
iSeries

Registration Facility APIs

Version 5 Release 3

ERserver

���

iSeries

Registration Facility APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 37.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Registration Facility APIs 1

APIs 1

Add Exit Program (QUSADDEP,

QusAddExitProgram) API 2

Authorities and Locks 2

Required Parameter Group 3

Format for Variable Length Record 4

Field Descriptions 4

Exit Program Attribute Keys 4

Field Descriptions 5

Qualified Message File Format 6

Field Descriptions 6

Error Messages 6

Deregister Exit Point (QUSDRGPT,

QusDeregisterExitPoint) API 7

Authorities and Locks 7

Required Parameter Group 7

Error Messages 8

Register Exit Point (QUSRGPT, QusRegisterExitPoint)

API 9

Unregistered Exit Points 10

Authorities and Locks 11

Required Parameter Group 11

Format for Variable Length Record 11

Field Descriptions 12

Exit Point Control Keys 12

Field Descriptions 12

Qualified Message File Format 13

Field Descriptions 14

Preprocessing Exit Program Format 14

Field Descriptions 14

Error Messages 15

Remove Exit Program (QUSRMVEP,

QusRemoveExitProgram) API 16

Authorizations and Locks 16

Required Parameter Group 16

Error Messages 17

Retrieve Exit Information (QUSRTVEI,

QusRetrieveExitInformation) API 18

Authorities and Locks 18

Required Parameter Group 18

EXTI0100 Format 20

EXTI0200 Format 21

EXTI0300 Format 22

Field Descriptions 23

Format for Exit Program Selection Criteria . . . 27

Field Descriptions 27

Error Messages 27

Exit Programs 28

Preprocessing Exit Program for Add 29

Required Parameter Group 29

Error Messages 30

Preprocessing Exit Program for Remove 31

Required Parameter Group 31

Error Messages 32

Preprocessing Exit Program for Retrieve 32

Required Parameter Group 33

Error Messages 34

Concepts 34

Using Registration Facility APIs and Registration

Facility 34

Appendix. Notices 37

Trademarks 38

Terms and conditions for downloading and printing

publications 39

Code disclaimer information 40

© Copyright IBM Corp. 1998, 2005 iii

iv iSeries: Registration Facility APIs

Registration Facility APIs

The registration facility APIs provide the capability to:

v Register and deregister exit points with the registration facility.

v Add and remove exit programs to and from the registration facility repository.

v Retrieve exit point and exit program information from the repository.

v Designate the order in which exit programs are called.

Before using the registration facility APIs and registration facility preprocessing exit program, read

“Using Registration Facility APIs and Registration Facility” on page 34.

The registration facility APIs are:

v “Add Exit Program (QUSADDEP, QusAddExitProgram) API” on page 2 (QUSADDEP,

QusAddExitProgram) adds an exit program entry to a specific exit point or replaces an existing exit

program.

v “Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint) API” on page 7 (QUSDRGPT,

QusDeregisterExitPoint) removes an exit point and all associated exit programs from the registration

facility.

v “Register Exit Point (QUSRGPT, QusRegisterExitPoint) API” on page 9 (QUSRGPT,

QusRegisterExitPoint) registers an exit point with the registration facility or updates an exit point.

v “Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) API” on page 16 (QUSRMVEP,

QusRemoveExitProgram) removes an exit program entry from a specific exit point.

v “Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation) API” on page 18 (QUSRTVEI,

QusRetrieveExitInformation) retrieves information about one or more exit points and exit programs.

The registration facility preprocessing exit programs are:

v “Preprocessing Exit Program for Add” on page 29 allows for processing to take place before an exit

program is added to an exit point.

v “Preprocessing Exit Program for Remove” on page 31 allows for processing to take place before an exit

program is removed from an exit point.

v “Preprocessing Exit Program for Retrieve” on page 32 allows for the exit point provider to store the

exit program information.

 APIs by category

APIs

These are the APIs for this category.

© Copyright IBM Corp. 1998, 2005 1

aplist.htm

Add Exit Program (QUSADDEP, QusAddExitProgram) API

 Required Parameter Group:

1 Exit point name

Input Char(20)

2 Exit point format name

Input Char(8)

3 Exit program number

Input Binary(4)

4 Qualified exit program name

Input Char(20)

5 Exit program data

Input Char(*)

6 Length of exit program data

Input Binary(4)

7 Exit program attributes

Input Char(*)

8 Error code

I/O Char(*)
 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Add Exit Program (OPM, QUSADDEP; ILE, QusAddExitProgram) API adds an exit program entry to

a specific exit point or replaces an existing exit program. Each exit point can have a single entry, or

multiple entries. The exit program number indicates the sequence in which the exit programs should be

run. The exit point provider determines the maximum number of exit programs that are allowed for the

exit point. The API does not verify that the exit program exists.

If the exit point to which the exit program is being added does not exist, the registration facility creates

the exit point and adds the exit program. This exit point will be considered unregistered until it is

explicitly registered with the Register Exit Point API. The Add Exit Program, Remove Exit Program,

Retrieve Exit Information, and Deregister Exit Point APIs can be performed against an unregistered exit

point. This capability allows exit programs to be added to an exit point that will be supported in the

future but is not currently registered with the registration facility.

This API provides support similar to the Add Exit Program (ADDEXITPGM) command.

Authorities and Locks

API Public Authority

*EXCLUDE

2 iSeries: Registration Facility APIs

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

 The exit point name to which the exit program is being added.

Exit point format name

INPUT; CHAR(8)

 The format name of the exit point to which the exit program is being added.

Exit program number

INPUT; BINARY(4)

 The sequence in which the exit programs are to be run when multiple exit point entries for a

specific exit point are retrieved. The valid range is 1 through 2 147 483 647 where the processing

sequence is from the lowest number to the highest number. Exit program numbers do not need to

be consecutive. The following special values are allowed:

 -1 The API assigns the next lowest available number for that specific exit point.

-2 The API assigns the highest available number for that specific exit point.

Qualified exit program name

INPUT; CHAR(20)

 The exit program name and library that is being added. The first 10 characters contain the exit

program name, and the second 10 characters contain the library name in which the exit program

resides. The exit program does not need to exist when it is added to the exit point. A specific

library name must be specified. The special values *LIBL and *CURLIB are not supported.

Exit program data

INPUT; CHAR(*)

 The exit point provider describes what needs to be supplied for this parameter. It is not an error

to supply more information than the exit point calls for. Pointer data will not be preserved, and

the API does not perform any validation of this parameter.

Length of exit program data

INPUT; BINARY(4)

 The length of the exit program data. The valid length is 0 through 2048.

Exit program attributes

INPUT; CHAR(*)

 The specified information for the exit program. Refer to “Exit Program Attribute Keys” on page 4

for more information. Any key not specified will be given the default value. The information

must be in the following format:

Number of variable length records

BINARY(4)

 Total number of all of the variable length records.

Variable length records

The exit program attributes and their values. Refer to “Format for Variable Length

Record” on page 4 for the format of this field.

