pthread_mutexatttr_setprioceiling() function is not supported by this implementation. The function

returns ENOSYS.

pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,

 int protocol);

The pthread_mutexattr_setprotocol() function is not supported by this implementation. The function

returns ENOSYS.

pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_mutex_getprioceiling(const pthread_mutex_t *mutex,

 int *prioceiling);

The pthread_mutex_getprioceiling() function is not supported by this implementation. The function

returns ENOSYS.

pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling

 Syntax:

 #include <pthread.h>

 #include <sched.h>

 int pthread_mutex_setprioceiling(pthread_mutex_t *mutex,

 int prioceiling, int *oldceiling);

246 iSeries: Pthread APIs

The pthread_mutex_setprioceiling() function is not supported by this implementation. The function

returns ENOSYS.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 1. Pthread APIs 247

#TOP_OF_PAGE
aplist.htm

248 iSeries: Pthread APIs

Chapter 2. Concepts

These are the concepts for this category.

What are Pthreads?

Portable Operating System Interface for Computer Environments (POSIX) is an interface standard

governed by the IEEE and based on UNIX. POSIX is an evolving family of standards that describe a wide

spectrum of operating system components ranging from C language and shell interfaces to system

administration.

The Pthread interfaces described in this section are based on a subset of the application programming

interfaces (APIs) defined in the POSIX standard (ANSI/IEEE Standard 1003.1, 1996 Edition OR ISO/IEC

9945-1: 1996) and the Single UNIX Specification, Version 2, 1997. The implementation of these APIs is not

compliant with these standards. However, the implementation does attempt to duplicate the portable

nature of the interfaces defined by the standards. Differences between Pthreads in OS/400 and other

thread types are described in “OS/400 Pthreads versus the POSIX standard, the Single UNIX

Specification, and other threads implementations” on page 250.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Primitive data types for Pthreads

The Pthread types and functions have the following naming conventions. If the type of object is not a

thread, object represents the type of object, action is an operation to be performed on the object, np or

NP indicates that the name or symbol is a non-portable extension to the API set, and PURPOSE indicates

the use or purpose of the symbol.

types pthread[_object][_np]_t

functions

pthread[_object]_action[_np]

Constants and Macros

PTHREAD_PURPOSE[_NP]

 Type Description

pthread_attr_t Thread creation attribute

pthread_cleanup_entry_np_t Cancellation cleanup handler entry

pthread_condattr_t Condition variable creation attribute

pthread_cond_t Condition Variable synchronization primitive

pthread_joinoption_np_t Options structure for extensions to pthread_join()

pthread_key_t Thread local storage key

pthread_mutexattr_t Mutex creation attribute

pthread_mutex_t Mutex (Mutual exclusion) synchronization primitive

pthread_once_t Once time initialization control variable

pthread_option_np_t Pthread run-time options structure

pthread_rwlockattr_t Read/Write lock attribute

pthread_rwlock_t Read/Write synchronization primitive

© Copyright IBM Corp. 1998, 2005 249

aplist.htm

Type Description

pthread_t Pthread handle

pthread_id_np_t Thread ID. For use as an integral type.

struct sched_param Scheduling parameters (priority and policy)

After creating the primitive objects of type pthread_cond_t and pthread_mutex_t using the appropriate

initialization functions, those objects must not be copied or moved to a new location. If the condition

variable or mutex is copied or moved to a new location, the new primitive object is not valid or usable.

Attempts to use the new object result in the EINVAL error.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Feature test macros for Pthreads

 Constant Description

_POSIX_THREADS Base threads

_POSIX_THREAD_ATTR_STACKADDR Stack address attribute. Not present in the OS/400

implementation.

_POSIX_THREAD_ATTR_STACKSIZE Stack size attribute. Not present in the OS/400

implementation.

_POSIX_THREAD_PRIORITY_SCHEDULING Thread priority scheduling. Not present in the OS/400

implementation.

_POSIX_THREAD_PRIO_INHERIT Mutex priority inheritance. Not present in the OS/400

implementation.

_POSIX_THREAD_PRIO_PROTECT Mutex priority ceiling. Not present in the OS/400

implementation.

_POSIX_THREAD_PROCESS_SHARED Synchronization primitives may be shared between

processes.

The OS/400 implementation of pthreads defines the _POSIX_THREADS and

_POSIX_THREAD_PROCESS_SHARED feature test macros. See “Unsupported preprocessor and feature

test macros” on page 251 for a complete list of unsupported feature test macros.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

OS/400 Pthreads versus the POSIX standard, the Single UNIX

Specification, and other threads implementations

Although the Pthread interfaces described in this document are based on a subset of the APIs defined in

the POSIX standard and the Single UNIX Specification, the implementation of these APIs is not compliant

with these standards. This means that applications written in other versions of threads are not necessarily

portable to OS/400. Below is a list of the differences between the Pthread APIs and other threads

implementations.

v All thread definitions in pthread.h

v Unsupported preprocessor and feature test macros

v Unsupported APIs

v Unsupported constants

v Unsupported cancellation points

250 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm
concep10.htm
concep11.htm
users_98.htm
concep13.htm
concep14.htm

v Unsupported sysconf() configuration variables

v Thread priority and scheduling

v Thread ID vs. Pthread Handle (pthread_t)

v Thread ID value and size

v Mutexes return EDEADLK when re-locked by owner

v Return values from thread start routines are not integers

v Threads do not necessarily start before pthread_create() returns

v Initial thread is special, cannot pthread_exit()

v Pthread APIs cause asynchronous signals initialization

v Not all jobs can create threads; pthread_create() fails with EBUSY

v Read/write locks are recursive

v Shared read/write locks are released at thread termination

v “Read/write locks can be upgraded/downgraded” on page 258

v Read/write locks do not favor writers

v Spawn API provides more POSIX-like process model

v C++ destructors and Pthread termination

v Unhandled exceptions terminate the thread (not the process)

v Exceptions vs. Asynchronous signals vs. ANSI C signals

v “Mutexes can be named to aid in application debug” on page 271

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

All thread definitions in pthread.h

For Pthreads on the iSeries, all feature test macros, preprocessor values, data structures, types, and

function prototypes are located in the pthread.h header file instead of the system header files that are

specified by POSIX or the Single UNIX Specification.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Unsupported preprocessor and feature test macros

The following Pthread feature test macros are not defined on the server:

v _POSIX_THREAD_ATTR_STACKADDR

v _POSIX_THREAD_ATTR_STACKSIZE

v _POSIX_THREAD_PRIO_INHERIT

v _POSIX_THREAD_PRIO_PROTECT

v _POSIX_THREAD_SAFE_FUNCTIONS

v _POSIX_THREAD_PRIORITY_SCHEDULING

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 2. Concepts 251

concep15.htm
concep16.htm
concep17.htm
concep18.htm
concep19.htm
concep20.htm
concep21.htm
concep22.htm
concep23.htm
concep24.htm
concep25.htm
concep26.htm
concep27.htm
concep28.htm
concep29.htm
concep30.htm
concep31.htm
#TOP_OF_PAGE
aplist.htm
aplist.htm
aplist.htm

Unsupported constants

The following constants related to threads are not defined on the server.

v PTHREAD_STACK_MIN

v PTHREAD_PRIO_INHERIT

v PTHREAD_PRIO_NONE

v PTHREAD_PRIO_PROTECT

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Unsupported cancellation points

OS/400 does not support the full set of cancellation points. Although the APIs may be provided, they are

not necessarily cancellation points. The only cancellation points currently supported are those APIs that

are part of the Pthread run-time. Those APIs are the following:

v pthread_cond_timedwait()

v pthread_cond_wait()

v pthread_delay_np()

v pthread_join()

v pthread_join_np()

v pthread_testcancel()

An appropriate alternative to create cancellation points for these APIs might be like the following

example. You can use this example to create a cancellation point out of any function that is asynchronous

signal safe. See Signal Concepts for a list of functions that are asynchronous signal safe. If a function is

not asynchronous signal safe, you should not use this form of asynchronous cancellation because it

corrupt data.

Example

See Code disclaimer information for information pertaining to code examples.

... preceding code ...

int oldtype=0;

/* If cancellation is currently disabled, this will have no effect */

/* if cancellation is currently enabled, we’ll set it to asynchronous */

/* for the duration of this call to try to simulate a cancellation point */

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype);

/* Call kernel API that you want to be a cancel point. You should */

/* only call functions which are asynchronous signal safe in this block. */

/* Validating the asynchronous signal safety of the function will */

/* ensure that the asynchronous cancellation does not negatively */

/* affect the API or corrupt the data that the API uses */

APICallHere();

/* Restore the cancellation type that was previously in effect */

pthread_setcanceltype(oldtype, &oldtype);

... following code ...

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

252 iSeries: Pthread APIs

aplist.htm
unix5a2.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Unsupported sysconf() configuration variables

The following sysconf() configuration variables related to threads are not supported on the server.

v _SC_THREAD_DESTRUCTOR_ITERATIONS

v _SC_THREAD_PRIORITY_SCHEDULING

v _SC_THREADS

v _SC_THREAD_ATTR_STACKADDR

v _SC_THREAD_ATTR_STACKSIZE

v _SC_THREAD_KEYS_MAX

v _SC_THREAD_PRIO_INHERIT

v _SC_THREAD_PRIO_PROTECT

v _SC_THREAD_PROCESS_SHARED

v _SC_THREAD_SAFE_FUNCTIONS

v _SC_THREAD_STACK_MIN

v _SC_THREAD_THREADS_MAX

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread priority and scheduling

The default thread creation attributes of the iSeries implementation of Pthreads uses an explicitly

specified priority of DEFAULT_PRIO_NP. Some implementations inherit the scheduling priority and

policy of the creating thread by default. For better performance, the iSeries implementation chooses to

start each thread with an explicit priority so that, when a thread is created, the priority of the creating

thread does not need to be retrieved at run-time.

An iSeries thread competes for scheduling resources against other threads in the system, not solely

against other threads in the process. The scheduler is a delay cost scheduler based on several delay cost

curves (priority ranges). The POSIX standard and the Single UNIX Specification refers to this as

scheduling scope and scheduling policy, which cannot be changed from the default of SCHED_OTHER

in this implementation.

The following Pthread APIs support a scheduling policy of only SCHED_OTHER.

v pthread_setschedparam (SCHED_OTHER only supported)

v pthread_getschedparam

v pthread_attr_setschedparam

v pthread_attr_getschedparam

The priority of a thread is specified as a number that represents the value that is added to the priority of

the process. Changing the priority of the process affects the priority of all of the threads within that

process. The default priority for a thread is DEFAULT_PRIO_NP, which is no change from the process

priority.

On the iSeries, numerically lower priority values indicate higher priority with regard to scheduling. The

pthread.h and sched.h header files define the priority constants in a way that is consistent with the

threads standard, but opposite of priority specifications on the iSeries. When you specify a priority of -99

in a call to pthread_setschedparam(), the priority of the target thread is lowered to the lowest possible

value.

For example, process P1 is at iSeries priority 20 and contains a thread T1 that specifies a Pthread priority

adjustment of -18. Process P2 is at iSeries priority 25 and contains thread T2 that specifies a priority of -5.

Chapter 2. Concepts 253

aplist.htm

The result is that the system schedules the threads using the iSeries priority for T1 as 38 and for T2 as 30.

The thread scheduling is specified at a system level, and although process P2 runs at a lower priority

ranking than process P1, thread T2 within process P2 runs at a higher priority ranking than thread T1 in

process P1, and thus gets more processing resources.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread ID vs. Pthread Handle (pthread_t)

In many threads implementations, the pthread_t abstract type is implemented as an integer (4 byte)

thread ID. In the iSeries implementation of Pthreads, the thread ID is a 64-bit integral value and the

pthread_t is an abstraction (structure) that contains that value and others. This abstraction helps to allow

the implementation to scale to thousands of threads in a process.

Do not allow your program to rely on the internal structure or size of the pthread_t in a non-portable

fashion, such as comparisons of thread IDs. For portable comparison, use the pthread_equal() API. This

documentation occasionally refers to the pthread_t as a Pthread handle to try to prevent the

misconception that it represents a single integer value.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread ID value and size

In some threads implementations, the thread ID is a 4-byte integer that starts at 1 and increases by 1

every time a thread is created. This integer can be used in a non-portable fashion by an application.

To assist in the portability problem with the application and to allow retrieval of the thread ID, the

iSeries implementation has provided the pthread_getunique_np() function to retrieve the thread ID from

the Pthread handle. This thread ID is a 64-bit integer value. Because some compilers do not yet support a

full 64-bit integer data type, the value is returned in a structure containing two 4-byte integers.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Mutexes return EDEADLK when re-locked by owner

Some threads implementations return the EDEADLK error when a mutex attempts to relock a mutex that

it already owns. The POSIX standard specifies that the results are undefined when a mutex is re-locked

by the owner. The Single UNIX Specification addresses these issues by providing a new mutex attribute

called type.

The iSeries threads support takes the same implementation route that the Single UNIX Specification

suggests, and it also causes the thread to deadlock when it attempts to re-lock a normal (non-recursive)

mutex. Because many users of Pthreads do not check return codes from functions, the deadlock protects

applications from corrupted data that might result if they attempt to relock an already held mutex, then

unlock the mutex as if the lock was successful.

See pthread_mutexattr_gettype()—Get Mutex Type Attribute and pthread_mutexattr_settype()—Set Mutex

Type Attribute if you need error-checking mutexes for your application.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

254 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm
aplist.htm
users_53.htm#370578
users_58.htm#370784
users_58.htm#370784
aplist.htm

Return values from thread start routines are not integers

Return values from a thread are defined to be of type void *. On some platforms, a void * and an integer

can be easily interchanged with no loss of information. Until Version 4 Release 2, this was not true on the

iSeries. The iSeries enforces stricter pointer rules to both prevent and detect application bugs or a

malicious program’s behavior. Thus, when converting integers to pointers by a mechanism not directly

supported by your compiler, the valid pointer information is lost, and the pointer is always set to NULL

(regardless of its binary value).

New support put into the system in Version 4 Release 2 allows you to store an integer into a pointer, and

still have the pointer be non-NULL. You cannot store to, read from, or defer a pointer created by this

mechanism, but the pointer appears non-NULL.

The macros __INT() and __VOID() are provided to aid in compatibility and allow you to easily store and

retrieve integer information in pointer variables even if your compiler does not support the direct

typecast. These macros allow explicit conversion from a pointer to an integer and from an integer to a

pointer.

