____““__
Tt
1

() g an

o 2 5

) m

)

Py

)] N
@D A
>

—
—

- o .

-— — ———
-— — —— -
-— o Em - .
— — — —
— — — 7 —

iSeries
Pthread APls

Version 5 Release 3

Note
Before using this information and the product it supports, be sure to read the information in

[“Notices,” on page 295 |

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System /400 (product number 5722-SS1) and
to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on
all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Pthread APIs . .1
Before you get started with Pthreads .1
Pthread APIs .1
APIs . .7
pthread_attr destroy()—Destroy Thread Attrlbutes
Object o .7
Authorities and Locks . .7
Parameters . .7
Return Value .7
Error Conditions . .7
Related Information . .7
Example. .7
pthread_ attr_getdetachstate()—Get Thread Attrrbutes
Object Detachstate .9
Authorities and Locks . .9
Parameters . .9
Return Value .9
Error Conditions . .9
Related Information . .9
Example .. . 10
pthread_ attr_getrnhentsched()—Get Thread
Attribute Object Inherit Scheduling Attributes . 11
Authorities and Locks . R 11
Parameters .11
Return Value . 11
Error Conditions. 11
Related Information 11
Example .. .12
pthread_ attr_getschedparam()—Get Thread
Attributes Object Scheduling Parameters .13
Authorities and Locks . .13
Parameters .13
Return Value . .13
Error Conditions. .13
Related Information .14
Example . 14
pthread_attr 1n1t()—ln1t1al1ze Thread Attrlbutes
Object . .15
Authorities and Locks . 15
Parameters .15
Return Value . . 15
Error Conditions. .15
Related Information . 15
Example . .15
pthread_attr setdetachstate()—Set Thread Attr1butes
Object Detachstate . .17
Authorities and Locks . .17
Parameters .17
Return Value . .17
Error Conditions. .17
Related Information .17
Example . . 18
pthread_attr setlnher1tsched()—Set Thread Attr1bute
Inherit Scheduling Attributes .o . 19
Authorities and Locks . .19
Parameters . 19

© Copyright IBM Corp. 1998, 2005

Return Value .

Error Conditions.

Related Information

Example .
pthread_attr setschedparam()—Set Thread
Attributes Object Scheduling Parameters

Authorities and Locks . .

Parameters

Return Value .

Error Conditions.

Related Information

Example . .
pthread_ cancel()—Cancel Thread .

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example R
pthread_cleanup_peek_ np()—Copy Cleanup
Handler from Cancellation Cleanup Stack .

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example .
pthread_cleanup pop()—Pop Cleanup Handler off
of Cancellation Cleanup Stack . o

Authorities and Locks .

Parameters

Return Value .

Related Information

Example R
pthread_cleanup push()—Push Cleanup Handler
onto Cancellation Cleanup Stack .o

Authorities and Locks .

Parameters

Return Value .

Related Information

Example ..
pthread_clear_exit np()—Clear Ex1t Status of Thread

Authorities and Locks . .o

Parameters

Return Value .

Error Conditions.

Related Information

Example . .
pthread_condattr destroy()—Destroy Cond1t10n
Variable Attributes Object o

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example

. 19
. 20
. 20
. 20

.21
.21
.22
.22
.22
.22
.22
.23
.24
.24
.24
. 25
. 25
. 25

. 26
. 26
.27
.27
.27
.27
.27

. 28
. 29
. 29
. 29
.29
. 29

. 30
.31
.31
. 31
.31

. 31

. 33
. 33
. 33
. 33
. 33
. 34

. 35
. 36
. 36
. 36
. 36
. 36
. 36

iii

pthread_condattr_getpshared()—Get Process Shared
Attribute from Condition Attributes Object .

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example .
pthread_condattr 1n1t()—In1t1ahze Condrtron
Variable Attributes Object

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example
pthread_condattr setpshared()—Set Process Shared
Attribute in Condition Attributes Object .

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example
pthread_cond broadcast()—Broadcast Condltlon to
All Waiting Threads

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example
pthread_cond destroy()—Destroy Condltlon
Variable ...

Authorities and Locks

Parameters

Return Value .

Error Conditions.

Related Information

Example ..
pthread_cond 1n1t()—Imt1ahze Condrtron Varrable

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example
pthread_cond 51gnal()—51gna1 Condltron to One
Waiting Thread

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example
pthread_cond trmedwalt()—Trmed Wa1t for
Condition . L

Authorities and Locks

Parameters

Return Value .

Error Conditions.

1V iSeries: Pthread APIs

. 37
. 37
. 37
. 38
. 38
. 38
. 38

. 38
. 39
. 39
. 39
. 39
. 39
. 39

. 40
. 40
. 40
.41
.41
.41
.41

.49
. 49
. 49
.49
. 50
. 50
. 50

. 51
. 52
. 52
. 52
. 52
. 52
. 52

53

. 54
. 54
. 54
. 54
. 54
. 54

. 55
. 56
. 56
. 56
. 56
. 56
. 56

. 58
. 59
. 59
. 59
. 59

Related Information
Example
pthread_cond walt()—Walt for Condltlon
Authorities and Locks .
Parameters
Return Value .
Error Conditions.
Related Information
Example ..
pthread_ create()—Create Thread
Usage Notes . .o
Authorities and Locks
Parameters
Return Value .
Error Conditions.
Related Information
Example ..
pthread_delay_. np()—Delay Thread for Requested
Interval. . L.
Authorities and Locks
Parameters
Return Value .
Error Conditions.
Related Information
Example .
pthread_ detach()—Detach Thread
Authorities and Locks .
Parameters
Return Value .
Error Conditions.
Related Information
Example .
pthread_ equal()—Compare Two Threads
Authorities and Locks .
Parameters
Return Value .
Error Conditions.
Related Information
Example .
pthread_ ex1t()—Term1nate Calhng Thread
Authorities and Locks . ..
Parameters
Return Value .
Error Conditions.
Related Information
Example .
pthread_extendedjoin_ np()—Walt for Thread w1th
Extended Options . o
Authorities and Locks .
Parameters
Return Value .
Error Conditions.
Related Information
Example .
pthread_: getcancelstate np()—Get Cancel State
Authorities and Locks . .
Parameters
Return Value .
Error Conditions.
Related Information
Example

. 60
. 60
. 62
. 62
. 62
. 63
. 63
. 63
. 63
. 65
. 66
. 66
. 66
. 66
. 66
. 67
. 67

. 68
. 69
. 69
. 69
. 69
. 69
. 69
.71
.71
.71
.71
.71
.71
.72
.73
.73
.73
.73
.73
.73
.73
. 74
.75
. 76
. 76
. 76
. 76
. 76

.77
. 78
. 78
.78
. 78
. 78
. 78
. 80
. 80
. 80
. 80
. 80
. 81
. 81

pthread_getconcurrency()—Get Process Concurrency

. 82
. 82
. 83
. 83
. 83
. 83

Level ..

Authorities and Locks

Parameters

Return Value .

Error Conditions.

Related Information
pthread_getpthreadoption_: np()—Get Pthread
Run-Time Option Data .

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example
pthread_ getschedparam()—Get Thread Scheduhng
Parameters .

Authorities and Locks

Parameters

Return Value .

Error Conditions.

Related Information

Example .
pthread_ getspec1f1c()—Get Thread Local Storage
Value by Key

Authorities and Locks

Parameters

Return Value .

Error Conditions.

Related Information

Example .o
pthread_getthreadid_. np()—Retrleve Unlque ID for
Calling Thread

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example .o
pthread_getunique_. np()—Retrleve Unlque ID for
Target Thread . S

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example . .
pthread_get_ explratlon np()—Get Condltron
Expiration Time from Relative Time .

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

Related Information

Example .
pthread_is 1n1t1a1thread np()—Check 1f Runnlng in
the Initial Thread . o

Authorities and Locks .

Parameters

Return Value .

Error Conditions.

. 83
. 84
. 84
. 84
. 85
. 85
. 85

. 86
. 86
. 87
. 87
. 87
. 87
. 87

. 88
. 88
. 88
. 88
. 89
. 89
. 89

.91
.91
.91
.92
.92
.92
.92

. 93
.94
.94
. 94
. 94
.94
.94

. 96
. 96
. 96
. 96
. 96
. 96
.97

. 99
. 99
.99
. 99

Related Information
Example A
pthread_is_ multlthreaded np()—Check Current
Number of Threads
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_join()—Wait for and Detach Thread
Authorities and Locks -
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_join_ np()—Walt for Thread to End
Authorities and Locks ..
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_ key_create()—Create Thread Local Storage
Key L e
Authorltles and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_ key_delete()—Delete Thread Local Storage
Key P
Author1t1es and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_ klll()—Send Slgnal to Thread
Authorities and Locks
Parameters
Return Value
Error Conditions
Related Information .

Example . . .
pthread_lock_global_: np()—Lock Global Mutex .
Authorities and Locks Lo

Parameters

Return Value

Error Conditions

Related Information .

Example .
pthread_mutexattr destroy()—Destroy Mutex
Attributes Object Lo

Authorities and Locks

Parameters

Return Value

Error Conditions

Related Information .

Contents

. 99
. 99

. 100
. 100
. 100
. 101
. 101
. 101
. 101
. 102
. 103
. 103
. 103
. 103
. 103
. 103
. 104
. 105
. 105
. 105
. 105
. 105

. 105

. 107
. 107
. 107
. 107
. 107
. 108

. 108

. 109
. 109
. 109
. 109
. 110
. 110
. 110
111
111
. 112
. 112
. 112
. 112
. 112
. 114
. 114
. 114
. 114
. 114
. 115
. 115

. 117
. 117
. 117
. 117
. 117
. 117

A\

Example .

pthread_ mutexattr_getkmd np()—Get Mutex Kind

Attribute .
Authorities and Locks
Parameters
Return Value
Error Conditions
Related Information .
Example .

pthread_ mutexattr_getname np()—Get Name from

Mutex Attributes Object .
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example .
pthread_ mutexattr_getpshared()—Get Process

Shared Attribute from Mutex Attributes Object .

Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_ mutexattr_gettype()—Get Mutex Type

Attribute .
Mutex Types
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_mutexattr mlt()—Imtlahze Mutex
Attributes Object .
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example .

pthread_mutexattr_. setkmd np()—Set Mutex Kmd

Attribute . .
Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_mutexattr_. setname np()—Set Name in

Mutex Attributes Object .
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example .
pthread_mutexattr setpshared()—Set Process
Shared Attribute in Mutex Attributes Object .
Authorities and Locks .

V1 iSeries: Pthread APIs

. 117

. 119
. 119
. 119
. 119
. 119
. 119
. 120

. 121
. 121
. 121
. 122
. 122
. 122
. 122

. 123
. 123
. 123
. 124
. 124
. 124
. 124

. 125
. 125
. 126
. 126
. 126
. 126
. 126
. 126

. 129
. 129
. 129
. 129
. 129
. 129
. 129

. 131
. 131
. 131
. 131
. 131
. 131
. 132

. 133
. 133
. 133
. 133
. 134
. 134
. 134

. 135
. 135

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_mutexattr settype()—Set Mutex Type
Attribute

Mutex Types

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_mutex destroy()—Destroy Mutex.
Authorities and Locks ..

Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_mutex m1t()—Irut1ahze Mutex
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_mutex lock()—Lock Mutex
Mutex Types .o
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
(data corruption w1thout lockmg example)

pthread_mutex_timedlock_np()—Lock Mutex with

Time-Out.

Mutex Types

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_mutex trylock()—Lock Mutex w1th No
Wait .

Mutex Types

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_mutex unlock()—Unlock Mutex .

Mutex Types

Authorities and Locks

Parameters .

Return Value

Error Conditions

. 135
. 135
. 135
. 136
. 136

. 137
. 137
. 138
. 138
. 138
. 138
. 138
. 138
. 139
. 139
. 139
. 139
. 140
. 140
. 140
. 141
. 141
. 142
. 142
. 142
. 142
. 142
. 143
. 144
. 145
. 145
. 145
. 145
. 145
. 145
. 147

. 147
. 148
. 149
. 149
. 149
. 149
. 149
. 149

. 151
. 151
. 152
. 152
. 152
. 152
. 152
. 152
. 155
. 155
. 156
. 156
. 156
. 156

Related Information .
Example .

pthread_ once()—Perform One Tlme In1t1ahzat1on

Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_rwlockattr destroy()—Destroy Read/ erte

Lock Attribute .
Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_rwlockattr getpshared()—Get Pshared

Read/Write Lock Attribute .
Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_rwlockattr mlt()—Imtlahze Read/ Wrrte

Lock Attribute .
Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_rwlockattr setpshared()—Set Pshared

Read/Write Lock Attribute .
Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

Lock
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example .

pthread_rwlock 1n1t()—Irut1ahze Read / erte Lock

Authorities and Locks
Parameters .

Return Value

Error Conditions
Related Information .
Example .

pthread_rwlock rdlock()—Get Shared Read Lock

Read/Write Lock Deadlocks
Upgrade / Downgrade a Lock
Authorities and Locks .
Parameters .

pthread_rwlock destroy()—Destroy Read/ erte

. 156
. 156

157

. 158
. 158
. 158
. 158
. 158

. 158

. 160
. 160
. 160
. 160
. 160
. 160
. 160

. 162
. 162
. 162
. 162
. 162
. 163
. 163

. 170
. 170
. 170
. 170
. 170
. 170
. 171

. 171
. 171
. 171
. 171
. 172
. 172
. 172

. 172
. 173
. 173
. 173
. 173
. 173

. 173
174

. 174
. 174
. 174
. 175
. 175
. 175

177

. 177
. 177
. 178
. 178

Return Value

Error Conditions

Related Information .

Example . .
pthread_rwlock_ tlmedrdlock np()—Get Shared
Read Lock with Time-Out . .

Read/Write Lock Deadlocks

Upgrade / Downgrade a Lock

Authorities and Locks .

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_rwlock_ tlmedwrlock np()—Get Excluswe
Write Lock with Time-Out .

Read /Write Lock Deadlocks

Upgrade / Downgrade a Lock

Authorities and Locks .

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_rwlock tryrdlock()—Get Shared Read
Lock with No Wait . o

Read /Write Lock Deadlocks

Upgrade / Downgrade a Lock

Authorities and Locks .

Parameters .

Return Value

Error Conditions

Related Information .

Example .
pthread_rwlock trywrlock()—Get Excluswe erte
Lock with No Wait .

Read /Write Lock Deadlocks

Upgrade / Downgrade a Lock

Authorities and Locks .

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_rwlock unlock()—Unlock Exclusrve Wr1te
or Shared Read Lock .

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . . .
pthread_rwlock wrlock()—Get Excluswe Wrrte
Lock .

Read /Write Lock Deadlocks

Upgrade / Downgrade a Lock

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Contents

. 178
. 178
. 178
. 179

. 179
. 180
. 180
. 180
. 180
. 180
. 180
. 181
. 181

. 183
. 184
. 184
. 184
. 184
. 184
. 184
. 185
. 185

. 187
. 187
. 187
. 188
. 188
. 188
. 188
. 188
. 188

. 190
. 190
. 191
. 191
. 191
. 191
. 191
. 191
. 192

. 193
. 194
. 194
. 194
. 194
. 194
. 195

. 195
. 196
. 196
. 196
. 196
. 196
. 196
. 197

vii

Example . .
pthread_self()—Get Pthread Handle

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . . .
pthread_ setcancelstate()—Set Cancel State .

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . . .
pthread_ setcanceltype()—Set Cancel Type .

Authorities and Locks . .

Parameters .

Return Value

Error Conditions

Related Information .

Example .

Level .

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information . .
pthread_setpthreadoption_ np()—Set Pthread
Run-Time Option Data .

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_ setschedparam()—Set Target Thread
Scheduling Parameters o

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information .

Example . .
pthread_ setspec1f1c()—Set Thread Local Storage by
Key. o .

Authorltles and Locks

Parameters

Return Value

Error Conditions

Related Information .

Example .
pthread_set_ mutexattr default np()—Set Default
Mutex Attributes Object Kind Attribute.

Authorities and Locks

Parameters .

Return Value

Error Conditions

Related Information . . .
pthread_sigmask()—Set or Get Slgnal Mask .

Viil iSeries: Pthread APIs

. 197
. 197
. 198
. 198
. 198
. 198
. 198
. 198
. 199
. 200
. 200
. 200
. 200
. 200
. 200
. 201
. 202
. 202
. 202
. 202
. 202
. .. .203
pthread_ setconcurrency()—Set Process Concurrency

. 204
. 204
. 204
. 205
. 205
. 205

. 205
. 206
. 206
. 206
. 206
. 206
. 206

. 208
. 209
. 209
. 209
. 209
. 209
. 209

. 211
. 211
. 211
. 211
. 212
. 212
. 212

. 214
. 214
. 214
. 214
. 214
. 215
. 215

Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_signal_to_: cancel np()—Convert Slgnals to
Cancel Requests
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_ testcancel()—Create Cancellatlon Pomt
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example .
pthread_test_exit np()—Test Thread Exrt Status
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example .
pthread_trace_init np()—Inltrahze or Re 1n1t1ahze
pthread tracing . .
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
PTHREAD_TRACE NP()—Macro to optlonally
execute code based on trace level. .
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
pthread_ unlock_global np()—Unlock Global Mutex
Authorities and Locks
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
sched_yield()—Yield Processor to Another Thread
Authorities and Locks Lo
Parameters .
Return Value
Error Conditions
Related Information .
Example . .
Unsupported Pthread APIs .
pthread_atfork()—Register Fork Handlers .

. 216
. 216
. 216
. 216
. 216

. 216

. 219
. 219
. 219
. 220
. 220
. 220
. 220

222

. 222
. 222
. 222
. 223
. 223
. 223

224

. 225
. 225
. 225
. 225
. 225
. 225

. 227
. 228
. 228
. 228
. 228
. 228
. 229

. 233
. 234
. 234
. 234
. 234
. 235

. 235
239

. 239
. 239
. 239
. 239
. 239

. 240
240

. 240
. 240
. 240
. 240
. 240
. 241
. 242
. 243

pthread_atfork_np()—Register Fork Handlers with

Extended Options 243
pthread_attr getguards1ze()—Get Guard Slze .. 243
pthread_attr_getschedpolicy()}—Get Scheduling

Policy 243

pthread_ attr_getscope()—Get Scheduhng Scope . 243
pthread_attr_getstackaddr()—Get Stack Address 244

pthread_attr_getstacksize()—Get Stack Size . . . 244
pthread_attr_setguardsize()—Set Guard Size . . . 244
pthread_attr_setschedpolicy()—Set Scheduling

Policy 244
pthread_attr setscope()—Set Schedulmg Scope .. 245
pthread_attr_setstackaddr()—Set Stack Address . . 245
pthread_attr_setstacksize()}—Set Stack Size. . . . 245
pthread_mutexattr_getprioceiling()—Get Mutex

Priority Ceiling Attribute 245
pthread_ mutexattr_getprotocol()—Get Mutex

Protocol Attribute 246
pthread_mutexattr setpr1oce1l1ng()—Set Mutex

Priority Ceiling Attribute 246
pthread_mutexattr setprotocol()—Set Mutex

Protocol Attribute 246
pthread_ mutex_getpr1oce1hng()—Get Mutex

Priority Ceiling. . . . 246
pthread_mutex setpr10Celllng()—Set Mutex Prrorlty
Ceiling 246
Chapter 2. Concepts 249
What are Pthreads? 249
Primitive data types for Pthreads oo 249
Feature test macros for Pthreads 250

0OS/400 Pthreads versus the POSIX standard, the
Single UNIX Specification, and other threads

implementations 0250
All thread definitions in pthread h o . 251
Unsupported preprocessor and feature test macros 251
Unsupported constants25
Unsupported cancellation points252
Example 252
Unsupported sysconf() conf1gurat10n Var1ables . . 253
Thread priority and scheduling253
Thread ID vs. Pthread Handle (pthread t) .. .254
Thread ID value and size 254
Mutexes return EDEADLK when re-locked by
owner. 254
Return values from thread start rout1nes are not
integers25
Example25
Threads do not necessarlly start before
pthread_create() returns 256
Initial thread is special, cannot pthread ex1t() .. 257
Pthread APIs cause asynchronous signals
initialization. 257
Not all jobs can create threads pthread create()
fails with EBUSY258
Read /write locks are recursive 258
Shared read/write locks are released at thread
termination 258
Read /write locks can be upgraded / downgraded 258
Read /write locks do not favor writers 260

Spawn API provides more POSIX-like process
model . . .o
C++ destructors and Pthread term1nat10n .
Example .
Unhandled exceptions termmate the thread (not
the process) .
Example . .
Exceptions vs. Asynchronous s1gnals VS. ANSI C
signals.
Example .
Example Output
Example .
Mutexes can be named to a1d in apphcatlon debug
Header files for Pthread functions
Where to Find Header Files
Pthread glossary

wawozg.‘ﬁomoﬂ>

Other Sources of Pthread Informat1on .
Writing and compiling threaded programs
Using the _"MULTI_THREADED preprocessor
definition. . .
Running threaded programs
SPAWN CL command, QUSRTOOL example
Creating the SPAWN command
Troubleshooting Pthread errors
Cannot find header files pthread.h or quztype h
or qpOzptha.h .
Thread creation (pthread create()) falls wrth
EBUSY or 3029 . .
Mixing thread models or API sets
Reserved fields must be binary zero.
Powerful OS/400 cleanup mechanisms allow
application deadlock (cancel_handler and C++
automatic destructors)
Important
Recommendations .
Thread creation using C++ methods as target does
not work .
Example . .
MCH3402 from pornter returned by pthread_]om()
Example . .
Information on the Pthread API examples
File check.h used by API examples programs
Thread management APIs . . .
Thread specific storage APIs
Thread cancellation APIs
Mutex synchronization APIs .
Condition variable synchronization APIs

Contents

. 260
. 260
. 261

. 263
. 264

. 265
. 266
. 268
. 268

271

. 271
. 271
. 272
. 272
. 272
. 273
. 273
. 273
. 273
. 273
. 273
. 274
. 274
. 274
. 274
. 274
. 275
. 276
. 276

. 277
. 277
. 278
. 278
. 278

. 278

. 279
. 279
. 280

. 280
. 281
. 281

. 282
. 283

284

. 284
. 285

286

. 286
. 289
. 289
. 290
. 292

ix

Read/write lock synchronization APIs 293 Trademarks29

Signals APIs.2% Terms and conditions for downloading and
printing publications297
Appendix. Notices 295 Code disclaimer information298

X iSeries: Pthread APIs

Chapter 1. Pthread APIs

Before you get started with Pthreads

Many details in [Multithreaded applications| will affect your interpretation of how the Pthread APIs work.
Multithreaded applications also contains important general information about threads. The information
includes how process architecture and process behavior change when running a threaded program, what
parts of the system are not available for use when running a threaded program, and tips on performance
and debugging of threaded jobs.

Programming with Pthreads
* Pthread concepts and references
— [“What are Pthreads?” on page 249

[Primitive data types for Pthreads” on page 249 — Naming conventions for primitive data types in
threaded programs.

[“Feature test macros for Pthreads” on page 250] — Descriptions of supported and unsupported
feature test macros.

— [“OS/400 Pthreads versus the POSIX standard, the Single UNIX Specification, and other threads|
implementations” on page 250

— [“Header files for Pthread functions” on page 271|

— [“Pthread glossary” on page 272| — Definitions of some common Pthread terms.

— [“Other Sources of Pthread Information” on page 276|

* Pthread programming basic tasks — Information to get you started with Pthreads programming.

— [“Writing and compiling threaded programs” on page 276|

- ["Running threaded programs” on page 277

* [“Troubleshooting Pthread errors” on page 278 — Descriptions of common errors users encounter when
programming with Pthreads.

Pthread APIs

For information about the examples included with the APIs, see the [“Information on the Pthread AP]|
fexamples” on page 285/ See [Code disclaimer information| for information pertaining to code examples.

For information about specific groups of Pthread APIs, see:

* [“Thread management APIs” on page 286

* |“Thread specific storage APIs” on page 289|
[“Thread cancellation APIs” on page 289
* [“Mutex synchronization APIs” on page 290

[“Condition variable synchronization APIs” on page 292

[‘Read /write lock synchronization APIs” on page 293|
[‘Signals APIs” on page 294
* |“Unsupported Pthread APIs” on page 242|

The Pthread APIs are:
+ [“pthread_atfork()—Register Fork Handlers” on page 243 (Register Fork Handlers)

* [“pthread_atfork_np()—Register Fork Handlers with Extended Options” on page 243 (Register Fork
Handlers with Extended Options)

© Copyright IBM Corp. 1998, 2005 1

aboutapis.htm#CODEDISCLAIMER

[‘pthread_attr_destroy()—Destroy Thread Attributes Object” on page 7| (Destroy Thread Attributes
Object) destroys a thread attributes object and allows the system to reclaim any resources associated
with that thread attributes object.

[‘pthread_attr_getdetachstate()—Get Thread Attributes Object Detachstate” on page 9| (Get Thread
Attributes Object Detachstate) returns the detach state attribute from the thread attributes object
specified.

[‘pthread_attr_getguardsize()—Get Guard Size” on page 243| (Get Guard Size)

[‘pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit Scheduling Attributes” on page 11|
(Get Thread Attribute Object Inherit Scheduling Attributes) returns the inheritsched attribute from the
thread attributes object specified.

[‘pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page 13| (Get
Thread Attributes Object Scheduling Parameters) returns the scheduling parameters attribute from the
thread attributes object.

“pthread_attr_getschedpolicy()—Get Scheduling Policy” on page 243 (Get Scheduling Policy)

|

[‘pthread_attr_getscope()—Get Scheduling Scope” on page 243| (Get Scheduling Scope)
[‘pthread_attr_getstackaddr()—Get Stack Address” on page 244| (Get Stack Address)
|
|

“pthread_attr_getstacksize()—Get Stack Size” on page 244| (Get Stack Size)

“pthread_attr_init()—Initialize Thread Attributes Object” on page 15| (Initialize Thread Attributes
Object) initializes a thread attributes object to the default thread attributes.
[‘pthread_attr_setdetachstate()—Set Thread Attributes Object Detachstate” on page 17] (Set Thread
Attributes Object Detachstate) sets the detach state of the thread attributes object.
[‘pthread_attr_setguardsize()—Set Guard Size” on page 244 (Set Guard Size)
[‘pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling Attributes” on page 19| (Set

Thread Attribute Inherit Scheduling Attributes) sets the inheritsched attribute in the thread attributes
object specified.

[‘pthread_attr_setschedparam()—Set Thread Attributes Object Scheduling Parameters” on page 21| (Set
Thread Attributes Object Scheduling Parameters) sets the scheduling parameters in the thread
attributes object.

“pthread_attr_setschedpolicy()—Set Scheduling Policy” on page 244| (Set Scheduling Policy)

|

[“pthread_attr_setscope()—Set Scheduling Scope” on page 245| (Set Scheduling Scope)
[‘pthread_attr_setstackaddr()—Set Stack Address” on page 245| (Set Stack Address)
|
|

“pthread_attr_setstacksize()—Set Stack Size” on page 245| (Set Stack Size)

“pthread_cancel()—Cancel Thread” on page 23| (Cancel Thread) requests cancellation of the target
thread.

[‘pthread_cleanup_peek_np()—Copy Cleanup Handler from Cancellation Cleanup Stack” on page 26}
(Copy Cleanup Handler from Cancellation Cleanup Stack) returns a copy of the cleanup handler entry
that the next call to pthread_cleanup_pop() would pop.

[‘pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28| (Pop
Cleanup Handler off of Cancellation Cleanup Stack) pops the last cleanup handler from the
cancellation cleanup stack.

[‘pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30| (Push
Cleanup Handler onto Cancellation Cleanup Stack) pushes a cancellation cleanup routine onto the
calling threads cancellation cleanup stack.

[‘pthread_clear_exit_np()—Clear Exit Status of Thread” on page 33| (Clear Exit Status of Thread) clears
the exit status of the thread.
[“pthread_condattr_destroy()—Destroy Condition Variable Attributes Object” on page 35| (Destroy

Condition Variable Attributes Object) destroys the condition variable attributes object specified by attr,
and indicates that any storage that the system has associated with the object be de-allocated.

iSeries: Pthread APIs

“pthread_condattr_getpshared()—Get Process Shared Attribute from Condition Attributes Object” on|
page 37| (Get Process Shared Attribute from Condition Attributes Object) retrieves the current setting of
the process shared attribute from the condition attributes object.

[‘pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38| (Initialize
Condition Variable Attributes Object) initializes the condition variable attributes object specified by attr
to the default attributes.

“pthread_condattr_setpshared()—Set Process Shared Attribute in Condition Attributes Object” on page|
40| (Set Process Shared Attribute in Condition Attributes Object) sets the current pshared attribute for
the condition attributes object.

[‘pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49| (Broadcast
Condition to All Waiting Threads) wakes up all threads that are currently waiting on the condition
variable specified by cond.

[“pthread_cond_destroy()—Destroy Condition Variable” on page 51| (Destroy Condition Variable)
destroys the condition variable specified by cond.

[‘pthread_cond_init()—Initialize Condition Variable” on page 53| (Initialize Condition Variable)
initializes a condition variable object with the specified attributes for use.

[‘pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55| (Signal Condition to
One Waiting Thread) wakes up at least one thread that is currently waiting on the condition variable
specified by cond.

[‘pthread_cond_timedwait()—Timed Wait for Condition” on page 58| (Timed Wait for Condition) blocks
the calling thread, waiting for the condition specified by cond to be signaled or broadcast to.

[‘pthread_cond_wait()—Wait for Condition” on page 62| (Wait for Condition) blocks the calling thread,
waiting for the condition specified by cond to be signaled or broadcast to.

[“pthread_create()—Create Thread” on page 65| (Create Thread) creates a thread with the specified
attributes and runs the C function start_routine in the thread with the single pointer argument
specified.

[“pthread_delay_np()—Delay Thread for Requested Interval” on page 68| (Delay Thread for Requested
Interval) causes the calling thread to delay for the deltatime specified.

[‘pthread_detach()—Detach Thread” on page 71| (Detach Thread) indicates that system resources for the
specified thread should be reclaimed when the thread ends.

[‘pthread_equal()—Compare Two Threads” on page 73| (Compare Two Threads) compares two Pthread
handles for equality.

[‘pthread_exit()—Terminate Calling Thread” on page 74| (Terminate Calling Thread) terminates the
calling thread, making its exit status available to any waiting threads.
[‘pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77 (Wait for Thread
with Extended Options) waits for a thread to terminate, optionally detaches the thread, then returns
the threads exit status.

[“pthread_getcancelstate_np()—Get Cancel State” on page 80| (Get Cancel State) gets the current cancel
state of the thread.

[‘pthread_getconcurrency()—Get Process Concurrency Level” on page 82| (Get Process Concurrency
Level) retrieves the current concurrency level for the process.
[‘pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data” on page 83| (Get Pthread
Run-Time Option Data) gets option data from the pthread run-time for the process.

[‘pthread_getschedparam()—Get Thread Scheduling Parameters” on page 86| (Get Thread Scheduling
Parameters) retrieves the scheduling parameters of the thread.

[“pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88| (Get Thread Local Storage
Value by Key) retrieves the thread local storage value associated with the key. pthread_getspecific()
may be called from a data destructor.

[‘pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91| (Retrieve Unique ID
for Calling Thread) retrieves the unique integral identifier that can be used to identify the calling
thread in some context for application debugging or tracing support.

Chapter 1. Pthread APIs 3

[“pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93| (Retrieve a Unique ID for
Target Thread) retrieves the unique integral identifier that can be used to identify the thread in some
context for application debugging or tracing support.

[‘pthread_get_expiration_np()—Get Condition Expiration Time from Relative Time” on page 96| (Get
Condition Expiration Time from Relative Time) computes an absolute time by adding the specified
relative time (delta) to the current system time.

[‘pthread_is_initialthread_np()—Check if Running in the Initial Thread” on page 98| (Check if Running
in the Initial Thread) returns true or false, indicating if the current thread is the initial thread of the
process.

[‘pthread_is_multithreaded_np()—Check Current Number of Threads” on page 100 (Check the Current
Number of Threads) returns true or false, indicating whether the current process has more than one
thread.

[“pthread_join()—Wait for and Detach Thread” on page 102| (Wait for and Detach Thread) waits for a
thread to terminate, detaches the thread, then returns the threads exit status.
[‘pthread_join_np()—Wait for Thread to End” on page 104| (Wait for Thread to End) waits for a thread
to terminate, then returns the threads exit status, while leaving the data structures of the thread
available for a later call to pthread_join(), pthread_join_np(), pthread_detach(), or
pthread_extendedjoin_np()

[“pthread_key_create()—Create Thread Local Storage Key” on page 107] (Create Thread Local Storage
Key) creates a thread local storage key for the process and associates the destructor function with that
key.

[‘pthread_key_delete()—Delete Thread Local Storage Key” on page 109| (Delete Thread Local Storage
Key) deletes a process-wide thread local storage key.

[‘pthread_kill)—Send Signal to Thread” on page 111| (Send Signal to Thread) requests that the signal
sig be delivered to the specified thread.

[‘pthread_lock_global_np()—Lock Global Mutex” on page 114 (Lock Global Mutex) locks a global
mutex provided by the pthreads run-time.

[‘pthread_mutexattr_destroy()—Destroy Mutex Attributes Object” on page 117] (Destroy Mutex
Attributes Object) destroys a mutex attributes object and allows the system to reclaim any resources
associated with that mutex attributes object.

[‘pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute” on page 119| (Get Mutex Kind Attribute)
retrieves the kind attribute from the mutex attributes object specified by attr.

[‘pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object” on page 121| (Get Name
from Mutex Attributes Object) retrieves the name attribute associated with the mutex attribute specified
by attr.

[‘pthread_mutexattr_getprioceiling()—Get Mutex Priority Ceiling Attribute” on page 245/ (Get Mutex
Priority Ceiling Attribute)

[‘pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute” on page 246 (Get Mutex Protocol
Attribute)

“pthread_mutexattr_getpshared()—Get Process Shared Attribute from Mutex Attributes Object” on|
page 123| (Get Process Shared Attribute from Mutex Attributes Object) retrieves the current setting of
the process shared attribute from the mutex attributes object.

[‘pthread_mutexattr_gettype()—Get Mutex Type Attribute” on page 125 (Get Mutex Type Attribute)
retrieves the type attribute from the mutex attributes object specified by attr.

[‘pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129| (Initialize Mutex Attributes
Object) initializes the mutex attributes object referenced by attr to the default attributes.

[‘pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131| (Set Mutex Kind Attribute)
sets the kind attribute in the mutex attributes object specified by attr.

[‘pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object” on page 133| (Set Name in
Mutex Attributes Object) changes the name attribute associated with the mutex attribute specified by
attr.

iSeries: Pthread APIs

[‘pthread_mutexattr_setprioceiling()—Set Mutex Priority Ceiling Attribute” on page 246| (Set Mutex
Priority Ceiling Attribute)

[‘pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute” on page 246| (Set Mutex Protocol
Attribute)

“pthread_mutexattr_setpshared()—Set Process Shared Attribute in Mutex Attributes Object” on page
135] (Set Process Shared Attribute in Mutex Attributes Object) sets the current pshared attribute for the
mutex attributes object.

[‘pthread_mutexattr_settype()—Set Mutex Type Attribute” on page 137] (Set Mutex Type Attribute) sets
the type attribute in the mutex attributes object specified by attr.

[“pthread_mutex_destroy()—Destroy Mutex” on page 139| (Destroy Mutex) destroys the named mutex.

[‘pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling” on page 246| (Get Mutex Priority Ceiling)

[“pthread_mutex_init()—Initialize Mutex” on page 141| (Initialize Mutex) initializes a mutex with the
specified attributes for use.

“pthread_mutex_lock()—Lock Mutex” on page 143| (Lock Mutex) acquires ownership of the mutex
q p
specified.

[‘pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling” on page 246| (Set Mutex Priority Ceiling)
[‘pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147| (Lock Mutex with
Time-Out) acquires ownership of the mutex specified.

[pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151| (Lock Mutex with No Wait)
attempts to acquire ownership of the mutex specified without blocking the calling thread.

[“pthread_mutex_unlock()—Unlock Mutex” on page 155/ (Unlock Mutex) unlocks the mutex specified.

[‘pthread_once()—Perform One-Time Initialization” on page 157] (Perform One-Time Initialization)
performs one time initialization based on a specific once_control variable.
[“pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute” on page 160| (Destroy Read/Write
Lock Attribute) destroys a read/write lock attributes object and allows the systems to reclaim any
resources associated with that read/write lock attributes object.

[‘pthread_rwlockattr_getpshared()—Get Pshared Read /Write Lock Attribute” on page 162| (Get Pshared
Read/Write Lock Attribute) retrieves the current setting of the process shared attribute from the
read/write lock attributes object.

[‘pthread_rwlockattr_init()—Initialize Read /Write Lock Attribute” on page 170| (Initialize Read/Write
Lock Attribute) initializes the read/write lock attributes object referred to by attr to the default
attributes.

[‘pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock Attribute” on page 171| (Set Pshared
Read/Write Lock Attribute) sets the current pshared attribute for the read/write attributes object.
[‘pthread_rwlock_destroy()—Destroy Read /Write Lock” on page 172 (Destroy Read/Write Lock)
destroys the named read/write lock.

[‘pthread_rwlock_init()—Initialize Read /Write Lock” on page 174| (Initialize Read /Write Lock)
initializes a new read/write lock with the specified attributes for use.

[‘pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177| (Get Shared Read Lock) attempts to
acquire a shared read lock on the read/write lock specified by rwlock.

[‘pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179| (Get Shared
Read Lock with Time-Out) attempts to acquire a shared read lock on the read/write lock specified by
rwlock.

[‘pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183| (Get
Exclusive Write Lock with Time-Out) attempts to acquire an exclusive write lock on the read /write
lock specified by rwlock.

[‘pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187] (Get Shared Read
Lock with No Wait) attempts to acquire a shared read lock on the read/write lock specified by rwlock.

Chapter 1. Pthread APIs 5

[‘pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190 (Get Exclusive
Write Lock with No Wait) attempts to acquire an exclusive write lock on the read/write lock specified
by rwlock.

[‘pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193] (Unlock
Exclusive Write or Shared Read Lock) unlocks a shared read or exclusive write lock held by the calling
thread.

[‘pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195/ (Get Exclusive Write Lock)
attempts to acquire an exclusive write lock on the read/write lock specified by rwlock.
[‘pthread_self()—Get Pthread Handle” on page 197| (Get Pthread Handle) returns the Pthread handle of
the calling thread.

[‘pthread_setcancelstate()—Set Cancel State” on page 199| (Set Cancel State) sets the cancel state to one
of PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE and returns the old cancel state
into the location specified by oldstate (if oldstate is non-NULL).

[“pthread_setcanceltype()—Set Cancel Type” on page 201| (Set Cancel Type) sets the cancel type to one
of PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS and returns the old
cancel type into the location specified by oldtype (if oldtype is non-NULL)

[“pthread_setconcurrency()—Set Process Concurrency Level” on page 204 (Set Process Concurrency
Level) sets the current concurrency level for the process.

[‘pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data” on page 205| (Set Pthread
Run-Time Option Data) sets option data in the pthread run-time for the process.

[‘pthread_setschedparam()—Set Target Thread Scheduling Parameters” on page 208| (Set Target Thread
Scheduling Parameters) sets the scheduling parameters of the target thread.

[“pthread_setspecific()—Set Thread Local Storage by Key” on page 211| (Set Thread Local Storage by
Key) sets the thread local storage value associated with a key.

[‘pthread_set_mutexattr_default_np()—Set Default Mutex Attributes Object Kind Attribute” on page 214|
(Set Default Mutex Attributes Object Kind Attribute) sets the kind attribute in the default mutex
attribute object.

[‘pthread_sigmask()—Set or Get Signal Mask” on page 215| (Set or Get Signal Mask) examines or
modifies the signal blocking mask for the current thread.

[‘pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests” on page 219| (Convert Signals to
Cancel Requests) causes a pthread_cancel() to be delivered to the target thread when the first signal
specified in set arrives.

[“pthread_testcancel()—Create Cancellation Point” on page 222 (Create Cancellation Point) creates a
cancellation point in the calling thread.

[‘pthread_test_exit_np()—Test Thread Exit Status” on page 224 (Test Thread Exit Status) returns the
current state of the thread along with its exit status.

[‘pthread_trace_init_np()—Initialize or Re-initialize pthread tracing” on page 227| (Initialize or
Reinitialize Pthread Tracing) initializes or refreshes both the Pthreads library trace level and the
application trace level.

[PTHREAD_TRACE_NP()—Macro to optionally execute code based on trace level” on page 233
(Execute Code Based on Trace Level (Macro)) is used to execute optional code based on the current
application trace level.

[‘pthread_unlock_global_np()—Unlock Global Mutex” on page 239| (Unlock Global Mutex) unlocks a
global mutex provided by the pthreads run-time.

[“sched_yield()—Yield Processor to Another Thread” on page 240 (Yield Processor to Another Thread)
yields the processor from the currently executing thread to another ready-to-run, active thread of equal
or higher priority.

[fopl | [P by category

iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

APls
These are the APIs for this category.

pthread_attr_destroy()—Destroy Thread Attributes Object

Syntax:

#include <pthread.h>
int pthread attr_destroy(pthread attr t xattr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_destroy() function destroys a thread attributes object and allows the system to reclaim
any resources associated with that thread attributes object. This does not have an effect on any threads
created using this thread attributes object.

Authorities and Locks

None.

Parameters
attr (Input) The address of the thread attributes object to be destroyed

Return Value

0 pthread_attr_destroy() was successful.

value pthread_attr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.

Related Information

+ The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

* |“pthread_attr_init()—Initialize Thread Attributes Object” on page 15 —Initialize Thread Attributes
Object

Example

See|Code disclaimer information| for information pertaining to code examples.

Chapter 1. Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void *threadfunc(void *parm)

{
printf("Thread created using an default attributes\n");
return NULL;

1

int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;
pthread_attr_t pta;
printf("Enter Testcase - %s\n", argv[0]);
printf("Create a thread attributes object\n");
rc = pthread_attr_init(&pta);
checkResults("pthread_attr_init()\n", rc);
printf("Create a thread using the attributes object\n");
rc = pthread_create(&thread, &pta, threadfunc, NULL);
checkResults("pthread _create()\n", rc);
printf("Create a thread using the default attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);
printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread_attr_destroy()\n", rc);
/* sleep() is not a very robust way to wait for the thread x/
sleep(5);
printf("Main completed\n");
return 0;

1

Output:

Enter Testcase - QPOWTEST/TAINIO

Create a thread attributes object

Create a thread using the attributes object
Create a thread using the default attributes
Destroy thread attributes object

Thread created using an default attributes
Thread created using an default attributes
Main completed

API introduced: V4R3

IEE‘ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

8 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_attr_getdetachstate()—Get Thread Attributes Object
Detachstate

Syntax:

#include <pthread.h>
int pthread_attr_getdetachstate(const pthread attr t =attr,
int *detachstate);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_getdetachstate() function returns the detach state attribute from the thread attributes
object specified. The detach state of a thread indicates whether the system is allowed to free thread
resources when a thread terminates.

The detach state specifies one of PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.
The default detach state (DEFAULT_DETACHSTATE) is PTHREAD_CREATE_JOINABLE.

Authorities and Locks
None.

Parameters
attr
(Input) The address of the thread attributes object
detachstate
(Output) The address of the variable to contain the returned detach state

Return Value

0 pthread_attr_getdetachstate() was successful.

value pthread_attr getdetachstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getdetachstate() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271
+ |“pthread_attr_setdetachstate()—Set Thread Attributes Object Detachstate” on page 17]

Chapter 1. Pthread APIs 9

+ |“pthread_detach()—Detach Thread” on page 71}—Detach Thread
+ |“pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;
pthread_attr_t pta;
int state;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread attributes object\n");
rc = pthread_attr_init(&pta);
checkResults("pthread_attr_init()\n", rc);

printf("Get detach state\n");
rc = pthread attr_getdetachstate(&pta, &state);
checkResults("pthread_attr_getdetachstate()\n", rc);

printf("The thread attributes object indicates: ");
switch (state) {
case PTHREAD_CREATE_DETACHED:
printf("DETACHED\n");
break;
case PTHREAD_CREATE_JOINABLE:
printf("JOINABLE\n");
break;

}

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread_attr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TAGDSO

Create a thread attributes object

Get detach state

The thread attributes object indicates: JOINABLE
Destroy thread attributes object

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

10 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit
Scheduling Attributes

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_getinheritsched(const pthread_attr_t *attr,
int *inheritsched);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_getinheritsched() function returns the inheritsched attribute from the thread attributes
object specified. The inheritsched attribute is one of PTHREAD_EXPLICIT_SCHED or
PTHREAD_INHERIT_SCHED. The default inheritsched attribute is PTHREAD_EXPLICIT_SCHED,
with a default priority of zero.

Use the inheritsched parameter to inherit or explicitly specify the scheduling attributes when creating new
threads.

Authorities and Locks

None.

Parameters

attr (Input) Address of thread creation attributes

inheritsched
(Output) Address of the variable to receive the inheritsched attribute

Return Value

0 pthread_attr_getinheritsched() was successful.

value pthread_attr_getinheritsched() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getinheritsched() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling Attributes” on page 19|

Chapter 1. Pthread APIs 11

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <except.h>
#include "check.h"

void showInheritSched(pthread attr_t *attr) {
int rc;
int inheritsched;
rc = pthread_attr_getinheritsched(attr, &inheritsched);
checkResults("pthread_attr_getinheritsched()\n", rc);

switch(inheritsched) {

case PTHREAD_EXPLICIT_SCHED:
printf("Inherit Sched - PTHREAD EXPLICIT_SCHED\n");
break;

case PTHREAD_INHERIT_SCHED:
printf("Inherit Sched - PTHREAD_INHERIT_SCHED\n");
break;

default:
printf("Invalid inheritsched attribute!\n");
exit(1l);

}

return;

}

int main(int argc, char x*argv)
{
pthread_t thread;
int rc=0;
pthread_attr_t attr;
char (o
void *status;

printf("Enter Testcase - %s\n", argv[0]);

rc = pthread_attr_init(&attr);
checkResults("pthread_attr_init()\n", rc);

showInheritSched(&attr);

rc = pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);
checkResults ("pthread_attr_setinheritsched()\n", rc);

showInheritSched(&attr);

rc = pthread_attr_destroy(&attr);
checkResults("pthread attr destroy()\n", rc);

printf("Main completed\n");
return 0;

Output:

Enter Testcase - QPOWTEST/TPGISO
Inherit Sched - PTHREAD_EXPLICIT_SCHED
Inherit Sched - PTHREAD_INHERIT_SCHED
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

12 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_attr_getschedparam()—Get Thread Attributes Object
Scheduling Parameters

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_getschedparam(const pthread_attr_t =*attr,
struct sched param *param);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_getschedparam() function returns the scheduling parameters attribute from the thread
attributes object. The default OS/400 scheduling policy is SCHED_OTHER and cannot be changed to
another scheduling policy.

The sched_policy field of the param parameter is always returned as SCHED_OTHER. The sched_priority
field of the param structure is set to the priority of the target thread at the time of the call.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another
mechanism (outside of the pthread APIs) to set the priority of a thread. If you do,
pthread_getschedparam() returns only the information that was set by the pthread interfaces.
(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks
None.

Parameters
attr (Input) The address of the thread attributes object

param (Output) The address of the variable to contain the returned scheduling parameters

Return Value

0 pthread_attr_getschedparam() was successful.

value pthread_attr_getschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_getschedparam() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Chapter 1. Pthread APIs 13

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
* The <sched.h> header file. See [“Header files for Pthread functions” on page 271

+ [“pthread_attr_setschedparam()—Set Thread Attributes Object Scheduling Parameters” on page 21|

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include "check.h"

int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;
pthread_attr_t pta;

struct sched_param param;
printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread attributes object\n");
rc = pthread_attr_init(&pta);
checkResults("pthread_attr_init()\n", rc);

printf("Get scheduling parameters\n");
rc = pthread_attr_getschedparam(&pta, ¶m);
checkResults("pthread_attr_getschedparam()\n", rc);

printf("The thread attributes object indicates: ");
printf("priority %d\n", param.sched priority);

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread attr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TAGSPO

Create a thread attributes object

Get scheduling parameters

The thread attributes object indicates: priority 0
Destroy thread attributes object

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

14 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_attr_init()—Initialize Thread Attributes Object

Syntax:
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_init() function initializes a thread attributes object to the default thread attributes. The
thread attributes object can be used in a call to pthread_create() to specify attributes of the new thread.

