## 

iSeries
Globalization
Version 5 Release 3
$\overline{\overline{\underline{E}} \overline{\bar{E}}} \overline{\overline{\underline{E}}}$
$\overline{\underline{\underline{E}}}$
iSeries
Globalization
Version 5 Release 3

## Note

Before using this information and the product it supports, be sure to read the information in "Notices," on page 415.

## Fourth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

## Contents

OS/400 globalization ..... 1
What's new for V5R3 ..... 2
Print this topic ..... 3
Globalization overview ..... 3
Multiple language support ..... 4
What is a national language version? ..... 4
OS/400 translations ..... 4
National language design in $\mathrm{OS} / 400^{(\mathrm{R})}$ ..... 5
Linguistic and cultural values. ..... 9
Set up OS/400 with a national language version ..... 23
How a language is displayed for OS/400 functions ..... 23
Installation preparation and national languages ..... 24
Checklist: Globalization planning ..... 24
Order equipment and software ..... 26
Hardware installation and national languages ..... 32
Software installation and national languages ..... 34
Configure a national language version ..... 35
Scenarios: Set up OS/400 with a national language version ..... 42
Develop globalized applications ..... 47
Goals and processes ..... 48
Design globalized applications ..... 52
Programming considerations in globalized application design ..... 87
Deliver globalized applications ..... 100
Handle data in globalized applications ..... 101
Work with Unicode ..... 101
GB18030: The Chinese standard ..... 169
Work with CCSIDs ..... 169
Work with bidirectional data ..... 207
Work with DBCS data ..... 209
Work with locales ..... 231
Globalization reference information ..... 275
National language version feature codes ..... 276
Country/region identifiers ..... 277
Default system values for national language versions ..... 283
System values for other languages with no national language version. ..... 296
Keyboard reference information. ..... 298
Character sets ..... 326
CCSID reference information ..... 350
Locale reference information ..... 375
REXX extension characters ..... 393
Globalization checklists ..... 414
Appendix. Notices ..... 415
Trademarks ..... 416
Terms and conditions for downloading and printing publications ..... 417
Code disclaimer information ..... 417

## OS/400 globalization

$\gg$ The iSeries ${ }^{(T \mathrm{TM})}$ server is designed to support the culture and languages of many countries around the world. As companies integrate e-commerce on a global scale into their fundamental business processes, their prospective customers, established customers, and active partners can take advantage of increased revenue and decreased expenses through software globalization.

Globalizing your e-business is no longer a luxury, it is a necessity. As the Internet transcends national and geographical boundaries, the concept of doing business within a single country is quickly giving way to the need to compete in an international marketplace. <

Globalized software gives you the following advantages:

- Increased customer satisfaction that can increase sales
- Enhanced customer support communications
- Enhanced global information dissemination
- A better return on Information Technology (IT) investments

This information shows you how to:

- Create an application efficiently and at minimal expense.
- Retrofit existing applications for globalization and create new applications designed for globalization. Designing an application for globalization, however, is usually less expensive than retrofitting an existing application.
- Ensure that the application design does not interfere with the current or planned design of other internationalized applications.

These pages provide a single source for the information you need to build applications for national and international audiences. 》 You can find out more information at the IBM ${ }^{(\mathrm{R})}$ Globalizing your e-business

Web site (http://www.ibm.com/software/globalization/index.jsp) and the iSeries Globalization Web site (http://www.ibm.com/servers/eserver/iseries/software/globalization/). <

In addition to the following topics, you can find information about what's new in this release and how you can print this topic.

## Globalization overview

This topic describes the way that globalization has been implemented on OS/400 ${ }^{(R)}$, including topics that describe globalization-specific values on the system and topics that describe how services and functions in OS/400 support globalization.

## Set up OS/400 with a national language version

This topic describes the steps you need to take to properly install and configure a national language version on OS/400, with topics ranging from selecting and installing hardware, installing software, and configuring your environment to run in a globalized setting. You can use this information as you install your own servers, and you can apply the principles when you develop applications for customers who are installing their own national language version on OS/400.

## Develop global applications

This topic provides guidelines for designing, developing, and delivering globalized applications:

- Designing functions that are sensitive to national languages
- Supporting various types of hardware
- Translating the textual data in your application
- Making your application available worldwide


## Handle data in globalized applications

This topic describes the ways in which OS/400 enables you to handle data in a globalized environment. Included in these pages are topics that describe Unicode and Unicode data, the Chinese standard GB18030, how to use CCSIDs to integrate multiple language environments consistently, and how to use bidirectional data, DBCS data, and locales.

## Globalization reference information

This topic provides detailed supporting information for the concepts and tasks discussed in the Globalization category.

## Globalization checklists

This topic gathers together all of the checklists that are contained with these pages. These checklists are useful reminders of the issues you need to consider as you create and work with globalized applications.

## What's new for V5R3

Technical updates include the following:

- Ideographic language (DBCS) support. In previous releases, $\mathrm{OS} / 400^{(\mathrm{R})}$ required an Ideographic language as the primary language to support an Ideographic language secondary language or an Ideographic language device. This restriction is removed. This means that any NLV of OS/400 can support an Ideographic language device or program. IBM ${ }^{(\mathbb{R})}$ still produces and ships the same number of ideographic (DBCS) NLVs listed below:
- English Uppercase DBCS (Feature 2938)
- English Uppercase and Lowercase DBCS (Feature 2984)
- Japanese DBCS (Feature 2962)
- Korean DBCS (Feature 2986)
- Simplified Chinese DBCS (Feature 2989)
- Traditional Chinese DBCS (Feature 2987)

The current CCSID and field types of the shipped database files are not changed by this update.

- Unicode support. OS/400 support for Unicode data encoding has been enhanced. DB2 ${ }^{\left({ }^{(R)}\right.}$ UDB for iSeries ${ }^{(T M)}$ has been enhanced to allow for storing UTF-8 or UTF-16 data in a field, and to provide advanced cultural sorting on UTF8 or UTF-16 fields. For more information, see the SQL Reference topic. OS/400 Unicode print capabilities have been enhanced to support bidirectional printing and character layout capabilities that are needed to support complex scripts. For more information, see the DDS for physical and logical files topic.
- The version of International Components for Unicode (ICU) libraries shipped as option 39 of OS/400 has been enhanced to contain the 2.6.1 version of ICU as the new default version. For more information on ICU see http://oss.software.ibm.com/icu/
- OS/400 support of time has been enhanced. Time management allows you to manage time on your iSeries server. Within the time management component of iSeries Navigator, you can work with the time zone and time adjustment functions. With these two functions, time management allows you to choose a time zone for your system to use. In addition, you can identify the software to use as the time maintenance application that synchronizes your system time with an external time source.
- Locale source selection has been enhanced to support several new locales.
- CCSID support has been enhanced to support several new CCSIDs and mappings between CCSIDs. CCSIDS 1200, 1232, 5348, 901, 902, 4909, and 62248 were added. For more information see http://www.ibm.com/servers/eserver/iseries/software/globalization/ccsid.html


## How to see what's new or changed

To help you see where technical changes have been made, this information uses:

- The $\gg$ image to mark where new or changed information begins.
- The $\ll$ image to mark where new or changed information ends.

To find other information about what's new or changed this release, see the Memo to Users.

## Print this topic

The Globalization topic is divided into smaller PDF documents that correspond to the major categories as they are presented in the iSeries ${ }^{(T M)}$ Information Center. The smaller size of each of the parts makes downloading and printing the Globalization information faster and easier. You can view or print the following topics:

- Globalization overview
- Set up OS/400 ${ }^{(R)}$ with an NLV
- Develop globalized applications
- Handle data in globalized applications
- Globalization reference information

If it is more convenient for you, you can also print the Globalization information as a single PDF.
You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe
43 Web site (www.adobe.com/prodindex/acrobat/readstep.html).
Note: Some of the illustrations in the PDF format of the Globalization topic do not display in the same manner as they do in the HTML format. The HTML format shows the illustrations as they are best viewed.

## Globalization overview

$\mathrm{OS} / 400^{(\mathrm{R})}$ supports many languages; you can work in the language of your choice. OS/400 also ensures that the data you send to and receive from the server appears in the form and order you expect. By supporting many different languages, the operating system works as you expect it to work, from both a linguistic and a cultural point of view.

OS/400 uses a common set of program code, regardless of which language you use on the system. For example, the program code on a U.S. English server and the program code on a Spanish server are identical. Different sets of textual data are used, however, for different languages.

Textual data is a collective term for menus, displays, lists, prompts, options, online help information, and messages. This means that you see Help for the description of the function key for online help information on a U.S. English server, while you see Ayuda on a Spanish server. Using the same program code with different sets of textual data allows OS/400 to support more than one language on a single server.

The following topics introduce and explain globalization support on OS/400.

- Multiple language support
- What is a national language version?
- OS/400 translations
- National language design on OS/400
- Linguistic and cultural values


## Multiple language support

$\mathrm{OS} / 400^{(\mathrm{R})}$ provides the tools and function you need to make your applications deliver your business information, such as dates and numbers, in formats that conform to the expectations of users in multiple cultures using multiple languages. You can enable your iSeries ${ }^{(T M)}$ server to translate, present, and process data in a global environment.

When you install secondary languages on your system, OS/400 also lets you set up your system with user interfaces (that is, textual data) for any of the national language versions provided for the system. To support multiple languages concurrently, you must have adequate storage to install all the necessary secondary languages. You must also install the necessary hardware to support each language.

## What is a national language version?

A national language version (NLV) is a version of the Operating System/400 ${ }^{(\mathrm{R})}\left(\mathrm{OS} / 400^{(\mathrm{R})}\right)$ that contains a predefined set of language-dependent values like date format, time format, sort sequence, and so forth for a particular language.

When you order an OS/400 licensed program, you identify the national language version you want by specifying a language feature code. If you want to use more than one national language version of a licensed program, you can order additional languages. For example, if you are a German customer, you might need support for both German and French on one server. You can order a national language version for German and a national language version for French.

When you order more than one national language version for a server, you designate one of the versions as the primary language. The primary language you designate is the feature code identified when you ordered the OS/400 program. You designate all other national language versions as secondary languages.

You must order some of the licensed programs for your server with the same language feature code as the primary language of the system. If the language feature code of a licensed program differs from the language feature code of the primary language of the server, the licensed program may not install correctly. Licensed programs with different feature codes as the primary language can be installed as a secondary language. See the National language version feature codes topic for a complete listing of national language versions.

For additional information about working with national language versions, see Set up an iSeries ${ }^{(T M)}$ server with a national language version.

## OS/400 translations

$\mathrm{OS} / 400^{(\mathrm{R})}$, or portions of OS/400, are translated into the following languages. Not all portions of OS/400 are translated into every language.

- Albanian
- Arabic
- Brazilian Portuguese
- Bulgarian
- Croatian
- Czech
- Danish
- Dutch (this includes Belgian Dutch)
- English (this includes Belgian English
- Estonian
- Farsi
- Finnish
- French (this includes Belgian and Canadian French)
- German
- Greek
- Hebrew
- Hungarian
- Icelandic
- Italian
- Japanese
- Korean
- Laotian
- Latvian
- Lithuanian
- Macedonian
- Norwegian
- Polish
- Portuguese
- Romanian
- Russian
- Serbian
- Simplified Chinese
- Slovakian
- Slovenian
- Spanish
- Swedish
- Thai
- Traditional Chinese
- Turkish
- Vietnamese


## National language design in OS/400 ${ }^{(\mathrm{R})}$

The national language design in OS/400 defines the functions your application software can use to support national languages. These functions include:

- Character representation
- Character processing
- Character presentation
- Globalization hardware support
- Character data translation
- Locales


## Character representation

Character representation in the server is controlled by following elements of the Character Data Representation Architecture (CDRA). CDRA identifies characters by encoding scheme identifier (ESid), character set, pairs of character sets and code pages (as needed), and additional coding-related information (as necessary). This identification is established by a system of tags. The tags are handled by $\mathrm{OS} / 400^{(\mathrm{R})}$ in a way that ensures character set integrity.

The overall objective of CDRA is to define a method of assigning and preserving the meaning of coded graphic characters through various stages of processing and interchanging.

## For more information

- Encoding scheme
- Conversion of character data
- CCSID values
- Character data integrity

Encoding scheme: The Character Data Representation Architecture (CDRA) system of tags uses an encoding scheme to specify:

- The coding space (number and allowable value of code points in a code page)
- Rules for sharing the coding space between control and graphic characters
- Rules related to specific options, such as the number bytes required for each character (single-byte, double-byte, or mixed-byte) permitted in that scheme
- Rules related to code extension techniques (if used)

The rules for encoding schemes are followed when code points are assigned to graphic characters in a particular code page. Some common encoding schemes are Extended Binary Coded Decimal Interchange Code (EBCDIC) and American Standard Code for Information Interchange (ASCII).

Conversion of character data: The Character Data Representation Architecture (CDRA) system of tags ensures you can convert character data in a predictable, repeatable way. Conversion pertains to converting the code points assigned to one or more characters in one code page to their corresponding code points in another code page. The conversion may cause a single character to map to a sequence of characters, or a sequence of characters to map to a single character. Conversion should not be equated to translating from one language to another.

## Conversion methods:

The following methods are used for conversion:

- Round-trip conversion. The integrity of all character data is maintained from the source coded character set identifier (CCSID) to the target CCSID and back to the source.
When performing a round-trip conversion, you may see incorrect representation of the characters displayed in the target CCSID. The integrity is preserved, however. When the characters are converted back to the source CCSID, they regain their original hexadecimal values and representation.
- Enforced subset match conversion (substitution). Characters that exist in both the source and target CCSID have their integrity maintained. Characters in the source CCSID but not in the target CCSID are replaced. Replaced values are also referred to as substitution characters. For EBCDIC encoding, these appear on most display stations as a solid block. For ASCII encoding, these substitution characters appear differently.
This substitution is permanent when converting back to the source CCSID because it is not possible to retrieve the original hexadecimal values.
For a list of CCSID conversions that result in substitution characters, see the Default conversion that may use substitution table.
- Linguistic conversion. Also known as best-fit conversion, a partial mapping is done from the source code page to the target code page. The integrity of characters that are in both the target CCSID and the source CCSID are preserved. Characters that are not in the target CCSID are mapped to the most culturally acceptable alternative for that character.
For example, the source CCSID may support an A grave ( $\overline{\mathrm{A}}$ ). The target CCSID may not support this character. During the conversion, the most linguistically acceptable character (a Latin capital A) is substituted for the A grave. After the conversion, characters that are not included in the target CCSID
are presented to the user as the most linguistically acceptable substitution characters. This substitution is permanent. Any loss of character integrity is permanent.
Through an application programming interface (API), linguistic conversion is available from any supported single-byte CCSID to any other supported single-byte CCSID.

CCSID values: CDRA defines the following range of values for CCSIDs:

| CCSID value | Purpose or meaning |
| :--- | :--- |
| 00000 | Use next higher hierarchical CCSID |
| 00001 through 65533 | $\mathrm{IBM}^{(\mathrm{R})}$-registered CCSIDs |
| 65534 | Refer to lower hierarchical CCSID |
| 65535 | No automatic conversion of data between this CCSID and any other CCSID. (This is <br> the default setting of the QCCSID system value.) |

For more information about other CCSID values see the iSeries ${ }^{(T M)}$ CCSID information $\$$ Web site (http://www.ibm.com/servers/eserver/iseries/software/globalization/ccsid.html).

CDRA uses a tag field to hold a CCSID value to identify the meaning of coded graphic characters. The tag field may be in a data structure that is logically associated with the data object (explicit tagging), or it may be inherited from the tag field associated with the other objects within the operating system (implicit tagging).

Character data integrity: The Character Data Representation Architecture (CDRA) system of tags uses coded character set identifiers (CCSIDs) to maintain data integrity when character data is passed from system to system or from user to user. CCSIDs assign a value that uniquely identifies the coded graphic character representation used for character data.

## Data integrity is not maintained using CCSID 65535 across countries

The following table shows the meaning of maintaining data integrity. A database file created by a U.S. user contains a dollar sign and is read by a user in the United Kingdom and in Denmark. If the application does not assign CCSID tags that are associated with the data to the file, users see different characters.

| Country | Keyboard type | Code page | CCSID | Code point | Character |
| :--- | :--- | :--- | :--- | :--- | :--- |
| U.S. | USB | 037 | 65535 | $X^{\prime} 5 B^{\prime}$ | $\$$ |
| U.K. | UKB | 285 | 65535 | $X^{\prime} 5 B^{\prime}$ | $£$ |
| Denmark | DMB | 277 | 65535 | X'5B' $^{\prime}$ | $\AA$ |

## Data integrity is maintained by using CCSID tags

If the application assigns a CCSID associated with the data to a file, the application can use $\mathrm{OS} / 400^{(\mathrm{R})}$ CCSID support to maintain the integrity of the data. When the file is created with CCSID 037, the user in the United Kingdom (job CCSID 285) and the user in Denmark (job CCSID 277) see the same character. Database management takes care of the mapping.

| Country | Keyboard type | Code page | CCSID | Code point | Character |
| :---: | :---: | :---: | :---: | :---: | :---: |
| U.S. | USB | 037 | 00037 | X'5B' | \$ |
| U.K. | UKB | 285 | 00285 | X'4A' | \$ |
| Denmark | DMB | 277 | 00277 | X'67' | \$ |

CCSID support is particularly important when:

- Multiple national language versions, keyboards, and display stations are installed on OS/400 ${ }^{(\mathrm{R})}$.
- Multiple iSeries ${ }^{(T M)}$ servers are sharing data between systems with different national language versions.
- The correct keyboard support for a language is not available when you want to encode data in another language.


## For more information

- For a list of the OS/400 CCSIDs, refer to Coded Character Set Identifiers (CCSIDs) in the Globalization reference topic
- For a complete list of the CDRA CCSIDs, see the Character Data Representation Architecture - Level 2, Registry
- For an overview of the architecture, refer to Character Data Representation Architecture Executive Overview
- For a complete discussion of the architecture, refer to the Character Data Representation Architecture Level 2 Reference.


## Character processing

Character processing on $\mathrm{OS} / 400^{(\mathrm{R})}$ is controlled by following coding rules and guidelines that ensure consistent processing of character data. These rules and guidelines cover tasks such as:

- Converting character data to all uppercase or to all lowercase data
- Folding data (substituting printable or displayable characters for those that cannot be printed or displayed on a particular device)
- Processing character data strings
- Classifying characters
- Naming objects
- Determining data, file, and field lengths


## Some of these rules and guidelines are described in Develop globalized applications.

## Character presentation

Character presentation on $\mathrm{OS} / 400^{(\mathrm{R})}$ is controlled by coding rules and algorithms that ensure consistent presentation of character data. These rules and algorithms cover tasks such as:

- Shaping characters
- Truncating characters
- Handling substrings of character data

These rules and algorithms are described in detail in Develop globalized applications.

## Globalization hardware support

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up an iSeries ${ }^{(T M)}$ server. The extent to which this hardware supports national languages may impose limitations on the degree of support that you can provide with an application. You must refer to the reference manuals for non-IBM ${ }^{(R)}$ hardware to determine what limitations, if any, are imposed by that hardware.

## Character data translation

Translating is changing the meaning of character data from a set of concepts, ideas, and statements in one human language to a culturally similar meaning in another human language. You can follow rules as guidelines to ensure translation goes smoothly. A subset of these rules is provided in the "User interfaces" on page 59 topic.

## Locales

A locale is an object that can determine how data is processed, printed, and displayed. Locales are made up of categories that define language, cultural data, and character sets. These combinations of language, cultural data, and character sets comprise a locale. The locale support is provided to supplement the job value options that $\mathrm{OS} / 400^{(\mathrm{R})}$ previously has provided.

Many locales are shipped with OS/400. In addition, locale definition source files are provided for locale customizations. A locale definition source file contains one or more categories that describe (or make up) a locale.

See the following topics to learn more about using locales in a globalized environment:

- Install and enable locales
- Work with locales


## Linguistic and cultural values

Linguistic and cultural conventions include any server values, attributes, or settings that can be altered to suit a country or language. Examples of linguistic and cultural conventions on the system include date formats and currency symbols.

Some linguistic and cultural conventions may vary by language within a country. For example, language conventions vary in Canada. One set of linguistic conventions apply for French and another set of linguistic conventions apply for English.

The following topics describe specific values that affect your globalized server environment:

- User profiles
- Subsystems
- Job attributes
- System values
- Device descriptions
- Display and printer files
- Database files
- UIM menus and panel groups


## Where you can change linguistic and cultural values on $0 S / 400^{(R)}$ :

Settings of cultural and linguistic conventions are supported at different levels in OS/400. The system is structured in the following way:

Subsystem A
Job

Job

System
Subsystem B
Job

Job

Some linguistic and cultural conventions can be set or changed at the system level, some at the subsystem level, some at the user profile level, and some at job run time. In addition, some cultural and linguistic settings can be set or changed in device descriptions. For example, keyboard types can be changed when creating or changing a display device description.

## For more information

For more information on linguistic and cultural conventions by country, see National Language Design Guide: National Language Support Reference, Volume 2.

## User profiles

Individual users can store customized cultural and linguistic values in their user profiles. These customized values can differ from the system default values and can be used by $\mathrm{OS} / 400^{(\mathrm{R})}$ when setting job attributes and object attributes for the individual user. Job attributes can also be used as defaults for setting object attributes created or changed under the control of that job.

If you have a single server supporting multiple languages, you should change the user profile to use language and culture-appropriate values. When you change the character set identifier (CCSID) parameter in the user profile, ensure the CCSID:

- Is set to an SBCS CCSID or to CCSID 65535 for SBCS users
- Is set to a mixed CCSID or to CCSID 65535 for DBCS users
- Is set to a SBCS CCSID for SBCS users on a DBCS system

You can use the Create User Profile (CRTUSRPRF) and the Change User Profile (CHGUSRPRF) commands to customize a user profile.

## Subsystems

A subsystem is a single, predefined operating environment through which the server coordinates the work flow and resource use. The server can contain several subsystems, all operating independently of each other. Subsystems manage resources. The run-time characteristics of a subsystem are defined in an object called a subsystem description.

You can use subsystems to support users in a multilingual environment. You should create a separate subsystem for each set of users with differing needs. For more information on subsystems, see the Work Management topic.

## Subsystem descriptions for secondary language users

You can create a subsystem description to be used in a multilingual environment. For example, you can create a subsystem for secondary language users (such as QGPL/GERMAN for German language users).

A subsystem description defines how, where, and how much work enters a subsystem, and which resources the subsystem uses to perform the work. An active subsystem takes on the simple name of the subsystem description.

A subsystem description consists of three parts:

- Subsystem attributes
- Workstation entry
- Routing entries


## Notes:

1. You can work with existing work entries while the subsystem is active.
2. An IBM ${ }^{(R)}$-supplied subsystem on a DBCS server is shipped with a workstation entry to support DBCS display devices.

For more information about subsystems, see the following:

- Start a subsystem

Create a subsystem description: $\mathrm{IBM}^{(\mathrm{R})}$-supplied subsystem descriptions have been provided as examples and as back up for user-created subsystem descriptions. Therefore, you should not change the
subsystem descriptions in libraries QSYS and QGPL. You should make copies of the subsystem descriptions from these libraries and make changes to the copies.

You can create a subsystem description in two ways. You can copy an existing subsystem description and change it or you can create an entirely new description.

## To copy an existing subsystem description:

1. On a command line, type CRTDUPOBJ, to create a duplicate object of an existing subsystem description.
2. Change the sign-on display file and the system part of the library list for the secondary language.

## To create an entirely new subsystem description:

1. Create a subsystem description (CRTSBSD) Specify a sign-on file from the national language version library and specify the national language version library (QSYSnnnn) as the system-library list entry.
2. Create a job description (CRTJOBD).
3. Add work entries to the subsystem description.
a. ADDWSE (Add work station entry)
b. ADDJOBQE (Add job queue entry)
c. ADDCMNE (Add communications entry)
d. ADDAJE (Add autostart job entry)
e. ADDPJE (Add prestart job entry)
4. Create a class (CRTCLS)
5. Add routing entries to the subsystem description (ADDRTGE),

Subsystem attributes: Subsystem attributes provide the overall characteristics of the subsystem. Attributes include the system-library list entry and a text description of the subsystem description.

For example, you can specify subsystem attributes to support secondary language users:

1. Specify the national language version for the subsystem library entry parameter.

By creating a subsystem for each secondary language on your system, you can ensure that secondary language users have access to textual data in their own language. Within each subsystem, you can arrange the order of libraries in the library list so the textual data for the appropriate secondary language is at the top of the system library list. For example, if you have a primary language of Danish, and a secondary language of German, you can add a library at the top of the system library list in the German subsystem. Jobs running in the German subsystem then use the library at the top of the system part of the library list and a search for German textual data is successful.
If you add a subystem-library list entry for a national language version library:

- Do not add the library to the QSYSLIBL system value.
- Be sure that there are no more than 14 libraries in the QSYSLIBL list before adding your additional library entry. (The maximum number of list entries for the system part of the library is 15.)

2. Specify the sign on display using the national language version library.
3. Create or duplicate objects that all users of the secondary national language version need in the national language version library.
4. Add workstation entries for these workstations that are specifically configured for this national language version.

Workstation entry: You can specify the following items in a workstation entry. Parameter names are given in parentheses.

- Workstation name or type (WRKSTN or WRKSTNTYPE)
- Job description to be used for jobs started through this workstation entry
- Maximum number of interactive jobs that can be active at the same time through the entry (MAXACT)
- When the work stations are to be allocated, either when the subsystem is started or when an interactive job enters the subsystem through the Transfer Job TFRJOB command.


## Adding, changing, or removing workstation entries

The following commands allow you to add, change, or remove workstation entries from a subsystem description.

To add a workstation entry to a subsystem description, use the Add Work Station Entry ADDWSE command. The following is an example of adding a workstation entry:
ADDWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/WSE)
To specify a different job description for a previously defined workstation entry, use the Change Work Station Entry CHGWSE command. The following is an example of changing a workstation entry:
CHGWSE SBSD (USERLIB/ABC) WRKSTN(DSP12)
JOBD (USERLIB/NEWJD)

To remove a workstation entry from a subsystem description, use the Remove Work Station Entry RMVWSE command. The following is an example of removing a workstation entry:
RMVWSE SBSD(USERLIB/ABC) WRKSTN(DSP12)
Start a subsystem: Once you have created a subsystem that meets your needs, you need to start the subsystem. To start a subsystem, use the Start Subsystem (STRSBS) command:
STRSBS SBSD('library name/subsystem name')
For example:
STRSBS USERLIB/ABC

## Job attributes

Job attributes are set at the time a job starts. Some job attributes are set from the user profile. Other job attributes come from system values, from locales, from a Submit Job (SBMJOB) command, a job description, and the Change Job (CHGJOB) command (from which you can change values for attributes while the job is running). The following attributes are especially useful for globalized environments:.

- Coded character set identifier job attribute (CCSID)
- Job default coded character set identifier (DFTCCSID)
- Job library list

Coded character set identifier job attribute: When an interactive job is started, the job CCSID value is taken from the user profile. When a batch job is started, the current job CCSID is used unless a CCSID is specifically entered on the SBMJOB command.

For every mixed-byte coded character set CCSID, there is a corresponding SBCS CCSID that is valid. If you specify a mixed-byte coded character set CCSID for an SBCS system, the job CCSID is changed to the corresponding SBCS CCSID.

If a job CCSID is specified as an SBCS CCSID, the job cannot handle DBCS data. If a job CCSID is specified as a mixed CCSID, the job can handle DBCS data. You must use a DBCS-capable display device, though, for the DBCS data in a job to display correctly. You can specify a mixed-byte CCSID for a job only if the DBCS system value (QIGC) value is set to 1 (on). A QIGC value of 1 indicates that a DBCS national language version is installed on the system.

Job default coded character set identifier (DFTCCSID): A job attribute, job default CCSID
(DFTCCSID), is created for jobs with a CCSID of 65535. The DFTCCSID value is used by some system code when a CCSID other than 65535 is needed.

The DFTCCSID attribute can only be retrieved or displayed. The value of this attribute is determined as follows:

- If the job CCSID is not 65535, the DFTCCSID equals the job CCSID.
- If the job CCSID is 65535, the DFTCCSID value is based on an appropriate value derived from the job language identifier (LANGID).

Once the job is running, the system determines the default CCSID for a job using the following logic (you can find the corresponding CCSID for LANGID in default CCSID table):

1. If the job CCSID is set to a value, it uses that value.
2. If the job CCSID is set to *USRPRF, then the system checks the user profile for the value.
3. If the user profile is set to a value, it uses that value.
4. If the user profile is set to *SYSVAL, the system checks the system value.
5. If the system value for QCCSID is set to a value, it uses that value.
6. If the system value is set to 65535, the system checks the job's language ID.
7. If the job's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system converts that LANGID to a CCSID.
8. If the job's LANGID is set to *USRPRF, the system checks the user profile's language ID.
9. If the user profile's LANGID is set to a value, the QTQ_DEFAULT_CCSID environment variable is checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system converts that LANGID to a CCSID.
10. If the user profile's LANGID is set to *SYSVAL, the QTQ_DEFAULT_CCSID environment variable is checked for that LANGID value. If the QTQ_DEFAULT_CCSID environment variable contains a value for that LANGID, the CCSID specified in the QTQ_DEFAULT_CCSID environment variable is used. If the QTQ_DEFAULT_CCSID environment variable does not contain a value for the LANGID, the system converts that LANGID to a CCSID.

Language identifiers and associated default CCSIDs contains a list of language identifiers and the DFTCCSID values associated with those identifiers.

Job library list: The language used for textual data (displays, messages, printed output, and online help information) is controlled by the library list for the job.

Users can place their national language library before QSYS (the primary language library) and before any other national language libraries in their library lists. In this way, users can customize which national language versions of information are presented to them.

For more information on the national language libraries and proper authority to change these lists, see System Library List (QSYSLIBL) system value.

## System values

The system values of the primary language on the server are used as server-wide cultural and linguistic defaults. Therefore, if you change the primary language on the server, each varying system value resets to the default system value for the new primary language.

The following list shows the cultural and linguistic system values. To display or change these values, use the Work with System Value (WRKSYSVAL) command. A subset of language-dependent default system values (QCCSID, QCHRID, QCNTRYID, QCURSYM, QDATFMT, QDATSEP, QDECFMT, QKBDTYPE, QLANGID, and QTIMSEP) are shown in Default system values in the Reference section.

See System values in the Work Management topic for more information about all system values.

- Century (QCENTURY)
- Character identifier (QCHRID)
- Character identifier control system (QCHRIDCTL)
- Coded character set identifier (QCCSID)
- Coordinated universal time offset (QUTCOFFSET)
- Country or region identifier (QCNTRYID)
- Currency symbol (QCURSYM)
- System date (QDATE)
- Date format (QDATFMT)
- Date separator (QDATSEP)
- Day of month (QDAY)
- Day of week (QDAYOFWEEK)
- DBCS system indicator (QIGC)
- DBCS font name (QIGCCDEFNT)
- Decimal format (QDECFMT)
- Language identifier (QLANGID)
- Language indicator for keyboards (QKBDTYPE)
- Leap-year adjustment (QLEAPADJ)
- Locale (QLOCALE)
- Month of the Year (QMONTH)
- Set job attributes (QSETJOBATR)
- Sort sequence (QSRTSEQ)
- System library list (QSYSLIB)
- Time separator (QTIMSEP)
- Year (QYEAR)

Century (QCENTURY) system value: The century (QCENTURY) system value is used to specify the century. It is used with the system values QDATE and QYEAR to determine the specific date currently being used by the server. The possible values are:

- 0 (the years from 1928 to 1999)
- 1 (the years from 2000 to 2053)

Note: 1900 to 1927 and 2054 to 2099 are not supported years for system time. Applications can, however, support year date ranges from 0001 to 9999.

You can set the value of QCENTURY with the century indicator, or the system sets the value of QCENTURY based on the following two situations:

- At the time of the first IPL, the system sets the initial value of QCENTURY based on the following rules:
- If QYEAR is equal to or greater than 40, the system assigns a value of 0 to QCENTURY.
- If QYEAR is less than 40, the system assigns a value of 1 to QCENTURY.
- When QYEAR or the year in QDATE is changed:
- QCENTURY is set to 0 if QYEAR is 54 to 99
- QCENTURY is set to 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from 0 to 1, indicating a year of 2013. However, if you change QYEAR from 95 to 45 , the system will not change QCENTURY, because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system value QDATE.

Note: The 21st century begins at 0000 hours, 1 January 2001. However, for purposes of common understanding, the 20th/21st century boundary is defined to be between 2400 hours, 31 December 1999 and 0000 hours, 1 January 2000. This allows a discussion of the 21st century to include all dates with a 20xx format inclusive of the year 2000.

Character identifier (QCHRID) system value: The character identifier (QCHRID) is used to specify the character set and code page CHRID(*SYSVAL) for the CL commands that create, change, or override display files, display device descriptions, user interface (UIM) menus, panel groups, and printer files. You can change this value if the system QCCSID system value is set to CCSID 65535 You can also change the QCHRID value if the code page portion of the new QCHRID value is the same as the code page portion of the QCCSID value.

Character identifier (QCHRIDCTL) control system value: The character identifier control (QCHRIDCTL) system value controls the type of CCSID conversion that occurs for display files, printer files, and panel groups. You must specify the *CHRIDCTL special value on the CHRID parameter on the create, change, or override command for display files, printer files, and panel groups before this attribute will be used.

Possible values are:
*DEVD
The support provided by the *DEVD special value on the CHRID parameter for display files, printer files, and panel groups.
*JOBCCSID
The support provided by the *JOBCCSID special value on the CHRID parameter for display file, printer files, and panel groups.

Coded character set identifier (QCCSID) system value: > The coded character set identifier (QCCSID) is used to specify the CCSID for $\mathrm{i} / \mathrm{OS}^{(\mathrm{R})}$.

As shipped, the CCSID is set to CCSID 65535. CCSID 65535 means that all character data tagging support on the system is turned off, which is not generally recommended.

If you use Java, Websphere, or if you plan to transfer data between $\mathrm{i} / \mathrm{OS}$ and another client, then this value (or the corresponding value on the user profile) should be set to match the CCSID of your data. If the value is 65535 , then the encoding of the data on the system is unknown.

If you leave this value at 65535, then you may not get the results you expect when working from a client on the iSeries, or the connection might not work at all.

You can change the coded character set identifier (QCCSID) system value. When you change this value, the default character set and code page system value (QCHRID) is changed to match the character set and code page of the coded character set identifier.

If a job is started with a single byte CCSID, (from either this value or the user profile value) then that job will not support double-byte language (DBCS) users. «

Coordinated universal time offset (QUTCOFFSET) system value: The coordinated universal time offset (QUTCOFFSET) is used to show the number of degrees, in hours and minutes, by which your local system differs from the zero meridian. This value is used by the system when processing alerts that are sent to other systems, as well as by other parts of the system. If systems in a network cross time zones, the QUTCOFFSET value is sent in the alert.

This value is 5 characters long. The first character is a plus (+) sign or minus (-) sign. The next 2 characters specify hours ranging from 00 through 24 . The last two characters specify minutes ranging from 00 through 59.

For example, you have a network with one system in Brisbane, Queensland, Australia (Eastern Australia standard time zone) and one system in Caracas, Venezuela. You would set QUTCOFFSET to +1000 for the Brisbane system and to -0400 for the Caracas system.

The Brisbane system value should be changed each time the daylight saving time begins or ends. Caracas, Venezuela does not observe a daylight saving time, and its system value remains constant.

If you change this value, the change takes effect immediately.
Country or region identifier (QCNTRYID) system value: The country or region identifier (QCNTRYID) is used to indicate the default country or region identifier for the system. Setting this system value, along with the QLANGID system value, allows you to choose the correct language dictionary, encoding of data, and advanced linguistics for successful document indexing. There is no validity checking between the QCNTRYID system value and the QCCSID system value.

See Language and country/region identifiers for a list of country and region identifiers.
Currency symbol (QCURSYM) system value: The currency symbol (QCURSYM) is used to verify the currency symbols specified in the DDS keywords Edit Word EDTWRD and Edit Code EDTCDE. You can change the currency symbol to correctly reflect the monetary symbol used in your country or location. If you change this system value, the change takes effect immediately.

System date (QDATE) system value: The system date (QDATE) is used to indicate the year, the month, and the day on the system. This value is made up of the QYEAR, QMONTH, and QDAY system values. The format in which QDATE appears is specified by the QDATFMT system value. You can change the system date. If you change QDATE, the change may affect the system values for QCENTURY, QYEAR, QMONTH, QDAY, and QDAYOFWEEK. Any change you make to QDATE takes effect immediately.

Date format (QDATFMT) system value: The date format (QDATFMT) is used for the default value for the DATFMT job attribute. QDATFMT is also used to determine the format in which a date can be specified on the IPL options prompt.

This system value can be:

- YMD (year, month, day)
- MDY (month, day, year)
- DMY (day, month, year)
- JUL (Julian format, which is year, day of year)

You can change the date format to reflect the format in which months, days, and years are represented in your country or location. If you change this system value, the change takes effect for new jobs that enter the system after you make the change.

Date separator (QDATSEP) system value: The date separator (QDATSEP) is used as the date separator for the default value of the DATSEP job attribute. QDATSEP is also used as the date separator you can specify on the IPL options prompt.

You can change the date separator to reflect the character used to separate days, months, and years for your country or location. You can change the date separator to any one of the following values:

- A slash (/) as a date separator
- A hyphen (-) as a date separator
- A period (.) as a date separator
- A comma (,) as a date separator
- A blank () as a date separator

If you change this value, the change takes effect for new jobs that enter the system after you make the change.

Day of the month (QDAY) system value: The day of the month (QDAY) is used to indicate the day of the month on the system. This value must be a valid day of month or a valid day of year (if you are using Julian date format).

You can change the day of the month to reflect the current day of the month in your country or location. If you change QDAY, you also change the value for QDATE. A change to this value takes place immediately.

Day of week (QDAYOFWEEK) system value: The day of week (QDAYOFWEEK) system value specifies the day of the week on the system. This value can be:

- *SUN (Sunday)
- *MON (Monday)
- *TUE (Tuesday)
- *WED (Wednesday)
- *THU (Thursday)
- *FRI (Friday)
- *SAT (Saturday)

This value cannot be changed. It is set by the system. The value of QDATE determines the value of QDAYOFWEEK.

This value may not be set correctly if your system is not using the Gregorian calendar.
See QLEAPADJ for additional information that could affect the QDAYOFWEEK system value.
DBCS system indicator (QIGC) system value: The DBCS system indicator (QIGC) is used to specify whether a DBCS national language version is installed. This value is set when the primary national language version is installed.

If QIGC is set to 0 , no DBCS national language version is installed on the system. When QIGC is set to 0 , the coded character set system identifier (QCCSID) must be set to an SBCS coded character set identifier.

If QIGC is set to 1 , a DBCS national language version is installed as the primary language on the system. When QIGC is set to 1 , the coded character set system identifier (QCCSID) system value should be set to a mixed CCSID (such as 05026) or to CCSID 65535.
$\gg \operatorname{In}$ i5/OS ${ }^{(T M)}$ V5R3 and future releases, any NLV can support DBCS. Therefore, QIGC is always set to 1 (or on). If you have applications that check this value, update them to use the job level DBCS indicator. You can use Retrieve Job Information (QUSRJOBI) API to get the job's IGC value. <

You cannot change this value.

DBCS font name (QIGCCDEFNT) system value: The DBCS font name (QIGCCDEFNT) is used when transforming SNA character string (SCS) data into an Advanced Function Printing ${ }^{(T M)}$ data stream (AFPDS) spooled file with shift in/shift out (SI/SO) characters present in the data.

QIGCCDEFNT is a 20 -character list of up to 2 values. The first 10 characters contain the font name. The last 10 characters contain the library name. The font name can be only 8 characters. The possible values for the DBCS font name are:

## *NONE

No font is identified to the system.

## Coded font name

The name of the DBCS font.
The possible values for the library are:
*LIBL The library list is used to locate the font.

## *CURLIB

The current library is used to locate the font. If no library is specified, library QGPL is used.

## Library name

The library containing the font.
Decimal format (QDECFMT) system value: This decimal format (QDECFMT) is used to do the following:

- Determines the type of zero suppression and decimal point character used by DDS edit codes 1 through 4 and $A$ through $M$
- Determines the decimal point character for decimal input fields on displays

You can change the decimal format to reflect the way decimals are formatted for your country or location. You can change the decimal format to any one of the following values:

## (blank)

If you specify a blank, the system uses a period for a decimal point, a comma for a 3-digit grouping character, and zero suppression to the left of the decimal point. For example,

One thousand is formatted as 1,000
and
Four one-hundredths is formatted as . 04
J If you specify a J, the system uses a comma for a decimal point, a period for a 3-digit grouping character, and zero suppression at the second character to the left of the decimal point. For example,
One thousand is formatted as 1.000
and
Four one-hundredths is formatted as 0,04
I If you specify an I, the system uses a comma for a decimal point, a period for a 3-digit grouping character, and zero suppression to the left of the decimal point. For example,
One thousand is formatted as 1.000
and
Four one-hundredths is formatted as ,04
A change to this value takes place immediately.
Language identifier (QLANGID) system value: The language identifier (QLANGID) is used to specify the default language identifier for the server. This value also determines the sort sequence table to be used for sorting character data when the QSRTSEQ system value is set to *LANGIDSHR or *LANGIDUNQ.

Note: This value is not used to determine the sort sequence table when QSRTSEQ is set either to *HEX or to a user-specified table.

You can change this system value to reflect the default language identifier for your country or location.
There is no validity checking between the QLANGID system value and the QCCSID system value.
Language indicator for keyboards (QKBDTYPE) system value: The language indicator for keyboards (QKBDTYPE) is used to specify the language character set for the keyboard. This value is used as the default keyboard type when you create a display device description. See National language keyboard types and SBCS code pages for a list of language indicators for keyboards.

You can change this value to reflect the language of your keyboard.
Leap-year adjustment (QLEAPADJ) system value: The leap-year adjustment (QLEAPADJ) is used to adjust the system algorithms for the leap year in different calendar systems. If your calendar year agrees with what is used in the Gregorian calendar, this system value should be zero. If your calendar year differs from the Gregorian, you may need to adjust the system calendar algorithm to account for the leap year you are using. To make the adjustment, divide the leap year in your calendar system by 4. Then set QLEAPADJ to the value of the remainder.

For example, the Gregorian calendar year of 1988 was the year 77 in the Taiwan calendar. Because 77 was a leap year for Taiwan, you need to divide 77 by 4 . This leaves a remainder of 1. Therefore, to adjust the system calendar algorithm for Taiwan, specify a 1 for the QLEAPADJ value.

If you change QLEAPADJ, you do not change the system clock or the job dates of active jobs. Changing QLEAPADJ may result, however, in an implicit change to the QDATE system value.

Note: Not all system functions, such as DB date and timestamp fields, support QLEAPADJ when working with leap years.

Locale (QLOCALE) system value: The locale (QLOCALE) system value is used to specify a locale object that can determine how data is processed, printed, and displayed. Locales can define the language used by the system, cultural data of that language, and the type of characters displayed or printed.

The locale path name must be a path name that specifies a locale. A locale is made up of the language, territory, and code set combination used to identify a set of language conventions. The maximum path length allowed for the locale path name on the Change System Value (CHGSYSVAL) command is 1024 bytes.

The allowed values are:

| Value | Indication |
| :--- | :--- |
| *NONE: | There is no locale for the QLOCALE system value. |
| *C: | The C locale is to be used. |
| *POSIX: | The POSIX locale is to be used. |
| path-name | The path name of the locale to be used. |

Month of the year (QMONTH) system value: The month of the year (QMONTH) is used to indicate the month of the year on the server. This value must be a number from 1 (January) through 12 (December) if your system date format uses the Gregorian calendar. This value cannot be displayed or changed if your server date format uses the Julian format (year, day of year).

You can change the month to reflect the current month in your country or location. If you change QMONTH, you also change the value for QDATE. A change to this value takes place immediately.

Set job attributes (QSETJOBATR) system value: The set job attributes (QSETJOBATR) is used to set job attributes at job startup time. This system value has the following attributes that can be assigned values:

- Coded character set identifier (CCSID)
- Date format (DATFMT)
- Date separator (DATSEP)
- Decimal format (DECFMT)
- Sort sequence (SRTSEQ)
- Time separator (TIMSEP)

The system sets the initial values for these atributes from the locale (QLOCALE) system value.
Sort sequence (QSRTSEQ) system value: The sort sequence (QSRTSEQ), along with QLANGID, is used to determine the sort sequence table to be used for sorting character data. You can change QSRTSEQ to any one of the following values:

| Value | Meaning |
| :--- | :--- |
| *HEX | No sort sequence table is used. The hexadecimal values of the graphic characters are used <br> to determine the sort sequence (a binary sort). This is the only sort sequence available for <br> DBCS data. <br> Note: When you specify values other than *HEX for mixed-byte character data, SBCS <br> character data is sorted according to the sort sequence specified. DBCS character data is <br> sorted by hexadecimal values (binary sort). |
| *LANGIDSHR | The sort sequence table may use the same weight for multiple graphic characters. The <br> shared-weight sort table associated with the language specified in the LANGID parameter is <br> used. This sort applies only to SBCS data. |
| *LANGIDUNQ | The sort sequence table contains uniquely weighted graphic characters. The unique-weight <br> sort table associated with the language specified in the LANGID parameter is used. This sort <br> applies only to SBCS data. |
| Qualified sort <br> sequence table name | The name and library of the sort sequence table to be used. This value allows you to specify <br> a sort sequence table other than those associated with the language specified in the <br> LANGID parameter. This sort sequence table can be used to sort Unicode and SBCS data. |

See Sort sequence tables for more information about sort sequence tables.
System library list (QSYSLIBL) system value: The system library list (QSYSLIBL) is used as the first part of the library list associated with a job. The libraries in the system part of the library list of a job are searched before any other libraries in the library list of a job. The list can contain as many as 15 names. You cannot delete or rename a library specified as part of the system library list, because libraries in this library list are locked.

You can change the system library list (QSYSLIBL). If you change QSYSLIBL, the change takes place immediately for new jobs entering the system. The change does not affect running jobs, unless the application in the job accesses the system library list directly.

Time separator (QTIMSEP) system value: The time separator (QTIMSEP) is used to specify the character separator for time. This value is used as the time separator for the default value of the TIMSEP job attribute. This value is also used as the time separator that you can specify on the IPL options prompt.

You can change the time separator to reflect the character used to separate hours and minutes for your country or location. You can change the time separator to any one of the following values:

- A colon (:) as a time separator
- A period (.) as a time separator
- A comma (,) as a time separator
- A blank ( ) as a time separator

If you change this value, the change takes effect for new jobs that enter the system after you make the change.

Year (QYEAR) system value: The year (QYEAR) is used to specify the last two digits of the year on the system. This value ranges from 0 through 99. The system assigns the first two digits for the year based on the current setting for the QCENTURY system value. If the calculated year falls outside the range of dates supported by the system (1928 to 2053), the QCENTURY system value is changed so that the calculated year is within the supported range.

If you change this system value:

- QCENTURY is set to 0 if QYEAR is 54 to 99
- QCENTURY is set to 1 if QYEAR is 00 to 27

For example, if you change QYEAR from 95 to 13, the system changes QCENTURY from 0 to 1, indicating a year of 2013. However, if you change QYEAR from 95 to 45 , the system will not change QCENTURY, because both 1945 and 2045 are valid dates.

If you change this value, the change takes effect immediately. Changing this value also affects the system value QDATE.

## Device descriptions

Following are the control language (CL) command parameters that you can use to change cultural and linguistic conventions for some display and printer devices.

Note: Some printer device descriptions do not allow you to specify a CHRID.

- Character identifier (CHRID) parameter. You can change the character identifier when you create or change device descriptions for printers and displays. Change the character identifier for a printer or display device using one of the following commands:
- The Create Device Description (Display) (CRTDEVDSP)
- The Change Device Description (Display) (CHGDEVDSP
- The Create Device Description (Printer) (CRTDEVPRT)
- The Change Device Description (Printer) (CHGDEVPRT)
- Keyboard type (KBDTYPE) parameter. You can set the keyboard language type for a keyboard when you create a device description. Set the keyboard language type using the CHGDEVDSP command.
- Workstation customization (WSCST) parameter. You can set the workstation customization parameter when creating a device to specify the use of a customized keyboard layout. To set this parameter, the display device must be varied off. You can specify the WSCST parameter when using the CRTDEVDSP command. .
- Language type (LNGTYPE) parameter. When you create an ASCII printer using the CRTDEVPRT command, the LNGTYPE parameter describes the default country or region keyboard language identifier for the printer. When you specify the *SYSVAL value, the QKBDTYPE system value is used.


## Display and printer files

Following are the keywords and command parameters that you can use to change cultural and linguistic values for display files and printer files.

- The Create Display File (CRTDSPF), Change Display File (CHGDSPF), Create Printer File (CRTPRTF), Change Printer file (CHGPRTF) and Override Printer File (OVRPRTF) commands. You can specify a character identifier explicitly:
- As the QCHRID system value (*SYSVAL)
- As a device description or a device default of the output device (*DEVD)
- With the *JOBCCSID value
- As using the *CHRIDCTL system value (*SYSVAL)
- Character identifier (CHRID) keyword in DDS. Use this field-level keyword to identify fields that should be converted to the character identifier (CHRID) of the device. Use this keyword in conjunction with the CHRID parameter on the CRTDSPF, CHGDSPF, CRTPRTF, CHGPRTF, and OVRPRTF commands. This keyword is ignored, however, when the CHRID parameter of these commands is set to *JOBCCSID.
- The SRTSEQ parameter and LANGID parameter on the CRTDSPF command. These parameters can be used to specify a sort sequence and a language identifier for a display file.

Note: If *JOBCCSID is not specified for the CHRID parameter of a display file (either directly or indirectly with CHRIDCTL), the CHRID parameter of the display file must be compatible with the job CCSID.
Otherwise, unpredictable results might occur when data is displayed or when data is stored in a database file.

## Database files

Following are the command parameters that you can use to change language-dependent values for database files:

- The SRTSEQ, LANGID, and CCSID parameters on the Create Physical File (CRTPF) command
- The SRTSEQ, LANGID, and CCSID parameters on the Change Physical File (CHGPF) command
- The parameters on the Copy File (CPYF) command
- The SRTSEQ parameter and LANGID parameter on the Create Logical File (CRTLF) command

These parameters can be used to specify a sort sequence and language for a database file.

## DDS keywords for database files

Following are the DDS keywords that you can use to change language-dependent values for database files:

- The CCSID keyword. This keyword can be used to tag character data stored in a database. By default, the CCSID value is taken from the job creating the database file.
- DATFMT, DATSEP, TIMFMT, and TIMSEP keywords in DDS.

The format of the data type Time (T) field is described by DDS with the TIMFMT keyword that can have *JOB specified for a value. Similarly, the format of the data type Date (L) is described by DDS with the DATFMT keyword that can have *JOB specified for a value.
Use the TIMSEP and DATSEP keywords to specify date and time separators.

## UIM menus and panel groups

You can use commands to specify a *JOBCCSID for a menu or a panel group.
The CHRID parameter on the Create Menu (CRTMNU) command for creating menus can be used to specify a *JOBCCSID value for a menu. Conversion is automatically done between the CHRID parameter of the device and the CCSID value of the menu.

The CHRID parameter on the Create Panel Group (CRTPNLGRP) command for creating panel groups can be used to specify a *JOBCCSID value for panel groups. Conversion is automatically done between the CHRID of the device and the CCSID of the panel group and the CCSID of the job.

## Set up OS/400 with a national language version

The feature code identified when you order an $\mathrm{OS} / 400^{(\mathrm{R})}$ program is the language of your textual data and is called the primary language of the system. Any other language versions that you have ordered are called secondary languages. For secondary languages, the national language version consists of only the textual data for all licensed programs ordered. The program code is not contained in the secondary language version.

The primary language is the language in which the system is serviced and from which all language-dependent or culture-dependent system values are initialized. In addition, other system objects and functions assume attributes based on the primary language. For example, messages appearing in the history log always appear in the primary language.

The following topics provide details about setting up OS/400 with a national language version:

- How a language is displayed for OS/400 functions
- Installation preparation
- Checklist: Globalization planning
- Ordering equipment and software
- Hardware installation
- Software installation
- Configuring a national language version
- Scenarios: Setting up OS/400 with a national language version


## For more information

See the Software Installation PDF for complete details on installing your primary language and licensed programs.

## How a language is displayed for OS/400 functions

If you want information presented in a language other than the primary language of the server, you must first have a secondary language loaded. When a secondary language is loaded, you can display information in that language in any of three ways.

## Method 1: Place the desired language at the top of your library list

One way to display information in a secondary language is to change the system part of your library list so that your desired national language library is positioned before all other libraries in the system library list that contain national language information.

For example, to present the French version of textual data, you could enter the following command to place French information at the top of the library list:
CHGSYSLIBL LIB(QSYS2928) OPTION(*ADD)
To remove a library from the library list enter:
CHGSYSLIBL LIB(QSYS2928) OPTION(*REMOVE)
Note: The authority shipped with the CHGSYSLIBL command does not allow all users to run the command. As shipped, you must have *ALLOBJ and *SECADM special authority to use the Change System Library List (CHGSYSLIBL) command.

## Method 2: Create a subsystem for the desired language

A second way to present information in a different language is to follow these steps:

1. Create a subsystem for the secondary language.
2. Define the subsystem system part of the library list entry with the national language version library for the secondary language.

All jobs running in the subsystem use textual data from the secondary language. All jobs that you submit as batch jobs have the national language version library as the first library on the system part of the library list.

## Method 3: Change the library list for your job so that the national language version library for the secondary language is the first library on the system part of the library list

A third way to present information in a different language is to change the library list for your job so that the national language version library for the secondary language is the first library on the system part of the library list. All jobs running in the subsystem use textual data from the secondary language. All jobs that you submit as batch jobs have the national language version library as the first library on the system part of the library list.

## How a language of your choice is displayed for licensed programs

Libraries for other licensed programs are added either automatically, or must be added by the user, when needed. If you want to add libraries for other licensed programs to your library list, use the CHGLIBL command.

## Installation preparation and national languages

$\mathrm{IBM}^{(R)}$ periodically creates program temporary fixes (PTF) to correct existing problems or potential problems within a particular IBM licensed program. PTFs are designed to fully replace one or more objects in the licensed program. Primary and secondary languages may have language-sensitive online information PTFs.

If the primary language of your system is changed at any time for reasons other than a new release update, the cumulative PTF package of the new primary language should be at the same level as the previous primary national language. PTFs that were associated with the primary language and any secondary language must be applied again. In addition, primary language and secondary language PTFs for the online information need to be ordered by the customer.

## Checklist: Globalization planning

When planning to install a multilingual system, start by completing the Globalization planning checklist for globalization and multilingual support. The checklist consists of two parts, which should be completed sequentially.

## Globalization checklist: Part 1

Before you work with a national language, answer the questions in the following table. After you have answered the questions in this table, you can then use Planning checklist for globalization support, part 2 (page 25 for planning for multilingual support.

| Check off | Question | Response |
| :--- | :--- | :--- |
|  | What national language version for the primary <br> language are you going to install? (Refer to Set up <br> lan iSeries ${ }^{(\mathrm{TM})}$ server with an NLV.) |  |
|  | What program library can it be ordered from? <br> (Refer to |  |


| Check off | Question | Response |
| :--- | :--- | :--- |
|  | Are you going to use a DBCS national language <br> version as a secondary language? (Refer to <br> Secondary language requirements.) |  |
|  | Are you aware that the latest 5250 PC emulation is <br> necessary to support graphics data format (GDF) <br> type? |  |
|  | What national language version for the secondary <br> language are you going to install, if any? (Refer to <br> Secondary language requirements.) |  |
|  | Do you want to change your subsystem to change <br> the language of your initial sign-on display? (Refer <br> to Secondary language requirements |  |
|  | What release level of the national language version <br> for the primary language are you ordering? (Refer <br> to Selection and change of a primary language |  |
|  | Are the release levels of the national language <br> version for the secondary language the same as <br> the primary language you ordering? (Refer to |  |
| Secondary language requirements.) |  |  |

Globalization checklist: Part 2
When you have completed part 1 (page 24) of the checklist, answer the additional questions in part 2, below:

| Check off | Question | Response |
| :---: | :---: | :---: |
|  | What local workstation controllers support your language? (Refer to Order equipment and software) |  |
|  | What display stations and keyboards are required to support your language? (To determine the display stations and keyboards, refer to Order equipment and software and Multilingual support for the iSeries workstation controller) |  |
|  | What printers support your language? (Refer to Order equipment and software) |  |
|  | What keyboard ID are you using for your local devices? (Refer to National language version default system values) |  |
|  | What remote workstation controllers support your language? (Refer to Order equipment and software) |  |
|  | What display stations and keyboards support your language from a remote location? (Refer to Order equipment and software and Multilingual support for the iSeries workstation controller) |  |
|  | What printers support your language from a remote location? (Refer to Order equipment and software) |  |


| Check off | Question | Response |
| :--- | :--- | :--- |
|  | What keyboard ID are you using for your remote <br> devices? (Refer to National Language Version |  |
| default system values) |  |  | | Are you considering the workstation customization |
| :--- |
| function for workstations? (See the Workstation |$\quad$.

## Order equipment and software

To properly support a language or multiple languages on a single system, the appropriate hardware and software must be ordered and configured. This section describes some considerations you should take into account when ordering your hardware and software.

- Workstation controller requirements
- Keyboards


## Workstation controllers

Workstation controllers that attach to the iSeries ${ }^{(T M)}$ server can support a number of different languages simultaneously. The characteristics of multilingual support depend on the type of workstation controller. The types of workstation controllers that can be attached to the iSeries server are:

- Twinaxia
- ASCII
- Remote


## Multilingual support for the iSeries workstation controller

There are limitations to the amount of support provided by a workstation controller in a multilingual support.

- The workstation must be able to transmit and receive data in the required language.
- Each workstation controller supports a maximum number of languages at the same time, regardless of the keyboard types. This maximum number is in addition to the U.S. English support.
- Twinaxial workstation controllers support a maximum of 3 languages.
- ASCII workstation controllers support a maximum of 14 national language versions, in addition to U.S. English.
- The number of keyboard types allowed on a workstation controller is dependent on the different keyboard types required.

Twinaxial workstation controller requirements: The local twinaxial workstation controller maps keyboard data received from a workstation into EBCDIC values corresponding to the keyboard ID configured for that workstation on the system. Multiple languages are supported by using a separate keyboard mapping table to handle each unique combination of national language version and keyboard for each workstation attached to the system.

The amount of storage available within the twinaxial workstation controller for mapping tables is limited and restricts the total number of national language versions that the workstation controller can simultaneously support. Depending on the mix of languages and types of keyboards, the twinaxial workstation controller can support several different national language versions simultaneously (in addition to U.S. English, which is always available).

## Keyboard types on the twinaxial workstation controller

The twinaxial workstation controller supports the following types of IBM ${ }^{(R)}$ keyboards:

- 5250 typewriter keyboard
- 5250 data entry keyboard
- 122-key typewriter keyboard
- 122-key data entry keyboard
- Enhanced keyboard

The sum of the computational factors for a language and keyboard type must not exceed 22 for the twinaxial workstation controller. The following table shows the computational factor for each language, KBDTYPE parameter, and keyboard type.

Each workstation controller supports a maximum number of languages at the same time, regardless of the keyboard types. This maximum number is in addition to the US English support.

Note: The actual number of keyboards of each type does not have any impact on the sum. For example, the computational factor is 3 whether there are 1 or 30 enhanced keyboards running Austrian/German.

## Language and keyboard computational factor table

To use the language and keyboard computational factor table, do the following:

1. Identify the language down the first column of the table.
2. Identify the keyboard type across the row for the selected language.
3. Record the computational factor listed for each keyboard type.
4. Repeat the first three steps for all the required keyboard types.
5. Add the computational factor for all required keyboard types.
a. If the sum of all computational factors does not exceed 22, then the twinaxial workstation controller can support all the required keyboard types for the languages.
b. If the sum of the computational factors exceeds 22 , then the twinaxial workstation controller may not support all the required keyboard types for the languages.

| Language | KBDTYPE | 5250 <br> Typewriter Keyboard | 5250 Data Entry Keyboard | 122-key Typewriter Keyboard | 122-key Data Entry Keyboard | Enhanced Keyboard |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Albanian | ALI | N/A | N/A | 1 | N/A | 3 |
| Arabic | CLB | 2 | N/A | 2 | N/A | 2.5 |
| Austrian / German | AGB | 1 | 1 | 1 | N/A | 3 |
| Austrian / German MNCS | AGI | 1 | 1 | 1 | N/A | 3 |
| Belgian Dutch MNCS | BLI | 1 | 1 | 1 | N/A | 3 |
| Brazilian Portuguese | BRB | 1 | 1 | 1 | N/A | 3 |
| Bulgarian | BGB | N/A | N/A | N/A | N/A | 3 |
| Canadian French | CAB | 1 | 1 | 1 | 1 | 3 |
| Canadian French MNCS | CAI | 1 | 1 | 1 | 1 | 3 |
| Croatian | YGI | 1 | 1 | 1 | N/A | 3 |
| Cyrillic | CYB | 2 | N/A | 2 | N/A | 2.5 |
| Czech | CSB | N/A | N/A | N/A | N/A | 3 |
| Danish | DMB | 1 | 1 | 1 | N/A | 3 |
| Danish MNCS | DMI | 1 | 1 | 1 | N/A | 3 |
| Estonia | ESB | N/A | N/A | N/A | N/A | 1.5 |
| Finnish / Swedish | FNB | 1 | 1 | 1 | N/A | 3 |
| Finnish / Swedish MNCS | FNI | 1 | 1 | 1 | N/A | 3 |
| French (Azerty) | FAB | 1 | 1 | 1 | N/A | 3 |
| French (Azerty) MNCS | FAI | 1 | 1 | 1 | N/A | 3 |
| French (Qwerty) | FQB | 1 | 1 | N/A | N/A | N/A |
| French (Qwerty) MNCS | FQI | 1 | 1 | N/A | N/A | N/A |
| Greek | GNB | 2 | N/A | 2 | N/A | 2.5 |
| Hebrew | NCB | 2 | N/A | 2 | N/A | 2.5 |
| Hungarian | HNB | N/A | N/A | 1 | N/A | 3 |
| Icelandic | ICB | 1 | N/A | 1 | N/A | 3 |
| Icelandic MNCS | ICI | 1 | N/A | 1 | N/A | 3 |
| International | INB | 1 | 1 | N/A | N/A | N/A |
| International MNCS | INI | 1 | 1 | N/A | N/A | N/A |
| Iran (Farsi) | IRB | N/A | N/A | 2 | N/A | 2.5 |
| Italian | ITB | 1 | 1 | 1 | N/A | 3 |
| Italian MNCS | ITI | 1 | 1 | 1 | N/A | 3 |
| Japanese - English | JEB | 1 | 1 | N/A | N/A | N/A |
| Japanese - English MNCS | JKB | 1 | 1 | N/A | N/A | N/A |
| Japanese - Kanji and Katakana | JKB | N/A | N/A | N/A | N/A | 2.5 |
| Japanese - Kanji and US English | JUB | N/A | N/A | 1 | N/A | N/A |
| Japanese Katakana | KAB | 2 | 2 | 2 | 2 | 2.5 |


| Language | KBDTYPE | 5250 <br> Typewriter Keyboard | 5250 Data <br> Entry <br> Keyboard | 122-key Typewriter Keyboard | 122-key Data Entry Keyboard | Enhanced Keyboard |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Japanese Latin Extended | JPB | 1 | 1 | N/A | N/A | N/A |
| Korean | KOB | 1 | 1 | 1 | 1 | 1 |
| Latin 2 | ROB | 1 | N/A | 1 | N/A | 1.5 |
| Latvia | LVB | N/A | N/A | N/A | N/A | 2.5 |
| Lithuania | LTB | N/A | N/A | N/A | N/A | 2.5 |
| Macedonian | MKB | N/A | N/A | N/A | N/A | 2.5 |
| Netherlands Dutch | NEB | 1 | 1 | 1 | 1 | 3 |
| Netherlands Dutch MNCS | NEI | 1 | 1 | 1 | 1 | 3 |
| Norwegian | NWB | 1 | 1 | 1 | 1 | 3 |
| Norwegian MNCS | NWI | 1 | 1 | 1 | 1 | 3 |
| Polish | PLB | N/A | N/A | 1 | N/A | 3 |
| Portuguese | PRB | 1 | 1 | 1 | N/A | 3 |
| Portuguese MNCS | PRI | 1 | 1 | 1 | N/A | 3 |
| Romanian | RMB | 1 | 1 | 1 | N/A | 3 |
| Russian | RUB | N/A | N/A | N/A | N/A | 3 |
| Serbian (Latin) | YGI | 1 | 1 | 1 | N/A | 3 |
| Serbian (Cyrillic) | SQB | 1 | 1 | 1 | N/A | 3 |
| Simplified Chinese | RCB | 1 | 1 | 1 | 1 | N/A |
| Slovakian | SKB | N/A | N/A | 1 | N/A | 3 |
| Slovenian | YGI | 1 | 1 | 1 | N/A | 3 |
| Spanish | SPB | 1 | 1 | 1 | N/A | 3 |
| Spanish MNCS | SPI | 1 | 1 | 1 | N/A | 3 |
| Spanish Speaking | SSB | 1 | 1 | 1 | 1 | 3 |
| Spanish Speaking MNCS | SSI | 1 | 1 | 1 | 1 | 3 |
| Swedish | SWB | 1 | 1 | 1 | N/A | 3 |
| Swedish MNCS | SWI | 1 | 1 | 1 | N/A | 3 |
| Swiss / French MNCS | SFI | 1 | N/A | 1 | N/A | 3 |
| Swiss / German MNCS | SGI | 1 | N/A | 1 | N/A | 3 |
| Thai | THB | N/A | N/A | N/A | N/A | 2.5 |
| Traditional Chinese | TAB | 1 | 1 | 1 | 1 | 1 |
| Turkish (QWERTY) | TKB | 1 | N/A | 1 | N/A | 1.5 |
| Turkish (F) | TRB | 1 | N/A | 1 | N/A | 1.5 |
| United Kingdom English | UKB | 1 | 1 | 1 | 1 | 3 |
| United Kingdom English MNCS | UKI | 1 | 1 | 1 | 1 | 3 |
| United States / Canada English | USB | See note. |  |  |  |  |
| United States / Canada MNCS | USI | 1 | 1 | 1 | 1 | 3 |

Note: Information about USB is not included, because it is always available and does not take up any additional space in the workstation controller.

ASCII workstation controller requirements: Like twinaxial devices, ASCII devices for different national language versions support different code pages. The ASCII workstation controller handles conversion of data back and forth between a particular EBCDIC code page for a language and an ASCII code page for that same language by using a set of mapping tables.

The ASCII workstation controller can simultaneously support 14 national language versions (in addition to U.S. English, which is always available).

The set of languages that may be selected for the ASCII workstation controller is a subset of the language types that may be selected for the twinaxial workstation controller. For the list of languages supported by the ASCII workstation controller, see Multilingual support for the iSeries ${ }^{(T M)}$ workstation controller (page 26.

## Keyboard types on an ASCII workstation controller

The maximum number of country and keyboard types on the ASCII workstation controller is 14. Depending on the display or printer device type, the controller may be able to fully support all graphic characters in a language. If the display or printer does not support all graphic characters in your language, you can use the workstation customization function to display and print unsupported graphic characters.

## Languages supported without workstation customization

- Arabic
- Austrian/German
- Austrian/German MNCS
- Belgian Dutch MNCS
- Canadian French
- Canadian French MNCS
- Danish
- Danish MNCS
- Finnish/Swedish
- Finnish/Swedish MNCS
- French (Azerty)
- French (Azerty) MNCS
- Hebrew
- Italian
- Italian MNCS
- Norwegian
- Norwegian MNCS
- Portuguese
- Portuguese MNCS
- Spanish
- Spanish MNCS
- Spanish Speaking
- Spanish Speaking MNCS
- Swedish
- Swedish MNCS
- Swiss/French
- Swiss/French MNCS
- Swiss/German
- Swiss/German MNCS
- United Kingdom English
- United Kingdom English MNCS
- United States and Canada English
- United States and Canada English MNCS


## Languages supported using workstation customization

Using the workstation customization functions, the following countries or languages can also be supported by the ASCII workstation controller.

- Brazilian Portuguese
- Croatian
- Cyrillic
- Czech
- Estonian
- Greek
- Hungarian
- Icelandic
- Icelandic MNCS
- Latin 2
- Latvian
- Lithuanian
- Polish
- Russian
- Slovakian
- Slovenian
- Turkish
- Thai
- Ukranian

5394 remote workstation controller requirements: The 5394 remote workstation controller is a twinaxial workstation controller and uses conversion tables to map the data between the devices.

The 5394 remote workstation controller can support up to 4 MNCS languages at a time and only one language that is not a MNCS language. When changing languages, you must change the keyboard language code. Changing the keyboard language code is explained further in the 5394 Remote Control Unit Setup Guide and the 5394 Remote Control Unit Introduction and Installation Planning book.

5494 remote workstation controller requirements: The 5494 remote workstation controller has 4 ports for twinaxial workstations, a port for communication networks, and on the Model 002, a port for attaching to a token-ring network.

The 5494 remote workstation controller can support up to 4 MNCS languages at a time and only one language that is not a MNCS language. When changing languages, you must change the keyboard language code. Changing the keyboard language codes is explained further in the 5494 Remote Control Unit Planning Guide and the 5494 Remote Control Unit User's Guide

## Keyboards

You can choose the keyboard that matches the national language version you are using; see the Keyboard layouts topic in the Reference information for illustrations of these keyboards.

## Determine the number of supported keyboard types

To determine the number of keyboard types that the twinaxial or ASCII controllers can support, you must understand the following:

- A twinaxial or ASCII workstation controller can support several types of keyboards and languages.
- Each of the supported languages may be available on more than one of the supported keyboards.
- For each workstation controller, the size of the conversion table for each keyboard is different.
- The matrix for languages used on each supported keyboard type is called a keyboard and language computational factor.
- The sum of the computational factors for each required keyboard type determines whether all required keyboard types can be supported on one workstation controller.
- If the sum of the computational factors for the required keyboard types exceeds the maximum limit, the language for the first workstation that caused the overflow and any additional workstations default to U.S. English.
- To recover from a keyboard-type overflow, you can do one of the following:
- Attach the workstation causing the overflow to a second workstation controller.
- On the same workstation controller, configure the workstations causing the overflow to some other keyboard type that reduces the sum of the computational factor to within the maximum limits.


## Hardware installation and national languages

When installing or changing a device on your system, you must make sure that the device is configured correctly to reflect the keyboard ID that matches the character set and code page of the job CCSID. Changing the keyboard configuration of a device results in different behavior, similar to adding a new display or printer to the system.

Panels, menus, and messages used by the installation process do not support right-to-left presentation of data. Therefore, online information for the installation appears left to right, in English, for bidirectional languages (such as Arabic and Hebrew).

The following topics provide additional information about hardware installation:

- Console device
- Workstation consideration
- Considerations for changing printers


## Console device

Make sure that your console device is configured to support the default code page of the primary language you are going to install. If the console device supports the code page of the new primary language, panels, messages, and online help will display properly after you change the primary language. For example, you cannot have a 5555 configured as the console device unless the primary language is a DBCS language.

You must change the console device to one that supports the code page of the new primary language before doing the IPL that activates the new primary language. Make sure that autoconfig is on before doing this IPL.

Scenario: Console configured as a single-byte device: Your system has a primary language of English Uppercase DBCS (feature 2938). You decide to change the primary language to Japanese DBCS (feature 2962).

The existing console device on your system is configured as a single-byte-only English device using a code page of 00037 . While a single-byte English device supports the installation of all other single-byte national language versions, it does not support the installation of double-byte national language versions. You must change the console device to one that supports the Japanese DBCS code page before doing the activation IPL.

If you do not change the console device to one that supports the Japanese DBCS code page, the IPL cannot complete.

Scenario: Console configured with an F-type keyboard: Assume that your system has a primary language of English (feature 2924) and you decide to change your primary language to Czech, Farsi, Hungarian, Russian, Polish, Slovakian, or Thai. Also assume that your system console has an F Type keyboard (a relatively old keyboard type).

While F type keyboards are supported for many national language versions, they are not supported for Czech, Farsi, Hungarian, Russian, Polish, Slovakian, or Thai. You must change the system console to a device that does not have an F type keyboard.

If you do not change the console device and keyboard, an error results because there is no keyboard mapping table supported for the F type keyboard in your new primary language (Czech, Farsi, Hungarian, Russian, Polish, Slovakian, or Thai). The IPL that occurs when changing the primary language cannot complete.

## Workstation considerations

In a multilingual environment, different workstations support different languages on the same iSeries ${ }^{(T M)}$ server. Any data that is not tagged with CCSIDs should be stored in separate objects, unless the CCSID for each language is the same. Data that is tagged with CCSIDs (such as message files and database files) do not have to be stored in separate objects.

To correctly retrieve, process, and display data that is not tagged with CCSIDs, the application being used needs to be aware of the language differences, and how they relate to the following:

- Programmable workstations through iSeries Access programs
- Nonprogrammable workstations

Note: The 3486, 3487, 3488 model V, and 3489 displays support all languages (except Thai) listed in 3486, 3487, 3488 Model V, and 3489 Keyboard and Display Part Numbers by Language.

- Keyboards

Keyboard layouts contains examples of the $\mathrm{IBM}^{(\mathrm{R})}$-enhanced keyboard for the languages supported by OS/400 ${ }^{(1) 1)}$.

- Telnet or pass-through implications

The characters shown on your workstation depend on the keyboard type defined on your source system. If you pass through to the target system and use a virtual device with a different keyboard type, you may not see the same characters as if you were directly attached to the target system, because the target system uses another language.

## Considerations for changing printers

When changing printers, consider the areas of data interchange, data stream, fonts, and host printer emulation.

- Interchange (a System/370 $0^{(T \mathrm{TM})}$ system or a System/390 ${ }^{(\mathrm{R})}$ system sending Advanced Function Printing (AFP ${ }^{(T M)}$ ) data for DBCS to $\mathrm{OS} / 400^{(\mathrm{R})}$.)
AFP data containing DBCS data can be generated on OS/400. In addition, the server can receive AFP-generated data from the System/370 system containing DBCS data and print it on IPDS ${ }^{(T M)}$ printers attached to the iSeries ${ }^{(T M)}$ server. The IPDS printers must be configured with *YES specified for the AFP parameter.
- Data Stream

Printers consist of SNA character string (SCS) and intelligent printer data stream (IPDS) printers. SNA character string (SCS) is a data stream composed of EBCDIC controls, optionally intermixed with end-user data, which is carried within a request/response unit. Host-attached SCS printers can be configured by the systems engineer or by the customer, using a diskette or selection of keys on the printer. The appropriate printer operator's guide should be used to determine how to configure the SCS printer for the language you are using.
One of the strengths of IPDS is that independent applications can create source data. The source data from independent applications is merged at the printer to create an integrated mixed data page. For example, text data could be produced on an editor like the OfficeVision ${ }^{(R)}$ editor, image data could be the output of a scanner stored in a folder, and graphics data could be produced by the Business Graphics Utility program. IPDS makes it possible to integrate application output rather than requiring the use of integrated applications.

- Fonts

Font types for IPDS printers can be configured through the use of the Create Device Description (Printer) or Change Device Description (Printer) CRTDEVPRT or CHGDEVPRT] commands. Fonts may be downloaded from the host or may be saved in printer storage.
For a list of the character identifier (CHRID values) supported by the various printers and languages,
see the Printer Device Programming PDF.

- iSeries Access printer to emulate host printer

The iSeries Access programs support multiple languages on a single server. An iSeries Access user (except for host emulation) can use any single language of choice that is installed on the attached iSeries server. If an iSeries Access user has a host emulation session with five different iSeries servers, the user can potentially view a different language on each session. However, the same personal computer ASCII code page must be on all the systems.
Refer to the iSeries Access topic for your environment for information on installing and configuring attached PC printers.
For information about a specific device, see the appropriate device manuals.

## Software installation and national languages

If your system will be communicating with systems using different languages, use care when specifying configuration names that will be exchanged with the remote system. Do not use characters that may not be available on the keyboard used by the remote system; for example, characters such as a dollar sign (\$), pound sign (\#), and an at sign (@). For an illustration of characters you can use in configuration names, see Invariant character set

You should limit support of configuration names that use characters outside of the invariant character set to those already in use on existing systems.

Configuration names that may be exchanged with remote systems include:

- Network identifiers
- Location names
- Control point names
- Mode description names
- Class-of-service description names
- User IDs (from the directory entry)

For more information on configuration names, see the Communications Configuration in the V5R1 Information Center Supplemental Manuals topic). For more information on software
installation, see the Software Installation

## Configure a national language version

The following topics provide information about configuring $\mathrm{OS} / 400^{(\mathrm{R})}$ with a national language version:

- User profile name considerations
- Service tools
- System and user interfaces
- Configuring the primary language
- Configuring secondary languages
- Installing and enabling locales


## User profile name considerations

The user profile name identifies the user to the server. This user profile name is also known as the user ID. It is the name the user types in the User prompt on the Sign On display.

The user profile name can be a maximum of 10 characters. The characters can be:

- Any letter (A through Z)
- Any number (0 through 9)
- In addition to these characters, three special codepoints are allowed ( $x^{\prime} 5 B^{\prime}, x^{\prime} 7 B^{\prime}, x^{\prime} 7 C^{\prime}$ ). For many CCSIDs, including 37, these code points are interpreted as '\$', '\#', and '@', respectively. For other CCSIDs, however, these code points represent other characters. Although these code points are allowed, you should avoid using them because of the potential misinterpretation when multiple CCSIDs are used on a single system. For example, a Spanish person using CCSID 284 may create a user profile with the name "ESPA $\tilde{\mathbf{N}}$ OL", but an English person using CCSID 37 would see this name as "ESPA\#OL".

The user profile name cannot begin with a number.
Note: You can create a user profile such that when a user signs on, the user ID is only numerals. To create a profile like this, specify a $Q$ as the first character, such as Q12345. A user can then sign on by entering 12345 or Q12345 for the User prompt on the Sign On display. See the iSeries ${ }^{(T M)}$ Security

Reference
PDF for more detailed information on user profile considerations.

## Service tools

Panels, messages, and online help information for service tools are usually shown in the primary language of the system. Therefore, the workstation from which the system is being serviced must be configured to support the primary language, and the keyboard for the primary language must be attached to that workstation.

Panels, menus, and messages used by the service tools do not support right-to-left presentation of data. Therefore, online information for the service tools appears left to right, in English, for bidirectional languages (such as Arabic and Hebrew).

## System and user interfaces

The server interfaces and user interfaces are presented through a workstation or printer. The workstation controller interprets keystrokes on keyboards according to the mapping determined by the KBDTYPE parameter in the device description. The display presents the data to the user, depending on the code page mapping located in the workstation controller. This code page mapping in the workstation controller is determined by the CHRID parameter in the device description. Each supported keyboard type has a character identifier assigned to it, and the default setting of CHRID in the device description (*KBDTYPE) refers to that character identifier. For information about setting code page and national language support on a personal computer, refer to the iSeries ${ }^{(\mathrm{TM})}$ Access topic.

See the following topics for more information about system and user inferfaces:

- NLV automatic device configuration
- NLV automatic character set and code page conversion
- NLV printer file conversion

Automatic device configuration: Automatic configuration defines the local devices and some remote devices to the server for you. This means that the devices attached to your server are available for use when the server is running and has a powered-on display. You do not have to use manual configuration to create configuration descriptions for the devices before you can use them. For devices that are able to send configuration information to the workstation controller, the KBDTYPE parameter is set according to the keyboard attached. If the device cannot send KBDTYPE information to the server, the QKBDTYPE (keyboard system value) is used. For more information about automatic configuration, see the Local
Device Configuration PDF.
Note: If you use manual configuration to set up a device with a different keyboard type than the hardware reports, automatic configuration changes the device description to match the keyboard attached. To avoid this, each time the device is powered on, you can switch automatic configuration off by setting QAUTOCFG system value to 0 (Off).

Automatic character set and code page conversion: The system provides automatic conversion between character set and code pages for all applications that are enabled for national language support. This automatic conversion can be controlled in the display, menu, or panel source, or through the CHRID parameter on the control language (CL) commands that create these displays. The character set and code page of the device used by the end user is determined by the CHRID parameter in the device description. The CHRID value is normally set to *KBDTYPE.

When the data to be presented is in a character set and code page different from the language of the end user, automatic data conversion may occur. For detailed information on data conversions, refer to the Implement CDRA with CCSIDs topic. For a list of supported CCSIDs, see the CCSIDs topic in the Globalization reference topic.

Printer file conversion: The printer provides printed output to the user. OS/400 ${ }^{\left({ }^{(R)}\right.}$ printer support does not do any conversion between the different character sets. For the data to be printed, the user must make sure that the proper character set and code page are specified in the printer and the fonts are in the printer.

If the CHRID value of the printer file is set to *JOBCCSID, the printer joins the CHRID value of the job CCSID to the data to be printed. For externally described printer files, constants within your DDS (data description specification) are converted from the DDS source file CCSID to the character identifier of the job CCSID value.

## Configure the primary language

A primary language consists of program code, textual data for each licensed program ordered, and default national language cultural values. The primary language is the language in which the system is serviced and from which all language-dependent or culture-dependent system values are initialized. In addition, other system objects and functions assume attributes based on the primary language. For example, messages appearing in the history log always appear in the primary language.

For each licensed program installed on the server, the national language version for the primary language is in the product library. For example, the $\mathrm{OS} / 400^{(R)}$ program ordered in Spanish is installed in library QSYS as the primary language.

The server provides default system values for each of the primary languages. If some of the defaults do not meet the needs of your users, you can change some language-dependent system values.

For a list of default system values for each of the primary languages，see Default system values topic．See the System values topic for information on how to change system value settings．

## Select and change the primary language

Choosing your primary language is important．OS／400 lets you change your primary language to accommodate your business needs based on the country in which you are operating．Keep in mind， however，that changing the primary language can take several hours or longer to accomplish．

To change a primary language on your system，you can order a different primary language from $\mathrm{IBM}^{(\mathrm{R})}$ ．If you have a secondary language tape for the language you want as your new primary language，you can change the primary language from that tape．For example，if you have a primary language of U．S．English， and a secondary language of Canadian French，you can use the Canadian French secondary language tape to change your primary language to Canadian French．The instructions to change the primary language on your system are in the chapter called＂Changing Your Primary Language＂in the Software


When you change a primary or secondary language，and want to continue receiving software and documentation updates for future releases of licensed programs that you are currently using，contact your IBM representative．

Selecting and changing a primary language affects the following operational characteristics of your system：
－Cultural values of the user．
－Language used to communicate with the system through user interfaces presented through a workstation or printer（see the figure in the topic Example：How locales work．
－Implied character identifier（CHRID）of the character data stored in objects other than database files， message files，and message queues on the system．
\＄All user－created database files have an implicit CCSID and are tagged with the job default CCSID （DFTCCSID）unless you provide a CCSID at creation time．《
－If you change the primary language and the CCSID for the data remains the same，there is no effect on your system．An example would be to change the primary language from the German MNCS to the Italian MNCS，which both use CCSID 00500．The multinational character set refers to character set 00697 and code page 00500.
－If changing the primary language includes changing the CCSID value，the character data in objects other than database files may not be presented properly through the system and user interfaces．The database manager automatically converts character data unless conversion is suppressed by the application that processes the file．Data in objects other than database files are displayed correctly if the CHRID value of the display file，panel group，or menu is＊JOBCCSID．

》 Because some of the system values are set based on the installed primary language，you should record your current system value settings before you change the primary language of your system．Then，after you change the primary language，you can compare the current system values with the previous system value settings．＜

When you change the primary language of your system，the CCSID of the text fields in the system－supplied output files might also change．This is because the CCSID is dependent on the installed primary language．《

## Configure secondary languages

A secondary language consists of textual data for all licensed programs supported for a national language version．When you install a secondary language，the textual data for licensed programs installed on your
system is copied into the secondary language library. See the chapter called "Installing a Secondary
Language" in the Software Installation PDF for instructions on installing secondary languages.
The program code is not included in the secondary language version.

## Secondary language environments

Some multilingual environments have more than one national language version installed. To have a single iSeries ${ }^{(T M)}$ server support multiple languages, you must have the associated hardware installed. You must also have sufficient disk storage space available to contain all of the system and application textual data for the secondary languages. The amount of disk storage space that is required varies by language and applications, but it is usually somewhere in the range of 50 to 300 MB .

The languages currently supported on $\mathrm{OS} / 400^{(\mathrm{R})}$ as either primary or secondary languages can be found in NLV feature codes, Listed are the national language versions, their feature codes, and the program libraries from which they are available.

Each of the national language versions available from the program library (primary or secondary) include culture- and language-dependent system values for that particular language. Date format, date and time separators, code page and character set, and keyboard types are examples. The system values are initially set to the cultural values of the primary language. By setting up a subsystem, however, you can ensure that the cultural values for the secondary languages are set properly for users of the secondary languages.

Applications can use language values that are available in message CPX8416, in file QCPFMSG, accessed using the library list. Message CPX8416 gives the correct values for the primary or secondary language, depending on the library list.

Except for logical partitioning (LPAR), when you use a multilingual environment, the primary language version and any secondary languages must be at the same release level. You must also order and install the correct devices (workstation controllers, display stations, and printers) to support your languages.

The following links provide additional information about using primary and secondary languages:

- Secondary language requirements
- Ensuring that the secondary language can be used
- Multilingual support


## Notes on secondary languages when you require English as the primary language: 》

The following considerations are important when you require English as the primary language and you want to install DBCS secondary languages.

## If you install Japanese DBCS (feature number 5762) as a secondary language and you require English as a primary language

If you install Japanese DBCS (feature number 5762) as a secondary language and you require English as a primary language, you should install English uppercase DBCS (2938) as the primary language. English uppercase DBCS (2938) should be installed because all of its user interface text is in uppercase English letters. Some Japanese workstation displays do not support lowercase English letters. English Uppercase DBCS allows users to view English text from these Japanese displays, without loss of data. If you do install English uppercase DBCS as the primary language, you must respond to all messages in uppercase rather than lowercase. If you respond in lowercase, you will receive an error message.

Set the QKBDTYPE system value to JUB (Japanese English) when using Japanese DBCS (5762) as a secondary language with English Uppercase and Lowercase Support for DBCS (2984). Use JUB as QKBDTYPE because this allows the primary language users to enter English characters, but not Katakana characters.

## If Simplified Chinese, Traditional Chinese, or Korean is used as a secondary language and English is required as the primary language

If Simplified Chinese, Traditional Chinese, or Korean is used as a secondary language and English is required as the primary language, use English Uppercase and Lowercase (2984) as a primary language. You should use English Uppercase and Lowercase because English uppercase and lowercase characters can be displayed on devices supporting these DBCS languages.

## In other cases:

In cases other than those described in the previous topics, use English (2924) as a primary language.

## <

Enable the secondary language: To ensure that secondary languages can be used after they have been installed on $\mathrm{OS} / 400^{(\mathrm{R})}$, you must do the following:

- Change the user's system part of the library list to add the secondary language library to the beginning of the list. You can accomplish this in one of the following ways:
- Use the Change System Library List CHGSYSLIBL command to add the desired national language library to the top of the library list. The command can be in an initial program specified in the user profile so the user does not have to enter the command at every sign-on.
The authority shipped with the CHGSYSLIBL command does not allow all users to run the command. To enable a user to run the CHGSYSLIBL command without granting the user rights to the command, you can write a CL program containing the command. The program is owned by the security officer and adopts the security officer's authority when created. Any user with authority to run the program may use it to change the system part of the library list in the user's job.
- Use a separate subsystem for a secondary language. To do this:

1. Create a subsystem description to be used for secondary language users (QGPL/DANISH, for example).
2. Specify the secondary language library for SYSLIBLE (QSYS2926, for example).
3. Specify the sign-on display file from the secondary language library for SGNDSPF (QSYS2926/QDSIGNON, for example).
4. Remove the appropriate display devices (Remove Work Station Entry (RMVWSE) command) from the interactive subsystem and add them (Add Work Station Entry (ADDWSE) command) to the secondary language subsystem. When you use these commands, no one can be signed on to the devices that you are removing.
5. If you want to use separate job queues (JOBQ) and output queues (OUTQ) for a secondary language, you can create these in the secondary language library (for example, QSYS2926). Attach the job queue to the secondary language subsystem (for example, QGPL/DANISH).

- You may have licensed programs that have secondary language libraries and that are not on the OS/400 secondary language tape. You should add those secondary language libraries to the library list before the primary language product libraries. Use the Change System Library List (CHGSYSLIBL) command to add the secondary language libraries to the library list if the product libraries are in the system part of the library list.
- Specify the keyboard ID for the secondary language in the device description for the display station. This can be accomplished through the use of the Change Device Description (Display) (CHGDEVDSP) command. You need to vary off your device, use the CHGDEVDSP command, and then use the Vary Configuration (VRYCFG) command to vary the device back on.
- Change the date format to reflect the date format of your language. The date format, date separator, and time separator only can be changed using the CHGJOB command for secondary language users. If you use the CHGSYSVAL command to change these values, all primary language users and all secondary language users have this information changed. The following table illustrates this and shows the ways the date and other NLS-related job attributes should be specified for secondary language users:

|  | CHGJOB | CRTJOBD | CHGJOBD | CRTUSRPRF | CHGUSRPRF |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Date | X | X | X |  |  |
| Date Format | X |  |  |  |  |
| Date Separator | X |  |  |  |  |
| Time Separator | X |  | X | X |  |
| Character Set <br> Identifier | X |  | X | X |  |
| Language <br> Identifier | X |  | X | X |  |
| Sort Sequence | X | X | X |  |  |
| Country or Region <br> Identifier | X |  |  |  |  |

- Change the CCSID value to reflect the CCSID of the secondary language that you want to use. You can set the CCSID value for all jobs to run under your user profile by using the Change User Profile (CHGUSRPRF) command. This change takes effect for any jobs that enter the system using your profile after you have made the change.
You can set the CCSID value for a batch job to be run using the CCSID parameter on the Submit Job (SBMJOB) command. You can change the CCSID of a job that is running by using the Change Job (CHGJOB) command. For more information on CCSID values, see Work with CCSIDs.
- Ensure that your data, in objects other than database files and message files, prints correctly. To do this, you may want to direct all of your printed output to a print queue that contains printer output for only the character identifier of your language.

1. Use the Create Output Queue CRTOUTQ command to create a printer queue.
2. Use the OUTQ parameter of the Change Job (CHGJOB) command to change your job output queue.
CHGJOB OUTQ(output_queue)
Note: You can use the Change User Profile (CHGUSRPR)F command instead to make a more permanent change to the OUTQ. Then, each time you sign on to the system, the correct OUTQ is used.
If the printer supports changing the code page, you can use the *JOBCCSID value in the printer file.

- Change other culture- and language-dependent values to the secondary language you want to use if you do not want to use the system values. Use the Change Job CHGJOB command to change the culture- and language-dependent values.

See Linguistic and cultural values for information on changing linguistic and cultural system values, as well as the subsystem description.

Multilingual support: Multilingual support on $\mathrm{OS} / 400^{(R)}$ is support that includes more than one language on one system. A server that works in multiple languages must be able to handle a variety of cultural and linguistic characteristics, such as:

- Graphic characters, such as an e accent grave (è )
- Currency symbols, such as the Pound Sterling symbol
- Date formats, such as 24.06.93
- Time formats, such as 23:59
- Sort sequences, such as $a, b, c \ldots$

The server must also handle differences such as the direction in which text prints and displays. For example, all text of Latin-based languages, such as French and Spanish, displays from left to right across a display. On the other hand, the general direction of Arabic and Hebrew text is from right to left across a display. The server displays text, prints text, and allows data entry left to right for some languages and right to left for other languages.