Note: The macros __INT() and __VOID() result in function calls.

Example

The following example shows the correct way to store and retrieve integer information in pointer

variables.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

int main(int argc, char **argv)

{

 void *status1 = __VOID(5);

 void *status2 = __VOID(999);

 if (status1 == NULL) {

 printf("Status1 pointer is NULL\n");

 }

 else {

 printf("Status1 pointer is non-NULL\n");

 }

 if (status1 == status2) {

 printf("Both status variables as pointers are equal\n");

 }

 else {

 if (status1 < status2) {

 printf("Status1 is greater than status2\n");

 }

 else {

 if (status1 < status2) {

 printf("Status1 is less then status2\n");

 }

 else {

 printf("The pointers are unordered!\n");

 }

 }

 }

 printf("Pointer values stored in status variables are:\n"

 " status1 = %.8x %.8x %.8x %.8x\n"

Chapter 2. Concepts 255

aboutapis.htm#CODEDISCLAIMER

" status2 = %.8x %.8x %.8x %.8x\n",

 status1, status2);

 printf("Integer values stored in status variables are:\n"

 " status1 = %d\n"

 " status2 = %d\n",

 __INT(status1), __INT(status2));

 return;

}

Output:

Status1 pointer is non-NULL

Status1 is less then status2

Pointer values stored in status variables are:

 status1 = 80000000 00000000 00008302 00000005

 status2 = 80000000 00000000 00008302 000003e7

Integer values stored in status variables are:

 status1 = 5

 status2 = 999

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Threads do not necessarily start before pthread_create() returns

A thread may or may not start running before the return from pthread_create(). Depending on the

amount of time left in the creating threads, time slice, and the other activity on the system, the creating

thread may return before the new thread runs.

The thread implementations of some systems guarantee a certain ordered behavior for thread creation

versus the execution of the first statement in the new thread. On the iSeries, it is unknown which

happens first, the execution of the first instruction in the new thread or the return from pthread_create().

The following example shows an incorrectly written application.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_t thread

void *threadfunc(void *parm)

{

 pthread_id_np_t tid;

 #error "This is an ERROR."

 #error "The ’thread’ variable is shared between threads"

 #error "and must be protected by a mutex."

 pthread_getunique_np(&thread, &tid);

 printf("Thread 0x%.8x %.8x started\n", tid);

 return NULL;

}

int main(int argc, char **argv)

{

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 #error "This is an ERROR."

 #error "The order of thread thread startup, and return from"

 #error "the pthread_create() API is NOT deterministic."

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

256 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_create(NULL)\n", rc);

 /* sleep() isn’t a very robust way to wait for the thread */

 sleep(5);

 printf("Main completed\n");

 return 0;

}

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Initial thread is special, cannot pthread_exit()

The initial thread in an OS/400 process is special because of these characteristics:

v If the initial thread calls pthread_exit(), the process terminates.

v If the initial thread is the target of a pthread_cancel() request that is acted upon, the process

terminates.

v If the initial thread terminates through any other action, the process terminates.

v Many OS/400 APIs and commands target jobs. Some of those APIs target resources that are allocated

to threads for retrieval or modification. If this is the case, the resources that displayed, modified, or

retrieved may be the resources owned by the initial thread.

For example, the CL command WRKACTJOB allows you to display information such as the call stack

for a job. Since a job does not have a call stack and the call stack is thread scoped, the call stack of the

initial thread is displayed when you choose to display the call stack of a job.

Other APIs or CL commands that operate against jobs have undergone similar changes. See the specific

documentation for the API or CL command of concern.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Pthread APIs cause asynchronous signals initialization

When a job is running in OS/400, by default it is not enabled for POSIX signals. The system never

delivers a Posix signal to a job that is not enabled for signals.

The job is initialized for signals with the default POSIX signals environment when any thread in the job

calls any API defined to implicitly enable signals. The main categories of APIs that enable signals are the

signals APIs themselves and some process-related APIs related to signals. For example, some of the APIs

that enable signals are Qp0sEnableSignals(), kill(), sigaction(), sigprocmask(), getpid(), and spawn().

After the initialization for signals occurs within a job, the system can deliver signals to that job if they are

generated by another job or by the system.

When a program in a job uses Pthreads, that job is automatically enabled for signals when the Pthreads

service program is loaded (either dynamically or statically). Loading the service program that contains

the Pthread APIs causes the job to be initialized for signals, regardless of whether the application actually

calls the pthread APIs. All pthread programs can implicitly receive signals if another job or the system

generates a signal for the threaded job.

If the application calls Qp0sDisableSignals() to disable signals for the job, the Pthreads APIs do not

function correctly. Do not use Qp0sDisableSignals() in a threaded job.

For more information about signals and the APIs mentioned in this section, see Signal APIs and

Process-Related APIs.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 2. Concepts 257

#TOP_OF_PAGE
aplist.htm
aplist.htm
unix5a1.htm
unix11.htm
aplist.htm

Not all jobs can create threads; pthread_create() fails with EBUSY

Because many parts of the operating system are not yet thread safe, not every job is allowed to start

threads. The pthread_create() API fails with the EBUSY error when the process is not allowed to create

threads. See “Running threaded programs” on page 277 for information about how to start a job that can

create threads.

For details about how to determine whether thread creation is currently allowed for your process, you

can see the pthread_getpthreadoption_np() API, option PTHREAD_OPTION_THREAD_CAPABLE_NP.

See Multithreaded applications for an introduction to threads and general API information about iSeries

threads.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Read/write locks are recursive

The OS/400 implementation of read/write locks provides a recursive behavior not only for shared read

locks (as the thread standard specifies), but for exclusive write locks as well. The following statements

apply to read/write locks on OS/400:

v A thread can acquire any number of shared read locks on a read/write lock. Each successful shared

read lock that is acquired must be released by a call to pthread_rwlock_unlock().

v A thread can acquire any number of exclusive write locks on a read/write lock. Each successful

exclusive write lock that is acquired must be released by a call to pthread_rwlock_unlock().

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Shared read/write locks are released at thread termination

If a thread is the owner of one or more shared read locks acquired by pthread_rwlock_unlock(),

pthread_rwlock_tryrdlock(), or pthread_rwlock_timedrdlock_np(), when that thread terminates, the

shared read locks are automatically released by the system. If a thread holds a shared read lock, it does

not modify the resources associated with that lock. It is then safe for the runtime support to unlock the

read lock without indicating an error condition or causing the process to wait. For performance reasons,

your application should unlock all held locks before the thread ends.

If a thread is the owner of one or more exclusive write locks acquired by pthread_rwlock_wrlock(),

pthread_rwlock_trywrlock(), or pthread_rwlock_timedwrlock_np(), when that thread terminates, the

exclusive write locks are not automatically released by the system. This is an error in the application and

indicates that the data associated with the lock is in an inconsistent state. If another thread attempts to

get a shared read or exclusive write lock on the lock, that thread blocks forever.

Read/write locks can be upgraded/downgraded

The OS/400 implementation of read/write locks allows a thread to effectively change a read lock to a

write lock, or change a write lock to a read lock, without an intervening unlocked and unprotected

section of code. The following items describe read/write lock behavior that allows these changes. This

behavior is outside of the definition of the Single UNIX Specification. An application written to be

portable to the Single UNIX Specification should not attempt to acquire a shared read lock and a shared

write lock on the same read/write lock at the same time.

v If a thread currently holds a shared read lock, an attempt by the same thread to acquire an exclusive

write lock succeeds if no other threads hold a shared read lock. The thread then holds both an

exclusive write lock and a shared read lock.

258 iSeries: Pthread APIs

aplist.htm
aplist.htm

v If a thread currently holds an exclusive write lock, an attempt by the thread to acquire a shared read

lock succeeds. The thread then holds both an exclusive write lock and a shared read lock.

v If a thread holds one or more shared read locks and one or more exclusive write locks on the same

read/write lock object at the same time, a call to pthread_rwlock_unlock() always unlocks the

exclusive write lock FIRST.

v When multiple exclusive write locks and multiple exclusive read locks are held by the same thread on

the same read/write lock object, the behavior of pthread_rwlock_unlock() is as follows:

– A call to the pthread_rwlock_unlock() function always unlocks the most recent exclusive write lock

first.

– Subsequent calls to pthread_rwlock_unlock() first reduce the count of any outstanding exclusive

write locks held by the thread until all exclusive write locks are unlocked.

– After all outstanding exclusive write locks are unlocked and the thread holds only shared read locks

on the read/write lock object, a call to pthread_rwlock_unlock() function then unlocks the most

recent shared read lock.

– Subsequent calls to pthread_rwlock_unlock() reduce the count of any outstanding shared read locks

held by the thread until all shared read locks are unlocked.

For a thread to change a shared read lock to an exclusive write lock, the thread should perform the

following actions:

{

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

pthread_rwlock_rdlock(&rwlock);

...

/* Thread holding a read lock decides it needs to upgrade to a write lock */

/* Now Upgrade to write lock */

pthread_rwlock_wrlock(&rwlock);

...

/* write lock (and read lock) are held here.*/

/* We have effectively upgraded to a write lock */

...

/* `Downgrade’ back to a only the read lock */

pthread_rwlock_unlock(&rwlock);

...

/* unlock the read lock */

pthread_rwlock_unlock(&rwlock);

}

For a thread to change an exclusive write lock to a shared read lock, the thread should perform the

following actions:

{

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

pthread_rwlock_wrlock(&rwlock);

..

/* Thread holding the write lock decides it needs to downgrade to a read lock */

/* Get the read lock, so we are holding BOTH read and write locks */

pthread_rwlock_rdlock(&rwlock);

...

/* An unlock always unlocks the write lock first */

pthread_wrlock_unlock(&rwlock);

...

/* At this point, we are only holding the read lock. */

/* We have effectively downgraded the write lock to a read lock */

...

/* Use unlock to unlock the last read lock. */

pthread_wrlock_unlock(&rwlock);

}

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 2. Concepts 259

#TOP_OF_PAGE
aplist.htm

Read/write locks do not favor writers

The OS/400 implementation of read/write locks does not favor writers. If your application has a large

number of readers contending for the same lock, the writers may not be allowed to write.

The OS/400 implementation of pthread_rwlock_tryrdlock(), for example, does not completely honor the

Single UNIX Specification in its treatment of reader/writer contention.

The standard states the following: ″The function pthread_rwlock_tryrdlock() applies a read lock as in the

pthread_rwlock_rdlock() function with the exception that the function fails if any thread holds a write

lock on rwlock or there are writers blocked on rwlock.″

In the OS/400 implementation, if pthread_rwlock_tryrdlock() is used on a read/write lock that has

multiple readers holding the lock and multiple waiting writers blocked on the lock, the

pthread_rwlock_tryrdlock() are allowed to complete successfully.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Spawn API provides more POSIX-like process model

The iSeries uses a call/return mechanism when your application calls programs. A new process is not

started when you call a program, instead the program runs and returns to its caller. You can use

activation groups to separate or partition the program resources from the caller.

For the more POSIX-like behavior of running each program in a separate process (and thus taking

advantage of thread safety, encapsulation, and protection that the new process may give you), use the

spawn() API to start the program.

You also can use the capability provided in spawn() to allow the child process to start multiple threads.

See the spawn() API documentation for a description of the SPAWN_SETTHREAD_NP flag in the

inheritance structure.

A CL command for using SPAWN is also available from the QUSRTOOL library. See SPAWN CL

command, QUSRTOOL example for more information about the SPAWN CL command.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

C++ destructors and Pthread termination

Unlike some other implementations of threads, C++ destructors for automatic objects are allowed to run

in a well defined and consistent manner when a thread is terminated.

The following list includes some of the causes of thread termination:

v A thread calls pthread_exit() or returns from the thread start routine.

v A thread is the target of pthread_cancel().

v A thread is ended due to an unhandled exception.

v A thread is in a process that contains another thread that calls exit() or abort().

v A thread is in a process that is terminated by the system administrator.

v A thread is being terminated by the system administrator.

When a thread terminates, the following occurs:

1. If the thread was ended using pthread_exit(), pthread_cancel() or return from the thread start routine,

then cancellation cleanup handlers and data destructors are run.

260 iSeries: Pthread APIs

aplist.htm
spawn.htm
concep32.htm#286283
concep32.htm#286283
aplist.htm

2. The thread is terminated. At the time that the thread is terminated, both C++ destructors for

automatic objects and OS/400 cancel handlers run.

If a Pthread is terminated using a non-Pthread method (an OS/400 exception, a different thread

termination primitive provided by the system, exit() or abort(), or other job termination method), Pthread

cancellation cleanup handlers and data destructors do not run.