Authorities and Locks

None.

Parameters
attr (Input/Output) The address of the thread attributes object to be initialized

Return Value

0 pthread_attr_init() was successful.

value pthread_attr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ [“pthread_attr_destroy()—Destroy Thread Attributes Object” on page 7

+ |“pthread_create()—Create Thread” on page 65—Create Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void *threadfunc(void *parm)

{

Chapter 1. Pthread APIs 15

aboutapis.htm#CODEDISCLAIMER

printf("Thread created using an default attributes\n");
return NULL;

1

int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;
pthread_attr_t pta;
printf("Enter Testcase - %s\n", argv[0]);
printf("Create a thread attributes object\n");
rc = pthread_attr_init(&pta);
checkResults("pthread attr_init()\n", rc);
printf("Create a thread using the attributes object\n");
rc = pthread_create(&thread, &pta, threadfunc, NULL);
checkResults("pthread_create()\n", rc);
printf("Create a thread using the default attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);
printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread_attr_destroy()\n", rc);
/* sleep() is not a very robust way to wait for the thread x/
sleep(5);
printf("Main completed\n");
return 0;

1

Output:

Enter Testcase - QPOWTEST/TAINIO

Create a thread attributes object

Create a thread using the attributes object
Create a thread using the default attributes
Destroy thread attributes object

Thread created using an default attributes
Thread created using an default attributes
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

16 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_attr_setdetachstate()—Set Thread Attributes Object
Detachstate

Syntax:

#include <pthread.h>
int pthread_attr_setdetachstate(pthread attr_ t *attr, int detachstate);

Service Program Name: QPOWPTHR

Default Public Authority: *“USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_setdetachstate() function sets the detach state of the thread attributes object. The detach
state of a thread indicates whether the system is allowed to free thread resources (including but not
limited to thread exit status) when the thread terminates. Some resources (like automatic storage) are
always freed when a thread ends.

The detach state specifies one of PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE.
The default detach state (DEFAULT_DETACHSTATE) is PTHREAD_CREATE_JOINABLE.

Authorities and Locks

None.

Parameters

attr (Input) The address of the thread attributes object.

detachstate
(Output) The detach state, one of PTHREAD_CREATE_JOINABLE or
PTHREAD_CREATE_DETACHED.

Return Value

0 pthread_attr_setdetachstate() was successful.

value pthread_attr_setdetachstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_setdetachstate() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_attr_getdetachstate()—Get Thread Attributes Object Detachstate” on page 9—Get Thread
Attributes Object Detachstate

Chapter 1. Pthread APIs 17

+ |“pthread_detach()—Detach Thread” on page 71}—Detach Thread
+ |“pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void showDetachState(pthread attr_t =*a)
{

int rc=0;

int state=0;

printf("Get detach state\n");
rc = pthread_attr_getdetachstate(a, &state);
checkResults("pthread attr getdetachstate()\n", rc);

printf("The thread attributes object indicates: ");
switch (state) {
case PTHREAD_CREATE_DETACHED:
printf("DETACHED\n");
break;
case PTHREAD CREATE_JOINABLE:
printf("JOINABLE\n");

break;
}
return;
1
int main(int argc, char x*argv)
{
pthread_t thread;
int rc=0;
pthread_attr_t pta;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a default thread attributes object\n");
rc = pthread_attr_init(&pta);

checkResults("pthread_attr_init()\n", rc);
showDetachState(&pta);

printf("Set the detach state\n");
rc = pthread_attr_setdetachstate(&pta, PTHREAD_CREATE_DETACHED);
checkResults("pthread attr_setdetachstate()\n", rc);

showDetachState(&pta);

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread_attr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TASDSO
Create a default thread attributes object
Get detach state

18 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

The thread attributes object indicates: JOINABLE
Set the detach state

Get detach state

The thread attributes object indicates: DETACHED
Destroy thread attributes object

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_attr_setinheritsched()—Set Thread Attribute Inherit Scheduling

Attributes

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int *inheritsched);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_setinheritsched() function sets the inheritsched attribute in the thread attributes object
specified. The inheritsched attribute should be one of PTHREAD_EXPLICIT_SCHED or
PTHREAD_INHERIT_SCHED. The default inheritsched attribute is PTHREAD_EXPLICIT_SCHED,
with a default priority of zero.

Use the inheritsched attribute to inherit or explicitly specify the scheduling attributes when creating new
threads.

Authorities and Locks

None.

Parameters

attr (Input) Address of thread creation attributes

inheritsched
(Output) Address of the variable to receive the inheritsched attribute

Return Value

0 pthread_attr_setinheritsched() was successful

value pthread_attr_setinheritsched() was not successful. value is set to indicate the error condition

Chapter 1. Pthread APIs

19

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_attr_setinheritsched() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

* |“pthread_attr_getinheritsched()—Get Thread Attribute Object Inherit Scheduling Attributes” on page
11Get Thread Attribute Object Inherit Scheduling Attributes

+ [“pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page]
13[—Get Thread Attributes Object Scheduling Parameters

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <except.h>
#include "check.h"

void showInheritSched(pthread_attr_t =*attr) {
int rc;
int inheritsched;
rc = pthread_attr_getinheritsched(attr, &inheritsched);
checkResults("pthread_attr getinheritsched()\n", rc);

switch(inheritsched) {

case PTHREAD_EXPLICIT_SCHED:
printf("Inherit Sched - PTHREAD_EXPLICIT_SCHED\n");
break;

case PTHREAD_INHERIT_SCHED:
printf("Inherit Sched - PTHREAD_ INHERIT SCHED\n");
break;

default:
printf("Invalid inheritsched attribute!\n");
exit(1);

}

return;

}

int main(int argc, char x*argv)

{

pthread_t thread;
int rc=0;
pthread_attr_t attr;
char c;

void *status;

printf("Enter Testcase - %s\n", argv[0]);

rc = pthread attr_init(&attr);
checkResults("pthread_attr_init()\n", rc);

showInheritSched(&attr);

rc = pthread_attr_setinheritsched(&attr, PTHREAD INHERIT SCHED);
checkResults("pthread_attr_setinheritsched()\n", rc);

20 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

showInheritSched(&attr);

rc = pthread attr_destroy(&attr);
checkResults("pthread_attr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPSISO
Inherit Sched - PTHREAD_EXPLICIT_SCHED
Inherit Sched - PTHREAD INHERIT_SCHED
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_attr_setschedparam()—Set Thread Attributes Object
Scheduling Parameters

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_setschedparam(pthread_attr_t xattr,
const struct sched param *param);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_attr_setschedparam() function sets the scheduling parameters in the thread attributes object.
The supported OS/400 scheduling policy is SCHED_OTHER. Attempting to set the sched_policy field of
the param parameter other than SCHED_OTHER causes the EINVAL error. The sched_priority field of the
param parameter must range from PRIORITY_MIN to PRIORITY_MAX or the ENOTSUP error occurs.

All reserved fields in the scheduling parameters structure must be binary zero or the EINVAL error
occurs.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another
mechanism (outside of the pthread APIs) to set the priority of a thread. If you do,
pthread_getschedparam() returns only that information that was set by the pthread interfaces
(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparam()).

Authorities and Locks
None.

Chapter 1. Pthread APIs 21

#TOP_OF_PAGE
aplist.htm

Parameters
attr (Input/Output) The address of the thread attributes object

param (Input) Address of the variable containing the scheduling parameters

Return Value

0 pthread_attr_setschedparam() was successful.

value pthread_attr_setschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_attr_setschedparam() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[ENOTSUP]

The value specified for the priority argument is not supported.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
* The <sched.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_attr_getschedparam()—Get Thread Attributes Object Scheduling Parameters” on page]
13[—Get Thread Attributes Object Scheduling Parameters

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include "check.h"

#define BUMP_PRIO 1
static int thePriority = 0;

void showSchedParam(pthread_attr_t *a)
{

int rc=0;

struct sched_param param;

printf("Get scheduling parameters\n");
rc = pthread_attr_getschedparam(a, ¶m);
checkResults("pthread_attr_getschedparam()\n", rc);

printf("The thread attributes object indicates priority: %d\n",
param.sched_priority);

thePriority = param.sched _priority;

return;

}

int main(int argc, char x*argv)

{

pthread_t thread;
int rc=0;
pthread_attr_t pta;

22 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

struct sched_param param;
printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread attributes object\n");
rc = pthread_attr_init(&pta);
checkResults("pthread_attr_init()\n", rc);

showSchedParam(&pta) ;

memset (¶m, 0, sizeof(param));

if (thePriority + BUMP_PRIO <= PRIORITY_MAX NP) {
param.sched_priority = thePriority + BUMP_PRIO;

}

printf("Setting scheduling parameters\n");
rc = pthread_attr_setschedparam(&pta, ¶m);
checkResults("pthread_attr_setschedparam()\n", rc);

showSchedParam(&pta) ;

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread attr destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TASSPO

Create a thread attributes object

Get scheduling parameters

The thread attributes object indicates priority: 0
Setting scheduling parameters

Get scheduling parameters

The thread attributes object indicates priority: 0
Destroy thread attributes object

Main completed

API introduced: V4R3

@ | IChapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_cancel()}—Cancel Thread

Syntax:

#include <pthread.h>
int pthread_cancel(pthread_t thread);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

Chapter 1. Pthread APIs

23

#TOP_OF_PAGE
aplist.htm

The pthread_cancel() function requests cancellation of the target thread. The target thread is cancelled,
based on its ability to be cancelled.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes
the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls a function that is a cancellation point, or calls pthread_testcancel(),
thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon
immediately, interrupting the thread with its processing.

Note: You should not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype() in your application. See the
common user errors section of this document for more information.

The following functions are cancellation points:
¢ pthread_cond_timedwait()

* pthread_cond_wait()

* pthread_delay_np()

* pthread_join()

* pthread_join_np()

* pthread_extendedjoin_np()

* pthread_testcancel()

After action is taken for the target thread to be cancelled, the following events occur in that thread.

1. The thread calls cancellation cleanup handlers with cancellation disabled until the last cancellation
cleanup handler returns. The handlers are called in Last In, First Out (LIFO) order.

2. Data destructors are called for any thread-specific data entries that have a non NULL value for both
the value and the destructor.

3. When the last cancellation cleanup handler returns, the thread is terminated and a status of
PTHREAD_CANCELED is made available to any threads joining the target.

4. Any mutexes that are held by a thread that terminates, are abandoned and are no longer valid.
Subsequent calls by other threads that attempt to acquire the abandoned mutex
(pthread_mutex_lock() or pthread_mutex_trylock()) fail with an EOWNERTERM error.

5. Application visible process resources are not released. This includes but is not limited to mutexes, file
descriptors, or any process level cleanup actions.

A cancellation cleanup handler should not exit by longjmp() or siglongjmp().
In the OS/400 implementation of threads, the initial thread is special. Termination of the initial thread by

pthread_exit(), pthread_cancel() or any other thread termination mechanism terminates the entire
process.

Authorities and Locks

None.

Parameters
thread (Input) Pthread handle to the target thread

Return Value

0 pthread_cancel() was successful.

value pthread_cancel() was not successful. value is set to indicate the error condition.

24 iSeries: Pthread APIs

Error Conditions

If pthread_cancel() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.
[ESRCH]
No thread could be found that matched the thread ID specified.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28—Pop
Cleanup Handler off of Cancellation Cleanup Stack

[‘pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30—Push
Cleanup Handler onto Cancellation Cleanup Stack

[“pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
[‘pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State
[‘pthread_setcanceltype()—Set Cancel Type” on page 201}—Set Cancel Type

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

void xthreadfunc(void *parm)

printf("Entered secondary thread\n");
while (1) {

printf("Secondary thread is looping\n");
pthread_testcancel();
sleep(1);
}
return NULL;
1

int main(int argc, char x*argv)
{
pthread_t thread;
int rc=0;

printf("Entering testcase\n");

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread x/
sleep(2);

printf("Cancel the thread\n");
rc = pthread_cancel (thread);
checkResults("pthread_cancel()\n", rc);

/* sleep() is not a very robust way to wait for the thread x/

Chapter 1. Pthread APIs 25

aboutapis.htm#CODEDISCLAIMER

sleep(3);
printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create thread using the NULL attributes
Entered secondary thread

Secondary thread is looping

Secondary thread is Tooping

Cancel the thread

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_cleanup_peek_np()—Copy Cleanup Handler from Cancellation
Cleanup Stack

Syntax:

#include <pthread.h>
int pthread_cleanup_peek_np(pthread_cleanup_entry np_t *entry);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_cleanup_peek_np() function returns a copy of the cleanup handler entry that the next call to
pthread_cleanup_pop() would pop. The handler remains on the cancellation cleanup stack after the call
to pthread_cleanup_peek_np().

During this thread cancellation cleanup, the thread calls cancellation cleanup handlers with cancellation
disabled until the last cancellation cleanup handler returns. The handlers are called in Last In, First Out
(LIFO) order. Automatic storage for the invocation stack frame of the function that registered the handler
is still present when the cancellation cleanup handler is executed.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical
scope (that is, same level of brackets {}).

The pthread_cleanup_peek_np() function has no scoping rules.

Note: This function is not portable.

Authorities and Locks
None.

26 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Parameters

None.

Return Value

0 pthread_cleanup_peek_np() was successful.

value pthread_cleanup_peek_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cleanup_peek_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[ENOENT]

The cancellation cleanup stack is empty.

Related Information
+ The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

« [‘pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28—Pop
Cleanup Handler off of Cancellation Cleanup Stack

+ |“pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30—Push
Cleanup Handler onto Cancellation Cleanup Stack

* |“pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

printf("In Handler 1\n"); return; }
printf("In Handler 2\n"); return; }
printf("In Handler 3\n"); return; }

void cleanupHandlerl(void *arg)
void cleanupHandler2(void *arg)
void cleanupHandler3(void *arg)
int args[3] = {0,0,0

int main(int argc, char xxargv)

{
int rc=0;
pthread_cleanup_entry np_t entry;

printf("Enter Testcase - %s\n", argv[0]);

printf("Check for absence of cleanup handlers\n");

rc = pthread_cleanup_peek_np(&entry);

if (rc != ENOENT) {
printf("pthread_cleanup_peek_np(), expected ENOENT\n");
exit(1l);

}

printf("Push some cancellation cleanup handlers\n");
pthread_cleanup_push(cleanupHandlerl, &args[0]);
pthread cleanup push(cleanupHandler2, &args[1]);

Chapter 1. Pthread APIs 27

aboutapis.htm#CODEDISCLAIMER

printf("Check for cleanupHandler2\n");
rc = pthread_cleanup_peek_np(&entry);
checkResults("pthread cleanup_peek np(2)\n", rc);
if (entry.handler != cleanupHandler2 ||
entry.arg != &args[1]) {
printf("Did not get expected handler(2) information!\n");
exit(1);
}

pthread cleanup push(cleanupHandler3, &args[2]);

printf("Check for cleanupHandler3\n");
rc = pthread_cleanup_peek np(&entry);
checkResults("pthread_cleanup_peek _np(3)\n", rc);
if (entry.handler != cleanupHandler3 ||
entry.arg != &args[2]) {
printf("Did not get expected handler(3) information!\n");
exit(1);
}

pthread_cleanup_pop(0);
pthread_cleanup_pop(0);
pthread_cleanup_pop(0);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCLPPO

Check for absence of cleanup handlers
Push some cancellation cleanup handlers
Check for cleanupHandler2

Check for cleanupHandler3

Main completed

API introduced: V4R3

[Top| | [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation
Cleanup Stack

Syntax:

#include <pthread.h>
void pthread cleanup pop(int execute);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

28 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

The pthread_cleanup_pop() function pops the last cleanup handler from the cancellation cleanup stack. If
the execute parameter is nonzero, the handler is called with the argument specified by the
pthread_cleanup_push() call with which the handler was registered.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical
scope (that is, same level of brackets {}).

When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the cancellation cleanup
handlers are called with the argument specified by the pthread_cleanup_push() call that the handler was
registered with.

During this thread cancellation cleanup, the thread calls cancellation cleanup handlers with cancellation
disabled until the last cancellation cleanup handler returns. The handlers are called in Last In, First Out
(LIFO) order. Automatic storage for the invocation stack frame of the function that registered the handler
is still present when the cancellation cleanup handler is executed.

When a cancellation cleanup handler is called because of a call to pthread_cleanup_pop(1), the
cancellation cleanup handler does not necessarily run with cancellation disabled. The cancellation state
and cancellation type are not changed by a call to pthread_cleanup_pop(1).

A cancellation cleanup handler should not exit using longjmp() or siglongjmp(). If a cleanup handler
takes an exception, the exception condition is handled and ignored and processing continues. You can
look in the job log of the job to see exception messages generated by cancellation cleanup handlers.

Authorities and Locks

None.

Parameters

execute
(Input) Boolean value indicating whether the cancellation cleanup handler should be executed

Return Value

None.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_cancel()—Cancel Thread” on page 23—Cancel Thread

+ |“pthread_cleanup_push()—Push Cleanup Handler onto Cancellation Cleanup Stack” on page 30—Push
Cleanup Handler onto Cancellation Cleanup Stack

+ [“pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example

See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void cleanupHandler(void *arg)

printf("In the cleanup handler\n");

void *threadfunc(void *parm)

Chapter 1. Pthread APIs 29

aboutapis.htm#CODEDISCLAIMER

printf("Entered secondary thread, you should see the cleanup handler\n");
pthread _cleanup_push(cleanupHandler, NULL);
sleep(1); /* Simulate more code here =/
pthread_cleanup_pop(1);
return NULL;
1

int main(int argc, char xxargv)
{
pthread_t thread;
int rc=0;

printf("Enter Testcase - %s\n", argv[0]);

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");

rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread x/
sleep(5);

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCLP0OO

Create thread using the NULL attributes

Entered secondary thread, you should see the cleanup handler
In the cleanup handler

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_cleanup_push()—Push Cleanup Handler onto Cancellation
Cleanup Stack

Syntax:
#include <pthread.h>

void pthread cleanup_push(void (*routine)(void *), void *arg);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_cleanup_push() function pushes a cancellation cleanup routine onto the calling threads
cancellation cleanup stack. When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the
cancellation cleanup handlers are called with the argument arg.

30 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

The cancellation cleanup handlers are also called when they are removed from the cancellation cleanup
stack by a call to pthread_cleanup_pop() and a non-zero execute argument is specified.

The pthread_cleanup_push() and the matching pthread_cleanup_pop() call should be in the same lexical
scope (that is, same level of brackets {}).

When the thread calls pthread_exit() or is cancelled by pthread_cancel(), the cancellation cleanup
handlers are called with the argument specified by the pthread_cleanup_push() call that the handler was
registered with.

During this thread cancellation cleanup processing, the thread calls cancellation cleanup handlers with
cancellation disabled until the last cancellation cleanup handler returns. The handlers are called in Last
In, First Out (LIFO) order. Automatic storage for the invocation stack frame of the function that registered
the handler are still present when the cancellation cleanup handler is executed.

When a cancellation cleanup handler is called because of a call to pthread_cleanup_pop(1), the
cancellation cleanup handler does not necessarily run with cancellation disabled. The cancellation state
and cancellation type are not changed by a call to pthread_cleanup_pop(1).

A cancellation cleanup handler should not exit using longjmp() or siglongjmp(). If a cleanup handler
takes an exception, the exception condition is handled and ignored and processing continues. You can
look in the job log of the job to see exception messages generated by cancellation cleanup handlers.

Authorities and Locks
None.

Parameters

routine
(Input) The cancellation cleanup routine

arg (Input) Argument that is passed to the start routine if it is called

Return Value

None.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ [“pthread_cancel()—Cancel Thread” on page 23}—Cancel Thread

* |“pthread_cleanup_pop()—Pop Cleanup Handler off of Cancellation Cleanup Stack” on page 28|—Pop
Cleanup Handler off of Cancellation Cleanup Stack

+ [“pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void cleanupHandler(void =*arg)

{
printf("In the cleanup handler\n");

Chapter 1. Pthread APIs 31

aboutapis.htm#CODEDISCLAIMER

void *threadfunc(void *parm)
{
printf("Entered secondary thread\n");
pthread_cleanup_push(cleanupHandler, NULL);
while (1) {
pthread_testcancel();
sleep(1);
}
pthread_cleanup_pop(0);
return NULL;

1
int main(int argc, char x*argv)
{
pthread_t thread;
int rc=0;

printf("Enter Testcase - %s\n", argv[0]);

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sleep(2);

printf("Cancel the thread\n");
rc = pthread_cancel(thread);
checkResults ("pthread_cancel()\n", rc);

/* sleep() is not a very robust way to wait for the thread */
sleep(3);

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCLPUO
Create thread using the NULL attributes
Entered secondary thread

Cancel the thread

In the cleanup handler

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

32 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_clear_exit_np()—Clear Exit Status of Thread

Syntax:
#include <pthread.h

int pthread_clear_exit_np(void);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_clear_exit_np() function clears the exit status of the thread. If the thread is currently exiting
due to a call to pthread_exit() or is the target of a pthread_cancel(), then pthread_clear_exit_np() can be
used in conjunction with setjmp(), longjmp(), and pthread_setcancelstate() to prevent a thread from
terminating, and “handle’ the exit condition.

The only supported way to prevent thread exit during the condition in which pthread_exit() was called,
or action is being taken for the target of a pthread_cancel() is shown in the example. It consists of using
longjmp() from a cancellation cleanup handler back into some thread routine that is still on the
invocation stack. From that routine, the functions pthread_clear_exit_np(), and pthread_setcancelstate()
are used to restore the state of the thread before the condition that was causing the thread exit.

Note: This function is not portable.

Authorities and Locks
None.

Parameters

None.

Return Value

0 pthread_clear_exit_np() was successful.

value pthread_clear_exit_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_clear_exit_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The thread is not currently exiting

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
+ [“pthread_cancel()—Cancel Thread” on page 23—Cancel Thread

Chapter 1. Pthread APIs 33

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <except.h>
#include <setjmp.h>
#include "check.h"

int threadStatus=1;
void cleanupHandler(void *p)
{
Jmp_buf *j = (jmp_buf *)p;

/* Warning, it is quite possible that using combinations of */

/* setjmp(), longjmp(), pthread clear exit np(), and */
/* pthread_setcancelstate() to handle thread exits or */
/* cancellation could result in Tooping or non-cancelable */
/* threads if done incorrectly. */

printf("In cancellation cleanup handler. Handling the thread exit\n");
Tongjmp(*j, 1);
printf("The exit/cancellation was not stopped!\n");

return;
1
void *threadfunc(void *parm)
{

Jjmp_buf Js

int rc, old;

printf("Inside secondary thread\n");

if (setjmp(j)) {
/* Returned from longjmp after stopping the thread exit */
/* Since longjmp was called from within the cancellation x/
/* cleanup handler, we must clear the exit state of the */
/* thread and reset the cancelability state to what it was =/
/* before the cancellation cleanup handlers were called */
/* (Cancellation cleanup handlers are called with */
/* thread cancellation disabled) */
printf("Stopped the thread exit, now clean up the states\n");

printf("Clear exit state\n");
rc = pthread_clear_exit_np();
checkResults("pthread_clear exit_np()\n", rc);

printf("Restore cancel state\n");
rc = pthread_setcancelstate(PTHREAD _CANCEL ENABLE, &old);
checkResults("pthread_setcancelstate()\n", rc);
/* This example was successful */
threadStatus = 0;

}

else {
printf("Pushing cleanup handler that will stop the exit\n");
pthread _cleanup_push(cleanupHandler, &j);
/* This exit will be stopped by cleanupHandler2 and the */
/* pthread_clear_exit_np() that is done above */
pthread_exit(__VOID(threadStatus));
printf("Did not expect to get here! Left status as 1.\n");
pthread_cleanup_pop(0);

}

pthread exit(__VOID(threadStatus));

int main(int argc, char x*argv)

{

34 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

}

pthread_t thread;

int rc=0;
char c;
void *status;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread that will demonstrate handling an exit\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread _create()\n", rc);

rc = pthread_join(thread, &status);

checkResults("pthread_join()\n", rc);

if (__INT(status) != 0) {
printf("Got an unexpected return status from the thread!\n");
exit(1);

}

printf("Main completed\n");

return 0;

Output:

Enter Testcase - QPOWTEST/TPCEXITO

Create thread that will demonstrate handling an exit
Inside secondary thread

Pushing cleanup handler that will stop the exit

In cancellation cleanup handler. Handling the thread exit
Stopped the thread exit, now clean up the states

Clear exit state

Restore cancel state

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_condattr_destroy()—Destroy Condition Variable Attributes
Object

Syntax:

#include <pthread.h>
int pthread_condattr_destroy(pthread condattr_t *attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_condattr_destroy() function destroys the condition variable attributes object specified by attr,
and indicates that any storage that the system has associated with the object be de-allocated. Destroying a
condition variable object in no way affects any of the condition variables that were created with that
object.

Chapter 1. Pthread APIs

35

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

attr (Input) The address of the condition variable attributes object to be destroyed

Return Value

0 pthread_condattr_destroy() was successful.

value pthread_condattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_destroy() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38 —Initialize
Condition Variable Attributes Object

» [“pthread_cond_init()—Initialize Condition Variable” on page 53}—Initialize Condition Variable

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_cond_t cond;

int main(int argc, char x*argv)
{
int rc=0;
pthread_condattr_t attr;

printf("Entering testcase\n");

printf("Create a default condition attribute\n");
rc = pthread_condattr_init(&attr);
checkResults("pthread condattr_init\n", rc);

printf("Create the condition using the condition attributes object\n");
rc = pthread_cond_init(&cond, &attr);
checkResults("pthread_cond_init()\n", rc);

printf("- At this point, the condition with its default attributes\n");
printf("- Can be used from any threads that want to use it\n");

printf("Destroy cond attribute\n");
rc = pthread_condattr_destroy(&attr);
checkResults("pthread_condattr_destroy()\n", rc);

printf("Destroy condition\n");
rc = pthread _cond destroy(&cond);

36 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread _cond destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create a default condition attribute

Create the condition using the condition attributes object
- At this point, the condition with its default attributes
- Can be used from any threads that want to use it

Destroy cond attribute

Destroy condition

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_condattr_getpshared()—Get Process Shared Attribute from
Condition Attributes Object

Syntax:

#include <pthread.h>
int pthread_condattr_getpshared(const pthread_condattr_t *attr, int *pshared);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_condattr_getpshared() function retrieves the current setting of the process shared attribute
from the condition attributes object. The process shared attribute indicates whether the condition that is
created using the condition attributes object can be shared between threads in separate processes
(PTHREAD_PROCESS_SHARED) or shared only between threads within the same process
(PTHREAD_PROCESS_PRIVATE).

Even if the condition in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for condition attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable that contains the condition attributes object

Chapter 1. Pthread APIs 37

#TOP_OF_PAGE
aplist.htm

pshared
(Output) Address of the variable to contain the pshared attribute result

Return Value

0 pthread_condattr_getpshared() was successful.

value pthread_condattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_getpshared() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ [“pthread_condattr_init()—Initialize Condition Variable Attributes Object”}—Initialize Condition Variable
Attributes Object

+ |“pthread_condattr_setpshared()—Set Process Shared Attribute in Condition Attributes Object” on page|
40[—Set Process Shared Attribute in Condition Attributes Object

» [“pthread_cond_init()—Initialize Condition Variable” on page 53}—Initialize Condition Variable

Example

See [Code disclaimer information| for information pertaining to code examples.

See the example for [“Example” on page 41

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_condattr_init()—Initialize Condition Variable Attributes Object

Syntax:

#include <pthread.h>
int pthread_condattr_init(pthread_condattr_t =*attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_condattr_init() function initializes the condition variable attributes object specified by attr to
the default attributes. The condition variable attributes object is used to create condition variables with
the pthread_cond_init() function.

38 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.
Parameters
attr (Output) The address of the variable to contain the condition variable attributes object

Return Value

0 pthread_condattr_init() was successful.

value pthread_condattr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |[“pthread_condattr_destroy()—Destroy Condition Variable Attributes Object” on page 35|—Destroy
Condition Variable Attributes Object

+ [“pthread_cond_init()—Initialize Condition Variable” on page 53}—Initialize Condition Variable

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_cond_t cond;

int main(int argc, char xxargv)
{
int rc=0;
pthread_condattr_t attr;

printf("Entering testcase\n");

printf("Create a default condition attribute\n");
rc = pthread_condattr_init(&attr);
checkResults("pthread condattr_init\n", rc);

printf("Create the condition using the condition attributes object\n");
rc = pthread_cond_init(&cond, &attr);
checkResults ("pthread_cond_init()\n", rc);

printf("- At this point, the condition with its default attributes\n");
printf("- Can be used from any threads that want to use it\n");

printf("Destroy cond attribute\n");
rc = pthread_condattr_destroy(&attr);
checkResults("pthread_condattr_destroy()\n", rc);

printf("Destroy condition\n");
rc = pthread _cond destroy(&cond);

Chapter 1. Pthread APIs

39

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread _cond_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create a default condition attribute

Create the condition using the condition attributes object
- At this point, the condition with its default attributes
- Can be used from any threads that want to use it

Destroy cond attribute

Destroy condition

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_condattr_setpshared()—Set Process Shared Attribute in
Condition Attributes Object

Syntax:
#include <pthread.h>

int pthread_condattr_setpshared(pthread_condattr_t =*attr,
int pshared);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_condattr_setpshared() function sets the current pshared attribute for the condition attributes
object. The process shared attribute indicates whether the condition that is created using the condition
attributes object can be shared between threads in separate processes (PTHREAD_PROCESS_SHARED)
or shared between threads within the same process (P THREAD_PROCESS_PRIVATE).

Even if the condition is in storage that is accessible from two separate processes, it cannot be used from
both processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for condition attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.
Parameters
attr (Input) Address of the variable containing the condition attributes object

40 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pshared
(Input) One of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE

Return Value

0 pthread_condattr_setpshared() was successful.

value pthread_condattr_setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_condattr_setpshared() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271 |

+ |“pthread_condattr_getpshared()—Get Process Shared Attribute from Condition Attributes Object” onl|
page 37—Get Process Shared Attribute from Condition Attributes Object

* |“pthread_condattr_init()—Initialize Condition Variable Attributes Object” on page 38 —Initialize
Condition Variable Attributes Object

» [“pthread_cond_init()—Initialize Condition Variable” on page 53}—Initialize Condition Variable

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <spawn.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/shm.h>
#include "check.h"

typedef struct {

int eventOccured;
int numberWaiting;
int wokeup;
int reserved[1];
pthread_cond_t cond;
pthread mutex_ t mutex; /* Protects this shared data and condition
*
/
} shared_data_t;
extern char *xenviron;
shared_data_t *sharedMem=NULL;
pid_t childPid=0;
int childStatus=-99;
int shmid=0;

/* Change this path to be the path to where you create this example program =*/
#define MYPATH "/QSYS.LIB/QPOWTEST.LIB/TPCOSPO.PGM"

#define NTHREADSTHISJOB 2
#define NTHREADSTOTAL 4

void parentSetup(void);

Chapter 1. Pthread APIs 41

aboutapis.htm#CODEDISCLAIMER

void childSetup(void);
void parentCleanup(void);
void childCleanup(void);

void *parentThreadFunc(void *parm)

{

int rc;

rc = pthread_mutex_lock(&sharedMem->mutex) ;
checkResults ("pthread mutex_lock()\n", rc);

/* Under protection of the lock, increment the count */
++sharedMem->numberWaiting;

while (!sharedMem->eventOccured) {
printf("PARENT - Thread blocked\n");
rc = pthread_cond_wait(&sharedMem->cond, &sharedMem->mutex);
checkResults ("pthread cond wait()\n", rc);

1
printf("PARENT - Thread awake!\n");

/* Under protection of the lock, decrement the count */
--sharedMem->numberWaiting;

/* After incrementing the wokeup flage and unlocking the mutex =/
/* we no longer use the shared memory, the parent could destroy =/
/* it. We indicate we are finished with it using the wokeup flag */
++sharedMem->wokeup;

rc = pthread_mutex_unlock(&sharedMem->mutex) ;

checkResults("pthread mutex_Tock()\n", rc);

return NULL;

1
void *childThreadFunc(void *parm)
{
int rc;
rc = pthread_mutex_lock(&sharedMem->mutex);
checkResults("pthread mutex_lock()\n", rc);
/* Under protection of the lock, increment the count */
++sharedMem->numberWaiting;
while (!sharedMem->eventOccured) {
printf("CHILD - Thread blocked\n");
rc = pthread_cond_wait(&sharedMem->cond, &sharedMem->mutex);
checkResults("pthread cond_wait()\n", rc);
1
printf("CHILD - Thread awake!\n");
/* Under protection of the lock, decrement the count */
--sharedMem->numberWaiting;
/* After incrementing the wokeup flage and unlocking the mutex =/
/* we no longer use the shared memory, the parent could destroy x/
/* it. We indicate we are finished with it using the wokeup flag*/
++sharedMem->wokeup;
rc = pthread_mutex_unlock(&sharedMem->mutex) ;
checkResults ("pthread mutex_lock()\n", rc);
return NULL;
1
int main(int argc, char x*argv)
{
int rc=0;
int is
pthread_t threadid[[NTHREADSTHISJOB] ;
int parentJob=0;

42 iSeries: Pthread APIs

/* If we run this from the QSHELL interpreter on the system, we want */
/* it to be line buffered even if we run it in batch so the output between */

/* parent and child is intermixed. */
setvbuf(stdout,NULL, IOLBF,4096);
/* Determine if we are running in the parent or child */

if (argc !'= 1 &% argc != 2) {
printf("Incorrect usage\n");
printf("Pass no parameters to run as the parent testcase\n");
printf("Pass one parameter “ASCHILD' to run as the child testcase\n");
exit(1);

1
if (argc == 1) {
parentJob = 1;
1
else {
if (strcmp(argv[1], "ASCHILD")) {
printf("Incorrect usage\n");
printf("Pass no parameters to run as the parent testcase\n");
printf("Pass one parameter “ASCHILD' to run as the child testcase\n");
exit(1);
}
parentJob = 03
}

/% PARENT H%kkkskkkdhkhkhkhhrhhhrhhhrhhhhhhhhrhhbrhhrrhhrrhrhrhrhrrhhrrhrrrrss/
if (parentdob) {

printf("PARENT - Enter Testcase - %s\n", argv[0]);

parentSetup();

printf("PARENT - Create %d threads\n", NTHREADSTHISJOB);

for (i=0; i<NTHREADSTHISJOB; ++i) {
rc = pthread_create(&threadid[i], NULL, parentThreadFunc, NULL);
checkResults("pthread_create()\n", rc);

}

rc = pthread_mutex_lock(&sharedMem->mutex) ;
checkResults("pthread mutex_lock()\n", rc);
while (sharedMem->numberWaiting != NTHREADSTOTAL) {
printf("PARENT - Waiting for %d threads to wait, "
"currently %d waiting\n",
NTHREADSTOTAL, sharedMem->numberWaiting);

rc = pthread_mutex_unlock(&sharedMem->mutex) ;
checkResults("pthread mutex_unlock()\n", rc);
sleep(1);

rc = pthread_mutex_lock(&sharedMem->mutex) ;
checkResults("pthread mutex_Tock()\n", rc);

}

printf("PARENT - wake up all of the waiting threads...\n");
sharedMem->eventOccured = 1;

rc = pthread_cond_broadcast (&sharedMem->cond) ;

checkResults ("pthread_cond_signal()\n", rc);

printf("PARENT - Wait for waking threads and cleanup\n");
while (sharedMem->wokeup != NTHREADSTOTAL) {
printf("PARENT - Waiting for %d threads to wake, "
"currently %d wokeup\n",
NTHREADSTOTAL, sharedMem->wokeup);

rc = pthread _mutex_unlock(&sharedMem->mutex);
checkResults ("pthread_mutex_unlock()\n", rc);
sleep(1);

rc = pthread_mutex_lock(&sharedMem->mutex) ;
checkResults("pthread mutex_Tlock()\n", rc);

Chapter 1. Pthread APIs

43

parentCleanup();
printf("PARENT - Main completed\n");
exit(0);

}

[% CHILD sk %kkdskkkdhkkkhkhhrhhhrhhhhhhhhrhhhrhhrrhhhrhhhrrhhrrhorrhrrrrsrrrs/

{
void *status=NULL;

printf("CHILD - Enter Testcase - %s\n", argv[0]);
childSetup();

printf("CHILD - Create %d threads\n", NTHREADSTHISJOB);

for (i=0; i<NTHREADSTHISJOB; ++i) {
rc = pthread _create(&threadid[i], NULL, childThreadFunc, NULL);
checkResults("pthread create()\n", rc);

1

/* The parent will wake up all of these threads using the =/

/* pshared condition variable. We will just join to them... %/

printf("CHILD - Joining to all threads\n");

for (i=0; i<NTHREADSTHISJOB; ++i) {
rc = pthread join(threadid[i], &status);
checkResults ("pthread_join()\n", rc);
if (status != NULL) {
printf("CHILD - Got a bad status from a thread, "
"%.8X %.8x %.8x %.8x\n", status);

exit(1);
1

1

/* After all the threads are awake, the parent will destroy =/

/* the condition and mutex. Do not use it anymore */

childCleanup();

printf("CHILD - Main completed\n");

1
return 0;

1
/***/
/* This function initializes the shared memory for the job, */
/* sets up the environment variable indicating where the sharedx/
/* memory is, and spawns the child job. */
/* */
/* 1t creates and initializes the shared memory segment, and */
/* It initializes the following global variables in this */
/* job. */
/* sharedMem */
/* childPid */
/* shmid */
/* */
/* If any of this setup/initialization fails, it will exit(1l) =/
/* and terminate the test. */
/* */

/***/
void parentSetup(void)

int rc;

/***/

/* Create shared memory for shared data_t above */
/* attach the shared memory */
/* set the static/global sharedMem pointer to it */

/***/

printf("PARENT - Create the shared memory segment\n");
rc = shmget (IPC_PRIVATE, sizeof(shared data_t), 0666);

44 iSeries: Pthread APIs

if (rc == -1) {
printf("PARENT - Failed to create a shared memory segment\n");
exit(1);

}

shmid = rc;

printf("PARENT - Attach the shared memory\n");
sharedMem = shmat(shmid, NULL, 0);
if (sharedMem == NULL) {
shmct1(shmid, IPC_RMID, NULL);
printf("PARENT - Failed to attach shared memory\n");
exit(1);
1

/***/
/* Initialize the mutex/condition and other shared memory data */

[Fkdkk ok dokk ok ok kk ok ok ok ko k ok k ok kR kKK I I I I KRR hhF kI I h* kKK Kk Kkkkkkhkk [
{

pthread_mutexattr_t mattr;

pthread_condattr_t cattr;

printf("PARENT - Init shared memory mutex/cond\n");
memset (sharedMem, 0, sizeof(shared data_t));

/* Process Shared Mutex =/
rc = pthread_mutexattr_init(&mattr);
checkResults("pthread mutexattr_init()\n", rc);

rc = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED);
checkResults("pthread mutexattr_setpshared()\n", rc);

rc = pthread mutex_init(&sharedMem->mutex, &mattr);
checkResults("pthread_mutex_init()\n", rc);

/* Process Shared Condition */
rc = pthread_condattr_init(&cattr);
checkResults ("pthread condattr_init()\n", rc);

rc = pthread_condattr_setpshared(&cattr, PTHREAD PROCESS SHARED);
checkResults("pthread_condattr_setpshared()\n", rc);

rc = pthread_cond_init(&sharedMem->cond, &cattr);
checkResults ("pthread_cond_init()\n", rc);

}

JEZIIIEE Kk kxx IR Rk kR kI I I ** kK Kk R R R R SR L /
/* Set and environment variable so that the child can inherit */
/* it and know the shared memory ID %/

/**/
{
char shmIdEnvVar[128];
sprintf(shmIdEnvVar, "TPCOSPO_SHMID=%d\n", shmid);
rc = putenv(shmIdEnvVar);
if (rc) {
printf("PARENT - Failed to store env var %s, errno=%d\n",
shmIdEnvVar, errno);
exit(1);

printf("PARENT - Stored shared memory id of %d\n", shmid);
1

/**/

/* Spawn the child job */

/**/

{
inheritance t in;
char *av[3] = {NULL, NULL, NULL};

/* Allow thread creation in the spawned child x/

Chapter 1. Pthread APIs

45

memset (&in, 0, sizeof(in));
in.flags = SPAWN_SETTHREAD_NP;

/* Set up the arguments to pass to spawn based on the */
/* arguments passed in */
av[0] = MYPATH;

av[1] = "ASCHILD";

av[2] = NULL;
/* Spawn the child that was specified, inheriting all */
/* of the environment variables. */

childPid = spawn(MYPATH, 0, NULL, &in, av, environ);

if (childPid == -1) {
/* spawn failure */
printf("PARENT - spawn() failed, errno=%d\n", errno);
exit(1);

1

printf("PARENT - spawn() success, [PID=%d]\n", childPid);

return;

}

/***/

/* This function attaches the shared memory for the child job, */
/* 1t uses the environment variable indicating where the sharedx/

/* memory is. */
/* */
/* If any of this setup/initialization fails, it will exit(l) =*/
/* and terminate the test. */
/* */
/* It initializes the following global variables: */
/* sharedMem */
/* shmid */

/***/
void childSetup(void)

int rc;

printf("CHILD - Child setup\n");

/**/
/* Set and environment variable so that the child can inherit */

/* it and know the shared memory ID */
/**/
char *shmIdEnvVar;

shmIdEnvVar = getenv("TPCOSPO_SHMID");
if (shmIdEnvVar == NULL) {
printf("CHILD - Failed to get env var \"TPCOSPO_SHMID\", errno=%d\n",
errno);
exit(1l);
}
shmid = atoi(shmIdEnvVar);
printf("CHILD - Got shared memory id of %d\n", shmid);

;***/
/* Create shared memory for shared_data_t above */
/* attach the shared memory */
/* set the static/global sharedMem pointer to it */

/***/
printf("CHILD - Attach the shared memory\n");
sharedMem = shmat(shmid, NULL, 0);
if (sharedMem == NULL) {
shmct1(shmid, IPC_RMID, NULL);
printf("CHILD - Failed to attach shared memory\n");
exit(1);

46 iSeries: Pthread APIs

}

}

return;

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

wait for child to complete and get return code. */
Destroy mutex and condition in shared memory */
detach and remove shared memory */
set the child's return code in global storage */
*/

If this function fails, it will call exit(1) */
*/

This function sets the following global variables: */
sharedMem */
childStatus */
shmid */

/***/
void parentCleanup(void)

{

}

int status=0;
int rc;
int waitedPid=0;

/* Even though there is no thread left in the child using the
/* contents of the shared memory, before we destroy the mutex
/* and condition in that shared memory, we will wait for the
/* child job to complete, we know for 100% certainty that no
/* threads in the child are using it then.
printf("PARENT - Parent cleanup\n");
/* Wait for the child to complete =/
waitedPid = waitpid(childPid,&status,0);
if (rc == -1) {
printf("PARENT - waitpid failed, errno=%d\n", errno);
exit(1);

childStatus = status;
/* Cleanup resources */
rc = pthread_mutex_destroy(&sharedMem->mutex) ;

checkResults("pthread_mutex_destroy()\n", rc);

rc = pthread_cond_destroy(&sharedMem->cond) ;
checkResults("pthread cond destroy()\n", rc);

/* Detach/Remove shared memory =*/
rc = shmdt(sharedMem);

if (rc)
printf("PARENT - Failed to detach shared memory, errno=%d\n", errno);
exit(1);

1

rc = shmctl(shmid, IPC_RMID, NULL);

if (rc) {

printf("PARENT - Failed to remove shared memory id=%d, errno=%d\n",

shmid, errno);
exit(1);
1
shmid = 0;
return;

/***/

/*
/*
/*
/*
/*
/*

Detach the shared memory */
At this point, there is no serialization, so the contents =/
of the shared memory should not be used. */
*/
If this function fails, it will call exit(1) */
*/

*/
*/
*/
*/
*/

Chapter 1. Pthread APIs

47

/* This function sets the following global variables: */
sharedMem */
/***/

void childCleanup(void)

/*

{

int rc;

printf("CHILD - Child cleanup\n");

rc

shmdt (sharedMem) ;

sharedMem = NULL;

if (rc) {
printf("CHILD - Failed to detach shared memory, errno=%d\n", errno);
exit(1);
1
return;
1
Output:

This example was run under the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets
descriptors 0, 1, and 2 as the standard files; the parent and child I/O is directed to the console. When run
in the QShell Interpreter, the output shows the intermixed output from both parent and child processes
and gives a feeling for the time sequence of operations occurring in each job.

The QShell interpreter allows you to run multithreaded programs as if they were interactive. See the
QShell documentation for a description of the QIBM_MULTI_THREADED shell variable, which allows
you to start multithreaded programs.

The QShell Interpreter is option 30 of Base OS/400.
PARENT -

PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
PARENT
CHILD
CHILD
CHILD
CHILD
CHILD
CHILD
CHILD
CHILD
PARENT
PARENT
PARENT

Enter Testcase - QPOWTEST/TPCOSPO

Create the shared memory segment

Attach the shared memory

Init shared memory mutex/cond

Stored shared memory id of 862

spawn() success, [PID=2651]

Create 2 threads

Thread blocked

Waiting for 4 threads to wait, currently 1 waiting
Thread blocked

Enter Testcase - QPOWTEST/TPCOSPO
Child setup

Got shared memory id of 862
Attach the shared memory

Create 2 threads

Thread blocked

Joining to all threads

Thread blocked

wake up all of the waiting threads...
Wait for waking threads and cleanup
Waiting for 4 threads to wake, currently 0 wokeup

PARENT - Thread awake!
CHILD - Thread awake!
PARENT - Thread awake!
CHILD - Thread awake!
CHILD - Child cleanup
CHILD - Main completed
PARENT - Parent cleanup
PARENT - Main completed

48 iSeries: Pthread APIs

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_cond_broadcast()—Broadcast Condition to All Waiting
Threads

Syntax:

#include <pthread.h>
int pthread_cond_broadcast(pthread_cond_t *cond);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_cond_broadcast() function wakes up all threads that are currently waiting on the condition
variable specified by cond. If no threads are currently blocked on the condition variable, this call has no
effect.

When the threads that were the target of the broadcast wake up, they contend for the mutex that they
have associated with the condition variable on the call to pthread_cond_timedwait() or
pthread_cond_wait().

The signal and broadcast functions can be called by a thread whether or not it currently owns the mutex
associated with the condition variable. If predictable scheduling behavior is required from the
applications viewpoint however, the mutex should be locked by the thread calling pthread_cond_signal()
or pthread_cond_broadcast().

Note: For dependable use of condition variables, and to ensure that you do not lose wake up operations

on condition variables, your application should always use a boolean predicate and a mutex with the
condition variable.

Authorities and Locks
None.

Parameters

cond (Input) Pointer to the condition variable that is to be broadcast to

Return Value

0 pthread_cond_broadcast() was successful.

value pthread_cond_broadcast() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 49

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_cond_broadcast() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

* |“pthread_cond_init()—Initialize Condition Variable” on page 53}—Initialize Condition Variable

* [“pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to
g
One Waiting Thread

+ |“pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
[‘pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

/* For safe condition variable usage, must use a boolean predicate and =*/

/* a mutex with the condition. */
int conditionMet = 0;
pthread_cond_t cond PTHREAD_COND_INITIALIZER;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

#define NTHREADS 5

void *threadfunc(void *parm)

{

int rc;

rc = pthread _mutex_Tock(&mutex);
checkResults ("pthread _mutex_Tock()\n", rc);

while (!conditionMet) {
printf("Thread blocked\n");
rc = pthread_cond wait(&cond, &mutex);
checkResults ("pthread_cond wait()\n", rc);

}

rc = pthread_mutex_unlock(&mutex);
checkResults("pthread mutex_Tock()\n", rc);
return NULL;

1

int main(int argc, char x*argv)

{

int rc=0;
int i;
pthread_t threadid [NTHREADS] ;

printf("Enter Testcase - %s\n", argv[0]);
printf("Create %d threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);

50 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread create()\n", rc);

}

sleep(5); /* Sleep is not a very robust way to serialize threads =*/
rc = pthread_mutex_Tlock(&mutex);
checkResults ("pthread _mutex_Tock()\n", rc);

/* The condition has occured. Set the flag and wake up any waiting threads =*/
conditionMet = 1;

printf("Wake up all waiting threads...\n");

rc = pthread_cond_broadcast (&cond);
checkResults("pthread_cond_broadcast()\n", rc);

rc = pthread_mutex_unlock (&mutex) ;
checkResults("pthread mutex_unlock()\n", rc);

printf("Wait for threads and cleanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], NULL);
checkResults ("pthread_join()\n", rc);
}
pthread cond_destroy(&cond);
pthread_mutex_destroy (&mutex) ;

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create 5 threads

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Wake up all waiting threads...
Wait for threads and cleanup
Main completed

API introduced: V4R3

@ | IChapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_cond_destroy()—Destroy Condition Variable

Syntax:

#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

Chapter 1. Pthread APIs 51

#TOP_OF_PAGE
aplist.htm

The pthread_cond_destroy() function destroys the condition variable specified by cond. If threads are
currently blocked on the condition variable, the pthread_cond_destroy() fails with the EBUSY error.