Printing and displaying text left to right for some languages and right to left for others is not enough, though. Numbers and Latin character phrases that are included in Arabic and Hebrew text display and print from left to right. For example, Hebrew text generally flows from right to left across a display. When Hebrew text includes a street address, the street name flows right to left, but the address number flows left to right. Similarly, if Hebrew text includes a Latin name, such as John Smith, the Latin name flows from left to right. Because this text flows both right to left and left to right (bidirectionally), the system displays and prints text bidirectionally.

Multilingual network. Two or more servers, each using a different primary language, can interchange data. Because data is flowing between systems with different primary languages, the data must have a CCSID assigned. When data has a CCSID assigned, data integrity is maintained. Thus, character data is correctly displayed for the receiving user.

## Install and enable locales

If you are installing a new release, you can request that library QSYSLOCALE be installed on the system at that time. See "System-supplied locales and recommended CCSIDs" on page 376 for a list of the system-supplied locale source members.

If you decide to install library QSYSLOCALE at a later time, type GO LICPGM and press the Enter key. Scroll until you find Extended NLS Support. Select option 1 to install Extended NLS Support.

Locales can be enabled on $\mathrm{OS} / 400^{(\mathrm{R})}$ by using system values or user profiles.

## Enable locales with system values:

Two system values are related to locales:

## QLOCALE

The system value specifying the locale object. The default is *NONE. Other possible values are:

- *C

The C locale is assigned for this user (same result as using *POSIX)

- *POSIX

The POSIX (Portable Operating System Interface for Computer Environments) locale path name is assigned for this user.

- locale path name

The path name of the locale to be assigned for this user.

## QSETJOBATR

A system value that sets job attributes at job start up time. The default is *NONE. The following values indicate the job attributes that are to be set from the locale object specified by QLOCALE:

- *CCSID (Coded character set identifier)

The CCSID associated with a locale when the locale object is created.

- *DATFMT (Date format)

The date format is determined from the locale object.

- *DATSEP (Date separator)

The date separator is determined from the locale object.

- *SRTSEQ (Sort sequence)

The sort sequence is determined from the locale object

- *TIMSEP (Time separator)

The time separator is determined from the locale object.

- *DECFMT (Decimal format)

The decimal format is determined from the locale object.

## Enable locales with user profiles:

Two parameters on the user profile are related to locales:

## LOCALE

The parameter value specifying the locale object to use for the LANG environment variable. The default is *NONE. Other possible values are:

- *SYSVAL

The system value QLOCALE is used to determine the locale path name to be assigned for this user.

- *C

The C locale is assigned for this user (same result as using *POSIX)

- *POSIX

The POSIX locale path name is assigned for this user.

- locale path name

The path name of the locale to be assigned for this user.

## SETJOBATR

The parameter value that sets job attributes at job start up time. The default is *NONE. If *SYSVAL is specified, then the attributes are set from the QSETJOBATR value. The same attributes (*CCSID, *TIMSEP, *DATFMT, *DATSEP, *DECFMT, *SRTSEQ) that can be specified on the system value QSETJOBATR can be specified on the SETJOBATR parameter of the user profile.

If you want all users on the system to use locales, setting system values accomplishes this. On the other hand, the user profile is an ideal mechanism if you want to provide locale function to a limited or specific group of users.

## For more information

See the following topics for more information about using locales:

- Locales
- Work with locales. This topic provides numerous examples showing how you can use locales.


## Scenarios: Set up OS/400 with a national language version

The following topics provide scenarios for multilingual support:

- Scenario: a single server supporting Spanish
- Scenario: a single server supporting Spanish and an existing EBCDIC database
- Scenario: a single server supporting English, Japanese, and German

For more information about the details described in the scenarios, see the following topics:

- For Unicode, see the Work with Unicode topic.
- For Unicode database information relating to DDS, see the DDS for physical and logical files information.
- For Unicode display information with DDS, see the DDS for display files information.
- For Unicode printing information with DDS, see the DDS for printer files information.
- For information about using the subsystem description, see the Enable the secondary language topic.


## Scenario: a single server supporting Spanish >

In this scenario there is a single server supporting Spanish users and applications.
The primary language of the system is Spanish (NLV 2931). Because 2931 is the primary language, the default system settings and $\mathrm{OS} / 400^{\left({ }^{(R)}\right.}$ localization preference are set to Spanish.

The user has also created a database file where the fields of interest are defined to contain Unicode, since they plan to use this sane database file for both 5250 applications and Java ${ }^{(T M)}$ applications.

The following example shows the SQL statement used to create a database containing a Unicode field named PART_NAME and a non-Unicode field named STOCK_NUMBER:

```
CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200
    NOT NULL WITH DEFAULT,'STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)
```

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is the natural encoding for web use, and no conversion is needed. To get the correct localization preference for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the CCSID of the display device. The user only has to set the user profiles's CCSID value to 284 to tell the system that this user is on a Spanish display. This service is provided automatically by the system if requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword, and a TrueType font using the FONTNAME keyword. The unconverted Unicode data can be printed with PSF/400 or with Host Print Transform.

The following graphic illustrates this scenario.

<
Scenario: a single server supporting Spanish and an existing EBCDIC database >

In this scenario there is a single server supporting Spanish users and applications and an existing EBCDIC database.

The primary language of the system is Spanish (NLV 2931). Because 2931 is the primary, the default system settings and OS/400 ${ }^{(\mathrm{R})}$ localization preference is set to Spanish.

The user has also created a database file where the fields of interest are defined to contain Unicode, because they plan to use this same database file for both 5250 applications and Java ${ }^{(T M)}$ applications. They also have an existing database in which the fields are defined in EBCDIC.

The following example shows the SQL statement used to create the EBCDIC database:
CREATE TABLE SAMPLE (PART_NAME CHAR (10) CCSID 284 NOT NULL WITH DEFAULT, STOCK_NUMBER INT NOT NŪLL WITH DEFAULT 0)

The following example shows the SQL statement used to create a database containing a Unicode field named PART_NAME and a non-Unicode field named STOCK_NUMBER:
CREATE TABLE SAMPLE (PART_NAME GRAPHIC (10) CCSID 1200 NOT NULL WIth DEFAULT, STOCK_NUMBER INT NOT NŪLL WITH DEFAULT 0)

## When using the Unicode file

If the user wants to display this data with a web service or Unicode enabled application, then Unicode is the natural encoding for web use, and no conversion is needed. To get the correct localization preference for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the CCSID of the display device. The user only has to set the user profiles's CCSID value to 284 to tell the system that this user is on a Spanish display. This service is provided automatically by the system if requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword, and a TrueType font using the FONTNAME keyword. The unconverted Unicode data can be printed with PSF/400 or with Host Print Transform.

## When using the EBCDIC file

If the user wants to display this data with a web service, then the file first must be converted to Unicode. This can be done with the JDBC connector. To get the correct localization preference for the Java application, the user sets the Java locale to sp_SP for Spanish in Spain.

If the user wants to display this data with a 5250 session, EBCDIC is the natural encoding for the 5250 device and no conversion is needed. To print the EBCDIC data, the user sends the data to the printer; because EBCDIC is the default encoding for the printer, no conversion is needed.

## Logical file support

One of the unique features of $\mathrm{OS} / 400$ is the ability to use the system's logical file support to have either the EBCDIC file appear to the application as a Unicode file, or to have a Unicode file appear to the application as an EBCDIC file. This might be of use if you want to move your database to Unicode, but do not want to update your existing applications.

If the majority of your application's use of the database would involve Unicode, you could have the data stored as Unicode, and create a logical view of the file in EBCDIC. You could then have your EBCDIC programs access this logical file and they would not need to be updated to handle Unicode.

If the majority of your application's use of database would involve EBCDIC, you could have the data stored as EBCDIC, and create a logical view of the file in Unicode. You could then have your Unicode programs access this logical file and they would not need to be updated to handle EBCDIC. However, since EBCDIC encodes a smaller set of characters than Unicode does, some character loss might occur.

The following graphic illustrates this scenario.

<

## Scenario: a single server supporting English, Japanese, and German >

In this scenario there is a single server supporting English, Japanese, and German users and applications.
The primary language of the system is English (NLV 2924). The system has also been loaded with secondary languages of Japanese (NLV 2962) and German (2929). Because 2924 is the primary language, the default system settings and $\mathrm{OS} / 400^{(R)}$ localization preference is set to English. Because these three NLVs are installed, each user can work with the system in English, German, or Japanese.

Each set of users sees their language of choice and OS/400 localization preference from the initial sign-on screen by the use of a subsystem description for each secondary language.

The user has also created a database file in which the fields of interest are defined to contain Unicode. Since Unicode provides a unique number for every character on any platform, in any program,and in any language, one field can contain English, German, and Japanese.

The following example shows the SQL statement used to create a database containing a Unicode field named "PART_NAME" and a non-Unicode field named "STOCK_NUMBER":
CREATE TABLE SAMPLE (PART NAME GRAPHIC (10) CCSID 1200
NOT NULL WITH DEFAULT, STOCK_NUMBER INT NOT NULL WITH DEFAULT 0)
If the user wants to display this data with a web service or Unicode enabled application, then Unicode is the natural encoding for web use and no conversion is needed. To get the correct localization and interface preference for the Java application, the user needs to set the Java locale to the correct value: en_US for English, Jp_JA for Japanese, and de_DE for German.

If the user wants to display this data with a 5250 session, then the Unicode field must be converted to the CCSID of the display device. The user only has to set the user profile's CCSID value to the correct value ( 37 for English, 1399 for Japanese, and 278 for German) to tell the system what the user's preference is for the display. This service is provided automatically by the system if requested with the CCSID keyword and the *CONVERT parameter in DDS.

To print the Unicode data, the user specifies the *NOCONVERT parameter of the CCSID keyword, and a TrueType font using the FONTNAME keyword. The unconverted Unicode data can be printed with PSF/400 or with Host Print Transform.

The following graphic illustrates this scenario.


## <

## Develop globalized applications

Globalized applications are those applications that have national language support. National language support allows users to enter, store, process, retrieve, print, and display data in their language of choice. National language support also allows users to see and enter data, commands, prompts, messages, and documentation in their language of choice, in formats that match their cultural expectations.

Although your reasons may differ, most internationalized applications are created because:

- The market demands globalized software products that have a local feel
- The application is used in a community that represents multiple cultures
- Revenue opportunities are expanded

The following links provide valuable information that you need to know as you begin your development process:

- Develop globalized applications: goals and processes
- Design globalized applications
- Programming considerations in globalized application design
- Deliver globalized applications


## For more information

See Handle data in globalized applications for information about how you work with various types of data in a globalized environment.

## Goals and processes

Before you invest your time and money into the development of globalized applications, you will benefit from a planning process that gives you an opportunity to consider how you can efficiently and effectively serve your users. The following topics will help you develop such a plan:

- Development goals
- Market research process
- Development process
- Documentation process
- Translation process
- Testing process
- Packaging and installation process
- Application maintenance process


## Globalization development goals

Use this topic when you are planning for, and creating, international applications. The recommendations in this topic assume that your basic goals are:

- To create an application efficiently.
- To create an application at minimal expense. You can retrofit existing applications for globalization and create new applications designed for globalization. Designing an application for globalization, however, is usually less expensive than retrofitting an existing application.
- To ensure that the application design does not interfere with the current or planned design of other internationalized applications.
- When creating an application with national language support, you must plan for or put into effect the following tasks:
- Designing functions that are sensitive to national languages
- Supporting various types of hardware support
- Translating the textual data in your application
- Making your application available worldwide.


## Globalization development planning processes

A globalized application should be well planned at every stage in order to save time, effort, and money. You should not have to recompile programs nor repackage data objects. Your product may, however, be required to use a different data object based on the language version you are using. You should have one set of program code and different sets of culture- and text-dependent code, as needed.

Consider the following processes when planning for a globalized application.

- Market research
- Development
- Documentation
- Translation
- Testing
- Packaging and installation
- Application maintenance


## Market research process

The most important factor for every decision is that you know for whom you are designing and developing your applications. To determine the answer to this question, ask yourself and your potential customers the following types of questions.

## What are my target markets for today and tomorrow?

The answer to this question makes a significant difference if you define your marketplace in different countries or only in the area of your own language, or if you decide to include countries speaking other languages. For example, if you are coding an application from a Latin-based language, application complexity increases when you decide to include countries using non-Latin languages such as Hebrew, Chinese, or Japanese. The application complexity increases because you need to deal with incompatible characters sets and more complex input methods.

Along with the language problem, there are other areas to consider. You need to understand the culture, habits, ways of doing business, and laws of the target markets. You need to understand the customers' ways of life for you to be accepted as a business partner, to be able to get into the market, and to support them in their countries.

These factors can affect:

- The skills that you need (technical, cultural, language, laws)
- The environments to consider
- Your company structure and support organization
- Your relationship to other companies
- The resources that you need (people, time, and money)


## Who are the users of my application?

You must understand the requirements that future users of your application will have. For example, do they want to:

- Work with separate databases for different languages?
- Work with a shared database for all languages?
- Exchange or consolidate data?
- Work with different languages dependent on the end user, the company, or the company's customers?
- Use end-user database tools to do their own inquiries on the application database?

All these factors may affect the design you choose, the way your application is able to switch from one language environment to another, and how data presentation and conversion take place.

## How much globalization support is needed?

After you understand the requirements for your customers and their end users, you can decide what kind of culture-sensitive information you need to store and maintain, the type of data presentation, which parts you have to translate, and how your application must be able to be integrated in the different environments.

## What is the cost of the effort?

To estimate the expected revenue, analyze the places you have chosen as your target market. After you know the requirements, you should be able to determine the effort and costs. This amount allows you to compare the costs against the expected revenue.

## Which costs more, enabling or retrofitting an application?

The initial cost of enabling an application for national language support might be higher. But consider that the enabling steps are based more on normal modular and data-driven design techniques, which improve the quality of your application even without NLS enabling. Because a good design helps people to understand and describe the application system, you will receive a certain return on the investment. A
good design helps to improve productivity of development and maintenance. You have the additional effort of designing and implementing the application only once, even for many different language versions. Compared to retrofitting an existing application, it is much less expensive to plan and design it from the very beginning.

## Development process

Before you are ready to develop NLS-enabled applications, consider the following for a successful development process.

## Education for developing internationalized applications

When you intend to develop NLS-enabled applications, you need to consider additional initial education. The following are important topics to learn about:

- General globalization concepts
- Available globalization support on $\mathrm{OS} / 400^{(\mathrm{R})}$
- Available globalization support on other systems and applications with which your application operates
- Isolation of different parts of an application
- Data presentation corresponding to cultural conventions
- Design and coding for textual data parts
- Translation process
- Product and system integration
- Packaging, installation, and setup
- Product support and maintenance

Based on the globalization enabling guidelines, first prepare a prototype application and test the chosen way of implementing the application for your specific environment. Afterward include the globalization enabling guidelines in your general application development processes, guidelines, and standards.

## Implementing internationalized applications

When implementing an internationalized application, the most important objective is to produce only one set of running code. You must differentiate consistently between running code and textual data. It is essential that you standardize the chosen approach throughout the whole application. Work with unique and clearly defined naming conventions. To understand and to maintain this information in the application, handle parameters called from a program in a consistent way.

## Documentation process

Documentation should provide information for the end users of the application system in their own language. The documentation should also include installation, setup, and customization information for the end user, the system operator, and the application system manager.

The user documentation should be textual data that can be easily translated. Whenever possible, combine the online help information and user documentation to reduce the volume of text to translate. Any example displays or print layouts should be produced by the application and included in the documentation.

## Translation process

Translating the textual data is a very time-consuming process. The textual data should be available to translators very early in the development stage, even before the code is stable. Consider the following areas when planning for translation:

## Physical equipment

Each translator should have equipment compatible with the language being translated. The display stations and keyboards should have all the characters needed to translate, and the printers should be able to print the translated text.

## Translation tools

Provide the translators with tools that increase productivity and that prevent translation of non-textual application data. When purchasing or developing a translation tool, the following features should be included.

- An editor that provides the ability to show displays that would be seen by the end user, and the ability to translate the textual data on the system but still protect the parts of the application that are not textual data. The editor should also include functions such as scan and replace, find, copy, move, and delete.
- A dictionary function to provide consistency of words and phrases throughout the product.
- A validation process to check translation errors that might cause the application to malfunction.
- A merge function that provides the ability to merge the translated text into a new version of the original text. This merge function allows for translating only new text, and saves time and effort.
- A print function for validation purposes.


## Translation education

It is important that translators are familiar with the product they are translating and also with the tools they are using. The translation process is not the replacement of one word with another, but the formation of concepts in another language. Knowledge of the product being translated provides more understandable products to the end user. Time and resources for educating translators should be planned well in advance.

## Translation guidelines and instructions

Translation guidelines and instructions should be provided to ensure correct translation. For example, to translate an error message properly, it is important to know in what context this message is displayed. A note to translators telling them what error caused the message to be displayed also helps.

## Translation glossary

To ensure accurate translation, use terminology based on definitions in standard, widely available, dictionaries. If your application uses terms not found in standard dictionaries or terms that are used differently from standard definitions, provide a glossary of non-standard terms to the translators. Avoid using abbreviations and acronyms in your application. If you must use abbreviations or acronyms in your application, define them in the glossary. Remember, abbreviations and acronyms that are obvious in your language may not be obvious in another language.

## Testing process

The testing of an globalization-enabled product should be done in three phases:

1. Testing the running code

The running code should be tested in a globalization support environment in order to check all the possible language-dependent combinations. Translators should not test the product functionality.
2. Checking the textual data

The textual data should be tested to check correct translation and consistency throughout the product.
3. Integrating the running code and textual data

After the textual data and the code have been tested separately, an integration test should be performed to test if the application has taken into account all the globalization-related processing, and that the translation of the textual data has not caused a malfunction in the product.
If your application will also run on a multinational or multilingual system a separate test that includes more than one set of textual data should be planned.

## Packaging and installation process

Consider running code, translated textual data, and installation documents when packaging applications. Some suggestions for simplifying the packaging and installation of your application include:

- Store the running code and textual data separately.
- Package the textual data so that customers receive only the textual data in the languages that are ordered. (If the textual data for all languages is sent to all customers, it will waste system resources and lead to maintenance problems.)
- Provide comprehensive installation documents (translated to the language of the person installing the product) to avoid unnecessary operator-related problems and also to avoid the wrong impression right at the beginning that the application is not reliable.
Installation documentation should cover the following topics:
- What is needed to install and run the application, such as hardware and software requirements.
- How to install the application, and how to recover when things go wrong.
- What changes need to be made regarding:
- Subsystem definitions
- Device descriptions
- User profiles
- System values
- Library lists
- What are the application limitations?


## Application maintenance process

Consider the following points when planning for maintenance of a multilingual application:

- The running code must be maintained separately from the textual data. These separate components must be fully synchronized. A redesign in one component may cause a redesign to be made in another.
- Whenever textual data is changed, be sure that it is incorporated in all the languages to which your textual data was translated. In this way, you can ensure a single maintenance level for the complete product.
- Be sure to test the running code for each textual data change that you distribute.


## Design globalized applications

Your goal in designing international application components is to create components that support national languages independently. The support of one language should not interfere with the support of another language. The support of one language should not force any reduction in the function of the product for another language.

Your application should be able to support multiple languages simultaneously. For example, support for a double-byte coded character set (DBCS) language should not exclude support for single-byte coded character set (SBCS) languages. When you set up your libraries, consider using multiple textual data libraries, which can be dynamically allocated for testing, packaging, and delivery.

As you develop a globalized application for the iSeries ${ }^{(T M)}$ server, you must consider these and other unique design issues that will affect the way you build and code your application. The following topics identify the scope of these issues, and provide useful guidance on how you should proceed:

- Checklist: Application design
- Globalization and localization
- Application arrangement and architecture
- User interfaces


## Checklist: Application design

The following table provides some guidelines that you can follow when creating an application with national language support.

| Complies | Not applicable | Rule |
| :---: | :---: | :---: |
|  |  | The existence of a specific character set within a system or its components must not be assumed. |
|  |  | Converting character case must be definable for each language and code page. |
|  |  | Folding must be definable for each language and code page. <br> Folding is the process in which characters that can be printed or displayed are substituted for those that cannot be printed or displayed on a particular device. |
|  |  | The use of a graphic character for software control purposes must not preclude the use of the same character in the text of messages, menus, prompts, input fields, or output fields. |
|  |  | The set of characters allowed for use in the entry of data must be definable by the system operator, a user, or an application. |
|  |  | Graphic symbols and icons must be translatable. |
|  |  | All characters on the active code page must be accessible. |
|  |  | Language-dependent parts of a product must be isolated from non-language-dependent parts for easy modification. |
|  |  | The design of a product must allow for the national language support of the various components of the product to be independent of each other. |
|  |  | National language exits must be provided at strategic points. |
|  |  | Diagnostics must be enabled. |
|  |  | Logical layouts different from a given physical keyboard layout must be available to the user. |
|  |  | All user interface text and presentation control information must be isolated from the running code. |
|  |  | Functions dependent on display field length and display field position, or display field position alone, must not be designed in such a way that they are affected by user-interface text expansion. |
|  |  | A method must be provided to allow for the identification and tracking of panels and messages during the translation process. |
|  |  | Variables must be permitted to assume any location and order within a display field. |
|  |  | Messages and other displayed words or phrases must be complete entities and must not be constructed from individual words or phrases. |
|  |  | Entry of end-user commands, keywords, or responses must be possible without regard to uppercase or lowercase characters. |
|  |  | A product with national language-dependent functions must be designed to facilitate the addition of other countries or national languages. |
|  |  | Lowercase alphabets should not be assumed to be invariant. |
|  |  | Character sets should be definable by the operator, a user, or an application. |


| Complies | Not applicable | Rule |
| :--- | :--- | :--- |
|  |  | Special characters, including punctuation marks, should be <br> definable and not program dependent. |
|  |  | User-interface text modules should be packaged separately from <br> the running code. |

## Globalization and localization

$\mathrm{OS} / 400^{(\mathrm{R})}$ controls the operation of programs and provides services such as controlling resources, scheduling jobs, controlling input and output, and managing data. It is designed to complement and extend the capabilities of iSeries ${ }^{(T M)}$ servers to provide fully-integrated support for interactive and batch applications.

Many OS/400 functions apply directly to interactive data processing. Among these functions are:

- Database support to make up-to-date business data available for rapid retrieval from any workstation
- Work management support to schedule the processing of requests from all work station users
- Application development support that allows online development and testing of new application programs to run at the same time as normal production activities
- System operation support that allows the user responsible for system operations to perform work from the display station using a single control language, complete with prompting and help for all commands
- Help and index search support that allows users to request online information on a wide variety of topics
- Message handling support that allows communication among the system, the user responsible for systems operations, workstation users, and programs running in the system
- Security support to protect data and other system resources from unauthorized access

In addition to these functions, the OS/400 program provides national language support. National language support allows users to interact with the system in the language of their choice, with results that are culturally acceptable. National language support consists of two parts: globalization and localization.

Globalization is support that allows an application to operate in all language environments without any change to the application. This type of design is also known as enabling an application for national language support. A globalized application, shown in the following figure, is culturally neutral.


By contrast, localization allows an application to operate in a specific language, country, or culture. Localization of an application goes a step beyond globalization of the application, as shown in the following figure.


When localized code is integrated with globalized code at run time, the resulting application appears to the user with full national language support. The processing environment defines which localization code is combined with the globalized code at run time, as shown in the following figure.


## Application arrangement and architecture

When you design an international application, consider the ways that you can organize and structure your application so that it can be used in an international environment. In particular, consider the following strategies:

- Separate program modules at appropriate places
- Name application parts appropriately for a multilingual environment
- Refer to specifications whenever possible
- Provide multiple sets of logical files in separate libraries when working with database definitions

The following figure shows you the recommended way to organize the parts of your application.


Program module separation: You can separate culture-dependent parts from your running code and set up culture-dependent environments. You can do this using system values, user profile attributes, job attributes, and object attributes.

When it is impossible to separate national language and culture-dependent parts from the running code, you must provide national language exits or calls at all points where functions dependent on national language support are required. The following figure shows a national language exit.


Application part names: When you want to enable your application for different languages and countries, consider the environments of the target systems in your naming conventions. Use characters that are available, can be displayed, and can be printed in all the target environments. Use only characters of the invariant character set whenever you specify names for:

- Libraries
- Database files
- Device files (display or printer)
- Help panels
- Message files
- User commands
- Programs
- Record formats
- Fields

All other characters either vary their meaning or may not be available on the keyboard.
To create an internationalized application, you need to divide your application objects into related parts that are textual data and nontextual data. Your naming conventions should be able to distinguish between these parts. You should also be able to distinguish between the textual data of different languages. You can do this by separating the objects into different libraries.

## Scenario: Library naming convention

Your library naming convention could look like the following:

## aAAttTLLL

where: AAA is the application identification; TTT is the type of objects; and LLL is the language code.
This naming convention allows you to have all libraries that belong to an application grouped together because you have a unique identifier (AAA) at the beginning.

The second part (TTT) allows you to distinguish between different types of objects:

## Textual data

- Display files
- Printer files
- Message files
- Help panels
- User command
- Cultural values
- Database files with NLS-sensitive information and specifications
- NLS-dependent program modules


## Nontextual data

Programs

## Data Database files

The third part (LLL) allows you to specify the national language version for all the textual data parts. This allows you to use the same names for objects of the different national language versions within the different libraries. Your program is able to use different objects by just rearranging the library list accordingly when the job is run.

The initial library list can be taken from the job description. You can build a new library list by specifying the library list in the INLLIBL parameter of the Create Job Description (CRTJOBD) command for a new job description, or the Change Job Description (CHGJOBD) command for an existing job description. The following figure shows an example of this.

## English user



Specification references: Define all your fields first in the field reference file of your application and refer to them whenever you can: in the database specifications, in device file specifications, and in the
high-level language programs. This technique helps you to define the field specifications once and use them again. If you need to distinguish between the same field of different sources, you can rename or qualify them. Whenever you need to change the definition of a specific field, you just need to change the attributes of that field in the field reference file and create the objects again. Then the changes take place automatically in all the different places where the field is used.

For example:

```
|...+...1....+....2....+....3....+....4....+....5....+....6....+....7....+..... 8
    A REF(field-ref-file-name)
    A R record
    A field R line pos
or
    A field R line pos REFFLD(ref-field-name)
```

Database definitions: You define a file to specify certain facts, and the specifications are then used on database files. The following are some examples of such specifications:

- The object description text of the file
- The explanation text (TEXT keyword) on record formats and field descriptions
- The column headings (COLHDG keyword) on field descriptions
- Date and time formats and separators
- Sort sequence
- Language identifier

The object description text is shown by all database tools such as DB2 ${ }^{(\mathrm{R})}$ UDB for iSeries ${ }^{\left({ }^{(T M)} \text { SQL, iSeries }\right.}$ Access, and data file utility (DFU) on the file selection display.

The column headings are shown by the database tools on the output field definition display. Column headings are also used on screen design aid (SDA) and report layout utility (RLU) as the proposed field-prompting text or heading.

Data management handles date- and time-type fields in the format specified at file-creation time, unless your application or database tool does a conversion to present it according to your request or job demand.

When you want to present all this information according to the language and culture of the user, you need to provide multiple sets of logical files in separate libraries. Along with the translated text, you can specify different date and time formats or different sort sequence and let data management perform the conversion. A similar technique can also be used for numeric-type date fields (unless they are packed), using the substring (SST) function. The user can access the data only through the designated logical views. When you are defining logical files with different sort sequences, avoid using a unique index with a shared-weight table. Although this is possible, a unique index prevents using keys that differ only in characters with the same weight.

The scenario in Application part names shows an example of using different sets of logical files for different users.

## User interfaces

A user interface is the part of a software product that your customer actually sees. A user interface may include the layout of display screens or printed output, displayed or printed text, commands, online help, and messages. A user interface is also the part of a software product that you must either translate or make cultural changes to for users in other countries or cultures.
$\mathrm{OS} / 400^{(\mathrm{R})}$ provides specific software functions to help you organize text from your user interface and store that text in a library for easy translation. The operating system also provides you with a user interface manager that provides a consistent user interface. The user interface manager provides comprehensive support for defining and running panels such as displays and online help.

This section provides guidelines that you can follow when designing a user interface for an international application. You should apply these guidelines early in the design process. Guidelines are provided for:

- Checklist: User interface design
- Text translation design
- Textual data code design
- User interface manager
- Program message design
- Menu design
- Command design
- Cultural-dependent design
- Display file design
- Printer file design and translation
- Source file design
- CDRA design
- Handling languages that do not have NLV support

Checklist: User interface design: When creating a user interface with globalized support, you should follow some rules and guidelines, as shown in the following table:

| Complies | Not applicable | Rule |
| :--- | :--- | :--- |
|  |  | The use of a graphic character for software control purposes must <br> not preclude the use of the same character in the text of messages, <br> menus, prompts, input fields, or output fields. |
|  |  | Graphic symbols and icons must be translatable. |
|  |  | Language-dependent parts of a product must be isolated from <br> nonlanguage-dependent parts for easy modification. |
|  | All user interface text and presentation control information must be <br> isolated from the running code. |  |
|  | Sufficient space must be available for user-interface text expansion <br> caused by translation. |  |
|  |  | Functions dependent on display field length and display field <br> position, or display field position alone, must not be designed in <br> such a way that they are affected by user-interface text expansion. |
|  | A method must be provided to allow for the identification and <br> tracking of panels and messages during the translation process. |  |
|  | Variables must be permitted to assume any location and order within <br> a display field. |  |
|  | Messages and other displayed words or phrases must be complete <br> entities and must not be constructed from individual words or <br> phrases. |  |
|  | Entry of end-user commands, keywords, or responses must be <br> possible without regard to uppercase or lowercase characters. |  |
|  |  | Date and time formats must be selectable. |
|  | Numeric punctuation must be selectable. |  |
|  |  | Number rounding and mathematical formats must be selectable. |
|  | Monetary format must be definable. |  |
|  | The default currency symbol and its abbreviations must be <br> selectable. |  |
|  |  |  |


| Complies | Not applicable | Rule |
| :--- | :--- | :--- |
|  |  | The currency symbol position must be selectable. |
|  |  | Field sizes for monetary values must be selectable. |
|  |  | The measurement system must be selectable. |
|  |  | Lowercase alphabets should not be assumed to be invariant. <br> and not program dependent. |
|  |  | User-interface text modules should be packaged separately from the <br> running code. |
|  |  | User-interface text modules for single-byte coded character set <br> systems should be loaded separately from the running code. |
|  |  | A consistent convention should be used throughout the product for <br> denoting variables and input fields. |
|  |  | Words should not be used in place of numbers. |
|  |  | The terminology in user interface text should be consistent <br> throughout a product. |
|  |  | Abbreviations should be avoided. |
|  |  | Slang, jargon, and humor should not be used. |
|  |  | Trademarks should be identified and explained. |
|  |  | Proper style and sentence structure should be used in user interface <br> text. |
|  | Negative questions should be avoided. |  |
|  |  |  |

Text translation design: The following information provides some general tips to help simplify the translation of your textual material.

## Isolate textual data from running code

To allow easier translation and to avoid translating the running code, you should separate all textual data from the running code. Only one set of running code is needed, but many translations of the textual data can be done.

## Provide expansion space

The space needed to translate text from one language to another varies by language. To ensure that the translated version preserves the concept and keeps usability, allow sufficient presentation space for the textual data expansion. The following table shows recommended expansion space for user interfaces designed using U.S. English.

| Number of characters in text | Additional space required |
| :--- | :--- |
| Up to 10 | 100 to $200 \%$ |
| 11 to 20 | 80 to $100 \%$ |
| 21 to 30 | 60 to $80 \%$ |
| 31 to 50 | 40 to $60 \%$ |
| 51 to 70 | 31 to $40 \%$ |
| Over 70 | $30 \%$ |

## Variable placement of an object on the display

Because the position of one display element often is influenced by the position and size of others, some of the elements on the translated version of a display may have to be relocated. The program must continue to respond properly, despite this relocation.

## Flexible order of variables

In order to contain dynamic information, messages usually employ substitution variables. However, each spoken language has its own syntax (order of arrangement of parts of speech). When a message is translated into another language, the position and order of substitution variables may have to change to meet the syntax requirements in the translated language.

## Complete textual data entities

If the final form of the constant text relies on the composition of various parts, it may be untranslatable. This is because the translator might not know which form of the word to use or because there is no combination of parts that work for a different language.

For example, you should define column headings for display screens as complete entities. You should not combine words or parts of words to define column headings. Assume you are writing an application for scheduling jobs between Monday and Friday. You are creating your application in French. You decide to create column headings for reports and screen displays by combining the first part of the name of the day with the constant DI. Throughout the application, the column and report headings are assembled like this:
First Part of the
Name of the Day: Combine With: Result:

| LUN | DI | LUNDI |
| :--- | :--- | :--- |
| MAR | DI | MARDI |
| MERCRE | DI | MERCREDI |
| JEU | DI | JEUDI |
| VENDRE | DI | VENDREDI |

When you translate your application from French to German, you cannot combine two parts to create the names of the days: MONTAG, DIENSTAG, MITTWOCH, DONNERSTAG, and FREITAG.

## Treat commands, responses, and keywords like textual data

Commands, responses, and keywords should be translated into the language normally spoken by the user. For example, an English application has been translated into German. If the response is still in English as Yes and No, the German users would feel unfamiliar and uncomfortable in using the program because the responses they are familiar with are Ja and Nein.

## Express all text as simply and clearly as possible

- Use simple phrases and sentences and avoid compound phrases. Simple words allow easy translation.
- Make terminology consistent throughout the product.

If consistent terminology is not being adopted throughout the product, translators will waste time trying to determine the appropriate word to be used in translation.

- Include notes to translators in your information for correct word use to prevent any misunderstandings.
- Avoid abbreviations.

Rules for abbreviations vary from language to language. Abbreviations of words can lead to misunderstandings by the translator and by the end user.

- Avoid slang, jargon, and humor.

Slang, jargon, and humor are specific for a particular language and cannot be easily translated into another language.

- Avoid negative questions.

Negative questions are often misunderstood by the user. When asking questions, ask them in a positive way.

Textual data code design: Application displays, printer file specifications, and user-created commands usually contain a large amount of constant text. Application displays, printer file specifications, and user-created commands also contain input and output fields such as headings, field prompts, instruction lines, and function key descriptions.

You can use different techniques to specify, store, and use constant text. You can use each technique for specific types of textual data components. Each technique has its advantages and disadvantages. The following topics show you how each technique works and describe which techniques you can use for various components:

- Early binding of messages
- Late binding of messages
- Direct coding as an unnamed output field
- Text stored in database files

Early message binding: Text can be stored externally from the source code in a separate message file but is bound into the object when it is created. This technique can be used for:

## Display files

Constants such as titles, instruction lines, option definitions, headings, field prompts, command key descriptions

## Printer files

Constants such as titles, headings, total line descriptions

## User commands

Prompt descriptions on the command definition statements
For device files display and printer), the message is referred to by the Message Constant (MSGCON) keyword in the DDS source specifications.

For example:

```
A line pos MSGCON(length message-ID [*libl/]message-file-name)
    includes expansion space
```

For user commands, the message identifier xxxnnnn is specified on the PROMPT keyword instead of a literal. The message file is referred to on the Create Command (CRTCMD) command.

For example:
CMD PROMPT(xxxnnnn)
The message file name message-file-name is in a source file referred to by the following command.
CRTCMD CMD (command-name) PGM(library-name/program-name) +
PMTFILE([*libl/]message-file-name)
Before the object can be created, you must enter the message description into the specified message file. Enter the message description using the Add Message Description (ADDMSGD) command.

For example:
$\underset{\text { MSG('Text }}{\text { ADDSSD }}$ MSGID(xxxnnnn) $\quad$ MSGF(library-name/message-file-name) +
where xxxnnnn is the message identifier.
This technique allows you to create any number of objects in different languages and to put them into different libraries using the same source code by just assigning another message file at object creation time.

The message file is needed only during the creation of the object. Consider specifying the appropriate length for different languages on the MSGCON keyword. Then make the length information available to the translator.

The following graphic shows how early message binding works:


At file creation time, you can choose the appropriate textual data of the language version you want to work with by setting up the library list with the specific library containing the textual data and the program library.

Late message binding: Text can be stored externally from the DDS source code in a message description and is bound only to the display format at run time.

This technique can be used for:

## Display files only

Constants such as titles, instruction lines, option definitions, headings, field prompts, command key descriptions (MSGID keyword)

Default values on input fields (MSGID keyword)
Field validation specifications (CHKMSGID keyword)
Error messages (ERRMSGID and SFLMSGID keywords)
In the DDS for the display file, the message is specified through the MSGID (Message Identifier) keyword. The message has to be entered into the specified message file using the ADDMSGD (Add Message Description) command.

For example:

```
A FLD-name length line pos MSGID(message-ID [*libl/]message-filename)
    includes expansion space
ADDMSGD MSGID(xxxnnnn) MSGF(library-name/message-file-name) +
MSG('Text
    ')
```

This technique allows you to create any number of message files in different languages and different libraries, with one DDS source code and display file object. During run time, you assign another message file by setting the library list accordingly. The following figure is an example.


Note: This technique requires the application to perform all editing based on the cultural convention.
Direct coding as an unnamed output field: The most common way to define constant text is to specify the text directly in the source code as a literal. While this method is the most common way to define constant text, it is the most difficult to translate. Avoid using this method whenever coding an application, even if the application is not planned for translation.

If you are coding an application that will not be translated, you may want to use this technique for:

## Display files

Constants such as titles, instruction lines, option definitions, headings, field prompts, command key descriptions

Default values on input fields (DFT keyword)
Error messages (ERRMSG/SFLMSG keyword)

## Printer files

Constants such as titles, headings, total line descriptions

## User commands

Prompt descriptions on the command definition statements.
For device files, specify the text as an unnamed field, indicating the starting line and column and the constant text itself.

For example:
A line pos 'Text . . . . . . . . . . . . : '
A similar rule applies to user-created commands. Define the text directly on the keywords of your command source statements.

For example:
CMD PROMPT(' Command description ')
When defining the text directly on the keywords, standardize the sizes of the different elements in a large literal, rather than specifying many small single ones as single words. This makes the source code more readable and more flexible for translation.

Consider that the space needed for explanation text can vary from language to language. To have enough room after translation, remember to reserve space initially. The source members need to be translated and the objects need to be created for different languages as shown in the following figure:


Each national language version has one set of programs, but can have multiple sets of source members and data objects. When the application is run, you can choose the appropriate textual data of the language version that you want to work with. This can be done if you set up the system part of the library list with the specific library that contains both the textual data and the program library.

Text stored in database files: Text can be stored externally from the source code in a database file, retrieved by the application program, and then moved to the display or print format at run time. Instead of coding constants on the DDS, you can specify output fields that can be filled by the program. Consider specifying the appropriate length for different languages on the output fields and making that available to the translator.

This technique can be used for:

## Display files

All constant text
Default values on input fields
Error messages

## Printer files

All constant text

## Programs

All constants like compare values, scan characters, and tables.

This technique allows you to create any number of database files in different languages and different libraries, with only one DDS source code and display file object. During run time, you assign the corresponding database file by setting the library list accordingly.

Note: This technique requires the application to perform all editing based on the cultural convention.
User interface manager: The $O S / 400^{(R)}$ user interface manager (UIM) is a part of the system that allows you to define panels and dialogs for your application. UIM provides the following support:

- A tag-based language for describing data and panels.
- A compiler to create panel group objects and menu objects by using the tag-based language.
- A set of application programming interfaces (APIs) to use as panel group objects to display and print panels.

The UIM also provides the following functions:

- Dialog commands for screen management
- Contextual online help
- Pop-up windows
- Menu bars
- Command line for entering CL commands
- Tailoring of the contents of a panel for different users or environments
- Fast paths through menu networks
- Double-byte character set (DBCS) languages
- Bidirectional (BIDI) language support

UIM supports common panel types such as menus, information displays, list displays, and entry displays. When all display types and interfaces are consistent, users adapt more quickly to new applications.

UIM applications can coexist with and share the requester display device with other open display files that are not under UIM control. However, a UIM panel and a DDS-defined record format cannot appear on the display at the same time. When a UIM panel either replaces a DDS panel or vice versa, the system suspends operations of one file or panel group and restores the display as needed.

The following provide more information for user interface manager:

- Online help design
- Index search tags
- Index search and DBCS

Online help design: You can define online help by using one of the following:

## Panel groups

Objects into which user interface manager (UIM) source is entered.

## Records

A set of DDS keywords contained in a source file member.
If the user interface manager is used for defining online help, the panel groups are defined either in place of DDS or in the display file. In either case, the encoding of the data to be displayed must be indicated by the CHRID value in the display file or the panel group.

A panel group is an object that can be used to contain help information. OS/400 ${ }^{(\mathrm{R})}$ uses *PNLGRP as an identifier for the object type that contains a collection of help information.

## Guidelines: Online help

When defining online help information to be translated into national language versions, keep in mind the following about panel groups and records:

- Records do not have word processing available (functions such as spell check and word wrap though system APIs exist to provide spell checking).
- Various OS/400 messages and panel groups determine the national language conventions and translations. Not all countries have a national language version available for the OS/400 program. Not all national language versions are completely translated, with many parts still in English. The messages and panel groups that are not translated do not reflect the national language cultural conventions. See Command design for an example of a translated panel in which part of the panel has remained in English because not all parts of the NLV were translated.
- Allow for translation expansion.


## Guidelines: DDS online help design

When multiple languages are installed on one system, the help documents are stored in different folders. The DDS source file needs to be copied, changed, and compiled again for each language on the system.

Index search tags: Help panel groups may contain index search modules. Index search supplements the help information that is provided for each display. To use the information in help panel groups for the index search function, you need to add the appropriate UIM tags to your help modules.

Users can access the index search function from any display help that specifies that the index search function is available.

## The ISCH tag

The ISCH tag defines the title of a topic in the index and specifies the root words that serve as the link between the topic and the search words (synonyms) entered by the user. The tag appears immediately after the HELP tag to which it refers. There can only be one ISCH tag within a single help module.

For each ISCH tag, there can be several lines of root words, provided that the total number of root words is no more than 50. If more than one line of root words is used, ROOTS= must be repeated at the beginning of the second line and subsequent lines:

```
: PNLGRP.
:HELP name=entry1.
:ISCH ROOTS='root1 root2 root3 root4 root5'
    ROOTS='root6 root7 root8 root9 root10'
    ROOTS='root11 root12 root13 ... root50'.
Title of First Topic
This is the first index search module in this panel group.
:EHELP.
:EPNLGRP.
```

The root words on all lines must be enclosed in apostrophes and a period must be placed only at the end of the last line of root words. The topic title follows the period on the ISCH tag and may be placed on the line immediately following the period.

## The ISCHSYN tag

The ISCHSYN tag defines the words (synonyms) that, if entered by a user, match a specific root word. If a word that is entered by a user is a synonym for a root word, then a match is found for each topic whose ISCH tag contains that root.

If you want a word that is used as a root word to be used as a synonym as well, you must include the word as a synonym on the ISCHSYN tag. For example:

The synonyms for the ISCHSYN tag must be entered on one line, and at least one ISCHSYN tag must exist for each root word. If more than one line is needed, more ISCHSYN tags may be entered for the same root word.

UIM does not differentiate between synonyms entered in uppercase, lowercase, or mixed case. For this reason, it is not necessary to repeat synonyms to cover all the different cases.

You may use alphabetic or numeric characters for synonyms; however, the following characters (including their hexadecimal equivalents) are not allowed to be used as a synonym or part of a synonym:

- . (period)
- ( (left parenthesis)
- ) (right parenthesis)
- ; (semicolon)
- , (comma)
- ? (question mark)
- : (colon)

The ISCHSYN tags may be placed anywhere in the panel group, but to make maintenance and translation easier, place them all in one area (such as at the beginning of your panel group or in a panel group object that contains only ISCHSYN tags).

## Example: ISCH and ISCHSYN usage

The following example shows some ISCHSYN tags and the ISCH tags that use them:

```
:PNLGRP.
:ISCHSYN ROOT='ocean'.ocean water sea
:ISCHSYN ROOT='lake'.lake water pond
:ISCHSYN ROOT='definition'.definition define description what
:ISCHSYN ROOT='definition'.summary concept information explanation
:HELP name='defocean'.
:ISCH ROOTS='definition ocean'.
Definition of ocean
An ocean is one of the five large bodies of salt water, which
together cover nearly three-fourths of the world.
:EHELP.
:HELP name='deflake'.
:ISCH ROOTS='definition lake'.
Definition of lake
A lake is a body of standing water that is enclosed by land.
:EHELP.
:EPNLGRP.
```

Index search and DBCS: The index search function can be used with either double-byte character support (DBCS) or single-byte character support (SBCS) data. When DBCS data is used, the device from which it is requested must be capable of entering and presenting the data in DBCS. The object that contains the index search data is marked as containing DBCS data. The system determines if the device is capable of handling the DBCS data.

When the data is being prepared for DBCS format and the index search function is used with that data, consider the following:

- When the index search data is prepared for a DBCS system, the synonyms entered on the ISCHSYN tag must be in double-byte character mode. That is, the first byte after the tag must be a shift-out character and the last byte of the data must be a shift-in character. The system does not convert data on the ISCHSYN tag to double-byte character data.
- Words must be separated by a single-byte blank. From 1 to 19 double-byte characters may be combined to form a word. Intervening shift-out and shift-in characters are allowed, but are ignored by index search.
- The words that are used to link the ISCH and ISCHSYN tags (the ROOTS attribute of the ISCH tag and the ROOT attribute of ISCHSYN tag) must be identical and should not be entered in DBCS.
- Search words can be entered in either single-byte mode or double-byte mode. Single-byte blanks can be entered to separate the words.

When the search words are shown on the screen, the double-byte character representation (the character that was actually used in the search) is shown. Special processing takes place so that index search is not case sensitive. The search words from the ISCHSYN tag are converted to uppercase using a conversion table for the code page that is specified with the TXTCHRID attribute of the PNLGRP tag. If the search words are DBCS, they are not converted to uppercase. Shift-out and shift-in characters are treated as blanks during parsing; leading and trailing blanks are removed. All SBCS words are converted to uppercase using a conversion table for the code page of the device description.

Program message design: On $\mathrm{OS} / 400^{(\mathrm{R})}$, a message can be predefined or immediate. Consider the following when designing and coding your messages:

- Do not use immediate messages. They are created by the sender or program at the time they are sent and are not stored in a message file. Therefore, they cannot be translated by the translator.
- Use predefined message descriptions that can both:
- Exist outside of the program that uses them.
- Be stored in a message file.
- Do not specify the maximum size for a message file. When the message file becomes full, you cannot change the size of the message file. You need to create another message file and add the message description again.
Use the Create Message File CRTMSGF command to create a message file to hold the predefined message description. The contents of the predefined message description can be put into a message file by the Add Message Description ADDMSGD command. For details, refer to the Control Language information.
- Use substitution variables with care. Different languages have different orders for substitution variables. For example, in the English message:
File \&1 in Library \&2 not found.
\&1; and \&2; are the substitution variables. Those substitution variables may appear in different positions for different languages.
- Make your design and coding able to understand a reply code for different languages. For example,

| English | $Y=$ Yes |
| :--- | :--- |
| Danish | $\mathrm{J}=$ Ja (means Yes) |

The following figure shows the creation of different NLV messages from message files.


A program can directly access the message file for program messages, or it can indirectly access the message file through display files for program messages. For more information on message files, see CCSID support for messages

Menu design: You can define your own menus on $O S / 400^{(R)}$. There are three types of user-defined menus: display file menus, UIM (reference) menus, and program menus.

To use an application system, users have to deal with a lot of menus and displays. When an application is being translated from one language to another, a large portion of the literal text to be translated comes from menus.

## Display file menu

A display file menu uses a display defined by DDS to present a menu format. The menu functions are controlled by a menu object that contains the commands used to run each of the menu options. The following figure shows how display file menus are created for different national language versions.


## Program menu

A program menu uses programs to present the menu format (defined by DDS) and to provide functions necessary to run the menu options. The following figure shows how program menus are created in different national language versions.


## Menu Translation

To allow for easy translation into national language versions of your menus:

- Keep the literal text of menus external by holding the constant text as externally defined message descriptions in a message file and by incorporating the text into a menu file when the program is run.
- Be aware of the expansion space needed when a menu is translated from one language to the next. Leave space for translation expansion when you design your menus.
- Be aware of cultural conventions when date, time, or edited fields are displayed on the menu.
- Use numerals 0 through 9, instead of uppercase and lowercase English letters (A through Z), as the option fields for selection. Numeric characters are more standard among different languages.

Command design: The OS/400 ${ }^{(\mathrm{R})}$ program allows users to define and create their own commands. To create a command, you must first define the command through command definition statements. Then use the Create Command (CRTCMD) command to process the command definition statements to create the command definition object.

When defining and creating a command, take into consideration the following:

- Use help panel groups to provide online help information for the command. See "User interfaces" on page 59 for information on national language version help panels.
- Use message identifiers instead of literal text for the PROMPT keyword on the CL CMD, PARM, ELEM, and QUAL command definition statements.
- Translate the text that is displayed to the right of the prompt line of each parameter on the prompt display. This text is specified by the CHOICE parameter of the PARM command definition statements, so the appearance of the command prompt display will maintain its coherency.
- Compile command-prompt text into separate command definition object versions for each national language. Use the Change System Library List (CHGSYSLIBL) command before creating the command to get the national language version prompt text from the correct national language version library.
- The function keys of the command prompt display are provided by the OS/400 program. If the NLV of the OS/400 program is different from the NLV of the command, two different languages would appear on the command prompt display. For example, when translating an English display into German, both the English and German would appear on the command prompt display.
For additional information on creating and defining commands, see Control language.
Cultural-dependent design: Different countries have different standards that must be taken into account when developing an NLS-enabled application. This culturally sensitive information must be placed outside the program the same way as the textual data is handled.

Many languages have characters (such as common-usage vowels essential to the correct spelling of a word) outside of the A-Z alphabet that must be considered for collating purposes.

Through system values, the system supplies linguistic support, cultural support, and the ordering of data. For a list of the default system values for each national language version, see Default system values.

The following topics describe the various attributes that should be considered when designing culturally dependent applications:

- Database file attributes
- Job attributes
- Program attributes
- Information in message CPX8416
- Date formats
- Date separators
- Editing date presentation
- Time formats
- Time separators
- Editing time presentation
- Decimal format
- NLS sort sequence

Database file attributes: Culture-dependent database attributes are the following:

- Coded character set identifier (CCSID)
- Sort sequence (SRTSEQ)
- Language identifier (LANGID)

The CCSID attribute applies only to physical files. The SRTSEQ and LANGID attributes can be used with both physical files and logical files. A logical file can have a CCSID value only when it has taken the CCSID from the physical file. The database attributes are stored with the data. They are static in the sense that they cannot be dynamically altered by the process of accessing the data.

Job attributes: Culture-dependent job attributes are the following:

- Coded character set identifier (CCSID)
- Sort sequence (SRTSEQ)
- Language identifier (LANGID)
- Country or region identifier (CNTRYID)
- Date format (DATFMT)
- Date separator (DATSEP)
- Decimal format (DECFMT)
- Time separator (TIMSEP)

The default values for CCSID, SRTSEQ, LANGID, and CNTRYID attributes are set from the user profile when the job starts. The values for CCSID, DATFMT, DATSEP, DECFMT, SRTSEQ, and TIMESEP can be set from the LOCALE and SETJOBATR attributes associated with the user profile. When you use the Change Job (CHGJOB) command, you can override the values specified for any of the listed job attributes.

Program attributes: The SRTSEQ and LANGID parameters can also be specified as program attributes belonging to a *PGM object type. The LANGID parameter is used together with the SRTSEQ parameter only when the SRTSEQ value is set to *LANIDUNQ or *LANGIDSHR. Otherwise, the LANGID parameter is not used.

If a program explicitly refers to a sort sequence or a language identifier, then those attributes stored in the program object take effect. The *JOBRUN value for these parameters is used to refer to the attributes of the job running the program. *JOBRUN makes it possible to use a single set of programs processing data according to different sort sequences. The *JOBRUN value affects only the processing of data, however, not the retrieval sequence of data. The retrieval sequence is determined by the database attributes. To retrieve data in a sort sequence different than what is defined in the database, use logical files that are built separately.

Information in message CPX8416: If your application will be translated into other languages, use the message CPX8416 from the QCPFMSG message file to get the correct setting for some cultural values for the other languages. The message exists for your primary language and all installed secondary language libraries. The system message contains these values:

- Code page and character set
- Currency symbol
- Date format
- Date separator
- Decimal format
- Leap year adjustment
- Coded character set identifier
- Time separator
- Language identifier
- Country or region identifier

Culture-dependent fields in the panel or display should not contain hard-coded values. These fields should be defined with the maximum length permitted for the field on the display.

If your application is to support users in languages other than the primary language, the callable routines should use the CPX8416 message values. A callable routine uses the cultural values for the primary language to determine the contents of the field (for example, date format) and places these values on the display. NLS system values maintained in message CPX8416 determine the format of the cultural values appearing in the culture-dependent fields.

Your application can use the details from the system message.
The following table shows the layout for message CPX8416. This example shows the values in the text column using the English uppercase and lowercase NLV (feature 2924).

|  | Field | Start | Length | Justify |
| :---: | :---: | :---: | :---: | :---: |
| Description Value | $\begin{aligned} & \text { QCHRID } \\ & 69737 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0001 \\ 0012 \end{array}$ | $\begin{aligned} & 10 \\ & 21 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QCURSYM \$ | $\begin{array}{\|l} 0034 \\ 0045 \end{array}$ | $\begin{aligned} & 10 \\ & 01 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QDATFMT MDY | $\begin{array}{\|l} 0047 \\ 0058 \end{array}$ | $\begin{aligned} & 10 \\ & 03 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QDATSEP <br> / | $\begin{array}{\|l\|} \hline 0062 \\ 0073 \end{array}$ | $\begin{aligned} & 10 \\ & 01 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QDECFMT | $\begin{array}{\|l\|} 0075 \\ 0086 \end{array}$ | $\begin{aligned} & 10 \\ & 01 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QLEAPADJ 0 | $\begin{aligned} & 0088 \\ & 0099 \end{aligned}$ | $\begin{aligned} & 10 \\ & 01 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | $\begin{array}{\|l} \text { QCCSID } \\ 37 \end{array}$ | $\begin{aligned} & 0101 \\ & 0112 \end{aligned}$ | $\begin{aligned} & 10 \\ & 05 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QTIMSEP | $\begin{array}{\|l} 0118 \\ 0129 \end{array}$ | $\begin{aligned} & 10 \\ & 01 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | $\begin{aligned} & \text { QLANGID } \\ & \text { ENU } \end{aligned}$ | $\begin{aligned} & 0131 \\ & 0142 \end{aligned}$ | $\begin{aligned} & 10 \\ & 03 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | QCNTRYID US | $\begin{array}{\|l} 0146 \\ 0157 \end{array}$ | $\begin{aligned} & 10 \\ & 02 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |
| Description Value | $\begin{aligned} & \text { QIGCCDEFNT } \\ & \text { *NONE } \end{aligned}$ | $\begin{array}{\|l} 0160 \\ 0171 \end{array}$ | $\begin{aligned} & 10 \\ & 21 \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |

Date formats: There is no worldwide standard for the presentation of dates. Therefore, the date format should always be stored externally as part of the textual data. The valid date formats on OS/400 ${ }^{(\mathrm{R})}$ are:

- *MDY (Month, day, year)
- *DMY (Day, month, year)
- *YMD (Year, Month, Day)
- *JUL (yy/ddd)
- *ISO (YYYY-MM-DD)
- *USA (MM/DD/YYYY)
- *EUR (DD.MM.YYYY)
- *JIS (YYYY-MM-DD)

Note: Some OS/400 functions do not support all of the date formats shown above.
In database files, dates can be stored as:

- Normal numeric data fields
- $S A A^{(R)}$ date data-types

When you store dates as numeric data, your application needs to specify the format in which it is stored and presented.

When you store dates as data type DATE (L), you can specify the format with the DDS keyword DATFMT on the database file. The date is shown in this predefined format as character data, including the date separators.

If date sorting and other processing is needed, the date should be stored in *ISO format (YYYY-MM-DD) and converted to another format during the input and output operations. Write a high-level language routine to convert dates.

Date separators: The valid date separators are:

- / (slash)
-     - (dash)
- . (period)
- , (comma)
- (blank)

The date separator for presentation should always be stored externally as part of the textual data.
When you use decimal fields for dates, not only does your application have to specify the format, but it also must handle the date separators during the input operation and presentation.

When you use date-type fields, the date separators are always included in the date. To change the date separator, you can write a high-level language routine to convert dates.

Editing date presentation: You need to handle the presentation of dates on display and printer files differently, depending on how they are stored:

- As a normal decimal data field

Your application program has responsibility for the way the date is entered, stored, and presented. The application must check to see that the date is entered in the right format, remove any date separators, convert the date to another format when necessary, and edit it on the display file or printer file.
The DDS keyword DATE is used as an output-only field. DATE uses the job attributes DATE, DATFMT, and DATSEP. You can edit DATE using the edit code keyword, EDTCDE, for 6- and 8-digit date fields.
Editing with EDTCDE includes the following changes to the appearance of displayed fields, depending on which edit code is specified:

- Leading zeros are suppressed.
- Zero values can be displayed as zero or blanks.
- The field can be further edited using a user-defined edit code.

For all other types of fields using the EDTCDE Y keyword, the program has to specify the format, and the system uses the date separator of the job that created the device file. The date separator is integrated in the object, and you are not able to change it dynamically at run time.

- As an $S A A^{(R)}$ data type DATE (L) field

The DDS date format (DATFMT) keyword allows you to specify different date formats, including default date separators, at the database field level. For the *MDY, *DMY, *YMD, and *JUL parameters, the default date separator can be changed with the date separator (DATSEP) keyword. The *ISO, *USA, *EUR, and *JIS values have a fixed separator, and the DATSEP keyword is not allowed with these values. The DATFMT and DATSEP keywords allow you to specify the format and editing characters for storing date fields. The date is shown as a character string, including the separators.
Any format conversion between the date input and the format the database asks for can be done by:

- Application program routines
- Field mapping through logical files that define different date formats and separators

For example, you can provide a date conversion that is dependent on the actual job attributes by using the following CL program:
PGM PARM(\&fromfmt \&fromfld \&tofld );
DCL VAR(\&fromfmt); TYPE (*CHAR) LEN(4)
DCL VAR(\&fromfld); TYPE(*CHAR) LEN(10)

```
DCL VAR(&tofld); TYPE(*CHAR) LEN(10)
CVTDAT DATE(&fromfld); TOVAR(&tofld);
FROMFMT (&fromfmt); TOFMT (*JOB) TOSEP (*JOB)
ENDPGM
```

Your application program has to pass the format of the date you want to convert and the date itself to the CL program. The CL program assumes that the job attributes represent the way the user expects to see date fields edited. It retrieves these values and does the conversion, conforming to these values, and passes back the date in that way. The *ISO, *USA, *EUR, and *JIS values have a fixed separator that cannot be changed. If the TOFMT parameter contains one of these values, the TOSEP value is ignored.

Time formats: The time formats supported on $\mathrm{OS} / 400^{(\mathrm{R})}$ are:

- *HMS (hh:mm:ss)
- *ISO (hh.mm.ss)
- *USA (hh:mm AM or hh:mm PM)
- *EUR (hh.mm.ss)
- *JIS (hh:mm:ss)

The system value QTIME has one format (hhmmss). The time separator value is determined by the QTIMSEP system value.

The time format for presentation should always be stored externally as part of the textual data.
In database files, times can be stored as:

- Normal numeric data fields
- $S A A^{(R)}$ time data-types

When you store the time as numeric data, your application needs to specify the format in which it is stored and presented.

When you store the time as data type TIME (T), you can specify the format with the DDS keyword TIMFMT on the database file. The time is sorted in this predefined format as character data, including the time separators. To convert time fields from one format to another, write a CL program or high-level language routine to do the conversion.

Time separators: The valid time separator characters on $\mathrm{OS} / 400^{(\mathrm{R})}$ are:

- : (colon)
- . (period)
- (blank)
- , (comma)

The time separator for presentation should always be stored externally as part of the textual data.
When you use decimal-data fields for time fields, your application needs to specify the format and time separators on the input and presentation operations.

When you use time-type fields, the time separators are always included in the time field. To change the time separators, write a CL program or high-level language routine to do the conversion.

Editing time presentation: You need to handle the presentation of times on display files and printer files differently, depending on the way they are stored:

- As a decimal data field

Your application program has responsibility for the way the value is entered, stored, and presented. The program must check for the correct format, eliminate the time separators, convert the time to another format when necessary, and edit it on the display file or printer file.
The editing can be done by specifying the edit word (EDTWRD) for the field. The TIME keyword is an output-only field. Both the edit word and TIME keyword use the information available at creation time. The time separators are integrated in the device file object.
Both ways force you to have different copies of the source and objects for different editing requirements.

- As an $S A A^{(R)}$ data type TIME (T) field

The OS/400 ${ }^{(\mathrm{R})}$ program allows you to specify different time formats and time separators on the database file level. The TIME keywords allow you to specify the format and editing characters for storing time fields. The time type field is shown as a character string that includes the separators.
As an SAA data type, you can specify such time fields as normal character fields on the display file or printer file. On an input operation, your program has to check entered values for the correct format and separators and move them over to the database field. On an output operation, you just move the character string from the database file field to the device file field, including the separators. Any format conversion between the input and output format and the format that the database asks for can be done either by:

- Application program routines
- Field mapping through logical files that define different time format and separators

Decimal formats: You can change the decimal format with the QDECFMT system value to reflect the way decimals are presented for your country or location.

Sort sequences: Sort sequence is supported on $\mathrm{OS} / 400^{(\mathrm{R})}$. You can order your data according to culture-dependant requirements for specific applications by using one of the following options:

- Hexadecimal sorting (sort sequence tables not used). This is the default.
- A user-supplied or system-supplied shared-weight sort sequence table or unique-weight sort sequence table, determined by the SRTSEQ parameter.

The following example shows how to use one DDS source file to create database files with different sort sequences. The following steps can be performed:

```
CRTxF FILE(*CURLIB/NAME)
    SRTSEQ(*JOB)
    LANGID(*JOB)
```

You can then change the job attributes to create files with different sort sequences.
The CL program and high-level language programs can be created by specifying either early binding or late binding of a sort sequence. With early binding of a sort sequence, the sort sequence table to be used is determined at compile time. With late binding of a sort sequence, the sort sequence table to be used is determined at run time.

Late binding makes it possible to use one set of programs in different national language environments. The following figure illustrates using different sort sequences for different jobs with one set of physical files and program code. The sort sequence table defined for the job and used by the program should be the same as (or compatible with) the sort sequence table assigned to the logical files accessed through the library list.


## Design for running with different sort sequences:

If your program is expected to run with different sort sequences, consider the following:

- Presenting the data in different order.
- Processing different records.

Specifying selection criteria such as less than or greater than can result in selecting different records. The selection criteria equal to can result in selecting a different number of records when the shared-weight sort sequence table is used.

- Processing of a conditional branch may be different.

Note: System lists (such as the output from the WRKOBJ command) are not affected by sort sequence support.

You can use the DDS file-level keyword alternate sequence (ALTSEQ) to specify the sequencing table and the library in which it is contained. The system-supplied sort sequence tables with shared and unique weight can be used for defining the alternative collating sequence.

The alternative collating sequence table is inserted into the file at compile time and is not needed at run time. You can have different files containing different collating sequences using one set of DDS.

Note: The alternative collating sequence defined in your database files must also be defined in your application programs; otherwise, you may get unexpected results.

The DDS keyword ALTSEQ, provides limited support for sequencing, it has no effect on select/omit logic. The ALTSEQ keyword can only be used with the SRTSEQ(*SRC) parameter on the CRTPF and CRTLF commands.

## For more information

See Character graphic (data) sort implementation for more information about sort sequences.
Display file design: Application panels usually consist of the following major elements:

- Constant text strings
- Input and output fields
- Field editing specifications
- Cursor positioning specifications
- Default values for input fields
- Field validation specifications
- Error messages

You can handle these either as a program-described or an externally described file using DDS. The information found in this topic is based on the externally described technique using DDS.

Constant text strings: Because different languages have different space needs for the same expression, design your panels with this in mind. Do not place many fields on the same line, except for a list panel that has column headings instead of field prompts. Do not overload the panels with information. Choose one of the techniques described under "Textual data code design" on page 63 to make your panels.

Input and output fields: Consider defining your fields according to the needs of the different languages, countries, cultures, currencies, and laws that you want to address with your application. For example, assume you want to store Italian lira and Japanese yen in the same field as United States dollars. You must size the field to accommodate the higher number of digits needed for Italian lira.

Field editing specifications: For the edit specification of your numeric, date, and time fields, consider the different cultural conventions of the users you want to address. Do not code the format and editing instructions in your application program in a way that requires program modification when another convention is needed. Refer to Cultural-dependent design for more information.

Cursor positioning specifications: Do not specify cursor positioning values to fixed locations on the screen, because different languages have different space requirements. When you work with different display files, you can adjust them with the translation process. When you need to work with field-independent cursor locations, store the positional information outside of your code and retrieve the variable values for the keyword within your program.

For example:
A record-name CSRLOC(field-name-1 field-name-2)
Cursor positioning on the field level is more useful in an NLS environment. For normal records, this is done by specifying the DSPATR(PC) keyword on a specific field. For subfiles, the cursor can be positioned using SFLRCDNBR(CURSOR) keyword on a special positioning field. In addition, the subfile record number must be stored in that field before the format is written.

For example:
A field-name $4 S 0 B$ line pos SFLRCDNBR(CURSOR)

Note: The name of the record and field where the cursor is positioned, the subfile relative record number, and subfile fold/truncate indicator can be returned to your application program. This function is provided by hidden fields on the DDS keywords RTNCSRLOC, SFLCSRRRN, and SFLMODE.

Input field default values: There are three different ways to put default values into the input fields of your display, which the user can override with his own data:

- Getting information from program

Never hard code the values as a literal if they are language or culture-dependent values. Use values you can get from the system-provided information, such as system or job date, or get the values from a data object, such as a database file or data area from outside of the program.

- Using DDS keywords DFT (Default) or DFTVAL (Default Value)

Specify the default input value directly on the DDS after the keyword. The DDS keyword DFT is for input-only (I) fields. For output-only (O) or input-output (B) fields, use the keyword DFTVAL.
For example:
A field-name length type I line pos DFT('default ')
Ar
Aield-name length type $0 / B$ line pos $\operatorname{DFTVAL('default~value~')~}$

- Using DDS keyword MSGID (Message Identification)

Using the Message Identification (MSGID) keyword allows you to retrieve the content of a specified
message description when the program is run and to put that value as a default in your display file field.
The field must be input-output capable (B) for you to use this technique.
For example:

```
A field-name length type B line pos MSGID(message-id [*libl/message-file)
```

This allows you to use different message files for each national language version by setting the library list accordingly when the program is run.

Field validation specifications: The following DDS keywords provide validation checks on input-capable fields on your display:

- RANGE (Range checking)
- VALUES (Values checking)
- CMP and COMP (Comparison)
- CHECK (Check validity, keyboard control and cursor control)

Using the DDS keywords with any hard-coded values that are language, country, or culture-dependent makes duplication and modification of the DDS and the application program necessary.

## Example: Validation checks

An example of field validation checks on input-capable fields on your display using the DDS keywords VALUES, COMP, and CHECK follows:

```
A field-name length type usage line pos VALUES('Y' 'N')
or
A field-name length type usage line pos COMP(EQ 'US$')
or
A field-name length type usage line pos CHECK(M10 or M11)
(Modulus checking)
or
A field-name length type usage line pos CHECK(RL)
(Right-to-left support)
```

Validation checks are provided according to the sort sequence defined for the display file at creation time. You can use the same DDS source file to create objects for different languages. For example, the following command creates a display object tagged with the Latin 1 sort sequence table:
CRTDSPF FILE(name) SRTSEQ(*LANGIDSHR) LANGID(DEU)

The following specification:
A field-name length type usage line pos $\operatorname{COMP}(E Q$ 'a')
accepts all lowercase, uppercase, and accented characters, as defined by the shared-weight in the Latin 1 sort sequence.

In addition, note that all the checks specified using those DDS keywords are done by the data management function of the $\mathrm{OS} / 400^{(\mathrm{R})}$ program. Any error message caused by wrong input or handling by the user appears in the language of the OS/400 program. This could be the primary language or a secondary language, depending how the library list of the job is set up.

You can override this when you use the additional DDS keyword CHKMSGID (Check Message Identifier). This keyword allows you to specify your own customized messages and message file to be used by the checking routines of the OS/400 program.

For example:


MSG('Wert \&1; ist ausserhalb des g ü ltigen Bereichs 1 bis 999')
To use different message files of different library names, do not specify a fixed library name. You can use a message file for different languages by setting the library list when you run the program.

Error messages: There are two ways to provide error messages on a display file:

- Specifying text as constant on ERRMSG or SLFMSG keywords

Specify the text directly as a constant on the DDS keyword. When you want to have more than one language, you have to duplicate the DDS source code and translate constants within the DDS
specifications. You can then create a separate display file object for each language.

- Using predefined messages on ERRMSGID or SLFMSGID keyword

When using predefined messages instead of constants, you need to have multiple display files.
Instead of using different display files, exchange only the used message file by setting the library according to the language that you want to use.
For example:

| A | field-name | length type usage | EDTCDE (x) |
| :---: | :---: | :---: | :---: |
| A 6 |  |  | ERRMSGID(USR3456 [*1ibl/]APPMSGF [\&MSGFLD2]) |
| A | MSGFLD2 | length type | TEXT('Message data field') |

and
ADDMSGD MSGID(USR3456) MSGF(APPTXDENU/APPMSGF)
MSG('Delivery date \&1; is earlier than production end date \&2')
and
ADDMSGD MSGID(USR3456) MSGF(APPTXDDEU/APPMSGF)

```
MSG('Lieferdatum &1; ist . . .')
```

.

Printer file design and translation: The types of printer files are:

- Program-described printer files

Program-described files rely on the high-level language program to define records and fields to be printed.

- Externally described printer files

Externally described printer files use DDS rather than the high-level language to define records and fields to be printed.

The following figure shows how externally described printer files are used in creating reports for a different national language version.


Printer file translation:
When designing printer files to be translated into a national language version:

- Use externally described printer files to define records and fields to be printed. Avoid using program-described printer files. Program-described printer files are described inside the high-level language program. Translators trying to translate text imbedded within the program can mistakenly translate literals that are within your program.
- Print data in one national graphic character set on devices that support the corresponding character sets and code pages. Not all printers support all CHRID parameters.
- Use the MSGCON keyword to access the constant text described in the message file. A printer file does not have the MSGID keyword. However, the techniques of direct coding as unnamed output field (literal) and storing text in a database file can be used to specify the constant text in a printer file. See "Textual data code design" on page 63.
- Take culture conventions into consideration when bar codes are being described in the printer file. Different countries have different standards for bar codes.
- When entering data, consider these parameters on the Create Printer File (CRTPRTF) command.
- PAGESIZE (page size)

Different countries have different page-size standards.

- OVRFLW (overflow line number)

The overflow line number must be less than or equal to the page length.

- CHRID (character set and code page)

If the CHRID parameter of the printer file is set to *DEVD, the printer uses the character identifier that was set on the control panel or specified in the device description.
If the CHRID parameter of the printer file is set to a specific value, this value determines the code page and character set used to print the data. For externally described printer files, the CHRID parameter is used only for fields that also have the CHRID DDS keyword specified. For all other fields, the code page and character set used is the same as if *DEVD was specified.
If the CHRID parameter of the printer file is set to *JOBCCSID, constant text from an externally described printer file is converted to the CCSID of the job. The printer data stream is tagged with the CHRID taken from the job CCSID, using this CHRID value to print the data. When using the *JOBCCSID value on the CHRID parameter, the CHRID DDS keyword is ignored.

Note: All code pages and character sets cannot be handled by all printers.
Source file design: Database source files are implicitly assigned the CCSID of the job when they are created, unless they have been explicitly assigned a CCSID value using the CCSID parameter on the Create Physical File (CRTPF) or Create Source Physical File (CRTSRCPF) command. If the job CCSID is 65535, the job default CCSID (DFTCCSID) is used as the implicitly assigned CCSID. The job default CCSID is determined by the system language identifier value and the job DBCS-capable indicator.

Character data representation architecture (CDRA) design: To enable your application for a multilingual environment, consider the following:

- Avoid coding CCSID values directly in your DDS for physical files. When creating different physical files for different languages, change the CCSID for your job (using the CHGJOB command). Only one set of DDS source code needs to be maintained.
Conversions between all CCSIDs may not make sense in all cases. For example, if you access a Greek database with a CCSID of 00875 from a German display station with a job CCSID of 00273, you see garbled data on your display.
Countries outside the Latin-1 character set use character sets that include non-Latin characters. No meaningful conversion is possible between the non-Latin code points and the Latin code points. Arabic, Greek, Hebrew, and Turkish are SBCS languages with non-Latin characters.
- When database sharing takes place, define your files with the CCSID of the primary language being used. Make sure all users have the CCSID of the language that they use defined in their user profile.

See the following for additional information on CDRA:

- Work with CCSIDs
- Use of the SNDNETF command
- Scenario: Multilingual single system
- Scenario: Multilingual network

Use of the Send Network File command: When you use the Send Network File (SNDNETF) command, the data (if sending a member only) is assumed to be in the CCSID of the job that is running the command. Therefore, no conversion takes place. When the data is received, care must be taken to store the member in a file with the same CCSID as the originating file. If the receiver does not know the CCSID of the incoming file member, it can be received into a file with a CCSID of 65535, which indicates that no conversion takes place.

Scenario: Multilingual single system: The following figure shows a multilingual single system with German as the primary language and English and French as secondary languages. All users enter data into the same database file.


On this multilingual system, all users are entering character data into a single file with CCSID 00273 (German), and character data entered from the English and French display stations is being mapped into the German file.

To preserve correct mapping, fields defined as character fields should be actual character fields. If the fields contain application development values (for example, control characters or fields that are not used as real character fields), the fields either should be specified as hexadecimal fields or assigned a CCSID value of 65535 .

Using CCSIDs, characters that cannot be converted between different code pages are replaced with a substitution code. If you are using a user-defined data stream (UDDS) to format and lay out your display (instead of using DDS), you may get substitution codes returned after the system reads and inserts that data in your user-defined data stream. Substitution codes may cause unpredictable results on the display.

Scenario: Multilingual network: The following figure shows an example of a multilingual network with three iSeries ${ }^{(T M)}$ servers located in three different countries, each with a different language. In this example, the application on the Danish system is using distributed relational database. All national characters (regardless of the language that the data is stored in) are displayed correctly at the Danish display. When the CCSID of the language is used by the database, the integrity of the database is preserved. The conversion of data between the different code pages is completely automatic and part of the $\mathrm{OS} / 400^{(\mathrm{R})}$ database management.


REAGS501-0
Handle languages with no NLV support: If you need to support a language that does not have a supported national language version, follow these general steps.

1. Study the available national language versions. Find out which national language version most closely resembles your language in character representation.
2. Install the most appropriate national language version as your primary language.
3. Modify the system values to meet your cultural needs. For example, set date and time formats to meet those of the culture that you are supporting. For information on setting system values for cultural needs, see System values for other languages.
4. Configure your workstations and printers to match your primary language. Then, handle discrepancies between support for the installed NLV and your own language.
Note: The workstation customization functions can support only those capabilities built into your hardware. You cannot support functions through workstation customization that your hardware is unable to support.
5. Use the Create Table (CRTTBL) command to create a sort sequence table based on the existing table that most nearly matches the appropriate sorting sequence for your language.
6. If your language is a DBCS language, create your own characters (UDC) to represent missing characters in the code page associated with the NLV you installed. UDC is an acronym for a user-defined character that is created through the character generator utility (CGU). CGU is an extension of the code page with special user-defined ideographic characters, symbols, or logos.

## Programming considerations in globalized application design

As you develop your globalized applications, the national language version environment often requires that you pay additional attention to how you prepare and compile your code. The following topics describe some of these requirements, and offer guidelines that you can follow to minimize problems:

- Code globalized applications with high-level languages
- Code globalized applications that use bidirectional data
- Use message catalogs


## Code globalized applications with high-level languages

Your major goal must be to have only one general set of running code that is common for all language versions and to make your programs table-driven as much as possible. You should:

- Base validity checks on database accesses and message files rather than on hard-coded literals or tables.
- Base calculations on variable factors retrieved from a file rather than coding them inline.
- Place culture-dependent functions into separate modules of the application and call them when you cannot code them flexibly.

Do not use hard-coded values unless they are fully language and culture independent on comparison, scan, replace, or call operations. In addition, do not use uppercase or lowercase-sensitive values. For example, never hard code Yes and No ( Y or N ) responses in your program, because these values are different for every language, and should be part of the textual data.

For literals and constants in source code, use characters only from the invariant character set. If input data is checked for validity in the program, make sure that the characters checked belong to the invariant character set; otherwise you may get a situation where the user is requested to enter a character that is not even on his keyboard. For example, the left brace (\{) and right brace (\}) do not appear on Arabic keyboards. See Invariant character set for a listing of the invariant character set.

Do not use compile-time arrays to hold messages or any other language or culture-sensitive data.
For better performance, when you need to call external NLS-dependent modules, call them by a fixed name as a literal (but based on the library list) rather than by a variable field containing the program name. This allows your application to call the modules of different libraries based on the associated library list.

To allow users to work with an application in the language and habits of their culture, specify the editing values (for example, date, time, and date separators) as dependent on the language and country or region. You can then retrieve them according to the information in the user profile. The parameters are LANGID (language identifier) and CNTRYID (country or region identifier). You need to retrieve the culture-sensitive information only once at program initiation. You can do this by an initial CL program or by the high-level language program and prepare them as:

- Parameters on the call operation
- Parameters on the local data area (LDA)
- Program load tables

Using an initial program allows you to set the user's job attributes to present a consistent application, such as the $\mathrm{OS} / 400^{(\mathrm{R})}$ program and other licensed programs.

For additional information about high-level languages, see the following:

- Language compilers CCSID
- Session manager
- ILE C/400 ${ }^{(\mathrm{R})}$ considerations
- ILE RPG sort sequence
- ILE COBOL sort sequence
- DB2 ${ }^{(\mathrm{R})}$ and SQL sort sequence
- iSeries ${ }^{(T \mathrm{MM})}$ Access sort sequence

Language compilers CCSID: Some language compilers expect syntactical operators and the naming convention for the source code to be in CCSID 00037. (Refer to the documentation for the language
compiler you use.) For these compilers, incorrect mapping occurs if the source is compiled with a CCSID other than 00037 or 65535 . You must ensure that these compilers receive any variant characters used in language syntax in CCSID 00037.

## ILE language compilers

When compiling an ILE C/400 ${ }^{(R)}$, ILE RPG for iSeries ${ }^{(T M)}$, or ILE COBOL for iSeries program, source from database source files is converted to the CCSID of the primary source file.

Compilers for these languages can handle syntactical operators in most CCSIDs. These compilers can also handle naming conventions for the source code in most CCSIDs.

## Non-ILE language compilers

When compiling a non-ILE CL, RPG, or COBOL program, source from database source files is converted to the CCSID of the job.

If you do not want your names, constants, or literals converted to the CCSID of the job, you may change your job CCSID to 65535. Your constants, literals and names then remain intact.

Note: REXX/400 procedures and the literal data coded within them are not converted to the job CCSID.

## Example 1

The following example shows a sample non-ILE RPG program. This example shows English source on a system in the United States.


## Example 2

In Finland, the program in the first example does not compile because the field name FLD\$ contains a variant character (the dollar sign). The variant character represents a different code point in a code page other than 00037. This figure shows the same sample non-ILE RPG program as English (U.S.) source on a system in Finland (CCSID 278).

```
* RPG Source (Source file created with CCSID 00037, but tagged
* with 65535)
FFILE1 IF E DISK 80
C
C* Test char
C*
C FLD1 IFEQ, å,
C
C* Move char
C*
```

```
C MOVE FLD1 FLD å
```

| $C$ | $\cdots$ |  |
| :--- | :--- | :--- |
| $C$ | SETON | LR |

## Example 3

You can correct this error by changing the file CCSID to 00037 and setting the job CCSID to 00278 (for Finland). The following example shows the changed file as seen English source in Finland.


Session manager: For all applications that use a session manager, you must ensure that the output data stream has no X'3F' values in it. OS/400 ${ }^{(\mathrm{R})}$ uses X'3F' values to blank out a screen.

## General sort sequence

The sort sequence used by a program may influence the program logic. The following figure shows an example of this.

Using the Latin 1 shared-weight sort sequence, character test 3 is equivalent to character test 4 (not all characters are shown). When using hexadecimal or unique sorting, they are completely different. The following example shows an RPG program using different sort sequences.

```
* RPG Source (Program created with Latin 1 sort sequence)
*
C* Test char 3
C* F
C* Test char 4
\begin{tabular}{lll} 
C* & & \\
\(C\) & FLD1 & IFEQ 'a' \\
\(C\) & FLD1 & OREQ 'A'
\end{tabular}
C FLD1 OREQ,áa,
C FLD1 OREQ, Á,
C
C SETON LR
```

If you compile the program with *JOBRUN specified for the SRTSEQ parameter and *JOBRUN specified for the LANGID parameter, the sort sequence table used at run time is not known at compile time.

ILE C/400 ${ }^{(\mathrm{R})}$ and DB2 ${ }^{(\mathrm{R})}$ Query Manager and SQL Development Kit for iSeries ${ }^{(\mathrm{TM})}$ licensed programs have additional special considerations.

ILE Considerations: Consider the following when you compile programs with ILE C:

- You can compile a source file in any EBCDIC code page except code page 00290.
- If the CCSID of the primary source file is 65535 , code page 00037 is assumed.
- All secondary source files are converted to the CCSID of the primary source file.

Note: While most secondary source files are converted to the CCSID of the primary source file, some conversions are not supported. Contact your $\mathrm{IBM}^{(\mathrm{R})}$ service representative if you require support for an unsupported CCSID conversion.

- If the CCSID of the secondary source files is 65535, no conversion takes place.
- Any modules are created in the code page of the primary source file. A module is an $\mathrm{OS} / 400^{(\mathrm{R})}$ object that can be a collection of one or more procedures and one or more definitions for external or internal variables. A module is compiled from source code.
- When binding modules of different CCSIDs, no conversion takes place and unpredictable results may occur.
- You can use the trigraph support for the C characters that are not available on all keyboards. Trigraph support generally uses invariant characters to represent variant characters. For example, the left bracket ([) is represented by ??(.

The ILE C run-time library functions that parse strings containing variant characters use the variant character code point value associated with the CCSID of the job.

ILE RPG sort sequence: The ILE RPG for iSeries ${ }^{(T M)}$ licensed program provides the possibility for a user to specify a sort sequence table and use it in comparison operations performed with non-numeric data. For each of the supported languages, two tables (a shared-weight and unique-weight) are shipped with the server. With sort sequence support you can create sort sequence tables based on the existing ones.

The control specifications are specifications that provide the ILE RPG for iSeries compiler with information about your program and your server. The sort sequence used in ILE RPG for iSeries programs is controlled by all of the following:

- The control specifications.
- The SRTSEQ (sort sequence table) parameter on the Create RPG Module and the Create Bound RPG Program commands.
- The LANGID (language identifier) parameter on the Create RPG Module and the Create Bound RPG Program commands.

The alternative collating sequence field (ALTSEQ) in the control specifications allows the following values:
blank No alternative collating sequence is used in the RPG program. The normal collating sequence is used in the RPG program. The compile options SRTSEQ and LANGID are ignored.

## *NONE

No alternative collating sequence is used in the RPG program. The normal collating sequence is used in the RPG program. The compile options SRTSEQ and LANGID are ignored.
*SRC The alternative collating sequence is used in the RPG program, according to the tables entered at the end of the RPG program. The alternative collating sequence table is loaded at compile time, and ordering, sorting, comparing, and match field processing is done according to that table.
The SORTA and LOOKUP operation codes do not use specified alternative collating sequence tables.

The SRTSEQ and LANGID parameters on the Create RPG Module and Create Bound RPG Program commands are ignored.
*EXT The alternative collating sequence is specified outside of the RPG program. RPG compiler imports an external sort sequence table, based on the SRTSEQ and LANGID parameters on the Create RPG Module and the Create Bound RPG Program commands.

The SORTA and LOOKUP function with the arrays and tables at compile time and processing time take effect only when you specify D in the control specifications.

The sort sequence table to be used by the program can be determined at compile time or when the job is run. If the SRTSEQ parameter of the Create RPG Module and Create Bound RPG Program commands:

- Is set to *HEX, no sort sequence table is used.
- Specifies a table name, then that table is stored with the program object to be used when the job is run. For system-supplied default sort sequence tables for the supported languages, refer to Sort sequence tables
- Is set to *LANGIDSHR or *LANGIDUNQ, the shared-weight or unique-weight table for the language determined by the LANGID parameter is stored with the program object. For a list of valid language identifiers, refer to Language and country/region identifiers.
- Is set to *JOB, the SRTSEQ parameter of the compile time job is used to determine the sort sequence. The table is stored with the program object.
- Is set to *JOBRUN, the attributes of the job running the compiled program determine the sort sequence to be used. If the SRTSEQ attribute of the job refers to the LANGID, the LANGID stored with the program object is used. If the LANGID stored with the program is also *JOBRUN, the LANGID of the run-time job is used.


## Notes:

1. If the table to be stored with the program object at compile time does not exist, a table defining hexadecimal sort sequence and tagged with a CCSID value of 65535 is used.
2. If the sort sequence table and the CCSID of the job running the program differ, the table is converted to the CCSID of the job.

## SORTA and LOOKUP operation codes

The implementation of compare operation codes, match field and control field processing with the sort sequence tables is the same for the alternative collating sequence and for the sort sequence support. Compare operation codes are ANDxx, COMP, CABxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHxx. Additional functions provided with the SORTA and LOOKUP operation codes follow:

## SORTA

The data in the array is sorted according to the sort sequence table.

## LOOKUP

To provide proper table searching, the sort sequence table is used with the search arguments in the arrays and tables.
The search argument and either the table or array element are compared using the sort sequence table.

The array and table data are checked using the sort sequence table, whenever ascending or descending sequence is specified. If the SRTSEQ and LANGID parameter values resolve to retrieve the sort sequence table again at run-time, then the array and table elements are loaded without a sequence check at the compile time. The sequence checks are performed at run time, according to the sort sequence table.

ILE COBOL sort sequence: The ILE COBOL for iSeries ${ }^{(T M)}$ licensed program uses the sort sequence support in the following ways:

- Create COBOL Module command
- Create Bound COBOL Program command
- PROCESS clause
- ALPHABET clause

The ILE COBOL for iSeries licensed program uses sort sequence tables that are system-supplied or user-supplied.

## Create COBOL module and create bound COBOL program commands

These CL commands have two compiler options relating to sort sequence support: the SRTSEQ parameter and LANGID parameter. The SRTSEQ parameter allows the user to specify any of the system-supplied or user-supplied sort sequence tables residing in a specified library. You can specify whether the sort sequence table should be taken at compile time or run time. Also, you can choose between the shared-weight and unique-weight tables.

With the LANGID parameter, you can specify one of the system-defined language identifiers, or leave that parameter to be defined at the run time.

The meanings of the SRTSEQ and LANGID parameters on the Create COBOL Module and Create Bound COBOL Program commands are the same as on the Create RPG Module and Create Bound RPG Program commands as described in "ILE RPG sort sequence" on page 91.

## PROCESS statement

Sort sequence support options can be supplied in the PROCESS statement. The syntax for that command is like that for the Create COBOL Module and Create Bound COBOL program commands. The only exception to this is that the values for the parameters in the PROCESS statement are entered without an asterisk (*) for the predefined values. Any options specified in the PROCESS statement override the corresponding options on the Create COBOL Module and Create COBOL program commands.

## ALPHABET clause

The alphabet-name in the ALPHABET clause of the SPECIAL-NAMES paragraph may use the NLSSORT option. Use the SRTSEQ and LANGID parameters of the compiler for alternative collating sequence options. Otherwise, it means the same as the NATIVE option.

The following COBOL lines are affected by the NLSSORT option:

- PROGRAM COLLATING SEQUENCE phrase of OBJECT-COMPUTER paragraph

When evaluating the result of nonnumeric comparisons, the alphabet name has to be referenced in this phrase to enable the program to use the specified sort sequence options. This option also applies to the nonnumeric sort or merge operation. Otherwise, the hexadecimal collating sequence is used.

- ALPHABET CLAUSE in the SPECIAL-NAMES paragraph

This clause should specify the NLSSORT option.

- COLLATING SEQUENCE in the MERGE (or SORT) statement

This phrase is used to specify the collating sequence to be used for nonnumeric comparisons for the KEY data name in the MERGE or SORT operation. If omitted, the PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph defines the collating sequence to be used. If neither is specified, hexadecimal collating sequence is used.

- Nonnumeric relation names and condition names

The selected sort sequence table affects the result of certain statements, using nonnumeric relation names and condition names: EVALUATE, IF, PERFORM...UNTIL, SEARCH and START. The truth values of the nonnumeric comparisons depend on the corresponding weights of the characters in the selected sort sequence table. For example, if you specify unique-weight table (LANGIDUNQ) for French (Latin 1), the following statement is true for the single value of the variable ITEM-1,e.
IF ITEM-1 = "e"
If you specify a shared-weight table (LANGIDSHR) for French (Latin 1), the same statement is true for several values of the variable ITEM-1. All have the same shared weight of 77 :

```
lowercase e (e), uppercase e (E),
lowercase e acute (é ), uppercase e acute (É ),
lowercase e grave (è ), uppercase e grave (È),
lowercase e caret (ê), uppercase e caret ( \(\hat{\mathrm{E}}\) ),
lowercase e umlaut (ë), uppercase e umlaut ( E )
```

DB2 ${ }^{(R)}$ and SQL sort sequence:
For interactive SQL, the SRTSEQ and LANGID parameters can be specified on the STRSQL command. Later these parameters can be changed using the session services for interactive displays.

Sort sequence tables are used for all string comparisons. String comparisons are performed in the following SQL statements:

- ORDER BY clause
- WHERE clause
- GROUP clause
- HAVING clause
- UNION and UNION ALL clauses
- DISTINCT clause
- BETWEEN predicate
- IN predicate
- LIKE predicate
- MIN and MAX scalar functions
- MIN and MAX column functions

In addition, any indexes or views that are created using the CREATE INDEX or the CREATE VIEW statements are created with the specified sort sequence table.

## DB2 Query Manager and SQL Development Kit for iSeries ${ }^{(T M)}$

DB2 Query Manager and SQL Development Kit for iSeries does not assume a particular CCSID when precompiling source. Any variant characters in the language syntax (such as the $\neg$ not symbol) are assumed to be encoded in the CCSID of the source file.

For example, if the source file has a CCSID of 00037, the $ᄀ$ not symbol is correctly interpreted to be at code point $X^{\prime} 5 F^{\prime}$. If the source file has a CCSID of 00500, however, the $\neg$ not symbol is correctly interpreted to be at code point $X^{\prime} B A^{\prime}$.

A literal is stored in the CCSID of the source file.
Because DB2 Query Manager and SQL Development Kit for iSeries calls the appropriate language compiler to create an SQL program, the general guidelines for high-level languages must also be taken into account.
iSeries ${ }^{(T M)}$ Access sort sequence: You can specify the sort sequence in the iSeries Access functions, remote SQL and transfer function. When performing queries on the server databases and SQL tables, you can specify the system-supplied or user-supplied sort sequence tables.