Example

This example shows the relationship between C++ destructors and Pthread cleanup mechanisms.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <qp0z1170.h>

#include <time.h>

#include <pthread.h>

#include "check.h"

#define bufferSize 100

#define threadRc 55

pthread_key_t tlskey;

void dataDestructor(void *parm);

void cancelHandler(void *parm);

void *threadfunc(void *parm);

void level2(void);

void level3(void);

class A {

public:

 A(char *label);

 ~A();

private:

 pthread_id_np_t tid;

 char buffer[bufferSize];

};

void dataDestructor(void *parm) {

 printf("In data destructor\n");

 pthread_setspecific(tlskey, NULL);

}

void cancelHandler(void *parm) {

 printf("In cancellation cleanup handler\n");

}

void *threadfunc(void *parm) {

 A object("start routine object");

 level2();

 return NULL;

}

void level2(void) {

 A object("Second level object");

 level3();

}

void level3(void) {

 int rc;

 struct timespec ts = {5, 0};

 A object("Third level object");

Chapter 2. Concepts 261

aboutapis.htm#CODEDISCLAIMER

pthread_setspecific(tlskey, &tlskey);

 pthread_cleanup_push(cancelHandler, NULL);

 printf("Thread blocked\n");

 rc = pthread_delay_np(&ts);

 if (rc != 0) {

 printf("pthread_delay_np() - return code %d\n", rc);

 return;

 }

 printf("Calling pthread_exit()\n");

 pthread_exit(__VOID(threadRc));

 pthread_cleanup_pop(0);

}

int main(int argc, char **argv)

{

 int rc=0;

 int i;

 pthread_t threadid;

 void *status;

 int fail=0;

 printf("Enter Testcase - %s\n", argv[0]);

 rc = pthread_key_create(&tlskey, dataDestructor);

 checkResults("pthread_key_create()\n", rc);

 printf("----------- Start pthread_cancel() example -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 sleep(2);

 rc = pthread_cancel(threadid);

 checkResults("pthread_cancel()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 if (status != PTHREAD_CANCELED) {

 printf("Canceled thread did not return the expected results\n");

 fail = 1;

 }

 printf("----------- Start pthread_exit() example -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 if (__INT(status) != threadRc) {

 printf("pthread_exit() thread did not return the expected results\n");

 fail = 1;

 }

 pthread_key_delete(tlskey);

 if (fail) {

 printf("At least one thread failed!\n");

 exit(1);

 }

 printf("Main completed\n");

 return 0;

}

A::A(char *label) {

 strncpy(buffer, label, bufferSize);

 pthread_t me;

 me = pthread_self();

262 iSeries: Pthread APIs

pthread_getunique_np(&me, &tid);

 printf("`%s’ instantiated in thread 0x%.8x %.8x\n",

 buffer, tid);

}

A::~A() {

 printf("`%s’ destroyed in thread 0x%.8x %.8x\n",

 buffer, tid);

}

Output:

Enter Testcase - QP0WTEST/TPCPP0

----------- Start pthread_cancel() example -------------

Create a thread

`start routine object’ instantiated in thread 0x00000000 00000161

`Second level object’ instantiated in thread 0x00000000 00000161

`Third level object’ instantiated in thread 0x00000000 00000161

Thread blocked

In cancellation cleanup handler

In data destructor

`Third level object’ destroyed in thread 0x00000000 00000161

`Second level object’ destroyed in thread 0x00000000 00000161

`start routine object’ destroyed in thread 0x00000000 00000161

----------- Start pthread_exit() example -------------

Create a thread

`start routine object’ instantiated in thread 0x00000000 00000162

`Second level object’ instantiated in thread 0x00000000 00000162

`Third level object’ instantiated in thread 0x00000000 00000162

Thread blocked

Calling pthread_exit()

In cancellation cleanup handler

In data destructor

`Third level object’ destroyed in thread 0x00000000 00000162

`Second level object’ destroyed in thread 0x00000000 00000162

`start routine object’ destroyed in thread 0x00000000 00000162

Main completed

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Unhandled exceptions terminate the thread (not the process)

On a UNIX system, when an invalid or illegal software condition is encountered (such as dividing by

zero or using an invalid pointer), a signal is generated. If the signal is not handled, the process is

terminated.

OS/400 does not generate a signal for these events, but instead, generates an exception message. The

exception message moves up the call stack, allowing each stack frame (function on the stack or invocation

entry) a chance to handle the exception. Each function invocation may choose to handle or not to handle

the exception. If the exception is not handled, the message continues to the next stack frame.

When the exception message reaches certain boundaries on the call stack (like a main() entry point,

usually called control boundaries) certain events take place. These events include changing the exception

to a different type, terminating the process, terminating the activation group, or terminating the thread. If

an unhandled exception condition happens in a secondary thread and moves all the way to the first

invocation in the thread without being handled, the resulting action will be to terminate the thread.

During this percolation, if the exception hits a control boundary and is not handled, it may terminate the

process.

A signal is never automatically generated for an exception message. When an unhandled exception

terminates the thread, Pthread cancellation cleanup handlers and Pthread data destructors do not run and

Chapter 2. Concepts 263

#TOP_OF_PAGE
aplist.htm

the thread is terminated immediately with a return status of PTHREAD_EXCEPTION_NP.

PTHREAD_EXCEPTION_NP is a macro similar to the PTHREAD_CANCELED macro, and is not NULL

or a valid pointer.

On a UNIX system, this same activity may terminate the process due to the signal that is generated.

In order to have your application terminate the process, when the exception occurs, you must handle it

and explicitly terminate the process. The following example handles all hardware exceptions using the

ANSI C signal model and uses the Pthread signal SIGABRT to terminate the process.

You can also turn the exception message into a Posix signal and it may be handled. See “Exceptions vs.

Asynchronous signals vs. ANSI C signals” on page 265 for more information.

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <qp0z1170.h>

#include <time.h>

#include <signal.h>

#include <pthread.h>

#include "check.h"

void abortTheProcessWhenAnExceptionOccurs(int sigNumber);

void *threadfunc1(void *parm);

void *threadfunc1(void *parm)

{

 char *p=NULL;

 printf("Thread1: Unhandled exception (pointer fault) about to happen\n");

 *p = `!’;

 printf("Thread1: After exception\n");

 return NULL;

}

void abortTheProcessWhenAnExceptionOccurs(int sigNumber) {

 /* In a multithreaded environment this is a little difficult. We have to */

 /* re-enable the ANSI C handler immediately, because that is the way it */

 /* is defined. (A better alternative may be direct monitor exception */

 /* handlers that are always valid in the function which they are */

 /* registered, and with direct monitors, we can catch the hardware */

 /* exception before it is converted to an ANSI C signal */

 signal(SIGALL, abortTheProcessWhenAnExceptionOccurs);

 /* Since ANSI C signals and hardware exceptions are only handled in */

 /* the same thread that caused them, we send the Posix signal to */

 /* the calling thread (The signal is delivered before returning from */

 /* pthread_kill(). */

 printf("Mapping ANSI signal %d to posix signal SIGABRT. "

 "Aborting the process\n", sigNumber);

 /* If we want to do some debug processing, we can put it here. */

 pthread_kill(pthread_self(), SIGABRT);

 return;

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t threadid;

 void *status;

264 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("----------- Setup Signal Mapping/Handling -------------\n");

 printf("- Register ANSI C signal handler to map ALL\n"

 " ANSI C signals & hardware exceptions to Posix signals\n");

 /* If we want to do debug, or determine what when wrong a little more easily,

*/

 /* we could use the abortTheProcessWhenAnExceptionOccurs function to delay

the thread, or */

 /* dump failure data of some sort.

*/

 signal(SIGALL, abortTheProcessWhenAnExceptionOccurs);

 printf("----------- Start memory fault thread -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc1, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output:

----------- Setup Signal Mapping/Handling -------------

- Register ANSI C signal handler to map ALL

 ANSI C signals & hardware exceptions to Posix signals

----------- Start memory fault thread -------------

Create a thread

Thread1: Unhandled exception (pointer fault) about to happen

Mapping ANSI signal 5 to posix signal SIGABRT. Aborting the process

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Exceptions vs. Asynchronous signals vs. ANSI C signals

iSeries distinguishes between hardware exceptions, POSIX signals (sometimes called asynchronous

signals), and ANSI C signals. POSIX signals use the APIs kill(), sigaction(), pthread_kill(), alarm(), pause(),

and others for signal interaction. ANSI C signals use the APIs raise(), signal(), and abort() for signal

interaction.

Many other systems, by default, generate a POSIX signal whenever a software or hardware exception

occurs (such as using a pointer that is not valid, or an error caused by dividing by zero), and on those

systems, a POSIX signal may be equivalent and indistinguishable from an ANSI C signal. If the signal is

not handled, this results in the termination of the process.

OS/400 does not generate a signal for these hardware or software problems, but instead, generates an

exception message. The exception message moves up the call stack, allowing each stack frame (function

on the stack or invocation entry) a chance to handle the exception. Each function invocation may choose

whether or not to handle the exception. If the exception is not handled, the message continues to the next

stack frame.

When the exception message reaches certain boundaries on the call stack (such as a main() entry point,

usually called control boundaries), certain events take place. These events include changing the exception

to a different type, terminating the process, terminating the activation group, or terminating the thread. If

an exception that is not handled occurs in a secondary thread and moves all the way to the first

invocation in the thread without being handled, the resulting action is to terminate the thread. During

this movement, if the exception hits a control boundary and is not handled, it may terminate the process.

Chapter 2. Concepts 265

#TOP_OF_PAGE
aplist.htm

The integrated language environment (ILE) C was present on the system before the POSIX signals

implementation. Therefore, the ILE C uses the robust iSeries exception model to implement ANSI C

signals (raise(), signal(), abort()). The ILE C also provides the generation of an ANSI C signal when it

detects a hardware exception. Thus, using the signal() API, you can monitor and handle hardware

exceptions.

A signal is never automatically generated for an exception message. iSeries hardware and software

exceptions cannot be detected using asynchronous signal mechanisms. In other words, if you use

sigaction() for the SIGSEGV signal, you will not detect that signal when a pointer that is not valid is

used. If you use signal(), you will detect SIGSEGV when your code uses an invalid pointer.

If the preferred signal model is the asynchronous signal model, you can use iSeries exception handlers or

ANSI C signal handlers to generate a asynchronous signal when those events occur.

The following example shows how an error caused by dividing by zero and the use of an invalid pointer

might be changed into an asynchronous signal. The following example uses ANSI C signal handlers to

perform the signal mapping.

Example

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <qp0z1170.h>

#include <time.h>

#include <signal.h>

#include <pthread.h>

#include "check.h"

void myAnsiSignalMapperHdlr(int sigNumber);

void *threadfunc1(void *parm);

void *threadfunc2(void *parm);

void *threadfunc1(void *parm)

{

 char *p=NULL;

 printf("Thread1: Unhandled exception (pointer fault) about to happen\n");

 *p = `!’;

 printf("Thread1: After exception\n");

 return NULL;

}

void *threadfunc2(void *parm)

{

 int i1=0, i2=1, i3=0;

 printf("Thread2: Unhandled exception (divide by zero) about to happen\n");

 i1 = i2 / i3;

 printf("Thread2: After exception\n");

 return NULL;

}

void myAnsiSignalMapperHdlr(int sigNumber) {

 /* In a multithreaded environment, this is slightly difficult. We have to */

 /* re-enable the ANSI C handler immediately, because that is the way it */

 /* is defined. (A better alternative may be direct monitor exception */

 /* handlers which are always valid in the function which they are */

 /* registered, and with direct monitors, we can catch the hardware */

 /* exception before it is converted to an ANSI C signal */

 signal(SIGALL, myAnsiSignalMapperHdlr);

 /* Since ANSI C signals and hardware exceptions will only be handled in */

 /* the same thread that caused them, we will send the POSIX signal to */

 /* the calling thread (The signal will be delivered before returning from */

266 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* pthread_kill(). */

 printf("Mapping ANSI signal to POSIX signal %d\n", sigNumber);

 pthread_kill(pthread_self(), sigNumber);

 return;

}

void fpViolationHldr(int sigNumber) {

 printf("Thread 0x%.8x %.8x "

 "Handled floating point failure SIGFPE (signal %d)\n",

 pthread_getthreadid_np(), sigNumber);

 /* By definition, returning from a POSIX signal handler handles the signal*/

}

void segFaultHdlr(int sigNumber) {

 printf("Thread 0x%.8x %.8x "

 "Handled segmentation violation SIGSEGV (signal %d)\n",

 pthread_getthreadid_np(), sigNumber);

 /* By definition, returning from a POSIX signal handler handles the signal*/

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t threadid;

 struct sigaction actions;

 void *status;

 printf("----------- Setup Signal Mapping/Handling -------------\n");

 printf("- Register ANSI C signal handler to map ALL\n"

 " ANSI C signals & hardware exceptions to POSIX signals\n");

 signal(SIGALL, myAnsiSignalMapperHdlr);

 printf("- Register normal POSIX signal handling mechanisms\n"

 " for floating point violations, and segmentation faults\n"

 "- Other signals take the default action for asynchronous signals\n");

 memset(&actions, 0, sizeof(actions));

 sigemptyset(&actions.sa_mask);

 actions.sa_flags = 0;

 actions.sa_handler = fpViolationHldr;

 rc = sigaction(SIGFPE,&actions,NULL);

 checkResults("sigaction for SIGFPE\n", rc);

 actions.sa_handler = segFaultHdlr;

 rc = sigaction(SIGSEGV,&actions,NULL);

 checkResults("sigaction for SIGSEGV\n", rc);

 printf("----------- Start memory fault thread -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc1, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 printf("----------- Start divide by 0 thread -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc2, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 printf("Main completed\n");

 return 0;

}

Chapter 2. Concepts 267

Example Output

----------- Setup Signal Mapping/Handling -------------

- Register ANSI C signal handler to map ALL

 ANSI C signals & hardware exceptions to POSIX signals

- Register normal POSIX signal handling mechanisms

 for floating point violations, and segmentation faults

- Other signals take the default action for asynchronous signals

----------- Start memory fault thread -------------

Create a thread

Thread1: Unhandled exception (pointer fault) about to happen

Mapping ANSI signal to POSIX signal 5

Thread 0x00000000 00000022 Handled segmentation violation SIGSEGV (signal 5)

Thread1: After exception

----------- Start divide by 0 thread -------------

Create a thread

Thread2: Unhandled exception (divide by zero) about to happen

Mapping ANSI signal to POSIX signal 2

Thread 0x00000000 00000023 Handled floating point failure SIGFPE (signal 2)

Thread2: After exception

Main completed

Example

The following example shows how a divide by zero error, and a dereference of a pointer that is not valid

might be mapped to generate a POSIX (asynchronous) signal. This example uses exception handlers to

perform the signal mapping.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <stdio.h>

#include <stdlib.h>

#include <qp0z1170.h>

#include <time.h>

#include <signal.h>

#include <except.h>

#include <qusec.h> /* System API error Code structure */

#include <qmh.h> /* Message Hanlder common defs */

#include <qmhchgem.h> /* Change exception message */

#include <pthread.h>

#include "check.h"

void myHardwareExceptionMapper(_INTRPT_Hndlr_Parms_T *exception);

void *threadfunc1(void *parm);

void *threadfunc2(void *parm);

void *threadfunc1(void *parm)

{

 char *p=NULL;

 /* Watch for all ESCAPE type exceptions. Other types may be used for */

 /* job log messages or C++ exceptions or other control flow in the process*/

 /* Adjust the message type as required by your application. */

#pragma exception_handler (myHardwareExceptionMapper, 0, _C1_ALL, _C2_MH_ESCAPE)

 printf("Thread1: Unhandled exception (pointer fault) about to happen\n");

 *p = `!’;

 printf("Thread1: After exception\n");

#pragma disable_handler

 return NULL;

}

void *threadfunc2(void *parm)

{

 int i1=0, i2=1, i3=0;