Authorities and Locks
None.

Parameters

cond (Input) Address of the condition variable to destroy

Return Value

0 pthread_cond_destroy() was successful.

value pthread_cond_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[EBUSY]

The condition variable was in use.

Related Information
+ The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

» [“pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast
Condition to All Waiting Threads

[‘pthread_cond_init()—Initialize Condition Variable” on page 53}—Initialize Condition Variable

[‘pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55|—Signal Condition to
One Waiting Thread

[‘pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
[‘pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example
See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread cond_t cond;
int main(int argc, char x*argv)
{ int rc=0;
pthread mutexattr t attr;
printf("Entering testcase\n");
printf("Create the condition using the condition attributes object\n");

rc = pthread_cond_init(&cond, NULL);
checkResults("pthread_cond_init()\n", rc);

52 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("- At this point, the condition with its default attributes\n");
printf("- Can be used from any threads that want to use it\n");

printf("Destroy condition\n");
rc = pthread_cond_destroy(&cond);
checkResults("pthread_cond_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create the condition using the condition attributes object
- At this point, the condition with its default attributes
- Can be used from any threads that want to use it

Destroy condition

Main completed

API introduced: V4R3

IEEI | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_cond_init()—Initialize Condition Variable

Syntax:

#include <pthread.h>
int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t =*attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_cond_init() function initializes a condition variable object with the specified attributes for
use. The new condition may be used immediately for serializing threads. If attr is specified as NULL, all
attributes are set to the default condition attributes for the newly created condition.

With these declarations and initialization:

pthread_cond_t cond2;
pthread cond_t cond3;
pthread_condattr_t attr;
pthread condattr_init(&attr);

The following four condition variable initialization mechanisms have equivalent function:
pthread cond_t condl = PTHREAD MUTEX INITIALIZER;

pthread_cond_init(&cond2, NULL);
pthread_cond_init(&cond3, &attr);

All four condition variables are created with the default condition attributes.

Chapter 1. Pthread APIs 53

#TOP_OF_PAGE
aplist.htm

Every condition variable must eventually be destroyed with pthread_cond_destroy().

Once a condition variable is created, it cannot be validly copied or moved to a new location. If the
condition variable is copied or moved to a new location, the new object is not valid and cannot be used.
Attempts to use the new object cause the EINVAL error.

Static initialization using the PTHREAD_COND_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, the functions pthread_cond_wait(), pthread_cond_timedwait(),
pthread_cond_signal(), and pthread_cond_broadcast() branch into a slow path and cause the
initialization of the condition. Due to this delayed initialization, the results of calling
pthread_cond_destroy() on a condition variable that was initialized using static initialization and not
used yet cause pthread_cond_destroy() to fail with the EINVAL error.

Authorities and Locks
None.

Parameters

cond (Output) The address of the condition variable to initialize

attr (Input) The address of the condition attributes object to use for initialization

Return Value

0 pthread_cond_init() was successful.

value pthread_cond_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

» [“pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast
Condition to All Waiting Threads

* ['pthread_cond_destroy()—Destroy Condition Variable” on page 51}—Destroy Condition Variable

[‘pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55|—Signal Condition to
One Waiting Thread

[“pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
+ |“pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_cond_t condl = PTHREAD_COND_INITIALIZER;
pthread_cond_t cond2;

54 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

pthread cond_t cond3;

int main(int argc, char x*argv)
{
int rc=0;
pthread_condattr_t attr;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create the default cond attributes object\n");
rc = pthread_condattr_init(&attr);
checkResults("pthread_condattr_init()\n", rc);

printf("Create the all of the default conditions in different ways\n");
rc = pthread_cond_init(&cond2, NULL);
checkResults ("pthread_cond_init()\n", rc);

rc = pthread_cond_init(&cond3, &attr);
checkResults("pthread _cond_init()\n", rc);

printf("- At this point, the conditions with default attributes\n");
printf("- Can be used from any threads that want to use them\n");

printf("Cleanup\n");
pthread_condattr_destroy(&attr);
pthread_cond_destroy(&condl);
pthread_cond_destroy(&cond2);
pthread_cond_destroy(&cond3);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCOIO

Create the default cond attributes object

Create the all of the default conditions in different ways
- At this point, the conditions with default attributes

- Can be used from any threads that want to use them
Cleanup

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_cond_signal()—Signal Condition to One Waiting Thread

Syntax:

#include <pthread.h>
int pthread_cond_signal(pthread_cond_t *cond);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

Chapter 1. Pthread APIs

55

#TOP_OF_PAGE
aplist.htm

The pthread_cond_signal() function wakes up at least one thread that is currently waiting on the
condition variable specified by cond. If no threads are currently blocked on the condition variable, this
call has no effect.

When the thread that was the target of the signal wakes up, it contends for the mutex that it has
associated with the condition variable on the call to pthread_cond_timedwait() or pthread_cond_wait().

The signal and broadcast functions can be called by a thread whether or not it currently owns the mutex
associated with the condition variable. If predictable scheduling behavior is required from the
applications viewpoint, however, the mutex should be locked by the thread that calls
pthread_cond_signal() or pthread_cond_broadcast().

Note: For dependable use of condition variables, and to ensure that you do not lose wake-up operations
on condition variables, your application should always use a Boolean predicate and a mutex with the
condition variable.

Authorities and Locks

None.

Parameters

cond (Input) Address of the condition variable to be signaled

Return Value

0 pthread_cond_signal() was successful.

value pthread_cond_signal() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_signal() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The condition specified is not valid.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ [“pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast
Condition to All Waiting Threads

[‘pthread_cond_init()—Initialize Condition Variable” on page 53|—Initialize Condition Variable
[‘pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition
[‘pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

56 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* For safe condition variable usage, must use a boolean predicate and =/

/* a mutex with the condition.

int workToDo = 0;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD MUTEX_INITIALIZER;

#define NTHREADS 2
void *threadfunc(void *parm)
{ int rc;

while (1) {

/* Usually worker threads will loop on these operations */
rc = pthread_mutex_Tock(&mutex);
checkResults("pthread_mutex_lock()\n", rc);

while (!workToDo) {
printf("Thread blocked\n");
rc = pthread_cond_wait(&cond, &mutex);
checkResults ("pthread_cond wait()\n", rc);

}

printf("Thread awake, finish work!\n");

/* Under protection of the lock, complete or remove the work

/* from whatever worker queue we have. Here it is simply a flag

workToDo = 0;

rc = pthread_mutex_unlock(&mutex);
checkResults ("pthread_mutex_lock()\n", rc);

}
return NULL;

1
int main(int argc, char xxargv)
{
int rc=0;
int is
pthread_t threadid[NTHREADS] ;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create %d threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

}
sleep(5);

for(i=0; i<5; ++i) {
printf("Wake up a worker, work to do...\n");

rc = pthread_mutex_lock(&mutex);
checkResults("pthread _mutex_Tock()\n", rc);

/* In the real world, all the threads might be busy, and

/* we would add work to a queue instead of simply using a flag

/* In that case the boolean predicate might be some boolean
/* statement like: if (the-queue-contains-work)
if (workToDo) {

printf("Work already present, likely threads are busy\n");

workToDo = 1;
rc = pthread_cond_signal(&cond);
checkResults("pthread _cond_broadcast()\n", rc);

/* Sleep is not a very robust way to serialize threads

*/

*/
*/

*/

*/
*/
*/
*/

Chapter 1. Pthread APIs

57

rc = pthread _mutex_unlock(&mutex);
checkResults ("pthread_mutex_unlock()\n", rc);
sleep(5); /x Sleep is not a very robust way to serialize threads =*/

}

printf("Main completed\n");
exit(0);
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCOSO
Create 2 threads

Thread blocked

Thread blocked

Wake up a worker, work to do...
Thread awake, finish work!
Thread blocked

Wake up a worker, work to do...
Thread awake, finish work!
Thread blocked

Wake up a worker, work to do...
Thread awake, finish work!
Thread blocked

Wake up a worker, work to do...
Thread awake, finish work!
Thread blocked

Wake up a worker, work to do...
Thread awake, finish work!
Thread blocked

Main completed

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_cond_timedwait()—Timed Wait for Condition

Syntax:

#include <pthread.h>

#include <time.h>

int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t =*mutex,
const struct timespec *abstime);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_cond_timedwait() function blocks the calling thread, waiting for the condition specified by
cond to be signaled or broadcast to.

58 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

When pthread_cond_timedwait() is called, the calling thread must have mutex locked. The
pthread_cond_timedwait() function atomically unlocks the mutex and performs the wait for the
condition. In this case, atomically means with respect to the mutex and the condition variable and other
access by threads to those objects through the pthread condition variable interfaces.

If the wait is satisfied or times out, or if the thread is canceled, before the thread is allowed to continue,
the mutex is automatically acquired by the calling thread. If mutex is not currently locked, an j#* EPERM
<% error results. You should always associate only one mutex with a condition at a time. Using two
different mutexes with the same condition at the same time could lead to unpredictable serialization in
your application.

The time to wait is specified by the abstime parameter as an absolute system time at which the wait
expires. If the current system clock time passes the absolute time specified before the condition is
signaled, an ETIMEDOUT error results. After the wait begins, the wait time is not affected by changes to
the 3+ system clock. <%

Although time is specified in seconds and nanoseconds, the system has approximately millisecond
granularity. Due to scheduling and priorities, the amount of time you actually wait might be slightly
more or less than the amount of time specified.

The current absolute system time can be retrieved as a timeval structure using the 3 system clock <%
interface gettimeofday(). The timeval structure can easily have a delta value added to it and be converted
to a timespec structure. The MI time interfaces can be used to retrieve the current system time. The MI
time also needs to be converted to a timespec structure before use by pthread_cond_timedwait() using
the Qp0zConvertTime() interface.

This function is a cancellation point.

Note: For dependable use of condition variables, and to ensure that you do not lose wake-up operations
on condition variables, your application should always use a Boolean predicate and a mutex with the
condition variable.

Authorities and Locks

For successful completion, the mutex lock associated with the condition variable must be locked before
you call pthread_cond_timedwait().

Parameters

cond (Input) Address of the condition variable to wait for
mutex (Input) Address of the locked mutex associated with the condition variable

abstime
(Input) Address of the absolute system time at which the wait expires

Return Value

0 pthread_cond_timedwait() was successful.

value pthread_cond_timedwait() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_timedwait() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

Chapter 1. Pthread APIs 59

The value specified for the argument is not correct.
¥ [EPERM] <%

The mutex specified is not locked by the caller.
[ETIMEDOUT]

The wait timed out without being satisfied.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

* |“pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49|—Broadcast
Condition to All Waiting Threads

[“pthread_cond_init()—Initialize Condition Variable” on page 53|—Initialize Condition Variable

[‘pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55—Signal Condition to
One Waiting Threads

* |“pthread_cond_wait()—Wait for Condition” on page 62—Wait for Condition

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <stdio.h>
#include <qp0z1170.h>
#include <time.h>
#include <pthread.h>
#include "check.h"

/* For safe condition variable usage, must use a boolean predicate and =*/

/* a mutex with the condition. */
int workToDo = 0;
pthread cond_t cond PTHREAD_COND_INITIALIZER;

pthread mutex_t mutex = PTHREAD MUTEX INITIALIZER;
#define NTHREADS 3
#define WAIT TIME_SECONDS 15

void *threadfunc(void *parm)

{

int rc;
struct timespec ts;
struct timeval tp;

rc = pthread_mutex_Tock(&mutex);
checkResults("pthread _mutex_Tock()\n", rc);

/* Usually worker threads will Toop on these operations */
while (1) {
rc = gettimeofday(&tp, NULL);
checkResults("gettimeofday()\n", rc);

/* Convert from timeval to timespec */
ts.tv_sec = tp.tv_sec;

ts.tv_nsec = tp.tv_usec * 1000;
ts.tv_sec += WAIT_TIME_SECONDS;

while (!workToDo) {
printf("Thread blocked\n");
rc = pthread_cond_timedwait(&cond, &mutex, &ts);
/* If the wait timed out, in this example, the work is complete, and =*/
/* the thread will end. */
/* In reality, a timeout must be accompanied by some sort of checking =*/
/* to see if the work is REALLY all complete. In the simple example */

60 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* we will just go belly up when we time out. x/
if (rc == ETIMEDOUT) {
printf("Wait timed out!\n");
rc = pthread_mutex_unlock(&mutex);
checkResults ("pthread mutex_lock()\n", rc);
pthread_exit(NULL);
}
checkResults("pthread _cond_timedwait()\n", rc);

}

printf("Thread consumes work here\n");
workToDo = 0;

}

rc = pthread _mutex_unlock(&mutex);
checkResults("pthread mutex_Tock()\n", rc);
return NULL;

}
int main(int argc, char xxargv)
{
int rc=0;
int i
pthread t threadid[NTHREADS] ;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create %d threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

rc = pthread_mutex_Tock(&mutex);
checkResults ("pthread_mutex_Tock()\n", rc);

printf("One work item to give to a thread\n");
workToDo = 1;

rc = pthread_cond_signal(&cond);
checkResults("pthread_cond_signal()\n", rc);

rc = pthread_mutex_unlock (&mutex) ;
checkResults ("pthread mutex_unlock()\n", rc);

printf("Wait for threads and cleanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], NULL);
checkResults("pthread_join()\n", rc);
}

pthread_cond_destroy(&cond);
pthread_mutex_destroy(&mutex) ;
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCOTO
Create 3 threads

Thread blocked

One work item to give to a thread
Wait for threads and cleanup
Thread consumes work here

Thread blocked

Thread blocked

Thread blocked

Chapter 1. Pthread APIs 61

Wait timed out!
Wait timed out!
Wait timed out!
Main completed

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_cond_wait()}—Wait for Condition

Syntax:

#include <pthread.h>
int pthread_cond wait(pthread_cond_t *cond,
pthread mutex_t *mutex);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_cond_wait() function blocks the calling thread, waiting for the condition specified by cond to
be signaled or broadcast to.

When pthread_cond_wait() is called, the calling thread must have mutex locked. The
pthread_cond_wait() function atomically unlocks mutex and performs the wait for the condition. In this
case, atomically means with respect to the mutex and the condition variable and another threads access
to those objects through the pthread condition variable interfaces.

If the wait is satisfied, or if the thread is canceled, before the thread is allowed to continue, the mutex is
automatically acquired by the calling thread. If mutex is not currently locked, an j# EPERM <% error
results. You should always associate only one mutex with a condition at a time. Using two different
mutexes with the same condition at the same time could lead to unpredictable serialization issues in your
application.

This function is a cancellation point.
Note: For dependable use of condition variables, and to ensure that you do not lose wake up operations

on condition variables, your application should always use a boolean predicate and a mutex with the
condition variable.

Authorities and Locks

For successful completion, the mutex lock associated with the condition variable is must be locked prior
to calling pthread_cond_wait().

Parameters

cond (Input) Address of the condition variable to wait on

mutex (Input) Address of the mutex associated with the condition variable

62 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_cond_wait() was successful.

value pthread_cond_wait() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_cond_wait() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
3 [EPERM] <%,

The mutex specified is not locked by the caller.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271 |

+ |“pthread_cond_broadcast()—Broadcast Condition to All Waiting Threads” on page 49—Broadcast
Condition to All Waiting Threads

[‘pthread_cond_init()—Initialize Condition Variable” on page 53|—Initialize Condition Variable

“pthread_cond_signal()—Signal Condition to One Waiting Thread” on page 55(Signal Condition to
g
One Waiting Thread

+ |“pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>

#include <stdio.h>
#include "check.h"

/* For safe condition variable usage, must use a boolean predicate and */

/* a mutex with the condition. */
int conditionMet = 0;
pthread cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex_t mutex = PTHREAD MUTEX INITIALIZER;
#define NTHREADS 5

void *threadfunc(void *parm)

{

int rc;

rc = pthread_mutex_Tlock(&mutex);
checkResults ("pthread _mutex_Tock()\n", rc);

while (!conditionMet) {
printf("Thread blocked\n");
rc = pthread cond wait(&cond, &mutex);
checkResults ("pthread_cond wait()\n", rc);

}

rc = pthread_mutex_unlock (&mutex) ;
checkResults ("pthread mutex_lock()\n", rc);
return NULL;

Chapter 1. Pthread APIs

63

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)

{
int rc=0;
int is
pthread_t threadid[NTHREADS] ;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create %d threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

}

sleep(5); /* Sleep is not a very robust way to serialize threads =*/
rc = pthread _mutex_Tock(&mutex);
checkResults ("pthread _mutex_Tock()\n", rc);

/* The condition has occured. Set the flag and wake up any waiting threads =*/
conditionMet = 1;

printf("Wake up all waiting threads...\n");

rc = pthread_cond_broadcast (&cond);

checkResults ("pthread_cond broadcast()\n", rc);

rc = pthread_mutex_unlock(&mutex);
checkResults("pthread_mutex_unlock()\n", rc);

printf("Wait for threads and cleanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread join(threadid[i], NULL);
checkResults ("pthread_join()\n", rc);
}
pthread_cond_destroy(&cond);
pthread_mutex_destroy(&mutex);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create 5 threads

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Wake up all waiting threads...
Wait for threads and cleanup
Main completed

API introduced: V4R3

IEE‘ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

64 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_create()—Create Thread

Syntax:
#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread attr t =*attr,
void *(*start_routine)(void *), void *arg);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_create() function creates a thread with the specified attributes and runs the C function
start_routine in the thread with the single pointer argument specified. The new thread may, but does not
always, begin running before pthread_create() returns. If pthread_create() completes successfully, the
Pthread handle is stored in the contents of the location referred to by thread.

If the start_routine returns normally, it is as if there was an implicit call to pthread_exit() using the return
value of start_routine as the status. The function passed as start_routine should correspond to the
following C function prototype:

void *threadStartRoutinName(void =*);

If the thread attributes object represented by attr is modified later, the newly created thread is not
affected. If attr is NULL, the default thread attributes are used.

With the following declarations and initialization,

pthread_t t;

void *foo(void *);
pthread_attr_t attr;
pthread_attr_init(&pta);

the following two thread creation mechanisms are functionally equivalent:
rc = pthread_create(&t, NULL, foo, NULL);

rc = pthread_create(&t, &attr, foo, NULL);

The cancellation state of the new thread is PTHREAD_CANCEL_ENABLE. The cancellation type of the
new thread is PTHREAD_CANCEL_DEFERRED.

The signal information maintained in the new thread is as follows:
* The signal mask is inherited from the creating thread.
* The set of signals pending for the new thread is empty.

If you attempt to create a thread in a job that is not capable of starting threads, pthread_create() fails
with the EBUSY error. If you attempt to create a thread from a location in which thread creation is not
allowed, pthread_create() fails with the EBUSY error. See the pthread_getpthreadoption_np() function,
option PTHREAD_OPTION_THREAD_CAPABLE_NP, for details about how to determine whether
thread creation is currently allowed in your process.

Chapter 1. Pthread APIs 65

In the OS/400 implementation, the initial thread is special. Termination of the initial thread by
pthread_exit() or any other thread termination mechanism terminates the entire process.

The OS/400 implementation does not set a hard limit on the number of threads that can be created. The
PTHREAD_THREADS_MAX macro is implemented as a function call, and returns different values
depending on the administrative setting of the maximum number of threads for the process. The default
is NO MAX and has the numeric value of 2147483647 (Ox7FFFFFFF). Realistically, the number of threads
is limited by the amount of storage available to the job.

Currently, thread creation is not allowed after process termination has been started. For example, after a
call to exit(), destructors for C++ static objects, functions registered with atexit() or CEE4RAGE() are
allowed to run. If these functions attempt to create a thread, pthread_create() fails with the EBUSY error.
Similar failures occur if other mechanisms are used to call pthread_create() after process termination has
started.

Usage Notes

1. If you attempt to create a thread in a job that is not capable of starting threads or for some other
reason, thread creation is not allowed, and pthread_create() fails with the EBUSY error.

2. For the best performance during thread creation, you should always use pthread_join() or
pthread_detach(). This allows resources to be reclaimed or reused when the thread terminates.

3. The OS/400 implementation of threads allows the user ID to be changed on a per-thread basis. If, at
the time the application creates the first thread, the application has not associated a process user
identity with the job, the system uses the identity of the current user to set the process user identity
for the job. The process user identity is used by some operating system support when operations that
require authorization checks are done against a multithreaded job from outside that job. The

application can set the process user identity using the [Set Job User Identify| (QWTSJUID) or
QwtSetJuid()| Set Job User Identity APIs. See the |Securitz| APIs for more details.
Authorities and Locks

None.

Parameters

thread (Output) Pthread handle to the created thread

attr (Input) The thread attributes object containing the attributes to be associated with the newly
created thread. If NULL, the default thread attributes are used.

start_routine
(Input) The function to be run as the new threads start routine

arg (Input) An address for the argument for the threads start routine

Return Value

0 pthread_create() was successful.

value pthread_create() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_create() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.

[EAGAIN]

66 iSeries: Pthread APIs

QWTSJUID.htm
QWTSETJU.htm
sec.htm

The system did not have enough resources to create another thread or the maximum number of

threads for this job has been reached.

[EBUSY]

The system cannot allow thread creation in this process at this time.

Related Information
+ The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

[‘pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

[‘pthread_cancel()—Cancel Thread” on page 23—Cancel Thread

[‘pthread_detach()—Detach Thread” on page 71}—Detach Thread

[‘pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

typedef struct {

}

int value;
char string[128];
thread_parm_t;

void *threadfunc(void *parm)

{

}

thread_parm_t *p = (thread_parm_t *)parm;
printf("%s, parm = %d\n", p->string, p->value);
free(p);

return NULL;

int main(int argc, char xxargv)

{

pthread t thread;

int rc=0;
pthread_attr_t pta;
thread_parm_t *parm=NULL;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread attributes object\n");
rc = pthread_attr_init(&pta);
checkResults("pthread_attr_init()\n", rc);

/* Create 2 threads using default attributes in different ways */
printf("Create thread using the NULL attributes\n");

/* Set up multiple parameters to pass to the thread */

parm = malloc(sizeof(thread parm t));

parm->value = 5;

strcpy (parm->string, "Inside secondary thread");

rc = pthread_create(&thread, NULL, threadfunc, (void *)parm);
checkResults("pthread_create(NULL)\n", rc);

printf("Create thread using the default attributes\n");

/* Set up multiple parameters to pass to the thread */

parm = malloc(sizeof(thread parm_t));

parm->value = 77;

strcpy(parm->string, "Inside secondary thread");

rc = pthread_create(&thread, &pta, threadfunc, (void *)parm);

Chapter 1. Pthread APIs

67

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread create(&pta)\n", rc);

printf("Destroy thread attributes object\n");
rc = pthread_attr_destroy(&pta);
checkResults("pthread_attr_destroy()\n", rc);

/% sleep() is not a very robust way to wait for the thread x/
sleep(5);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPCRTO

Create a thread attributes object

Create thread using the NULL attributes
Create thread using the default attributes
Destroy thread attributes object
Inside secondary thread, parm = 7
Inside secondary thread, parm = 5
Main completed

7

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_delay_np()—Delay Thread for Requested Interval

Syntax:

#include <pthread.h>
#include <time.h>
int pthread_delay np(const struct timespec *deltatime);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_delay_np() function causes the calling thread to delay for the deltatime specified.

Although time is specified in seconds and nanoseconds, the system has approximately millisecond
granularity. Due to scheduling and priorities, the amount of time you actually wait might be slightly

more or less than the amount of time specified.

During the time that the thread is blocked in pthread_delay_np(), any asynchronous signals that are
delivered to the thread have their actions taken. After the signal action (such as running a signal

handler), the wait resumes if the specified interval has not yet elapsed.
The pthread_delay_np() function is a cancellation point.

Note:This function is not portable.

68 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

interval
(Input) Address of the timespec structure containing the interval to wait

Return Value

0 pthread_delay_np() was successful.

value pthread_delay_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_delay_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <stdio.h>
#include <qp0z1170.h>
#include <time.h>
#include <pthread.h>
#include "check.h"

#define NTHREADS 5

void *threadfunc(void *parm)

{
int res
struct timespec ts = {0, 0};

/* 5 and 1/2 seconds */
ts.tv_sec = 5;
ts.tv_nsec = 500000000;

printf("Thread blocked\n");

rc = pthread_delay_np(&ts);

if (rc 1= 0) {
printf("pthread_delay _np() - return code %d\n", rc);
return (voidx)&rc;

}
printf("Wait timed out!\n");

return NULL;
1

int main(int argc, char xxargv)

{
int rc=0;
int is

Chapter 1. Pthread APIs

69

aboutapis.htm#CODEDISCLAIMER

pthread_t threadid[NTHREADS] ;
void *status;
int fail=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create %d threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

printf("Wait for threads and cleanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], &status);
checkResults("pthread _join()\n", rc);
if (status != NULL) {
fail = 1;
!

}

if (fail) {
printf("At Teast one thread failed!\n");
exit(1l);

}

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPDLYO
Create 5 threads

Thread blocked

Thread blocked

Thread blocked

Thread blocked

Wait for threads and cleanup
Thread blocked

Wait timed out!

Wait timed out!

Wait timed out!

Wait timed out!

Wait timed out!

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

70 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_detach()—Detach Thread

Syntax:

#include <pthread.h>
int pthread_detach(pthread_t thread);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_detach() function indicates that system resources for the specified thread should be reclaimed
when the thread ends. If the thread is already ended, resources are reclaimed immediately. This routine
does not cause the thread to end. After pthread_detach() has been issued, it is not valid to try to
pthread_join() with the target thread.

Eventually, you should call pthread_join() or pthread_detach() for every thread that is created joinable
(with a detach state of PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources
associated with the thread. Failure to join to or detach threads that can be joined causes memory and
other resource leaks until the process ends.

If thread does not represent a valid undetached thread, pthread_detach() will return ESRCH.

Authorities and Locks

None.

Parameters
thread (Input) Pthread handle to the target thread

Return Value

0 pthread_detach() was successful.

value pthread_detach() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_detach() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]
The value specified for the argument is not correct.
[ESRCH]

No item could be found that matches the specified value.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

« [‘pthread_exit()—Terminate Calling Thread” on page 74}—Terminate Calling Thread

Chapter 1. Pthread APIs 71

+ |“pthread_create()—Create Thread” on page 65—Create Thread
» |“pthread_join()—Wait for and Detach Thread” on page 102}—Wait for and Detach Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include "check.h"

void *threadfunc(void *parm)

{
printf("Inside secondary thread\n");
return NULL;

}
int main(int argc, char x*argv)
{
pthread_t thread;
int rc=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using attributes that allow join or detach\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

sleep(5);

printf("Detach the thread after it terminates\n");
rc = pthread_detach(thread);
checkResults("pthread_detach()\n", rc);

printf("Detach the thread again (expect ESRCH)\n");
rc = pthread detach(thread);
if (rc != ESRCH) {
printf("Got an unexpected result! rc=%d\n",
rc);
exit(1);
}

printf("Second detach fails correctly\n");

/* sleep() is not a very robust way to wait for the thread =/
sleep(5);

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPDETO

Create thread using attributes that allow join or detach
Inside secondary thread

Detach the thread after it terminates

Detach the thread again (expect ESRCH)

Second detach fails correctly

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

72 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_equal()—Compare Two Threads

Syntax:

#include <pthread.h>
int pthread_equal(pthread_t tl1, pthread_t t2);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_equal() function compares two Pthread handles for equality.

Authorities and Locks

None.

Parameters

t1 (Input) Pthread handle for thread 1
2 (Input) Pthread handle for thread 2

Return Value

0 The Pthread handles do not refer to the same thread.
1 The Pthread handles refer to the same thread.

Error Conditions
None.

Related Information

* The <pthread.h> header file. See ['Header files for Pthread functions” on page 271
+ [“pthread_self()—Get Pthread Handle” on page 197—Get Pthread Handle

+ |“pthread_create()—Create Thread” on page 65—Create Thread

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_t theThread;
void *threadfunc(void *parm)

printf("Inside secondary thread\n");
theThread = pthread_self();
return NULL;

1

Chapter 1. Pthread APIs

73

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)
{
pthread_t thread;
int rc=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using default attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

/* sleep() is not a very robust way to wait for the thread =/
sleep(5);

printf("Check if global vs local pthread_t are equal\n");

if (!pthread_equal(thread, theThread)) {
printf("Unexpected results on pthread_equal()!\n");
exit(1l);

}

printf("pthread_equal returns true\n");

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPEQUO

Create thread using default attributes
Inside secondary thread

Check if global vs local pthread_t are equal
pthread_equal returns true

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_exit()—Terminate Calling Thread

Syntax:
#include <pthread.h>

void pthread_exit(void *status);
Service Program Name: QPOWPTHR
Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_exit() function terminates the calling thread, making its exit status available to any waiting
threads. Normally, a thread terminates by returning from the start routine that was specified in the
pthread_create() call which started it. An implicit call to pthread_exit() occurs when any thread returns
from its start routine. (With the exception of the initial thread, at which time an implicit call to exit()
occurs). The pthread_exit() function provides an interface similar to exit() but on a per-thread basis.

74 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Note that in the OS/400 implementation of threads, the initial thread is special. Termination of the initial
thread by pthread_exit() or any thread termination mechanism terminates the entire process.

The following activities occur in this order when a thread terminates by a return from its start routine or
pthread_exit() or thread cancellation:

1. Any cancellation cleanup handlers that have been pushed and not popped will be executed in reverse
order with cancellation disabled.

2. Data destructors are called for any thread specific data entries that have a non NULL value for both
the value and the destructor.

3. The thread terminates.

4. Thread termination may possibly cause the system to run OS/400 cancel handlers (registered with the
#pragma cancel_handler directive), or C++ destructors for automatic objects.

5. If thread termination is occurring in the initial thread, it will cause the system to terminate all other
threads, then run C++ static object destructors, activation group cleanup routines and atexit()
functions.

6. Any mutexes that are held by a thread that terminates, become “abandoned’ and are no longer valid.
Subsequent calls by other threads that attempt to acquire the abandoned mutex though
pthread_mutex_lock() will deadlock. Subsequent calls by other threads that attempt to acquire the
abandoned mutex through pthread_mutex_trylock() will return EBUSY.

7. No release of any application visible process resources occur. This includes but is not limited to
mutexes, file descriptors, or any process level cleanup actions.

Do not call pthread_exit() from a cancellation cleanup handler or destructor function that was called as a
result of either an implicit or explicit call to pthread_exit(). If pthread_exit() is called from a cancellation
cleanup handler, the new invocation of pthread_exit() will continue cancellation cleanup processing using
the next cancellation cleanup handler that was pushed. If pthread_exit() is called from a data destructor,
the new invocation of pthread_exit() will skip all subsequent calls to any data destructors (regardless of
the number of destructor iterations that have completed), and terminate the thread.

Cleanup handlers and data destructors are not called when the application calls exit() or abort() or
otherwise terminates the process. Cleanup handlers and data destructors are not called when a thread
terminates by any proprietary OS/400 mechanism other than the Pthread interfaces.

The meaning of the status parameter is determined by the application except for the following conditions:
1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED
will be made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator
intervention or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP
will be made available.

No address error checking is done on the status parameter. Do not call pthread_exit() with, or return the
address of, a variable in a threads automatic storage. This storage will be unavailable after the thread
terminates.

Note: If pthread_exit() is called by application code after step 3 in the above list, pthread_exit() will fail
with the CPF1F81 exception. This indicates that the thread is already considered terminated by the
system, and pthread_exit() cannot continue. If your code does not handle this exception, it will appear as
if the call to pthread_exit() was successful.

Authorities and Locks

None.

Chapter 1. Pthread APIs 75

Parameters

status (Input) exit status of the thread

Return Value

pthread_exit() does not return.

Error Conditions

None.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_cancel()—Cancel Thread” on page 23}—Cancel Thread

* |“pthread_create()—Create Thread” on page 65—Create Thread

+ [“pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int theStatus=5;

void *threadfunc(void *parm)

{

printf("Inside secondary thread\n");

pthread_exit(__VOID(theStatus));

return _ VOID(theStatus); /* Not needed, but this makes the compiler smile */
1

int main(int argc, char xxargv)

{

pthread_t thread;
int rc=0;
void *status;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

printf("Wait for the thread to exit\n");

rc = pthread_join(thread, &status);

checkResults ("pthread_join()\n", rc);

if (__INT(status) != theStatus) {
printf("Secondary thread failed\n");
exit(1l);

}

printf("Got secondary thread status as expected\n");
printf("Main completed\n");
return 0;

}

Output:

76 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Enter Testcase - QPOWTEST/TPEXITO

Create thread using attributes that allow join
Wait for the thread to exit

Inside secondary thread

Got secondary thread status as expected

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_extendedjoin_np()—Wait for Thread with Extended Options

Syntax:

#include <pthread.h>
int pthread_extendedjoin_np(pthread_t thread, void **status,
pthread joinoption np t *options);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_extendedjoin_np() function waits for a thread to terminate, optionally detaches the thread,
then returns the threads exit status.

If the options parameter is specified as NULL or the contents of the pthread_joinoption_np_t structure
represented by options parameter is binary 0, then the behavior of pthread_extendedjoin_np() is
equivalent to pthread_join().

The deltatime field of the options parameter can be used to specify the amount of elapsed time to wait
before the wait times out. If the wait times out, the ETIMEDOUT error is returned and the thread is not
detached. For an infinite wait, specify a seconds value of 0, and a nanoseconds value of 0.

The leaveThreadAllocated field of the options parameter can be used to specify that the
pthread_extendedjoin_np() function should NOT implicitly detach the thread when the join completes
successfully. If the leaveThread Allocated option is used, the thread should later be detached using
pthread_join(), pthread_detach(), or pthread_extendedjoin_np() without specifying the

leaveThread Allocated option.

The reserved fields of the options parameter are for use by possible future extensions to
pthread_extendedjoin_np(). If any reserved fields of the options parameter are not zero, the EINVAL
error is returned.

If the status parameter is NULL, the threads exit status is not returned.

The meaning of the threads exit status (value returned to the status memory location) is determined by
the application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED
is made available.

Chapter 1. Pthread APIs 77

#TOP_OF_PAGE
aplist.htm

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator
intervention, or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP
is made available.

Eventually, you should call pthread_join(), pthread_detach() or pthread_extendedjoin_np() without
specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of
PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.
Failure to join to or detach joinable threads causes memory and other resource leaks until the process
ends.

Authorities and Locks

None.

Parameters

thread (Input) Pthread handle to the target thread
status (Input/Output) Address of the variable to receive the thread’s exit status
options

(Input) Address of the join options structure specifying optional behavior of this API

Return Value

0 pthread_extendedjoin_np() was successful.

value pthread_extendedjoin_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_extendedjoin_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

The thread specified could not be found.
[ETIMEDOUT]

The time specified in the deltatime field of the options parameter elapsed without the target thread
terminating.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
[‘pthread_detach()—Detach Thread” on page 71}—Detach Thread
[‘pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
[“pthread_join()—Wait for and Detach Thread” on page 102}—Wait for and Detach Thread
s [“pthread_join_np()—Wait for Thread to End” on page 104—Wait for Thread to End

Example
See|Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <unistd.h>

78 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#include <string.h>
#include <errno.h>
#include <stdio.h>
#include "check.h"

static void *thread(void *parm)

{
printf("Entered thread\n");
sleep(10);
printf("Ending thread\n");
return _ VOID(42);
}
int main (int argc, char =*argv[])
{
pthread _joinoption np_t joinoption;
void *status;
int rc;
pthread_t t;
printf("Entering testcase %s\n", argv[0]);
printf("Create thread using attributes that allow join\n");
rc = pthread_create(&t, NULL, thread, NULL);
checkResults("pthread_create()\n", rc);
memset (&joinoption, 0, sizeof(pthread_joinoption_np_t));
joinoption.deltatime.tv_sec = 3;
joinoption.leaveThreadAllocated = 1;
printf("Join to the thread, timeout in 3 seconds, no implicit detach\n");
rc = pthread_extendedjoin_np(t, &status, &joinoption);
if (rc != ETIMEDOUT) {
printf("Join did not timeout as expected! rc=%d\n", rc);
exit(1);
1
/* Call pthread_extendedjoin_np the same as a normal */
/* pthread_join() call. */
/* i.e. Implicit Detach is done, and Infinite wait */
printf("Normal join to the thread\n");
rc = pthread _extendedjoin np(t, &status, NULL);
checkResults("pthread_extendedjoin_np(no-options)\n", rc);
if (__INT(status) != 42) {
printf("Got the incorrect thread status!\n");
exit(1);
1
printf("Main completed\n");
return(0);
1
Output

Entering testcase QPOWTEST/TPJOINE®

Create thread using attributes that allow join

Join to the thread, timeout in 3 seconds, no implicit detach
Entered thread

Normal join to the thread

Ending thread

Main completed

Chapter 1. Pthread APIs

79

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_getcancelstate_np()—Get Cancel State

Syntax:

#include <pthread.h>
int pthread_getcancelstate np(int *cancelState);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_getcancelstate_np() function gets the current cancel state of the thread. Cancel state is either
PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE. For more information on cancelability,
see [“Thread cancellation APIs” on page 289

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes
the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls a function that is a cancellation point, or calls pthread_testcancel(),
thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon
immediately, interrupting the thread with its processing.

Notes:

1. Your application should not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user
errors section of this document for more information.

2. This function is not portable.

Authorities and Locks

None.

Parameters

cancelstate
(Output) Address of the variable to receive the cancel state.
Return Value

0 pthread_getcancelstate_np() was successful.

value pthread_getcancelstate_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getcancelstate_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

80 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_cancel()—Cancel Thread” on page 23}—Cancel Thread

Example

See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <except.h>
#include <setjmp.h>
#include "check.h"

void showCancelState(void);
int threadStatus=42;

void showCancelState(void)

{

int state, rc;

rc = pthread_getcancelstate_np(&state);
checkResults("pthread getcancelstate np()\n", rc);
printf("current cancel state is %d\n", state);

1
void cleanupHandler2(void *p)

printf("In cancellation cleanup handler\n");
showCancelState();
return;

}

void *threadfunc(void *parm)

{

int rc, old;

printf("Inside secondary thread\n");
showCancelState();

pthread_cleanup_push(cleanupHandler2, NULL);

threadStatus = 0;

printf("Calling pthread_exit() will allow cancellation "
"cleanup handlers to run\n");

pthread_exit(__VOID(threadStatus));

pthread _cleanup_pop(0);

return __VOID(-1);

1

int main(int argc, char xxargv)

{

pthread_t thread;
int rc=0;
char Cs

void *status;

[‘pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread
[‘pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State

* [“pthread_setcanceltype()—Set Cancel Type” on page 201}—Set Cancel Type
[‘pthread_testcancel()—Create Cancellation Point” on page 222 —Create Cancellation Point

Chapter 1. Pthread APIs

81

aboutapis.htm#CODEDISCLAIMER

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread that will demonstrate pthread_getcancelstate_np()\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults ("pthread_create()\n", rc);

rc = pthread_join(thread, &status);
checkResults("pthread_join()\n", rc);

if (__INT(status) != threadStatus) {
printf("Got an unexpected return status from the thread!\n");
exit(1l);

}

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPGETCANSO

Create thread that will demonstrate pthread_getcancelstate_np()

Inside secondary thread

current cancel state is 0

Calling pthread_exit() will allow cancellation cleanup handlers to run
In cancellation cleanup handler

current cancel state is 1

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_getconcurrency()—Get Process Concurrency Level

Syntax:

#include <pthread.h>
int pthread_getconcurrency();

Service Program Name: QPOWTCBH

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_getconcurrency() function retrieves the current concurrency level for the process. A value of
0 indicates that the threads implementation chooses the concurrency level that best suits the application.
A concurrency level greater than zero indicates that the application wishes to inform the system of its
desired concurrency level.

The concurrency level is not used by the OS/400 threads implementation. Each user thread is always
bound to a kernel thread.

Authorities and Locks
None.

82 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Parameters

None.

Return Value

value pthread_getconcurrency() returns the current concurrency level.

Error Conditions

None.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [‘pthread_setconcurrency()—Set Process Concurrency Level” on page 2041—Set Process Concurrency
Level

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data

Syntax:
#include <pthread.h>

int pthread_getpthreadoption_np(pthread_option_np_t *optionData);
Service Program Name: QPOWTCBH
Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_getpthreadoption_np() function gets option data from the pthread run-time for the process.

Input and output data is specified and returned uniquely based on the specified optionData. See the table

below for details about input and output. The option field in the optionData parameter is always required.
Other fields may be input, output, or ignored, based on the specific option used.

For all options, every reserved field in the structure represented by optionData must be binary zero or the
EINVAL error is returned. Unless otherwise noted for an option, the target field in the option parameter is

always ignored.

The currently supported options, the data they represent, and the valid operations are as follows:

Chapter 1. Pthread APIs 83

#TOP_OF_PAGE
aplist.htm

option field of the option parameter

Description

PTHREAD_OPTION_POOL_NP

When a thread terminates and it is detached or joined to,
certain data structures from the pthreads run-time are
maintained in a pool for possible reuse by future threads.
This improves performance for creating threads.
Typically, an application should not be concerned with
this storage pool. Use this option to determine what the
current maximum size of the allowed storage pool is.
The optionValue field of the optionData parameter is set to
the current maximum number of thread structures,
which is maintained in the storage pool. By default, the
maximum size of the storage reuse pool contains enough
room for 512 thread structures.

PTHREAD_OPTION_POOL_CURRENT_NP

When a thread terminates and it is detached or joined to,
certain data structures from the pthreads run-time are
maintained in a pool for possible reuse by future threads.
This improves performance for creating threads.
Typically, an application should not be concerned with
this storage pool. Use this option to determine how
many thread structures are currently in the storage pool.
The optionValue field of the optionData parameter is set to
the current number of thread structures, which are
contained in the storage pool. By default, the storage
pool contains no thread structures. When a thread
terminates and is detached or joined to and the current
size of the pool is less than the maximum size, the
thread structure is added to the pool.

PTHREAD_OPTION_THREAD_CAPABLE_NP

Not all OS/400 jobs can start threads at all times. Use
this option to determine whether thread creation is
currently allowed for your process. The optionValue field
of the optionData parameter is set to indicate whether
thread creation is currently allowed. The field is set to 0
to indicate that thread creation is not allowed, the field
will be set to 1 to indicate thread creation is allowed. If
thread creation is not allowed, pthread_create() fails with
the EBUSY error. See pthread_create() for more details.

Authorities and Locks

None.

Parameters

option (Input/Output) Address of the variable containing option information and to contain output

option information.

Return Value

0 pthread_getpthreadoption_np() was successful.

value pthread_getpthreadoption_np() was not successful. value is set to indicate the error condition.

84 iSeries: Pthread APIs

Error Conditions

If pthread_getpthreadoption_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ['Header files for Pthread functions” on page 271

+ |“pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data” on page 205—Set Pthread
Run-Time Option Data

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void *threadfunc(void *parm)

printf("Inside the thread\n");
return NULL;
1

void showCurrentSizeOfPool(void)
{
int rcs
pthread_option_np_t opt;

memset (&opt, 0, sizeof(opt));

opt.option = PTHREAD_OPTION_POOL_CURRENT_NP;

rc = pthread_getpthreadoption_np(&opt);
checkResults("pthread getpthreadoption_np()\n", rc);

printf("Current number of thread structures in pool is %d\n",
opt.optionValue);
return;

1
int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;
pthread option_np_t opt;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using the NULL attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create(NULL)\n", rc);

memset (&opt, 0, sizeof(opt));

opt.option = PTHREAD_OPTION_POOL_NP;

rc = pthread_getpthreadoption_np(&opt);
checkResults("pthread_getpthreadoption_np()\n", rc);

printf("Current maximum pool size is %d thread structures\n",
opt.optionValue);

Chapter 1. Pthread APIs 85

aboutapis.htm#CODEDISCLAIMER

showCurrentSize0fPool();

printf("Joining to the thread may it to the storage pool\n");
rc = pthread_join(thread, NULL);
checkResults("pthread_join()\n", rc);

showCurrentSize0fPool ()
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPGEtopT

Create thread using the NULL attributes

Current maximum pool size is 512 thread structures
Current number of thread structures in pool is 0
Joining to the thread may it to the storage pool
Inside the thread

Current number of thread structures in pool is 1
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_getschedparam()—Get Thread Scheduling Parameters

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_getschedparam(pthread_t thread, int *policy,
struct sched_param *param);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_getschedparam() function retrieves the scheduling parameters of the thread. The default
0S/400 scheduling policy is SCHED_OTHER and cannot be changed to another scheduling policy.

The sched_policy field of the param parameter is always returned as SCHED_OTHER. The sched_priority
field of the param structure is set to the priority of the target thread at the time of the call.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another
mechanism (other than the pthread APIs) to set the priority of a thread. If you do,
pthread_getschedparam() returns only that information that was set by the pthread interfaces such as
pthread_setschedparam() or a modification of the thread attribute using pthread_attr_setschedparamy().

Authorities and Locks

None.

86 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Parameters
thread (Input) Pthread handle representing the target thread
policy (Output) Address of the variable to contain the scheduling policy

param (Output) Address of the variable to contain the scheduling parameters

Return Value

0 pthread_getschedparam() was successful.

value pthread_getschedparam was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getschedparam() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ['Header files for Pthread functions” on page 271

* |“pthread_setschedparam()—Set Target Thread Scheduling Parameters” on page 208—Set Target Thread
Scheduling Parameters

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include "check.h"

void xthreadfunc(void *parm)

printf("Inside secondary thread\n");
sleep(5); /* Sleep is not a very robust way to serialize threads =*/
return NULL;

1

int main(int argc, char xxargv)

{

pthread_t thread;
int rc=0;
struct sched_param param;
int policy;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using default attributes\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

printf("Get scheduling parameters\n");
rc = pthread_getschedparam(thread, &policy, ¶m);
checkResults("pthread_getschedparam()\n", rc);

printf("The thread scheduling parameters indicate:\n"
"policy = %d\n", policy);

Chapter 1. Pthread APIs 87

aboutapis.htm#CODEDISCLAIMER

printf("priority = %d\n",
param.sched_priority);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPGSPO

Create thread using default attributes
Get scheduling parameters

The thread scheduling parameters indicate:
policy = 0

priority = 0

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_getspecific()—Get Thread Local Storage Value by Key

Syntax:

#include <pthread.h>
void *pthread _getspecific(pthread key t key);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_getspecific() function retrieves the thread local storage value associated with the key.
pthread_getspecific() may be called from a data destructor.

The thread local storage value is a variable of type void * that is local to a thread, but global to all of the
functions called within that thread. It is accessed by the key.

Authorities and Locks

None.

Parameters
key (Input) The thread local storage key returned from pthread_key_create()

Return Value

value pthread_getspecific() was successful. value is set to indicate the current thread specific data
pointer stored at the key location.

88 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

NULL pthread_getspecific() returned the null thread specific data value stored at the key location or the
key was out of range.

Error Conditions
None.