## Remote SQL support

You can specify the way the selected data has to be sorted when performing the query. For that purpose, sort fields have to be specified in the ORDER BY clause. The following clauses also use the specified sort sequence:

- WHERE clause
- GROUP BY clause
- HAVING clause
- JOIN BY clause
- UNION clause
- DISTINCT clause
- IN predicate
- LIKE predicate
- BETWEEN predicate
- RANGE predicate
- MAX function
- MIN function

The actual sort sequence table is retrieved from the job attributes of the user. The SRTSEQ and LANGID parameters can be affected through changing the user profile or changing the job attributes.

## Data transfer support

When transferring data from the iSeries server to the workstation, you can specify the sort sequence to be applied on selected data. The sort sequence table is also used in the following string comparison operations:

- WHERE clause
- GROUP BY clause
- HAVING clause
- JOIN BY clause
- IN predicate
- LIKE predicate
- BETWEEN predicate
- MAX function
- MIN function

You can specify in the OPTION statement the following parameters related to sort sequence:

- SRTSEQ (sort sequence table)
- *JOB
- *HEX
- *LANGIDSHR
- *LANGIDUNQ
- *LIBL/sort-seq-table-name
- *CURLIB/sort-seq-table-name
- library-name/sort-seq-table-name
- LANGID (language identifier)
- *JOB
- language-identifier

You can choose the appropriate sort sequence through options on iSeries Access displays.

## Code globalized applications that use bidirectional data

When you are developing NLV-enabled applications, consider the following restrictions:

- Bidirectional language display layout

The presentation of data should have a right-to-left orientation. Literals should appear on the right side of the fields that they describe. The following examples illustrate a U.S. English display with a left-to-right orientation and the same display in a right-to-left orientation.

## Left-to-right layout of a U.S. English display

## Display employee record (DSPEMPRCD) <br> Type choices, press enter.

| Employee code | Code, *ALL |
| :---: | :---: |
| Field name | Name, *ALL |
| File name | Name |
| Library name | Name, *LIBL |
| Output to | *CONS, *PRINT |

## Right-to-left layout of a U.S. English display

(DSPEMPRCD) drocer eeyolpme yalpsiD .retne sserp , seciohc epyT

```
    *ALL ,edoC _ . . . . . . . . . edoc eeyolpmE
    *ALL ,emaN —_ . . . . . . . . . . . . .eman dleiF
        emaN —— . . . . . . . . . . . . eman eliF
    *LIBL ,emaN — . . . . . . . . . . . eman yrarbil
*CONS ,*PRINT —— . . . . . . . . . . . . . . . ot tuptuO
```

- Long fields in bidirectional languages

Avoid defining input fields that span more than one line. When the field is displayed or printed as one entity, the result for bidirectional languages would not be what the user intended.

- Variable positioning in bidirectional languages

Your application must allow for variables to be in any order. For example,consider the following message in English:
File \&1 in library \&2 not found
When translated to another language, the message might look like the following:
dnuof ton \&2 yrarbil ni \&1 eliF
In this case, variable 2 is positioned before variable 1.

- CHECK(RL) and CHECK(RB) keywords with bidirectional languages

These options are valid only for display stations capable of right-to-left movement, and have the following restrictions:

- Option indicators are not valid with cursor control codes.
- CHECK(RZ) and CHECK(RB) are not valid with these keywords.
- A field that spans more than one line gives a warning message.
- The check digit for modulus checking is the farthest-right byte in the field.
- CHECK(RL) applies to character fields only.
- Online information for bidirectional languages

The special bidirectional tags have a restriction. When combining online help information from several
panel groups that do not have the same value for the BIDI tag, the end user must use the hot key sequence to read the opposite orientation online help information.

- CCSIDs for bidirectional languages

As bidirectional languages have special character sets that are unique, no exchange of data into other languages is feasible. You may need to use data mapping between EBCDIC and ASCII data streams, however. For example, you need data mapping between EBCDIC and ASCII data streams if you are using Distributed Relational Database Architecture ${ }^{(T M)}\left(\right.$ DRDA $\left.^{(R)}\right)$.
When exchanging data in a language that uses Latin characters and when special characters that are not part of the invariant character set are needed, use CCSID 00424 for Hebrew and CCSID 00420 for Arabic for data mapping to take place. For a list of supported CCSIDs, see CCSIDs.

See Work with bidirectional data for more information about bidirectional data. This topic also includes a checklist for bidirectional data that provides guidelines to follow when you create applications with bidirectional support.

## Use message catalogs

$\mathrm{OS} / 400^{(\mathrm{R})}$ can use message catalogs to store messages. Messages in a message catalog are grouped as sets. Each message has a unique number within a set. You can create a message catalog as a stream file, a source file member, or a user space object type from one or more source files.

Because you can store message catalogs as stream files, you can use directories to isolate messages for specific products or national language versions.

## Create or update a message catalog with the GENCAT and MRGMSGCLG commands

You can use both the Generate Message Catalog GENCAT command or the Merge Message Catalog MRGMSGCLG) command to create or update a message catalog. Once a message catalog exists, continued use of these commands updates a catalog by comparing the original messages to the messages in the source. New message text replaces specific messages without changing the other messages within the set. With these commands, you can add or delete messages from an existing set of messages. You can also delete sets of messages from an existing message catalog.

## For more information

See the following topics for more information about message catalogs:

- Source for message catalogs
- Open, extract, and close message catalogs

Source for message catalogs: The source for a message catalog is either a source physical file, a stream file, or multiple files. The source contains fields to define set numbers, message numbers, message text, or to specify sets to delete. The following topics provide additional information and examples relating to message catalogs.

## Message catalog source format

A message catalog contains five fields of message text source lines. A single blank character separates each of the five fields. Any other blank characters are considered as part of the subsequent field data. See Special characters and escape sequences (page 99, for additional information.

Note: Enter the key fields exactly as listed below, using the dollar sign (\$) and lowercase characters. Definitions for maximum and minimum values are stored in QSYSINC/QSYS/LIMITS.

- \$ comment

A line that begins with $\$$ that is followed by one or more blank characters is treated as a comment line.
A omment line should be placed directly beneath the message to which it refers. Place comments for an entire set directly below the \$set directive in the source file.

## - \$quote C

This line specifies an optional quote character $C$ that is used to surround message text. This character enables trailing spaces or null (empty) messages to be visible in a message source line. By default, or if an empgy \$quote directive is supplied, no quoting of message text is recognized.

- \$set $\mathbf{n}$ comment

This line specifies the set identifier of the messages to follow until the next \$set or end-of-file appears. The $N$ denotes the set identifier that is defined by a number between 1 and NL_SETMAX. Place set identifiers in ascending order within a single source file. They do not need to be contiguous. A character string that follows a set identifier is treated as a comment and ignored.

- \$delsetncomment

This line deletes message set $n$ from an existing message catalog. The $n$ specifies the set number.
Data that follows the set number is treated as a comment. The \$set and \$delset identifiers can both be in the message catalog source or the field tags.

- m message text

The $m$ specifies the message identifier that is defined by a number between 1 and NL_SETMAX. The message text is stored in the message catalog with message identifier $m$ with the set identifier that is specified in the last \$set directive. If the message text is empty and a blank character field separator is present, it stores an empty string in the message catalog. Existing messages get deleted from the catalog if the message line does not have a field separator or MESSAGE TEXT and a NEWLINE or carriage return follows the message line. Message identifiers must be in ascending order, noncontiguous, and within a single set. The length of the MESSAGE TEXT must be in the range of 0 to NL_TEXTMAX.
Note: Empty lines in a message text source file will be ignored.

## Messages programming format

MESSAGES should follow these recommendations:

- The last line of all messages should end with $\backslash n$.
- The second and remaining lines of a message should begin with $\backslash t$, indicating a tab.
- All lines of messages that continue to the next line should end with $\backslash n \backslash$, indicating that the message continues to the next line.
- The quotation mark at the end or beginning of a line should be omitted. The quotation mark delineates the beginning and end of a complete message.


## Using multiple source files

You can specify multiple source files for the source file parameter. The messages that are contained in all of the files must follow the same rules for sets and messages as defined in a single source file. For example, the first source file contains messages in sets 1 through 3 . The next source file must begin with set 3 and have a message number greater than the last message number in the first source file. If not, it must contain sets that begin with a number higher than the highest number (set 3 ) in the previous source file.

## Replacing messages

Messages in an existing message catalog can be replaced by specifying a source file that contains the same set number and message number as the message text you want to change. All other messages in the source file remain the same. To update a value for the \$QUOTE in a catalog, use the same \$QUOTE character in subsequent source files.

## Example source for a message catalog

The following shows a sample format for the source that is used to create a message catalog. A quotation mark delineates each message. The message text that is stored in the message catalog has had the
extraneous blank characters removed. This example describes three sets of messages. Set 2 is deleted while sets 1 and 3 remain stored in the message catalog.

```
$ Messages for my new product
$quote "
$set 1
1 "Error occurred.\n"
$ The next message is continued on the next line.
2 "This is a very long message \n\
\t that requires another line to display. \n"
3 "Specify a value greater than %d.\n"
4 "File %c cannot be used at this time.\n"
$set 2
1 "Error %d occurred. \n"
2 "Flag not set.\n"
3 "Number of arguments must be %d.\n"
$set 4
1 "Before using this command, you must \
set the correct values in the %c box.\n"
2 "You have not properly NLS enabled this function.\n"
10 "Messages should end with a %c.\n"
```

\$delset 2

Note: Message 2 in set 1 will be displayed in two lines. Message 1 in set 4 will display as a one line message.

The following is an example for using the MRGMSGCLG command to create a message catalog.

```
MRGMSGCLG CLGFILE('/MYPRODUCT/MESSAGES?US')
    SRCFILE('QSYS.LIB/MYLIB.LIB/MYSOURCE.FILE/US.MBR')
    CLGCCSID(*SRCCCSID) SRCCCSID(*SRCFILE)
    TEXT('Message catalog for USA')
```

This example creates a message catalog into the stream file US in directory /MYPRODUCT/MESSAGES using the source from MYLIB library in file MYSOURCE and member US. The CCSID of the data in the message catalog is the same as the CCSID tag of the source file.

## Special characters and escape sequences

Text strings can contain special characters and escape sequences as defined in the following table.

| Description of special characters | Sequence |
| :--- | :--- |
| I | lI |
| backspace | lb |
| carriage return | Ir |
| form feed | If |
| horizontal tab | It |
| NEWLINE | In |
| octal bit pattern | Iddd <br> Note: The escape sequence lddd consists of a backslash <br> followed by up to three octal digits that specify the value <br> of the desired character. If the character following the <br> backslash is not an octal digit, the backslash and data <br> following are included as part of the text. |

Open, extract, and close message catalogs: Once you have created a message catalog, you can use the following C functions:

## CATOPEN()

Opens a message catalog

## CATGETS()

Extracts a message from a message catalog, given a set identifier and a message identifier

## CATCLOSE()

Closes the message catalog
The C function CATOPEN opens the message catalog. If no slash (/) characters are found in the name, the NLSPATH environment variable and the LC_MESSAGES category are used to find the specified message catalog. If the name contains one or more slash (/) characters, the name is interpreted as a path name of the catalog to open.

A default path is used if there is no NLSPATH environment variable or a message catalog cannot be found in the NLSPATH path specified. If the value of oflag is NO_CAT_LOCALE the environment variable setting of LC_MESSAGES may affect the default path. If the value of oflag is zero the LANG environment variable may affect it also.

For more information about C functions and message catalogs, see the WebSphere ${ }^{(R)}$ Development

## Studio: ILE C/C++ Language Reference <br> PDF.

## Deliver globalized applications

As you prepare to deliver your globalized application, you should consider how globalization issues might affect the ways that your customers will install and use your application. The following topics briefly discuss these issues.

## Hardware support for multilingual systems

Hardware, in this context, means the physical keyboards, displays, printers, and controllers that make up an iSeries ${ }^{(T \mathrm{TM})}$ server. The extent to which this hardware supports national languages may impose limitations on the degree of support that you can provide with an application. You must refer to the reference manuals for non-IBM ${ }^{(R)}$ hardware to determine what limitations, if any, are imposed by that hardware.

## Character data translation

Translating is changing the meaning of character data from a set of concepts, ideas, and statements in one human language to a culturally similar meaning in another human language. You can follow some basic rules to ensure translation goes smoothly. A subset of these rules is provided in the "User interfaces" on page 59 topic.

## Delivering your globalized application to customers

Delivering your application to customers includes the processes of packaging, servicing, supporting, and educating users about your application. You must consider various tasks when following these processes in different countries and cultures throughout the world. See "Packaging and installation process" on page 52 for more information on the processes associated with the delivery of your application to customers.

## Handle data in globalized applications

One of the most critical challenges you will face as you work with globalized servers and applications is the effective interaction with data. OS $/ 400^{(R)}$ provides a wide range of options that you can use to insure that data is viewed and processed seamlessly across national languages. The following topics describe globalization as it affects how you handle your data:

- Work with Unicode
- GB18030: The Chinese standard
- Work with CCSIDs
- Work with bidirectional data
- Work with DBCS data
- Work with locales


## Work with Unicode

## >

Unicode is a standard that precisely defines a character set as well as a small number of encodings for it. It enables you to handle text in any language efficiently. It allows a single application executable to work for a global audience.

Before Unicode, the encoding systems that existed did not cover all the necessary numbers, characters, and symbols in use. Different encoding systems might assign the same number to different characters. If you used the wrong encoding system, your output might not have been what you expected to see.

Unicode provides a unique number for every character, regardless of platform, language, or program. Using Unicode, you can develop a software product that works with various platforms, languages, and countries. Unicode also allows data to be transported through many different systems. Modern systems provide Internationalization solutions based on Unicode.

Unicode was developed as a single-coded character set that contains support for all languages in the world. The first version of Unicode used 16 -bit numbers, which allowed for encoding 65,536 characters without complicated multibyte schemes. With the inclusion of more characters, and following implementation needs of many different platforms, Unicode was extended to allow more than one million characters. Several other encoding schemes were added. This introduced more complexity into the Unicode standard, but far less than managing a large number of different encodings.

Starting with Unicode 2.0 (published in 1996), the Unicode standard began assigning numbers from 0 to $1,114,111$. This gives more than enough room for all written languages in the world. The original repertoire covered all major languages commonly used in computing. Unicode continues to grow, and it includes more scripts.

The design of Unicode differs in several ways from traditional character sets and encoding schemes:

- Its repertoire enables users to include text efficiently in almost all languages within a single document.
- It can be encoded in a byte-based way with one or more bytes per character, but the default encoding scheme uses 16 -bit units that allow much simpler processing for all common characters.
- Many characters, such as letters with accents and umlauts, can be combined from the base character and accent or umlaut modifiers. This combining reduces the number of different characters that need to be encoded separately. Precomposed variants for characters that existed in common character sets at the time were included for compatibility. For example, Latin small letter A used with a combining tilde results in $\tilde{a}$.

Characters and their usage are well-defined and described. Traditional character sets typically provide only the name or a picture of a character and its number and byte encoding; Unicode has a comprehensive
database of properties available. It also defines a number of processes and algorithms for dealing with many aspects of text processing to make it more interoperable.

The early inclusion of all characters of commonly used character sets makes Unicode a useful mechanism for converting between traditional character sets, and makes it feasible to process non-Unicode text by first converting the text into Unicode, processing the text, and then converting it back to the original encoding without loss of data.

The following topics describe the Unicode implementation on OS/400 ${ }^{(\mathrm{R})}$ :

- Why use Unicode?
- UTF-8
- UTF-16
- UTF-32
- UCS-2 and its relationship to Unicode
- How Unicode relates to prior standards such as ASCII and EBCDIC
- International components for Unicode (ICU)
- Mapping of data
- Unicode on OS/400
- UCS-2 level-1 mapping tables

For more information about Unicode, see the Unicode web page.

## <

## Why use Unicode?

>
$\mathrm{OS} / 400^{(\mathrm{R})}$ provides multilingual support. Unicode provides the means to store and retrieve data in the user's national language of choice in a single file, and therefore provides for one database file to support all text needs, regardless of the language of the input device. For example, the same parts file could have Greek, Russian, and English descriptions and names in it.

Unicode allows for the use of combining characters. A combining character is a non-spacing character that is used together with a non-combining character to form a composite character, or glyph. For example,
Latin small letter A used with a combining tilde results in $\tilde{a}$.

## <

## UTF-8

A Unicode transformation format (UTF) is the algorithmic mapping from every Unicode value to a unique byte sequence. UTF-8 converts (via an algorithm) Unicode data so that it:

## >

- Does not contain nulls, unless that was the character intended.
- Uses 8 data bits to encode the data
- Keeps all ASCII codes from 00 to 7 F as encoded as themselves


## $\ll$

For example, the string "ABC" in Unicode would be "004100420043"x. However, in UTF-8 it would be " 414243 ".

Since UTF-8 allows Unicode data to flow over an 8-bit network without the network needing to know that it is Unicode, UTF-8 is used to store Unicode on several UNIX ${ }^{(\mathrm{R})}$ platforms and is used as the default encoding for most new internet standards.

## 》

UTF-8 is used mainly as a direct replacement for older MBCS encodings, which all use 8-bit code units, but it takes some more code to process it. It is a good encoding if $90 \%$ of your data is English, since all English letters use only one byte.

## <

OS/400 ${ }^{(\mathrm{R})}$ supports UTF-8 encoding with CCSID 1208.

## UTF-16

UTF-16 is an encoding of Unicode in which each character is composed of either one or two 16-bit elements.

OS/400 ${ }^{(\mathrm{R})}$ supports UTF-16 encoding with CCSID 1200.
Unicode was originally designed as a pure 16-bit encoding, aimed at representing all modern scripts. Over time, and especially after the addition of over 14,500 composite characters for compatibility with legacy sets, it became clear that 16 bits were not sufficient for most users. Out of this arose UTF-16.

UTF-16 allows access to about 60,000 characters as single Unicode 16-bit units. It can access an additional $1,000,000$ characters by a mechanism known as surrogate pairs.

Two ranges of Unicode code values are reserved for the high (first) and low (second) values of these pairs. Highs are from 0xD800 to 0xDBFF, and lows from 0xDC00 to 0xDFFF. Since the most common characters have already been encoded in the first 64,000 values, the characters requiring surrogate pairs are relatively rare.

》 UTF-16 is extremely well designed as the best compromise between handling and space, and all commonly used characters can be stored with one code unit per code point. This is the default encoding for Unicode. <

For more information about UTF-16, see the Unicode web page.

## UTF-32

UTF-32 is an encoding of Unicode in which each character is composed of 4 bytes.
OS/400 ${ }^{\left({ }^{(R)}\right.}$ does not support UTF-32 encoding with a CCSID value.
Unicode was originally designed as a pure 16 -bit encoding, aimed at representing all modern scripts. Over time, and especially after the addition of over 14,500 composite characters for compatibility with legacy sets, it became clear that 16 bits were not sufficient for many users. Out of this arose UTF-32.

UTF-32 allows characters to be encoded as 4 bytes at any code point from 00000000 to $0010 F F F F$. For example, the string ABC in UTF-32 would be encoded as x"000000410000004200000043".

For more information about UTF-32, see the Unicode
web page.

## UCS-2 and its relationship to Unicode

Since the UCS-2 standard is limited to 65,535 characters, and the data processing industry needs over 94,000 characters, the UCS-2 standard is in the process of being superseded by the Unicode UTF-16 standard.

However, because UTF-16 is a superset of the existing UCS-2 standard, you can develop your applications using the existing UCS-2 support as long as your applications treat the UCS-2 as if it were UTF-16.
$\gg \mathrm{OS} / 400^{(\mathrm{R})}$ supports UCS-2 encoding with CCSID 13488. <

## UCS, UCS-2 (Universal Multiple-Octet Coded Character Set)

The ISO 10646 standard is a character code designed to encode text for storage in computer files. The design of the ISO 10646 standard is based on today's prevalent character code, ASCII (and ISO 8859-1, an extended version of the ASCII code). But ISO 10646 goes beyond ASCII's ability to encode only the Latin alphabet. The ISO 10646 encoding provides the capability to encode all of the characters used for written languages throughout the world.

## Two UCS encoding schemes

In order to accommodate the many thousands of characters used in international text, ISO/IEC 10646 specifies the Universal Multiple-Octet Coded Character Set (UCS). UCS can be implemented through two encoding schemes:

- UCS-2: Each character is represented by 16 bits or 2 bytes. (The number 2 in UCS-2 indicates 2 bytes.) For example, uppercase A is represented by 0041.
- UCS-4: Each character is represented by 32 bits or 4 bytes. (The number 4 in UCS-4 indicates 4 bytes.) For example, uppercase A is represented by 00000041.

The major difference between the 2-byte and 4-byte representation is that the 4-byte representation allows for the presentation or use of additional characters beyond the capability of UCS-2. That is, you can encode more characters in UCS-4 than you can in UCS-2.
> OS/400 does not support UCS-4 encoding with a CCSID value. <

## How Unicode relates to prior standards such as ASCII and EBCDIC

This topic provides a historical perspective on the Unicode standard, and explains how it can reduce the complexity of handling character data in globalized applications.

## Evolving standards based on limited platforms

The representation of character data in modern computer systems can be fairly complicated, depending on the needs of your globalized application. One of the reasons for this complexity is that the methods for handling this data have evolved from early methods that served less complicated environments and hardware platforms.

In fact, many early decisions about how to encode characters on a system were guided by the functional requirements of specific devices, such as the early Telex (TTY) terminals and punch card technologies. For example, the Delete character (with an ASCII value of $x^{\prime} 7 F^{\prime}$ ) was required in order to punch out all of the holes in a column of a punch card to signify that the column should be ignored. The storage capacities of these early computing systems placed additional limitations on system and application designers.

The character encoding schemes that have grown out of these early systems were built upon this historical foundation:

- The ASCII (American Standard Code for Information Interchange) character set uses 7-bit units, with a trivial encoding designed for 7-bit bytes. It is the most important character set in use today, despite its limitation to very few characters, because its design is the foundation for most modern character sets. ASCII provides only 128 numeric values, and 33 of those are reserved for special functions.
- The EBCDIC (Extended Binary-Coded Decimal Interchange Code) character set and a number of associated character sets, designed by $I B M^{(R)}$ for its mainframes, uses 8 -bit bytes. It was developed at a similar time as ASCII, and shares the same set of base characters and has other similar properties. Unlike ASCII, the Latin letters are not combined in two blocks for upper- and lower-case. Instead, the letters are arranged so that their hexadecimal values have second digits of 1 through 9 (another punch card-friendly design).


## Historical simplicity creates modern complexity

The physical and functional limitations of the early character sets gave way to rapidly expanding hardware and functional capabilities. Character representation on computing systems became less dependent on hardware; instead, software designers used the existing encoding schemes to accommodate the needs of an increasingly global community of computer users.

## Character sets for many characters

The most common encodings (character encoding schemes) use a single byte per character, and they are often called single-byte character sets (SBCS). They are all limited to 256 characters. Because of this, none of them can even cover all of the accented letters for the Western European languages. Consequently, many different such encodings were created over time to fulfill the needs of different user communities. The most widely used SBCS encoding today, after ASCII, is ISO-8859-1. It is an 8-bit superset of ASCII and provides most of the characters necessary for Western Europe.

However, East Asian writing systems needed a way to store over 10,000 characters, and so double-byte character sets (DBCS) were developed to provide enough space for the thousands of ideographic characters in East Asian writing systems. Here, the encoding is still byte-based, but each two bytes together represent a single character.

Even in East Asia, text contains letters from small alphabets like Latin or Katakana. These are represented more efficiently with single bytes. Multi-byte character sets (MBCS) provide for this by using a variable number of bytes per character, which distinguishes them from the DBCS encodings. MBCSs are often compatible with ASCII; that is, the Latin letters are represented in such encodings with the same bytes that ASCII uses. Some less often used characters may be encoded using three or even four bytes.

An important feature of MBCSs is that they have byte value ranges that are dedicated for lead bytes and trail bytes. Special ranges for lead bytes, the first bytes in multibyte sequences, make it possible to decide how many bytes belong together to encode a single character. Traditional MBCS encodings are designed so that it is easy to go forwards through a stream of bytes and read characters. However, it is often complicated and very dependent on the properties of the encoding to go backwards in text: going backwards, it is often hard to find out which variable number of bytes represents a single character, and sometimes it is necessary to go forward from the beginning of the text to do this.

Examples of commonly used MBCS encodings are Shift-JIS and EUC-JP (for Japanese), with up to two and three bytes per character, respectively.

## Stateful encodings

Some encodings are stateful; they have bytes or byte sequences that switch the meanings of the following bytes. Simple encodings, like mixed-byte EBCDIC, use Shift-In and Shift-Out control characters (bytes) to switch between two states. Sometimes, the bytes after a Shift-In are interpreted as a certain SBCS encoding, and the bytes after a Shift-Out as a certain DBCS encoding. This is very different from an MBCS encoding where the bytes for each character indicate the length of the byte sequence.

The most common stateful encoding is ISO 2022 and its language-specific variations. It uses Escape sequences (byte sequences starting with an ASCII Escape character, byte value 27) to switch between many different embedded encodings. It can also announce encodings that are to be used with special shifting characters in the embedded byte stream. Language-specific variants like ISO-2022-JP limit the set of embeddable encodings and specify only a small set of acceptable Escape sequences for them.

Such encodings are very powerful for data exchange but hard to use in an application. Their flexibility allows you to embed many other encodings, but direct use in programs and conversions to and from other encodings are complicated. For direct use, a program has to keep track not only of the current position in the text, but also of the state-which embeddable encoding is currently active-or must be able to determine the state for a position from considerable context. For conversions to other encodings, converting software may need to have mappings for many embeddable encodings, and for conversions from other encodings, special code must figure out which embeddable encoding to choose for each character.

## Why Unicode?

Hundreds of encodings have been developed, each for small groups of languages and special purposes. As a result, the interpretation of text, input, sorting, display, and storage depends on the knowledge of all the different types of character sets and their encodings. Programs are written to either handle one single encoding at a time and switch between them, or to convert between external and internal encodings.

Part of the problem is that there is no single, authoritative source of precise definitions of many of the encodings and their names. Transferring of text from one machine to another one often causes some loss of information. Also, if a program has the code and the data to perform conversion between a significant subset of traditional encodings, then it carries several megabytes of data around.

Unicode provides a single character set that covers the languages of the world, and a small number of machine-friendly encoding forms and schemes to fit the needs of existing applications and protocols. It is designed for best interoperability with both ASCII and ISO-8859-1, the most widely used character sets, to make it easier for Unicode to be used in applications and protocols.

》Unicode is in use today, and it is the preferred character set for the Internet, especially for HTML and XML. It is slowly being adopted for use in e-mail, too. Its most attractive property is that it covers all the characters of the world (with exceptions, which will be added in the future). Unicode makes it possible to access and manipulate characters by unique numbers (that is, their Unicode code points) and use older encodings only for input and output, if at all. «

## International Components for Unicode

The International Components for Unicode (ICU) is a C library that provides a full-featured, industrial strength, Unicode support. The library provides:

- Calendar support
- Character set conversions
- Collation (language-sensitive)
- Date and time formatting
- Locales (140+ supported)
- Message catalogs (resources)
- Message formatting
- Normalization
- Number and currency formatting
- Time zones
- Transliteration
- Word, line, and sentence breaks

ICU is a collaborative, open-source development project jointly managed by a group of companies and individual volunteers throughout the world, using the Internet and the Web to communicate, plan, and develop the software and documentation.

The ICU project is licensed under the IBM ${ }^{(R)}$ Public License, which has been approved by the Open Source Initiative. For more information, see International Components for Unicode (http://oss.software.ibm.com/icu/).

## Mapping of data

OS/400 ${ }^{(R)}$ uses the EBCDIC encoding scheme. However, not all clients attached to it use an EBCDIC encoding scheme to store, retrieve, and process data. For example, some clients may use ASCII, PC DATA, or other encoding schemes. Using Unicode prevents the loss of data due to incomplete conversion between encoding schemes and code pages. Therefore, some clients use Unicode as an exchange mechanism that is safe across all platforms.

## Examples:

The following examples highlight two users on the same system. One user is English and the other Greek. The English user has his display device CCSID set to 37. The Greek user has his display device CCSID set to 875 . Both users query, update, and replace data in the DATABASE1. DATABASE1 is tagged with CCSID 37.

- Example 1: Displaying data without Unicode
- Example 2: Displaying data with Unicode

Example: Display data without Unicode: Problems with data integrity develop because users are operating with CCSIDs that have varied character support. That is, not all characters in CCSID 37 are available in CCSID 875 and vice-versa.

Assume that the following names are to be entered by the English-speaking user (display device supports a CCSID of 37):

- Å alson
- Gifford

When these entries are stored, the data integrity remains intact. That is, an $\AA$ is stored as an $\AA$. This is because the display device CCSID and the database CCSID are both 37 .

Assume the following names are also input into DATABASE1 by the Greek-speaking user (display device CCSID of 875):

- A $\pi \varepsilon$ 白 $v$
- $\Omega \rho 1 \mu \alpha$

DATABASE1 now consists of the following logical entries:

- Å alson
- Gifford
- $\mathrm{M} \pi \varepsilon v$
- $\Omega \rho 1 \mu \alpha$

The Greek characters that make up the name are stored as those characters only if the same character exists within CCSID 37. If the character does not exist, the server converts the characters using a predetermined algorithm to a code point from code page 37. The algorithm converts $\Omega$ to $\AA$.

The following list shows the code point used to store the first character of each name in DATABASE1. (Using only the first character makes the example easier by eliminating long strings of code points which would be shown if the code point was presented for each character in the name.)
Name CCSID 37 Stored Code Point (Hexadecimal)
$\AA$ alson
$67 .$.

## Gifford

C7...
M $\pi \varepsilon \in$
$53 .$.
$\Omega \rho 1 \mu \alpha$
$67 .$.
The next step in this example is to show how data can be incorrectly selected due to the character conversion when it was stored in the database.

Assume the Greek user wants to find all names beginning with $\boldsymbol{\Omega}$. The following SQL statement would provide two names: $\Omega \rho \mathfrak{l} \mu \alpha$ and $\AA$ alson

Select from DATABASE1 where name LIKE, $\Omega \%$,
The search yielded an unexpected name ( $\AA$ alson). This is because the first character in $\AA$ alson is stored with the same code point as the first character in $\Omega \quad \rho \mathrm{l} \mu \mathrm{L}$.

Example: Display data with Unicode: This example, using UCS-2 as the CCSID of DATABASE1, shows how data integrity is maintained both in storing and retrieving data. As in the previous example, one user is English using CCSID 37 and the other user is Greek using CCSID 875.

DATABASE1 is used as in the previous example. However DATABASE1 is now defined with CCSID 13488. (13488 is a UCS-2 CCSID.)

- Å alson
- Gifford
- $\mathrm{M} \pi \varepsilon \mathrm{v}$
- $\Omega \rho \mathrm{l}$ l $\mu \alpha$

The key difference in using UCS-2 as the CCSID of DATABASE1 is that data integrity is maintained for each user who inputs data to the database. That is each character, regardless of the CCSID of the inputting device, is stored with a unique code point. (Remember that in this example the CCSID of DATABASE1 is 13488.)
Name CCSID 13488 Stored Code Point (Hexadecimal)

```
\(\AA\) alson
\(00 \mathrm{C} 5 .\).
Gifford
0047 ...
M \(\pi \varepsilon\)
    03A9 ...
\(\Omega \rho \mathfrak{l} \mu\)
    039C
```

Assume the Greek user wants to find all names beginning with $\Omega$. The following SQL statement would provide one name, $\Omega \Omega \rho i \mu \alpha$, as compared to two in the previous example:

Select from DATABASE1 where Substr $($ name $, 1,1)=, \boldsymbol{\Omega}$,
The reason for this is that each character stored in a UCS-2 tagged database has a unique code point. This contrasts to the previous example that had the first character in $\AA$ alson stored with the same code point as the first character in $\Omega \rho 1 \mu \alpha$

UCS-2 level-1 mapping tables: You can convert characters encoded in universal coded character set 2 level 1 (UCS-2 level-1) from uppercase to lowercase. The Uppercase to lowercase mapping table shows the mapping for this conversion.

You can also convert UCS-2 level-1 characters from lowercase to uppercase. The Lowercase to uppercase mapping table shows the mapping for this conversion.

Use the Convert Case API to perform these conversions.
ISO 10646 uppercase to lowercase UCS-2 level- $\mathbf{1}$ conversion mapping:

| Uppercase code <br> point | Lowercase code <br> point | Uppercase character <br> description | Lowercase character description |
| :--- | :--- | :--- | :--- |
| 0041 | 0061 | LATIN CAPITAL LETTER A | LATIN SMALL LETTER A |
| 0042 | 0062 | LATIN CAPITAL LETTER B | LATIN SMALL LETTER B |
| 0043 | 0063 | LATIN CAPITAL LETTER C | LATIN SMALL LETTER C |
| 0044 | 0064 | LATIN CAPITAL LETTER D | LATIN SMALL LETTER D |
| 0045 | 0065 | LATIN CAPITAL LETTER E | LATIN SMALL LETTER E |
| 0046 | 0066 | LATIN CAPITAL LETTER F | LATIN SMALL LETTER F |
| 0047 | 0067 | LATIN CAPITAL LETTER G | LATIN SMALL LETTER G |
| 0048 | 0068 | LATIN CAPITAL LETTER H | LATIN SMALL LETTER H |
| 0049 | 0069 | LATIN CAPITAL LETTER J | LATIN SMALL LETTER J |
| $004 A$ | $006 A$ | LATIN CAPITAL LETTER K | LATIN SMALL LETTER K |
| $004 B$ | $006 B$ | LATIN CAPITAL LETTER L | LATIN SMALL LETTER L |
| $004 C$ | $006 C$ | LATIN CAPITAL LETTER N | LATIN SMALL LETTER N |
| $004 D$ | $006 D$ |  |  |
| $004 E$ | $006 E$ | LATIN SMALL LETTER I |  |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 004F | 006F | LATIN CAPITAL LETTER O | LATIN SMALL LETTER O |
| 0050 | 0070 | LATIN CAPITAL LETTER P | LATIN SMALL LETTER P |
| 0051 | 0071 | LATIN CAPITAL LETTER Q | LATIN SMALL LETTER Q |
| 0052 | 0072 | LATIN CAPITAL LETTER R | LATIN SMALL LETTER R |
| 0053 | 0073 | LATIN CAPITAL LETTER S | LATIN SMALL LETTER S |
| 0054 | 0074 | LATIN CAPITAL LETTER T | LATIN SMALL LETTER T |
| 0055 | 0075 | LATIN CAPITAL LETTER U | LATIN SMALL LETTER U |
| 0056 | 0076 | LATIN CAPITAL LETTER V | LATIN SMALL LETTER V |
| 0057 | 0077 | LATIN CAPITAL LETTER W | LATIN SMALL LETTER W |
| 0058 | 0078 | LATIN CAPITAL LETTER X | LATIN SMALL LETTER X |
| 0059 | 0079 | LATIN CAPITAL LETTER Y | LATIN SMALL LETTER Y |
| 005A | 007A | LATIN CAPITAL LETTER Z | LATIN SMALL LETTER Z |
| 00C0 | 00E0 | LATIN CAPITAL LETTER A GRAVE | LATIN SMALL LETTER A GRAVE |
| 00C1 | 00E1 | LATIN CAPITAL LETTER A ACUTE | LATIN SMALL LETTER A GRAVE |
| 00C2 | 00E2 | LATIN CAPITAL LETTER A CIRCUMFLEX | LATIN SMALL LETTER A GRAVE |
| 00C3 | 00E3 | LATIN CAPITAL LETTER A TILDE | LATIN SMALL LETTER A GRAVE |
| 00C4 | 00E4 | LATIN CAPITAL LETTER A DIAERESIS | LATIN SMALL LETTER A GRAVE |
| 00C5 | 00E5 | LATIN CAPITAL LETTER A RING | LATIN SMALL LETTER A GRAVE |
| 00C6 | 00E6 | LATIN CAPITAL LETTER A E | LATIN SMALL LETTER A GRAVE |
| 00C7 | 00E7 | LATIN CAPITAL LETTER C CEDILLA | LATIN SMALL LETTER A GRAVE |
| 00C8 | 00E8 | LATIN CAPITAL LETTER E GRAVE | LATIN SMALL LETTER A GRAVE |
| 00C9 | 00E9 | LATIN CAPITAL LETTER E ACUTE | LATIN SMALL LETTER A GRAVE |
| O0CA | 00EA | LATIN CAPITAL LETTER E CIRCUMFLEX | LATIN SMALL LETTER E CIRCUMFLEX |
| 00CB | 00EB | LATIN CAPITAL LETTER E DIAERESIS | LATIN SMALL LETTER E DIAERESIS |
| 00CC | 00EC | LATIN CAPITAL LETTER I GRAVE | LATIN SMALL LETTER I GRAVE |
| OOCD | 00ED | LATIN CAPITAL LETTER I ACUTE | LATIN SMALL LETTER I ACUTE |
| OOCE | O0EE | LATIN CAPITAL LETTER I CIRCUMFLEX | LATIN SMALL LETTER I CIRCUMFLEX |
| 00CF | 00EF | LATIN CAPITAL LETTER I DIAERESIS | LATIN SMALL LETTER I DIAERESIS |
| 00D0 | 00F0 | LATIN CAPITAL LETTER ETH | LATIN SMALL LETTER ETH |
| 00D1 | 00F1 | LATIN CAPITAL LETTER N TILDE | LATIN SMALL LETTER N TILDE |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 00D2 | 00F2 | LATIN CAPITAL LETTER O GRAVE | LATIN SMALL LETTER O GRAVE |
| 00D3 | 00F3 | LATIN CAPITAL LETTER O ACUTE | LATIN SMALL LETTER O ACUTE |
| 00D4 | 00F4 | LATIN CAPITAL LETTER O CIRCUMFLEX | LATIN SMALL LETTER O CIRCUMFLEX |
| 00D5 | 00F5 | LATIN CAPITAL LETTER O TILDE | LATIN SMALL LETTER O TILDE |
| 00D6 | 00F6 | LATIN CAPITAL LETTER O DIAERESIS | LATIN SMALL LETTER O DIAERESIS |
| 00D8 | 00F8 | LATIN CAPITAL LETTER O SLASH | LATIN SMALL LETTER O SLASH |
| 00D9 | 00F9 | LATIN CAPITAL LETTER U GRAVE | LATIN SMALL LETTER U GRAVE |
| 00DA | 00FA | LATIN CAPITAL LETTER U ACUTE | LATIN SMALL LETTER U ACUTE |
| 00DB | 00FB | LATIN CAPITAL LETTER U CIRCUMFLEX | LATIN SMALL LETTER U CIRCUMFLEX |
| 00DC | 00FC | LATIN CAPITAL LETTER U DIAERESIS | LATIN SMALL LETTER U DIAERESIS |
| O0DD | 00FD | LATIN CAPITAL LETTER Y ACUTE | LATIN SMALL LETTER Y ACUTE |
| 00DE | 00FE | LATIN CAPITAL LETTER THORN | LATIN SMALL LETTER THORN |
| 0100 | 0101 | LATIN CAPITAL LETTER A WITH MACRON | LATIN SMALL LETTER A WITH MACRON |
| 0102 | 0103 | LATIN CAPITAL LETTER A WITH BREVE | LATIN SMALL LETTER A WITH BREVE |
| 0104 | 0105 | LATIN CAPITAL LETTER A WITH OGONEK | LATIN SMALL LETTER A WITH OGONEK |
| 0106 | 0107 | LATIN CAPITAL LETTER C WITH ACUTE | LATIN SMALL LETTER C WITH ACUTE |
| 0108 | 0109 | LATIN CAPITAL LETTER C WITH CIRCUMFLEX | LATIN SMALL LETTER C WITH CIRCUMFLEX |
| 010A | 010B | LATIN CAPITAL LETTER C WITH DOT ABOVE | LATIN SMALL LETTER C WITH DOT ABOVE |
| 010C | 010D | LATIN CAPITAL LETTER C WITH CARON | LATIN SMALL LETTER C WITH CARON |
| 010E | 010F | LATIN CAPITAL LETTER D WITH CARON | LATIN SMALL LETTER D WITH CARON |
| 0110 | 0111 | LATIN CAPITAL LETTER D WITH STROKE | LATIN SMALL LETTER D WITH STROKE |
| 0112 | 0113 | LATIN CAPITAL LETTER E WITH MACRON | LATIN SMALL LETTER E WITH MACRON |
| 0114 | 0115 | LATIN CAPITAL LETTER E WITH BREVE | LATIN SMALL LETTER E WITH BREVE |
| 0116 | 0117 | LATIN CAPITAL LETTER E WITH DOT ABOVE | LATIN SMALL LETTER E WITH DOT ABOVE |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 0118 | 0119 | LATIN CAPITAL LETTER E WITH OGONEK | LATIN SMALL LETTER E WITH OGONEK |
| 011A | 011B | LATIN CAPITAL LETTER E WITH CARON | LATIN SMALL LETTER E WITH CARON |
| 011C | 011D | LATIN CAPITAL LETTER G WITH CIRCUMFLEX | LATIN SMALL LETTER G WITH CIRCUMFLEX |
| 011E | 011F | LATIN CAPITAL LETTER G WITH BREVE | LATIN SMALL LETTER G WITH BREVE |
| 0120 | 0121 | LATIN CAPITAL LETTER G WITH DOT ABOVE | LATIN SMALL LETTER G WITH DOT ABOVE |
| 0122 | 0123 | LATIN CAPITAL LETTER G WITH CEDILLA | LATIN SMALL LETTER G WITH CEDILLA |
| 0124 | 0125 | LATIN CAPITAL LETTER H WITH CIRCUMFLEX | LATIN SMALL LETTER H WITH CIRCUMFLEX |
| 0126 | 0127 | LATIN CAPITAL LETTER H WITH STROKE | LATIN SMALL LETTER H WITH STROKE |
| 0128 | 0129 | LATIN CAPITAL LETTER I WITH TILDE | LATIN SMALL LETTER I WITH TILDE |
| 012A | 012B | LATIN CAPITAL LETTER I WITH MACRON | LATIN SMALL LETTER I WITH MACRON |
| 012C | 012D | LATIN CAPITAL LETTER I WITH BREVE | LATIN SMALL LETTER I WITH BREVE |
| 012E | 012F | LATIN CAPITAL LETTER I WITH OGONEK | LATIN SMALL LETTER I WITH OGONEK |
| 0130 | 0069 | LATIN CAPITAL LETTER I WITH DOT ABOVE | LATIN SMALL LETTER I |
| 0132 | 0133 | LATIN CAPITAL LIGATURE IJ | LATIN SMALL LIGATURE IJ |
| 0134 | 0135 | LATIN CAPITAL LETTER J WITH CIRCUMFLEX | LATIN SMALL LETTER J WITH CIRCUMFLEX |
| 0136 | 0137 | LATIN CAPITAL LETTER K WITH CEDILLA | LATIN SMALL LETTER K WITH CEDILLA |
| 0139 | 013A | LATIN CAPITAL LETTER L WITH ACUTE | LATIN SMALL LETTER L WITH ACUTE |
| 013B | 013C | LATIN CAPITAL LETTER L WITH CEDILLA | LATIN SMALL LETTER L WITH CEDILLA |
| 013D | 013E | LATIN CAPITAL LETTER L WITH CARON | LATIN SMALL LETTER L WITH CARON |
| 013F | 0140 | LATIN CAPITAL LETTER L WITH MIDDLE DOT | LATIN SMALL LETTER L WITH MIDDLE DOT |
| 0141 | 0142 | LATIN CAPITAL LETTER L WITH STROKE | LATIN SMALL LETTER L WITH STROKE |
| 0143 | 0144 | LATIN CAPITAL LETTER N WITH ACUTE | LATIN SMALL LETTER N WITH ACUTE |
| 0145 | 0146 | LATIN CAPITAL LETTER N WITH CEDILLA | LATIN SMALL LETTER N WITH CEDILLA |
| 0147 | 0148 | LATIN CAPITAL LETTER N WITH CARON | LATIN SMALL LETTER N WITH CARON |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 014A | 014B | LATIN CAPITAL LETTER ENG (SAMI) | LATIN SMALL LETTER ENG (SAMI) |
| 014C | 014D | LATIN CAPITAL LETTER O WITH MACRON | LATIN SMALL LETTER O WITH MACRON |
| 014E | 014F | LATIN CAPITAL LETTER O WITH BREVE | LATIN SMALL LETTER O WITH BREVE |
| 0150 | 0151 | LATIN CAPITAL LETTER O WITH DOUBLE ACUTE | LATIN SMALL LETTER O WITH DOUBLE ACUTE |
| 0152 | 0153 | LATIN CAPITAL LIGATURE OE | LATIN SMALL LIGATURE OE |
| 0154 | 0155 | LATIN CAPITAL LETTER R WITH ACUTE | LATIN SMALL LETTER R WITH ACUTE |
| 0156 | 0157 | LATIN CAPITAL LETTER R WITH CEDILLA | LATIN SMALL LETTER R WITH CEDILLA |
| 0158 | 0159 | LATIN CAPITAL LETTER R WITH CARON | LATIN SMALL LETTER R WITH CARON |
| 015A | 015B | LATIN CAPITAL LETTER S WITH ACUTE | LATIN SMALL LETTER S WITH ACUTE |
| 015C | 015D | LATIN CAPITAL LETTER S WITH CIRCUMFLEX | LATIN SMALL LETTER S WITH CIRCUMFLEX |
| 015E | 015F | LATIN CAPITAL LETTER S WITH CEDILLA | LATIN SMALL LETTER S WITH CEDILLA |
| 0160 | 0161 | LATIN CAPITAL LETTER S WITH CARON | LATIN SMALL LETTER S WITH CARON |
| 0162 | 0163 | LATIN CAPITAL LETTER T WITH CEDILLA | LATIN SMALL LETTER T WITH CEDILLA |
| 0164 | 0165 | LATIN CAPITAL LETTER T WITH CARON | LATIN SMALL LETTER T WITH CARON |
| 0166 | 0167 | LATIN CAPITAL LETTER T WITH STROKE | LATIN SMALL LETTER T WITH STROKE |
| 0168 | 0169 | LATIN CAPITAL LETTER U WITH TILDE | LATIN SMALL LETTER U WITH TILDE |
| 016A | 016B | LATIN CAPITAL LETTER U WITH MACRON | LATIN SMALL LETTER U WITH MACRON |
| 016C | 016D | LATIN CAPITAL LETTER U WITH BREVE | LATIN SMALL LETTER U WITH BREVE |
| 016E | 016F | LATIN CAPITAL LETTER U WITH RING ABOVE | LATIN SMALL LETTER U WITH RING ABOVE |
| 0170 | 0171 | LATIN CAPITAL LETTER U WITH DOUBLE ACUTE | LATIN SMALL LETTER U WITH DOUBLE ACUTE |
| 0172 | 0173 | LATIN CAPITAL LETTER U WITH OGONEK | LATIN SMALL LETTER U WITH OGONEK |
| 0174 | 0175 | LATIN CAPITAL LETTER W WITH CIRCUMFLEX | LATIN SMALL LETTER W WITH CIRCUMFLEX |
| 0176 | 0177 | LATIN CAPITAL LETTER Y WITH CIRCUMFLEX | LATIN SMALL LETTER Y WITH CIRCUMFLEX |
| 0178 | 00FF | LATIN CAPITAL LETTER Y WITH DIAERESIS | LATIN SMALL LETTER Y DIAERESIS |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 0179 | 017A | LATIN CAPITAL LETTER Z WITH ACUTE | LATIN SMALL LETTER Z WITH ACUTE |
| 017B | 017C | LATIN CAPITAL LETTER Z WITH DOT ABOVE | LATIN SMALL LETTER Z WITH DOT ABOVE |
| 017D | 017E | LATIN CAPITAL LETTER Z WITH CARON | LATIN SMALL LETTER Z WITH CARON |
| 0181 | 0253 | LATIN CAPITAL LETTER B WITH HOOK | LATIN SMALL LETTER B WITH HOOK |
| 0182 | 0183 | LATIN CAPITAL LETTER B WITH TOPBAR | LATIN SMALL LETTER B WITH TOPBAR |
| 0184 | 0185 | LATIN CAPITAL LETTER TONE SIX | LATIN SMALL LETTER TONE SIX |
| 0186 | 0254 | LATIN CAPITAL LETTER OPEN 0 | LATIN SMALL LETTER OPEN O |
| 0187 | 0188 | LATIN CAPITAL LETTER C WITH HOOK | LATIN SMALL LETTER C WITH HOOK |
| 018A | 0257 | LATIN CAPITAL LETTER D WITH HOOK | LATIN SMALL LETTER D WITH HOOK |
| 018B | 018C | LATIN CAPITAL LETTER D WITH TOPBAR | LATIN SMALL LETTER D WITH TOPBAR |
| 018E | 0258 | LATIN CAPITAL LETTER REVERSED E | LATIN SMALL LETTER REVERSED E |
| 018F | 0259 | LATIN CAPITAL LETTER SCHWA | LATIN SMALL LETTER SCHWA |
| 0190 | 025B | LATIN CAPITAL LETTER OPEN E | LATIN SMALL LETTER OPEN E |
| 0191 | 0192 | LATIN CAPITAL LETTER F WITH HOOK | LATIN SMALL LETTER F WITH HOOK |
| 0193 | 0260 | LATIN CAPITAL LETTER G WITH HOOK | LATIN SMALL LETTER G WITH HOOK |
| 0194 | 0263 | LATIN CAPITAL LETTER GAMMA | LATIN SMALL LETTER GAMMA |
| 0196 | 0269 | LATIN CAPITAL LETTER IOTA | LATIN SMALL LETTER IOTA |
| 0197 | 0268 | LATIN CAPITAL LETTER I WITH STROKE | LATIN SMALL LETTER I WITH STROKE |
| 0198 | 0199 | LATIN CAPITAL LETTER K WITH HOOK | LATIN SMALL LETTER K WITH HOOK |
| 019C | 026f | LATIN CAPITAL LETTER TURNED M | LATIN SMALL LETTER TURNED M |
| 019D | 0272 | LATIN CAPITAL LETTER N WITH LEFT HOOK | LATIN SMALL LETTER N WITH LEFT HOOK |
| 019F | 0275 | LATIN CAPITAL LETTER O WITH MIDDLE TILDE | LATIN SMALL LETTER BARRED O |
| 01A0 | 01A1 | LATIN CAPITAL LETTER O WITH HORN | LATIN SMALL LETTER O WITH HORN |
| 01A2 | 01A3 | LATIN CAPITAL LETTER OI | LATIN SMALL LETTER OI |


| Uppercase code <br> point | Lowercase code <br> point | Uppercase character <br> description | Lowercase character description <br> HATIN CAPITAL LETTER P WITH <br> HOOK |
| :--- | :--- | :--- | :--- |
| 01 LATIN SMALL LETTER P WITH |  |  |  |
| HOOK |  |  |  |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 01D7 | 01D8 | LATIN CAPITAL LETTER U WITH DIAERESIS AND ACUTE | LATIN SMALL LETTER U WITH DIAERESIS AND ACUTE |
| 01D9 | 01DA | LATIN CAPITAL LETTER U WITH DIAERESIS AND CARON | LATIN SMALL LETTER U WITH DIAERESIS AND CARON |
| 01DB | 01DC | LATIN CAPITAL LETTER U WITH DIAERESIS AND GRAVE | LATIN SMALL LETTER U WITH DIAERESIS AND GRAVE |
| 01DE | 01DF | LATIN CAPITAL LETTER A WITH DIAERESIS AND MACRON | LATIN SMALL LETTER A WITH DIAERESIS AND MACRON |
| 01E0 | 01E1 | LATIN CAPITAL LETTER A WITH DOT ABOVE AND MACRON | LATIN SMALL LETTER A WITH DOT ABOVE AND MACRON |
| 01E2 | 01E3 | LATIN CAPITAL LIGATURE AE WITH MACRON | LATIN SMALL LIGATURE AE WITH MACRON |
| 01E4 | 01E5 | LATIN CAPITAL LETTER G WITH STROKE | LATIN SMALL LETTER G WITH STROKE |
| 01E6 | 01E7 | LATIN CAPITAL LETTER G WITH CARON | LATIN SMALL LETTER G WITH CARON |
| 01E8 | 01E9 | LATIN CAPITAL LETTER K WITH CARON | LATIN SMALL LETTER K WITH CARON |
| 01EA | 01EB | LATIN CAPITAL LETTER O WITH OGONEK | LATIN SMALL LETTER O WITH OGONEK |
| 01EC | 01ED | LATIN CAPITAL LETTER O WITH OGONEK AND MACRON | LATIN SMALL LETTER O WITH OGONEK AND MACRON |
| 01EE | 01EF | LATIN CAPITAL LETTER EZH WITH CARON | LATIN SMALL LETTER EZH WITH CARON |
| 01F1 | 01F3 | LATIN CAPITAL LETTER DZ | LATIN SMALL LETTER DZ |
| 01F4 | 01F5 | LATIN CAPITAL LETTER G WITH ACUTE | LATIN SMALL LETTER G WITH ACUTE |
| 01FA | 01FB | LATIN CAPITAL LETTER A WITH RING ABOVE AND ACUTE | LATIN SMALL LETTER A WITH RING ABOVE AND ACUTE |
| 01FC | 01FD | LATIN CAPITAL LIGATURE AE WITH ACUTE | LATIN SMALL LIGATURE AE WITH ACUTE |
| 01FE | 01FF | LATIN CAPITAL LETTER O WITH STROKE AND ACUTE | LATIN SMALL LETTER O WITH STROKE AND ACUTE |
| 0200 | 0201 | LATIN CAPITAL LETTER A WITH DOUBLE GRAVE | LATIN SMALL LETTER A WITH DOUBLE GRAVE |
| 0202 | 0203 | LATIN CAPITAL LETTER A WITH INVERTED BREVE | LATIN SMALL LETTER A WITH INVERTED BREVE |
| 0204 | 0205 | LATIN CAPITAL LETTER E WITH DOUBLE GRAVE | LATIN SMALL LETTER E WITH DOUBLE GRAVE |
| 0206 | 0207 | LATIN CAPITAL LETTER E WITH INVERTED BREVE | LATIN SMALL LETTER E WITH INVERTED BREVE |
| 0208 | 0209 | LATIN CAPITAL LETTER I WITH DOUBLE GRAVE | LATIN SMALL LETTER I WITH DOUBLE GRAVE |
| 020A | 020B | LATIN CAPITAL LETTER I WITH INVERTED BREVE | LATIN SMALL LETTER I WITH INVERTED BREVE |
| 020C | 020D | LATIN CAPITAL LETTER O WITH DOUBLE GRAVE | LATIN SMALL LETTER O WITH DOUBLE GRAVE |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 020E | 020F | LATIN CAPITAL LETTER O WITH INVERTED BREVE | LATIN SMALL LETTER O WITH INVERTED BREVE |
| 0210 | 0211 | LATIN CAPITAL LETTER R WITH DOUBLE GRAVE | LATIN SMALL LETTER R WITH DOUBLE GRAVE |
| 0212 | 0213 | LATIN CAPITAL LETTER R WITH INVERTED BREVE | LATIN SMALL LETTER R WITH INVERTED BREVE |
| 0214 | 0215 | LATIN CAPITAL LETTER U WITH DOUBLE GRAVE | LATIN SMALL LETTER U WITH DOUBLE GRAVE |
| 0216 | 0217 | LATIN CAPITAL LETTER U WITH INVERTED BREVE | LATIN SMALL LETTER U WITH INVERTED BREVE |
| 0386 | 03AC | GREEK CAPITAL LETTER ALPHA WITH TONOS | GREEK SMALL LETTER ALPHA WITH TONOS |
| 0388 | 03AD | GREEK CAPITAL LETTER EPSILON WITH TONOS | GREEK SMALL LETTER EPSILON WITH TONOS |
| 0389 | 03AE | GREEK CAPITAL LETTER ETA WITH TONOS | GREEK SMALL LETTER ETA WITH TONOS |
| 038A | 03AF | GREEK CAPITAL LETTER IOTA WITH TONOS | GREEK SMALL LETTER IOTA WITH TONOS |
| 038C | 03CC | GREEK CAPITAL LETTER OMICRON WITH TONOS | GREEK SMALL LETTER OMICRON WITH TONOS |
| 038E | 03CD | GREEK CAPITAL LETTER UPSILON WITH TONOS | GREEK SMALL LETTER UPSILON WITH TONOS |
| 038F | O3CE | GREEK CAPITAL LETTER OMEGA WITH TONOS | GREEK SMALL LETTER OMEGA WITH TONOS |
| 0391 | 03B1 | GREEK CAPITAL LETTER ALPHA | GREEK SMALL LETTER ALPHA |
| 0392 | 03B2 | GREEK CAPITAL LETTER BETA | GREEK SMALL LETTER BETA |
| 0393 | 03B3 | GREEK CAPITAL LETTER GAMMA | GREEK SMALL LETTER GAMMA |
| 0394 | 03B4 | GREEK CAPITAL LETTER DELTA | GREEK SMALL LETTER DELTA |
| 0395 | 03B5 | GREEK CAPITAL LETTER EPSILON | GREEK SMALL LETTER EPSILON |
| 0396 | 03B6 | GREEK CAPITAL LETTER ZETA | GREEK SMALL LETTER ZETA |
| 0397 | 03B7 | GREEK CAPITAL LETTER ETA | GREEK SMALL LETTER ETA |
| 0398 | 03B8 | GREEK CAPITAL LETTER THETA | GREEK SMALL LETTER THETA |
| 0399 | 03B9 | GREEK CAPITAL LETTER IOTA | GREEK SMALL LETTER IOTA |
| 039A | 03BA | GREEK CAPITAL LETTER KAPPA | GREEK SMALL LETTER KAPPA |
| 039B | 03BB | GREEK CAPITAL LETTER LAMDA | GREEK SMALL LETTER LAMDA |
| 039C | 03BC | GREEK CAPITAL LETTER MU | GREEK SMALL LETTER MU |
| 039D | 03BD | GREEK CAPITAL LETTER NU | GREEK SMALL LETTER NU |
| 039E | 03BE | GREEK CAPITAL LETTER XI | GREEK SMALL LETTER XI |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 039F | 03BF | GREEK CAPITAL LETTER OMICRON | GREEK SMALL LETTER OMICRON |
| 03A0 | 03C0 | GREEK CAPITAL LETTER PI | GREEK SMALL LETTER PI |
| 03A1 | 03C1 | GREEK CAPITAL LETTER RHO | GREEK SMALL LETTER RHO |
| 03A3 | 03C3 | GREEK CAPITAL LETTER SIGMA | GREEK SMALL LETTER SIGMA |
| 03A4 | 03C4 | GREEK CAPITAL LETTER TAU | GREEK SMALL LETTER TAU |
| 03A5 | 03C5 | GREEK CAPITAL LETTER UPSILON | GREEK SMALL LETTER UPSILON |
| 03A6 | 03C6 | GREEK CAPITAL LETTER PHI | GREEK SMALL LETTER PHI |
| 03A7 | 03C7 | GREEK CAPITAL LETTER CHI | GREEK SMALL LETTER CHI |
| 03A8 | 03C8 | GREEK CAPITAL LETTER PSI | GREEK SMALL LETTER PSI |
| 03A9 | 03C9 | GREEK CAPITAL LETTER OMEGA | GREEK SMALL LETTER OMEGA |
| 03AA | 03CA | GREEK CAPITAL LETTER IOTA WITH DIALYTIKA | GREEK SMALL LETTER IOTA WITH DIALYTIKA |
| 03AB | 03CB | GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA | GREEK SMALL LETTER UPSILON WITH DIALYTIKA |
| 03E2 | 03E3 | COPTIC CAPITAL LETTER SHEI | COPTIC SMALL LETTER SHEI |
| 03E4 | 03E5 | COPTIC CAPITAL LETTER FEI | COPTIC SMALL LETTER FEI |
| 03E6 | 03E7 | COPTIC CAPITAL LETTER KHEI | COPTIC SMALL LETTER KHEI |
| 03E8 | 03E9 | COPTIC CAPITAL LETTER HORI | COPTIC SMALL LETTER HORI |
| 03EA | 03EB | COPTIC CAPITAL LETTER GANGIA | COPTIC SMALL LETTER GANGIA |
| 03EC | 03ED | COPTIC CAPITAL LETTER SHIMA | COPTIC SMALL LETTER SHIMA |
| 03EE | 03EF | COPTIC CAPITAL LETTER DEI | COPTIC SMALL LETTER DEI |
| 0401 | 0451 | CYRILLIC CAPITAL LETTER IO | CYRILLIC SMALL LETTER IO |
| 0402 | 0452 | CYRILLIC CAPITAL LETTER DJE (SERBOCROATIAN) | CYRILLIC SMALL LETTER DJE (SERBOCROATIAN) |
| 0403 | 0453 | CYRILLIC CAPITAL LETTER GJE | CYRILLIC SMALL LETTER GJE |
| 0404 | 0454 | CYRILLIC CAPITAL LETTER UKRAINIAN IE | CYRILLIC SMALL LETTER UKRAINIAN IE |
| 0405 | 0455 | CYRILLIC CAPITAL LETTER DZE | CYRILLIC SMALL LETTER DZE |
| 0406 | 0456 | CYRILLIC CAPITAL LETTER BYELORUSSIAN_UKRAINIAN I | CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I |
| 0407 | 0457 | CYRILLIC CAPITAL LETTER YI (UKRANIAN) | CYRILLIC SMALL LETTER YI (UKRANIAN) |
| 0408 | 0458 | CYRILLIC CAPITAL LETTER JE | CYRILLIC SMALL LETTER JE |
| 0409 | 0459 | CYRILLIC CAPITAL LETTER LJE | CYRILLIC SMALL LETTER LJE |
| 040A | 045A | CYRILLIC CAPITAL LETTER NJE | CYRILLIC SMALL LETTER NJE |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 040B | 045B | CYRILLIC CAPITAL LETTER TSHE (SERBOCROATIAN) | CYRILLIC SMALL LETTER TSHE (SERBOCROATIAN) |
| 040C | 045C | CYRILLIC CAPITAL LETTER KJE | CYRILLIC SMALL LETTER KJE |
| 040E | 045E | CYRILLIC CAPITAL LETTER SHORT U (BYELORUSSIAN) | CYRILLIC SMALL LETTER SHORT U (BYELORUSSIAN) |
| 040F | 045F | CYRILLIC CAPITAL LETTER DZHE | CYRILLIC SMALL LETTER DZHE |
| 0410 | 0430 | CYRILLIC CAPITAL LETTER A | CYRILLIC SMALL LETTER A |
| 0411 | 0431 | CYRILLIC CAPITAL LETTER BE | CYRILLIC SMALL LETTER BE |
| 0412 | 0432 | CYRILLIC CAPITAL LETTER VE | CYRILLIC SMALL LETTER VE |
| 0413 | 0433 | CYRILLIC CAPITAL LETTER GHE | CYRILLIC SMALL LETTER GHE |
| 0414 | 0434 | CYRILLIC CAPITAL LETTER DE | CYRILLIC SMALL LETTER DE |
| 0415 | 0435 | CYRILLIC CAPITAL LETTER IE | CYRILLIC SMALL LETTER IE |
| 0416 | 0436 | CYRILLIC CAPITAL LETTER ZHE | CYRILLIC SMALL LETTER ZHE |
| 0417 | 0437 | CYRILLIC CAPITAL LETTER ZE | CYRILLIC SMALL LETTER ZE |
| 0418 | 0438 | CYRILLIC CAPITAL LETTER I | CYRILLIC SMALL LETTER I |
| 0419 | 0439 | CYRILLIC CAPITAL LETTER SHORTI | CYRILLIC SMALL LETTER SHORT I |
| 041A | 043A | CYRILLIC CAPITAL LETTER KA | CYRILLIC SMALL LETTER KA |
| 041B | 043B | CYRILLIC CAPITAL LETTER EL | CYRILLIC SMALL LETTER EL |
| 041C | 043C | CYRILLIC CAPITAL LETTER EM | CYRILLIC SMALL LETTER EM |
| 041D | 043D | CYRILLIC CAPITAL LETTER EN | CYRILLIC SMALL LETTER EN |
| 041E | 043E | CYRILLIC CAPITAL LETTER O | CYRILLIC SMALL LETTER O |
| 041F | 043F | CYRILLIC CAPITAL LETTER PE | CYRILLIC SMALL LETTER PE |
| 0420 | 0440 | CYRILLIC CAPITAL LETTER ER | CYRILLIC SMALL LETTER ER |
| 0421 | 0441 | CYRILLIC CAPITAL LETTER ES | CYRILLIC SMALL LETTER ES |
| 0422 | 0442 | CYRILLIC CAPITAL LETTER TE | CYRILLIC SMALL LETTER TE |
| 0423 | 0443 | CYRILLIC CAPITAL LETTER U | CYRILLIC SMALL LETTER U |
| 0424 | 0444 | CYRILLIC CAPITAL LETTER EF | CYRILLIC SMALL LETTER EF |
| 0425 | 0445 | CYRILLIC CAPITAL LETTER HA | CYRILLIC SMALL LETTER HA |
| 0426 | 0446 | CYRILLIC CAPITAL LETTER TSE | CYRILLIC SMALL LETTER TSE |
| 0427 | 0447 | CYRILLIC CAPITAL LETTER CHE | CYRILLIC SMALL LETTER CHE |
| 0428 | 0448 | CYRILLIC CAPITAL LETTER SHA | CYRILLIC SMALL LETTER SHA |
| 0429 | 0449 | CYRILLIC CAPITAL LETTER SHCHA | CYRILLIC SMALL LETTER SHCHA |
| 042A | 044A | CYRILLIC CAPITAL LETTER HARD SIGN | CYRILLIC SMALL LETTER HARD SIGN |
| 042B | 044B | CYRILLIC CAPITAL LETTER YERU | CYRILLIC SMALL LETTER YERU |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 042C | 044C | CYRILLIC CAPITAL LETTER SOFT SIGN | CYRILLIC SMALL LETTER SOFT SIGN |
| 042D | 044D | CYRILLIC CAPITAL LETTER E | CYRILLIC SMALL LETTER E |
| 042E | 044E | CYRILLIC CAPITAL LETTER YU | CYRILLIC SMALL LETTER YU |
| 042F | 044F | CYRILLIC CAPITAL LETTER YA | CYRILLIC SMALL LETTER YA |
| 0460 | 0461 | CYRILLIC CAPITAL LETTER OMEGA | CYRILLIC SMALL LETTER OMEGA |
| 0462 | 0463 | CYRILLIC CAPITAL LETTER YAT | CYRILLIC SMALL LETTER YAT |
| 0464 | 0465 | CYRILLIC CAPITAL LETTER IOTIFIED E | CYRILLIC SMALL LETTER IOTIFIED E |
| 0466 | 0467 | CYRILLIC CAPITAL LETTER LITTLE YUS | CYRILLIC SMALL LETTER LITTLE YUS |
| 0468 | 0469 | CYRILLIC CAPITAL LETTER IOTIFIED LITTLE YUS | CYRILLIC SMALL LETTER IOTFIED LITTLE YUS |
| 046A | 046B | CYRILLIC CAPITAL LETTER BIG YUS | CYRILLIC SMALL LETTER BIG YUS |
| 046C | 046D | CYRILLIC CAPITAL LETTER IOTIFIED BIG YUS | CYRILLIC SMALL LETTER IOTIFIED BIG YUS |
| 046E | 046F | CYRILLIC CAPITAL LETTER KSI | CYRILLIC SMALL LETTER KSI |
| 0470 | 0471 | CYRILLIC CAPITAL LETTER PSI | CYRILLIC SMALL LETTER PSI |
| 0472 | 0473 | CYRILLIC CAPITAL LETTER FITA | CYRILLIC SMALL LETTER FITA |
| 0474 | 0475 | CYRILLIC CAPITAL LETTER IZHITSA | CYRILLIC SMALL LETTER IZHITSA |
| 0476 | 0477 | CYRILLIC CAPITAL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT | CYRILLIC SMALL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT |
| 0478 | 0479 | CYRILLIC CAPITAL LETTER UK | CYRILLIC SMALL LETTER UK |
| 047A | 047B | CYRILLIC CAPITAL LETTER ROUND OMEGA | CYRILLIC SMALL LETTER ROUND OMEGA |
| 047C | 047D | CYRILLIC CAPITAL LETTER OMEGA WITH TITLO | CYRILLIC SMALL LETTER OMEGA WITH TITLO |
| 047E | 047F | CYRILLIC CAPITAL LETTER OT | CYRILLIC SMALL LETTER OT |
| 0480 | 0481 | CYRILLIC CAPITAL LETTER KOPPA | CYRILLIC SMALL LETTER KOPPA |
| 0490 | 0491 | CYRILLIC CAPITAL LETTER GHE WITH UPTURN | CYRILLIC SMALL LETTER GHE WITH UPTURN |
| 0492 | 0493 | CYRILLIC CAPITAL LETTER GHE WITH STROKE | CYRILLIC SMALL LETTER GHE WITH STROKE |
| 0494 | 0495 | CYRILLIC CAPITAL LETTER GHE WITH MIDDLE HOOK | CYRILLIC SMALL LETTER GHE WITH MIDDLE HOOK |
| 0496 | 0497 | CYRILLIC CAPITAL LETTER ZHE WITH DESCENDER | CYRILLIC SMALL LETTER ZHE WITH DESCENDER |
| 0498 | 0499 | CYRILLIC CAPITAL LETTER ZE WITH DESCENDER | CYRILLIC SMALL LETTER ZE WITH DESCENDER |

$\left.\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Uppercase code } \\ \text { point }\end{array} & \begin{array}{l}\text { Lowercase code } \\ \text { point }\end{array} & \begin{array}{l}\text { Uppercase character } \\ \text { description }\end{array} & \text { Lowercase character description }\end{array} \right\rvert\, \begin{array}{lll|}\hline \text { CYRILLIC CAPITAL LETTER KA } \\ \text { WITH DESCENDER }\end{array} \begin{array}{l}\text { CYRILLIC SMALL LETTER KA WITH } \\ \text { DESCENDER }\end{array}\right\}$

| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 04D0 | 04D1 | CYRILLIC CAPITAL LETTER A WITH BREVE | CYRILLIC SMALL LETTER A WITH BREVE |
| 04D2 | 04D3 | CYRILLIC CAPITAL LETTER A WITH DIAERESIS | CYRILLIC SMALL LETTER A WITH DIAERESIS |
| 04D4 | 04D5 | CYRILLIC CAPITAL LIGATURE A IE | CYRILLIC SMALL LIGATURE A IE |
| 04D6 | 04D7 | CYRILLIC CAPITAL LETTER IE WITH BREVE | CYRILLIC SMALL LETTER IE WITH BREVE |
| 04D8 | 04D9 | CYRILLIC CAPITAL LETTER SCHWA | CYRILLIC SMALL LETTER SCHWA |
| 04DA | 04DB | CYRILLIC CAPITAL LETTER SCHWA WITH DIAERESIS | CYRILLIC SMALL LETTER SCHWA WITH DIAERESIS |
| 04DC | 04DD | CYRILLIC CAPITAL LETTER ZHE WITH DIAERESIS | CYRILLIC SMALL LETTER ZHE WITH DIAERESIS |
| 04DE | 04DF | CYRILLIC CAPITAL LETTER ZE WITH DIAERESIS | CYRILLIC SMALL LETTER ZE WITH DIAERESIS |
| 04E0 | 04E1 | CYRILLIC CAPITAL LETTER ABKHASIAN DZE | CYRILLIC SMALL LETTER ABKHASIAN DZE |
| 04E2 | 04E3 | CYRILLIC CAPITAL LETTER I WITH MACRON | CYRILLIC SMALL LETTER I WITH MACRON |
| 04E4 | 04E5 | CYRILLIC CAPITAL LETTER I WITH DIAERESIS | CYRILLIC SMALL LETTER I WITH DIAERESIS |
| 04E6 | 04E7 | CYRILLIC CAPITAL LETTER O WITH DIAERESIS | CYRILLIC SMALL LETTER O WITH DIAERESIS |
| 04E8 | 04E9 | CYRILLIC CAPITAL LETTER BARRED O | CYRILLIC SMALL LETTER BARRED O |
| 04EA | 04EB | CYRILLIC CAPITAL LETTER BARRED O WITH DIAERESIS | CYRILLIC SMALL LETTER BARRED 0 WITH DIAERESIS |
| 04EE | 04EF | CYRILLIC CAPITAL LETTER U WITH MACRON | CYRILLIC SMALL LETTER U WITH MACRON |
| 04F0 | 04F1 | CYRILLIC CAPITAL LETTER U WITH DIAERESIS | CYRILLIC SMALL LETTER U WITH DIAERESIS |
| 04F2 | 04F3 | CYRILLIC CAPITAL LETTER U WITH DOUBLE ACUTE | CYRILLIC SMALL LETTER U WITH DOUBLE ACUTE |
| 04F4 | 04F5 | CYRILLIC CAPITAL LETTER CHE WITH DIAERESIS | CYRILLIC SMALL LETTER CHE WITH DIAERESIS |
| 04F8 | 04F9 | CYRILLIC CAPITAL LETTER YERU WITH DIAERESIS | CYRILLIC SMALL LETTER YERU WITH DIAERESIS |
| 0531 | 0561 | ARMENIAN CAPITAL LETTER AYB | ARMENIAN SMALL LETTER AYB |
| 0532 | 0562 | ARMENIAN CAPITAL LETTER BEN | ARMENIAN SMALL LETTER BEN |
| 0533 | 0563 | ARMENIAN CAPITAL LETTER GIM | ARMENIAN SMALL LETTER GIM |
| 0534 | 0564 | ARMENIAN CAPITAL LETTER DA | ARMENIAN SMALL LETTER DA |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 0535 | 0565 | ARMENIAN CAPITAL LETTER ECH | ARMENIAN SMALL LETTER ECH |
| 0536 | 0566 | ARMENIAN CAPITAL LETTER ZA | ARMENIAN SMALL LETTER ZA |
| 0537 | 0567 | ARMENIAN CAPITAL LETTER EH | ARMENIAN SMALL LETTER EH |
| 0538 | 0568 | ARMENIAN CAPITAL LETTER ET | ARMENIAN SMALL LETTER ET |
| 0539 | 0569 | ARMENIAN CAPITAL LETTER TO | ARMENIAN SMALL LETTER TO |
| 053A | 056A | ARMENIAN CAPITAL LETTER ZHE | ARMENIAN SMALL LETTER ZHE |
| 053B | 056B | ARMENIAN CAPITAL LETTER INI | ARMENIAN SMALL LETTER INI |
| 053C | 056C | ARMENIAN CAPITAL LETTER LIWN | ARMENIAN SMALL LETTER LIWN |
| 053D | 056D | ARMENIAN CAPITAL LETTER XEH | ARMENIAN SMALL LETTER XEH |
| 053E | 056E | ARMENIAN CAPITAL LETTER CA | ARMENIAN SMALL LETTER CA |
| 053F | 056F | ARMENIAN CAPITAL LETTER KEN | ARMENIAN SMALL LETTER KEN |
| 0540 | 0570 | ARMENIAN CAPITAL LETTER HO | ARMENIAN SMALL LETTER HO |
| 0541 | 0571 | ARMENIAN CAPITAL LETTER JA | ARMENIAN SMALL LETTER JA |
| 0542 | 0572 | ARMENIAN CAPITAL LETTER GHAD | ARMENIAN SMALL LETTER GHAD |
| 0543 | 0573 | ARMENIAN CAPITAL LETTER CHEH | ARMENIAN SMALL LETTER CHEH |
| 0544 | 0574 | ARMENIAN CAPITAL LETTER MEN | ARMENIAN SMALL LETTER MEN |
| 0545 | 0575 | ARMENIAN CAPITAL LETTER YI | ARMENIAN SMALL LETTER YI |
| 0546 | 0576 | ARMENIAN CAPITAL LETTER NOW | ARMENIAN SMALL LETTER NOW |
| 0547 | 0577 | ARMENIAN CAPITAL LETTER SHA | ARMENIAN SMALL LETTER SNA |
| 0548 | 0578 | ARMENIAN CAPITAL LETTER VO | ARMENIAN SMALL LETTER VO |
| 0549 | 0579 | ARMENIAN CAPITAL LETTER CHA | ARMENIAN SMALL LETTER CHA |
| 054A | 057A | ARMENIAN CAPITAL LETTER PEH | ARMENIAN SMALL LETTER PEH |
| 054B | 057B | ARMENIAN CAPITAL LETTER JHEH | ARMENIAN SMALL LETTER JHEH |
| 054C | 057C | ARMENIAN CAPITAL LETTER RA | ARMENIAN SMALL LETTER RA |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 054D | 057D | ARMENIAN CAPITAL LETTER SEH | ARMENIAN SMALL LETTER SEH |
| 054E | 057E | ARMENIAN CAPITAL LETTER VEW | ARMENIAN SMALL LETTER VEW |
| 054F | 057F | ARMENIAN CAPITAL LETTER TIWN | ARMENIAN SMALL LETTER TIWN |
| 0550 | 0580 | ARMENIAN CAPITAL LETTER REH | ARMENIAN SMALL LETTER REH |
| 0551 | 0581 | ARMENIAN CAPITAL LETTER CO | ARMENIAN SMALL LETTER CO |
| 0552 | 0582 | ARMENIAN CAPITAL LETTER YIWN | ARMENIAN SMALL LETTER YIWN |
| 0553 | 0583 | ARMENIAN CAPITAL LETTER PIWR | ARMENIAN SMALL LETTER PIWP |
| 0554 | 0584 | ARMENIAN CAPITAL LETTER KEH | ARMENIAN SMALL LETTER KEH |
| 0555 | 0585 | ARMENIAN CAPITAL LETTER OH | ARMENIAN SMALL LETTER OH |
| 0556 | 0586 | ARMENIAN CAPITAL LETTER FEH | ARMENIAN SMALL LETTER FEH |
| 10A0 | 10D0 | GEORGIAN CAPITAL LETTER AN (KHUTSURI) | GEORGIAN LETTER AN |
| 10A1 | 10D1 | GEORGIAN CAPITAL LETTER BAN (KHUTSURI) | GEORGIAN LETTER BAN |
| 10A2 | 10D2 | GEORGIAN CAPITAL LETTER GAN (KHUTSURI) | GEORGIAN LETTER GAN |
| 10A3 | 10D3 | GEORGIAN CAPITAL LETTER DON (KHUTSURI) | GEORGIAN LETTER DON |
| 10A4 | 10D4 | GEORGIAN CAPITAL LETTER EN (KHUTSURI) | GEORGIAN LETTER EN |
| 10A5 | 10D5 | GEORGIAN CAPITAL LETTER VIN (KHUTSURI) | GEORGIAN LETTER VIN |
| 10A6 | 10D6 | GEORGIAN CAPITAL LETTER ZEN (KHUTSURI) | GEORGIAN LETTER ZEN |
| 10A7 | 10D7 | GEORGIAN CAPITAL LETTER TAN (KHUTSURI) | GEORGIAN LETTER TAN |
| 10A8 | 10D8 | GEORGIAN CAPITAL LETTER IN (KHUTSURI) | GEORGIAN LETTER IN |
| 10A9 | 10D9 | GEORGIAN CAPITAL LETTER KAN (KHUTSURI) | GEORGIAN LETTER KAN |
| 10AA | 10DA | GEORGIAN CAPITAL LETTER LAS (KHUTSURI) | GEORGIAN LETTER LAS |
| 10AB | 10DB | GEORGIAN CAPITAL LETTER MAN (KHUTSURI) | GEORGIAN LETTER MAN |
| 10AC | 10DC | GEORGIAN CAPITAL LETTER NAR (KHUTSURI) | GEORGIAN LETTER NAR |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 10AD | 10DD | GEORGIAN CAPITAL LETTER ON (KHUTSURI) | GEORGIAN LETTER ON |
| 10AE | 10DE | GEORGIAN CAPITAL LETTER PAR (KHUTSURI) | GEORGIAN LETTER PAR |
| 10AF | 10DF | GEORGIAN CAPITAL LETTER ZHAR (KHUTSURI) | GEORGIAN LETTER ZHAR |
| 10B0 | 10E0 | GEORGIAN CAPITAL LETTER RAE (KHUTSURI) | GEORGIAN LETTER RAE |
| 10B1 | 10E1 | GEORGIAN CAPITAL LETTER SAN (KHUTSURI) | GEORGIAN LETTER SAN |
| 10B2 | 10E2 | GEORGIAN CAPITAL LETTER TAR (KHUTSURI) | GEORGIAN LETTER TAR |
| 10B3 | 10E3 | GEORGIAN CAPITAL LETTER UN (KHUTSURI) | GEORGIAN LETTER UN |
| 10B4 | 10E4 | GEORGIAN CAPITAL LETTER PHAR (KHUTSURI) | GEORGIAN LETTER PHAR |
| 10B5 | 10E5 | GEORGIAN CAPITAL LETTER KHAR (KHUTSURI) | GEORGIAN LETTER KHAR |
| 10B6 | 10E6 | GEORGIAN CAPITAL LETTER GHAN (KHUTSURI) | GEORGIAN LETTER GHAN |
| 10B7 | 10E7 | GEORGIAN CAPITAL LETTER QAR (KHUTSURI) | GEORGIAN LETTER QAR |
| 10B8 | 10E8 | GEORGIAN CAPITAL LETTER SHIN (KHUTSURI) | GEORGIAN LETTER SHIN |
| 10B9 | 10E9 | GEORGIAN CAPITAL LETTER CHIN (KHUTSURI) | GEORGIAN LETTER CHIN |
| 10BA | 10EA | GEORGIAN CAPITAL LETTER CAN (KHUTSURI) | GEORGIAN LETTER CAN |
| 10BB | 10EB | GEORGIAN CAPITAL LETTER JIL (KHUTSURI) | GEORGIAN LETTER JIL |
| 10BC | 10EC | GEORGIAN CAPITAL LETTER CIL (KHUTSURI) | GEORGIAN LETTER CIL |
| 10BD | 10ED | GEORGIAN CAPITAL LETTER CHAR (KHUTSURI) | GEORGIAN LETTER CHAR |
| 10BE | 10EE | GEORGIAN CAPITAL LETTER XAN (KHUTSURI) | GEORGIAN LETTER XAN |
| 10BF | 10EF | GEORGIAN CAPITAL LETTER JHAN (KHUTSURI) | GEORGIAN LETTER JHAN |
| 10C0 | 10F0 | GEORGIAN CAPITAL LETTER HAE (KHUTSURI) | GEORGIAN LETTER HAE |
| 10C1 | 10F1 | GEORGIAN CAPITAL LETTER HE (KHUTSURI) | GEORGIAN LETTER HE |
| 10C2 | 10F2 | GEORGIAN CAPITAL LETTER HIE (KHUTSURI) | GEORGIAN LETTER HIE |
| 10C3 | 10F3 | GEORGIAN CAPITAL LETTER WE (KHUTSURI) | GEORGIAN LETTER WE |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 10C4 | 10F4 | GEORGIAN CAPITAL LETTER HAR (KHUTSURI) | GEORGIAN LETTER HAR |
| 10 C 5 | 10F5 | GEORGIAN CAPITAL LETTER HOE (KHUTSURI) | GEORGIAN LETTER HOE |
| 1E00 | 1E01 | LATIN CAPITAL LETTER A WITH RING BELOW | LATIN SMALL LETTER A WITH RING BELOW |
| 1E02 | 1E03 | LATIN CAPITAL LETTER B WITH DOT ABOVE | LATIN SMALL LETTER B WITH DOT ABOVE |
| 1E04 | 1E05 | LATIN CAPITAL LETTER B WITH DOT BELOW | LATIN SMALL LETTER B WITH DOT BELOW |
| 1E06 | 1E07 | LATIN CAPITAL LETTER B WITH LINE BELOW | LATIN SMALL LETTER B WITH LINE BELOW |
| 1E08 | 1E09 | LATIN CAPITAL LETTER C WITH CEDILLA AND ACUTE | LATIN SMALL LETTER C WITH CEDILLA AND ACUTE |
| 1E0A | 1E0B | LATIN CAPITAL LETTER D WITH DOT ABOVE | LATIN SMALL LETTER D WITH DOT ABOVE |
| 1E0C | 1E0D | LATIN CAPITAL LETTER D WITH DOT BELOW | LATIN SMALL LETTER D WITH DOT BELOW |
| 1E0E | 1E0F | LATIN CAPITAL LETTER D WITH LINE BELOW | LATIN SMALL LETTER D WITH LINE BELOW |
| 1E10 | 1E11 | LATIN CAPITAL LETTER D WITH CEDILLA | LATIN SMALL LETTER D WITH CEDILLA |
| 1E12 | 1E13 | LATIN CAPITAL LETTER D WITH CIRCUMFLEX BELOW | LATIN SMALL LETTER D WITH CIRCUMFLEX BELOW |
| 1E14 | 1E15 | LATIN CAPITAL LETTER E WITH MACRON AND GRAVE | LATIN SMALL LETTER E WITH MACRON AND GRAVE |
| 1E16 | 1E17 | LATIN CAPITAL LETTER E WITH MACRON AND ACUTE | LATIN SMALL LETTER E WITH MACRON AND ACUTE |
| 1E18 | 1E19 | LATIN CAPITAL LETTER E WITH CIRCUMFLEX BELOW | LATIN SMALL LETTER E WITH CIRCUMFLEX BELOW |
| 1E1A | 1E1B | LATIN CAPITAL LETTER E WITH TILDE BELOW | LATIN SMALL LETTER E WITH TILDE BELOW |
| 1E1C | 1E1D | LATIN CAPITAL LETTER E WITH CEDILLA AND BREVE | LATIN SMALL LETTER E WITH CEDILLA AND BREVE |
| 1E1E | 1E1F | LATIN CAPITAL LETTER F WITH DOT ABOVE | LATIN SMALL LETTER F WITH DOT ABOVE |
| 1 E20 | 1E21 | LATIN CAPITAL LETTER G WITH MACRON | LATIN SMALL LETTER G WITH MACRON |
| 1 E 22 | 1E23 | LATIN CAPITAL LETTER H WITH DOT ABOVE | LATIN SMALL LETTER H WITH DOT ABOVE |
| 1E24 | 1E25 | LATIN CAPITAL LETTER H WITH DOT BELOW | LATIN SMALL LETTER H WITH DOT BELOW |
| 1 E26 | 1E27 | LATIN CAPITAL LETTER H WITH DIAERESIS | LATIN SMALL LETTER H WITH DIAERESIS |
| 1 E28 | 1E29 | LATIN CAPITAL LETTER H WITH CEDILLA | LATIN SMALL LETTER H WITH CEDILLA |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1E2A | 1E2B | LATIN CAPITAL LETTER H WITH BREVE BELOW | LATIN SMALL LETTER H WITH BREVE BELOW |
| 1E2C | 1E2D | LATIN CAPITAL LETTER I WITH TILDE BELOW | LATIN SMALL LETTER I WITH TILDE BELOW |
| 1E2E | 1E2F | LATIN CAPITAL LETTER I WITH DIAERESIS AND ACUTE | LATIN SMALL LETTER I WITH DIAERESIS AND ACUTE |
| 1 E30 | 1E31 | LATIN CAPITAL LETTER K WITH ACUTE | LATIN SMALL LETTER K WITH ACUTE |
| 1 E32 | 1 E33 | LATIN CAPITAL LETTER K WITH DOT BELOW | LATIN SMALL LETTER K WITH DOT BELOW |
| 1E34 | 1 E35 | LATIN CAPITAL LETTER K WITH LINE BELOW | LATIN SMALL LETTER K WITH LINE BELOW |
| 1 E36 | 1 E37 | LATIN CAPITAL LETTER L WITH DOT BELOW | LATIN SMALL LETTER L WITH DOT BELOW |
| 1 E 38 | 1 E39 | LATIN CAPITAL LETTER L WITH DOT BELOW AND MACRON | LATIN SMALL LETTER L WITH DOT BELOW AND MACRON |
| 1E3A | 1E3B | LATIN CAPITAL LETTER L WITH LINE BELOW | LATIN SMALL LETTER L WITH LINE BELOW |
| 1E3C | 1E3D | LATIN CAPITAL LETTER L WITH CIRCUMFLEX BELOW | LATIN SMALL LETTER L WITH CIRCUMFLEX BELOW |
| 1E3E | 1E3F | LATIN CAPITAL LETTER M WITH ACUTE | LATIN SMALL LETTER M WITH ACUTE |
| 1 E 40 | 1E41 | LATIN CAPITAL LETTER M WITH DOT ABOVE | LATIN SMALL LETTER M WITH DOT ABOVE |
| 1E42 | 1 E 43 | LATIN CAPITAL LETTER M WITH DOT BELOW | LATIN SMALL LETTER M WITH DOT BELOW |
| 1E44 | 1E45 | LATIN CAPITAL LETTER N WITH DOT ABOVE | LATIN SMALL LETTER N WITH DOT ABOVE |
| 1E46 | 1 E 47 | LATIN CAPITAL LETTER N WITH DOT BELOW | LATIN SMALL LETTER N WITH DOT BELOW |
| 1 E 48 | 1 E 49 | LATIN CAPITAL LETTER N WITH LINE BELOW | LATIN SMALL LETTER N WITH LINE BELOW |
| 1E4A | 1E4B | LATIN CAPITAL LETTER N WITH CIRCUMFLEX BELOW | LATIN SMALL LETTER N WITH CIRCUMFLEX BELOW |
| 1E4C | 1E4D | LATIN CAPITAL LETTER O WITH TILDE AND ACUTE | LATIN SMALL LETTER O WITH TILDE AND ACUTE |
| 1E4E | 1E4F | LATIN CAPITAL LETTER O WITH TILDE AND DIAERESIS | LATIN SMALL LETTER O WITH TILDE AND DIAERESIS |
| 1 E 50 | 1E51 | LATIN CAPITAL LETTER O WITH MACRON AND GRAVE | LATIN SMALL LETTER O WITH MACRON AND GRAVE |
| 1E52 | 1 E 53 | LATIN CAPITAL LETTER O WITH MACRON AND ACUTE | LATIN SMALL LETTER O WITH MACRON AND ACUTE |
| 1E54 | 1E55 | LATIN CAPITAL LETTER P WITH ACUTE | LATIN SMALL LETTER P WITH ACUTE |
| 1 E 56 | 1 E57 | LATIN CAPITAL LETTER P WITH DOT ABOVE | LATIN SMALL LETTER P WITH DOT ABOVE |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1E58 | 1E59 | LATIN CAPITAL LETTER R WITH DOT ABOVE | LATIN SMALL LETTER R WITH DOT ABOVE |
| 1E5A | 1E5B | LATIN CAPITAL LETTER R WITH DOT BELOW | LATIN SMALL LETTER R WITH DOT BELOW |
| 1E5C | 1E5D | LATIN CAPITAL LETTER R WITH DOT BELOW AND MACRON | LATIN SMALL LETTER R WITH DOT BELOW AND MACRON |
| 1E5E | 1E5F | LATIN CAPITAL LETTER R WITH LINE BELOW | LATIN SMALL LETTER R WITH LINE BELOW |
| 1 E 60 | 1E61 | LATIN CAPITAL LETTER S WITH DOT ABOVE | LATIN SMALL LETTER S WITH DOT ABOVE |
| 1E62 | 1E63 | LATIN CAPITAL LETTER S WITH DOT BELOW | LATIN SMALL LETTER S WITH DOT BELOW |
| 1E64 | 1E65 | LATIN CAPITAL LETTER S WITH ACUTE AND DOT ABOVE | LATIN SMALL LETTER S WITH ACUTE AND DOT ABOVE |
| 1E66 | 1E67 | LATIN CAPITAL LETTER S WITH CARON AND DOT ABOVE | LATIN SMALL LETTER S WITH CARON AND DOT ABOVE |
| 1E68 | 1E69 | LATIN CAPITAL LETTER S WITH DOT BELOW AND DOT ABOVE | LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE |
| 1E6A | 1E6B | LATIN CAPITAL LETTER T WITH DOT ABOVE | LATIN SMALL LETTER T WITH DOT ABOVE |
| 1E6C | 1E6D | LATIN CAPITAL LETTER T WITH DOT BELOW | LATIN SMALL LETTER T WITH DOT BELOW |
| 1E6E | 1E6F | LATIN CAPITAL LETTER T WITH LINE BELOW | LATIN SMALL LETTER T WITH LINE BELOW |
| 1 E 70 | 1E71 | LATIN CAPITAL LETTER T WITH CIRCUMFLEX BELOW | LATIN SMALL LETTER T WITH CIRCUMFLEX BELOW |
| 1 E 72 | 1E73 | LATIN CAPITAL LETTER U WITH DIAERESIS BELOW | LATIN SMALL LETTER U WITH DIAERESIS BELOW |
| 1E74 | 1E75 | LATIN CAPITAL LETTER U WITH TILDE BELOW | LATIN SMALL LETTER U WITH TILDE BELOW |
| 1 E 76 | 1E77 | LATIN CAPITAL LETTER U WITH CIRCUMFLEX BELOW | LATIN SMALL LETTER U WITH CIRCUMFLEX BELOW |
| 1 E78 | 1E79 | LATIN CAPITAL LETTER U WITH TILDE AND ACUTE | LATIN SMALL LETTER U WITH TILDE AND ACUTE |
| 1E7A | 1E7B | LATIN CAPITAL LETTER U WITH MACRON AND DIAERESIS | LATIN SMALL LETTER U WITH MACRON AND DIAERESIS |
| 1E7C | 1E7D | LATIN CAPITAL LETTER V WITH TILDE | LATIN SMALL LETTER V WITH TILDE |
| 1E7E | 1E7F | LATIN CAPITAL LETTER V WITH DOT BELOW | LATIN SMALL LETTER V WITH DOT BELOW |
| 1 E 80 | 1E81 | LATIN CAPITAL LETTER W WITH GRAVE | LATIN SMALL LETTER W WITH GRAVE |
| 1 E 82 | 1 E83 | LATIN CAPITAL LETTER W WITH ACUTE | LATIN SMALL LETTER W WITH ACUTE |
| 1 E 84 | 1E85 | LATIN CAPITAL LETTER W WITH DIAERESIS | LATIN SMALL LETTER W WITH DIAERESIS |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1 E86 | 1E87 | LATIN CAPITAL LETTER W WITH DOT ABOVE | LATIN SMALL LETTER W WITH DOT ABOVE |
| 1 E88 | 1 E 89 | LATIN CAPITAL LETTER W WITH DOT BELOW | LATIN SMALL LETTER W WITH DOT BELOW |
| 1E8A | 1E8B | LATIN CAPITAL LETTER X WITH DOT ABOVE | LATIN SMALL LETTER X WITH DOT ABOVE |
| 1E8C | 1E8D | LATIN CAPITAL LETTER X5 WITH DIAERESIS | LATIN SMALL LETTER X WITH DIAERESIS |
| 1E8E | 1E8F | LATIN CAPITAL LETTER Y WITH DOT ABOVE | LATIN SMALL LETTER Y WITH DOT ABOVE |
| 1E90 | 1E91 | LATIN CAPITAL LETTER Z WITH CIRCUMFLEX | LATIN SMALL LETTER Z WITH CIRCUMFLEX |
| 1E92 | 1E93 | LATIN CAPITAL LETTER Z WITH DOT BELOW | LATIN SMALL LETTER Z WITH DOT BELOW |
| 1E94 | 1E95 | LATIN CAPITAL LETTER Z WITH LINE BELOW | LATIN SMALL LETTER Z WITH LINE BELOW |
| 1EA0 | 1EA1 | LATIN CAPITAL LETTER A WITH DOT BELOW | LATIN SMALL LETTER A WITH DOT BELOW |
| 1EA2 | 1EA3 | LATIN CAPITAL LETTER A WITH HOOK ABOVE | LATIN SMALL LETTER A WITH HOOK ABOVE |
| 1EA4 | 1EA5 | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND ACUTE | LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE |
| 1EA6 | 1EA7 | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND GRAVE | LATIN SMALL LETTER A WITH CIRCUMFLEX AND GRAVE |
| 1EA8 | 1EA9 | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE | LATIN SMALL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE |
| 1EAA | 1EAB | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND TILDE | LATIN SMALL LETTER A WITH CIRCUMFLEX AND TILDE |
| 1EAC | 1EAD | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND DOT BELOW | LATIN SMALL LETTER A WITH CIRCUMFLEX AND DOT BELOW |
| 1EAE | 1EAF | LATIN CAPITAL LETTER A WITH BREVE AND ACUTE | LATIN SMALL LETTER A WITH bREVE AND ACUTE |
| 1EB0 | 1EB1 | LATIN CAPITAL LETTER A WITH BREVE AND GRAVE | LATIN SMALL LETTER A WITH BREVE AND GRAVE |
| 1EB2 | 1EB3 | LATIN CAPITAL LETTER A WITH BREVE AND HOOK ABOVE | LATIN SMALL LETTER A WITH bREVE AND HOOK ABOVE |
| 1EB4 | 1EB5 | LATIN CAPITAL LETTER A WITH BREVE AND TILDE | LATIN SMALL LETTER A WITH BREVE AND TILDE |
| 1EB6 | 1EB7 | LATIN CAPITAL LETTER A WITH BREVE AND DOT BELOW | LATIN SMALL LETTER A WITH BREVE AND DOT BELOW |
| 1EB8 | 1EB9 | LATIN CAPITAL LETTER E WITH DOT BELOW | LATIN SMALL LETTER E WITH DOT BELOW |
| 1EBA | 1EBB | LATIN CAPITAL LETTER E WITH HOOK ABOVE | LATIN SMALL LETTER E WITH HOOK ABOVE |
| 1EBC | 1EBD | LATIN CAPITAL LETTER E WITH TILDE | LATIN SMALL LETTER E WITH TILDE |