 /* Watch for all ESCAPE type exceptions. Others types may be used for */

 /* job log messages or C++ exceptions or other control flow in the process*/

 /* Adjust the message type as required by your application. */

268 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#pragma exception_handler (myHardwareExceptionMapper, 0, _C1_ALL, _C2_MH_ESCAPE)

 printf("Thread2: Unhandled exception (divide by zero) about to happen\n");

 i1 = i2 / i3;

 printf("Thread2: After exception\n");

#pragma disable_handler

 return NULL;

}

void myHardwareExceptionMapper(_INTRPT_Hndlr_Parms_T *exInfo) {

 int sigNumber;

 Qus_EC_t errorCode = {0}; /* system API error structure */

 printf("Handling system exception\n");

 /* The exception information is available inside the exInfo structure */

 /* for this example, we are going to handle all exceptions and then map */

 /* them to an \Qappropriate’ signal number. We are allowed to decide the */

 /* signal mapping however is appropriate for our application. */

 if (!memcmp(exInfo->Msg_Id, "MCH3601", 7)) {

 sigNumber = SIGSEGV;

 }

 else if (!memcmp(exInfo->Msg_Id, "MCH1211", 7)) {

 sigNumber = SIGFPE;

 }

 else {

 printf("Unexpected exception! Not Handling!\n");

 abort();

 }

 /* Even if the exception is \Qexpected’, we are going to handle it and try */

 /* to deliver it as a POSIX signal. Note that we SHOULD NOT HANDLE */

 /* exceptions that are unexpected to us. Most code cannot tolerate */

 /* getting back into it once the exception occured, and we could get into */

 /* a nice exception loop. */

 /* See the system API reference for a description of QMHCHGEM */

 QMHCHGEM(&exInfo->Target, 0, &exInfo->Msg_Ref_Key, QMH_MOD_HANDLE,

 (char *)NULL, 0, &errorCode);

 if (errorCode.Bytes_Available != 0) {

 printf("Failed to handle exception. Error Code = %7.7s\n",

 errorCode.Exception_Id);

 return;

 }

 printf("Mapping Exception %7.7s to POSIX signal %d\n",

 exInfo->Msg_Id ,sigNumber);

 /* At this point the exception is handled. If the POSIX signal handler */

 /* returns, then the signal will be handled, and all will be complete */

 pthread_kill(pthread_self(), sigNumber);

 return;

}

void fpViolationHldr(int sigNumber) {

 printf("Thread 0x%.8x %.8x "

 "Handled floating point failure SIGFPE (signal %d)\n",

 pthread_getthreadid_np(), sigNumber);

 /* By definition, return from a POSIX signal handler handles the signal */

}

void segFaultHdlr(int sigNumber) {

 printf("Thread 0x%.8x %.8x "

 "Handled segmentation violation SIGSEGV (signal %d)\n",

 pthread_getthreadid_np(), sigNumber);

 /* By definition, returning from a POSIX signal handler handles the signal*/

}

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t threadid;

Chapter 2. Concepts 269

struct sigaction actions;

 void *status;

 printf("----------- Setup Signal Mapping/Handling -------------\n");

 printf("- The threads will register iSeries Exception handler to map\n"

 " hardware exceptions to POSIX signals\n");

 printf("- Register normal POSIX signal handling mechanisms\n"

 " for floating point violations, and segmentation faults\n"

 "- Other signals take the default action for asynchronous signals\n");

 memset(&actions, 0, sizeof(actions));

 sigemptyset(&actions.sa_mask);

 actions.sa_flags = 0;

 actions.sa_handler = fpViolationHldr;

 rc = sigaction(SIGFPE,&actions,NULL);

 checkResults("sigaction for SIGFPE\n", rc);

 actions.sa_handler = segFaultHdlr;

 rc = sigaction(SIGSEGV,&actions,NULL);

 checkResults("sigaction for SIGSEGV\n", rc);

 printf("----------- Start memory fault thread -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc1, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 printf("----------- Start divide by 0 thread -------------\n");

 printf("Create a thread\n");

 rc = pthread_create(&threadid, NULL, threadfunc2, NULL);

 checkResults("pthread_create()\n", rc);

 rc = pthread_join(threadid, &status);

 checkResults("pthread_join()\n", rc);

 printf("Main completed\n");

 return 0;

}

Output

----------- Setup Signal Mapping/Handling -------------

- The threads will register iSeries Exception handler to map

 hardware exceptions to POSIX signals

- Register normal POSIX signal handling mechanisms

 for floating point violations, and segmentation faults

- Other signals take the default action for asynchronous signals

----------- Start memory fault thread -------------

Create a thread

Thread1: Unhandled exception (pointer fault) about to happen

Handling system exception

Mapping Exception MCH3601 to POSIX signal 5

Thread 0x00000000 00000024 Handled segmentation violation SIGSEGV (signal 5)

Thread1: After exception

----------- Start divide by 0 thread -------------

Create a thread

Thread2: Unhandled exception (divide by zero) about to happen

Handling system exception

Mapping Exception MCH1211 to POSIX signal 2

Thread 0x00000000 00000025 Handled floating point failure SIGFPE (signal 2)

Thread2: After exception

Main completed

270 iSeries: Pthread APIs

Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Mutexes can be named to aid in application debug

The OS/400 threads support of mutexes allows the application to name mutexes. Named mutexes can be

used to aid in problem determination. The performance and behavioral characteristics of named mutexes

are identicle to normal mutexes.

When an application is using mutexes and has deadlocked, you may be able to determine which mutexes

are being used by the application more easily if the mutexes being used are named.

You can use the DSPJOB CL command to help debug the application. From DSPJOB, choose option 19 -

Display mutexes, if active or option 20 - Display threads, if active to view the mutexes and threads

being used by the application.

See “pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object” on page 133 and

“pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object” on page 121 if you would

like to use named mutexes in your application.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Header files for Pthread functions

Programs that use the Pthread functions must include one or more header files that contain information

that the functions need. Header files include the following:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library which can be installed as an option. Make sure

QSYSINC is on your system before compiling programs that use these header files.

Where to Find Header Files

 Name of Header File Name of File in QSYSINC Name of Member

pthread.h H PTHREAD

sched.h H SCHED

You can display a header file in QSYSINC by using one of the following methods:

v Use your editor. For example, to display the pthread.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(PTHREAD) OPTION(5)

v Use the Display Physical File Member command. For example, to display the sched.h header file, enter

the following command:

DSPPFM FILE(QSYSINC/H) MBR(SCHED)

You can print a header file in QSYSINC by using one of the following methods:

v Use your editor. For example, to print the pthread.h header file using the Source Entry Utility editor,

enter the following command:

Chapter 2. Concepts 271

#TOP_OF_PAGE
aplist.htm
aplist.htm

STRSEU SRCFILE(QSYSINC/H) SRCMBR(PTHREAD) OPTION(6)

v Use your Copy File command. For example, to print the sched.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/H) TOFILE(*PRINT) FROMMBR(SCHED)

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Pthread glossary

A

attribute object

Any of the Pthreads data structures that are used to specify the initial states when creating

certain resources (threads, mutexes, and condition variables). A thread attribute object can be

used to create a thread. A mutex attributes object can be used to create a mutex. A condition

attributes object can be used to create a condition. Functions that create attribute objects are

pthread_attr_init(), pthread_mutexattr_init(), and pthread_condattr_init().

C

cancel A cancel is delivered to a thread when pthread_cancel() is issued and stops a thread. A cancel can

be held pending if the target thread has cancellation DISABLED or DEFERRED. The cancel may

be acted upon when cancellation is set to ENABLED or ASYNCHRONOUS.

cancellation cleanup handler

A function registered to perform some cleanup action. Cancellation cleanup handlers are called if

a thread calls pthread_exit() or is the target of a pthread_cancel(). Cancellation cleanup handlers

are stacked onto a cancellation cleanup stack and can be pushed and popped using the

pthread_cleanup_push() and pthread_cleanup_pop() functions.

cancellation point

A function that causes a pending cancel to be delivered if the cancellation state is ENABLED, and

the cancellation type is DEFERRED. pthread_testcancel() can be used to create a cancellation

point. For a list of other functions that are cancellation points, see pthread_cancel().

cancellation state

Either of two values (ENABLED or DISABLED) that describe whether cancels in the current

thread are acted upon or held pending, If ENABLED, the cancellation is acted upon immediately

based on the current cancellation type. If DISABLED, the cancel is held pending until it is

ENABLED. You can modify the cancellation state using the pthread_setcancelstate() function.

cancellation type

Either of two values (DEFERRED or ASYNCHRONOUS) that describe how cancels are acted

upon in the current thread when the cancellation state is ENABLED. If DEFERRED, the cancel is

held pending, if ASYNCHRONOUS, the cancel is acted upon immediately, thus ending the thread

with a status of PTHREAD_CANCELED. You can modify the cancellation type using the

pthread_setcanceltype() function.

condition variable

An abstraction that allows a thread to wait for an event to occur. The condition variable is used

with a Boolean predicate that indicates the presence or absence of the event and a mutex that

protects both the predicate and the resources associated with the event. The condition variable

has no ownership associated with it. See pthread_cond_init(), and other functions whose names

begin with pthread_cond_.

272 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

D

detach a thread

To mark a thread so that the system reclaims the thread resources when the thread ends. If the

thread has already ended, the resources are freed immediately. After a thread’s resources are

freed, the exit status is no longer available, and the thread cannot be detached or joined to. Use

the pthread_attr_setdetachstate(), or pthread_detach() functions to detach a thread, or the

pthread_join() function to wait for and then detach a thread.

E

exit status

The return value from a thread. A variable of type void *, which typically contains some pointer

to a control block pointer or return value, that shows under what conditions the thread ended.

The thread can be ended and the exit status can be set by returning from the thread start routine,

by calling pthread_exit(), or by canceling a thread using pthread_cancel().

G

global mutex

A single mutex that is stored globally to the process that is provided by the pthreads library to

allow easy serialization (a mechanism that allows only one thread to act at one time) to

application resources. See the functions pthread_lock_global_np() or pthread_unlock_global_np().

I

initial thread

The thread that is started automatically by the system when a job or process is started. Every job

has at least one thread. That thread is often referred to as the initial thread or the primary thread.

Threads other than the initial thread are referred to as secondary threads. If the initial thread

ends, it causes all secondary threads and the job to end. See also `Secondary thread’.

J

join to a thread

To wait for a thread to complete, detach the thread, and optionally return its exit status. Use

pthread_join() to wait for a thread to complete.

M

main thread

See initial thread.

multithread capable

This term is specific to iSeries. See thread capable.

multithreaded

A process that has multiple active threads. In the iSeries documentation, the term multithreaded

is sometimes used as a synomym for multithread capable.

mutex An abstraction that allows two or more threads to cooperate in a MUTual EXclusion protocol that

allows safe access to shared resources. See pthread_mutex_init() or other functions whose names

begin with pthread_mutex_. Also see recursive mutex, named mutex, global mutex.

Chapter 2. Concepts 273

N

named mutex

A mutex with an associated text name used for identification and debugging. The name is used

in some system dumps and debug or thread-management user interfaces. The name does not

affect the behavior of the mutex, only the ability to debug the use of that mutex. The Pthread

run-time names all mutexes by default. See the functions pthread_mutexattr_setname_np() or

pthread_mutexattr_getname_np().

O

orphaned mutex

A mutex that was held by a thread when that thread ended. Any application data or resources

associated with the mutex are most likely in an inconsistent state if a mutex is orphaned. An

orphaned mutex is not available to be locked by another thread and causes a locking thread to

block indefinitely or to get the EBUSY error when attempting to trylock the mutex.

P

POSIX thread handle

The pthread_t data type that is returned to a creator of a POSIX thread. The pthread_t represents

an opaque handle to the POSIX thread. It should not be modified except through the use of the

pthread functions. The pthread_create() or pthread_self() function returns the POSIX thread

handle. The pthread_equal() function can be used to confirm whether two handles refer to the

same thread. The POSIX thread handle is sometimes referred to as the thread ID.

primary thread

See initial thread.

Pthread

Shorthand for POSIX or Single UNIX Specification Thread, as in ’the interfaces described in this

document are based on the POSIX standard (ANSI/IEEE Standard 1003.1, 1996 Edition OR

ISO/IEC 9945-1: 1996) and the Single UNIX Specification, Version 2, 1997’.

R

recursive mutex

A mutex that can be acquired again by the owning thread. A recursive mutex does not become

unlocked until the number of unlock requests equals the number of successful lock requests. A

non-recursive (normal) mutex causes an EDEADLK error if an attempt is made by the owning

thread to lock it a second time. See the functions pthread_mutexattr_setkind_np() or

pthread_mutexattr_getkind_np().

S

scheduling parameters

Information describing the scheduling characteristics of a thread. The sched_param structure

contains scheduling parameters. On the iSeries, the scheduling parameters allow you to only

specify the priority of the thread. Scheduling Policy is restricted to the proprietary iSeries

scheduling policy. Use the pthread_attr_setschedparam(), pthread_attr_getschedparam(),

pthread_setschedparam(), or pthread_getschedparam() functions to manipulate scheduling

parameters.

scheduling policy

Information describing which algorithm is used to schedule threads within the process or system.

Some scheduling policies are Round Robin or FIFO. iSeries uses the SCHED_OTHER constant to

indicate the delay cost scheduling that the system uses. The scheduling parameter functions

274 iSeries: Pthread APIs

support only the SCHED_OTHER policy, and the pthread_attr_getschedpolicy() and

pthread_attr_setschedpolicy() functions are not supported.

scope Information describing whether the scheduling policy indicates that threads compete directly

with other threads within the process or the system. iSeries schedules threads within the system,

and the pthread_attr_setscope() and pthread_attr_getscope() functions are not supported.

secondary thread

Any thread started by or on behalf of the application that is not the initial thread. Secondary

threads are started by calling pthread_create() or another library service that creates threads.

Secondary threads have no parent/child relationship.

signal An asynchronous mechanism for interrupting the processing of a thread. The system delivers a

signal to a thread when the application programmer takes explicit or implicit action to cause the

signal to be delivered. The signal can be sent to a thread or process, but is always delivered to a

specific thread.

signal handler

A function registered by the application programmer that the system executes when a signal is

delivered to a thread. The function runs immediately in the thread, interrupting any application

processing that is in progress.

signal safe

A function, macro or operating system service that can be called safely from a signal handler. The

function always acts in a well-defined manner. It does not rely on any external state or locks that

might be in an inconsistent state at the time the signal handler function is called by the system.

signal unsafe

A function, macro or operating system service that cannot be called safely from within a signal

handler. A signal unsafe function may acquire locks or otherwise change the state of a resource.