Related Information
* The <pthread.h> header file. See ['Header files for Pthread functions” on page 271

+ [“pthread_key_create()—Create Thread Local Storage Key” on page 107—Create Thread Local Storage
Key

* ['pthread_key_delete()—Delete Thread Local Storage Key” on page 109}—Delete Thread Local Storage
Key

* [“pthread_setspecific()—Set Thread Local Storage by Key” on page 211}—Set Thread Local Storage by
Key

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 3
pthread_key t tlsKey = 0;

void globalDestructor(void *value)

printf("In the globalDestructor\n");
free(value);
pthread_setspecific(t1sKey, NULL);

1

void showGlobal(void)

{
void *global;
pthread_id _np_t tid;

global = pthread getspecific(tlsKey);
pthread_getunique_np((pthread_t *)global, &tid);
printf("showGlobal: global data stored for thread 0x%.8x%.8x\n",
tid);
1

void *threadfunc(void *parm)

{
int rc;
int *myThreadDataStructure;
pthread_t me = pthread_self();

printf("Inside secondary thread\n");

myThreadDataStructure = malloc(sizeof(pthread t) + sizeof(int) * 10);
memcpy (myThreadDataStructure, &me, sizeof(pthread_t));
pthread_setspecific(t1sKey, myThreadDataStructure);
showGlobal();
pthread_exit(NULL);

1

int main(int argc, char x*argv)

{

Chapter 1. Pthread APIs 89

aboutapis.htm#CODEDISCLAIMER

pthread_t thread [NUMTHREADS] ;
int rc=0;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread Tocal storage key\n");

rc = pthread_key create(&tlsKey, globalDestructor);
checkResults("pthread_key create()\n", rc);

/* The key can now be used from all threads */

printf("Create %d threads using joinable attributes\n",
NUMTHREADS) ;
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

printf("Join to threads\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults("pthread_join()\n", rc);
}

printf("Delete a thread Tocal storage key\n");

rc = pthread_key delete(tIsKey);
checkResults("pthread key delete()\n", rc);

/* The key and any remaining values are now gone. */
printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPGETSO

Create a thread Tocal storage key

Create 3 threads using joinable attributes

Join to threads

Inside secondary thread

showGlobal: global data stored for thread 0x000000000000000b
In the globalDestructor

Inside secondary thread

showGlobal: global data stored for thread 0x000000000000000d
In the globalDestructor

Inside secondary thread

showGlobal: global data stored for thread 0x000000000000000c
In the globalDestructor

Delete a thread local storage key

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

90 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread

Syntax:
#include <pthread.h>

pthread_id_np_t pthread_getthreadid_np(void);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_getthreadid_np() function retrieves the unique integral identifier that can be used to identify
the calling thread in some context for application debugging or tracing support.

In some implementations, the thread ID is equivalent to the pthread_t type. In the OS/400
implementation, the pthread_t is an opaque Pthread handle. For the ability to identify a thread using a
thread ID (unique number), the pthread_getunique_np() and pthread_getthreadid_np() interfaces are
provided.

The OS/400 machine implementation of threads provides a 64-bit thread ID. The thread ID is returned as
a structure containing the high and low order 4 bytes of the 64-bit ID. This allows applications created by
compilers that do not yet support 64-bit integral values to effectively use the 64-bit thread ID.

If your code requires the unique integer identifier for the calling thread often, or in a loop, the
pthread_getthreadid_np() function can significantly improve performance over the combination of
pthread_self() and pthread_getunique_np() calls that provide equivalent behavior.

For example:

pthread_id_np_t tid;
tid = pthread_getthreadid_np();

is significantly faster than these calls, but provides the same behavior.
pthread id np t tid;

pthread_t self;
self = pthread_self();

pthread_getunique np(&self, &tid);

As always, if you are calling any function too often, you can improve performance by storing the results
in a variable or passing to other functions that require the results.

Note: This function is not portable.

Authorities and Locks
None.

Parameters

None.

Chapter 1. Pthread APIs 91

Return Value
The pthread_id_np_t structure identifying the thread

Error Conditions
None.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271
+ [“pthread_self()—Get Pthread Handle” on page 197—Get Pthread Handle

* ['pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93|—Retrieve Unique ID for
Target Thread

Example

See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 3

void xthreadfunc(void *parm)

{
printf("Thread 0x%.8x %.8x started\n", pthread getthreadid np());
return NULL;

1

int main(int argc, char x*argv)

{
pthread_t thread [NUMTHREADS] ;
int rc=0;
pthread_id_np_t tid;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);
printf("Main Thread 0x%.8x %.8x\n", pthread_getthreadid np());

printf("Create %d threads using joinable attributes\n",
NUMTHREADS) ;

for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);
pthread_getunique np(&thread[i], &tid);
printf("Created thread 0x%.8x %.8x\n", tid);

}

printf("Join to threads\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults ("pthread_join()\n", rc);
}

printf("Main completed\n");
return 0;

}

Output:

92 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Enter Testcase - QPOWTEST/TPGETTO
Main Thread 0x00000000 0000006c
Create 3 threads using joinable attributes
Created thread 0x00000000 0000006d
Thread 0x00000000 0000006d started
Created thread 0x00000000 0000006e
Created thread 0x00000000 0000006f
Join to threads

Thread 0x00000000 0000006f started
Thread 0x00000000 0000006e started
Main completed

API introduced: V4R3

[Top| I [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_getunique_np()—Retrieve Unique ID for Target Thread

Syntax:
#include <pthread.h>

int pthread_getunique_np(pthread_t *thread, pthread_id np_t =id);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_getunique_np() function retrieves the unique integral identifier that can be used to identify
the thread in some context for application debugging or tracing support.

In some implementations, the thread ID is equivalent to the pthread_t type. In the OS/400
implementation, the pthread_t is an opaque Pthread handle. For the ability to identify a thread using a
thread ID (unique number), the pthread_getunique_np() and pthread_getthreadid_np() interfaces are
provided.

The OS/400 machine implementation of threads provides a 64-bit thread ID. The thread ID is returned as
a structure containing the high and low order 4 bytes of the 64-bit ID. This allows applications created by
compilers that do not yet support 64-bit integral values to effectively use the 64-bit thread ID.

If your code requires the unique integer identifier for the calling thread often, or in a loop, the
pthread_getthreadid_np() function can significantly improve performance over the combination of
pthread_self() and pthread_getunique_np() calls that provide equivalent behavior.

For example:

pthread_id_np_t tid;

tid = pthread_getthreadid_np();

is significantly faster than these calls, but provides the same behavior.

Chapter 1. Pthread APIs 93

#TOP_OF_PAGE
aplist.htm

pthread_id np_t tid;
pthread_t self;
self = pthread_self();
pthread_getunique_np(&self, &tid);

As always, if you are calling any function too often, you can improve performance by storing the results
in a variable or passing to other functions that require the results.

Note:This function is not portable.

Authorities and Locks

None.

Parameters

thread (Input) Address of the thread to retrieve the unique integer ID for
id (Output) Address of the thread ID structure to contain the 64-bit thread ID.

Return Value

0 pthread_getunique_np() was successful.

value pthread_getunique_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getunique_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271|
+ |“pthread_self()—Get Pthread Handle” on page 197|—Get Pthread Handle

* |“pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91}—Retrieve Unique ID
for Calling Thread

Example
See|Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 3

void *threadfunc(void *parm)

{
pthread_id_np_t tid;
pthread_t me = pthread_self();

pthread getunique np(&me, &tid);

printf("Thread 0x%.8x %.8x started\n", tid);
return NULL;

94 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)

{

}

pthread_t thread [NUMTHREADS] ;
int rc=0;
pthread_id_np_t tid;
int i=0;
pthread_t me = pthread_self();

printf("Enter Testcase - %s\n", argv[0]);

pthread_getunique_np(&me, &tid);
printf("Main Thread 0x%.8x %.8x\n", tid);

printf("Create %d threads using joinable attributes\n",
NUMTHREADS) ;

for (i=0; i<NUMTHREADS; ++i) {
rc = pthread create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);
pthread_getunique_np(&thread[i], &tid);
printf("Created thread 0x%.8x %.8x\n", tid);

}

printf("Join to threads\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults("pthread_join()\n", rc);
}

printf("Main completed\n");
return 0;

Output:

Enter Testcase - QPOWTEST/TPGETUO
Main Thread 0x00000000 0000006c
Create 3 threads using joinable attributes
Created thread 0x00000000 0000006d
Thread 0x00000000 0000006d started
Created thread 0x00000000 0000006e
Created thread 0x00000000 0000006f
Join to threads

Thread 0x00000000 0000006f started
Thread 0x00000000 0000006e started
Main completed

API introduced: V4R3

IEE' | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

Chapter 1. Pthread APIs

95

#TOP_OF_PAGE
aplist.htm

pthread_get_expiration_np()—Get Condition Expiration Time from
Relative Time

Syntax:

#include <pthread.h>

#include <time.h>

int pthread_get_expiration_np(const struct timespec *delta,
struct timespec *abstime);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_get_expiration_np() function computes an absolute time by adding the specified relative
time (delta) to the current system time. The resulting absolute time output in the abstime parameter can be
used as the expiration time in a call to pthread_cond_timedwait().

The current system time is retrieved from the j system clock. <%

Note: This function is not portable.

Authorities and Locks

None.

Parameters

delta (Input) Elapsed time to add to the current system time

abstime
(Output) Address of the returned value representing the expiration time

Return Value

0 pthread_get_expiration_np() was successful.

value pthread_get_expiration_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_get_expiration_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
* |“pthread_cond_timedwait()—Timed Wait for Condition” on page 58—Timed Wait for Condition

96 iSeries: Pthread APIs

Example

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <stdio.h>
#include <qp0z1170.h>
#include <time.h>
#include <pthread.h>
#include "check.h"

/* For safe condition variable usage, must use a boolean predicate and =*/

/* a mutex with the condition. */
int workToDo = 0;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int failStatus=99;
#define NTHREADS 2
#define WAIT_TIME_SECONDS 3
void *threadfunc(void *parm)
{
int rc;

struct timespec delta;
struct timespec abstime;

int retries = 2;
pthread_id_np_t tid;

tid = pthread_getthreadid_np();

rc = pthread_mutex_lock(&mutex);
checkResults("pthread mutex_Tock()\n", rc);

while (retries--) {
delta.tv_sec = WAIT_TIME_SECONDS;
delta.tv_nsec = 0;
rc = pthread get expiration _np(&delta, &abstime);
checkResults("pthread_get_expiration_np()\n", rc);

while (!workToDo) {
printf("Thread 0x%.8x %.8x blocked\n", tid);
rc = pthread_cond_timedwait(&cond, &mutex, &abstime);
if (rc != ETIMEDOUT) {
printf("pthread cond timedwait() - expect timeout %d\n", rc);
rc = pthread_mutex_unlock(&mutex) ;
checkResults("pthread mutex_Tock()\n", rc);
return _ VOID(failStatus);
}
/* Since there is no code in this example to wake up any */
/* thread on the condition variable, we know we are done */
/* because we have timed out. */
break;
}
printf("Wait timed out! tid=0x%.8x %.8x\n", tid);
}

rc = pthread_mutex_unlock(&mutex);
checkResults ("pthread mutex_lock()\n", rc);
return _ VOID(0);

1
int main(int argc, char xxargv)
{
int rc=0;
int is
pthread_t threadid[NTHREADS] ;
void *status;

Chapter 1. Pthread APIs 97

aboutapis.htm#CODEDISCLAIMER

int results=0;
printf("Enter Testcase - %s\n", argv[0]);

printf("Create %d threads\n", NTHREADS);

for(i=0; i<NTHREADS; ++i) {
rc = pthread_create(&threadid[i], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

printf("Wait for threads and cleanup\n");
for (i=0; i<NTHREADS; ++i) {
rc = pthread_join(threadid[i], &status);
checkResults ("pthread_join()\n", rc);
if (__INT(status) == failStatus) {
printf("A thread failed!\n");
results++;
1
}

pthread_cond_destroy(&cond);
pthread mutex_destroy(&mutex) ;
printf("Main completed\n");
return results;

}

Output:

Enter Testcase - QPOWTEST/TPGETEXO
Create 2 threads

Wait for threads and cleanup

Thread 0x00000000 000002ab blocked
Thread 0x00000000 000002ac blocked

Wait timed out! tid=0x00000000 000002ab
Thread 0x00000000 000002ab blocked

Wait timed out! tid=0x00000000 000002ac
Thread 0x00000000 000002ac blocked

Wait timed out! tid=0x00000000 000002ab
Wait timed out! tid=0x00000000 000002ac
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_is_initialthread_np()—Check if Running in the Initial Thread

Syntax:

#include <pthread.h>
#include <sched.h>
int pthread_is_initialthread_np(void);

Threadsafe: Yes

Signal Safe: Yes

The pthread_is_initialthread_np() function returns true or false, indicating if the current thread is the
initial thread of the process. A return value true (non 0) indicates that the calling thread is the initial
thread. A return value of false (0) indicates that the calling thread is running in a secondary thread.

98 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Note: This function is not portable.

Authorities and Locks

None.

Parameters
None.

Return Value

0 The calling thread is a secondary thread.
value The calling thread is the initial thread.

Error Conditions

None.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271|
+ [“pthread_is_multithreaded_np()—Check Current Number of Threads” on page 100|

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 1

void *function(void *parm)
{
printf("Inside the function\n");
if (pthread_is_initialthread_np()) {
printf("In the initial thread\n");
}
else {
printf("In a secondary thread\n");
}
return NULL;

1

int main(int argc, char x*argv)

{
pthread_t thread [NUMTHREADS] ;
int rc=0;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create %d threads\n", NUMTHREADS);

for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_create(&thread[i], NULL, function, NULL);
checkResults("pthread_create()\n", rc);
printf("Main: Currently %d threads\n",

pthread_is_initialthread np() + 1);
}
printf("Join to threads\n");

Chapter 1. Pthread APIs 99

aboutapis.htm#CODEDISCLAIMER

for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults("pthread join()\n", rc);
}

function(NULL);
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPISINO
Create 1 threads

Join to threads

Inside the function

In a secondary thread

Inside the function

In the initial thread

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_is_multithreaded_np()—Check Current Number of Threads

Syntax:

#include <pthread.h>
unsigned int pthread is multithreaded np(void);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_is_multithreaded_np() function returns true or false, indicating whether the current process
has more than one thread. A return value of zero indicates that the calling thread is the only thread in the
process. A value not equal to zero, indicates that there were multiple other threads in the process at the
time of the call to pthread_is_multithreaded_np().

The total number of threads currently in the process can be determined by adding 1 to the return value
of pthread_is_multithreaded_np().

Note: This function is not portable.

Authorities and Locks
None.

Parameters

None.

100 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Return Value

0 No other threads exist in the process.

value There are currently value+1 total threads in the process.

Error Conditions

None.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_is_initialthread_np()—Check if Running in the Initial Thread” on page 98—Check if Running

in the Initial Thread

Example

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 3
void *threadfunc(void *parm)
{

int myHiId;

int myld;

pthread t me = pthread_self();

printf("Inside the New Thread\n");
sleep(2); /* Sleep is not a very robust way to serialize threads =*/
return NULL;

1
int main(int argc, char x*argv)
{
pthread_t thread [NUMTHREADS] ;
int rc=0;
int theHiId=0;
int theld=0;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);
printf("Create %d threads\n", NUMTHREADS);

for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);
printf("Main: Currently %d threads\n",
pthread_is multithreaded np() + 1);
}

printf("Join to threads\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults ("pthread_join()\n", rc);
}

if (rc = pthread_is_multithreaded_np()) {
printf("Error: %d Threads still exist!\n", rc+l);
exit(1);

Chapter 1. Pthread APIs

101

aboutapis.htm#CODEDISCLAIMER

}
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPISMTO
Create 3 threads

Main: Currently 2 threads

Main: Currently 3 threads

Main: Currently 4 threads

Join to threads

Inside the New Thread

Inside the New Thread

Inside the New Thread

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_join()—Wait for and Detach Thread

Syntax:

#include <pthread.h>
int pthread_join(pthread_t thread, void **status);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_join() function waits for a thread to terminate, detaches the thread, then returns the threads
exit status.

If the status parameter is NULL, the threads exit status is not returned.

The meaning of the threads exit status (value returned to the status memory location) is determined by

the application, except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED
is made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator

intervention or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP
is made available.

Eventually, you should call pthread_join(), pthread_detach() or pthread_extendedjoin_np() without
specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of
PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.
Failure to join to or detach joinable threads causes memory and other resource leaks until the process
ends.

102 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters
thread (Input) Pthread handle to the target thread

status (Output) Address of the variable to receive the thread’s exit status

Return Value

0 pthread_join() was successful.

value pthread_join() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_join() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

The thread specified could not be found.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
[‘pthread_detach()—Detach Thread” on page 71}—Detach Thread
[‘pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

[pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77}—Wait for Thread
with Extended Options

[“pthread_join_np()—Wait for Thread to End” on page 104—Wait for Thread to End

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int okStatus = 34;

void *threadfunc(void *parm)

{

printf("Inside secondary thread\n");
return _ VOID(okStatus);
}

int main(int argc, char x*argv)

{

pthread_t thread;
int rc=0;
void *status;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);

Chapter 1. Pthread APIs 103

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread create()\n", rc);

printf("Wait for the thread to exit\n");

rc = pthread_join(thread, &status);

checkResults("pthread_join()\n", rc);

if (__INT(status) != okStatus) {
printf("Secondary thread failed\n");
exit(1);

}

printf("Got secondary thread status as expected\n");
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPJOINO

Create thread using attributes that allow join
Wait for the thread to exit

Inside secondary thread

Got secondary thread status as expected

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_join_np()—Wait for Thread to End

Syntax:
#include <pthread.h>

int pthread_join np(pthread_t thread, void **status);
Service Program Name: QPOWPTHR
Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_join_np() function waits for a thread to terminate, then returns the threads exit status, while
leaving the data structures of the thread available for a later call to pthread_join(), pthread_join_np(),

pthread_detach(), or pthread_extendedjoin_np()

If the status parameter is NULL, the thread’s exit status is not returned.

The meaning of the threads exit status (value returned to the stafus memory location) is determined by

the application except for the following conditions:

1. When the thread has been canceled using pthread_cancel(), the exit status of PTHREAD_CANCELED

is made available.

2. When the thread has been terminated as a result of an unhandled OS/400 exception, operator
intervention, or other proprietary OS/400 mechanism, the exit status of PTHREAD_EXCEPTION_NP

is made available.

104 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Eventually, you should call pthread_join(), pthread_detach(), or pthread_extendedjoin_np() without
specifying the leaveThreadAllocated option for every thread that is created joinable (with a detach state of
PTHREAD_CREATE_JOINABLE) so that the system can reclaim all resources associated with the thread.
Failure to join to or detach joinable threads causes memory and other resource leaks until the process
ends.

Note:This function is not portable.

Authorities and Locks

None.

Parameters
thread (Input) Pthread handle to the target thread

status (Output) Address of the variable to receive the thread’s exit status

Return Value

0 pthread_join_np() was successful.

value pthread_join_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_join_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[ESRCH]

The thread specified could not be found.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
[‘pthread_detach()—Detach Thread” on page 71}—Detach Thread
[‘pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

[“pthread_extendedjoin_np()—Wait for Thread with Extended Options” on page 77—Wait for Thread
with Extended Options

[‘pthread_join()—Wait for and Detach Thread” on page 102—Wait for and Detach Thread

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int okStatus = 12;

void *threadfunc(void *parm)

{

printf("Inside secondary thread\n");
return _ VOID(okStatus);
}

Chapter 1. Pthread APIs 105

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)

{
pthread_t thread;
int rc=0;
void *status;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using attributes that allow join\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

printf("Wait for the thread to exit\n");

rc = pthread_join np(thread, &status);

checkResults ("pthread_join_np()\n", rc);

if (__INT(status) != okStatus) {
printf("Secondary thread failed\n");
exit(1l);

}

printf("With pthread join _np(), we can join repeatedly\n");
rc = pthread_join_np(thread, &status);
checkResults("pthread join np()\n", rc);
if (__INT(status) != okStatus) {

printf("Secondary thread failed\n");

exit(1);
}

printf("Got secondary thread status as expected\n");

/* Eventually, we should use pthread join() or pthread detach() =/
rc = pthread_detach(thread);

checkResults("pthread_detach()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPJOINNO

Create thread using attributes that allow join
Wait for the thread to exit

Inside secondary thread

With pthread_join_np(), we can join repeatedly
Got secondary thread status as expected

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

106 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_key_create()}—Create Thread Local Storage Key

Syntax:

#include <pthread.h>
int pthread_key create(pthread_key t *key, void (*destructor)(void *));

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_key_create() function creates a thread local storage key for the process and associates the
destructor function with that key. After a key is created, that key can be used to set and get per-thread
data pointer. When pthread_key_create() completes, the value associated with the newly created key is
NULL.

When a thread terminates, if both the value and the destructor associated with a thread local storage key
are not NULL, the destructor function is called. The stored pointer associated with the key is set to NULL
before the call to the destructor funciton. The parameter passed to the destructor function when it is
called is the value of the pointer before it was set to NULL that is associated with that key in the thread
that is terminating.

After calling the destructors, if there are still non NULL values in the thread associated with the keys, the
process is repeated. After PTHREAD_DESTRUCTOR_ITERATIONS attempts to destroy the thread local
storage, no further attempts are made for that thread local storage value/key combination.

Do not call pthread_exit() from a destructor function.

A destructor function is not called as a result of the application calling pthread_key_delete().

Authorities and Locks

None.

Parameters

key (Output) The address of the variable to contain the thread local storage key

destructor
(Input) The address of the function to act as a destructor for this thread local storage key

Return Value

0 pthread_key_create() was successful.

value pthread_key_create() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_key_create() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

Chapter 1. Pthread APIs 107

[EINVAL]
The value specified for the argument is not correct.
[EAGAIN]

The system did not have enough resources, or the maximum of PTHREAD_KEYS_MAX would
have been exceeded.

[ENOMEM]

Not enough memory to create the key.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88—Get Thread Local Storage
Value by Key

+ |“pthread_key_delete()—Delete Thread Local Storage Key” on page 109—Delete Thread Local Storage
Key

» [“pthread_setspecific()—Set Thread Local Storage by Key” on page 211}—Set Thread Local Storage by
Key

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include "check.h"

pthread key t tlsKey = 03

void globalDestructor(void *value)

{
printf("In the data destructor\n");
free(value);
pthread_setspecific(t1sKey, NULL);

1

int main(int argc, char x*argv)
{
int rc=0;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread Tocal storage key\n");

rc = pthread_key create(&t1sKey, globalDestructor);
checkResults("pthread_key create()\n", rc);

/* The key can now be used from all threads =/

printf("- The key can now be used from all threads\n");
printf("- in the process to storage thread local\n");
printf("- (but global to all functions in that thread)\n");
printf("- storage\n");

printf("Delete a thread Tocal storage key\n");

rc = pthread_key delete(tlsKey);
checkResults("pthread_key delete()\n", rc);

108 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* The key and any remaining values are now gone. */
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPKEYCO

Create a thread local storage key

- The key can now be used from all threads

- in the process to storage thread Tocal

- (but global to all functions in that thread)
- storage

Delete a thread local storage key

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_key_delete()—Delete Thread Local Storage Key

Syntax:

#include <pthread.h>
int pthread_key delete(pthread_key t key);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_key_delete() function deletes a process-wide thread local storage key. The
pthread_key_delete() function does not run any destructors for the values associated with key in any
threads. After a key is deleted, it may be returned by a subsequent call to pthread_key_create().

An attempt to delete a key that is out of range or not valid fails with EINVAL. An attempt to delete a

valid key that has already been deleted or has not been returned from pthread_key_create() fails with
ENOENT.

Authorities and Locks

None.

Parameters
key (Input) The thread local storage key returned from pthread_key_create()

Return Value
0 pthread_key_delete() was successful.

value pthread_key_delete() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs

109

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_key_delete() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.
A destructor function is not called as a result of the application calling pthread_key_delete().
[EINVAL]

The value specified for the argument is not correct.

[ENOENT]

An entry for the key is not currently allocated.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [‘pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88—Get Thread Local Storage
Value by Key

* [“pthread_key_create()—Create Thread Local Storage Key” on page 107—Create Thread Local Storage
Key

» |“pthread_setspecific()—Set Thread Local Storage by Key” on page 211}—Set Thread Local Storage by
Key

Example
See|Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread key t tlsKey = 0;

void globalDestructor(void *value)

{
printf("In global data destructor\n");
free(value);
pthread_setspecific(t1sKey, NULL);

1

int main(int argc, char x*argv)
{
int rc=0;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread Tocal storage key\n");

rc = pthread_key create(&tlsKey, globalDestructor);
checkResults("pthread_key create()\n", rc);

/* The key can now be used from all threads =*/

printf("Delete a thread Tocal storage key\n");
rc = pthread_key_delete(t1sKey);
checkResults("pthread_key delete()\n", rc);

printf("- The key should not be used from any thread\n");
printf("- after destruction.\n");

110 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/* The key and any remaining values are now gone. */
printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPKEYDO

Create a thread local storage key

Delete a thread local storage key

- The key should not be used from any thread
- after destruction.

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_kill()—Send Signal to Thread

Syntax:

#include <pthread.h>
#include <signal.h>
int pthread_kill(pthread_t thread, int sig);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_kill() function requests that the signal sig be delivered to the specified thread. The signal to
be sent is specified by sig and is either zero or one of the signals from the list of defined signals in the
<signal.h> header file. If sig is zero, error checking is performed, but no signal is sent to the target thread.

A thread can use pthread_kill() to send a signal to itself. If the signal is not blocked or ignored, at least
one pending unblocked signal is delivered to the sender before pthread_kill() returns. If there are no
other pending unblocked signals, the delivered signal is sig.

The pthread_kill() API in no way changes the effect or scope of a signal. Even though a signal can be
sent to a specific thread using the pthread_kill() API, the behavior that occurs when the signal is
delivered is unchanged.

For example, sending a SIGKILL signal to a thread using pthread_kill() ends the entire process, not

simply the target thread. SIGKILL is defined to end the entire process, regardless of the thread it is
delivered to, or how it is sent.

Authorities and Locks

None.

Chapter 1. Pthread APIs 111

#TOP_OF_PAGE
aplist.htm

Parameters
thread (Input) Pthread handle of the target thread

sig (Input) The signal number to be delivered or zero to validate the pthread_t

Return Value

0 pthread_kill() was successful.

value pthread_kill() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_kill() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[ESRCH]

No thread could be found that matched the thread ID specified.
[EINVAL]

The value specified for the argument is not correct.
[ENOTSIGINIT]

The process is not enabled for signals.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
* ['pthread_sigmask()—Set or Get Signal Mask” on page 215—Set or Get Signal Mask

* |“pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests” on page 219—Convert Signals to
Cancel Requests

Example

See [Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <signal.h>
#include "check.h"

#define NUMTHREADS 3
void sighand(int signo);

void *threadfunc(void *parm)

{

pthread_t self = pthread_self();
pthread id np t tid;
int rc;

pthread_getunique_np(&self, &tid);
printf("Thread 0x%.8x %.8x entered\n", tid);
errno = 0;
rc = sleep(30);
if (rc !'= 0 & errno == EINTR) {
printf("Thread 0x%.8x %.8x got a signal delivered to it\n",
tid);
return NULL;
}
printf("Thread 0x%.8x %.8x did not get expected results! rc=%d, errno=%d\n",
tid, rc, errno);

112 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

return NULL;

}
int main(int argc, char xxargv)
{
int rc;
int i
struct sigaction actions;
pthread_t threads [NUMTHREADS] ;

}

printf("Enter Testcase - %s\n", argv[0]);

printf("Set up the alarm handler for the process\n");

memset (&actions, 0, sizeof(actions));
sigemptyset(&actions.sa_mask);
actions.sa_flags = 0;
actions.sa_handler = sighand;

rc = sigaction(SIGALRM,&actions,NULL);
checkResults("sigaction\n", rc);

for(i=0; i<NUMTHREADS; ++i) {

rc = pthread_create(&threads[i], NULL, threadfunc, NULL);

checkResults("pthread create()\n", rc);

}

sleep(3);

for(i=0; i<NUMTHREADS; ++i) {
rc = pthread _kil1(threads[i], SIGALRM);
checkResults("pthread kill()\n", rc);

}

for(i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(threads[i], NULL);
checkResults ("pthread_join()\n", rc);
}
printf("Main completed\n");
return 0;

void sighand(int signo)

pthread t
pthread_id_np_t

self = pthread_self();
tid;

pthread_getunique_np(&self, &tid);
printf("Thread 0x%.8x %.8x in signal handler\n",

tid);
return;

}

Output:

Enter Testcase - QPOWTEST/TPKILLO
Set up the alarm handler for the process

Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Thread 0x00000000
Main completed

0000000c
0000000d
0000000e
0000000c
0000000c
0000000d
0000000d
0000000e
0000000e

entered

entered

entered

in signal handler

got a signal delivered to it
in signal handler

got a signal delivered to it
in signal handler

got a signal delivered to it

Chapter 1. Pthread APIs

113

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_lock_global_np()—Lock Global Mutex

Syntax:
#include <pthread.h>

int pthread_lock global np(void);
Service Program Name: QPOWTCBH

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_lock_global_np() function locks a global mutex provided by the pthreads run-time. The
global mutex is a recursive mutex with a name of "QPOW_GLOBAL_MTX". The global mutex is not
currently used by the pthreads run-time to serialize access to any system resources, and is provided for
application use only.

The maximum number of recursive locks by the owning thread is 32,767. After which, attempts to lock
the mutex will return the ERECURSE error.

Note: This function is not portable

Authorities and Locks
None.

Parameters

None.

Return Value
0 pthread_lock_global_np() was successful.

value pthread_lock_global np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_lock_global_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[ERECURSE]

The recursive mutex cannot be recursively locked again.

114 iSeries: Pthread APls

#TOP_OF_PAGE
aplist.htm

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
* |“pthread_unlock_global_np()—Unlock Global Mutex” on page 239|

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

/*
This example shows the corruption that can result if no
serialization is done and also shows the use of
pthread_lock_global_np(). Call this test with no parameters
to use pthread_Tlock gloabl np() to protect the critical data,
between more than one (possibly unrelated) functions.
Use 1 or more parameters to skip Tocking and
show data corruption that occurs without locking.

*/
#define LOOPCONSTANT 50000
#define THREADS 10
int i,j.k,1;
int uselock=1;

void secondFunction(void)
{
int rc;
if (uselock) {
rc = pthread_lock_global np();
checkResults("pthread_lock_global_np()\n", rc);
}
--i; -=3; --k; --13
if (uselock) {
rc = pthread_unlock_global_np();
checkResults("pthread_unlock_global_np()\n", rc);
}

1
void xthreadfunc(void *parm)
{

int loop = 0;

int rc;

for (1oop=0; 100p<LOOPCONSTANT; ++loop) {

if (uselock) {
rc = pthread_lock_global_np();
checkResults("pthread_Tock_global_np()\n", rc);

1

++i; ++]; ++ky ++1

secondFunction();

++i; ++]; ++ky ++1

if (uselock) {
rc = pthread_unlock_global_np();

checkResults("pthread_unlock_global np()\n", rc);
1
}
return NULL;
1
int main(int argc, char xxargv)
{
pthread_t threadid[THREADS] ;
int rc=0;
int Toop=0;

Chapter 1. Pthread APIs

115

aboutapis.htm#CODEDISCLAIMER

}

printf("Enter Testcase - %s\n", argv[0]);

printf("Give any number of parameters to show data corruption\n");

if (argc 1= 1) {

printf("A parameter was specified, no serialization is being done!\n");

uselock = 03

}

if (uselock) {
rc = pthread lock global np();
checkResults("pthread_lock_global _np() (main)\n", rc);
}

printf("Creating %d threads\n", THREADS);

for (Toop=0; 100p<THREADS; ++loop) {
rc = pthread_create(&threadid[1oop], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

sleep(5);
if (uselock) {
rc = pthread_unlock_global np();
checkResults("pthread_unlock_global_np() (main)\n", rc);
}

printf("Wait for results\n");

for (Toop=0; 100p<THREADS; ++loop) {
rc = pthread_join(threadid[Toop], NULL);
checkResults("pthread_join()\n", rc);

}

printf("\nUsing %d threads and LOOPCONSTANT = %d\n",

THREADS, LOOPCONSTANT);
printf("Values are: (should be %d)\n", THREADS * LOOPCONSTANT);
printf(" ==>%d, %d, %d, %d\n", 1, 3, k, 1);

printf("Main completed\n");
return 0;

Output:

Enter Testcase - QPOWTEST/TPMTXGLBO

Give any number of parameters to show data corruption
Creating 10 threads

Wait for results

Using 10 threads and LOOPCONSTANT = 50000

Values are: (should be 500000)

==>500000, 500000, 500000, 500000

Main completed

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

116 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_destroy()—Destroy Mutex Attributes Object

Syntax:

#include <pthread.h>
int pthread _mutexattr_destroy(pthread mutexattr t =*attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_destroy() function destroys a mutex attributes object and allows the system to
reclaim any resources associated with that mutex attributes object. This does not have an effect on any
mutexes created using this mutex attributes object.

Authorities and Locks
None.

Parameters

attr (Input) Address of the mutex attributes object to be destroyed

Return Value

0 pthread_mutexattr_destroy() was successful.

value pthread_mutexattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_destroy() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129\—Initialize Mutex Attributes
Object

* |“pthread_mutex_init()—Initialize Mutex” on page 141} —Initialize Mutex

Example

See |Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"
pthread_mutex_t mutex;

Chapter 1. Pthread APIs 117

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)
{
int rc=0;
pthread_mutexattr_t mta;

printf("Entering testcase\n");

printf("Create a default mutex attribute\n");
rc = pthread mutexattr_init(&mta);
checkResults("pthread_mutexattr_init\n", rc);

printf("Create the mutex using a mutex attributes object\n");
rc = pthread_mutex_init(&mutex, &mta);
checkResults("pthread mutex_init(mta)\n", rc);

printf("- At this point, the mutex with its default attributes\n");
printf("- Can be used from any threads that want to use it\n");

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr_destroy()\n", rc);

printf("Destroy mutex\n");
rc = pthread_mutex_destroy(&mutex);
checkResults("pthread_mutex_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Create the mutex using a mutex attributes object

- At this point, the mutex with its default attributes
- Can be used from any threads that want to use it
Destroy mutex attribute

Destroy mutex

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

118 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute

Syntax:

#include <pthread.h>
int pthread_mutexattr_getkind _np(const pthread mutexattr t =*attr,
int xkind);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_getkind_np() function retrieves the kind attribute from the mutex attributes object
specified by attr. The mutex kind attribute is used to create mutexes with different behaviors.

The kind returned is one of PTHREAD MUTEX_NONRECURSIVE_NP or
PTHREAD_MUTEX_RECURSIVE_NP.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutes.

Note: This function is not portable.

Authorities and Locks

None.

Parameters
attr (Input) Address of the mutex attributes object
kind (Output) Address of the variable to receive the kind attribute

Return Value

0 pthread_mutexattr_getkind_np() was successful.

value pthread_mutexattr_getkind_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getkind_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

Chapter 1. Pthread APIs 119

+ |“pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129\—Initialize Mutex Attributes
Object

* |“pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131}—Set Mutex Kind Attribute

* [|“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

void showKind(pthread mutexattr_t *mta) {
int rc;
int kind;

printf("Check kind attribute\n");
rc = pthread_mutexattr_getkind_np(mta, &kind);
checkResults("pthread_mutexattr_getpshared()\n", rc);

printf("The pshared attributed is: ");

switch (kind) {

case PTHREAD_MUTEX_NONRECURSIVE_NP:
printf("PTHREAD MUTEX NONRECURSIVE NP\n");
break;

case PTHREAD_MUTEX_RECURSIVE_NP:
printf("PTHREAD_MUTEX_RECURSIVE_NP\n");

break;
default :
printf("! kind Error kind=%d !'\n", kind);
exit(1l);
}
return;
1
int main(int argc, char x*argv)
{
int rc=0;
pthread_mutexattr_t mta;
int pshared=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a default mutex attribute\n");
rc = pthread_mutexattr_init(&mta);
checkResults("pthread mutexattr_init()\n", rc);
showKind (&mta) ;

printf("Change mutex kind attribute\n");

rc = pthread mutexattr_setkind np(&mta, PTHREAD MUTEX RECURSIVE NP);
checkResults("pthread mutexattr_setkind()\n", rc);

showKind (&mta) ;

printf("Destroy mutex attribute\n");

rc = pthread _mutexattr_destroy(&mta);
checkResults("pthread mutexattr destroy()\n", rc);
printf("Main completed\n");

return 0;

}

Output:

120 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Enter Testcase - QPOWTEST/TPMTXAKNO
Create a default mutex attribute
Check kind attribute

The pshared attributed is:
PTHREAD_MUTEX_NONRECURSIVE_NP
Change mutex kind attribute
Check kind attribute

The pshared attributed is:
PTHREAD_MUTEX_RECURSIVE_NP
Destroy mutex attribute

Main completed

API introduced: V4R3

[Top| I [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_mutexattr_getname_np()—Get Name from Mutex Attributes
Object

Syntax:

#include <pthread.h>
int pthread mutexattr_getname np(const pthread mutexattr t *attr, char *name);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_getname_np() function retrieves the name attribute associated with the mutex
attribute specified by attr. The buffer specified by name must be at least 16 characters in length. If the
length of the mutex name is less than or equal to 15 characters, it is null terminated in the output buffer.

By default, each pthread_mutex_t has the name “QPOWMTX UNNAMED" associated with it. The name
attribute is used by various OS/400 system utilities to aid in debugging and service. One example is the
WRKJOB command, which has a “work with mutexes” menu choice to show which mutexes are currently
locked and which mutexes are being waited for.

If you should give unique names to all mutexes created to aid in debugging deadlock or performance
problems. Use the CL command WRKJOB, option 20, to help debug mutex deadlocks.

Authorities and Locks
None.

Parameters
attr (Input) Address of the mutex attributes object

name (Output) Address of a 16-byte character buffer to receive the name

Chapter 1. Pthread APIs 121

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_mutexattr_getname_np() was successful.

value pthread_mutexattr_getname_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getname_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ |“pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129\—Initialize Mutex Attributes
Object

+ [“pthread_mutexattr_setname_np()—Set Name in Mutex Attributes Object” on page 133—Set Name in
Mutex Attributes Object

+ [“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example

See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

int main(int argc, char x*argv)

{

int rc=0;
pthread _mutexattr_t mta;
char mutexname[16] ;

printf("Entering testcase\n");

printf("Create a default mutex attribute\n");
rc = pthread_mutexattr_init(&mta);
checkResults("pthread mutexattr_init\n", rc);

memset (mutexname, 0, sizeof(mutexname));

printf("Find out what the default name of the mutex is\n");
rc = pthread_mutexattr‘_getname_np(&mta, mutexname) ;
checkResults("pthread mutexattr_getname_np()\n", rc);

printf("The default mutex name will be: %.15s\n", mutexname);

printf("- At this point, mutexes created with this attribute\n");

printf("- will show up by name on many 0S/400 debug and service screens\n");
printf("- The default attribute contains a special automatically\n");
printf("- incrementing name that changes for each mutex created in \n");
printf("- the process\n");

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr destroy()\n", rc);

printf("Main completed\n");
return 0;

122 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Output:

Entering testcase

Create a default mutex attribute

Find out what the default name of the mutex is

The default mutex name is: QPOWMTX UNNAMED

- At this point, mutexes created with this attribute

- will show up by name on many 0S/400 debug and service screens
- The default attribute contains a special automatically

- incrementing name that changes for each mutex created in
- the process

Destroy mutex attribute

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_mutexattr_getpshared()—Get Process Shared Attribute from
Mutex Attributes Object

Syntax:

#include <pthread.h>
int pthread mutexattr_getpshared(const pthread mutexattr t *attr, int *pshared);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_getpshared() function retrieves the current setting of the process shared attribute
from the mutex attributes object. The process shared attribute indicates whether the mutex that is created
using the mutex attributes object can be shared between threads in separate processes
(PTHREAD_PROCESS_SHARED) or shared between threads within the same process
(PTHREAD_PROCESS_PRIVATE).

Even if the mutex in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for mutex attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable that contains the mutex attributes object

pshared
(Output) Address of the variable to contain the pshared attribute result

Chapter 1. Pthread APIs 123

#TOP_OF_PAGE
aplist.htm

Return Value
0 pthread_mutexattr_getpshared() was successful.

value pthread_mutexattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_getpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ |“pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129\—Initialize Mutex Attributes
Object

+ [“pthread_mutexattr_setpshared()—Set Process Shared Attribute in Mutex Attributes Object” on page]
1351 —Set Process Shared Attribute in Mutex Attributes Object

+ |“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example

See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

void showPshared(int pshared) {

printf("The pshared attribute is: ");

switch (pshared) {

case PTHREAD_PROCESS_PRIVATE:
printf("PTHREAD_PROCESS_PRIVATE\n");
break;

case PTHREAD_PROCESS_SHARED:
printf("PTHREAD_PROCESS_SHARED\n");
break;

default :
printf("! pshared Error !\n");
exit(1);

}

return;

}

int main(int argc, char x*argv)

{

int rc=0;
pthread mutexattr t mta;
int pshared=0;

printf("Entering testcase\n");

printf("Create a default mutex attribute\n");
rc = pthread mutexattr_init(&mta);
checkResults("pthread_mutexattr_init()\n", rc);

printf("Check pshared attribute\n");

rc = pthread_mutexattr_getpshared(&mta, &pshared);
checkResults("pthread mutexattr_getpshared()\n", rc);

124 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

showPshared(pshared) ;

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Check pshared attribute

The pshared attribute is: PTHREAD_PROCESS_PRIVATE
Destroy mutex attribute

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_mutexattr_gettype()—Get Mutex Type Attribute

Syntax:

#include <pthread.h>
int pthread _mutexatttr_gettype(const pthread mutexattr t xattr,
int *type);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_gettype() function retrieves the type attribute from the mutex attributes object
specified by attr. The mutex type attribute is used to create mutexes with different behaviors.

The type returned is one of PTHREAD_MUTEX_DEFAULT, PTHREAD_MUTEX_NORMAL,
PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or
PTHREAD_MUTEX_OWNERTERM_NP.

The default mutex type (or PTHREAD_MUTEX_DEFAULT) is PTHREAD_MUTEX_NORMAL.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already
held mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a
deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the

owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

Chapter 1. Pthread APIs 125

#TOP_OF_PAGE
aplist.htm

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held
mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks
for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to
relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm
mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was
held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an
orphaned mutex, the lock request fails with the EOWNERTERM error.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object
type (Output) Address of the variable to receive the type attribute

Return Value

0 pthread_mutexattr_gettype() was successful.

value pthread_mutexattr_gettype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexatttr_gettype() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_mutexattr_init()—Initialize Mutex Attributes Object” on page 129\—Initialize Mutex Attributes
Object

* |“pthread_mutexattr_settype()—Set Mutex Type Attribute” on page 137|—Set Mutex Type Attribute
+ [“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int showType(pthread mutexattr_ t *mta) {
int rcs
int type;

printf("Check type attribute\n");

rc = pthread _mutexattr_gettype(mta, &type);
checkResults("pthread mutexattr_gettype()\n", rc);

126 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

}

printf("The type attributed is: ");

switch (type) {

case PTHREAD _MUTEX_ NORMAL:
printf("PTHREAD MUTEX_NORMAL (DEFAULT)\n");
break;

case PTHREAD_MUTEX_RECURSIVE:
printf("PTHREAD_MUTEX_RECURSIVE\n");
break;

case PTHREAD_MUTEX_ERRORCHECK:
printf("PTHREAD MUTEX_ ERRORCHECK\n");
break;

case PTHREAD_MUTEX_OWNERTERM_NP:
printf("PTHREAD_MUTEX_OWNERTERM_NP\n");

break;

default :
printf("! type Error type=%d !\n", type);
exit(1);

}

return type;

int main(int argc, char xxargv)

{

int rc=0;
pthread_mutexattr_t mta;
int type=0;
pthread _mutex_t mutex;
struct timespec ts;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a default mutex attribute\n");
rc = pthread _mutexattr_init(&mta);
checkResults("pthread mutexattr_init()\n", rc);

printf("Change mutex type attribute to recursive\n");

rc = pthread_mutexattr_settype(&mta, PTHREAD_MUTEX_RECURSIVE);
checkResults ("pthread mutexattr settype()\n", rc);
showType(&mta) ;

rc = pthread_mutexattr_setname_np(&mta, "RECURSIVE ONE");
checkResults("pthread _mutexattr_setname_np()\n", rc);

printf("Create the named, recursive mutex\n");
rc = pthread_mutex_init(&mutex, &mta);
checkResults ("pthread mutex_init()\n", rc);

printf("Lock the named, recursive mutex\n");
rc = pthread_mutex_lock(&mutex);
checkResults("pthread mutex_lock() 1\n", rc);

printf("ReLock the named, recursive mutex\n");
rc = pthread_mutex_Tock(&mutex);
checkResults("pthread _mutex_Tock() 2\n", rc);

printf("Trylock the named, recursive mutex\n");
rc = pthread _mutex_trylock(&mutex);
checkResults ("pthread _mutex_trylock()\n", rc);

printf("Timedlock the named, recursive mutex\n");
ts.tv_sec = 5;

ts.tv_nsec = 0;

rc = pthread_mutex_timedlock_np(&mutex, &ts);
checkResults("pthread mutex_timedlock np()\n", rc);

printf("Sleeping for a short time holding the recurive mutex\n");

printf("Use DSPJOB, option 19 to see the held mutex\n");

Chapter 1. Pthread APIs

127

sleep(30);

printf("Unlock the mutex 4 times\n");
rc = pthread_mutex_unlock(&mutex);
checkResults("pthread_mutex_unlock() 1\n", rc);

rc = pthread_mutex_unlock(&mutex) ;
checkResults("pthread mutex_unlock() 2\n", rc);

rc = pthread mutex_unlock(&mutex);
checkResults("pthread _mutex_unlock() 3\n", rc);

rc = pthread_mutex_unlock(&mutex);
checkResults("pthread_mutex_unlock() 4\n", rc);

printf("Cleanup\n");
rc = pthread mutex_destroy(&mutex);
checkResults("pthread _mutex_destroy()\n", rc);

rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output

Enter Testcase - QPOWTEST/TPMTXTYPO

Create a default mutex attribute

Change mutex type attribute to recursive

Check type attribute

The type attributed is: PTHREAD MUTEX_ RECURSIVE
Create the named, recursive mutex

Lock the named, recursive mutex

RelLock the named, recursive mutex

Trylock the named, recursive mutex

Timedlock the named, recursive mutex

Sleeping for a short time holding the recurive mutex
Use DSPJOB, option 19 to see the held mutex
UnTock the mutex 4 times

Cleanup

Main completed

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

128 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_init()—Initialize Mutex Attributes Object

Syntax:

#include <pthread.h>
int pthread_mutexattr_init(pthread mutexattr_t *attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_init() function initializes the mutex attributes object referenced by attr to the
default attributes. The mutex attributes object can be used in a call to pthread_mutex_init() to create a
mutex.

Authorities and Locks
None.

Parameters

attr (Input/Output) Address of the variable to contain the mutex attributes object

Return Value

0 pthread_mutexattr_init() was successful.

value pthread_mutexattr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* ['pthread_mutexattr_destroy()—Destroy Mutex Attributes Object” on page 117—Destroy Mutex
Attributes Object

* |“pthread_mutex_destroy()—Destroy Mutex” on page 139|—Destroy Mutex

* |“pthread_mutex_init()—Initialize Mutex” on page 141} —Initialize Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

Chapter 1. Pthread APIs 129

aboutapis.htm#CODEDISCLAIMER

pthread_mutex_t mutex;

int main(int argc, char x*argv)
{
int rc=0;
pthread_mutexattr_t mta;

printf("Entering testcase\n");

printf("Create a default mutex attribute\n");
rc = pthread_mutexattr_init(&mta);
checkResults("pthread mutexattr_init\n", rc);

printf("Create the mutex using a mutex attributes object\n");
rc = pthread_mutex_init(&mutex, &mta);
checkResults("pthread mutex_init(mta)\n", rc);

printf("- At this point, the mutex with its default attributes\n");
printf("- Can be used from any threads that want to use it\n");

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr destroy()\n", rc);

printf("Destroy mutex\n");
rc = pthread_mutex_destroy(&mutex);
checkResults("pthread mutex_destroy()\n", rc);

printf("Main completed\n");
return 0;

Output:

Entering testcase

Create a default mutex attribute

Create the mutex using a mutex attributes object

- At this point, the mutex with its default attributes
- Can be used from any threads that want to use it
Destroy mutex attribute

Destroy mutex

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

130 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute

Syntax:

#include <pthread.h>
int pthread mutexattr_setkind _np(pthread _mutexattr_t *attr,
int kind);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_setkind_np() function sets the kind attribute in the mutex attributes object
specified by attr. The mutex kind attribute is used to create mutexes with different behaviors.

