

@server
iSeries
Remote Procedure Call (RPC) APls

Version 5 Release 3

Note
Before using this information and the product it supports, be sure to read the information in

[“Notices,” on page 129.|

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System /400 (product number 5722-SS1) and
to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on
all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Remote Procedure Call (RPC) APls .

APIs . .
Authentication APIs .
authnone_create()—Create Null Authentlcatlon
Parameters .
Authorities .

Return Value

Error Conditions .
Error Messages
Related Information .
Example.

authsys_ create()—Create Authentlcatlon w1th OS

Permission .
Parameters .
Authorities .

Return Value

Error Conditions .
Error Messages
Related Information .
Example.

auth destroy()—Destroy Authent1cat10n Inforrnat1on

Parameters .

Authorities .

Return Value

Error Conditions .

Error Messages

Related Information .

Example. .
Name-to-Address Translatlon APIs .
netdir_free()—Free Netdir Structures

Parameters .

Authorities .

Error Conditions .

Error Messages

Usage Notes

netdlr_getbyaddr()—Translate a Netbuf Address to a

Host .
Parameters .
Authorities .
Return Value .
Error Conditions.
Error Messages .
Usage Notes .
Example

netdlr_getbyname()—Translate a leen Host Serv1ce

Pair .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Usage Notes .

Example . .
netdir_options()—Access Transport Spec1f1c
Capabilities

Parameters

© Copyright IBM Corp. 1998, 2005

O O 0XPXOJTAANIITAAIONOO U1 UG =

WWWNNNNNR R -,

. 10
. 10
. 10
. 10

. 10

11
.12
.12
.12
.12
.12
.12
.13

.14
.14

Authorities
Return Value .
Error Conditions.
Error Messages .
Example

netdir sperror()—Ind1cate an Error in an NTA

Routine.
Parameters
Authorities
Return Value .
Error Messages .
Usage Notes .

Example Lo .
taderuaddr()—Translate a Local Address .
Parameters e

Authorities
Return Value .
Error Conditions.
Error Messages .
Usage Notes .
Example

uaddr2taddr()—Translate a Umversal Address.

Parameters
Authorities

Return Value .

Error Conditions.
Error Messages .
Usage Notes .
Example .

Network Selection APIs

endnetconfig()—Release the Pomter in the Netconﬁg

.22
.22
.23
.23
. 23
. 23
.23
.23
.24
.24
. 25
. 25
. 25
. 25
. 25

File .
Parameters
Authorities
Return Value .
Error Conditions.
Error Messages .
Usage Notes .
Example

freenetconfigent()—Free the Netconflg Structure .

Parameters
Authorities
Return Value .
Error Conditions.
Error Messages .
Example

getnetconﬁg()—Return Current Record from the

Netconfig File
Parameters
Authorities
Return Value .
Error Conditions.
Error Messages .
Example

gemetconflgent()—Return a Pomter to a Netconflg

Structure

.14
.14
. 15
. 15
.15

. 16
. 16
. 16
. 16
. 16
.17
.17
. 18
. 18
. 18
.18
. 18
. 18
.19
.19

. 20
. 20
. 20
. 20
.21
.21
.21

.22

. 26
. 26
. 26
. 26
.27
.27
.27

.27

iii

Parameters27
Authorities28
Return Value.28
Error Conditions.28
Error Messages29
UsageNotes29
Example 29
setnetconfig()—Initialize the Po1nter in the Netconﬁg
File2
Parameters30
Authorities30
Return Valve.30
Error Conditions.30
Error Messages31
Usage Notes31
Example . . .31
Transport- Independent Remote Procedure Call APIs 31
Simplified APIs L. .32
rpc_call()—Call a Remote Procedure on the
Specified System.32
Parameters32
Authorities33
Return Value.33
Error Conditions.33
Error Messages33
Related Information34
Example . . . 34
rpe_ reg()—Reg1ster a Procedure w1th RPC Serv1ce
Package3
Parameters35
Authorities36
Return Value.36
Error Conditions.36
Error Messages36
Related Information36
Example36
Top-level APIs37
cInt_call()—Call a Remote Procedure Assoc1ated
with the Client37
Parameters38
Authorities38
Return Value.38
Error Conditions.38
Error Messages39
Related Information40
Example 40
cInt_control()—Change Informat1on about a Cllent
Object40
Parameters41
Authorities41
Return Valve41
Error Conditions.42
Error Messages42
Example oL 42
cInt_create()—Create a Generlc Cl1ent Handle .. .43
Parameters43
Authorities43
Return Value.43
Error Conditions.43
Error Messages44
Related Information45

1V iSeries: Remote Procedure Call (RPC) APIs

Example

cInt destroy()—Destroy the RPC Chent s Handle .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example .
svc_create()—Create a Server Handle

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example
sve destroy()—Destroy an RPC Servrce Transport
Handle . Lo

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example .
Intermediate-level APIs .
cInt_tp_create()—Create a Client Handle.

Parameters oL

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example . .
svc_tp_create()—Create a Server Handle.

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example
Expert-level APIs .
cInt_tli_create()—Create a Chent Handle.

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example
rpchb_ getaddr()—Frnd the Unrversal Address of a
Service .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example

. 45
. 45
. 46
. 46
. 46
. 46
. 46
. 46
. 46
. 47
. 47
. 47
. 47
. 47
. 48
. 48
. 48

. 49
. 49
. 49
. 49
. 49
. 49
. 49
. 49
. 50
. 50
. 50
. 51
. 51
. 51
. 52
. 53
. 53
. 54
. 54
. 54
. 54
. 54
. 55
. 55
. 55
. 56
. 57
. 57
. 57
. 58
. 58
. 59
. 59
. 59

. 60
. 60
. 60
. 61
. 61
. 61
. 61

rpcb_set()—Register the Server Address with the
RPCBind e

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example .
rpcb unset()—Unregrster Therr Addresses .

Parameters .

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example .
svc_reg()—Associate Program and Versron wrth
Dispatch

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
svc_tli_create()—Create a Server Handle

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example .
svc_unreg()—Delete an Assoc1at10n Set by sve reg()

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Related Information

Example
Other APIs
cInt_freeres()—Free Data Allocated by the RPC or
XDR System .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
cInt_geterr()—Get the Error Structure from the
Client Handle

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example . .
svecerr_decode()—Send Informat1on to Cl1er1t for
Decode Error .

Parameters

. 62
. 63
. 63
. 63
. 63
. 63
. 64
. 64
. 65
. 65
. 65
. 65
. 65
. 66
. 66
. 66

. 67
. 67
. 67
. 67
. 68
. 68
. 68
. 69
. 69
.70
. 70
. 70
.70
.70

.70
71

.72
.72
.72
.72
.72
.72
.72
.73

.74
. 74
.74
.74
.74
.74
.75

. 76
. 76
. 76
. 76
. 76
. 76
. 76

.77
.77

Authorities

Return Value .

Error Conditions.

Error Messages .

Example . .
svcerr_noproc()—Send Inforrnatron to Chent for
Procedure Number Error .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
svcerr_systemerr()—Send Informatron to Clrent for
System Error .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
svecerr_weakauth()—Send Authentrcatron Error
Indication to a Client .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example ..
svc_freeargs()—Free Data Allocated by the RPC or
XDR System .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example
svc_getargs()—Decode the Arguments of an RPC
Request. o

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example
svc getrpccaller()—Get the Network Address of the
Caller ..

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example
svc_run()—Wait for RPC Requests to Arr1ve

Parameters .

Authorities

Return Value .

Error Conditions.

Error Messages .

Example

Contents

.77
.77
. 78
.78
. 78

. 78
.78
.78
. 78
. 78
.79
.79

.79
.79
.79
.79
.79
.79
. 80

. 82
. 82
. 82
. 82
. 82
. 82
. 82

. 83
. 83
. 83
. 83
. 83
. 83
. 84

. 84
. 84
. 84
. 84
. 84
. 85
. 85

. 85
. 85
. 85
. 85
. 85
. 86
. 86
. 86
. 86
. 86
. 86
. 86
. 87
. 87

svc_sendreply()—Send the Results of a Procedure
Call to a Remote Client

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example
External Data Representatlon APIS
xdr_array()—Translate between Arrays and The1r
XDR. o

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
xdr_bool()—Translate between Booleans and The1r
XDR.

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example
xdr bytes()—Translate between Counted Byte
Arrays and Their XDR.

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example ..
xdr_char()—Translate between Characters and Thelr
XDR.

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
xdr_double()—Translate between Double—Prec151on
and XDR .

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example . .
xdr_double char()—Translate between Two Byte
Characters.

Parameters

Authorities

Return Value .

Error Conditions.

Error Messages .

Example .
xdr_enum()—Translate between Enumeratlon and
XDR

Parameters .

Authorities .

Vi iSeries: Remote Procedure Call (RPC) APIs

. 87
. 87
. 87
. 88
. 88
. 88
. 88
. 88

. 90
.90
.91
.91
.91
.91
.91

.92
.92
.92
.92
.92
.93
. 93

.93
.94
. 94
.94
.94
.94

. 94

. 95
. 95
. 95
. 96
. 96
. 96
. 96

.97
. 97
.97
.97
.97
. 97
. 97

. 98
. 98
. 98
. 98
. 99
.99
.99

. 100
. 100
. 100

Return Value

Error Conditions

Error Messages .

Example . .
xdr_float()—Translate between Floats and Thelr
XDR

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_free()—Generic Freelng Functlon

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_int()—Translate between Integers and Thelr
XDR

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_long()—Translate between Long Integers and
Their XDR

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_netobj()—Translate between Netob] Structures
and Their XDR .

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example .
xdr opaque()—Translate between leed Slze Data
and Its XDR. .o

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example . . .
xdr_pointer()—Provide Pomter Chasmg w1th1n
Structures

Parameters .

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr reference()—Prov1de Pomter Chasmg w1th1n
Structures.

. 100
. 100
. 100
. 100

. 101
. 101
. 101
. 101
. 102
. 102
. 102
. 102
. 103
. 103
. 103
. 103
. 103
. 103

. 104
. 104
. 104
. 104
. 104
. 104
. 104

. 105
. 105
. 105
. 105
. 105
. 106
. 106

. 106
. 106
. 107
. 107
. 107
. 107
. 107

. 108
. 108
. 108
. 108
. 108
. 108
. 109

. 109
. 109
. 110
. 110
. 110
. 110
. 110

111

Parameters

Authorities

Return Value

Error Conditions

Error Messages .

Example .
xdr short()—Translate between Short Integers and
Their XDR

Parameters

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_string()—Translate between Strrngs and Thelr
XDR

Parameters

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_union()—Translate between Un10ns and The1r
XDR

Parameters

Authorities .

Return Value

Error Conditions

Error Messages .

Usage Notes.

Example . .
xdr_u Char()—Translate between Un51gned
Characters and Their XDR .

Parameters

Authorities .

Return Value

Error Conditions

Error Messages .

Example . . .
xdr_u_int()—Translate between an Un51gned
Integer and Its XDR .

Parameters

Authorities .

Return Value

Error Conditions

Error Messages .

Example . .
xdr_u_long()—Translate between an Un51gned
Long and Its XDR .

111
. 111
. 111
. 112
. 112
. 112

. 112
. 113
. 113
. 113
. 113
. 113
. 113

. 114
. 114
. 114
. 114
. 114
. 114
. 115

. 115
. 115
. 116
. 116
. 116
. 116
. 116
. 116

. 117
. 117
. 117
. 117
. 118
. 118
. 118

. 119
. 119
. 119
. 119
. 119
. 119
. 119

. 120

Parameters120
Authorities120
Return Value120
Error Conditions121
Error Messages.121
Example oL 121
xdr_u short()—Translate between an Unsrgned
Short and Its XDR.121
Parameters122
Authorities122
Return Value122
Error Conditions122
Error Messages.122
Example 122
xdr_vector()—Translate between Arrays and Thelr
XDR123
Parameters123
Authorities123
Return Value123
Error Conditions123
Error Messages.124
Example 124
xdr vord()—Supply an XDR Functlon to the RPC
System . . oo ... 124
Parameters125
Authorities125
Return Value125
Error Conditions125
Error Messages.125
Example 125
xdr wrapstrlng()—Call the xdr strlng() Functlon 126
Parameters126
Authorities126
Return Value126
Error Conditions126
Error Messages.126
Example126
Conceptso 127
Header Files for Remote Procedure Call APIs .. 127

Appendix. Notices 129

Trademarks 130
Terms and conditions for downloadlng and

printing publications131
Code disclaimer information 132

Contents Vil

Viii iSeries: Remote Procedure Call (RPC) APIs

Remote Procedure Call (RPC) APIs

The Remote Procedure Call (RPC) APIs include:

* [“Authentication APIs’]

* ["Name-to-Address Translation APIs” on page 7
* ["Network Selection APIs” on page 22
* [‘Transport-Independent Remote Procedure Call APIs” on page 31|

* ["External Data Representation APIs” on page 8

These APIs are intended for programmers who develop distributed applications. They enable distributed
applications to communicate with each other. Open Networking Computers (ONC) RPC was developed
by Sun Microsystems and is used to easily separate and distribute a client application from a server by
using the SUN RPC protocol. RPC includes a method of abstracting data, called eXternal Data
Representation, or XDR, to allow communications to be abstracted at the API level.

Transport-Independent RPC (TI-RPC), or ONC+ RPC, is the latest incantation of RPC. It provides a
method of abstracting the underlying protocol used at the network layer, providing a more seamless
transition from one protocol to another.

Note: These functions use header (include) files from the library QSYSINC, which is optionally
installable. Make sure QSYSINC is installed on your system before using any of the functions. See
[“Header Files for Remote Procedure Call APIs” on page 127|for the file and member name of each header
file.

The following terms relate to the RPC applications:

RPCBind A daemon program that allows client programs to obtain the aress of a service that is registered
with the RPCBind daemon.
RPCGen A compiler that accepts a remote-program interface definition written in the RPC language

(RPCL), which is similar to the C programming language. From this definition, RPCGen produces
C-language output for client stub functions, a server skeleton, XDR filter routines, and a header
file.

For more information on RPCBind and RPCGen, see the [Control Language] topic.

For more information about these APIs, see [Sun TI-RPC distributed applications|in the Information
Center.

@ll APIs by category

APIs

These are the APIs for this category.

Authentication APIs

The authentication APIs are used to provide authentication to the Transport-Independent Remote
Procedure Call (TI-RPC) applications. These APIs enable a client to pass appropriate information as
required by a remote service.

The authentication APIs are:

© Copyright IBM Corp. 1998, 2005 1

#TOP_OF_PAGE
aplist.htm

* [“authnone_create()—Create Null Authentication”|(Create null authentication) creates and returns a
default RPC authentication handle that passes null authentication information with each remote
procedure call.

* ["authsys_create()—Create Authentication with OS Permission” on page 4 (Create authentication with
OS permission) creates and returns an RPC authentication handle that contains authentication
information.

“auth_destroy()—Destroy Authentication Information” on page 6§ (Destroy authentication information)
destroys the authentication information structure that is pointed to by the auth parameter.

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

authnone_create()—Create Null Authentication

Syntax

#include <rpc/rpc.h>

AUTH =authnone_create();

Default Public Authority: *USE

Service Program Name: QZNFTRPC

Threadsafe: No

The authnone_create() function creates and returns a default RPC authentication handle that passes null
authentication information with each remote procedure call.

Parameters
None.

Authorities

No authorization is required.

Return Value

auth Upon successful completion, this API returns a pointer to an RPC authentication handle.
NULL authnone_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[ENOMEM] Storage allocation failed.
[EUNKNOWN] Unknown System State.

2 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text

CPIA1BO I An authentication problem was encountered by one of the TI-RPC APIs.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

Related Information

* [‘authsys_create()—Create Authentication with OS Permission” on page 4

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how authnone_create() is used:

#include <stdio.h>

#include <rpc/rpc.h>

/* Define remote program number and version */
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

main()

{
CLIENT *client; /+* client handle */

/* Create a null authentication =/

client->c1_auth = authnone_create();

if (client->c1_auth == (AUTH *)NULL){
fprintf(stderr, "authnone_create failed!!\n");
exit(1);

}

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

Remote Procedure Call (RPC) APIs 3

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

authsys_create()—Create Authentication with OS Permission

Syntax

#include <rpc/rpc.h>

AUTH xauthsys_create(const char *host,
const uid_t uid,
const gid_t gid,
const int len,
const gid_t *aup gids);

Default Public Authority: *USE

Service Program Name: QZNFTRPC

Threadsafe: No

The authsys_create() function creates and returns an RPC authentication handle that contains
authentication information.

Parameters

host (Input)
A pointer to the name of the machine on which the permission was created.

uid (Input)
The caller’s effective user ID (UID).

gid (Input)
The caller’s effective group ID (GID).

len (Input)
The length of the group’s array.

aup_gids (Input)
A pointer to the counted array of groups to which the user belongs.

Authorities

No authorization is required.

Return Value

auth Upon successful completion, this API returns an RPC authentication handle.
NULL authsys_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions
[EINVAL] An invalid len parameter was passed.

[ENOMEM] Storage allocation failed.
[EUNKNOWN] Unknown system state.

4 iSeries: Remote Procedure Call (RPC) APIs

Error Messages

Message ID Error Message Text

CPIA1BO I An authentication problem was encountered by one of the TI-RPC APIs.
CPDA1C1 D An authentication problem has occurred.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E

Related Information

“authnone_create()—Create Null Authentication” on page 2|

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how authsys_create() is used:

#include <stdio.h>
#include <rpc/rpc.h>

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

main()

{

}

CLIENT *client; /* The client handle =/
char *host;

uid_t uid;

gid_t gid, *aup_gids;

int Ten;

/* Service request to host RPCSERVER HOST =*/
client = cInt_create("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER,
IItcpll);
if (client == (CLIENT *)NULL) {
printf("Could not create client\n");

exit(1);

}

uid = geteuid();

gid = getegid();

Ten = getgroups(NGRPS, aup_gids));

/* Initialized the authsys_create()'s arguments before use */
client->c1_auth = authsys_create(host, uid, gid,
len, aup_gids);
if (client->c1_auth == (AUTH *)NULL) {
fprintf(stderr, "authsys_create failed!!\n");
exit(1l);
}

API introduced: V4R2

Program or service program &1 in library &2 ended. Reason code &3.

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

5

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

auth_destroy()—Destroy Authentication Information

Syntax

#include <rpc/rpc.h>

void auth_destroy(AUTH *auth);

Default Public Authority: *USE

Service Program Name: QZNFTRPC

Threadsafe: No

The auth_destroy() function destroys the authentication information structure that is pointed to by the
auth parameter.

Parameters
auth

(Input)
A pointer to the authentication information structure to be destroyed. By destroying the auth
structure, you deallocate private data structures.

Authorities

No authorization is required.

Return Value

None.