Registration Facility APIs 3

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format for Variable Length Record

The following table shows the format for the variable length record. For a detailed description of each

field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of variable length record

4 4 BINARY(4) Exit program attribute key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field’s data length, the data is truncated at the right. No

message is issued.

If the length of the data is shorter than the key field’s data length and the key contains binary data, an

error message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The value to which a specific exit program attribute is to be set.

Exit program attribute key. The exit program attribute to be set. Refer to “Exit Program Attribute Keys”

for more information.

Length of data. The length of the exit program attribute value.

Length of variable length record. The length of the record.

Exit Program Attribute Keys

The following table shows the valid exit program attribute keys for the key field area of the variable

length record. For a detailed description of each field, see “Field Descriptions” on page 5.

 Key Type Field

1 CHAR(27) Qualified message file name and message identifier for exit program

description

2 CHAR(50) Exit program text description

3 BINARY(4) Exit program data CCSID

4 CHAR(1) Replace

5 CHAR(1) Threadsafe

6 CHAR(1) Multithreaded job action

4 iSeries: Registration Facility APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Exit program data CCSID. The coded character set identifier (CCSID) used for working with the exit

program data. The default value is 0.

 0 Use the current job default CCSID.

CCSID A valid CCSID number. The valid CCSID range is 1 through 65 535 but not 65 534. The CCSID

will be validated by the API.

Exit program text description. The text for the exit program description. When this key is specified, the

qualified message file name and message identifier for exit program description field must not be

specified. The default value is blanks.

Multithreaded job action. The action to take in a multithreaded job. This key has no direct relationship

with the threadsafe key; however, the value for the threadsafe key can be used to determine the

multithreaded job action. The default value is 0. Valid values for this key are:

 0 Use the QMLTTHDACN system value to determine the action to take.

1 Run the exit program in a multithreaded job.

2 Run the exit program in a multithreaded job, but send an informational message. CPI3C80 can be

used as the informational message.

3 Do not run the exit program in a multithreaded job. Depending on the exit point, do one of the

following:

1. Send an escape message and do not call the exit program. CPF3C80 can be used as the escape

message.

2. Send an informational message and do not call the exit program. CPF3C80 can be used as the

informational message.

3. Call the exit program in a non-multithreaded job.

If you use the threadsafe value to determine the value for the multithreaded job action, consider the

following recommendations:

1. If the threadsafe value is 0, the multithreaded job action should be set to 3.

2. If the threadsafe value is 1, the multithreaded job action should be set to 0.

3. If the threadsafe value is 2, the multithreaded job action should be set to 1.

Qualified message file name and message identifier for exit program description. A message file and

message identifier that contains the exit program description. When this key is specified, the exit program

text description key must not be specified. The message file and message identifier do not have to exist at

the time the exit program is added. The default value is blanks. Refer to “Qualified Message File Format”

on page 6 for more information.

Replace. Whether to replace an existing exit program entry. The combination of the exit program name

and exit program number define an exit program entry. The default value is 0. Valid values for this key

are:

 0 Do not replace an existing exit program entry.

1 Replace an existing exit program entry.

Threadsafe. Whether the exit program entry is threadsafe. This key has no direct relationship with the

multithreaded job action key. It is intended for documentation purposes only. The default value is 1. Valid

values for this key are:

Registration Facility APIs 5

0 The exit program entry is not threadsafe.

1 The threadsafe status of the exit program entry is not known.

2 The exit program entry is threadsafe.

Qualified Message File Format

The following table shows the layout of the qualified message file name and message identifier for exit

program description field. For a detailed description of each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Message file name

10 10 CHAR(10) Message file library name

20 14 CHAR(7) Message identifie

Field Descriptions

Message file library name. The library name in which the message file resides. The special value

*CURLIB is not supported. The possible values are:

 *LIBL Search the library list for the message file. This value uses the first message file in the library list

that contains the message identifier.

library name The name of the message library the message file resides in.

Message file name. The name of the message file that contains the exit program text description.

Message identifier. The message identifier for the description.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C85 E Value for key &1 not allowed with value for key &2.

CPF3C90 E Literal value cannot be changed.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD4 E Maximum number of exit programs reached for exit point &1 with format &2.

CPF3CD6 E Length of exit program data &1 not valid.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDE E Exit program name &1 library &2 not valid.

CPF3CDF E Exit program number &1 already assigned for exit point &2 with format &3.

CPF3CE1 E Exit program number &1 not valid.

CPF3CE5 E Exit point &1 with format &2 will not allow exit program &3 library &4 to be added.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

6 iSeries: Registration Facility APIs

Message ID Error Message Text

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 “Add Exit Program (QUSADDEP, QusAddExitProgram) API” on page 2 | “Registration Facility APIs,” on page 1 |

APIs by category

Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint) API

 Required Parameter Group:

1 Exit point name

Input Char(20)

2 Exit point format name

Input Char(8

3 Error code

I/O Char(*)
 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Deregister Exit Point (OPM, QUSDRGPT; ILE, QusDeregisterExitPoint) API removes an exit point

and all associated exit programs from the registration facility. However, to deregister the exit point, the

allow deregistration exit point control must be set to indicate that the exit point is eligible for

deregistration.

Authorities and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

 The exit point name for the exit point being removed. The following can be specified for the exit

point name:

 generic* All exit point names that have names beginning with the generic string.

Registration Facility APIs 7

aplist.htm

exit point name Specific exit point name.

Exit point format name

INPUT; CHAR(8)

 The format name for the exit point being removed. The following can be specified for the exit

point format name:

 generic* All exit point format names that have names beginning with the generic string.

exit point format

name

Specific exit point format name.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDB E Exit point &1 with format &2 does not exist.

CPF3CDC E &1 exit points deregistered. &2 exit points not deregistered.

CPD3CD1 E Exit point &1 with format &2 not deregistered.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 “Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint) API” on page 7 | “Registration Facility APIs,” on page 1

| APIs by category

8 iSeries: Registration Facility APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm

Register Exit Point (QUSRGPT, QusRegisterExitPoint) API

 Required Parameter Group:

1 Exit point name

Input Char(20)

2 Exit point format name

Input Char(8)

3 Exit point controls

Input Char(*)

4 Error code

I/O Char(*)
 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Register Exit Point (OPM, QUSRGPT; ILE, QusRegisterExitPoint) API registers an exit point with the

registration facility. Each exit point can have a single exit program or multiple exit programs associated

with it. Each exit point can be registered multiple times with a unique format name. The format name is

defined by the exit point provider. The format name can be used to define the structural layout of the

exit program data, the number and type of parameters to be passed, and so on. The exit point controls

provide information to help manage and control the use of the exit point. The user profile calling the

Register Exit Point API does not need to be authorized to the preprocessing exit programs.