The kind set may be one of PTHREAD_MUTEX_NONRECURSIVE_NP or
PTHREAD_MUTEX_RECURSIVE_NP.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutes. The maximum number of recursive locks by the owning thread is 32,767.

Note: This function is not portable

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object
kind (Input) Variable containing the kind attribute.

Return Value

0 pthread_mutexattr_setkind_np() was successful.

value pthread_mutexattr_setkind_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setkind_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271
+ [“pthread_mutexattr_getkind_np()—Get Mutex Kind Attribute” on page 119—Get Mutex Kind Attribute

Chapter 1. Pthread APIs 131

+ |“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example

See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

void showKind(pthread mutexattr_t *mta) {
int rc;
int kind;

printf("Check kind attribute\n");
rc = pthread mutexattr_getkind_np(mta, &kind);
checkResults ("pthread_mutexattr_getpshared()\n", rc);

printf("The pshared attributed is: ");

switch (kind) {

case PTHREAD_MUTEX_NONRECURSIVE_NP:
printf("PTHREAD_MUTEX_NONRECURSIVE_NP\n");
break;

case PTHREAD_MUTEX_RECURSIVE_NP:
printf ("PTHREAD_MUTEX_RECURSIVE_NP\n");

break;
default :
printf("! kind Error kind=%d !\n", kind);
exit(1);
}
return;
1
int main(int argc, char x*argv)
{
int rc=0;
pthread mutexattr t mta;
int pshared=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a default mutex attribute\n");
rc = pthread_mutexattr_init(&mta);
checkResults ("pthread mutexattr_init()\n", rc);
showKind(&mta) ;

printf("Change mutex kind attribute\n");

rc = pthread_mutexattr_setkind_np(&mta, PTHREAD_MUTEX_RECURSIVE_NP);
checkResults ("pthread mutexattr setkind()\n", rc);

showKind(&mta) ;

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPMTXAKNO
Create a default mutex attribute
Check kind attribute

The pshared attributed is:
PTHREAD_MUTEX_NONRECURSIVE_NP
Change mutex kind attribute

Check kind attribute

132 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

The pshared attributed is:
PTHREAD_MUTEX_RECURSIVE_NP
Destroy mutex attribute
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_mutexattr_setname_np()—Set Name in Mutex Attributes
Object

Syntax:

#include <pthread.h>
int pthread _mutexattr_setname np(pthread mutexattr t *xattr, const char *name);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_setname_np() function changes the name attribute associated with the mutex
attribute specified by attr. The buffer specified by name must contain a null terminated string of 15
characters or less in length (not including the NULL). If the length of name is greater than 15 characters,
the excess characters are ignored. If name is null, the mutex name attribute is reset to the default.

By default, each pthread_mutex_t has the name “QPOWMTX UNNAMED” associated with it. The name
attribute is used by various OS/400 system utilities to aid in debug and service. One example is the
WRKJOB command, which has a “work with mutexes” menu choice to show which mutexes are currently
locked and which mutexes are being waited for.

If you should give unique names to all mutexes created to aid in debugging deadlock or performance
problems. Use the CL command WRKJOB, option 20, to help debug mutex deadlocks.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

attr (Input) Address of the mutex attributes object

name (Input) Address of a null terminated character buffer containing the name

Return Value

0 pthread_mutexattr_setname_np() was successful.

value pthread_mutexattr_setname_np() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 133

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_mutexattr_setname_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ |“pthread_mutexattr_getname_np()—Get Name from Mutex Attributes Object” on page 121}—Get Name
from Mutex Attributes Object

+ [“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

int main(int argc, char x*argv)

{

int rc=0;
pthread_mutexattr_t mta;
char mutexname[16] ;

printf("Entering testcase\n");

printf("Create a default mutex attribute\n");
rc = pthread mutexattr_init(&mta);
checkResults("pthread_mutexattr_init\n", rc);

memset (mutexname, 0, sizeof(mutexname));

printf("Find out what the default name of the mutex is\n");
rc = pthread _mutexattr_getname_np(&mta, mutexname);
checkResults("pthread_mutexattr_getname np()\n", rc);

printf("The default mutex name will be: %.15s\n", mutexname);

printf("- At this point, mutexes created with this attribute\n");

printf("- will show up by name on many 0S/400 debug and service screens\n");
printf("- The default attribute contains a special automatically\n");
printf("- incrementing name that changes for each mutex created in \n");
printf("- the process\n");

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread_mutexattr_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create a default mutex attribute

Find out what the default name of the mutex is
The default mutex name will be: QPOWMTX UNNAMED
The new mutex name will be: <My Mutex>

Destroy mutex attribute

Main completed

134 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_mutexattr_setpshared()—Set Process Shared Attribute in
Mutex Attributes Object

Syntax:

#include <pthread.h>
int pthread_mutexattr_setpshared(pthread_mutexattr_t xattr,
int pshared);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_setpshared() function sets the current pshared attribute for the mutex attributes
object. The process shared attribute indicates whether the mutex that is created using the mutex attributes
object can be shared between threads in separate processes (PTHREAD_PROCESS_SHARED) or shared
between threads within the same process (PTHREAD_PROCESS_PRIVATE).

Even if the mutex in storage is accessible from two separate processes, it cannot be used from both
processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for mutex attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable containing the mutex attributes object

pshared
(Input) One of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE

Return Value

0 pthread_mutexattr_setpshared() was successful.

value pthread_mutexattr_setpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexattr_setpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

Chapter 1. Pthread APIs 135

#TOP_OF_PAGE
aplist.htm

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

s |“pthread_mutexattr_getpshared()—Get Process Shared Attribute from Mutex Attributes Object” on|
page 123(—Get Process Shared Attribute from Mutex Attributes Object

+ |“pthread_mutex_init()—Initialize Mutex” on page 141|—Initialize Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

void showPshared(pthread_mutexattr_t *mta) {
int rc;
int pshared;

printf("Check pshared attribute\n");
rc = pthread mutexattr_getpshared(mta, &pshared);
checkResults("pthread mutexattr _getpshared()\n", rc);

printf("The pshared attributed is: ");

switch (pshared) {

case PTHREAD_PROCESS_PRIVATE:
printf("PTHREAD_PROCESS_PRIVATE\n");
break;

case PTHREAD_PROCESS SHARED:
printf("PTHREAD_PROCESS_SHARED\n");

break;
default :
printf("! pshared Error !\n");
exit(1l);
}
return;
1
int main(int argc, char x*argv)
{
int rc=0;
pthread_mutexattr_t mta;
int pshared=0;

printf("Entering testcase\n");

printf("Create a default mutex attribute\n");
rc = pthread _mutexattr_init(&mta);
checkResults ("pthread mutexattr_init()\n", rc);
showPshared(&mta) ;

printf("Change pshared attribute\n");

rc = pthread_mutexattr_setpshared(&mta, PTHREAD PROCESS_ SHARED);
checkResults("pthread _mutexattr_setpshared()\n", rc);
showPshared(&mta) ;

printf("Destroy mutex attribute\n");
rc = pthread_mutexattr_destroy(&mta);
checkResults("pthread mutexattr_destroy()\n", rc);

printf("Main completed\n");
return 0;

136 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

Output:

Entering testcase

Create a default mutex attribute

Check pshared attribute

The pshared attribute is: PTHREAD_PROCESS_PRIVATE
Change pshared attribute

The pshared attribute is: PTHREAD PROCESS SHARED
Destroy mutex attribute

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_mutexattr_settype()—Set Mutex Type Attribute

Syntax:

#include <pthread.h>
int pthread mutexatttr_settype(pthread mutexattr t *attr,
int type);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutexattr_settype() function sets the fype attribute in the mutex attributes object specified
by attr. The mutex type attribute is used to create mutexes with different behaviors.

The type will be one of PTHREAD_MUTEX_DEFAULT, PTHREAD_MUTEX_NORMAL,
PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK, or
PTHREAD_MUTEX_OWNERTERM_NP or the EINVAL error will be returned.

The default mutex type (or PTHREAD_MUTEX_DEFAULT) is PTHREAD_MUTEX_NORMAL.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already
held mutex, or to lock a mutex that was held by another thread when that thread terminated result in a
deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread re-locks an already held
mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the
EDEADILK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks
for deadlock conditions that occur when a thread re-locks an already held mutex. If a thread attempts to

Chapter 1. Pthread APIs 137

#TOP_OF_PAGE
aplist.htm

relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm
mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was
held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an
orphaned mutex, the lock request fails with the EOWNERTERM error.

Authorities and Locks
None.

Parameters
attr (Input) Address of the mutex attributes object
type (Input) Address of the type attribute to be set.

Return Value

0 pthread_mutexattr_settype() was successful.

value pthread_mutexattr_settype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutexatttr_settype() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ [“pthread_mutexattr_gettype()—Get Mutex Type Attribute” on page 125—Get Mutex Type Attribute
+ |“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

Example

See|Code disclaimer information| for information pertaining to code examples.

See [“Example” on page 126 for an example.

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

138 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_mutex_destroy()—Destroy Mutex

Syntax:

#include <pthread.h>
int pthread_mutex_destroy(pthread mutex_t *mutex);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_destroy() function destroys the named mutex. The destroyed mutex can no longer be
used.

If pthread_mutex_destroy() is called on a mutex that is locked by another thread, the request fails with
an EBUSY error. If the calling thread has the mutex locked, any other threads waiting for the mutex
using a call to pthread_mutex_lock() at the time of the call to pthread_mutex_destroy() fails with the
EDESTROYED error.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_lock() or pthread_mutex_trylock() branches into a slow path
and causes the initialization of the mutex. Because a mutex is not just a simple memory object and
requires that some resources be allocated by the system, an attempt to call pthread_mutex_destroy() or
pthread_mutex_unlock() on a mutex that has statically initialized using PTHREAD_MUTEX_INITIALER
and was not yet locked causes an EINVAL error.

Every mutex must eventually be destroyed with pthread_mutex_destroy(). The machine eventually
detects the error if a mutex is not destroyed, but the storage is deallocated or corrupted. The machine
then creates LIC log synchronization entries that indicate the failure to help debug the problem. Large
numbers of these entries can affect system performance and hinder debug capabilities for other system
problems. Always use pthread_mutex_destroy() before freeing mutex storage to prevent these debug LIC
log entries.

Note: Once a mutex is created, it cannot be validly copied or moved to a new location.

Authorities and Locks
None.

Parameters

mutex (Input) Address of the mutex to be destroyed

Return Value

0 pthread_mutex_destroy() was successful.

value pthread_mutex_destroy() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 139

Error Conditions

If pthread_mutex_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EBUSY]
The mutex is currently owned by another thread.
[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_mutex_init()—Initialize Mutex” on page 141}—Initialize Mutex

* |“pthread_mutex_lock()—Lock Mutex” on page 143—Lock Mutex

+ |“pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151}—Lock Mutex with No Wait
* |“pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_mutex_t mutex;

int main(int argc, char xxargv)
{
int rc=0;
pthread_mutexattr_t mta;

printf("Entering testcase\n");

printf("Create the mutex using the NULL attributes (default)\n");
rc = pthread mutex_init(&mutex, NULL);
checkResults("pthread_mutex_init(NULL)\n", rc);

printf("Destroy all mutexes\n");

pthread _mutex_destroy (&mutex) ;
checkResults("pthread_mutex_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Create the mutex using the NULL attributes (default)
Destroy all mutexes

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

140 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_mutex_init()—Initialize Mutex

Syntax:

#include <pthread.h>
int pthread_mutex_init(pthread mutex_t *mutex,
const pthread mutexattr t *attr);

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_init() function initializes a mutex with the specified attributes for use. The new
mutex may be used immediately for serializing critical resources. If attr is specified as NULL, all
attributes are set to the default mutex attributes for the newly created mutex.

With these declarations and initialization:

pthread_mutex_t mutex2;
pthread_mutex_t mutex3;
pthread_mutexattr_t mta;

pthread_mutexattr_init(&mta);

The following three mutex initialization mechanisms have equivalent function.

pthread_mutex_t mutexl = PTHREAD_MUTEX_INITIALIZER;
pthread mutex_init(&mutex2, NULL);
pthread mutex_init(&mutex3, &mta);

All three mutexes are created with the default mutex attributes.
Every mutex must eventually be destroyed with pthread_mutex_destroy(). The machine eventually

detects the error if a mutex is not destroyed. Large numbers of these entries can affect system
performance. Always use pthread_mutex_destroy() before freeing or reusing mutex storage.

Once a mutex is created, it cannot be validly copied or moved to a new location. If the mutex is copied

or moved to a new location, the new object is not valid and cannot be used. Attempts to use the new

object result in the EINVAL error.

Note: Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize
the mutex. Instead, on first use, the pthread_mutex_lock() or pthread_mutex_trylock() functions branch
into a slow path and cause the initialization of the mutex. Because a mutex is not just a simple memory

object and requires that some resources be allocated by the system, an attempt to call

pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically initialized using

PTHREAD_MUTEX_INITIALER and was not yet locked causes an EINVAL error.

Authorities and Locks

None.

Chapter 1. Pthread APIs

141

Parameters

mutex (Input) The address of the variable to contain a mutex object.

attr (Input) The address of the variable containing the mutex attributes object.

Return Value

0 pthread_mutex_init() was successful.

value pthread_mutex_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[ENOMEM]

The system cannot allocate the resources required to create the mutex.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_mutex_destroy()—Destroy Mutex” on page 139|—Destroy Mutex

+ [“pthread_mutex_lock()—Lock Mutex” on page 143}—Lock Mutex

+ |“pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151}—Lock Mutex with No Wait
* |“pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread mutex_t mutex = PTHREAD MUTEX INITIALIZER;
pthread_mutex_t mutex2;
pthread_mutex_t mutex3;

int main(int argc, char x*argv)

{
int rc=0;
pthread mutexattr t mta;
printf("Enter Testcase - %s\n", argv[0]);
printf("Create a default mutex attribute\n");
rc = pthread _mutexattr_init(&mta);
checkResults("pthread_mutexattr_init\n", rc);
printf("Create the mutexes using the default mutex attributes\n");
printf("First mutex created via static PTHREAD_MUTEX_INITIALIZER\n");
printf("Create the mutex using the NULL attributes (default)\n");

rc = pthread_mutex_init(&mutex3, NULL);
checkResults("pthread mutex_init(NULL)\n", rc);

142 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Create the mutex using a mutex attributes object\n");
rc = pthread mutex_init(&mutex2, &mta);
checkResults("pthread mutex_init(mta)\n", rc);

printf("- At this point, all mutexes can be used with their\n");
printf("- default attributes from any threads that want to\n");
printf("- use them\n");

printf("Destroy all mutexes\n");
pthread_mutex_destroy(&mutex) ;
pthread_mutex_destroy(&mutex2) ;
pthread_mutex_destroy (&mutex3);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPMTXINIO

Create a default mutex attribute

Create the mutexes using the default mutex attributes
First mutex created via static PTHREAD _MUTEX_ INITIALIZER
Create the mutex using the NULL attributes (default)
Create the mutex using a mutex attributes object

- At this point, all mutexes can be used with their

- default attributes from any threads that want to

- use them

Destroy all mutexes

Main completed

API introduced: V4R3

IEE' | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_mutex_lock()—Lock Mutex

Syntax:

#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t *mutex);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_lock() function acquires ownership of the mutex specified. If the mutex currently is
locked by another thread, the call to pthread_mutex_lock() blocks until that thread relinquishes
ownership by a call to pthread_mutex_unlock().

If a signal is delivered to a thread while that thread is waiting for a mutex, when the signal handler

returns, the wait resumes. pthread_mutex_lock() does not return EINTR like some other blocking
function calls.

Chapter 1. Pthread APIs 143

#TOP_OF_PAGE
aplist.htm

Use the CL command WRKJOB, option 20, to help you debug mutex deadlocks.

Destroying a held mutex is a common way to serialize destruction of objects that are protected by that
mutex. This action is allowed. The call to pthread_mutex_lock() may fail with the EDESTROYED error if
the mutex is destroyed by the thread that was currently holding it.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or
pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a
mutex is not just a simple memory object and requires that some resources be allocated by the system, an
attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically
initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked causes an EINVAL error.

A pthread mutex is a structure of type pthread_mutex_t that implement a behavior based on the Pthread
mutexes. An MI mutex is a structure built into the machine that implement a similar sort of serialization
construct.

The maximum number of recursive locks by the owning thread is 32,767. When this number is exceeded,
attempts to lock the mutex return the ERECURSE error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already
held mutex, or to lock a mutex that was held by another thread when that thread terminated, result in a
deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held
mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the
EDEADILK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks
for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to
relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm
mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was
held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an
orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads
that wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has
occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20 shows the thread as in a condition wait. Displaying the call stack shows
that the function deadlockOnOrphanedMutex is in the call stack.

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever.
The pthreads run-time simulates the deadlock that has occurred in your application. When you are
attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as
in a condition wait. Displaying the call stack will show that the function deadlockOnAlreadyHeldMutex
is in the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

144 iSeries: Pthread APIs

Authorities and Locks

None.

Parameters

mutex (Input) The address of the mutex to lock

Return Value

0 pthread_mutex_lock() was successful.

value pthread_mutex_lock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_lock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EDESTROYED]

While waiting for the mutex lock to be satisfied, the mutex was destroyed.
[EOWNERTERM]

A thread terminated the holding of the mutex, and the mutex is an ownerterm mutex type.

[EDEADLK]
A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.

[ERECURSE]

The recursive mutex cannot be recursively locked again.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex

* |“pthread_mutex_init()—Initialize Mutex” on page 141} —Initialize Mutex
+ [“pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151/—Lock Mutex with No Wait

+ [“pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147—Lock Mutex with
Time-Out

[‘pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

/*
This example shows the corruption that can result if no
serialization is done and also shows the use of
pthread_mutex_lock(). Call it with no parameters
to use pthread_mutex_Tock() to protect the critical section,
or 1 or more parameters to show data corruption that occurs
without Tocking.
*/

#define LOOPCONSTANT 100000

Chapter 1. Pthread APIs 145

aboutapis.htm#CODEDISCLAIMER

#define THREADS 10

pthread mutex_t mutex = PTHREAD MUTEX INITIALIZER;
int 1,3.k, 13
int uselock=1;

void *threadfunc(void *parm)
{

int Toop = 03

int rc;

for (Toop=0; 100p<LOOPCONSTANT; ++loop) {

if (uselock) {
rc = pthread_mutex_lock(&mutex);
checkResults("pthread mutex_Tock()\n", rc);

1

iy ++jy kg ++]1

if (uselock) {
rc = pthread_mutex_unlock(&mutex);
checkResults("pthread_mutex_unlock()\n", rc);

1
}
return NULL;
}
int main(int argc, char x*argv)
{
pthread_t threadid[THREADS] ;
int rc=0;
int loop=0;
pthread_attr_t pta;

printf("Entering testcase\n");

printf("Give any number of parameters to show data corruption\n");

if (argc 1= 1) {
printf("A parameter was specified, no serialization is being done!\n");
uselock = 0;

}

pthread_attr_init(&pta);
pthread_attr_setdetachstate(&pta, PTHREAD_CREATE_JOINABLE);

printf("Creating %d threads\n", THREADS);

for (Toop=0; 100p<THREADS; ++1oop) {
rc = pthread_create(&threadid[Toop], &pta, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

}

printf("Wait for results\n");

for (Toop=0; 1oop<THREADS; ++1oop) {
rc = pthread_join(threadid[Toop], NULL);
checkResults ("pthread_join()\n", rc);

}

printf("Cleanup and show results\n");
pthread attr destroy(&pta);
pthread_mutex_destroy (&mutex) ;

printf("\nUsing %d threads and LOOPCONSTANT = %d\n",

THREADS, LOOPCONSTANT);
printf("Values are: (should be %d)\n", THREADS * LOOPCONSTANT);
printf(" ==>%d, %d, %d, %d\n", i, i, k, 1);

printf("Main completed\n");
return 0;

146 iSeries: Pthread APIs

Output:

Entering testcase

Give any number of parameters to show data corruption
Creating 10 threads

Wait for results

Cleanup and show results

Using 10 threads and LOOPCONSTANT = 100000
Values are: (should be 1000000)

==>1000000, 1000000, 1000000, 1000000
Main completed

Output:

(data corruption without locking example)

Entering testcase

Give any number of parameters to show data corruption

A parameter was specified, no serialization is being done!
Creating 10 threads

Wait for results

Cleanup and show results

Using 10 threads and LOOPCONSTANT = 100000
Values are: (should be 1000000)

==>883380, 834630, 725131, 931883
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_mutex_timedlock_np()—Lock Mutex with Time-Out

Syntax:

#include <pthread.h>

#include <time.h>

int pthread_mutex_timedlock np(pthread mutex_t *mutex,
const struct timespec *deltatime);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_timedlock_np() function acquires ownership of the mutex specified. If the mutex is
currently locked by another thread, the call to pthread_mutex_timedlock_np() will block until the
specified deltatime has elapsed or the holding thread relinquishes ownership by a call to
pthread_mutex_unlock().

Performing a pthread_mutex_timedlock_np() wait for a mutex has different semantics related to signal

handling than the pthread_mutex_lock() function. If a signal is delivered to a thread while that thread is
performing a timed wait for a mutex, the signal is held pending until either the mutex is acquired or the

Chapter 1. Pthread APIs 147

#TOP_OF_PAGE
aplist.htm

time-out occurs. At that time the signal handler will run, when the signal handler returns,
pthread_mutex_timedlock_np() will return the results of the timed mutex wait.

Use the CL. command WRKJOB, option 20 for a screen that will aid in debugging mutex deadlocks.

Destroying a held mutex is a common way to serialize destruction of objects that are protected by that
mutex, and is allowed. The call to pthread_mutex_timedlock_np() may fail with the EDESTROYED
error if the mutex is destroyed by the thread that was currently holding it.

Note that mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately
initialize the mutex. Instead, on first use, pthread_mutex_timedlock_np(), pthread_mutex_lock() or
pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a
mutex is not just a simple memory object, and requires that some resources be allocated by the system,
an attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that has was
statically initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked will result in an
EINVAL error.

A pthread mutex is a structure of type pthread_mutex_t that implement a behavior based on the Pthread
mutexes. An MI mutex is a structure built into the machine that implement a similar sort of serialization
construct.

The maximum number of recursive locks by the owning thread is 32,767. After which, attempts to lock
the mutex will return the ERECURSE error.

Note: This function is not portable

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already
held mutex, or to lock a mutex that was held by another thread when that thread terminated result in a
deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread re-locks an already held
mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks
for deadlock conditions that occur when a thread re-locks an already held mutex. If a thread attempts to
relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm
mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was
held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an
orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads
that wait for that mutex will block forever, or until the specified deltatime has elapsed. The pthreads
run-time simulates the deadlock that has occurred in your application. When attempting to debug these
deadlock scenarios, the CL command WRKJOB, option 20 will show the thread as in a condition wait.
Displaying the call stack will show that the function deadlockedOnOrphanedMutex or
timedDeadlockOnOrphanedMutex is in the call stack.

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever, or
until the specified deltatime has elapsed. The pthreads run-time simulates the deadlock that has occurred

148 iSeries: Pthread APIs

in your application. When attempting to debug these deadlock scenarios, the CL command WRKJOB,
option 20 will show the thread as in a condition wait. Displaying the call stack will show that the
function deadlockOnAlreadyHeldMutex or timedDeadlockOnAlreadyHeldMutex is in the call stack.

In order to change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

None.

Parameters

mutex (Input) The address of the mutex to lock

Return Value

0 pthread_mutex_timedlock_np() was successful.

value pthread_mutex_timedlock_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_timedlock_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.
[EDESTROYED]

While waiting for the mutex lock to be satisfied, the mutex was destroyed.
[EBUSY]

The attempt to lock the mutex timed out because the mutex was already locked.
[EOWNERTERM]

A thread terminated holding the mutex, and the mutex is an ownerterm mutex type.
[EDEADLK]

A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.
[ERECURSE]

The recursive mutex cannot be recursively locked again.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex

* |“pthread_mutex_init()—Initialize Mutex” on page 141} —Initialize Mutex

+ [“pthread_mutex_lock()—Lock Mutex” on page 143}—Lock Mutex

* [“pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151}—Lock Mutex with No Wait
* [“pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

Chapter 1. Pthread APIs 149

aboutapis.htm#CODEDISCLAIMER

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread _mutex_t mutex = PTHREAD MUTEX_INITIALIZER;

void *threadFunc(void *parm)
{

int rc;

int i

struct timespec deltatime;

deltatime.tv_sec = 5;
deltatime.tv_nsec = 0;

printf("Timed Tock the mutex from a secondary thread\n");
rc = pthread_mutex_timedlock_np(&mutex, &deltatime);
if (rc != EBUSY) {
printf("Got an incorrect return code from pthread mutex_timedlock_np\n");
}

printf("Thread mutex timeout\n");

return 0;
}
int main(int argc, char x*argv)
{
int rc=0;
pthread_t thread;

printf("Enter Testcase - %s\n", argv[0]);

printf("Acquire the mutex in the initial thread\n");
rc = pthread_mutex_Tock(&mutex);
checkResults("pthread _mutex_lock()\n", rc),

printf("Create a thread\n");
rc = pthread create(&thread, NULL, threadFunc, NULL);
checkResults("pthread_create()\n", rc);

printf("Join to the thread\n");
rc = pthread_join(thread, NULL);
checkResults ("pthread_join()\n", rc);

printf("Destroy mutex\n");
pthread_mutex_destroy (&mutex) ;

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPMTXTIMO

Acquire the mutex in the initial thread
Create a thread

Join to the thread

Timed Tock the mutex from a secondary thread
Thread mutex timeout

Destroy mutex

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

150 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutex_trylock()—Lock Mutex with No Wait

Syntax:

#include <pthread.h>
int pthread_mutex_trylock(pthread mutex_t *mutex);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_trylock() function attempts to acquire ownership of the mutex specified without
blocking the calling thread. If the mutex is currently locked by another thread, the call to
pthread_mutex_trylock() returns an error of EBUSY.

A failure of EDEADLK indicates that the mutex is already held by the calling thread.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or
pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a
mutex is not just a simple memory object and requires that some resources be allocated by the system, an
attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically
initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked causes an EINVAL error.

The maximum number of recursive locks by the owning thread is 32,767. When this number is exceeded,
attempts to lock the mutex return the ERECURSE error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already
held mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a
deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held
mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the
EDEADILK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks
for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to
relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm
mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was
held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an
orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads
that wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has

Chapter 1. Pthread APIs 151

occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function deadlockOnOrphanedMutex is in the call stack.

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever.
The pthreads run-time simulates the deadlock that has occurred in your application. When you are
attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as
in a condition wait. Displaying the call stack shows that the function deadlockOnAlreadyHeldMutex is
in the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks
None.

Parameters

mutex (Input) Address of the mutex to lock

Return Value

0 pthread_mutex_trylock() was successful.

value pthread_mutex_trylock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_trylock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EBUSY]

The mutex is currently locked by another thread.

A thread terminated while holding the mutex, and the mutex is an ownerterm mutex type.

A thread attempted to relock an already held mutex, and the mutex is an errorcheck mutex type.
[ERECURSE]

The recursive mutex cannot be recursively locked again.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex

* |“pthread_mutex_init()—Initialize Mutex” on page 141|—Initialize Mutex
+ [“pthread_mutex_lock()—Lock Mutex” on page 143}—Lock Mutex

+ [“pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147—Lock Mutex with
Time-Out

[‘pthread_mutex_unlock()—Unlock Mutex” on page 155—Unlock Mutex

Example

See [Code disclaimer information| for information pertaining to code examples.

152 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#include <pthread.h>
#include <stdio.h>
#include <errno.h>
#include "check.h"

/*

This example simulates a number of threads working on a parallel
problem. The threads use pthread mutex_trylock() so that

they do not spend time blocking on a mutex and instead spend more
of the time making progress towards the final solution. When
trylock fails, the processing is done Tocally, eventually to

be merged with the final parallel solution.

This example should complete faster than the example for
pthread mutex_lock() in which threads solve the same parallel
problem but spend more time waiting in resource contention.

*/
#define LOOPCONSTANT 100000
#define THREADS 10

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int i,3,k, T3

void *threadfunc(void *parm)

{

int loop = 0;

int localProcessingCompleted = 0;

int numberOfLocalProcessingBursts = 0;
int processingCompletedThisBurst = 0;
int rc;

for (loop=0; 100p<LOOPCONSTANT; ++loop) {
rc = pthread_mutex_trylock(&mutex);
if (rc == EBUSY) {
/* Process continue processing the part of the problem =*/
/* that we can without the lock. We do not want to waste */
/* time blocking. Instead, we'll count Tocally. */
++localProcessingCompleted;
++numberOfLocalProcessingBursts;
continue;
}
/* We acquired the lock, so this part of the can be global*/
checkResults("pthread mutex_trylock()\n", rc);
/* Processing completed consist of last local processing =*/
/* plus the 1 unit of processing this time through */
processingCompletedThisBurst = 1 + TocalProcessingCompleted;
localProcessingCompleted = 0;
i+=processingCompletedThisBurst; j+=processingCompletedThisBurst;
k+=processingCompletedThisBurst; T+=processingCompletedThisBurst;

rc = pthread_mutex_unlock(&mutex);
checkResults ("pthread mutex_unlock()\n", rc);
}
/* If any Tlocal processing remains, merge it with the globalx*/
/* problem so our part of the solution is accounted for */
if (localProcessingCompleted) {
rc = pthread _mutex_Tock(&mutex);
checkResults("final pthread mutex_lock()\n", rc);

i+=localProcessingCompleted; j+=localProcessingCompleted;
k+=1ocalProcessingCompleted; T+=1ocalProcessingCompleted;

rc = pthread_mutex_unlock(&mutex);
checkResults("final pthread mutex _unlock()\n", rc);
}
printf("Thread processed about %d%% of the problem locally\n",
(numberOfLocalProcessingBursts * 100) / LOOPCONSTANT);

Chapter 1. Pthread APIs

153

return NULL;

}

int main(int argc, char x*argv)

{
pthread_t threadid[THREADS] ;
int rc=0;
int Toop=0;
pthread_attr_t pta;

printf("Entering testcase\n");

pthread_attr_init(&pta);
pthread_attr_setdetachstate(&pta, PTHREAD_CREATE_JOINABLE);

printf("Creating %d threads\n", THREADS);

for (Toop=0; 10op<THREADS; ++1oop) {
rc = pthread_create(&threadid[Toop], &pta, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

}

printf("Wait for results\n");

for (Toop=0; 1oop<THREADS; ++loop) {
rc = pthread join(threadid[Toop], NULL);
checkResults ("pthread_join()\n", rc);

}

printf("Cleanup and show results\n");
pthread_attr_destroy(&pta);
pthread_mutex_destroy (&mutex) ;

printf("\nUsing %d threads and LOOPCONSTANT = %d\n",

THREADS, LOOPCONSTANT);
printf("Values are: (should be %d)\n", THREADS * LOOPCONSTANT);
printf(" ==>%d, %d, %d, %d\n", i, i, k, 1);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase

Creating 10 threads

Wait for results

Thread processed about 100% of the problem locally
Thread processed about 90% of the problem locally
Thread processed about 88% of the problem locally
Thread processed about 94% of the problem locally
Thread processed about 93% of the problem Tocally
Thread processed about 96% of the problem Tocally
Thread processed about 90% of the problem locally
Thread processed about 91% of the problem locally
Thread processed about 81% of the problem locally
Thread processed about 76% of the problem Tocally
Cleanup and show results

Using 10 threads and LOOPCONSTANT = 100000
Values are: (should be 1000000)

==>1000000, 1000000, 1000000, 1000000
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

154 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_mutex_unlock()—Unlock Mutex

Syntax:

#include <pthread.h>
int pthread_mutex_unlock(pthread mutex_t *mutex);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_mutex_unlock() function unlocks the mutex specified. If the calling thread does not
currently hold the mutex (via a previous call to pthread_mutex_lock(), pthread_mutex_trylock(), or
pthread_mutex_timedlock_np()) the unlock request fails with the EPERM error.

Mutex initialization using the PTHREAD_MUTEX_INITIALIZER does not immediately initialize the
mutex. Instead, on first use, pthread_mutex_timedlock_np() or pthread_mutex_lock() or
pthread_mutex_trylock() branches into a slow path and causes the initialization of the mutex. Because a
mutex is not just a simple memory object and requires that some resources be allocated by the system, an
attempt to call pthread_mutex_destroy() or pthread_mutex_unlock() on a mutex that was statically
initialized using PTHREAD_MUTEX_INITIALIZER and was not yet locked causes an EINVAL error.

Mutex Types

A normal mutex cannot be locked repeatedly by the owner. Attempts by a thread to relock an already
held mutex, or to lock a mutex that was held by another thread when that thread terminated, cause a
deadlock condition.

A recursive mutex can be locked repeatedly by the owner. The mutex does not become unlocked until the
owner has called pthread_mutex_unlock() for each successful lock request that it has outstanding on the
mutex.

An errorcheck mutex checks for deadlock conditions that occur when a thread relocks an already held
mutex. If a thread attempts to relock a mutex that it already holds, the lock request fails with the
EDEADLK error.

An ownerterm mutex is an OS/400 extension to the errorcheck mutex type. An ownerterm mutex checks
for deadlock conditions that occur when a thread relocks an already held mutex. If a thread attempts to
relock a mutex that it already holds, the lock request fails with the EDEADLK error. An ownerterm
mutex also checks for deadlock conditions that occur when a thread attempts to lock a mutex that was
held by another thread when that thread terminated (an orphaned mutex). If a thread attempts to lock an
orphaned mutex, the lock request fails with the EOWNERTERM error.

When a thread terminates while holding a mutex lock on a normal or errorcheck mutex, other threads
that wait for that mutex will block forever. The pthreads run-time simulates the deadlock that has
occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRK]JOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function deadlockOnOrphanedMutex is in the call stack.

Chapter 1. Pthread APIs 155

When a thread attempts to acquire a normal mutex that it already holds, the thread will block forever.
The pthreads run-time simulates the deadlock that has occurred in your application. When you are
attempting to debug these deadlock scenarios, the CL command WRKJOB, option 20, shows the thread as
in a condition wait. Displaying the call stack shows that the function deadlockOnAlreadyHeldMutex is
in the call stack.

To change these behaviors, use an errorcheck or ownerterm mutex type.

Authorities and Locks

For successful completion, the mutex lock must be held before you call pthread_mutex_unlock().

Parameters

mutex (Input) Address of the mutex to unlock

Return Value

0 pthread_mutex_unlock() was successful.

value pthread _mutex_unlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_mutex_unlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EPERM]

The mutex is not currently held by the caller.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* [“pthread_mutex_destroy()—Destroy Mutex” on page 139—Destroy Mutex

* |“pthread_mutex_init()—Initialize Mutex” on page 141|—Initialize Mutex
+ |“pthread_mutex_lock()—Lock Mutex” on page 143}—Lock Mutex

[‘pthread_mutex_timedlock_np()—Lock Mutex with Time-Out” on page 147—Lock Mutex with
Time-Out

+ |“pthread_mutex_trylock()—Lock Mutex with No Wait” on page 151}—Lock Mutex with No Wait

Example

See [Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>

#include <stdio.h>

#include "check.h"

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int main(int argc, char x*argv)

{

int rc=0;

printf("Entering testcase\n");

156 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Lock the mutex\n");
rc = pthread_mutex_lock(&mutex);
checkResults ("pthread mutex_lock()\n", rc);

/* A11 other threads will be blocked from the resource here */

printf("Unlock the mutex\n");
rc = pthread_mutex_unlock(&mutex);
checkResults("pthread mutex_unlock()\n", rc);

printf("Destroy the mutex\n");
rc = pthread_mutex_destroy(&mutex);
checkResults("pthread_mutex_destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Entering testcase
Lock the mutex
Unlock the mutex
Destroy the mutex
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_once()—Perform One-Time Initialization

Syntax:

#include <pthread.h>
int pthread_once(pthread_once_t *once_control, void (xinit_routine)(void));

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_once() function performs one time initialization based on a specific once_control variable. The
init_routine is called only one time when multiple calls to pthread_once() use the same once_control.

The once_control variable is not set until the init_routine returns. If the init_routine is a cancellation point
and the thread calling the init_routine by pthread_once() is cancelled, the once_control variable will not be

set and a subsequent call to pthread_once() using that once_control variable will result in another call to
the init_routine.

You must initialize the once_control variable to PTHREAD_ONCE_INIT prior to calling pthread_once()
with it.

The function passed as init_routine must correspond to the following C function prototype:

Chapter 1. Pthread APIs 157

#TOP_OF_PAGE
aplist.htm

void initRoutine(void);

Authorities and Locks
None.

Parameters

once_control
(Input) The control variable associated with this initialization.

init_routine

(Input) A function pointer to a routine that takes no parameters and returns no value.

Return Value

0 pthread_once() was successful.

value pthread_once() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_once() was not successful, the error condition returned usually indicates one of the following
errors. Under some conditions, the value returned could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
+ The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 3
int number = 0;
int okStatus = 777;

pthread_once_t onceControl = PTHREAD_ONCE_INIT;

void initRoutine(void)

{
printf("In the initRoutine\n");
number++;

}

void *threadfunc(void *parm)

{
printf("Inside secondary thread\n");
pthread once(&onceControl, initRoutine);
return _ VOID(okStatus);

1

int main(int argc, char xxargv)

{

pthread_t thread [NUMTHREADS] ;
int rc=0;

int i=NUMTHREADS ;

void *status;

158 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Enter Testcase - %s\n", argv[0]);

for (i=0; i < NUMTHREADS; ++i) {
printf("Create thread %d\n",
i);
rc = pthread_create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

for (i=0; i < NUMTHREADS; ++i) {
printf("Wait for thread %d\n", i);
rc = pthread_join(thread[i], &status);
checkResults("pthread_join()\n", rc);
if (__INT(status) != okStatus) f{
printf("Secondary thread failed\n");
exit(1);
}
}

if (number !'= 1) {
printf("An incorrect number of 1 one-time init routine was called!\n");
exit(1);

}

printf("One-time init routine called exactly once\n");

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPONCEO
Create thread 0

Create thread 1

Create thread 2

Wait for thread 0

Inside secondary thread

In the initRoutine

Inside secondary thread

Wait for thread 1

Wait for thread 2

Inside secondary thread

One-time init routine called exactly once
Main completed

API introduced: V4R3

IEE' | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

Chapter 1. Pthread APIs

159

#TOP_OF_PAGE
aplist.htm

pthread_rwlockattr_destroy()—Destroy Read/Write Lock Attribute

Syntax:

#include <pthread.h>
int pthread_rwlockattr _destroy(pthread rwlockattr_t *attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlockattr_destroy() function destroys a read/write lock attributes object and allows the
systems to reclaim any resources associated with that read/write lock attributes object. This does not
have an effect on any read/write lock already created using this read/write lock attributes object.

Authorities and Locks
None.

Parameters
attr (Input) Address of the read/write lock attributes object to be destroyed

Return Value

0 pthread_rwlockattr_destroy() was successful.

value pthread_rwlockattr_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_destroy() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_rwlockattr_init()—Initialize Read /Write Lock Attribute” on page 170}—Initialize Read /Write
Lock Attribute

* |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read/Write Lock

Example
See [Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

160 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

pthread_rwlock_t rwlockl;

pthread_rwlock_t rwlock2 = PTHREAD_RWLOCK_INITIALIZER;
int main(int argc, char xxargv)
{

int rc=0;

pthread_rwlockattr_t attr;
printf("Enter Testcase - %s\n", argv[0]);

printf("Create a default rwlock attribute\n");
rc = pthread_rwlockattr_init(&attr);
checkResults("pthread_rwlockattr_init()\n", rc);

printf("Use the rwlock attributes to created rwlocks here\n");
rc = pthread_rwlock_init(&rwlockl, &attr);
checkResults ("pthread rwlock_init()\n", rc);

printf("The rwlockl is now ready for use.\n");
printf("The rwlock2 that was statically initialized was ready when\n"
"the main routine was entered\n");

printf("Destroy rwlock attribute\n");
rc = pthread rwlockattr_destroy(&attr);
checkResults("pthread_rwlockattr_destroy()\n", rc);

printf("Use the rwlocks\n");
rc = pthread_rwlock_rdlock(&rwlockl);
checkResults("pthread_rwlock rdlock()\n", rc);

rc = pthread_rwlock wrlock(&rwlock2);
checkResults ("pthread_rwlock_wrlock()\n", rc);

rc = pthread_rwlock_unlock(&rwlockl);
checkResults("pthread_rwlock_unlock(1)\n", rc);

rc = pthread_rwlock_unlock(&rwlock2);
checkResults("pthread rwlock unlock(2)\n", rc);

printf("Destroy the rwlocks\n");
rc = pthread_rwlock destroy(&rwlockl);
checkResults("pthread_rwlock_destroy(1)\n", rc);

rc = pthread_rwlock_destroy(&rwlock2);
esults("pthread_rwlock _destroy(2)\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPRWLAIO

Create a default rwlock attribute

Use the rwlock attributes to created rwlocks here

The rwlock is now ready for use.

The rwlock that was statically initialized was ready when
the main routine was entered

Destroy rwlock attribute

Use the rwlocks

Destroy the rwlocks

Main completed

API introduced: V4R3

[Top| I [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

Chapter 1. Pthread APIs

161

#TOP_OF_PAGE
aplist.htm

pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock
Attribute

Syntax:

#include <pthread.h>
int pthread_rwlockattr_getpshared(const pthread rwlockattr t attr,
int *pshared);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlockattr_getpshared() function retrieves the current setting of the process shared attribute
from the read/write lock attributes object. The process shared attribute indicates whether the read /write
lock that is created using the read/write lock attributes object can be shared between threads in separate
processes (PTHREAD_PROCESS_SHARED) or shared only between threads within the same process
(PTHREAD_PROCESS_PRIVATE).