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

+ [“authsys_create()—Create Authentication with OS Permission” on page 4|

« [‘authnone_create()—Create Null Authentication” on page 2|

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how auth_destroy() is used:

6 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

#include <stdio.h>
#include <rpc/rpc.h>

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

main()

{
CLIENT *cInt; /* The client handle */

/*
Create the client handle, and initialize the authentication in
the clnt->cl_auth struct
*/
clnt = cInt_create("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER,
"th");
if (cInt == (CLIENT *)NULL) {
printf("Could not create client\n");
exit(1l);
}

/*
Destroy the authentication information associated with
clnt->cl_auth

*/

auth_destroy(cint->c1_auth);

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

Name-to-Address Translation APIls

The name-to-address translation APIs allow an application to obtain the address of a service on a
specified host in a transport-independent manner. These APIs are typically used by the applications that
use the expert level TI-RPC APlIs.

The name-to-address translation APIs are:

* ['netdir_free()—Free Netdir Structures” on page 8| (Free netdir structures) frees structures that are
allocated by name-to-address translation APIs.

* ['netdir_getbyaddr()—Translate a Netbuf Address to a Host” on page 9| (Translate a netbuf address to a
host) maps addresses into host names and service names.

* [‘netdir_getbyname()—Translate a Given Host-Service Pair” on page 11| (Translate a given host-service
pair) maps the host name and service name that are specified in the service parameter to a set of
addresses that are consistent with the transport identified in the netconfig structure.

* [‘netdir_options()—Access Transport-Specific Capabilities” on page 14| (Access transport-specific
capabilities) provides interfaces to transport-specific capabilities such as the broadcast address and
reserved port facilities of TCP and UDP.

* [‘netdir_sperror()—Indicate an Error in an NTA Routine” on page 16| (Indicate an error in an NTA
Routine) issues an informational message that states why one of the name-to-address translation APIs
may have failed.

Remote Procedure Call (RPC) APIs 7

#TOP_OF_PAGE
aplist.htm

* ['taddr2uaddr()—Translate a Local Address” on page 18| (Translate a local address) translates a
transport-specific (local) address to a transport-independent (universal) address.

* [‘uaddr2taddr()—Translate a Universal Address” on page 20| (Translate a universal address) translates a
transport-independent (universal) address to a transport-specific (local) address (netbuf structure).

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

netdir_free()—Free Netdir Structures

Syntax

#include <netdir.h>

void netdir_free(void *ptr,
int struct_type);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The netdir_free() function frees structures that are allocated by name-to-address translation APIs.

Parameters

ptr (Input)
A pointer to a structure that is to be freed.

struct_type (Input)
The integer value that indicates to netdir_free() which type of structure to be freed.

The following combination is supported:

ND_HOSTSERV A pointer to an nd_hostserv structure.
ND_HOSTSERVLIST A pointer to an nd_hostservlist structure.
ND_ADDR A pointer to a netbuf structure.
ND_ADDRLIST A pointer to an nd_addrlist structure.
Authorities

No authorization is required.

Error Conditions

If netdir_free() takes an exception, nd_errno is set to the following error:

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

8 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

netdir_free() frees the structure allocated by the netdir APIs. The type of structure to be freed is indicated
by the struct_type.

Refer to other name-to-address translation functions to see how netdir_free() function is used.

API introduced: V4R2

| f’Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by categorv|

netdir_getbyaddr()—Translate a Netbuf Address to a Host

Syntax

#include <netdir.h>
int netdir_getbyaddr(struct netconfig *nconf,
struct nd_hostservlist

**xservice,
struct netbuf *netaddr);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The netdir_getbyaddr() function maps addresses into host names and service names.

Parameters

nconf (Input)
A pointer to a netconfig structure that is returned by either getnetconfig() or getnetconfigent().

service (Output)
A pointer to a list of service names.

netaddr (Input)
A pointer to the address.

Authorities

No authorization is required.

Remote Procedure Call (RPC) APIs 9

#TOP_OF_PAGE
aplist.htm

Return Value

0 netdir_getbyaddr() was successful. A list of host names and service name pairs is returned in
service.

-1 netdir_getbyaddr() was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the
error.

Error Conditions

If netdir_getbyaddr() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NO_DATA] The host name is a valid name but there is no corresponding IP address.
[ND_NOHOST] The host name that the user specified by the host address was not found.
[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.
[ND_TRY_AGAIN] The local server did not receive a response from an authoritative server. An attempt at

a later time may succeed.

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

Usage Notes
netdir_getbyaddr() is called with an address in the netaddr structure.

The caller is responsible to free the storage allocated by netdir_getbyaddr() by using the function
netdir_free().

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how netdir_getbyaddr() is used:
#include <netdir.h>

void findhost(void)
{
void *handlep;
struct netconfig *nconf;
struct nd_hostservlist #nd_hostserv;
struct netbuf nbuf;
char uaddr[16];

/% Initialize the network selection mechanism */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);

/* Get the netconfig handle */

10 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
{
printf("Error getting the netconfig handle\n");
exit(1l);
}
memset (uaddr, NULL, 16);
printf("Enter the host IP address appended by Tow and high order
port numbers:\n");
scanf("%s", uaddr);

/* Convert universal address notation into transport-specific
* address format.

*/

nbuf = uaddr2taddr(nconf, uaddr);

/* Get the hostname from the address over the transport */

/* provider specified in the netconfig structure */
if (netdir_getbyaddr(nconf, &nd_hostserv, &nbuf)

1= ND_OK)
{

printf("Cannot determine the host\n");
exit(1l);
1
printf("The host name is: %s\n",
nd_hostserv->h_hostservs->h_host);
printf("The Service is: %s\n", nd_hostserv->h_hostservs->h_serv);

/* Free the netdir structure allocated by netdir_getbyname() */
netdir_free(nd_hostserv, ND_HOSTSERVLIST);

/* Release the netconfig handle allocated by set setnetconfig() */
endnetconfig(handlep);
1

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

netdir_getbyname()—Translate a Given Host-Service Pair

Syntax

#include <netdir.h>

int netdir_getbyname(struct netconfig *nconf,
struct nd_hostserv *service,
struct nd_addrlist **addrs);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The netdir_getbyname() function maps the host name and service name that are specified in the service
parameter to a set of addresses that are consistent with the transport identified in the netconfig structure.

Remote Procedure Call (RPC) APIs 11

#TOP_OF_PAGE
aplist.htm

Parameters

nconf (Input)
A pointer to a netconfig structure that is returned by either getnetconfig() or getnetconfigent().

service (Input)
A pointer to a service name.

addrs (Output)
A pointer to the addresses being returned.

Authorities

No authorization is required.

Return Value

0 netdir_getbyname() was successful.
-1 netdir_getbyname() was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the
error.

Error Conditions

If netdir_getbyname() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NOHOST] The host that was specified by the host name was not found.

[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_NOSERV] Service name is unknown.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.
[ND_TRY_AGAIN] The local server did not receive a response from an authoritative server. An attempt at

a later time may succeed.

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

netdir_getbyname() maps the host and service name to a set of addresses consistent with the transport
specified in netconfig.

The caller is responsible to free the storage allocated by netdir_getbyname() by using the function
netdir_free().

netdir_getbyname() does not support HOST_ANY or HOST_BROADCAST for host names specified in
the nd_hostserv structure.

12 iSeries: Remote Procedure Call (RPC) APIs

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how netdir_getbyname() is used:

#include <netdir.h>

main()

{
void xhandlep; /* A handle into network selection
struct netconfig *nconf; /* transport information
struct nd_hostserv nd_hostserv; /* host and service information
struct nd_addrlist *nd_addrlistp; /* addresses for the service

}

/* Initialize the network selection mechanism */
if (handlep = setnetconfig()) == (void *)NULL)
{

}

/* Get the netconfig handle */
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
{

exit(1l);

printf("Error in getting the netconfig handle.\n");
exit(1l);
}

/* Allocate memory for host and service names */
nd_hostserv.h _host = (char *)malloc(24);
nd_hostserv.h_serv = (char *)malloc(24);
if ((nd_hostserv.h_host == (char *)NULL)

|| (nd_hostserv.h serv == (char *)NULL))

printf("No memory available. netdir_getbyname()
failed.\n");
exit(1);

1

printf("Enter the hostname:\n");
scanf("%s", nd_hostserv.h_host);
printf("Enter the service name:\n");
scanf("%s", nd_hostserv.h_serv);

/* Get the address for the service on the host on the

* transport provider specified in the netconfig structure
*/

if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp)

1= ND_OK)

{
printf("Cannot determine address for service\n");
exit(1);

1

printf("The address of the <%s> service on host
<%s> was found.\n", nd_hostserv.h_serv,
nd_hostserv.h host);

/* Free the netdir structure allocated by netdir_getbyname() =*/
netdir_free(nd_addrlistp, ND_ADDRLIST);

/* Release the netconfig handle allocated by set setnetconfig() */
endnetconfig(handlep);

API introduced: V4R2

*/
*/
*/
*/

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

13

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

netdir_options()—Access Transport-Specific Capabilities

Syntax

#include <netdir.h>

int netdir_options(struct netconfig *nconf,
int option,
int fd,
char *point_to_args);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The netdir_options() function provides interfaces to transport-specific capabilities such as the broadcast
address and reserved port facilities of TCP and UDP.

Parameters

nconf (Input)
A pointer to a netconfig structure that specifies a transport.

option (Input)
Specifies the transport-specific action to take. The following values may be used for option:

ND_SET_BROADCAST Set the transport for broadcast if supported.

ND_SET_RESERVEDPORT Let the application bind to a reserved port if allowed by the transport.

ND_CHECK_RESERVEDPORT Verify that an address corresponds to a reserved port if the transport supports
reserved ports.

ND_MERGEADDR Transform a locally meaningful address into an address that the client host can
connect to.

fd (Input)
The file descriptor that may or may not be used based on the option. The only value supported
for this field is RPC_ANYFD. The file descriptor value is used only if the specified option is
ND_SET_BROADCAST or ND_SET_RESERVEDPORT.

point_to_args (Input)
A pointer to the operation-specific data.

Authorities
The caller must have the *IOSYSCFG special authority to bind to a reserved port.

Return Value
0 netdir_options() was successful.

-1 netdir_options() was not successful. The nd_errno global variable (defined in <netdir.h>) is set to
indicate the error.

14 iSeries: Remote Procedure Call (RPC) APIs

Error Conditions

If netdir_options() is not successful, nd_errno indicates one of the following errors:

[ND_ACCESS]
[ND_BADARG]

[ND_FAILCTRL]
[ND_NO_ADDRESS]
[ND_NOCONVERT]

[ND_NOCTRL]

[ND_NO_DATA]
[ND_NOHOST]
[ND_NOMEM]
[ND_NO_RECOVERY]
[ND_OPEN]
[ND_SYSTEM]

[ND_TRY_AGAIN]

Error Messages

Message ID
CPF9872 E

Example

The user does not have permission to use the specified address.
Bad argument passed.

A file descriptor that was not valid was passed to the APL

Control operation failed.

Bad address.

Conversion error. One or more characters could not be converted from the source
CCSID to the target CCSID.

The function was used in the wrong sequence.

An incorrect option was specified.

Incorret amount of data.

The host that was specified by the host name was not found.

Not enough memory left.

An unrecoverable error has occurred.

File could not be opened.

A damaged object was encountered. The damaged object cannot be used.

The system detected an address that was not valid.
The local server did not receive a response from an authoritative server. An attempt at
a later time may succeed.

Error Message Text
Program or service program &1 in library &2 ended. Reason code &3.

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how netdir_options() is used:

#include <netdir.h>

#include <rpc/rpc_com.h>

main()

void *handlep;

struct netconfig *nconf;

/* for RPC_ANYFD definition %/

/* Initialize the network selection mechanism */
if (handlep = setnetconfig()) == (void *)NULL)

{
}

exit(1l);

/* Get a netconfig structure from the netconfig file =/
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

{

printf("Unable to obtain a netconfig structure\n");

}

Remote Procedure Call (RPC) APIs 15

aboutapis.htm#CODEDISCLAIMER

/* Set the protocol specific negotiation for broadcast */
if (netdir_options(nconf, ND_SET BROADCAST, RPC_ANYFD, NULL))

printf("Error setting the broadcasting option\n");

}

/* Release the netconfig handle allocated by setnetconfig() =*/
endnetconfig(handlep);
1

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

netdir_sperror()—Indicate an Error in an NTA Routine

Syntax

#include <netdir.h>

void netdir_sperror();

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The netdir_sperror() function issues an informational message that states why one of the name-to-address
translation APIs may have failed.

Parameters

None.

Authorities

No authorization is required.

Return Value

None

netdir_sperror() issues an informational message that indicates the error in one of the name-to-address
translation APIs.

Error Messages

Message ID Error Message Text
CPIA1B?7 The previous name-to-address translation has completed.

16 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Usage Notes

The netdir_sperror() function issues CPIA1B7 message that indicates why one of the name-to-address
translation mapping APIs failed. This function should be used after a failed call to a name-to-address

translation function prior to calling another name-to-address translation function.

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how netdir_sperror() is used:

#include <netdir.h>
#include <rpc/rpc_com.h>

main()

}

void xhandlep;
struct netconfig *nconf;

/*
if
{

}

}
/*

Initialize the network selection mechanism */
(handlep = setnetconfig()) == (void *)NULL)
exit(1);

Get a netconfig structure from the netconfig file */
((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)

printf("Unable to obtain a netconfig structure\n");

Set the protocol specific negotiation for broadcast */
(netdir_options(nconf, ND_SET_BROADCAST, RPC_ANYSOCK, NULL))
printf("Error setting the broadcasting option\n");

printf("See the job log for error message\n");
netdir_sperror();

Release the netconfig handle allocated by setnetconfig() =/

endnetconfig(handlep);

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

17

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

taddr2uaddr()—Translate a Local Address

Syntax

#include <netdir.h>

char *taddr2uaddr(struct netconfig *nconf,
struct netbuf *addr);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The taddr2uaddr() function translates a transport-specific (local) address to a transport-independent
(universal) address.
Parameters

nconf (Input)
The transport for which the address is valid.

addr (Input)
The address to be translated to the universal representation.

Authorities

No authorization is required.

Return Value

universal address A string that contains the universal address is returned if the function taddr2uaddr() was
successful.

NULL A NULL pointer is returned if the function taddr2uaddr() was not successful. The nd_errno global
variable (defined in <netdirh>) is set to indicate the error.

Error Conditions

If the function taddr2uaddr() is not successful, nd_errno usually indicates the following error:

[ND_BADARG] Bad argument passed.
[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

18 iSeries: Remote Procedure Call (RPC) APIs

Usage Notes

taddr2uaddr() translates the address pointed to by addr and returns a transport independent character
representation of the address (universal address).

The caller is responsible to free the returned universal address when done.

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how taddr2uaddr() is used:

#include <netconfig.h>
#include <netdir.h>

main()

{
void xhandlep; /* A handle into network selection =/
struct netconfig *nconf; /* Transport information */
struct nd_hostserv nd_hostserv; /* Host and service information =*/
struct nd_addrlist *nd_addrlistp; /* Addresses for the service */
struct netbhuf *netbufp; /* The address of the service =/
int i; /* The number of addresses */
char *uaddr; /* Service universal address =/

/* Initialize the network selection mechanism */
if (handlep = setnetconfig()) == (void *)NULL)
{

}
/* Get the netconfig handle */

if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
{

exit(1);

printf("Error in getting the netconfig handle.\n");
exit(1);
}

/* Get the address for service specified in nd_hostserv.h serv
on the host specified in nd_hostserv.h_host over the
transport provider specified in the netconfig structure
Note: nd_hostserv.h_host and nd_hostserv.h_serv need to be
* set up prior to the call to netdir_getbyname().

*

/
if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp)

1= ND_OK)

{

* Xk

printf("Cannot determine address for service\n");
/* Release the netconfig handle allocated by setnetconfig() =*/
endnetconfig(handlep);
exit(1);
1

/* Convert the transport-specific address into universal address
* notation and print it.

*/

netbufp = nd_addrlistp->n_addrs;

uaddr = taddr2uaddr(nconf, netbufp);

if (uaddr != NULL)

printf("The address of the service %s on host %s is %s\n",
nd_hostserv.h_serv, nd_hostserv.h_host, uaddr);
free(uaddr);

1
/* Free the netdir structure allocated by netdir_getbyname() =/

Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

netdir_free(nd_addrlistp, ND_HOSTSERVLIST);

/* Release the netconfig handle allocated by setnetconfig() =*/
endnetconfig(handlep);
1

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

uaddr2taddr()—Translate a Universal Address

Syntax

#include <netdir.h>

struct netbuf *uaddr2taddr(struct netconfig =*nconf,
char *uaddr) ;

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The uaddr2taddr() function translates a transport-independent (universal) address to a transport-specific
(local) address (netbuf structure).

Parameters

nconf (Input)
The transport for which the address is valid.

uaddr (Input)
The address to be translated to the netbuf structure.

Authorities

No authorization is required.

Return Value

netbuf structure uaddr2taddr() was successful.
NULL uaddr2taddr() was not successful. The nd_errno (defined in <netdir.h>) is set to indicate the error.

Error Conditions

If uaddr2taddr() is not successful, nd_errno usually indicates one of the following errors:

[ND_BADARG] Bad argument passed.

[ND_NOMEM] Not enough memory left.

[ND_NO_RECOVERY] An unrecoverable error has occurred.

[ND_SYSTEM] A damaged object was encountered. The damaged object cannot be used.

20 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message 1D Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

uaddr2taddr() translates the universal address pointed to by addr and returns a pointer to a netbuf
structure.

It is the caller’s responsibility to free the returned netbuf structure when done using the netdir_free()
function.

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how uaddr2taddr() is used:

#include <netconfig.h>
#include <netdir.h>

Void sample (void)
{

void *handlep;

struct netconfig *nconf;
struct netbuf *netbufp;
char universal_addr[24];
int i;

/* Initialize the network selection mechanism */
if (handlep = setnetconfig()) == (void *)NULL)

exit(1);
1

/* Get the transport information =/
if ((nconf = getnetconfig(handlep)) == (struct netconf *)NULL)
{
printf("Error in getting the transport information\n"E);
exit(1);
}

memset (universal_addr,24,NULL);

printf("EEnter the IP address appended by low and high order
port numbers:\n"E);

scanf(%s, universal_addr);

/* Convert the input universal address to its local representation */

if ((netbufp = uaddr2taddr(nconf, universal addr)) ==
(struct netbuf =*) NULL)
{

}

printf("Euaddr2taddr() failed\n"E);

/*Free the netbuf structure returned from uaddr2taddr() =*/
netdir_free((char *)netbufp, ND_ADDR);

/* Release the netconfig handle allocated by setnetconfig() =/

Remote Procedure Call (RPC) APIs

21

aboutapis.htm#CODEDISCLAIMER

endnetconfig(handlep);

return;

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Network Selection APIs

The network selection APIs provide the means to choose the transport on which an application should
run. These APIs are typically used by the applications that use the intermediate-level and expert-level
TI-RPC APIs.