When the signal is delivered to the thread, the signal handler runs. The state of the resource or

the lock managed by the signal unsafe function is unknown because it was interrupted by the

signal before it completed. If the signal unsafe function is called again, the results are

non-deterministic.

T

thread An independent sequence of execution of program code and processing context inside a process.

A unique unit of work or flow of control within a process. A thread runs a procedure

asynchronously with other threads running the same or different procedures within the process.

All threads within a process equally share activation group and process resources (heap storage,

static storage, open files, socket descriptors, other communications ports, environment variables,

and so on). A thread has few resources (mutexes, locks, automatic storage, thread specific storage)

that are not shared. On a multiprocessor system, multiple threads in a process can run

concurrently.

thread capable job

The only job that can create threads. Certain system behavior and the architecture of the process

changes slightly to support OS/400 threads. If a job is not thread capable, attempts to create a

thread result in the EBUSY error. You can create a thread capable process by using the spawn()

interface or by using other iSeries job-creation commands that allow you to specify that the new

job should be thread capable.

thread ID

The unique integral number can be used to identify the thread. This integral number is available

for retrieval using the pthread_getunique_np() interface. Although no Pthread interfaces use the

integral thread ID to identify a thread for manipulation, thread ID is sometimes used to describe

the pthread_t data type that represents the abstraction to a thread. See POSIX thread handle.

Chapter 2. Concepts 275

thread local storage (TLS)

See thread specific storage.

threadsafe

A function, macro or operating system service that can be called from multiple threads in a

process at the same time. The function always acts in a well-defined manner. The end results are

as if the function was called by each thread in turn, even though all of the threads were running

the function at the same time. Some APIs have restrictions about how they can be called in order

for them to be thread safe. See the API documentation for all APIs or system services that you

use in a multithreaded job.

thread specific storage

Storage that is not shared between threads, but that can be accessed by all functions within that

thread. Usually, thread specific storage is indexed by a key. The key is a global value visible to all

threads, and it is used to retrieve the thread-specific value of the storage associated with that key.

Also called thread private storage, thread local storage or TLS. See the pthread_getspecific(),

pthread_setspecific(), pthread_key_create(), and pthread_key_delete() functions.

thread unsafe

A function, macro, or operating system service that cannot be called from multiple threads is

called thread unsafe. If this function is used in multiple threads or in a process that has multiple

threads active, the results are undefined. A thread unsafe function can corrupt or negatively

interact with data in another function (thread safe or otherwise) that appears to be unrelated to

the first function. Do NOT use thread unsafe functions in your multithreaded application. Do

NOT call programs or service programs that use thread-unsafe functions. See the API

documentation for all APIs or system services that you use in a multithreaded job.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Other Sources of Pthread Information

The following standards are the base reference documents from which the APIs in this section originated:

v ANSI/IEEE 1003.1 1996 (A.K.A. ISO/IEC 9945-1 1996)
v The Single UNIX Specification, Version 2, 1997

The following sources also provide information about Pthreads:

v “Programming with POSIX Threads” by David R. Butenhof, ISBN#: 0201633922
v “Threads Primer: A Guide to Solaris Multithreaded Programming” by Bil Lewis and Daniel J. Berg,

Prentice Hall, ISBN#: 0134436989
v The Internet newsgroup comp.programming.threads

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Writing and compiling threaded programs

When writing and compiling code that use threads or that run in a threaded job, make sure to do the

following:

v Ensure that all of the APIs or system services that you use are threadsafe. See Multithreaded

applications for an introduction to threads and general information about OS/400 threads.

v Insert the following lines into any module that uses the thread data types or definitions.

#define _MULTI_THREADED

#include <pthread.h>

The preprocessor definition _MULTI_THREADED must come before the pthread.h.

See “Header files for Pthread functions” on page 271 for more information on header files.

276 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm

See “Using the _MULTI_THREADED preprocessor definition” for more information on the

_MULTI_THREADED preprocessor definition.

v Compile the program normally; use the CRTCMOD followed by the CRTPGM or CRTSRVPGM

commands. You can also use the CRTBNDC CL command to create your threaded program.

v Since Pthread APIs can operate on functions and data which could exist in different compilation units

(modules), the same storage model and data model must be used throughout all compilation units

within a program or service program that uses Pthread APIs. Otherwise, unpredictable behavior and

failures will occur. Refer to the information on teraspace and single-level store in the ILE Concepts

book for more information on storage model and data model.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Using the _MULTI_THREADED preprocessor definition

The _MULTI_THREADED preprocessor value is used to indicate that your application uses the kernel

threads model. The preprocessor value can also be used by other parts of the system to create threadsafe

macros. For example, the fputc() macro of ILE C can use the _MULTI_THREADED preprocessor value.

You should always define the _MULTI_THREADED preprocessor value in source files that run in kernel

threaded jobs.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Running threaded programs

When you run a threaded program, the job that runs a threaded program must be specially initialized by

the system to support threads. Currently, several mechanisms allow you to start a job that is capable of

creating multiple kernel threads:

v Use the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets descriptors 0, 1, and 2 as

the standard files; the parent and child I/O is directed to the console. The QShell interpreter allows

you to run multithreaded programs as if they were interactive. See Qshell for a description of the

QIBM_MULTI_THREADED shell variable, which, when set to ’Y’, allows you to run multithreaded

programs the same way you run any other program. The QShell Interpreter is option 30 of Base

OS/400.

v Use the spawn() API. The spawn() API has a flag in the spawn inheritance structure that allows you to

turn on the multithread capability for the child job. The QUSRTOOL library also provides source code

and an example CL command to allow you to create and use a SPAWN CL command in a way that is

similar to the SBMJOB CL command. See the “SPAWN CL command, QUSRTOOL example” on page

278 for more information.

v Use the SBMJOB CL command. Setting the ’Allow multiple threads’ parameter (keyword

ALWMLTTHD) on the CL command allows you to turn on the multithread capability of the submitted

job.

v Use the CRTJOBD CL command to create a special job description; then create your job using a

mechanism that will use the job description. Setting the ’Allow multiple threads’ parameter (keyword

ALWMLTTHD) on the job description allows you to turn on the multithread capability of the jobs that

are created using that job description.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Chapter 2. Concepts 277

aplist.htm
aplist.htm
aplist.htm

SPAWN CL command, QUSRTOOL example

When you test your threaded application, you may want to quickly spawn new processes and debug the

programs started in those processes. An example tool that creates a SPAWN CL command has been

placed into the QUSRTOOL library for your use on the system. (See Creating the SPAWN command

below.)

You can install the QUSRTOOL library (Option 7) of the base operating system when using the

RSTLICPGM CL command. On the GO LICPGM menu, it appears as the Example Tools Library.

The spawn example shows how you might write a CL command and a command processing program to

allow you to spawn jobs from the command line. The call to spawn() starts a new process that allows

you to inherit the current environment (file descriptors, socket descriptors, and environment variables)

from the current process. By default, it allows you to create threads in the child process and allows you

to automatically issue the commands required to debug the spawned child. If you want more

functionality from the command, you can easily edit it.

Creating the SPAWN command

To use the example tool to create the SPAWN command, see the QATTINFO file in the QUSRTOOL

library. The members AAAAREADME and AAAMAP in that file contain information and instructions

for unpacking various QUSRTOOL examples and utilities. Read these members and follow the

instructions for using the package and unpackage utilities on the SPAWN source files.

The member that contains the SPAWN example information is TP0ZINFO in the QATTINFO file. The

TP0ZINFO member contains a table that lists the source files that must be unpacked to create the

SPAWN example. The TP0ZINFO member also contains instructions for creating the example CL

command and lists which source members are used for SPAWN in case you want to modify the SPAWN

CL command to suit your own specific needs.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Troubleshooting Pthread errors

The following are common errors users encounter when programming with Pthreads. Follow the

appropriate link to find instructions for correcting these errors:

v Cannot find header files pthread.h or qp0ztype.h or qp0zptha.h

v Thread creation (pthread_create()) fails with EBUSY or 3029

v Mixing thread models or API sets

v Reserved fields must be binary zero

v Powerful OS/400 cleanup mechanisms allow application deadlock (cancel_handler and C++ automatic

destructors)

v Thread creation using C++ methods as target does not work

v MCH3402 from pointer returned by pthread_join()

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Cannot find header files pthread.h or qp0ztype.h or qp0zptha.h

You may find that your compilation fails because the system header files required to compile a threaded

program or to use the threaded interfaces cannot be found. This problem has one of several causes:

v If you get failure messages similar to the following:

KULACK/QCSRC/MYPGM line 5: Unable to find #include file *LIBL/H(PTHREAD).

278 iSeries: Pthread APIs

aplist.htm
concept3.htm
concept4.htm
concept5.htm
concept6.htm
concept7.htm
concept7.htm
concept8.htm
concept9.htm
aplist.htm

you might have one of two problems:

– Either your system does not have the C header files for openness (the QSYSINC library) installed,

you are on a Version 4 Release 2 system and you do not have the PTF installed (PTF number

5769SS1-J664741) that provides the Pthread header files.

– Your compile command is not searching the correct locations for system header files.

In order to correct these problems, do one of the following:

– Install the Openness includes (System Openness Includes, 5769-SS1 Option 3) and the QSYSINC

library, install the PTF support (PTF number 5769SS1-J664741) for kernel threads header files.

– Correct your search paths or library list.
v If you get failure messages similar to the following:

QSYSINC/H/PTHREAD line 48: Unable to find #include file QCPA/H(PTHREAD).

QSYSINC/H/PTHREAD line 60: #error "#ifndef _MULTI_THREADED"

QSYSINC/H/PTHREAD line 61: #error "#ifndef QP0Z_CPA_THREADS_PRESENT"

you have forgotten to define the _MULTI_THREADED preprocessor symbol. Use the C preprocessor

statement `#define _MULTI_THREADED’ in your application, or define _MULTI_THREADED on the

CRTCMOD or other compile command that you use to compile your modules. Because the CPA

toolkit supported threads before kernel threads being introduced on the server, if you do not define

_MULTI_THREADED when compiling your C modules, the system attempts to compile your

application using the CPA header files. The recommended threads model is kernel threads. You must

define _MULTI_THREADED when you compile your application.

v If you get failure messages similar to the following:

QCPA/H/PTHREAD line 171: Unable to find #include file *LIBL/H(QP0ZTYPE).

QCPA/H/PTHREAD line 183: Unable to find #include file *LIBL/H(QP0ZPTHA).

you have forgotten to define the _MULTI_THREADED preprocessor symbol. Use the C preprocessor

statement #define _MULTI_THREADED in your application, or define _MULTI_THREADED on the

CRTCMOD or other compile command that you use to compile your modules. Because the CPA

toolkit supported threads prior to kernel threads being introduced on the server0, if you do not define

_MULTI_THREADED when compiling your C modules, the system attempts to compile your

application using the CPA header files. The recommended threads model is kernel threads. You must

define _MULTI_THREADED when you compile your application.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread creation (pthread_create()) fails with EBUSY or 3029

Because many parts of the operating system are not yet thread safe, not every job can start threads. The

pthread_create() API fails with the EBUSY error when the process is not allowed to create threads. See

“Running threaded programs” on page 277 for information about how to start a job that can create

threads.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Mixing thread models or API sets

If you mix Pthread APIs with other threads management APIs that might be provided on the system,

your application can enter an unknown state. For example, you should not use Java or the IBM open

class libraries threads implementations to manipulate a thread that was created using the Pthread APIs.

Similarly, if you use a Pthread API like pthread_cancel() on a thread created and managed by the JVM,

you can get unexpected results.

The following example demonstrates this problem. A Java application creates several Java threads. One

Java thread runs normally and eventually calls a native method. The native method uses the

pthread_self() API to store the POSIX thread handle for the thread. The native method then returns to

Chapter 2. Concepts 279

#TOP_OF_PAGE
aplist.htm
aplist.htm

Java and continues to run normal Java code in the Java virtual machine (JVM). Eventually, another Java

thread in the application calls a native method. The new native method uses the stored POSIX thread

handle in a call to pthread_cancel(). This causes cause the Java thread to be terminated with Pthread

semantics. The Java thread cleanup requirements or the tendency of Java to end the thread with a Java

exception may not be honored. The application may not get the results that you expect. Do not

manipulate threads from one thread model with APIs from another.

The following example also demonstrates this problem. The priorities of a Pthread may sometimes be

manipulated using both Pthread and iSeries proprietary interfaces. If they are manipulated, the priorities

are always set correctly; however the priority returned from the Pthread interface

pthread_getschedparam() is only correct if the priority was always set using either the

pthread_setschedparam() interface or another interface, but not both. If multiple interfaces have been

used to set the priority of the thread, pthread_getschedparam() always returns the priority set by the last

pthread_setschedparam().

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Reserved fields must be binary zero

The OS/400 implementation of many APIs requires that reserved fields in certain parameters or data

structures be set to binary zero before using a structure as input to an API or system service. You should

initialize the structure using memset() or an initialization API provided by the system, such as

pthread_condattr_init(). Using structures with reserved fields that are non-zero causes the EINVAL error.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Powerful OS/400 cleanup mechanisms allow application deadlock

(cancel_handler and C++ automatic destructors)

OS/400 provides a set of powerful cleanup mechanisms. In OS/400, an application has the ability to

register a cancel handler. Your application can enable a cancel handler by using the #pragma

cancel_handler preprocessor statement if it is written in C or C++ or by using the CEERTX() API.

A cancel handler is similar to a Pthread cancellation cleanup handler. However, a cancel handler runs

whenever the stack frame or function for which it was registered ends in any way other than a normal

return. Pthread cancellation cleanup handlers run only when the thread is terminated with pthread_exit()

or pthread_cancel() or when the thread returns from the threads start routine.

The cancel handler is guaranteed to run for all conditions that cause the stack frame to end (other than

return), such as thread termination, job termination, calls to exit(), abort(), exceptions that percolate up

the stack, and cancel stack frames. Similarly, C++ destructors for automatic C++ objects are guaranteed to

run when the stack frame (function) or scope in which it was registered ends.

These mechanisms ensure that your application can always clean up its resources. With the added power

of these mechanisms, an application can easily cause a deadlock.