Even if the read/write lock in storage is accessible from two separate processes, it cannot be used from
both processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

The default pshared attribute for read/write lock attributes objects is PTHREAD_PROCESS_PRIVATE.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable that contains the read/write lock attributes object

pshared
(Output) Address of the variable to contain the pshared attribute result

Return Value

0 pthread_rwlockattr_getpshared() was successful.

value pthread_rwlockattr_getpshared() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_getpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

162 iSeries: Pthread APIs

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_rwlockattr_init()—Initialize Read /Write Lock Attribute” on page 170} —Initialize Read/Write

Lock Attribute

+ [“pthread_rwlockattr_setpshared()—Set Pshared Read /Write Lock Attribute” on page 171}—Set Pshared

Read/Write Lock Attribute

+ [“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174l—Initialize Read /Write Lock

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <spawn.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/shm.h>
#include "check.h"

typedef struct {
int protectedResource;
pthread rwlock t rwlock;

} shared_data_t;

extern char **environ;

shared_data_t *sharedMem=NULL;

pid_t childPid=0;

int childStatus=-99;

int shmid=0;

/* Change this path to be the path to where you create this example program */
#define MYPATH "/QSYS.LIB/QPOWTEST.LIB/TPRWLSHO.PGM"

#define NTHREADSTHISJOB 2

#define NTHREADSTOTAL 4

void parentSetup(void);
void childSetup(void);
void parentCleanup(void);
void childCleanup(void);

void *childReaderThreadFunc(void *parm)
{

int rc;

int retries = 5;

while (retries--) {
rc = pthread_rwlock rdlock(&sharedMem->rwlock);
checkResults("pthread_rwlock_rdlock()\n", rc);
/* Under protection of the shared read lock, read the resource */
printf("CHILD READER - current protectedResource = %d\n",
sharedMem->protectedResource) ;
sleep(1);

printf("CHILD READER - unlock\n");
rc = pthread_rwlock_unlock(&sharedMem->rwlock) ;
checkResults("pthread_rwlock _unlock()\n", rc);

1
return NULL;

}

void *parentWriterThreadFunc(void *parm)

{

Chapter 1. Pthread APIs

163

aboutapis.htm#CODEDISCLAIMER

}

int rc;

rc = pthread_rwlock wrlock(&sharedMem->rwlock);

checkResults ("pthread_rwlock_rdlock()\n", rc);

/* Under protection of the exclusive write Tock, write the resource */

++sharedMem->protectedResource;

printf("PARENT WRITER - current protectedResource = %d\n",
sharedMem->protectedResource) ;

sleep(5);

printf("PARENT WRITER - unlock\n");
rc = pthread_rwlock_unlock(&sharedMem->rwlock) ;

checkResults("pthread rwlock_unlock()\n", rc);
return NULL;

int main(int argc, char x*argv)

{

int rc=0;

int is

pthread_t threadid [NTHREADSTHISJOB] ;

int parentJob=0;

void *status=NULL;

/* If we run this from the QSHELL interpreter on the system, we want x/
/* it to be line buffered even if we run it in batch so the output between=*/
/* parent and child is intermixed. */
setvbuf(stdout,NULL, IOLBF,4096);

/* Determine if we are running in the parent or child */

if (argc != 1 && argc != 2) {
printf("Incorrect usage\n");
printf("Pass no parameters to run as the parent testcase\n");
printf("Pass one parameter “ASCHILD' to run as the child testcase\n");
exit(1);

}
if (argc == 1) {
parentJob = 1;
}
else {
if (strcmp(argv[1], "ASCHILD")) {
printf("Incorrect usage\n");
printf("Pass no parameters to run as the parent testcase\n");
printf("Pass one parameter “ASCHILD' to run as the child testcase\n");
exit(1l);
}
parentJob = 0;
}

/* PARENT ***/
if (parentdob) {

printf("PARENT - Enter Testcase - %s\n", argv[0]);

parentSetup();

printf("PARENT - Create %d threads\n", NTHREADSTHISJOB);

for (i=0; i<NTHREADSTHISJOB; ++i) {
rc = pthread create(&threadid[i], NULL, parentWriterThreadFunc, NULL);
checkResults("pthread_create()\n", rc);

}

for (i=0; i<NTHREADSTHISJOB; ++i) {
rc = pthread_join(threadid[i], NULL);

164 iSeries: Pthread APIs

checkResults("pthread create()\n", rc);
if (status != NULL) {
printf("PARENT - Got a bad status from a thread, "
"%.8x %.8x %.8x %.8x\n", status);
exit(1l);

}

parentCleanup();
printf("PARENT - Main completed\n");

exit(0);
1
% CHILD #*kkkkdskkkdhkkhkhkhhhhhhrhhhhhhhhrhhhrhhrrhhhrhhhrrhhrrhhrrhhrrrsrrrs/
{

printf("CHILD - Enter Testcase - %s\n", argv[0]);

childSetup();

printf("CHILD - Create %d threads\n", NTHREADSTHISJOB);
for (i=0; i<NTHREADSTHISJOB; ++i) {

rc = pthread_create(&threadid[i], NULL, childReaderThreadFunc, NULL);

checkResults("pthread create()\n", rc);
1
/* The parent will wake up all of these threads using the */
/* pshared condition variable. We will just join to them... %/
printf("CHILD - Joining to all threads\n");

for (i=0; i<NTHREADSTHISJOB; ++i) {
rc = pthread_join(threadid[i], &status);
checkResults("pthread_join()\n", rc);
if (status != NULL) {
printf("CHILD - Got a bad status from a thread, "
"%.8x %.8x %.8x %.8x\n", status);

exit(1l);

1

/* After all the threads are awake, the parent will destroy */

/* the read/write Tock. Do not use it anymore */

childCleanup();

printf("CHILD - Main completed\n");

1
return 0;

1
/***/
/* This function initializes the shared memory for the job, */
/* sets up the environment variable indicating where the sharedx/
/* memory is, and spawns the child job. */
/* */
/* It creates and initializes the shared memory segment, and */
/* It initializes the following global variables in this */
/* job. */
/* sharedMem */
/* childPid */
/* shmid */
/* */
/* If any of this setup/initialization fails, it will exit(l) =*/
/* and terminate the test. */
/* */

/***/
void parentSetup(void)

int rc;

/***/
/* Create shared memory for shared_data_t above */

Chapter 1. Pthread APIs

165

/* attach the shared memory */
/* set the static/global sharedMem pointer to it */
/***/
printf("PARENT - Create the shared memory segment\n");
rc = shmget (IPC_PRIVATE, sizeof(shared_data_t), 0666);
if (rc == -1) {
printf("PARENT - Failed to create a shared memory segment\n");
exit(1);
}

shmid = rc;

printf("PARENT - Attach the shared memory\n");
sharedMem = shmat(shmid, NULL, 0);
if (sharedMem == NULL) {

shmct1(shmid, IPC_RMID, NULL);

printf("PARENT - Failed to attach shared memory\n");

exit(1l);
;***/
/* Initialize the read/write Tock and other shared memory data */
/***/
{

pthread_rwlockattr_t rwlattr;

printf("PARENT - Init shared memory and read/write Tock\n");

memset (sharedMem, 0, sizeof(shared_data_t));

/* Process Shared Read/Write Tock */
rc = pthread_rwlockattr_init(&rwlattr);
checkResults("pthread_rwlockattr_init()\n", rc);

rc = pthread _rwlockattr_setpshared(&rwlattr, PTHREAD PROCESS SHARED);
checkResults("pthread_rwlockattr_setpshared()\n", rc);

rc = pthread_rwlock_init(&sharedMem->rwlock, &rwlattr);
checkResults ("pthread_rwlock_init()\n", rc);

}

/**/
/* Set and environment variable so that the child can inherit */

/* it and know the shared memory ID */
/**/
char shmIdEnvVar[128];

sprintf(shmIdEnvVar, "TPRWLSHO_SHMID=%d\n", shmid);
rc = putenv(shmIdEnvVar);
if (rc) {
printf("PARENT - Failed to store env var %s, errno=%d\n",
shmIdEnvVar, errno);

exit(1);

}

printf("PARENT - Stored shared memory id of %d\n", shmid);
1
/**/
/* Spawn the child job */
/**/
{

inheritance_t in;

char xav[3] = {NULL, NULL, NULL};

/* Allow thread creation in the spawned child */

memset (&in, 0, sizeof(in));
in.flags = SPAWN_SETTHREAD_NP;

/* Set up the arguments to pass to spawn based on the =/

/* arguments passed in */
av[0] = MYPATH;

166 iSeries: Pthread APIs

}

av([1]
av[2]

"ASCHILD";
NULL;

/* Spawn the child that was specified, inheriting all =/
/* of the environment variables. */
childPid = spawn(MYPATH, 0, NULL, &in, av, environ);
if (childPid == -1) {

/* spawn failure */

printf("PARENT - spawn() failed, errno=%d\n", errno);

exit(1l);
1
printf("PARENT - spawn() success, [PID=%d]\n", childPid);
1
return;

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

[**

This function attaches the shared memory for the child job, */

It uses the environment variable indicating where the sharedx/
memory is. */
*/

If any of this setup/initialization fails, it will exit(1l) =/
and terminate the test. */
*

/

It initializes the following global variables: */
sharedMem */
shmid */
------ R R R T T A

void childSetup(void)

{

}

int rc;

printf("CHILD - Child setup\n");

/**/
/* Set and environment variable so that the child can inherit */

/* it and know the shared memory ID */
/**/
char *shmIdEnvVar;

shmIdEnvVar = getenv("TPRWLSHO_ SHMID");
if (shmIdEnvVar == NULL) {

printf("CHILD - Failed to get env var \"TPRWLSHO_SHMID\", errno=%d\n",

errno) ;
exit(1l);

shmid = atoi(shmIdEnvVar);
printf("CHILD - Got shared memory id of %d\n", shmid);

; """"" KhKKRIIK KKK KKK e X T T /
/* Create shared memory for shared_data_t above */
/* attach the shared memory */
/* set the static/global sharedMem pointer to it */

/***/
printf("CHILD - Attach the shared memory\n");
sharedMem = shmat(shmid, NULL, 0);
if (sharedMem == NULL) {
shmct1 (shmid, IPC_RMID, NULL);
printf("CHILD - Failed to attach shared memory\n");
exit(1);
1

return;

/***/

/*

wait for child to complete and get return code. */

Chapter 1. Pthread APIs

167

/* Destroy read/write Tock in shared memory */

/* detach and remove shared memory */
/% set the child's return code in global storage */
/* */
/* If this function fails, it will call exit(1) */
/% */
/* This function sets the following global variables: */
/* sharedMem */
/* childStatus */
/* shmid */
/**************** """"""""" AXXKA*A K *hhkhdhhhhhhhhhhhhkhk*k ******/
void parentCleanup(void)
{

int status=0;

int rc;

int waitedPid=0;

/* Even though there is no thread Teft in the child using the =/
/* contents of the shared memory, before we destroy the */
/* read/write lock in that shared memory, we will wait for the =x/
/* child job to complete, we know for 100% certainty that no */
/% threads in the child are using it then, because the child */
/* is terminated. */
printf("PARENT - Parent cleanup\n");
/* Wait for the child to complete */
waitedPid = waitpid(childPid,&status,0);
if (rc == -1) {

printf("PARENT - waitpid failed, errno=%d\n", errno);

exit(1);

}

childStatus = status;

/* Cleanup resources */

rc = pthread_rwlock_destroy(&sharedMem->rwlock);

checkResults ("pthread_rwlock_destroy()\n", rc);

/* Detach/Remove shared memory =/
rc = shmdt(sharedMem);

if (rc) {
printf("PARENT - Failed to detach shared memory, errno=%d\n", errno);
exit(1l);

1
rc = shmct1(shmid, IPC_RMID, NULL);
if (rc) {
printf("PARENT - Failed to remove shared memory id=%d, errno=%d\n",
shmid, errno);

exit(1);

shmid = 03

return;
}
/***/
/* Detach the shared memory */
/* At this point, there is no serialization, so the contents */
/* of the shared memory should not be used. */
/* */
/* If this function fails, it will call exit(1) */
/* */
/* This function sets the following global variables: */
/* sharedMem */

/***/
void childCleanup(void)

int rc;

printf("CHILD - Child cleanup\n");

168 iSeries: Pthread APIs

rc = shmdt(sharedMem);
sharedMem = NULL;

if (rc) {
printf("CHILD - Failed to detach shared memory, errno=%d\n", errno);
exit(1);
1
return;
1
Output:

This example was run under the OS/400 QShell Interpreter. In the QShell Interpreter, a program gets
descriptors 0, 1, 2 as the standard files, the parent and child I/0O is directed to the console. When run in
the QShell Interpreter, the output shows the intermixed output from both parent and child processes, and
gives a feeling for the time sequence of operations occurring in each job.

The QShell interpreter allows you to run multithreaded programs as if they were interactive. See the
QShell documentation for a description of the QIBM_MULTI_THREADED shell variable which allows
you to start multithreaded programs.

The QShell Interpreter is option 30 of Base OS/400.

PARENT - Enter Testcase - QPOWTEST/TPRWLSHO
PARENT - Create the shared memory segment
PARENT - Attach the shared memory

PARENT - Init shared memory and read/write lock
PARENT - Stored shared memory id of 7
PARENT - spawn() success, [PID=584]

PARENT - Create 2 threads

PARENT WRITER - current protectedResource
CHILD - Enter Testcase - QPOWTEST/TPRWLSHO
CHILD - Child setup

CHILD - Got shared memory id of 7

CHILD - Attach the shared memory

CHILD - Create 2 threads

CHILD - Joining to all threads

PARENT WRITER - unlock

PARENT WRITER - current protectedResource
PARENT WRITER - unlock

CHILD READER - current protectedResource
CHILD READER - current protectedResource = 2
PARENT - Parent cleanup

CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - current protectedResource = 2
CHILD READER - unlock

CHILD READER - unlock

CHILD - Child cleanup

CHILD - Main completed

PARENT - Main completed

[}
—_

n
~nN

n
~nN

Chapter 1. Pthread APIs 169

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_rwlockattr_init()—Initialize Read/Write Lock Attribute

Syntax:

#include <pthread.h>
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlockattr_init() function initializes the read/write lock attributes object referred to by attr
to the default attributes. The read/write lock attributes object can be used in a call to
pthread_rwlock_init() to create a read /write lock.

Authorities and Locks

None.

Parameters

attr (Output) Address of the variable to contain the read/write lock attributes object

Return Value

0 pthread_rwlockattr_init() was successful.

value pthread_rwlockattr_init() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlockattr_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ [“pthread_rwlockattr_destroy()—Destroy Read /Write Lock Attribute” on page 160|—Destr0y Read /Write
Lock Attribute

+ |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read/Write Lock

170 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Example

See |Code disclaimer information| for information pertaining to code examples.

See the [“Example” on page 160,

API introduced: V4R3

[Top| | [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_rwlockattr_setpshared()—Set Pshared Read/Write Lock
Attribute

Syntax:

#include <pthread.h>
int pthread_rwlockattr_setpshared(pthread rwlockattr t xattr, int pshared);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlockattr_setpshared() function sets the current pshared attribute for the read/write
attributes object. The process shared attribute indicates whether the read /write lock that is created using
the read /write lock attributes object can be shared between threads in separate processes
(PTHREAD_PROCESS_SHARED) or shared only between threads in the same process
(PTHREAD_PROCESS_PRIVATE).

Even if the read/write lock in storage is accessible from two separate processes, it cannot be used from
both processes unless the process shared attribute is PTHREAD_PROCESS_SHARED.

Authorities and Locks

None.

Parameters

attr (Input) Address of the variable containing the read/write lock attributes object

pshared
(Input) One of PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE

Return Value

0 pthread_rwlockattr_setpshared() was successful.

value pthread_rwlockattr_setpshared() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 171

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_rwlockattr_setpshared() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ |“pthread_rwlockattr_init()—Initialize Read /Write Lock Attribute” on page 170} —Initialize Read/Write
Lock Attribute

+ [“pthread_rwlockattr_getpshared()—Get Pshared Read/Write Lock Attribute” on page 162—Get Pshared
Read/Write Lock Attribute

+ |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read /Write Lock

Example
See|Code disclaimer information| for information pertaining to code examples.

See the [“Example” on page 163

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_rwlock_destroy()—Destroy Read/Write Lock

Syntax:

#include <pthread.h>
int pthread rwlock destroy(pthread rwlock t *rwlock);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_destroy() function destroys the named read/write lock. The destroyed read/write
lock can no longer be used.

If pthread_rwlock_destroy() is called on a read/write lock on a mutex that is locked by another thread
for either reading or writing, the request fails with an EBUSY error.

If pthread_rwlock_destroy() is used by a thread when it owns the read /write lock, and other threads are
waiting for the read /write lock to become available (with calls to pthread_rwlock_rdlock(),
pthread_rwlock_wrlock(), pthread_rwlock_timedrdlock_np() or pthread_rwlock_timedwrlock_np()
APIs), the read/write lock is destroyed safely, and the waiting threads wake up with the EDESTROYED

172 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

error. Threads calling pthread_rwlock_tryrdlock() or pthread_rwlock_trywrlock() return with either the
EBUSY or EINVAL error, depending on when they called those functions.

Once a read/write lock is created, it cannot be validly copied or moved to a new location.

Authorities and Locks
None.

Parameters

rwlock
(Input) Address of the read/write lock to be destroyed

Return Value

0 pthread_rwlock_destroy() was successful.

value pthread_rwlock_destroy() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_destroy() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

+ The <pthread.h> header file. See ["Header files for Pthread functions” on page 271
+ [“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read /Write Lock

Example

See |[Code disclaimer information| for information pertaining to code examples.

See the [“Example” on page 175

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Chapter 1. Pthread APIs 173

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

pthread_rwlock_init()—Initialize Read/Write Lock

Syntax:

#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock t *rwlock,
const pthread_rwlockattr_ t *attr);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_init() function initializes a new read/write lock with the specified attributes for use.
The new read/write lock may be used immediately for serializing critical resources. If attr is specified as
NULL, all attributes are set to the default read/write lock attributes for the newly created read/write
lock.

With these declarations and initializations:

pthread_rwlock_t rwlock2;
pthread_rwlock t rwlock3;
pthread_rwlockattr_t attr;
pthread rwlockattr_init(&attr);

The following three read/write lock initialization mechanisms have equivalent function.

pthread rwlock t rwlockl = PTHREAD RWLOCK INITIALIZER;
pthread_rwlock_init(&rwlock2, NULL);
pthread_rwlock_init(&rwlock, &attr);

All three read/write locks are created with the default read/write lock attributes.

Every read/write lock must eventually be destroyed with pthread_rwlock_destroy(). Always use
pthread_rwlock_destroy() before freeing or reusing read/write lock storage.

Authorities and Locks

None.

Parameters

rwlock
(Output) The address of the variable to contain a read/write lock

attr (Input) The address of the variable containing the read/write lock attributes object

Return Value

0 pthread_rwlock_init() was successful.

value pthread_rwlock_init() was not successful. value is set to indicate the error condition.

174 iSeries: Pthread APIs

Error Conditions

If pthread_rwlock_init() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those

listed here.
[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See ['Header files for Pthread functions” on page 271
+ |“pthread_rwlockattr_init()—Initialize Read /Write Lock Attribute” on page 170} —Initialize Read/Write

Lock Attribute

+ [“pthread_rwlock_destroy()—Destroy Read /Write Lock” on page 172|—Destroy Read /Write Lock

Example

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_rwlock_t rwlock;

void *rdlockThread(void =*arg)

{

}

int rc;

printf("Entered thread, getting read lock\n");
rc = pthread_rwlock_rdlock(&rwlock);
checkResults("pthread_rwlock_rdlock()\n", rc);
printf("got the rwlock read lock\n");

sleep(5);

printf("unlock the read Tock\n");

rc = pthread_rwlock_unlock(&rwlock);
checkResults("pthread_rwlock_unlock()\n", rc);
printf("Secondary thread unlocked\n");

return NULL;

void *wrlockThread(void *arg)

{

}

int rc;

printf("Entered thread, getting write lock\n");
rc = pthread_rwlock_wrlock(&rwlock);
checkResults ("pthread rwlock_wrlock()\n", rc);

printf("Got the rwlock write lock, now unlock\n");

rc = pthread_rwlock_unlock(&rwlock);
checkResults ("pthread_rwlock_unlock()\n", rc);
printf("Secondary thread unlocked\n");

return NULL;

int main(int argc, char x*argv)

{

int rc=0;
pthread t thread, threadl;

printf("Enter Testcase - %s\n", argv[0]);

Chapter 1. Pthread APIs

175

printf("Main, initialize the read write lock\n");
rc = pthread_rwlock_init(&rwlock, NULL);
checkResults ("pthread rwlock_init()\n", rc);

printf("Main, grab a read lock\n");
rc = pthread_rwlock_rdlock(&rwlock);
checkResults("pthread_rwlock_rdlock()\n",rc);

printf("Main, grab the same read Tock again\n");
rc = pthread _rwlock rdlock(&rwlock);
checkResults("pthread_rwlock_rdlock() second\n", rc);

printf("Main, create the read lock thread\n");
rc = pthread_create(&thread, NULL, rdlockThread, NULL);
checkResults("pthread create\n", rc);

printf("Main - unlock the first read lock\n");
rc = pthread_rwlock_unTock(&rwlock);
checkResults("pthread_rwlock _unlock()\n", rc);

printf("Main, create the write lock thread\n");
rc = pthread create(&threadl, NULL, wrlockThread, NULL);
checkResults("pthread create\n", rc);

sleep(5);

printf("Main - unlock the second read lock\n");
rc = pthread_rwlock_unTlock(&rwlock);
checkResults("pthread_rwlock_unlock()\n", rc);

printf("Main, wait for the threads\n");
rc = pthread_join(thread, NULL);
checkResults("pthread_join\n", rc);

rc = pthread_join(threadl, NULL);
checkResults("pthread_join\n", rc);

rc = pthread_rwlock_destroy(&rwlock);
checkResults("pthread rwlock destroy()\n", rc);

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPRWLINIO
Main, initialize the read write lock
Main, grab a read lock

Main, grab the same read Tock again
Main, create the read lock thread
Main - unlock the first read lock
Main, create the write Tock thread
Entered thread, getting read Tock
got the rwlock read lock

Entered thread, getting write Tock
Main - unlock the second read lock
Main, wait for the threads

unlock the read lock

Secondary thread unlocked

Got the rwlock write Tock, now unlock
Secondary thread unlocked

Main completed

API introduced: V4R3

[Top| | [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

176 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_rwlock_rdlock()}—Get Shared Read Lock

Syntax:

#include <pthread.h>
int pthread_rwlock_rdlock(pthread rwlock_t *rwlock);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_rdlock() function attempts to acquire a shared read lock on the read/write lock
specified by rwlock.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread
holds an exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared
read or exclusive write lock.

If no threads are holding an exclusive write lock on the read/write lock, the calling thread successfully
acquires the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be
successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by
a thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock()
a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the shared read lock request is granted.

If the read /write lock is destroyed while pthread_rwlock_rdlock() is waiting for the shared read lock, the
EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and
the thread resumes waiting.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not be successful. In this case, the attempt to acquire the lock will deadlock. If a
thread ends while holding a read lock, the system automatically releases the read lock.

For the pthread_rwlock_rdlock() function, the pthreads run-time simulates the deadlock that has
occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function deadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read
lock request is granted. After the shared read lock request is granted, the calling thread holds both the

Chapter 1. Pthread APIs 177

shared read and the exclusive write lock for the specified read/write lock object. If the thread calls
pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write
locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was
held by the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done
before all write locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() unlock the
shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another.
See [“Shared read/write locks are released at thread termination” on page 258

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_rdlock() was successful.

value pthread_rwlock_rdlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_rdlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[EDESTROYED]

The lock was destroyed while waiting.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174\—Initialize Read/Write Lock

+ |“pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared
Read Lock with Time-out

[‘pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get
Exclusive Write Lock with Time-out

[“pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read
Lock with No Wait

[‘pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive
Write Lock with No Wait

[‘pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193(—Unlock
Exclusive Write or Shared Read Lock

+ [“pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

178 iSeries: Pthread APIs

Example

See |Code disclaimer information| for information pertaining to code examples.

See the [“Example” on page 175

API introduced: V4R3

[Top| | [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with
Time-Out

Syntax:

#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedrdlock_np(pthread_rwlock_t *rwlock,
const struct timespec xdeltatime);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_timedrdlock_np() function attempts to acquire a shared read lock on the read/write
lock specified by rwlock. If the shared read lock cannot be acquired in the deltatime specific,
pthread_rwlock_timedrdlock_np() returns the EBUSY error.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread
holds an exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared
read or exclusive write lock.

If no threads are holding an exclusive write lock on the read/write lock, the calling thread successfully
acquires the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be
successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by
a thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock()
a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the shared read lock request is granted.

If the read /write lock is destroyed while pthread_rwlock_timedrdlock_np() is waiting for the shared
read lock, the EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and
the thread resumes waiting. For a timed wait, when the thread resumes waiting after the signal handler
runs, the wait time is reset. For example, suppose a thread specifies that it should wait for a lock for 5

Chapter 1. Pthread APIs 179

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

seconds, and a signal handler runs in that thread after 2.5 seconds. After returning from the signal
handler, the thread will resume its wait for another 5 seconds. The resulting wait is longer than the
specified 5 seconds.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not succeed. In this case, the attempt to acquire the lock will return the EBUSY
error after the specified time elapses for the lock operation. If a thread ends while holding a read lock,
the system automatically releases the read lock.

For the pthread_rwlock_timedrdlock_np() function, the pthreads run-time simulates the deadlock that
has occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function timedDeadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read
lock request is granted. After the shared read lock request is granted, the calling thread holds both the
shared read and the exclusive write lock for the specified read/write lock object. If the thread calls
pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write
locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was
held by the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done
before all write locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() will unlock
the shared read locks.

You can use this behavior to allow your application to upgrade or downgrade one lock type to another.
See [“Read /write locks can be upgraded /downgraded” on page 258

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

deltatime
(Input) The number of seconds and nanoseconds to wait for the lock before returning an error

Return Value

0 pthread_rwlock_timedrdlock_np() was successful.

value pthread_rwlock_timedrdlock_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_timedrdlock_np() was not successful, the error condition returned usually indicates
one of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]
The value specified for the argument is not correct.
[EBUSY]

The lock could not be acquired in the time specified.

180 iSeries: Pthread APIs

[EDESTROYED]

The lock was destroyed while waiting.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
[“‘pthread_rwlock_init()—Initialize Read /Write Lock” on page 174f—Initialize Read/Write Lock
[‘pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock

[“pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get

Exclusive Write Lock with Time-Out

[‘pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait

[‘pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait

[“pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock

Exclusive Write or Shared Read Lock

[‘pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Example

See |[Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *rdlockThread(void =*arg)

{

int rc;
int count=0;
struct timespec ts;

/* 1.5 seconds */
ts.tv_sec = 1;
ts.tv_nsec = 500000000;

printf("Entered thread, getting read lock with timeout\n");
Retry:
rc = pthread_rwlock_timedrdlock_np(&rwlock, &ts);
if (rc == EBUSY) {
if (count >= 10) {
printf("Retried too many times, failure!\n");
exit(EXIT_FAILURE);
1
++count;
printf("RETRY...\n");
goto Retry;

}
checkResults("pthread_rwlock_rdlock() 1\n", rc);

sleep(2);
printf("unlock the read Tock\n");
rc = pthread _rwlock unlock(&rwlock);

checkResults ("pthread_rwlock_unlock()\n", rc);

printf("Secondary thread complete\n");
return NULL;

Chapter 1. Pthread APIs

181

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)
{
int rc=0;
pthread_t thread;

printf("Enter Testcase - %s\n", argv[0]);

printf("Main, get the write lock\n");
rc = pthread _rwlock wrlock(&rwlock);
checkResults("pthread_rwlock_wrlock()\n", rc);

printf("Main, create the timed rd lock thread\n");
rc = pthread_create(&thread, NULL, rdlockThread, NULL);
checkResults("pthread create\n", rc);

printf("Main, wait a bit holding the write Tock\n");
sleep(5);

printf("Main, Now unlock the write Tock\n");
rc = pthread_rwlock_unlock(&rwlock);
checkResults("pthread_rwlock unlock()\n", rc);

printf("Main, wait for the thread to end\n");
rc = pthread_join(thread, NULL);
checkResults("pthread_join\n", rc);

rc = pthread_rwlock_destroy(&rwlock);
checkResults("pthread rwlock_destroy()\n", rc);
printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPRWLRDO
Main, get the write lock

Main, create the timed rd lock thread
Main, wait a bit

Entered thread, getting read lock with timeout
RETRY...

RETRY...

RETRY...

Main, Now unlock the write lock

Main, wait for the thread to end
unlock the read lock

Secondary thread complete

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

182 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with
Time-Out

Syntax:

#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedwrlock_np(pthread_rwlock_t *rwlock,
const struct timespec xdeltatime);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_timedwrlock_np() function attempts to acquire an exclusive write lock on the
read /write lock specified by rwlock. If the exclusive write lock cannot be acquired in the deltatime specific,
pthread_rwlock_timedwrlock_np() returns the EBUSY error.

Only one thread can hold an exclusive write lock on a read/write lock object. If any thread holds an
exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared read or
exclusive write lock.

If no threads are holding an exclusive write lock or shared read lock on the read/write lock, the calling
thread successfully acquires the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can
be successfully acquired by the calling thread. If more than one exclusive write lock is successfully
acquired by a thread on a read/write lock object, that thread is required to successfully call
pthread_rwlock_unlock() a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read/write lock and there are threads that currently
hold a shared read lock, the subsequent attempts to acquire a shared read lock request are granted, while
attempts to acquire the exclusive write lock wait.

If the read /write lock is destroyed while pthread_rwlock_timedwrlock_np() is waiting for the shared
read lock, the EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and
the thread resumes waiting. For a timed wait, when the thread resumes waiting after the signal handler
runs, the wait time is reset. For example, suppose a thread specifies that it should wait for a lock for 5
seconds, and a signal handler runs in that thread after 2.5 seconds. After returning from the signal
handler, the thread resumes its wait for another 5 seconds. The resulting wait is longer than the specified
5 seconds.

Chapter 1. Pthread APIs 183

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not succeed. In this case, the attempt to acquire the lock returns the EBUSY
error after the specified time elapses for the lock operation. If a thread ends while holding a read lock,
the system automatically releases the read lock.

For the pthread_rwlock_timedwrlock_np() function, the pthreads run-time simulates the deadlock that
has occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function timedDeadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read/write lock object and no other threads
are holding a shared read lock, the exclusive write request is granted. After the exclusive write lock
request is granted, the calling thread holds both the shared read and the exclusive write lock for the
specified read /write lock object. If the thread calls pthread_rwlock_unlock() while holding one or more
shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If
more than one outstanding exclusive write lock was held by the thread, a matching number of successful
calls to pthread_rwlock_unlock() must be done before all write locks are unlocked. At that time,
subsequent calls to pthread_rwlock_unlock() unlock the shared read locks.

You can use this behavior to allow your application to upgrade or downgrade one lock type to another.
See [“Read /write locks can be upgraded/downgraded” on page 258

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

deltatime
(Input) The number of seconds and nanoseconds to wait for the lock before returning an error

Return Value

0 pthread_rwlock_timedwrlock_np() was successful.

value pthread_rwlock_timedwrlock np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_timedwrlock_np() was not successful, the error condition returned usually indicates
one of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

[EINVAL]

The value specified for the argument is not correct.
[EBUSY]

The lock could not be acquired in the time specified.
[EDESTROYED]

The lock was destroyed while waiting.

184 iSeries: Pthread APIs

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
[‘pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read /Write Lock
[‘pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177—Get Shared Read Lock
[‘pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared

Read Lock with Time-Out

[‘pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read

Lock with No Wait

[“pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive

Write Lock with No Wait

[“pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193(—Unlock

Exclusive Write or Shared Read Lock

[‘pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Example

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *wrlockThread(void *arg)

{

int rc;
int count=0;
struct timespec ts;

/* 1.5 seconds */
ts.tv_sec = 1;
ts.tv_nsec = 5000000003

printf("%.8x %.8x: Entered thread, getting write lock with timeout\n",
pthread_getthreadid np());
Retry:
rc = pthread_rwlock_timedwrlock_np(&rwlock, &ts);
if (rc == EBUSY) {
if (count >= 10) {
printf("%.8x %.8x: Retried too many times, failure!\n",
pthread_getthreadid np());
exit(EXIT_FAILURE);
1
++count;
printf("%.8x %.8x: RETRY...\n", pthread getthreadid np());
goto Retry;
}
checkResults("pthread_rwlock wrlock() 1\n", rc);
printf("%.8x %.8x: Got the write lock\n", pthread_getthreadid np());

sleep(2);

printf("%.8x %.8x: Unlock the write lock\n",
pthread_getthreadid_np());

rc = pthread_rwlock_unlock(&rwlock);

checkResults("pthread_rwlock_unlock()\n", rc);

printf("%.8x %.8x: Secondary thread complete\n", pthread_getthreadid _np());
return NULL;

Chapter 1. Pthread APIs

185

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)
{
int rc=0;
pthread_t thread, thread?;

printf("Enter Testcase - %s\n", argv[0]);

printf("Main, get the write lock\n");
rc = pthread _rwlock wrlock(&rwlock);
checkResults("pthread_rwlock_wrlock()\n", rc);

printf("Main, create the timed write Tock threads\n");
rc = pthread_create(&thread, NULL, wrlockThread, NULL);
checkResults("pthread create\n", rc);

rc = pthread create(&thread2, NULL, wrlockThread, NULL);
checkResults("pthread create\n", rc);

printf("Main, wait a bit holding this write Tock\n");
sleep(3);

printf("Main, Now unlock the write lock\n");
rc = pthread _rwlock unlock(&rwlock);
checkResults("pthread_rwlock_unlock()\n", rc);

printf("Main, wait for the threads to end\n");
rc = pthread_join(thread, NULL);
checkResults("pthread _join\n", rc);

rc = pthread_join(thread2, NULL);
checkResults("pthread_join\n", rc);

rc = pthread_rwlock_destroy(&rwlock);
checkResults("pthread_rwlock_destroy()\n", rc);
printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPRWLWRO

Main, get the write Tlock

Main, create the timed write Tock threads

Main, wait a bit holding this write Tock

00000000 00000017: Entered thread, getting write lock with timeout
00000000 00000018: Entered thread, getting write lock with timeout
00000000 00000017: RETRY...

00000000 00000018: RETRY...

Main, Now unlock the write lock

Main, wait for the threads to end

00000000 00000017: Got the write Tock

00000000 00000018: RETRY...

00000000 00000018: RETRY...

00000000 00000017: Unlock the write Tock

00000000 00000017: Secondary thread complete

00000000 00000018: Got the write Tock

00000000 00000018: UnTock the write Tock

00000000 00000018: Secondary thread complete

Main completed

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

186 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait

Syntax:

#include <pthread.h>
int pthread_rwlock_tryrdlock(pthread rwlock t *rwlock);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_tryrdlock() function attempts to acquire a shared read lock on the read/write lock
specified by rwlock. If the shared read lock cannot be acquired immediately, pthread_rwlock_tryrdlock()
returns the EBUSY error.

Any number of threads can hold shared read locks on the same read/write lock object. If any thread
holds an exclusive write lock on a read/write lock object, no other threads will be allowed to hold a
shared read or exclusive write lock.

If there are no threads holding an exclusive write lock on the read/write lock, the calling thread will
successfully acquire the shared read lock.

If the calling thread already holds a shared read lock on the read/write lock, another read lock can be
successfully acquired by the calling thread. If more than one shared read lock is successfully acquired by
a thread on a read/write lock object, that thread is required to successfully call pthread_rwlock_unlock()
a matching number of times.

With a large number of readers, and relatively few writers, there is the possibility of writer starvation. If
there are threads waiting for an exclusive write lock on the read/write lock and there are threads that
currently hold a shared read lock, the shared read lock request will be granted.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not be successful. In this case, the attempt to acquire the lock will return the
EBUSY error. If a thread ends while holding a read lock, the system automatically releases the read lock.

Upgrade / Downgrade a Lock

If the calling thread currently holds an exclusive write lock on the read/write lock object, the shared read
lock request will be granted. After the shared read lock request is granted, the calling thread holds both
the shared read, and the exclusive write lock for the specified read/write lock object. If the thread calls
pthread_rwlock_unlock() while holding one or more shared read locks and one or more exclusive write
locks, the exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was
held by the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done
before all write locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() will unlock
the shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another.
See [“Read /write locks can be upgraded/downgraded” on page 258

Chapter 1. Pthread APIs 187

Authorities and Locks

None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_tryrdlock() was successful.

value pthread_rwlock_tryrdlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_tryrdlock() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[EBUSY]

The lock could not be immediately acquired.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read/Write Lock
* |“pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177}—Get Shared Read Lock

+ [“pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared
Read Lock with Time-Out

+ |“pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get
Exclusive Write Lock with Time-Out

[‘pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get Exclusive
Write Lock with No Wait

[‘pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193 —Unlock
Exclusive Write or Shared Read Lock

[“pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Example
See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

void *rdlockThread(void *arg)

{
int rc;
int count=0;

printf("Entered thread, getting read lock with mp wait\n");
Retry:

188 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

rc = pthread_rwlock_tryrdlock(&rwlock);
if (rc == EBUSY) {
if (count >= 10) {

printf("Retried too many times, failure!\n");

exit (EXIT_FAILURE);
1
++count;
printf("Could not get lock, do other work, then RETRY
sleep(1);
goto Retry;

checkResults("pthread_rwlock_tryrdlock() 1\n", rc);
sleep(2);

printf("unlock the read Tock\n");

rc = pthread_rwlock_unlock(&rwlock);

checkResults("pthread_rwlock unlock()\n", rc);

printf("Secondary thread complete\n");
return NULL;

1
int main(int argc, char xxargv)
{
int rc=0;
pthread_t thread;

printf("Enter Testcase - %s\n", argv[0]);

printf("Main, get the write Tock\n");
rc = pthread_rwlock_wrlock(&rwlock);
checkResults("pthread_rwlock_wrlock()\n", rc);

printf("Main, create the try read Tock thread\n");
rc = pthread_create(&thread, NULL, rdlockThread, NULL);
checkResults("pthread create\n", rc);

printf("Main, wait a bit holding the write Tock\n");
sleep(5);

printf("Main, Now unlock the write Tock\n");
rc = pthread_rwlock_unlock(&rwlock);
checkResults("pthread_rwlock unlock()\n", rc);

printf("Main, wait for the thread to end\n");
rc = pthread_join(thread, NULL);
checkResults("pthread_join\n", rc);

rc = pthread_rwlock_destroy(&rwlock);
checkResults("pthread rwlock_destroy()\n", rc);
printf("Main completed\n");

return 0;

}

Output

Enter Testcase - QPOWTEST/TPRWLRD1
Main, get the write lock

Main, create the try read lock thread
Main, wait a bit holding the write lock

Entered thread, getting read lock with mp wait

Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...

A"

Chapter 1. Pthread APIs

189

Could not get lock, do other work, then RETRY...
Could not get lock, do other work, then RETRY...
Main, Now unlock the write lock

Main, wait for the thread to end

unlock the read lock

Secondary thread complete

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait

Syntax:

#include <pthread.h>
int pthread rwlock_trywrlock(pthread rwlock t *rwlock);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_trywrlock() function attempts to acquire an exclusive write lock on the read/write
lock specified by rwlock. If the exclusive write lock cannot be immediately acquired,
pthread_rwlock_timedwrlock_np() returns the EBUSY error.

Only one thread can hold an exclusive write lock on a read/write lock object. If any thread holds an
exclusive write lock on a read/write lock object, no other threads will be allowed to hold a shared read
or exclusive write lock.

If there are no threads holding an exclusive write lock or shared read lock on the read/write lock, the
calling thread will successfully acquire the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can
be successfully acquired by the calling thread. If more than one exclusive write lock is successfully
acquired by a thread on a read/write lock object, that thread is required to successfully call
pthread_rwlock_unlock() a matching number of times.

With a large number of readers, and relatively few writers, there is the possibility of writer starvation. If
there are threads waiting for an exclusive write lock on the read/write lock and there are threads that
currently hold a shared read lock, the subsequent attempts to acquire a shared read lock request will be
granted, while attempts to acquire the exclusive write lock will return the EBUSY error.

Read/Write Lock Deadlocks

If a thread ends while holding a write lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not be successful. In this case, the attempt to acquire the lock will return the
EBUSY error. If a thread ends while holding a read lock, the system automatically releases the read lock.

190 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read /write lock object and there are no
other threads holding a shared read lock, the exclusive write request will be granted. After the exclusive
write lock request is granted, the calling thread holds both the shared read, and the exclusive write lock
for the specified read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or
more shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked
first. If more than one outstanding exclusive write lock was held by the thread, a matching number of
successful calls to pthread_rwlock_unlock() must be done before all write locks are unlocked. At that
time, subsequent calls to pthread_rwlock_unlock() will unlock the shared read locks.

This behavior can be used to allow your application to upgrade or downgrade one lock type to another.
See ["Read /write locks can be upgraded/downgraded” on page 258 |

Authorities and Locks
None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_trywrlock() was successful.

value pthread_rwlock_trywrlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_trywrlock() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[EBUSY]

The lock could not be acquired in the timed specified.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174\—Initialize Read/Write Lock
+ |“pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177}—Get Shared Read Lock

+ [“pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared
Read Lock with Time-Out

[‘pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get
Exclusive Write Lock with Time-Out

[‘pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read
Lock with No Wait

[‘pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193(Unlock
Exclusive Write or Shared Read Lock

[‘pthread_rwlock_wrlock()—Get Exclusive Write Lock” on page 195—Get Exclusive Write Lock

Chapter 1. Pthread APIs 191

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_rwlock_t rwlock = PTHREAD_RWLOCK INITIALIZER;
void *wrlockThread(void *arg)
{

int rc;

int count=0;

printf("%.8x %.8x: Entered thread, getting write Tock with timeout\n",
pthread_getthreadid_np());
Retry:
rc = pthread_rwlock_trywrlock(&rwlock);
if (rc == EBUSY) {
if (count >= 10) {
printf("%.8x %.8x: Retried too many times, failure!\n",
pthread getthreadid np());
exit(EXIT_FAILURE);
}
++count;
printf("%.8x %.8x: Go off an do other work, then RETRY...\n",
pthread _getthreadid np());
sleep(1);
goto Retry;
}
checkResults("pthread_rwlock_trywrlock() 1\n", rc);
printf("%.8x %.8x: Got the write Tock\n", pthread_getthreadid np());

sleep(2);

printf("%.8x %.8x: Unlock the write Tock\n",
pthread_getthreadid_np());

rc = pthread_rwlock_unlock(&rwlock);

checkResults("pthread_rwlock_unlock()\n", rc);

printf("%.8x %.8x: Secondary thread complete\n",
pthread_getthreadid np());
return NULL;

1
int main(int argc, char x*argv)
{
int rc=0;
pthread_t thread, thread2;

printf("Enter Testcase - %s\n", argv[0]);

printf("Main, get the write lock\n");
rc = pthread_rwlock_wrlock(&rwlock);
checkResults("pthread_rwlock _wrlock()\n", rc);

printf("Main, create the timed write lock threads\n");
rc = pthread_create(&thread, NULL, wrlockThread, NULL);
checkResults("pthread create\n", rc);

rc = pthread_create(&thread2, NULL, wrlockThread, NULL);
checkResults("pthread create\n", rc);

printf("Main, wait a bit holding this write lock\n");
sleep(1);

192 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

printf("Main, Now unlock the write Tock\n");
rc = pthread_rwlock_unlock(&rwlock);
checkResults ("pthread_rwlock_unlock()\n", rc);

printf("Main, wait for the threads to end\n");
rc = pthread_join(thread, NULL);
checkResults("pthread_join\n", rc);

rc = pthread_join(thread2, NULL);
checkResults("pthread join\n", rc);

rc = pthread_rwlock_destroy(&rwlock);
checkResults("pthread_rwlock_destroy()\n", rc);
printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPRWLWR1

Main, get the write lock

Main, create the timed write Tock threads

00000000 0000000d: Entered thread, getting write lock with timeout
00000000 0000000d: Go off an do other work, then RETRY...

Main, wait a bit holding this write lock

00000000 0000000e: Entered thread, getting write lock with timeout
00000000 0000000e: Go off an do other work, then RETRY...

00000000 0000000d: Go off an do other work, then RETRY...

Main, Now unlock the write lock

Main, wait for the threads to end

00000000 0000000e: Got the write lock

00000000 0000000d: Go off an do other work, then RETRY...

00000000 0000000e: Unlock the write Tock

00000000 0000000e: Secondary thread complete

00000000 0000000d: Got the write lock

00000000 0000000d: Unlock the write lock

00000000 0000000d: Secondary thread complete

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read
Lock

Syntax:

#include <pthread.h>
int pthread_rwlock_unlock(pthread rwlock_t *rwlock);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

Chapter 1. Pthread APIs 193

#TOP_OF_PAGE
aplist.htm

The pthread_rwlock_unlock() function unlocks a shared read or exclusive write lock held by the calling
thread.

A thread should call pthread_rwlock_unlock() once for each time that the thread successfully called
pthread_rwlock_rdlock(), pthread_rwlock_tryrdlock(), pthread_rwlock_trywrlock(),
pthread_rwlock_timedrdlock_np(), or pthread_rwlock_timedwrlock_np() to acquire a shared read or
exclusive write lock. For example, if a thread holds 4 shared read locks on a read/write lock object, the
thread must call pthread_rwlock_unlock() 4 times before the read/write lock becomes completely
unlocked.

If a thread holds both shared read and exclusive write locks for the specified read/write lock object, the
exclusive write locks are unlocked first. If more than one outstanding exclusive write lock was held by
the thread, a matching number of successful calls to pthread_rwlock_unlock() must be done before all
write locks are unlocked. When all write locks are unlocked, subsequent calls to
pthread_rwlock_unlock() unlock the shared read locks.

Authorities and Locks

For successful completion, either a shared read or exclusive write lock must be held on the read/write
lock before you call pthread_rwlock_unlock().

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_unlock() was successful.

value pthread_rwlock_unlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_unlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[EPERM]

A shared read or exclusive write lock was not held by the calling thread and could not be
unlocked.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174—Initialize Read/Write Lock

* |“pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177}—Get Shared Read Lock

+ [“pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get Shared
Read Lock with Time-Out

+ |“pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get
Exclusive Write Lock with Time-Out

+ [“pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get Shared Read
Lock with No Wait

194 iSeries: Pthread APIs

+ [“pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190(—Get Exclusive
Write Lock with No Wait

+ [“pthread_rwlock_wrlock()—Get Exclusive Write Lock”}—Get Exclusive Write Lock

Example

See |Code disclaimer information| for information pertaining to code examples.

See any of the following examples:

+ [“Example” on page 188|

* |[“Example” on page 192|

+ [“Example” on page 181

* [“Example” on page 185|

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_rwlock_wrlock()—Get Exclusive Write Lock

Syntax:

#include <pthread.h>
int pthread_rwlock wrlock(pthread_rwlock t *rwlock);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_rwlock_wrlock() function attempts to acquire an exclusive write lock on the read/write lock
specified by rwlock.

Only one thread can hold an exclusive write lock on a read/write lock object. If any thread holds an
exclusive write lock on a read/write lock object, no other threads are allowed to hold a shared read or
exclusive write lock.

If no threads are holding an exclusive write lock or shared read lock on the read/write lock, the calling
thread successfully acquires the exclusive write lock.

If the calling thread already holds an exclusive write lock on the read/write lock, another write lock can
be successfully acquired by the calling thread. If more than one exclusive write lock is successfully
acquired by a thread on a read/write lock object, that thread is required to successfully call
pthread_rwlock_unlock() a matching number of times.

With a large number of readers and relatively few writers, there is the possibility of writer starvation. If
threads are waiting for an exclusive write lock on the read /write lock and there are threads that currently
hold a shared read lock, the subsequent attempts to acquire a shared read lock request are granted, while
attempts to acquire the exclusive write lock wait.

Chapter 1. Pthread APIs 195

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

If the read /write lock is destroyed while pthread_rwlock_wrlock() is waiting for the shared read lock,
the EDESTROYED error is returned.

If a signal is delivered to the thread while it is waiting for the lock, the signal handler (if any) runs, and
the thread resumes waiting.

Read/Write Lock Deadlocks

If a thread ends while holding of a write lock, the attempt by another thread to acquire a shared read or
exclusive write lock will not succeed. In this case, the attempt to acquire the lock does not return and will
deadlock. If a thread ends while holding a read lock, the system automatically releases the read lock.

For the pthread_rwlock_wrlock() function, the pthreads run-time simulates the deadlock that has
occurred in your application. When you are attempting to debug these deadlock scenarios, the CL
command WRKJOB, option 20, shows the thread as in a condition wait. Displaying the call stack shows
that the function timedDeadlockOnOrphanedRWLock is in the call stack.

Upgrade / Downgrade a Lock

If the calling thread currently holds a shared read lock on the read /write lock object and no other threads
are holding a shared read lock, the exclusive write request is granted. After the exclusive write lock
request is granted, the calling thread holds both the shared read, and the exclusive write lock for the
specified read/write lock object. If the thread calls pthread_rwlock_unlock() while holding one or more
shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked first. If
more than one outstanding exclusive write lock was held by the thread, a matching number of successful
calls to pthread_rwlock_unlock() must be done before all write locks are unlocked. At that time,
subsequent calls to pthread_rwlock_unlock() unlock the shared read locks.

You can use this behavior to allow your application to upgrade or downgrade one lock type to another.
See [“Read /write locks can be upgraded/downgraded” on page 258

Authorities and Locks
None.

Parameters

rwlock
(Input) The address of the read/write lock

Return Value

0 pthread_rwlock_wrlock() was successful.

value pthread_rwlock_wrlock() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_rwlock_wrlock() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[EDESTROYED]

The lock was destroyed while waiting.

196 iSeries: Pthread APIs

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271|

* |“pthread_rwlock_init()—Initialize Read /Write Lock” on page 174/ —Initialize a Read /Write Lock
+ [“pthread_rwlock_rdlock()—Get Shared Read Lock” on page 177}—Get a Shared Read Lock

+ [“pthread_rwlock_timedrdlock_np()—Get Shared Read Lock with Time-Out” on page 179—Get a Shared
Read Lock with Time-Out

[‘pthread_rwlock_timedwrlock_np()—Get Exclusive Write Lock with Time-Out” on page 183—Get an
Exclusive Write Lock with Time-Out

[‘pthread_rwlock_tryrdlock()—Get Shared Read Lock with No Wait” on page 187—Get a Shared Read
Lock with No Wait

[‘pthread_rwlock_trywrlock()—Get Exclusive Write Lock with No Wait” on page 190—Get an Exclusive
Write Lock with No Wait

[‘pthread_rwlock_unlock()—Unlock Exclusive Write or Shared Read Lock” on page 193—Unlock an
Exclusive Write or Shared Read Lock

Example

See |Code disclaimer information| for information pertaining to code examples.

See the [“Example” on page 175| example.

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_self()—Get Pthread Handle

Syntax:

#include <pthread.h>
pthread t pthread self(void);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_self() function returns the Pthread handle of the calling thread. The pthread_self() function
does NOT return the integral thread of the calling thread. You must use pthread_getthreadid_np() to
return an integral identifier for the thread.

If your code requires the unique integer identifier for the calling thread often, or in a loop, the
pthread_getthreadid_np() function can provide significant performance improvements over the
combination of pthread_self(), and pthread_getunique_np() calls that provide equivalent behavior.

For example:

pthread_id np_t tid;
tid = pthread_getthreadid_np();

Chapter 1. Pthread APIs 197

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

is significantly faster than these calls, but provides the same behavior.

pthread_id np_t tid;
pthread_t self;
self = pthread_self();
pthread _getunique np(&self, &tid);

As always, if you are calling any function too often, performance improvements can be gained by storing
the results in a variable and or passing to other functions which require the results.

Authorities and Locks

None.

Parameters

None.

Return Value
pthread_t
pthread_self() returns the Pthread handle of the calling thread.

Error Conditions

None.

Related Information
+ The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ [“pthread_equal()—Compare Two Threads” on page 73|—C0mpare Two Threads

* [“pthread_getthreadid_np()—Retrieve Unique ID for Calling Thread” on page 91}—Retrieve Unique ID
for Calling Thread

* [“pthread_getunique_np()—Retrieve Unique ID for Target Thread” on page 93}—Retrieve Unique ID for
Target Thread

Example

See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread t theThread;

void *threadfunc(void *parm)

{
printf("Inside secondary thread\n");
theThread = pthread_self();
return NULL;
1

int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;

printf("Entering testcase\n");
printf("Create thread using default attributes\n");

rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread _create()\n", rc);

198 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

/% sleep() is not a very robust way to wait for the thread x/
sleep(5);

printf("Check if the thread got its thread handle\n");

if (!pthread_equal(thread, theThread)) {
printf("Unexpected results on pthread_equal()!\n");
exit(1l);

}

printf("pthread _self() returned the thread handle\n");

printf("Main completed\n");

return 0;

}

Output:

Entering testcase

Create thread using default attributes
Inside secondary thread

Check if the thread got its thread handle
pthread self() returned the thread handle
Main completed

API introduced: V4R3

[Top| I [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_setcancelstate()}—Set Cancel State

Syntax:

#include <pthread.h>
int pthread_setcancelstate(int state, int *oldstate);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_setcancelstate() function sets the cancel state to one of PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE and returns the old cancel state into the location specified by oldstate (if
oldstate is non-NULL).

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes
the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls a function which is a cancellation point or calls
pthread_testcancel(), thus creating a cancellation point. When cancelability is asynchronous, all cancels
are acted upon immediately, interrupting the thread with its processing.

Note: It is recommended that your application not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user
errors section of this document for more information.

Chapter 1. Pthread APIs 199

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

None.

Parameters

state (Input) New cancel state (one of PTHREAD_CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE)

oldstate
(Output) Address of variable to contain old cancel state. (NULL is allowed)

Return Value

0 pthread_setcancelstate() was successful.

value pthread_setcancelstate() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setcancelstate() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_cancel()—Cancel Thread” on page 23}—Cancel Thread

. Terminate Calling Thread

+ [“pthread_setcanceltype()—Set Cancel Type” on page 201}—Set Cancel Type

+ |“pthread_testcancel()—Create Cancellation Point” on page 2221—Create Cancellation Point

Example

See|Code disclaimer information| for information pertaining to code examples.