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Uppercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Lowercase code } \\
\text { point }\end{array}
$$ \& \begin{array}{l}Uppercase character <br>

description\end{array} \& Lowercase character description\end{array}\right]\)| 1EBF |
| :--- |
| 1EBE |
| CIRCUMFLEX AND ACUTE |$\quad$| LEC1 |
| :--- |
| 1EC0 |
| 1EC2 |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1EE8 | 1EE9 | LATIN CAPITAL LETTER U WITH HORN AND ACUTE | LATIN SMALL LETTER U WITH HORN AND ACUTE |
| 1EEA | 1EEB | LATIN CAPITAL LETTER U WITH HORN AND GRAVE | LATIN SMALL LETTER U WITH HORN AND GRAVE |
| 1EEC | 1EED | LATIN CAPITAL LETTER U WITH HORN AND HOOK ABOVE | LATIN SMALL LETTER U WITH HORN AND HOOK ABOVE |
| 1EEE | 1EEF | LATIN CAPITAL LETTER U WITH HORN AND TILDE | LATIN SMALL LETTER U WITH HORN AND TILDE |
| 1EF0 | 1EF1 | LATIN CAPITAL LETTER U WITH HORN AND DOT BELOW | LATIN SMALL LETTER U WITH HORN AND DOT BELOW |
| 1EF2 | 1EF3 | LATIN CAPITAL LETTER Y WITH GRAVE | LATIN SMALL LETTER Y WITH GRAVE |
| 1EF4 | 1EF5 | LATIN CAPITAL LETTER Y WITH DOT BELOW | LATIN SMALL LETTER Y WITH DOT BELOW |
| 1EF6 | 1EF7 | LATIN CAPITAL LETTER Y WITH hook above | LATIN SMALL LETTER Y WITH HOOK ABOVE |
| 1EF8 | 1EF9 | LATIN CAPITAL LETTER Y WITH TILDE | LATIN SMALL LETTER Y WITH TILDE |
| 1F08 | 1F00 | GREEK CAPITAL LETTER ALPHA WITH PSILI | GREEK SMALL LETTER ALPHA WITH PSILI |
| 1F09 | 1F01 | GREEK CAPITAL LETTER ALPHA WITH DASIA | GREEK SMALL LETTER ALPHA WITH DASIA |
| 1F0A | 1F02 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND VARIA | GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA |
| 1F0B | 1F03 | GREEK CAPITAL LETTER ALPHA WITH DASIA AND VARIA | GREEK SMALL LETTER ALPHA WITH DASIA AND VARIA |
| 1F0C | 1F04 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND OXIA | GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA |
| 1F0D | 1F05 | GREEK CAPITAL LETTER ALPHA WITH DASIA AND OXIA | GREEK SMALL LETTER ALPHA WITH DASIA AND OXIA |
| 1F0E | 1F06 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND PERISPOMENI | GREEK SMALL LETTER ALPHA WITH PSILI AND PERISPOMENI |
| 1F0F | 1F07 | GREEK CAPITAL LETTER ALPHA WITH DASIA AND PERISPOMENI | GREEK SMALL LETTER ALPHA WITH DASIA AND PERISPOMENI |
| 1F18 | 1F10 | GREEK CAPITAL LETTER EPSILON WITH PSILI | GREEK SMALL LETTER EPSILON WITH PSILI |
| 1F19 | 1F11 | GREEK CAPITAL LETTER EPSILON WITH DASIA | GREEK SMALL LETTER EPSILON WITH DASIA |
| 1F1A | 1F12 | GREEK CAPITAL LETTER EPSILON WITH PSILI AND VARIA | GREEK SMALL LETTER EPSILON WITH PSILI AND VARIA |
| 1F1B | 1F13 | GREEK CAPITAL LETTER EPSILON WITH DASIA AND VARIA | GREEK SMALL LETTER EPSILON WITH DASIA AND VARIA |
| 1F1C | 1F14 | GREEK CAPITAL LETTER EPSILON WITH PSILI AND OXIA | GREEK SMALL LETTER EPSILON WITH PSILI AND OXIA |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1F1D | 1F15 | GREEK CAPITAL LETTER EPSILON WITH DASIA AND OXIA | GREEK SMALL LETTER EPSILON WITH DASIA AND OXIA |
| 1F28 | 1F20 | GREEK CAPITAL LETTER ETA WITH PSILI | GREEK SMALL LETTER ETA WITH PSILI |
| 1F29 | 1F21 | GREEK CAPITAL LETTER ETA WITH DASIA | GREEK SMALL LETTER ETA WITH DASIA |
| 1F2A | 1F22 | GREEK CAPITAL LETTER ETA WITH PSILI AND VARIA | GREEK SMALL LETTER ETA WITH PSILI AND VARIA |
| 1F2B | 1 F23 | GREEK CAPITAL LETTER ETA WITH DASIA AND VARIA | GREEK SMALL LETTER ETA WITH DASIA AND VARIA |
| 1F2C | 1F24 | GREEK CAPITAL LETTER ETA WITH PSILI AND OXIA | GREEK SMALL LETTER ETA WITH PSILI AND OXIA |
| 1F2D | 1F25 | GREEK CAPITAL LETTER ETA WITH DASIA AND OXIA | GREEK SMALL LETTER ETA WITH DASIA AND OXIA |
| 1F2E | 1F26 | GREEK CAPITAL LETTER ETA WITH PSILI AND PERISPOMENI | GREEK SMALL LETTER ETA WITH PSILI AND PERISPOMENI |
| 1F2F | 1F27 | GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI | GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI |
| 1F38 | 1F30 | GREEK CAPITAL LETTER IOTA WITH PSILI | GREEK SMALL LETTER IOTA WITH PSILI |
| 1F39 | 1F31 | GREEK CAPITAL LETTER IOTA WITH DASIA | GREEK SMALL LETTER IOTA WITH DASIA |
| 1F3A | 1F32 | GREEK CAPITAL LETTER IOTA WITH PSILI AND VARIA | GREEK SMALL LETTER IOTA WITH PSILI AND VARIA |
| 1F3B | 1 F33 | GREEK CAPITAL LETTER IOTA WITH DASIA AND VARIA | GREEK SMALL LETTER IOTA WITH DASIA AND VARIA |
| 1F3C | 1F34 | GREEK CAPITAL LETTER IOTA WITH PSILI AND OXIA | GREEK SMALL LETTER IOTA WITH PSILI AND OXIA |
| 1F3D | 1F35 | GREEK CAPITAL LETTER IOTA WITH DASIA AND OXIA | GREEK SMALL LETTER IOTA WITH DASIA AND OXIA |
| 1F3E | 1F36 | GREEK CAPITAL LETTER IOTA WITH PSILI AND PERISPOMENI | GREEK SMALL LETTER IOTA WITH PSILI AND PERISPOMENI |
| 1F3F | 1F37 | GREEK CAPITAL LETTER IOTA WITH DASIA AND PERISPOMENI | GREEK SMALL LETTER IOTA WITH DASIA AND PERISPOMENI |
| 1F48 | 1F40 | GREEK CAPITAL LETTER OMICRON WITH PSILI | GREEK SMALL LETTER OMICRON WITH PSILI |
| 1F49 | 1F41 | GREEK CAPITAL LETTER OMICRON WITH DASIA | GREEK SMALL LETTER OMICRON WITH DASIA |
| 1F4A | 1F42 | GREEK CAPITAL LETTER OMICRON WITH PSILI AND VARIA | GREEK SMALL LETTER OMICRON WITH PSILI AND VARIA |
| 1F4B | 1F43 | GREEK CAPITAL LETTER OMICRON WITH DASIA AND VARIA | GREEK SMALL LETTER OMICRON WITH DASIA AND VARIA |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1F4C | 1F44 | GREEK CAPITAL LETTER OMICRON WITH PSILI AND OXIA | GREEK SMALL LETTER OMICRON WITH PSILI AND OXIA |
| 1F4D | 1F45 | GREEK CAPITAL LETTER OMICRON WITH DASIA AND OXIA | GREEK SMALL LETTER OMICRON WITH DASIA AND OXIA |
| 1F59 | 1F51 | GREEK CAPITAL LETTER UPSILON WITH OASIS | GREEK SMALL LETTER UPSILON WITH DASIA |
| 1F5B | 1F53 | GREEK CAPITAL LETTER UPSILON WITH DASIA AND VARIA | GREEK SMALL LETTER UPSILON WITH DASIA AND VARIA |
| 1F5D | 1F55 | GREEK CAPITAL LETTER UPSILON WITH DASIA AND OXIA | GREEK SMALL LETTER UPSILON WITH DASIA AND OXIA |
| 1F5F | 1F57 | GREEK CAPITAL LETTER UPSILON WITH DASIA AND PERISPOMENI | GREEK SMALL LETTER UPSILON WITH DASIA AND PERISPOMENI |
| 1F68 | 1F60 | GREEK CAPITAL LETTER OMEGA WITH PSILI | GREEK SMALL LETTER OMEGA WITH PSILI |
| 1F69 | 1F61 | GREEK CAPITAL LETTER OMEGA WITH DASIA | GREEK SMALL LETTER OMEGA WITH DASIA |
| 1F6A | 1F62 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND VARIA | GREEK SMALL LETTER OMEGA WITH PSILI AND VARIA |
| 1F6B | 1F63 | GREEK CAPITAL LETTER OMEGA WITH DASIA AND VARIA | GREEK SMALL LETTER OMEGA WITH DASIA AND VARIA |
| 1F6C | 1F64 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND OXIA | GREEK SMALL LETTER OMEGA WITH PSILI AND OXIA |
| 1F6D | 1F65 | GREEK CAPITAL LETTER OMEGA WITH DASIA AND OXIA | GREEK SMALL LETTER OMEGA WITH DASIA AND OXIA |
| 1F6E | 1F66 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND PERISPOMENI | GREEK SMALL LETTER OMEGA WITH PSILI AND PERISPOMENI |
| 1F6F | 1F67 | GREEK CAPITAL LETTER OMEGA WITH DASIA AND PERISPOMENI | GREEK SMALL LETTER OMEGA WITH DASIA AND PERISPOMENI |
| 1F88 | 1F80 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND PROSGEGRAMMENI | GREEK SMALL LETTER ALPHA WITH PSILI AND YPOGEGRAMMENI |
| 1F89 | 1F81 | GREEK CAPITAL LETTER ALPHA WITH DASIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ALPHA WITH DASIA AND YPOGEGRAMMENI |
| 1F8A | 1F82 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND VARIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA AND YPOGEGRAMMENI |
| 1F8B | 1F83 | GREEK CAPITAL LETTER ALPHA WITH DASIA AND VARIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ALPHA WITH DASIA AND VARIA AND YPOGEGRAMMENI |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1F8C | 1F84 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND OXIA AND PROSGEGRAMMEN | GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA AND YPOGEGRAMMENI |
| 1F8D | 1F85 | GREEK CAPITAL LETTER <br> ALPHA WITH DASIA AND OXIA <br> AND PROSGEGRAMMEN | GREEK SMALL LETTER ALPHA WITH DASIA AND OXIA AND YPOGEGRAMMENI |
| 1F8E | 1F86 | GREEK CAPITAL LETTER ALPHA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI | GREEK SMALL LETTER ALPHA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI |
| 1F8F | 1F87 | GREEK CAPITAL LETTER ALPHA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI | GREEK SMALL LETTER ALPHA WITH DASIA AND PERISPOMENI AND YPOGEGRAMMENI |
| 1F98 | 1F90 | GREEK CAPITAL LETTER ETA WITH PSILI AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH PSILI AND YPOGEGRAMMENI |
| 1F99 | 1F91 | GREEK CAPITAL LETTER ETA WITH DASIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH DASIA AND YPOGEGRAMMENI |
| 1F9A | 1F92 | GREEK CAPITAL LETTER ETA WITH PSILI AND VARIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH PSILI AND VARIA AND YPOGEGRAMMENI |
| 1F9B | 1F93 | GREEK CAPITAL LETTER ETA WITH DASIA AND VARIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH DASIA AND VARIA AND YPOGEGRAMMENI |
| 1F9C | 1F94 | GREEK CAPITAL LETTER ETA WITH PSILI AND OXIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH PSILI AND OXIA AND YPOGEGRAMMENI |
| 1F9D | 1F95 | GREEK CAPITAL LETTER ETA WITH DASIA AND OXIA AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH DASIA AND OXIA AND YPOGEGRAMMENI |
| 1F9E | 1F96 | GREEK CAPITAL LETTER ETA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI |
| 1F9F | 1F97 | GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI | GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI AND YPOGEGRAMMENI |
| 1FA8 | 1FA0 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH PSILI AND YPOGEGRAMMENI |
| 1FA9 | 1FA1 | GREEK CAPITAL LETTER OMEGA WITH DASIA AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH DASIA AND YPOGEGRAMMENI |
| 1FAA | 1FA2 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND VARIA AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH PSILI AND VARIA AND YPOGEGRAMMENI |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 1FAB | 1FA3 | GREEK CAPITAL LETTER OMEGA WITH DASIA AND VARIA AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH DASIA AND VARIA AND YPOGEGRAMMENI |
| 1FAC | 1FA4 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND OXIA AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH PSILI AND OXIA AND YPOGEGRAMMENI |
| 1FAD | 1FA5 | GREEK CAPITAL LETTER OMEGA WITH DASIA AND OXIA AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH DASIA AND OXIA AND YPOGEGRAMMENI |
| 1FAE | 1FA6 | GREEK CAPITAL LETTER OMEGA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI |
| 1FAF | 1FA7 | GREEK CAPITAL LETTER OMECA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI | GREEK SMALL LETTER OMEGA WITH DASIA AND PEPISPOMENI AND YPOGEGRAMMENI |
| 1FB8 | 1FB0 | GREEK CAPITAL LETTER ALPHA WITH VRACHY | GREEK SMALL LETTER ALPHA WITH VRACHY |
| 1FB9 | 1FB1 | GREEK CAPITAL LETTER ALPHA WITH MACRON | GREEK SMALL LETTER ALPHA WITH MACRON |
| 1FD8 | 1FD0 | GREEK CAPITAL LETTER IOTA WITH VRACHY | GREEK SMALL LETTER IOTA WITH VRACHY |
| 1FD9 | 1FD1 | GREEK CAPITAL LETTER IOTA WITH MACRON | GREEK SMALL LETTER IOTA WITH MACRON |
| 1FE8 | 1FE0 | GREEK CAPITAL LETTER UPSILON WITH VRACHY | GREEK SMALL LETTER UPSILON WITH VRACHY |
| 1FE9 | 1FE1 | GREEK CAPITAL LETTER UPSILON WITH MACRON | GREEK SMALL LETTER UPSILON WITH MACRON |
| 24B6 | 24D0 | CIRCLED LATIN CAPITAL LETTER A | CIRCLED LATIN SMALL LETTER A |
| 24B7 | 24D1 | CIRCLED LATIN CAPITAL LETTER B | CIRCLED LATIN SMALL LETTER B |
| 24B8 | 24D2 | CIRCLED LATIN CAPITAL LETTER C | CIRCLED LATIN SMALL LETTER C |
| 24B9 | 24D3 | CIRCLED LATIN CAPITAL LETTER D | CIRCLED LATIN SMALL LETTER D |
| 24BA | 24D4 | CIRCLED LATIN CAPITAL LETTER E | CIRCLED LATIN SMALL LETTER E |
| 24BB | 24D5 | CIRCLED LATIN CAPITAL LETTER F | CIRCLED LATIN SMALL LETTER F |
| 24BC | 24D6 | CIRCLED LATIN CAPITAL LETTER G | CIRCLED LATIN SMALL LETTER G |
| 24BD | 24D7 | CIRCLED LATIN CAPITAL LETTER H | CIRCLED LATIN SMALL LETTER H |
| 24BE | 24D8 | CIRCLED LATIN CAPITAL LETTER I | CIRCLED LATIN SMALL LETTER I |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| 24BF | 24D9 | CIRCLED LATIN CAPITAL LETTER J | CIRCLED LATIN SMALL LETTER J |
| 24C0 | 24DA | CIRCLED LATIN CAPITAL LETTER K | CIRCLED LATIN SMALL LETTER K |
| 24C1 | 24DB | CIRCLED LATIN CAPITAL LETTER L | CIRCLED LATIN SMALL LETTER L |
| 24C2 | 24DC | CIRCLED LATIN CAPITAL LETTER M | CIRCLED LATIN SMALL LETTER M |
| 24C3 | 24DD | CIRCLED LATIN CAPITAL LETTER N | CIRCLED LATIN SMALL LETTER N |
| 24C4 | 24DE | CIRCLED LATIN CAPITAL LETTER O | CIRCLED LATIN SMALL LETTER O |
| 24C5 | 24DF | CIRCLED LATIN CAPITAL LETTER P | CIRCLED LATIN SMALL LETTER P |
| 24C6 | 24E0 | CIRCLED LATIN CAPITAL LETTER Q | CIRCLED LATIN SMALL LETTER Q |
| 24C7 | 24E1 | CIRCLED LATIN CAPITAL LETTER R | CIRCLED LATIN SMALL LETTER R |
| 24C8 | 24E2 | CIRCLED LATIN CAPITAL LETTER S | CIRCLED LATIN SMALL LETTER S |
| 24C9 | 24E3 | CIRCLED LATIN CAPITAL LETTER T | CIRCLED LATIN SMALL LETTER T |
| 24CA | 24E4 | CIRCLED LATIN CAPITAL LETTER U | CIRCLED LATIN SMALL LETTER U |
| 24CB | 24E5 | CIRCLED LATIN CAPITAL LETTER V | CIRCLED LATIN SMALL LETTER V |
| 24CC | 24E6 | CIRCLED LATIN CAPITAL LETTER W | CIRCLED LATIN SMALL LETTER W |
| 24CD | 24E7 | CIRCLED LATIN CAPITAL LETTER X | CIRCLED LATIN SMALL LETTER X |
| 24CE | 24E8 | CIRCLED LATIN CAPITAL LETTER Y | CIRCLED LATIN SMALL LETTER Y |
| 24CF | 24E9 | CIRCLED LATIN CAPITAL LETTER Z | CIRCLED LATIN SMALL LETTER Z |
| FF21 | FF41 | FULLWIDTH LATIN CAPITAL LETTER A | FULLWIDTH LATIN SMALL LETTER A |
| FF22 | FF42 | FULLWIDTH LATIN CAPITAL LETTER B | FULLWIDTH LATIN SMALL LETTER B |
| FF23 | FF43 | FULLWIDTH LATIN CAPITAL LETTER C | FULLWIDTH LATIN SMALL LETTER C |
| FF24 | FF44 | FULLWIDTH LATIN CAPITAL LETTER D | FULLWIDTH LATIN SMALL LETTER D |
| FF25 | FF45 | FULLWIDTH LATIN CAPITAL LETTER E | FULLWIDTH LATIN SMALL LETTER E |
| FF26 | FF46 | FULLWIDTH LATIN CAPITAL LETTER F | FULLWIDTH LATIN SMALL LETTER F |


| Uppercase code point | Lowercase code point | Uppercase character description | Lowercase character description |
| :---: | :---: | :---: | :---: |
| FF27 | FF47 | FULLWIDTH LATIN CAPITAL LETTER G | FULLWIDTH LATIN SMALL LETTER G |
| FF28 | FF48 | FULLWIDTH LATIN CAPITAL LETTER H | FULLWIDTH LATIN SMALL LETTER H |
| FF29 | FF49 | FULLWIDTH LATIN CAPITAL LETTER I | FULLWIDTH LATIN SMALL LETTER I |
| FF2A | FF4A | FULLWIDTH LATIN CAPITAL LETTER J | FULLWIDTH LATIN SMALL LETTER J |
| FF2B | FF4B | FULLWIDTH LATIN CAPITAL LETTER K | FULLWIDTH LATIN SMALL LETTER K |
| FF2C | FF4C | FULLWIDTH LATIN CAPITAL LETTER L | FULLWIDTH LATIN SMALL LETTER L |
| FF2D | FF4D | FULLWIDTH LATIN CAPITAL LETTER M | FULLWIDTH LATIN SMALL LETTER M |
| FF2E | FF4E | FULLWIDTH LATIN CAPITAL LETTER N | FULLWIDTH LATIN SMALL LETTER N |
| FF2F | FF4F | FULLWIDTH LATIN CAPITAL LETTER O | $\qquad$ |
| FF30 | FF50 | FULLWIDTH LATIN CAPITAL LETTER P | FULLWIDTH LATIN SMALL LETTER P |
| FF31 | FF51 | FULLWIDTH LATIN CAPITAL LETTER Q | FULLWIDTH LATIN SMALL LETTER Q |
| FF32 | FF52 | FULLWIDTH LATIN CAPITAL LETTER R | FULLWIDTH LATIN SMALL LETTER R |
| FF33 | FF53 | FULLWIDTH LATIN CAPITAL LETTER S | FULLWIDTH LATIN SMALL LETTER S |
| FF34 | FF54 | FULLWIDTH LATIN CAPITAL LETTER T | FULLWIDTH LATIN SMALL LETTER T |
| FF35 | FF55 | FULLWIDTH LATIN CAPITAL LETTER U | FULLWIDTH LATIN SMALL LETTER U |
| FF36 | FF56 | FULLWIDTH LATIN CAPITAL LETTER V | FULLWIDTH LATIN SMALL LETTER V |
| FF37 | FF57 | FULLWIDTH LATIN CAPITAL LETTER W | FULLWIDTH LATIN SMALL LETTER W |
| FF38 | FF58 | FULLWIDTH LATIN CAPITAL LETTER X | FULLWIDTH LATIN SMALL LETTER X |
| FF39 | FF59 | FULLWIDTH LATIN CAPITAL LETTER Y | FULLWIDTH LATIN SMALL LETTER Y |
| FF3A | FF5A | FULLWIDTH LATIN CAPITAL LETTER Z | FULLWIDTH LATIN SMALL LETTER Z |

## ISO 10646 lowercase to uppercase mapping table:

| Lowercase code <br> point | Uppercase code <br> point | Lowercase character description | Uppercase character description |
| :--- | :--- | :--- | :--- |
| 0061 | 0041 | LATIN SMALL LETTER A | LATIN CAPITAL LETTER A |
| 0062 | 0042 | LATIN SMALL LETTER B | LATIN CAPITAL LETTER B |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 0063 | 0043 | LATIN SMALL LETTER C | LATIN CAPITAL LETTER C |
| 0064 | 0044 | LATIN SMALL LETTER D | LATIN CAPITAL LETTER D |
| 0065 | 0045 | LATIN SMALL LETTER E | LATIN CAPITAL LETTER E |
| 0066 | 0046 | LATIN SMALL LETTER F | LATIN CAPITAL LETTER F |
| 0067 | 0047 | LATIN SMALL LETTER G | LATIN CAPITAL LETTER G |
| 0068 | 0048 | LATIN SMALL LETTER H | LATIN CAPITAL LETTER H |
| 0069 | 0049 | LATIN SMALL LETTER I | LATIN CAPITAL LETTER I |
| 006A | 004A | LATIN SMALL LETTER J | LATIN CAPITAL LETTER J |
| 006B | 004B | LATIN SMALL LETTER K | LATIN CAPITAL LETTER K |
| 006C | 004C | LATIN SMALL LETTER L | LATIN CAPITAL LETTER L |
| 006D | 004D | LATIN SMALL LETTER M | LATIN CAPITAL LETTER M |
| 006E | 004E | LATIN SMALL LETTER N | LATIN CAPITAL LETTER N |
| 006F | 004F | LATIN SMALL LETTER O | LATIN CAPITAL LETTER O |
| 0070 | 0050 | LATIN SMALL LETTER P | LATIN CAPITAL LETTER P |
| 0071 | 0051 | LATIN SMALL LETTER Q | LATIN CAPITAL LETTER Q |
| 0072 | 0052 | LATIN SMALL LETTER R | LATIN CAPITAL LETTER R |
| 0073 | 0053 | LATIN SMALL LETTER S | LATIN CAPITAL LETTER S |
| 0074 | 0054 | LATIN SMALL LETTER T | LATIN CAPITAL LETTER T |
| 0075 | 0055 | LATIN SMALL LETTER U | LATIN CAPITAL LETTER U |
| 0076 | 0056 | LATIN SMALL LETTER V | LATIN CAPITAL LETTER V |
| 0077 | 0057 | LATIN SMALL LETTER W | LATIN CAPITAL LETTER W |
| 0078 | 0058 | LATIN SMALL LETTER X | LATIN CAPITAL LETTER X |
| 0079 | 0059 | LATIN SMALL LETTER Y | LATIN CAPITAL LETTER Y |
| 007A | 005A | LATIN SMALL LETTER Z | LATIN CAPITAL LETTER Z |
| 00E0 | 00C0 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A GRAVE |
| 00E1 | 00C1 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A ACUTE |
| 00E2 | 00C2 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A CIRCUMFLEX |
| 00E3 | 00C3 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A TILDE |
| 00E4 | 00C4 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A DIAERESIS |
| 00E5 | 00C5 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A RING |
| O0E6 | 00C6 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER A E |
| 00E7 | 00C7 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER C CEDILLA |
| 00E8 | 00C8 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER E GRAVE |
| 00E9 | 00C9 | LATIN SMALL LETTER A GRAVE | LATIN CAPITAL LETTER E ACUTE |
| 00EA | 00CA | LATIN SMALL LETTER E CIRCUMFLEX | LATIN CAPITAL LETTER E CIRCUMFLEX |
| 00EB | 00CB | LATIN SMALL LETTER E DIAERESIS | LATIN CAPITAL LETTER E DIAERESIS |
| O0EC | 00CC | LATIN SMALL LETTER I GRAVE | LATIN CAPITAL LETTER I GRAVE |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| O0ED | 00CD | LATIN SMALL LETTER I ACUTE | LATIN CAPITAL LETTER I ACUTE |
| O0EE | OOCE | LATIN SMALL LETTER I CIRCUMFLEX | LATIN CAPITAL LETTER I CIRCUMFLEX |
| O0EF | 00CF | LATIN SMALL LETTER I DIAERESIS | LATIN CAPITAL LETTER I DIAERESIS |
| 00F0 | 00D0 | LATIN SMALL LETTER ETH | LATIN CAPITAL LETTER ETH |
| 00F1 | 00D1 | LATIN SMALL LETTER N TILDE | LATIN CAPITAL LETTER N TILDE |
| 00F2 | 00D2 | LATIN SMALL LETTER O GRAVE | LATIN CAPITAL LETTER O GRAVE |
| 00F3 | 00D3 | LATIN SMALL LETTER O ACUTE | LATIN CAPITAL LETTER O ACUTE |
| 00F4 | 00D4 | LATIN SMALL LETTER O CIRCUMFLEX | LATIN CAPITAL LETTER O CIRCUMFLEX |
| 00F5 | 00D5 | LATIN SMALL LETTER O TILDE | LATIN CAPITAL LETTER O TILDE |
| 00F6 | 00D6 | LATIN SMALL LETTER O DIAERESIS | LATIN CAPITAL LETTER O DIAERESIS |
| 00F8 | 00D8 | LATIN SMALL LETTER O SLASH | LATIN CAPITAL LETTER O SLASH |
| 00F9 | 00D9 | LATIN SMALL LETTER U GRAVE | LATIN CAPITAL LETTER U GRAVE |
| 00FA | 00DA | LATIN SMALL LETTER U ACUTE | LATIN CAPITAL LETTER U ACUTE |
| 00FB | 00DB | LATIN SMALL LETTER U CIRCUMFLEX | LATIN CAPITAL LETTER U CIRCUMFLEX |
| 00FC | OODC | LATIN SMALL LETTER U DIAERESIS | LATIN CAPITAL LETTER U DIAERESIS |
| 00FD | 00DD | LATIN SMALL LETTER Y ACUTE | LATIN CAPITAL LETTER Y ACUTE |
| OOFE | 00DE | LATIN SMALL LETTER THORN | LATIN CAPITAL LETTER THORN |
| 00FF | 0178 | LATIN SMALL LETTER Y DIAERESIS | LATIN CAPITAL LETTER Y WITH DIAERESIS |
| 0101 | 0100 | LATIN SMALL LETTER A WITH MACRON | LATIN CAPITAL LETTER A WITH MACRON |
| 0103 | 0102 | LATIN SMALL LETTER A WITH BREVE | LATIN CAPITAL LETTER A WITH BREVE |
| 0105 | 0104 | LATIN SMALL LETTER A WITH OGONEK | LATIN CAPITAL LETTER A WITH OGONEK |
| 0107 | 0106 | LATIN SMALL LETTER C WITH ACUTE | LATIN CAPITAL LETTER C WITH ACUTE |
| 0109 | 0108 | LATIN SMALL LETTER C WITH CIRCUMFLEX | LATIN CAPITAL LETTER C WITH CIRCUMFLEX |
| 010B | 010A | LATIN SMALL LETTER C WITH DOT ABOVE | LATIN CAPITAL LETTER C WITH DOT ABOVE |
| 010D | 010C | LATIN SMALL LETTER C WITH CARON | LATIN CAPITAL LETTER C WITH CARON |
| 010F | 010E | LATIN SMALL LETTER D WITH CARON | LATIN CAPITAL LETTER D WITH CARON |
| 0111 | 0110 | LATIN SMALL LETTER D WITH STROKE | LATIN CAPITAL LETTER D WITH STROKE |
| 0113 | 0112 | LATIN SMALL LETTER E WITH MACRON | LATIN CAPITAL LETTER E WITH MACRON |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 0115 | 0114 | LATIN SMALL LETTER E WITH BREVE | LATIN CAPITAL LETTER E WITH BREVE |
| 0117 | 0116 | LATIN SMALL LETTER E WITH DOT ABOVE | LATIN CAPITAL LETTER E WITH DOT ABOVE |
| 0119 | 0118 | LATIN SMALL LETTER E WITH OGONEK | LATIN CAPITAL LETTER E WITH OGONEK |
| 011B | 011A | LATIN SMALL LETTER E WITH CARON | LATIN CAPITAL LETTER E WITH CARON |
| 011D | 011C | LATIN SMALL LETTER G WITH CIRCUMFLEX | LATIN CAPITAL LETTER G WITH CIRCUMFLEX |
| 011F | 011E | LATIN SMALL LETTER G WITH BREVE | LATIN CAPITAL LETTER G WITH BREVE |
| 0121 | 0120 | LATIN SMALL LETTER G WITH DOT ABOVE | LATIN CAPITAL LETTER G WITH DOT ABOVE |
| 0123 | 0122 | LATIN SMALL LETTER G WITH CEDILLA | LATIN CAPITAL LETTER G WITH CEDILLA |
| 0125 | 0124 | LATIN SMALL LETTER H WITH CIRCUMFLEX | LATIN CAPITAL LETTER H WITH CIRCUMFLEX |
| 0127 | 0126 | LATIN SMALL LETTER H WITH STROKE | LATIN CAPITAL LETTER H WITH STROKE |
| 0129 | 0128 | LATIN SMALL LETTER I WITH TILDE | LATIN CAPITAL LETTER I WITH TILDE |
| 012B | 012A | LATIN SMALL LETTER I WITH MACRON | LATIN CAPITAL LETTER I WITH MACRON |
| 012D | 012C | LATIN SMALL LETTER I WITH BREVE | LATIN CAPITAL LETTER I WITH BREVE |
| 012F | 012E | LATIN SMALL LETTER I WITH OGONEK | LATIN CAPITAL LETTER I WITH OGONEK |
| 0131 | 0049 | LATIN SMALL LETTER DOTLESS I | LATIN CAPITAL LETTER I |
| 0133 | 0132 | LATIN SMALL LIGATURE IJ | LATIN CAPITAL LIGATURE IJ |
| 0135 | 0134 | LATIN SMALL LETTER J WITH CIRCUMFLEX | LATIN CAPITAL LETTER J WITH CIRCUMFLEX |
| 0137 | 0136 | LATIN SMALL LETTER K WITH CEDILLA | LATIN CAPITAL LETTER K WITH CEDILLA |
| 013A | 0139 | LATIN SMALL LETTER L WITH ACUTE | LATIN CAPITAL LETTER L WITH ACUTE |
| 013C | 013B | LATIN SMALL LETTER L WITH CEDILLA | LATIN CAPITAL LETTER L WITH CEDILLA |
| 013E | 013D | LATIN SMALL LETTER L WITH CARON | LATIN CAPITAL LETTER L WITH CARON |
| 0140 | 013F | LATIN SMALL LETTER L WITH MIDDLE DOT | LATIN CAPITAL LETTER L WITH MIDDLE DOT |
| 0142 | 0141 | LATIN SMALL LETTER L WITH STROKE | LATIN CAPITAL LETTER L WITH STROKE |
| 0144 | 0143 | LATIN SMALL LETTER N WITH ACUTE | LATIN CAPITAL LETTER N WITH ACUTE |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 0146 | 0145 | LATIN SMALL LETTER N WITH CEDILLA | LATIN CAPITAL LETTER N WITH CEDILLA |
| 0148 | 0147 | LATIN SMALL LETTER N WITH CARON | LATIN CAPITAL LETTER N WITH CARON |
| 014B | 014A | LATIN SMALL LETTER ENG (SAMI) | LATIN CAPITAL LETTER ENG (SAMI) |
| 014D | 014C | LATIN SMALL LETTER O WITH MACRON | LATIN CAPITAL LETTER O WITH MACRON |
| 014F | 014E | LATIN SMALL LETTER O WITH BREVE | LATIN CAPITAL LETTER O WITH BREVE |
| 0151 | 0150 | LATIN SMALL LETTER O WITH DOUBLE ACUTE | LATIN CAPITAL LETTER O WITH DOUBLE ACUTE |
| 0153 | 0152 | LATIN SMALL LIGATURE OE | LATIN CAPITAL LIGATURE OE |
| 0155 | 0154 | LATIN SMALL LETTER R WITH ACUTE | LATIN CAPITAL LETTER R WITH ACUTE |
| 0157 | 0156 | LATIN SMALL LETTER R WITH CEDILLA | LATIN CAPITAL LETTER R WITH CEDILLA |
| 0159 | 0158 | LATIN SMALL LETTER R WITH CARON | LATIN CAPITAL LETTER R WITH CARON |
| 015B | 015A | LATIN SMALL LETTER S WITH ACUTE | LATIN CAPITAL LETTER S WITH ACUTE |
| 015D | 015C | LATIN SMALL LETTER S WITH CIRCUMFLEX | LATIN CAPITAL LETTER S WITH CIRCUMFLEX |
| 015F | 015E | LATIN SMALL LETTER S WITH CEDILLA | LATIN CAPITAL LETTER S WITH CEDILLA |
| 0161 | 0160 | LATIN SMALL LETTER S WITH CARON | LATIN CAPITAL LETTER S WITH CARON |
| 0163 | 0162 | LATIN SMALL LETTER T WITH CEDILLA | LATIN CAPITAL LETTER T WITH CEDILLA |
| 0165 | 0164 | LATIN SMALL LETTER T WITH CARON | LATIN CAPITAL LETTER T WITH CARON |
| 0167 | 0166 | LATIN SMALL LETTER T WITH STROKE | LATIN CAPITAL LETTER T WITH STROKE |
| 0169 | 0168 | LATIN SMALL LETTER U WITH TILDE | LATIN CAPITAL LETTER U WITH TILDE |
| 016B | 016A | LATIN SMALL LETTER U WITH MACRON | LATIN CAPITAL LETTER U WITH MACRON |
| 016D | 016C | LATIN SMALL LETTER U WITH BREVE | LATIN CAPITAL LETTER U WITH BREVE |
| 016F | 016E | LATIN SMALL LETTER U WITH RING ABOVE | LATIN CAPITAL LETTER U WITH RING ABOVE |
| 0171 | 0170 | LATIN SMALL LETTER U WITH DOUBLE ACUTE | LATIN CAPITAL LETTER U WITH DOUBLE ACUTE |
| 0173 | 0172 | LATIN SMALL LETTER U WITH OGONEK | LATIN CAPITAL LETTER U WITH OGONEK |
| 0175 | 0174 | LATIN SMALL LETTER W WITH CIRCUMFLEX | LATIN CAPITAL LETTER W WITH CIRCUMFLEX |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 0177 | 0176 | LATIN SMALL LETTER Y WITH CIRCUMFLEX | LATIN CAPITAL LETTER Y WITH CIRCUMFLEX |
| 017A | 0179 | LATIN SMALL LETTER Z WITH ACUTE | LATIN CAPITAL LETTER Z WITH ACUTE |
| 017C | 017B | LATIN SMALL LETTER Z WITH DOT ABOVE | LATIN CAPITAL LETTER Z WITH DOT ABOVE |
| 017E | 017D | LATIN SMALL LETTER Z WITH CARON | LATIN CAPITAL LETTER Z WITH CARON |
| 0183 | 0182 | LATIN SMALL LETTER B WITH TOPBAR | LATIN CAPITAL LETTER B WITH TOPBAR |
| 0185 | 0184 | LATIN SMALL LETTER TONE SIX | LATIN CAPITAL LETTER TONE SIX |
| 0188 | 0187 | LATIN SMALL LETTER C WITH HOOK | LATIN CAPITAL LETTER C WITH HOOK |
| 018C | 018B | LATIN SMALL LETTER D WITH TOPBAR | LATIN CAPITAL LETTER D WITH TOPBAR |
| 0192 | 0191 | LATIN SMALL LETTER F WITH HOOK | LATIN CAPITAL LETTER F WITH HOOK |
| 0199 | 0198 | LATIN SMALL LETTER K WITH HOOK | LATIN CAPITAL LETTER K WITH HOOK |
| 01A1 | 01A0 | LATIN SMALL LETTER O WITH HORN | LATIN CAPITAL LETTER O WITH HORN |
| 01A3 | 01A2 | LATIN SMALL LETTER OI | LATIN CAPITAL LETTER OI |
| 01A5 | 01A4 | LATIN SMALL LETTER P WITH HOOK | LATIN CAPITAL LETTER P WITH HOOK |
| 01A8 | 01A7 | LATIN SMALL LETTER TONE TWO | LATIN CAPITAL LETTER TONE TWO |
| 01AD | 01AC | LATIN SMALL LETTER T WITH HOOK | LATIN CAPITAL LETTER T WITH HOOK |
| 01B0 | 01AF | LATIN SMALL LETTER U WITH HORN | LATIN CAPITAL LETTER U WITH HORN |
| 01B4 | 01B3 | LATIN SMALL LETTER Y WITH HOOK | LATIN CAPITAL LETTER Y WITH HOOK |
| 01B6 | 01B5 | LATIN SMALL LETTER Z WITH STROKE | LATIN CAPITAL LETTER Z WITH STROKE |
| 01B9 | 01B8 | LATIN SMALL LETTER EZH REVERSED | LATIN CAPITAL LETTER EZH REVERSED |
| 01BD | 01BC | LATIN SMALL LETTER TONE FIVE | LATIN CAPITAL LETTER TONE FIVE |
| 01C6 | 01C4 | LATIN SMALL LETTER DZ WITH CARON | LATIN CAPITAL LETTER DZ WITH CARON |
| 01C9 | 01C7 | LATIN SMALL LETTER LJ | LATIN CAPITAL LETTER LJ |
| 01CC | 01CA | LATIN SMALL LETTER NJ | LATIN CAPITAL LETTER NJ |
| 01CE | 01CD | LATIN SMALL LETTER A WITH CARON | LATIN CAPITAL LETTER A WITH CARON |
| 01D0 | 01CF | LATIN SMALL LETTER I WITH CARON | LATIN CAPITAL LETTER I WITH CARON |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 01D2 | 01D1 | LATIN SMALL LETTER O WITH CARON | LATIN CAPITAL LETTER O WITH CARON |
| 01D4 | 01D3 | LATIN SMALL LETTER U WITH CARON | LATIN CAPITAL LETTER U WITH CARON |
| 01D6 | 01D5 | LATIN SMALL LETTER U WITH DIAERESIS AND MACRON | LATIN CAPITAL LETTER U WITH DIAERESIS AND MACRON |
| 01D8 | 01D7 | LATIN SMALL LETTER U WITH DIAERESIS AND ACUTE | LATIN CAPITAL LETTER U WITH DIAERESIS AND ACUTE |
| 01DA | 01D9 | LATIN SMALL LETTER U WITH DIAERESIS AND CARON | LATIN CAPITAL LETTER U WITH DIAERESIS AND CARON |
| 01DC | 01DB | LATIN SMALL LETTER U WITH DIAERESIS AND GRAVE | LATIN CAPITAL LETTER U WITH DIAERESIS AND GRAVE |
| 01DF | 01DE | LATIN SMALL LETTER A WITH DIAERESIS AND MACRON | LATIN CAPITAL LETTER A WITH DIAERESIS AND MACRON |
| 01E1 | 01E0 | LATIN SMALL LETTER A WITH DOT ABOVE AND MACRON | LATIN CAPITAL LETTER A WITH DOT ABOVE AND MACRON |
| 01E3 | 01E2 | LATIN SMALL LIGATURE AE WITH MACRON | LATIN CAPITAL LIGATURE AE MTH MACRON |
| 01E5 | 01E4 | LATIN SMALL LETTER G WITH STROKE | LATIN CAPITAL LETTER G WITH STROKE |
| 01E7 | 01E6 | LATIN SMALL LETTER G WITH CARON | LATIN CAPITAL LETTER G WITH CARON |
| 01E9 | 01E8 | LATIN SMALL LETTER K WITH CARON | LATIN CAPITAL LETTER K WITH CARON |
| 01EB | 01EA | LATIN SMALL LETTER O WITH OGONEK | LATIN CAPITAL LETTER O WITH OGONEK |
| 01ED | 01EC | LATIN SMALL LETTER O WITH OGONEK AND MACRON | LATIN CAPITAL LETTER O WITH OGONEK AND MACRON |
| 01EF | 01EE | LATIN SMALL LETTER EZH WITH CARON | LATIN CAPITAL LETTER EZH WITH CARON |
| 01F3 | 01F1 | LATIN SMALL LETTER DZ | LATIN CAPITAL LETTER DZ |
| 01F5 | 01F4 | LATIN SMALL LETTER G WITH ACUTE | LATIN CAPITAL LETTER G WITH ACUTE |
| 01FB | 01FA | LATIN SMALL LETTER A WITH RING ABOVE AND ACUTE | LATIN CAPITAL LETTER A WITH RING ABOVE AND ACUTE |
| 01FD | 01FC | LATIN SMALL LIGATURE AE WITH ACUTE | LATIN CAPITAL LIGATURE AE WITH ACUTE |
| 01FF | 01FE | LATIN SMALL LETTER O WITH STROKE AND ACUTE | LATIN CAPITAL LETTER O WITH STROKE AND ACUTE |
| 0201 | 0200 | LATIN SMALL LETTER A WITH DOUBLE GRAVE | LATIN CAPITAL LETTER A WITH DOUBLE GRAVE |
| 0203 | 0202 | LATIN SMALL LETTER A WITH INVERTED BREVE | LATIN CAPITAL LETTER A WITH INVERTED BREVE |
| 0205 | 0204 | LATIN SMALL LETTER E WITH DOUBLE GRAVE | LATIN CAPITAL LETTER E WITH DOUBLE GRAVE |
| 0207 | 0206 | LATIN SMALL LETTER E WITH INVERTED BREVE | LATIN CAPITAL LETTER E WITH INVERTED BREVE |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 0209 | 0208 | LATIN SMALL LETTER I WITH DOUBLE GRAVE | LATIN CAPITAL LETTER I WITH DOUBLE GRAVE |
| 020B | 020A | LATIN SMALL LETTER I WITH INVERTED BREVE | LATIN CAPITAL LETTER I WITH INVERTED BREVE |
| 020D | 020C | LATIN SMALL LETTER O WITH DOUBLE GRAVE | LATIN CAPITAL LETTER O WITH double grave |
| 020F | 020E | LATIN SMALL LETTER O WITH INVERTED BREVE | LATIN CAPITAL LETTER O WITH INVERTED BREVE |
| 0211 | 0210 | LATIN SMALL LETTER R WITH DOUBLE GRAVE | LATIN CAPITAL LETTER R WITH DOUBLE GRAVE |
| 0213 | 0212 | LATIN SMALL LETTER R WITH INVERTED BREVE | LATIN CAPITAL LETTER R WITH INVERTED BREVE |
| 0215 | 0214 | LATIN SMALL LETTER U WITH DOUBLE GRAVE | LATIN CAPITAL LETTER U WITH DOUBLE GRAVE |
| 0217 | 0216 | LATIN SMALL LETTER U WITH INVERTED BREVE | LATIN CAPITAL LETTER U WITH INVERTED BREVE |
| 0253 | 0181 | LATIN SMALL LETTER B WITH HOOK | LATIN CAPITAL LETTER B WITH HOOK |
| 0254 | 0186 | LATIN SMALL LETTER OPEN O | LATIN CAPITAL LETTER OPEN O |
| 0257 | 018A | LATIN SMALL LETTER D WITH HOOK | LATIN CAPITAL LETTER D WITH HOOK |
| 0258 | 018E | LATIN SMALL LETTER REVERSED E | LATIN CAPITAL LETTER REVERSED E |
| 0259 | 018F | LATIN SMALL LETTER SCHWA | LATIN CAPITAL LETTER SCHWA |
| 025B | 0190 | LATIN SMALL LETTER OPEN E | LATIN CAPITAL LETTER OPEN E |
| 0260 | 0193 | LATIN SMALL LETTER G WITH HOOK | LATIN CAPITAL LETTER G WITH HOOK |
| 0263 | 0194 | LATIN SMALL LETTER GAMMA | LATIN CAPITAL LETTER GAMMA |
| 0268 | 0197 | LATIN SMALL LETTER I WITH STROKE | LATIN CAPITAL LETTER I WITH STROKE |
| 0269 | 0196 | LATIN SMALL LETTER IOTA | LATIN CAPITAL LETTER IOTA |
| 026F | 019C | LATIN SMALL LETTER TURNED M | LATIN CAPITAL LETTER TURNED M |
| 0272 | 019D | LATIN SMALL LETTER N WITH LEFT HOOK | LATIN CAPITAL LETTER N WITH LEFT HOOK |
| 0275 | 019F | LATIN SMALL LETTER BARRED O | LATIN CAPITAL LETTER O WITH MIDDLE TILDE |
| 0283 | 01A9 | LATIN SMALL LETTER ESH | LATIN CAPITAL LETTER ESH |
| 0288 | 01AE | LATIN SMALL LETTER T WITH RETROFLEX HOOK | LATIN CAPITAL LETTER T WITH RETROFLEX HOOK |
| 028A | 01B1 | LATIN SMALL LETTER UPSILON | LATIN CAPITAL LETTER UPSILON |
| 028B | 01B2 | LATIN SMALL LETTER V WITH HOOK | LATIN CAPITAL LETTER V WITH HOOK |
| 0292 | 01B7 | LATIN SMALL LETTER EZH | LATIN CAPITAL LETTER EZH |
| 03AC | 0386 | GREEK SMALL LETTER ALPHA WITH TONOS | GREEK CAPITAL LETTER ALPHA WITH TONOS |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 03AD | 0388 | GREEK SMALL LETTER EPSILON WITH TONOS | GREEK CAPITAL LETTER EPSILON WITH TONOS |
| 03AE | 0389 | GREEK SMALL LETTER ETA WITH TONOS | GREEK CAPITAL LETTER ETA WITH TONOS |
| 03AF | 038A | GREEK SMALL LETTER IOTA WITH TONOS | GREEK CAPITAL LETTER IOTA WITH TONOS |
| 03B1 | 0391 | GREEK SMALL LETTER ALPHA | GREEK CAPITAL LETTER ALPHA |
| 03B2 | 0392 | GREEK SMALL LETTER BETA | GREEK CAPITAL LETTER BETA |
| 03B3 | 0393 | GREEK SMALL LETTER GAMMA | GREEK CAPITAL LETTER GAMMA |
| 03B4 | 0394 | GREEK SMALL LETTER DELTA | GREEK CAPITAL LETTER DELTA |
| 03B5 | 0395 | GREEK SMALL LETTER EPSILON | GREEK CAPITAL LETTER EPSILON |
| 03B6 | 0396 | GREEK SMALL LETTER ZETA | GREEK CAPITAL LETTER ZETA |
| 03B7 | 0397 | GREEK SMALL LETTER ETA | GREEK CAPITAL LETTER ETA |
| 03B8 | 0398 | GREEK SMALL LETTER THETA | GREEK CAPITAL LETTER THETA |
| 03B9 | 0399 | GREEK SMALL LETTER IOTA | GREEK CAPITAL LETTER IOTA |
| 03BA | 039A | GREEK SMALL LETTER KAPPA | GREEK CAPITAL LETTER KAPPA |
| 03BB | 039B | GREEK SMALL LETTER LAMDA | GREEK CAPITAL LETTER LAMDA |
| 03BC | 039C | GREEK SMALL LETTER MU | GREEK CAPITAL LETTER MU |
| 03BD | 039D | GREEK SMALL LETTER NU | GREEK CAPITAL LETTER NU |
| 03BE | 039E | GREEK SMALL LETTER XI | GREEK CAPITAL LETTER XI |
| 03BF | 039F | GREEK SMALL LETTER OMICRON | GREEK CAPITAL LETTER OMICRON |
| 03C0 | 03A0 | GREEK SMALL LETTER PI | GREEK CAPITAL LETTER PI |
| 03C1 | 03A1 | GREEK SMALL LETTER RHO | GREEK CAPITAL LETTER RHO |
| 03C3 | 03A3 | GREEK SMALL LETTER SIGMA | GREEK CAPITAL LETTER SIGMA |
| 03C4 | 03A4 | GREEK SMALL LETTER TAU | GREEK CAPITAL LETTER TAU |
| 03C5 | 03A5 | GREEK SMALL LETTER UPSILON | GREEK CAPITAL LETTER UPSILON |
| 03C6 | 03A6 | GREEK SMALL LETTER PHI | GREEK CAPITAL LETTER PHI |
| $03 \mathrm{C7}$ | 03A7 | GREEK SMALL LETTER CHI | GREEK CAPITAL LETTER CHI |
| 03C8 | 03A8 | GREEK SMALL LETTER PSI | GREEK CAPITAL LETTER PSI |
| 03C9 | 03A9 | GREEK SMALL LETTER OMEGA | GREEK CAPITAL LETTER OMEGA |
| 03CA | 03AA | GREEK SMALL LETTER IOTA WITH DIALYTIKA | GREEK CAPITAL LETTER IOTA WITH DIALYTIKA |
| 03CB | 03AB | GREEK SMALL LETTER UPSILON WITH DIALYTIKA | GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA |
| 03CC | 038C | GREEK SMALL LETTER OMICRON WITH TONOS | GREEK CAPITAL LETTER OMICRON WITH TONOS |
| 03CD | 038E | GREEK SMALL LETTER UPSILON WITH TONOS | GREEK CAPITAL LETTER UPSILON WITH TONOS |
| 03CE | 038F | GREEK SMALL LETTER OMEGA WITH TONOS | GREEK CAPITAL LETTER OMEGA WITH TONOS |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 03E3 | 03E2 | COPTIC SMALL LETTER SHEI | COPTIC CAPITAL LETTER SHEI |
| 03E5 | 03E4 | COPTIC SMALL LETTER FEI | COPTIC CAPITAL LETTER FEI |
| 03E7 | 03E6 | COPTIC SMALL LETTER KHEI | COPTIC CAPITAL LETTER KHEI |
| 03E9 | 03E8 | COPTIC SMALL LETTER HORI | COPTIC CAPITAL LETTER HORI |
| 03EB | 03EA | COPTIC SMALL LETTER GANGIA | COPTIC CAPITAL LETTER GANGIA |
| 03ED | 03EC | COPTIC SMALL LETTER SHIMA | COPTIC CAPITAL LETTER SHIMA |
| 03EF | 03EE | COPTIC SMALL LETTER DEI | COPTIC CAPITAL LETTER DEI |
| 0430 | 0410 | CYRILLIC SMALL LETTER A | CYRILLIC CAPITAL LETTER A |
| 0431 | 0411 | CYRILLIC SMALL LETTER BE | CYRILLIC CAPITAL LETTER BE |
| 0432 | 0412 | CYRILLIC SMALL LETTER VE | CYRILLIC CAPITAL LETTER VE |
| 0433 | 0413 | CYRILLIC SMALL LETTER GHE | CYRILLIC CAPITAL LETTER GHE |
| 0434 | 0414 | CYRILLIC SMALL LETTER DE | CYRILLIC CAPITAL LETTER DE |
| 0435 | 0415 | CYRILLIC SMALL LETTER IE | CYRILLIC CAPITAL LETTER IE |
| 0436 | 0416 | CYRILLIC SMALL LETTER ZHE | CYRILLIC CAPITAL LETTER ZHE |
| 0437 | 0417 | CYRILLIC SMALL LETTER ZE | CYRILLIC CAPITAL LETTER ZE |
| 0438 | 0418 | CYRILLIC SMALL LETTER I | CYRILLIC CAPITAL LETTER I |
| 0439 | 0419 | CYRILLIC SMALL LETTER SHORT I | CYRILLIC CAPITAL LETTER SHORT I |
| 043A | 041A | CYRILLIC SMALL LETTER KA | CYRILLIC CAPITAL LETTER KA |
| 043B | 041B | CYRILLIC SMALL LETTER EL | CYRILLIC CAPITAL LETTER EL |
| 043C | 041C | CYRILLIC SMALL LETTER EM | CYRILLIC CAPITAL LETTER EM |
| 043D | 041D | CYRILLIC SMALL LETTER EN | CYRILLIC CAPITAL LETTER EN |
| 043E | 041E | CYRILLIC SMALL LETTER O | CYRILLIC CAPITAL LETTER O |
| 043F | 041F | CYRILLIC SMALL LETTER PE | CYRILLIC CAPITAL LETTER PE |
| 0440 | 0420 | CYRILLIC SMALL LETTER ER | CYRILLIC CAPITAL LETTER ER |
| 0441 | 0421 | CYRILLIC SMALL LETTER ES | CYRILLIC CAPITAL LETTER ES |
| 0442 | 0422 | CYRILLIC SMALL LETTER TE | CYRILLIC CAPITAL LETTER TE |
| 0443 | 0423 | CYRILLIC SMALL LETTER U | CYRILLIC CAPITAL LETTER U |
| 0444 | 0424 | CYRILLIC SMALL LETTER EF | CYRILLIC CAPITAL LETTER EF |
| 0445 | 0425 | CYRILLIC SMALL LETTER HA | CYRILLIC CAPITAL LETTER HA |
| 0446 | 0426 | CYRILLIC SMALL LETTER TSE | CYRILLIC CAPITAL LETTER TSE |
| 0447 | 0427 | CYRILLIC SMALL LETTER CHE | CYRILLIC CAPITAL LETTER CHE |
| 0448 | 0428 | CYRILLIC SMALL LETTER SHA | CYRILLIC CAPITAL LETTER SHA |
| 0449 | 0429 | CYRILLIC SMALL LETTER SHCHA | CYRILLIC CAPITAL LETTER SHCHA |
| 044A | 042A | CYRILLIC SMALL LETTER HARD SIGN | CYRILLIC CAPITAL LETTER HARD SIGN |
| 044B | 042B | CYRILLIC SMALL LETTER YERU | CYRILLIC CAPITAL LETTER YERU |
| 044C | 042C | CYRILLIC SMALL LETTER SOFT SIGN | CYRILLIC CAPITAL LETTER SOFT SIGN |
| 044D | 042D | CYRILLIC SMALL LETTER E | CYRILLIC CAPITAL LETTER E |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 044E | 042E | CYRILLIC SMALL LETTER YU | CYRILLIC CAPITAL LETTER YU |
| 044F | 042F | CYRILLIC SMALL LETTER YA | CYRILLIC CAPITAL LETTER YA |
| 0451 | 0401 | CYRILLIC SMALL LETTER IO | CYRILLIC CAPITAL LETTER IO |
| 0452 | 0402 | CYRILLIC SMALL LETTER DJE (SERBOCROATIAN) | CYRILLIC CAPITAL LETTER DJE (SERBOCROATIAN) |
| 0453 | 0403 | CYRILLIC SMALL LETTER GJE | CYRILLIC CAPITAL LETTER GJE |
| 0454 | 0404 | CYRILLIC SMALL LETTER UKRAINIAN IE | CYRILLIC CAPITAL LETTER UKRAINIAN IE |
| 0455 | 0405 | CYRILLIC SMALL LETTER DZE | CYRILLIC CAPITAL LETTER DZE |
| 0456 | 0406 | CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I | CYRILLIC CAPITAL LETTER BYELORUSSIAN_UKRAINIAN I |
| 0457 | 0407 | CYRILLIC SMALL LETTER YI (UKRANIAN) | CYRILLIC CAPITAL LETTER YI (UKRANIAN) |
| 0458 | 0408 | CYRILLIC SMALL LETTER JE | CYRILLIC CAPITAL LETTER JE |
| 0459 | 0409 | CYRILLIC SMALL LETTER LJE | CYRILLIC CAPITAL LETTER LJE |
| 045A | 040A | CYRILLIC SMALL LETTER NJE | CYRILLIC CAPITAL LETTER NJE |
| 045B | 040B | CYRILLIC SMALL LETTER TSHE (SERBOCROATIAN) | CYRILLIC CAPITAL LETTER TSHE (SERBOCROATIAN) |
| 045C | 040C | CYRILLIC SMALL LETTER KJE | CYRILLIC CAPITAL LETTER KJE |
| 045E | 040E | CYRILLIC SMALL LETTER SHORT U (BYELORUSSIAN) | CYRILLIC CAPITAL LETTER SHORT U (BYELORUSSIAN) |
| 045F | 040F | CYRILLIC SMALL LETTER DZHE | CYRILLIC CAPITAL LETTER DZHE |
| 0461 | 0460 | CYRILLIC SMALL LETTER OMEGA | CYRILLIC CAPITAL LETTER OMEGA |
| 0463 | 0462 | CYRILLIC SMALL LETTER YAT | CYRILLIC CAPITAL LETTER YAT |
| 0465 | 0464 | CYRILLIC SMALL LETTER IOTIFIED E | CYRILLIC CAPITAL LETTER IOTIFIED E |
| 0467 | 0466 | CYRILLIC SMALL LETTER LITTLE YUS | CYRILLIC CAPITAL LETTER LITTLE YUS |
| 0469 | 0468 | CYRILLIC SMALL LETTER IOTFIED LITTLE YUS | CYRILLIC CAPITAL LETTER IOTIFIED LITTLE YUS |
| 046B | 046A | CYRILLIC SMALL LETTER BIG YUS | CYRILLIC CAPITAL LETTER BIG YUS |
| 046D | 046C | CYRILLIC SMALL LETTER IOTIFIED BIG YUS | CYRILLIC CAPITAL LETTER IOTIFIED BIG YUS |
| 046F | 046E | CYRILLIC SMALL LETTER KSI | CYRILLIC CAPITAL LETTER KSI |
| 0471 | 0470 | CYRILLIC SMALL LETTER PSI | CYRILLIC CAPITAL LETTER PSI |
| 0473 | 0472 | CYRILLIC SMALL LETTER FITA | CYRILLIC CAPITAL LETTER FITA |
| 0475 | 0474 | CYRILLIC SMALL LETTER IZHITSA | CYRILLIC CAPITAL LETTER IZHITSA |
| 0477 | 0476 | CYRILLIC SMALL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT | CYRILLIC CAPITAL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT |
| 0479 | 0478 | CYRILLIC SMALL LETTER UK | CYRILLIC CAPITAL LETTER UK |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 047B | 047A | CYRILLIC SMALL LETTER ROUND OMEGA | CYRILLIC CAPITAL LETTER ROUND OMEGA |
| 047D | 047C | CYRILLIC SMALL LETTER OMEGA WITH TITLO | CYRILLIC CAPITAL LETTER OMEGA WITH TITLO |
| 047F | 047E | CYRILLIC SMALL LETTER OT | CYRILLIC CAPITAL LETTER OT |
| 0481 | 0480 | CYRILLIC SMALL LETTER KOPPA | CYRILLIC CAPITAL LETTER KOPPA |
| 0491 | 0490 | CYRILLIC SMALL LETTER GHE WITH UPTURN | CYRILLIC CAPITAL LETTER GHE WITH UPTURN |
| 0493 | 0492 | CYRILLIC SMALL LETTER GHE WITH STROKE | CYRILLIC CAPITAL LETTER GHE WITH STROKE |
| 0495 | 0494 | CYRILLIC SMALL LETTER GHE WITH MIDDLE HOOK | CYRILLIC CAPITAL LETTER GHE WITH MIDDLE HOOK |
| 0497 | 0496 | CYRILLIC SMALL LETTER ZHE WITH DESCENDER | CYRILLIC CAPITAL LETTER ZHE WITH DESCENDER |
| 0499 | 0498 | CYRILLIC SMALL LETTER ZE WITH DESCENDER | CYRILLIC CAPITAL LETTER ZE WITH DESCENDER |
| 049B | 049A | CYRILLIC SMALL LETTER KA WITH DESCENDER | CYRILLIC CAPITAL LETTER KA WITH DESCENDER |
| 049D | 049C | CYRILLIC SMALL LETTER KA WITH VERTICAL STROKE | CYRILLIC CAPITAL LETTER KA WITH VERTICAL STROKE |
| 049F | 049E | CYRILLIC SMALL LETTER KA WITH STROKE | CYRILLIC CAPITAL LETTER KA WITH STROKE |
| 04A1 | 04A0 | CYRILLIC SMALL LETTER EASHKIR KA | CYRILLIC CAPITAL LETTER BASHKIR KA |
| 04A3 | 04A2 | CYRILLIC SMALL LETTER EN WITH DESCENOER | CYRILLIC CAPITAL LETTER EN WITH DESCENDER |
| 04A5 | 04A4 | CYRILLIC SMALL LIGATURE EN GHE | CYRILLIC CAPITAL LIGATURE EN GHF |
| 04A7 | 04A6 | CYRILLIC SMALL LETTER PE WITH MIDDLE HOOK (ABKHASIAN) | CYRILLIC CAPITAL LETTER PE WITH MIDDLE HOOK (ABKHASIAN) |
| 04A9 | 04A8 | CYRILLIC SMALL LETTER ABKHASIAN HA | CYRILLIC CAPITAL LETTER ABKHASIAN HA |
| 04AB | 04AA | CYRILLIC SMALL LETTER ES WITH DESCENDER | CYRILLIC CAPITAL LETTER ES WITH DESCENDER |
| 04AD | 04AC | CYRILLIC SMALL LETTER TE WITH DESCENDER | CYRILLIC CAPITAL LETTER TE WITH DESCENDER |
| 04AF | 04AE | CYRILLIC SMALL LETTER STRAIGHT U | CYRILLIC CAPITAL LETTER STRAIGHT U |
| 04B1 | 04B0 | CYRILLIC SMALL LETTER STRAIGHT U WITH STROKE | CYRILLIC CAPITAL LETTER STRAIGHT U WITH STROKE |
| 04B3 | 04B2 | CYRILLIC SMALL LETTER HA WITH DESCENDER | CYRILLIC CAPITAL LETTER HA WITH DESCENDER |
| 04B5 | 04B4 | CYRILLIC SMALL LIGATURE TE TSE (ABKHASIAN) | CYRILLIC CAPITAL LIGATURE TE TSE (ABKHASIAN) |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 04B7 | 04B6 | CYRILLIC SMALL LETTER CHE WITH DESCENDER | CYRILLIC CAPITAL LETTER CHE WITH DESCENDER |
| 04B9 | 04B8 | CYRILLIC SMALL LETTER CHE WITH VERTICAL STROKE | CYRILLIC CAPITAL LETTER CHE WITH VERTICAL STROKE |
| 04BB | 04BA | CYRILLIC SMALL LETTER SHHA | CYRILLIC CAPITAL LETTER SHHA |
| 04BD | 04BC | CYRILLIC SMALL LETTER ABKHASIAN CHE | CYRILLIC CAPITAL LETTER ABKHASIAN CHE |
| 04BF | 04BE | CYRILLIC SMALL LETTER ABKHASIAN CHE WITH DESCENDER | CYRILLIC CAPITAL LETTER ABKHASIAN CHE WITH DESCENDER |
| 04C2 | 04C1 | CYRILLIC SMALL LETTER ZHE WITH BREVE | CYRILLIC CAPITAL LETTER ZHE WITH BREVE |
| 04C4 | 04C3 | CYRILLIC SMALL LETTER KA WITH HOOK | CYRILLIC CAPITAL LETTER KA WITH HOOK |
| 04C8 | 04C7 | CYRILLIC SMALL LETTER EN WITH HOOK | CYRILLIC CAPITAL LETTER EN WITH HOOK |
| 04CC | 04CB | CYRILLIC SMALL LETTER KHAKASSIAN CHE | CYRILLIC CAPITAL LETTER KHAKASSIAN CHE |
| 04D1 | 04D0 | CYRILLIC SMALL LETTER A WITH BREVE | CYRILLIC CAPITAL LETTER A WITH BREVE |
| 04D3 | 04D2 | CYRILLIC SMALL LETTER A WITH DIAERESIS | CYRILLIC CAPITAL LETTER A WITH DIAERESIS |
| 04D5 | 04D4 | CYRILLIC SMALL LIGATURE A IE | CYRILLIC CAPITAL LIGATURE A IE |
| 04D7 | 04D6 | CYRILLIC SMALL LETTER IE WITH BREVE | CYRILLIC CAPITAL LETTER IE WITH BREVE |
| 04D9 | 04D8 | CYRILLIC SMALL LETTER SCHWA | CYRILLIC CAPITAL LETTER SCHWA |
| 04DB | 04DA | CYRILLIC SMALL LETTER SCHWA WITH DIAERESIS | CYRILLIC CAPITAL LETTER SCHWA WITH DIAERESIS |
| 04DD | 04DC | CYRILLIC SMALL LETTER ZHE WITH DIAERESIS | CYRILLIC CAPITAL LETTER ZHE WITH DIAERESIS |
| 04DF | 04DE | CYRILLIC SMALL LETTER ZE WITH DIAERESIS | CYRILLIC CAPITAL LETTER ZE WITH DIAERESIS |
| 04E1 | 04E0 | CYRILLIC SMALL LETTER ABKHASIAN DZE | CYRILLIC CAPITAL LETTER ABKHASIAN DZE |
| 04E3 | 04E2 | CYRILLIC SMALL LETTER I WITH MACRON | CYRILLIC CAPITAL LETTER I WITH MACRON |
| 04E5 | 04E4 | CYRILLIC SMALL LETTER I WITH DIAERESIS | CYRILLIC CAPITAL LETTER I WITH DIAERESIS |
| 04E7 | 04E6 | CYRILLIC SMALL LETTER O WITH DIAERESIS | CYRILLIC CAPITAL LETTER O WITH DIAERESIS |
| 04E9 | 04E8 | CYRILLIC SMALL LETTER BARRED O | CYRILLIC CAPITAL LETTER BARRED O |
| 04EB | 04EA | CYRILLIC SMALL LETTER BARRED O WITH DIAERESIS | CYRILLIC CAPITAL LETTER BARRED O WITH DIAERESS |
| 04EF | 04EE | CYRILLIC SMALL LETTER U WITH MACRON | CYRILLIC CAPITAL LETTER U WITH MACRON |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 04F1 | 04F0 | CYRILLIC SMALL LETTER U WITH DIAERESIS | CYRILLIC CAPITAL LETTER U WITH DIAERESIS |
| 04F3 | 04F2 | CYRILLIC SMALL LETTER U WITH DOUBLE ACUTE | CYRILLIC CAPITAL LETTER U WITH DOUBLE ACUTE |
| 04F5 | 04F4 | CYRILLIC SMALL LETTER CHE AITH DIAERESIS | CYRILLIC CAPITAL LETTER CHE WITH DIAERESIS |
| 04F9 | 04F8 | CYRILLIC SMALL LETTER YERU WITH DIAERESIS | CYRILLIC CAPITAL LETTER YERU WITH DIAERESIS |
| 0561 | 0531 | ARMENIAN SMALL LETTER AYB | ARMENIAN CAPITAL LETTER AYB |
| 0562 | 0532 | ARMENIAN SMALL LETTER BEN | ARMENIAN CAPITAL LETTER BEN |
| 0563 | 0533 | ARMENIAN SMALL LETTER GIM | ARMENIAN CAPITAL LETTER GIM |
| 0564 | 0534 | ARMENIAN SMALL LETTER DA | ARMENIAN CAPITAL LETTER DA |
| 0565 | 0535 | ARMENIAN SMALL LETTER ECH | ARMENIAN CAPITAL LETTER ECH |
| 0566 | 0536 | ARMENIAN SMALL LETTER ZA | ARMENIAN CAPITAL LETTER ZA |
| 0567 | 0537 | ARMENIAN SMALL LETTER EH | ARMENIAN CAPITAL LETTER EH |
| 0568 | 0538 | ARMENIAN SMALL LETTER ET | ARMENIAN CAPITAL LETTER ET |
| 0569 | 0539 | ARMENIAN SMALL LETTER TO | ARMENIAN CAPITAL LETTER TO |
| 056A | 053A | ARMENIAN SMALL LETTER ZHE | ARMENIAN CAPITAL LETTER ZHE |
| 056B | 053B | ARMENIAN SMALL LETTER INI | ARMENIAN CAPITAL LETTER INI |
| 056C | 053C | ARMENIAN SMALL LETTER LIWN | ARMENIAN CAPITAL LETTER LIWN |
| 056D | 053D | ARMENIAN SMALL LETTER XEH | ARMENIAN CAPITAL LETTER XEH |
| 056E | 053E | ARMENIAN SMALL LETTER CA | ARMENIAN CAPITAL LETTER CA |
| 056F | 053F | ARMENIAN SMALL LETTER KEN | ARMENIAN CAPITAL LETTER KEN |
| 0570 | 0540 | ARMENIAN SMALL LETTER HO | ARMENIAN CAPITAL LETTER HO |
| 0571 | 0541 | ARMENIAN SMALL LETTER JA | ARMENIAN CAPITAL LETTER JA |
| 0572 | 0542 | ARMENIAN SMALL LETTER GHAD | ARMENIAN CAPITAL LETTER GHAD |
| 0573 | 0543 | ARMENIAN SMALL LETTER CHEH | ARMENIAN CAPITAL LETTER CHEH |
| 0574 | 0544 | ARMENIAN SMALL LETTER MEN | ARMENIAN CAPITAL LETTER MEN |
| 0575 | 0545 | ARMENIAN SMALL LETTER YI | ARMENIAN CAPITAL LETTER YI |
| 0576 | 0546 | ARMENIAN SMALL LETTER NOW | ARMENIAN CAPITAL LETTER NOW |
| 0577 | 0547 | ARMENIAN SMALL LETTER SNA | ARMENIAN CAPITAL LETTER SHA |
| 0578 | 0548 | ARMENIAN SMALL LETTER VO | ARMENIAN CAPITAL LETTER VO |
| 0579 | 0549 | ARMENIAN SMALL LETTER CHA | ARMENIAN CAPITAL LETTER CHA |
| 057A | 054A | ARMENIAN SMALL LETTER PEH | ARMENIAN CAPITAL LETTER PEH |
| 057B | 054B | ARMENIAN SMALL LETTER JHEH | ARMENIAN CAPITAL LETTER JHEH |
| 057C | 054C | ARMENIAN SMALL LETTER RA | ARMENIAN CAPITAL LETTER RA |
| 057D | 054D | ARMENIAN SMALL LETTER SEH | ARMENIAN CAPITAL LETTER SEH |
| 057E | 054E | ARMENIAN SMALL LETTER VEW | ARMENIAN CAPITAL LETTER VEW |
| 057F | 054F | ARMENIAN SMALL LETTER TIWN | ARMENIAN CAPITAL LETTER TIWN |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 0580 | 0550 | ARMENIAN SMALL LETTER REH | ARMENIAN CAPITAL LETTER REH |
| 0581 | 0551 | ARMENIAN SMALL LETTER CO | ARMENIAN CAPITAL LETTER CO |
| 0582 | 0552 | ARMENIAN SMALL LETTER YIWN | ARMENIAN CAPITAL LETTER YIWN |
| 0583 | 0553 | ARMENIAN SMALL LETTER PIWP | ARMENIAN CAPITAL LETTER PIWR |
| 0584 | 0554 | ARMENIAN SMALL LETTER KEH | ARMENIAN CAPITAL LETTER KEH |
| 0585 | 0555 | ARMENIAN SMALL LETTER OH | ARMENIAN CAPITAL LETTER OH |
| 0586 | 0556 | ARMENIAN SMALL LETTER FEH | ARMENIAN CAPITAL LETTER FEH |
| 10D0 | 10A0 | GEORGIAN LETTER AN | GEORGIAN CAPITAL LETTER AN (KHUTSURI) |
| 10D1 | 10A1 | GEORGIAN LETTER BAN | GEORGIAN CAPITAL LETTER BAN (KHUTSURI) |
| 10D2 | 10A2 | GEORGIAN LETTER GAN | GEORGIAN CAPITAL LETTER GAN (KHUTSURI) |
| 10D3 | 10A3 | GEORGIAN LETTER DON | GEORGIAN CAPITAL LETTER DON (KHUTSURI) |
| 10D4 | 10A4 | GEORGIAN LETTER EN | GEORGIAN CAPITAL LETTER EN (KHUTSURI) |
| 10D5 | 10A5 | GEORGIAN LETTER VIN | GEORGIAN CAPITAL LETTER VIN (KHUTSURI) |
| 10D6 | 10A6 | GEORGIAN LETTER ZEN | GEORGIAN CAPITAL LETTER ZEN (KHUTSURI) |
| 10 D 7 | 10A7 | GEORGIAN LETTER TAN | GEORGIAN CAPITAL LETTER TAN (KHUTSURI) |
| 10D8 | 10A8 | GEORGIAN LETTER IN | GEORGIAN CAPITAL LETTER IN (KHUTSURI) |
| 10D9 | 10A9 | GEORGIAN LETTER KAN | GEORGIAN CAPITAL LETTER KAN (KHUTSURI) |
| 10DA | 10AA | GEORGIAN LETTER LAS | GEORGIAN CAPITAL LETTER LAS (KHUTSURI) |
| 10DB | 10AB | GEORGIAN LETTER MAN | GEORGIAN CAPITAL LETTER MAN (KHUTSURI) |
| 10DC | 10AC | GEORGIAN LETTER NAR | GEORGIAN CAPITAL LETTER NAR (KHUTSURI) |
| 10DD | 10AD | GEORGIAN LETTER ON | GEORGIAN CAPITAL LETTER ON (KHUTSURI) |
| 10DE | 10AE | GEORGIAN LETTER PAR | GEORGIAN CAPITAL LETTER PAR (KHUTSURI) |
| 10DF | 10AF | GEORGIAN LETTER ZHAR | GEORGIAN CAPITAL LETTER ZHAR (KHUTSURI) |
| 10E0 | 10B0 | GEORGIAN LETTER RAE | GEORGIAN CAPITAL LETTER RAE (KHUTSURI) |
| 10E1 | 10B1 | GEORGIAN LETTER SAN | GEORGIAN CAPITAL LETTER SAN (KHUTSURI) |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 10E2 | 10B2 | GEORGIAN LETTER TAR | GEORGIAN CAPITAL LETTER TAR (KHUTSURI) |
| 10E3 | 10B3 | GEORGIAN LETTER UN | GEORGIAN CAPITAL LETTER UN (KHUTSURI) |
| 10E4 | 10B4 | GEORGIAN LETTER PHAR | GEORGIAN CAPITAL LETTER PHAR (KHUTSURI) |
| 10E5 | 10B5 | GEORGIAN LETTER KHAR | GEORGIAN CAPITAL LETTER KHAR (KHUTSURI) |
| 10E6 | 10B6 | GEORGIAN LETTER GHAN | GEORGIAN CAPITAL LETTER GHAN (KHUTSURI) |
| 10E7 | 10B7 | GEORGIAN LETTER QAR | GEORGIAN CAPITAL LETTER QAR (KHUTSURI) |
| 10E8 | 10B8 | GEORGIAN LETTER SHIN | GEORGIAN CAPITAL LETTER SHIN (KHUTSURI) |
| 10E9 | 10B9 | GEORGIAN LETTER CHIN | GEORGIAN CAPITAL LETTER CHIN (KHUTSURI) |
| 10EA | 10BA | GEORGIAN LETTER CAN | GEORGIAN CAPITAL LETTER CAN (KHUTSURI) |
| 10EB | 10BB | GEORGIAN LETTER JIL | GEORGIAN CAPITAL LETTER JIL (KHUTSURI) |
| 10EC | 10BC | GEORGIAN LETTER CIL | GEORGIAN CAPITAL LETTER CIL (KHUTSURI) |
| 10ED | 10BD | GEORGIAN LETTER CHAR | GEORGIAN CAPITAL LETTER CHAR (KHUTSURI) |
| 10EE | 10BE | GEORGIAN LETTER XAN | GEORGIAN CAPITAL LETTER XAN (KHUTSURI) |
| 10EF | 10BF | GEORGIAN LETTER JHAN | GEORGIAN CAPITAL LETTER JHAN (KHUTSURI) |
| 10F0 | 10 Co | GEORGIAN LETTER HAE | GEORGIAN CAPITAL LETTER HAE (KHUTSURI) |
| 10F1 | 10C1 | GEORGIAN LETTER HE | GEORGIAN CAPITAL LETTER HE (KHUTSURI) |
| 10F2 | 10C2 | GEORGIAN LETTER HIE | GEORGIAN CAPITAL LETTER HIE (KHUTSURI) |
| 10F3 | 10C3 | GEORGIAN LETTER WE | GEORGIAN CAPITAL LETTER WE (KHUTSURI) |
| 10F4 | 10C4 | GEORGIAN LETTER HAR | GEORGIAN CAPITAL LETTER HAR (KHUTSURI) |
| 10F5 | 10 C 5 | GEORGIAN LETTER HOE | GEORGIAN CAPITAL LETTER HOE (KHUTSURI) |
| 1E01 | 1E00 | LATIN SMALL LETTER A WITH RING BELOW | LATIN CAPITAL LETTER A WITH RING BELOW |
| 1E03 | 1E02 | LATIN SMALL LETTER B WITH DOT ABOVE | LATIN CAPITAL LETTER B WITH DOT ABOVE |
| 1E05 | 1E04 | LATIN SMALL LETTER B WITH DOT BELOW | LATIN CAPITAL LETTER B WITH DOT BELOW |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1E07 | 1E06 | LATIN SMALL LETTER B WITH LINE BELOW | LATIN CAPITAL LETTER B WITH LINE BELOW |
| 1E09 | 1E08 | LATIN SMALL LETTER C WITH CEDILLA AND ACUTE | LATIN CAPITAL LETTER C WITH CEDILLA AND ACUTE |
| 1E0B | 1E0A | LATIN SMALL LETTER D WITH DOT ABOVE | LATIN CAPITAL LETTER D WITH DOT ABOVE |
| 1E0D | 1E0C | LATIN SMALL LETTER D WITH DOT BELOW | LATIN CAPITAL LETTER D WITH DOT BELOW |
| 1E0F | 1E0E | LATIN SMALL LETTER D WITH LINE BELOW | LATIN CAPITAL LETTER D WITH LINE BELOW |
| 1E11 | 1E10 | LATIN SMALL LETTER D WITH CEDILLA | LATIN CAPITAL LETTER D WITH CEDILLA |
| 1E13 | 1E12 | LATIN SMALL LETTER D WITH CIRCUMFLEX BELOW | LATIN CAPITAL LETTER D WITH CIRCUMFLEX BELOW |
| 1E15 | 1E14 | LATIN SMALL LETTER E WITH MACRON AND GRAVE | LATIN CAPITAL LETTER E WITH MACRON AND GRAVE |
| 1E17 | 1E16 | LATIN SMALL LETTER E WITH MACRON AND ACUTE | LATIN CAPITAL LETTER E WITH MACRON AND ACUTE |
| 1E19 | 1E18 | LATIN SMALL LETTER E WITH CIRCUMFLEX BELOW | LATIN CAPITAL LETTER E WITH CIRCUMFLEX BELOW |
| 1E1B | 1E1A | LATIN SMALL LETTER E WITH TILDE BELOW | LATIN CAPITAL LETTER E WITH TILDE BELOW |
| 1E1D | 1E1C | LATIN SMALL LETTER E WITH CEDILLA AND BREVE | LATIN CAPITAL LETTER E WITH CEDILLA AND BREVE |
| 1E1F | 1E1E | LATIN SMALL LETTER F WITH DOT ABOVE | LATIN CAPITAL LETTER F WITH DOT ABOVE |
| 1E21 | 1 E20 | LATIN SMALL LETTER G WITH MACRON | LATIN CAPITAL LETTER G WITH MACRON |
| 1 E 23 | 1 E22 | LATIN SMALL LETTER H WITH DOT ABOVE | LATIN CAPITAL LETTER H WITH DOT ABOVE |
| 1 E 25 | 1E24 | LATIN SMALL LETTER H WITH DOT BELOW | LATIN CAPITAL LETTER H WITH DOT BELOW |
| 1 E 27 | 1 E26 | LATIN SMALL LETTER H WITH DIAERESIS | LATIN CAPITAL LETTER H WITH DIAERESIS |
| 1 E29 | 1 E28 | LATIN SMALL LETTER H WITH CEDILLA | LATIN CAPITAL LETTER H WITH CEDILLA |
| 1E2B | 1E2A | LATIN SMALL LETTER H WITH BREVE BELOW | LATIN CAPITAL LETTER H WITH BREVE BELOW |
| 1E2D | 1E2C | LATIN SMALL LETTER I WITH TILDE BELOW | LATIN CAPITAL LETTER I WITH TILDE BELOW |
| 1E2F | 1E2E | LATIN SMALL LETTER I WITH DIAERESIS AND ACUTE | LATIN CAPITAL LETTER I WITH DIAERESIS AND ACUTE |
| 1E31 | 1E30 | LATIN SMALL LETTER K WITH ACUTE | LATIN CAPITAL LETTER K WITH ACUTE |
| 1 E33 | 1 E32 | LATIN SMALL LETTER K WITH DOT BELOW | LATIN CAPITAL LETTER K WITH DOT BELOW |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1 E35 | 1E34 | LATIN SMALL LETTER K WITH LINE BELOW | LATIN CAPITAL LETTER K WITH LINE BELOW |
| 1 E37 | 1E36 | LATIN SMALL LETTER L WITH DOT BELOW | LATIN CAPITAL LETTER L WITH DOT BELOW |
| 1 E39 | 1E38 | LATIN SMALL LETTER L WITH DOT BELOW AND MACRON | LATIN CAPITAL LETTER L WITH DOT BELOW AND MACRON |
| 1E3B | 1E3A | LATIN SMALL LETTER L WITH LINE BELOW | LATIN CAPITAL LETTER L WITH LINE BELOW |
| 1E3D | 1E3C | LATIN SMALL LETTER L WITH CIRCUMFLEX BELOW | LATIN CAPITAL LETTER L WITH CIRCUMFLEX BELOW |
| 1E3F | 1E3E | LATIN SMALL LETTER M WITH ACUTE | LATIN CAPITAL LETTER M WITH ACUTE |
| 1E41 | 1E40 | LATIN SMALL LETTER M WITH DOT ABOVE | LATIN CAPITAL LETTER M WITH DOT ABOVE |
| 1 E 43 | 1 E 42 | LATIN SMALL LETTER M WITH DOT BELOW | LATIN CAPITAL LETTER M WITH DOT BELOW |
| 1 E 45 | 1E44 | LATIN SMALL LETTER N WITH DOT ABOVE | LATIN CAPITAL LETTER N WITH DOT ABOVE |
| 1 E 47 | 1E46 | LATIN SMALL LETTER N WITH DOT BELOW | LATIN CAPITAL LETTER N WITH DOT BELOW |
| 1E49 | 1E48 | LATIN SMALL LETTER N WITH LINE BELOW | LATIN CAPITAL LETTER N WITH LINE BELOW |
| 1E4B | 1E4A | LATIN SMALL LETTER N WITH CIRCUMFLEX BELOW | LATIN CAPITAL LETTER N WITH CIRCUMFLEX BELOW |
| 1E4D | 1E4C | LATIN SMALL LETTER O WITH TILDE AND ACUTE | LATIN CAPITAL LETTER O WITH TILDE AND ACUTE |
| 1E4F | 1E4E | LATIN SMALL LETTER O WITH TILDE AND DIAERESIS | LATIN CAPITAL LETTER O WITH TILDE AND DIAERESIS |
| 1E51 | 1E50 | LATIN SMALL LETTER O WITH MACRON AND GRAVE | LATIN CAPITAL LETTER O WITH MACRON AND GRAVE |
| 1 E 53 | 1 E 52 | LATIN SMALL LETTER O WITH MACRON AND ACUTE | LATIN CAPITAL LETTER O WITH MACRON AND ACUTE |
| 1 E 55 | 1E54 | LATIN SMALL LETTER P WITH ACUTE | LATIN CAPITAL LETTER P WITH ACUTE |
| 1 E57 | 1 E 56 | LATIN SMALL LETTER P WITH DOT ABOVE | LATIN CAPITAL LETTER P WITH DOT ABOVE |
| 1 E 59 | 1E58 | LATIN SMALL LETTER R WITH DOT ABOVE | LATIN CAPITAL LETTER R WITH DOT ABOVE |
| 1E5B | 1E5A | LATIN SMALL LETTER R WITH DOT BELOW | LATIN CAPITAL LETTER R WITH DOT BELOW |
| 1E5D | 1E5C | LATIN SMALL LETTER R WITH DOT BELOW AND MACRON | LATIN CAPITAL LETTER R WITH DOT BELOW AND MACRON |
| 1E5F | 1E5E | LATIN SMALL LETTER R WITH LINE BELOW | LATIN CAPITAL LETTER R WITH LINE BELOW |
| 1E61 | 1E60 | LATIN SMALL LETTER S WITH DOT ABOVE | LATIN CAPITAL LETTER S WITH DOT ABOVE |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1E63 | 1E62 | LATIN SMALL LETTER S WITH DOT BELOW | LATIN CAPITAL LETTER S WITH DOT BELOW |
| 1E65 | 1E64 | LATIN SMALL LETTER S WITH ACUTE AND DOT ABOVE | LATIN CAPITAL LETTER S WITH ACUTE AND DOT ABOVE |
| 1 E 67 | 1E66 | LATIN SMALL LETTER S WITH CARON AND DOT ABOVE | LATIN CAPITAL LETTER S WITH CARON AND DOT ABOVE |
| 1E69 | 1 E68 | LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE | LATIN CAPITAL LETTER S WITH DOT BELOW AND DOT ABOVE |
| 1E6B | 1E6A | LATIN SMALL LETTER T WITH DOT ABOVE | LATIN CAPITAL LETTER T WITH DOT ABOVE |
| 1E6D | 1E6C | LATIN SMALL LETTER T WITH DOT BELOW | LATIN CAPITAL LETTER T WITH DOT BELOW |
| 1E6F | 1E6E | LATIN SMALL LETTER T WITH LINE BELOW | LATIN CAPITAL LETTER T WITH LINE BELOW |
| 1E71 | 1E70 | LATIN SMALL LETTER T WITH CIRCUMFLEX BELOW | LATIN CAPITAL LETTER T WITH CIRCUMFLEX BELOW |
| 1 E 73 | 1 E 72 | LATIN SMALL LETTER U WITH DIAERESIS BELOW | LATIN CAPITAL LETTER U WITH DIAERESIS BELOW |
| 1 E 75 | 1E74 | LATIN SMALL LETTER U WITH TILDE BELOW | LATIN CAPITAL LETTER U WITH TILDE BELOW |
| 1 E 77 | 1E76 | LATIN SMALL LETTER U WITH CIRCUMFLEX BELOW | LATIN CAPITAL LETTER U WITH CIRCUMFLEX BELOW |
| 1E79 | 1E78 | LATIN SMALL LETTER U WITH TILDE AND ACUTE | LATIN CAPITAL LETTER U WITH TILDE AND ACUTE |
| 1E7B | 1E7A | LATIN SMALL LETTER U WITH MACRON AND DIAERESIS | LATIN CAPITAL LETTER U WITH MACRON AND DIAERESIS |
| 1E7D | 1E7C | LATIN SMALL LETTER V WITH TILDE | LATIN CAPITAL LETTER V WITH TILDE |
| 1E7F | 1E7E | LATIN SMALL LETTER V WITH DOT BELOW | LATIN CAPITAL LETTER V WITH DOT BELOW |
| 1 E 81 | 1 E80 | LATIN SMALL LETTER W WITH GRAVE | LATIN CAPITAL LETTER W WITH GRAVE |
| 1 E83 | 1E82 | LATIN SMALL LETTER W WITH ACUTE | LATIN CAPITAL LETTER W WITH ACUTE |
| 1 E 85 | 1E84 | LATIN SMALL LETTER W WITH DIAERESIS | LATIN CAPITAL LETTER W WITH DIAERESIS |
| 1 E87 | 1 E86 | LATIN SMALL LETTER W WITH DOT ABOVE | LATIN CAPITAL LETTER W WITH DOT ABOVE |
| 1 E89 | 1 E88 | LATIN SMALL LETTER W WITH DOT BELOW | LATIN CAPITAL LETTER W WITH DOT BELOW |
| 1E8B | 1E8A | LATIN SMALL LETTER X WITH DOT ABOVE | LATIN CAPITAL LETTER X WITH DOT ABOVE |
| 1E8D | 1E8C | LATIN SMALL LETTER X WITH DIAERESIS | LATIN CAPITAL LETTER X5 WITH DIAERESIS |
| 1E8F | 1E8E | LATIN SMALL LETTER Y WITH DOT ABOVE | LATIN CAPITAL LETTER Y WITH DOT ABOVE |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1E91 | 1E90 | LATIN SMALL LETTER Z WITH CIRCUMFLEX | LATIN CAPITAL LETTER Z WITH CIRCUMFLEX |
| 1 E93 | 1 E 92 | LATIN SMALL LETTER Z WITH DOT BELOW | LATIN CAPITAL LETTER Z WITH DOT BELOW |
| 1E95 | 1E94 | LATIN SMALL LETTER Z WITH LINE BELOW | LATIN CAPITAL LETTER Z WITH LINE BELOW |
| 1EA1 | 1EA0 | LATIN SMALL LETTER A WITH DOT BELOW | LATIN CAPITAL LETTER A WITH DOT BELOW |
| 1EA3 | 1EA2 | LATIN SMALL LETTER A WITH HOOK ABOVE | LATIN CAPITAL LETTER A WITH HOOK ABOVE |
| 1EA5 | 1EA4 | LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND ACUTE |
| 1EA7 | 1EA6 | LATIN SMALL LETTER A WITH CIRCUMFLEX AND GRAVE | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND GRAVE |
| 1EA9 | 1EA8 | LATIN SMALL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND HOOK ABOVE |
| 1EAB | 1EAA | LATIN SMALL LETTER A WITH CIRCUMFLEX AND TILDE | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND TILDE |
| 1EAD | 1EAC | LATIN SMALL LETTER A WITH CIRCUMFLEX AND DOT BELOW | LATIN CAPITAL LETTER A WITH CIRCUMFLEX AND DOT BELOW |
| 1EAF | 1EAE | LATIN SMALL LETTER A WITH BREVE AND ACUTE | LATIN CAPITAL LETTER A WITH BREVE AND ACUTE |
| 1EB1 | 1EB0 | LATIN SMALL LETTER A WITH BREVE AND GRAVE | LATIN CAPITAL LETTER A WITH BREVE AND GRAVE |
| 1EB3 | 1EB2 | LATIN SMALL LETTER A WITH BREVE AND HOOK ABOVE | LATIN CAPITAL LETTER A WITH BREVE AND HOOK ABOVE |
| 1EB5 | 1EB4 | LATIN SMALL LETTER A WITH BREVE AND TILDE | LATIN CAPITAL LETTER A WITH BREVE AND TILDE |
| 1EB7 | 1EB6 | LATIN SMALL LETTER A WITH BREVE AND DOT BELOW | LATIN CAPITAL LETTER A WITH BREVE AND DOT BELOW |
| 1EB9 | 1EB8 | LATIN SMALL LETTER E WITH DOT BELOW | LATIN CAPITAL LETTER E WITH DOT BELOW |
| 1EBB | 1EBA | LATIN SMALL LETTER E WITH HOOK ABOVE | LATIN CAPITAL LETTER E WITH HOOK ABOVE |
| 1EBD | 1EBC | LATIN SMALL LETTER E WITH TILDE | LATIN CAPITAL LETTER E WITH TILDE |
| 1EBF | 1EBE | LATIN SMALL LETTER E WITH CIRCUMFLEX AND ACUTE | LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND ACUTE |
| 1EC1 | 1EC0 | LATIN SMALL LETTER E WITH CIRCUMFLEX AND GRAVE | LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND GRAVE |
| 1EC3 | 1EC2 | LATIN SMALL LETTER E WITH CIRCUMFLEX AND HOOK ABOVE | LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND HOOK ABOVE |
| 1EC5 | 1EC4 | LATIN SMALL LETTER E WITH CIRCUMFLEX AND TILDE | LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND TILDE |
| 1EC7 | 1EC6 | LATIN SMALL LETTER E WITH CIRCUMFLEX AND DOT BELOW | LATIN CAPITAL LETTER E WITH CIRCUMFLEX AND DOT BELOW |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1EC9 | 1EC8 | LATIN SMALL LETTER I WITH HOOK ABOVE | LATIN CAPITAL LETTER I WITH HOOK ABOVE |
| 1ECB | 1ECA | LATIN SMALL LETTER I WITH DOT BELOW | LATIN CAPITAL LETTER I WITH DOT BELOW |
| 1ECD | 1ECC | LATIN SMALL LETTER O WITH DOT BELOW | LATIN CAPITAL LETTER O WITH DOT BELOW |
| 1ECF | 1ECE | LATIN SMALL LETTER O WITH HOOK ABOVE | LATIN CAPITAL LETTER O WITH HOOK ABOVE |
| 1ED1 | 1ED0 | LATIN SMALL LETTER O WITH CIRCUMFLEX AND ACUTE | LATIN CAPITAL LETTER O WITH CRCUMFLEX AND ACUTE |
| 1ED3 | 1ED2 | LATIN SMALL LETTER O WITH CIRCUMFLEX AND GRAVE | LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND GRAVE |
| 1ED5 | 1ED4 | LATIN SMALL LETTER O WITH CIRCUMFLEX AND HOOK ABOVE | LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND HOOK ABOVE |
| 1ED7 | 1ED6 | LATIN SMALL LETTER O WITH CIRCUMFLEX AND TILDE | LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND TILDE |
| 1ED9 | 1ED8 | LATIN SMALL LETTER O WITH CIRCUMFLEX AND DOT BELOW | LATIN CAPITAL LETTER O WITH CIRCUMFLEX AND DOT BELOW |
| 1EDB | 1EDA | LATIN SMALL LETTER O WITH HORN AND ACUTE | LATIN CAPITAL LETTER O WITH HORN AND ACUTE |
| 1EDD | 1EDC | LATIN SMALL LETTER O WITH HORN AND GRAVE | LATIN CAPITAL LETTER O WITH HORN AND GRAVE |
| 1EDF | 1EDE | LATIN SMALL LETTER O WITH HORN AND HOOK ABOVE | LATIN CAPITAL LETTER O WITH HORN AND HOOK ABOVE |
| 1EE1 | 1EE0 | LATIN SMALL LETTER O WITH HORN AND TILDE | LATIN CAPITAL LETTER O WITH HORN AND TILDE |
| 1EE3 | 1EE2 | LATIN SMALL LETTER O WITH HORN AND DOT BELOW | LATIN CAPITAL LETTER O WITH HORN AND DOT BELOW |
| 1EE5 | 1EE4 | LATIN SMALL LETTER U WITH DOT BELOW | LATIN CAPITAL LETTER U WITH DOT BELOW |
| 1EE7 | 1EE6 | LATIN SMALL LETTER U WITH HOOK ABOVE | LATIN CAPITAL LETTER U WITH HOOK ABOVE |
| 1EE9 | 1EE8 | LATIN SMALL LETTER U WITH HORN AND ACUTE | LATIN CAPITAL LETTER U WITH HORN AND ACUTE |
| 1EEB | 1EEA | LATIN SMALL LETTER U WITH HORN AND GRAVE | LATIN CAPITAL LETTER U WITH HORN AND GRAVE |
| 1EED | 1EEC | LATIN SMALL LETTER U WITH HORN AND HOCK ABOVE | LATIN CAPITAL LETTER U WITH HORN AND HOOK ABOVE |
| 1EEF | 1EEE | LATIN SMALL LETTER U WITH HORN AND TILDE | LATIN CAPITAL LETTER U WITH HORN AND TILDE |
| 1EF1 | 1EF0 | LATIN SMALL LETTER U WITH HORN AND DOT BELOW | LATIN CAPITAL LETTER U WITH HORN AND DOT BELOW |
| 1EF3 | 1EF2 | LATIN SMALL LETTER Y WITH GRAVE | LATIN CAPITAL LETTER Y WITH GRAVE |
| 1EF5 | 1EF4 | LATIN SMALL LETTER Y WITH DOT BELOW | LATIN CAPITAL LETTER Y WITH DOT BELOW |