The following is an example of such a problem:

280 iSeries: Pthread APIs

aplist.htm
aplist.htm

An application has a function foo() that registers a cancel

handler called cleanup(). The function foo() is called by

multiple threads in the application. The application is

ended abnormally with a call to abort() or by system

operator intervention (with the ENDJOB *IMMED CL

command). When this job is ended, every thread is

immediately terminated. When the system terminates a

thread by terminating each call stack entry in the thread,

it eventually reaches the function foo() in that thread.

When function foo() is reached, the system recognizes

that it must not remove that function from the call stack

without running the function cleanup(), and so the

system runs cleanup(). Because your application is

multithreaded, all of the job ending and cleanup

processing proceeds in parallel in each thread. Also,

because abort() or ENDJOB *IMMED was used, the

current state and location of each thread in your

application is cannot be determined. When the cleanup()

function runs, it is very difficult for the application to

correctly assume that any specific cleanup can be done.

Any resources that the cleanup() function attempts to

acquire may be held by other threads in the process,

other jobs in the system, or possibly by the same thread

running the cleanup() function. The state of application

variables or resources that your application manipulates

may be in an inconsistent state because the call to abort()

or ENDJOB *IMMED asynchronously interrupted every

thread in the process at the same time. The application

can easily reach a deadlock when running the cancel

handlers or C++ destructors.

Do not attempt to acquire locks or resources in cancel

handlers or C++ automatic object destructors without

preparing for the possibility that the resources cannot be

acquired.

Important

Neither a cancel handler nor a destructor for a C++ object can prevent the call stack entry from being

terminated, but the termination of the call stack entry (and therefore the job or thread) is delayed until

the cancel handler or destructor completes.

If the cancel handler or destructor does not complete, the system does not continue terminating the call

stack entry (and possibly the job or thread). The only alternative at this point is to use the WRKJOB CL

command (option 20) to end the thread, or the ENDJOB *IMMED CL command. If the ENDJOB

*IMMED command causes a cancel handler to run in the first place, the only option left is the

ENDJOBABN CL command because any remaining cancel handlers are still guaranteed to run.

The ENDJOBABN CL command is not recommended. The ENDJOBABN command causes the job to be

terminated with no further cleanup allowed (application or operating system). If the application is

suspended while trying to access certain operating system resources, those resources may be damaged. If

operating system resources are damaged, you may need to take various reclaim, deletion, or recovery

steps and, in extreme conditions, restart the system.

Recommendations

If you want to cleanup your job or application, you can use one of the following mechanisms:

Chapter 2. Concepts 281

v If you want to do process level or activation group cleanup for normal termination, use the C atexit()

function to register your cleanup function. The atexit() function provides a mechanism to run cleanup

after the activation group and possibly the threads, are terminated. This action significantly reduces the

complexity.

v If you always want a chance to do process level or activation group cleanup in all cases (normal and

abnormal), you could use the Register Activation Group Exit (CEE4RAGE()) system API. The

CEE4RAGE() function provides a mechanism to run cleanup after the activation group (and possibly

the threads) are terminated. This action significantly reduces the complexity.

v You can safely use cancel handlers. Simplify your cancel handlers so that they only unlock or release

resources and do not attempt to acquire any new resources or locks.

v You can remove your cancel handlers and create a CL command, program, or tool that terminates your

application in a more controlled fashion:

– One possibility is a tool that uses a signal to terminate the application. When the signal comes in,

your application can get control in a single location (preferably by using the sigwait() API to safely

and synchronously get the signal), and then perform some level of cleanup. Then it can use exit() or

abort() to end the application from within. Often this action is sufficient to remove the complexity.

– A second possibility is to use the ENDJOB *CNTRLD CL command and have your application

dedicate a thread to watching for the controlled end condition. The application thread can use the

QUSRJOBI (Get Job Information) or the QWCRTVCA (Retrieve Current Attributes) APIs to look at

the End Status information associated with your job. The End Status indicates that the job is ending

in a controlled fashion, and your application can take safe and synchronous steps to clean up and

exit.

– A third possibility is to use the asynchronous signals support and set up a handler for the SIGTERM

asynchronous signal. Support has been added to the system so that, if an ENDJOB *CNTRLD is

done and the target job has a handler registered for the SIGTERM signal, that signal gets delivered

to the target job. You should dedicate a thread for handling signals by using the sigwait() API in the

dedicated thread. When the signal handling thread detects a SIGTERM signal using the sigwait()

API, it can safely clean up and terminate the application. The system support for the delivery of the

SIGTERM signal when ENDJOB *CNTRLD is issued was added in the base OS/400 in Version 4

Release 3 Modification 0 and is also available in Version 4 Release 2 Modification 0 through program

temporary fixes (PTFs) 5769SS1-SF47161 and 5769SS1-SF47175. For more information about ending

your job, see the Work Management topic.

– A fourth possibility includes other interprocess communications (IPC) mechanisms that can also be

used to indicate that your application should terminate in a safe and controlled fashion.
v If you want to do thread-level cleanup, use the pthread APIs, such as pthread_cleanup_push(),

pthread_cleanup_pop(), and pthread_key_create() to create cancellation cleanup functions that run

when the thread terminates under normal conditions. Often your cleanup functions do not need to run

when the job ends. The most common use for these functions is to free heap storage or unlock

resources. Unlocking resources is safe in a cancel handler, and you do not need to use free() on heap

storage when the entire job is ending anyway.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread creation using C++ methods as target does not work

Often, as a C++ programmer, you may want to abstract the concept of a thread into a C++ class. To do

this, you must realize that the Pthread APIs are C language APIs. The Pthread APIs use functions that

have C linkage and calling conventions. For your application to successfully use the pthread functions,

you must provide helper functions of the appropriate type and linkage for the Pthread APIs that take

function pointers as parameters.

282 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

When sharing objects between threads, always be aware of which thread is manipulating the object,

which thread is responsible for freeing the object, and what thread safety issues are created by sharing

objects between threads.

The following example shows how to successfully create a program that abstracts a thread into a C++

class. It can be easily extended to provide a mechanism by which the thread creation and manipulation

itself is also encapsulated into the class.

Example

See Code disclaimer information for information pertaining to code examples.

/* This C++ example must be compiled with VisualAge C++ for OS/400 */

#define _MULTI_THREADED

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h>

#include <pthread.h>

class ThreadClass {

public:

 ThreadClass(char *s) {

 data1 = 42; data2 = strlen(s);

 strncpy(str, s, sizeof(str)-1);

 str[49]=0;

 }

 void *run(void);

private:

 int data1;

 int data2;

 char str[50];

};

extern "C" void *ThreadStartup(void *);

int main(int argc, char **argv)

{

 ThreadClass *t=NULL;

 pthread_t thread;

 int rc;

 // Use printf instead of cout.

 // At the time this test was written, the C++ standard class library

 // was not thread safe.

 printf("Entered test %s\n", argv[0]);

 printf("Create a ThreadClass object\n");

 t = new ThreadClass("Testing C++ object/thread creation\n");

 printf("Start a real thread to process the ThreadClass object\n");

 // #define COMPILE_ERROR

 #ifdef COMPILE_ERROR

 // This is an ERROR. You cannot create a thread by using a pointer

 // to a member function. Thread creation requires a C linkage function.

 // If you remove the comments from the line `#define COMPILE_ERROR’

 // the compiler will give a message similar to this:

 // "ATESTCPP0.C", line 46.53: 1540-055: (S) "void*(ThreadClass::*)()"

 // cannot be converted to "extern "C" void*(*)(void*)".

 rc = pthread_create(&thread, NULL, ThreadClass::run, NULL);

 #else

 // Instead, this is the correct way to start a thread on a C++ object

 rc = pthread_create(&thread, NULL, ThreadStartup, t);

 #endif

 if (rc) {

 printf("Failed to create a thread\n");

 exit(EXIT_FAILURE);

 }

Chapter 2. Concepts 283

aboutapis.htm#CODEDISCLAIMER

printf("Waiting for thread to complete\n");

 rc = pthread_join(thread, NULL);

 if (rc) {

 printf("Failed to join to the thread, rc=%d\n");

 exit(EXIT_FAILURE);

 }

 printf("Testcase complete\n");

 exit(EXIT_SUCCESS);

}

// This function is a helper function. It has normal C linkage, and is

// as the base for newly created ThreadClass objects. It runs the

// run method on the ThreadClass object passed to it (as a void *).

// After the ThreadClass method completes normally (i.e returns),

// we delete the object.

void *ThreadStartup(void *_tgtObject) {

 ThreadClass *tgtObject = (ThreadClass *)_tgtObject;

 printf("Running thread object in a new thread\n");

 void *threadResult = tgtObject->run();

 printf("Deleting object\n");

 delete tgtObject;

 return threadResult;

}

void *ThreadClass::run(void)

{

 printf("Entered the thread for object %.8x %.8x %.8x %.8x\n", this);

 printf("Object identity: %d, %d: %s\n", data1, data2, str);

 return NULL;

}

Output

Entered test QP0WTEST/ACPPOBJ

Create a ThreadClass object

Start a real thread to process the ThreadClass object

Waiting for thread to complete

Running thread object in a new thread

Entered the thread for object 80000000 00000000 d017dad2 57001f60

Object identity: 42, 35: Testing C++ object/thread creation

Deleting object

Testcase complete

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

MCH3402 from pointer returned by pthread_join()

Be sure that no threads return pointers to items that can be destroyed when a thread terminates. For

example, the threads stack is transitory. It needs to exist only for the life of the thread, and it may be

destroyed when the thread terminates. If you return the address of an automatic variable or use the

address of an automatic variable as an argument to pthread_exit(), you may experience MCH3402 errors

when you use the address.

Example

The following example contains code that brings up the MCH3402 error.

See Code disclaimer information for information pertaining to code examples.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include "check.h"

284 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aboutapis.htm#CODEDISCLAIMER

void *threadfunc(void *parm)

{

 int rc = 2;

 printf("Inside secondary thread, return address of local variable.\n");

 return &rc; /* THIS IS AN ERROR! */

 /* AT THIS POINT, THE STACK FOR THIS THREAD MAY BE DESTROYED */

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=1;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create thread that returns status incorrectly\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Join to thread\n");

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 printf("Checking results from thread. Expect MCH3402\n");

 /* Monitor for the MCH3402 exception in this range */

#pragma exception_handler(TestOk, 0, 0, _C2_ALL, _CTLA_HANDLE_NO_MSG, "MCH3402")

 rc = *(int *)status;

#pragma disable_handler

TestFailed:

 printf("Did not get secondary thread results (exception) as expected!\n");

 goto TestComplete;

TestOk: /* Control goes here for an MCH3402 exception */

 printf("Got an MCH3402 as expected\n");

TestComplete:

 printf("Main completed\n");

 return rc;

}

Output

Enter Testcase - QP0WTEST/TPJOIN7

Create thread that returns status incorrectly

Join to thread

Inside secondary thread, return address of local variable.

Checking results from thread. Expect MCH3402

Got an MCH3402 as expected

Main completed

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Information on the Pthread API examples

The API documentation includes example programs for each API. The “File check.h used by API

examples programs” on page 286 shown below is used for all of the examples. It should be named

check.h (member CHECK in file H in a library in the library list).

In most cases, error checking that is contained in the examples causes the program to exit() if any failure

is detected. In some cases, error checking is left out of the examples for brevity. In general, the error

checking that is provided should not be considered complete enough for all applications. All return codes

from any system functions should be validated and appropriate action should be taken when failures

occur.

Chapter 2. Concepts 285

#TOP_OF_PAGE
aplist.htm

The examples are provided ″as-is″ for demonstration and education purposes only. They do not

necessarily provide or implement an appropriate level of error checking to be used for production code

and should not be used directly for that purpose.

Be sure to see “Writing and compiling threaded programs” on page 276 and “Running threaded

programs” on page 277 for more information about compiling and running the example programs.

To create the examples, make sure the member CHECK is created in a file H in your library list. Use

CRTCMOD on the name that you download the member to, then use CRTPGM to link the module into

a program object. Alternatively, you can use CRTBNDC to compile and link the program in one step.

When you run the example programs, you must be aware of a requirement:

The job that runs a threaded program must be specially initialized by the system to support threads.

Currently, several mechanisms allow you to start a job that is capable of creating multiple kernel threads.

v Use the OS/400 QShell Interpreter

v Use the spawn() API.

v Use the SMJOB CL command.

v Use the CRTJOBD CL command to create a special job description, then create your job using a

mechanism that will use the job description.

See “Running threaded programs” on page 277 for detailed information on these methods.

See Code disclaimer information for information pertaining to code examples.

File check.h used by API examples programs

This example header file must be in the library list when you compile the example programs.

#ifndef _CHECK_H

#define _CHECK_H

/* headers used by a majority of the example program */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

/* Simple function to check the return code and exit the program

 if the function call failed

 */

static void checkResults(char *string, int rc) {

 if (rc) {

 printf("Error on : %s, rc=%d",

 string, rc);

 exit(EXIT_FAILURE);

 }

 return;

}

#endif

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread management APIs

Thread management APIs allow a program to manipulate threads. The APIs actually create, destroy and

otherwise manage the active or ended threads within the application. The APIs allow the manipulation of

some of the thread attributes of an active thread.

286 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

A program can also setup or change the characteristics of a thread attributes object. The thread attributes

object is used at thread creation time. The new thread is created with the attributes that are specified in

the attributes object. After the thread has been created, the attributes object is no longer required.

The table below lists important thread attributes, their default values, and all supported values.