Updating of an exit point is performed by reregistering the exit point with new values for the exit point

control keys. The registration facility will update the control keys and maintain the current list of exit

programs that are associated with the exit point. The following conditions apply to updating the exit

point control keys:

v Allow deregister: This control key is set the first time the exit point is registered and cannot be

changed.

v Allow change of exit point controls: When this control key is set to 0 (cannot be changed), none of the

control keys are eligible to be updated.

v Maximum number of exit programs: Updating this control key to a value less than the number of exit

programs currently under the exit point results in an error. The update is not performed.

v Preprocessing exit program information for add function: If the new preprocessing exit program value

is not *NONE and the Preprocessing Exit Program for Retrieve is *NONE, the Preprocessing Exit

Program for Add is called for each exit program associated with the exit point. If the preprocessing exit

program returns to the API the return code to not add an exit program, an error occurs. No update is

performed.

If updating the preprocessing exit program to *NONE and the preprocessing exit program information

for retrieve function field is also *NONE, the API updates the control key. If the preprocessing exit

program information for retrieve function field is not *NONE, an error is returned and no update is

performed.

v Preprocessing exit program information for remove function: If updating the preprocessing exit

program to *NONE and the preprocessing exit program information for retrieve function field is also

Registration Facility APIs 9

*NONE, the API updates the control key. If the preprocessing exit program for retrieve is not set to

*NONE, an error is returned and no update is performed.

v Preprocessing exit program information for retrieve function: When the new value for the

preprocessing exit program is not *NONE, preprocessing exit programs for add and remove must be

either currently specified for the exit point or must be specified on the registration call. The registration

facility calls the Preprocessing Exit Program for Add for each of the exit programs associated with the

exit point. The facility then removes these exit programs (without calling the Preprocessing Exit

Program for Remove) from the registration facility repository and updates the exit point. If the

preprocessing exit program returns to the API the return code to not add an exit program, an error

occurs and no update is performed.

When the new value for the preprocessing exit program is *NONE, the API will change the value. Exit

point providers are responsible for moving the exit program information that they stored to the

registration facility by using the Add Exit Program API.

v Qualified message file and message identifier for exit point description: The registration facility

updates this control key with the new value. When this control key is specified for an update, the text

for exit point description control key must not be specified.

v Exit point text description: The registration facility updates this control key with the new value. When

this control key is specified for an update, the qualified message file and message identifier for exit

point description control key must not be specified.

Unregistered Exit Points

The registration facility creates an exit point when an exit program is requested to be added to an exit

point that does not exist. The facility uses the default values for the exit point control keys. This exit

point is considered unregistered until it is explicitly registered with this API.

An unregistered exit point that was created by the Add Exit Program API can be registered using the

Register Exit Point API. Unregistered exit points and related information can be displayed using the Work

with Registration Information (WRKREGINF) command or retrieved using the Retrieve Exit Information

API.

The Add Exit Program, Remove Exit Program, Retrieve Exit Information, and Deregister Exit Point APIs

can be run against an unregistered exit point. The ability to deregister an unregistered exit point enables

the removal of exit points created by the Add Exit Program API in error. For example, if the exit point

name specified on the call to the Add Exit Program API were misspelled, the exit point can be

deregistered.

When registering an unregistered exit point, the exit point control keys are reset to what is specified on

the call to the Register Exit Point API. The following conditions prevent the registration of an

unregistered exit point:

v A preprocessing exit program is specified for add. The registration facility calls the Preprocessing Exit

Program for Add for each exit program that was added to the unregistered exit point. If an exit

program currently listed under the unregistered exit point cannot be added, the preprocessing exit

program then notifies the registration facility. When this occurs, the exit point provider must remove

the exit program from the unregistered exit point (using the Remove Exit Program API) and must

register the exit point again.

v The current number of exit programs associated with the unregistered exit point exceeds the maximum

number of exit programs specified when the exit point is registered. When this occurs, the exit point

provider should do either of the following:

– Remove the appropriate number of exit programs from the unregistered exit point (using the

Remove Exit Program API)

– Change the maximum number of exit programs field to a higher value

10 iSeries: Registration Facility APIs

Authorities and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

 The exit point name to register. IBM iSeries exit points are named QIBM_Qccc_name, where ccc is

the component identifier. All other IBM exit points are named QIBM_wccc_name, where w is a

character A through I and ccc is the component identifier. User-supplied exit point names should

not preface their exit point names with QIBM. User-supplied exit point names should start with

the company name to eliminate most problems involving name uniqueness. An exit point name

must be a valid *NAME (basic name) and all uppercase. See ELEM (Element) Statement in the

Control Language (CL) topic for more about *NAME.

Exit point format name

INPUT; CHAR(8)

 The format defined by the exit point provider. The format specifies the layout of the exit program

data or the parameters to be passed, or both. The exit point format name must be a valid *NAME

(basic name) and all uppercase characters.

Exit point controls

INPUT; CHAR(*)

 The exit point control fields for managing the exit point. Any field not specified will be given the

default value. Refer to “Exit Point Control Keys” on page 12 for more information. The

information must be in the following format:

Number of variable length records

BINARY(4)

 The total number of all of the variable length records.

Variable length records

The fields of the exit point controls to set. Refer to “Format for Variable Length Record”

for more information.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format for Variable Length Record

The following table shows the layout of the variable length record. For a detailed description of each

field, see “Field Descriptions” on page 12.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of variable length record

4 4 BINARY(4) Exit point control key

Registration Facility APIs 11

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field’s data length, the data is truncated at the right. No

message is issued.

If the length of the data is shorter than the key field’s data length and the key contains binary data, an

error message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Data. The value to which a specific exit point control is to be set.

Exit point control key. The exit point control to be set. Refer to “Exit Point Control Keys” for more

information.

Length of data. The length of the exit point control value.

Length of variable length record. The length of the record including this field.

Exit Point Control Keys

The following table shows the valid exit point control keys for the key field area of the variable length

record. For a detailed description of each field, see “Field Descriptions.”

 Key Type Field

1 CHAR(1) Allow deregistration

2 CHAR(1) Allow change of exit point controls

3 BINARY(4) Maximum number of exit programs

4 CHAR(28) Preprocessing exit program information for add function

5 CHAR(28) Preprocessing exit program information for remove function

6 CHAR(28) Preprocessing exit program information for retrieve function

7 CHAR(27) Qualified message file name and message identifier for exit point

description

8 CHAR(50) Exit point text description

Field Descriptions

Allow change of exit point controls. Whether the exit point controls can be changed. When 0 (no

change) is specified, the only means of changing the exit point controls is to:

v Deregister the exit point (if allow deregister is set to 1)

v Reregister the exit point

v Add the exit programs again

12 iSeries: Registration Facility APIs

The default value is 1.

 0 The exit point controls cannot be changed.

1 The exit point controls can be changed.

Allow deregistration. Whether the exit point can be deregistered (removed from the registration facility

repository). When 0 is specified, the exit point can never be removed from the registration facility

repository. This control is set when the exit point is registered and cannot be changed. The default value

is 1.

 0 The exit point cannot be deregistered.

1 The exit point can be deregistered.

Exit point text description. The text for the exit point description. When this key is specified, the

qualified message file name and message identifier for exit point description key must not be specified.

The default value is blanks.

Maximum number of exit programs. The number of exit programs that this exit point can have. The

minimum number of exit programs is 1. The default value is -1.

 -1 No maximum.

>0 The maximum number of exit programs.