\(\left.\left.$$
\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Lowercase code } \\
\text { point }\end{array} & \begin{array}{l}\text { Uppercase code } \\
\text { point }\end{array} & \text { LEF6 } & \begin{array}{l}\text { Lowercase character description } \\
\text { HOOK ABOVE }\end{array} \\
\hline \text { 1EF7 } & \text { Uppercase character description }\end{array}
$$ \right\rvert\, \begin{array}{l}LATIN CAPITAL LETTER Y WITH <br>

HOOK ABOVE\end{array}\right]\)| LATIN SMALL LETTER Y WITH |
| :--- |
| TILDE |$\quad$| LATIN CAPITAL LETTER Y WITH |
| :--- |
| TILDE |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1F27 | 1F2F | GREEK SMALL LETTER ETA WITH DASIA AND PERISPOMENI | GREEK CAPITAL LETTER ETA WITH DASIA AND PERISPOMENI |
| 1F30 | 1F38 | GREEK SMALL LETTER IOTA WITH PSILI | GREEK CAPITAL LETTER IOTA WITH PSILI |
| 1F31 | 1F39 | GREEK SMALL LETTER IOTA WITH DASIA | GREEK CAPITAL LETTER IOTA WITH DASIA |
| 1F32 | 1F3A | GREEK SMALL LETTER IOTA WITH PSILI AND VARIA | GREEK CAPITAL LETTER IOTA WITH PSILI AND VARIA |
| 1F33 | 1F3B | GREEK SMALL LETTER IOTA WITH DASIA AND VARIA | GREEK CAPITAL LETTER IOTA WITH DASIA AND VARIA |
| 1F34 | 1F3C | GREEK SMALL LETTER IOTA WITH PSILI AND OXIA | GREEK CAPITAL LETTER IOTA WITH PSILI AND OXIA |
| 1F35 | 1F3D | GREEK SMALL LETTER IOTA WITH DASIA AND OXIA | GREEK CAPITAL LETTER IOTA WITH DASIA AND OXIA |
| 1F36 | 1F3E | GREEK SMALL LETTER IOTA WITH PSILI AND PERISPOMENI | GREEK CAPITAL LETTER IOTA WITH PSILI AND PERISPOMENI |
| 1F37 | 1F3F | GREEK SMALL LETTER IOTA WITH DASIA AND PERISPOMENI | GREEK CAPITAL LETTER IOTA WITH DASIA AND PERISPOMENI |
| 1F40 | 1F48 | GREEK SMALL LETTER OMICRON WITH PSILI | GREEK CAPITAL LETTER OMICRON WITH PSILI |
| 1F41 | 1F49 | GREEK SMALL LETTER OMICRON WITH DASIA | GREEK CAPITAL LETTER OMICRON WITH DASIA |
| 1F42 | 1F4A | GREEK SMALL LETTER OMICRON WITH PSILI AND VARIA | GREEK CAPITAL LETTER OMICRON WITH PSILI AND VARIA |
| 1F43 | 1F4B | GREEK SMALL LETTER OMICRON WITH DASIA AND VARIA | GREEK CAPITAL LETTER OMICRON WITH DASIA AND VARIA |
| 1F44 | 1F4C | GREEK SMALL LETTER OMICRON WITH PSILI AND OXIA | GREEK CAPITAL LETTER OMICRON WITH PSILI AND OXIA |
| 1F45 | 1F4D | GREEK SMALL LETTER OMICRON WITH DASIA AND OXIA | GREEK CAPITAL LETTER OMICRON WITH DASIA AND OXIA |
| 1F51 | 1F59 | GREEK SMALL LETTER UPSILON WITH DASIA | GREEK CAPITAL LETTER UPSILON WITH OASIS |
| 1F53 | 1F5B | GREEK SMALL LETTER UPSILON WITH DASIA AND VARIA | GREEK CAPITAL LETTER UPSILON WITH DASIA AND VARIA |
| 1F55 | 1F5D | GREEK SMALL LETTER UPSILON WITH DASIA AND OXIA | GREEK CAPITAL LETTER UPSILON WITH DASIA AND OXIA |
| 1F57 | 1F5F | GREEK SMALL LETTER UPSILON WITH DASIA AND PERISPOMENI | GREEK CAPITAL LETTER UPSILON WITH DASIA AND PERISPOMENI |
| 1F60 | 1F68 | GREEK SMALL LETTER OMEGA WITh PSILI | GREEK CAPITAL LETTER OMEGA WITH PSILI |
| 1F61 | 1F69 | GREEK SMALL LETTER OMEGA WITH DASIA | GREEK CAPITAL LETTER OMEGA WITH DASIA |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 1F62 | 1F6A | GREEK SMALL LETTER OMEGA WITH PSILI AND VARIA | GREEK CAPITAL LETTER OMEGA WITH PSILI AND VARIA |
| 1F63 | 1F6B | GREEK SMALL LETTER OMEGA WITH DASIA AND VARIA | GREEK CAPITAL LETTER OMEGA WITH DASIA AND VARIA |
| 1F64 | 1F6C | GREEK SMALL LETTER OMEGA WITH PSILI AND OXIA | GREEK CAPITAL LETTER OMEGA WITH PSILI AND OXIA |
| 1F65 | 1F6D | GREEK SMALL LETTER OMEGA WITH DASIA AND OXIA | GREEK CAPITAL LETTER OMEGA WITH DASIA AND OXIA |
| 1F66 | 1F6E | GREEK SMALL LETTER OMEGA WITH PSILI AND PERISPOMENI | GREEK CAPITAL LETTER OMEGA WITH PSILI AND PERISPOMENI |
| 1F67 | 1F6F | GREEK SMALL LETTER OMEGA WITH DASIA AND PERISPOMENI | GREEK CAPITAL LETTER OMEGA WITH DASIA AND PERISPOMENI |
| 1F80 | 1F88 | GREEK SMALL LETTER ALPHA WITH PSILI AND <br> YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITh PSILI AND PROSGEGRAMMENI |
| 1F81 | 1F89 | GREEK SMALL LETTER ALPHA WITH DASIA AND <br> YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH DASIA AND PROSGEGRAMMENI |
| 1 F82 | 1F8A | GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH PSILI AND VARIA AND PROSGEGRAMMENI |
| 1F83 | 1F8B | GREEK SMALL LETTER ALPHA WITH DASIA AND VARIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH DASIA AND VARIA AND PROSGEGRAMMENI |
| 1F84 | 1F8C | GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH PSILI AND OXIA AND PROSGEGRAMMEN |
| 1F85 | 1F8D | GREEK SMALL LETTER ALPHA WITH DASIA AND OXIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH DASIA AND OXIA AND PROSGEGRAMMEN |
| 1 F86 | 1F8E | GREEK SMALL LETTER ALPHA WITH PSILI AND PERISPOMENI AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH PSILI AND PERISPOMENI AND PROSGEGRAMMENI |
| 1F87 | 1F8F | GREEK SMALL LETTER ALPHA WITH DASIA AND PERISPOMENI AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ALPHA WITH DASIA AND PERISPOMENI AND PROSGEGRAMMENI |
| 1 F90 | 1F98 | GREEK SMALL LETTER ETA WITH PSILI AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ETA WITH PSILI AND PROSGEGRAMMENI |
| 1F91 | 1F99 | GREEK SMALL LETTER ETA WITH DASIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ETA WITH DASIA AND PROSGEGRAMMENI |
| 1F92 | 1F9A | GREEK SMALL LETTER ETA WITH PSILI AND VARIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ETA WITH PSILI AND VARIA AND PROSGEGRAMMENI |
| 1 F93 | 1F9B | GREEK SMALL LETTER ETA WITH DASIA AND VARIA AND YPOGEGRAMMENI | GREEK CAPITAL LETTER ETA WITH DASIA AND VARIA AND PROSGEGRAMMENI |


| Lowercase code <br> point | Uppercase code <br> point | Lowercase character description |
| :--- | :--- | :--- | :--- | Uppercase character description | 1F9C |
| :--- |
| 1F94 |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 24D1 | 24B7 |  | $\qquad$ |
| 24D2 | 24B8 | CIRCLED LATIN SMALL LETTER C | CIRCLED LATIN CAPITAL LETTER C |
| 24D3 | 24B9 | CIRCLED LATIN SMALL LETTER D | CIRCLED LATIN CAPITAL LETTER D |
| 24D4 | 24BA | CIRCLED LATIN SMALL LETTER E | CIRCLED LATIN CAPITAL LETTER E |
| 24D5 | 24BB | CIRCLED LATIN SMALL LETTER F | CIRCLED LATIN CAPITAL LETTER F |
| 24D6 | 24BC | CIRCLED LATIN SMALL LETTER G | CIRCLED LATIN CAPITAL LETTER G |
| 24D7 | 24BD | CIRCLED LATIN SMALL LETTER H | CIRCLED LATIN CAPITAL LETTER H |
| 24D8 | 24BE | CIRCLED LATIN SMALL LETTER I | CIRCLED LATIN CAPITAL LETTER I |
| 24D9 | 24BF |  | CIRCLED LATIN CAPITAL LETTER J |
| 24DA | 24C0 |  | $\qquad$ |
| 24DB | 24C1 | CIRCLED LATIN SMALL LETTER L | CIRCLED LATIN CAPITAL LETTER L |
| 24DC | 24C2 | CIRCLED LATIN SMALL LETTER M | CIRCLED LATIN CAPITAL LETTER M |
| 24DD | 24C3 | CIRCLED LATIN SMALL LETTER N | CIRCLED LATIN CAPITAL LETTER N |
| 24DE | 24C4 | CIRCLED LATIN SMALL LETTER 0 | CIRCLED LATIN CAPITAL LETTER 0 |
| 24DF | 24C5 | CIRCLED LATIN SMALL LETTER P | CIRCLED LATIN CAPITAL LETTER P |
| 24E0 | 24C6 | CIRCLED LATIN SMALL LETTER Q | CIRCLED LATIN CAPITAL LETTER Q |
| 24E1 | 24C7 | CIRCLED LATIN SMALL LETTER R | CIRCLED LATIN CAPITAL LETTER R |
| 24E2 | 24C8 | CIRCLED LATIN SMALL LETTER S | CIRCLED LATIN CAPITAL LETTER S |
| 24E3 | 24C9 | CIRCLED LATIN SMALL LETTER T | CIRCLED LATIN CAPITAL LETTER T |
| 24E4 | 24CA | CIRCLED LATIN SMALL LETTER U | CIRCLED LATIN CAPITAL LETTER U |
| 24E5 | 24CB | CIRCLED LATIN SMALL LETTER V | CIRCLED LATIN CAPITAL LETTER V |
| 24E6 | 24CC | CIRCLED LATIN SMALL LETTER W | CIRCLED LATIN CAPITAL LETTER W |
| 24E7 | 24CD | ```CIRCLED LATIN SMALL LETTER X``` | $\qquad$ X |
| 24E8 | 24CE | CIRCLED LATIN SMALL LETTER Y | CIRCLED LATIN CAPITAL LETTER Y |


| Lowercase code point | Uppercase code point | Lowercase character description | Uppercase character description |
| :---: | :---: | :---: | :---: |
| 24E9 | 24CF | CIRCLED LATIN SMALL LETTER Z | CIRCLED LATIN CAPITAL LETTER z |
| FF41 | FF21 | FULLWIDTH LATIN SMALL LETTER A | FULLWIDTH LATIN CAPITAL LETTER A |
| FF42 | FF22 | FULLWIDTH LATIN SMALL LETTER B | FULLWIDTH LATIN CAPITAL LETTER B |
| FF43 | FF23 | FULLWIDTH LATIN SMALL LETTER C | FULLWIDTH LATIN CAPITAL LETTER C |
| FF44 | FF24 | FULLWIDTH LATIN SMALL LETTER D | FULLWIDTH LATIN CAPITAL LETTER D |
| FF45 | FF25 | FULLWIDTH LATIN SMALL LETTER E | FULLWIDTH LATIN CAPITAL LETTER E |
| FF46 | FF26 | FULLWIDTH LATIN SMALL LETTER F | FULLWIDTH LATIN CAPITAL LETTER F |
| FF47 | FF27 | FULLWIDTH LATIN SMALL LETTER G | FULLWIDTH LATIN CAPITAL LETTER G |
| FF48 | FF28 | FULLWIDTH LATIN SMALL LETTER H | FULLWIDTH LATIN CAPITAL LETTER H |
| FF49 | FF29 | FULLWIDTH LATIN SMALL LETTER I | FULLWIDTH LATIN CAPITAL LETTER I |
| FF4A | FF2A | FULLWIDTH LATIN SMALL LETTER J | FULLWIDTH LATIN CAPITAL LETTER J |
| FF4B | FF2B | FULLWIDTH LATIN SMALL LETTER K | FULLWIDTH LATIN CAPITAL LETTER K |
| FF4C | FF2C | FULLWIDTH LATIN SMALL LETTER L | FULLWIDTH LATIN CAPITAL LETTER L |
| FF4D | FF2D | FULLWIDTH LATIN SMALL LETTER M | FULLWIDTH LATIN CAPITAL LETTER M |
| FF4E | FF2E | FULLWIDTH LATIN SMALL LETTER N | FULLWIDTH LATIN CAPITAL LETTER N |
| FF4F | FF2F | FULLWIDTH LATIN SMALL LETTER O | FULLWIDTH LATIN CAPITAL LETTER O |
| FF50 | FF30 | FULLWIDTH LATIN SMALL LETTER P | FULLWIDTH LATIN CAPITAL LETTER P |
| FF51 | FF31 | FULLWIDTH LATIN SMALL LETTER Q | FULLWIDTH LATIN CAPITAL LETTER Q |
| FF52 | FF32 | FULLWIDTH LATIN SMALL LETTER R | FULLWIDTH LATIN CAPITAL LETTER R |
| FF53 | FF33 | FULLWIDTH LATIN SMALL LETTER S | FULLWIDTH LATIN CAPITAL LETTER S |
| FF54 | FF34 | FULLWIDTH LATIN SMALL LETTER T | FULLWIDTH LATIN CAPITAL LETTER T |
| FF55 | FF35 | FULLWIDTH LATIN SMALL LETTER U | FULLWIDTH LATIN CAPITAL LETTER U |
| FF56 | FF36 | FULLWIDTH LATIN SMALL LETTER V | FULLWIDTH LATIN CAPITAL LETTER V |


| Lowercase code <br> point | Uppercase code <br> point | Lowercase character description | Uppercase character description |
| :--- | :--- | :--- | :--- |
| FF57 | FF37 | FULLWIDTH LATIN SMALL <br> LETTER W | FULLWIDTH LATIN CAPITAL <br> LETTER W |
| FF58 | FF39 | FULLWIDTH LATIN SMALL <br> LETTER X | FULLWIDTH LATIN CAPITAL <br> LETTER X |
| FF59 | FULLWIDTH LATIN SMALL <br> LETTER Y | FULLWIDTH LATIN CAPITAL <br> LETTER Y |  |
| FF5A | FULLWIDTH LATIN SMALL <br> LETTER Z | FULLWIDTH LATIN CAPITAL <br> LETTER Z |  |

## Unicode on OS/400 ${ }^{(\mathrm{R})}$

Unicode cannot be specified as a value for:

- The system CCSID
- A user profile CCSID
- A job CCSID

OS/400 provides external support for Unicode in the following parts of the system (see note, below):

- Database files and functions
- DB2 ${ }^{(\mathrm{R})}$ UDB for iSeries ${ }^{(\mathrm{TM})}$
- SQL tables
- Query files and tools
- DDS
- Display file and panel groups
- Unicode variables in UIM
- ILE high-level languages such as RPG
- Message handling and message catalogs

Several other OS/400 functions implement Unicode internally so that character data integrity is maintained for users across multilingual platforms.

Note: These topics do not give detailed information on application development as it relates to the implementation of Unicode. Rather, they provide highlights of OS/400 support for Unicode. Where possible, reference to a book that provides detailed information for UCS-2 implementation is given. You should have available and understand the information in the Unicode standard.

For more information about Unicode, see the Unicode web page.

## Database files and functions: >

When you create Unicode database applications, you need to consider the implications for creating physical files (page 164, creating logical files (page 165, and performing input and output on the database files (page 165.

## Creating physical files:

Unicode graphic fields can be created in physical files. This is done by specifying a G data type and a Unicode CCSID for the CCSID keyword.

The following example shows the DDS for a physical file containing four fields, and the command for creating the file:

| A | R FMT1 |  |  |
| :--- | :--- | ---: | :--- |
| A | EMPNO | 6 A |  |
| A | NAME | 30 G | CCSID(1200) |
| A | DESCR1 | 500 G | CCSID(1200) VARLEN |
| A | DESCR2 | 500 A |  |
| CRTPF | FILE(UNICODEPF) | SRCFILE(CLR/QDDSSRC) |  |

In the example:

- The first field, EMPNO, is a character field of length 6. The CCSID of the EMPNO field is the SBCS CCSID of the job. The decision was made to use a character field because the EMPNO field contains only numerics and Unicode support is not needed.
- The NAME and DESCR1 fields are both Unicode fields. Both of these fields may need to contain data from more than one EBCDIC code page so the decision was made to make these fields Unicode graphic.
- The DESCR2 field is the SBCS CCSID of the job. This field is used as illustratioin of mapping to a logical field in Creating logical files (page 165 .

You can specify the default (DFT) keyword for Unicode graphic fields. The default value can be specified as SBCS, bracketed-DBCS, or bracketed-DBCS-graphic character strings. If you do not specify the DFT keyword, the default value for fixed-length Unicode fields is the Unicode blank (hexadecimal 0020). For varying-length Unicode fields, the default is the empty string.

## Creating logical files:

You can use logical files to map Unicode data to and from character, DBCS-open, or DBCS-graphic. This allows Unicode graphic data to be manipulated in a character based form.

The following example shows the DDS for a logical file containing 4 character fields. The Unicode graphic data is converted to character data when reading from the logical file, and character data is converted to Unicode graphic data when writing to the file.

| R FMT1 |  | PFILE(UNICODEPF1) |  |
| :--- | :--- | :--- | :--- |
| A | EMPNO |  |  |
| A | NAME | A | CCSID(37) |
| A | DESCR1 | A | CCSID(37) |
| A | DESCR2 | G | CCSID(1200) |

## Database input/output:

Whenever reading or writing data from or to a field tagged with a Unicode CCSID to the job physical files, the data is passed as Unicode data without any conversions occurring. Regardless of the job CCSID, data is passed as Unicode data. When writing data to a logical file, the from CCSID is the job CCSID; however, if the job CCSID is 65535 the from CCSID is the CCSID of the field in the logical file.

The following are some scenarios from the physical and logical files listed above. For the scenarios, the job CCSID is 297.

Scenario 1. When reading the data from the physical file:

- EMPNO is converted from its CCSID to 297.
- NAME is not converted but is left as Unicode data.
- DESCR1 is not converted but is left as Unicode data.
- DESCR2 is converted from its CCSID to 297.

Scenario 2. When writing the data to the physical file:

- EMPNO is converted from 297 to its CCSID.
- NAME is not converted but is left as Unicode data.
- DESCR1 is not converted but is left as Unicode data.
- DESCR2 is converted from 297 to its CCSID.

Scenario 3. When reading the data from the logical file:

- EMPNO is converted from its CCSID to 297.
- NAME is converted from Unicode data to character data with a CCSID of 297.
- DESCR1 is converted from Unicode data to character data with a CCSID of 297.
- DESCR2 is converted from character data to Unicode data and not converted to the job CCSID.

Scenario 4. When writing the data to the logical file:

- EMPNO is converted from 297 to its CCSID.
- NAME is converted from 297 to Unicode data.
- DESCR1 is converted from 297 to Unicode data.
- DESCR2 is converted from Unicodeto its CCSID in the physical file.

Scenario 5. If the job was 65535 , the conversions for the above fields would be:

- EMPNO is not converted.
- NAME is converted from 37 to Unicode data.
- DESCR1 is converted from 37 to Unicode data.
- DESCR2 is converted from Unicode to its CCSID in the physical file.


## <

```
DB2(R)}\mathrm{ UDB for iSeries }\mp@subsup{}{}{(TM)}\mathrm{ : >
```

Keep the following in mind when using DB2 UDB for iSeries applications:

- Implicit conversion when comparing Unicode fields with character/IGC/graphic fields as well as with literals and host variables can occur.
- Physical and logical files with Unicode fields cannot have their CCSIDs changed with the Change Physical File CHGPF command.
- A Unicode CCSID is not allowed on the CHGPF command.
- The Copy File CPYF and Copy From Query File CPYFRMQRYF commands with FMTOPT(*MAP) specified is not allowed when copying from or to a Unicode graphic field unless:
- the corresponding field is a Unicode or DBCS-graphic field.
- the corresponding field is a character, DBCS-open, DBCS-either, or DBCS-only field with a CCSID other than 65535 .
- The Copy File CPYF command supports copying of SBCS character, DBCS-open, DBCS-only, DBCS-either, and DBCS-graphic fields to and from Unicode graphic fields. There is limited support for Unicode on the FROMKEY, TOKEY, INCCHAR, and INCREL parameters.


## <

SQL tables: >
SQL supports tables that contain Unicode graphic columns by specifying a Unicode CCSID for the GRAPHIC and VARGRAPHIC data types.

The following SQL example creates the table U_TABLE. U_TABLE contains one character column called EMPNO, and two Unicode graphic columns. NAME is a fixed-length Unicode graphic column and

DESCRIPTION is a variable-length Unicode graphic column. The decision was made to use a character field since the EMPNO field only contains numerics and Unicode support is not needed. The NAME and DESCRIPTION fields are both Unicode fields. Both of these fields may contain data from more than one EBCDIC code page.
CREATE TABLE U_TABLE (EMPNO CHAR(6) NOT NULL,
NAME GRAPHIC(3 $\overline{0})$ CCSID 1200,
DESCRIPTION VARGRAPHIC(500) CCSID 1200)

## Inserting data

SBCS character, mixed character, and DBCS graphic data can be inserted into Unicode graphic columns using the SQL INSERT statement. DB2 ${ }^{(\mathrm{R})}$ UDB for iSeries ${ }^{(T \mathrm{TM})}$ SQL converts the data to Unicode graphic. In SQL programs, the DECLARE VARIABLE statement can be used to attach a Unicode CCSID to graphic host variables.

The following SQL example converts character data to Unicode graphic for the NAME and DESCRIPTION columns and inserts the row into the U_TABLE.
INSERT INTO U_TABLE VALUES('000001','John Doe','Engineer')

## Selecting Unicode data

Implicit conversion of Unicode graphic data is supported on a FETCH or select INTO and CALL.
In the following example, the EMPNO column is returned in empno_hv as character data. The NAME column is returned in name_hv as Unicode graphic data because name_hv is a Unicode variable. It is not converted to character, mixed character, or DBCS graphic.

```
char empno_hv[7];
```

wchar_t name_hv[31];
EXEC $\bar{S} Q L$ DECL̄ARE : name_hv VARIABLE CCSID 13488;

EXEC SQL SELECT EMPNO, NAME
INTO :empno_hv, :name_hv
.FROM U_TABL̄E;

To return Unicode graphic data as EBCDIC data, the prior example could be changed to return the Unicode data as character data, EMPNO and NAME are returned in the job CCSID.
char empno_hv[7];
char name_h $v[31]$;
EXEC SQL SELECT EMPNO, NAME
INTO :empno_hv, :name_hv
FROM U_TABLE;

When doing selection, implicit conversions are done when comparing Unicode graphic data and character or DBCS graphic data.

The following example converts the character string 'John Doe' to Unicode graphic and then selects the rows where the NAME column is 'John Doe'.
EXEC SQL DECLARE C1 CURSOR FOR
SELECT *
FROM U_TABLE
WHERE NAME = 'John Doe';

For additional information on using SQL with Unicode graphic data, see the SQL Reference topic in the Information Center.

## <

## Query files and tools: >>

## Open query file (OPNQRYF) command considerations

The Open Query File OPNQRYF command, as shown below, can retrieve or perform selection of Unicode data. Using the MAPFLD parameter, data can be mapped to or from Unicode.

```
OPNQRYF FILE(U TABLE)
```

QRYSLT('NAME=MĀPNAME')
MAPFLD ((MAPNAME 'John Doe' *GRAPHIC *N *N 1200))

## Interactive query tools considerations

Query for iSeries ${ }^{(T \mathrm{TM})}$, DB2 ${ }^{(\mathrm{R})}$ Query Manager, and the DB2 Query Management function for $\mathrm{OS} / 400^{(\mathrm{R})}$ all have Unicode support. Unicode data can be displayed or printed on a report; by implicitly converting to either character or mixed art.

For additional information, see the Query Manager Use and Query Management Programming PDFs.

## <

Data description specifications (DDS): In DDS, you use the CCSID file-, record-, or field-level keyword to specify that a G-type field supports 》 Unicode << data instead of DBCS-graphical data. See the CCSID keyword description in the DDS for physical and logical files topic.

## Display files and panel groups: >>

Unicode data is not supported on display devices that currently support the 5250 data stream. Therefore, conversions between the Unicode data and EBCDIC are necessary during input and output operations. On output, the Unicode data is converted to the CCSID of the device. On input, the data is converted from the device CCSID to the Unicode CCSID.

Since the device CCSID, which is determined from the device configuration, determines what the Unicode data is converted to, the converted data appears differently on different devices. For example, a Unicode character that maps to a SBCS character is displayed as a DBCS replacement character on a graphic-DBCS capable device. On a DBCS or SBCS capable device, the character appears as a SBCS character. A Unicode character that maps to a DBCS character is displayed as a graphic-DBCS character on a graphic-DBCS capable device. On a DBCS device, a DBCS character is bracketed (enclosed in a shift-out and shift-in). A SBCS replacement character is displayed on a SBCS device.

It is also suggested that all Unicode capable fields be initialized in the output buffer before writing the fields to the screen. Unpredictable results can occur if default initialization is allowed to take place.

For more information about display file and panel group considerations, see Unicode considerations for database files in the DDS for physical and logical files topic.

## $\ll$

Unicode variables in UIM: The following example shows how to define a Unicode variable in UIM.

```
:class name=example basetype='graphic 6 13488' width=10,
```

:class name=example basetype='graphic 6 13488' width=10,
:class name=example2 basetype='graphic 10 13488' width=20.

```
:class name=example2 basetype='graphic 10 13488' width=20.
```

Line 1 defines a class for variables that will contain 6 Unicode characters and is to be displayed in a field that is 10 bytes long.

Line 3 defines a class for variables that will contain 10 Unicode characters and is to be displayed in a field that is 20 bytes long.

For more information on Unicode and UIM, see the definition of the CLAS tag in the Application Display
Programming PDF.

## GB18030: The Chinese standard

GB 18030-2000 is a Chinese standard that specifies an extended code page for use in the Chinese market. This code page standard is important for the software industry because the China National Information Technology Standardization Technical Committee has mandated that any software application that is released for the Chinese market after September 1, 2001, be enabled for GB18030.
$\mathrm{OS} / 400^{(\mathrm{R})}$ supports this encoding with CCSID 1392. Generally, you should use Unicode instead of 1392 for complete national language support. CCSID 1392 is provided if you need to handle or interchange GB18030 encoded data. See Unicode for more information.

## A brief history of major GB code pages

A common base code page standard for Chinese is GB 2312-1980. It encodes more than 6,000 frequently-used Chinese ideographs. With the growing importance of Unicode and the parallel standard ISO 10646 (which was adopted by China as GB 13000), an extension of GB 2312-1980 was created. This extension was called GBK; it encoded all 20,902 unified ideographs that are assigned in Unicode 2.1. GBK is not a formal standard, but a widely-implemented specification.

Unicode 3.0 added more than 6,000 ideographs, and version 3.1 added about 42,000 additional ideographs.

GB 18030 was created as an update of GBK for Unicode 3.0 with an extension that covers all of Unicode. It has the following general features:

- GB 18030 character assignments are backwards compatible with the GB 2312-1980 standard and the GBK specification.
- The mapping table between GB 18030 and Unicode is backwards compatible with the one between GB 2312-1980 and Unicode, and with some exceptions (with the one between GBK and Unicode), most of the changes compared to the GBK mapping table are due to updates for Unicode 3.0.
- GB 18030 specifies a mapping table that covers all Unicode code points. It is functionally similar to a UTF (Unicode Transformation Format) while maintaining compatibility of GB-encoded text with GBK and GB 2312-1980.


## Work with CCSIDs

This topic describes how the server implements the Character Data Representation Architecture (CDRA). Using the server implementation of CDRA, you can achieve consistent representation, processing, and interchange of coded characters (data) on OS $/ 400^{(R)}$ and across $I B M^{(R)}$ systems. The primary implementation of CDRA on OS/400 is through coded character set identifier (CCSID) support.

- Recommendations and guidelines for using CCSIDs
- OS/400 function support for CCSIDs
- Change the CCSID of a physical file
- Character sorting
- CCSID support for messages


## Recommendations and guidelines for using CCSIDs

When writing globalized applications, the following are some recommendations to remember:

- Because the system is shipped with a default CCSID of 65535, character data conversions do not normally occur in applications. You should look over the CCSID information in this topic, however, because the system may need to participate in a multilingual environment, a network, or exchanging data at a later time.
- Applications implementing their own mapping scheme should use CCSID 65535, where a CCSID assignment is necessary. For example, depending on what an application does, it might need to use CCSID 65535 for the files, or it might need to use CCSID 65535 for the jobs. Because other applications may require CCSIDs other than 65535, consider changing such applications by replacing the mapping scheme with CCSID support.
- Correctly define fields based on their usage. If fields contain application-dependent values (for example, control characters or fields that are not used as real character fields), define the fields as hexadecimal data or character fields with CCSID 65535.
- Avoid using characters that are not in the invariant character set for names and literals in programs.

Follow these guidelines when using CCSIDs:

- Use CCSIDs in multilingual applications to maintain character integrity in database files, displays, and printed data.
- You can find a suggested CCSID for a language in Language identifiers and associated default CCSIDs
- If the QIGC system value is set on, set QCCSID as a mixed CCSID or 65535. For more information about QIGC, see DBCS system indicator (QIGC) system value.
- If you use DBCS support, set the job CCSID to a mixed CCSID. If you do not, set the job CCSID to a single-byte CCSID.
- Ensure that the QCHRID code page is compatible with the character set and code page of the QCCSID value, unless the QCCSID value is 65535 . If the QCCSID value is changed to a value that is incompatible with the current QCHRID value, the QCHRID value is changed to a compatible value by the system.
- If you use a user-defined data stream (UDDS), remove any X'3F' values inserted by CCSID conversions. Otherwise, your data can cause the system to blank out a screen. Some CCSID conversions use a X'3F' value for a substitution character.
- If you are using any interactive jobs, such as Application Development ToolSet/400, ensure that the code page of the job CCSID matches the code page of the keyboard type. If these CCSID values do not match, or the job CCSID is 65535, unpredictable results could occur. For more information, see National language keyboard types and SBCS code pages.
- Be aware that the *JOBCCSID support is not used by any system-supplied displays or panel groups, although CHRIDCTL support is used.
- Be aware of character data that has been defined or specified as control information. For new database files, fields that contain control information should be defined as hexadecimal data type or use CCSID 65535 instead of another CCSID.
- Because of workstation hardware restrictions, you may not see all of the characters on displays other than 3486, 3487, 3488, or Personal System/2 (PS/2 ${ }^{(\mathrm{R})}$ ) displays when CCSID conversion occurs. However, the character data is retained in the system.
- Be aware that when a CCSID conversion is performed, substitution characters may cause a loss of data. The situation occurs if enforced subset match conversion is performed (see Conversion of character data.

OS/400 ${ }^{(\text {R })}$ function support for CCSIDs
The server provides support for CCSIDs in the functions as shown in the following table:

| Function | Description of support |
| :--- | :--- |
| CL commands | Some control language (CL) commands have internal <br> functions that support CCSID conversions. For more <br> information about CL commands that support CCSID <br> conversions, see the CL Reference topic. |
| Copy | Coded character set identifier (CCSID) support is built <br> into the copy function. The Copy File (CPYF) and Copy <br> from Query File (CPYFRMQRYF) commands support <br> CCSIDs. To use the CPYF command to change a |
| physical file, see Changing the CCSID of a physical file. |  |
| The Copy Source File (CPYSRCF) command supports |  |
| CCSID conversion. |  |

$\left.\begin{array}{|l|l|}\hline \text { Function } & \text { Description of support } \\ \hline \text { Distributed relational database } & \begin{array}{l}\text { Coded character set identifier (CCSID) support is built } \\ \text { into distributed relational database. Distributed relational } \\ \text { database passes the CCSID of an application requester } \\ \text { (AR) job to an application server (AS) job and vice versa } \\ \text { during connect processing. Distributed relational database } \\ \text { also performs a conversion of error information and } \\ \text { text-describing fields according to the job CCSID. }\end{array} \\ & \begin{array}{l}\text { Distributed relational database uses CCSID information to } \\ \text { determine how to build data exchanged between } \\ \text { application requester jobs and application server jobs. It } \\ \text { also uses CCSID information to describe data exchanged } \\ \text { between application requester jobs and application server } \\ \text { jobs (for example, a format description). }\end{array} \\ \hline \text { Workstations } & \begin{array}{l}\text { Coded character set identifier (CCSID) support is built } \\ \text { into interactive data definition utility (IDDU). Interactive } \\ \text { data definition utility provides support to specify a CCSID } \\ \text { for a character field or a DBCS field. }\end{array} \\ \hline \text { Open Query File (OPNQRYF) } & \begin{array}{l}\text { Coded character set identifier (CCSID) support is built } \\ \text { into OS/400 query. You can use the Open Query File }\end{array} \\ \hline \text { (OPNQRYF) command to specify a CCSID on the }\end{array}\right\}$

Database management: Database management support provides default coded character set identifier (CCSID) values for database files on the server. All database files are assigned a CCSID. At file creation time, the CCSID is either explicitly assigned through DDS, SQL, or IDDU, or it is implicitly assigned the job default CCSID (DFTCCSID).

## Database files support for CCSIDs:

$\mathrm{IBM}^{(\mathrm{R})}$ system files and licensed program database files are created with the CCSID of choice for each of the national language versions. Only the customer files are automatically assigned the CCSID of the job creating the file. You can use the Display File Description (DSPFD) command to view the CCSID of a file.

Program-described files are assigned CCSID 65535. If a CCSID is not explicitly specified on the CRTPF or CRTSRCPF command, database source files default to the job default CCSID at file creation. For more information on job default CCSIDs, see Job default coded character set identifier (DFTCCSID) For a list of language identifiers and the DFTCCSID valued associated with those identifiers, see Language Identifiers and Associated Default CCSIDs table.

If a database logical file is defined over several physical files, it is assigned a CCSID at the field level and assumes the CCSID value of the physical file. Logical files cannot be explicitly assigned a CCSID value.

## Database fields and support for CCSIDs:

Except for numeric database fields, database fields are supported by CCSIDs. You can use the Display File Field Description (DSPFFD) command to view the CCSID of the fields in a file.

Hexadecimal fields are assigned CCSID 65535.
An implicit CCSID value is assigned to the following fields if a CCSID was not explicitly assigned through DDS, SQL, or IDDU at file creation:

- Physical-file character
- DBCS-open
- DBCS-only
- DBCS-either
- Graphic

The implicitly assigned CCSID is the job default CCSID, or a CCSID associated with the job default CCSID.

- A character field will be assigned the single-byte character set (SBCS) CCSID that is associated with the job default CCSID.
- A DBCS-open, DBCS-only, and DBCS-either field will be assigned the mixed byte CCSID.
- A Graphic field will be assigned the double-byte character set (DBCS) CCSID that is associated with the job default CCSID.

For example, if the job default CCSID is 5026 (which is a CCSID that identifies mixed data), an SBCS character field will be assigned the SBCS CCSID associated with 5026. Thus, the CCSID for that field would be 290. If there is no CCSID of the required character set type then a CCSID of 65535 will be used. See Job Default Coded Character Set Identifier (DFTCCSID) for more information on job default CCSIDs. See Language identifiers and associated default CCSIDS for a list of language identifiers and the DFTCCSID valued associated with those identifiers.

Database logical-file fields are assigned a CCSID value based on their data type and the data type of the underlying physical file field.

## Database management and conversion support for CCSIDs:

Database management support converts non-graphic character data read from, or written to, database files using the file CCSID and the job CCSID.

- If data is being read from a database file and the CCSID of the file is the same as the job CCSID, no conversion is done.
- If data is being read from a database file and the CCSID of the file and the job CCSID are different, the data is converted to the CCSID of the job.
- If data is being written to a database file and the CCSID of the file is the same as the job CCSID, no conversion is done.
- If data is being written to a database file and the CCSID of the file and the job CCSID are different, the data is converted to match the CCSID of the file.

No conversion is performed if either the CCSID of the job or the CCSID of the database file is equal to 65535.

Work management: Work management support provides the function to assign or change coded character set identifier (CCSID) values at three different levels. All jobs run with a CCSID value established at one of these levels:

- Job level. A CCSID is assigned to a job.
- User profile level. A CCSID is specified in a user profile and the value is assigned to all jobs run under that user profile. The CCSID can be set or changed with the Create User Profile (CRTUSRPRF) and Change User Profile (CHGUSRPRF) commands.
- System level. The system value QCCSID is the default CCSID for all jobs running on the system. QCCSID can be set or changed with the CHGSYSVAL and WRKSYSVAL commands.

Work management support initializes the job CCSID for an interactive job to the CCSID on the user profile when the job starts. If *SYSVAL is specified for the CCSID on the user profile, work management support gets the CCSID from the system value (QCCSID). For batch jobs, the CCSID of the current job is used as the default CCSID for the submitted job.

You can change the CCSID of a job by using the Change Job (CHGJOB) command. Make a note of the current job CCSID. You can use it later to reset the job CCSID to its original value, if necessary. The new CCSID value is reflected in the job immediately. The job DFTCCSID cannot be changed. To retrieve the CCSID or DFTCCSID for a job, use the Retrieve Job Attributes (RTVJOBA) command or the Retrieve Job Information QUSRJOBI application programming interface (API). Interactively, use the Work with Job (WRKJOB) command and select the Display Job Definition Attributes option on the Work with Job display.

Workstation function management: Workstation function management involves working with:

- Display files
- Printer files
- Panel groups

All source files on the system are tagged with a coded character set identifier (CCSID).
Display files: When a display file object is created, it is tagged with the coded character set identifier (CCSID) of the source file. At compile time:

- All character data is read from the primary source file without any character conversion being performed.
- User message text (identified by the MSGCON keyword in DDS) remains the same because it is assumed to be in the same CCSID as the primary source file.

At run time, the constant data is converted based on the CHRID parameter value used to create the display file object. This conversion is optional and can occur only when the CHRID is set to *JOBCCSID or indirectly with CHRIDCTL. This conversion is from the display file CCSID to the character identifier (CHRID) of the device. The field-level keyword NOCCSID (no coded character set identifier) allows the user to specify fields within the DDS that are never to be converted.

Note: To use data management support of CCSIDs, you must change source physical files tagged with CCSID 65535 to a CCSID value that is associated with the data. See Changing the CCSID of a physical file for more information.

## CHRID parameter on the Create Display File command

The CHRID parameter on the Create Display File (CRTDSPF) command affects the conversion that occurs for the display file.

If the *JOBCCSID value is specified on the CHRID parameter of the CRTDSPF command:

- Input characters are converted from the device character identifier (CHRID) to the job CCSID.
- Character data is sent to output-capable fields and converted from the job CCSID to the device CHRID.
- Constant text from the display file is converted from the CCSID of the display file to the CHRID of the device.
- All message files are tagged with a CCSID. Message text is converted from the CCSID of the message file to the CHRID of the device. When message files are tagged with a CCSID of 65535 (the system default), it is assumed that the contents of the message files are already in the CHRID of the device. To ensure appropriate conversions occur, you can enable CCSID support for messages. See CCSID message support for more information on enabling CCSID support for messages.
- Message replacement data is converted from the CCSID of the job, or from the CCSID of the display file, to the CHRID of the device.
- All status messages that are tagged with a CCSID other than 65535 are converted to the CHRID of the device.
- Message text for messages on a message line or in a message subfile (identified by the ERRMSG, ERRMSGID, SFLMSG, and SFLMSGID keywords in DDS) is converted from the message file CCSID to the device CHRID.

If a specific value is specified for the CHRID parameter on the CRTDSPF command, conversion is done between the CHRID specified on the CRTDSPF command and the CHRID of the device. This conversion affects only fields defined with the CHRID DDS keyword.

If the *DEVD value is specified on the CHRID parameter of the CRTDSPF command, no conversion is performed. This is the default setting.

## Migration of display files with CCSID 65535

All source files in Version 3 of the $\mathrm{OS} / 400^{(\mathrm{R})}$ licensed program have an implicit CCSID value of 65535 . To have appropriate CCSID support, display files must be recompiled with a source file that has a CCSID value other than 65535 if either of the following are true:

- The display file was originally compiled from a source file with a CCSID value of 65535.
- The display file was originally compiled before Version 2 Release 3 Modification 0 of the OS/400 licensed program.

By recompiling, the display file object is tagged and all necessary conversions take place when needed.
No conversions take place if the source files are explicitly tagged CCSID 65535.

Printer files: When a printer file object is created, it is tagged with the coded character set identifier (CCSID) of the source file. Processing of the source files for printer files is the same as for display files. At compile time, all character data is read from the primary source file without any character conversion being performed.

When printing to the device, if the *JOBCCSID value is specified on the CHRID parameter of the CRTPRTF command:

- Constant text from an externally described printer file is converted from the CCSID of the printer file to the CCSID of the job.
- Character data sent to output fields is assumed to be already converted to the job CCSID.

If the printer data stream is tagged with the character identifier (CHRID) derived from the CCSID of the job, the CHRID value is used by the printer to interpret the data. The CHRID value is ignored for printers not supporting this function.

If a specific value is set for the CHRID parameter on the CRTPRTF command:

- For externally described printer files, fields that specify the CHRID DDS keyword use the CHRID value specified on the printer file. The remainder of the file is printed as if *DEVD was specified for the CHRID parameter on the CRTPRTF command.
- For program-described printer files, the printer data stream uses the CHRID value specified on the printer file.

If the *DEVD parameter is specified on the CHRID parameter of the CRTPRTF command, no conversion is performed.

The CHRID information is determined by either the printer hardware or by the device description. If the CHRID information is obtained from the device description, it is then sent to the printer.

User interface manager menus and panel groups: Like display files and printer files, panel group objects and user interface manager (UIM) menus are tagged with the CCSID of the primary source file. The contents of embedded source members are converted to this CCSID. When the panel group or UIM menu is created with *JOBCCSID specified for the CHRID parameter, conversion is performed at run time. Conversion is performed between the CCSIDs of the panel group or menu, the job, and the CHRID of the display or printer.

## CCSID conversions of user interface manager menu and panel groups

The following CCSID conversions occur for displays of panel groups and UIM menus:

- Text in the panel group is converted from the panel group CCSID to the device CHRID.
- Text in the UIM menu is converted from the UIM menu CCSID to the CHRID of the device.
- Variables from the user job are converted from the job CCSID to the device CHRID.
- Variables from the job are converted from the CHRID of the device to the job CCSID.
- Online help information imported from a different panel group is converted from the imported panel group CCSID to the device CHRID.


## CCSID conversions when printing UIM menus and panel groups

CCSID conversions for printed UIM menus and panel groups are shown in the following table. In this table, $x x x$ and yyy are explicitly assigned CCSID values. For example, a printer file CHRID is explicitly assigned a value of 0069700037 . The panel group is set to *JOBCCSID. The panel group constant text is converted from the panel group primary source file tagged with CCSID 00500 to the printer file CHRID 0069700037.
$\left.\begin{array}{|l|l|l|l|}\hline \text { Printer file CHRID is } & \begin{array}{l}\text { And the panel group or } \\ \text { menu CCSID is xxx }\end{array} & \text { or *JOBCCSID } & \text { or *DEVD } \\ \hline \text { yyy } & \begin{array}{l}\text { No conversion occurs for } \\ \text { panel group constant text. }\end{array} & \begin{array}{l}\text { Panel group constant text is } \\ \text { converted from panel group } \\ \text { primary source file CCSID } \\ \text { to yyy. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { panel group constant text. }\end{array} \\ \hline & \begin{array}{l}\text { Variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag are converted from xxx } \\ \text { to yyy. }\end{array} & \begin{array}{l}\text { Variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag are converted from job } \\ \text { CCSID to yyy. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} \\ \hline & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} & \begin{array}{l}\text { Variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag are converted from job } \\ \text { CCSID to YYY. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} \\ \hline \text { *JOBCCSID } & \begin{array}{l}\text { No conversion occurs for } \\ \text { panel group constant text. }\end{array} & \begin{array}{l}\text { Panel group constant text is } \\ \text { converted from panel group } \\ \text { primary source file CCSID } \\ \text { to job CCSID. }\end{array} & \begin{array}{l}\text { Panel group constant text is } \\ \text { converted from panel group } \\ \text { primary source file CCSID } \\ \text { to job CCSID. }\end{array} \\ \hline & \begin{array}{l}\text { Variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag are converted from XXX } \\ \text { to job CCSID. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} \\ \hline & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} \\ \hline \text { No conversion occurs for } \\ \text { panel group constant text. } & \begin{array}{l}\text { Panel group constant text is } \\ \text { converted from panel group } \\ \text { primary source file CCSID } \\ \text { to job CCSID. This } \\ \text { conversion occurs because } \\ \text { variables are in the job } \\ \text { CCSID and the device } \\ \text { CHRID is unknown. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { panel group constant text. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables with } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} \\ \hline & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} & \begin{array}{l}\text { No conversion occurs for } \\ \text { variables without } \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array} \\ \text { CHRID=PNLGRP on class } \\ \text { tag. }\end{array}\right\}$

## Change the CCSID of a physical file

You can use the Change Physical File (CHGPF) command to change the coded character set identifier (CCSID) of a physical file.

However, a physical file cannot be changed if one or more of the following conditions exist when working with a logical file defined over a physical file:

- The logical file has a sort sequence table associated with the CCSID of the physical file and the CCSID you want to change to is incompatible. That is, conversion between the original CCSID and the CCSID you want to change to is not allowed because all the characters of the original CCSID are not in the new CCSID.
- The logical file has a sort sequence table associated with the CCSID of the physical file and the CCSID you want to change to is incompatible. Additionally, the logical file has fields defined with CCSIDs that are not compatible to the new CCSID you want to change the physical file to. Again, conversion between the original CCSID and the CCSID you want to change to is not allowed because all the characters of the original CCSID of the logical file or the fields with specific CCSIDs are not in the new CCSID.
- A select/omit or join logical file, or both that performs select/omits or joins between physical file fields that have different CCSIDs.
- A join logical file with a sort sequence table such that the CCSID of the logical file's secondary access path is different than the CCSID to which the physical file is being changed.


## Character sorting

>
Traditionally, information is displayed in sorted order to enable users to easily find the items they are looking for. However, users of different languages might have very different expectations of what a sorted list should look like. Not only does the alphabetical order vary from one language to another, but it also can vary from document to document within the same language. For example, phonebook ordering might be different than dictionary ordering. String comparison is one of the basic functions most applications require, and yet implementations often do not match local conventions.

For example, here are some of the ways languages vary in the ordering of strings:

- The letters A through Z can be sorted in a different order than in English. For example, in Lithuanian, the letter y is sorted between the letters i and k .
- Accented letters can be treated as distinct letters. For example, $\AA$ in Danish is treated as a separate letter that sorts just after the letter Z.
- Unaccented letters that are considered distinct in one language can be indistinct in another. For example, the letters vand w are two different letters according to English. However, v and w are considered variant forms of the same letter in Swedish.
$\mathrm{OS} / 400^{(R)}$ lets you customize the sequence in which characters are sorted. You can use any of the following methods to do this:
- OS/400 sort sequence support
- ICU-based sort support
- Locale sort support. If your application uses locales, you can use the sorting support provided by the LC_COLLATE locale category.


## $\ll$

## For more information

See Sort sequences.

## OS/400 ${ }^{(R)}$ sort sequence support: >

OS/400 sort sequence support is the sort support that the system has provided for multiple releases. Using this support, customers can create their own defined sort tables; however, the sort is limited to a single weight for each individual character. It also provides full support only for SBCS and 13488; these sort sequences are supported over most of the system.

For more information about the OS/400 sort sequence support, see the following topics:

- Sort sequence types
- Sort sequence scenarios
- Sort sequence support
- Sort sequence tables


## $\ll$

Sort sequence tables: A sort sequence table is an object that contains the weight of each single-byte graphic character within a specified coded character set identifier (CCSID). The system-recognized identifier for the sort sequence table object type is *TBL.

Depending on your requirements, you can define a table to have either a unique weight for each graphic character or shared weights for some graphic characters. If you define a table that contains unique weights for each character within the character set, your table is known as a unique-weight table. If you define a table that contains some graphic characters that share the same weight, your table is known as a shared-weight table. For example, if you want to sort the graphic character capital letter A and the graphic character small letter a together, you would define a shared-weight table. If you want to sort these graphic characters separately, you would define a unique-weight table.

A set of sort sequence tables is shipped with the servers. This set of tables defines both unique- and shared-weight sort sequences for all SBCS languages.

## Sort sequence table implementation notes

Sort sequence support does not take into consideration the following:

- Special cases of single characters that should be handled as multiple characters (such as the German character s sharp).
- Sequences of characters that should be treated as a single character (such as the Danish aa, Hungarian ly, Serbian Ij, Spanish II).
- Nonalphanumeric characters that should be ignored because they are embedded in alphanumeric strings (such as the hyphen in co-op).
- Prefixes that should be ignored (such as Van der in the name Van der Pool).
- Program-described files.
- DBCS code pages.

If a sort sequence table has a weight other than hexadecimal 40 assigned to the blank character, unpredictable results can occur when strings of unequal lengths are compared.

## Sort sequence tables shipped with the system

You can use the WRKTBL command to view the contents of the sort sequence tables that are shipped with $\mathrm{OS} / 400^{(\mathrm{R})}$. The tables are located in the QSYS library.

When looking at these tables, consider the following:

- Several tables shipped with the system represent a single sort sequence, each encoded with a different coded character set identifier (CCSID) value. Not all of the characters in a given sort sequence exist in every CCSID in which the sort sequence is encoded.
- Use the language identifier (LANGID) parameter and the sort sequence (SRTSEQ) parameter to access the unique-weight tables (*LANGIDUNQ) or the shared-weight tables (*LANGIDSHR).
- When using the sort sequence, the relative weights shown in these tables differ from the actual weights in the sort sequence table on the system. The relative weights shown in these tables are examples only.
- The relative unique weight of a character is shown by the order of the characters in the sort sequence table. The relative unique weight is determined by assigning a weight of 1 to the first character in the sort sequence table and incrementing by 1 for each of the following characters until the end of the table is reached.
- GCGID is the graphic character global identifier.

For example, the Arabic sort sequence table shows the relative sort sequence weights for characters that are sorted using the Arabic sort sequence table.

## How to build sort sequence tables

To create a user-defined sort sequence table, copy an existing sort sequence table using the Create Table (CRTTBL) command, and then modifying the copy of the table. Table functions allow you to do the following:

- Use a definition stored in a source member.
- Create a table based on another sort sequence table using an interactive interface.

You can create a sort sequence table (MYTEST) from a copy of an existing table using the following CRTTBL command:

```
CRTTBL TBL(MYTEST) SRCFILE(*PROMPT) TBLTYPE(*SRTSEQ)
BASESRTSEQ(QSYS/QLA10025S) CCSID(037)
```

This command displays a sort sequence table that you can modify. Your table is created from a function key on this display. Your resulting table has a coded character set identifier (CCSID) value of 00037. The table is named MYTEST and is stored in the current library.

The following table shows one way in which the resulting characters may be shown on the first display of the MYTEST sort sequence table. The actual panel shows characters instead of text descriptions. For example, the character shown for sequence 0100 would be a question mark (?), and the character shown for sequence 0070 would be a colon (:).

Note: The characters that you actually see on the first display of the MYTEST sort sequence table may vary, depending on the device that you use.

| Sequence | Character |
| :--- | :--- |
| 0010 | Equal sign |
| 0020 | Overline |
| 0030 | (SHY) |
| 0040 | Hyphen |
| 0050 | Comma |
| 0060 | Semi-colon |
| 0070 | Colon |
| 0080 | Exclamation mark |
| 0090 | Inverted exclamation mark |
| 0100 | Question mark |
| 0110 | Inverted question mark |
| 0120 | Slash |
| 0130 | Period |
| 0140 | Acute accent mark |
| 0150 | Grave accent mark |
| 0160 | Caret |
| 0170 | Right square bracket |
| 0180 | Tilde |


| Sequence | Character |
| :--- | :--- |
| 0190 | Small multiply dot |
| 0200 | Comma |

You can make changes to the tables to move characters in each code page to the preferred position for the national language sort sequence table. The ordering is done by increments of 10 . Therefore, the first value is 10 , then 20 , and so on. If some characters have a shared weight, these groups of characters have the same sequenced weight.

Sort sequence support: The sort sequence support is provided in the following $\mathrm{OS} / 400^{(\mathrm{R})}$ functions.

- A user interface for creating new tables based on system-supplied sort sequence tables
- The Work with Tables (WRKTBL) command for creating and displaying tables
- The Create Table (CRTTBL) command for creating tables
- CL, ILE RPG IV, and ILE COBOL for compilers.
- Program support
- Work management support
- Database management support
- Other system components support

Sort sequence support in programs: You can assign sort sequences to programs used for ordering and comparing data. You assign a sort sequence to a program by specifying the sort sequence to be used at compile time. Specify the sort sequence to be used with the sort sequence (SRTSEQ) parameter and language identifier (LANGID) parameters of the create program commands. Valid SRTSEQ parameter values are:

- SRTSEQ(*HEX) means that no sort sequence should be used (hexadecimal sorting).
- SRTSEQ(*LANGIDUNQ) or SRTSEQ(*LANGIDSHR) means that the unique- or shared-weight sort sequence, determined by the LANGID parameter, should be used.
- A name for the system-supplied or user-supplied sort sequence name can be specified explicitly on the SRTSEQ parameter. If you explicitly specify a sort sequence name, the LANGID parameter is ignored.
- SRTSEQ(*JOB) or LANGID(*JOB) means that the sort sequence to be used is determined by the value associated with the job when the program is created.
- SRTSEQ(*JOBRUN) or LANGID(*JOBRUN) means that the sort sequence to be used is determined by the values from the job when the program is run.

The first three options assign the sort sequence to the program object at creation time. This sequence is always used when the program is run. Using the *JOBRUN value on the SRTSEQ or LANGID parameters, however, provides the possibility for dynamically assigning sort sequence to the program.

Sort sequence support in work management: Work management involves the assigning of the SRTSEQ value at the job level, the user profile level, and the system value level.

Sort sequence support at the job level: A sort sequence (SRTSEQ) value is assigned to a job. It is valid on the Submit Job (SBMJOB), Batch Job (BCHJOB), and the Change Job (CHGJOB) commands. If a program is created with SRTSEQ(*JOB), the sort sequence is set from the job sort sequence. If a program is created with SRTSEQ(*JOBRUN), the sort sequence is set from the job sort sequence at run time.

Sort sequence support at the user profile level: The user profile assigns a SRTSEQ value to a user and, by default, to all jobs running under this user profile. The user profile SRTSEQ value defaults to the sort sequence system value (QSRTSEQ).

Sort sequence support at the system value level: The QSRTSEQ system value defines a sort sequence that can be referred to by other objects. The QSRTSEQ system value should be set according to the requirements of the primary language used on the system. For more information on QSRTSEQ, see Sort Sequence (QSRTSEQ) system value.

Sort sequence support in database management: Database management supports the SRTSEQ and LANGID parameters on the Create Physical File (CRTPF) and Create Logical File (CRTLF) commands.

The LANGID and SRTSEQ parameters determine a sort sequence table. The sort sequence table is captured at file creation time and is stored as an attribute of the file. The SRTSEQ job attribute has no effect on the processing of an existing database file. The sort sequence table associated with the file is used for key sequencing, select logic fields and omit logic fields, and for join field functions.

The ALTSEQ keyword in DDS can also be used to specify a sort sequence table. The ALTSEQ keyword applies only to the key fields, not to the select logic fields and the omit logic fields. If the SRTSEQ parameter is specified on the CRTPF command or the CRTLF commands and the ALTSEQ keyword in the DDS source file specify a sort sequence table, an error message is sent and the file is not created.

The default SRTSEQ parameter on CRTPF and CRTLF commands is *SRC, which indicates that the sort sequence table on the ALTSEQ keyword should be used. If ALTSEQ is not used in DDS, the SRTSEQ attribute of the job determines the file attributes when creating or changing the file.

## How sort sequences are specified for database management

Sort sequence tables can be specified in the following areas:

- Query for iSeries ${ }^{(T \mathrm{M})}$ support

External sort sequence tables (including those shipped with the system) and user-defined tables can be specified.

- DB2 ${ }^{(\mathrm{R})}$ Query Manager and SQL Development Kit for iSeries

The Create Structured Query Language xxx (CRTSQLxxx) commands and the Start Structured Query Language (STRSQL) command support the SRTSEQ and LANGID parameters.
A sort sequence table can be specified when a query object is being defined with the Work with Queries display. The sort sequence (SRTSEQ) value and language identifier (LANGID) value are specified on the Specify Sort Sequence display.

- DB2 UDB for iSeries Query Management

The Create Query Management Query (CRTQMQRY) command supports the SRTSEQ and LANGID parameters.

For more information on sort sequence support for database programming, see Arranging key fields using the SRTSEQ parameter in the Database programming topic.

Sort sequence support in other system components: Sort sequence support is found in the following components of the system:

- CRTCLPGM (Create Control Language Program) command

The LANGID and SRTSEQ parameters are supported.

- DSPPGM (Display Program) command

The LANGID and SRTSEQ values that were specified when the program was created are displayed.

- CRTDSPF (Create Display File) command

The LANGID and SRTSEQ parameters are supported. The values of the RANGE, VALUES, and COMP keywords are validated when the display file is compiled.

- High-level languages

Using ILE COBOL and ILE RPG IV languages, you can specify SRTSEQ and LANGID values directly on the Create Bound Program (CRTBNDXXX) commands. Original Program Model RPG and COBOL compilers use the Create Program (CRTXXXPGM) commands. With ILE C, you can also specify SRTSEQ and LANGID values when you create a locale. You can then associate the locale with a program.

- iSeries ${ }^{(\mathrm{TM})}$ Access

The transfer function allows a sort sequence table to be specified when performing queries on database files and SQL tables.

Sort sequence scenarios: The following table shows characters you can sort using a binary, a shared-weight, and a unique-weight sort sequence for the Danish code page 00277.

| Character name | Character illustration | Code point in code page 277 | Shared sort weight | Unique sort weight |
| :---: | :---: | :---: | :---: | :---: |
| AE ligature | E | X'7B' | 96 | 183 |
| O slash | $\varnothing$ | X'7C' | 97 | 187 |
| A overcircle | Å | X'5B' | 98 | 191 |
| Latin capital N | N | X'D5' | 83 | 132 |
| Latin capital Z | Z | X'E9' | 95 | 181 |
| O umlaut | Ö | X'EC' | 97 | 189 |
| Latin capital A | A | X'C1' | 70 | 77 |

Using the information in the previous table, the characters are sorted in ascending order as shown in the following table.

| Position in ascending <br> order | Binary sort | Shared weight sort | Unique weight sort |
| :--- | :--- | :--- | :--- |
| First | A overcircle | Latin capital A | Latin capital A |
| Second | AE ligature | Latin capital N | Latin capital N |
| Third | O slash | Latin capital Z | Latin capital Z |
| Fourth | Latin capital A | AE ligature | AE ligature |
| Fifth | Latin capital N | O umlaut | O slash |
| Sixth | Latin capital Z | O slash | O umlaut |
| Seventh | O umlaut | A overcircle | A overcircle |

The following table shows an example of a shared-weight sort sequence, a unique weight sort sequence, and the binary sort sequence for English code page 00037.

| Binary sort sequence | Shared-weight sort sequence using <br> LANGID(ENU) and <br> SRTSEQ(*LANGIDSHR) | Unique-weight sort sequence using <br> LANGID(ENU) and <br> SRTSEQ(*LANGIDUNQ) |
| :--- | :--- | :--- |
| Jones, Mary | JOHNSON, JOHN | JOHNSON, JOHN |
| JOHNSON, JOHN | JONES, MARTIN | Jones, Mary |
| JONES, MARTIN | Jones, Mary | JONES, MARTIN |


|  | Shared-weight sort sequence using <br> LANGID(ENU) and <br> SRTSEQ(*LANGIDSHR) | Unique-weight sort sequence using <br> LANGID(ENU) and <br> SRTSEQ(*LANGIDUNQ) |
| :--- | :--- | :--- |
| Smith, Ron | SMITH, ROBERT | Smith, Ron |
| SMITH, ROBERT | Smith, Ron | SMITH, ROBERT |

Sort sequence types: A set of shared-weight and unique-weight sort sequence tables for SBCS languages is provided on servers. A shared-weight sequence is a sort sequence in which some graphic characters may have the same weight as some other characters in the sequence. Those with the same weight sort together as though they were the same character. For example, the letters $a$ and $A$ might both have the same value 24. This ensures that words such as able and Able are kept together in a list. In a simple sort table, $a$ and $A$ might share the value 24 , and $b$ and $B$ might share the value 25 and so on.

A unique-weight sequence is a sort sequence in which each graphic character has a weight different from the weight of every other graphic character in the sequence.

## ICU-based sort support: >

ICU-based sort support is based on the ICU collation services, which provide a multiple-weight sort (tertiary level) sort support. ICU-based sort supports the sorting of data in most CCSIDs supported by the operating system. It also provides a multiple-weight sort based on strings. ICU-based sort support does not allow users to generate additional sort tables.

The following topics provide more information about ICU-based sort support:

- Sort sequence types
- ICU locales and sort tables provided by the system
- Sort sequence scenarios
- Sort sequence support


## <

ICU-based sort sequence types: >
An ICU locale sequence is a sort sequence in which a tertiary level sort is used in determining a sort key based on the text string. In tertiary level sorting, upper and lower case differences in characters are distinguished (for example, "ao" < "Ao" < "à"). In addition, a variant of a letter differs from the base form on the tertiary level (such as "a" and" à").

## <

## ICU locales and sort tables provided by the system: >>

The ICU locale data covers eighty-two different languages, further divided into one hundred and ninety-seven regions and variants. For each language, data such as days of the week, months, and their abbreviations are defined. The sort sequence tables for ICU that are defined on the system are based upon these locales and regions, as listed in the following table.

The system provides a table (*TBL) object for each of these locales for you to use in specifying an ICU-based sort. For example, the table object QSYS/AF_ZA directs the database to use the ICU sort for Afrikaans in South Africa.

| Locale Name | Language or Variant | Region |
| :---: | :---: | :---: |
| AF | Afrikaans |  |
| AF_ZA | Afrikaans | South Africa |
| AM | Ethiopic |  |
| AM_ET | Ethiopic | Ethiopia |
| AR | Arabic |  |
| AR_AE | Arabic | United Arab Emirates |
| AR_BH | Arabic | Bahrain |
| AR_DZ | Arabic | Algeria |
| AR_EG | Arabic | Egypt |
| AR_IN | Arabic | India |
| AR_IQ | Arabic | Iraq |
| AR_JO | Arabic | Jordan |
| AR_KW | Arabic | Kuwait |
| AR_LB | Arabic | Lebanon |
| AR_LY | Arabic | Libya |
| AR_MA | Arabic | Morocco |
| AR_OM | Arabic | Oman |
| AR_QA | Arabic | Qatar |
| AR_SA | Arabic | Saudi Arabia |
| AR_SD | Arabic | Sudan |
| AR_SY | Arabic | Syria |
| AR_TN | Arabic | Tunisia |
| AR_YE | Arabic | Yemen |
| BE | Belarusian |  |
| BE_BY | Belarusian | Belarus |
| BG | Bulgarian |  |
| BG_BG | Bulgarian | Bulgaria |
| BN | Bengali |  |
| BN_IN | Bengali | India |
| CA | Catalan |  |
| CA_ES | Catalan | Spain |
| CA_ES_PREE | Catalan Pre-Euro | Spain |
| CS | Czech |  |
| CS_CZ | Czech | Czech Republic |
| DA | Danish |  |
| DA_DK | Danish | Denmark |
| DE | German |  |
| DE_AT | German | Austria |
| DE_AT_PREE | German Pre-Euro | Austria |
| DE_BE | German | Belgium |
| DE_CH | German | Switzerland |


| Locale Name | Language or Variant | Region |
| :---: | :---: | :---: |
| DE_DE | German | Germany |
| DE_DE_PREE | German Pre-Euro | Germany |
| DE_LU | German | Luxembourg |
| DE_LU_PREE | German Pre-Euro | Luxembourg |
| DE__PHONEB | German | Phonebook Order |
| EL | Greek |  |
| EL_GR | Greek | Greece |
| EL_GR_PREE | Greek Pre-Euro | Greece |
| EN | English |  |
| EN_AU | English | Australia |
| EN_BE | English | Belgium |
| EN_BE_PREE | English Pre-Euro | Belgium |
| EN_BW | English | Botswana |
| EN_CA | English | Canada |
| EN_GB | English | United Kingdom |
| EN_GB_EURO | English with Euro | United Kingdom |
| EN_HK | English | Hong Kong S.A.R. of China |
| EN_IE | English | Ireland |
| EN_IE_PREE | English Pre-Euro | Ireland |
| EN_IN | English | India |
| EN_MT | English | Malta |
| EN_NZ | English | New Zealand |
| EN_PH | English | Philippines |
| EN_SG | English | Singapore |
| EN_US | English | United States |
| EN_US_POSI | English Posix | United States |
| EN_VI | English | U.S. Virgin Islands |
| EN_ZA | English | Zimbabwe |
| EO | Esperanto |  |
| ES | Spanish |  |
| ES_AR | Spanish | Argentina |
| ES_BO | Spanish | Bolivia |
| ES_CL | Spanish | Chile |
| ES_CO | Spanish | Colombia |
| ES_CR | Spanish | Costa Rica |
| ES_DO | Spanish | Dominican Republic |
| ES_EC | Spanish | Ecuador |
| ES_ES | Spanish | Spain |
| ES_ES_PREE | Spanish Pre-Euro | Spain |
| ES_GT | Spanish | Guatemala |
| ES_HN | Spanish | Honduras |


| Locale Name | Language or Variant | Region |
| :---: | :---: | :---: |
| ES_MX | Spanish | Mexico |
| ES_NI | Spanish | Nicaragua |
| ES_PA | Spanish | Panama |
| ES_PE | Spanish | Peru |
| ES_PR | Spanish | Puerto Rico |
| ES_PY | Spanish | Paraguay |
| ES_SV | Spanish | El Salvador |
| ES_US | Spanish | United States |
| ES_UY | Spanish | Uruguay |
| ES_VE | Spanish | Venezuela |
| ES__TRADIT | Spanish Traditional |  |
| ET | Estonian |  |
| ET_EE | Estonian | Estonia |
| EU | Basque | Spain |
| EU_ES | Basque | Spain |
| EU_ES_PREE | Basque Pre-Euro | Spain |
| FA | Persian |  |
| FA_IN | Persian | India |
| FA_IR | Persian | Iran |
| FI | Finnish |  |
| FI_Fl | Finnish | Finland |
| FI_FI_PREE | Finnish Pre-Euro | Finland |
| FO | Faroese |  |
| FO_FO | Faroese | Faroe Islands |
| FR | French |  |
| FR_BE | French | Belgium |
| FR_BE_PREE | French Pre-Euro | Belgium |
| FR_CA | French | Canada |
| FR_CH | French | Switzerland |
| FR_FR | French | France |
| FR_FR_PREE | French Pre-Euro | France |
| FR_LU | French | Luxembourg |
| FR_LU_PREE | French Pre-Euro | Luxembourg |
| GA | Gaelic |  |
| GA_IE | Gaelic | Ireland |
| GA_IE_PREE | Gaelic Pre-Euro | Ireland |
| GL | Gallegan |  |
| GL_ES | Gallegan | Spain |
| GL_ES_PREE | Gallegan Pre-Euro | Spain |
| GU | Gujurati |  |
| GU_IN | Gujurati | India |


| Locale Name | Language or Variant | Region |
| :---: | :---: | :---: |
| GV | Manx |  |
| GV_GB | Manx | United Kingdom |
| HE | Hebrew |  |
| HE_IL | Hebrew | Israel |
| HI | Hindi |  |
| HI_IN | Hindi | India |
| HI__DIRECT | Hindi Direct Order |  |
| HR | Croation |  |
| HR_HR | Croation | Croatia |
| HU | Hungarian |  |
| HU_HU | Hungarian | Hungary |
| HY | Armenian |  |
| HY_AM | Armenian | Armenia |
| HY_AM_REVI | Armenian Revised | Armenia |
| ID | Indonesian |  |
| ID_ID | Indonesian | Indonesia |
| IS | Icelandic |  |
| IS_IS | Icelandic | Iceland |
| IT | Italian |  |
| IT_CH | Italian | Switzerland |
| IT_IT | Italian | Italy |
| IT_IT_PREE | Italian Pre-Euro | Italy |
| IW | Hebrew |  |
| IW_IL | Hebrew | Israel |
| JA | Japanese |  |
| JA_JP | Japanese | Japan |
| KL | Kalaallisut |  |
| KL_GL | Kalaallisut | Greenland |
| KN | Kannada |  |
| KN_IN | Kannada | India |
| KO | Korean |  |
| KOK | Konkani |  |
| KOK_IN | Konkani | India |
| KO_KR | Korean | Korea |
| KW | Cornish |  |
| KW_GB | Cornish | United Kingdom |
| LT | Lithuanian |  |
| LT_LT | Lithuanian | Lithuania |
| LV | Latvian |  |
| LV_LV | Latvian | Latvia |
| MK | Macedonian |  |


| Locale Name | Language or Variant | Region |
| :---: | :---: | :---: |
| MK_MK | Macedonian | Macedonia |
| MR | Marathi |  |
| MR_IN | Marathi | India |
| MT | Maltese |  |
| MT_MT | Maltese | Malta |
| NB | Norwegian Bokm ${ }^{\text {a }}$ । |  |
| NB_NO | Norwegian Bokm ${ }^{\text {a }}$, | Norway |
| NL | Dutch |  |
| NL_BE | Dutch | Belgium |
| NL_BE_PREE | Dutch Pre-Euro | Belgium |
| NL_NL | Dutch | Netherlands |
| NL_NL_PREE | Dutch Pre-Euro | Netherlands |
| NN | Norwegian nynorsk |  |
| NN_NO | Norwegian nynorsk | Norway |
| NO | Norwegian |  |
| NO_NO | Norwegian | Norway |
| NO_NO_NY | Norwegian | Norway |
| OM | Oromo |  |
| OM_ET | Oromo | Ethiopia |
| OM_KE | Oromo | Kenya |
| PL | Polish |  |
| PL_PL | Polish | Poland |
| PT | Portuguese |  |
| PT_BR | Portuguese | Brazil |
| PT_PT | Portuguese | Portugal |
| PT_PT_PREE | Portuguese Pre-Euro | Portugal |
| RO | Romanian |  |
| ROOT |  |  |
| RO_RO | Romanian | Romania |
| RU | Russian |  |
| RU_RU | Russian | Russia |
| RU_UA | Russian | Ukraine |
| SH | Serbo-Croation |  |
| SH_YU | Serbo-Croation | Yugoslavia |
| SK | Slovak |  |
| SK_SK | Slovak | Slovakia |
| SL | Slovenian |  |
| SL_SI | Slovenian | Slovenia |
| SO | Somali |  |
| SO_DJ | Somali | Djibouti |


| Locale Name | Language or Variant | Region |
| :---: | :---: | :---: |
| SO_ET | Somali | Ethiopia |
| SO_KE | Somali | Kenya |
| SO_SO | Somali | Somalia |
| SQ | Albanian |  |
| SQ_AL | Albanian | Albania |
| SR | Serbian |  |
| SR_YU | Serbian | Yugoslavia |
| SV | Swedish |  |
| SV_FI | Swedish | Finland |
| SV_SE | Swedish | Sweden |
| SW | Swahili |  |
| SW_KE | Swahili | Kenya |
| SW_TZ | Swahili | Tanzania |
| TA | Tamil |  |
| TA_IN | Tamil | India |
| TE | Telugu |  |
| TE_IN | Telugu | India |
| TH | Thai |  |
| TH_TH | Thai | Thailand |
| TI | Tigrinya |  |
| TI_ER | Tigrinya | Eritrea |
| TI_ET | Tigrinya | Ethiopia |
| TR | Turkish |  |
| TR_TR | Turkish | Turkey |
| UK | Ukrainian |  |
| UK_UA | Ukrainian | Ukraine |
| VI | Vietnamese |  |
| VI_VN | Vietnamese | Vietnam |
| ZH | Chinese |  |
| ZH_CN | Chinese | China |
| ZH_HK | Chinese | Hong Kong S.A.R. of China |
| ZH_SG | Chinese | Singapore |
| ZH_TW_STRO | Chinese Stroke Order | Taiwan |
| ZH__PINYIN | Chinese Pinyin Order |  |

## <

Sort sequence scenarios:
The following table shows an example of the results you would obtain given the same input data but different ICU locales specified on the sort request. The two locales used are EN_US and FR_FR.

| en_us ICU locale sort sequence using <br> SRTSEQ(EN_US) | fr_fr ICU locale sort sequence using SRTSEQ(FR_FR) |
| :--- | :--- |
| cote | cote |
| cot é | c $\hat{O}_{\text {te }}$ |
| c $\hat{\mathrm{O}}_{\text {te }}$ | cot é |
| c $\hat{\mathrm{O}}_{\mathrm{t}} \mathrm{é}$ | c $\hat{\mathrm{O}} \mathrm{t} \mathrm{é}$ |

See ICU sort sequence in the SQL programming information for more sorting examples.

## <

ICU-based sort sequence support:
$\mathrm{OS} / 400^{(\mathrm{R})}$ support for ICU sort sequence is provided in the following OS/400 functions:

- Work management
- Database management


## <

## CCSID support for messages

You can use CCSID support for handling messages and message catalogs on OS/400 ${ }^{(\mathrm{R})}$. You can send messages tagged with one CCSID to users with a different CCSID. You can use CCSID support to handle messages by using commands and application programming interfaces.

Note: You do not need a multinational character set (MNCS) when using CCSIDs for handling messages.
For example, if you do not set CCSID support on, the following message, encoded in CCSID 00037:

```
    Joe, I need to see you right away!
```

appears to a user with CCSID 00500 as
Joe, I need to see you right away]
Instead of seeing an exclamation mark (!), Joe sees a right square bracket (]). If you set CCSID support on, the text in a message encoded in CCSID 00037 is converted to CCSID 00500. Both the person sending the message and the person receiving the message see identical text.

CCSID support helps preserve data integrity in messages. As you read through this information, you will see other advantages to using CCSID support for messages.

Object-level CCSIDs

- Message files
- Message-level support
- Message description-level support
- Message queues
- Job message queues
- System reply lists
- History log

The following topics provide detailed information about message support:

- Setting up CCSID support for message handling
- CCSID support for message catalogs
- Converted character replacement data type field
- Retrieve messages
- Receive messages
- Common questions about CCSID support for message handling


## For more information

See Message catalogs for a description of general OS/400 globalization support for messages.
The following message handling commands support CCSIDs:

- CRTMSGF (Create Message File)
- CRTMSGQ (Create Message Queue)
- CHGMSGQ (Change Message Queue)
- ADDRPYLE (Add Reply List Entry)
- CHGRPYLE (Change Reply List Entry)
- CHGMSGD (Change Message Description)
- RTVMSG (Retrieve Message)
- RCVMSG (Receive Message)
- SNDBRKMSG (Send Break Message)
- SNDMSG(Send Message)
- SNDPGMMSG (Send Program Message)
- SNDRPY(Send Reply)
- SNDUSRMSG (Send user Message)

Handle messages with a specific object-level CCSID: The following objects support CCSIDs:

- Message files
- Message queues
- Job message queues
- System reply lists
- History log

Each of these objects has an object-level CCSID. The object-level CCSID is the CCSID in which all the messages in that object are encoded.

See the following topics for details about object-level CCSIDs:

- Object-level coded character set identifiers 65535 and 65534
- Using a specific object-level CCSID for handling messages

Object-level coded character set identifier 65535: CCSID 65535 is the default object-level CCSID for message files and message queues. If an object has a CCSID of 65535, no conversions occur when adding messages to that object or when receiving messages from that object. Use CCSID 65535 if you do not want CCSID processing to occur.

CCSID 65535 is also known as *HEX.
Object-level coded character set identifier 65534: CCSID 65534 is the default object-level CCSID for job message queues, system reply lists, and the history log. If the CCSID of an object is 65534, each
message in the object has its own CCSID. No conversion occurs when a message is added to the object. When a message is received, it is converted based on the CCSID stored with the message.

CCSID 65534 is also known as *MSG or *MSGD.
CCSID 65534 is the preferred setting for object-level CCSIDs. An object-level CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in better performance and improved data integrity.

Using a specific object-level CCSID for handling messages: If the CCSID of an object is any value other than 65535 or 65534, all messages in that object are considered encoded in that CCSID. The object-level CCSID overrides the CCSID stored with the messages. Use this type of object-level CCSID if both of the following are true:

- You expect the object to be sent messages or have message descriptions added in a CCSID different from the CCSID in which you would receive the messages or retrieve the message descriptions.
- You intend to receive the same message or retrieve the same message description many times.

If these conditions are true, set the object-level CCSID to the CCSID in which you will receive or retrieve the messages. When the system uses this type of object-level CCSID, the message text or data is converted at the time the message is sent or is added to the object. No conversion occurs when the message is received or retrieved because the text and data are already in the CCSID requested on the receive operation or retrieve operation.

Do not change system-supplied message files to use this type of object-level CCSID. Each system-supplied message description is tagged separately. No one object-level CCSID value can represent all of the message descriptions in the message file. Changing the object-level CCSID of a system-supplied message file to anything other than CCSID 65535 or CCSID 65534 may cause unpredictable results.

Message-level support: When a message is sent to a message queue, you must communicate the CCSID of the replacement data or the impromptu message text to the operating system. Use the CCSID parameter on any of the send message commands or APIs to communicate this CCSID to the operating system.

The default CCSID setting in the send message commands and APIs indicate that the replacement data or impromptu message text is in the CCSID of the job that is running the command or API. You can override the job default CCSID value by specifying a different CCSID value.

If the replacement data or impromptu message text supplied is not in the CCSID specified, incorrect conversion results may occur. See Can I correct the CCSID of a message? if this occurs.

## Determining the CCSID of a message file

To determine the CCSID of a message file, type:
WRKMSGD MSGF(MYLIB/MYMSGF)
where MYLIB is the library in which the message file is stored and MYMSGF is the name of the message file.

Next, press F22 (Display list details).
You can also use the QMHRMFAT (Retrieve Message File Attributes) application program interface (API) to determine the CCSID of a message file.

For job message queues, system reply lists, and the history log, the object-level CCSID is always 65534. You cannot change nor display object-level CCSIDs for job message queues, system reply lists, and the history log.

## How the message-level CCSID is set

See the following topics for information on how the message-level CCSID is set:

- Message-level CCSID with a message queue CCSID of 65535 or 65534
- Message-level CCSID with a specific message queue CCSID
- Message-level CCSID when a message queue CCSID conversion error occurs
- Message-level CCSID when a message is a stored message

Message-level CCSID with a message queue CCSID of 65535 or 65534: When a message is sent to the message queue and the CCSID of the message queue is 65535 or 65534 , no conversion occurs on the message. The message-level CCSID is set to the CCSID specified.

For example, message queue MYMSGQ has a CCSID of 65534. You enter the following Send Message command:
SNDMSG MSG('MSG \#1') CCSID(37) TOMSGQ(MYLIB/MYMSGQ)
The impromptu message text, MSG \#1, is not converted when added to the message queue. The message is tagged with CCSID 00037.

Message-level CCSID with a specific message queue CCSID: When a message is sent to the message queue and the CCSID of the message queue is something other than 65535 or 65534, the replacement data or impromptu message text is converted to the CCSID of the message queue. The message is then tagged with the CCSID of the message queue.

For example, message queue MYMSGQ has a CCSID of 00277. The replacement data for TST0002 is defined as *CCHAR data. You enter the following Send Program Message command:
SNDPGMMSG MSGDTA (X'0006D4E2C7407BF2') MSGID(TST0002) MSGF (MYMSGF)
CCSID(37) TOMSGQ(MYLIB/MYMSGQ)
The replacement data is converted from CCSID 00037 to CCSID 00277 before it is sent to the message queue. $X^{\prime} 0006$ ' is the length required for variable-length fields. X'D4E2C7407BF2' is MSG \#2 on code page 00037. The number sign (\#), $\mathrm{X}^{\prime} 7 \mathrm{~B}^{\prime}$ on code page 00037, is converted to a number sign, $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$ on code page 00277. All other code points do not change during the conversion because they are the same on both code page 00037 and code page 00277.