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include "check.h"

void *threadfunc(void *parm)
{
int 1 =20;
printf("Entered secondary thread\n");
pthread_setcancelstate(PTHREAD CANCEL DISABLE, NULL);
while (1) {
printf("Secondary thread is looping\n");
pthread_testcancel();
sleep(1);
if (44 == 5) {
/* Since default cancel type is deferred, changing the state */
/* will allow the next cancellation point to cancel the thread =/
printf("Cancel state set to ENABLE\n");
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
1
} /% infinite x/
return NULL;

200 iSeries: Pthread APIs

users_18.htm#2
aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)
{
pthread t thread;
int rc=0;

printf("Entering testcase\n");

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults ("pthread_create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread =/
sleep(3);

printf("Cancel the thread\n");
rc = pthread_cancel(thread);
checkResults ("pthread_cancel()\n", rc);

/* sleep() is not a very robust way to wait for the thread x/
sleep(3);

printf("Main completed\n");

return 0;

}

Output:

Entering testcase

Create thread using the NULL attributes
Entered secondary thread
Secondary thread is Tooping
Secondary thread is looping
Secondary thread is Tooping
Cancel the thread

Secondary thread is looping
Secondary thread is looping
Cancel state set to ENABLE
Main completed

API introduced: V4R3

@ | IChapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_setcanceltype()—Set Cancel Type

Syntax:
#include <pthread.h>

int pthread_setcanceltype(int type, int xoldtype);
Service Program Name: QPOWPTHR
Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

Chapter 1. Pthread APIs

201

#TOP_OF_PAGE
aplist.htm

The pthread_setcanceltype() function sets the cancel type to one of PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS and returns the old cancel type into the location specified by
oldtype (if oldtype is non-NULL)

Cancelability consists of 3 separate states (disabled, deferred, asynchronous) that can be represented by 2
boolean values.

Cancelability Cancelability State Cancelability Type

disabled PTHREAD_CANCEL_DISABLE PTHREAD_CANCEL_DEFERRED
disabled PTHREAD_CANCEL_DISABLE PTHREAD_CANCEL_ASYNCHRONOUS
deferred PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED
asynchronous PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_ASYNCHRONOUS

The default cancelability state is deferred.

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes
the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls a function which is a cancellation point or calls
pthread_testcancel(), thus creating a cancellation point. When cancelability is asynchronous, all cancels
are acted upon immediately, interrupting the thread with its processing.

Note: It is recommended that your application not use asynchronous thread cancellation through the
PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user
errors section of this document for more information.

Authorities and Locks

None.

Parameters

type (Input) New cancel type (one of PTHREAD_CANCEL_DEFERRED or
PTHREAD_CANCEL_ASYNCHRONOUS)

oldtype
(Output) Address of variable to contain old cancel type. (NULL is allowed)

Return Value

0 pthread_setcanceltype() was successful.

value pthread_setcanceltype() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setcanceltype() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_cancel()—Cancel Thread” on page 23}—Cancel Thread

202 iSeries: Pthread APIs

« ['pthread_exit()—Terminate Calling Thread” on page 74}—Terminate Calling Thread

+ [“pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State

+ [“pthread_testcancel()—Create Cancellation Point” on page 222}—Create Cancellation Point

Example

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void cleanupHandler(void *parm)

{
int rc;
printf("Inside cleanup handler, unlock mutex\n");
rc = pthread _mutex_unlock((pthread mutex_ t *)parm);
checkResults ("pthread_mutex_unlock\n", rc);

1
void *threadfunc(void *parm)
{

int rc;

int oldtype;

printf("Entered secondary thread, Tock mutex\n");
rc = pthread_mutex_lock(&mutex);
checkResults("pthread mutex_Tock()\n", rc);

pthread_cleanup_push(cleanupHandler, &mutex);
/* We must assume there is a good reason for async. cancellability =/

/* and also, we must assume that if we get interrupted, it is */
/* appropriate to unlock the mutex. More than likely it is not */
/* because we will have Teft some data structures in a strange state =*/
/* if we are async. interrupted while holding the mutex */

rc = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype);
checkResults("pthread_setcanceltype()\n", rc);

printf("Secondary thread is now Tooping\n");
while (1) { sleep(1); }

printf("Unexpectedly got out of Toop!\n");
pthread_cleanup_pop(0);

return NULL;

1

int main(int argc, char x*argv)

{
pthread_t thread;
int rc=0;
void *status;

printf("Enter Testcase - %s\n", argv[0]);

/* Create a thread using default attributes */
printf("Create thread using the NULL attributes\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread create(NULL)\n", rc);

/* sleep() is not a very robust way to wait for the thread x/
sleep(1);

printf("Cancel the thread\n");
rc = pthread_cancel (thread);

Chapter 1. Pthread APIs

203

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread _cancel()\n", rc);

rc = pthread_join(thread, &status);

if (status != PTHREAD_CANCELED) {
printf("Unexpected thread status\n");
exit(1);

}

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPSETCANTO
Create thread using the NULL attributes
Entered secondary thread, Tock mutex
Secondary thread is now Tooping

Cancel the thread

Inside cleanup handler, unlock mutex
Main completed

API introduced: V4R3

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_setconcurrency()—Set Process Concurrency Level

Syntax:

#include <pthread.h>
int pthread_setconcurr‘ency(int concurrency);

Service Program Name: QPOWTCBH

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_setconcurrency() function sets the current concurrency level for the process.

A concurrency value of zero indicates that the threads implementation chooses the concurrency level that
best suits the application. A concurrency level greater than zero indicates that the application wants to
inform the system of its desired concurrency level.

The concurrency level is not used by the OS/400 threads implementation, but is stored for subsequent
calls to pthread_getconcurrency(). Each user thread is always bound to a kernel thread.

Authorities and Locks

None.

Parameters

concurrency
(Input) The new concurrency level for the process

204 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Return Value

0 pthread_setconcurrency() was successful.

value pthread_setconcurrency() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setconcurrency() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information
* The <pthread.h> header file. See ['Header files for Pthread functions” on page 271

« ['pthread_getconcurrency()—Get Process Concurrency Level” on page 821—Get Process Concurrency
Level

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_setpthreadoption_np()—Set Pthread Run-Time Option Data

Syntax:
#include <pthread.h>

int pthread_setpthreadoption_np(pthread option np t xoptionData);
Service Program Name: QPOWTCBH

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_setpthreadoption_np() function sets option data in the pthread run-time for the process.

Input data is specified uniquely based on the specified optionData. See the table below for details about
input and output. The option field in the optionData parameter is always required; other fields may be
input, output, or ignored, based on the specific option used.

For all options, every reserved field in the structure represented by optionData must be binary zero or the
EINVAL error is returned. Unless otherwise noted for an option, the target field in the option parameter is
always ignored, and the contents of the optionData structure is not changed by the
pthread_setpthreadoption_np() function.

The currently supported options, the data they represent, and the valid operations are as follows:

Chapter 1. Pthread APIs 205

#TOP_OF_PAGE
aplist.htm

option field of the option parameter

Description

PTHREAD_OPTION_POOL_NP

When a thread terminates and is detached or joined to,
certain data structures from the pthreads run-time are
maintained in a pool for possible reuse by future threads.
This improves performance for creating threads.
Typically, an application should not be concerned with
this storage pool. Use this option to set the current
maximum size of the allowed storage pool. The
optionValue field of the optionData parameter is used to
set the current maximum number of thread structures
that will be allowed in the storage pool. By default, the
optionValue field must be a valid integer greater than or
equal to zero, or the EINVAL error is returned. The
default maximum size of the storage reuse pool contains
enough room for 512 thread structures.

PTHREAD_OPTION_POOL_CURRENT_NP

If the option field of the optionData parameter is set to
this option, the EINVAL error is returned.

PTHREAD_OPTION_THREAD_CAPABLE_NP

If the option field of the optionData parameter is set to
this option, the EINVAL error is returned.

Authorities and Locks

None.

Parameters

option (Input/Output) Address of the variable containing option information and to contain output

option information

Return Value

0 pthread_getpthreadoption_np() was successful.

value pthread_getpthreadoption_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_getpthreadoption_np() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than

those listed here.
[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_getpthreadoption_np()—Get Pthread Run-Time Option Data” on page 83—Get Pthread

Run-Time Option Data

Example

See|Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <stdio.h>

206 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#include "check.h"

#define NUMTHREADS 5

void *threadfunc(void *parm)

}

printf("Inside the thread\n");
return NULL;

void showCurrentSize0fPool(void) {

}

int rc;
pthread_option_np_t opt;

memset (&opt, 0, sizeof(opt));

opt.option = PTHREAD_OPTION_POOL CURRENT NP;

rc = pthread_getpthreadoption_np(&opt);

checkResults ("pthread_getpthreadoption_np()\n", rc);

printf("Current number of thread structures in pool is %d\n",
opt.optionValue);
return;

int main(int argc, char xxargv)

{

pthread_t thread [NUMTHREADS] ;
int rc=0;
int i=0;

pthread_option_np_t opt;
printf("Enter Testcase - %s\n", argv[0]);

printf("Create threads and prime the storage pool\n");

for (i=0; i<NUMTHREADS; ++i) {
rc = pthread create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread_create(NULL)\n", rc);

}

printf("Joining all threads at once so thread n does not reuse\n"
"thread n-1's data structures\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults ("pthread_join()\n", rc);
}

showCurrentSize0fPool();

/* Set the maximum size of the storage pool to 0. I.e. No reuse of =*/
/* pthread structures */
printf("Set the max size of the storage pool to 0\n");

memset (&opt, 0, sizeof(opt));

opt.option = PTHREAD_OPTION_POOL_NP;

opt.optionValue = 0;

rc = pthread_setpthreadoption_np(&opt);
checkResults("pthread_setpthreadoption_np()\n", rc);

printf("Create some more threads. Each thread structure will come\n"
"from the storage pool if it exists, but based on the max size of 0,\n"
"the thread structure will not be allowed to be reused\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread_create(NULL)\n", rc);

showCurrentSize0fPool();

rc = pthread_join(thread[i], NULL);

Chapter 1. Pthread APIs

207

checkResults("pthread_join()\n", rc);
}

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPSEtopT

Create threads and prime the storage pool

Joining all threads at once so thread n does not reuse
thread n-1's data structures

Inside the thread

Inside the thread

Inside the thread

Inside the thread

Inside the thread

Current number of thread structures in pool is 5

Set the max size of the storage pool to 0

Create some more threads. Each thread structure will come
from the storage pool if it exists, but based on the max size of 0,
the thread structure will not be allowed to be reused
Current number of thread structures in pool is 4

Inside the thread

Current number of thread structures in pool is 3

Inside the thread

Current number of thread structures in pool is 2

Inside the thread

Current number of thread structures in pool is 1

Inside the thread

Current number of thread structures in pool is 0

Inside the thread

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

pthread_setschedparam()—Set Target Thread Scheduling Parameters

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched param *param);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

208 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

The pthread_setschedparam() function sets the scheduling parameters of the target thread. The supported
0S/400 scheduling policy is SCHED_OTHER. An attempt to set the policy to a value other than this cause
the EINVAL error. The sched_priority field of the param parameter must range from PRIORITY_MIN to
PRIORITY_MAX or the ENOTSUP error occurs.

All reserved fields in the scheduling parameters structure must be binary 0 or the EINVAL error occurs.

Note: Do not use pthread_setschedparam() to set the priority of a thread if you also use another
mechanism (outside of the pthread APIs) to set the priority of a thread. If you do,
pthread_getschedparam() returns only that information that was set by the pthread interfaces
(pthread_setschedparam() or modification of the thread attribute using pthread_attr_setschedparamy()).

Authorities and Locks
None.

Parameters
thread (Input) Pthread handle of the target thread
policy (Input) Scheduling policy (must be SCHED_OTHER)

param (Input) Scheduling parameters

Return Value

0 pthread_setschedparam() was successful.

value pthread_setschedparam() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_setschedparam() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[ENOTSUP]

The value specified for the priority argument is not supported.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_getschedparam()—Get Thread Scheduling Parameters” on page 864—Get Thread Scheduling
Parameters

Example
See |Code disclaimer information| for information pertaining to code examples.

#define MULTI_THREADED
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include "check.h"

#define BUMP_PRIO 1
int thePriority = 0;

int showSchedParam(pthread_t thread)

Chapter 1. Pthread APIs 209

aboutapis.htm#CODEDISCLAIMER

struct sched_param param;
int policy;
int rcs

printf("Get scheduling parameters\n");
rc = pthread_getschedparam(thread, &policy, ¶m);
checkResults("pthread_getschedparam()\n", rc);

printf("The thread scheduling parameters indicate:\n"
"priority = %d\n", param.sched_priority);
return param.sched_priority;

}

void *threadfunc(void *parm)

{

int rc;

printf("Inside secondary thread\n");

thePriority = showSchedParam(pthread_self());

sleep(5); /* Sleep is not a very robust way to serialize threads =*/
return NULL;

}

int main(int argc, char x*argv)
{
pthread_t thread;
int rc=0;
struct sched_param param;
int policy = SCHED_OTHER;
int theChangedPriority=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create thread using default attributes\n");
rc = pthread create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

sleep(2); /* Sleep is not a very robust way to serialize threads */

memset (¶m, 0, sizeof(param));

/* Bump the priority of the thread a small amount x/

if (thePriority - BUMP_PRIO >= PRIORITY_MIN_NP) {
param.sched_priority = thePriority - BUMP_PRIO;

}

printf("Set scheduling parameters, prio=%d\n",
param.sched priority);

rc = pthread_setschedparam(thread, policy, ¶m);

checkResults ("pthread_setschedparam()\n", rc);

/* Let the thread fill in its own last priority */
theChangedPriority = showSchedParam(thread);

if (thePriority == theChangedPriority ||
param.sched priority != theChangedPriority) f{
printf("The thread did not get priority set correctly,
"first=%d last=%d expected=%d\n",
thePriority, theChangedPriority, param.sched priority);
exit(1);

}

sleep(5); /* Sleep is not a very robust way to serialize threads =*/
printf("Main completed\n");
return 0;

210 iSeries: Pthread APIs

Output:

Enter Testcase - QPOWTEST/TPSSPO

Create thread using default attributes
Inside secondary thread

Get scheduling parameters

The thread scheduling parameters indicate:
priority = 0

Set scheduling parameters, prio=-1

Get scheduling parameters

The thread scheduling parameters indicate:
priority = -1

Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_setspecific()—Set Thread Local Storage by Key

Syntax:

#include <pthread.h>
int pthread_setspecific(pthread_key t key, const void *value);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_setspecific() function sets the thread local storage value associated with a key. The
pthread_setspecific() function may be called fromwithin a data destructor.

The thread local storage value is a variable of type void * that is local to a thread, but global to all of the
functions called within that thread. It is accessed by the key.

Authorities and Locks

None.

Parameters

key (Input) The thread local storage key returned from pthread_key_create().
value (Input) The pointer to store at the key location for the calling thread.

Return Value

0 pthread_setspecific() was successful.

value pthread_setspecific() was not successful. value is set to indicate the error condition.

Chapter 1. Pthread APIs 211

#TOP_OF_PAGE
aplist.htm

Error Conditions

If pthread_setspecific() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the key is not correct.

Related Information

* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271

+ |“pthread_getspecific()—Get Thread Local Storage Value by Key” on page 88—Get Thread Local Storage
Value by Key

+ [“pthread_key_create()—Create Thread Local Storage Key” on page 107—Create Thread Local Storage
Key

* ['pthread_key_delete()—Delete Thread Local Storage Key” on page 109—Delete Thread Local Storage
Key

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

#define NUMTHREADS 3
pthread key t tlsKey = 0;

void globalDestructor(void *value)

{
printf("In global destructor\n");
free(value);
pthread_setspecific(tlsKey, NULL);

1

void showGlobal(void)

{
void *global;
pthread_id_np_t tid;

global = pthread_getspecific(tlsKey);
pthread_getunique_np((pthread_t *)global, &tid);
printf("showGlobal: global data stored for thread 0x%.8x %.8x\n",
tid);
1

void *threadfunc(void *parm)

{
int rc;
int *myThreadDataStructure;
pthread_t me = pthread_self();

printf("Inside secondary thread\n");

myThreadDataStructure = malloc(sizeof(pthread_t) + sizeof(int) * 10);
memcpy (myThreadDataStructure, &me, sizeof(pthread t));
pthread_setspecific(t1sKey, myThreadDataStructure);

showGlobal();

return NULL;

212 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

int main(int argc, char xxargv)

{
pthread_t thread [NUMTHREADS] ;
int rc=0;
int i=0;

printf("Enter Testcase - %s\n", argv[0]);

printf("Create a thread local storage key\n");

rc = pthread_key create(&tlsKey, globalDestructor);
checkResults("pthread_key create()\n", rc);

/* The key can now be used from all threads =*/

printf("Create %d threads using joinable attributes\n",
NUMTHREADS) ;
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_create(&thread[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

}

printf("Join to threads\n");
for (i=0; i<NUMTHREADS; ++i) {
rc = pthread_join(thread[i], NULL);
checkResults ("pthread_join()\n", rc);
}

printf("Delete a thread local storage key\n");

rc = pthread_key delete(tlsKey);
checkResults("pthread_key delete()\n", rc);

/* The key and any remaining values are now gone. */
printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPSETSO

Create a thread local storage key

Create 3 threads using joinable attributes

Join to threads

Inside secondary thread

showGlobal: global data stored for thread 0x00000000 0000011a
In global destructor

Inside secondary thread

showGlobal: global data stored for thread 0x00000000 0000011b
In global destructor

Inside secondary thread

showGlobal: global data stored for thread 0x00000000 0000011c
In global destructor

Delete a thread local storage key

Main completed

API introduced: V4R3

IEE' | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

Chapter 1. Pthread APIs

213

#TOP_OF_PAGE
aplist.htm

pthread_set_mutexattr_default_np()—Set Default Mutex Attributes
Object Kind Attribute

Syntax:

#include <pthread.h>
#include <sched.h>
int pthread_set_mutexattr_default_np(int kind);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_set_mutexattr_default_np() function sets the kind attribute in the default mutex attribute
object. The default mutex attributes object is used when pthread_mutex_init() is called to specify a NULL
pointer for the mutex attributes object parameter.

The kind set may be one of PTHREAD_MUTEX_NONRECURSIVE_NP or
PTHREAD MUTEX_RECURSIVE_NP.

The pthread_set_mutexattr_default_np() function does not affect any currently existing mutex attributes
objects, nor does it affect the subsequent behavior of pthread_mutexattr_init() or the
PTHREAD_MUTEX_INITIALIZER macro.

Calls to pthread_set_mutexattr_default_np() change how the run-time of the threads creates default
mutexes for all code running in the current process. You can negatively affect other code in your process
that uses pthread mutexes by using this function.

Use of this function is not recommended because it can affect the creation of mutexes that your
application does not directly own.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

kind (Input) Variable containing the kind attribute

Return Value

0 pthread_set_mutexattr_default() was successful.

value pthread_set_mutexattr_default() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_set_mutexattr_default() was not successful, the error condition returned usually indicates one
of the following errors. Under some conditions, the value returned could indicate an error other than
those listed here.

214 iSeries: Pthread APIs

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ |“pthread_mutexattr_setkind_np()—Set Mutex Kind Attribute” on page 131}—Set Mutex Kind Attribute
* |“pthread_mutex_init()—Initialize Mutex” on page 141} —Initialize Mutex

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_sigmask()—Set or Get Signal Mask

Syntax:

#include <pthread.h>

#include <signal.h>

int pthread_sigmask(int how, const sigset_t xset,
sigset_t *oset);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_sigmask() function examines or modifies the signal blocking mask for the current thread.

The signals SIGKILL or SIGStop cannot be blocked. Any attempt to use pthread_sigmask() to block
these signals is simply ignored, and no error is returned.

SIGFPE, SIGILL, and SIGSEGYV signals that are not artificially generated by kill(), pthread_kill() or
raise() (that is, were generated by the system as a result of a hardware or software exception) are not
blocked.

If there are any pending unblocked signals after pthread_sigmask() has changed the signal mask, at least
one of those signals is delivered to the process before pthread_sigmask() returns.

If pthread_sigmask() fails, the signal mask of the thread is not changed.

The possible values for how, which are defined in the <signal.h> header file, are as follows:
SIG_BLOCK

Indicates that the set of signals given by sef should be blocked, in addition to the set currently
being blocked

SIG_UNBLOCK
Indicates that the set of signals given by set should not be blocked. These signals are removed

from the current set of signals being blocked

Chapter 1. Pthread APIs 215

#TOP_OF_PAGE
aplist.htm

SIG_SETMASK
Indicates that the set of signals given by set should replace the old set of signals being blocked

The set parameter points to a signal set that contains the new signals that should be blocked or
unblocked (depending on the value of how), or it points to the new signal mask if the value of how is
SIG_SETMASK. If set is a NULL pointer, the set of blocked signals is not changed. If set is NULL, the
value of how is ignored.

The signal set manipulation functions (sigemptyset(), sigfillset(), sigaddset(), and sigdelset()) must be
used to establish the new signal set pointed to by set.

The pthread_sigmask() function determines the current signal set and returns this information in *oset. If

set is NULL, oset returns the current set of signals being blocked. When set is not NULL, the set of signals
pointed to by oset is the previous set.

Authorities and Locks

None.

Parameters

how (Input) The way in which the signal set is changed

set (Input) A pointer to a set of signals to be used to change the currently blocked set. This value can
be NULL

oset (Output) A pointer to the space where the previous signal mask is stored. This value can be
NULL

Return Value

0 pthread_sigmask() was successful.

value pthread_sigmask() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_sigmask() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]
The value specified for the argument is not correct.
[ENOTSIGINIT]

The process is not enabled for signals.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ [“pthread_kill)—Send Signal to Thread” on page 111}—Send Signal to Thread

* [“pthread_signal_to_cancel np()—Convert Signals to Cancel Requests” on page 219—Convert Signals to
Cancel Requests

Example

See|Code disclaimer information| for information pertaining to code examples.

216 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <signal.h>
#include "check.h"

#define NUMTHREADS 3
void sighand(int signo);

void *threadfunc(void *parm)

{

}

pthread_t self = pthread_self();
pthread_id np_t tid;
int rc;

pthread_getunique_np(&self, &tid);
printf("Thread 0x%.8x %.8x entered\n", tid);
errno = 0;
rc = sleep(30);
if (rc !'= 0 &% errno == EINTR) {
printf("Thread 0x%.8x %.8x got a signal delivered to it\n",
tid);
return NULL;
}
printf("Thread 0x%.8x %.8x did not get expected results! rc=%d, errno=%d\n",
tid, rc, errno);
return NULL;

void xthreadmasked(void *parm)

{

}

pthread_t self = pthread_self();
pthread_id_np_t tid;

sigset_t mask

int rc;

pthread_getunique_np(&self, &tid);
printf("Masked thread 0x%.8x %.8x entered\n", tid);

sigfillset(&mask); /* Mask all allowed signals x/
rc = pthread_sigmask(SIG_BLOCK, &mask, NULL);
checkResults ("pthread_sigmask()\n", rc);

errno = 0;
rc = sleep(15);
if (rc 1= 0) {

printf("Masked thread 0x%.8x %.8x did not get expected results! "
"rc=%d, errno=%d\n",
tid, rc, errno);
return NULL;
}
printf("Masked thread 0x%.8x %.8x completed masked work\n",
tid);
return NULL;

int main(int argc, char x*argv)

{

int rc;

int i;

struct sigaction actions;

pthread_t threads [NUMTHREADS] ;
pthread_t maskedthreads [NUMTHREADS] ;

printf("Enter Testcase - %s\n", argv[0]);

printf("Set up the alarm handler for the process\n");

Chapter 1. Pthread APIs

217

memset (&actions, 0, sizeof(actions));
sigemptyset (&actions.sa_mask);
actions.sa_flags = 0;
actions.sa_handler = sighand;

rc = sigaction(SIGALRM,&actions,NULL);
checkResults("sigaction\n", rc);

printf("Create masked and unmasked threads\n");

for(i=0; i<NUMTHREADS; ++i) {
rc = pthread_create(&threads[i], NULL, threadfunc, NULL);
checkResults("pthread_create()\n", rc);

rc = pthread_create(&maskedthreads[i], NULL, threadmasked, NULL);
checkResults("pthread create()\n", rc);

}

sleep(3);
printf("Send a signal to masked and unmasked threads\n");
for(i=0; i<NUMTHREADS; ++i) {
rc = pthread_kill(threads[i], SIGALRM);
checkResults("pthread kil1()\n", rc);

rc = pthread kill(maskedthreads[i], SIGALRM);
checkResults("pthread kill()\n", rc);
}

printf("Wait for masked and unmasked threads to complete\n");
for(i=0; i<NUMTHREADS; ++i) {

rc = pthread_join(threads[i], NULL);

checkResults("pthread join()\n", rc);

rc = pthread_join(maskedthreads[i], NULL);
checkResults("pthread_join()\n", rc);

}
printf("Main completed\n");

return 0;

}

void sighand(int signo)

{
pthread_t self = pthread_self();
pthread_id np t tid;

pthread_getunique_np(&self, &tid);

printf("Thread 0x%.8x %.8x in signal handler\n",
tid);

return;

}

Output:

Thread 0x00000000 0000000d entered

Masked thread 0x00000000 0000000a entered

Thread 0x00000000 00000009 entered

Thread 0x00000000 0000000b entered

Masked thread 0x00000000 0000000e entered

Masked thread 0x00000000 0000000c entered

Send a signal to masked and unmasked threads

Wait for masked and unmasked threads to complete

Thread 0x00000000 00000009 in signal handler

Thread 0x00000000 00000009 got a signal delivered to it
Thread 0x00000000 0000000b in signal handler

Thread 0x00000000 0000000b got a signal delivered to it
Thread 0x00000000 0000000d in signal handler

Thread 0x00000000 0000000d got a signal delivered to it

218 iSeries: Pthread APIs

Masked thread 0x00000000 0000000a completed masked work
Masked thread 0x00000000 0000000e completed masked work
Masked thread 0x00000000 0000000c completed masked work
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

pthread_signal_to_cancel_np()—Convert Signals to Cancel Requests

Syntax:
#include <pthread.h>

int pthread_signal_to_cancel_np(sigset_t *set, pthread_t *thread);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_signal_to_cancel_np() function causes a pthread_cancel() to be delivered to the target
thread when the first signal specified in set arrives.

All threads in the process should have the signals specified by set blocked from the time of the call to
pthread_signal_to_cancel_np() until the time when the pthread_cancel() is delivered to the target thread.

If pthread_signal_to_cancel_np() has been called, but a signal has not yet been converted to a
pthread_cancel(), a subsequent call to pthread_signal_to_cancel_np() overrides the first call.

The pthread_signal_to_cancel_np() function creates a service thread (called the SignalToCancel thread) to
perform the signal to cancel conversion. This conversion occurs asynchronously to the thread that called
pthread_signal_to_cancel_np().

The SignalToCancel thread blocks all signals and performs a sigwait() on the set of signals specified by
set. When sigwait() returns, indicating that one of the signals in set was synchronously received, the
SignalToCancel thread calls pthread_cancel() using the thread specified as the target.

Since the SignalToCancel thread processing occurs asynchronously, the caller of
pthread_signal_to_cancel_np() is not notified of errors that may occur during the processing of the
SignalToCancel thread. If the target thread has terminated or the signals specified by set are not valid, the
caller of pthread_signal to_cancel_np() is not notified.

Note: This function is not portable.

Authorities and Locks

None.
Parameters
set (Input) The set of signals that will be converted to pthread_cancel() requests

Chapter 1. Pthread APIs 219

#TOP_OF_PAGE
aplist.htm

thread (Input) The thread that will be canceled when a signal in set arrives

Return Value

0 pthread_signal_to_cancel_np() was successful.

value pthread_signal_to_cancel_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_signal_to_cancel_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_cancel()—Cancel Thread” on page 23—Cancel Thread

+ [“pthread_kill)—Send Signal to Thread” on page 111}—Send Signal to Thread

* ['pthread_sigmask()—Set or Get Signal Mask” on page 215(—Set or Get Signal Mask

Example
See|Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <signal.h>
#include "check.h"

void sighand(int signo);
void cancellationCleanup(void *parm) { printf("Thread was canceled\n"); }

void *threadfunc(void *parm)

{

pthread_t self = pthread_self();
pthread_id_np_t tid;

int rc;

int i=h;

pthread_getunique_np(&self, &tid);
printf("Thread 0x%.8x %.8x entered\n", tid);
while (i--) {

printf("Thread 0x%.8x %.8x Tooping\n",

tid, rc, errno);

sleep(2);

pthread testcancel();
}
printf("Thread 0x%.8x %.8x did not expect to get here\n",

tid);

return NULL;

int main(int argc, char x*argv)

{

int rc;
int is
pthread_t thread;

220 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER

}

struct sigaction actions;

sigset_t mask;
void *status;
pthread_t self;
pthread_id_np_t tid;

printf("Enter Testcase - %s\n", argv[0]);

printf("Set up the alarm handler for the process\n");
memset (&actions, 0, sizeof(actions));

sigemptyset (&actions.sa_mask);

actions.sa_flags = 0;

actions.sa_handler = sighand;

rc = sigaction(SIGALRM,&actions,NULL);
checkResults("sigaction\n", rc);

printf("Block all signals in the parent so they can be inherited\n");

sigfillset(&mask); /* Mask all allowed signals x/
rc = pthread_sigmask(SIG_BLOCK, &mask, NULL);
checkResults("pthread_sigmask()\n", rc);

printf("Create thread that inherits blocking mask\n");
/* Thread will inherit blocking mask */
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

/* Convert signals to cancels */
rc = pthread_signal_to_cancel_np(&mask, &thread);
checkResults ("pthread signal to_cancel()\n", rc);

sleep(3);
self = pthread_self();
pthread_getunique_np(&self, &tid);

printf("Thread 0x%.8x %.8x sending a signal to the process\n", tid);

ki11(getpid(), SIGALRM);
checkResults("ki11()\n", rc);

printf("Wait for masked and unmasked threads to complete\n");
rc = pthread_join(thread, &status);
checkResults ("pthread_join()\n", rc);

if (status != PTHREAD_CANCELED) {
printf("Got an incorrect thread status\n");
return 1;
}
printf("The target thread was canceled\n");
printf("Main completed\n");
return 0;

void sighand(int signo)

}

pthread_t self = pthread_self();
pthread id np t tid;

pthread_getunique_np(&self, &tid);

printf("Thread 0x%.8x %.8x in signal handler\n",
tid);

return;

Output:

Chapter 1. Pthread APIs

221

Enter Testcase - QPOWTEST/TPSIG2CO

Set up the alarm handler for the process

Block all signals in the parent so they can be inherited
Create thread that inherits blocking mask

Thread 0x00000000 00000007 entered

Thread 0x00000000 00000007 looping

Thread 0x00000000 00000007 1ooping

Thread 0x00000000 00000006 sending a signal to the process
Wait for masked and unmasked threads to complete

The target thread was canceled

Main completed

API introduced: V4R3

[Top| | [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

pthread_testcancel()}—Create Cancellation Point

Syntax:

#include <pthread.h>
void pthread_testcancel(void);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_testcancel() function creates a cancellation point in the calling thread. If cancelability is
currently disabled, this function has no effect. For more information on cancelability, see
[cancellation APIs” on page 289

When cancelability is disabled, all cancels are held pending in the target thread until the thread changes
the cancelability. When cancelability is deferred, all cancels are held pending in the target thread until the
thread changes the cancelability, calls a function that is a cancellation point, or calls pthread_testcancel(),
thus creating a cancellation point. When cancelability is asynchronous, all cancels are acted upon
immediately, interrupting the thread with its processing.

Note: You should not use asynchronous thread cancellation through the

PTHREAD_CANCEL_ASYNCHRONOUS option of pthread_setcanceltype(). See the common user
errors section of this document for more information.

Authorities and Locks
None.

Parameters

None.

Return Value

None.

222 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

Error Conditions

None.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
+ |“pthread_cancel()—Cancel Thread” on page 23}—Cancel Thread

+ [“pthread_setcancelstate()—Set Cancel State” on page 199—Set Cancel State

» [“pthread_setcanceltype()—Set Cancel Type” on page 201}—Set Cancel Type

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

void cleanupHandler(void *parm) {
printf("Inside cancellation cleanup handler\n");

1
void xthreadfunc(void *parm)
{
unsigned int i=0;
int rc=0, oldState=0;

printf("Entered secondary thread\n");
pthread_cleanup_push(cleanupHandler, NULL);
rc = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldState);
checkResults("pthread_setcancelstate()\n", rc);
/* Allow cancel to be pending on this thread */
sleep(2);
while (1) {
printf("Secondary thread is now Tooping\n");
++1
sleep(1);
/* pthread_testcancel() has no effect until cancelability is enabled.x*/
/* At that time, a call to pthread_testcancel() should result in the */
/* pending cancel being acted upon */
pthread_testcancel();
if (1 == 5) {
printf("Cancel state set to ENABLE\n");
rc = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,&oldState);
checkResults("pthread_setcancelstate(2)\n", rc);
/* Now, cancellation points will allow pending cancels
to get through to this thread */

} /* infinite »/
pthread_cleanup_pop(0);
return NULL;

1
int main(int argc, char xxargv)
{
pthread t thread;
int rc=0;
void *status=NULL;

printf("Enter Testcase - %s\n", argv[0]);

/* Create a thread using default attributes =*/
printf("Create thread using the NULL attributes\n");
rc = pthread_create(&thread, NULL, threadfunc, NULL);
checkResults("pthread_create(NULL)\n", rc);

Chapter 1. Pthread APIs

223

aboutapis.htm#CODEDISCLAIMER

sleep(1);

printf("Cancel the thread\n");

rc = pthread_cancel (thread);
checkResults("pthread_cancel()\n", rc);

rc = pthread_join(thread, &status);

if (status != PTHREAD_CANCELED) {
printf("Thread returned unexpected result!\n");
exit(1l);

}

printf("Main completed\n");

return 0;

}

Output:

Enter Testcase - QPOWTEST/TPTESTCO
Create thread using the NULL attributes
Entered secondary thread

Cancel the thread

Secondary thread is now Tooping
Secondary thread is now Tooping
Secondary thread is now Tooping
Secondary thread is now Tooping
Secondary thread is now Tooping
Cancel state set to ENABLE
Secondary thread is now Tooping
Inside cancellation cleanup handler
Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_test_exit_np()—Test Thread Exit Status

Syntax:

#include <pthread.h>
#include <sched.h>
int pthread_test_exit_np(void #**status);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_test_exit_np() function returns the current state of the thread along with its exit status.
If the thread is currently processing an exit condition due to a call to pthread_exit() or cancellation due to

being the target of a pthread_cancel(), pthread_test_exit_np() returns PTHREAD_STATUS_EXIT_NP and
sets the exit status pointed to by the status parameter to be the current thread exit status.

224 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

If the thread is currently running and is not running cancellation cleanup handlers or data destructors
while terminating, pthread_test_exit_np() returns PTHREAD_STATUS_ACTIVE_NP, and does not
return the exit status.

Note: This function is not portable.

Authorities and Locks

None.

Parameters

status Pointer to the parameter to receive the exit status if PTHREAD_STATUS_EXIT_NP is returned

Return Value

PTHREAD_STATUS_ACTIVE_NP
The thread is currently not exiting.

PTHREAD_STATUS_EXIT_NP
The thread is currently exiting.

value pthread_test_exit_np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_test_exit_np() was not successful, the error condition returned usually indicates one of the
following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The values specified for the argument are not correct.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271
* |“pthread_cancel()—Cancel Thread” on page 23—Cancel Thread
+ [“pthread_exit()—Terminate Calling Thread” on page 74—Terminate Calling Thread

Example

See [Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int checkStatusFailedl=0;
int missedHandlerl=1;

int threadlStatus=42;

void cleanupHandlerl(void *arg)
{
int rc;
void *status;
printf("Thread 1 - cleanup handler\n");
missedHandlerl=0;
rc = pthread_test_exit_np(&status);
if (rc != PTHREAD STATUS_EXIT_NP) {
printf("Thread 1 - returned %d instead "
"of PTHREAD_STATUS_EXIT NP\n", rc);

Chapter 1. Pthread APIs

225

aboutapis.htm#CODEDISCLAIMER

}

checkStatusFailedl = 1;
return;
}
if (__INT(status) != threadlStatus) {
printf("Thread 1 - status = %d\n"
"Thread 1 - expected %d\n",
__INT(status), threadlStatus);
checkStatusFailedl=1;
}
printf("Thread 1 - correctly got PTHREAD STATUS EXIT NP "
"and thread exit status of %d\n", threadlStatus);

void *threadlfunc(void *parm)

{

}

printf("Thread 1 - Entered\n");

pthread cleanup_push(cleanupHandlerl, NULL);
pthread_exit(__VOID(threadlStatus));
pthread_cleanup_pop(0);

return _ VOID(0);

int main(int argc, char **argv)

{

}

pthread_t thread;
int rc=0;
void *status;

printf("Enter Testcase - %s\n", argv[0]);

rc = pthread test exit np(&status);
if (rc != PTHREAD_STATUS_ ACTIVE_NP) {
printf("We should always be in an ACTIVE status here! rc=%d\n",
rc);
exit(1);
}

printf("Create the pthread exit thread\n");
rc = pthread_create(&thread, NULL, threadlfunc, NULL);
checkResults("pthread_create()\n", rc);

rc = pthread_join(thread, &status);

checkResults ("pthread_join()\n", rc);

if (__INT(status) != threadlStatus) {
printf("Wrong status from thread 1\n");

}

if (checkStatusFailedl || missedHandlerl) {
printf("The thread did not complete its test correctly! "
" check=%d, missed=%d\n",
checkStatusFailedl, missedHandlerl);
exit(1l);

}
printf("Main completed\n");
return 0;

Output:

Enter Testcase - QPOWTEST/TPTEXITO
Create the pthread_exit thread
Thread 1 - Entered

Thread 1 - cleanup handler

Thread 1 - correctly got PTHREAD_STATUS_EXIT_NP and thread exit status of

Main completed

226 iSeries: Pthread APIs

42

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

pthread_trace_init_np()—Initialize or Re-initialize pthread tracing

Syntax:
#include <pthread.h>

int pthread_trace_init_np(void);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

The pthread_trace_init_np() API initializes or refreshes both the Pthreads library trace level and the
application trace level. The Pthreads library trace level is maintained internally by the Pthreads library,
while the application trace level is stored in the QpOwTraceLevel external variable and can be used by the
PTHREAD_TRACE_NP() macro.

When a program or service program that uses the Pthread APIs causes the Pthread APIs to be loaded
(activated), the Pthreads library automatically calls the pthread_trace_init_np() function in order to
initialize tracing based on the value of the QIBM_PTHREAD_TRACE_LEVEL environment variable at
that time.

The application can call pthread_trace_init_np() at an arbitrary time during execution to initialize or
refresh the current Pthreads library tracing level and the application trace level. The trace level is set
based on the value of the QIBM_PTHREAD_TRACE_LEVEL environment variable at the time of the
call. The new tracing level is also returned.

The Pthreads library tracing level is used to control trace records written by the Pthreads library
functions at runtime. The following table describes the preprocessor macros representing the various trace
levels, the setting of the QIBM_PTHREAD_TRACE_LEVEL environment variable, and the conditions
that are traced.

Trace Level EnvVar Description
PTHREAD_TRACE_NONE_NP "QIBM_PTHREAD_TRACE_ No tracing is performed by the
LEVEL=0" Pthreads library. Application tracing
(or not set) may still be done.
PTHREAD_TRACE_ERROR_NP "QIBM_PTHREAD_TRACE_ Error level traces error conditions
LEVEL=1" and the causes of most error return
codes.
PTHREAD_TRACE_INFO_NP "QIBM_PTHREAD_TRACE_ Informational level traces error level
LEVEL=2" tracepoints, plus entry to and exit
from functions, parameters passed to
and return codes from functions,
major changes in control flow.

Chapter 1. Pthread APIs 227

#TOP_OF_PAGE
aplist.htm

Trace Level EnvVar Description

PTHREAD_TRACE_VERBOSE_NP |"QIBM_PTHREAD_TRACE_ Verbose level traces informational
LEVEL=3" level tracepoints, plus detailed
information about application
parameters, threads and data
structures including information
about Pthreads library processing
information.

The application provides tracing support similar to the Pthreads library using the
PTHREAD_TRACE_NP() macro.

The PTHREAD_TRACE_NP() macro uses the external variable QpOwTraceLevel. QpOwTraceLevel may be
used directly by the application to set application trace level without effecting the current Pthread library
trace level. Set the value of QpOwTraceLevel to one of PTHREAD_TRACE_NONE_NP,
PTHREAD_TRACE_ERROR_NP, PTHREAD_TRACE_INFO_NP, or
PTHREAD_TRACE_VERBOSE_NP.

The PTHREAD_TRACE_NP() macro can be used in conjunction with the following APIs to put trace
records into the user trace flight recorder. The following system APIs defined in the qpOztrc.h header file:

* QpOzUprintf - print formatted trace data

* Qp0zDump - dump formatted hex data

* Qp0zDumpStack - dump the call stack of the calling thread

* QpOzDumpTargetStack - dump the call stack of the target thread

The trace records are written to the user trace flight recorder and can be accessed by the following CL
commands:

¢ DMPUSRTRC - dump the contents of a specified job’s trace
* CHGUSRTRC - change attributes (size, wrapping, clear) of a specified job’s trace
e DLTUSRTRC - delete the persistent trace object associated with a job’s trace

Authorities and Locks
None.

Parameters

None.

Return Value

value The new trace level. One of PTHREAD_TRACE_NONE_NP, PTHREAD _TRACE_ERROR_NP,
PTHREAD_TRACE_INFO_NP, or PTHREAD_TRACE_VERBOSE_NP.

Error Conditions

None.

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ ["/PTHREAD_TRACE_NP()—Macro to optionally execute code based on trace level” on page
@—Execute code based on trace level (Macro)

228 iSeries: Pthread APIs

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <qpOztrc.h>

#define checkResults(string, val) { \
if (val) { \
printf("Failed with %d at %s", val, string); \
exit(1); \
} \
1
typedef struct {
int threadSpecificl;
int threadSpecific2;
} threadSpecific_data_t;
#define NUMTHREADS 2
pthread_key_t threadSpecificKey;

void foo(void);
void bar(void);
void dataDestructor(void *);

void *theThread(void *parm) {
int rcs
threadSpecific_data_t =gData;
PTHREAD_TRACE_NP({
QpOzUprintf("Thread Entered\n");
QpOzDump("Global Data", parm, sizeof(threadSpecific_data t));},
PTHREAD_TRACE_INFO_NP);
gData = (threadSpecific_data t *)parm;
rc = pthread_setspecific(threadSpecificKey, gData);
checkResults("pthread_setspecific()\n", rc);
foo();
return NULL;
1

void foo() {
threadSpecific_data_t *gData =
(threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);
PTHREAD_TRACE_NP(QpOzUprintf("foo(), threadSpecific data=%d %d\n",
gData->threadSpecificl, gData->threadSpecific2);,
PTHREAD_TRACE_INFO_NP);
bar();
PTHREAD_TRACE_NP(QpOzUprintf("foo(): This is an error tracepoint\n");,
PTHREAD_TRACE_ERROR NP);
1

void bar() {
threadSpecific_data_t *gData =
(threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);
PTHREAD_TRACE_NP(QpOzUprintf("bar(), threadSpecific data=%d %d\n",
gData->threadSpecificl, gData->threadSpecific2);,
PTHREAD_TRACE_INFO_NP);

PTHREAD_TRACE_NP(QpOzUprintf("bar(): This is an error tracepoint\n");
QpOzDumpStack("This thread's stack at time of error in bar()");,
PTHREAD_TRACE_ERROR_NP) ;

return;

}

void dataDestructor(void *data) {

Chapter 1. Pthread APIs

229

aboutapis.htm#CODEDISCLAIMER

PTHREAD_TRACE_NP(QpOzUprintf("dataDestructor: Free data\n");,
PTHREAD_TRACE_INFO_NP);

pthread_setspecific(threadSpecificKey, NULL); free(data);

/* If doing verbose tracing we'll even write a message to the job log */

PTHREAD_TRACE_NP(QpOzLprintf("Free'd the thread specific data\n");,
PTHREAD_TRACE_VERBOSE_NP) ;

}

/* Call this testcase with an optional parameter 'PTHREAD_TRACING' */
/* If the PTHREAD TRACING parameter is specified, then the x/
/* Pthread tracing environment variable will be set, and the */

/* pthread tracing will be re initialized from its previous value. */
/* NOTE: We set the trace level to informational, tracepoints cut =/

/* using PTHREAD_TRACE_NP at a VERBOSE Tevel will NOT show up*/
int main(int argc, char x*argv) {

pthread_t thread [NUMTHREADS] ;

int rc=0;

int is

threadSpecific_data_t xgData;

char buffer[50];

PTHREAD_TRACE_NP(QpOzUprintf("Enter Testcase - %s\n", argv[0]);,
PTHREAD_TRACE_INFO_NP);

if (argc == 2 && !strcmp("PTHREAD TRACING", argv[1])) {
/* Turn on internal pthread function tracing support */
/* Or, use ADDENVVAR, CHGENVVAR CL commands to set this envvarx/
sprintf(buffer, "QIBM_PTHREAD_ TRACE_LEVEL=%d", PTHREAD_ TRACE_INFO_NP);
putenv(buffer);
/* Refresh the Pthreads internal tracing with the environment */
/* variables value. */
pthread trace_init _np();

1

else {
/* Trace only our application, not the Pthread code */
QpOwTracelevel = PTHREAD_TRACE_INFO_NP;

1

rc = pthread_key create(&threadSpecificKey, dataDestructor);
checkResults ("pthread_key create()\n", rc);

for (i=0; i <NUMTHREADS; ++i) {
PTHREAD _TRACE_NP(QpOzUprintf("Create/start a thread\n");,
PTHREAD_TRACE_INFO_NP);
/* Create per-thread threadSpecific data and pass it to the thread */
gData = (threadSpecific_data_t *)malloc(sizeof (threadSpecific_data_t));
gData->threadSpecificl = i;
gData->threadSpecific2 = (i+1)*2;
rc = pthread_create(&thread[i], NULL, theThread, gData);
checkResults("pthread_create()\n", rc);
PTHREAD_TRACE_NP(QpOzUprintf("Wait for the thread to complete, "
"and release their resources\n");,
PTHREAD_TRACE_INFO_NP);
rc = pthread_join(thread[i], NULL);
checkResults("pthread_join()\n", rc);
}

pthread key delete(threadSpecificKey);

PTHREAD_TRACE_NP(QpOzUprintf("Main completed\n");,
PTHREAD_TRACE_INFO_NP);

return 0;

Output

230 iSeries: Pthread APIs

Use CL command DMPUSRTRC to output the following tracing information that the example creates.
The DMPUSRTRC CL command causes the following information to be put into file
QTEMP/QAPOZDMP or to standard output depending on the options used for the CL command.

Note the following:

* The trace records are indented and labeled based on thread id plus a microsecond timestamp at the
time the tracepoint was cut. In the following trace record, the value 00000018 indicates the thread ID of
the thread that created the tracepoint. The value 972456 indicates that the tracepoint occurred 972456
microseconds after the last timestamp indicator.

00000018:972456 pthread trace_init_np(): New tracelLevel=2

* You can use the Pthread library tracepoints to debug incorrect calls to the Pthreads library from your
application.

* The following trace output occurs when the optional parameter 'PTHREAD_TRACING’ IS specified
when calling this program. The 'PTHREAD_TRACING’ parameter causes the pthread_trace_init_np()()
function to be used which initializes the Pthreads library tracing.

* There is significantly more information traced than the example shown in the documentation for the
PTHREAD_TRACE_NP() macro

* The function names for threads and data destructors are traced.
* The values for many Pthread API parameters are traced, allowing application debug.

* Some internal Pthread API information is traced at an information-level tracing when the control flow
information is critical.