Preprocessing exit program information for add function. The format and the exit program that the

registration facility calls when the Add Exit Program API is called for the exit point. This program

performs any function that is needed by the exit point when an exit program is added to it. The exit

program must exist when the exit point is registered. Refer to “Preprocessing Exit Program Format” on

page 14 for the format of this field.

Preprocessing exit program information for remove function. The format and the exit program that the

registration facility calls when the Remove Exit Program API is called for the exit point. This program

performs any function that is needed by the exit point when an exit program is removed from it. The exit

program must exist when the exit point is registered. Refer to “Preprocessing Exit Program Format” on

page 14 for the format of this field.

Preprocessing exit program information for retrieve function. The format and the exit program that the

registration facility calls when the Retrieve Exit Information API is called for the exit point. This exit

program cannot be specified without specifying preprocessing exit programs for add and remove. When

this exit program is specified, the exit point provider will store all the exit program information instead

of the registration facility. The exit program must exist when the exit point is registered. Refer to

“Preprocessing Exit Program Format” on page 14 for the format of this field.

Qualified message file name and message identifier for exit point description. A message file and

message identifier that contains the exit point description. When this key is specified, the exit point text

description control key must not be specified. The message file and message identifier do not have to

exist at the time of registration. The default value is blanks. Refer to “Qualified Message File Format” for

the format of this field.

Qualified Message File Format

The following table shows the layout of the qualified message file name and message identifier for exit

point description field. For a detailed description of each field, see “Field Descriptions” on page 14.

Registration Facility APIs 13

Offset

Type Field Dec Hex

0 0 CHAR(10) Message file name

10 A CHAR(10) Message file library name

20 14 CHAR(7) Message identifier

Field Descriptions

Message file library name. The library name in which the message file resides. The special value

*CURLIB is not supported. The possible values are:

 *LIBL Search the library list for the message file. This value uses the first message file in the library list

that contains the message identifier.

library name The name of the message library the message file resides in.

Message file name. The name of the message file that contains the exit point description.

Message identifier. The message identifier for the description.

Preprocessing Exit Program Format

The following table shows the layout of the preprocessing exit program information fields. For a detailed

description of each field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Preprocessing exit program name

10 A CHAR(10) Preprocessing exit program library name

20 14 CHAR(8) Preprocessing exit program format name

Field Descriptions

Preprocessing exit program format name. The format name for the preprocessing exit program. If

*NONE is specified for the preprocessing exit program name, this field must be blank. The possible

values for the format names follow:

 ADDP0100 The required parameter group for the Preprocessing Exit Program for Add.

RMVP0100 The required parameter group for the Preprocessing Exit Program for Remove.

RTVI0100 The required parameter group for the Preprocessing Exit Program for Retrieve.

Refer to “Registration Facility APIs,” on page 1 for information about the required parameter group of

each preprocessing exit program.

Preprocessing exit program library name. The library name in which the preprocessing exit program

resides. If *NONE is specified for the preprocessing exit program name, this field must be blank. The

special values *LIBL and *CURLIB are not supported.

Preprocessing exit program name. The name of the preprocessing exit program that is called by the

registration facility when the corresponding function is requested for the exit point. The default value is

*NONE. The possible values are:

14 iSeries: Registration Facility APIs

*NONE No exit program is supplied.

exit program name The exit program name.

If *NONE is specified for the preprocessing exit program name, the library name and format name must

be blank.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C84 E Key &1 required with value specified for key &2.

CPF3C85 E Value for key &1 not allowed with value for key &2.

CPF3C90 E Literal value cannot be changed.

CPF3CD1 E Exit point &1 with format &2 already registered.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD4 E Maximum number of exit programs reached for exit point &1 with format &2.

CPF3CD5 E Exit point control &1 cannot be changed.

CPF3CD7 E Preprocessing exit program &1 library &2 with format &3 not valid.

CPF3CD8 E Registration of exit point &1 with format &2 not performed.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3

API introduced: V3R1

 “Register Exit Point (QUSRGPT, QusRegisterExitPoint) API” on page 9 | “Registration Facility APIs,” on page 1 |

APIs by category

Registration Facility APIs 15

aplist.htm

Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) API

 Required Parameter Group:

1 Exit point name

Input Char(20)

2 Exit point format name

Input Char(8)

3 Exit program number

Input Binary(4)

4 Error code

I/O Char(*)
 Service Program Name: QUSRGFA1

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Remove Exit Program (OPM, QUSRMVEP; ILE, QusRemoveExitProgram) API removes an exit

program entry from a specific exit point that is registered or unregistered. An unregistered exit point is

an exit point that the registration facility creates at the time an exit program is added if the exit point

does not exist.

This API provides support similar to the Remove Exit Program (RMVEXITPGM) command.

Authorizations and Locks

API Public Authority

*EXCLUDE

Exit Registration Lock

*EXCL

Required Parameter Group

Exit point name

INPUT; CHAR(20)

 The exit point name from which the exit program is being removed.

Exit point format name

INPUT; CHAR(8)

 The exit point format name from which the exit program is being removed.

Exit program number

INPUT; BINARY(4)

 The exit program number of the exit program to be removed. The following values are allowed:

 -1 All exit programs are removed for the exit point and format name specified.

exit program

number

The specific exit program number to remove.

16 iSeries: Registration Facility APIs

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDB E Exit point &1 with format &2 does not exist.

CPF3CDD E Exit program number &1 does not exist.

CPF3CE1 E Exit program number &1 not valid.

CPF3CEA E Exit point &1 with format &2 will not allow exit program &3 library &4 to be removed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPI3C03 I &1 exit programs removed. &2 exit programs not removed.

API introduced: V3R1

 “Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) API” on page 16 | “Registration Facility APIs,” on

page 1 | APIs by category

Registration Facility APIs 17

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm

Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation) API

 Required Parameter Group:

1 Continuation handle

Input Char(16)

2 Receiver variable

Output Char(*)

3 Length of receiver variable

Input Binary(4)

4 Format name

Input Char(8)

5 Exit point name

Input Char(20)

6 Exit point format name

Input Char(8)

7 Exit program number

Input Binary(4)

8 Exit program selection criteria

Input Char(*)

9 Error code

I/O Char(*)
 Service Program Name: QUSRGFA2

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Exit Information (OPM, QUSRTVEI; ILE, QusRetrieveExitInformation) API retrieves

information about one or more exit points and their associated exit programs. This API returns

information similar to the Work with Registration Information (WRKREGINF) command.

Authorities and Locks

API Public Authority

*USE

Exit Registration Lock

*SHRNUP

Required Parameter Group

Continuation handle

INPUT; CHAR(16)

 The value returned to the user in the receiver variable when only partial exit information is

returned. This parameter must be set to blanks on the first call to this API. This parameter is used

18 iSeries: Registration Facility APIs

when more information is available to return than what could fit in the receiver variable. When

you specify a continuation handle for this parameter, all other parameters must have the same

values as the call to the API that generated the continuation handle. Failure to do so may result

in incomplete or inaccurate information.

 Entries are only returned in their entirety; the API never returns anything less. If there is not

enough space for the entire entry, the continuation handle is set to something other than blanks.