The network selection APIs are:

* [“endnetconfig()—Release the Pointer in the Netconfig File”| (Release the pointer in the netconfig file)
releases the pointer to the records stored in the netconfig file.

* [“freenetconfigent()—Free the Netconfig Structure” on page 24| (Free the netconfig structure) frees the
netconfig structure that is returned from the call to the getnetconfigent() function.

[‘cetnetconfig()—Return Current Record from the Netconfig File” on page 26| (Return current record
from the netconfig file) returns the pointer to the current record in the netconfig file and increments its
pointer to the next record.

* [“getnetconfigent()—Return a Pointer to a Netconfig Structure” on page 27| (Return a pointer to a
netconfig structure) returns the pointer to the netconfig structure that corresponds to the input netid.

[‘setnetconfig()—Initialize the Pointer in the Netconfig File” on page 29 (Initialize the pointer in the
netconfig file) initializes the record pointer to the first entry in the netconfig file.

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

endnetconfig()—Release the Pointer in the Netconfig File

Syntax

#include <netconfig.h>

int endnetconfig (void *);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The endnetconfig() function releases the pointer to the records stored in the netconfig file.

Parameters

void pointer (Input)
A void pointer that is set by a call to the setnetconfig() function.

22 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Authorities

No authorization is required.

Return Value

0 endnetconfig() was successful. The pointer to the netconfig structure in the netconfig file is
released. This function is always successful.

Error Conditions

When an exception occurs, endnetconfig() is trying to free the handle to the /etc/netconfig file. If
endnetconfig() is not successful, errno indicates the following error.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

endnetconfig() API must be used to release the pointer to the netconfig structure obtained by a call to the

setnetconfig() APL

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how endnetconfig() is used:
#include <netconfig.h>

main()

{

void *handlep;

struct netconfig *nconf;

/* Initialize the network selection mechanism */
if ((handlep = setnetconfig()) == (void *)NULL)

exit(1);
}

/* Loop through the transport providers x/
while ((nconf = getnetconfig(handlep)) != (struct netconfig *) NULL)
{
/* Print out the information associated with the */
/* transport providers described in the x/
/* "netconfig" structure. */
printf("Transport provider name: %s\n", nconf->nc_netid);
switch(nconf->nc_semantics)

{

Remote Procedure Call (RPC) APIs

23

aboutapis.htm#CODEDISCLAIMER

case NC_TPI_CLTS:
printf("Transport type name: TPI_CLTS\n");
break;

case NC_TPI_COTS:
printf("Transport type name: TPI_COTS\n");
break;

case NC_TPI_COTS_ORD:
printf("Transport type name: TPI_COTS_ORD\n");
break;

default:
break;

switch(nconf->nc_flag)
{
case 0:
printf("Transport flag name: N\n");
break;
case 1:
printf("Transport flag name: V\n");
break;
default:
break;
1

printf("Transport family name: %s\n", nconf->nc_protofmly);
printf("Transport protocol name: %s\n", nconf->nc_proto);

}

/*Release the netconfig handle allocated by setnetconfig() */
endnetconfig(handlep);
1

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

freenetconfigent()—Free the Netconfig Structure

Syntax

#include <netconfig.h>

void freenetconfigent(struct netconfig *);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The freenetconfigent() function frees the netconfig structure that is returned from the call to the
getnetconfigent() function.

Parameters

netconfig (Input)
A pointer to a netconfig structure that is set by a call to the setnetconfig() function.

24 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Authorities

No authorization is required.

Return Value
None.

Error Conditions

If an exception occurs, freenetconfigent() fails to free the netconfig structure. If freenetconfigent() is not
successful, errno indicates the following error.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how freenetconfigent() is used:
#include <netconfig.h>

main()
struct netconfig *nconf;

/* Assuming UDP is a netid on the system, get the netconfig structure =
if ((nconf = getnetconfigent("UDP")) == (struct netconfig *)NULL)
{
printf("There is no information about UDP\n");
exit(1);
}

/* Print out the information associated with the transport */
/* identified with the netid of UDP */
printf("Transport provider name: %s\n", nconf->nc_netid);
switch(nconf->nc_semantics)
{
case NC_TPI_CLTS:
printf("Transport type name: TPI_CLTS\n");
break;
case NC_TPI_COTS:
printf("Transport type name: TPI_COTS\n");
break;
case NC_TPI_COTS_ORD:
printf("Transport type name: TPI_COTS_ORD\n");
break;
default:
break;

switch(nconf->nc_flag)

Remote Procedure Call (RPC) APIs 25

aboutapis.htm#CODEDISCLAIMER

case 0:
printf("Transport flag name: N\n");
break;

case 1:
printf("Transport flag name: V\n");
break;

default:
break;

printf("Transport family name: %s\n", nconf->nc_protofmly);
printf("Transport protocol name: %s\n", nconf->nc_proto);

/* Free the netconfig structure returned by getnetconfigent() */

freenetconfigent(nconf);

}

API introduced: V4R2

| I"Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by categorv|

getnetconfig()—Return Current Record from the Netconfig File

Syntax

#include <netconfig.h>

struct netconfig *getnetconfig(void *);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The getnetconfig() function returns the pointer to the current record in the netconfig file and increments
its pointer to the next record.

Parameters

void pointer (Input)
A void pointer that is set by a call to the setnetconfig() function.

Authorities

No authorization is required.

Return Value

netconfig getnetconfig() was successful. A pointer to the current netconfig structure in the netconfig file is
returned.
NULL getnetconfig() was not successful. A NULL pointer is returned. The errno global variable is set to

indicate the error.

26 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Conditions

If getnetconfig() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

For more information, see the example for [‘endnetconfig()—Release the Pointer in the Netconfig File” on|

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

getnetconfigent()—Return a Pointer to a Netconfig Structure

Syntax

#include <netconfig.h>

struct netconfig *getnetconfigent(char *);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The getnetconfigent() function returns the pointer to the netconfig structure that corresponds to the input
netid.

Parameters

netid (Input)
A character pointer to a netid such as “tcp” or “udp”.

Remote Procedure Call (RPC) APIs 27

#TOP_OF_PAGE
aplist.htm

Authorities

The caller of getnetconfigent() function must have execute (*X) authority to the /etc directory and must
have read (*R) authority to the netconfig file.

Return Value

netconfig getnetconfigent() was successful. A pointer to a netconfig structure is returned.
NULL getnetconfigent() was not successful. The errno global variable is set to indicate the error.

Error Conditions
If getnetconfigent() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES] Permission denied.
* An attempt was made to access an object in a way forbidden by its object access permissions.

* The job does not have access to the specified file, directory, component, or path.

[EAGAIN] Operation would have caused the process to be suspended.
[EBADNAME] The object name specified is not correct.
[EBUSY] Resource busy.

[ECONVERT] Conversion error.
* One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE] A damaged object was encountered.
* A referenced object is damaged. The object cannot be used.
[EIO] Input/output error.

* A physical I/O error occurred. A reference object may be damaged.
[EMFILE] Too many open files for this process.
* An attempt was made to open more files than allowed by the value OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.
[ENFILE] Too many open files in the system.
* A system limit has been reached for the number of files that are allowed to be concurrently
open in the system.
[ENOENT] No such path or directory.

e The directory or a component of the path name specified does not exist.

* A named file or directory does not exist or is an empty string.
[ENOMEM] Storage allocation request failed.

* The function needed to allocate storage, but no storage is available.

* There is not enough memory to perform the requested function.
[ENOSPC] No space available.

* The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

— Insufficient space remains to hold the intended file.
[ENOSYSRSC] System resources not available to complete the request.
[EPERM] Operation not permitted.
* You must have appropriate privileges or other resources to do the requested operation.
[EUNKNOWN] Unknown system state.

* The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then retry the operation.

28 iSeries: Remote Procedure Call (RPC) APIs

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

CPIA1CO I The file /etc/netconfig cannot be opened by readers because another job has it open with write
authority.

Usage Notes

getnetconfigent() returns a pointer to a netconfig structure in the netconfig file for the corresponding
netid. The netid is expected in the job CCSID. It returns NULL if it is unsuccessful.

The callers of the getnetconfigent() function do not need to call the setnetconfig() function prior to
calling the getnetconfigent() function but must call the freenetconfigent() function to free the storage
allocated by the getnetconfigent() function.

The getnetconfigent() function will return [ENOENT] if the /etc/netconfig file does not exist. The
getnetconfigent() function will fail with [ECONVERT] if the data conversion required to convert the data
stored in the /etc/netconfig file cannot be converted to the job CCSID.

Example

For more information, see the example for [‘freenetconfigent()—Free the Netconfig Structure” on page 24

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

setnetconfig()—Initialize the Pointer in the Netconfig File

Syntax

#include <netconfig.h>

void *setnetconfig(void);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The setnetconfig() function initializes the record pointer to the first entry in the netconfig file. The
setnetconfig() function must be used before the first use of getnetconfig() function. The setnetconfig()
function returns a unique handle (a pointer to the records stored in the netconfig file) to be used by the
getnetconfig() function.

Remote Procedure Call (RPC) APIs 29

#TOP_OF_PAGE
aplist.htm

Parameters

None.

Authorities

The caller of setnetconfig() function must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

void pointer
NULL

setnetconfig() was successful. A void pointer to the records stored in the netconfig file is returned.
setnetconfig() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If setnetconfig() is not successful, errno usually indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.

[EACCES]

[EAGAIN]
[EBADNAME]
[EBUSY]
[ECONVERT]

[EDAMAGE]

[EIO]

[EMFILE]

[ENFILE]

[ENOENT]

[ENOMEM]

[ENOSPC]

[ENOSYSRSC]
[EPERM]

Permission denied.
* An attempt was made to access an object in a way forbidden by its object access permissions.

* The job does not have access to the specified file, directory, component, or path.

Operation would have caused the process to be suspended.

The object name specified is not correct.

Resource busy.

Conversion error.

* One or more characters could not be converted from the source CCSID to the target CCSID.

A damaged object was encountered.

» A referenced object is damaged. The object cannot be used.

Input/output error.

* A physical input/output error occurred. A reference object may be damaged.

Too many open files for this process.

* An attempt was made to open more files than allowed by the value OPEN_MAX. The value of
OPEN_MAX can be retrieved by using the sysconf() function.

Too many open files in the system.

* A system limit has been reached for the number of files that are allowed to be concurrently
open in the system.

No such path or directory.

* The directory or a component of the path name specified does not exist.

* A named file or directory does not exist or is an empty string.

Storage allocation request failed.

* The function needed to allocate storage, but no storage is available.

* There is not enough memory to perform the requested function.

No space available.

* The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring
ownership of an object.

* Insufficient space remains to hold the intended file.

System resources not available to complete the request.

Operation not permitted.

* You must have appropriate privileges or other resources to do the requested operation.

30 iSeries: Remote Procedure Call (RPC) APIs

[EUNKNOWN] Unknown system state.

* The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated. Then retry the operation.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFAOD4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPIA1CO I The file /etc/netconfig cannot be opened by readers because another job has it open with write
authority.

Usage Notes

The setnetconfig() function is used prior to using the getnetconfig() function to initialize the record
pointer to the data stored in the netconfig file.

The setnetconfig() function will fail with [ENOENT] if the /etc/netconfig file does not exist. The
setnetconfig() function will fail with [ECONVERT] if the data conversion required to convert the data
stored in the /etc/netconfig file cannot be converted to the job CCSID.

Example

For more information, see the example for [’endnetconfig()—Release the Pointer in the Netconfig File” on|

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Transport-Independent Remote Procedure Call APIs

The Transport-Independent Remote Procedure Call (TI-RPC) functions allow distributed applications to
communicate with each other in a transport independent fashion. These APIs are provided to perform
Transport-Independent Remote Procedure Calls.

The TI-RPC APIs are divided into five separate sections:
* [“Simplified APIs” on page 32|
* ["Top-level APIs” on page 37]

* [“Intermediate-level APIs” on page 50|

* [“Expert-level APIs” on page 56|
[“Other APIs” on page 73| (These APIs work with the other four sections.)

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs 31

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

Simplified APIs

The simplified interfaces specify the type of transport to use. Applications using this level do not have to
explicitly create handles. These APIs combine all the API calls into one procedure and can be used to
quickly develop an RPC service and corresponding client application.

The simplified APIs are:

“rpc_call()—Call a Remote Procedure on the Specified System”| (Call a remote procedure on the
specified system) calls the remote procedure that is associated with prognum, versnum, and procnum
on the machine, host.

“rpc_reg()—Register a Procedure with RPC Service Package” on page 35 (Register a procedure with
RPC service package) registers a procedure with the RPC service package (RPCBind).

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |[APIs by category|

rpc_call()—Call a Remote Procedure on the Specified System

Syntax

#include <rpc/rpc.h>

enum cInt_stat rpc_call(const char *host,
const u_long prognum,
const u_long versnum,
const u_log procnum,
const xdrproc_t inproc,
const char *in,
const xdrproc_t outproc,
char *out,
const char =*nettype);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The rpc_call() API calls the remote procedure that is associated with prognum, versnum, and procnum on
the machine, host. rpc_call() tries all the transports of the nettype class available from the netconfig
database file, and chooses the first successful one. Transports are tried in top-to-bottom order in the
netconfig database file. A default time-out is set and can be modified using cInt_control().

Parameters

host (Input)
A pointer to the program name of the remote machine.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

procnum (Input)
The number of the procedure that is associated with the remote program being called.

32 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

inproc (Input)
The name of the XDR procedure that encodes the procedure parameters.

in (Input)
The address of the procedure arguments.

outproc (Input)
The name of the XDR procedure that decodes the procedure results.

out (Output)
The address where results are placed.

nettype (Input)
The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_YV, CIRCUIT_N,
DATAGRAM_N, TCP, and UDP. When this parameter is NULL, NETPATH is assumed.

Authorities

The caller of the rpc_call() API must have execute (*X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

RPC_SUCCESS Successful
(0)

Non-zero value rpc_call() was not successful. The rpc_createerr global structure is set to indicate the error.

Error Conditions

Upon failure, rpc_call() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable has a status
value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful when some
status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

This API calls cInt_create() and clnt_call() APIs in order to perform its task. All error conditions from
those APIs are inherited except RPC_FAILED from cInt_call().

[RPC_SYSTEMERROR] RPC error returned from system call. The rpc_createerr.cf_error.re_errno variable can be

set to one of the following values:

[ENOMEM]
Out of memory.

[RPC_UNKNOWNHOST]
Unknown host.

Error Messages

Message 1D Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Remote Procedure Call (RPC) APIs 33

Related Information
“cInt_call()—Call a Remote Procedure Associated with the Client” on page 37

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how rpc_call() is used:
/* Define remote program number and version */

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)0x1
#define RMTPROCNUM (u_Tlong)0x1

#include <stdio.h>
#include <rpc/rpc.h>

main()

{
int inproc=100, outproc;
enum cInt_stat rstat;

/* Service request to host RPCSERVER_HOST =*/
if (rstat = rpc_call("as400.somewhere.ibm.com", RMTPROGNUM,
RMTPROGVER, RMTPROCNUM, xdr_int, (char x)&inproc,
xdr_int, (char *)&outproc, "VISIBLE")
= RPC_SUCCESS) {
fprintf(stderr,"rpc_call() failed\n");
exit(1);
}

L

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

34 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

rpc_reg()—Register a Procedure with RPC Service Package

Syntax

#include <rpc/rpc.h>

bool_t rpc_reg(const u_long prognum,
const u_long versnum,
const u_long procnum,
char *(*procname) (char =),
const xdrproc_t inproc,
const xdrproc_t outproc,
const char xnettype);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The rpc_reg() function registers a procedure with the RPC service package (RPCBind). If a request arrives

that matches the values of the prognum parameter, the versnum parameter, and the procnum parameter,

then the procname parameter is called with a pointer to its parameters. The procname returns a pointer to

its static results.

The procedure is registered for each transport of the specified type (the nettype parameter). If the nettype

parameter is (char *)NULL, the procedure is registered for all transports that are specified in the
/etc/netconfig file with a corresponding flag value visible. After registering the local procedure, the
server program’s main procedure calls svc_run(), the RPC library’s remote procedure dispatcher.

Parameters

prognum (Input)
The program number of the remote program.

versnum (Input)
The version number of the remote program.

procnum (Input)
The procedure number to be called.

procname (Input)
The procedure name.

inproc (Input)
The eXternal Data Representation (XDR) subroutine that decodes the procedure parameters.

outproc (Input)
The XDR subroutine that encodes the procedure results.

nettype (Input)
The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_YV, CIRCUIT_N,
DATAGRAM_N, TCP, AND UDP. When this parameter is NULL, NETPATH is assumed.

Remote Procedure Call (RPC) APIs

35

Authorities

The caller of the rpc_reg() API must have execute (*X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

TRUE (1) rpc_reg() was successful.
FALSE (0) rpc_reg() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API inherits all error conditions from the setnetconfig() and getnetconfig() APIs. It also inherits all
error conditions from the svc_tli_create() and svc_reg() APIs.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1B3 1 TI-RPC encountered a problem in the server.

CPIA1B5 1 An incorrect nettype was given.

Related Information

* [“svc_reg()—Associate Program and Version with Dispatch” on page 67]

Example

See [Code disclaimer information| for information pertaining to code examples.

The following example shows how rpc_reg() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#define RMTPROCNUM (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>

int *rmtproc(int *param) /* remote procedure */
{

static int result;

result = *param + *param;

return(&result);

}

main()

{
int *rmtprog();

/* Register remote program with RPCBind =/
if (rpc_reg(RMTPROGNUM, RMTPROGVER, RMTPROCNUM, rmtprog,
xdr_int, xdr_int, "VISIBLE") == -1) {
fprintf(stderr, "Could not Register\n");
exit(1l);

36 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

}

sve_run();
exit(1l);
1

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Top-level APIs

The top-level APIs allow more customization to both the client and the service while still maintaining an
ease of development and use.

The top-level APIs are:

“cInt_call()—Call a Remote Procedure Associated with the Client”l (Call a remote procedure associated
with the client) calls the remote procedure that is associated with the client handle pointed to by the
cInt parameter.

[“cInt_control()—Change Information about a Client Object” on page 40| (Change information about a
client object) is used to change or retrieve information about a client object.

[‘cInt_create()—Create a Generic Client Handle” on page 43| (Create a generic client handle) creates and
returns a generic client handle for program prognum and version versnum on a remote host where the
server is located.

[“cInt_destroy()—Destroy the RPC Client’s Handle” on page 45 (Destroy the RPC Client’s Handle)
destroys the RPC client’s handle.

[‘svc_create()—Create a Server Handle” on page 47| (Create a server handle) creates server handles for
all the transports belonging to the class nettype.

[‘svc_destroy()—Destroy an RPC Service Transport Handle” on page 49 (Destroy an RPC service
transport handle) destroys an RPC service transport handle.