 Attribute Default value Supported values

detachstate PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_JOINABLE

PTHREAD_CREATE_DETACHED

schedparam SCHED_OTHER with priority equal to

PRIORITY_DEFAULT (0)

SCHED_OTHER with priority <=

PTHREAD_PRIO_MAX and priority >=

PTHREAD_PRIO_MIN

contentionscope PTHREAD_SCOPE_SYSTEM PTHREAD_SCOPE_SYSTEM

inheritsched PTHREAD_EXPLICIT_SCHED, priority

equal PRIORITY_DEFAULT (0)

PTHREAD_EXPLICIT_SCHED or

PTHREAD_INHERIT_SCHED

schedpolicy SCHED_OTHER SCHED_OTHER

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The thread management APIs are:

v “pthread_attr_destroy()—Destroy Thread Attributes Object” on page 7 (Destroy Thread Attributes

Object) destroys a thread attributes object and allows the system to reclaim any resources associated

with that thread attributes object.

v “pthread_attr_getdetachstate()—Get Thread Attributes Object Detachstate” on page 9 (Get Thread

Attributes Object Detachstate) returns the detach state attribute from the thread attributes object

specified.

v “pthread_attr_getguardsize()—Get Guard Size” on page 243 (Get Guard Size) >

v “pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit Scheduling Attributes” on page 11

(Get Thread Attribute Object Inherit Scheduling Attributes) returns the inheritsched attribute from the

thread attributes object specified.

v “pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page 13 (Get

Thread Attributes Object Scheduling Parameters) returns the scheduling parameters attribute from the

thread attributes object.

v “pthread_attr_init()—Initialize Thread Attributes Object” on page 15 (Initialize Thread Attributes

Object) initializes a thread attributes object to the default thread attributes.

v “pthread_attr_setdetachstate()—Set Thread Attributes Object Detachstate” on page 17 (Set Thread

Attributes Object Detachstate) sets the detach state of the thread attributes object.

v “pthread_attr_setguardsize()—Set Guard Size” on page 244 (Set Guard Size) >

v “pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling Attributes” on page 19 (Set

Thread Attribute Inherit Scheduling Attributes) sets the inheritsched attribute in the thread attributes

object specified.

v “pthread_attr_setschedparam()—Set Thread Attributes Object Scheduling Parameters” on page 21 (Set

Thread Attributes Object Scheduling Parameters) sets the scheduling parameters in the thread

attributes object.

v “pthread_clear_exit_np()—Clear Exit Status of Thread” on page 33 (Clear Exit Status of Thread) clears

the exit status of the thread.

v “pthread_create()—Create Thread” on page 65 (Create Thread) creates a thread with the specified

attributes and runs the C function start_routine in the thread with the single pointer argument

specified.

Chapter 2. Concepts 287

v “pthread_delay_np()—Delay Thread for Requested Interval” on page 68 (Delay Thread for Requested

Interval) causes the calling thread to delay for the deltatime specified.

v “pthread_detach()—Detach Thread” on page 71 (Detach Thread) indicates that system resources for the

specified thread should be reclaimed when the thread ends.

v “pthread_equal()—Compare Two Threads” on page 73 (Compare Two Threads) compares two Pthread

handles for equality.

v “pthread_exit()—Terminate Calling Thread” on page 74 (Terminate Calling Thread) terminates the

calling thread, making its exit status available to any waiting threads.

v “pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77 (Wait for Thread

with Extended Options) waits for a thread to terminate, optionally detaches the thread, then returns

the threads exit status.

v “pthread_getconcurrency()—Get Process Concurrency Level” on page 82 (Get Process Concurrency

Level) retrieves the current concurrency level for the process.

v “pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data” on page 83 (Get Pthread

Run-Time Option Data) gets option data from the pthread run-time for the process.

v “pthread_getschedparam()—Get Thread Scheduling Parameters” on page 86 (Get Thread Scheduling

Parameters) retrieves the scheduling parameters of the thread.

v “pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91 (Retrieve Unique ID

for Calling Thread) retrieves the unique integral identifier that can be used to identify the calling

thread in some context for application debugging or tracing support.

v “pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93 (Retrieve a Unique ID for

Target Thread) retrieves the unique integral identifier that can be used to identify the thread in some

context for application debugging or tracing support.

v “pthread_is_initialthread_np()—Check if Running in the Initial Thread” on page 98 (Check if Running

in the Initial Thread) returns true or false, indicating if the current thread is the initial thread of the

process.

v “pthread_is_multithreaded_np()—Check Current Number of Threads” on page 100 (Check the Current

Number of Threads) returns true or false, indicating whether the current process has more than one

thread.

v “pthread_join()—Wait for and Detach Thread” on page 102 (Wait for and Detach Thread) waits for a

thread to terminate, detaches the thread, then returns the threads exit status.

v “pthread_join_np()—Wait for Thread to End” on page 104 (Wait for Thread to End) waits for a thread

to terminate, then returns the threads exit status, while leaving the data structures of the thread

available for a later call to pthread_join(), pthread_join_np(), pthread_detach(), or

pthread_extendedjoin_np()

v “pthread_once()—Perform One-Time Initialization” on page 157 (Perform One-Time Initialization)

performs one time initialization based on a specific once_control variable.

v “pthread_self()—Get Pthread Handle” on page 197 (Get Pthread Handle) returns the Pthread handle of

the calling thread.

v “pthread_setconcurrency()—Set Process Concurrency Level” on page 204 (Set Process Concurrency

Level) sets the current concurrency level for the process.

v “pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data” on page 205 (Set Pthread

Run-Time Option Data) sets option data in the pthread run-time for the process.

v “pthread_setschedparam()—Set Target Thread Scheduling Parameters” on page 208 (Set Target Thread

Scheduling Parameters) sets the scheduling parameters of the target thread.

v “pthread_trace_init_np()—Initialize or Re-initialize pthread tracing” on page 227 (Initialize or

Reinitialize Pthread Tracing) initializes or refreshes both the Pthreads library trace level and the

application trace level.

v “PTHREAD_TRACE_NP()—Macro to optionally execute code based on trace level” on page 233

(Execute Code Based on Trace Level (Macro)) is used to execute optional code based on the current

application trace level.

288 iSeries: Pthread APIs

v “sched_yield()—Yield Processor to Another Thread” on page 240 (Yield Processor to Another Thread)

yields the processor from the currently executing thread to another ready-to-run, active thread of equal

or higher priority.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread specific storage APIs

Thread specific storage is used by your threaded application when you need global storage that is

`private’ to a thread. The storage is allocated and stored by the thread, and can be associated with a

destructor function. When the thread ends using one of the pthread mechanisms, the destructor function

runs and cleans up the thread local storage. The thread specific storage can replace global storage,

because any function in a thread that requests the thread specific storage will get the same value.

Functions in another thread that request the thread specific storage will get the thread specific storage

owned by the thread that they are called in.

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The thread specific storage APIs are:

v “pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88 (Get Thread Local Storage

Value by Key) retrieves the thread local storage value associated with the key. pthread_getspecific()

may be called from a data destructor.

v “pthread_key_create()—Create Thread Local Storage Key” on page 107 (Create Thread Local Storage

Key) creates a thread local storage key for the process and associates the destructor function with that

key.

v “pthread_key_delete()—Delete Thread Local Storage Key” on page 109 (Delete Thread Local Storage

Key) deletes a process-wide thread local storage key.

v “pthread_setspecific()—Set Thread Local Storage by Key” on page 211 (Set Thread Local Storage by

Key) sets the thread local storage value associated with a key.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Thread cancellation APIs

You can use thread cancellation APIs to cause a thread to end prematurely, or to aid in cleanup when a

thread is ended (either prematurely or normally). The thread cancellation APIs work together to provide

a mechanism for thread cleanup and protecting threaded resources from cancellation. The thread

cancellation APIs only provide clean up and protection in relationship to other pthread APIs. You cannot

protect from or clean up when a thread ends as a result of your process ending (normally or abnormally),

or when the thread ends by some mechanism outside of the pthread API set. Some examples of

mechanisms that can terminate a thread that are outside o the pthread API set are the ENDJOB *IMMED

CL command, a thread ending from an unhandled exception, or the operator terminating a thread using

the work with threads screen (Option 20 from the WRKJOB display).

The table below lists the thread cancelability states, the cancellation types, and the cancellation action.

Cancelability consists of three separate states (disabled, deferred, asynchronous) that can be represented

by two boolean values. The default cancelability state is deferred.

 Cancelability Cancelability State Cancelability Type

disabled PTHREAD_CANCEL_DISABLE PTHREAD_CANCEL_DEFERRED

disabled PTHREAD_CANCEL_DISABLE PTHREAD_CANCEL_ASYNCHRONOUS

Chapter 2. Concepts 289

#TOP_OF_PAGE
aplist.htm
aplist.htm

Cancelability Cancelability State Cancelability Type

deferred PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED

asynchronous PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_ASYNCHRONOUS

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The thread cancellation APIs are:

v “pthread_cancel()—Cancel Thread” on page 23 (Cancel Thread) requests cancellation of the target

thread.

v “pthread_cleanup_peek_np()—Copy Cleanup Handler from Cancellation Cleanup Stack” on page 26

(Copy Cleanup Handler from Cancellation Cleanup Stack) returns a copy of the cleanup handler entry

that the next call to pthread_cleanup_pop() would pop.

v “pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28 (Pop

Cleanup Handler off of Cancellation Cleanup Stack) pops the last cleanup handler from the

cancellation cleanup stack.

v “pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30 (Push

Cleanup Handler onto Cancellation Cleanup Stack) pushes a cancellation cleanup routine onto the

calling threads cancellation cleanup stack.

v “pthread_getcancelstate_np()—Get Cancel State” on page 80 (Get Cancel State) gets the current cancel

state of the thread.

v “pthread_setcancelstate()—Set Cancel State” on page 199 (Set Cancel State) sets the cancel state to one

of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE and returns the old cancel state

into the location specified by oldstate (if oldstate is non-NULL).

v “pthread_setcanceltype()—Set Cancel Type” on page 201 (Set Cancel Type) sets the cancel type to one

of PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS and returns the old

cancel type into the location specified by oldtype (if oldtype is non-NULL)

v “pthread_testcancel()—Create Cancellation Point” on page 222 (Create Cancellation Point) creates a

cancellation point in the calling thread.

v “pthread_test_exit_np()—Test Thread Exit Status” on page 224 (Test Thread Exit Status) returns the

current state of the thread along with its exit status.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Mutex synchronization APIs

Thread synchronization is required whenever two threads share a resource or need to be aware of what

the other threads in a process are doing. Mutexes are the most simple and primitive object used for the

co-operative mutual exclusion required to share and protect resources. One thread owns a mutex by

locking it successfully, when another thread tries to lock the mutex, that thread will not be allowed to

successfully lock the mutex until the owner unlocks it. The mutex support provides different types and

behaviors for mutexes that can be tuned to your application requirements.

The table below lists important mutex attributes, their default values, and all supported values.

 Attribute Default value Supported values

pshared PTHREAD_PROCESS_PRIVATE PTHREAD_PROCESS_PRIVATE or

PTHREAD_PROCESS_SHARED

kind (non portable) PTHREAD_MUTEX_NONRECURSIVE_NP PTHREAD_MUTEX_NONRECURSIVE_NP

or PTHREAD_MUTEX_RECURSIVE_NP

290 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Attribute Default value Supported values

name (non portable) PTHREAD_DEFAULT_MUTEX_NAME_NP

“QP0WMTX UNNAMED”

Any name that is 15 characters or less. If not

terminated by a null character, name is

truncated to 15 characters.

type PTHREAD_MUTEX_DEFAULT

(PTHREAD_MUTEX_NORMAL)

PTHREAD_MUTEX_DEFAULT or

PTHREAD_MUTEX_NORMAL or

PTHREAD_MUTEX_RECURSIVE or

PTHREAD_MUTEX_ERRORCHECK or

PTHREAD_MUTEX_OWNERTERM_NP

The

PTHREAD_MUTEX_OWNERTERM_NP

attribute value is non portable.

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The Mutex synchronization APIs are:

v “pthread_lock_global_np()—Lock Global Mutex” on page 114 (Lock Global Mutex) locks a global

mutex provided by the pthreads run-time.

v “pthread_mutexattr_destroy()—Destroy Mutex Attributes Object” on page 117 (Destroy Mutex

Attributes Object) destroys a mutex attributes object and allows the system to reclaim any resources

associated with that mutex attributes object.

v “pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute” on page 119 (Get Mutex Kind Attribute)

retrieves the kind attribute from the mutex attributes object specified by attr.

v “pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object” on page 121 (Get Name

from Mutex Attributes Object) retrieves the name attribute associated with the mutex attribute specified

by attr.

v “pthread_mutexattr_getpshared()—Get Process Shared Attribute from Mutex Attributes Object” on

page 123 (Get Process Shared Attribute from Mutex Attributes Object) retrieves the current setting of

the process shared attribute from the mutex attributes object.

v “pthread_mutexattr_gettype()—Get Mutex Type Attribute” on page 125 (Get Mutex Type Attribute)

retrieves the type attribute from the mutex attributes object specified by attr.

v “pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129 (Initialize Mutex Attributes

Object) initializes the mutex attributes object referenced by attr to the default attributes.

v “pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131 (Set Mutex Kind Attribute)

sets the kind attribute in the mutex attributes object specified by attr.

v “pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object” on page 133 (Set Name in

Mutex Attributes Object) changes the name attribute associated with the mutex attribute specified by

attr.

v “pthread_mutexattr_setpshared()—Set Process Shared Attribute in Mutex Attributes Object” on page

135 (Set Process Shared Attribute in Mutex Attributes Object) sets the current pshared attribute for the

mutex attributes object.

v “pthread_mutexattr_settype()—Set Mutex Type Attribute” on page 137 (Set Mutex Type Attribute) sets

the type attribute in the mutex attributes object specified by attr.

v “pthread_mutex_destroy()—Destroy Mutex” on page 139 (Destroy Mutex) destroys the named mutex.

v “pthread_mutex_init()—Initialize Mutex” on page 141 (Initialize Mutex) initializes a mutex with the

specified attributes for use.

v “pthread_mutex_lock()—Lock Mutex” on page 143 (Lock Mutex) acquires ownership of the mutex

specified.

Chapter 2. Concepts 291

v “pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147 (Lock Mutex with

Time-Out) acquires ownership of the mutex specified.

v “pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151 (Lock Mutex with No Wait)

attempts to acquire ownership of the mutex specified without blocking the calling thread.

v “pthread_mutex_unlock()—Unlock Mutex” on page 155 (Unlock Mutex) unlocks the mutex specified.

v “pthread_set_mutexattr_default_np()—Set Default Mutex Attributes Object Kind Attribute” on page 214

(Set Default Mutex Attributes Object Kind Attribute) sets the kind attribute in the default mutex

attribute object.

v “pthread_unlock_global_np()—Unlock Global Mutex” on page 239 (Unlock Global Mutex) unlocks a

global mutex provided by the pthreads run-time.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Condition variable synchronization APIs

Condition variables are synchronization objects that allow threads to wait for certain events (conditions)

to occur. Condition variables are slightly more complex than mutexes, and the correct use of condition

variables requires the thread to co-operatively use a specific protocol in order to ensure safe and

consistent serialization. The protocol for using condition variables includes a mutex, a boolean predicate

(true/false expression) and the condition variable itself. The threads that are cooperating using condition

variables can wait for a condition to occur, or can wake up other threads that are waiting for a condition.