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the exit information requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the exit information to be returned. You must use one of the following format

names:

 EXTI0100 Exit point information

EXTI0200 Basic exit program information

EXTI0300 Complete exit program information

Refer to “EXTI0100 Format” on page 20, “EXTI0200 Format” on page 21, and “EXTI0300 Format”

on page 22 for more information.

Exit point name

INPUT; CHAR(20)

 The name of the exit point for which information is being retrieved. You must use one of the

following values.

 Note: The specified values in these value descriptions pertain to the exit point format name, exit

program number, and exit program selection criteria fields.

 *ALL All registered and unregistered exit point names that meet the specified values will be

returned.

*REGISTERED All registered exit point names that meet the specified values will be returned.

*UNREGISTERED All unregistered exit point names that meet the specified values will be returned.

generic* All registered and unregistered exit point names that have names beginning with the generic

string and meet the specified values will be returned.

exit point name The registered or unregistered exit point name that was specified that meets the specified

values will be returned.

Exit point format name

INPUT; CHAR(8)

 The exit point format name associated with an exit point. You must use one of the following

values.

 Note: The specified values in these value descriptions pertain to the exit point name, exit

program number, and exit program selection criteria fields.

 *ALL All exit point format names that meet the specified values will be returned.

generic* All exit point format names that have names beginning with the generic string and meet the

specified values will be returned.

Registration Facility APIs 19

exit point format

name

The exit point format name that was specified that meets the specified values will be returned.

Exit program number

INPUT; BINARY(4)

 The number of the exit program. If you specify format EXTI0100, this parameter is ignored. You

must use one of the following values.

 Note: The specified values in these value descriptions pertain to the exit point name, exit point

format name, and exit program selection criteria fields.

 -1 All exit programs that meet the specified values will be returned.

exit program

number

The exit program number to be returned. The entry must meet the specified values to be returned.

The valid range is 1 through 2 147 483 647.

Exit program selection criteria

INPUT; CHAR(*)

 The selection criteria to be used when selecting which exit programs associated with the exit

point are returned. The comparison data is compared against the exit program data. The

comparison data and the exit program data to compare it to must be from 1 through 256

characters, and no CCSID normalization is performed. Using characters from the invariant

character set for the comparison data is recommended.

 For format EXTI0100, this parameter is ignored.

 The information must be in the following format:

Number of selection criteria

BINARY(4)

 The total number of selection criteria. Specify 0 if no selection criteria are specified. The

maximum value for this field is 1.

Selection criteria array

CHAR(*)

 The selection criteria. Refer to “Format for Exit Program Selection Criteria” on page 27 for

more information.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

EXTI0100 Format

The following information is returned for the EXTI0100 format. This format provides information on an

exit point. For a detailed description of each field, see “Field Descriptions” on page 23.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(16) Continuation handle

24 18 BINARY(4) Offset to first exit point entry

20 iSeries: Registration Facility APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

28 1C BINARY(4) Number of exit point entries returned

32 20 BINARY(4) Length of exit point entry

36 24 CHAR(*) Reserved

Note: Exit point entry information. These fields are repeated for each exit point entry returned.

CHAR(20) Exit point name

CHAR(8) Exit point format name

BINARY(4) Maximum number of exit programs

BINARY(4) Current number of exit programs

CHAR(1) Allow deregistration

CHAR(1) Allow change of exit point controls

CHAR(1) Registered exit point

CHAR(10) Preprocessing exit program name for adding an exit program

CHAR(10) Preprocessing exit program library name for adding an exit

program

CHAR(8) Preprocessing exit program format name for adding an exit

program

CHAR(10) Preprocessing exit program name for removing an exit program

CHAR(10) Preprocessing exit program library name for removing an exit

program

CHAR(8) Preprocessing exit program format name for removing an exit

program

CHAR(10) Preprocessing exit program name for retrieving exit information

CHAR(10) Preprocessing exit program library name for retrieving exit

information

CHAR(8) Preprocessing exit program format name for retrieving exit

information

CHAR(1) Exit point description indicator

CHAR(10) Exit point description message file name

CHAR(10) Exit point description message file library name

CHAR(7) Exit point description message ID

CHAR(50) Exit point text description

CHAR(*) Reserved

EXTI0200 Format

The following information is returned for the EXTI0200 format. This format provides basic information on

an exit program. The exit programs will be in ascending sequence based on the exit point name, exit

point format name, and exit program number. For a detailed description of each field, see “Field

Descriptions” on page 23.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

Registration Facility APIs 21

Offset

Type Field Dec Hex

4 4 BINARY(4) Bytes available

8 8 CHAR(16) Continuation handle

24 18 BINARY(4) Offset to first exit program entry

28 1C BINARY(4) Number of exit program entries returned

32 20 BINARY(4) Length of exit program entry

36 24 CHAR(*) Reserved

Note: Exit program entry information. These fields are repeated for each exit program entry returned.

BINARY(4) Offset to next exit program entry

CHAR(20) Exit point name

CHAR(8) Exit point format name

CHAR(1) Registered exit point

CHAR(1) Complete entry

CHAR(2) Reserved

BINARY(4) Exit program number

CHAR(10) Exit program name

CHAR(10) Exit program library name

BINARY(4) Exit program data CCSID

BINARY(4) Offset to exit program data

BINARY(4) Length of exit program data

CHAR(1) Threadsafe

CHAR(1) Multithreaded job action

CHAR(1) QMLTTHDACN system value

CHAR(1) Reserved

CHAR(*) Reserved

Note: Exit program data

CHAR(*) Exit program data

EXTI0300 Format

The following information is returned for the EXTI0300 format. This format provides complete

information on an exit program. The exit programs will be in ascending sequence based on the exit point

name, exit point format name, and exit program number. For a detailed description of each field, see

“Field Descriptions” on page 23.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(16) Continuation handle

24 18 BINARY(4) Offset to first exit program entry

28 1C BINARY(4) Number of exit program entries returned

22 iSeries: Registration Facility APIs

Offset

Type Field Dec Hex

32 20 BINARY(4) Length of exit program entry

36 24 CHAR(*) Reserved

Note: Exit program entry information. These fields are repeated for each exit program entry returned.

BINARY(4) Offset to next exit program entry

CHAR(20) Exit point name

CHAR(8) Exit point format name

CHAR(1) Registered exit point

CHAR(1) Complete entry

CHAR(2) Reserved

BINARY(4) Exit program number

CHAR(10) Exit program name

CHAR(10) Exit program library name

CHAR(1) Exit program description indicator

CHAR(10) Exit program description message file name

CHAR(10) Exit program description message file library name

CHAR(7) Exit program description message ID

CHAR(50) Exit program text description

CHAR(2) Reserved

BINARY(4) Exit program data CCSID

BINARY(4) Offset to exit program data

BINARY(4) Length of exit program data

CHAR(1) Threadsafe

CHAR(1) Multithreaded job action

CHAR(1) QMLTTHDACN system value

CHAR(1) Reserved

CHAR(*) Reserved

Note: Exit program data

CHAR(*) Exit program data

Field Descriptions

Allow change of exit point controls. Whether the exit point controls can be changed. The possible values

follow:

 0 The exit point controls cannot be changed.

1 The exit point controls can be changed.

Allow deregistration. Whether the exit point can be deregistered. The possible values follow:

 0 The exit point cannot be deregistered.

1 The exit point can be deregistered.

Registration Facility APIs 23

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

If the continuation handle is set to a value other than blanks, this field contains an approximation of the

total bytes available. At a minimum, this field contains the actual number of bytes available.