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

cint_call()—Call a Remote Procedure Associated with the Client

Syntax

#include <rpc/rpc.h>

enum cInt_stat cint_call(CLIENT *cint,
const u_long procnum,
const xdrproc_t inproc,
const caddr_t in,
const xdrproc_t outproc,
caddr_t out,
const struct timeval tout);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

Remote Procedure Call (RPC) APIs 37

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

The clnt_call() API calls the remote procedure that is associated with the client handle pointed to by the
clnt parameter.

The caller of the cInt_call() API must pass a valid client handle obtained from a successful call to the
cInt_create() APL

Parameters

cInt (Input)
A pointer to the client handle structure that results from calling a client creation function that
uses a Remote Procedure Call (RPC) such as the cInt_create() APIL

procnum (Input)
The procedure on the host machine.

inproc (Input)
The name of the XDR procedure that encodes the procedure parameters.

in (Input)
The address of the procedure arguments.

outproc (Input)
The name of the XDR procedure that decodes the procedure results.

out (Output)
The address where results are placed.

tout (Input)
The time allowed for the server to respond.

Authorities
None

Return Value

RPC_SUCCESS Successful
(0)

Non-zero value cInt_call() was not successful.

Error Conditions

Upon failure, cInt_call() sets a private field in the client handle. This field has a type 'struct rpc_err’, and
can be accessed by the clnt_geterr() function.

The re_status field can be set to one of the following values:

[RPC_AUTHERROR] Authentication error. Server’s response did not pass authentication validation.
[RPC_CANTDECODERES] The outproc XDR function has failed.
[RPC_CANTENCODEARGS] The inproc XDR function has failed.

38 iSeries: Remote Procedure Call (RPC) APIs

[RPC_CANTRECV]

[RPC_CANTSEND]

[RPC_FAILED]
[RPC_INTR]

[RPC_TIMEDOUT]
[RPC_PROGVERSMISNATCH]

[RPC_PROGNOTREGISTERED]
[RPC_PROGUNAVAIL]

Error Messages

Failure in receiving result. RPC is unable to receive server’s response. The
re_errno field is set to the value returned from the failed call.

[EBADF]
Bad file descriptor. This value is set when the client parameter is not
valid or the file descriptor associated with it is already closed or
damaged.

[EIO] Input/output error. This value is set as a result of network transport
failure. It indicates that RPC cannot handle an error that occurred in the
lower transport levels.

[ENOMEM]
Out of memory.

[EOPNOTSUPP]
Operation is not supported. This value is set when client is not valid or
the file descriptor associated with it has a limited capabilities.

[EUNKNOWN]

Unknown system state.
Failure in sending call. RPC is unable to send a request. The re_errno field is set
to the value returned from the failed call.

[EBADF]
Bad file descriptor. This value is set when the client parameter is not
valid or the file descriptor associated with it is already closed or
damaged.

[EIO] Input/output error. This value is set as a result of network transport
failure. It indicates that RPC cannot handle an error that occurred in the
lower transport levels.

[ENOMEM]
Out of memory.

[EOPNOTSUPP]
Operation is not supported. This value is set when client is not valid or
the file descriptor associated with it has a limited capabilities.

[EUNKNOWN]
Unknown system state.
The tout parameter is not set properly.
Interrupted RPC call. An exception has occurred in the RPC API. The re_errno
field is set to EUNKNOWN.
RPC call is timed out. The client cannot receive a response in the specified
timeout period.
There are no registered versions for the program.
The program is not registered with the server.
The program is not registered with the server.

Message ID Error Message Text

CPIA1B1 1 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Remote Procedure Call (RPC) APIs 39

Related Information

[‘rpc_call()—Call a Remote Procedure on the Specified System” on page 32|

Example

See [Code disclaimer information| for information pertaining to code examples.

The following example shows how clnt_call() is used:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/time.h>

main()

{

}

u_long procnum;

CLIENT *clnt;

enum cInt_stat cs;

struct rpc_err client_error;
struct timeval total_timeout;
int intsend, intrecv;

/* Call the remote procedure that is associated with client */
cs = cInt_call(ciInt, procnum, xdr_int,
(caddr_t)&intsend, xdr_int,
(caddr_t)&intrecv, total timeout);

if (cs != RPC_SUCCESS){
cInt_geterr(client,&client_error);
exit(1l);

}

API introduced: V4R2

I ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

cint_control()—Change Information about a Client Object

Syntax

#include <rpc/rpc.h>

bool_t clInt_control (CLIENT *cint,
const u_int req,
char *info);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

40 iSeries: Remote Procedure Call (RPC) APls

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

The clnt_control() function is used to change or retrieve information about a client object. For both
connectionless and connection-oriented transports, the supported values for req, their argument types,

and what they do follow:

Values for the req
Parameter

Argument Type

Function

CLSET_TIMEOUT

(struct timeval *)

Set total time out

CLGET_TIMEOUT

(struct timeval *)

Get total time out

CLGET_SERVER_ADDR

(struct netbuf *)

Get server’s address

CLGET_SVC_ADDR

(struct netbuf *)

Get server’s address

CLSET_SVC_ADDR

(struct netbuf *)

Set to new address

CLGET_FD

(int *)

Get the associated file descriptor

CLSET_FD_CLOSE (void) Close the file descriptor when the API destroys the
client handle
CLSET_FD_NCLOSE (void) Do not close the file descriptor when the API destroys

the client handle

CLGET_VERS (unsigned long *) Get the RPC program’s version number that is
associated with the client handle

CLSET_VERS (unsigned long *) Set the RPC program’s version number that is associated
with the client handle

CLGET_PROG (unsigned long *) Get the program number

CLSET_PROG (unsigned long *) Set the program number

CLGET_XID (unsigned long *) Get the XID of the previous RPC

CLSET_XID (unsigned long *) Set the XID of the next RPC

CLSET_RETRY_TIMEOUT"

(struct timeval *)

Set the retry time-out

CLGET_RETRY_TIMEOUT!

(struct timeval *)

Get the retry time-out

Note:

1 Valid only for connectionless transports.

Parameters
cnt (Input)

A pointer to the client handle structure.

req (Input)

The type of operation.

info (Input/Output)

A pointer to the information for request type. The info parameter is expected to be a pointer to an
appropriate structure. The nature of the structure depends on the req parameter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful

FALSE (0) Unsuccessful

Remote Procedure Call (RPC) APIs 41

Error Conditions

Failure is returned only when a bad format of parameters is detected. For example, the info parameter is
NULL, when a pointer to a timeval structure is expected.

Error Messages

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how clnt_control() is used:
#include <rpc/rpc.h>

main()

{
CLIENT =*clnt;
int fd;

/* Get the associated file descriptor */
cInt_control(cint, CLGET FD, (int *)&fd);

}
Warning: Temporary Level 4 Header

Notes:

1. If the time-out is set using the clnt_control() API, the timeout parameter passed to the cInt_call() API
will be ignored in all future calls.

2. The retry time-out is the time that the connectionless RPC client waits for the server to reply before
retransmitting the request.

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

42 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

cint_create()—Create a Generic Client Handle

Syntax

#include <rpc/rpc.h>
CLIENT *cInt_create(const char =*host,
const u_long prognum,

const u_long versnum,
const char =*nettype);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The cInt_create() API creates and returns a generic client handle for program prognum and version
versnum on a remote host where the server is located. This is done using an available transport of the
nettype class. The cInt_create() API tries all the transports of the nettype class available from the
/etc/netconfig file, and chooses the first successful one. Transports are tried in top-to-bottom order in the
netconfig database. A default time-out is set and can be modified using cInt_control().

Parameters

host (Input)
The name of the remote host where the server is located.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

nettype (Input)
The following classes of transport protocol are valid and are represented as a string either in
lowercase or in uppercase: NETPATH, VISIBLE, CIRCUIT_V, DATAGRAM_YV, CIRCUIT_N,
DATAGRAM_N, TCP, and UDP. When this parameter is NULL, NETPATH is assumed.

Authorities

The caller of the cInt_create() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

clnt Upon successful completion, this API returns a client handle.
NULL cInt_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, cInt_create() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable contains
a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

Remote Procedure Call (RPC) APIs 43

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR]

[RPC_N2AXLATEFAILURE]
[RPC_SYSTEMERROR]

[RPC_UNKNOWNHOST]
[RPC_UNKNOWNPROTO]

Error Messages

Interrupted RPC call. An exception has occurred in the RPC APL The
rpc_createerr.cf_error.re_errno variable is set to EUNKNOWN.

Name-to-address translation failed. Cannot resolve the hostname given in host.
An RPC error was returned from the system call. The rpc_createerr.cf_error.re_errno
variable is set to the value returned from the failed call.

[EACCES]
Permission denied.

[EADDRINUSE]
Local address is in use. This value is set when host is not valid or the file
descriptor associated with it cannot be bound to any local address.

[EADDRNOTAVAIL]
Address not available. This value is set when the address obtained by the
rpcb_getaddr() is rejected by the transport layer.

[EAGAIN]
Operation would have caused the process to be blocked.

[EBADF]
Bad file descriptor. This value is set when host is not valid or the file
descriptor associated with it is already closed or damaged.

[ECONNREFUSED]
TI-RPC encountered a problem in the transport. The client cannot connect to
the server.

[EFAULT]
The address created by the rpcb_getaddr() was not available.

[EIO] Input/output error. This value is set as a result of network transport failure. It
indicates that RPC cannot handle an error that occurred in lower transport
levels.

[ENOBUFS]
There is not enough buffer space available for the API.

[ENOMEM]
Out of memory.

[EOPNOTSUPP]
Operation is not supported. This value is set when host is not valid or the file
descriptor associated with it has limited capabilities.

[EUNKNOWN]

Unknown system state.
Unknown host.
Unknown client/server protocol. The rpc_createerr.cf_error.re_errno is set with the errno
value returned by setnetconfig() or getnetconfig() call. This error is set when the
netconf pointer is NULL.

Message ID Error Message Text

CPIA1B1 I A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIAIB5 1 An incorrect nettype was given.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

44 iSeries: Remote Procedure Call (RPC) APIs

Related Information

“cInt_tp_create()—Create a Client Handle” on page 50|

“cInt_tli_create()—Create a Client Handle” on page 57]

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how clnt_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>

main()

}

CLIENT =*client;

/* Service request to host RPCSERVER HOST =*/
client = clnt_create("as400.somewhere.ibm.com", RMTPROGNUM,
RMTPROGVER, "TCP");

if (client == (CLIENT =*)NULL) {
fprintf(stderr,"Couldn't create client\n");
exit(1l);

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

cint_destroy()—Destroy the RPC Client’s Handle

Syntax

#include <rpc/rpc.h>

void cInt_destroy(CLIENT *cint);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The cInt_destroy() API destroys the RPC client’s handle. This function deallocates private data structures,
including the cInt parameter itself. The use of the clnt parameter becomes undefined upon calling the
cInt_destroy() APL If the RPC library opened the associated file descriptor, or was set using

cInt_control(), the associated file descriptor will be closed.

Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

The caller should call auth_destroy (before calling cInt_destroy) to destroy the associated AUTH
structure.

Parameters

cint (Input)
A pointer to the client handle structure.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

None.

Error Messages

Message 1D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information
[“svc_destroy()—Destroy an RPC Service Transport Handle” on page 49|

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how cInt_destroy() is used:
#include <rpc/rpc.h>

main()

{
CLIENT clnt;

/* Create client handle =*/
cint = cInt_create(..);

/* Destroy the client handle =/
cInt_destroy(cint);
exit(0);

1

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

46 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

svc_create()—Create a Server Handle

Syntax

#include <rpc/rpc.h>

int svc_create(const void
(»dispatch) (const svc_req =,
const SVCXPRT =),
const u_long prognum,
const u_long versnum,
const char *nettype);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_create() function creates server handles for all the transports belonging to the class nettype.

svc_create() tries all the transports of the nettype class that are available from the /etc/netconfig file in
top-to-bottom order. svc_create() registers itself with the RPCBind service.

Parameters
dispatch (Input)

The server dispatch function. dispatch is called when there is a remote procedure call for the given

prognum and versnum.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program

nettype (Input)
The following classes of transport protocol are valid: NETPATH, VISIBLE, CIRCUIT_YV,
DATAGRAM_YV, CIRCUIT_N, DATAGRAM_N, TCP, and UDP.

Authorities

The caller of the svc_create() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

num Upon successful completion, svc_create() returns the number of server handles it creates.
0 svc_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API calls setnetconfig() and getnetconfig() APIs in order to perform its task. The API inherits all
error conditions from those APIs. It also inherits all error conditions from svc_tp_create() API except
EINVAL.

Remote Procedure Call (RPC) APIs

47

Error Messages

Message ID Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1B3 1 TI-RPC encountered a problem in the server.

CPIA1B5 1 An incorrect nettype was given.

CPIA1BS 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

* [“svc_tp_create()—Create a Server Handle” on page 54

* [“svc_tli_create()—Create a Server Handle” on page 69

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how svc_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tlong)0x1

#include <stdio.h>
#include <rpc/rpc.h>

static void exm_proc();

main()

{

int transpnum;

transpnum = svc_create(exm_proc, RMTPROGNUM, RMTPROGVER,
"WISIBLE");
if (transpnum == 0){
fprintf(stderr, "Cannot create a service.\n");
exit(1);
}
svce_run(); /* No return */

}

/* The server dispatch function */
static void exm_proc(struct svc_req *rqstp, SVCXPRT *transp)

{

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | |[APIs by category|

48 iSeries: Remote Procedure Call (RPC) APls

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

svc_destroy()—Destroy an RPC Service Transport Handle

Syntax

#include <rpc/rpc.h>

void svc_destroy(SVCXPRT *xprt);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The sve_destroy() function destroys an RPC service transport handle. This function deallocates the
private data structures, including the handle itself. After the svc_destroy() API is used, the handle
pointed to by the xprt parameter is no longer defined.

Parameters
xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions
None.

Error Messages

None.

Related Information
+ [“cInt_destroy()—Destroy the RPC Client’s Handle” on page 45

* ["svc_create()—Create a Server Handle” on page 47|

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how svc_destroy() is used:
#include <rpc/rpc.h>
main()

{
SVCXRPT =transp;

Remote Procedure Call (RPC) APIs 49

aboutapis.htm#CODEDISCLAIMER

/* Destroy the service handle */
svc_destroy(transp);

.

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Intermediate-level APIs

The intermediate-level APIs are similar to the top-level APIs, but the user applications select the
transport-specific information by using network selection APIs. These APIs allow more customization and
greater control over the transport that is used.

The intermediate-level APIs are:

* [“cInt_tp_create()—Create a Client Handle”] (Create a client handle) creates a client handle for the
program prognum, the version versnum, and for the transport specified by netconf.

* [“svc_tp_create()—Create a Server Handle” on page 54| (Create a server handle) creates a server handle
for the network specified by netconf, and registers itself with the RPC service package (RPCBind).

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

cint_tp_create()—Create a Client Handle

Syntax

#include <rpc/rpc.h>
#include <netconfig.h>

CLIENT *cInt_tp_create(const char =*host,
const u_long prognum,
const u_long versnum,
const struct netconfig

xnetconf) ;

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The clnt_tp_create() API creates a client handle for the program prognum, the version versnum, and for the
transport specified by netconf. The remote RPCBind service on the host machine host is consulted for the
address of the remote service.

Parameters

host (Input)
The name of the remote host where the server is located.

prognum (Input)
The program number of the remote program.

50 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol to use.

Authorities

The caller of the cInt_tp_create() API must have execute (*X) authority to the /etc directory and must
have read (*R) authority to the netconfig file.

Return Value

clnt Upon successful completion, this function returns a client handle.
NULL cInt_tp_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, cInt_tp_create() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC APL The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address translation failed. The API cannot resolve the hostname given
in host.

[RPC_PROGNOTREGISTERED] Remote program is not registered.

[RPC_RPCBFAILURE] A failure occurred in the RPCBind daemon.

Remote Procedure Call (RPC) APIs

51

[RPC_SYSTEMERROR]

RPC error returned from system call. The rpc_createerr.cf_error.re_errno variable is
set to the value returned from the failed call.

[EACCES]
Permission denied.

[EADDRINUSE]
Local address is in use. This value is set when the transport endpoint
cannot be bound to any local address. This API calls rpcb_getaddr() API
in order to perform the API’s task. It inherits all error conditions from
cInt_tli_create() and rpcb_getaddr() APIs, except RPC_FAILED.

[EADDRNOTAVAIL]
Address not available. This value is set when the address obtained by
the rpcb_getaddr() is rejected by transport layer.

[EAGAIN]
Operation would have caused the process to be blocked.

[EBADF]
Bad file descriptor. This value is set when the transport endpoint
created is not valid.

[EFAULT]
The address created by the rpcb_getaddr() was not available.

[EIO] Input/output error. This value is set as a result of network transport
failure. It indicates that RPC cannot handle an error that occurred in
lower transport levels.

[ENOBUFS]
There is not enough buffer space available for the APL

[ENOMEM]
Out of memory.

[EOPNOTSUPP]
Operation is not supported. This value is set when the transport
endpoint was opened with limited capabilities.

[EUNKNOWN]
Unknown system state.

[RPC_UNKNOWNHOST]
Unknown host.

[RPC_UNKNOWNPROTO]
Unknown client/server protocol. The rpc_createerr.cf_error.re_errno
variable is not applicable. This error is set when the netconf pointer is

NULL.
Error Messages
Message ID Error Message Text
CPIA1B1 I A problem was encountered in the RPC client.
CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

52 iSeries: Remote Procedure Call (RPC) APIs

Related Information

[‘cInt_create()—Create a Generic Client Handle” on page 43|
[‘cInt_tli_create()—Create a Client Handle” on page 57

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how clnt_tp_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM ((u_long)Ox3fffffff)
#define RMTPROGVER ((u_long)0x1)

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netdir.h>

main()

{

}

CLIENT =*client;
struct netconfig *nconf;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

client = clnt_tp_create("as400.somewhere.ibm.com", RMTPROGNUM,
RMTPROGVER, nconf);
if (client == (CLIENT =*)NULL) {
fprintf(stderr, "Cannot create an RPC client\n");
exit(1);
}

fprintf(stderr, "Successfully created a client handle\n");

cInt_destroy(client);

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

53

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

svc_tp_create()—Create a Server Handle

Syntax

#include <rpc/rpc.h>

SVCXPRT svc_tp_create(const void
(*dispatch) (const svc_req =,
const SVCXPRT =x),
const u_long prognum,
const u_long versnum,
const struct netconfig *netconf);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_tp_create() function creates a server handle for the network specified by netconf, and registers
itself with the RPC service package (RPCBind).

Parameters

dispatch() (Input)
The server dispatch function. dispatch() is called when there is a remote procedure call for the
given prognum and versnum. The call to dispatch requires calling svc_run() on the server side.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol to use.

Authorities
No authorization is needed.