When the replacement data or impromptu message text of a message is 65535 and it is sent to a message queue with a CCSID other than 65535 or 65534 , no conversion occurs. However, the message is tagged with the CCSID of the message queue. Therefore, messages can be tagged with an incorrect CCSID when you send them to a message queue with a CCSID that overrides the message-level CCSID.

For example, message queue MYMSGQ has a CCSID of 00277. You enter the following Send Message command:
SNDMSG MSG('MSG \#2') TOMSGQ(MYLIB/MYMSGQ) CCSID(*HEX)
The impromptu message text $M S G$ \#2 is not converted before it is sent to the message queue. Although the impromptu message text is not converted to CCSID 00277, it is displayed using CCSID 00277. Unless you entered the Send Message command from a device configured to support code page 00277, you lost the integrity of the impromptu message text.

Message-level CCSID when a message queue CCSID conversion error occurs: If a conversion error occurs while sending a message to a message queue, the message is still sent to the message queue.

However, the impromptu text or data of the message is not converted. A diagnostic message is sent and the message is tagged with the message-level CCSID specified on the send command or API, not with the CCSID of the message queue.

You can recover the replacement data or impromptu message text with the proper CCSID setting. First, set the message queue CCSID to 65534. Then use the Receive Message command or API to return the correct message-level CCSID.

Message-level CCSID when a message is a stored message: If a message is a stored message, the message-level CCSID applies only to *CCHAR replacement data. The CCSID of the first- and second-level text of the message is retrieved from the message file.

Replies to stored messages are never converted from one CCSID to another. Only replies to impromptu messages are affected by CCSID processing.

Message description-level support: When a message description is added to a message file, the CCSID of the message text must be communicated to the operating system. You can use the CCSID parameter on the ADDMSGD or the CHGMSGD command to communicate this CCSID to the operating system.

The default settings of these commands indicate that the message text is in the CCSID of the job that is running the command. You can change this value by specifying a different CCSID value. You can also change this value by indicating that no CCSID processing should occur. You indicate that no CCSID processing should occur on the message text by specifying a CCSID value of 65535 (*HEX).

If you set CCSID processing on, system-supplied display files and printer files that display or print message descriptions convert the CCSID of the message file to the CCSID of the job before displaying them or printing them. To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting.

All message descriptions that existed in a message file that was created prior to V3R1 are tagged with CCSID 65535 on the first use or handling of that message description.

If the text of a message is not in the CCSID specified, incorrect conversion results may occur. See Can I correct the CCSID of a message description? if this occurs.

## How the CCSID of a message description is set

To set the message description-level CCSID, consider the following topics:

- Message file with a CCSID of 65535 or 65534
- Message file with a specific CCSID


## How to change the CCSID of a message description

See Changing the CCSID of a message description for details.
Message file with a CCSID of 65535 or 65534: If the CCSID of the message file is 65535 or 65534, no conversion occurs on the message description when it is added to the file. The message description CCSID is set to the CCSID specified on the ADDMSGD or CHGMSGD command.

For example, a message file MYMSGF has a CCSID of 65534. The job that is running is in CCSID 00037. You enter an ADDMSGD command, as follows:

The message text, MSG \#1, is not converted when added to the message file. The message text is tagged 00037 because the CCSID parameter was not coded on the ADDMSGD command and the default CCSID parameter is *JOB.

Message file with a specific CCSID: If the CCSID of the message file is something other than 65535 or 65534, the first- and second-level text of the message description is converted from the CCSID specified to the CCSID of the message file. It is then tagged with the CCSID of the message file.

For example, message file MYMSGF has a CCSID of 00277. The job that is running is in CCSID 00037. You enter the following command:
ADDMSGD MSG('MSG \#2') MSGID(TST0002) MSGF(MYMSGF) CCSID(37)
Message 'MSG \#2' is converted from CCSID 00037 to CCSID 00277 before it is added to the message file. The number sign (\#), $X^{\prime} 7 B^{\prime}$ on code page 00037, is converted to the number sign (\#), $X^{\prime} 4 A^{\prime}$, on code page 00277. No other code points change during the conversion because they are the same on both code page 00037 and code page 00277.

When the text of a message description is specified as 65535 and it is added to a message file, no conversion occurs. If the CCSID of the message file is not 65535 or 65534 , the message text is tagged with the CCSID of the message file.

When the message file CCSID is not 65535 or 65534, the message file CCSID overrides message description CCSIDs. Keep this rule in mind when adding and changing message descriptions to a message file with a CCSID other than 65535 or 65534 . Otherwise, a message description can be marked incorrectly.

For example, message file MYMSGF has a CCSID of 00277. You enter the following command:
ADDMSGD MSG('MSG \#2') MSGID(TST0002) MSGF(MYMSGF) CCSID(*HEX)
Message text 'MSG \#2' is not converted before it is added to the message file. Because the CCSID of the message file is 00277, the message text is tagged with CCSID 00277.

If the command was run in a job CCSID where the number sign (\#) occupies a code point different than the code point for the number sign on code page 00277, the message is displayed incorrectly.

A conversion error may occur while adding or changing a message description in a message file. If a conversion error occurs, the message description is still either added to or changed in the message file. The text of the message description, however, is not converted. A diagnostic message is sent and the message description is tagged with the CCSID specified, not with the CCSID of the message file.

When a conversion error occurs, you can recover the correct CCSID tagging for the message description by setting the message file CCSID to 65534. Then you can retrieve the correct CCSID for the message description using the Retrieve Message RTVMSG, command or the Retrieve Message QMHRTVM API.

The CCSID of a message description applies only to first- and second-level message text.
Change the CCSID of a message description: When you take the option to change a message description from the Work with Message Descriptions display, all current values for the selected message description are retrieved and placed on the prompt display. The first- and second-level text are converted from the CCSID of the message file to the CCSID of the job before they are put on the prompt display.
*JOB is displayed for the CCSID keyword and has two different meanings depending on what you do on the prompt display. If you change any part of the first- or second-level text, *JOB means that the text is converted from the CCSID of the job to the CCSID of the message file when you press the Enter key. If the text is unchanged, *JOB works like *SAME, and none of the following are changed:

- The first-level message text
- The second-level message text
- The CCSID of the message description

Both the first- and second-level text of a message description must be in the same CCSID. If you change the CCSID of one level, the system automatically converts the other level to match.

## Example: Changing a message description

The CCSID of message file MYMSGF is 65534. The CCSID of the job that is running WRKMSGD is 00277. The CCSID of the message description is 00037.

Select option 2 to change a message description. The text of the message description is converted from CCSID 00037 to 00277 before being placed on the prompt display.

If only the first-level text is changed, the 00277-tagged text is stored in the message file. The CCSID of the message description is changed to 00277. The 00277-tagged second-level text is also stored in the message file to keep both the first- and second-level text in the same CCSID.

Message queues: If you set CCSID processing on, system-supplied display files and printer files that display or print messages convert the CCSID of the message queue to the CCSID of the job before displaying or printing the messages. To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting.

All messages that existed on a message queue that was created in a release prior to V3R1 are assigned CCSID 65535 on the first use of that message.

## Determining the CCSID of a message queue

To determine the CCSID of a message queue, type:
dSPMSG MSGQ(MYLIB/MYMSGQ) ASTLVL(*BASIC)
where MYLIB is the library in which the message queue is stored and MYMSGQ is the name of the message queue.

Then press F22 (Display list details).
You can also use the Retrieve Message Queue Attributes (QMHRMQAT) application program interface (API) to determine the CCSID of a message queue.

For job message queues system reply lists, and the history log, the object-level CCSID is always 65534. You cannot change nor display object-level CCSIDs for job message queues, system reply lists, and the history log.

Job message queues: The CCSID for all job message queues is 65534 . You cannot change or display this value. A job message queue CCSID of 65534 requires fewer CCSID conversions. Fewer CCSID conversions of text result in better performance and improved data integrity.

The CCSID of each message in the job log is used for CCSID processing. No conversion occurs when a message is sent to the job log.

Note: Request messages are always tagged with a CCSID of 65535 and are never converted.
If you set CCSID processing on, system-supplied display files and printer files that display or print job logs convert the CCSID of the messages to the CCSID of the job before displaying or printing the messages.

To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting. Status messages that appear on line 24 of a display are converted to the CCSID of the device before they are shown.

For more information about Job message queues and CCSID support, see History log.
System reply list: The system reply list has a CCSID of 65534. You cannot change or display this value. The only part of the system reply list that is affected by CCSID processing is the Compare data field. If the Compare data field references replacement data that is defined as *CCHAR, the data being compared must be in a common CCSID before the comparison is done.

Any reply list entry that has compare data is tagged with the CCSID supplied on the ADDRPYLE or CHGRPYLE commands. When the system reply list is used, the replacement data is converted to the CCSID of the compare data before the comparison is made and before the message is sent to the message queue. This ensures that the data is in a common CCSID before the comparison is done.

## Example: System reply list and converted-character compare data

Enter the following Add Reply List Entry command:

```
ADDRPYLE SEQNBR(101) MSGID(TST0010) CMPDTA(X'00017B') RPY(*DFT) +
CCSID(37)
```

$\mathrm{X}^{\prime} 7 \mathrm{~B}^{\prime}$ is the number sign (\#) on code page 00037. $\mathrm{X}^{\prime} 0001^{\prime}$ is the length required for variable-length fields. The compare data is not converted when added to the system reply list. It is tagged with CCSID 00037. Message TST0010 has one replacement data field that is defined as *CCHAR with (*VARY 2) for its length. Message queue MYMSGQ has a CCSID of 00278.

Send message TST0010 in a job that has the system reply list turned on using the following Send Program Message command:
SNDPGMMSG MSGID(TST0010) MSGF (MYLIB/MYMSGF) MSGTYPE (*INQ) +
TOMSGQ(MYLIB/MYMSGQ) MSGDTA(X'00014A') CCSID(277)
The replacement data is converted from CCSID 00277 to CCSID 00037 and then compared with the compare data. The conversion results in replacement data X'00017B'. A match is found and the default reply is sent when this message is added to the message queue.

When the message is added to the message queue, the replacement data is converted from CCSID 00277 to CCSID 00278. The message queue CCSID does not matter when trying to match the compare data. The replacement data is converted to $\mathrm{X}^{\prime} 000163^{\prime}$ when it is sent to the message queue and tagged 00278. $X^{\prime} 63$ ' is the code point for the number sign (\#) in code page 00278.

History log: The history log is a database file that is tagged with CCSID 65535. You cannot change the CCSID of the history log. No conversions occur when you do database retrievals from the history file.

You can use CCSID processing when working with the history log. The CCSID of the replacement data or impromptu message text is added to the history log record. If the history log record is for a stored message, CCSID processing occurs only for the *CCHAR replacement data in that record.

You can retrieve a message from the history log and convert it into a specific CCSID by doing the following:

1. Obtain the input variables \&MSGFL, \&MSGF, \&MSGID, \&MSGDTA, and \&MDTACCSID, from the history log record. (See the CL Programming PDF for the layout of the history log record.)
2. Enter the following Retrieve Message command:

RTVMSG MSGF(\&MSGFL/\&MSGF); MSGID(\&MSGID); MSGDTA(\&MSGDTA); + MDTACCSID(\&MDTACCSID); MSG(\&MSG);

If you set CCSID processing on, system-supplied display files and printer files that display or print history log records convert the CCSID of the messages to the CCSID of the job before displaying or printing the messages. To print and display the messages correctly, your job CCSID setting must be the same as the code page portion of your device CHRID setting.

Set up CCSID support for message handling: The default setting of the CCSID for creating message queues and message files is 65535 . Most message files delivered with the operating system have a CCSID of 65535.

Most message descriptions in system-supplied message files are tagged with a CCSID that corresponds to the national language version with which they are shipped.

Some message descriptions are not assigned a CCSID that corresponds to the national language version. These message descriptions are tagged 65535 and are not converted when used.

Messages sent to a message queue that has a CCSID of 65535 are not converted when placed on the queue. Message descriptions added to a message file that has a CCSID of 65535 are not converted when placed in the file. These messages and message descriptions are tagged with a CCSID associated with their text or data. By tagging them with a CCSID associated with their text or data, they are given the correct CCSID if the object-level CCSID is changed to 65534.

You can set CCSID support on for handling a specific message queue. For example, to set CCSID handling on for message queue MYMSGQ in library MYLIB, type:
CHGMSGQ MSGQ(MYLIB/MYMSGQ) CCSID(65534)
The Change Message Queue (CHGMSGQ) command also allows you to turn on CCSID support for more than one message queue at a time.

You can set CCSID support on for handling a specific message file. For example, to set CCSID handling on for message file MYMSGF in library MYLIB, type:
CHGMSGF MSGF(MYLIB/MYMSGF) CCSID(65534)
The Change Message File (CHGMSGF) command also allows you to turn on CCSID support for more than one message file at a time.

CCSID support for message catalogs: The Message catalog CCSID (CLGCCSID) parameter allows you to specify the CCSID for storing data in a message catalog. The Source file CCSID (SRCCCSID) parameter allows you to specify the CCSID of a source file. Data from the source is converted to the CCSID of the message catalog if the CCSIDs for both are not the same. This is also the default action. The source can be in any CCSID that supports conversion to any other CCSID.

The CCSID of the original message catalog is used to update the message catalog. It can be single or mixed and in extended binary-coded decimal interchange code (EBCDIC), American National Standard Code for Information Interchange (ASCII), or UCS-2. If the catalog is a QSYS source file member that does not exist, the CCSID of the existing file is used. The value that is specified on the CLGCCSID parameter is used if the CCSID of the file is 65535 .

Converted character replacement data type field: A replacement data type field supports CCSID processing. This replacement data type field is called a convertible character field (*CCHAR). A *CCHAR replacement data type field is a variable-length field. This field may increase or decrease in length when the field is converted.

## Example: Add a message description with CCSID support

The following example shows how to add the message description TST0006 to message file MYMSGF. The message description has 2 replacement data type fields. One field is a character field length 10. The other field is a convertible character field with varying length. Use the ADDMSGD command as follows:
ADDMSGD MSG('This is *CHAR \&1; This is *CCHAR \&2;') MSGID(TST0006) +
MSGF(MYLIB/MYMSGF) FMT ((*CHAR 10) (*CCHAR *VARY 2))
Retrieve messages: The Retrieve Message (RTVMSG) command and retrieve message (QMHRTVM) application program interface (API) have a CCSID-to-convert-to parameter. This parameter determines which CCSID the first- and second-level text is converted to before the text is returned to the user. The Retrieve Message command and the Retrieve Message API also have a replacement data CCSID parameter. This parameter communicates the CCSID of the replacement data to the system. The replacement data CCSID applies only to the parts of the replacement data that correspond to *CCHAR type data. No other replacement data is converted.

The Retrieve Message command and Retrieve Message API convert the first- and second-level text from the CCSID of the message file to the CCSID on the CCSID-to convert-to parameter. Any replacement data that is *CCHAR data is converted from the replacement data CCSID to the CCSID-to-convert-to CCSID before being substituted into the correct replacement variables. The default for both parameters is *JOB, which means that the CCSID of the job is used.

## Retrieve Message command CCSID return fields

Three CCSID return fields are supported by the Retrieve Message (RTVMSG) command:

- TXTCCSID
- TXTCCSTA
- MDTACCSTA


## Example 1: Retrieving a message with CCSID support

Message file MYMSGF has a CCSID of 65534. The CCSID of the message description is used to determine the CCSID from which to convert the message text. The CCSID of the message description (TST0003) is 00037. The first-level text is:

```
'MSG #3 is &1;'
```

\&1 is defined as a *CCHAR variable field with a length of (*VARY 2). Enter the following RTVMSG (Retrieve Message) command:
RTVMSG MSGF(MYMSGF) MSGID(TST0003) MSG(8MSG); CCSID(277) +
MDTACCSID(277) MSGDTA(X'0002D6D2')
In the message data, the first 2 bytes are a length field with a value of 2 . All *VARY fields begin with a length. The next 2 characters are the actual *CCHAR data with a value of X'D6D2'. X'D6D2' represents the characters $O$ and $K$ on code page 00277.

The first-level text is converted from CCSID 00037 to CCSID 00277. The replacement data is not converted before it is substituted for \&1; because the replacement data CCSID matches the CCSID-to-convert-to parameter. As a result, the text returned in the variable \&MSG is:
'MSG \#3 is OK.'
The code point for the number sign (\#) is the only change that occurred in the conversion. The number sign was converted from code point $\mathrm{X}^{\prime} 7 \mathrm{~B}^{\prime}$ in code page 00037 to code point $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$ in code page 00277 . All other code points in the text of the message matched in code page 00037 and code page 00277.

Note: If the CCSID of a message file is 65535, no conversion occurs, even though the message description CCSID is 00037. The CCSID of the message file always takes precedence over the message description CCSID.

## Example 2: Using return fields and converted character data

Message description TST0005 has the following first-level text:
This is *CHAR \&1; This is *CCHAR \&2;

The message description is defined in message file MYMSGF, which has a CCSID of 65535. \&1; is defined as a *CHAR field of length 1. \&2; is defined as a *CCHAR field (*VARY 2) in length. The CCSID of the message description does not matter because the CCSID of the message file is not 65534. You enter the following RTVMSG command:
RTVMSG MSGF(MYMSGF) MSGID(TST0005) MSG(\&MSG); CCSID(260) +
MDTACCSID(37) MSGDTA(X'5A00015A') TXTCCSID(\&TXTCCSID);
Note: $\mathrm{X}^{\prime} 5 \mathrm{~A}^{\prime}$ is the exclamation point (!) on code page 00037.
These are the returned values from the RTVMSG command:

- $\& M S G=$ 'This is *CHAR. This is *CCHAR !!'

The EBCDIC value of the *CHAR character is $X^{\prime} 5 A^{\prime}$. X'5A' appears as an acute accent (' ) on code page 00260. The *CHAR data did not convert because only *CCHAR data supports CCSID processing. The '\&1' stayed at $\mathrm{X}^{\prime} 5 \mathrm{~A}^{\prime}$ ', while ' ' $22^{\prime}$ converted to $\mathrm{X}^{\prime} 4 \mathrm{~F}^{\prime}$. $\mathrm{X}^{\prime} 4 \mathrm{~F}$ ' is the exclamation point on code page 00260.

- \&TXTCCSID = 65535

The TXTCCSID variable is set to 65535 because no conversion occurred. When no conversion occurs, the CCSID (if it is not 65534) of the message file is returned.

CCSID of the text returned (TXTCCSID) return field: TXTCCSID is the CCSID of the text returned. If a conversion occurs and is successful, this value is always equal to the CCSID-to-convert-to value. If a conversion occurs and is not successful, this is the CCSID of the message file unless the CCSID of the message file is 65534. If the CCSID of the message file is 65534, the CCSID of the message description is returned.

For example, message file MYMSGF has a CCSID of 65534. Your program needs to know the CCSID of message description TST0004. Specify the RTVMSG command as follows:
RTVMSG MSGF(MYMSGF) MSGID(TST0004) CCSID(*HEX) TXTCCSID(\&TXTCCSID);
The CCSID of the message description is returned in the variable \&TXTCCSID because you specified *HEX for the CCSID-to-convert-to parameter. *HEX means no conversion is to occur. If no conversion occurs and the message file CCSID is 65534, the message description CCSID is returned.

You can also obtain the message description CCSID from the Work with Message Descriptions (WRKMSGD) display.

1. On the WRKMSGD display, select option 5 to display details.
2. From the Select Message Details to Display menu, select option 5 to display message attributes.
3. Page forward to the CCSID value. The message description CCSID is shown if the CCSID of the message file is 65534. If the CCSID of the message file is not 65534, the CCSID of the message file is shown.

CCSID conversion status indicator (TXTCCSTA) return field: TXTCCSTA is the text CCSID conversion status indicator. Return codes help you determine what happened when the system converted your message text to the CCSID-to-convert-to parameter. Positive return code numbers indicate that your conversion was successful. A successful return code does not always indicate that a conversion occurred. Negative return code numbers indicate that a conversion error occurred.

The following list shows the available return codes:

0 No conversion was necessary. The CCSID of the text matched the CCSID that you wanted the text converted to.

1 No conversion occurred. Either the text was 65535 or the CCSID that you wanted the text converted to was 65535.

2 No conversion occurred. You did not ask for any text to be returned.
3 The text was converted to the CCSID specified. The conversion operation used the linguistic conversion tables.
4 A conversion error occurred when the conversion operation used the linguistic conversion tables. The conversion operation then used a default conversion table. The default conversion completed without error.
-1 An error occurred on both the linguistic and default conversions. The text was not converted.
Replacement data CCSID conversion status indicator (MDTACCSTA) return field: MDTACCSTA is the replacement data CCSID conversion status indicator. Return codes help you determine what happened when the system converted your replacement data to the CCSID-to-convert-to parameter.

Positive return code numbers indicate that your conversion was successful. A successful return code does not always indicate that a conversion occurred. Negative return code numbers indicate that a conversion error occurred. These return codes are similar to the TXTCCSTA return codes. The return codes apply to the conversion that takes place on any *CCHAR replacement data being converted from the replacement data CCSID to the CCSID-to-convert-to value.

The following list shows the available return codes:
0 No conversion was necessary. The CCSID of the replacement data matched the CCSID that you wanted the text converted to.

1 No conversion occurred. Either the replacement data was 65535 or the CCSID that you wanted the replacement data converted to was 65535 .

2 No conversion occurred. Either you did not ask for any replacement data to be returned or no *CCHAR replacement data fields were defined for the message description being retrieved.

3 The replacement data was converted to the CCSID specified. The conversion operation used the linguistic conversion tables.

4 A conversion error occurred when the conversion operation used the linguistic conversion tables. The conversion operation then used a default conversion table. The default conversion completed without error.
-1 An error occurred on both the linguistic and default conversions. The replacement data was not converted.

Receive messages: The Receive Message (RCVMSG) command, the Receive Nonprogram Message (QMHRCVM) API, and the Receive Program Message (QMHRCVPM) API have a CCSID-to-convert-to parameter. This parameter determines which CCSID the text or data is converted to before it is returned to the user.

The Receive Message command and APIs convert the text or data from the CCSID of the message queue or message file to the CCSID supplied on the CCSID-to-convert-to parameter. When replacement data is returned, only the *CCHAR data is converted from the CCSID of the message queue to the CCSID-to-convert-to value.

If the CCSID of the message file or message queue is 65534, the text or data is converted from the CCSID of the message description or message to the CCSID supplied on the CCSID-to-convert-to parameter.

The default for the CCSID-to-convert-to parameter is *JOB, which means that the CCSID of the job performing the receive operation is used.

## Receive Message command CCSID return fields

Two CCSID return fields are supported by the Receive Message (RCVMSG) command:

- TXTCCSID
- DTACCSID


## Receive Message API CCSID return fields

The Receive Message (QMHRCVM) API and the Receive Program Message (QMHRCVPM) API support the return fields defined in TXTCCSID return field for receive message command and DTACCSID return field for receive message command. The Receive Message API and the Receive Program Message API also support two additional return fields.

## Example 1: Using the CCSID return fields

Message description TST0005 has the following first-level text:
This is \&CHAR \&1; This is *CCHAR \&2;
'\&1' is defined as a *CHAR field of length 1 . ' $\& 2$ ' is defined as a *CCHAR field (*VARY 2) in length.
Message file MYMSGF has a CCSID of 65534. TST0005 is defined in message file MYMSGF. The message description CCSID is 65535 . The CCSID of message queue MYMSGQ is 65534.

You enter the following Send Program Message command:
SNDPGMMSG MSGF(MYMSGF) MSGID(TST0005) CCSID(37) TOMSGQ(MYLIB/MYMSGQ) +
MSGDTA(X'7B00017B')
The message is not converted when it is sent to message queue MYMSGQ because the message queue CCSID is 65534. The message is tagged with CCSID 00037.

You enter the following Receive Message command to receive the message just sent:
RCVMSG MSGQ(MYLIB/MYMSGQ) MSG(\&MSG); DTACCSID(\&DTACCSID) ; +
CCSID(277) MSGDTA(\&MSGDTA); TXTCCSID(\&TXTCCSID);
Note: $\mathrm{X}^{\prime} 7 \mathrm{~B}$ ' is the number sign (\#) on code page 00037.
Because the message description is tagged 65535, no conversion is performed when retrieving the message text of TST0005. The replacement data is tagged 00037. The *CCHAR part of the message data is converted from CCSID 00037 to CCSID 00277 before being inserted for \&2; *CHAR data is never converted.

The following table shows the returned values after the Receive Message command runs:

| Value | Description |
| :---: | :---: |
| \&MSG = | This is \&CHAR Æ. This is *CCHAR \#. <br> The *CHAR data was not converted when substituted for \&1; The *CHAR data remains $X^{\prime} 7 B^{\prime} . X^{\prime} 7 B^{\prime}$ is the code point on code page 00277 for A ligature ( $\bar{E}$ ). <br> The *CCHAR data was converted to $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$ before it was substituted for $\& 2$; $\mathrm{X}^{\prime} 4 \mathrm{~A}^{\prime}$ is the code point on code page 00277 for the number sign (\#). |


| Value | Description |
| :--- | :--- |
| \&TXTCCSID $=65535$ | The \&TXTCCSID variable was set to 65535 because no conversion occurred. When no <br> conversion occurs, the CCSID of the message description is returned if the CCSID of the <br> message file is 65534. |
| \&DTACCSID $=00277$ | The \&DTACCSID variable was set to 00277 because a conversion occurred. |

## Example 2: Receiving a message with CCSID support

Message file MYMSGF has a CCSID of 00037. Message queue MYMSGQ has a CCSID of 65534. The message being received has a message-level CCSID of 00277. CCSID 65534 uses the message-level CCSID when determining the CCSID the replacement data is to be converted from.

The message being received is a stored message. The stored message has *CCHAR replacement data. The CCSID of the job is 00278. You enter the following Receive Message command:

RCVMSG MSGQ(MYMSGQ) MSG(\&MSG); MSGDTA(\&MSGDTA);
The first-level text of the stored message that you receive is converted from CCSID 00037 to CCSID 00278. The replacement data of the message that you receive is converted from CCSID 00277 to CCSID 00278. Then the replacement data is substituted into the first-level text and returned in \&MSG.

Both the first-level text and the replacement data of the message that you received are converted to the CCSID of the job because the CCSID of the job is the default for the CCSID-to-convert-to parameter.

Two different conversions must occur because only the replacement data is stored in the message queue for stored messages. The text of a stored message must be retrieved from the message file. If the message contained other replacement data type fields that were not defined as *CCHAR, the non-*CCHAR data is not converted before being returned.

Note: If the CCSID of the message queue is 00278 , no conversion occurs on the replacement data before the message is returned, even though the message CCSID is 00277. Remember that the message queue CCSID takes precedence over the message-level CCSID.

CCSID of the message text returned (TXTCCSID) return field: TXTCCSID is the CCSID of the message text returned. If a conversion occurs and the conversion is successful, this value is always the same as the CCSID-to-convert-to value.

For impromptu text, if the conversion is not successful, TXTCCSID is the CCSID of the message queue, unless the message queue is 65534. If the message queue is 65534, TXTCCSID is the message-level CCSID of the impromptu text.

For a stored message, if the conversion is not successful, TXTCCSID is the CCSID of the message file that contains the stored message, unless the message file is 65534. If the CCSID of the message file is 65534, TXTCCSID is the CCSID of the message description for the stored message.

CCSID of the replacement data returned (DTACCSID) return field: DTACCSID is the CCSID of the replacement data returned. DTACCSID applies only to those parts of the replacement data defined as *CCHAR. If the message being received is an impromptu message, a value of 0 is returned. If a conversion occurs and the conversion is successful, this value is the same as the CCSID-to-convert-to value.

If the conversion is not successful, the DTACCSID returned is the CCSID of the message queue, unless the CCSID of the message queue is 65534. If the CCSID of the message queue is 65534, the DTACCSID returned is the CCSID of the message.

For example, a stored message TST0004 from message file MYMSGF is sent to message queue YOURMSGQ with replacement data. TST0004 is defined with *CCHAR replacement data. Message file MYMSGF is 65534. Message queue YOURMSGQ has a CCSID of 00037.

Your program needs to know the CCSID of the message description and the replacement data sent to message queue YOURMSGQ. You enter the following Receive Message command:
RCVMSG MSGQ(YOURMSQ) CCSID(*HEX) TXTCCSID(\&TXTCCSID); DTACCSID(\&DTACCSID);
The message description CCSID is returned in the variable \&TXTCCSID. The message description CCSID is returned because you specified *HEX for the CCSID-to-convert-to parameter. *HEX means that no conversion is to occur. If no conversion occurs and the message file CCSID tag is 65534, the CCSID of the message description is returned.

The CCSID of message queue YOURMSGQ (00037) is returned in the variable \&DTACCSID. The message queue CCSID is returned because it is not 65534.

You can also obtain the message-level CCSID using the Display Messages (DSPMSG) display.

1. From the Display Messages display, press Help to display the Additional Message Information display.
2. Then press F9 (Display Message Details).

This displays the message-level CCSID when the CCSID of the message queue that this message is on is 65534. Otherwise, the CCSID of the message queue is displayed.

Common questions about CCSID support for handling messages: Following are some common questions asked about CCSID support for handling messages.

- When is the job default CCSID used for handling messages?
- How can I determine if a message description is defined with *CCHAR?
- Can the length of *CCHAR replacement data change?
- Can I correct the CCSID of a message queue?
- Can I correct the CCSID of a message file?
- Can I correct the CCSID of a message?
- Can I correct the CCSID of a message description?

When is the job default CCSID used for handling messages?: A job default CCSID is always a CCSID with an encoding scheme of 1100 (single-byte EBCDIC) or 1301 (mixed-byte EBCDIC). The job default CCSID is used whenever both of the following are true:

- A conversion occurs from a CCSID with an encoding scheme other than 1100 or 1301 to a job CCSID.
- The job CCSID is 65535 .

For example, ASCII data must be converted to a CCSID associated with the data when asked to convert to the CCSID of a job. The job default CCSID is used because it is never CCSID 65535.

How can I determine if a message description is defined with *CCHAR?: You can use the Work with Message Description (WRKMSGD) command to determine if a message description is defined with *CCHAR data. You can also use the Retrieve Message (QMHRTVM) API to return the replacement data format fields. For more information, see the System API topic.

Can the length of *CCHAR replacement data change?: The length of *CCHAR replacement data can change. This is why *CCHAR replacement data is required to be a variable-length field. The length of the field will grow when converting from an SBCS CCSID to the UCS-2 Level-1 CCSID. The length of the field will shrink when converting from the UCS-2 Level-1 CCSID to an SBCS CCSID.

For example, you define message description TST0011 as 'Printer \&1; has error \&2;' in message file MYMSGF that has a CCSID of 65535. ' $\& 1$ ' is defined as *CCHAR data (*VARY 2) in length. This is the
name of the printer. \&2; is defined as a *CHAR data with a length of 1 . This is an error code. Enter the following Send Program Message command to send this message to message queue MYMSGQ:
SNDPGMMSG MSGID(TST0011) MSGF(MYLIB/MYMSGF) TOMSGQ(MYLIB/MYMSGQ) +
MSGDTA(X'000400500030F1') CCSID(61952)
X'0004' is the length of the variable *CCHAR data. X'00500030' represents the characters P0 in CCSID 61952. If message queue MYMSGQ has a CCSID of 00037, the replacement data is converted to X'0002D7F0F1' before it is sent to the message queue. If message queue MYMSGQ has a CCSID of 65535, the data is not converted when it is sent to the message queue.

Your application programs cannot hard-code the position of the return code in this example. When message queue MYMSGQ has a CCSID of 00037, the return code is 5 bytes into the message text. When message queue MYMSGQ has a CCSID of 65535, the return code is 7 bytes into the message text.

Can I correct the CCSID of a message queue?: You may have a message queue that has a CCSID that does not match the CCSID of the messages on it. This usually results from sending messages with a message-level CCSID of 65535 to a message queue with a CCSID that is not 65534 or 65535.

If all of the messages on a message queue have the same message-level CCSID and you know the message-level CCSID, you can enter the following command:
CHGMSGQ MSGQ(MYMSGQ) CCSID(nnnnn)
In this example, MYMSGQ is the name of the message queue and nnnnn is the message-level CCSID.
If you do not know the CCSID of all the messages on the queue or if the messages on the queue have different CCSIDs, the message queue should have a CCSID of 65535 or 65534 . You can change the message queue CCSID to 65535. Or, you can do the following:

1. Delete all of the messages.
2. Change the CCSID of the message queue to 65534.
3. Send all of the messages again.

Can I correct the CCSID of a message file?: You may have a message file that has a CCSID that does not match the CCSID of the message descriptions in it. This usually results from adding message descriptions with a message-level CCSID of 65535 to a message file with a CCSID that is not 65534 or 65535.

If all of the message descriptions in a message file have the same message-level CCSID, and you know the message-level CCSID, you can enter the following command:
CHGMSGF MSGF(MYMSGF) CCSID(nnnnn)
In this example, MYMSGF is the name of the message file and nnnnn is the message-level CCSID.
If you do not know the CCSID of all the message descriptions in the file or if the message descriptions in the file have different CCSIDs, the message file should have a CCSID of 65535 or 65534 . You can handle this situation in either of the following ways:

- Change the CCSID of the message file to 65535.
- Follow these steps:

1. Change the CCSID of the message file to 65534 .
2. Change the message-level CCSID of each message description to the correct value. See Can I correct the CCSID of a message description? for information on how to correct the CCSID of a message description.

Can I correct the CCSID of a message?: You cannot correct the message-level CCSID of a message. You can change the message queue CCSID to match the message-level CCSID. You can also delete the message and send it again with the correct message-level CCSID.

Can I correct the CCSID of a message description?: You can use the Change Message Description (CHGMSGD) command to change the CCSID of a message description. If you do not change the first- or second-level text at the same time that you change the message description CCSID, the text remains unchanged. Only the CCSID changes.

For example, you can enter the following Change Message Description command to correct the CCSID of a message description without changing any of the first- or second-level message text:
CHGMSGD MSGF(MYLIB/MYMSGQ) MSGID(TST0001) CCSID(37)

## Work with bidirectional data

Arabic and Hebrew languages use an alphabet written and read from right to left. Numerics and Latin text imbedded in the right-to-left text are written and read from left to right; therefore, these languages are called bidirectional languages.

Because bidirectional languages are written and read from right to left, you should avoid using the terms left and right. For example, right margin in Hebrew or Arabic documents would be the beginning of the line and not the end. Use the words start and end in place of the words right and left.

Hebrew and Arabic have no case-sensitive characters. To avoid the incorrect presentation of characters, no case-sensitive checking or substitution should be performed. In addition, the Arabic language does not use abbreviations, therefore, you should use only complete words.

The following links provide additional information on Bidirectional application design:

- Bidirectional application support
- Checklist: Bidirectional support

See Code globalized applications that use bidirectional data: guidelines for information about how you can design your applications to accommodate bidirectional data.

## Bidirectional application support

OS/400 ${ }^{(\mathrm{R})}$ provides bidirectional application support in the following ways:

- Workstation
- Display file
- UIM


## Workstation support

Workstations that have the ability to display Arabic and Hebrew character sets also have the ability of right-to-left cursor movement. Right-to-left cursor movement on input fields can be achieved in one of the following ways:

- Pressing a special function key available on Hebrew and Arabic keyboards called the reverse key. This is a toggle function that moves the cursor to the other side of the field, allows for cursor movement in the opposite direction, and also changes the language layer from Latin to Hebrew or Arabic and back again.
- Using the DDS cursor control codes for display files. When the CHECK keyword is used with a cursor-controlled code, it specifies that the cursor is to move from right to left. The valid cursor control codes are:
- CHECK (RL): Moves the cursor from right to left in specified nonnumeric input fields or in all nonnumeric input fields on the display.
- CHECK (RLTB): Moves the cursor from right to left between fields.

When using these parameters, remember the following:

- Modulus check digit verification is supported, but the check digit is the byte to the extreme right of the field.
- A field for which right-to-left cursor movement is specified can occupy more than one line on the display. However, the cursor still moves from the top of the display to the bottom.
- You cannot use right-to-left cursor movement with user-defined data streams.

Note: If no cursor positioning is specified in the display file or by the program, the cursor is placed in the input-capable field to the extreme left of the top line.
See the DDS concepts topic for more information.

## Display file support

The server does not check to make sure that all display files opened to the display station are capable of right-to-left cursor movement. Therefore, it is the responsibility of application programmers to ensure that the proper display files are used.

## User interface manager support

The user interface manager gives the following bidirectional support for creating online information and panels:

- BIDI= NONE | RTL | LTR

This attribute controls the directional orientation of the panels in the panel group.
RTL indicates that the panel in the panel group is bidirectional and should be displayed with a right-to-left orientation.
LTR indicates that the panel in the panel group is bidirectional and should be displayed with a
left-to-right orientation.

- :RT and :ERT

Reverse-direction-text tags indicate that the enclosed text has an orientation that is opposite to the orientation of the panel group.

For a list of UIM tags, see the Application Display Programming
PDF.

## Checklist: Bidirectional support guidelines

When creating an application with bidirectional support, you must follow some guidelines. Some of these guidelines are listed in the following table:

| Complies | Not applicable | Rule |
| :--- | :--- | :--- |
|  |  | Software design must allow for bidirectional data to be passed to <br> applications in the same order that a speaker of the language would <br> spell it out. |
|  |  | The product design must allow for the implementation of the correct <br> handling of bidirectional keyboard and presentation functions. |
|  | Designing of a function that implies logical movement of cursor or <br> characters must permit mirroring of that function. |  |
|  |  | Keys or operations labeled with directional icons or symbols must <br> perform according to the icon or symbol. |
|  | Keyboard nomenclature for mirrored functions must be independent <br> of the direction of data or text entry. |  |
|  | Display functions must not assume a left-to-right orientation. |  |
|  |  | Field attributes must contain room for directional information. |


| Complies | Not applicable | Rule |
| :--- | :--- | :--- |
|  |  | Indicator location must be reserved for the current direction of the <br> cursor (direction of input). |
|  |  | The design must allow for independent handling of graphic and text <br> orientation. |
|  |  | Provision must be made to allow shape determination to be <br> performed. |
|  |  | The deshaping must be definable. <br> provision must be made to allow the selection of the appropriate <br> prestape for the numerals. |
|  |  | Characters must be allowed to touch each other on printers and <br> displays. |
|  |  | Indicator locations should be reserved for screen and field <br> orientation, current level of nesting, status of push (nesting <br> mechanism), and status of symmetric swapping. |
|  |  | The design should provide for a method to indicate to the user the <br> nesting structure of a string. |
|  |  | A system-wide method of deshaping Arabic characters or character <br> strings should be provided. |
|  |  | An indicator location should be provided for the status of shape <br> determination. |
|  | A method should be provided so that proportional spacing can be <br> provided. |  |
|  |  | A method should be provided to allow alignment of the baseline of <br> Arabic and Latin characters (including Hindi and Arabic shapes for <br> numerals). |
|  |  |  |
|  |  |  |

## Work with DBCS data

The following topics describe how you handle DBCS data in applications that use DBCS-capable device files:

- Checklist: DBCS application design
- Develop applications that process DBCS data
- DBCS code schemes
- DBCS font tables
- DBCS font files
- DBCS sort tables
- DBCS field definition

A DBCS file is a file that contains double-byte data or is used to process double-byte data. Other files are called alphanumeric files. You can view DBCS files on display, printer, tape, diskette, and ICF devices.

You use data description specifications (DDS) to describe DBCS-capable device files. For information about using DDS, see the DDS concepts topic.

You should indicate that a file is DBCS in one or more of the following situations:

- The file receives input, or displays or prints output, which has double-byte characters.
- The file contains double-byte literals.
- The file has double-byte literals in the DDS that are used in the file at processing time (such as constant fields and error messages).
- The DDS of the file includes DBCS keywords.
- The file stores double-byte data (database files).


## DBCS strings in a mixed data stream

Usually, both single-byte characters and double-byte characters are used in a DBCS environment. For example, an accounting firm in Japan uses both English and Japanese for the spreadsheet. If both English and Japanese are being encoded as mixed SBCS and DBCS, the product must be able to understand a mixed character set that contains both single-byte coded characters and double-byte coded characters.

In IBM ${ }^{(\mathrm{R})}$ systems that use EBCDIC, a DBCS string is bracketed in a mixed data stream by a shift-out (SO) control character and a shift-in (SI) control character.

The following example shows the coding for a mixed string:
sSS
D1D2D
(SI) ssss

The following example shows the coding for a mixed hexadecimal string:
818283 0E 41424143 0F 818283

## Supported code ranges

OS/400 ${ }^{(R)}$ supports Japanese, Korean, Simplified Chinese, and Traditional Chinese character-set code ranges.

Using the iSeries ${ }^{(\mathrm{TM})}$ Access family of products, the servers also provide support for these non-IBM personal computer DBCS code pages:

- Republic of Korea National Standard graphic character set (KS)
- Taiwan Industry Standard graphic character set (Big5)
- The People's Republic of China National Standard graphic character set (GB)


## Checklist: DBCS application design

When creating an application with double-byte coded character set support, you must follow some guidelines. A complete list of these guidelines, as well as a full description of each guideline, is included in Volume 1 Designing Enabled Products, Rules and Guidelines (SE09-8001). For your convenience, a subset of these guidelines is provided in the following table.

| Complies | Not applicable | Rule |
| :--- | :--- | :--- |
|  |  | Double-byte coded character set code points in the graphic <br> character range must be used only for graphic characters and must <br> not be used for control purposes. |
|  |  | Single-byte meaning must not be drawn from either byte of <br> double-byte coded data. |
|  |  | Double-byte coded character set character generators must be <br> capable of producing user-accessible graphic characters. |
|  | The ability to switch between single-byte coded character set and <br> double-byte coded character set and the coexistence of single-byte <br> coded character set and double-byte coded character set in the <br> same session must be possible. |  |
|  |  | User-interface text modules for double-byte coded character set <br> systems must be loaded separately from the running code. |

## Develop applications that process DBCS data

Design your application programs for processing double-byte data in the same way you design application programs for processing alphanumeric data, with the following additional considerations:

- Make sure that the double-byte data is always processed in a double-byte unit and does not split a double-byte character.
- Identify double-byte data used in the database files.
- Design display and printer formats that can be used with double-byte data.
- If needed, provide DBCS conversion as a means of entering double-byte data for interactive applications. Use the DDS keyword for DBCS conversion (IGCCNV) to specify DBCS conversion in display files. Because DBCS workstations provide a variety of double-byte data entry methods, you are not required to use the OS/400 ${ }^{(R)}$ DBCS conversion function to enter double-byte data.
- Create double-byte messages to be used by the program.
- Specify extended character processing so that the system prints and displays all double-byte data.
- Determine whether additional double-byte characters need to be defined. User-defined characters can be defined and maintained using the character generator utility (CGU). Information on CGU can be found in the ADTS/400: Character Generator Utility, SC09-1769-00 book.

The following topics provide more detailed information about how you can use DBCS data in your applications:

- Use of double-byte data
- DBCS coding considerations
- Process double-byte characters
- Display support
- Make DBCS-capable printer files
- Copy spooled and nonspooled DBCS files
- Change alphanumeric to DBCS programs
- DBCS text and CL commands
- DBCS conversion
- SQL and DBCS

Use of double-byte data: You can use double-byte data in the following ways:

- As data in files:
- Data in database files.
- Data entered in input-capable and data displayed in output-capable fields of display files.
- Data printed in output-capable fields in printer files.
- Data used as literals in display files and printer files.
- As the text of messages.
- As the text of object descriptions.
- As literals and constants, and as data to be processed by high-level language programs.

Double-byte data can be displayed only at DBCS displays and printed only on DBCS printers. Double-byte data can be written onto diskette, tape, disk, and optical storage.

## Where you cannot use double-byte data:

You cannot use double-byte data in the following ways:

- As OS/400 ${ }^{(\mathrm{R})}$ object names.
- As command names or variable names in control language (CL) and other high-level languages.
- As displayed or printed output on alphanumeric workstations.


## Double-byte character size:

When displayed or printed, double-byte characters usually are twice as wide as single-byte characters.
Consider the width of double-byte characters when you calculate the length of a double-byte data field because field lengths are usually identified as the number of single-byte character positions used. For more information on calculating the length of fields containing double-byte data, see the DDS concepts topic.

DBCS coding considerations: If you plan to have your application used in a DBCS environment, you should ensure that it is DBCS-enabled. Following are some suggestions to consider when developing your general product design.

- Reserve more expansion space for DBCS textual data translation than you reserve for SBCS textual data translation. (It is possible, however, that the number of bytes used may be reduced when a SBCS sentence is being translated into DBCS.)
- Ensure programs can understand shift-out and shift-in delimiters. Otherwise, EBCDIC mixed-byte character strings cannot be handled.
- Do not enable short responses for DBCS. For short responses, it is difficult to shift in and out of DBCS. The yes and no are examples of short responses.
- Remember to use the graphic data type $G$ where appropriate.
- Remember that the 5494 remote controller supports the graphic data type.
- Be careful when converting mixed data between DBCS-host code and DBCS-PC code, because the transition may change the data length. Losing and gaining SO and SI character pairs can upset field-length calculations.
- Make sure the double-byte data is always processed in a double-byte unit. Do not split a double-byte character.
- Design the display as well as the print format to avoid the problem of truncation of a double-byte character into two single-byte units.

See the following for additional DBCS coding considerations:

- Creating physical files
- Target physical files
- Using CCSIDs
- Using DDS keywords
- DBCS file data types
- The Katakana code page (00290)
- UCS-2 level-1 DBCS display support

Creating physical files: When creating a physical file, display file, and printer file for a DBCS environment, consider the IGCDTA parameter present in the following commands:

- Create Physical File (CRTPF) command

If DBCS fields are described in DDS, the system treats the file as a DBCS file. Otherwise, specify *YES for the parameter of the CRTPF command so that the file can contain double-byte character set data. However, the system ignores the IGCDTA parameter value when a value for the RCDLEN parameter is not specified.

- Create Display File (CRTDSPF) and Create Printer File (CRTPRTF) commands Specify *YES for the parameter when using the CRTDSPF or CRTPRTF commands to create the externally described files. Then DBCS attributes, in addition to those defined in the DDS, can be specified.

Target physical files: When the CPYSPLF, DSPSPLF, or WRKSPLF commands with OUTPUT(*OUTFILE) option are used under the DBCS version of the OS/400 ${ }^{(R)}$ program, the target physical file must be DBCS-enabled.

Note: The primary language of the system must support the double-byte character set to allow DBCS-enabled applications.

Use the QIGC system value to check if a DBCS version of the system is installed. Because it is set by the system, it cannot be changed. This system value can be referred to in an application program. QIGC can be:

- 0 (DBCS version is not installed)
- 1 (DBCS version is installed)

A DBCS system allows for concurrent use of SBCS and DBCS data. When the QIGC system value is 1 , you should not assume all jobs are DBCS.

Using CCSIDs: Use DBCS CCSIDs for DBCS languages. When designing an application to be used in the DBCS environment, consider the following CCSID information:

- If the QIGC system value is set on, system value QCCSID must have the value of a mixed CCSID.
- If the DBCS and SBCS language users are sharing the same system, they may want to store their data in different databases. It is possible to create DBCS-capable and SBCS-capable physical files in the same system. The CCSID parameter on the CRTPF command or the CCSID keyword on the physical file DDS definition can be used to specify the CCSID value that the data is stored in.
- If a CCSID was not explicitly assigned through DDS at file creation time, the database physical file character J (DBCS-only), E (DBCS-either), O (DBCS-open) or G (DBCS-graphic) fields are implicitly assigned a CCSID value.

Using DDS keywords: Consider the following DDS keywords so that you can specify alternative ways to enter data through display files, change input- and output-capable alphanumeric data fields to DBCS data fields, or to specify the special features of the DBCS printer output:

- CHRSIZ (Character Size)

This printer file keyword can expand the printer characters to twice the normal size (width and height).
This keyword is valid only for IPDS ${ }^{(T M)}$ printers and for printer files with a device type of *IPDS or *AFPDS specified.

- CONCAT (Concatenate)

This keyword can be used only on logical files. This keyword does not support concatenation of a character field and a data type O field.

- DFLIN (Define Line)

The printer file keyword draws horizontal and vertical lines.

- IGCALTTYP (DBCS Alternative Data Type)

This display and printer keyword is used to change input- and output-capable character fields to DBCS fields with data type O.

- IGCANKCNV (Alphanumeric-to-DBCS Conversion)

This printer file keyword converts alphanumeric SBCS characters to equivalent DBCS characters. Printed SBCS alphanumeric characters have the same appearance as printed DBCS characters. The printed DBCS characters, however, are twice as wide as the equivalent SBCS alphanumeric characters.

- IGCCDEFNT (DBCS Coded Font)

This printer file keyword specifies the DBCS coded font for printing a named or constant field (or fields).

- IGCCNV (DBCS Conversion)

This is a display file keyword that enables DBCS conversion.

- IGCCHRRTT (DBCS Character Rotation).

This printer file keyword rotates each DBCS character 90 degrees counterclockwise before printing. By rotating characters, the system prints them in reading sequence. This keyword should be used only for printer files to be printed with 5553 printers or IPDS AFP(*YES) printers.

For more information on the DDS keywords for DBCS, see the DDS concepts topic.
DBCS file data types: The data type of a field in a physical file may be changed when it is being referred to in a logical file, as summarized in the following table:

| Physical File Data Types | Logical File Data Types |
| :--- | :--- |
| J | J, O, E, H, G |
| O | O, H |
| E | E, O, H |
| A | A, O, E, H |
| H | J, O, E, A, H |
| G | G, O, J, E |

The Katakana code page (00290): The Katakana code page (code page 00290) of Japan supports uppercase English and single-byte Katakana (phonetics) characters. The lowercase English characters are located at code points different from other code pages and the hardware may not be able to display English uppercase, lowercase, and Katakana characters concurrently. Therefore, special considerations should be taken if the application is going to support this code page:

- Avoid using the lowercase alphabet for syntactic characters.
- Avoid using the SBCS lowercase alphabet with Japanese DBCS messages.

UCS-2 level-1 support and IBM ${ }^{(R)}$ DBCS displays: OS/400 ${ }^{(R)}$ supports ISO/IEC 10646 Universal Coded Character Set 2, Level 1 (UCS-2, Level-1). IBM DBCS-capable display stations, however, do not support UCS-2 Level-1 data. If you are designing an application to handle UCS-2 Level-1 data for display on an IBM DBCS-capable display, you must convert the data to a mixed-byte CCSID before sending the data to the display station.

Process double-byte characters: Due to the large number of double-byte characters, the system needs more information to identify each double-byte character than is needed to identify each alphanumeric character.

There are two types of double-byte characters: basic and extended. These characters are usually processed by the device on which the characters are displayed or printed.

## Basic double-byte characters:

Basic characters are frequently used double-byte characters that reside in the hardware of a DBCS-capable device. The number of double-byte characters stored in the device varies with the language supported and the storage size of the device. A DBCS-capable device can display or print basic characters without using the extended character processing function of the operating system.

## Double-byte extended characters:

When processing extended characters, the device requires the assistance of the system. The system must tell the device what the character looks like before the device can display or print the character. Extended characters are stored in a DBCS font table, not in the DBCS-capable device. When displaying or printing extended characters, the device receives them from the DBCS font table under control of the operating system.

Extended character processing is a function of the operating system that is required to make characters stored in a DBCS font table available to a DBCS-capable device.

To request extended character processing, specify the double-byte extended character parameter, IGCEXNCHR(*YES), on the file creation command when you create a display (CRTDSPF) or create a printer file (CRTPRTF) command that processes double-byte data. Because IGCEXNCHR(*YES) is the default value, the system automatically processes extended characters unless you instruct it otherwise. You can change this file attribute by using the change file (CHGDSPF) or (CHGPRTF) command. You can override the file attribute with the override display file (OVRDSPF) or override printerfile (OVRPRTF) command. For example, to override the display file DBCSDSPF so that extended characters are processed, enter:
OVRDSPF DSPF(DBCSDSPF) IGCEXNCHR(*YES)

## Notes:

1. The system ignores the IGCEXNCHR parameter when processing alphanumeric files.
2. When you use the Japanese 5583 Printer to print extended characters, you must use the Kanji print function of the Advanced DBCS Printer Support licensed program.

## What happens when extended characters are not processed:

When extended characters are not processed, the following happens:

- Basic double-byte characters are displayed and printed.
- On displays, the system displays the undefined character where it would otherwise display extended characters.
- On printed output, the system prints the undefined character where it would otherwise print extended characters.
- The extended characters, though not displayed or printed, are stored correctly in the system.

Display support: The following provides useful information about displaying double-byte characters.

## Inserting shift-control characters:

The system inserts shift-control characters into DBCS-only fields automatically.
To insert shift-control characters into open fields or either fields, do the following:

1. Position the cursor in the field in which you want to insert double-byte data.
2. Press the Insert Shift Control Character key (according to your DBCS display user's guide).

The system inserts a pair of shift-control characters at the same time. The system leaves the cursor under the shift-in character and puts the keyboard in insert mode. Insert double-byte characters between the shift-control characters.

To find out if a field already has the shift-control characters, press the Display Shift Control Character key.
DBCS-graphic fields store double-byte characters without requiring the use of shift control characters. Shift control characters should not be inserted in graphic fields.

## Number of displayed extended characters:

The system can display up to 512 different extended characters on a Japanese display at one time. Additional extended characters are displayed as undefined characters. However, the additional extended characters are stored correctly in the system.

## Number of input fields on a display:

The use of DBCS input fields affects the total number of input fields allowed on a display. For a local 5250 display, you can specify as many as 256 input fields. However, each three instances of a DBCS field reduces the maximum number of fields by one. For example, if there are 9 DBCS fields on a display, then the maximum is $256-(9 / 3)=253$ input fields.

## Effects of displaying double-byte data at alphanumeric workstations:

Alphanumeric displays cannot display double-byte data correctly. If you try to display double-byte data at an alphanumeric display, the following happens:

- The system sends an inquiry message to that display, asking whether you want to continue using the program with double-byte data or to cancel it.
- If you continue using the program, the system ignores the shift-control characters and interprets the double-byte characters as though they were single-byte characters. Displayed double-byte data does not make sense.

Make printer files DBCS capable: In many cases, printer files are used by the server to produce data that will eventually be printed or displayed. In these cases, the data is first placed into a spooled file using one of the $\mathrm{IBM}^{(\mathrm{R})}$-supplied printer files. The data is then taken from the spooled file and is displayed or printed based on the request of the user.

When the data involved contains double-byte characters, the printer file that is used to place the data into the spooled file must be capable of processing double-byte data. A printer file is capable of processing double-byte data when *YES is specified on the IGCDTA parameter for the file. In most cases, the system recognizes the occurrence of double-byte data and takes appropriate measures to ensure the printer file that is used is capable of processing double-byte data.

In some cases, however, the system cannot recognize the occurrence of double-byte data and may attempt to use a printer file that is not capable of processing double-byte data. If this occurs, the output at the display or printer may not be readable. This can happen when object descriptions containing double-byte characters are to be displayed or printed on an alphanumeric device.

To ensure that you receive correct results when you display or print double-byte characters, some recommendations should be followed. Action is required on your part if you have a single-byte national language installed as a secondary language. Printer files that are received as part of the DBCS version of a product are always capable of processing DBCS data.

You should complete the following recommended actions after the product or feature has been installed:

1. If all printers and display devices attached to your system are DBCS-capable, you can enable all printer files for double-byte data. For IBM-supplied printer files that are received as part of a single-byte secondary language feature, you can enable all printer files by issuing the following command:
CHGPRTF FILE(*ALL/*ALL) IGCDTA(*YES)
After this command has been completed, all printer files in all libraries will be enabled for double-byte data. The change will be permanent.
2. If all printer and display devices attached to your system are not DBCS-capable, it is recommended that you do not enable all IBM-supplied printer files.
Instead, use the library search capabilities of the system to control which printer files will be used for any particular job. When the potential exists that double-byte data will be encountered, the library list for the job should be such that the printer files that are DBCS-enabled will be found first in the library list. Conversely, if only single-byte data is expected to be encountered, the library list should be set up so the printer files that are not enabled for DBCS will be found first. In this way, the printer file capabilities will match the type of data that will be processed. The decision as to what type of printer file to use is made on the basis of what type of data will be processed. The device that will be used to actually display or print the data may also influence this decision.

In some cases it may be desirable to make the printer file only temporarily DBCS-capable instead of making a permanent change. For a specific job, you can make this temporary change by using the OVRPRTF command.

To temporarily enable a specific printer file, you can use the following command:
OVRPRTF FILE(filename) IGCDTA(*YES)
Where filename is the name of the printer file you want to enable.
Copy spooled and nonspooled DBCS files: You can copy both spooled and nonspooled DBCS files.

## Copying spooled files

Copy spooled files that have double-byte data by using the Copy Spooled File (CPYSPLF) command. However, the database file to which the file is being copied must have been created with the IGCDTA(*YES) value specified.

When copying spooled files to a database file that contains double-byte data, an extra column is reserved for the shift-out character. This shift-out character is placed between the control information for the record and the user data. The following table shows the shift-out character column number, based on the value specified for the Control character (CTLCHAR) keyword:

| CTLCHAR value | Column for shift-out character |
| :--- | :--- |
| ${ }^{*}$ NONE | 1 |
| ${ }^{*}$ FCFC | 2 |
| ${ }^{*}$ PRTCTL | 5 |
| ${ }^{*}$ S36FMT | 10 |

## Copying nonspooled DBCS files

You can use the Copy File (CPYF) command to copy double-byte data from one file to another.
When copying data from a double-byte database file to an alphanumeric database file, specify one of the following on the CPYF command:

- If both files are source files or if both files are database files, you can specify either the FMTOPT(*MAP) parameter or the FMTOPT(*NOCHK) parameter.
- If one file is a source file and the other file is a database file, specify the FMT(*CVTSRC) parameter.

When you copy DBCS files to alphanumeric files, the system sends you an informational message describing the difference in file types.

Either the FMTOPT(*MAP) or FMTOPT(*NOCHK) option of the copy file function must be specified for copies from a physical or logical file to a physical file when there are fields with the same name in the from-file and to-file, but the data type for fields is as shown in the following table:

| From-file field data type | To-file field data type |
| :--- | :--- |
| A (character) | J (DBCS-only) |
| O (DBCS-open) | J (DBCS-only) |
| O (DBCS-open) | E (DBCS-either) |
| E (DBCS-either) | J (DBCS-only) |
| J (DBCS-only) | G (DBCS-graphic) |


| From-file field data type | To-file field data type |
| :--- | :--- |
| O (DBCS-open) | G (DBCS-graphic) |
| E (DBCS-either) | G (DBCS-graphic) |
| G (DBCS-graphic) | J (DBCS-only) |
| G (DBCS-graphic) | O (DBCS-open) |
| G (DBCS-graphic) | E (DBCS-either) |

When you use FMTOPT(*MAP) on the CPYF command to copy data to a DBCS-only field or DBCS-graphic field, the corresponding field in the from-file must not be:

- Less than a 2-byte character field
- An odd-byte-length character field
- An odd-byte-length DBCS-open field

If you attempt to copy with one of these specified in the from-field, an error message is sent.
When you copy double-byte data from one database file to another with the FMTOPT(*MAP) parameter specified, double-byte data will be copied correctly. The system will perform correct padding and truncation of double-byte data to ensure data integrity.

When using the CPYF command with FMTOPT(*MAP) to copy a DBCS-open field to a graphic field, a conversion error occurs if the DBCS-open field contains any SBCS data (including blanks).

Change alphanumeric programs to DBCS programs: If an alphanumeric application program uses externally described files, you can change that application program to a DBCS application program by changing the externally described files. To convert an application program, do the following:

1. Create a duplicate copy of the source statements for the alphanumeric file that you want to change.
2. Change alphanumeric constants and literals to double-byte constants and literals.
3. Change fields in the file to the open ( O ) data type or specify the Alternative Data Type (IGCALTTYP) DDS keyword so that you can enter both double-byte and alphanumeric data in these fields. You may want to change the length of the fields as the double-byte data takes more space.
4. Store the converted file in a separate library. Give the file the same name as its alphanumeric version.
5. When you want to use the changed file in a job, change the library list, using the Change Library List (CHGLIBL) command, for the job in which the file will be used. The library in which the DBCS display file is stored is then checked before the library in which the alphanumeric version of the file is stored.

Enter DBCS text in CL commands: You can use double-byte character data anywhere in a CL command that descriptive text can be used.

Enter double-byte character text as follows:

1. Begin the double-byte character text with an apostrophe (').
2. Enter a shift-out character.
3. Enter the double-byte character text.
4. Enter a shift-in character.
5. End the double-byte character text with an apostrophe (').

For example, to enter the double-byte character literal ABC, enter the following, where SO represents the shift-out character and SI represents the shift-in character:

```
'SOABCSI'
```

Limit the length of a double-byte character text description of an object to 14 double-byte characters, plus the shift control characters, to make sure that the description is properly displayed and printed.

DBCS conversion: When you use DBCS displays to enter double-byte data, you may use the various data entry methods supported on the display, or you may choose to use the server DBCS conversion support. DBCS conversion lets you enter an alphanumeric entry or DBCS code and convert the entry or code to its related DBCS word. DBCS conversion is intended for Japanese character sets and its use is limited for application to other double-byte character sets.

Specifically, DBCS conversion lets you convert the following:

- A string of alphanumeric characters to a DBCS word
- English alphanumeric characters to double-byte alphanumeric characters
- Alphanumeric Katakana to double-byte Hiragana and Katakana letters
- A DBCS code to its corresponding double-byte character
- A DBCS number to its corresponding double-byte character

The following links provide additional information about DBCS conversion:

- Conversion dictionaries
- Work with conversion dictionaries
- Japanese DBCS conversion

Conversion dictionaries: The DBCS conversion dictionary is a collection of alphanumeric entries and their related DBCS words. The system refers to the dictionary when performing DBCS conversion.

All DBCS conversion dictionaries have an object type of *IGCDCT. A system-supplied and a user-created dictionary are used with DBCS conversion.

## User-created dictionary:

A user-created dictionary contains any alphanumeric entries and related DBCS words that you choose to include. You might create a user dictionary to contain words unique to your business or words that you use regularly but that are not included in the system-supplied dictionary.

You can create one or more DBCS conversion dictionaries with any name and store them in any library. When performing DBCS conversion, however, the system only refers to the first user dictionary named QUSRIGCDCT in the user's library list, no matter how many dictionaries you have or what they are named. Make sure that the library list is properly specified so that the system checks the correct dictionary.

During DBCS conversion, the system checks QUSRIGCDCT before checking QSYSIGCDCT.

## DBCS conversion dictionary commands:

You can use the following commands to perform object management functions with the DBCS conversion dictionary. Specify the OBJTYPE(*IGCDCT) parameter when entering these commands:

- CHGOBJOWN:Change the owner of a DBCS conversion dictionary
- CHKOBJ:Check a DBCS conversion dictionary
- CRTDUPOBJ:Create a duplicate object of the dictionary
- DMPOBJ:Dump a DBCS conversion dictionary
- DMPSYSOBJ: Dump the system-supplied dictionary
- DSPOBJAUT: Display a user's authority to the dictionary
- GRTOBJAUT: Grant authority to use the dictionary
- MOVOBJ:Move the dictionary to another library
- RNMOBJ: Rename the dictionary
- RSTOBJ: Restore the dictionary
- RVKOBJAUT: Revoke authority to use the dictionary
- SAVOBJ: Save the dictionary
- SAVCHGOBJ:Save a changed dictionary

The system saves or restores DBCS conversion dictionaries when you use these commands:

- RSTLIB: Restore a library in which the dictionary is stored
- SAVLIB: Save a library in which the dictionary is stored
- SAVSYS: Save QSYSIGCDCT, the system DBCS conversion dictionary, when saving the system

You can use the following commands to create, edit, display, and delete a dictionary:

- CRTIGCDCT: Create DBCS Conversion Dictionary
- EDTIGCDCT: Edit DBCS Conversion Dictionary
- DSPIGCDCT: Display DBCS Conversion Dictionary
- DLTIGCDCT: Delete DBCS Conversion Dictionary

Work with conversion dictionaries: The following topics describe how you create, edit, display, print, and delete conversion dictionaries.

## Create a DBCS conversion dictionary

To create a DBCS conversion dictionary, do the following:

1. Use the Create DBCS Conversion Dictionary (CRTIGCDCT) command.
2. Name the dictionary, QUSRIGCDCT, so it can be used during DBCS conversion. The system uses the dictionary if it is the first user-created dictionary found when searching a user's library list.
You might call the dictionary by another name while it is being created to prevent application programs from using it for conversion. Later, change the dictionary name using the Rename Object (RNMOBJ) command.
3. Use the EDTIGCDCT command to put entries and related words into the dictionary after creating it.

## Edit a DBCS conversion dictionary

Use the Edit DBCS conversion dictionary (EDTIGCDCT) command to edit the DBCS conversion dictionary. Use editing to add user-defined characters to the dictionary, so that users can enter characters using DBCS conversion, and rearrange terms in a DBCS conversion dictionary to suit individual needs.

The display needed for use while editing the DBCS conversion dictionary depends on the value that you entered for the ENTRY parameter on the EDTIGCDCT command:

- If you specified a specific string with the ENTRY parameter or if you want to display double-byte characters, you must use a DBCS display.
- If you did not specify a specific string with the ENTRY parameter, or if you do not want to display double-byte characters, use either a DBCS display, or a 24 -row by 80 -column alphanumeric display.

You may perform the following editing operations on a user-created DBCS conversion dictionary:

- Add entries to the dictionary (including adding the first entries to the dictionary after it is created). The dictionary can contain as many as 99,999 entries.
- Delete entries from the dictionary.
- Change entries in the dictionary, such as replacing the DBCS words related to an alphanumeric entry.
- Move the DBCS words related to an alphanumeric entry to rearrange the order in which they appear during DBCS conversion.

The only editing function that you can perform with QSYSIGCDCT, the system-supplied dictionary, is to move DBCS words related to an alphanumeric entry. Move words in order to rearrange the order in which they appear during DBCS conversion.

## Display and print the DBCS conversion dictionary

Use the Display DBCS Conversion Dictionary (DSPIGCDCT) command to display and print the DBCS conversion dictionary. You can display or print the entire dictionary or just a certain part of it, depending on the value you specify for the ENTRY parameter.

For example, to print the entry ABC from the dictionary QUSRIGCDCT and its related words, enter:

```
DSPIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +
```

ENTRY(ABC) OUTPUT(*PRINT)

To display all of the entries from the system-supplied dictionary QSYSIGCDCT and their related words, enter:
DSPIGCDCT IGCDCT(QSYS/QSYSIGCDCT)

## Delete a DBCS conversion dictionary

Use the Delete DBCS Conversion Dictionary (DLTIGCDCT) command to delete a DBCS conversion dictionary from the system. In order to delete the dictionary, you must have object existence authority to the dictionary and object operational authorities to the library in which the dictionary is stored.

When you delete a dictionary, make sure that you specify the correct library name. It is possible that many users have their own dictionaries, each named QUSRIGCDCT, stored in their libraries. If you do not specify any library name, the system deletes the first DBCS conversion dictionary in your library list.

Japanese DBCS conversion: When you use DBCS displays to enter double-byte data, you may use the various data entry methods supported on the display, or you may choose to use the OS $/ 400^{(R)}$ DBCS conversion support. DBCS conversion lets you enter an alphanumeric entry or DBCS code and convert the entry or code to its related DBCS word. DBCS conversion is intended for Japanese character sets and its use is limited for application to other double-byte character sets.

Specifically, DBCS conversion lets you convert the following:

- A string of alphanumeric characters to a DBCS word
- English alphanumeric characters to double-byte alphanumeric characters
- Alphanumeric Katakana to double-byte Hiragana and Katakana letters
- A DBCS code to its corresponding double-byte character
- A DBCS number to its corresponding double-byte character


## Japanese system-supplied dictionary

The QSYSIGCDCT is the system-supplied dictionary that is stored in the library, QSYS. It is a collection of entries with a Japanese pronunciation, expressed in alphanumeric characters, and the DBCS words related to those entries. The system checks this dictionary second when performing DBCS conversion.

QSYSIGCDCT contains these entries:

- Personal names
- Family names
- First names
- Organization names
- Private enterprises registered in the security market
- Public corporations
- Typical organizations in the central and local governments
- Most universities and colleges
- Addresses
- Public administration units within the prefectures
- Towns and streets in 11 major cities
- Business terms, such as department names and position titles commonly used in enterprises
- Individual double-byte characters, including basic double-byte characters, as defined by IBM ${ }^{(\mathrm{R})}$

You cannot add or delete entries from this dictionary. However, you may rearrange the related DBCS words so that the words used most frequently are displayed first during DBCS conversion.

SQL and DBCS: The basic symbols of keywords and operators in the SQL language are single-byte characters that are part of all character sets supported by the $I B M^{(R)}$ relational database products.
Characters of the language are classified as letters, digits, or special characters.

## SQL host identifiers and double-byte characters

A host-identifier is a name declared in the host program. The rules for forming a host-identifier are the rules of the host language, except that DBCS characters cannot be used.

## SQL character subtypes and double-byte characters

Each character string is further defined as one of the following:

- Bit data: Data that is not associated with a coded character set and is never converted. The CCSID for bit data is 65535 .
- SBCS data: Data in which every character is represented by a single byte. Each SBCS data character string has an associated CCSID. If necessary, an SBCS data character string is converted before it is used in an operation with a character string that has a different CCSID.
- Mixed data: Data that may contain a mixture of characters from a single-byte character set (SBCS) and a double-byte character set (DBCS). Each mixed data character string has an associated CCSID. If necessary, a mixed data character string is converted before an operation with a character string that has a different CCSID. If mixed data contains a DBCS character, it cannot be converted to SBCS data.

The database manager does not recognize subclasses of double-byte characters, and it does not assign any specific meaning to particular double-byte codes. However, if you choose to use mixed data, then two single-byte EBCDIC codes are given special meanings:

- X'OE', the "shift-out" character, is used to mark the beginning of a sequence of double-byte codes.
- $X^{\prime} O F$ ', the "shift-in" character, is used to mark the end of a sequence of double-byte codes.

In order for the database manager to recognize double-byte characters in a mixed data character string, the following condition must be met:

- Within the string, the double-byte characters must be enclosed between paired shift-out and shift-in characters.
The pairing is detected as the string is read from left to right. The code $X^{\prime} O E^{\prime}$ is recognized as a shift out character if $X^{\prime} 0 F^{\prime}$ occurs later; otherwise, it is invalid. The first $X^{\prime} 0 F^{\prime}$ following the $X^{\prime} 0 E^{\prime}$ that is on a double-byte boundary is the paired shift-in character. Any X'OF' that is not on a double-byte boundary is not recognized.
There must be an even number of bytes between the paired characters, and each pair of bytes is considered to be a double-byte character. There can be more than one set of paired shift-out and shift-in characters in the string.

The length of a mixed data character string is its total number of bytes, counting two bytes for each double-byte character and one byte for each shift-out or shift-in character.

When the job CCSID indicates that DBCS is allowed, CREATE TABLE will create character columns as DBCS-Open fields, unless FOR BIT DATA, FOR SBCS DATA, or an SBCS CCSID is specified. The SQL user will see these as character fields, but the system database support will see them as DBCS-Open fields.

For more information on SQL and DBCS, see the following:

- SQL graphic strings
- SQL assignments and comparisons
- SQL conversion rules

SQL graphic strings: A graphic string is a sequence of double-byte characters that does not include shift-out or shift-in characters. The length of the string is the number of its characters. Like character strings, graphic strings can be empty.

Every graphic string has a CCSID that identifies a double-byte coded character set. If necessary, a graphic string is converted before it is used in an operation with a graphic string that has a different CCSID.

## SQL fixed-length and double-byte characters

All values of a fixed-length graphic-string column have the same length, which is determined by the length attribute of the column. The length attribute must be between 1 through 16383 inclusive.

## SQL graphic-string constants

A graphic-string constant is a varying-length graphic string. The length of the specified string cannot be greater than 16370.

In the normal form, the SQL delimiters and the G or the N are SBCS characters. The SBCS apostrophe (') is the EBCDIC apostrophe, $\mathrm{X}^{\prime} 7 \mathrm{D}^{\prime}$.

In the PL/I form, the apostrophes and the G are DBCS characters. Two consecutive DBCS string delimiters are used to represent one string delimiter within the string. Notice that this PL/I form is only valid for static statements embedded in PL/I programs.

A hexadecimal graphic constant is also supported. The form of the hexadecimal graphic constant is: GX'ssss'

In the constant, ssss represents a string from 0 to 32766 hexadecimal digits. The number of characters between the string delimiters must be an even multiple of 4 . Each group of 4 digits represents a single graphic character. The hexadecimal for shift-in and shift-out ( $X^{\prime} O E^{\prime}$ and $X^{\prime} O F^{\prime}$ ) are not included in the string.

The CCSID assigned to constants is the DBCS CCSID associated with the CCSID of the source unless the source is encoded in a foreign encoding scheme (such as ASCII). In this case, the CCSID assigned to the constant is the DBCS CCSID associated with the default CCSID of the application server when the SQL statement containing the constant is prepared. If there is no DBCS CCSID associated with the CCSID of the source, the CCSID is 65535.

SQL assignments and comparisons: The basic operations of SQL are assignment and comparison. Assignment operations are performed during the running of CALL, INSERT, UPDATE, FETCH, and

SELECT INTO statements. Comparison operations are performed during the running of statements that include predicates and other language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved must be compatible. The compatibility rule also applies to UNION, concatenation, and the VALUE, COALESCE, MIN, and MAX scalar functions.

## SQL string assignments and double-byte characters

The basic rule for string assignments is that the length of a string assigned to a column must not be greater than the length attribute of the column. (Trailing blanks are normally included in the length of the string. For string assignment, however, trailing blanks are not included in the length of the string.)

If the string contains mixed data, the assignment rules may require truncation within a sequence of double-byte codes. To prevent the loss of the shift-in character that ends the double-byte sequence, additional characters may be truncated from the end of the string, and a shift-in character added. In the truncated result, there is always an even number of bytes between each shift-out character and its matching shift-in character.

Character, DBCS-only, DBCS-open, and DBCS-either are not compatible with graphic types for assignment.

SQL conversion rules: When two strings are compared, one of the strings is first converted, if necessary, to the coded character set of the other string. Character conversion is necessary only if all of the following are true:

- The CCSIDs of the two strings are different.
- Neither CCSID is 65535.
- The string selected for conversion is neither null nor empty.
- The CCSID conversion selection table indicates that conversion is necessary.

If one string has an SBCS CCSID and the other is the same type of operand and has a mixed data CCSID, the SBCS data character string is converted. Otherwise, the string selected for conversion depends on the type of each operand. The following table shows which operand is selected for conversion, given the operand types.

| First operand | Column value <br> (second <br> operand) | Derived value <br> (second <br> operand) | Special register <br> (second <br> operand) | Constant <br> (second <br> operand) | Host variable <br> (second <br> operand) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Column value | Second | Second | Second | Second | Second |
| Derived Value | First | Second | Second | Second | Second |
| Special Register | First | First | Second | Second | Second |
| Constant | First | First | First | Second | Second |
| Host Variable | First | First | First | First | Second |

A host variable containing data in a foreign encoding scheme is always effectively converted to the native encoding scheme before it is used in any operation. The above rules are based on the assumption that this conversion has already occurred.

An error occurs if a character of the string cannot be converted or the CCSID Conversion Selection Table is used but does not contain any information about the pair of CCSIDs. A warning occurs if a character of the string is converted to the substitution character.

## DBCS code schemes

IBM ${ }^{(R)}$ supports two DBCS code schemes: one for the host systems, the other for personal computers. The DBCS code scheme for host systems has the following code-range characteristics:

- First byte: hex 41 to hex FE
- Second byte: hex 41 to hex FE
- Double-byte blank: hex 4040


## Shift-control characters

When the host code scheme is used, the system uses shift-control characters to identify the beginning and end of a string of double-byte characters. The shift-out (SO) character, hex 0E, indicates the beginning of a double-byte character string. The shift-in (SI) character, hex OF, indicates the end of a double-byte character string.

Each shift-control character occupies the same amount of space as one alphanumeric character. By contrast, double-byte characters occupy the same amount of space as two alphanumeric characters.

When double-byte characters are stored in a graphic field or a variable of graphic data type, there is no need to use shift control characters to surround the double-byte characters.

## Incorrect and undefined double-byte code

Incorrect double-byte code has a double-byte code value that is not in the valid double-byte code range. This is in contrast to undefined double-byte code where the double-byte code is valid, but no graphic symbol has been defined for the code.

## Supported DBCS code ranges

$\mathrm{OS} / 400^{(\mathrm{R})}$ supports the following DBCS character-set code ranges:

- Japanese character-set code range
- Korean character-set code range
- Simplified Chinese character-set code range
- Traditional Chinese character-set code range

For more information, see the Double-byte character set support topic in the Database file management topic.

## DBCS font tables

DBCS font tables contain the images of the double-byte extended characters used on the system. The system uses these images to display and print extended characters when they are not resident on the device.

The following DBCS font tables are objects that you can save or restore. These font tables are distributed with the DBCS national language versions of the OS/400 ${ }^{(\mathrm{R})}$ licensed program:

## QIGC2424

A Japanese DBCS font table used to display and print extended characters in a 24 -by-24 dot matrix image. The system uses the table with Japanese displays, printers attached to displays, 5227 Model 1 Printer, and the 5327 Model 1 Printer.

## QIGC2424C

A Traditional Chinese DBCS font table used to print extended characters in a 24 -by-24 dot matrix image. The system uses the table with the 5227 Model 3 Printer and the 5327 Model 3 Printer.

## QIGC2424K

A Korean DBCS font table used to print extended characters in a 24 -by- 24 dot matrix image. The system uses the table with the 5227 Model 2 Printer and the 5327 Model 2 Printer.

## QIGC2424S

A Simplified Chinese DBCS font table used to print extended characters in a 24 -by-24 dot matrix image. The system uses the table with the 5227 Model 5 Printer.

## QIGC3232

A Japanese DBCS font table used to print characters in a 32-by-32 dot matrix image. The system uses the table with the 5583 Printer and the 5337 Model 1 Printer.

## QIGC3232S

A Simplified Chinese DBCS font table used to print characters in a 32 -by- 32 dot matrix image. The system uses the table with the 5337 Model R05 Printer.

All DBCS font tables have an object type of *IGCTBL. You can find instructions for adding user-defined characters to DBCS font tables in the ADTS/400: Character Generator Utility, SC09-1769-00 book.

## DBCS font table commands

The following commands allow you to manage and use DBCS font tables:

- Check DBCS Font Table (CHKIGCTBL)
- Copy DBCS Font Table (CPYIGCTBL
- Delete DBCS Font Table (DLTIGCTBL)
- Start Font Management Aid (STRFMA)


## Locate an existing font table

Use the Check DBCS Font Table (CHKIGCTBL) command to find out if a DBCS font table exists in your system.

For example, to find out if the table QIGC2424 exists, enter:
CHKIGCTBL IGCTBL(QIGC2424)
If the table does not exist, the system responds with a message. If the table does exist, the system simply returns without a message.

Check for the existence of a table when adding a new type of DBCS workstation to make sure that the table used by the device exists in the system.

## For more information

For additional information, see the following:

- Copy a DBCS font table
- Delete a DBCS font table

Copy a DBCS font table: Use the Copy DBCS Font Table (CPYIGCTBL) command to copy a DBCS font table to or from tape, diskette, or physical file.

The DBCS font tables are saved when you use the Save System (SAVSYS) command so you do not have to use the CPYIGCTBL command when performing normal system backup.

A physical file used to save and restore table information must have a minimum record length of 74 bytes.

## Copying a table onto a tape, a diskette, or a physical file

You should copy a DBCS font table onto a tape, a diskette, or a physical file in the following instances:

- Before deleting that table
- After new user-defined characters are added to the tables
- When planning to use the tables on another system

To copy a DBCS font table onto a tape, a diskette, or a physical file do the following:

1. If copying a DBCS font table onto a tape or diskettes, make sure that the tape or diskettes are initialized to the *DATA format. If necessary, initialize the tape or diskettes by specifying the FMT(*DATA) parameter on the Initialize Diskette (INZDKT) command.
2. Load the initialized tape or diskette onto the system.
3. Enter the CPYIGCTBL command as follows:
a. Choose the value OPTION(*OUT).
b. Use the DEV parameter to select the device to which you want to copy the table. A value of *FILE specifies that the DBCS font table is saved to a physical file.
c. Use the SELECT and RANGE parameters to specify which portion of the table you want copied from the system. For more information on the valid codes and numbers to specify for starting and ending values of user-defined character ranges, see the .
4. Press the Enter key. The system copies the DBCS font table onto the specified medium or into a physical file.
5. Remove the tape or the diskette after the system finishes copying the table.

## Copying a DBCS font table from a tape, a diskette, or a physical file

Use the Copy DBCS Font Table (CPYIGCTBL) command to copy a DBCS font table from a tape, a diskette, or a physical file onto the system. The system automatically creates the DBCS font table again when copying its contents if the following are true:

- The specified table does not already exist in the system.
- The medium or physical file from which you are copying the table contains all of the $I B M^{(R)}$-defined double-byte characters.
- SELECT(*ALL) or SELECT(*SYS) is specified on the CPYIGCTBL command.

Delete a DBCS font table: Use the Delete DBCS Font Table (DLTIGCTBL) command to delete a DBCS font table from the server.

Delete an unused DBCS font table to free storage space. For example, if you do not plan to use Japanese printer 5583 or 5337 with your server, font table QIGC3232 is not needed and can be deleted.

When deleting a table, do the following:

1. If desired, copy the table onto a tape, a diskette, or a physical file. If you do not copy the table before deleting it, you will not have a copy of the table for future use.
2. Vary off all devices using that table.
3. Enter the DLTIGCTBL command. For example, to delete the DBCS font table QIGC3232, enter: DLTIGCTBL IGCTBL(QIGC3232)
4. Press the Enter key. The system sends an inquiry message to the system operator message queue for you to confirm your intention to delete a DBCS table.
5. Respond to the inquiry message. The server sends you a message when it has deleted the table.

Note: Do not delete a DBCS font table if any device using that table is currently varied on. Also, make sure that the affected controller is not varied on. If you try to delete the table while the device and controller are varied on, the system reports any devices attached to the same controller(s) as those devices, and the controller(s) as damaged the next time you try to print or display extended characters on an affected device. If such damage is reported, do the following:
a. Vary off the affected devices, using the Vary Configuration (VRYCFG) command.
b. Vary off the affected controller.
c. Vary on the affected controller.
d. Vary on the affected devices.
e. Continue normal work.

## DBCS font files

In addition to the system-supplied DBCS font tables, the system also provides DBCS font files. These DBCS font files are physical files which contain frequently used double-byte characters. When using the character generator utility, you can use the characters in these files as the base for a new user-defined character. These files are supplied with read-only authority as they are not to be changed. If you do not use character generator utility or the Advanced DBCS Printer Support licensed program, you may delete these files to save space. They all exist in the QSYS library.

The following DBCS font files are distributed with the DBCS national language versions of the $\mathrm{OS} / 400^{(\mathrm{R})}$ licensed program. They are used as a reference for the CGU and the Advanced DBCS Printer Support licensed program.

## QCGF2424

A Japanese DBCS font file used to store a copy of the Japanese DBCS basic character images.

## QCGF2424K

A Korean DBCS font file used to store a copy of the Korean DBCS basic character images.

## QCGF2424C

A Traditional Chinese DBCS font file used to store a copy of the Traditional Chinese DBCS basic character images.

## QCGF2424S

A Simplified Chinese DBCS font file used to store a copy of the Simplified Chinese DBCS basic character images.

## DBCS sort tables

DBCS sort tables contain the sort information and collating sequences of all the double-byte characters used on the system. The sort utility on the system uses these tables to sort double-byte characters.

DBCS sort tables are objects that you can save, restore and delete. Using the character generator utility you can also add, delete and change entries in these tables corresponding to the image entries in the DBCS font tables. For Japanese use only, you can also copy the DBCS master sort table to and from a data file.

The following DBCS sort tables are distributed with the DBCS national language versions of $O S / 400^{(\mathrm{R})}$ licensed program:

## QCGMSTR

A Japanese DBCS master sort table used to store the sort information for the Japanese double-byte character set.

## QCGACTV

A Japanese DBCS active sort table used to store the sort collating sequences for the Japanese double-byte character set.

## QCGMSTRC

A Traditional Chinese DBCS master sort table used to store the sort information for the Traditional Chinese double-byte character set.

## QCGACTVC

A Traditional Chinese DBCS active sort table used to store the sort collating sequences for the Traditional Chinese double-byte character set.

## QCGACTVK

A Korean DBCS active sort table used to map Hanja characters to Hangeul characters with equivalent pronunciation.

## QCGMSTRS

A Simplified Chinese DBCS master sort table used to store the sort information for the Simplified Chinese double-byte character set.

## QCGACTVS

A Simplified Chinese DBCS active sort table used to store the sort collating sequences for the Simplified Chinese double-byte character set.

You can sort Japanese, Korean, Simplified Chinese, and Traditional Chinese double-byte characters. Each of these languages have two DBCS sort tables, a DBCS master sort table and a DBCS active sort table, except for Korean which has only a DBCS active sort table. The DBCS master sort table contains sort information for all defined DBCS characters. The DBCS active sort table for Japanese, Simplified Chinese, and Traditional Chinese is created from the master sort table information and contains the collating sequences for the double-byte characters of that given language. These collating sequences have a purpose similar to the EBCDIC and ASCII collating sequences for the single-byte alphanumeric character set. For Korean characters, the Hangeul characters are assigned both their collating sequence as well as their DBCS codes according to their pronunciation. Hence, a separate collating sequence is not required, and each of the Hanja characters is mapped to a Hangeul character of the same pronunciation using the DBCS active sort table QCGACTVK.

All DBCS sort tables have an object type of *IGCSRT.

## Commands for DBCS sort tables

The following commands allow you to manage and use DBCS sort tables.

- Check Object (CHKOBJ)
- Save Object (SAVOBJ)
- Restore Object(RSTOBJ)


## Use existing DBCS sort tables

You can save the tables to tape or diskette, delete them from the server, and restore them to the server. The Japanese DBCS master sort table can also be copied to a data file and copied from a data file so that it can be shared with an Application System/Entry* (AS/Entry) system. You can also add sort information for each user-defined character, and add that character to the DBCS collating sequence, as you create it using the character generator utility.

## Find existing DBCS sort table

Use the Check Object (CHKOBJ) command to find out if a DBCS sort table exists in your system.
For example, to find out if the table QCGMSTR exists, enter:
CHKOBJ OBJ(QSYS/QCGMSTR) OBJTYPE(*IGCSRT)
If the table does not exist, the system responds with a message. If the table does exist, the system simply returns without a message.

Check for the existence of a DBCS active sort table when you want to sort double-byte characters for the first time. The DBCS active table for the DBCS language must exist to sort the characters.

For additional information about DBCS sort tables, see the following:

- Save and restore a DBCS sort table
- Delete a DBCS sort table

Save and restore a DBCS sort table: The following topics describe how you save and restore DBCS sort tables.

## Save a DBCS sort table to tape or diskette

Save a DBCS sort table onto tape or diskette in the following instances:

- Before deleting that table
- After information is added, updated, or changed in the tables using the character generator utility
- When planning to use the tables on another iSeries ${ }^{(\mathrm{TM})}$ server

Use the Save Object (SAVOBJ) command to save a DBCS sort table onto tape or diskette. Specify *IGCSRT for the object type.

The DBCS sort tables are saved when you use the SAVSYS command so you do not have to use the SAVOBJ command when performing normal system backup.

## Restore a DBCS sort table from tape or diskette

Use the RSTOBJ command to restore a DBCS sort table from a tape or a diskette onto the system. The tables on the tape or diskette must previously have been saved using the SAVOBJ command. Specify *IGCSRT for the object type. The system automatically re-creates the DBCS sort table when the specified table does not already exist in the system.

These tables must be restored to the QSYS library for the system to know they exist. For that reason, RSTOBJ restores *IGCSRT objects only to the QSYS library and only if the objects do not already exist there.

Delete a DBCS sort table: Use the DLTIGCSRT command to delete a DBCS sort table from the system.
You can delete an unused DBCS sort table to free disk space, but you should always first save a copy of the table using the SAVOBJ command. You should delete the DBCS master sort table for a DBCS language if either of the following are true:

- You will not be creating any new characters for that language using the character generator utility.
- You will not be using the sort utility to sort characters for that language.

You should delete the DBCS active sort table for a DBCS language if you will not be using the sort utility to sort characters for that language. The DBCS active sort table must be on the system to use the sort utility for this language.

When deleting a table, do the following:

1. If desired, save the table onto tape or diskettes. If you do not save the table onto removable media before deleting it, you will not have a copy of the table for future use.
2. Enter the DLTIGCSRT command. For example, to delete the DBCS sort table QCGACTV, enter: DLTIGCSRT IGCSRT(QCGACTV)
3. Press the Enter key. The system sends you a message when it has deleted the table.

## DBCS field definition

Consider the characteristics of DBCS data when defining a DBCS field:

- Each DBCS character is 2 bytes long.
- The length of a DBCS character string is always even.
- Shift-out (SO) and shift-in (SI) control characters are required at the beginning and end of the DBCS character string, except for graphic-data type fields. Together, these characters are 2 bytes long.
- The system treats DBCS data the same as character data, and therefore cannot perform arithmetic operations on it.
- The following DBCS data types can be used to identify DBCS fields:
- J (DBCS-only) for fields that can contain only bracketed DBCS data.
- E (DBCS-either) for fields that can contain bracketed DBCS or SBCS data, but not both.
- O (DBCS-open) for fields that can contain both SBCS and bracketed DBCS data.
- G (DBCS-graphic) for fields that can contain graphic data without the SO and SI control characters.

Note: Data type O is allowed in all types of files. Data types J and E are allowed only in database and display files. Data type $G$ is allowed in database, display, and printer files. In most cases, the OS/400 ${ }^{(\mathrm{R})}$ automatically inserts shift-out and shift-in characters. An exception is when data is written into a data type $G$ field in a database file.
For more information about the DBCS data types, see the DDS concepts topic.

## Work with locales

Locales are used primarily in ILE-based application programs. Additionally, the Retrieve Locale Information (OPM, QLGRTVLC. ILE, QlgRetrieveLocalelnformation) API retrieves one or all categories of a locale. See the $\mathrm{OS} / 400^{(\mathrm{RI})} \mathrm{API}$ topic for more information.

## Benefits of using locales in global applications

Applications can be created independent of language, cultural data, or specific characters. Locales can be accessed to provide this type of support to any integrated language environment-based application.

For example, the LC_TIME category within a locale can be defined in any of the following ways, or in any combination that is convenient for the environment in which the application runs:

- HH:MM:SS
- MM:SS:HH
- SS:MM:HH


## Creating locales

Locales are created using the Create Locale CRTLOCALE command. The source file used to create the locale is named QLOCALESRC, in the QSYSLOCALE library. This library is loaded with option 21 of the operating system. These source files cannot be changed. Instead, they must be copied and then edited if changes are desired.

For a list of source definition files, see System-supplied locales and recommended CCSIDs. To see how to use the CRTLOCALE command, see "Example: Creating a locale" on page 254.