Bytes returned. The number of bytes of data returned.

Complete entry. Whether the information returned for the exit point is complete and accurate. Incomplete

information may occur when an exit point’s provider is storing the exit program information instead of

having the registration facility store it. The exit point notifies the API that the information it returned to

the API is incomplete or inaccurate.

All information for the exit program entry up to this field is complete and accurate. All information for

the exit program entry following this field should be ignored.

The possible values follow:

 0 The exit point entry information is not complete or accurate.

1 The exit point entry information is complete and accurate.

Continuation handle. The handle that is returned when more data is available to return, but the receiver

variable is not large enough. The handle indicates the point in the repository that the retrieval stopped. If

the handle is used on the next call to the API, the API returns more data starting at the point that the

handle indicates. This field is set to blanks when all information is returned.

Current number of exit programs. The current number of exit programs associated with the exit point.

Exit point description indicator. Whether the exit point description is contained in a message file or text.

The possible values follow:

 0 The exit point description is contained in a message file.

1 The exit point description is text.

Exit point description message file name. The name of the message file that contains the exit point

description. This field will contain blanks when a text description is provided for the exit point

description.

Exit point description message file library name. The name of the library in which the exit point

description message file resides. This field will contain blanks when a text description is provided for the

exit point description.

Exit point description message ID. The message identifier for the exit point description. This field will

contain blanks when a text description is provided for the exit point description.

Exit point format name. The exit point format name associated with the exit point.

Exit point name. The exit point name.

Exit point text description. The text for the exit point description. This field will contain blanks when a

message file and message identifier are provided for the exit point description.

Exit program data. The data that is associated with the exit program.

24 iSeries: Registration Facility APIs

Exit program data CCSID. The coded character set identifier (CCSID) that is used in working with the

exit program data.

Exit program description indicator. Whether the exit program description is contained in a message file

or text. The possible values follow:

 0 The exit program description is contained in a message file.

1 The exit program description is text.

Exit program description message file name. The name of the message file that contains the exit

program description. This field will contain blanks when a text description is provided for the exit

program description.

Exit program description message file library name. The name of the library in which the exit program

description message file resides. This field will contain blanks when a text description is provided for the

exit program description.

Exit program description message ID. The message identifier for the exit program description. This field

will contain blanks when a text description is provided for the exit program description.

Exit program library name. The library in which the exit program resides.

Exit program name. The name of the exit program.

Exit program number. The exit program number associated with the exit program. This number

determines the processing sequence of the exit programs associated with the exit point, where the lowest

number should be processed first.

Exit program text description. The text for the exit program description. This field will contain blanks

when a message file and message identifier are provided for the exit program description.

Length of exit point entry. The length of an exit point entry that is returned. This value should be used

in determining the offset to the next exit point entry.

Length of exit program data. The length of the exit program data that is returned.

Length of exit program entry. The length of an exit program entry, not including the exit program data,

that is returned.

Maximum number of exit programs. The maximum number of exit programs that the exit point allows.

Multithreaded job action. The action to take when calling an exit program in a multithreaded job. The

possible values follow:

 1 Run the exit program in the current multithreaded job.

2 Run the exit program in the current multithreaded job, but send an informational message.

CPI3C80 can be used as the informational message.

3 Do not run the exit program in the current multithreaded job. Depending on the exit point, do one

of the following:

1. Send an escape message and do not call the exit program. CPF3C80 can be used as the escape

message.

2. Send an informational message and do not call the exit program. CPF3C80 can be used as the

informational message.

3. Call the exit program in a non-multithreaded job.

Registration Facility APIs 25

Number of exit point entries returned. The number of exit point entries returned. If the receiver variable

is not large enough to hold all of the information, this number contains only the number of exit point

entries actually returned.

Number of exit program entries returned. The number of exit program entries returned. If the receiver

variable is not large enough to hold all of the information, this number contains only the number of exit

program entries actually returned.

Offset to exit program data. The offset to the exit program data. The offset is from the beginning of the

structure.

Offset to first exit point entry. The offset to the first exit point entry returned. The offset is from the

beginning of the structure. If no entries are returned, the offset is set to zero.

Offset to first exit program entry. The offset to the first exit program entry returned. The offset is from

the beginning of the structure. If no entries are returned, the offset is set to zero.

Offset to next exit program entry. The offset to the next exit program entry returned. The offset is from

the beginning of the structure. If there are no more exit program entries, this value is zero.

Preprocessing exit program format name for adding an exit program. The format name for the

Preprocessing Exit Program for Add.

Preprocessing exit program format name for removing an exit program. The format name for the

Preprocessing Exit Program for Remove.

Preprocessing exit program format name for retrieving an exit program. The format name for the

Preprocessing Exit Program for Retrieve.

Preprocessing exit program library name for adding an exit program. The library in which the

Preprocessing Exit Program for Add resides.

Preprocessing exit program library name for removing an exit program. The library in which the

Preprocessing Exit Program for Remove resides.

Preprocessing exit program library name for retrieving an exit program. The library in which the

Preprocessing Exit Program for Retrieve resides.

Preprocessing exit program name for adding an exit program. The preprocessing exit program name

that is called by the registration facility when the Add Exit Program API is called for the exit point.

Preprocessing exit program name for removing an exit program. The preprocessing exit program name

that is called by the registration facility when the Remove Exit Program API is called for the exit point.

Preprocessing exit program name for retrieving exit information. The preprocessing exit program name

that is called by the registration facility when the Retrieve Exit Information API is called for the exit

point.

QMLTTHDACN system value. A flag that indicates whether the QMLTTHDACN system value was used

in determining the multithreaded job action.

 0 The QMLTTHDACN system value was not used to determine the multithreaded job action.

1 The QMLTTHDACN system value was used to determine the multithreaded job action.

Registered exit point. Whether the exit point is registered or unregistered. The possible values follow:

26 iSeries: Registration Facility APIs

0 The exit point is unregistered.

1 The exit point is registered.

Reserved. An ignored field.

Threadsafe. The thread safety status of the exit program entry. The possible values follow:

 0 The exit program entry is not threadsafe.

1 The threadsafe status of the exit program entry is not known.

2 The exit program entry is threadsafe.

Format for Exit Program Selection Criteria

This table shows the format for the exit program selection criteria parameter. For a detailed description of

each field, see “Field Descriptions.”

 Type Field

BINARY(4) Size of criteria entry

BINARY(4) Comparison operator

BINARY(4) Start position in exit program data

BINARY(4) Length of comparison data

CHAR(*) Comparison data

Field Descriptions

Comparison data. The data to compare to the exit program data.