Return Value

xprt Upon successful completion, this function returns the service handle.
NULL svc_tp_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

This API calls sve_tli_create() and svc_reg() functions in order to perform its task. It inherits all error
conditions from those functions, except setnetconfig() and getnetconfig() errors and
RPC_UNKNOWNADDR from svc_reg().

54 iSeries: Remote Procedure Call (RPC) APIs

Error Messages

Message ID Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1B3 1 TI-RPC encountered a problem in the server.

CPIA1BS 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

* [’svc_create()—Create a Server Handle” on page 47|

« [“svc_tli_create()—Create a Server Handle” on page 69|

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how svc_tp_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

static void exm_proc();
/* Dispatcher routine, defined later in program =*/

main()
{
SVCXPRT *transp;
struct netconfig *nconf;

/* Returns a pointer to nconf corresponding to UDP */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

transp = svc_tp_create(exm_proc, RMTPROGNUM, RMTPROGVER,
nconf);
if (transp == (SVCXPRT =)NULL) {
fprintf(stderr, "Cannot create service.\n");
exit(1);
}

svc_run();

}

/* The server dispatch function x/
static void exm_proc(struct svc_req *rqstp, SVCXPRT *transp)

{

Remote Procedure Call (RPC) APIs

55

aboutapis.htm#CODEDISCLAIMER

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Expert-level APlIs

The expert-level APIs are the lowest layer of TI-RPC APIs available on the server. The application directly
chooses the transport to use, and has an increased level of control over the details of the client-side and
the server-side transport handles. These APIs are similar to the intermediate-level APIs with an additional
control provided by using the name-to-address translation APIs.

The expert-level APIs are:

« [“cInt_tli_create()—Create a Client Handle” on page 57 (Create a client handle) creates an RPC client
handle for the remote program prognum and version versnum.

* [‘rpcb_getaddr()—Find the Universal Address of a Service” on page 6] (Find the universal address of a
service) is an interface to the RPC service package (RPCBind).

[‘rpcb_set()—Register the Server Address with the RPCBind” on page 62| (Register the server address
with the RPCBind) is an interface to the RPC service package (RPCBind) daemon.
[‘rpcb_unset()—Unregister Their Addresses” on page 65 (Unregister Their Addresses) is an interface to

the RPC service package (RPCBind), which destroys the mapping between the triple (prognum,
versnum, netconf->nc_netid) and the address on the host machine’s RPCBind service.

* [“svc_reg()—Associate Program and Version with Dispatch” on page 67| (Associate program and version
with dispatch) associates prognum and versnum with the service dispatch procedure dispatch.

s [“svc_tli_create()—Create a Server Handle” on page 69| (Create a server handle) creates an RPC server
handle.

* [“svc_unreg()—Delete an Association Set by svc_reg()” on page 71| (Delete an association set by
svc_reg()) removes mappings between dispatch functions and the service procedure that is identified
by the prognum and versnum parameters.

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

56 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

cint_tli_create()—Create a Client Handle

Syntax

#include <rpc/rpc.h>
#include <netconfig.h>

CLIENT =cInt_t1i_create(const int fildes,
const struct netconfig
*netconf,
const struct netbuf *svcaddr,
const u_long prognum,
const u_long versnum,
const u_int sendsz,
const u_int recvsz);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The cInt_tli_create() API creates an RPC client handle for the remote program prognum and version
versnum. The remote program is located at address svcaddr. The client uses the transport that is specified
by netconf. Depending upon the type of the transport (connection-oriented or connectionless),
cInt_tli_create() calls the appropriate client-creation functions.

Parameters

fildes (Input)
A file descriptor. The only permitted value is RPC_ANYFD. The API opens an internal file
descriptor which is not accessible by the user applications.

netconf (Input)
The transport protocol.

svcaddr (Input)
A pointer to the address where the remote program is located.

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

sendsz (Input)
The size of the send buffer. When a value of zero is specified, a suitable default will be chosen by
the system.

recvsz (Input)
The size of the receive buffer. When a value of zero is specified, a suitable default will be chosen
by the system.

Authorities

No authorization is required.

Remote Procedure Call (RPC) APIs 57

Return Value

clnt Upon successful completion, this function returns a client handle.
NULL clnt_tli_create() was not successful. The rpc_createerr variable is set to indicate the reason.

Error Conditions

Upon failure, cInt_tli_create() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value that indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR]

[RPC_SYSTEMERROR]

[RPC_UNKNOWNADDR]

[RPC_UNKNOWNPROTO]

Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

RPC error returned from system call. The rpc_createerr.cf_error.re_errno variable is set to
the value returned from the failed call.

[EACCES]
Permission denied.

[EADDRINUSE]
Local address is in use. This value is set when fildes cannot be bound to any
local address.

[EADDRNOTAVAIL]
Address not available. This value is set when svcaddr is rejected by the
transport layer.

[EAGAIN]
Operation would have caused the process to be blocked.

[EBADF]
Bad file descriptor. This value is set when the fildes parameter is not valid or
cannot be used as a transport endpoint.

[ECONNREFUSED]
TI-RPC encountered a problem in the transport. The client cannot connect to
the server.

[EFAULT]
The address used for an svcaddr was not available.

[EIO] Input/output error. This value is set as a result of network transport failure. It
indicates that RPC cannot handle an error that occurred in lower transport
levels.

[ENOBUEFS]
There is not enough buffer space available for the APL

[ENOMEM]
Out of memory.

[EOPNOTSUPP]
Operation is not supported. This value is set when fildes represents a
transport endpoint with limited capabilities.

[EUNKNOWN]

Unknown system state.
Unknown remote address. The rpc_createerr.cf_error.re_errno variable is not applicable.
This error is set when the svcaddr pointer is NULL.
Unknown client/server protocol. The rpc_createerr.cf_error.re_errno variable is not
applicable. This error is set when the netconf pointer is NULL.

58 iSeries: Remote Procedure Call (RPC) APIs

Error Messages

Message 1D Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

“cInt_create()—Create a Generic Client Handle” on page 43|

“cInt_tp_create()—Create a Client Handle” on page 50

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how cInt_tli_create() is used:

/* Define remote program number and version */
#define RMTPROGNUM ((u_long)Ox3fffffff)
#define RMTPROGVER ((u_long)0x1)

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>
#include <netdir.h>

main()

CLIENT =*client;

struct netconfig *nconf;

struct netbuf *service_address;
struct nd_addrlist #nas;

struct nd_hostserv hs;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {

fprintf(stderr, "Cannot get netconfig entry for UDP\n");

exit(1l);
}
hs.h_host = "as400.somewhere.ibm.com";
hs.h_serv = "RPCBIN";

if(netdir_getbyname(nconf,&hs,&nas) < 0
| nas->n_cnt == 0) {

fprintf(stderr, "Cannot translate host name or service name\n");
service_address = nas->n_addrs;

client = cInt_t1i_create(RPC_ANYFD, nconf, service_address,
RMTPROGNUM, RMTPROGVER, 0, 0);
if (client == (CLIENT =*)NULL) {
fprintf(stderr, "Cannot create an RPC client\n");
exit(1);
}

Remote Procedure Call (RPC) APIs

59

aboutapis.htm#CODEDISCLAIMER

fprintf(stderr, "Successfully created a client handle\n");

cInt_destroy(client);
1

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

rpcb_getaddr()—Find the Universal Address of a Service

Syntax

#include <rpc/rpc.h>
#include <netconfig.h>

bool_t rpcb_getaddr(const u_long prognum,
const u_long versnum,
const struct netconfig *netconf,

struct netbuf *svcaddr,
const char xhost);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The rpcb_getaddr() function is an interface to the RPC service package (RPCBind). The function finds the
address of the service on the host that is registered with program number prognum and version versnum,
and uses the transport protocol that is associated with netconf.

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol.

svcaddr (Output)
A pointer to the address of the requested service on the remote host machine.

host (Input)
The name of the remote host where the server is located.

Authorities

The caller of the rpcb_getaddr() API must have execute (*X) authority to the /etc directory and must
have read (*R) authority to the netconfig file.

60 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Return Value

TRUE (1) rpcb_getaddr() was successful. The address of the remote service in the svcaddr parameter was
returned.
FALSE (0) rpcb_getaddr() was unsuccessful.

Error Conditions

Upon failure, rpcb_getaddr() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable
contains a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is
meaningful when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_FAILED] The buffer referenced by the svcaddr parameter does not have enough space.
re_errno field is set to ENOBUFS.

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name-to-address translation failed.

[RPC_PROGNOTREGISTERED] Remote program is not registered.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

[RPC_UNKNOWNADDR] Unknown address. The svcaddr is invalid.

[RPC_UNKNOWNHOST] Unknown host. The rpc_createerr.cf_error.re_errno variable is not applicable.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The rpc_createerr.cf_error.re_errno is set with

errno value returned from the setnetconfig() or getnetconfig() call.

This API calls cInt_tli_create() and clnt_call() APIs. It inherits RPC_SYSTEMERROR from cInt_tli_create()
API and it inherits all error conditions from clnt_call() API except RPC_TIMEDOUT,
RPC_PROGNOTREGISTERED, RPC_PROGVERSMISMATCH, and RPC_FAILED.

Error Messages

Message ID Error Message Text

CPIA1B1 1 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1BS8 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how rpcb_getaddr is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#define ADDBUFSIZE 100

#include <stdio.h>

#include <rpc/rpc.h>
#include <netconfig.h>

Remote Procedure Call (RPC) APIs 61

aboutapis.htm#CODEDISCLAIMER

main()

{
struct netconfig *nconf;
struct netbuf *svcaddr;
char addrbuf[ADDRBUFSIZE];

svcaddr.len = 0;
svcaddr.maxlen = ADDRBUFSIZE;
svcaddr.buf = addrbuf;

/* Returns a pointer to nconf corresponding to NETCONF =/
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

if (!rpcb_getaddr (RMTPROGNUM, RMTPROGVER, nconf,
svcaddr, "as400.somewhere.ibm.com")) {
fprintf(stderr, "rpcb_getaddr failed!!\n");
exit(1l);
}

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

rpcb_set()—Register the Server Address with the RPCBind

Syntax

#include <rpc/rpc.h>
#include <netconfig.h>

bool t rpcb_set(const u_long prognum,
const u_long versnum,

const struct netconfig *netconf,
const struct netbuf *svcaddr);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The rpcb_set() function is an interface to the RPC service package (RPCBind) daemon. The function
establishes a mapping between the triple (prognum, versnum, netconf->nc_netid) and svcaddr on the
machine’s RPCBind service. The value of netconf->nc_netid must correspond to a network identifier that is
defined by the netconfig database.

62 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol.

svcaddr (Input)
A pointer to the local address of the service.

Authorities

No authorization is required.

Return Value

TRUE (1) rpcb_set was successful.
FALSE (0) rpcb_set was unsuccessful.

Error Conditions

Upon failure, rpcb_set() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable contains a
status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC APIL The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.

[RPC_N2AXLATEFAILURE] Name to address translation failed.

[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

[RPC_UNKNOWNADDR] Unknown address. The svcaddr is invalid.

[RPC_UNKNOWNADDR] Unknown remote address. The rpc_createerr.cf_error.re_errno variable is not applicable.

[RPC_UNKNOWNPROTO] Unknown client/server protocol. The rpc_createerr.cf_error.re_errno variable is not
applicable.

This API calls cInt_tli_create() and cInt_call() APIs in order to perform its task. It inherits
RPC_SYSTEMERROR from clnt_tli_create() API and it inherits all error conditions from cInt_call() API
except RPC_TIMEDOUT and RPC_FAILED.

Error Messages

Message ID Error Message Text

CPIA1B11 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1BS8 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

Remote Procedure Call (RPC) APIs 63

Related Information
* ['rpcb_unset()—Unregister Their Addresses” on page 65|

Example

See [Code disclaimer information| for information pertaining to code examples.

The following example shows how rpcb_set() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()

{
struct netconfig *nconf;
struct netbuf *svcaddr;

/* Returns a pointer to nconf corresponding to NETCONF =/
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

/* Register to the RPCBind */

if (!rpch_set(RMTPROGNUM, RMTPROGVER, nconf, svcaddr)){
fprintf(stderr, "rpcb_set failed!!\n");
exit(1l);

}

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

64 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

rpcb_unset()—Unregister Their Addresses

Syntax

#include <rpc/rpc.h>

#include <netconfig.h>

bool_t rpcb_unset(const u_long prognum,

const u_long versnum,
const struct netconfig *netconf);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The rpcb_unset() function is an interface to the RPC service package (RPCBind), which destroys the
mapping between the triple (prognum, versnum, netconf->nc_netid) and the address on the host machine’s
RPCBind service. If netconf is NULL, rpcb_unset() destroys all mapping between the above triple and the
addresses on the machine’s RPCBind service.

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

netconf (Input)
The transport protocol.

Authorities

The caller of the rpcb_unset() API must have execute (*X) authority to the /etc directory and must have
read (*R) authority to the netconfig file.

Return Value

TRUE (1) rpcb_unset was successful.
FALSE (0) rpcb_unset was unsuccessful.

Error Conditions

Upon failure, rpcb_unset() sets the global structure rpc_createerr. The rpc_createerr.cf_stat variable contains
a status value, which indicates the error reason. The rpc_createerr.cf_error.re_errno variable is meaningful
when some status values are set.

The rpc_createerr.cf_stat variable can be set to one of the following values:

[RPC_INTR] Interrupted RPC call. An exception has occurred in the RPC API. The
rpc_createerr.cf_error.re_errno is set to EUNKNOWN.
[RPC_RPCBFAILURE] Unable to contact the RPCBind daemon.

Remote Procedure Call (RPC) APIs 65

This API calls cInt_tli_create() and cInt_call() APIs in order to perform its task. It inherits
RPC_SYSTEMERROR from cInt_tli_create() API and it inherits all error conditions from clnt_call() API
except RPC_TIMEDOUT and RPC_FAILED.

Error Messages

Message ID Error Message Text

CPIA1B1 1 A problem was encountered in the RPC client.

CPIA1B2 I TI-RPC encountered a problem in the transport protocol.

CPIA1BS 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

Related Information
* [‘rpcb_set()—Register the Server Address with the RPCBind” on page 62|

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how rpcb_unset() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_Tlong)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()

{

struct netconfig *nconf;

/* Returns a pointer to nconf corresponding to NETCONF =/
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

/* Destroy the connect with the RPCBind daemon =*/

if (!rpcb_unset (RMTPROGNUM, RMTPROGVER, nconf)){
fprintf(stderr, "rpcb_unset failed!!\n");
exit(1);

}

.

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

66 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

svc_reg()—Associate Program and Version with Dispatch

Syntax

#include <rpc/rpc.h>
#include <netconfig.h>

bool_t svc_reg(const SVCXPRT =*xprt,
const u_long prognum,
const u_long versnum,
const void (*dispatch)(const svc_req *,
const SVCXPRT =*),
const struct netconfig *netconf);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_reg() API associates prognum and versnum with the service dispatch procedure dispatch. If netconf
is NULL, the service is not registered with the RPC service package (RPCBind). If nefconf is non-null, then
a mapping of the triple (prognum, versnum, netconf->nc_netid) to xprt->xp_ltaddr is established with the
local RPCBind service.

Parameters

xprt (I/O)
A pointer to a Remote Procedure Call (RPC) service transport handle.

prognum (Input)
The program number of the remote program.

versnum (Input)
The version number of the remote program.

dispatch (Input)
The server dispatch function.

netconf (Input)
The transport protocol.

Authorities

The caller of the svc_reg() API must have execute (*X) authority to the /etc directory and must have read
(*R) authority to the netconfig file.

Return Value

TRUE (1) svc_reg() was successful.
FALSE (0) svc_reg() was not successful. The errno variable is set to indicate the reason.

Remote Procedure Call (RPC) APIs 67

Error Conditions

This API calls the setnetconfig() and getnetconfig() functions in order to perform its task. The API
inherits all error conditions from those functions. It also calls rpcb_set() for registering in RPCBind
inheriting all error conditions from the API, except RPC_UNKNOWNPROTO.

[EINVAL] Attempt to register a dispatcher with prognum and versnum, which are already used by another

dispatcher.
[EALREADY] Attempting to register a service which is already registered.

Error Messages

Message ID Error Message Text

CPIA1B1 1 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1BS8 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPIA1B2 1 TI-RPC encountered a problem with the transport protocol.

CPIA1BS 1 A problem occurred while trying to contact the RPCBind daemon.
Example

See |Code disclaimer information|for information pertaining to code examples.

The following example shows how svc_reg() is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

static void exm _proc();

main()

{
SVCXPRT *xprt;
struct netconfig *nconf;
int result;

/* Returns a pointer to nconf corresponding to NETCONF */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

result = svc_reg(xprt, RMTPROGNUM, RMTPROGVER,
exm_proc, nconf);
if (!result){
fprintf(stderr, "svc_reg failed!!\n");
exit(1);
}

68 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

.

/* The server dispatch function */
static void exm_proc(struct svc_req *rqgstp, SVCXPRT *transp)

{

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

svc_tli_create()—Create a Server Handle

Syntax

#include <rpc/rpc.h>
#include <netconfig.h>

SVCXPRT svc_t1i_create(const int fildes,
const struct netconfig
*netconf,
const struct t_bind
*bindaddr,
const u_int sendsz,
const u_int recvsz);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_tli_create() function creates an RPC server handle.

Parameters
fildes (Input)

The file descriptor on which the service is listening. The only permitted value for a user

application is RPC_ANYEFD. If the file descriptor fildes is RPC_ANYFD, it opens a file descriptor

on the transport specified by netconf.

netconf (Input)
The transport protocol.

bindaddr (Input)
The address where fildes is bound if it is unbound.

sendsz (Input)

The size of the send buffer. When a value of zero is specified, a suitable default value will be

chosen by the system.

Remote Procedure Call (RPC) APIs

69

#TOP_OF_PAGE
aplist.htm

recvsz (Input)

The size of the receive buffer. When a value of zero is specified, a suitable default value will be
chosen by the system.

Authorities

No authorization is required.

Return Value

xprt Upon successful completion, this function returns a pointer to the created RPC server handle.
NULL svc_tli_create() was not successful. The errno variable is set to indicate the reason.

Error Conditions

[ENOMEM] Out of memory.

[EUNKNOWN] Unknown system state.

[EADDRNOTAVAIL] Address not available. This value is set when bindaddr is rejected by the transport
layer.

[EIO] Input/output error. This value is set as a result of network transport failure. It
indicates that RPC cannot handle an error that occurred in lower transport levels.

[EACCES] Permission denied.

[EBADF] Bad file descriptor. This value is set when the fildes parameter is not valid or cannot be
used as a transport endpoint.

[EFAULT] The address used for a bindaddr was not available.

[ENOBUFS] There is not enough buffer space available for the API

[EINVAL] An invalid value was supplied for the input parameter nconf.

[EADDRINUSE] Local address is in use. This value is set when fildes cannot be bound to any local
address.

Error Messages

Message ID Error Message Text

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIAIB3 1 TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.