User Trace Dump for job 097979/KULACK/PTHREADT. Size: 300K, Wrapped 0 times.
---11/09/1998 15:15:56 ---

00000018:972456 pthread trace_init_np(): New tracelLevel=2

00000018:972592 pthread_key create(entry): dtor=al000000 00000000 d161lccl9 45001a00
00000018:993920 destructor name is 'dataDestructor_ FPv'
00000018:994048 pthread_key create(exit): newKey=0, rc=0

00000018:994120 Create/start a thread

00000018:994224 pthread_create(entry): thread=80000000 00000000 f11d9cc7 23000400

00000018:994296 attr=00000000 00000000 00000000 00000000
00000018:994376 start_routine=al000000 00000000 d16lccl9 45006980
00000018:995320 routine name is 'theThread_ FPv'

00000018:995432 arg=80000000 00000000 e7c74b3e 04001cd0
00000018:995992 pthread_create(status): Create a new thread

00000018:996088 Joinable-1

00000018:996152 PrioInheritSched-EXPLICIT Prio-0

00000018:997488 pthread_create(exit): Success

00000018:997632 tch=80000000 00000000 feb52907 07001000
00000018:997704 thread 1d=00000000 00000019 hand1e=00000007

00000018:997792 Wait for the thread to complete, and release their resources
00000018:997896 pthread_join_processor(entry): Target 00000000 00000019, Detach=1, time=00000000 sec, 00000000 nanosec.
00000018:997968 statusp = 00000000 00000000 0OOOOOO0 0OO0OOOO
00000019:998720 pthread create_part2(status): run the new thread: 00000000 00000019
00000019:998864 Thread Entered
00000019:998984 E7C74B3E04:001CDO L:0008 Global Data
00000019:999144 E7C74B3E04:001CDO 00000000 00000002 T *
00000019:999240 pthread setspecific(entry): value=80000000 00000000 e7c74b3e 04001cd0, key=0
00000019:999320 pthread_getspecific(entry): key=0
00000019:999392 foo(), threadSpecific data=0 2
00000019:999464 pthread getspecific(entry): key=0
00000019:999536 bar(), threadSpecific data=0 2
00000019:999600 bar(): This is an error tracepoint
00000019:999664 Stack Dump For Current Thread
00000019:999728 Stack: This thread's stack at time of error in bar()
--- 11/09/1998 15:15:57 ---

00000019:000304 Stack: Library / Program Module Stmt Procedure

00000019:000472 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__ FP12crtth_parm_t
00000019:000560 Stack: QSYS / QPOWPTHR QPOWPTHR 1008 : pthread_create_part2
00000019:000656 Stack: KULACK / PTHREADT PTHREADT 19 : theThread_ FPv

00000019:000728 Stack: KULACK / PTHREADT PTHREADT 29 : foo__Fv

Chapter 1. Pthread APIs 231

00000019:000808 Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv

00000019:000888 Stack: QSYS / QPOZCPA QPOZUDBG 87 : QpOzDumpStack
00000019:007416 Stack: QSYS / QPOZSCPA QPOZSCPA 276 : Qp0OzSUDumpStack
00000019:007504 Stack: QSYS / QPOZSCPA QPOZSCPA 287 : QpOzSUDumpTargetStack

00000019:007544 Stack: Completed

00000019:007664 foo(): This is an error tracepoint

00000019:007752 pthread_create_part2(status): return from start routine, status=00000000 00000000 00000000 00000000
00000019:007816 pthread cleanup(entry): Thread termination started

00000019:007888 QpOwT1sVector::invokeHandlers(entry):

00000019:007952 QpOwT1sVector::invokeHandler(invoke): key=0

00000019:008040 dtor=al000000 00000000 d16lccl9 45001a00,
00000019:010792 destructor name is ‘'dataDestructor__ FPv'
00000019:010920 arg=80000000 00000000 e7c74b3e 04001cd0O

00000019:011008 dataDestructor: Free data

00000019:011096 pthread setspecific(entry): value=00000000 00000000 00000000 0OOOOO00, key=0

00000019:011184 pthread_cleanup(exit): returning

00000018:011624 pthread join processor(status): target status=00000000 00000000 00000000 0OOOOOOO, state=0x03, YES
00000018:011752 Create/start a thread

00000018:011880 pthread_create(entry): thread=80000000 00000000 f11d9cc7 23000430

00000018:011952 attr=00000000 00000000 00000000 00000000
00000018:012032 start_routine=al000000 00000000 d161ccl9 45006980
00000018:013464 routine name is 'theThread_ FPv'

00000018:013576 arg=80000000 00000000 e7c74b3e 04001cd0O

00000018:013704 QpOwTcb::QpOwTcb(status): Tcb was reused: tcb=80000000 00000000 feb52907 07001000
00000018:013784 pthread_create(status): Create a new thread

00000018:013848 Joinable-1

00000018:013912 PrioInheritSched-EXPLICIT Prio-0
00000018:014736 pthread_create(exit): Success

00000018:014912 tch=80000000 00000000 feb52907 07001000
00000018:014984 thread 1d=00000000 0000001a hand1e=00000007

00000018:015072 Wait for the thread to complete, and release their resources
00000018:015168 pthread_join_processor(entry): Target 00000000 0000001a, Detach=1, time=00000000 sec, 0000OOOO nanosec.
00000018:015240 statusp = 00000000 00000000 0O00OOO0 0OOOOOOO
0000001A:015696 pthread _create part2(status): run the new thread: 00000000 0000001a
0000001A:015840 Thread Entered
0000001A:015968 E7C74B3E04:001CDO L:0008 Global Data
0000001A:016128 E7C74B3E04:001CDO 00000001 00000004 K i i *
0000001A:016232 pthread_setspecific(entry): value=80000000 00000000 e7c74b3e 04001cd0, key=0
0000001A:016304 pthread_getspecific(entry): key=0
0000001A:016384 foo(), threadSpecific data=1 4
0000001A:016456 pthread_getspecific(entry): key=0
0000001A:016528 bar(), threadSpecific data=1 4
0000001A:016584 bar(): This is an error tracepoint
0000001A:016648 Stack Dump For Current Thread
0000001A:016712 Stack: This thread's stack at time of error in bar()

0000001A:016904 Stack: Library / Program Module Stmt Procedure

0000001A:017048 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__ FP12crtth_parm_ t
0000001A: 017144 Stack: QSYS / QPOWPTHR QPOWPTHR 1008 : pthread_create_part2
0000001A:017232 Stack: KULACK / PTHREADT PTHREADT 19 : theThread__FPv

0000001A: 018680 Stack: KULACK / PTHREADT PTHREADT 29 : foo_ Fv

0000001A:018760 Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv

0000001A: 018840 Stack: QSYS / QPOZCPA QPOZUDBG 87 : QpOzDumpStack

0000001A:018928 Stack: QSYS / QPOZSCPA QPOZSCPA 276 : Qp0OzSUDumpStack

0000001A:019000 Stack: QSYS / QPOZSCPA QPOZSCPA 287 : QpO0zSUDumpTargetStack

0000001A: 019040 Stack: Completed

0000001A:019136 foo(): This is an error tracepoint

0000001A:019224 pthread create part2(status): return from start routine, status=00000000 00000000 00000000 OOOOOOOO
0000001A:019288 pthread_cleanup(entry): Thread termination started

0000001A:019352 QpOwTTsVector::invokeHandlers(entry):

0000001A:019424 QpOwT1sVector::invokeHandler(invoke): key=0

0000001A:019504 dtor=al000000 00000000 d161ccl9 45001a00,
0000001A:021360 destructor name is ‘'dataDestructor_ FPv'
0000001A:021496 arg=80000000 00000000 e7c74b3e 04001cd0

0000001A:021576 dataDestructor: Free data
0000001A:021664 pthread_setspecific(entry): value=00000000 00000000 00000000 00000000, key=0
0000001A:021752 pthread_cleanup(exit): returning

232 iSeries: Pthread APIs

00000018:022112 pthread_join_processor(status): target status=00000000 00000000 00000000 00000000, state=0x03, YES
00000018:022272 pthread_key delete(entry): key=0

00000018:022336 pthread key delete(exit): rc=0

00000018:022408 Main completed

API introduced: V4R3

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

PTHREAD_TRACE_NP()—Macro to optionally execute code based on
trace level

Syntax:

#include <pthread.h>
PTHREAD_TRACE_NP(optionalCode, desiredTracelLevel);

Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: No

An application can use the PTHREAD_TRACE_NP() macro to execute optional code based on the
current application trace level. The optionalCode to be executed can include multiple statements and can
be surrounded by the C/C++ begin/end block operators (the curly brackets { }). The optionalCode can
include pre-condition or post-condition logic, tracepoint information, or any other desired C/C++
statements.

If the current application trace level is set to a level equal to or higher than the desiredTraceLevel, then the
code executes.

The current Pthread library trace level is set automatically when a program or service program that uses
the Pthread APIs causes the Pthread APIs to be loaded (activated) or when the application explicitly calls
the pthread_trace_init_np() function. In either case, the Pthreads library trace level is set based on the
value of the QIBM_PTHREAD_TRACE_LEVEL environment variable at that time.

If the preprocessor value PTHREAD_TRACE_NDEBUG is defined, then the call to
PTHREAD_TRACE_NP() is compiled out and does not generate any executable runtime code. Use
PTHREAD_TRACE_NDEBUG for production level code that should not perform any tracing, or leave
tracepoints in the code to assist user’s of your application.

The pthread_trace_init_np() API initializes or refreshes both the Pthreads library trace level and the
application trace level. The Pthreads library trace level is maintained internally by the Pthreads library,
while the application trace level is stored in the QpOwTraceLevel external variable, and can be used by the
PTHREAD_TRACE_NP() macro.

The PTHREAD_TRACE_NP() macro uses the external variable QpOwTraceLevel. QpOwTraceLevel may be
used directly by the application to set application trace level without effecting the current Pthread library
trace level. Set the value of QpOwTraceLevel to one of the following:

* PTHREAD_TRACE_NONE_NP

Chapter 1. Pthread APIs 233

#TOP_OF_PAGE
aplist.htm

e PTHREAD_TRACE_ERROR_NP
* PTHREAD_TRACE_INFO_NP
* PTHREAD_TRACE_VERBOSE_NP

For consistent tracing behavior, the application should use the following table as a guide to choosing
value of the desiredTraceLevel parameter.

Desired Trace Level Description

PTHREAD_TRACE_NONE_NP The optionalCode always runs, even when the current trace level is
set to none. It is recommended that this level is only used at
development time.

PTHREAD_TRACE_ERROR_NP The optionalCode runs if the current trace level is set to an error level
or higher. Use the error level to trace error conditions and the
reasons for error return codes.

PTHREAD_TRACE_INFO_NP The optionalCode runs if the current trace level is set to an
informational level or higher. Use the informational level to trace
functions” entry and exit, functions” parameters and return codes
and major changes in control flow.

PTHREAD_TRACE_VERBOSE_NP The optionalCode runs if the current trace level is set to a verbose
level or higher. Use the Verbose level traces informational level
tracepoints, plus detailed information about application parameters,
threads and data structures including information about Pthreads
library processing information.

The PTHREAD_TRACE_NP() macro can be used in conjunction with the following APIs to put trace
records into the user trace flight recorder. The following system APIs defined in the qp0Oztrc.h header file:

* QpO0zUprintf - print formatted trace data

* Qp0zDump - dump formatted hex data

¢ Qp0zDumpStack - dump the call stack of the calling thread

* QpO0zDumpTargetStack - dump the call stack of the target thread

The trace records are written to the user trace flight recorder and can be accessed by the following CL
commands:

e DMPUSRTRC - dump the contents of a specified job’s trace
¢ CHGUSRTRC - change attributes (size, wrapping, clear) of a specified job’s trace
* DLTUSRIRC - delete the persistent trace object associated with a job’s trace

Authorities and Locks

None.

Parameters
None.

Return Value

None.

Error Conditions

None.

234 iSeries: Pthread APIs

Related Information
* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

* |“pthread_trace_init_np()—Initialize or Re-initialize pthread tracing” on page 227|—Initialize or
Re-initialize pthread tracing

Example
See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <qpOztrc.h>

#define checkResults(string, val) { \
if (val) { \
printf("Failed with %d at %s", val, string); \
exit(1); \
} \
1
typedef struct {
int threadSpecificl;
int threadSpecific2;
} threadSpecific_data_t;
#define NUMTHREADS 2
pthread_key_t threadSpecificKey;

void foo(void);
void bar(void);
void dataDestructor(void *);

void *theThread(void *parm) {
int rcs
threadSpecific_data_t =gData;
PTHREAD_TRACE_NP({
QpOzUprintf("Thread Entered\n");
QpOzDump("Global Data", parm, sizeof(threadSpecific_data t));},
PTHREAD_TRACE_INFO_NP);
gData = (threadSpecific_data t *)parm;
rc = pthread_setspecific(threadSpecificKey, gData);
checkResults("pthread_setspecific()\n", rc);
foo();
return NULL;
1

void foo() {
threadSpecific_data_t *gData =
(threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);
PTHREAD_TRACE_NP(QpOzUprintf("foo(), threadSpecific data=%d %d\n",
gData->threadSpecificl, gData->threadSpecific2);,
PTHREAD_TRACE_INFO_NP);
bar();
PTHREAD_TRACE_NP(QpOzUprintf("foo(): This is an error tracepoint\n");,
PTHREAD_TRACE_ERROR NP);
1

void bar() {
threadSpecific_data_t *gData =
(threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);
PTHREAD_TRACE_NP(QpOzUprintf("bar(), threadSpecific data=%d %d\n",
gData->threadSpecificl, gData->threadSpecific2);,
PTHREAD_TRACE_INFO_NP);

Chapter 1. Pthread APIs

235

aboutapis.htm#CODEDISCLAIMER

PTHREAD_TRACE_NP(QpOzUprintf("bar(): This is an error tracepoint\n");
QpOzDumpStack("This thread's stack at time of error in bar()");,
PTHREAD_TRACE_ERROR_NP);

return;

}

void dataDestructor(void *data) {
PTHREAD_TRACE_NP(QpOzUprintf("dataDestructor: Free data\n");,
PTHREAD_TRACE_INFO_NP);
pthread_setspecific(threadSpecificKey, NULL); free(data);
/* If doing verbose tracing we'll even write a message to the job log */
PTHREAD_TRACE_NP(QpOzLprintf("Free'd the thread specific data\n");,
PTHREAD_TRACE_VERBOSE_NP) ;

}

/* Call this testcase with an optional parameter 'PTHREAD_TRACING' */
/* If the PTHREAD _TRACING parameter is specified, then the */
/* Pthread tracing environment variable will be set, and the */

/* pthread tracing will be re initialized from its previous value. */
/* NOTE: We set the trace level to informational, tracepoints cut =*/

/* using PTHREAD_TRACE_NP at a VERBOSE Tevel will NOT show up*/
int main(int argc, char x*argv) {

pthread_t thread [NUMTHREADS] ;

int rc=0;

int is

threadSpecific_data_t *gData;

char buffer[50];

PTHREAD_TRACE_NP(QpOzUprintf("Enter Testcase - %s\n", argv[0]);,
PTHREAD_TRACE_INFO_NP);

if (argc == 2 && !strcmp("PTHREAD TRACING", argv[1])) {
/* Turn on internal pthread function tracing support */
/* Or, use ADDENVVAR, CHGENVVAR CL commands to set this envvarx/
sprintf(buffer, "QIBM_PTHREAD_ TRACE_LEVEL=%d", PTHREAD_TRACE_INFO_NP);
putenv(buffer);
/* Refresh the Pthreads internal tracing with the environment */
/* variables value. */
pthread trace_init _np();

1

else {
/* Trace only our application, not the Pthread code */
QpOwTracelLevel = PTHREAD_TRACE_INFO_NP;

1

rc = pthread_key create(&threadSpecificKey, dataDestructor);
checkResults("pthread_key create()\n", rc);

for (i=0; i <NUMTHREADS; ++i) {
PTHREAD _TRACE_NP(QpOzUprintf("Create/start a thread\n");,
PTHREAD_TRACE_INFO_NP);
/* Create per-thread threadSpecific data and pass it to the thread */
gData = (threadSpecific_data_t *)malloc(sizeof (threadSpecific_data_t));
gData->threadSpecificl = i;
gData->threadSpecific2 = (i+1)x2;
rc = pthread create(&thread[i], NULL, theThread, gData);
checkResults("pthread create()\n", rc);
PTHREAD_TRACE_NP(QpOzUprintf("Wait for the thread to complete, "
"and release their resources\n");,
PTHREAD_TRACE_INFO_NP);
rc = pthread_join(thread[i], NULL);
checkResults("pthread_join()\n", rc);
}

pthread key delete(threadSpecificKey);

236 iSeries: Pthread APIs

PTHREAD_TRACE_NP(QpOzUprintf("Main completed\n");,
PTHREAD_TRACE_INFO_NP);
return 0;

}
Output

Use CL command DMPUSRTRC to output the following tracing information that the example creates.
The DMPUSRTRC CL command causes the following information to be put into file
QTEMP/QAPOZDMP or to standard output depending on the options used for the CL command.

Note the following:

* The trace records are indented and labeled based on thread id plus a microsecond timestamp at the
time the tracepoint was cut. In the following trace record, the value 0000000D indicates the thread ID
of the thread that created the tracepoint. The value 133520 indicates that the tracepoint occurred 133520
microseconds after the last timestamp indicator.

0000000D:133520 Create/start a thread

* You can use the Pthread library tracepoints to debug incorrect calls to the Pthreads library from your
application.

* The following trace output occurs when the optional parameter 'PTHREAD_TRACING’ is NOT
specified when calling this program. Since 'PTHREAD_TRACING’ is not specified, the application
directly sets the QpOwTraceLevel external variable, causing only application level tracing to occur, and
skiping any Pthreads library tracing.

Chapter 1. Pthread APIs 237

User Trace Dump for job 096932/KULACK/PTHREADT. Size: 300K, Wrapped 0 times.

--- 11/06/1998 11:06:57 ---
0000000D:133520 Create/start a thread
0000000D:293104 Wait for the thread to complete, and release their resources

0000000E :
0000000E :
0000000E:
0000000E :
0000000E:
0000000E :
0000000E:
0000000E :
0000000E :
0000000E:
0000000E :
0000000E:
0000000E :
0000000E:
0000000E :
0000000E :
0000000E:
0000000E :
0000000E:
0000000E :

0000000F:
0000000F:
0000000F :
0000000F:
0000000F :
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:
0000000F:

294072
294272
294416
294496
294568
294624
294680
294736
333872
367488
371704
371872
371944
372016
372104
379248
379400
379440
379560
379656

415672
415872
416024
416104
416176
416232
416288
416344
416552
416696
416784
416872
416952
531432
531544
531632
531704
531744
531856
531952

Thread

Entered

DB51A4C80A:001CDO L:0008 Global Data
DB51A4C80A:001CDO 00000000 00000002
foo(), threadSpecific data=0 2
bar(), threadSpecific data=0 2
bar(): This is an error tracepoint
Dump For Current Thread

Stack

Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
foo():

This thread's stack at time of error in bar()

Library
QSYS

QSYs
KULACK
KULACK
KULACK
QSYS

QSYS

QSYS
Completed

/ Program
/ QLESPI

/ QPOWPTHR
/ PTHREADT
/ PTHREADT
/ PTHREADT
/ QPOZCPA
/ QPOZSCPA
/ QPOZSCPA

Module

QLECRTTH
QPOWPTHR
PTHREADT
PTHREADT
PTHREADT
QPOZUDBG
QPOZSCPA
QPOZSCPA

This is an error tracepoint
dataDestructor: Free data
0000000D:413816 Create/start a thread

0000000D:414408 Wait for the thread to complete, and release their resources

Stmt
774
1008
19
29
46
87
276
287

Procedure

: LE_Create_Thread2_ FP12crtth_parm_t
: pthread_create_part2

: theThread__FPv

: foo_ Fv

: bar__Fv

: QpOzDumpStack

: QpOzSUDumpStack

: QpOzSUDumpTargetStack

Thread Entered
DB51A4C80A:001CDO L:0008 Global Data
DB51A4C80A:001CDO 00000001 00000004 L *
foo(), threadSpecific data=1 4
bar(), threadSpecific data=1 4
bar(): This is an error tracepoint
Stack Dump For Current Thread
Stack: This thread's stack at time of error in bar()
Stack: Library / Program Module Stmt Procedure
Stack: QSYS / QLESPI QLECRTTH 774 : LE Create_Thread2_ FP12crtth_parm t
Stack: QSYS / QPOWPTHR QPOWPTHR 1008 : pthread_create_part2
Stack: KULACK / PTHREADT PTHREADT 19 : theThread__ FPv
Stack: KULACK / PTHREADT PTHREADT 29 : foo_ Fv
Stack: KULACK / PTHREADT PTHREADT 46 : bar__Fv
Stack: QSYS / QPOZCPA QPOZUDBG 87 : QpOzDumpStack
Stack: QSYS / QPOZSCPA QPOZSCPA 276 : Qp0zSUDumpStack
Stack: QSYS / QPOZSCPA QPOZSCPA 287 : QpOzSUDumpTargetStack
Stack: Completed
foo(): This is an error tracepoint
dataDestructor: Free data

0000000D:532528 Main completed

API introduced: V4R3

238

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_unlock_global_np()—Unlock Global Mutex

Syntax:

#include <pthread.h>
int pthread_unlock_global np(void);

Service Program Name: QPOWTCBH

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The pthread_unlock_global_np() function unlocks a global mutex provided by the pthreads run-time.
The global mutex is a recursive mutex with a name of “QPOW_GLOBAL_MTX". The global mutex is not
currently used by the pthreads run-time to serialize access to any system resources, and is provided for
application use only.

Note: This function is not portable

Authorities and Locks

For successful completion, the global mutex lock must be held prior to calling
pthread_unlock_global_np().

Parameters

None.

Return Value

0 pthread_unlock_global_np() was successful.

value pthread_unlock_global _np() was not successful. value is set to indicate the error condition.

Error Conditions

If pthread_unlock_global_np() was not successful, the error condition returned usually indicates one of
the following errors. Under some conditions, the value returned could indicate an error other than those
listed here.

[EINVAL]

The value specified for the argument is not correct.
[EPERM]

The mutex is not currently held by the caller.

Related Information
* The <pthread.h> header file. See ["Header files for Pthread functions” on page 271
» [“pthread_lock_global_np()—Lock Global Mutex” on page 114—Lock Global Mutex

Chapter 1. Pthread APIs 239

Example

See|Code disclaimer information| for information pertaining to code examples.

See the [‘Example” on page 115|example.

API introduced: V4R3

[Top| I [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

sched_yield()—Yield Processor to Another Thread

Syntax:
#include <sched.h>

int sched_yield(void);
Service Program Name: QPOWPTHR

Default Public Authority: *USE

Threadsafe: Yes

Signal Safe: Yes

The sched_yield() function yields the processor from the currently executing thread to another
ready-to-run, active thread of equal or higher priority.

If no threads of equal or higher priority are active and ready to run, sched_yield() returns immediately,
and the calling thread continues to run until its time has expired.

Authorities and Locks
None.

Parameters

None.

Return Value

0 sched_yield() was successful.

value sched_yield() was not successful. value is set to indicate the error condition.

Error Conditions

The sched_yield() API does not currently return an error.

Related Information

* The <pthread.h> header file. See [“Header files for Pthread functions” on page 271

+ [“pthread_getschedparam()—Get Thread Scheduling Parameters” on page 86f—Get Thread Scheduling
Parameters

240 iSeries: Pthread APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Example

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include <errno.h>
#include "check.h"

#define LOOPCONSTANT 1000
#define THREADS 3

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int i,d.k, 15

void *threadfunc(void *parm)

{
int loop = 0;
int localProcessingCompleted = 0;
int numberOfLocalProcessingBursts = 0;
int processingCompletedThisBurst = 0;
int rc;

printf("Entered secondary thread\n");

for (Toop=0; 100p<LOOPCONSTANT; ++loop) {
rc = pthread_mutex_lock(&mutex);
checkResults("pthread_mutex_Tock()\n", rc);
/* Perform some not so important processing */
i+, j++, k++, T++;

rc = pthread_mutex_unlock(&mutex);
checkResults ("pthread mutex_unlock()\n", rc);
/* This work is not too important. Also, we just released a lock
and would Tike to ensure that other threads get a chance in
a more co-operative manner. This is an admittedly contrived
example with no real purpose for doing the sched_yield().
*/
sched_yield();
}
printf("Finished secondary thread\n");
return NULL;

1

int main(int argc, char x*argv)

{
pthread_t threadid[THREADS] ;
int rc=0;
int loop=0;

printf("Enter Testcase - %s\n", argv[0]);

rc = pthread_mutex_lock(&mutex);
checkResults("pthread_mutex_Tock()\n", rc);

printf("Creating %d threads\n", THREADS);

for (Toop=0; 1oop<THREADS; ++1oop) {
rc = pthread_create(&threadid[Toop], NULL, threadfunc, NULL);
checkResults("pthread create()\n", rc);

}

sleep(1);
rc = pthread_mutex_unlock (&mutex) ;
checkResults ("pthread mutex_unlock()\n", rc);

printf("Wait for results\n");
for (loop=0; 1oop<THREADS; ++loop) {
rc = pthread_join(threadid[Toop], NULL);

Chapter 1. Pthread APIs

241

aboutapis.htm#CODEDISCLAIMER

checkResults("pthread_join()\n", rc);
}

pthread_mutex_destroy (&mutex) ;

printf("Main completed\n");
return 0;

}

Output:

Enter Testcase - QPOWTEST/TPSCHYO
Creating 3 threads

Entered secondary thread

Entered secondary thread

Entered secondary thread
Wait for results

Finished secondary thread
Finished secondary thread
Finished secondary thread
Main completed

API introduced: V4R3

[Top| I [Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]

Unsupported Pthread APIs

The following functions are not supported by the iSeries™™ implementation of pthreads. These functions

are all defined and provided by the system. You can create and compile with these functions in your
application. If the unsupported functions are called, when the application runs the functions immediately
fail with the ENOSYS error, and your application can take the appropriate action, such as ignoring the
error and continuing.

+ |“pthread_atfork()—Register Fork Handlers” on page 243|
* |“pthread_atfork_np()—Register Fork Handlers with Extended Options” on page 243|

+ [“pthread_attr_geteuardsize()—Get Guard Size” on page 243

+ |“pthread_attr_getschedpolicy()—Get Scheduling Policy” on page 243|

[‘pthread_attr_getscope()—Get Scheduling Scope” on page 243|
[“pthread_attr_getstackaddr()—Get Stack Address” on page 244|
[‘pthread_attr_getstacksize()—Get Stack Size” on page 244]

* |“pthread_attr_setguardsize()—Set Guard Size” on page 244}

* [“pthread_attr_setschedpolicy()—Set Scheduling Policy” on page 244

[‘pthread_attr_setscope()—Set Scheduling Scope” on page 245|
[‘pthread_attr_setstackaddr()—Set Stack Address” on page 245
[‘pthread_attr_setstacksize()—Set Stack Size” on page 245|

* |“pthread_mutexattr_getprioceiling()—Get Mutex Priority Ceiling Attribute” on page 245

[‘pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute” on page 246}

[‘pthread_mutexattr_setprioceiling(}—Set Mutex Priority Ceiling Attribute” on page 246|

[‘pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute” on page 246|

[“pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling” on page 246|

+ [“pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling” on page 246|

242 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm

pthread_atfork()—Register Fork Handlers

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_atfork(void (*prepare)(void),
void (*parent)(void),
void (*child) (void));

The pthread_atfork() function is not supported by this implementation. The function returns ENOSYS.

pthread_atfork_np()—Register Fork Handlers with Extended Options

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_atfork(int *userstate,
void (*prepare) (void),
void (*parent)(void),
void (*child)(void));

The pthread_atfork_np() function is not supported by this implementation. The function returns ENOSYS.

pthread_attr_getguardsize()—Get Guard Size

Syntax:

#include <pthread.h>
int pthread_attr_getguardsize(const pthread_attr_t =*attr,
size t *guardsize);

The pthread_attr_getguardsize() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_getschedpolicy()—Get Scheduling Policy

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_getschedpolicy(pthread_attr_t *attr,
int *policy);

The pthread_attr_getschedpolicy() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_getscope()—Get Scheduling Scope

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_getscope(pthread_attr_ t *attr,
int *contentionscope);

Chapter 1. Pthread APIs 243

The pthread_attr_getscope() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_getstackaddr()—Get Stack Address

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_getstackaddr(const pthread_attr_t =*attr,
void **stackaddr);

The pthread_attr_getstackaddr() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_getstacksize()—Get Stack Size

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_getstacksize(const pthread_attr_t =*attr,
size_t *stacksize);

The pthread_attr_getstacksize() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_setguardsize()—Set Guard Size

Syntax:

#include <pthread.h>
int pthread_attr_setguardsize(pthread attr_t *attr,
size_t guardsize);

The pthread_attr_setguardsize() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_setschedpolicy()—Set Scheduling Policy

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_setschedpolicy(pthread attr t =attr,
int policy);

The pthread_attr_setschedpolicy() function is not supported by this implementation. The function returns
ENOSYS.

244 iSeries: Pthread APIs

pthread_attr_setscope()—Set Scheduling Scope

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_setscope(pthread attr t *attr,
int contentionscope);

The pthread_attr_setscope() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_setstackaddr()—Set Stack Address

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_setstackaddr(pthread_attr_t *attr,
void *stackaddr);

The pthread_attr_setstackaddr() function is not supported by this implementation. The function returns
ENOSYS.

pthread_attr_setstacksize()—Set Stack Size

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_attr_setstacksize(pthread_attr_t *attr,
size_t stacksize);

The pthread_attr_setstacksize() function is not supported by this implementation. The function returns
ENOSYS.

pthread_mutexattr_getprioceiling()}—Get Mutex Priority Ceiling
Attribute

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_mutexattr_getprioceiling(const pthread mutexattr_t =*attr,
int *prioceiling);

The pthread_mutexattr_getprioceiling() function is not supported by this implementation. The function
returns ENOSYS.

Chapter 1. Pthread APIs 245

pthread_mutexattr_getprotocol()—Get Mutex Protocol Attribute

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread _mutexattr_getprotocol(const pthread mutexattr t =*attr,
int xprotocol);

The pthread_mutexattr_getprotocol() function is not supported by this implementation. The function
returns ENOSYS.

pthread_mutexattr_setprioceiling()—Set Mutex Priority Ceiling Attribute

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,
int prioceiling);

The pthread_mutexatttr_setprioceiling() function is not supported by this implementation. The function
returns ENOSYS.

pthread_mutexattr_setprotocol()—Set Mutex Protocol Attribute

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_mutexattr_setprotocol(pthread mutexattr_t *attr,
int protocol);

The pthread_mutexattr_setprotocol() function is not supported by this implementation. The function
returns ENOSYS.

pthread_mutex_getprioceiling()—Get Mutex Priority Ceiling

Syntax:

#include <pthread.h>

#include <sched.h>

int pthread_mutex_getprioceiling(const pthread mutex_t *mutex,
int *prioceiling);

The pthread_mutex_getprioceiling() function is not supported by this implementation. The function
returns ENOSYS.

pthread_mutex_setprioceiling()—Set Mutex Priority Ceiling

Syntax:

#include <pthread.h>
#include <sched.h>
int pthread_mutex_setprioceiling(pthread_mutex_t *mutex,
int prioceiling, int *oldceiling);

246 iSeries: Pthread APIs

The pthread_mutex_setprioceiling() function is not supported by this implementation. The function
returns ENOSYS.

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Chapter 1. Pthread APIs 247

#TOP_OF_PAGE
aplist.htm

248 iSeries: Pthread APIs

Chapter 2. Concepts

These are the concepts for this category.

What are Pthreads?

Portable Operating System Interface for Computer Environments (POSIX) is an interface standard
governed by the IEEE and based on UNIX. POSIX is an evolving family of standards that describe a wide
spectrum of operating system components ranging from C language and shell interfaces to system
administration.

The Pthread interfaces described in this section are based on a subset of the application programming
interfaces (APIs) defined in the POSIX standard (ANSI/IEEE Standard 1003.1, 1996 Edition OR ISO/IEC
9945-1: 1996) and the Single UNIX Specification, Version 2, 1997. The implementation of these APIs is not
compliant with these standards. However, the implementation does attempt to duplicate the portable
nature of the interfaces defined by the standards. Differences between Pthreads in OS/400 and other
thread types are described in [“OS/400 Pthreads versus the POSIX standard, the Single UNIX]
[Specification, and other threads implementations” on page 250,

[Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Primitive data types for Pthreads

The Pthread types and functions have the following naming conventions. If the type of object is not a
thread, object represents the type of object, action is an operation to be performed on the object, np or
NP indicates that the name or symbol is a non-portable extension to the API set, and PURPOSE indicates
the use or purpose of the symbol.

types pthread[_object][_np]_t

functions
pthread[_object]_action[_np]

Constants and Macros
PTHREAD_PURPOSE[_NP]

Type Description

pthread_attr_t Thread creation attribute
pthread_cleanup_entry_np_t Cancellation cleanup handler entry
pthread_condattr_t Condition variable creation attribute
pthread_cond_t Condition Variable synchronization primitive
pthread_joinoption_np_t Options structure for extensions to pthread_join()
pthread_key_t Thread local storage key

pthread_mutexattr_t Mutex creation attribute

pthread_mutex_t Mutex (Mutual exclusion) synchronization primitive
pthread_once_t Once time initialization control variable
pthread_option_np_t Pthread run-time options structure
pthread_rwlockattr_t Read /Write lock attribute

pthread_rwlock_t Read/Write synchronization primitive

© Copyright IBM Corp. 1998, 2005 249

aplist.htm

Type Description

pthread_t Pthread handle

pthread_id_np_t Thread ID. For use as an integral type.
struct sched_param Scheduling parameters (priority and policy)

After creating the primitive objects of type pthread_cond_t and pthread_mutex_t using the appropriate
initialization functions, those objects must not be copied or moved to a new location. If the condition
variable or mutex is copied or moved to a new location, the new primitive object is not valid or usable.
Attempts to use the new object result in the EINVAL error.

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Feature test macros for Pthreads

Constant Description

_POSIX_THREADS Base threads

_POSIX_THREAD_ATTR_STACKADDR Stack address attribute. Not present in the OS/400
implementation.

_POSIX_THREAD_ATTR_STACKSIZE Stack size attribute. Not present in the OS/400
implementation.

_POSIX_THREAD_PRIORITY_SCHEDULING Thread priority scheduling. Not present in the OS/400
implementation.

_POSIX_THREAD_PRIO_INHERIT Mutex priority inheritance. Not present in the OS/400
implementation.

_POSIX_THREAD_PRIO_PROTECT Mutex priority ceiling. Not present in the OS/400
implementation.

_POSIX_THREAD_PROCESS_SHARED Synchronization primitives may be shared between
processes.

The OS/400 implementation of pthreads defines the _POSIX_THREADS and
_POSIX_THREAD_PROCESS_SHARED feature test macros. See [“Unsupported preprocessor and feature|
[test macros” on page 251 for a complete list of unsupported feature test macros.

[Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

0S/400 Pthreads versus the POSIX standard, the Single UNIX
Specification, and other threads implementations

Although the Pthread interfaces described in this document are based on a subset of the APIs defined in
the POSIX standard and the Single UNIX Specification, the implementation of these APIs is not compliant
with these standards. This means that applications written in other versions of threads are not necessarily
portable to OS/400. Below is a list of the differences between the Pthread APIs and other threads
implementations.

+ |All thread definitions in pthread.h|

° [Unsupported preprocessor and feature test macros|

* [Unsupported APISs|

° IUnsupported constants|

* [Unsupported cancellation points|

250 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm
concep10.htm
concep11.htm
users_98.htm
concep13.htm
concep14.htm

+ [Unsupported sysconf() configuration variables|

* [Thread priority and scheduling]

[Thread ID vs. Pthread Handle (pthread_t)|

s [Thread ID value and size|

+ [Mutexes return EDEADLK when re-locked by owner|

* [Return values from thread start routines are not integers|

* [Threads do not necessarily start before pthread_create() returns|

» [Initial thread is special, cannot pthread_exit()|

[Pthread APIs cause asynchronous signals initialization|
[Not all jobs can create threads; pthread_create() fails with EBUSY|
+ [Read/write locks are recursive|

[Shared read /write locks are released at thread termination|

[‘Read /write locks can be upgraded/downgraded” on page 258|

* [Read /write locks do not favor writers|

* [Spawn API provides more POSIX-like process model|

s |C++ destructors and Pthread termination|

* [Unhandled exceptions terminate the thread (not the process)

+ [Exceptions vs. Asynchronous signals vs. ANSI C signals|

* [“Mutexes can be named to aid in application debug” on page 271

IEE' | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

All thread definitions in pthread.h

For Pthreads on the iSeries, all feature test macros, preprocessor values, data structures, types, and
function prototypes are located in the pthread.h header file instead of the system header files that are
specified by POSIX or the Single UNIX Specification.

[Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Unsupported preprocessor and feature test macros

The following Pthread feature test macros are not defined on the server:
¢ _POSIX_THREAD_ATTR_STACKADDR

¢ _POSIX_THREAD_ATTR_STACKSIZE

* _POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREAD_PRIORITY_SCHEDULING

[Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

Chapter 2. Concepts

251

concep15.htm
concep16.htm
concep17.htm
concep18.htm
concep19.htm
concep20.htm
concep21.htm
concep22.htm
concep23.htm
concep24.htm
concep25.htm
concep26.htm
concep27.htm
concep28.htm
concep29.htm
concep30.htm
concep31.htm
#TOP_OF_PAGE
aplist.htm
aplist.htm
aplist.htm

Unsupported constants

The following constants related to threads are not defined on the server.
* PTHREAD_STACK_MIN

* PTHREAD_PRIO_INHERIT

* PTHREAD_PRIO_NONE

* PTHREAD_PRIO_PROTECT

[Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

Unsupported cancellation points

0S/400 does not support the full set of cancellation points. Although the APIs may be provided, they are
not necessarily cancellation points. The only cancellation points currently supported are those APIs that
are part of the Pthread run-time. Those APIs are the following:

e pthread_cond_timedwait()
* pthread_cond_wait()

* pthread_delay_np()

* pthread_join()

* pthread_join_np()

* pthread_testcancel()

An appropriate alternative to create cancellation points for these APIs might be like the following
example. You can use this example to create a cancellation point out of any function that is asynchronous
signal safe. See [Sienal Concepts| for a list of functions that are asynchronous signal safe. If a function is
not asynchronous signal safe, you should not use this form of asynchronous cancellation because it
corrupt data.

Example

See|Code disclaimer information| for information pertaining to code examples.

. preceding code ...
int oldtype=0;
/* If cancellation is currently disabled, this will have no effect x/
/% if cancellation is currently enabled, we'll set it to asynchronous =*/
/* for the duration of this call to try to simulate a cancellation point */
pthread_setcanceltype(PTHREAD CANCEL_ASYNCHRONOUS, &oldtype);
/* Call kernel API that you want to be a cancel point. You should */
/* only call functions which are asynchronous signal safe in this block. */
/* Validating the asynchronous signal safety of the function will =/
/* ensure that the asynchronous cancellation does not negatively */
/* affect the API or corrupt the data that the API uses */
APICallHere();
/* Restore the cancellation type that was previously in effect =/
pthread_setcanceltype(oldtype, &oldtype);
. following code ...

@l | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

252 iSeries: Pthread APIs

aplist.htm
unix5a2.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Unsupported sysconf() configuration variables

The following sysconf() configuration variables related to threads are not supported on the server.
¢ _SC_THREAD_DESTRUCTOR_ITERATIONS
* _SC_THREAD_PRIORITY_SCHEDULING
_SC_THREADS
_SC_THREAD_ATTR_STACKADDR

e _SC_THREAD_ATTR_STACKSIZE
_SC_THREAD_KEYS_MAX
_SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PROCESS_SHARED

* _SC_THREAD_SAFE_FUNCTIONS
_SC_THREAD_STACK_MIN
_SC_THREAD_THREADS_MAX

[Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Thread priority and scheduling

The default thread creation attributes of the iSeries implementation of Pthreads uses an explicitly
specified priority of DEFAULT_PRIO_NP. Some implementations inherit the scheduling priority and
policy of the creating thread by default. For better performance, the iSeries implementation chooses to
start each thread with an explicit priority so that, when a thread is created, the priority of the creating
thread does not need to be retrieved at run-time.

An iSeries thread competes for scheduling resources against other threads in the system, not solely
against other threads in the process. The scheduler is a delay cost scheduler based on several delay cost
curves (priority ranges). The POSIX standard and the Single UNIX Specification refers to this as
scheduling scope and scheduling policy, which cannot be changed from the default of SCHED_OTHER
in this implementation.

The following Pthread APIs support a scheduling policy of only SCHED_OTHER.
 pthread_setschedparam (SCHED_OTHER only supported)

* pthread_getschedparam

* pthread_attr_setschedparam

* pthread_attr_getschedparam

The priority of a thread is specified as a number that represents the value that is added to the priority of
the process. Changing the priority of the process affects the priority of all of the threads within that
process. The default priority for a thread is DEFAULT_PRIO_NP, which is no change from the process
priority.

On the iSeries, numerically lower priority values indicate higher priority with regard to scheduling. The
pthread.h and sched.h header files define the priority constants in a way that is consistent with the
threads standard, but opposite of priority specifications on the iSeries. When you specify a priority of -99
in a call to pthread_setschedparam(), the priority of the target thread is lowered to the lowest possible
value.

For example, process P1 is at iSeries priority 20 and contains a thread T1 that specifies a Pthread priority
adjustment of -18. Process P2 is at iSeries priority 25 and contains thread T2 that specifies a priority of -5.

Chapter 2. Concepts 253

aplist.htm

The result is that the system schedules the threads using the iSeries priority for T1 as 38 and for T2 as 30.
The thread scheduling is specified at a system level, and although process P2 runs at a lower priority
ranking than process P1, thread T2 within process P2 runs at a higher priority ranking than thread T1 in
process P1, and thus gets more processing resources.

@ | [Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

Thread ID vs. Pthread Handle (pthread_t)

In many threads implementations, the pthread_t abstract type is implemented as an integer (4 byte)
thread ID. In the iSeries implementation of Pthreads, the thread ID is a 64-bit integral value and the
pthread_t is an abstraction (structure) that contains that value and others. This abstraction helps to allow
the implementation to scale to thousands of threads in a process.

Do not allow your program to rely on the internal structure or size of the pthread_t in a non-portable
fashion, such as comparisons of thread IDs. For portable comparison, use the pthread_equal() APL This
documentation occasionally refers to the pthread_t as a Pthread handle to try to prevent the
misconception that it represents a single integer value.

[Chapter 1, “Pthread APIs,” on page 1] | [APIs by category]|

Thread ID value and size

In some threads implementations, the thread ID is a 4-byte integer that starts at 1 and increases by 1
every time a thread is created. This integer can be used in a non-portable fashion by an application.

To assist in the portability problem with the application and to allow retrieval of the thread ID, the
iSeries implementation has provided the pthread_getunique_np() function to retrieve the thread ID from
the Pthread handle. This thread ID is a 64-bit integer value. Because some compilers do not yet support a
full 64-bit integer data type, the value is returned in a structure containing two 4-byte integers.

[Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

Mutexes return EDEADLK when re-locked by owner

Some threads implementations return the EDEADLK error when a mutex attempts to relock a mutex that
it already owns. The POSIX standard specifies that the results are undefined when a mutex is re-locked
by the owner. The Single UNIX Specification addresses these issues by providing a new mutex attribute
called type.

The iSeries threads support takes the same implementation route that the Single UNIX Specification
suggests, and it also causes the thread to deadlock when it attempts to re-lock a normal (non-recursive)
mutex. Because many users of Pthreads do not check return codes from functions, the deadlock protects
applications from corrupted data that might result if they attempt to relock an already held mutex, then
unlock the mutex as if the lock was successful.

See [pthread_mutexattr_gettype()—Get Mutex Type Attribute| and [pthread_mutexattr_settype()—Set Mutex|
[Type Attribute|if you need error-checking mutexes for your application.

[Chapter 1, “Pthread APIs,” on page 1| | [APIs by category]|

254 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aplist.htm
aplist.htm
users_53.htm#370578
users_58.htm#370784
users_58.htm#370784
aplist.htm

Return values from thread start routines are not integers

Return values from a thread are defined to be of type void *. On some platforms, a void * and an integer
can be easily interchanged with no loss of information. Until Version 4 Release 2, this was not true on the
iSeries. The iSeries enforces stricter pointer rules to both prevent and detect application bugs or a
malicious program’s behavior. Thus, when converting integers to pointers by a mechanism not directly

supported by your compiler, the valid pointer information is lost, and the pointer is always set to NULL
(regardless of its binary value).

New support put into the system in Version 4 Release 2 allows you to store an integer into a pointer, and

still have the pointer be non-NULL. You cannot store to, read from, or defer a pointer created by this

mechanism, but the pointer appears non-NULL.

The macros __INT() and __VOID() are provided to aid in compatibility and allow you to easily store and
retrieve integer information in pointer variables even if your compiler does not support the direct

typecast. These macros allow explicit conversion from a pointer to an integer and from an integer to a

pointer.

Note: The macros __INT() and __VOID() result in function calls.

Example

The following example shows the correct way to store and retrieve integer information in pointer
variables.

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

int main(int argc, char xxargv)

{

void *statusl
void *status?2

_VOID(5);
~V0ID(999) 5

if (statusl == NULL) {
printf("Statusl pointer is NULL\n");
}
else {
printf("Statusl pointer is non-NULL\n");
}

if (statusl == status2) {
printf("Both status variables as pointers are equal\n");
}
else {
if (statusl < status2) {
printf("Statusl is greater than status2\n");

else {
if (statusl < status2) {
printf("Statusl is less then status2\n");

else {
printf("The pointers are unordered!\n");

}
}

printf("Pointer values stored in status variables are:\n"
" statusl = %.8x %.8x %.8x %.8x\n"

Chapter 2. Concepts

255

aboutapis.htm#CODEDISCLAIMER

" status2 = %.8x %.8x %.8x %.8x\n",
statusl, status2);
printf("Integer values stored in status variables are:\n"
" statusl = %d\n"
" status2 = %d\n",
__INT(statusl), _ INT(status2));
return;

}

Output:

Statusl pointer is non-NULL

Statusl is less then status2

Pointer values stored in status variables are:
statusl = 80000000 00000000 00008302 00000005
status2 = 80000000 00000000 00008302 000003e7
Integer values stored in status variables are:
statusl = 5

status2 = 999

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]

Threads do not necessarily start before pthread_create() returns

A thread may or may not start running before the return from pthread_create(). Depending on the
amount of time left in the creating threads, time slice, and the other activity on the system, the creating
thread may return before the new thread runs.

The thread implementations of some systems guarantee a certain ordered behavior for thread creation
versus the execution of the first statement in the new thread. On the iSeries, it is unknown which

happens first, the execution of the first instruction in the new thread or the return from pthread_create().

The following example shows an incorrectly written application.

See |Code disclaimer information| for information pertaining to code examples.

#define _MULTI_THREADED
#include <pthread.h>
#include <stdio.h>
#include "check.h"

pthread_t thread

void xthreadfunc(void *parm)
{
pthread_id_np_t tid;
#error "This is an ERROR."
#error "The 'thread' variable is shared between threads"
#error "and must be protected by a mutex."
pthread_getunique np(&thread, &tid);
printf("Thread 0x%.8x %.8x started\n", tid);
return NULL;
1

int main(int argc, char x*argv)

{

int rc=0;
printf("Enter Testcase - %s\n", argv[0]);

#error "This is an ERROR."

#error "The order of thread thread startup, and return from
#error "the pthread_create() API is NOT deterministic."

rc = pthread create(&thread, NULL, threadfunc, NULL);

256 iSeries: Pthread APIs

#TOP_OF_PAGE
aplist.htm
aboutapis.htm#CODEDISCLAIMER

checkResults("pthread create(NULL)\n", rc);

/* sleep() isn't a very robust way to wait for the thread */
sleep(5);

printf("Main completed\n");
return 0;

@ | [Chapter 1, “Pthread APIs,” on page 1| | |APIs by category]|

Initial thread is special, cannot pthread_exit()

The initial thread in an OS/400 process is special because of these characteristics:
* If the initial thread calls pthread_exit(), the process terminates.

e If the initial thread is the target of a pthread_cancel() request that is acted upon, the process
terminates.

e If the initial thread terminates through any other action, the process terminates.

* Many OS/400 APIs and commands target jobs. Some of those APIs target resources that are allocated
to threads for retrieval or modification. If this is the case, the resources that displayed, modified, or
retrieved may be the resources owned by the initial thread.

For example, the CL command WRKACTJOB allows you to display information such as the call stack
for a job. Sinc