Comparison operator. The comparison value to be used when comparing the exit program data with the

comparison data. The following value can be specified:

 1 The comparison data equals the exit program data.

Length of comparison data. The length of the data to compare to the exit program data. The length of

the comparison data must be between 1 and 256.

Size of criteria entry. The size of the selection criteria entry, including this field.

Start position in exit program data. The starting position of the exit program data against which the

comparison data is matched. The starting position is based on 0. Valid starting positions are from 0

through 2047.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

Registration Facility APIs 27

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CD2 E Exit point name &1 not valid.

CPF3CD3 E Exit point format name &1 not valid.

CPF3CD9 E Requested function cannot be performed at this time.

CPF3CDA E Registration facility repository not available for use.

CPF3CDB E Exit point &1 with format &2 does not exist.

CPF3CE1 E Exit program number &1 not valid.

CPF3CE2 E Continuation handle not valid

CPF3CE3 E Continuation handle no longer valid.

CPF3CE4 E Comparison operator &1 not valid for exit program selection criteria.

CPF3CE6 E Search criteria start position and length exceed boundary.

CPF3CE7 E Number of selection criteria entries not valid.

CPF3CE8 E Start position not valid.

CPF3CE9 E Length of comparison data not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9802 E Not authorized to object &2 in &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 “Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation) API” on page 18 | “Registration Facility APIs,”

on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

28 iSeries: Registration Facility APIs

aplist.htm

Preprocessing Exit Program for Add

 Required Parameter Group:

1 Exit point name

Input Char(20)

2 Exit point format name

Input Char(8)

3 Exit program number

Input Binary(4)

4 Qualified exit program name

Input Char(20)

5 Exit program data

Input Char(*)

6 Length of exit program data

Input Binary(4)

7 Exit program attributes

Input Char(*)

8 Return code

Output Binary(4)

The Preprocessing Exit Program for Add allows for processing to take place before an exit program is

added to an exit point. The preprocessing exit program will notify the registration facility through the

return code parameter whether or not to add the exit program to the exit point.

Required Parameter Group

Exit point name

INPUT; CHAR(20)

 The name of the exit point to which the exit program is being added.

Exit point format name

INPUT; CHAR(8)

 The format name of the exit point to which the exit program is being added.

Exit program number

INPUT; BINARY(4)

 The order in which the exit programs are to be run when multiple exit programs are associated

with the exit point. The valid range is 1 through 2 147 483 647, where the processing sequence is

from the lowest number to the highest number. Exit program numbers do not need to be

consecutive. The following special values are allowed:

 -1 The next lowest available number for that specific exit point will be assigned

-2 The highest available number for that specific exit point will be assigned

Registration Facility APIs 29

When the exit point provider stores the exit program information and one of the above special

values is specified, the exit point provider will assign the exit program number. Otherwise, the

registration facility will assign the exit program number.

Qualified exit program name

INPUT; CHAR(20)

 The exit program that is to be added, and the library in which it is located. The first 10 characters

contain the exit program name, and the second 10 characters contain the name of the library in

which the exit program resides. A specific library name must be specified. The special values

*LIBL and *CURLIB are not supported.

Exit program data

INPUT; CHAR(*)

 The exit program data supplied for the exit program that is requesting to be added to the exit

point. Pointer data will not be preserved in the exit program data parameter.

Length of exit program data

INPUT; BINARY(4)

 The length of the exit program data. The valid length is 0 through 2048.

Exit program attributes

INPUT; CHAR(*)

 The specified information for the exit program. Refer to “Exit Program Attribute Keys” on page 4

for more information. Any field not specified will be given the default value. The information is

in the following format:

Number of variable length records

BINARY(4)

 The total number of all of the variable length records.

Variable length records

The exit program attributes and their values. Refer to “Format for Variable Length

Record” on page 4 for more information.

Return code

OUTPUT; BINARY(4)

 Return code to notify success or failure. The following values are allowed:

 0 The registration facility should not add the exit program to the exit point and should return an

error to the caller of the Add Exit Program API.

1 The registration facility should add the exit program to the exit point. If the exit point provider

has specified a Preprocessing Exit Program for Retrieve and returns this return code, an error will

be issued to the caller of the Add Exit Program API.

2 The registration facility will not store the exit program information. The exit point provider stored

the information. If the exit point provider has not specified a Preprocessing Exit Program for

Retrieve and returns this return code, an error will be issued to the caller of the Add Exit Program

API.

3 The registration facility will not replace the exit program. The exit point provider replaced the exit

program. If the exit point provider did not specify a Preprocessing Exit Program for Retrieve and

returns this return code, an error is issued to the caller of the Add Exit Program API.

Error Messages

Error notification is done through the return code parameter. No error messages will be accepted.

30 iSeries: Registration Facility APIs

Exit program introduced: V3R1

 “Preprocessing Exit Program for Add” on page 29 | “Registration Facility APIs,” on page 1 | APIs by category

Preprocessing Exit Program for Remove

 Required Parameter Group:

1 Exit point name

Input Char(20)

2 Exit point format name

Input Char(8)

3 Exit program number

Input Binary(4)

4 Return code

Output Binary(4)

The Preprocessing Exit Program for Remove allows for processing to take place before an exit program is

removed from an exit point. The preprocessing exit program will notify the registration facility through

the return code parameter whether or not to remove the exit program from the exit point.

Required Parameter Group

Exit point name

INPUT; CHAR(20)

 The exit point name from which the exit program is being removed.

Exit point format name

INPUT; CHAR(8)

 The exit point format name from which the exit program is being removed.

Exit program number

INPUT; BINARY(4)

 The exit program number of the exit program being removed. The following values are allowed:

 -1 All exit programs associated with the specified exit point name and exit point format name will be

removed.

exit program

number

Only the exit program with the specified exit program number, exit point name, and exit point

format name will be removed.

Return code

OUTPUT; BINARY(4)

 A return code to notify success or failure. The following values are allowed:

 0 The registration facility should not remove the exit program from the exit point and should return

an error to the caller of the Remove Exit Program API.

1 The registration facility should remove the exit program from the exit point. If the exit point

provider has specified a Preprocessing Exit Program for Retrieve and returns this return code, an

error will be issued to the caller of the Remove Exit Program API.

Registration Facility APIs 31

aplist.htm

2 The registration will not remove the exit program information. The exit point provider removed

the exit program information. If the exit point provider has not specified a Preprocessing Exit

Program for Retrieve and returns this return code, an error will be issued to the caller of the

Remove Exit Program API.

Error Messages

Error notification is done through the return code parameter. No error messages will be accepted.

Exit program introduced: V3R1

 “Preprocessing Exit Program for Remove” on page 31 | “Registration Facility APIs,” on page 1 | APIs by category

Preprocessing Exit Program for Retrieve

 Required Parameter Group:

1 Continuation handle

Input Char(16)

2 Receiver variable

Output Char(*)

3 Length of receiver variable

Input Binary(4)

4 Format name

Input Char(8)

5 Exit point name

Input Char(20)

6 Exit point format name

Input Char(8)

7 Exit program number

Input Binary(4)

8 Exit program selection criteria

Input Char(*)

9 Return code

Output Binary(4)

The Preprocessing Exit Program for Retrieve allows for the exit point provider to store the exit program

information. The registration facility will not store the exit program information, only exit point

information. The Preprocessing Exit Program for Add and the Preprocessing Exit Program for Remove are

required when this preprocessing exit program is supplied. The preprocessing exit program will notify

the registration facility through the return code parameter whether or not the exit information returned is

complete and accurate.