Related Information

“svc_create()—Create a Server Handle” on page 47|

“svc_tp_create()—Create a Server Handle” on page 54|

Example
See |Code disclaimer information| for information pertaining to code examples.

The following example shows how svc_tli_create is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

70

iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

main()

SVCXPRT *svc;
struct netconfig *nconf;
int fd;

/* Returns a pointer to nconf corresponding to UDP */
if ((nconf = getnetconfigent("UDP")) ==
(struct netconfig *)NULL) {
fprintf(stderr, "Cannot get netconfig entry for UDP\n");
exit(1);
}

svc = svc_t1i_create(RPC_ANYFD,nconf,
(struct t_bind *)NULL,
0, 0);
if (svc == (SVCXPRT *)NULL){
fprintf(stderr, "svc_t1i_create failed!!\n");
exit(1l);
}

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

svc_unreg()—Delete an Association Set by svc_reg()

Syntax

#include <rpc/rpc.h>

void svc_unreg(const u_long prognum,
const u_long versnum);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The sve_unreg() function removes mappings between dispatch functions and the service procedure that is
identified by the prognum and versnum parameters. It also removes the mapping between the port
number and the service procedure, which is identified by the prognum and versnum parameters.

Remote Procedure Call (RPC) APIs 71

#TOP_OF_PAGE
aplist.htm

Parameters

prognum (Input)
The program number of the remote program.

vernum (Input)
The version number of the remote program.

Authorities

No authorization is required.

Return Value
None.

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPIA1B1 1 A problem was encountered in the RPC client.

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIA1BS 1 A problem occurred while trying to contact the RPCBind daemon.
CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

* [“svc_reg()—Associate Program and Version with Dispatch” on page 67

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how svc_unreg is used:

/* Define remote program number and version */
#define RMTPROGNUM (u_Tong)Ox3fffffffL
#define RMTPROGVER (u_long)0x1

#include <stdio.h>
#include <rpc/rpc.h>
#include <netconfig.h>

static void exm _proc();
main()

SVCXPRT *xprt;
struct netconfig *nconf;

result = svc_reg(xprt, RMTPROGNUM, RMTPROGVER,
exm_proc, nconf);
if (!result){
fprintf(stderr, "svc_reg failed!!\n");
exit(1);

72 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

/* Removes mapping between procedures and objects */
svc_unreg (RMTPROGNUM, RMTPROGVER) ;

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Other APIs

These APIs are used primarily in conjunction with all the layers except the simplified-level APIs. These
APIs provide methods for sending back errors from the service to the client, for freeing space allocated to
the clients and services, and for enhancing error detection and reporting.

The system functions that work with applications from the previous four categories are:

+ [“cInt_freeres()—Free Data Allocated by the RPC or XDR System” on page 74 (Free data allocated by
the RPC or XDR system) frees any data allocated by the RPC or XDR system when it decoded the
results of an RPC call.

* [“cInt_geterr()—Get the Error Structure from the Client Handle” on page 76| (Get the error structure
from the client handle) copies the error structure out of the client handle to the structure at address
errp.

* [“svcerr_decode()—Send Information to Client for Decode Error” on page 77| (Send information to client
for decode error) sends information to the remote client that the service dispatch routine could not
decode the remote parameters.

* [‘svcerr_noproc()—Send Information to Client for Procedure Number Error” on page 78| (Send
information to client for procedure number error) sends information to the client that the service
dispatch routine did not implement the procedure number that the caller requested.

* [‘svcerr_systemerr()—Send Information to Client for System Error” on page 79 (Send information to
client for system error) sends information to the remote client that the service dispatch routine detected
a system error not covered by any particular protocol.

* [’svcerr_weakauth()—Send Authentication Error Indication to a Client” on page 82| (Send
Authentication Error Indication to a Client) sends information to a remote client that the server
dispatch function detected an authentication error.

* [“svc_freeargs()—Free Data Allocated by the RPC or XDR System” on page 83 (Free data allocated by
the RPC or XDR system) frees any data allocated by the RPC or XDR functions when those functions
decode the arguments to a service procedure by using svc_getargs().

* [“svc_getargs()—Decode the Arguments of an RPC Request” on page 84| (Decode the arguments of an
RPC request) decodes the arguments of an RPC request associated with the RPC service transport
handle xprt.

* [“svc_getrpccaller()—Get the Network Address of the Caller” on page 85|(Get the network address of
the caller) retrieves the network address of the remote client who is calling the procedure that is
associated with the RPC service transport handle.

* [“svc_run()—Wait for RPC Requests to Arrive” on page 86| (Wait for RPC requests to arrive) waits for
RPC requests to arrive and calls the appropriate service procedure.

» [’svc_sendreply()—Send the Results of a Procedure Call to a Remote Client” on page 87| (Send the
results of a procedure call to a remote client) sends the results of a procedure call to a remote client.

| 'Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

Remote Procedure Call (RPC) APIs 73

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm

cint_freeres()—Free Data Allocated by the RPC or XDR System

Syntax

#include <rpc/rpc.h>

bool t ciInt_freeres(CLIENT *clint,
const xdrproc_t inproc,
caddr_t in);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The clnt_freeres() function frees any data allocated by the RPC or XDR system when it decoded the
results of an RPC call.

Parameters

cInt (Input)
A pointer to the client handle.

inproc (Input)
XDR routine describing the results.

in (Input)
(Input) The address of the results.

Authorities
No authorization is required.
Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

This function returns FALSE when the in parameter is NULL or an exception has occurred. In case of an
exception, cInt_freeres() tries to set RPC_INTR in the client handle. This status can be retrieved by a call
to cInt_geterr().

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

74 iSeries: Remote Procedure Call (RPC) APIs

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how cInt_freeres() is used:

#include <stdio.h>
#include <rpc/rpc.h>

u_Tong procnum;

CLIENT *clnt;

enum cInt_stat stat;

struct rpc_err client_error;
struct timeval timeout;

struct array_args{
unsigned int size;
char *data;

}s

struct array_args args; /* Arg with buffer to send */
struct array_args result; /* Arg with buffer to receive */

/* Call the remote procedure that is associated with client =/

stat = cInt_call(cInt, procnum, (xdrproc_t)xdr_array,
(char *)&args, (xdrproc_t)xdr_array,
(char *)&result, timeout);
if (stat != RPC_SUCCESS){
/* Failure on call =/
if (result.data != (char *) NULL){
if(!cInt_freeres(cint, (xdrproc_t)xdr_array,
(char *)&result))
/* cInt_freeres() failed */

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

Remote Procedure Call (RPC) APIs

75

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

cint_geterr()—Get the Error Structure from the Client Handle

Syntax

#include <rpc/rpc.h>

void cInt_geterr(const CLIENT =*cint,
struct rpc_err *errp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The cInt_geterr() function copies the error structure out of the client handle to the structure at address
errp.

Parameters

cint (Input)
A pointer to the client handle.

errp (Output)
A pointer to the error structure.

Authorities

No authorization is required.

Return Value
None.

Error Conditions

When an exception occurs, clnt_geterr() tries to set RPC_INTR in the client handle. This status can be
retrieved by another valid cInt_geterr() call. If the attempt was unsuccessful, no error indication is given.

Error Messages

Message ID Error Message Text
CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how cInt_geterr() is used:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/time.h>

main()

{

76 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

u_long procnum;

CLIENT =*clnt;

enum cInt_stat cs;

struct rpc_err client_error;
struct timeval total_timeout;
int intsend, intrecv;

/* Call the remote procedure that is associated with client */
cs = cInt_call(clInt, procnum, xdr_int,
(caddr_t)&intsend, xdr_int,
(caddr_t)&intrecv, total_timeout);

if (cs != RPC_SUCCESS) {
cInt_geterr(cint,&client_error);
exit(1l);
}
1

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

svcerr_decode()—Send Information to Client for Decode Error

Syntax

#include <rpc/rpc.h>

void svcerr_decode(const SVCXPRT *xprt);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svcerr_decode() function sends information to the remote client that the service dispatch routine
could not decode the remote parameters.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Remote Procedure Call (RPC) APIs 77

#TOP_OF_PAGE
aplist.htm

Error Conditions
In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message 1D Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

Refer to the example for [‘svcerr_systemerr()—Send Information to Client for System Error” on page 79

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

svcerr_noproc()—Send Information to Client for Procedure Number
Error

Syntax

#include <rpc/rpc.h>

void svcerr_noproc(const SVCXPRT *xprt);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svcerr_noproc() function sends information to the client that the service dispatch routine did not
implement the procedure number that the caller requested.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value
None.

Error Conditions
In case of an exception, the errno global variable is set to EUNKNOWN.

78 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

Refer to the example for [‘svcerr_systemerr()—Send Information to Client for System Error”]|

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

svcerr_systemerr()—Send Information to Client for System Error

Syntax

#include <rpc/rpc.h>
void svcerr_systemerr(const SVCXPRT *xprt);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svcerr_systemerr() function sends information to the remote client that the service dispatch routine
detected a system error not covered by any particular protocol.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions
In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Remote Procedure Call (RPC) APIs 79

#TOP_OF_PAGE
aplist.htm

Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how svcerr_systemerr() is used:

#include <stdio.h>
#include <stdlib.h> /% getenv, exit */
#include <rpc/rpc.h>

#define MESSAGEPROG ((unsigned Tong) (6x20000001))
#define PRINTMESSAGEVERS ((unsigned Tong) (1))
#define PRINTMESSAGE ((unsigned Tong) (1))

/* This procedure is called by dispatcher routine */
int *printmessage_1(char **msg, struct svc_req *req)
{

static int result;

char stff130";

int fd;

/* Do something with *msg contents */

result = 1;
return(&result);

}

/* This is the server dispatcher routine.
It is called when a request arrives from client
and it applies to MESSAGEPROG program number and PRINTMESSAGEVERS
version number x/

static void
messageprog_1(struct svc_req *rqstp, SVCXPRT *transp)

union u_argument{

char *printmessage 1 _arg;

}argument;

char *result;

bool_t (*_xdr_argument) (), (*_xdr_result)();

char *(x1ocal) (union u_argument *, struct svc_req *);

_rpcsvceount++;
switch(rgstp->rq_proc)
{

/* rgqstp->rq_proc contains the procedure number
of procedure that should be called */

case NULLPROC: /* empty procedure, do nothing, just send the ack */
svc_sendreply(transp, (xdrproc_t)xdr_void, (char *)NULL);
return;
case PRINTMESSAGE: /* printmessage 1() */
if (rgstp->rq_cred.oa_flavor != AUTH_SYS) {
/* AUTH_SYS is required by this procedure */
svcerr_weakauth(transp);
return;
1
_xdr_argument = (bool_t(*)())xdr_wrapstring;
_xdr_result = (bool_t(*)())xdr_int;
Tocal = (char *(*)(u_argument *, struct svc_req *))
printmessage_1;
break;
default: /* no other procedures available */

80 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

}

svcerr_noproc (transp);
return;

}

memset ((char *)&argument, 0, sizeof(argument));

/* decode arguments for the procedure */
if (!svc_getargs(transp, (xdrproc_t) xdr_argument,
(char =)&argument)) {
svcerr_decode(transp);
return;

}

/* Invoke the procedure */
result = (*local) (&argument, rgstp);

/* Send reply to the client containing results of the invocation */
if (result != NULL && !svc_sendreply(transp,
(xdrproc_t) _xdr_result, result)){
svcerr_systemerr(transp);

}

if (!svc_freeargs(transp, (xdrproc_t) xdr_argument,
(char =*)&argument)) {
printf("unable to free arguments");
exit(1);
}

return;

main()

{

}

pid_t pid;
int i;

printf("Start..");

printf("Try to create..");

/* Create a new RPC server instance which will use messageprog_1()

as a dispatcher function associated with MESSAGEPROG program
number and PRINTMESSAGEVERS version number.
Since "VISIBLE" nettype is selected, a number of server instances
will be actually created: one for each "VISIBLE" entry in
/etc/netconfig =/

if(!svc_create(messageprog_1, MESSAGEPROG, PRINTMESSAGEVERS,

"VISIBLE")){
printf("Unable to create service.");
return 1;

}

/* Enter the main loop of RPC */
sve_run();

return 0;

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

81

#TOP_OF_PAGE
aplist.htm

svcerr_weakauth()}—Send Authentication Error Indication to a Client

Syntax

#include <rpc/rpc.h>

void svcerr_weakauth(const SVCXPRT *xprt);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svcerr_weakauth() function sends information to a remote client that the server dispatch function
detected an authentication error.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities

No authorization is required.

Return Value

None.

Error Conditions
In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message 1D Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

Refer to the example for [‘svcerr_systemerr()—Send Information to Client for System Error” on page 79

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

82 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

svc_freeargs()—Free Data Allocated by the RPC or XDR System

Syntax

#include <rpc/rpc.h>

bool_t svc_freeargs(const SVCXPRT =*xprt,
const xdrproc_t inproc,
caddr_t in);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_freeargs() function frees any data allocated by the RPC or XDR functions when those functions
decode the arguments to a service procedure by using svc_getargs().

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

inproc (Input)
The XDR routine to free the arguments.

in (Input)
The address of the arguments.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_freeargs was successful.
FALSE (0) svc_freeargs was unsuccessful.

Error Conditions

svc_freeargs() returns FALSE only when the in parameter is NULL or an exception has occurred. In case
of the exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message 1D Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E Program or service program &1 in library amp;2 ended. Reason code &3.

Remote Procedure Call (RPC) APIs 83

Example

Refer to the example for [“svcerr_systemerr()—Send Information to Client for System Error” on page 79.|

API introduced: V4R2

I ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

svc_getargs()—Decode the Arguments of an RPC Request

Syntax

#include <rpc/rpc.h>

bool_t svc_getargs(const SVCXPRT #xprt,
const xdrproc_t inproc,
caddr_t in);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_getargs() function decodes the arguments of an RPC request associated with the RPC service
transport handle xprt.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

inproc (Input)
The XDR routine to decode the arguments.

in (Input)
The address of the arguments.

Authorities

No authorization is required.

Return Value

TRUE (1) svc_getargs was successful.
FALSE (0) svc_getargs was unsuccessful.

Error Conditions

svc_getargs() returns FALSE only when the in parameter is NULL or an exception has occurred. In case
of the exception, the errno global variable is set to EUNKNOWN.

84 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text

CPIA1B3 1 TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

Refer to the example for [‘svcerr_systemerr()—Send Information to Client for System Error” on page 79

API introduced: V4R2

| f’Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by categorv|

svc_getrpccaller()}—Get the Network Address of the Caller

Syntax

#include <rpc/rpc.h>

struct netbuf *svc_getrpccaller(SVCXPRT *xprt);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The sve_getrpccaller() function macro retrieves the network address of the remote client who is calling
the procedure that is associated with the RPC service transport handle.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

Authorities
No authorization is required.

Return Value

netbuf Returns a pointer to a netbuf structure containing the address of the caller of a procedure that is
associated with the RPC service xprt.

Error Conditions

None.

Remote Procedure Call (RPC) APIs

85

#TOP_OF_PAGE
aplist.htm

Error Messages

None.

Example

The following example shows how svc_getrpccaller() is used :
#include <rpc/rpc.h>

main()

{

SVCXPRT #*svc;
struct netbuf xnet_buf;

/* Get the caller address =/
net_buf = svc_getrpccaller(svc);

.

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

svc_run()—Wait for RPC Requests to Arrive

Syntax

#include <rpc/rpc.h>

void svc_run(void);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The svc_run() function waits for RPC requests to arrive and calls the appropriate service procedure.

Parameters
None.

Authorities

No authorization is required.

Return Value

None.

Error Conditions

The svc_run() function rarely exits. It exits only when an exception has occurred. In this case the errno
global variable is set to EUNKNOWN.

86 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text

CPIA1B2 1 TI-RPC encountered a problem in the transport protocol.

CPIAIB3 1 TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

Refer to the example for [‘svcerr_systemerr()—Send Information to Client for System Error” on page 79.|

API introduced: V4R2

| f’Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by categorv|

svc_sendreply()—Send the Results of a Procedure Call to a Remote
Client

Syntax

#include <rpc/rpc.h>
bool_t svc_sendreply(const SVCXPRT =*xprt,

const xdrproc_t inproc,
const caddr_t in);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The sve_sendreply() function sends the results of a procedure call to a remote client.

Parameters

xprt (Input)
A pointer to the RPC service transport handle.

inproc (Input)
XDR routine to encode the results.

in (Input)
The address of the results.

Authorities

No authorization is required.

Remote Procedure Call (RPC) APIs

87

#TOP_OF_PAGE
aplist.htm

Return Value

TRUE (1) svc_sendreply() was successful.
FALSE (0) sve_sendreply() was unsuccessful.

Error Conditions

The sve_sendreply() function returns FALSE when some transport error or some exception has occurred.
The errno global variable can be set to the following values:

[EBADF] Bad file descriptor.

[EINVAL] General I/0 error.

[EOPNOTSUPP] Operation is not supported.

[EUNKNOWN] Unknown system state or exception has occurred.

Error Messages

Message ID Error Message Text

CPIA1B3 1 TI-RPC encountered a problem in the server.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

Refer to the example for [‘svcerr_systemerr()—Send Information to Client for System Error” on page 79

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

External Data Representation APls

The eXternal Data Representation (XDR) functions define a uniform way to represent data types and
define a language that can describe data structures of arbitrary complexity in a standard way.

All XDR APIs can translate data in two directions:

Serializing Translation from a local machine data representation to canonical XDR form.
Deserializing Translation from canonical XDR form to a local machine representation.

The eXternal Data Representation APIs are:

“xdr_array()—Translate between Arrays and Their XDR” on page 90| (Translate between arrays and
their XDR) is a filter primitive that translates between variable-length arrays and their corresponding
external representations.

“xdr_bool()—Translate between Booleans and Their XDR” on page 92 (Translate between Booleans and
their XDR) is a filter primitive that translates between Booleans (C integers) and their external
representations.

+ [“xdr_bytes()—Translate between Counted Byte Arrays and Their XDR” on page 93 (Translate between
counted byte arrays and their XDR) is a filter primitive that translates between counted byte arrays
and their external representations.

88 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

[’xdr_char()—Translate between Characters and Their XDR” on page 95| (Translate between characters
and their XDR) is a filter primitive that translates between C-language characters and their external
representation.

[’xdr_double()—Translate between Double-Precision and XDR” on page 97| (Translate between
double-precision and XDR) is a filter primitive that translates between C-language double-precision
numbers and their external representations.

[“xdr_double_char()—Translate between Two-Byte Characters” on page 98|(Translate between two-byte
characters) is a filter primitive that translates between C-language 2-byte characters and their external
representation.

[“xdr_enum()—Translate between Enumeration and XDR” on page 100| (Translate between enumeration
and XDR) is a filter primitive that translates between C-language enumeration (enum) and its external

representation.

[“xdr_float()—Translate between Floats and Their XDR” on page 101|(Translate between floats and their
XDR) is a filter primitive that translates between C-language floating-point numbers (normalized single
floating-point numbers) and their external representations.