## Working with locales

The following topics provide more detailed information about how you can use locales:

- Locale restrictions
- Locale categories
- Locale symbolic names
- Examples: Locale programming


## For more information

The following links provide additional information about locales:

- Locales
- Install and enable locales
- System-supplied locales and recommended CCSIDs


## Locale restrictions

The following list contains restrictions when using locales to set job attributes:

- The locale CCSID must be an EBCDIC single-byte CCSID for an SBCS system.
- The locale CCSID must be an EBCDIC, single-byte character set (SBCS), or mixed-byte CCSID for a DBCS-capable system.
- The locale object must exist in the QSYS file system.
- The DATFMT, DATSEP, TIMSEP, and DECFMT parameters within the locale must be valid values supported as job attributes. See the Work Management topic for more information on jobs and their attributes.
- If you want sort sequence support from the locale, you must use the CPYSYSCOL keyword. See CPYSYSCOL for more detailed information.


## Locale categories

The following categories are supported on $\mathrm{OS} / 400^{(\mathrm{R})}$.

| Locale category | Description |
| :--- | :--- |
| LC_COLLATE | Defines character or string collation information |
| LC_CTYPE | Defines character classification, case conversion, and other character attributes. |
| LC_MESSAGES | Defines the format for affirmative and negative responses. |
| LC_MONETARY | Defines rules and symbols for formatting monetary numeric information. |
| LC_NUMERIC | Defines a list of rules and symbols for formatting non-monetary numeric information. |
| LC_TIME | Defines a list of rules and symbols for formatting time and date information. |
| LC_TOD | Defines rules for daylight saving time and time zone information. |

Note: A locale source file cannot contain duplicate categories.

## Locale category source definitions:

The category source definition consists of:

- The category header (category name), where the category name must be all uppercase characters.
- The associated keyword/value pairs that comprise the category body. Keywords may be all uppercase, all lowercase, or mixed case characters.
- The category trailer (which consists of END category-name)

For example:
LC_CTYPE
soūrce for LC_CTYPE category
END LC_CTYPE
Lines preceding the first category header can be used to change the comment character and the escape character. The comment_char (the default is \#) and escape_char (the default is <br>) keywords can be used to change these characters. The following example shows how to change the comment character and escape character to * and / respectively:

```
comment_char <asterisk>
```

escape_char <slash>
Note: This example uses symbolic names to represent the '*' and '/' characters.

The source for all categories is specified using the following:

## Keywords

Each keyword identifies either a definition or a rule. The remainder of the statement containing the keyword contains the operands to the keyword. Operands are separated from the keyword by one or more blank characters. A statement may be continued on the next line by placing an escape_char as the last character before the newline or linefeed character that ends the line.

Lines containing the comment_char in the first column are treated as comment lines. Comment lines cannot be continued on a subsequent line using an escape character. \is the default escape character. However, the escape character can be defined to be any character by the user.

## Strings

Strings must be enclosed in double-quotes. Double quotes within strings can be represented in two ways:

- Literally. The escape character can be followed by double quotes.
- A symbolic name. For example, <quotation-mark>.

A string can be continued on the next line by placing an escape_char as the last character before the newline or linefeed character that ends the line.

A string is a sequence of character symbols, or literals enclosed by double-quotation ("") characters. For example:
" $<A><B><C>"$

## Character literals

A character literal is the character itself.

## Character symbols

A character symbol begins with the < (less-than) character, followed by non-control characters, and ends with the $>$ (greater-than) character. For example, $\langle A\rangle$ is a valid character symbol (symbolic name). Any character symbol referenced in the source file should be one of the predefined system-supplied symbols. The system supplied symbolic names are in the source file member QLGSYMBOL in the QLOCALESRC source file in the optionally installable library QSYSLOCALE.

See System-supplied locale source definition files for a list of all system-supplied symbolic names.
In the event that the system does not contain a predefined symbolic name for a character, the UCS-2 level-1 format is allowed. The UCS-2 format is based on the character set defined in ISO/IEC 10646. The UCS-2 format may also be used in place of the predefined symbolic names. The following is an example of the UCS-2 symbolic name format:
<Uxxxx>
where 'xxxx' are four hexadecimal digits. For example, <U0041>. The hexadecimal number 0041 within this symbolic name is the UCS-2 code point that represents the character ' $A$ '.

Each category must be explicitly defined in a locale definition source file is required.
See the Example: POSIX locale for a complete description of each locale category included in the POSIX locale.

LC_COLLATE category: The LC_COLLATE category defines character or string collation information. Within LC_COLLATE you can specify a sort sequence to use using the cpysyscol keyword. The cpysyscol keyword value is used in place of the LC_COLLATE category definitions.

A collation element is the unit of comparison for collation. A collation element may be a character or a sequence of characters. Every collation element in the locale has a set of weights, which determine if the collation element collates before, equal to, or after the other collation elements in the locale. Each collation
element is assigned collation weights by the CRTLOCALE command when the locale definition source file is created. These collation weights are then used by applications programs that compare strings.

Every character defined in the CCSID that is specified in the CRTLOCALE command is itself a collating element. Additional collating elements can be defined using the collating-element statement. The syntax is: collating-element character-symbol from string

The LC_COLLATE category begins with the LC_COLLATE keyword and ends with the END LC_COLLATE keyword.

The following keywords are recognized in the LC_COLLATE category:

## cpysyscol

This statement specifies that a system collating sequence table is to be used for the collation information for the category. If the locale is intended to be used to set the sort sequence table for the job, then it is required that the CPYSYSCOL keyword be used. If the CPYSYSCOL keyword is specified, no other keyword may be specified. The syntax for the CPYSYSCOL keyword is:
CPYSYSCOLsort sequence path name; langid
The sort sequence path name is a string specifying a fully expanded path name of an existing sort sequence table to use as the definition for this category. The path name delimiter must be a slash (/). Other valid values are strings containing one of the following:
*JOB The sort sequence of the job.
*LANGIDUNQ
The unique-weighted sort sequence table that is associated with the language identifier requested parameter.

## *LANGIDSHR

The shared-weighted sort sequence table that is associated with the language identifier requested parameter.
*HEX The sort sequence according to the hexadecimal value of the characters.
The langid is a string specifying the language identifier of the sort sequence table to be used. All langids must be in uppercase. Valid values are strings containing one of the following:
*JOB Use the language identifier of the job.
language id
A valid 3-character language identifier. For example, Danish would be DAN. See Language identifiers and associated default CCSIDs for a complete list of valid language identifiers.

## Collating-element

The collating-element statement specifies multi-character collating elements. The syntax for the collating-element statement is:
collating-element symbolic-name from string
The symbolic-name value defines a collating element that is a string of one or more characters as a single collating element. The symbolic-name value cannot duplicate any system predefined symbolic name, or any other symbolic name defined in this collation definition. The string value specifies a string of two or more characters or character symbols that define the symbolic-name value. The following are examples of the syntax for the collating-element statement:

```
collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <11> from "<1><1>"
```

A symbolic-name value defined by the collating-element statement is recognized only with the LC_COLLATE category.

## Order_start

The order_start statement may be followed by one or more collation order statements, assigning collation weights to collating elements. This statement is required. The syntax for the order_start statement is:
order_start sort-rules;sort-rules;...sort-rules collation-order-statements order_end
The sort-rules have the following syntax:
directive, directive,...directive
where directive is one of the directives; forward, backward, and position.

The sort-rules directives are optional. If present, they define the rules to apply during string comparison. The number of specified sort-rules directives defines the number of weights each collating element is assigned (that is, the number of collation orders in the locale). If no sort-rules directives are present, one forward directive is assumed.

If present, the first sort-rules directive applies when comparing strings using primary weight, the second when comparing strings using the secondary weight, and so on. Each set of sort-rules directives is separated by a ; (semicolon). A sort-rules directive consists of one or more comma-separated directives. The following directives are supported:

## Forward

Specifies that collation weight comparisons proceed from the beginning of a string toward the end of the string.

## Backward

Specifies that collation weight comparisons proceed from the end of a string toward the beginning of the string.

## Position

Specifies that collation weight comparisons consider the relative position of non-ignored elements in the string. That is, if strings compare equal, the element with the shortest distance from the starting point of the string collates first.

The forward and backward directives are mutually exclusive. The following is an example of the syntax for the sort-rules directives:
order_start forward;backward

## Order_end

This keyword ends collating order entries introduced by the order_start keyword.
The order of the characters and elements specified between the order_start and order_end keywords defines the character order used in range expressions and regular expressions. If no weights are assigned to the characters, then the character order also becomes the collation sequence weight.

## Special symbols

Special symbols are required to be all upper case characters. The following special symbols can be used in the LC_COLLATE category:

- IGNORE

The optional operands for each collation element are used to define the primary, secondary, or subsequent weights for the collating element. The special symbol IGNORE is used to indicate a collating element that is to be ignored when strings are compared.

## - UNDEFINED

All characters in the character set must be placed in the collation order, either explicitly or implicitly, by using the Undefined symbol. The UNDEFINED symbol includes all coded character set values not specified explicitly. These characters are inserted in the character collation order at the point indicated by the Undefined symbol in the order of their character code page values. If a collating weight is not explicitly specified for the UNDEFINED symbol, then by default, all of the undefined characters are assigned the same collating weight equal to the relative order of the first undefined character in the collating sequence. If no UNDEFINED special symbol exists and the collation order does not specify all collation elements from the coded character set, a warning is issued and all undefined characters are placed at the end of the character collation order and be given the same collating weight.

## Example 1:

The following is an example of a collation order statement in the LC_COLLATE locale definition source file category.

The text below the LC_COLLATE keywords has been added for clarity and does not appear in the locale source file.

| order_start <br> \# | forward;backward |
| :--- | :--- |
| \# | The order_start has two sort rules specified: |

<HIGH>
order_end

## Example 2:

Following is an example of a CPYSYSCOL statement in the LC_COLLATE locale definition source file category.
LC_COLLATE
CPYSYSCOL "//QSYS.LIB//QLA10025S.TBL";"ENU"
END LC_COLLATE
LC_CTYPE category: The LC_CTYPE category defines character classification, case conversion, and other character attributes.

The LC_CTYPE category begins with an LC_CTYPE category header and ends with an END LC_CTYPE category trailer.

All operands for LC_CTYPE category statements are defined as lists of characters. Each list consists of one or more semicolon-separated characters or symbolic character names.

The following keywords are recognized in the LC_CTYPE category. In the descriptions, the term automatically included means that an error does not occur if the referenced characters are included or omitted. The characters are provided if they are missing and are accepted if they are present. In the event that the automatically included characters do not exist in the CCSID that you want to create the locale, a warning is issued by the CRTLOCALE command.
upper Defines uppercase letter characters. No character defined by the cntrl, digit, punct, or space keyword can be specified. At a minimum, the uppercase letters A through $Z$ are automatically included.

Iower Defines lowercase letter characters. No character defined by the cntrl, digit, punct, or space keyword can be specified. At a minimum, the lowercase letters a through $z$ are automatically included.
alpha Defines all letter characters. No character defined by the cntrl, digit, punct, or space keyword can be specified. Characters defined by the upper and lower keywords are automatically included in this character class.
digit Defines numeric digit characters. Only the digits $0,1,2,3,4,5,6,7,8$, and 9 can be specified.
space Defines white space characters. No character defined by the upper, lower, alpha, digit, graph, or xdigit keyword can be specified. At a minimum, the <space>, <form-feed>, <newline>, <carriage return>, <tab>, <vertical-tab> characters, and any characters defined by the blank keyword, are automatically included.
cntrl Defines control characters. No character defined by the upper, lower, alpha, digit, punct, graph, print, or xdigit keywords can be specified.
punct Defines punctuation characters. A character defined as the <space> character and characters defined by the upper, lower, alpha, digit, cntrl, or xdigit keyword cannot be specified.
graph Defines printable characters, excluding the <space> character. If this keyword is not specified, characters defined by the upper, lower, alpha, digit, xdigit, and punct keywords are automatically included in this character class. No character defined by the entrl keyword can be specified.
print Defines printable characters, including the <space> character. If this keyword is not specified, the
<space> character and characters defined by the upper, lower, alpha, digit, xdigit, and punct keywords are automatically included in this character class. No character defined by the cntrl keyword can be specified.
xdigit Defines hexadecimal digit characters. Only the digits $0,1,2,3,4,5,6,7,8$, and 9 and the letters $A, B, C, D, E, F, a, b, c, d, e$, and $f$ can be specified. If not specified, the xdigit class defaults to the digits $0,1,2,3,4,5,6,7,8$, and 9 and the letters $A, B, C, D, E, F, a, b, c, d, e$, and $f$.
blank Defines blank characters. If this keyword is not specified, the <space> and <horizontal-tab> characters are included in this character class.

## toupper

Defines the mapping of lowercase characters to uppercase characters. Operands for this keyword consist of semicolon-separated character pairs. Each character pair is enclosed in ( ) (parentheses) and separated from the next pair by a , (comma). The first character in each pair is considered lowercase; the second character is considered uppercase. Only characters defined by the lower and upper keywords can be specified.

## tolower

Defines the mapping of uppercase characters to lowercase characters. Operands for this keyword consist of semicolon-separated character pairs. Each character pair is enclosed in ( )
(parentheses) and separated from the next pair by a, (comma). The first character in each pair is considered uppercase; the second character is considered lowercase. Only characters defined by the lower and upper keywords can be specified.

Note: The tolower keyword is optional. If this keyword is not specified, the mapping defaults to the reverse mapping of the toupper keyword, if specified. If the toupper keyword is not specified, the mapping defaults to the $\mathbf{C}$ locale.

## Example:

The following is an example of a LC_CTYPE category in a locale definition source file:

```
LC_CTYPE
#"alpha" is by default "upper" and "lower"
#"print" is by default "alpha", "digit", "punct", and the space character
#"graph" is by default "alnum" and "punct"
#"tolower" is by default the reverse mapping of "toupper"
#
upper <A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>>;<M>;\
<N>;<0>; <P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
<n>;<0>; <p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<<>>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\
<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>; \
<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;<SI>;<DLE>;<DC1>;<DC2>; \
<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;<EM>;<SUB>;\
<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;<DEL>
#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
<dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\
<apostrophe>;<left-parenthesis>;<right-parenthesis>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
```

```
<left-square-bracket>;<backslash>;<circumflex>;\
<right-square-bracket>;<underline>;<grave-accent>;\
<left-curly-bracket>;<vertical-line>;<tilde>;\
<right-curly-bracket>
#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\
<seven>;<eight>;<nine>;<A>;<B>;<C>;<D>;<E>;<F>;\
<a>;<b>;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(<b>,<B>);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<v>);(<w>,<W>);(<x>,<x>);(<y>,<Y>);\
(<z>,<Z>)
#
END LC_CTYPE
```

LC_MESSAGES category: The LC_MESSAGES category of a locale definition source file defines the format for affirmative and negative system responses. This category begins with an LC_MESSAGES category header and ends with an END LC_MESSAGES category trailer.

All operands for the LC_MESSAGES category are defined as strings or extended regular expressions enclosed by double-quotation marks ("").

Note: For additional information, see the "Extended regular expressions" topic, below. These operands are separated from the keyword they define by one or more blanks. Two adjacent double-quotation marks ("") indicate an undefined value. The following keywords are recognized in the LC_MESSAGES category:

## yesexpr

Specifies an extended regular expression that describes the acceptable affirmative response to a question expecting an affirmative or negative response.
noexpr
Specifies an extended regular expression that describes the acceptable negative response to a question expecting an affirmative or negative response.
yesstr A fixed string of acceptable affirmative response.
nostr A fixed string of acceptable negative response.
Extended regular expressions: The following special characters are used to form extended regular expressions:

```
Character
+
?
I
()
{m}
{m,}
```


## Function

Specifies that a string matches if one or more occurrences of the character or extended regular expression that precedes the + (plus) are within the string.
Specifies that a string matches if zero or one occurrences of the character or extended regular expression that precedes the? (question mark) are within the string. Specifies that a string matches if either of the strings separated by the I (vertical line) are within the string. Groups strings together in regular expressions.
Specifies that a string matches if exactly m occurrences of the pattern are within the string.
Specifies that a string matches if at least $m$ occurrences of the pattern are within the string.

| Character |
| :--- |
| \{m, n$\}$ |

[String]
[^ String]
^
\$ (period)

* (asterisk)
<br>
(backslash)


## Function

Specifies that a string matches if between $m$ and $n$, inclusive, occurrences of the pattern are within the string ( where $\mathrm{m}<=\mathrm{n}$ ).
Signifies that the regular expression matches any characters specified by the string variable within the square brackets.
$\mathrm{A} \wedge$ (caret) within the [] (square brackets) and at the beginning of the specified string indicates that the regular expression does not match any characters within the square brackets.
Signifies the beginning of a field or record.
Signifies the end of a field or record.
Signifies any one character except the terminal new-line character at the end of a space.
Signifies zero or more of any characters.
The escape character. When preceding any of the characters that have special meaning in extended regular expressions, the escape character removes any special meaning for the character.

Character class expressions may also be specified in the extended regular expression. The following character class expressions are supported in all locales:

```
[:alnum:]
[:alpha:]
[:blank:]
[:cntrl:]
[:digit:]
[:graph:]
[:lower:]
[:print:]
[:punct:]
[:space:]
[:upper:]
[:xdigit:]
```


## Example:

The following is an example of a LC_MESSAGES category in a locale definition source file:

```
LC_MESSAGES
#
```

| yesexpr | "[yY]" |
| :--- | :--- |
| noexpr | "[nN]" |
| yesstr | "yes" |
| nostr | "no" |

nostr "no"
\#
END LC_MESSAGES

LC_MONETARY category: The LC_MONETARY category of a locale definition source file defines rules and symbols for formatting monetary numeric information. This category begins with an LC_MONETARY category header and ends with an END LC_MONETARY category trailer.

All operands for the LC_MONETARY category keywords are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1 indicates an undefined integer value. The following keywords are recognized in the LC_MONETARY category:

## int_curr_symbol

Specifies the string used for the international currency symbol. The operand for the int_curr_symbol keyword is a four-character string. The first three characters contain the alphabetic international-currency symbol. The fourth character specifies a character separator between the international currency symbol and a monetary quantity.

## currency_symbol

Specifies the string used for the local currency symbol.

## mon_decimal_point

Specifies the string used for the decimal delimiter used to format monetary quantities.
mon_thousands_sep
Specifies the string used for grouping digits to the left of the decimal delimiter in formatted monetary quantities.

## mon_grouping

Defines the size of each group of digits in formatted monetary quantities. The operand for the mon_grouping keyword consists of a sequence of semicolon-separated integers. Each integer specifies the number of digits in a group. The initial integer defines the size of the group immediately to the left of the decimal delimiter. The following integers define succeeding groups to the left of the previous group. If the last digit is not -1 , subsequent grouping is performed using the previous digit. If the last digit is -1 , grouping is only performed for the number of groups specified.
The following is an example of the interpretation of the mon_grouping keyword. Assuming the value to be formatted is 123456789 and the operand for the mon_thousands_sep keyword is comma (,), the following results occur:

## mon_grouping Value

Formatted Value
3;-1 123456,789
$3123,456,789$
3;2 12,34,56,789
3;2;-1 1234,56,789

## positive_sign

Specifies the string used to indicate a nonnegative-valued formatted monetary quantity.
negative_sign
Specifies the string used to indicate a negative-valued formatted monetary quantity.

## int_frac_digits

Specifies an integer value representing the number of fractional digits (those after the decimal delimiter) to be displayed in a formatted monetary quantity using the int_curr_symbol value.
frac_digits
Specifies an integer value representing the number of fractional digits (those after the decimal delimiter) to be displayed in a formatted monetary quantity using the currency_symbol value.
p_cs_precedes
Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string precedes or follows the value for a non-negative formatted monetary quantity. The following integer values are recognized:

0 Indicates that the currency symbol follows the monetary quantity.
1 Indicates that the currency symbol precedes the monetary quantity.

## p_sep_by_space

Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string is separated by a space from a non-negative formatted monetary quantity. The following integer values are recognized:
$0 \quad$ Indicates that no space separates the currency symbol from the monetary quantity.
1 Indicates that a space separates the currency symbol from the monetary quantity.
2 Indicates that a space separates the currency symbol and the positive_sign string, if adjacent.

## n_cs_precedes

Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string precedes or follows the value for a negative formatted monetary quantity. The following integer values are recognized:
$0 \quad$ Indicates that the currency symbol follows the monetary quantity.
1 Indicates that the currency symbol precedes the monetary quantity.

## n_sep_by_space

Specifies an integer value indicating whether the int_curr_symbol or currency_symbol string is separated by a space from a negative formatted monetary quantity. The following integer values are recognized:

0 Indicates that no space separates the currency symbol from the monetary quantity.
1 Indicates that a space separates the currency symbol from the monetary quantity.
2 Indicates that a space separates the currency symbol and the negative_sign string, if adjacent.

## p_sign_posn

Specifies an integer value indicating the positioning of the positive_sign string for a non-negative formatted monetary quantity. The following integer values are recognized:
0 Indicates that parenthesis enclose both the monetary quantity and the int_curr_symbol or currency_symbol string.

1 Indicates that the positive_sign string precedes the quantity and the int_curr_symbol or currency_symbol string.

2 Indicates that the positive_sign string follows the quantity and the int_curr_symbol or currency_symbol string.

3 Indicates that the positive_sign string immediately precedes the int_curr_symbol or currency_symbol string.
4 Indicates that the positive_sign string immediately follows the int_curr_symbol or currency_symbol string.

## n_sign_posn

Specifies an integer value indicating the positioning of the negative_sign string for a negative formatted monetary quantity. The following integer values are recognized:
$0 \quad$ Indicates that parenthesis enclose both the monetary quantity and the int_curr_symbol or currency_symbol string.

1 Indicates that the negative_sign string precedes the quantity and the int_curr_symbol or currency_symbol string.

2 Indicates that the negative_sign string follows the quantity and the int_curr_symbol or currency_symbol string.

3 Indicates that the negative_sign string immediately precedes the int_curr_symbol or currency_symbol string.
4 Indicates that the negative_sign string immediately follows the int_curr_symbol or currency_symbol string.

## Examples:

The following is an example of the LC_MONETARY category listed in a locale definition source file:

| LC_MONETARY |  |
| :--- | :--- |
| \# |  |
| int_curr_symbol | "<U><S><D>" |
| currency_symbol | "<dollar-sign>" |
| mon_decimal_point | "<period>" |
| mon_thousands_sep | "<comma>" |
| mon_grouping | $3 ;-1$ |
| positive_sign | "<plus-sign>" |
| negative_sign | "<hyphen>" |
| int_frac_digits | 2 |
| frac_digits | 2 |
| p_cs_precedes | 1 |
| p_sep_by_space | 2 |
| n_cs_precedes | 1 |
| n_sep_by_space | 2 |
| p_sign_posn | 3 |
| n_sign_posn | 3 |
| \# |  |
| END LC_MONETARY |  |

See Example: Producing unique monetary formats for another example relating to monetary formats.
LC_NUMERIC category: Defines rules and symbols for formatting non-monetary numeric information.
The LC_NUMERIC category of a locale definition source file defines rules and symbols for formatting non-monetary numeric information. This category begins with an LC_NUMERIC category header and terminates with an END LC_NUMERIC category trailer.

All operands for the LC_NUMERIC category keywords are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1 indicates an undefined integer value. The following keywords are recognized in the LC_NUMERIC category:

## decimal_point

Specifies a string containing the decimal delimiter character used to format numeric, non-monetary quantities.

## thousands_sep

Specifies the string separator used for grouping digits to the left of the decimal delimiter in formatted numeric, non-monetary quantities.

## grouping

Defines the size of each group of digits in formatted monetary quantities. The operand for the
grouping keyword consists of a sequence of semicolon-separated integers. Each integer specifies the number of digits in a group. The initial integer defines the size of the group immediately to the left of the decimal delimiter. The following integers define succeeding groups to the left of the previous group. Grouping is performed for each integer specified for the grouping keyword. If the last digit is not -1 , subsequent grouping is performed using the previous digit. If the last digit is -1 , grouping is only performed for the number of groups specified.

The following is an example of the interpretation of the grouping statement. Assuming the value to be formatted is 123456789 and the operand for the thousands_sep keyword is comma (,), the following results occur:

```
Grouping value Formatted value
3
3;-1
3;2 12,34,56,789
3;2;-1
123,456,789
123456,789
1234,56,789
```


## Example:

Following is an example of a LC_NUMERIC category in a locale definition source file:
LC_NUMERIC
\#
decimal_point "<period>"
thousands_sep "<comma>"
grouping 3;-1
\#
END LC_NUMERIC
LC_TIME category: The LC_TIME category of a locale definition source file defines rules and symbols for formatting time and date information. This category begins with an LC_TIME category header and terminates with an END LC_TIME category trailer.

All operands for the LC_TIME category keywords are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1 indicates an undefined integer value. Field descriptors are used by commands and subroutines that query the LC_TIME category to represent elements of time and date formats. The following keywords are recognized in the LC_TIME category:
abday Defines the abbreviated weekday names corresponding to the \%a field descriptor. Recognized values consist of seven semicolon-separated strings. The first string corresponds to the abbreviated name for the first day of the week (Sun), the second to the abbreviated name for the second day of the week, and so on.
day Defines the full spelling of the weekday names corresponding to the \%A field descriptor. Recognized values consist of seven semicolon-separated strings. The first string corresponds to the full spelling of the name of the first day of the week (Sunday), the second to the name of the second day of the week, and so on.

## abmon

Defines the abbreviated month names corresponding to the \%b field descriptor. Recognized values consist of 12 semicolon-separated strings. The first string corresponds to the abbreviated name for the first month of the year (Jan), the second to the abbreviated name for the second month of the year, and so on.
mon Defines the full spelling of the month names corresponding to the \%B field descriptor. Recognized
values consist of 12 semicolon-separated strings. The first string corresponds to the full spelling of the name for the first month of the year (January), the second to the full spelling of the name for the second month of the year, and so on.

## d_t_fmt

Defines the string used for the standard date and time format corresponding to the \%c field descriptor. The string can contain any combination of characters, field descriptors, or escape sequences. See Escape Sequences (page 247) for additional information.
d_fmt Defines the string used for the standard date format corresponding to the \%x field descriptor. The string can contain any combination of characters, field descriptors, or escape sequences. Following is an example of how the d_fmt keyword can be constructed:
\%D The \%D indicates a \%m/\%d/\%y date format. If you are using this format and have chosen to set the job attribute from the locale, then a ' $/$ ' is extracted for the DATSEP job attribute. *MDY is extracted for the DATFMT job attribute.
\%j The \%j indicates a Julian date format. If you are using this format and have chosen to set the job attribute from the locale, then no DATSEP job is extracted. However, *JUL is extracted for the DATFMT job attribute.
\%d-\%m-\%y
If you are using this format and have chosen to set the job attribute from the locale, then the compiler extracts - for the DATSEP job attribute and *DMY for the DATFMT job attribute.
\%y.\%m.\%d
If you are using this format and have chosen to set the job attribute from the locale, then the compiler extracts . for the DATSEP job attribute and *YMD for the DATFMT job attribute.

## \%m/\%d/\%Y

If you are using this format and have chosen to set the job attribute from the locale, then the compiler extracts / for the DATSEP job attribute. No DATFMT job attribute is extracted.
Note: If the locale is to contain a valid $\mathrm{OS} / 400^{(\mathrm{R})}$ date format and date separator, then the d_fmt value must be defined such that it contains valid OS/400 date format and date separators. For example, if the value was specified as: $\% m / \% d / \% y$, then *MDY would be extracted for the OS/400 date format and a / would be extracted for the OS/400 date format. A warning is issued by the CRTLOCALE command if an OS/400 date format or date separator cannot be extracted.
t_fmt Defines the string used for the standard time format corresponding to the \%X field descriptor. The string can contain any combination of characters, field descriptors, or escape sequences.
Following is an example of how the t_fmt keyword can be constructed:
\%H:\%M:\%S
The compiler extracts a : (colon) for the TIMSEP job attribute.
\%H.\%M.\%S
The compiler extracts a . (period) for the TIMSEP job attribute.

## \%H \%M \%S

The compiler extracts a blank space for the TIMSEP job attribute.
\%H,\%M,\%S
The compiler extracts a , (comma) for the TIMSEP job attribute.
\%T \%T implies a \%H:\%M:\%S (hours, minutes, seconds) time format with a : (colon) as the TIMSEP job attribute.

## \%H\&\%M\&\%S;

A valid TIMSEP job attribute could not be determined.

Note: If the locale is to contain a valid OS/400 time separator, then the t_fmt value must be defined such that it contains a valid OS/400 time separator. For example, if the value was specified as: $\% H: \% M: \% S$, then a : (colon) would be extracted for the OS/400 date format. A warning is issued by the CRTLOCALE command if an OS/400 time separator cannot be extracted.

## am_pm

Defines the strings used to represent ante meridiem (before noon) and post meridiem (after noon) corresponding to the \%p field descriptor. Recognized values consist of two strings separated by a ; (semicolon). The first string corresponds to the ante meridiem designation, the last string to the post meridiem designation.

## t_fmt_ampm

Defines the string used for the standard 12 -hour time format that includes an am_pm value (\%p field descriptor). This statement corresponds to the \%r field descriptor. The string can contain any combination of characters and field descriptors.
era Defines how the years are counted and displayed for each era in a locale, corresponding to the \%E field descriptor modifier. For each era, there must be one string in the following format:
direction:offset:start_date:end_date:era_name:era_format
The variables for the era-string format are defined as follows:

## direction

Specifies a - (minus sign) or + (plus sign) character. The plus character indicates that years count in the positive direction when moving from the start date to the end date. The minus character indicates that years count in the negative direction when moving from the start date to the end date.
offset Specifies a number representing the first year of the era.
start_date
Specifies the starting date of the era in the yyyy/mm/dd format, where yyyy, mm, and dd are the year, month, and day, respectively. Years prior to the year AD 1 are represented as negative numbers. For example, an era beginning March 5th in the year 100 BC would be represented as -100/03/05.
end_date
Specifies the ending date of the era in the same form used for the start_date variable or one of the two special values -* or $+^{*}$. A -* value indicates that the ending date of the era extends backward to the beginning of time. A + ${ }^{*}$ value indicates that the ending date of the era extends forward to the end of time. Therefore, the ending date can be chronologically before or after the starting date of the era. For example, the strings for the Christian eras $A D$ and $B C$ would be entered as follows:
$+: 0: 0000 / 01 / 01:+*: A D: \% 0 \% N$
$+: 1:-0001 / 12 / 31:-*: B C: \% 0 \% N$

## era_name

Specifies a string representing the name of the era that is substituted for the \%EC field descriptor.
era_format
Specifies a string for formatting the \%EY field descriptor.
An era value consists of one string for each era. If more than one era is specified, each era string is separated by a ; (semicolon).

## era_d_fmt

Defines the string used to represent the date in alternate-era format corresponding to the \%Ex field descriptor. The string can contain any combination of characters and field descriptors.

```
era_t_fmt
```

Defines the string used to represent the time in alternate-era format corresponding to the \%EX field descriptor. The string can contain any combination of characters and field descriptors.

## era_d_t_fmt

Defines the string used to represent the date and time in alternate-era format corresponding to the \%Ec field descriptor. The string can contain any combination of characters and field descriptors.

## alt_digits

Defines alternate strings for digits corresponding to the \%O field descriptor. Recognized values consist of a group of strings separated by ; (semicolons). The first string represents the alternate string for zero, the second string represents the alternate string for one, and so on. A maximum of 100 alternate strings can be specified.

## Escape sequences

The following are escape sequences allowed for the d_t_fmt, d_fmt, and t_fmt keyword values:

```
>
```

II Represents the backslash character.
la Represents the alert character.
lb Represents the backspace character.
If Represents the form-feed character.
In Represents the newline character.
Ir Represents the carriage-return character.
lt
lv
Represents the tab character.

Represents the vertical-tab character.

## Example:

The following is an example of a LC_TIME category in a locale definition source file:

```
LC_TIME
#
#Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><0><n>";"<T><u><e>";"<W><e>><d>";\
    "<T><h><u>";"<F><r><i>";"<S><a><t>"
#
#Ful1 weekday names (%A)
day "<S><u><n><d><a><y>";"<M><0><n><d><a><y>";\
"<T><u><e>><s><d><a><y>";"<W><e>><d><n><e><<s><d><a><y>";\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
"<S><a><t><u><r><d><a><y>"
#
#Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e><b>";"<M><a><r>";"<A><p><r>";\
    "<M><a><y>";"<J><u><n>";"<J><u><1>";"<A><u><g>";\
    "<S><e><p>";"<0><c><t>";"<N><0><v>";"<D><e><c>"
#
#Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><<b><r><u><a><r><<y>";\
"<M><a><r><c><<h>";"<A><p><r><i><1>";"<M><a><y>";\
"<J><u><n><e>";"<J><u><|><y>";"<A><u><g><u><s><t>";\
"<S><e><<p><t><e><m><b><e><r>";"<0><c><t><0><b><e><r>";\
"<N><0><v><e><m><b><e><r>";"<D><e><c><e><<m><b><e><<r>"
```

```
#
#Date and time format (%c)
d_t_fmt "%a %b %d %H:%M:%S %Y"
#
#Date format (%x)
d_fmt "%m/%d/%y"
#
#Time format (%X)
t_fmt "%H:%M:%S"
#Equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"
#
#12-hour time format (%r)
t_fmt_ampm "%I:%M:%S %p"
era "+:0:0000/01/01:+*:AD:%EC";\
"+:1:-0001/12/31:-*:BC:%Ey";
era_d_fmt ""
alt_dïgits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\
"<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\
"<8><t><h>";"<9><t><h>";"<1><0><t><h>"
#
END LC_TIME
```

LC_TOD category: The LC_TOD category defines the rules used to define the start and end time of daylight saving time, the difference between local time and Greenwich Mean time, the time zone name, and the daylight saving time name. This category is an $\mathrm{IBM}^{(\mathrm{R})}$ extension and must appear after all other category definitions in the source file.

All the operands for the LC_TOD category are defined as string or integer values. String values are bounded by double-quotation marks (""). All values are separated from the keyword they define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A 0 (zero) indicates an undefined integer value. The following keywords are recognized in the LC_TOD category.
tzdiff Specifies an integer value representing the time zone difference in minutes. It is the difference between the local time and Greenwich mean time.
tname Specifies the string used for the time zone name.

## dstname

Specifies the string used for the daylight saving time name.

## dststart

Specifies a set of four integers representing the start date for the daylight saving time. The operand for the dststart keyword consists of a sequence of four comma-separated integers in the following format:
month,week, day,time
The variables for the dststart format are defined as:
month
Specifies an integer value representing the month of the year when daylight saving time (DST) takes effect. This value ranges from 1 to 12, with 1 corresponding to January, and 12 corresponding to December.
week Specifies an integer value representing the week of the month when DST takes effect. This value ranges from -4 to 4 , with -4 corresponding to the fourth week of the month counting from the end of the month and 4 corresponding to the fourth week of the month counting from the beginning of the month.
day Specifies an integer value representing the day of the month when DST takes effect or if
the week keyword is not 0 (zero), then this is the day of the week when DST takes effect. This value ranges from 1 to the last day of the month or 1 to the last day of the week.
time Specifies an integer value representing the number of seconds after 12 midnight, local standard time, when DST takes effect. This value ranges from 0 to 86399.

## dstend

Specifies a set of four integers representing the end date for the daylight saving time. The operand for the dstend keyword consists of a sequence of four comma-separated integers in the following format:
month,week, day,time
The variables for the dstend format are defined as:
month
Specifies an integer value representing the month of the year when daylight saving time (DST) ends. This value ranges from 1 to 12, with 1 corresponding to January, and 12 corresponding to December.
week Specifies an integer value representing the week of the month when DST ends. This value ranges from -4 to 4 , with -4 corresponding to the fourth week of the month counting from the end of the month and 4 corresponding to the fourth week of the month counting from the beginning of the month.
day Specifies an integer value representing the day of the month when DST ends or if the week keyword is not 0 (zero), then this is the day of the week when DST ends. This value ranges from 1 to the last day of the month or 1 to the last day of the week.
time Specifies an integer value representing the number of seconds after 12 midnight, local standard time, when DST takes effect. This value ranges from 0 to 86399.

## dstshift

Specifies an integer value representing the daylight saving time shift in seconds.

## Example:

The following is an example of a LC_TOD category in a locale definition source file:

```
$
LC_TOD
#-
tzdiff 360
tname "<C><S><T>"
dstname "<C><D><T>"
#Set daylight saving time to start on 3rd week of October at
#midnight on Saturday.
dststart 10,3,6,0
#Set daylight saving time to end on April 23, at midnight.
dstend 4,0,23,0
dstshift 3600
#
END LC_TOD
<
```


## Locale symbolic names

$\mathrm{OS} / 400^{(\mathrm{R})}$ supports locale symbolic names based on predefined names from the X/Open Standard portable character set. In addition, OS/400 supports a 5-character alphanumeric symbolic name for all characters, where:

- The first character of the symbolic name is a Latin capital letter U. This character identifies that the name is derived from the ISO/IEC 10646 Universal Coded Character Set.
- The second through fifth characters of the symbolic name represent the code point of the character in the ISO/IEC 10646 Universal Coded Character Set 2 Level 1. This portion of the symbolic name is assigned by code point for ease of creating and changing locales.

As an example, the question mark (?) character provides the following correlation between symbolic naming, UCS2-1 code point, and an IBM ${ }^{(\mathrm{R})}$-assigned code point:

- The ? character is symbolically represented by <question-mark>
- It is at code point U003F in the ISO 10646 code page
- It is at code point 6F in IBM code page 500.

Mapping of locale symbolic names provides a list of all symbolic names supported on OS/400. The table also provides the UCS2-1 (ISO 10646) code points, their corresponding IBM code page or code points, and a graphic representation of each character.

## Examples: Locale programming

In addition to the following examples, Locale categories provides programming examples for each of the different locale categories:

- Example: How locales work
- Example: Creating locales
- Example: Producing unique monetary formats
- Example: Locales as part of a multilingual environment
- Example: POSIX locale
- Example: EN US locale

Example: How locales work: Following are two examples that focus on the LOCALE and SETJOBATR parameter values specified on the user profile.

The first example illustrates using locales to establish job attributes. The user profile parameters LOCALE and SETJOBATR have values of *SYSVAL. This means that the job attributes at job start up time come from the QLOCALE value based on the values in QSETJOBATR.

```
Job attributes (from user profile)
    - CCSID = From locale XYZ
    - TIMSEP = From locale XYZ
    - DATFMT = From locale XYZ
    - DATSEP = From locale XYZ
    - SRTSEQ = From locale XYZ
Environment variable
    -LANG = /QSYS.LIBMYLIB.LIB/
    XYZ.LOCALE
```

User profile parameters
- LOCALE $=$ "SYSVAL
- SETJOBATR = *SYSVAL

```
System values
    - QLOCALE = MSYS.LIBM YLIB .
        LIB./XYZ.LOCALE
    - QSETJOBATR =
                                    *CCSID,
                                    *DATFMT,
                                    *DATSEP,
                                    *TIMSEP,
                                    *SRTSEQ
    - QCCSID = 00037
```

If a job ran based on the information in the figure, the following would be true:

- The locale used would be XYZ.

This is because the user profile parameter value for LOCALE was *SYSVAL. The *SYSVAL value is XYZ .

- The CCSID would be based on the value specified when locale XYZ was created.

This value is specified when the LOCALE object is created using the CRTLOCALE command.

- The time separator would be derived from locale XYZ.

This value is derived from the LC_TIME category specified in LOCALE XYZ.

- The date format separator would be derived from locale XYZ.

This value is derived from the LC_TIME category specified in LOCALE XYZ.

- The data separator would be derived from locale XYZ.

This value is derived from the LC_TIME category specified in LOCALE XYZ.

- The decimal format character would be derived from locale XYZ.

This value is derived from the LC_NUMERIC category specified in LOCALE XYZ.
In the second example the user profile LOCALE parameter value is *SYSVAL and the SETJOBATR parameter values is *NONE. This means that the LOCALE value is determined by looking at the system value QLOCALE. When the SETJOBATR value is *NONE, job attributes are determined by the values in the user profile.

Remember, because the user profile SETJOBATR parameter was *NONE, the system's search resulted in using the values specified for QCCSID, QTIMSEP, QDATFMT, QSRTSEQ, and QDATSEP.

```
Job attributes (from user profile)
    - CCSID = From QCCSID
    - TIMSEP = From QTIMSEP
    - DATFMT = From QDATFMT
    - DATSEP = From QDATSEP
    - SRTSEQ = From QSRTSEQ
```

Environment variable
- LANG $=/ Q S Y S . L I B M Y L I B . L I B /$
XYZ.LOCALE
User profile parameters
- LOCALE $=$ *SYSVAL
- SETJOBATR $=$ *NONE
- CCSID $={ }^{* S Y S V A L}$
- SRTSEQ = *SYSVAL
System values
- QLOCALE = xyz
- QSETJOBATR =
*CCSID,
*DATFMT,
*DATSEP,
*TIMSEP,
*SRTSEQ
- QCCSID $=00037$
- QTIMSEP = :
- QDATFMT = MDY
- QDATSEP = /
- QQSRTSEQ

If a job ran based on the information in this example, the following would be true:

- The locale used would be XYZ.

This is because the user profile parameter value for LOCALE was *SYSVAL. The *SYSVAL value is XYZ.

- The CCSID is 00037.

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QCCSID being used.

- The time separator is a colon (:).

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QTIMSEP being used.

- The date format separator is a slash (/).

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QDATSEP being used.

- The date format is month/day/year (MDY).

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QDATFMT being used.

- The decimal format character is a period. Zero suppression is performed.

This is because the user profile SETJOBATR parameter value was *NONE. The system search ended with the value for QDECFMT being used.

Example: Creating a locale: This example contains the steps necessary for creating a locale. The example also shows how to enable the locale. The steps are:

1. Create (or have) a library and a source physical file.
2. Copy an existing locale source file definition member (to a library and source physical file).
3. Edit the copied locale source file member if you need to customize any of the categories within the locale source.
4. Create the locale object.
5. Enable the locale object by using system values or parameters on the user profile.

## Step 1. Create a library and source physical file

The library and source physical file are needed to store the locale source file member. See System-supplied locale source definition files for a list of the locale source file members that are shipped with $\mathrm{OS} / 400^{(\mathrm{RT})}$.

1. Type CRTLIB and press the F4 (prompt) key.
2. Type localelib for the name of the library and press the Enter key.

There is now a library called localelib.
Next, create a source physical file.

1. Type CRTSRCPF and press the F4 (prompt) key.
2. Type localesrc for the file name and press the Enter key.

There is now a source physical file (localesrc) created in library localelib.

## Step 2. Copy an existing locale source definition

IBM ${ }^{(\mathrm{R})}$-supplied locale source definition file members are located in library QSYSLOCALE, source physical file QLOCALESRC. See System-supplied locale source definition files for a list of all IBM-supplied locale source files. In this example member EN_US, a locale for the English language, is copied.

1. Type CPYF and press the F4 (prompt) key.
2. Type the values shown on the following display.

| Copy File (CPYF) |  |  |
| :---: | :---: | :---: |
| Type choices, press Enter. |  |  |
| From file | QLOCALESRC | Name |
| Library | QSYSLOCALE | Name, *LIBL, *CURLIB |
| To file | LOCALESRC | Name, *PRINT |
| Library | LOCALELIB_- | Name, *LIBL, *CURLIB |
| From member | EN_US | Name, generic*, *FIRST, *ALL |
| To member or label | EN-US | Name, *FIRST, *FROMMBR |
| Replace or add records | *ADD | *NONE, *ADD, *REPLACE |
| Create file | *YES | *NO, *YES |
| Record format field mapping | *MAP | *NONE, *NOCHK, *CVTSRC |

The values entered copy the EN_US member to the source physical file localesrc in library localelib.

Note: When you copy a file that is tagged with a CCSID, you need to use the FMTOPT(*MAP) parameter to ensure that the copied source is converted to the CCSID of the "to file". The FMTOPT parameter can be seen by scrolling ahead.

## Step 3. Edit the copied locale source definition

If you want to use the IBM-supplied locale as it is shipped, you do not need to change it. You can go to the next step, create the locale object. However, in this example we will edit the EN_US member to set the time-of-day keywords used in the LC_TOD category.

Note: The LC_TOD category is shipped with the keywords having no values. See the LC_TOD Category to view the LC_TOD source as shipped by IBM.

In this example, Source Entry Utility (SEU) is used to edit the locale. You can use SEU or an equivalent editor.

1. Type STRSEU (Start Source Entry Utility) and press the F4 (prompt) key.
2. Type the source file name (localesrc), library name (localelib), and source member name (EN_US) as shown on the following display.

3. Press the Enter key. The following display appears:

|  |  |
| :---: | :---: |
|  |  |
|  |  |

4. Use the SEU search function to locate LC_TOD. After the search completes, the display below appears.
As you can see, all LC_TOD category keywords have values of 0 and no descriptive names declared for tname and dstname.

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |

5. Type the following values for the LC_TOD keywords. If you need more detailed information about this category, see LC_TOD Category
tzdiff Time zone difference in minutes. Type - 360 . This is the difference in the number of minutes between Greenwich mean time and the central time zone of the United States.
tname Specifies the string used for the time zone name. Type "<C><E><N><T><R><A><L>".
dstname
The string used for the daylight saving time name. Type "<C><D><T>" to mean Central Daylight Time.

## dststart

Four integers representing the start date for daylight saving time. Type $4,0,23,0$. This string of integers means that daylight saving time starts the fourth month of the year, the twenty-third day of the month, and 0 seconds after midnight local standard time.

## dstend

Four integers representing the end date for daylight saving time. Type 10,3,6,0. This string of integers means that daylight saving time ends the tenth month of the year, the beginning of the third week, the sixth day of the week, and 0 seconds after midnight local standard time.

## dstshift

An integer value representing the daylight saving time shift in seconds. Type 3600.
The SEU edit screen should match the screen below.
6. Press the Enter key to make the changes to the EN_US locale member.


```
6527.00 dstshift 3600
6 5 2 8 . 0 0
```

6529.00 END LC TOD


```
F3=EXIT F4=PROMPT F5=REFRESH F9=RETRIEVE F10=CURSOR F11=TOGGLE
```

F16=REPEAT FIND F17=REPEAT CHANGE F24=MORE KEYS
STRING LC_TOD FOUND.
7. Save the member and exit SEU.

You have now copied the IBM-supplied locale source member and customized the LC_TOD category.

## Step 4. Create the locale object

1. Type CRTLOCALE on any command line and press the F4 (prompt) key. The Create Locale (CRTLOCALE) screen appears.
2. Type the locale path name (path name includes the location of as well as the name of the locale source member) in the locale name field.
3. Next, type the source file path name (location and name of the source physical file and the member name) in the source file path name field.

## Notes:

a. Make sure that the locale source file you are using has the same characters defined as does the CCSID you specify on the CRTLOCALE command. If they do not have the same characters available, unpredictable results can occur. For example, the EN_US source file has lower case letters defined. However, the lower case letters are not available in CCSID 290.
b. When creating locale objects, it is recommended to make the CCSID part of the locale object name. For example, EN_US created with CCSID 37 could be named EN_US37.

4. Press the Enter key to complete the creation of the locale object named EN_US in the library LOCALELIB

## Step 5. Enable the locale object

Locales can be enabled system-wide using the QLOCALE system value or for individual users by changing their user profile. To enable system-wide, make EN_US the value for QLOCALE. In this example locale support is enabled for one user.

1. Type CHGUSRPRF and press the F4 (prompt) key.
2. Specify your userid and then press the Enter key.

In the portion of the Change User Profile display shown below, the LOCALE parameter now has a value indicating that EN_US is the specified locale to be used by your userid.

```
+ for more values
Locale . . . . . . . . . . . . . QSYS.LIB/LOCALELIB.LIB/EN_US.LOCALE
```

$\qquad$

After your user profile has been changed, any jobs initiated by your userid have the EN_US locale associated with those jobs. The LANG environment variable is also initialized to the name of the locale.

Example: Producing unique monetary formats: A unique customized monetary format can be produced by changing the value of a single statement. For example, the following table shows the results of using all combinations of defined values for the p_cs_precedes, p_sep_by_space, and p_sign_posn statements:

| p_cs_precedes <br> value | p_sign_posn value | p_sep_by_space=2 | p_sep_by_space=3 | p_sep_by_space=4 |
| :--- | :--- | :--- | :--- | :--- |
| p_cs_precedes = 1 | p_sign_posn $=0$ | $(\$ 1.25)$ | $(\$ 1.25)$ | $(\$ 1.25)$ |
|  | p_sign_posn $=1$ | $+\$ 1.25$ | $+\$ 1.25$ | $+\$ 1.25$ |
|  | p_sign_posn $=2$ | $\$ 1.25+$ | $\$ 1.25+$ | $\$ 1.25+$ |
|  | p_sign_posn $=3$ | $+\$ 1.25$ | $+\$ 1.25$ | $+\$ 1.25$ |
|  | p_sign_posn $=4$ | $\$+1.25$ | $\$+1.25$ | $\$+1.25$ |
|  | p_sign_posn $=0$ | $(1.25 \$)$ | $(1.25 \$)$ | $(1.25 \$)$ |
|  | p_sign_posn $=1$ | $+1.25 \$$ | $+1.25 \$$ | $+1.25 \$$ |
|  | p_sign_posn $=2$ | $1.25 \$+$ | $1.25 \$+$ | $1.25 \$+$ |
|  | p_sign_posn $=3$ | $1.25+\$$ | $1.25+\$$ | $1.25+\$$ |
|  | p_sign_posn $=4$ | $1.25 \$+$ | $1.25 \$+$ | $1.25 \$+$ |

Example: Locales as part of a multilingual environment: $\mathrm{OS} / 400^{(\mathrm{R})}$, through the use of locales, user profiles, and subsystems, can provide a multilingual environment. Users of a system setup for multilingual environments work with their national language and all its cultural conventions (for example, the character used to separate hours, minutes, and seconds).

Assume the system used in this example has its primary language defined as English and the secondary national language versions (NLVs) for French and Spanish have been installed.

Follow the steps in this example to:

- Create the locales for English, French, and Spanish
- Create user profiles for users named: English, French, and Spanish
- Create separate subsystems for French and Spanish language users.


## Step 1. Create locales

1. Type CRTLOCALE and press the Prompt key (F4).
2. Enter the following values for the fields listed below:

- Locale name: qsys.lib/localelib.lib/en_us.locale
- Source file path name: qsys.lib/qsyslocale.lib/qlocalesrc.file/en_us.mbr
- Coded character set ID: 37
- Generation severity level: 20
- Text 'description': US English locale

3. Press Enter.

Repeat the CRTLOCALE command for the FRENCH and SPANISH locales, using the following values for the fields listed below.

For the French locale:

- Locale name: qsys.lib/localelib.lib/fr_fr.locale
- Source file path name: qsys.lib/qsyslocale.lib/qlocalesrc.file/fr_fr.mbr
- Coded character set ID: 297
- Generation severity level: 20
- Text 'description': French locale

For the Spanish locale:

- Locale name: qsys.lib/localelib.lib/es_es.locale
- Source file path name: qsys.lib/qsyslocale.lib/qlocalesrc.file/es_es.mbr
- Coded character set ID: 284
- Generation severity level: 20
- Text 'description': Spanish locale

You have created three locales (EN_US (English US), FR_FR (French), and ES_ES (Spanish). They are stored in library localelib.lib.

## Step 2. Create the user profile

In this example three user profiles are created; each one will use one of locales we just created. The user profile names are: English, French, and Spanish.

1. Type CRTUSRPRF and prompt (F4).
2. Type ENGLISH for the User profile parameter value
3. Scroll forward until you see the Locale job attributes parameter and the Locale parameter.
4. Type:

- /qsys.lib/localelib.lib/en_us.locale for the Locale parameter value.
- Type + for the Locale job attributes parameter value and press Enter. Type:
*CCSID
*DATFMT
*DATSEP
*TIMSEP
*SRTSEQ
*DECFMT

Note: At job start up the system finds the actual job attribute values defined in the locale object. The job attributes found in the locale override the values specified in the user profile fields for the CCSID and SRTSEQ parameters. They also override the Date Format, Date Separator, and Time Separator job attributes specified in any system value.
5. Press Enter. You have now created the user profile for a user named ENGLISH.

Repeat the CRTUSRPRF command for user IDs FRENCH and SPANISH. The next two displays provide the correct Locale parameter and Locale job attribute information for creating the user profiles for FRENCH and SPANISH.

```
Locale job attributes . . . . > *CCSID *SYSVAL, *NONE, *CCSID...
> *DATFMT
> *DATSEP
> *TIMSEP
> *SRTSEQ
Locale . . . . . . . . . . . . . > '/qsys.lib/localelib.lib/fr_fr.locale'
+------------------------------------------------------------------------------------------
+--------------------------------------------------------------------------------------
Locale job attributes . . . . > *CCSID *SYSVAL, *NONE, *CCSID...
> *DATFMT
> *DATSEP
> *TIMSEP
> *SRTSEQ
Locale . . . . . . . . . . . . . > '/qsys.lib/localelib.lib/es_es.locale'
```


## Step 3. Creating subsystems for each national language version

Subsystems can be tailored to provide users an environment in which they see their own national language with data presented in the cultural format and conventions they are used to seeing.

Note: Since the primary language of the system is English, it is not necessary to create a subsystem for English.

1. Type CRTSBSD and prompt (F4).
2. Specify values for the following parameters to ensure that the subsystem is enabled for a specific national language (such as French and Spanish in our example).

- Subsystem description

This can be any name you choose.

- Text 'description'

The description can be anything you want it to be.

- Sign-on display file and Library

This often is QDSIGNON. The important information here is to know the name of the library where the national language version (French in this example) is stored.

- Subsystem library

Specifies a library that is entered ahead of other libraries in the library list of jobs started in this subsystem. This parameter allows you to use a secondary language library causing messages and displays to appear in your spoken language.
Note: The correct values for Sign-on display file library and Subsystem library parameters are determined by adding QSYS to the national language version feature code. For example: the French national language library is named QSYS2928.
See National language version feature codes for a listing of all supported language versions.
The screen below shows the correct values to ensure that users of the FRENCH subsystem interact with the computer in the French language.


## 3. Press Enter.

## Step 4. More information about subsystems

Creation of a subsystem requires additional work such as:

- Setting subsystem attributes
- Adding workstation entires
- Adding job queue entries
- Adding communications entires (if your national language users are attached over communications lines)
- Adding autostart job entires if you want to use this feature
- Adding prestart job entires if you want to use this feature
- Creating a class
- Adding routing entries

How to perform the tasks in the list above is not described in this example. For more information about Subsystems, see the Work Management topic in the Information Center.

Example: POSIX locale: The POSIX (or C) locale follows. It is published in its entirety because:

- It provides a locale example with source provided for all categories.
- If you have not set a locale value in your C application program, the default POSIX locale is then used.

In either case, in the listing below, you are able to look at the locale categories and view the source.

```
comment_char <percent-sign>
escape_char <slash>
```

```
%
% 5716SS1 (C) COPYRIGHT IBM }\mp@subsup{}{}{(R)}\mathrm{ CORP. 1991,1996
% ALL RIGHTS RESERVED.
% US GOVERNMENT USERS RESTRICTED RIGHTS -
% USE, DUPLICATION OR DISCLOSURE RESTRICTED
% BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
%
% LICENSED MATERIALS-PROPERTY OF IBM
```

```
FILE NAME : POSIX
COUNTRY/REGION: POSIX DEFAULT LOCALE
LANGUAGES(S): NOT SPECIFIED
DESCRIPTION: LOCALE SOURCE DEFINITION FILE.
%
LC_CTYPE
upper <A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
lower <a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
space <tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<space>
cntr1 <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<alert>;<backspace>;/
<tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<SO>;<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;/
<CAN>;<EM>;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;<DEL>
punct <exclamation-mark>;<quotation-mark>;<number-sign>;/
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;/
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen>;<period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>;/
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<left-curly-bracket>;<vertical-line>;<right-curly-bracket>;/
<tilde>
digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>
xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;<B>;<C>;<D>;<E>;<F>;/
<a>;<b>;<c>;<d>;<e>;<f>
blank <space>;/
<tab>
toupper (<a>,<A>);(<b>,<B>);(<c>,<C>);(<d>,<D>);(<e>,<E>);/
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);/
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);/
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);/
(<z>,<Z>)
tolower (<A>,<a>);(<B>,<b>);(<C>,<c>);(<D>,<d>);(<E>,<e>);/
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>); (<J>,<j>);/
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<0>,<0>);/
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);/
(<Z>,<z>)
```

END LC_CTYPE

LC_COLLATE

```
order_start
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>
<EM>
<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
```

```
<greater-than-sign>
<question-mark>
<commercial-at>
<A>
<B>
<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<0>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>
<b>
<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<1>
<m>
<n>
<0>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>
<DEL>
UNDEFINED
```

order_end
END LC_COLLATE
LC_MONETARY
int_curr_symbol "" currency_symbol "" mon_decimal_point "" mon_thousands_sep "" mon_grouping - 1 posītive_sign "" negative_sign "" int frac digits -1
frac $\quad$ digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
END LC_MONETARY
LC_NUMERIC
decimal_point "<period>" thousands_sep
"" grouping -1
END LC_NUMERIC
LC_TIME
abday "<S><u><n>"; /
"<M><0><n>"; /
"<T><u><e>";/
"< $w><e><d>" ; /$
"<T><h><u>"; /
"<F><r><i>";/
"<S><a><t>"
day " $<$ S $><u><n><d><a><y>$ "; /
"<M><0><n><d><a><y>"; /
" $<T\rangle\langle u\rangle\langle e\rangle\langle s\rangle\langle d\rangle\langle a\rangle\langle y\rangle$ "; /
"<h><e><d><n><e><s><d><a><y>"; /
" $<T><h><u><r><s><d><a><y>"$;/
"<F><r><i><d><a><y>";/
" $\langle S><a><t><u><r><d><a><y>"$

```
abmon "<J><a><n>";/
```

"<F><e><b>"; /
"<M><a><r>";/
" < $A><p><r>" ; /$
"<M><a><y>";/
"<J><u><n>";/
"<J><u><1>"; /
"<A><u><g>"; /
"<S><e><p>";/
"<0><c><t>"; /
"<N><0><v>";/
"<D><e><c>"

```
mon "<J><a><n><u><a><r><y>";/
```

"<F><e><b><r><u><a><r><y>";/

```
"<M><a><r><c><h>";/
"<A><p><r><i><l>";/
"<M><a><y>";/
"<J><u><n><e>";/
"<J><u><1><y>";/
"<A><u><g><u><s><t>";/
"<S><e><p><t><e><m><b><e><r>";/
"<0><c><t><0><b><e><r>";/
"<N><0><v><e><m><b><e><r>";/
"<D><e><c><e><<m><b><e><<r>"
d_t_fmt "%a %b %d %H:%M:%S %Z %Y"
d_fmt "%m//%d//%y"
t_fmt "%H:%M:%S"
am_pm "<A><M>";"<P><M>"
t_fmt_ampm "%I:%M:%S %p"
END LC_TIME
LC_MESSAGES
yesexpr "[yY][eE][sS]|[yY]"
noexpr "[nN][00]|[nN]"
yesstr "yes"
nostr "no"
END LC_MESSAGES
LC_TOD
tzdiff 0
tname ""
dstname ""
dststart 0,0,0,0
dstend 0,0,0,0
dstshift 0
END LC_TOD
```

Example: EN_US locale: The EN-US locale follows. In the example below, you can look at the locale categories and view the source.

```
comment_char <percent-sign>
escape_char <slash>
%
%5716SS1 (C) COPYRIGHT IBM }\mp@subsup{}{}{(R)}\mathrm{ CORP. 1991,1996
% ALL RIGHTS RESERVED.
% US GOVERNMENT USERS RESTRICTED RIGHTS -
% USE, DUPLICATION OR DISCLOSURE RESTRICTED
% BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
%
% LICENSED MATERIALS-PROPERTY OF IBM
%
% FILE NAME : EN_US
%
% COUNTRY/REGION: UNITED STATES
%
% LANGUAGES(S): ENGLISH
%
% DESCRIPTION: LOCALE SOURCE DEFINITION FILE.
%
```


## LC CTYPE

```
upper <A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/
<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>;/
<A-acute>;<A-grave>;<A-circumflex>;<A-diaresis>;/
<A-tilde>;<A-ring>;<AE>;<C-cedilla>;<Eth>;<E-acute>;/
<E-grave>;<E-circumflex>;<E-diaresis>;<I-acute>;/
<I-grave>;<I-circumflex>;<I-diaresis>;<N-tilde>;/
<0-acute>;<0-grave>;<0-circumflex>;<0-diaresis>;/
<0-tilde>;<0-slash>;<Thorn>;<U-acute>;<U-grave>;/
<U-circumflex>;<U-diaresis>;<Y-acute>
```

```
lower <a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;/
<a-acute>;<a-grave>;<a-circumflex>;<a-diaresis>;/
<a-tilde>;<a-ring>;<ae>;<c-cedilla>;<eth>;<e-acute>;/
<e-grave>;<e-circumflex>;<e-diaresis>;<i-acute>;/
<i-grave>;<i-circumflex>;<i-diaresis>;<n-tilde>;/
<0-acute>;<0-grave>;<0-circumflex>;<0-diaresis>;/
<0-tilde>;<0-slash>;<s-sharp>;<thorn>;<u-acute>;/
<u-grave>;<u-circumflex>;<u-diaresis>;<y-acute>;/
<y-diaresis>
space <tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<space>
cntrl <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<alert>;<backspace>;/
<tab>;<newline>;<vertical-tab>;<form-feed>;<carriage-return>;/
<SO>;<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;/
<CAN>;<EM>;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;<DEL>;/
<DS>;<SOS>;<FS>;<WUS>;<BYP>;<NL>;<RNL>;<POC>;<SA>;<SFE>;<SM>;/
<CSP>;<MFA>;<SPS>;<RPT>;<CU1>;<DCS>;<PU1>;<UBS>;<IR>;<PP>;/
<TRN>;<NBS>;<GE>;<SBS>;<IT>;<RFF>;<CU3>;<SEL>;<RES>;<PM>;<EO>
graph <exclamation-mark>;<quotation-mark>;<number-sign>; /
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>; /
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen-minus>;<period>;<slash>;/
<zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;/
<eight>;<nine>;<colon>;<semicolon>;<less-than-sign>; /
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;<A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;/
<L>;<M>;<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;;\>;;<Z>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;/
<left-brace>;<vertical-line>;<right-brace>;/
<tilde>;<C-cedilla>;<u-diaresis>;<e-acute>;<a-circumflex>;/
<a-diaresis>;<a-grave>;<a-ring>;<c-cedilla>;<e-circumflex>;/
<e-diaresis>;<e-grave>;<i-diaresis>;<i-circumflex>;/
<i-grave>;<A-diaresis>;<A-ring>;<E-acute>;<ae>;<AE>;/
<0-circumflex>;<0-diaresis>;<0-grave>;<u-circumflex>;/
<u-grave>;<y-diaresis>;<0-diaresis>;<U-diaresis>;<0-slash>;/
<sterling>;<0-slash>;<multiply>;<a-acute>;<i-acute>;/
<0-acute>;<u-acute>;<n-tilde>;<N-tilde>;<feminine>;/
<masculine>;<question-down>;<registered>;<not>;<one-half>;/
<one-quarter>;<exclamation-down>;<guillemot-left>;/
<guillemot-right>;<A-acute>;<A-circumflex>;<A-grave>;/
<copyright>;<cent>;<yen>;<a-tilde>;<A-tilde>;<currency>;/
<eth>;<Eth>;<E-circumflex>;<E-diaresis>;<E-grave>;/
<I-acute>;<I-circumflex>;<I-diaresis>;<broken-bar>;/
<I-grave>;<0-acute>;<s-sharp>;<0-circumflex>;/
<0-grave>;<0-tilde>;<0-tilde>;<mu>;<thorn>;<Thorn>;<U-acute>;/
```

```
<U-circumflex>;<U-grave>;<y-acute>;<Y-acute>;<macron>;/
<acute>;<hyphen>;<plus-minus>;<three-quarters>;<paragraph>;/
<section>;<divide>;<cedilla>;<degree>;<diaresis>;<dot>;/
<one-superior>;<three-superior>;<two-superior>
print <space>;<exclamation-mark>;<quotation-mark>;<number-sign>; /
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>; /
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen-minus>;<period>;<slash>;/
<zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;/
<eight>;<nine>;<colon>;<semicolon>;<less-than-sign>; /
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;<A>;<B>;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;/
<L>;<M>;<N>;<0>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<<Y>;<Z>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<a>;<b>;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/
<n>;<0>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>;/
<left-brace>;<vertical-line>;<right-brace>;/
<tilde>;<C-cedilla>;<u-diaresis>;<e-acute>;<a-circumflex>;/
<a-diaresis>;<a-grave>;<a-ring>;<c-cedilla>;<e-circumflex>;/
<e-diaresis>;<e-grave>;<i-diaresis>;<i-circumflex>;/
<i-grave>;<A-diaresis>;<A-ring>;<E-acute>;<ae>;<AE>;/
<o-circumflex>;<0-diaresis>;<0-grave>;<u-circumflex>;/
<u-grave>;<y-diaresis>;<0-diaresis>;<U-diaresis>;<0-slash>;/
<sterling>;<0-slash>;<multiply>;<a-acute>;<i-acute>;/
<0-acute>;<u-acute>;<n-tilde>;<N-tilde>;<feminine>;/
<masculine>;<question-down>;<registered>;<not>;<one-half>;/
<one-quarter>;<exclamation-down>;<guillemot-left>;/
<guillemot-right>;<A-acute>;<A-circumflex>;<A-grave>;/
<copyright>;<cent>;<yen>;<a-tilde>;<A-tilde>;<currency>;/
<eth>;<Eth>;<E-circumflex>;<E-diaresis>;<E-grave>;/
<I-acute>;<I-circumflex>;<I-diaresis>;<broken-bar>;/
<I-grave>;<0-acute>;<s-sharp>;<0-circumf1ex>;/
<0-grave>;<0-tilde>;<0-tilde>;<mu>;<thorn>;<Thorn>;<U-acute>;/
<U-circumflex>;<U-grave>;<y-acute>;<Y-acute>;<macron>;/
<acute>;<hyphen>;<plus-minus>;<three-quarters>;<paragraph>;/
<section>;<divide>;<cedilla>;<degree>;<diaresis>;<dot>;/
<one-superior>;<three-superior>;<two-superior>
punct <exclamation-mark>;<quotation-mark>;<number-sign>; /
<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>; /
<left-parenthesis>;<right-parenthesis>;<asterisk>;<plus-sign>;/
<comma>;<hyphen-minus>;<period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>; /
<equals-sign>;<greater-than-sign>;<question-mark>;/
<commercial-at>;/
<left-square-bracket>;<backslash>;/
<right-square-bracket>;<circumflex>;/
<underscore>;<grave-accent>;/
<left-brace>;<vertical-line>;<right-brace>;/
<tilde>
digit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>
xdigit <zero>;<one>;<two>;<three>;<four>;/
<five>;<six>;<seven>;<eight>;<nine>;/
<A>;<B>;<C>;<D>;<E>;<F>;/
<a>;<b>;<c>;<d>;<e>;<f>
blank <space>;/
<tab>
toupper (<a>,<A>);(<b>,<B>);(<c>,<C>);(<d>,<D>);(<e>,<E>);/
(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>); (<j>,<J>);/
```

```
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<0>,<0>);/
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<S>,<S>);(<t>,<T>);/
(<u>,<u>);(<v>,<v>);(<w>,<W\rangle); (<x>,<x>); (<y>,<Y>);/
(<z>,<Z>);(<a-acute>,<A-acute>);(<a-grave>,<A-grave>);/
(<a-circumflex>,<A-circumflex>);(<a-diaresis>,<A-diaresis>);/
(<a-tilde>,<A-tilde>);(<a-ring>,<A-ring>);(<ae>,<AE>);/
(<c-cedilla>,<C-cedilla>);(<eth>,<Eth>);(<e-acute>,<E-acute>);/
(<e-grave>,<E-grave>);(<e-circumflex>,<E-circumflex>);/
(<e-diaresis>,<E-diaresis>);(<i-acute>,<I-acute>);/
(<i-grave>,<I-grave>);(<i-circumflex>,<I-circumflex>);/
(<i-diaresis>,<I-diaresis>);(<n-tilde>,<N-tilde>);/
(<0-acute>,<0-acute>);(<0-grave>,<0-grave>);/
(<0-circumflex>,<0-circumflex>);(<0-diaresis>,<0-diaresis>);/
(<0-tilde>,<0-tilde>);(<0-slash>,<0-slash>);(<thorn>,<Thorn>);/
(<u-acute>,<U-acute>); (<u-grave>,<U-grave>);/
(<u-circumflex>,<U-circumflex>);(<u-diaresis>,<U-diaresis>);/
(<y-acute>,<Y-acute>);(<y-diaresis>,<Y>)
tolower (<A>,<a>);(<B>,<b>);(<C>,<c>); (<D>,<d>);(<E>,<e>);/
(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);/
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<0>,<0>);/
(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/
(<U>,<u>);(<v>,<v>);(<W>,<w>);(<x>,<x>);(<Y>,<y>);/
(<Z>,<z>);(<A-acute>,<a-acute>);(<A-grave>,<a-grave>);/
(<A-circumflex>,<a-circumflex>);(<A-diaresis>,<a-diaresis>);/
(<A-tilde>,<a-tilde>); (<A-ring>,<a-ring>); (<AE>,<ae>);/
(<C-cedilla>,<c-cedilla>);(<Eth>,<eth>);(<E-acute>,<e-acute>);/
(<E-grave>,<e-grave>);(<E-circumflex>,<e-circumflex>);/
(<E-diaresis>,<e-diaresis>);(<I-acute>,<i-acute>);/
(<I-grave>,<i-grave>);(<I-circumflex>,<i-circumflex>);/
(<I-diaresis>,<i-diaresis>);(<N-tilde>,<n-tilde>);/
(<0-acute>,<0-acute>);(<0-grave>,<0-grave>);/
(<0-circumflex>,<0-circumflex>);(<0-diaresis>,<0-diaresis>);/
(<0-tilde>,<0-tilde>);(<0-slash>,<0-slash>);(<Thorn>,<thorn>);/
(<U-acute>,<u-acute>); (<U-grave>,<u-grave>);/
(<U-circumflex>,<u-circumflex>);(<U-diaresis>,<u-diaresis>);/
(<Y-acute>,<y-acute>)
END LC_CTYPE
LC_COLLATE
order_start
<NUL>
<SOH>
<STX>
<ETX>
<SEL>
<tab>
<RNL>
<DEL>
<GE>
<SPS>
<RPT>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<RES>
<NL>
```

```
<backspace>
<POC>
<CAN>
<EM>
<UBS>
<CU1>
<IS4>
<IS3>
<IS2>
<IS1>
<DS>
<SOS>
<FS>
<WUS>
<BYP>
<newline>
<ETB>
<ESC>
<SA>
<SFE>
<SM>
<CSP>
<MFA>
<ENQ>
<ACK>
<alert>
<SYN>
<IR>
<PP>
<TRN>
<NBS>
<EOT>
<SBS>
<IT>
<RFF>
<CU3>
<DC4>
<NAK>
<SUB>
<E0>
<space>
<underscore>
<macron>
<hyphen>
<hyphen-minus>
<comma>
<semicolon>
<colon>
<exclamation-mark>
<exclamation-down>
<question-mark>
<question-down>
<slash>
<period>
<acute>
<grave-accent>
<circumflex>
<diaresis>
<tilde>
<dot>
<cedilla>
<apostrophe>
<quotation-mark>
<guillemot-left>
<guillemot-right>
<left-parenthesis>
<right-parenthesis>
```

```
<left-square-bracket>
<right-square-bracket>
<left-brace>
<right-brace>
<section>
<paragraph>
<copyright>
<registered>
<commercial-at>
<currency>
<cent>
<dollar-sign>
<sterling>
<yen>
<asterisk>
<backslash>
<ampersand>
<number-sign>
<percent-sign>
<plus-sign>
<plus-minus>
<divide>
<multiply>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<not>
<vertical-line>
<broken-bar>
<degree>
<mu>
<nobreakspace>
<zero>
<one-quarter>
<one-half>
<three-quarters>
<one>
<one-superior>
<two>
<two-superior>
<three>
<three-superior>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<a>
<A>
<a-acute>
<A-acute>
<feminine>
<a-grave>
<A-grave>
<a-circumflex>
<A-circumflex>
<a-ring>
<A-ring>
<a-diaresis>
<A-diaresis>
<a-tilde>
<A-tilde>
<ae>
<AE>
<b>
<B>
```

```
<C>
<C>
<c-cedilla>
<C-cedilla>
<d>
<D>
<eth>
<Eth>
<e>
<E>
<e-acute>
<E-acute>
<e-grave>
<E-grave>
<e-circumflex>
<E-circumflex>
<e-diaresis>
<E-diaresis>
<f>
<F>
<g>
<G>
<h>
<H>
<i-dotless>
<i>
<I>
<i-acute>
<I-acute>
<i-grave>
<I-grave>
<i-circumflex>
<I-circumflex>
<i-diaresis>
<I-diaresis>
<j>
<J>
<k>
<K>
<]>
<L>
<m>
<M>
<n>
<N>
<n-tilde>
<N-tilde>
<0>
<0>
<masculine>
<0-acute>
<0-acute>
<0-grave>
<0-grave>
<0-circumflex>
<0-circumflex>
<0-diaresis>
<0-diaresis>
<0-tilde>
<0-tilde>
<0-slash>
<0-slash>
<p>
<q>
<Q>
<r>
<R>
```

```
<s>
<S>
<s-sharp>
<t>
<T>
<thorn>
<Thorn>
<u>
<U>
<u-acute>
<U-acute>
<u-grave>
<U-grave>
<u-circumflex>
<U-circumflex>
<u-diaresis>
<U-diaresis>
<v>
<V>
<w>
<W>
<x>
<X>
<y>
<>>
<y-acute>
<Y-acute>
<y-diaresis>
<z>
<Z>
UNDEFINED
order_end
END LC_COLLATE
LC_MONETARY
int_curr_symbol "<U><S><D><space>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping 3
positive_sign ""
negative_sign "<hyphen-minus>"
int frac digits 2
frac_digīts 2
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 2
n_sign_posn 2
END LC_MONETARY
LC_NUMERIC
decimal_point "<period>"
thousands_sep "<comma>"
grouping
    3
END LC_NUMERIC
```

LC_TIME

```
abday "<S><u><n>";/
"<M><0><n>"; /
"<T><u><e>"; /
"<W><e><d>";/
"<T><h><u>";/
"<F><r><i>";/
" \(<S><a><t>"\)
```

day "<S><u><n><d><a><y>";/
"<M><0><n><d><a><y>"; /
"<T><u><e $><\langle s><d><a><y>" ; /$
"<h><e><d><n><e><s><d><a><y>"; /
"<T><h><u><r><s><d><a><y>";/
"<F><r><i><d><a><y>";/
"<S><a><t><u><r><d><a><y>"
abmon "<J><a><n>";/
"<F><e><b>"; /
"<M><a><r>";/
"<A><p><r>"; /
"<M><a><y>";/
"<J><u><n>"; /
"<J><u><1>";/
"<A><u><g>"; /
"<S><e><p>";/
"<0><c><t>";/
"<N><0><v>"; /
"<D><e><c>"
mon "<J><a><n><u><a><r><y>"; /
"<F><e><b><r><u><a><r><y>"; /
"<M><a><r><c><h>";/
"<A><p><r><i><1>";/
"<M><a><y>";/
"<J><u><n><e>";/
"<J><u><1><y>";/
"<A><u><g><u><s><t>"; /
"<S><e><p><t><e><m><b><e><r>";/
"<0><c><t><0><b><e><r>";/
"<N><0><v><e><m><b><e><r>";/
"<D><e><c><e><m><b><e><r>"
d_t_fmt "\%a \%b \%e \%H: $\% \mathrm{M}: \% \mathrm{~S} \% \mathrm{Z} \%$ "
d_fmt " $\% \mathrm{~m} / / \% \mathrm{~d} / / \% \mathrm{y}$ "
t_fmt "\%H:\%M:\%S"
am_pm " $<A><M>" ; "<P><M>"$
END LC_TIME
LC_MESSAGES
yesexpr "[yY][eE][sS]|[yY]"
noexpr "[nN][00]|[nN]"
yesstr "yes:y:Y"
nostr "no:n:N"
END LC_MESSAGES
LC_TOD
tzdiff 0
tname ""

```
dstname ""
dststart 0,0,0,0
dstend 0,0,0,0
dstshift 0
END LC_TOD
```


## Globalization reference information

This topic provides a comprehensive collection of supporting information about the concepts and tasks described in the Globalization category.

- NLV feature codes
- Country/region identifiers
- Default system values for national language versions
- System values for languages that do not have a national language version
- Keyboards
- Keyboard layouts
- SBCS keyboard and display part numbers by language
- Special-character keyboard set
- Keyboard types and SBCS code pages
- Code pages
- Character sets
- Country extended character set 00697
- Graphic character conversion tables
- International DP 9400103 (ASCII)
- International alphabet 501169
- Invariant character set
- Monocase tables
- Portable character set
- Syntactic and invariant character set 00640
- T. 61 character set 01252
- T.61 character repertoire 01253
- T.61 graphic character conversions
- CCSIDs
- CCSID values defined on OS/400 ${ }^{(\mathrm{R})}$
- Supported CCSID mappings
- Associated CCSID values
- Encoding schemes for CCSIDs
- Language identifiers and associated default CCSIDS
- Locales
- System-supplied locales and recommended CCSIDs
- Mapping of locale symbolic names
- REXX extension characters
- Axxxxxxxx GCGIDs
- Bxxxxxxxx GCGIDs
- Gxxxxxxxx GCGIDs
- Hxxxxxxxx GCGIDS
- Jxxxxxxxx GCGIDs
- Kxxxxxxxx GCGIDs
- Lxxxxxxxx GCGIDs
- Nxxxxxxxx GCGIDs
- Oxxxxxxxx GCGIDs
- Sxxxxxxxx GCGIDS


## National language version feature codes

The following table lists the available national language version feature codes. See the Software Installation

PDF for more information.

| National language version | Primary language feature code | Secondary language feature code |
| :---: | :---: | :---: |
| Albanian | 2995 | 5795 |
| Arabic | 2954 | 5754 |
| Belgian English | 2909 | 5709 |
| Belgian Dutch | 2963 | 5763 |
| Belgian French | 2966 | 5766 |
| Brazilian Portuguese | 2980 | 5780 |
| Bulgarian | 2974 | 5774 |
| Canadian French | 2981 | 5781 |
| Croatian | 2912 | 5712 |
| Czech | 2975 | 5775 |
| Danish | 2926 | 5726 |
| Dutch Netherlands | 2923 | 5723 |
| English | 2924 | 5724 |
| English Uppercase Support for Double-Byte Character Set (DBCS) | 2938 | 5738 |
| English Uppercase | 2950 | 5750 |
| English Uppercase and Lowercase Support for Double-Byte Character Set (DBCS) | 2984 | 5784 |
| Estonian | 2902 | 5702 |
| Farsi | 2998 | 5798 |
| Finnish | 2925 | 5725 |
| French | 2928 | 5728 |
| French Multinational Character Set | 2940 | 5740 |
| German | 2929 | 5729 |
| German Multinational Character Set | 2939 | 5739 |
| Greek | 2957 | 5757 |
| Hebrew | 2961 | 5761 |
| Hungarian | 2976 | 5776 |
| Icelandic | 2958 | 5758 |
| Italian | 2932 | 5732 |
| Italian Multinational Character Set | 2942 | 5742 |
| Japanese Double-Byte Character Set (DBCS) | 2962 | 5762 |


| National language version | Primary language <br> feature code | Secondary language <br> feature code |
| :--- | :--- | :--- |
| Korean Double-Byte Character Set (DBCS) | 2986 | 5786 |
| Lao | 2906 | 5706 |
| Latvian | 2904 | 5704 |
| Lithuanian | 2903 | 5703 |
| Macedonian | 2913 | 5713 |
| Norwegian | 2933 | 5733 |
| Polish | 2978 | 5778 |
| Portuguese | 2922 | 5722 |
| Portuguese Multinational Character Set | 2996 | 5796 |
| Romanian | 2992 | 5792 |
| Russian | 2979 | 5779 |
| Serbian Cyrillic | 2914 | 5714 |
| Simplified Chinese Double-Byte Character Set (DBCS) | 2989 | 5789 |
| Slovakian | 2994 | 5794 |
| Slovenian | 2911 | 5711 |
| Spanish | 2931 | 5731 |
| Swedish | 2937 | 5737 |
| Thai | 2972 | 5772 |
| Traditional Chinese Double-Byte Character Set (DBCS) | 2987 | 5787 |
| Turkish | 2956 | 5756 |
| Vietnamese | 2905 | 5705 |

## Country/region identifiers

| Country/Region Name | Country/Region ID |
| :--- | :--- |
| Afghanistan | AF |
| Albania | AL |
| Algeria | DZ |
| American Samoa | AS |
| Andorra | AD |
| Angola | AO |
| Anguilla | AI |
| Antarctica | AQ |
| Antigua and Barbuda | AG |
| Arabic speaking countries | AA |
| Argentina | AR |
| Armenia | AM |
| Aruba | AW |
| Australia | AU |
| Austria | AT |


| Country/Region Name | Country/Region ID |
| :---: | :---: |
| Azerbaijan | AZ |
| Bahamas | BS |
| Bahrain | BH |
| Bangladesh | BD |
| Barbados | BB |
| Belarus | BY |
| Belgium | BE |
| Belize | BZ |
| Benin | BJ |
| Bermuda | BM |
| Bhutan | BT |
| Bolivia | BO |
| Bosnia/Herzegovina | BA |
| Botswana | BW |
| Bouvet Island | BV |
| Brazil | BR |
| British Indian Ocean Territory | 10 |
| Brunei Darussalam | BN |
| Bulgaria | BG |
| Burkina Faso | BF |
| Burundi | BI |
| Burma | BU |
| Cambodia | KH |
| Cameroon, United Republic of | CM |
| Canada | CA |
| Cape Verde | CV |
| Cayman Islands | KY |
| Central African Republic | CF |
| Chad | TD |
| Chile | CL |
| China | CN |
| China (Hong Kong S.A.R.) | HK |
| China (Macao S.A.R.) | MO |
| Christmas Island | CX |
| Cocos (Keeling) Islands | CC |
| Colombia | CO |
| Comoros | KM |
| Congo | CG |
| Cook Islands | CK |
| Costa Rica | CR |
| Ivory Coast | Cl |


| Country/Region Name | Country/Region ID |
| :---: | :---: |
| Croatia | HR |
| Cuba | CU |
| Cyprus | CY |
| Czech Republic | CZ |
| Denmark | DK |
| Djibouti | DJ |
| Dominica | DM |
| Dominican Republic | DO |
| East Timor | TP |
| Ecuador | EC |
| Egypt | EG |
| El Salvador | SV |
| Equatorial Guinea | GQ |
| Estonia | EE |
| Ethiopia | ET |
| Falkland Islands (Malvinas) | FK |
| Faroe Islands | FO |
| Fiji | FJ |
| Finland | FI |
| France | FR |
| French Guiana | GF |
| French Polynesia | PF |
| French Southern Territories | TF |
| Gabon | GA |
| Gambia | GM |
| Georgia | GE |
| Germany | DE |
| Ghana | GH |
| Gibraltar | GI |
| Greece | GR |
| Greenland | GL |
| Grenada | GD |
| Guadeloupe | GP |
| Guam | GU |
| Guatemala | GT |
| Guinea | GN |
| Guinea-Bissau | GW |
| Guyana | GY |
| Haiti | HT |
| Heard and McDonald Islands | HM |
| Honduras | HN |


| Country/Region Name | Country/Region ID |
| :---: | :---: |
| Hungary | HU |
| Iceland | IS |
| India | IN |
| Indonesia | ID |
| Iran (Islamic Republic of) | IR |
| Iraq | IQ |
| Ireland | IE |
| Israel | IL |
| Italy | IT |
| Jamaica | JM |
| Japan | JP |
| Jordan | JO |
| Kazakhstan | KK |
| Kenya | KE |
| Kiribati | KI |
| Korea, Democratic People's Republic of | KP |
| Korea, Republic of | KR |
| Kuwait | KW |
| Kyrgyzstan | KG |
| Lao People's Democratic Republic | LA |
| Latvia | LV |
| Lebanon | LB |
| Lesotho | LS |
| Liberia | LR |
| Libyan Arab Jamahiriya | LY |
| Liechtenstein | LI |
| Lithuania | LT |
| Luxembourg | LU |
| Macedonia | MK |
| Madagascar | MG |
| Malawi | MW |
| Malaysia | MY |
| Maldives | MV |
| Mali | ML |
| Malta | MT |
| Marshall Islands | MH |
| Martinique | MQ |
| Mauritania | MR |
| Mauritius | MU |
| Mexico | MX |
| Micronesia | FM |


| Country/Region Name | Country/Region ID |
| :---: | :---: |
| Moldava, Republic of | MD |
| Monaco | MC |
| Mongolia | MN |
| Montenegro | ME |
| Montserrat | MS |
| Morocco | MA |
| Mozambique | MZ |
| Myanmar | MM |
| Namibia | NA |
| Nauru | NR |
| Nepal | NP |
| Netherlands | NL |
| Netherlands Antilles | AN |
| New Caledonia | NC |
| Neutral Zone | NT |
| New Zealand | NZ |
| Nicaragua | NI |
| Niger | NE |
| Nigeria | NG |
| Niue | NU |
| Norfolk Island | NF |
| Northern Mariana Islands | MP |
| Norway | NO |
| Oman | OM |
| Pakistan | PK |
| Palau | PW |
| Panama | PA |
| Papua New Guinea | PG |
| Paraguay | PY |
| Peru | PE |
| Philippines | PH |
| Pitcairn | PN |
| Poland | PL |
| Portugal | PT |
| Puerto Rico | PR |
| Qatar | QA |
| Reunion | RE |
| Romania | RO |
| Russia | RU |
| Rwanda | RW |
| Saint. Helena | SH |


| Country/Region Name | Country/Region ID |
| :---: | :---: |
| Saint Kitts and Nevis | KN |
| Saint Lucia | LC |
| Saint Pierre and Miquelon | PM |
| Saint Vincent and the Grenadines. | VC |
| Western Samoa | WS |
| San Marino | SM |
| Sao Tome and Principe | ST |
| Saudi Arabia | SA |
| Senegal | SN |
| Seychelles | SC |
| Sierra Leone | SL |
| Serbia | SQ |
| Singapore | SG |
| Slovakia | SK |
| Slovenia | SI |
| Solomon Islands | SB |
| Somalia | SO |
| South Africa | ZA |
| Spain | ES |
| Sri Lanka | LK |
| Sudan | SD |
| Suriname | SR |
| Svalbard and Jan Mayen IsInds | SJ |
| Swaziland | SZ |
| Sweden | SE |
| Switzerland | CH |
| Syrian Arab Republic | SY |
| Taiwan | TW |
| Tajikistan | TJ |
| Tanzania, United Republic of | TZ |
| Thailand | TH |
| Togo | TG |
| Tokelau | TK |
| Tonga | TO |
| Trinidad and Tobago | TT |
| Tunisia | TN |
| Turkmenistan | TM |
| Turkey | TR |
| Turks and Caicos Islands | TC |
| Tuvalu | TV |
| Uganda | UG |


| Country/Region Name | Country/Region ID |
| :--- | :--- |
| Ukraine | UA |
| United Arab Emirates | AE |
| United Kingdom | GB |
| United States Minor Outlying Islands | UM |
| United States of America | US |
| Uruguay | UY |
| Uzbekistan | UZ |
| Vanuatu | VU |
| Vatican City State | VA |
| Venezuela | VE |
| Vietnam | VN |
| Virgin Islands (British) | VG |
| Virgin Islands (U.S.) | VI |
| Wallis and Futuna Islands | WF |
| Western Sahara | EH |
| Yemen, Republic of | YE |
| Countries of the former Yugoslavia | YU |
| Zaire | ZR |
| Zambia | ZM |
| Zimbabwe | ZW |

## Default system values for national language versions

System values are the default values for jobs and functions on the system. The following links are to tables that show some of the system values associated with each national language version. The values shown for each version are listed by keyword. These are the values you see when you display the CPX8416 message for a particular language library. For an explanation of each keyword, see the System values topic. The tables contain Internet values that are needed to configure a Web browser for a specific language. The Internet values are also listed by keyword.

See System values for other languages that do not have a national language version for related information.

- Albanian (Feature 2995)
- Arabic (Feature 2954)
- Belgian Dutch MNCS (Feature 2963)
- Belgium English (Feature 2909)
- Belgian French MNCS (Feature 2966)
- Brazilian Portuguese (Feature 2980)
- Bulgarian (Feature 2974)
- Canadian French MNCS (Feature 2981)
- Croatian (Feature 2912)
- Czech (Feature 2975)
- Danish (Feature 2926)
- Dutch Netherlands (Feature 2923)
- English Uppercase (Feature 2950)
- English Uppercase and Lowercase (Feature 2924)
- English Uppercase DBCS (Feature 2938)
- English Uppercase and Lowercase DBCS (Feature 2984)
- Estonian (Feature 2902)
- Farsi (Feature 2998)
- Finnish (Feature 2925)
- French (Feature 2928)
- French MNCS (Feature 2940)
- German (Feature 2929)
- German MNCS (Feature 2939)
- Greek (Feature 2957)
- Hebrew (Feature 2961)
- Hungarian (Feature 2976)
- Icelandic (Feature 2958)
- Italian (Feature 2932)
- Italian MNCS (Feature 2942)
- Japanese (Katakana) DBCS (Feature 2962)
- Korean DBCS (Feature 2986)
- Laotian (Feature 2906)
- Latvian (Feature 2904)
- Lithuania (Feature 2903)
- Macedonian (Feature 2913)
- Norwegian (Feature 2933)
- Polish (Feature 2978)
- Portuguese (Feature 2922)
- Portuguese MNCS (Feature 2996)
- Romanian (Feature 2992)
- Russian (Feature 2979)
- Serbian (Feature 2914)
- Simplified Chinese DBCS (Feature 2989)
- Slovakian (Feature 2994)
- Slovenian (Feature 2911)
- Spanish (Feature 2931)
- Swedish (Feature 2937)
- Thai (Feature 2972)
- Traditional Chinese DBCS (Feature 2987)
- Turkish (Feature 2956)

Values that are provided in the tables:

| Keyword | Description |
| :--- | :--- |
| QCCSID | Character set identifier. This is the recommended <br> QCCSID value if you want to use CDRA support. For all <br> national language versions (NLVs), the default QCCSID <br> value is 65535 unless otherwise indicated. |


| Keyword | Description |
| :--- | :--- |
| QCHRID | Character set and code page |
| QCNTRYID | Country or region identifier |
| QCURSYM | Currency symbol. The values given are accurate; <br> however, the system supports only 1 character in that <br> return field. |
| QDATFMT | Date format |
| QDATSEP | Date separator |
| QDECFMT | Decimal format |
| QIGC | DBCS version indicator |
| QIGCCDEFNT | DBCS font name |
| QKBDTYPE | Keyboard type |
| QLANGID | Language identifier |
| QLEAPADJ | Leap year adjustment |
| QSRTSEQ | Sort sequence |
| QTIMSEP | Client character set environment. |
| Internet CCSID | NLTC (National Language Technical Center) value and <br> Document Encoding. Client encoding nomenclature <br> provides a guideline for configuring a client for a specific <br> language and setting up your internet web browser. |
| Client encoding nomenclature |  |

## Albanian (Feature 2995)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | ALI | Lek | - | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | colon $(:)$ | 00500 | AL | SQI | ISO-8859-1 Latin 1 |

Arabic (Feature 2954)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0023500420 | J | CLB | Dollar (\$) | Slash (/) | 01089 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Comma (,) | 00420 | AA | ARA | ISO-8859-6 |

Belgian Dutch MNCS (Feature 2963)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | BLI | F | Slash $(/)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00500 | BE | NLB | ISO-8859-1 Latin 1 |

## Belgium English (Feature 2909)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | BLI | F | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00500 | BE | ENB | ISO-8859-1 Latin 1 |

## Belgian French MNCS (Feature 2966)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | BLI | F | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon (:) | 00500 | BE | FRB | ISO-8859-1 Latin 1 |

## Brazilian Portuguese (Feature 2980)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | J | BRB | Cruzeiro (\$) | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00037 | BR | PTB | ISO-8859-1 Latin 1 |

## Bulgarian (Feature 2974)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0115001025 | J | BGB | Lv | - | 00915 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | colon $(:)$ | 01025 | BG | BGR | ISO-8859-5 |

Canadian French MNCS (Feature 2981)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | CAI | Dollar $(\$)$ | Hyphen $(-)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00500 | CA | FRC | ISO-8859-1 Latin 1 |

## Croatian (Feature 2912)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | Blank | YGI | Croatian Kuna $(\mathrm{K})$ | Hyphen $(-)$ | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00870 | HR | HRV | ISO-8859-2Latin 2 |

Czech (Feature 2975)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | J | CSB | Ceske Koruna (K) | Hyphen $(-)$ | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00870 | CZ | CSY | ISO-8859-2Latin 2 |

Danish (Feature 2926)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700277 | J | DMB | Colon $(:)$ | Hyphen $(-)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Period (.) | 00277 | DK | DAN | ISO-8859-1 Latin 1 |

Dutch Netherlands (Feature 2923)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | J | NEB | Dollar \$ | Hyphen $(-)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00037 | NL | NLD | ISO-8859-1 Latin 1 |

## English Uppercase (Feature 2950)

If English Uppercase is installed, you must respond to messages in uppercase rather than lowercase.