32 iSeries: Registration Facility APIs

aplist.htm

Required Parameter Group

Continuation handle

INPUT; CHAR(16)

 The value returned to the API in the receiver variable when partial information is returned. This

parameter is used when there is more information available to return than what could fit in the

receiver variable.

Receiver variable

OUTPUT; CHAR(*)

 The variable in which the preprocessing exit program will return the exit information to the

registration facility. This information must be returned in the format specified in the format name

parameter.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the exit information to be returned. One of the following format names will be

specified by the Retrieve Exit Information API:

 EXTI0100 Exit point information

EXTI0200 Basic exit program information

EXTI0300 Complete exit program information

Refer to “EXTI0100 Format” on page 20, “EXTI0200 Format” on page 21, and “EXTI0300 Format”

on page 22 for more information.

Exit point name

INPUT; CHAR(20)

 The name of the exit point for which information is being retrieved.

Exit point format name

INPUT; CHAR(8)

 The format name associated with the exit point.

Exit program number

INPUT; BINARY(4)

 The number of the exit program. When format EXTI0100 is specified, this field should be ignored.

The following values are allowed:

 -1 All exit programs for the exit point are returned.

exit program

number

The exit program with the specified exit program number is returned. The valid range is 1

through 2 147 483 647.

Exit program selection criteria

INPUT; CHAR(*)

 The selection criteria to be used when selecting which exit programs associated with the exit

point are to be returned. When format EXTI0100 is specified, this field should be ignored. The

information is in the following format:

Number of selection criteria

BINARY(4)

Registration Facility APIs 33

The total number of selection criteria. Zero is specified if no selection criteria are

specified. The maximum value for this field is 1.

Selection criteria array

CHAR(*)

 The selection criteria. Refer to “Format for Exit Program Selection Criteria” on page 27 for

more information.

Return Code

OUTPUT; BINARY(4)

 The return code to notify success or failure. If there is no information to return, set the number of

exit programs returned field to 0 and specify success (1) for the return code. The following values

are allowed:

 0 The information returned to the registration facility is incomplete or inaccurate.

1 The information returned to the registration facility is complete and accurate.

Error Messages

Error notification is done through the return code parameter. No error messages will be accepted.

API introduced: V3R1

 “Preprocessing Exit Program for Retrieve” on page 32 | “Registration Facility APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

Using Registration Facility APIs and Registration Facility

Preprocessing Exit Programs

The registration facility is a service that provides storage and retrieval operations for OS/400(R) and

non-OS/400 exit points and exit programs. An exit point is a specific point in a system function or

program where control may be passed to one or more specified exit programs. An exit program is a

program to which control is passed from an exit point. This exit program can then supplement standard

system functions in areas such as additional authorization checks, data transformations, auditing, and so

on. Examples of exit programs often can be found with the exit point documentation. This registration

facility repository allows multiple programs to associate with a given system function or application

function.

An exit point can call one program, a fixed number of programs, or all programs associated with an exit

point. The exit program number associated with each exit program should be used to determine the

sequence in which the exit programs are run.

An exit point can be registered multiple times with the same exit point name; however, the combination

of the exit point name and the exit point format name must be unique. Each exit program will be

associated with a specific exit point and exit point format. The exit point format name can be used to

indicate that a change occurred to the interface of the exit point. For example, this unique name (exit

point and format) could be the result of a parameter change, version change, exit program data

definition, and so forth. This unique name will facilitate having different exit programs run from different

versions of a product for the same exit point name.

34 iSeries: Registration Facility APIs

aplist.htm

The exit point provider is responsible for the following:

v Defining the exit point information

v Defining the details of the exit program, such as the number of exit programs to call and what the

parameters (if any) will be

v Calling the exit programs

If you intend to provide an exit point, you should become familiar with all the APIs and the

preprocessing exit programs in the registration facility part before using them. The APIs and

preprocessing exit programs are interdependent.

If you intend to provide an exit program, you should become familiar with the “Add Exit Program

(QUSADDEP, QusAddExitProgram) API” on page 2 (QUSADDEP, QusAddExitProgram) and “Remove

Exit Program (QUSRMVEP, QusRemoveExitProgram) API” on page 16 (QUSRMVEP,

QusRemoveExitProgram) APIs. When developing the exit program, the exit program provider is

responsible for reclaiming all resources allocated by the exit program.

The registration facility gives the exit point provider the option to perform preprocessing when an

operation is requested against an exit point. The exit point provider is responsible for providing the

preprocessing exit program. The preprocessing exit program is called by the registration facility before the

requested function is performed on the exit point. (The requested function might be an add, remove, or

retrieve operation.) The preprocessing exit program notifies the registration facility if the requested

function should be completed. The following restrictions apply:

v The preprocessing exit program must exist when the exit point is registered.

v The Preprocessing Exit Program for Add and the Preprocessing Exit Program for Remove are required

when a Preprocessing Exit Program for Retrieve is supplied.

 “Using Registration Facility APIs and Registration Facility” on page 34 | “Registration Facility APIs,” on page 1 |

APIs by category

Registration Facility APIs 35

aplist.htm

36 iSeries: Registration Facility APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 37

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

38 iSeries: Registration Facility APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 39

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

40 iSeries: Registration Facility APIs

����

Printed in USA

	Contents
	Registration Facility APIs
	APIs
	Add Exit Program (QUSADDEP, QusAddExitProgram) API
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Exit Program Attribute Keys
	Field Descriptions
	Qualified Message File Format
	Field Descriptions
	Error Messages

	Deregister Exit Point (QUSDRGPT, QusDeregisterExitPoint) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Register Exit Point (QUSRGPT, QusRegisterExitPoint) API
	Unregistered Exit Points
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Exit Point Control Keys
	Field Descriptions
	Qualified Message File Format
	Field Descriptions
	Preprocessing Exit Program Format
	Field Descriptions
	Error Messages

	Remove Exit Program (QUSRMVEP, QusRemoveExitProgram) API
	Authorizations and Locks
	Required Parameter Group
	Error Messages

	Retrieve Exit Information (QUSRTVEI, QusRetrieveExitInformation) API
	Authorities and Locks
	Required Parameter Group
	EXTI0100 Format
	EXTI0200 Format
	EXTI0300 Format
	Field Descriptions
	Format for Exit Program Selection Criteria
	Field Descriptions
	Error Messages

	Exit Programs
	Preprocessing Exit Program for Add
	Required Parameter Group
	Error Messages

	Preprocessing Exit Program for Remove
	Required Parameter Group
	Error Messages

	Preprocessing Exit Program for Retrieve
	Required Parameter Group
	Error Messages

	Concepts
	Using Registration Facility APIs and Registration Facility

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