[‘xdr_free()—Generic Freeing Function” on page 102| (Generic freeing function) recursively frees the
object pointed to by the pointer passed in.

[‘xdr_int()—Translate between Integers and Their XDR” on page 104| (Translate between integers and
their XDR) is a filter primitive that translates between C-language integers and their external
representation.

[‘xdr_long()—Translate between Long Integers and Their XDR” on page 105| (Translate between long
integers and their XDR) is a filter primitive that translates between C-language long integers and their
external representations.

[‘xdr_netobj()—Translate between Netobj Structures and Their XDR” on page 106| (Translate between
netobj structures and their XDR) is a filter primitive that translates between variable-length opaque
data and its external representation.

[‘’xdr_opaque()—Translate between Fixed-Size Data and Its XDR” on page 108 (Translate between
fixed-size data and its XDR) is a filter primitive that translates between fixed-size opaque data and its
external representation.

[‘’xdr_pointer()—Provide Pointer Chasing within Structures” on page 109 (Provide pointer chasing
within structures) provides pointer chasing within structures and serializes null pointers.

[‘xdr_reference()—Provide Pointer Chasing within Structures” on page 111| (Provide pointer chasing
within structures) is a filter primitive that provides pointer chasing within structures.

[’xdr_short()—Translate between Short Integers and Their XDR” on page 112| (Translate between short
integers and their XDR) is a filter primitive that translates between C-language short integers and their
external representation.

[‘xdr_string()—Translate between Strings and Their XDR” on page 114 (Translate between strings and
their XDR) is a filter primitive that translates between C-language strings and their corresponding
external representations.

[“xdr_union()—Translate between Unions and Their XDR” on page 115|(Translate between unions and
their XDR) is a filter primitive that translates between discriminated C unions and their corresponding
external representations.

|”xdr_u_char()—Translate between Unsigned Characters and Their XDR” on page 117| (Translate
between unsigned characters and their XDR) is a filter primitive that translates between unsigned
C-language characters and their external representations.

[‘xdr_u_int()—Translate between an Unsigned Integer and Its XDR” on page 119|(Translate between an
unsigned integer and its XDR) is a filter primitive that translates between C-language unsigned
integers and their external representations.

[“xdr_u_long()—Translate between an Unsigned Long and Its XDR” on page 120|(Translate between an
unsigned long and its XDR) is a filter primitive that translates between C-language unsigned long
integers and their external representations.

Remote Procedure Call (RPC) APIs 89

[’xdr_u_short()—Translate between an Unsigned Short and Its XDR” on page 121| (Translate between an
unsigned short and its XDR) is a filter primitive that translates between C-language unsigned short
integers and their external representations.

[‘’xdr_vector()—Translate between Arrays and Their XDR” on page 123| (Translate between arrays and
their XDR) is a filter primitive that translates between fixed-length arrays and their corresponding
external representations.

[“xdr_void()—Supply an XDR Function to the RPC System” on page 124 (Supply an XDR function to
the RPC system) has no parameters.

* [“xdr_wrapstring()—Call the xdr_string() Function” on page 126 (Call the xdr_string() function) is a
primitive that calls the xdr_string(xdr, sp, maxuint) API, where maxuint is the maximum value of an
unsigned integer.

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_array()—Translate between Arrays and Their XDR

Syntax

#include <rpc/xdr.h>

bool_t xdr_array(XDR *xdrs,
caddr_t =*arrp,
u_int =sizep,
const u_int maxsize,

const u_int elsize,
const xdrproc_t elproc);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_array() function is a filter primitive that translates between variable-length arrays and their
corresponding external representations. This function is called to encode or decode each element of the
array.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

arrp (I/O)
The address of the pointer to the array. If *arrp==NULL and the array is being deserialized, XDR
allocates an array of the appropriate size and sets this parameter to point to that array.

sizep (I/O)
The address of the element count of the array. The element count cannot exceed the value for the
maxsize parameter.

maxsize (Input)
The maximum number of array elements.

elsize (Input)
The byte size of each of the array elements.

90 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

elproc (Input)

Translates between the C form of the array elements and their external representations. This

parameter is an XDR filter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_array() is used:

#include <stdio.h>
#include <values.h>
#include <xdr.h>

#define ARRAY_SIZE 256

typedef struct xarray
{

int size;

int *p_array;
} xarray ;

bool t xdr xarray(XDR *xdrs, xarray *p_xarray)

{
/*
* Force XDR to allocate memory while decoding
*/
if((xdrs->x_op==XDR_DECODE) &&
(p_xarray->p_array!=NULL))

free(p_xarray->p_array);
p_xarray->p_array=NULL;

This code has a dual job :

A) While decoding, it allocated memory, stores the decoded
xarray in it, and updates size field in xarray
struct.

B) While decoding it stores xarray's size and the data

* Ok X X X

Remote Procedure Call (RPC) APIs

91

aboutapis.htm#CODEDISCLAIMER

* itself in XDR.
*/
return xdr_array(

xdrs,
(char*x) (&(p_xarray->p_array)),
&(p_xarray->size),
MAX_INT,
sizeof(int),
(xdrproc_t)xdr_int))

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_bool()—Translate between Booleans and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_bool(XDR *xdrs,
bool_t *bp);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_bool() function is a filter primitive that translates between Booleans (C integers) and their
external representations. When encoding data, this filter produces values of either 1 or 0.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

bp (I/0)
The address of the Boolean data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

92 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_bool() is used:

#include <stdio.h>
#include <types.h>
#include <xdr.h>

typedef struct node
bool_t connected;
bool_t visited;
} node ;
bool xdr_node(XDR *xdrs, node *p_node)
if(!xdr_bool (xdrs,&(p_node->connected)))
return FALSE;
return xdr_bool (xdrs,&(p_node->visited));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_bytes()—Translate between Counted Byte Arrays and Their XDR

Syntax

#include <rpc/xdr.h>

bool_t xdr_bytes(XDR *xdrs,
char *xsp,

u_int *sizep,
const u_int maxsize);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_bytes() function is a filter primitive that translates between counted byte arrays and their
external representations. This function treats a subset of generic arrays in which the size of array
elements is known to be 1 and the external description of each element is built-in. The length of the byte
sequence is explicitly located in an unsigned integer. The byte sequence is not ended by a null character.
The external representation of the bytes is the same as their internal representation.

Remote Procedure Call (RPC) APIs 93

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (VO)
The address of the pointer to the byte array. If *sp==NULL and the stream is being decoded, then
XDR allocates the needed amount of memory.

sizep (I/O)
A pointer to the length of the byte area. The value of this parameter cannot exceed the value of
the maxsize parameter.

maxsize (Input)
The maximum number of bytes allowed when XDR encodes or decodes messages.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_bytes() is used:

#include <stdio.h>
#include <values.h>
#include <xdr.h>

#define ARRAY_SIZE 256

typedef struct xarray
{

int size;
char *p_array;
} xarray ;

bool_t xdr_xarray(XDR =*xdrs, xarray *p_xarray)
{
/*
* Force XDR to allocate memory while decoding

*/

94 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

if((xdrs->x_op==XDR_DECODE) &&
(p_xarray->p_array!=NULL))
{

free(p_xarray->p_array);
p_xarray->p_array=NULL;

/*
* This code has a dual job :
* A) While decoding, it allocated memory, stores the decoded
* xarray in it, and updates size field in xarray
* struct.
* B) While decoding it stores xarray's size and the data
* itself in XDR.
*/
return xdr_bytes(

xdrs,
(&(p_xarray->p_array)),
&(p_xarray->size),
MAX_INT);

1

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_char()—Translate between Characters and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_char(XDR *xdrs,
char =*cp);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_char() function is a filter primitive that translates between C-language characters and their
external representation.

Note: Encoded characters are not packed and occupy 4 bytes each. For strings of characters, consider
using the xdr_string function.
Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

cp (VO)
A pointer to the character.

Authorities

No authorization is required.

Remote Procedure Call (RPC) APIs

95

#TOP_OF_PAGE
aplist.htm

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message 1D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_char() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct grades
{
char math; /* Each grade is 'A'..'D' %/
char Tliterature;
char geography;
char computers;
} grades ;

bool xdr_grades(XDR *xdrs, grades *p_grades)
{
if(!xdr_char(xdrs,&(p_grades->math)))
return FALSE;
if(!xdr_char(xdrs,&(p_grades->1iterature)))
return FALSE;
if(!xdr_char(xdrs,&(p_grades->geography)))
return FALSE;
return xdr_char(xdrs,&(p_grades->computers));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

96 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_double()—Translate between Double-Precision and XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_double(XDR *xdrs,
double *dp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_double() function is a filter primitive that translates between C-language double-precision

numbers and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

dp (IVO)
The address of the double-precision number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_double() is used:

#include <stdio.h>
#include <xdr.h>

Remote Procedure Call (RPC) APIs

97

aboutapis.htm#CODEDISCLAIMER

typedef struct vector

{
double x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
if(!xdr_double(xdrs,&(p_vector->x)))
return FALSE;
if(!xdr_double(xdrs,&(p_vector->y)))
return FALSE;
return xdr_double(xdrs,&(p_vector->z));

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_double_char()—Translate between Two-Byte Characters

Syntax
#include <rpc/xdr.h>

bool t xdr_double char(XDR *xdrs,
char_double_t *cp);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_double_char() function is a filter primitive that translates between C-language 2-byte characters
and their external representation.

Note: Encoded characters are not packed and occupy 2 bytes each. For strings of characters, consider
using the xdr_string() APL

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

cp (VO)
A pointer to the character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

98 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 APL
CPF9872 E

Example

Program or service program &1 in library &2 ended. Reason code &3.

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_double_char() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct grades

char_double t math; /* Each grade is 'A'..'D' */
char_double_t Titerature;
char_double_t geography;
char_double_t computers;

} grades ;

bool xdr_grades(XDR *xdrs, grades *p_grades)

{

}

if(!xdr_double_char(xdrs,&(p_grades->math)))

return FALSE;
if(!xdr_double_char(xdrs,

&(p_grades->Titerature)))

return FALSE;
if(!xdr_double_char(xdrs,&(p_grades->geography)))

return FALSE;
return xdr_double_char(xdrs,

&(p_grades->computers));

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

99

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_enum()—Translate between Enumeration and XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_enum(XDR =*xdrs,
enum_t *ep);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_enum function is a filter primitive that translates between C-language enumeration (enum) and
its external representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ep (I/O)
The address of the enumeration data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_enum() is used:

#include <stdio.h>
#include <xdr.h>

100 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

typedef enum fruit_state { green, ripe } fruit_state;
typedef enum fruit_weight { small, sufficient } fruit_weight;

typedef struct fruit

fruit_state state;
fruit_weight weight;
} fruit;

bool xdr_fruit(XDR *xdrs, fruit *p_fruit)

if(!xdr_enum(xdrs, (enum_t *)&(p_fruit->state)))
return FALSE;
return xdr_enum(xdrs,
(enum_t *)&(p_fruit->weight));
1

API introduced: V4R2

| f’Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by categorv|

xdr_float()—Translate between Floats and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_float(XDR *xdrs,
float *fp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_float() function is a filter primitive that translates between C-language floating-point numbers
(normalized single floating-point numbers) and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

fp 1/O)
The address of the floating-point number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Remote Procedure Call (RPC) APIs 101

#TOP_OF_PAGE
aplist.htm

Error Conditions

None.

Error Messages

Message 1D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_float() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector

{
float x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
if(!xdr_float(xdrs,&(p_vector->x)))
return FALSE;
if(!xdr_float(xdrs,&(p_vector->y)))
return FALSE;
return xdr_float(xdrs,&(p_vector->z));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_free()—Generic Freeing Function

Syntax
#include <rpc/rpc.h>

void xdr_free(xdrproc_t proc,
char xobjp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_free() function recursively frees the object pointed to by the pointer passed in.

102 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Parameters

proc (Input)
XDR routine for the object being freed.

objp (Input)
A pointer to the object to be freed.

Authorities

No authorization is required.

Return Value
None.

Error Conditions
In case of an exception, the errno global variable is set to EUNKNOWN.

Error Messages

Message ID Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 APL
Example

See |Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_free() is used:
#include <rpc/rpc.h>
main()
{
CLIENT =*cl;
char *outparam;
int inparam;
cl = cInt_create(...);
outparam = NULL;
cInt_call(cl, MYPROC, xdr_int, &inparam,
xdr_wrapstring, &outparam, timeout);
xdr_free(xdr_wrapstring, &outparam);

.

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

Remote Procedure Call (RPC) APIs

103

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_int()—Translate between Integers and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_int(XDR =*xdrs,
int xip);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_int() function is a filter primitive that translates between C-language integers and their external
representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ip (/O)
The address of the integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_int() is used:

#include <stdio.h>
#include <xdr.h>

104 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

typedef struct vector

int x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)

{
if(!xdr_int(xdrs,&(p_vector->x)))
return FALSE;
if(!xdr_int(xdrs,&(p_vector->y)))
return FALSE;
return xdr_int(xdrs,&(p_vector->z));

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_long()—Translate between Long Integers and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_long(XDR *xdrs,
Tong *Ip);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_long() function is a filter primitive that translates between C-language long integers and their
external representations.

Parameters

xdrs (Input)
A pointer to the XDR stream handle.

Ip (1/0)
The address of the number.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Remote Procedure Call (RPC) APIs 105

#TOP_OF_PAGE
aplist.htm

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_long() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector

{
long x,y,z;
} vector ;

bool xdr_vector(XDR *xdrs, vector *p_vector)
{
if(!xdr_long(xdrs,&(p_vector->x)))
return FALSE;
if(!xdr_long(xdrs,&(p_vector->y)))
return FALSE;
return xdr_long(xdrs,&(p_vector->z));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_netobj()—Translate between Netobj Structures and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_netobj(XDR *xdrs,
struct netobj *np);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_netobj() function is a filter primitive that translates between variable-length opaque data and its
external representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

106 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

np (I/O)

A pointer to the address of the netobj structure that contains both a length and a pointer to the

opaque data.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_netobj() is used:

#include <stdio.h>
#include <xdr.h>

/*

Handle of an external client -

pid - process ID of the server process on our host

oid - object ID of the server assigned to that client
Typical case when the other side needs a handle, without
actually knowing what is it. We can use xdr_netobj() to send
the value

or xdr_opaque() to send a pointer.

L T

*/
typedef struct handle

int pid;
int oid;
} handle ;

bool_t xdr_handle(XDR *xdrs, handle *p_handle)
{
struct netobj obj;
obj.n_len=sizeof (handle);
obj.n_bytes=(char *)p_handle;
return xdr_netobj (xdrs,&obj);

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

107

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_opaque()—Translate between Fixed-Size Data and Its XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_opaque(XDR *xdrs,
caddr_t cp,
const u_int cnt);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_opaque() function is a filter primitive that translates between fixed-size opaque data and its
external representation.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

cp (I/0)
The address of the opaque object.

cnt (Input)
The size, in bytes, of the object. By definition, the actual data that is contained in the opaque
object will not be portable to another system.

Authorities
No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

108 iSeries: Remote Procedure Call (RPC) APIs

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_opaque() is used:

#include <stdio.h>
#include <xdr.h>

/*

* Handle of an external client -

* pid - process ID of the server process on our host

* 0id - object ID of the server assigned to that client

* Typical case when the other side needs a handle, without
* actually knowing what it is. We can use xdr_netobj()

* or xdr_opaque().

*/

typedef struct handle

int pid;
int oid;
} handle ;

bool_t xdr_handle(XDR *xdrs, handle *p_handle)
{

}

return xdr_opaque(xdrs, (caddr_t)p_handle,sizeof (handle));

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_pointer()—Provide Pointer Chasing within Structures

Syntax

#include <rpc/xdr.h>

bool_t xdr_pointer(XDR *xdrs,
char **objpp,

u_int objsize,
const xdrproc_t xdrobj);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_pointer() function provides pointer chasing within structures and serializes null pointers. This

function can represent recursive data structures, such as binary trees or linked lists.

Pointer chasing is the substitution of the pointer itself with the actual structure it points to.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

Remote Procedure Call (RPC) APIs

109

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

objpp (I/0)
A pointer to the character pointer of the data structure. If decoding and *objpp==NULL, then the
memory is allocated by XDR.

objsize (Input)
The size of the structure.

xdrobj (Input)
The XDR filter for the object.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_pointer() is used:
#include <xdr.h>

typedef struct node

{
int value;
struct node *p;

} node ;

bool_t xdr_Tist(XDR *xdrs, node **p_node)
{

return xdr_pointer(xdrs, (caddr *)p_node,
sizeof(node), (xdrproc_t)xdr_node)

}

bool_t xdr_node(XDR *xdrs, node *p_node)

{
xdr_int(xdrs,&(p_node->value));
return xdr_list(xdrs,&(p_node->p));

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

110 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_reference()—Provide Pointer Chasing within Structures

Syntax

#include <rpc/xdr.h>

bool_t xdr_reference(XDR *xdrs,
caddr_t *pp,

u_int size,
const xdrproc_t proc);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_reference() function is a filter primitive that provides pointer chasing within structures. This
primitive allows the serializing, deserializing, and freeing of any pointers within one structure that are
referenced by another structure.

The xdr_reference() function does not attach special meaning to a null pointer during serialization, and
passing the address of a null pointer may cause a memory error. Therefore, the programmer must
describe data with a two-sided discriminated union. One side is used when the pointer is valid; the other
side, when the pointer is null.

Pointer chasing is the substitution of the pointer itself with the actual structure it points to.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

pp (/O)
The address of the structure. When you decode data, XDR allocates storage if the pointer is
NULL.

size (Input)
The byte size of the structure pointed to by the pp parameter.

proc (Input)
A translation of the structure between its C form and its external representation. This parameter
is the XDR procedure that describes the structure.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Remote Procedure Call (RPC) APIs 111

Error Conditions

None.

Error Messages

Message 1D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_reference() is used:
#include <xdr.h>

typedef struct node
{

int value;
struct node *p;
} node ;
/*
* Do not call it with p_node==NULL, because it will fail.
*/

bool_t xdr_Tlist(XDR *xdrs, node **p_node)
{

return xdr_reference(xdrs, (caddr_t)p_node,
sizeof(node), (xdrproc_t)xdr_node)

}

bool_t xdr_node(XDR *xdrs, node *p_node)

{
xdr_int(xdrs,&(p_node->value));
return xdr_list(xdrs,&(p_node->p));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_short()—Translate between Short Integers and Their XDR

Syntax
#include <rpc/xdr.h>

bool_t xdr_short(XDR *xdrs,
short *sp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

112 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

The xdr_short() function is a filter primitive that translates between C-language short integers and their

external representation.