The table below lists important conditional variables attributes, their default values, and all supported

values.

 Attribute Default value Supported values

pshared PTHREAD_PROCESS_PRIVATE PTHREAD_PROCESS_PRIVATE or

PTHREAD_PROCESS_SHARED

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The Condition variable synchronization APIs are:

v “pthread_condattr_destroy()—Destroy Condition Variable Attributes Object” on page 35 (Destroy

Condition Variable Attributes Object) destroys the condition variable attributes object specified by attr,

and indicates that any storage that the system has associated with the object be de-allocated.

v “pthread_condattr_getpshared()—Get Process Shared Attribute from Condition Attributes Object” on

page 37 (Get Process Shared Attribute from Condition Attributes Object) retrieves the current setting of

the process shared attribute from the condition attributes object.

v “pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38 (Initialize

Condition Variable Attributes Object) initializes the condition variable attributes object specified by attr

to the default attributes.

v “pthread_condattr_setpshared()—Set Process Shared Attribute in Condition Attributes Object” on page

40 (Set Process Shared Attribute in Condition Attributes Object) sets the current pshared attribute for

the condition attributes object.

v “pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49 (Broadcast

Condition to All Waiting Threads) wakes up all threads that are currently waiting on the condition

variable specified by cond.

v “pthread_cond_destroy()—Destroy Condition Variable” on page 51 (Destroy Condition Variable)

destroys the condition variable specified by cond.

v “pthread_cond_init()—Initialize Condition Variable” on page 53 (Initialize Condition Variable)

initializes a condition variable object with the specified attributes for use.

292 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

v “pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55 (Signal Condition to

One Waiting Thread) wakes up at least one thread that is currently waiting on the condition variable

specified by cond.

v “pthread_cond_timedwait()—Timed Wait for Condition” on page 58 (Timed Wait for Condition) blocks

the calling thread, waiting for the condition specified by cond to be signaled or broadcast to.

v “pthread_cond_wait()—Wait for Condition” on page 62 (Wait for Condition) blocks the calling thread,

waiting for the condition specified by cond to be signaled or broadcast to.

v “pthread_get_expiration_np()—Get Condition Expiration Time from Relative Time” on page 96 (Get

Condition Expiration Time from Relative Time) computes an absolute time by adding the specified

relative time (delta) to the current system time.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Read/write lock synchronization APIs

Read/write locks help you build more complex applications without using mutexes and condition

variables to provide your own read/write locking primitive object. Read/Write locks provide a

synchronization mechanism that allow threads in an application to more accurately reflect the type of

access to a shared resource that they require.

Many threads can acquire the same read/write lock if they acquire a shared read lock on the read/write

lock object. Only one thread can acquire an exclusive write lock on a read/write lock object. When an

exclusive write lock is held, no other threads are allowed to hold any lock.

The table below lists important read/write lock attributes, their default values, and all supported values.

 Attribute Default value Supported values

pshared PTHREAD_PROCESS_PRIVATE PTHREAD_PROCESS_PRIVATE or

PTHREAD_PROCESS_SHARED

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The Read/write lock synchronization APIs are:

v “pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute” on page 160 (Destroy Read/Write

Lock Attribute) destroys a read/write lock attributes object and allows the systems to reclaim any

resources associated with that read/write lock attributes object.

v “pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock Attribute” on page 162 (Get Pshared

Read/Write Lock Attribute) retrieves the current setting of the process shared attribute from the

read/write lock attributes object.

v “pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute” on page 170 (Initialize Read/Write

Lock Attribute) initializes the read/write lock attributes object referred to by attr to the default

attributes.

v “pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock Attribute” on page 171 (Set Pshared

Read/Write Lock Attribute) sets the current pshared attribute for the read/write attributes object.

v “pthread_rwlock_destroy()—Destroy Read/Write Lock” on page 172 (Destroy Read/Write Lock)

destroys the named read/write lock.

v “pthread_rwlock_init()—Initialize Read/Write Lock” on page 174 (Initialize Read/Write Lock)

initializes a new read/write lock with the specified attributes for use.

v “pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177 (Get Shared Read Lock) attempts to

acquire a shared read lock on the read/write lock specified by rwlock.

Chapter 2. Concepts 293

#TOP_OF_PAGE
aplist.htm

v “pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179 (Get Shared

Read Lock with Time-Out) attempts to acquire a shared read lock on the read/write lock specified by

rwlock.

v “pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183 (Get

Exclusive Write Lock with Time-Out) attempts to acquire an exclusive write lock on the read/write

lock specified by rwlock.

v “pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187 (Get Shared Read

Lock with No Wait) attempts to acquire a shared read lock on the read/write lock specified by rwlock.

v “pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190 (Get Exclusive

Write Lock with No Wait) attempts to acquire an exclusive write lock on the read/write lock specified

by rwlock.

v “pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193 (Unlock

Exclusive Write or Shared Read Lock) unlocks a shared read or exclusive write lock held by the calling

thread.

v “pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195 (Get Exclusive Write Lock)

attempts to acquire an exclusive write lock on the read/write lock specified by rwlock.

 Top | Chapter 1, “Pthread APIs,” on page 1 | APIs by category

Signals APIs

Signal APIs can be used to manipulate signals in a threaded process. Signals can be sent to individual

threads, the signal mask of a thread can be changed. When a signal is sent to a thread, the actions

associated with the signal (such as stopping, continuing or terminating) never affect only the thread, all

signal actions are defined to affect the process. When a signal handler is called, it is called in the thread

that the signal was delivered to.

Using signals correctly in a multithreaded process can be difficult. The recommended way to handle

signals in a multithreaded process is to mask off all signals in all threads, then use the signals sigwait()

API in a single thread to wait for any signal to be delivered to the process.

For information about the examples included with the APIs, see the “Information on the Pthread API

examples” on page 285.

The Signals APIs are:

v “pthread_kill()—Send Signal to Thread” on page 111 (Send Signal to Thread) requests that the signal

sig be delivered to the specified thread.

v “pthread_sigmask()—Set or Get Signal Mask” on page 215 (Set or Get Signal Mask) examines or

modifies the signal blocking mask for the current thread.

v “pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests” on page 219 (Convert Signals to

Cancel Requests) causes a pthread_cancel() to be delivered to the target thread when the first signal

specified in set arrives.

 Chapter 1, “Pthread APIs,” on page 1 | APIs by category

294 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 295

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

296 iSeries: Pthread APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 297

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

298 iSeries: Pthread APIs

����

Printed in USA

	Contents
	Chapter 1. Pthread APIs
	Before you get started with Pthreads
	Pthread APIs
	APIs
	pthread_attr_destroy()—Destroy Thread Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_getdetachstate()—Get Thread Attributes Object Detachstate
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit Scheduling Attributes
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_init()—Initialize Thread Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_setdetachstate()—Set Thread Attributes Object Detachstate
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling Attributes
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_attr_setschedparam()—Set Thread Attributes Object Scheduling Parameters
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cancel()—Cancel Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cleanup_peek_np()—Copy Cleanup Handler from Cancellation Cleanup Stack
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack
	Authorities and Locks
	Parameters
	Return Value
	Related Information
	Example

	pthread_clear_exit_np()—Clear Exit Status of Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_condattr_destroy()—Destroy Condition Variable Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_condattr_getpshared()—Get Process Shared Attribute from Condition Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_condattr_init()—Initialize Condition Variable Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_condattr_setpshared()—Set Process Shared Attribute in Condition Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cond_destroy()—Destroy Condition Variable
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cond_init()—Initialize Condition Variable
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cond_signal()—Signal Condition to One Waiting Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cond_timedwait()—Timed Wait for Condition
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_cond_wait()—Wait for Condition
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_create()—Create Thread
	Usage Notes
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_delay_np()—Delay Thread for Requested Interval
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_detach()—Detach Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_equal()—Compare Two Threads
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_exit()—Terminate Calling Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_extendedjoin_np()—Wait for Thread with Extended Options
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_getcancelstate_np()—Get Cancel State
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_getconcurrency()—Get Process Concurrency Level
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information

	pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_getschedparam()—Get Thread Scheduling Parameters
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_getspecific()—Get Thread Local Storage Value by Key
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_getunique_np()—Retrieve Unique ID for Target Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_get_expiration_np()—Get Condition Expiration Time from Relative Time
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_is_initialthread_np()—Check if Running in the Initial Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_is_multithreaded_np()—Check Current Number of Threads
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_join()—Wait for and Detach Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_join_np()—Wait for Thread to End
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_key_create()—Create Thread Local Storage Key
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_key_delete()—Delete Thread Local Storage Key
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_kill()—Send Signal to Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_lock_global_np()—Lock Global Mutex
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_destroy()—Destroy Mutex Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_getpshared()—Get Process Shared Attribute from Mutex Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_gettype()—Get Mutex Type Attribute
	Mutex Types
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_init()—Initialize Mutex Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_setpshared()—Set Process Shared Attribute in Mutex Attributes Object
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutexattr_settype()—Set Mutex Type Attribute
	Mutex Types
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutex_destroy()—Destroy Mutex
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutex_init()—Initialize Mutex
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutex_lock()—Lock Mutex
	Mutex Types
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	(data corruption without locking example)

	pthread_mutex_timedlock_np()—Lock Mutex with Time-Out
	Mutex Types
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutex_trylock()—Lock Mutex with No Wait
	Mutex Types
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_mutex_unlock()—Unlock Mutex
	Mutex Types
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_once()—Perform One-Time Initialization
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_destroy()—Destroy Read/Write Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_init()—Initialize Read/Write Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_rdlock()—Get Shared Read Lock
	Read/Write Lock Deadlocks
	Upgrade / Downgrade a Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out
	Read/Write Lock Deadlocks
	Upgrade / Downgrade a Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out
	Read/Write Lock Deadlocks
	Upgrade / Downgrade a Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait
	Read/Write Lock Deadlocks
	Upgrade / Downgrade a Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait
	Read/Write Lock Deadlocks
	Upgrade / Downgrade a Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_rwlock_wrlock()—Get Exclusive Write Lock
	Read/Write Lock Deadlocks
	Upgrade / Downgrade a Lock
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_self()—Get Pthread Handle
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_setcancelstate()—Set Cancel State
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_setcanceltype()—Set Cancel Type
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_setconcurrency()—Set Process Concurrency Level
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information

	pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_setschedparam()—Set Target Thread Scheduling Parameters
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_setspecific()—Set Thread Local Storage by Key
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_set_mutexattr_default_np()—Set Default Mutex Attributes Object Kind Attribute
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information

	pthread_sigmask()—Set or Get Signal Mask
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_testcancel()—Create Cancellation Point
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_test_exit_np()—Test Thread Exit Status
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_trace_init_np()—Initialize or Re-initialize pthread tracing
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	PTHREAD_TRACE_NP()—Macro to optionally execute code based on trace level
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	pthread_unlock_global_np()—Unlock Global Mutex
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	sched_yield()—Yield Processor to Another Thread
	Authorities and Locks
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	Unsupported Pthread APIs
	pthread_atfork()—Register Fork Handlers
	pthread_atfork_np()—Register Fork Handlers with Extended Options
	pthread_attr_getguardsize()—Get Guard Size
	pthread_attr_getschedpolicy()—Get Scheduling Policy
	pthread_attr_getscope()—Get Scheduling Scope
	pthread_attr_getstackaddr()—Get Stack Address
	pthread_attr_getstacksize()—Get Stack Size
	pthread_attr_setguardsize()—Set Guard Size
	pthread_attr_setschedpolicy()—Set Scheduling Policy
	pthread_attr_setscope()—Set Scheduling Scope
	pthread_attr_setstackaddr()—Set Stack Address
	pthread_attr_setstacksize()—Set Stack Size
	pthread_mutexattr_getprioceiling()—Get Mutex Priority Ceiling Attribute
	pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute
	pthread_mutexattr_setprioceiling()—Set Mutex Priority Ceiling Attribute
	pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute
	pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling
	pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling

	Chapter 2. Concepts
	What are Pthreads?
	Primitive data types for Pthreads
	Feature test macros for Pthreads
	OS/400 Pthreads versus the POSIX standard, the Single UNIX Specification, and other threads implementations
	All thread definitions in pthread.h
	Unsupported preprocessor and feature test macros
	Unsupported constants
	Unsupported cancellation points
	Example

	Unsupported sysconf() configuration variables
	Thread priority and scheduling
	Thread ID vs. Pthread Handle (pthread_t)
	Thread ID value and size
	Mutexes return EDEADLK when re-locked by owner
	Return values from thread start routines are not integers
	Example

	Threads do not necessarily start before pthread_create() returns
	Initial thread is special, cannot pthread_exit()
	Pthread APIs cause asynchronous signals initialization
	Not all jobs can create threads; pthread_create() fails with EBUSY
	Read/write locks are recursive
	Shared read/write locks are released at thread termination
	Read/write locks can be upgraded/downgraded
	Read/write locks do not favor writers
	Spawn API provides more POSIX-like process model
	C++ destructors and Pthread termination
	Example

	Unhandled exceptions terminate the thread (not the process)
	Example

	Exceptions vs. Asynchronous signals vs. ANSI C signals
	Example
	Example Output
	Example

	Mutexes can be named to aid in application debug
	Header files for Pthread functions
	Where to Find Header Files

	Pthread glossary
	A
	C
	D
	E
	G
	I
	J
	M
	N
	O
	P
	R
	S
	T
	Other Sources of Pthread Information
	Writing and compiling threaded programs
	Using the _MULTI_THREADED preprocessor definition
	Running threaded programs
	SPAWN CL command, QUSRTOOL example
	Creating the SPAWN command

	Troubleshooting Pthread errors
	Cannot find header files pthread.h or qp0ztype.h or qp0zptha.h
	Thread creation (pthread_create()) fails with EBUSY or 3029
	Mixing thread models or API sets
	Reserved fields must be binary zero
	Powerful OS/400 cleanup mechanisms allow application deadlock (cancel_handler and C++ automatic destructors)
	Important
	Recommendations

	Thread creation using C++ methods as target does not work
	Example

	MCH3402 from pointer returned by pthread_join()
	Example

	Information on the Pthread API examples
	File check.h used by API examples programs

	Thread management APIs
	Thread specific storage APIs
	Thread cancellation APIs
	Mutex synchronization APIs
	Condition variable synchronization APIs
	Read/write lock synchronization APIs
	Signals APIs

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