Parameters
xdrs (Input)

A pointer to the eXternal Data Representation (XDR) stream handle.

sp (I/0)
The address of the short integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_short() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector

short x,y,z;
} vector ;

bool_t xdr_vector(XDR =*xdrs, vector *p_vector)

if(!xdr_short(xdrs,&(p_vector->x)))
return FALSE;

if(!xdr_short(xdrs,&(p_vector->y)))
return FALSE;

return xdr_short(xdrs,&(p_vector->z));

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

Remote Procedure Call (RPC) APIs

113

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_string()—Translate between Strings and Their XDR

Syntax

#include <rpc/xdr.h>

bool_t xdr_string(XDR =*xdrs,
char **xsp,
u_int maxsize);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_string() function is a filter primitive that translates between C-language strings and their
corresponding external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (I/0)
The address of the pointer to the string. If decoding and *sp==NULL, XDR allocated the storage
needed for the decoded string.

maxsize (Input)
The maximum length of the string in bytes allowed during encoding or decoding.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

114 iSeries: Remote Procedure Call (RPC) APIs

Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_string() is used:

#include <stdio.h>
#include <xdr.h>

#define MAX_LENGTH 100
typedef struct adress

char street[MAX LENGTH];
int number;
int apartment;

} address ;

bool_t xdr_address(XDR *xdrs, address *p_address)
{
if!l(xdr_string(xdrs,&(p_address->street),
MAX_LENGTH))
return FALSE;
if(Ixdr_int(xdrs,&(p_address->number)))
return FALSE;
return xdr_int(xdrs,&(p_address->apartment));

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_union()—Translate between Unions and Their XDR

Syntax

#include <rpc/xdr.h>

bool_t xdr_union(XDR *xdrs,
enum_t *dscmp,
char *unp,

const struct xdr_discrim *choices,
const xdrproc_t (*defaultarm));

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_union() function is a filter primitive that translates between discriminated C unions and their

corresponding external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

Remote Procedure Call (RPC) APIs

115

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

dscmp (Input)
The address of the union’s discriminant. The discriminant is an enumeration (enum_t) value.

unp (I/O)
The address of the union.

choices (Input)
A pointer to an array of xdr_discrim structures.

defaultarm (Input)
A structure provided in case no discriminants are found. This parameter can have a null value.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes
The size of any enum data types passed to the xdr_union() must be defined as 4 bytes.

Example

See |Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_union() is used:

#include <stdio.h>
#include <xdr.h>

#pragma enum size(4) /* Set enum size to 4 bytes */
typedef enum time_type {END=0,DC,CT} time_ type ;
#pragma enum size() /* Reset enum size =/
typedef union time_value
{ int discrete_time;

float continuous_time;

} time_value ;

typedef struct time
{

116 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

time_type type;
time_value value;
} time;

bool_t xdr_time(XDR *xdrs, time *p_time)
{
struct xdr_discrim handlers[] =
{
{DT, (xdrproc_t)xdr_int},
{CT, (xdrproc_t)xdr_float},
{END,NULL}
}s
return
xdr_union(xdrs, (enum_t *) (&(p_time->type)),
(caddr_t)&(p_time->value),handlers,NULL);
1

API introduced: V4R2

| f’Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by categorv|

xdr_u_char()—Translate between Unsigned Characters and Their XDR

Syntax

#include <rpc/xdr.h>
bool t xdr_u_char(XDR *xdrs,

char *ucp);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_u_char() function is a filter primitive that translates between unsigned C-language characters
and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ucp (I/O)
A pointer to an unsigned character.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Remote Procedure Call (RPC) APIs 117

#TOP_OF_PAGE
aplist.htm

Error Conditions

None.

Error Messages

Message 1D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_u_char() is used:

#include <stdio.h>
#include <xdr.h>
typedef struct grades
{
u_char math; /* Each grade is 'A'..'D' %/
u_char Titerature;
u_char geography;
u_char computers;
} grades ;

bool_t xdr_grades(XDR *xdrs, grades *p_grades)
{
if(!xdr_u_char(xdrs,&(p_grades->math)))
return FALSE;
if(!xdr_u_char(xdrs,&(p_grades->Titerature)))
return FALSE;
if(!xdr_u_char(xdrs,&(p_grades->geography)))
return FALSE;
return xdr_u_char(xdrs,&(p_grades->computers));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

118 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_u_int()—Translate between an Unsigned Integer and Its XDR

Syntax

#include <rpc/xdr.h>
bool_t xdr_u_int(XDR =*xdrs,

u_int *ulp);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_u_int() function is a filter primitive that translates between C-language unsigned integers and
their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ulp (I/O)
The address of the unsigned integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions
None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CE2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_u_int() is used:

Remote Procedure Call (RPC) APIs 119

aboutapis.htm#CODEDISCLAIMER

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{

u_int x,y,z;
} vector ;

bool_t xdr_vector(XDR *xdrs, vector *p_vector)
{
if(!xdr_u_int(xdrs,&(p_vector->x)))
return FALSE;
if(!xdr_u_int(xdrs,&(p_vector->y)))
return FALSE;
return xdr_u_int(xdrs,&(p_vector->z));

}

API introduced: V4R2

| I"Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

xdr_u_long()—Translate between an Unsigned Long and Its XDR

Syntax

#include <rpc/xdr.h>

bool_t xdr_u_Tong(XDR *xdrs,
u_long *ulp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_u_long() function is a filter primitive that translates between C-language unsigned long integers
and their external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

ulp (I/O)
The address of the unsigned long integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

120 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_u_long() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector

u_Tong x,y,z;
} vector ;

bool_t xdr_vector(XDR *xdrs, vector *p_vector)
{
if(!xdr_u_Tong&((xdrs,p_vector->x)))
return FALSE;
if(!xdr_u_Tong(xdrs,&(p_vector->y)))
return FALSE;
return xdr_u_long(xdrs,&(p_vector->z));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_u_short()—Translate between an Unsigned Short and Its XDR

Syntax

#include <rpc/xdr.h>

bool_t xdr_u_short(XDR *xdrs,
u_short *usp);
Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_u_short() function is a filter primitive that translates between C-language unsigned short
integers and their external representations.

Remote Procedure Call (RPC) APIs

121

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

usp (I/O)
The address of the unsigned short integer.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CEF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_u_short() is used:

#include <stdio.h>
#include <xdr.h>

typedef struct vector
{

u_short x,y,z;
} vector ;

bool t xdr_vector(XDR *xdrs, vector *p_vector)
{
if(!xdr_u_short(xdrs,&(p_vector->x)))
return FALSE;
if(!xdr_u_short(xdrs,&(p_vector->y)))
return FALSE;
return xdr_u_short(xdrs,&(p_vector->z));

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | |[APIs by category|

122 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_vector()—Translate between Arrays and Their XDR

Syntax

#include <rpc/xdr.h>

bool t xdr_vector(XDR *xdrs,
char *arrp,
const u_int size,
const u_int elsize,
const xdrproc_t elproc);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_vector() function is a filter primitive that translates between fixed-length arrays and their
corresponding external representations.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

arrp (I/0)
The pointer to the array.

size (Input)
The element count of the array.

elsize (Input)
The byte size of each of the array elements.

elproc (Input)
Translates between the C form of the array elements and their external representations. This
parameter is an XDR filter.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Remote Procedure Call (RPC) APIs 123

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_vector() is used:

#include <stdio.h>
#include <xdr.h>

#define MAX_VERTECIES 10
#define MAX_EDGES ((MAX_VERTECIES*(MAX VERTECIES-1))/2)

typedef struct graph
{

bool t adjacent[MAX VERTICIES,MAX VERTICIES];
} graph ;

bool_t xdr_graph(XDR *xdrs, graph *p_graph)
{
int i;
for(i=0;i<MAX_VERTECIES;i++)
if(!xdr_vector(xdrs,
p_graph->adjacent[i]
AX_VERTECIES,sizeof(bool_t),xdr_bool))
return FALSE;
return TRUE;
}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

xdr_void()—Supply an XDR Function to the RPC System

Syntax

#include <rpc/xdr.h>

bool_t xdr_void();

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_void() function has no parameters. It is passed to other RPC functions that require a parameter,
but does not transmit data.

124 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

Parameters

None

Authorities

No authorization is required.

Return Value

This function always returns a value of TRUE.

Error Conditions

None.

Error Messages

Message 1D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
Example

See [Code disclaimer information|for information pertaining to code examples.

The following example shows how xdr_void() is used:

#include <stdio.h>

#define RMTPROGNUM (u_long)Ox3fffffffL
#define RMTPROGVER (u_long)0x1
#define RMTPROCNUM (u_long)0x1

main()

int inproc=100;
enum cInt_stat, rstat;

/* Service request to host RPCSERVER_HOST =*/
if ((rstat = r‘pc_ca”("RPCSERVER_HOST", RMTPROGNUM, RMTPROGVER,
RMTPROCNUM, xdr_int, (char *)&inproc,
xdr_void, (char *)0, "visible")) !=
RPC_SUCCESS) {
printf("Error in the rpc_call().\n");
exit(1l);
1

}

API introduced: V4R2

| ['Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Remote Procedure Call (RPC) APIs

125

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
aplist.htm

xdr_wrapstring()—Call the xdr_string() Function

Syntax
#include <rpc/xdr.h>

bool_t xdr_wrapstring(XDR *xdrs,
char **sp);

Service Program Name: QZNFTRPC

Default Public Authority: *USE

Threadsafe: No

The xdr_wrapstring() function is a primitive that calls the xdr_string(xdr, sp, maxuint) API, where maxuint
is the maximum value of an unsigned integer. The xdr_wrapstring() is useful where a translation of
xdrproc_t is required. xdrproc_t has only two parameters while the xdr_string() function requires three.

Parameters

xdrs (Input)
A pointer to the eXternal Data Representation (XDR) stream handle.

sp (VO)
The address of the pointer to the string. If decoding and *sp==NULL, XDR allocated memory for
the decoded string.

Authorities

No authorization is required.

Return Value

TRUE (1) Successful
FALSE (0) Unsuccessful

Error Conditions

None.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 APL

CPF9872 E Program or service program &1 in library &2 ended. Reason code &S3.
Example

See |Code disclaimer information| for information pertaining to code examples.

The following example shows how xdr_wrapstring() is used:

126 iSeries: Remote Procedure Call (RPC) APIs

aboutapis.htm#CODEDISCLAIMER

#include <stdio.h>
#include <xdr.h>

#define MAX_LENGTH 100
typedef struct address

char street[MAX_LENGTH];
int number;
int apartment;

} address ;

bool_t xdr_address(XDR *xdrs, address *p_address)

if!(xdr_wrapstring(xdrs,&(p_address->street)))
return FALSE;

if(!xdr_int(xdrs,&(p_address->number)))
return FALSE;

return xdr_int(xdrs,&(p_address->apartment));

}

API introduced: V4R2

| 'Remote Procedure Call (RPC) APIs,” on page 1| | [APIs by category|

Concepts

These are the concepts for this category.

Header Files for Remote Procedure Call APIls

Programs using the Remote Procedure Call (RPC) APIs must include <rpc/rpc.h> and one or more
additional header files that contain information needed by the functions, such as:

* Macro definitions
¢ Data type definitions
e Structure definitions

* Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see [Include files and the QSYSINC Library]

The table below shows the file and member name in the QSYSINC library for each header file used by
the TI-RPC APIs in the Information Center.

Name of File
Name of Header File in QSYSINC Name of Member
netconfig.h ' H NETCONFIG
netdir.h ? H NETDIR
tirpccom.h H TIRPCCOM
rpc/auth.h RPC AUTH
rpc/auth_sys.h RPC AUTH_SYS
rpc/auth_unix.h RPC AUTH_UNIX
rpc/cint.h RPC CLNT
rpc/rpc.h RPC RPC

Remote Procedure Call (RPC) APIs 127

#TOP_OF_PAGE
aplist.htm
conQSYSINC.htm

Name of File
Name of Header File in QSYSINC Name of Member
rpc/rpc_com.h RPC RPC_COM
rpc/rpc_msg.h RPC RPC_MSG
rpc/rpcb_cint.h RPC RPCB_CLNT
rpc/rpcb_prot.h RPC RPCB_PROT
rpc/types.h RPC TYPES
rpc/sve.h RPC SvC
rpc/svc_auth.h RPC SVC_AUTH
rpc/xdr.h RPC XDR
Note:
1. The member netconfig.h in the H file in the QSYSINC library is used by the Network Selection functions.
2. The member netdirh in the H file in the QSYSINC library is used by the Name-to-Address Translation functions.

You can display a header file in QSYSINC by using one of the following methods:

* Using your editor. For example, to display the netconfig.h header file using the Source Entry Utility
editor, enter the following command:
STRSEU SRCFILE(QSYSINC/H) SRCMBR(NETCONFIG) OPTION(5)

 Using the Display Physical File Member command. For example, to display the rpc/rpc.h header file,
enter the following command:

DSPPFM FILE(QSYSINC/RPC) MBR(RPC)

You can print a header file in QSYSINC by using one of the following methods:

* Using your editor. For example, to print the netdir.h header file using the Source Entry Utility editor,
enter the following command:
STRSEU SRCFILE(QSYSINC/H) SRCMBR(netdir) OPTION(6)

* Using the Copy File command. For example, to print the rpc/rpc.h header file, enter the following
command:
CPYF FROMFILE(QSYSINC/RPC) TOFILE(*PRINT) FROMMBR(RPC)

I ['Remote Procedure Call (RPC) APIs,” on page 1| | |APIs by category|

128 iSeries: Remote Procedure Call (RPC) APIs

#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 129

IBM Corporation

Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,
IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

Advanced 36

Advanced Function Printing

Advanced Peer-to-Peer Networking

AFP

AIX

AS/400

COBOL/400

CUA

DB2

DB2 Universal Database

Distributed Relational Database Architecture
Domino

DPI

130 iSeries: Remote Procedure Call (RPC) APIs

DRDA

eServer

GDDM

IBM

Integrated Language Environment
Intelligent Printer Data Stream
IPDS

iSeries

Lotus Notes

MVS

Netfinity

Net.Data

NetView

Notes

OfficeVision
Operating System/2
Operating System /400
0Ss/2

0S/400

PartnerWorld
PowerPC
PrintManager

Print Services Facility
RISC System /6000
RPG/400

RS/6000

SAA

SecureWay
System/36

System /370
System/38

System /390
VisualAge
WebSphere

xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the
following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this
information, or any portion thereof, without the express consent of IBM®.

Appendix. Notices 131

Commercial Use: You may reproduce, distribute and display this information solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of this
information, or reproduce, distribute or display this information or any portion thereof outside your
enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the information or any data, software or other intellectual property contained
therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the information is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations. IBM MAKES NO
GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED
"AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these
terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM™®, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL
DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS
MAY NOT APPLY TO YOU.

132 iSeries: Remote Procedure Call (RPC) APIs

Printed in USA

	Contents
	Remote Procedure Call (RPC) APIs
	APIs
	Authentication APIs
	authnone_create()—Create Null Authentication
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	authsys_create()—Create Authentication with OS Permission
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	auth_destroy()—Destroy Authentication Information
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	Name-to-Address Translation APIs
	netdir_free()—Free Netdir Structures
	Parameters
	Authorities
	Error Conditions
	Error Messages
	Usage Notes

	netdir_getbyaddr()—Translate a Netbuf Address to a Host
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	netdir_getbyname()—Translate a Given Host-Service Pair
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	netdir_options()—Access Transport-Specific Capabilities
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	netdir_sperror()—Indicate an Error in an NTA Routine
	Parameters
	Authorities
	Return Value
	Error Messages
	Usage Notes
	Example

	taddr2uaddr()—Translate a Local Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	uaddr2taddr()—Translate a Universal Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	Network Selection APIs
	endnetconfig()—Release the Pointer in the Netconfig File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	freenetconfigent()—Free the Netconfig Structure
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	getnetconfig()—Return Current Record from the Netconfig File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	getnetconfigent()—Return a Pointer to a Netconfig Structure
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	setnetconfig()—Initialize the Pointer in the Netconfig File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	Transport-Independent Remote Procedure Call APIs
	Simplified APIs
	rpc_call()—Call a Remote Procedure on the Specified System
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	rpc_reg()—Register a Procedure with RPC Service Package
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	Top-level APIs
	clnt_call()—Call a Remote Procedure Associated with the Client
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	clnt_control()—Change Information about a Client Object
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example
	Warning: Temporary Level 4 Header

	clnt_create()—Create a Generic Client Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	clnt_destroy()—Destroy the RPC Client's Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	svc_create()—Create a Server Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	svc_destroy()—Destroy an RPC Service Transport Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	Intermediate-level APIs
	clnt_tp_create()—Create a Client Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	svc_tp_create()—Create a Server Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	Expert-level APIs
	clnt_tli_create()—Create a Client Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	rpcb_getaddr()—Find the Universal Address of a Service
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	rpcb_set()—Register the Server Address with the RPCBind
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	rpcb_unset()—Unregister Their Addresses
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	svc_reg()—Associate Program and Version with Dispatch
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svc_tli_create()—Create a Server Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	svc_unreg()—Delete an Association Set by svc_reg()
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	Other APIs
	clnt_freeres()—Free Data Allocated by the RPC or XDR System
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	clnt_geterr()—Get the Error Structure from the Client Handle
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svcerr_decode()—Send Information to Client for Decode Error
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svcerr_noproc()—Send Information to Client for Procedure Number Error
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svcerr_systemerr()—Send Information to Client for System Error
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svcerr_weakauth()—Send Authentication Error Indication to a Client
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svc_freeargs()—Free Data Allocated by the RPC or XDR System
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svc_getargs()—Decode the Arguments of an RPC Request
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svc_getrpccaller()—Get the Network Address of the Caller
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svc_run()—Wait for RPC Requests to Arrive
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	svc_sendreply()—Send the Results of a Procedure Call to a Remote Client
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	External Data Representation APIs
	xdr_array()—Translate between Arrays and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_bool()—Translate between Booleans and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_bytes()—Translate between Counted Byte Arrays and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_char()—Translate between Characters and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_double()—Translate between Double-Precision and XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_double_char()—Translate between Two-Byte Characters
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_enum()—Translate between Enumeration and XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_float()—Translate between Floats and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_free()—Generic Freeing Function
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_int()—Translate between Integers and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_long()—Translate between Long Integers and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_netobj()—Translate between Netobj Structures and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_opaque()—Translate between Fixed-Size Data and Its XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_pointer()—Provide Pointer Chasing within Structures
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_reference()—Provide Pointer Chasing within Structures
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_short()—Translate between Short Integers and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_string()—Translate between Strings and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_union()—Translate between Unions and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Example

	xdr_u_char()—Translate between Unsigned Characters and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_u_int()—Translate between an Unsigned Integer and Its XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_u_long()—Translate between an Unsigned Long and Its XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_u_short()—Translate between an Unsigned Short and Its XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_vector()—Translate between Arrays and Their XDR
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_void()—Supply an XDR Function to the RPC System
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	xdr_wrapstring()—Call the xdr_string() Function
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Example

	Concepts
	Header Files for Remote Procedure Call APIs

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