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | Blank | USB | Dollar (\$) | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MDY | Colon $(:)$ | 00037 | GB | ENP | ISO-8859-1 Latin 1 |

## English Uppercase and Lowercase (Feature 2924)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | Blank | USB | Dollar $(\$)$ | Slash $(/)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MDY | Colon $(:)$ | 00037 | US | ENU | ISO-8859-1 Latin 1 |

## English Uppercase DBCS (Feature 2938)

If English Uppercase is installed, you must respond to messages in uppercase rather than lowercase.

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | Blank | JKB | Yen sign | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID $^{2}$ | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MDY | Colon $(:)$ | 65535 | US | ENP | ISO-8859-1 Latin 1 |

## Note:

1. The QIGC value is set to 1 .
2. Because this national language version is not specific to any country or region, 65535 is used. You should change this system value to an appropriate CCSID after installing your system, or change the job or user profile CCSID attribute. Here are the recommended CCSID values and CHRID changes that occur.

- 05026 is the CCSID for Japanese with no lowercase characters. The CHRID is set to 1172290.
- 01399 is the CCSID for Japanese with both uppercase and lowercase characters. The CHRID is set to 0117201027.

System and product files not explicitly assigned a CCSID value will be assigned CCSID 05035 if DBCS capable and CCSID 01027 for SBCS only files.

## English Uppercase and Lowercase DBCS (Feature 2984)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0117500037 | Blank | TAB | Dollar (\$) | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID $^{2}$ | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MDY | Colon $(:)$ | 65535 | US | ENU | ISO-8859-1 Latin 1 |

## Note:

1. The QIGC value is set to 1 .
2. Because this national language version is not specific to any country or region, 65535 is used. You should change this system value to an appropriate CCSID after installing your system, or change the job or user profile CCSID attribute. Here are the recommended CCSID values and CHRID changes.

- 00937 is the CCSID for Traditional Chinese. The CHRID is set to 117500037
- 00935 is the CCSID for Simplified Chinese. The CHRID is set to 0117400836.
- 00933 is the CCSID for Korean. The CHRID is set to 0117300833.


## Estonian (Feature 2902)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0130701122 | J | ESB | kr | - | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 01122 | EE | EST | ISO-8859-1 Latin 1 |

## Farsi (Feature 2998)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0121901097 | J | IRB | Farsi Riyal | Slash (/) |  |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 01097 | IR | FAR | - |

Finnish (Feature 2925)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700278 | J | FNB | F | Period (.) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Period (.) | 00278 | FI | FIN | ISO-8859-1 Latin 1 |

## French (Feature 2928)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700297 | J | FAB | F | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00297 | FR | FRA | ISO-8859-1 Latin 1 |

French MNCS (Feature 2940)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | SFI | F | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00500 | CH | FRS | ISO-8859-1 Latin 1 |

## German (Feature 2929)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700273 | J | AGB | Dollar (\$) | Period (.) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00273 | DE | DEU | ISO-8859-1 Latin 1 |

## German MNCS (Feature 2939)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | AGI | Dollar (\$) | Period (.) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Comma (,) | 00500 | CH | DES | ISO-8859-1 Latin 1 |

## Greek (Feature 2957)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0092500875 | J | GNB | Dollar (\$) | Slash (/) | 00813 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00875 | GR | ELL | ISO-8859-7 Greek |

## Hebrew (Feature 2961)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0094100424 | Blank | NCB | Shin (GCGID <br> HS210000, code <br> point X'69' on <br> code page 00424) | Slash (/) | 00916 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00424 | IL | HEB | ISO-8859-8 |

## Hungarian (Feature 2976)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | $J$ | HNB | Forint (F) | Hyphen $(-)$ | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00870 | HU | HUN | ISO-8859-2 Latin 2 |

Icelandic (Feature 2958)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700871 | J | ICB | Dollar (\$) | Hyphen $(-)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00871 | IS | ISL | ISO-8859-1 Latin 1 |

Italian (Feature 2932)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700280 | Blank | ITB | Lira sign | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Period (.) | 00280 | IT | ITA | ISO-8859-1 Latin 1 |

Italian MNCS (Feature 2942)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | Blank | ITI | Lira sign | Slash $(/)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Comma (,) | 00500 | CH | ITS | ISO-8859-1 Latin 1 |

## Japanese (Katakana) DBCS (Feature 2962)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0117200290 | Blank | JKB | Yen sign | Hyphen $(-)$ | 00942 |


| QDATFMT | QTIMSEP | QCCSID $^{2}$ | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 05026 | JP | JPN | ShiftJIS |

Notes:

1. The QIGC system value is set to 1 .
2. This is the recommended QCCSID value if you want to use CDRA support. For all NLVs, the default QCCSID value is 65535 .

## Korean DBCS (Feature 2986)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0117300833 | Blank | KOB | WON sign | Period (.) | 00949 |


| QDATFMT | QTIMSEP | QCCSID $^{2}$ | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00933 | KR | KOR | EUC Korean |

Notes:

1. The QIGC system value is set to 1 .
2. This is the recommended QCCSID value if you want to use CDRA support. For all NLVs, the default QCCSID value is 65535 .

## Laotian (Feature 2906)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13411132 | J | LAB | KIP | Slash $(/)$ |  |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 01132 | LA | LAO |  |

## Latvian (Feature 2904)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0130501112 | J | LVB | Ls | Period (.) | 00921 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 01112 | LV | LVA | ISO-8859-4 |

## Lithuania (Feature 2903)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0130501112 | J | LTB | Lt | Period (.) | 00921 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 01112 | LT | LTU | ISO-8859-4 |

## Macedonian (Feature 2913)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0115001025 | $J$ | MKB | Den | - | 00915 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 01025 | MK | MKD | Cyrillic (Win1251) |

Norwegian (Feature 2933)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700277 | J | NWB | Dollar (\$) | Period (.) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00277 | NO | NON | ISO-8859-1 Latin 1 |

## Polish (Feature 2978)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | J | PLB | Polish Zloty $(Z)$ | Hyphen $(-)$ | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00870 | PL | PLK | ISO-8859-2Latin 2 |

Portuguese (Feature 2922)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | J | PRB | Escudo (\$) | Slash (/) | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00037 | PT | PTG | ISO-8859-1 Latin 1 |

Portuguese MNCS (Feature 2996)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700500 | J | PRI | Escudo $(\$)$ | Hyphen $(-)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00500 | PT | PTG | ISO-8859-1 Latin 1 |

Romanian (Feature 2992)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | J | RMB | lei | Period (.) | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00870 | RO | ROM | ISO-8859-2Latin 2 |

## Russian (Feature 2979)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0115001025 | J | RUB | Ruble (GCGID <br> KR02000 - <br> character X'DE' <br> on code page <br> 1025) | Slash (/) | 1251 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Period (.) | 01025 | RU | RUS | Cyrillic (Win1251) |

## Serbian (Feature 2914)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0115001025 | $J$ | SQB | Din | - | 00915 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Period (.) | 01025 | SQ | SRB | ISO-8859-5 |

## Simplified Chinese DBCS (Feature 2989)

| QCHRID $^{2}$ | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0117400836 | Blank | RCB | Dollar (\$) | Period (.) | 01381 |


| QDATFMT | QTIMSEP | QCCSID $^{3}$ | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00935 | CN | CHS | GB SimpChin |

Notes:

1. The QIGC value is set to 1 .
2. For Version 1 Release 2 and Release 3, the character set and code page is 0010100037.
3. This is the recommended QCCSID value if you want to use CDRA support.

## Slovakian (Feature 2994)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | J | SKB | Slovak Koruna (K) | Hyphen (-) | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon (:) | 00870 | SK | SKY | ISO-8859-2Latin 2 |

Slovenian (Feature 2911)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0095900870 | Blank | YGI | Slovenian Tolar <br> $(\mathrm{T})$ | Hyphen $(-)$ | 00912 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00870 | SI | SLO | ISO-8859-2Latin 2 |

Spanish (Feature 2931)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700284 | J | SPB | Dollar $(\$)$ | Slash $(/)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 00284 | ES | ESP | ISO-8859-1 Latin 1 |

## Swedish (Feature 2937)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700278 | J | SWB | Dollar $(\$)$ | Hyphen $(-)$ | 00819 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Period (.) | 00278 | SE | SVE | ISO-8859-1 Latin 1 |

## Thai (Feature 2972)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0127900838 | Blank | THB | Baht sign | Slash $(/)$ | 01066 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon (:) | 09030 | TH | THA | IBM 874 |

Traditional Chinese DBCS (Feature 2987)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0117500037 | Blank | TAB | Dollar (\$) | Slash (/) | 00950 |


| QDATFMT | QTIMSEP | QCCSID $^{2}$ | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YMD | Colon $(:)$ | 00937 | TW | CHT | BIG5 |

Notes:

1. The QIGC system value is set to 1 .
2. This is the recommended QCCSID value if you want to use CDRA support. For all NLVs, the default QCCSID value is 65535 .

Turkish (Feature 2956)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP | Internet CCSID |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0115201026 | J | TKB | Dollar $(\$)$ | Slash $(/)$ | 00920 |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID | Client Encoding <br> Nomenclature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DMY | Colon $(:)$ | 01026 | TR | TRK | ISO-8859-9 Turkish |

## System values for other languages with no national language version

The following tables show some of the system values associated with languages and countries that do not have a national language version. The system values must be set immediately after receiving the system or after initially installing the operating system.

You also have to change the message, CPX8416, in the QCPFMSG message file in library QSYS to reflect the changed system values.

Afrikaans (South Africa) (page 296
Australian English (Australia) (page 296
Byelorussia (Belarus) (page 296
Irish Gaelic (Ireland) (page 297)

Serbian Latin (Serbia) (page 297
Spanish (Argentina) (page 297
UK English (United Kingdom) (page 297
Vietnamese (Feature 2905) (page 297

## Afrikaans (South Africa)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700037 | J | USB | rand | hyphen (-) |
| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| YMD | colon $(:)$ | 00037 | ZA | AFR |

## Australian English (Australia)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- |
| 0069700037 | J | USB | dollar | slash (/) |
| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| DMY | period (.) | 00037 | AU | ENA |

## Byelorussia (Belarus)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- |
| 0115001025 |  | RUB |  |  |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| :--- | :--- | :--- | :--- | :--- |
|  |  | 01025 | BY | BEL |

Irish Gaelic (Ireland)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0069700285 | J | UKB | punt | slash $(/)$ |
| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| DMY | colon $(:)$ | 00285 | IE | GAE |

## Serbian Latin (Serbia)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- |
| 0085900870 | blank | YGI |  |  |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| :--- | :--- | :--- | :--- | :--- |
|  |  | 00870 | SQ | SRL |

## Spanish (Argentina)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- |
| 0069700284 | J | SSB | Austral $(\$)$ | slash $(/)$ |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| :--- | :--- | :--- | :--- | :--- |
| DMY | period $()$. | 00284 | AR | ESP |

UK English (United Kingdom)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- |
| 0069700285 | J | UKB | pound | slash $(/)$ |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| :--- | :--- | :--- | :--- | :--- |
| DMY | colon $(:)$ | 00285 | GB | ENG |

Vietnamese (Feature 2905)

| QCHRID | QDECFMT | QKBDTYPE | QCURSYM | QDATSEP |
| :--- | :--- | :--- | :--- | :--- |
| 13361130 | J | VNB | DONG | Slash $(/)$ |


| QDATFMT | QTIMSEP | QCCSID | QCNTRYID | QLANGID |
| :--- | :--- | :--- | :--- | :--- |
| DMY | colon $(:)$ | 01130 | VN | VNM |

## Keyboard reference information

The following topics provide useful information about keyboards for use with iSeries ${ }^{(T M)}$ servers:

- Keyboard layouts
- SBCS keyboard and display part numbers by language
- Special-character keyboard set
- Keyboard types and SBCS code pages


## Keyboard layouts

The following keyboard layout samples are provided for your information. The special-character keyboard set is available only with the enhanced keyboard.

- Albanian
- Arabic
- Austrian German
- Belgian Multinational
- Brazilian Portuguese
- Bulgarian Cyrillic
- Canadian French
- Croatian $\mathrm{IBM}^{(\mathrm{R})}$ enhanced
- Czech
- Danish
- Dutch
- Farsi
- Finnish/Swedish
- French (Azerty)
- Greek
- Hebrew
- Hebrew, Latin
- Hungarian
- Italian
- Japanese
- Korean
- Macedonian
- Norwegian
- Polish
- Portuguese
- Romanian
- Russian
- Serbian Cyrillic
- Slovakian
- Slovenian
- Spanish-speaking
- Spanish IBM enhanced
- Swiss-bilingual-French
- Swiss-bilingual-German
- Traditional Chinese
- Turkish
- U.K. English
- U.S. English

Albanian IBM Enhanced Keyboard:


## Arabic IBM ${ }^{(R)}$ Enhanced Keyboard:



## Austrian German IBM ${ }^{(R)}$ Enhanced Keyboard:



## Belgian Multinational IBM ${ }^{(R)}$ Enhanced Keyboard:



## Brazilian Portuguese $I B M^{(R)}$ Enhanced Keyboard:



This U.S. keyboard is used to enter Brazilian Portuguese characters. Accented characters for use in Brazil are generated using key combinations as shown in the following table. To produce the accented characters, press the key and character at the same time.

\begin{tabular}{|l|l|l|l|}
\hline Accent \& Key \& Valid characters \& Example result <br>
\hline Accent acute ${ }^{\prime}$ \& ' (apostrophe) \& a, e, i, o, u, A, E, I, O, U \& á <br>
\hline Accent grave` \& (accent grave) \& a, e, i, o, u, A, E, I, O, U \& à <br>

\hline Diaeresis ${ }^{\prime}$ \& | $\prime \prime$ |
| :--- |
| (double | \& a, e, i, o, u, A, E, I, O, U \& ä <br>

\hline Tilde $\sim$ \& $\sim$ (tilde) \& a, o, n, A, O, N \& $\tilde{a}$ <br>
\hline Circumflex $\wedge$ \& $\wedge$ (caret) \& a, e, i, o, u, A, E, I, O, U \& à <br>
\hline
\end{tabular}

Bulgarian Cyrillic IBM ${ }^{(R)}$ Enhanced Keyboard:


Canadian French $I B M^{(R)}$ Enhanced Keyboard:


Croatian IBM ${ }^{(R)}$ Enhanced Keyboard:


## Czech IBM ${ }^{(R)}$ Enhanced Keyboard:




Dutch IBM ${ }^{(R)}$ Enhanced Keyboard:


Farsi IBM ${ }^{(R)}$ Enhanced Keyboard:


Finnish/Swedish IBM ${ }^{(R)}$ Enhanced Keyboard:


French (AZERTY) IBM ${ }^{(R)}$ Enhanced Keyboard:


Greek IBM ${ }^{(R)}$ Enhanced Keyboard:


Hebrew IBM ${ }^{(R)}$ Enhanced Keyboard:


Hebrew, Latin IBM ${ }^{(R)}$ Enhanced Keyboard:


Hungarian IBM ${ }^{(R)}$ Enhanced Keyboard:


Italian IBM ${ }^{(R)}$ Enhanced Keyboard:


Japanese IBM ${ }^{(R)}$ Enhanced Keyboard:


Korean IBM ${ }^{(R)}$ Enhanced Keyboard:



Norwegian IBM ${ }^{(R)}$ Enhanced Keyboard:

## No

Polish IBM ${ }^{(R)}$ Enhanced Keyboard:


Portuguese $I B M{ }^{(R)}$ Enhanced Keyboard:


Romanian IBM ${ }^{(R)}$ Enhanced Keyboard:


Russian IBM ${ }^{(R)}$ Enhanced Keyboard:


## Serbian Cyrillic IBM ${ }^{(R)}$ Enhanced Keyboard:



## Slovakian IBM ${ }^{(R)}$ Enhanced Keyboard:




Spanish-Speaking IBM ${ }^{(R)}$ Enhanced Keyboard:


## Spanish IBM ${ }^{(R)}$ Enhanced Keyboard:



## Swiss-Bilingual-French IBM ${ }^{(R)}$ Enhanced Keyboard:



Swiss-Bilingual-German IBM ${ }^{(R)}$ Enhanced Keyboard:


Traditional Chinese IBM ${ }^{(R)}$ Enhanced Keyboard:
5


Turkish IBM ${ }^{(R)}$ Enhanced Keyboard:


## U.K. English IBM ${ }^{(R)}$ Enhanced Keyboard:


U.S. English IBM ${ }^{(R)}$ Enhanced Keyboard:


## SBCS keyboard and display part numbers by language

The following tables list the part numbers of the SBCS displays and keyboards that should be used for each language or country supported by iSeries ${ }^{(T M)}$ servers. Users of a particular national language version can verify if they have the correct display and keyboard by checking part numbers. The keyboard numbers are printed on the bottom of the keyboards. If the keyboard or display for that language is not correct, the characters displayed may not be correct.

The following topics are provided:

- 3477 and 3476 keyboard and display part numbers (page 309
- 3486, 3487, 3488 Model V, and 3489 keyboard and display part numbers by language (page 311
- Keyboard support for other devices (page 320


## Determining display part numbers

To determine the part number for the model-unique Licensed Internal Code of the display, use the following procedure:

1. Press and hold any key on the keyboard while powering the display on.
2. Move the cursor to

Test Workstation
and press the Enter key.
Note: The text on the display contains a 7-digit number. This is the part number.

## 3477 and 3476 keyboard and display part numbers

The following table lists the part numbers for the 3477 and 3476 displays.

General list of displays: Most languages use the following set of displays. Differences are noted in the table.

- 38F5835
- 64F9705
- 95F5943
- 38F5843
- 95F5908
- 07G2172
- 38F5845
- 79F5064
- 07G2174
- 56F8934
- 95F5911
- 07G2176
- 65F2987
- 79F7019
- 38F7998
- 65F2995
- 79F7020
- 38F7999
- 79F2020
- 79F7022
- 23F1574
- 79F2029
- 79F7025
- 23F1585
- 79F2032
- 95F4144
- 56F9556
- 95F4167
- 95F4146
- 56F9557
- 95F4171
- 07G2170
- 56F9604
- 95F4174
- 95F5941

| Language | KBDTYPE Parameter | 1A (122-Key) Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Arabic | CLB | 1394332 | 1394436 | 38F5818, 56F8919, 65F2991, 65F2999, 79F2045, 79F2047, 95F4178, 95F5896, 79F7084, 79F7100, 95F5971, 95F5983, 23F1581, 56F9585, 38F8008 |
| Austrian/German | AGB | 1394312 | 1394416 | See general list |
| Austrian/German MNCS | AGI | 1394312 | 1394416 | See general list |
| Belgian MNCS | BLI | 1394313 | 1394417 | See general list |
| Brazilian Portuguese | BRB | 1394319 | 1394423 | See general list |
| Canadian French | CAB | 1395662 | 1395567 | See general list |
| Canadian French MNCS | CAI | 1395662 | 1395567 | See general list |
| Cyrillic | CYB | 1394329 | 1394433 | 38F5824, 56F8925, 65F2993, 65F3001,79F5045, 79F5047, 95F5893, 95F5905, 79F7097, 95F4108, 95F5980, 07G2167, 23F1584, 56F9596 |
| Danish | DMB | 1394314 | 1394418 | See general list |
| Danish MNCS | DMI | 1394314 | 1394418 | See general list |
| Finnish/Swedish | FNB | 1394315 | 1394419 | See general list |
| Finnish/Swedish MNCS | FAB | 1394315 | 1394419 | See general list |
| French (Azerty) | FAB | 1394316 | 1394420 | See general list |
| French (Azerty) MNCS | FAI | 1394316 | 1394420 | See general list |
| Greek (Code Page 00875) | GNB | 1396767 | 1396768 | 56F9587, 79F7039, 79F7048, 79F7040, 79F7049, 95F5922, 95F5925, 95F5923, 95F5926 |
| Greek (Code Page 00423) | GKB | 1394325 | 1394429 | 56F9587, 23F1582, 56F8958, 56F8960, 56F8959, 56F8961, 79F2049, 79F5043, 79F2050, 79F5044, 95F5885, 95F5899, 95F5886, 95F5900 |
| Hebrew | NCB | 1394331 | 1394435 | 23F1583, 56F9595, 79F7094, 95F4105, 95F5977, 07G2164, 38F5822, 56F8923, 65F2989, 65F2997, 79F2041, 79F2043, 95F5889, 95F5902 |


| Language | KBDTYPE <br> Parameter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Icelandic | ICB | 1394330 | 1394434 | 38F5820, 56F8921, 56F8958, 56F8960, 79F5043, 79F2049, 95F5885, 95F5899, 23F1582, 56F9587, 79F7087, 95F4102, 95F5974, 07G2161 |
| Icelandic MNCS | ICI | 1394330 | 1394434 | Same as Icelandic |
| Italian | ITB | 1394317 | 1394421 | See general list |
| Italian MNCS | ITI | 1394317 | 1394421 | See general list |
| Japanese Katakana | KAB | 1395664 | 1395669 | See general list |
| Latin 2 | ROB | 1394328 | 1394432 | 38F5824, 56F8925, 65F2993, <br> 65F3001,79F5045, 79F5047 95F5893, <br> 95F5905, 79F7097, 95F4108, 95F5980, <br> 07G2167, 23F1584, 56F9596 |
| Dutch (Netherlands) | NEB |  | 1394427 | See general list |
| Dutch (Netherlands) MNCS | NEI |  | 1394427 | See general list |
| Norwegian | NWB | 1394318 | 1394422 | See general list |
| Norwegian MNCS | NWI | 1394318 | 1394422 | See general list |
| Portuguese | PRB | 1394319 | 1394423 | See general list |
| Portuguese MNCS | PRI | 1394319 | 1394423 | See general list |
| Spanish | SPB | 1394320 | 1394424 | See general list |
| Spanish MNCS | SPI | 1394320 | 1394424 | See general list |
| Spanish Speaking | SSB | 1395663 | 1395668 | See general list |
| Spanish Speaking MNCS | SSI | 1395663 | 1395668 | See general list |
| Swedish | SWB | 1394315 | 1394419 | See general list |
| Swedish MNCS | SWI | 1394315 | 1394419 | See general list |
| French (Switzerland) MNCS | SFI | 1394321 | 1394425 | See general list |
| German (Switzerland) MNCS | SGI | 1394322 | 1394426 | See general list |
| Thai | THB |  | 1395670 | 56F9597 |
| English (United Kingdom) | UKB | 1394324 | 1394428 | See general list |
| English (United Kingdom) MNCS | UKI | 1394324 | 1394428 | See general list |
| English (United States/Canada) | USB | $\begin{array}{\|l} 1395661, \\ 1395660 \end{array}$ | $\begin{aligned} & 1395666, \\ & 1395665 \end{aligned}$ | See general list |
| English (United States/Canada) MNCS | USI | 1394167 | 1394193 | See general list |

## 3486, 3487, 3488 Model V, and 3489 keyboard and display part numbers by language

The following table lists the part numbers of the 3486, 3487, 3488 Model V , and 3489 displays and keyboards that should be used for each language or country supported by the iSeries server. Blank entries in the keyboard columns mean that keyboard part numbers are not available at this time.

| Language | KBDTYPE Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Arabic | CLB | 1394332 | 1394436 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Austrian/German | AGB | 1394312 | 1394416 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Austrian/German MNCS | AGI | 1394312 | 1394416 | Same as Austrian/German |
| Belgian MNCS | BLI | 1394313 | 1394417 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Bulgarian | BGB |  | 35G4741 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |


| Language | KBDTYPE <br> Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| French (Canada) | CAB | 1395662 | 1395567 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| French (Canada) MNCS | CAI | 1395662 | 1395567 | Same as French (Canada) |
| Croatian | YGI | 1394327 | 1394431 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Czech | CSB |  | 35G4743 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Danish | DMB | 1394314 | 1394418 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Danish MNCS | DMI | 1394314 | 1394418 | Same as Danish |


| Language | KBDTYPE <br> Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Finnish/Swedish | FNB | 1394315 | 1394419 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Finnish/Swedish MNCS | FNI | 1394315 | 1394419 | Same as Finnish/Swedish |
| French (Azerty) | FAB | 1394316 | 1394420 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| French (Azerty) MNCS | FAI | 1394316 | 1394420 | Same as French (Azerty) |
| Greek (Code Page 00875) | GNB | 1396767 | 1396768 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Greek (Code Page 00423) | GKB | 1394325 | 1394429 | Same as Greek (Code Page 00875) |


| Language | KBDTYPE Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Hebrew | NCB | 1394331 | 1394435 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Hungarian | HNB |  | 35G4745 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Farsi (Iran) | IRB | 53G9084 | 53G9085 | 66G1721, 66G1727 |
| Italian | ITB | 1394317 | 1394421 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Italian MNCS | ITI | 1394317 | 1394421 | Same as Italian |
| Japanese-Katakana | KAB | 1395664 | 1395669 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |


| Language | KBDTYPE <br> Para- meter | 1A (122-Key) Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Macedonian | MKB |  | 35G4740 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Dutch (Netherlands) | NEB |  | 1394427 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Dutch (Netherlands) MNCS | NEI |  | 1394427 | Same as Dutch (Netherlands) |
| Norwegian | NWB | 1394318 | 1394422 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Norwegian MNCS | NWI | 1394318 | 1394422 | Same as Norwegian |
| Polish | PLB |  | 35G4746 | 66G1721, 66G1727 |
| Portuguese | PRB | 1394319 | 1394423 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |


| Language | KBDTYPE <br> Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Portuguese MNCS | PRI | 1394319 | 1394423 | Same as Portuguese |
| Romanian | RMB |  | 35G4747 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Russian | RUB |  | 35G4742 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Serbian, Cyrillic | SQB |  | 35G4740 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Serbian, Latin | YGI | 1394327 | 1394431 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |


| Language | KBDTYPE <br> Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Slovakian | SKB |  | 35G4744 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Slovenian | YGI | 1394327 | 1394431 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Spanish | SPB | 1394320 | 1394424 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Spanish MNCS | SPI | 1394320 | 1394424 | Same as Spanish |
| Spanish Speaking | SSB | 1395663 | 1395668 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Spanish Speaking MNCS | SSI | 1395663 | 1395668 | Same as Spanish Speaking |


| Language | KBDTYPE Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Swedish | SWB | 1394315 | 1394419 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Swedish MNCS | SWI | 1394315 | 1394419 | Same as Swedish |
| French (Switzerland) MNCS | SFI | 1394321 | 1394425 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| German (Switzerland) MNCS | SGI | 1394322 | 1394426 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| Thai | THB |  | 1395670 | 07G8571, 06G5322, 06G5312 |
| Turkish (F) | TRB | 35G4748 | 35G4749 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |


| Language | KBDTYPE <br> Para- meter | 1A (122-Key) <br> Keyboard | G Keyboard | Displays |
| :---: | :---: | :---: | :---: | :---: |
| Turkish (QWERTY) | TKB | 1394326 | 1394430 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| English (United Kingdom) | UKB | 1394324 | 1394428 | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| English (United Kingdom) MNCS | UKI | 1394324 | 1394428 | Same as English (United Kingdom) |
| English (United States/Canada) | USB | $\begin{array}{\|l} 1395661, \\ 1395660 \end{array}$ | $\begin{array}{\|l} 1395666 \\ 1395665 \end{array}$ | 06G5310, 06G5311, 06G5312, 06G5313, 06G5314, 06G5315, 06G5316, 06G5320, 06G5321, 06G5322, 06G5323, 06G5324, 06G5325, 06G5326, 06G5330, 06G5331, 06G5332, 06G5333, 06G5334, 06G5335, 06G5340, 06G5341, 06G5342, 06G5343, 06G5344, 06G5345, 07G8611, 07G8567, 07G8568, 07G8569, 06G8570, 07G8571, 07G8572, 06G5333, 06G5336, 66G1721, 66G1727 |
| English (United States/Canada) MNCS | USI | 1394167 | 1394193 | Same as United States/Canada |

## Keyboard support for other devices

- Enhanced G and 122-key keyboards are not available for 5251, 5291, and 5292 display stations. These display stations use only the F keyboard (similar to the 122-key keyboard).
- The 3180 display station supports the 122-key keyboard but not the enhanced keyboard. The 3179, 3196 , and 3197 support the 122-keyboard and the enhanced keyboard.
- The 3486, 3487, 3488 Model V, and 3489 display stations support all languages listed in 3477 and 3476 keyboard and display part numbers (page 309 (except for Thai) on all base levels of hardware. No checking of the part numbers for the display stations is necessary.

Note: The 3488 Model V display station requires a special monitor to support some languages. The 3489 display station may also require a special monitor to support some languages.

- The 3486, 3487, 3488 Model V, and 3489 display stations do not need the correct language keyboard to show the code page for a language. The code page used by the display station matches what is specified in the configuration record. The 3488 Model V and 3489 display stations require a special monitor to support some languages.
- The 3488 Model H display station supports the following languages or countries on all levels of hardware. No checking of part numbers is necessary. The 3488 Model H display station does not need the correct language keyboard to show a code page for one of the supported languages. The code page used must match the one in the configuration record as long as it is among the supported languages.


## Austrian/German

Belgian
French (Canada)
Danish
Dutch
Finnish/Swedish
French (with AZERTY keyboard)
Italian
Norwegian
Portuguese
Spanish
Swiss-French
Swiss-German
U.K. English
U.S. English

- The 3476, 3486, 3487, 3488, and 3489 display stations support the U.S. data entry keyboard (part numbers 35G4750 and 35G4751).
- The 3488 Model V and 3489 display stations also support the Brazilian Portuguese $G$ keyboard (part number 63F1403).


## Special-character keyboard set

The special-character keyboard set is available with the enhanced keyboard on most display stations. It allows a user to enter special characters that otherwise might not be available (labeled) on the keyboard. The following figure shows all the characters in the special keyboard set and the keys on the enhanced keyboard to which each character is assigned. A special character may be assigned to a lowercase, uppercase, or ALT position on a key.

You can order a special template package, SCX21-9950, that contains the special-character keyboard set.


RV2C051-1

The special characters on the enhanced keyboard are used for this group of languages: Belgium, German, French, English, Icelandic, Italian, Spanish, Austrian, Danish, Portuguese, Swedish, Norwegian, Swiss/French, Swiss/German, Spanish Speaking, and Netherlands (Dutch).

## Creating a special character

To create a special character, you press and hold the ALT key, and then press the Shift key. Next you press the key to which a special character is assigned. If a special character is assigned to an uppercase or ALT position, the shift or ALT key must be pressed in combination with the key assigned to the special character. The special-character keyboard function is active for only one special character at a time. The ALT and shift key sequence must be pressed prior to the entry of each special character.

The following figure highlights those special characters assigned to the lowercase positions.


The following figure highlights the special characters assigned to the uppercase position.


RV2C053-1

The following figure highlights the special characters assigned to the ALT key positions.


RV2C054-1

## Example: Special character

For example, if you wanted to create the $\AA$ for German on an English keyboard, you should do the following:

1. Press and hold the ALT key, and then press the Shift key.
2. Press the Shift key with the


RV2C057-1
key. The Diacritic mode symbol appears at the bottom of the screen and is waiting for the next keystroke to complete the character.
3. You now press the Shift key and the


RV2C056-0
key.
This produces the $\AA$. If you press this key without also pressing the shift key, you would get ${ }^{\circ}$. The system accepts only uppercase or lowercase A.

## National language keyboard types and SBCS code pages

The following table lists the keyboard types and code pages for each national language supported by the system. The Create Device Display CRTDEVDSP command uses the KBDTYPE parameter.

| Language | KBDTYPE | EBCDIC character set | EBCDIC SBCS code page | EBCDIC CCSID |
| :---: | :---: | :---: | :---: | :---: |
| Albanian | ALI | 00697 | 00500 | 00500 |
| Arabic | CLB | 00235 | 00420 | 00420 |
| Austrian/ German | AGB | 00697 | 00273 | 00273 |
| Austrian/German (MNCS) | AGI | 00697 | 00500 | 00500 |
| Belgian MNCS | BLI | 00697 | 00500 | 00500 |
| Brazilian Portuguese | BRB | 00697 | 00037 | 00037 |
| Bulgarian | BGB | 01150 | 01025 | 01025 |
| Canadian French | CAB | 00341 | 00260 | 65535 |
| Canadian French MNCS | CAI | 00697 | 00500 | 00500 |
| Croatian | YGI | 00959 | 00870 | 00870 |
| Cyrillic | CYB | 00960 | 00880 | 00880 |
| Czech | CSB | 00959 | 00870 | 00870 |
| Danish | DMB | 00697 | 00277 | 00277 |
| Danish MNCS | DMI | 00697 | 00500 | 00500 |
| Finnish/Swedish | FNB | 00697 | 00278 | 00278 |
| Finnish/Swedish MNCS | FNI | 00697 | 00500 | 00500 |
| French (Azerty) | FAB | 00697 | 00297 | 00297 |
| French (Azerty) MNCS | FAI | 00697 | 00500 | 00500 |
| French (Qwerty) | FQB | 00697 | 00297 | 00297 |
| French (Qwerty) MNCS | FQI | 00697 | 00500 | 00500 |
| Greek (See note 2.) | GNB | 00925 | 00875 | 00875 |
| Hebrew | NCB | 00941 | 00424 | 00424 |
| Hungarian | HNB | 00959 | 00870 | 00870 |
| Icelandic | ICB | 00697 | 00871 | 00871 |
| Icelandic MNCS | ICI | 00697 | 00500 | 00500 |
| International | INB | 00697 | 00500 | 00500 |
| International MNCS | INB | 00697 | 00500 | 00500 |
| Farsi (Iran) | IRB | 01219 | 01097 | 01097 |
| Italian | ITB | 00697 | 00280 | 00280 |
| Italian MNCS | ITI | 00697 | 00500 | 00500 |
| Japanese-English | JEB | 00697 | 00281 | 65535 |
| Japanese- English MNCS | JEI | 00697 | 00500 | 00500 |
| Japanese Kanji and Katakana | JKB | 01172 | 00290 | 05026 |
| Japanese Kanji and US English | JUB | 00697 | 00037 | See note 3. |
| Japanese Katakana | KAB | 00332 | 00290 | 00290 |
| Japanese Latin Extended | JPB | 01172 | 01027 | 01027 |


| Language | KBDTYPE | EBCDIC character set | EBCDIC SBCS code page | EBCDIC CCSID |
| :---: | :---: | :---: | :---: | :---: |
| Korean | KOB | 01173 | 00833 | 00833 |
| Latin 2 | ROB | 00959 | 00870 | 00870 |
| Macedonian | MKB | 01150 | 01025 | 01025 |
| Dutch (Netherlands) | NEB | 00697 | 00037 | 00037 |
| Dutch (Netherlands) MNCS | NEI | 00697 | 00500 | 00500 |
| Norwegian | NWB | 00697 | 00277 | 00277 |
| Norwegian MNCS | NWI | 00697 | 00500 | 00500 |
| Polish | PLB | 00959 | 00870 | 00870 |
| Portuguese | PRB | 00697 | 00037 | 00037 |
| Portuguese MNCS | PRI | 00697 | 00500 | 00500 |
| Romanian | RMB | 00959 | 00870 | 00870 |
| Russian | RUB | 01150 | 01025 | 01025 |
| Serbian, Cyrillic | SQB | 01150 | 01025 | 01025 |
| Serbian, Latin | YGI | 00959 | 00870 | 00870 |
| Simplified Chinese | RCB | 01174 | 00836 | 00836 |
| Slovakian | SKB | 00959 | 00870 | 00870 |
| Slovenian | YGI | 00959 | 00870 | 00870 |
| Spanish | SPB | 00697 | 00284 | 00284 |
| Spanish MNCS | SPI | 00697 | 00500 | 00500 |
| Spanish Speaking | SSB | 00697 | 00284 | 00284 |
| Spanish Speaking MNCS | SSI | 00697 | 00500 | 00500 |
| Swedish | SWB | 00697 | 00278 | 00278 |
| Swedish MNCS | SWI | 00697 | 00500 | 00500 |
| French (Switzerland) MNCS | SFI | 00697 | 00500 | 00500 |
| German (Switzerland) MNCS | SGI | 00697 | 00500 | 00500 |
| Thai | THB | 01176 | 00838 | 00838 |
| Traditional Chinese | TAB | 01175 | 00037 | 00937 |
| Turkish (Qwerty) | TKB | 01152 | 01026 | 01026 |
| Turkish (F) | TRB | 01152 | 01026 | 01026 |
| English (United Kingdom) | UKB | 00697 | 00285 | 00285 |
| English (United Kingdom) MNCS | UKI | 00697 | 00500 | 00500 |
| English (United States and Canada) | USB | 00697 | 00037 | 00037 |
| English (United States and Canada) MNCS | USI | 00697 | 00500 | 00500 |


| Language | KBDTYPE | EBCDIC character <br> set | EBCDIC SBCS <br> code page | EBCDIC CCSID |
| :--- | :--- | :--- | :--- | :--- |
| Notes: |  |  |  |  |
| 1. For KBDTYPE GKB, the EBCDIC code page is 00423. |  |  |  |  |
| 2. Recommend SBCS CCSID 00037. |  |  |  |  |

## Character sets

The following topics provide useful information about various character sets:

- Country extended character set 00697
- Graphic character conversion tables
- International DP 9400103 (ASCII)
- International alphabet 501169
- Invariant character set
- Monocase tables
- Portable character set
- Syntactic and invariant character set 00640
- T. 61 character set 01252
- T. 61 character repertoire 01253
- T. 61 graphic character conversions


## Country extended character set 00697



Character Set 00697

## Graphic character conversion tables

Table (*TBL) objects support non-CCSID conversions from one code page to another. The system-supplied table objects are located in the QUSRSYS library.

To see the supported code pages, run the following command:
WRKOBJ OBJ(QUSRSYS/*ALL) OBJTYPE(*TBL)
The table description shows the from code page and the to code page and character set. For example, if the from code page is 1112 and the to code page is 500 , the description would be show the following text: CHRID(*N 1112) to CHRID(697 500)

This conversion method is supported on OS/400 ${ }^{(\mathrm{R})}$, but is not being enhanced. See Job default coded character set identifier (DFTCCSID) for information about how OS/400 determines default CCSIDs.

| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| QA3R | (*N 1025) | Cyrillic, Multilingual | Uppercase table |  |
| QA3S | (*N 1026) | Turkey Latin 5 | Uppercase table |  |
| QA3T | (*N 1027) | Japan extended | Uppercase table |  |
| QA5R | (*N 1097) | Farsi | Uppercase table |  |
| QA57 | (*N 1112) | Baltic, Multilingual | Uppercase table |  |
| QA6G | (*N 1122) | Estonian | Uppercase table |  |
| QA6O | (*N 1130) | Vietnamese | Uppercase table |  |
| QA6Q | (*N 1133) | Lao | Uppercase table |  |
| Q037 | (*N 037) | USA/Canada | Uppercase table |  |
| Q256 | (*N 256) | Multinational \#1 | Uppercase table |  |
| Q260 | (*N 260) | Canada French | Uppercase table |  |
| Q273 | (*N 273) | Austria/Germany | Uppercase table |  |
| Q277 | (*N 277) | Denmark/Norway | Uppercase table |  |
| Q278 | (*N 278) | Finland/Sweden | Uppercase table |  |
| Q280 | (*N 280) | Italy | Uppercase table |  |
| Q281 | (*N 281) | Japan (Latin) | Uppercase table |  |
| Q284 | (*N 284) | Spain/Latin America | Uppercase table |  |
| Q285 | (*N 285) | United Kingdom | Uppercase table |  |
| Q290 | (*N 290) | Japan Katakana | Uppercase table |  |
| Q297 | (*N 297) | France | Uppercase table |  |
| Q420 | (*N 420) | Arabic Bilingual | Uppercase table |  |
| Q423 | (*N 423) | Greece | Uppercase table |  |
| Q424 | (*N 424) | Israel (Hebrew) | Uppercase table |  |
| Q437 | (*N 437) | PC-USA | Uppercase table |  |
| Q500 | (*N 500) | Multinational \#5 | Uppercase table |  |
| Q833 | (*N 833) | Korea | Uppercase table |  |
| Q836 | (*N 836) | People's Republic of China | Uppercase table |  |
| Q838 | (*N 838) | Thai Extended | Uppercase table |  |
| Q850 | (*N 850) | PC-Multilingual | Uppercase table |  |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q851 | (*N 851) | PC-Greece (old) | Uppercase table |  |
| Q857 | (*N 857) | PC-Turkey | Uppercase table |  |
| Q860 | (*N 860) | PC-Portugal | Uppercase table |  |
| Q861 | (*N 861) | PC-Iceland | Uppercase table |  |
| Q862 | (*N 862) | PC-Israel | Uppercase table |  |
| Q863 | (*N 863) | PC-Canadian French | Uppercase table |  |
| Q864 | (*N 864) | PC-Arabic | Uppercase table |  |
| Q865 | (*N 865) | PC-Nordic | Uppercase table |  |
| Q870 | (*N 870) | Latin 2, Multilingual | Uppercase table |  |
| Q871 | (*N 871) | Iceland | Uppercase table |  |
| Q875 | (*N 875) | Greece | Uppercase table |  |
| Q880 | (*N 880) | Cyrillic, Multilingual (old) | Uppercase table |  |
| Q891 | (*N 891) | PC-Korea | Uppercase table |  |
| Q897 | (*N 897) | PC-Japan | Uppercase table |  |
| Q903 | (*N 903) | PC-People's Republic of China | Uppercase table |  |
| Q904 | (*N 904) | PC-People's Republic of China | Uppercase table |  |
| Q905 | (*N 905) | PC-Turkey | Uppercase table |  |
| Q037A0MA5K | (*N 037) | USA/Canada | ( 1272 1090) | VT100 Line drawing set |
| Q037A05A5U | (*N 037) | USA/Canada | ( 1290 1100) | VT220 Multinational |
| Q037A6G897 | (*N 037) | USA/Canada | ( 1122 897) | PC-Japan |
| Q037A69A3R | (*N 037) | USA/Canada | ( 1150 1025) | Cyrillic, Multilingual |
| Q037A7AA3S | (*N 037) | USA/Canada | ( 1152 1026) | Turkey Latin 5 |
| Q037A7RA3B | (*N 037) | USA/Canada | ( 1169 1009) | International Alphabet 5 |
| Q037A7UA3T | (*N 037) | USA/Canada | ( 1172 1027) | Japan extended |
| Q037A7U290 | (*N 037) | USA/Canada | ( 1172 290) | Japan Katakana |
| Q037A7V833 | (*N 037) | USA/Canada | ( 1173 833) | Korea |
| Q037A7W836 | (*N 037) | USA/Canada | ( 1174 836) | People's Republic of China |
| Q037A7Y838 | (*N 037) | USA/Canada | ( 1176 838) | Thai Extended |
| Q037A7Y874 | (*N 037) | USA/Canada | ( 1176 874) | PC-Thai Extended |
| Q037A86A5R | (*N 037) | USA/Canada | ( 1219 1097) | Farsi |
| Q037BAJA57 | (*N 037) | USA/Canada | ( 1305 1112) | Baltic, Multilingual |
| Q037BALA6G | (*N 037) | USA/Canada | ( 1307 1122) | Estonian |
| Q037BBEA6O | (*N 037) | USA/Canada | ( 1336 1130) | Vietnamese |
| Q037BBJA6Q | (*N 037) | USA/Canada | ( 1341 1133) | Lao |
| Q037101037 | (*N 037) | USA/Canada | ( 101 037) | USA/Canada |
| Q037103A59 | (*N 037) | USA/Canada | ( 103 1114) | Taiwan Industry (Big 5) code |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q037235420 | (*N 037) | USA/Canada | ( 235420 ) | Arabic Bilingual |
| Q037337256 | (*N 037) | USA/Canada | ( 337 256) | Multinational \#1 |
| Q037337437 | (*N 037) | USA/Canada | ( 337 437) | PC-USA |
| Q037337850 | (*N 037) | USA/Canada | ( 337850 ) | PC-Multilingual |
| Q037337860 | (*N 037) | USA/Canada | ( 337860 ) | PC-Portugal |
| Q037337863 | (*N 037) | USA/Canada | ( 337 863) | PC-Canadian French |
| Q037337904 | (*N 037) | USA/Canada | ( 337 904) | PC-People's Republic of China |
| Q037936836 | (*N 037) | USA/Canada | ( 936836 ) | People's Republic of China |
| Q037941424 | (*N 037) | USA/Canada | ( 941 424) | Israel (Hebrew) |
| Q037959870 | (*N 037) | USA/Canada | ( 959 870) | Latin 2, Multilingual |
| Q037960880 | (*N 037) | USA/Canada | ( 960 880) | Cyrillic, Multilingual (old) |
| Q037965905 | (*N 037) | USA/Canada | ( 965 905) | PC-Turkey |
| Q038337256 | (*N 038) | USA/ASCII | ( 337 256) | Multinational \#1 |
| Q256A69A3R | (*N 256) | Multinational \#1 | ( 1150 1025) | Cyrillic, Multilingual |
| Q256A7AA3S | (*N 256) | Multinational \#1 | ( 1152 1026) | Turkey Latin 5 |
| Q256A7V833 | (*N 256) | Multinational \#1 | ( 1173 833) | Korea |
| Q256A7W836 | (*N 256) | Multinational \#1 | ( 1174 836) | People's Republic of China |
| Q256A7X037 | (*N 256) | Multinational \#1 | ( 1175037 ) | USA/Canada |
| Q256001256 | (*N 256) | Multinational \#1 | ( 001 256) | Multinational \#1 |
| Q256101037 | (*N 256) | Multinational \#1 | ( 101 037) | USA/Canada |
| Q256101367 | (*N 256) | Multinational \#1 | ( 101 367) | ASCII |
| Q256103038 | (*N 256) | Multinational \#1 | ( 103 038) | USA/ASCII |
| Q256218423 | (*N 256) | Multinational \#1 | ( 218 423) | Greece |
| Q256265273 | (*N 256) | Multinational \#1 | ( 265 273) | Austria/Germany |
| Q256269274 | (*N 256) | Multinational \#1 | ( 269 274) | Belgium |
| Q256273275 | (*N 256) | Multinational \#1 | ( 273 275) | Brazil |
| Q256277276 | (*N 256) | Multinational \#1 | ( 277 276) | Canada (French) |
| Q256281277 | (*N 256) | Multinational \#1 | ( 281 277) | Denmark/Norway |
| Q256285278 | (*N 256) | Multinational \#1 | ( 285 278) | Finland/Sweden |
| Q256288297 | (*N 256) | Multinational \#1 | ( 288 297) | France |
| Q256289279 | (*N 256) | Multinational \#1 | ( 289 279) | France |
| Q256293280 | (*N 256) | Multinational \#1 | ( 293 280) | Italy |
| Q256297281 | (*N 256) | Multinational \#1 | ( 297 281) | Japan (Latin) |
| Q256301282 | (*N 256) | Multinational \#1 | ( 301 282) | Portugal |
| Q256305283 | (*N 256) | Multinational \#1 | ( 305 283) | Spain |
| Q256309284 | (*N 256) | Multinational \#1 | ( 309 284) | Spain/Latin America |
| Q256313285 | (*N 256) | Multinational \#1 | ( 313 285) | United Kingdom |
| Q256332290 | (*N 256) | Multinational \#1 | ( 332 290) | Japan Katakana |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q256337037 | (*N 256) | Multinational \#1 | ( 337 037) | USA/Canada |
| Q256337273 | (*N 256) | Multinational \#1 | ( 337 273) | Austria/Germany |
| Q256337274 | (*N 256) | Multinational \#1 | ( 337 274) | Belgium |
| Q256337275 | (*N 256) | Multinational \#1 | ( 337 275) | Brazil |
| Q256337276 | (*N 256) | Multinational \#1 | ( 337276 ) | Canada (French) |
| Q256337277 | (*N 256) | Multinational \#1 | ( 337 277) | Denmark/Norway |
| Q256337278 | (*N 256) | Multinational \#1 | ( 337 278) | Finland/Sweden |
| Q256337280 | (*N 256) | Multinational \#1 | ( 337 280) | Italy |
| Q256337281 | (*N 256) | Multinational \#1 | ( 337 281) | Japan (Latin) |
| Q256337282 | (*N 256) | Multinational \#1 | ( 337 282) | Portugal |
| Q256337283 | (*N 256) | Multinational \#1 | ( 337 283) | Spain |
| Q256337284 | (*N 256) | Multinational \#1 | ( 337284 ) | Spain/Latin America |
| Q256337285 | (*N 256) | Multinational \#1 | ( 337 285) | United Kingdom |
| Q256337297 | (*N 256) | Multinational \#1 | ( 337 297) | France |
| Q256337420 | (*N 256) | Multinational \#1 | ( 337 420) | Arabic Bilingual |
| Q256337833 | (*N 256) | Multinational \#1 | ( 337833 ) | Korea |
| Q256338257 | (*N 256) | Multinational \#1 | ( 338257 ) | Multinational \#2 |
| Q256339258 | (*N 256) | Multinational \#1 | ( 339 258) | Multinational \#3 |
| Q256340259 | (*N 256) | Multinational \#1 | ( 340 259) | Symbols, Set \#7 |
| Q256341260 | (*N 256) | Multinational \#1 | ( 341 260) | Canada French |
| Q256697871 | (*N 256) | Multinational \#1 | ( 697871 ) | Iceland |
| Q256925875 | (*N 256) | Multinational \#1 | ( 925 875) | Greece |
| Q256933833 | (*N 256) | Multinational \#1 | ( 933 833) | Korea |
| Q256936836 | (*N 256) | Multinational \#1 | ( 936836 ) | People's Republic of China |
| Q256938838 | (*N 256) | Multinational \#1 | ( 938888 ) | Thai Extended |
| Q256941424 | (*N 256) | Multinational \#1 | ( 941 424) | Israel (Hebrew) |
| Q256959870 | (*N 256) | Multinational \#1 | ( 959 870) | Latin 2, Multilingual |
| Q256960880 | (*N 256) | Multinational \#1 | ( 960 880) | Cyrillic, Multilingual (old) |
| Q257337256 | (*N 257) | Multinational \#2 | ( 337 256) | Multinational \#1 |
| Q258337256 | (*N 258) | Multinational \#3 | ( 337 256) | Multinational \#1 |
| Q259337256 | (*N 259) | Symbols, Set \#7 | ( 337 256) | Multinational \#1 |
| Q260337256 | (*N 260) | Canada French | ( 337 256) | Multinational \#1 |
| Q273A7RA3B | (*N 273) | Austria/Germany | ( 1169 1009) | International Alphabet 5 |
| Q273337256 | (*N 273) | Austria/Germany | ( 337 256) | Multinational \#1 |
| Q273337437 | (*N 273) | Austria/Germany | ( 337 437) | PC-USA |
| Q273337850 | (*N 273) | Austria/Germany | ( 337850 ) | PC-Multilingual |
| Q274337256 | (*N 274) | Belgium | ( 337 256) | Multinational \#1 |
| Q275337256 | (*N 275) | Brazil | ( 337 256) | Multinational \#1 |
| Q276337256 | (*N 276) | Canada (French) | ( 337 256) | Multinational \#1 |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q277A7RA3B | (*N 277) | Denmark/Norway | ( 1169 1009) | International Alphabet 5 |
| Q277337256 | (*N 277) | Denmark/Norway | ( 337 256) | Multinational \#1 |
| Q277337850 | (*N 277) | Denmark/Norway | ( 337850 ) | PC-Multilingual |
| Q277337865 | (*N 277) | Denmark/Norway | ( 337865 ) | PC-Nordic |
| Q277697284 | (*N 277) | Denmark/Norway | ( 697 284) | Spain/Latin America |
| Q278A7RA3B | (*N 278) | Finland/Sweden | ( 1169 1009) | International Alphabet 5 |
| Q278337256 | (*N 278) | Finland/Sweden | ( 337 256) | Multinational \#1 |
| Q278337437 | (*N 278) | Finland/Sweden | ( 337 437) | PC-USA |
| Q278337850 | (*N 278) | Finland/Sweden | ( 337850 ) | PC-Multilingual |
| Q279337256 | (*N 279) | France | ( 337 256) | Multinational \#1 |
| Q280A7RA3B | (*N 280) | Italy | ( 1169 1009) | International Alphabet 5 |
| Q280337256 | (*N 280) | Italy | ( 337 256) | Multinational \#1 |
| Q280337437 | (*N 280) | Italy | ( 337 437) | PC-USA |
| Q280337850 | (*N 280) | Italy | ( 337850 ) | PC-Multilingual |
| Q281337256 | (*N 281) | Japan (Latin) | ( 337256 ) | Multinational \#1 |
| Q282337256 | (*N 282) | Portugal | ( 337 256) | Multinational \#1 |
| Q282337850 | (*N 282) | Portugal | ( 337850 ) | PC-Multilingual |
| Q282337860 | (*N 282) | Portugal | ( 337860 ) | PC-Portugal |
| Q283337256 | (*N 283) | Spain | ( 337 256) | Multinational \#1 |
| Q284A7RA3B | (*N 284) | Spain/Latin America | ( 1169 1009) | International Alphabet 5 |
| Q284A7W836 | (*N 284) | Spain/Latin America | ( 1174 836) | People's Republic of China |
| Q284337256 | (*N 284) | Spain/Latin America | ( 337 256) | Multinational \#1 |
| Q284337437 | (*N 284) | Spain/Latin America | ( 337 437) | PC-USA |
| Q284337850 | (*N 284) | Spain/Latin America | ( 337850 ) | PC-Multilingual |
| Q284697277 | (*N 284) | Spain/Latin America | ( 697 277) | Denmark/Norway |
| Q285337256 | (*N 285) | United Kingdom | ( 337 256) | Multinational \#1 |
| Q285337437 | (*N 285) | United Kingdom | ( 337 437) | PC-USA |
| Q285337850 | (*N 285) | United Kingdom | ( 337850 ) | PC-Multilingual |
| Q290A7RA3B | (*N 290) | Japan Katakana | ( 1169 1009) | International Alphabet 5 |
| Q290A7UA3T | (*N 290) | Japan Katakana | ( 1172 1027) | Japan extended |
| Q290A7UA38 | (*N 290) | Japan Katakana | ( 1172 1041) | PC-Japan extended |
| Q290337256 | (*N 290) | Japan Katakana | ( 337 256) | Multinational \#1 |
| Q290337897 | (*N 290) | Japan Katakana | ( 337 897) | PC-Japan |
| Q290697037 | (*N 290) | Japan Katakana | ( 697 037) | USA/Canada |
| Q290697500 | (*N 290) | Japan Katakana | ( 697 500) | Multinational \#5 |
| Q297A7RA3B | (*N 297) | France | ( 1169 1009) | International Alphabet 5 |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q297337256 | (*N 297) | France | ( 337 256) | Multinational \#1 |
| Q297337437 | (*N 297) | France | ( 337437 ) | PC-USA |
| Q297337850 | (*N 297) | France | ( 337850 ) | PC-Multilingual |
| Q367A7RA3B | (*N 367) | ASCII | ( 1169 1009) | International Alphabet 5 |
| Q367337256 | (*N 367) | ASCII | ( 337 256) | Multinational \#1 |
| Q367697500 | (*N 367) | ASCII | ( 697500 ) | Multinational \#5 |
| Q420235864 | (*N 420) | Arabic Bilingual | ( 235 864) | PC-Arabic |
| Q420337256 | (*N 420) | Arabic Bilingual | ( 337 256) | Multinational \#1 |
| Q420697037 | (*N 420) | Arabic Bilingual | ( 697 037) | USA/Canada |
| Q420697500 | (*N 420) | Arabic Bilingual | ( 697500 ) | Multinational \#5 |
| Q423A7RA3B | (*N 423) | Greece | ( 1169 1009) | International Alphabet 5 |
| Q423218851 | (*N 423) | Greece | ( 218 851) | PC-Greece (old) |
| Q423697256 | (*N 423) | Greece | ( 697 256) | Multinational \#1 |
| Q423925875 | (*N 423) | Greece | ( 925 875) | Greece |
| Q423998869 | (*N 423) | Greece | ( 998 869) | PC-Greece |
| Q424697037 | (*N 424) | Israel (Hebrew) | ( 697 037) | USA/Canada |
| Q424697256 | (*N 424) | Israel (Hebrew) | ( 697 256) | Multinational \#1 |
| Q424697500 | (*N 424) | Israel (Hebrew) | ( 697500 ) | Multinational \#5 |
| Q424941862 | (*N 424) | Israel (Hebrew) | ( 941862 ) | PC-Israel |
| Q437A0ZA5S | (*N 437) | PC-USA | ( 1285 1098) | PC-Farsi |
| Q437A69A3R | (*N 437) | PC-USA | ( 1150 1025) | Cyrillic, Multilingual |
| Q437A69915 | (*N 437) | PC-USA | ( 1150 915) | 8-bit ASCII/ISO Cyrillic |
| Q437A7X037 | (*N 437) | PC-USA | ( 1175 037) | USA/Canada |
| Q437A8C866 | (*N 437) | PC-USA | ( 1190 866) | PC-Cyrillic \#2 |
| Q437A91852 | (*N 437) | PC-USA | ( 1232 852) | PC-Latin 2 |
| Q437A9L855 | (*N 437) | PC-USA | ( 1235 855) | PC-Cyrillic |
| Q437A9N857 | (*N 437) | PC-USA | ( 1237 857) | PC-Turkey |
| Q437101037 | (*N 437) | PC-USA | ( 101 037) | USA/Canada |
| Q437337A5R | (*N 437) | PC-USA | ( 337 1097) | Farsi |
| Q437337037 | (*N 437) | PC-USA | ( 337 037) | USA/Canada |
| Q437337273 | (*N 437) | PC-USA | ( 337 273) | Austria/Germany |
| Q437337278 | (*N 437) | PC-USA | ( 337 278) | Finland/Sweden |
| Q437337280 | (*N 437) | PC-USA | ( 337 280) | Italy |
| Q437337284 | (*N 437) | PC-USA | ( 337 284) | Spain/Latin America |
| Q437337285 | (*N 437) | PC-USA | ( 337 285) | United Kingdom |
| Q437337297 | (*N 437) | PC-USA | ( 337 297) | France |
| Q437337500 | (*N 437) | PC-USA | ( 337 500) | Multinational \#5 |
| Q437959870 | (*N 437) | PC-USA | ( 959 870) | Latin 2, Multilingual |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q437960880 | (*N 437) | PC-USA | ( 960 880) | Cyrillic, Multilingual (old) |
| Q500A0MA5K | (*N 500) | Multinational \#5 | ( 1272 1090) | VT100 Line drawing set |
| Q500A00A5Z | (*N 500) | Multinational \#5 | ( 1295 1105) | VT220 <br> Norwegian/Danish |
| Q500A05A5U | (*N 500) | Multinational \#5 | ( 1290 1100) | VT220 Multinational |
| Q500A06A5V | (*N 500) | Multinational \#5 | ( 1291 1101) | VT220 British |
| Q500A07A5W | (*N 500) | Multinational \#5 | ( 1292 1102) | VT220 Dutch |
| Q500A08A5X | (*N 500) | Multinational \#5 | ( 1293 1103) | VT220 Finnish |
| Q500A69A3R | (*N 500) | Multinational \#5 | ( 1150 1025) | Cyrillic, Multilingual |
| Q500A7AA3S | (*N 500) | Multinational \#5 | ( 1152 1026) | Turkey Latin 5 |
| Q500A7RA3B | (*N 500) | Multinational \#5 | ( 1169 1009) | International Alphabet 5 |
| Q500A7UA3T | (*N 500) | Multinational \#5 | ( 1172 1027) | Japan extended |
| Q500A7U290 | (*N 500) | Multinational \#5 | ( 1172 290) | Japan Katakana |
| Q500A7W836 | (*N 500) | Multinational \#5 | ( 1174 836) | People's Republic of China |
| Q500A7X037 | (*N 500) | Multinational \#5 | ( 1175037 ) | USA/Canada |
| Q500A7Y838 | (*N 500) | Multinational \#5 | ( 1176 838) | Thai Extended |
| Q500A7Y874 | (*N 500) | Multinational \#5 | ( 1176 874) | PC-Thai Extended |
| Q500A8EA3M | (*N 500) | Multinational \#5 | ( 1192 1020) | VT220 Canadian/French |
| Q500A8FA3N | (*N 500) | Multinational \#5 | ( 1193 1021) | VT220 Switzerland |
| Q500A8HA3P | (*N 500) | Multinational \#5 | ( 1195 1023) | VT220 Spain |
| Q500A86A5R | (*N 500) | Multinational \#5 | ( 1219 1097) | Farsi |
| Q500BAAA51 | (*N 500) | Multinational \#5 | ( 1296 1106) | VT220 Swedish |
| Q500BABA52 | (*N 500) | Multinational \#5 | ( 1297 1107) | VT220 <br> Norwegian/Danish Alt |
| Q500BAJA57 | (*N 500) | Multinational \#5 | ( 1305 1112) | Baltic, Multilingual |
| Q500BALA6G | (*N 500) | Multinational \#5 | ( 1307 1122) | Estonian |
| Q500BBEA6O | (*N 500) | Multinational \#5 | ( 1336 1130) | Vietnamese |
| Q500BBJA6Q | (*N 500) | Multinational \#5 | ( 1341 1133) | Loa |
| Q500103367 | (*N 500) | Multinational \#5 | ( 103 367) | ASCII |
| Q500235420 | (*N 500) | Multinational \#5 | ( 235420 ) | Arabic Bilingual |
| Q500265A3D | (*N 500) | Multinational \#5 | ( 265 1011) | VT220 Germany |
| Q500289A5Y | (*N 500) | Multinational \#5 | ( 289 1104) | VT220 French |
| Q500293A3E | (*N 500) | Multinational \#5 | ( 293 1012) | VT220 Italy |
| Q500337437 | (*N 500) | Multinational \#5 | ( 337 437) | PC-USA |
| Q500337836 | (*N 500) | Multinational \#5 | ( 337836 ) | People's Republic of China |
| Q500337850 | (*N 500) | Multinational \#5 | ( 337850 ) | PC-Multilingual |
| Q500337860 | (*N 500) | Multinational \#5 | ( 337860 ) | PC-Portugal |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q500337861 | (*N 500) | Multinational \#5 | ( 337861 ) | PC-Iceland |
| Q500337863 | (*N 500) | Multinational \#5 | ( 337863 ) | PC-Canadian French |
| Q500337865 | (*N 500) | Multinational \#5 | ( 337865 ) | PC-Nordic |
| Q500697037 | (*N 500) | Multinational \#5 | ( 697 037) | USA/Canada |
| Q500697280 | (*N 500) | Multinational \#5 | ( 697 280) | Italy |
| Q500925875 | (*N 500) | Multinational \#5 | ( 925 875) | Greece |
| Q500936836 | (*N 500) | Multinational \#5 | ( 936836 ) | People's Republic of China |
| Q500941424 | (*N 500) | Multinational \#5 | ( 941 424) | Israel (Hebrew) |
| Q500959870 | (*N 500) | Multinational \#5 | ( 959 870) | Latin 2, Multilingual |
| Q500960880 | (*N 500) | Multinational \#5 | ( 960 880) | Cyrillic, Multilingual (old) |
| Q500965905 | (*N 500) | Multinational \#5 | ( 965 905) | PC-Turkey |
| Q500981851 | (*N 500) | Multinational \#5 | ( 981851 ) | PC-Greece (old) |
| Q500998869 | (*N 500) | Multinational \#5 | ( 998869 ) | PC-Greece |
| Q813998869 | (*N 813) | 8-bit ASCII/ISO Greece | ( 998869 ) | PC-Greece |
| Q819BBEA6O | (*N 819) | 8-bit ASCII/ISO Latin 1 | ( 1336 1130) | Vietnamese |
| Q819BBJA6Q | (*N 819) | 8-bit ASCII/ISO Latin 1 | ( 1341 1133) | Lao |
| Q833A0SA5I | (*N 833) | Korea | ( 1278 1088) | PC-Korean |
| Q833A7RA3B | (*N 833) | Korea | ( 1169 1009) | International Alphabet 5 |
| Q833337256 | (*N 833) | Korea | ( 337 256) | Multinational \#1 |
| Q833337891 | (*N 833) | Korea | ( 337891 ) | PC-Korea |
| Q833933256 | (*N 833) | Korea | ( 933 256) | Multinational \#1 |
| Q836A7RA3B | (*N 836) | People's Republic of China | ( 1169 1009) | International Alphabet 5 |
| Q836A7V833 | (*N 836) | People's Republic of China | ( 1173 833) | Korea |
| Q836A7X037 | (*N 836) | People's Republic of China | ( 1175037 ) | USA/Canada |
| Q836101037 | (*N 836) | People's Republic of China | ( 101 037) | USA/Canada |
| Q836103A50 | (*N 836) | People's Republic of China | ( 103 1115) | People's Republic of China GB |
| Q836337256 | (*N 836) | People's Republic of China | ( 337 256) | Multinational \#1 |
| Q836337500 | (*N 836) | People's Republic of China | ( 337500 ) | Multinational \#5 |
| Q836337903 | (*N 836) | People's Republic of China | ( 337 903) | PC-People's Republic of China |
| Q836697037 | (*N 836) | People's Republic of China | ( 697 037) | USA/Canada |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q836697284 | (*N 836) | People's Republic of China | ( 697 284) | Spain/Latin America |
| Q836936500 | (*N 836) | People's Republic of China | ( 936 500) | Multinational \#5 |
| Q838A7Y874 | (*N 838) | Thai Extended | ( 1176 874) | PC-Thai Extended |
| Q838337037 | (*N 838) | Thai Extended | ( 337 037) | USA/Canada |
| Q838697500 | (*N 838) | Thai Extended | ( 697500 ) | Multinational \#5 |
| Q850A0ZA5S | (*N 850) | PC-Multilingual | ( 1285 1098) | PC-Farsi |
| Q850A6G897 | (*N 850) | PC-Multilingual | ( 1122 897) | PC-Japan |
| Q850A69A3R | (*N 850) | PC-Multilingual | ( 1150 1025) | Cyrillic, Multilingual |
| Q850A69915 | (*N 850) | PC-Multilingual | ( 1150 915) | 8-bit ASCII/ISO Cyrillic |
| Q850A7UA38 | (*N 850) | PC-Multilingual | ( 1172 1041) | PC-Japan extended |
| Q850A7Y874 | (*N 850) | PC-Multilingual | ( 1176 874) | PC-Thai Extended |
| Q850A8C866 | (*N 850) | PC-Multilingual | ( 1190 866) | PC-Cyrillic \#2 |
| Q850A84862 | (*N 850) | PC-Multilingual | ( 1217 862) | PC-Israel |
| Q850A91852 | (*N 850) | PC-Multilingual | ( 1232 852) | PC-Latin 2 |
| Q850A9L855 | (*N 850) | PC-Multilingual | ( 1235 855) | PC-Cyrillic |
| Q850A9N857 | (*N 850) | PC-Multilingual | ( 1237 857) | PC-Turkey |
| Q850A9U864 | (*N 850) | PC-Multilingual | ( 1244 864) | PC-Arabic |
| Q850BBEA60 | (*N 850) | PC-Multilingual | ( 1336 1130) | Vietnamese |
| Q850BBJA6Q | (*N 850) | PC-Multilingual | ( 1341 1133) | Lao |
| Q850337A5R | (*N 850) | PC-Multilingual | ( 337 1097) | Farsi |
| Q850337037 | (*N 850) | PC-Multilingual | ( 337 037) | USA/Canada |
| Q850337273 | (*N 850) | PC-Multilingual | ( 337 273) | Austria/Germany |
| Q850337277 | (*N 850) | PC-Multilingual | ( 337277 ) | Denmark/Norway |
| Q850337278 | (*N 850) | PC-Multilingual | ( 337 278) | Finland/Sweden |
| Q850337280 | (*N 850) | PC-Multilingual | ( 337280 ) | Italy |
| Q850337282 | (*N 850) | PC-Multilingual | ( 337 282) | Portugal |
| Q850337284 | (*N 850) | PC-Multilingual | ( 337 284) | Spain/Latin America |
| Q850337285 | (*N 850) | PC-Multilingual | ( 337285 ) | United Kingdom |
| Q850337297 | (*N 850) | PC-Multilingual | ( 337 297) | France |
| Q850337500 | (*N 850) | PC-Multilingual | ( 337500 ) | Multinational \#5 |
| Q850337871 | (*N 850) | PC-Multilingual | ( 337871 ) | Iceland |
| Q850959870 | (*N 850) | PC-Multilingual | ( 959 870) | Latin 2, Multilingual |
| Q850960880 | (*N 850) | PC-Multilingual | ( 960 880) | Cyrillic, Multilingual (old) |
| Q851218423 | (*N 851) | PC-Greece (old) | ( 218 423) | Greece |
| Q851925875 | (*N 851) | PC-Greece (old) | ( 925 875) | Greece |
| Q852A51850 | (*N 852) | PC-Latin 2 | ( 1106 850) | PC-Multilingual |
| Q852A69A3R | (*N 852) | PC-Latin 2 | ( 1150 1025) | Cyrillic, Multilingual |
| Q852A8Y437 | (*N 852) | PC-Latin 2 | ( 1212 437) | PC-USA |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q852959870 | (*N 852) | PC-Latin 2 | ( 959 870) | Latin 2, Multilingual |
| Q852960880 | (*N 852) | PC-Latin 2 | ( 960 880) | Cyrillic, Multilingual (old) |
| Q853965905 | (*N 853) | PC-Latin 3 | ( 965 905) | PC-Turkey |
| Q855A51850 | (*N 855) | PC-Cyrillic | ( 1106 850) | PC-Multilingual |
| Q855A69A3R | (*N 855) | PC-Cyrillic | ( 1150 1025) | Cyrillic, Multilingual |
| Q855A69915 | (*N 855) | PC-Cyrillic | ( 1150 915) | 8-bit ASCII/ISO Cyrillic |
| Q855A8Y437 | (*N 855) | PC-Cyrillic | ( 1212 437) | PC-USA |
| Q855959870 | (*N 855) | PC-Cyrillic | ( 959 870) | Latin 2, Multilingual |
| Q855960880 | (*N 855) | PC-Cyrillic | ( 960 880) | Cyrillic, Multilingual (old) |
| Q857A51850 | (*N 857) | PC-Turkey | ( 1106 850) | PC-Multilingual |
| Q857A7AA3S | (*N 857) | PC-Turkey | ( 1152 1026) | Turkey Latin 5 |
| Q857A8Y437 | (*N 857) | PC-Turkey | ( 1212 437) | PC-USA |
| Q857965905 | (*N 857) | PC-Turkey | ( 965 905) | PC-Turkey |
| Q860337037 | (*N 860) | PC-Portugal | ( 337 037) | USA/Canada |
| Q860337282 | (*N 860) | PC-Portugal | ( 337 282) | Portugal |
| Q860337500 | (*N 860) | PC-Portugal | ( 337500 ) | Multinational \#5 |
| Q861337500 | (*N 861) | PC-Iceland | ( 337500 ) | Multinational \#5 |
| Q861337871 | (*N 861) | PC-Iceland | ( 337871 ) | Iceland |
| Q862A51850 | (*N 862) | PC-Israel | ( 1106850 ) | PC-Multilingual |
| Q862941424 | (*N 862) | PC-Israel | ( 941 424) | Israel (Hebrew) |
| Q863337037 | (*N 863) | PC-Canadian French | ( 337 037) | USA/Canada |
| Q863337500 | (*N 863) | PC-Canadian French | ( 337500 ) | Multinational \#5 |
| Q864A51850 | (*N 864) | PC-Arabic | ( 1106 850) | PC-Multilingual |
| Q864235420 | (*N 864) | PC-Arabic | ( 235420 ) | Arabic Bilingual |
| Q865337277 | (*N 865) | PC-Nordic | ( 337 277) | Denmark/Norway |
| Q865337500 | (*N 865) | PC-Nordic | ( 337500 ) | Multinational \#5 |
| Q866A51850 | (*N 866) | PC-Cyrillic \#2 | ( 1106 850) | PC-Multilingual |
| Q866A69A3R | (*N 866) | PC-Cyrillic \#2 | ( 1150 1025) | Cyrillic, Multilingual |
| Q866A8Y437 | (*N 866) | PC-Cyrillic \#2 | ( 1212 437) | PC-USA |
| Q869218423 | (*N 869) | PC-Greece | ( 218 423) | Greece |
| Q869337256 | (*N 869) | PC-Greece | ( 337 256) | Multinational \#1 |
| Q869337500 | (*N 869) | PC-Greece | ( 337500 ) | Multinational \#5 |
| Q869925813 | (*N 869) | PC-Greece | ( 925 813) | 8-bit ASCII/ISO Greece |
| Q869925875 | (*N 869) | PC-Greece | ( 925 875) | Greece |
| Q869981851 | (*N 869) | PC-Greece | ( 981851 ) | PC-Greece (old) |
| Q870A69A3R | (*N 870) | Latin 2, Multilingual | ( 1150 1025) | Cyrillic, Multilingual |
| Q870A69855 | (*N 870) | Latin 2, Multilingual | ( 1150 855) | PC-Cyrillic |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q870A69915 | (*N 870) | Latin 2, Multilingual | ( 1150 915) | 8-bit ASCII/ISO Cyrillic |
| Q870A7RA3B | (*N 870) | Latin 2, Multilingual | ( 1169 1009) | International Alphabet 5 |
| Q870A91852 | (*N 870) | Latin 2, Multilingual | ( 1232 852) | PC-Latin 2 |
| Q870337256 | (*N 870) | Latin 2, Multilingual | ( 337 256) | Multinational \#1 |
| Q870697037 | (*N 870) | Latin 2, Multilingual | ( 697 037) | USA/Canada |
| Q870697500 | (*N 870) | Latin 2, Multilingual | ( 697500 ) | Multinational \#5 |
| Q870697850 | (*N 870) | Latin 2, Multilingual | ( 697850 ) | PC-Multilingual |
| Q870919437 | (*N 870) | Latin 2, Multilingual | ( 919 437) | PC-USA |
| Q870959852 | (*N 870) | Latin 2, Multilingual | ( 959 852) | PC-Latin 2 |
| Q870959912 | (*N 870) | Latin 2, Multilingual | ( 959 912) | 8-bit ASCII/ISO Latin 2 |
| Q870960880 | (*N 870) | Latin 2, Multilingual | ( 960 880) | Cyrillic, Multilingual (old) |
| Q871A7RA3B | (*N 871) | Iceland | ( 1169 1009) | International Alphabet 5 |
| Q871337850 | (*N 871) | Iceland | ( 337850 ) | PC-Multilingual |
| Q871337861 | (*N 871) | Iceland | ( 337861 ) | PC-Iceland |
| Q871697256 | (*N 871) | Iceland | ( 697 256) | Multinational \#1 |
| Q874A51850 | (*N 874) | PC-Thai Extended | ( 1106850 ) | PC-Multilingual |
| Q874A7Y500 | (*N 874) | PC-Thai Extended | ( 1176 500) | Multinational \#5 |
| Q874A7Y838 | (*N 874) | PC-Thai Extended | ( 1176 838) | Thai Extended |
| Q874337037 | (*N 874) | PC-Thai Extended | ( 337 037) | USA/Canada |
| Q875A7RA3B | (*N 875) | Greece | ( 1169 1009) | International Alphabet 5 |
| Q875218423 | (*N 875) | Greece | ( 218 423) | Greece |
| Q875337256 | (*N 875) | Greece | ( 337 256) | Multinational \#1 |
| Q875337500 | (*N 875) | Greece | ( 337500 ) | Multinational \#5 |
| Q875925813 | (*N 875) | Greece | ( 925 813) | 8-bit ASCII/ISO Greece |
| Q875981851 | (*N 875) | Greece | ( 981851 ) | PC-Greece (old) |
| Q875998869 | (*N 875) | Greece | ( 998869 ) | PC-Greece |
| Q880A69A3R | (*N 880) | Cyrillic, Multilingual (old) | ( 1150 1025) | Cyrillic, Multilingual |
| Q880A69855 | (*N 880) | Cyrillic, Multilingual (old) | ( 1150855 ) | PC-Cyrillic |
| Q880A69915 | (*N 880) | Cyrillic, Multilingual (old) | ( 1150 915) | 8-bit ASCII/ISO Cyrillic |
| Q880A7RA3B | (*N 880) | Cyrillic, Multilingual (old) | ( 1169 1009) | International Alphabet 5 |
| Q880337256 | (*N 880) | Cyrillic, Multilingual (old) | ( 337 256) | Multinational \#1 |
| Q880697037 | (*N 880) | Cyrillic, Multilingual (old) | ( 697 037) | USA/Canada |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q880697500 | (*N 880) | Cyrillic, Multilingual (old) | ( 697 500) | Multinational \#5 |
| Q880697850 | (*N 880) | Cyrillic, Multilingual (old) | ( 697850 ) | PC-Multilingual |
| Q880919437 | (*N 880) | Cyrillic, Multilingual (old) | ( 919 437) | PC-USA |
| Q880959852 | (*N 880) | Cyrillic, Multilingual (old) | ( 959 852) | PC-Latin 2 |
| Q880959870 | (*N 880) | Cyrillic, Multilingual (old) | ( 959 870) | Latin 2, Multilingual |
| Q880959912 | (*N 880) | Cyrillic, Multilingual (old) | ( 959 912) | 8-bit ASCII/ISO Latin 2 |
| Q891337833 | (*N 891) | PC-Korea | ( 337833 ) | Korea |
| Q897A51850 | (*N 897) | PC-Japan | ( 1106 850) | PC-Multilingual |
| Q897A7UA3T | (*N 897) | PC-Japan | ( 1172 1027) | Japan extended |
| Q897337290 | (*N 897) | PC-Japan | ( 337 290) | Japan Katakana |
| Q897358037 | (*N 897) | PC-Japan | ( 358 037) | USA/Canada |
| Q897640037 | (*N 897) | PC-Japan | ( 640 037) | USA/Canada |
| Q897697037 | (*N 897) | PC-Japan | ( 697 037) | USA/Canada |
| Q903A7W836 | (*N 903) | PC-People's Republic of China | ( 1174 836) | People's Republic of China |
| Q903337836 | (*N 903) | PC-People's Republic of China | ( 337836 ) | People's Republic of China |
| Q904337037 | (*N 904) | PC-People's Republic of China | ( 337 037) | USA/Canada |
| Q905A7AA3S | (*N 905) | PC-Turkey | ( 1152 1026) | Turkey Latin 5 |
| Q905337037 | (*N 905) | PC-Turkey | ( 337 037) | USA/Canada |
| Q905697500 | (*N 905) | PC-Turkey | ( 697500 ) | Multinational \#5 |
| Q905965853 | (*N 905) | PC-Turkey | ( 965 853) | PC-Latin 3 |
| Q905965857 | (*N 905) | PC-Turkey | ( 965 857) | PC-Turkey |
| Q912A69A3R | (*N 912) | 8-bit ASCII/ISO Latin 2 | ( 1150 1025) | Cyrillic, Multilingual |
| Q912959870 | (*N 912) | $\begin{aligned} & \text { 8-bit ASCII/ISO Latin } \\ & 2 \end{aligned}$ | ( 959 870) | Latin 2, Multilingual |
| Q912960880 | (*N 912) | 8-bit ASCII/ISO Latin 2 | ( 960 880) | Cyrillic, Multilingual (old) |
| Q915A51850 | (*N 915) | 8-bit ASCII/ISO Cyrillic | ( 1106 850) | PC-Multilingual |
| Q915A69A3R | (*N 915) | 8-bit ASCII/ISO Cyrillic | ( 1150 1025) | Cyrillic, Multilingual |
| Q915A8Y437 | (*N 915) | 8-bit ASCII/ISO Cyrillic | ( 1212 437) | PC-USA |
| Q915A9L855 | (*N 915) | 8-bit ASCII/ISO Cyrillic | ( 1235855 ) | PC-Cyrillic |
| Q915959870 | (*N 915) | 8-bit ASCII/ISO Cyrillic | ( 959 870) | Latin 2, Multilingual |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| Q915960880 | (*N 915) | 8-bit ASCII/ISO Cyrillic | ( 960 880) | Cyrillic, Multilingual (old) |
| Q920A7AA3S | (*N 920) | ASCII-Turkey | ( 1152 1026) | Turkey Latin 5 |
| QA3BA69A3R | (*N 1009) | International Alphabet 5 | ( 1150 1025) | Cyrillic, Multilingual |
| QA3BA7AA3S | (*N 1009) | International Alphabet 5 | ( 1152 1026) | Turkey Latin 5 |
| QA3BA7W836 | (*N 1009) | International Alphabet 5 | ( 1174 836) | People's Republic of China |
| QA3B103367 | (*N 1009) | International Alphabet 5 | ( 103 367) | ASCII |
| QA3B218423 | (*N 1009) | International Alphabet 5 | ( 218 423) | Greece |
| QA3B332290 | (*N 1009) | International Alphabet 5 | ( 332 290) | Japan Katakana |
| QA3B697037 | (*N 1009) | International Alphabet 5 | ( 697 037) | USA/Canada |
| QA3B697273 | (*N 1009) | International Alphabet 5 | ( 697 273) | Austria/Germany |
| QA3B697277 | (*N 1009) | International Alphabet 5 | ( 697 277) | Denmark/Norway |
| QA3B697278 | (*N 1009) | International Alphabet 5 | ( 697 278) | Finland/Sweden |
| QA3B697280 | (*N 1009) | International Alphabet 5 | ( 697 280) | Italy |
| QA3B697284 | (*N 1009) | International Alphabet 5 | ( 697 284) | Spain/Latin America |
| QA3B697297 | (*N 1009) | International Alphabet 5 | ( 697 297) | France |
| QA3B697500 | (*N 1009) | International Alphabet 5 | ( 697500 ) | Multinational \#5 |
| QA3B697871 | (*N 1009) | International Alphabet 5 | ( 697871 ) | Iceland |
| QA3B925875 | (*N 1009) | International Alphabet 5 | ( 925 875) | Greece |
| QA3B933833 | (*N 1009) | International Alphabet 5 | ( 933 833) | Korea |
| QA3B936836 | (*N 1009) | International Alphabet 5 | ( 936836 ) | People's Republic of China |
| QA3B959870 | (*N 1009) | International Alphabet 5 | ( 959 870) | Latin 2, Multilingual |
| QA3B960880 | (*N 1009) | International Alphabet 5 | ( 960 880) | Cyrillic, Multilingual (old) |
| QA3D697500 | (*N 1011) | VT220 Germany | ( 697500 ) | Multinational \#5 |
| QA3E697500 | (*N 1012) | VT220 Italy | ( 697500 ) | Multinational \#5 |
| QA3M697500 | (*N 1020) | VT220 Canadian/French | ( 697500 ) | Multinational \#5 |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| QA3N697500 | (*N 1021) | VT220 Switzerland | ( 697500 ) | Multinational \#5 |
| QA3P697500 | (*N 1023) | VT220 Spain | ( 697500 ) | Multinational \#5 |
| QA3QA93A33 | (*N 1024) | CCITT T. 61 (EBCDIC) | ( 1252 1036) | CCITT T. 61 IBM ${ }^{(\mathrm{R})}$ PC |
| QA3RA69855 | (*N 1025) | Cyrillic, Multilingual | ( 1150 855) | PC-Cyrillic |
| QA3RA69915 | (*N 1025) | Cyrillic, Multilingual | ( 1150 915) | 8-bit ASCII/ISO Cyrillic |
| QA3RA7RA3B | (*N 1025) | Cyrillic, Multilingual | ( 1169 1009) | International Alphabet 5 |
| QA3RA8C866 | (*N 1025) | Cyrillic, Multilingual | ( 1190 866) | PC-Cyrillic \#2 |
| QA3RA9L855 | (*N 1025) | Cyrillic, Multilingual | ( 1235 855) | PC-Cyrillic |
| QA3R337256 | (*N 1025) | Cyrillic, Multilingual | ( 337 256) | Multinational \#1 |
| QA3R697037 | (*N 1025) | Cyrillic, Multilingual | ( 697 037) | USA/Canada |
| QA3R697500 | (*N 1025) | Cyrillic, Multilingual | ( 697500 ) | Multinational \#5 |
| QA3R697850 | (*N 1025) | Cyrillic, Multilingual | ( 697850 ) | PC-Multilingual |
| QA3R919437 | (*N 1025) | Cyrillic, Multilingual | ( 919 437) | PC-USA |
| QA3R959852 | (*N 1025) | Cyrillic, Multilingual | ( 959 852) | PC-Latin 2 |
| QA3R959870 | (*N 1025) | Cyrillic, Multilingual | ( 959 870) | Latin 2, Multilingual |
| QA3R959912 | (*N 1025) | Cyrillic, Multilingual | ( 959 912) | 8-bit ASCII/ISO Latin 2 |
| QA3R960880 | (*N 1025) | Cyrillic, Multilingual | ( 960 880) | Cyrillic, Multilingual (old) |
| QA3SA7A857 | (*N 1026) | Turkey Latin 5 | ( 1152 857) | PC-Turkey |
| QA3SA7A920 | (*N 1026) | Turkey Latin 5 | ( 1152 920) | ASCII-Turkey |
| QA3SA7RA3B | (*N 1026) | Turkey Latin 5 | ( 1169 1009) | International Alphabet 5 |
| QA3S337037 | (*N 1026) | Turkey Latin 5 | ( 337 037) | USA/Canada |
| QA3S337256 | (*N 1026) | Turkey Latin 5 | ( 337 256) | Multinational \#1 |
| QA3S337500 | (*N 1026) | Turkey Latin 5 | ( 337 500) | Multinational \#5 |
| QA3S965905 | (*N 1026) | Turkey Latin 5 | ( 965 905) | PC-Turkey |
| QA3TA6G897 | (*N 1027) | Japan extended | ( 1122 897) | PC-Japan |
| QA3TA7UA38 | (*N 1027) | Japan extended | ( 1172 1041) | PC-Japan extended |
| QA3TA7U290 | (*N 1027) | Japan extended | ( 1172 290) | Japan Katakana |
| QA3T697037 | (*N 1027) | Japan extended | ( 697 037) | USA/Canada |
| QA3T697500 | (*N 1027) | Japan extended | ( 697500 ) | Multinational \#5 |
| QA33A93A3Q | (*N 1036) | CCITT T. 61 IBM PC | ( 1252 1024) | CCITT T. 61 (EBCDIC) |
| QA38A51850 | (*N 1041) | PC-Japan extended | ( 1106 850) | PC-Multilingual |
| QA38A7UA3T | (*N 1041) | PC-Japan extended | ( 1172 1027) | Japan extended |
| QA38A7U290 | (*N 1041) | PC-Japan extended | ( 1172 290) | Japan Katakana |
| QA5IA7V833 | (*N 1088) | PC-Korean | ( 1173 833) | Korea |
| QA5KA7X037 | (*N 1090) | VT100 Line drawing set | ( 1175 037) | USA/Canada |
| QA5K697037 | (*N 1090) | VT100 Line drawing set | ( 697 037) | USA/Canada |


| Table Name | From | From text | To | To text |
| :---: | :---: | :---: | :---: | :---: |
| QA5K697500 | (*N 1090) | VT100 Line drawing set | ( 697500 ) | Multinational \#5 |
| QA5RA0ZA5S | (*N 1097) | Farsi | ( 1285 1098) | PC-Farsi |
| QA5R337437 | (*N 1097) | Farsi | ( 337 437) | PC-USA |
| QA5R337850 | (*N 1097) | Farsi | ( 337850 ) | PC-Multilingual |
| QA5R697037 | (*N 1097) | Farsi | ( 697 037) | USA/Canada |
| QA5R697500 | (*N 1097) | Farsi | ( 697500 ) | Multinational \#5 |
| QA5SA86A5R | (*N 1098) | PC-Farsi | ( 1219 1097) | Farsi |
| QA5S919437 | (*N 1098) | PC-Farsi | ( 919 437) | PC-USA |
| QA5S980850 | (*N 1098) | PC-Farsi | ( 980 850) | PC-Multilingual |
| QA5UA7X037 | (*N 1100) | VT220 Multinational | ( 1175037 ) | USA/Canada |
| QA5U697037 | (*N 1100) | VT220 Multinational | ( 697 037) | USA/Canada |
| QA5U697500 | (*N 1100) | VT220 Multinational | ( 697500 ) | Multinational \#5 |
| QA5V697500 | (*N 1101) | VT220 British | ( 697500 ) | Multinational \#5 |
| QA5W697500 | (*N 1102) | VT220 Dutch | ( 697500 ) | Multinational \#5 |
| QA5X697500 | (*N 1103) | VT220 Finnish | ( 697500 ) | Multinational \#5 |
| QA5Y697500 | (*N 1104) | VT220 French | ( 697500 ) | Multinational \#5 |
| QA5Z697500 | (*N 1105) | VT220 <br> Norwegian/Danish | ( 697500 ) | Multinational \#5 |
| QA50A7W836 | (*N 1115) | People's Republic of China GB | ( 1174 836) | People's Republic of China |
| QA51697500 | (*N 1106) | VT220 Swedish | ( 697500 ) | Multinational \#5 |
| QA52697500 | (*N 1107) | VT220 <br> Norwegian/Danish Alt | ( 697500 ) | Multinational \#5 |
| QA57697037 | (*N 1112) | Baltic, Multilingual | ( 697 037) | USA/Canada |
| QA57697500 | (*N 1112) | Baltic, Multilingual | ( 697500 ) | Multinational \#5 |
| QA59697037 | (*N 1114) | Taiwan Industry (Big 5) code | ( 697 037) | USA/Canada |
| QA6G697037 | (*N 1122) | Estonian | ( 697 037) | USA/Canada |
| QA6G697500 | (*N 1122) | Estonian | ( 697500 ) | Multinational \#5 |
| QA6OA51850 | (*N 1130) | Vietnamese | ( 1106 850) | PC-Multilingual |
| QA6OBC8A99 | (*N 1130) | Vietnamese | ( BC8 1258) | MS Window, Vietnamese |
| QA60697037 | (*N 1130) | Vietnamese | ( 697 037) | USA/Canada |
| QA60697500 | (*N 1130) | Vietnamese | ( 697500 ) | Multinational \#5 |
| QA60697819 | (*N 1130) | Vietnamese | ( 697819 ) | 8-bit ASCII/ISO Latin 1 |
| QA6QA51850 | (*N 1133) | Lao | ( 1106 850) | PC-Multilingual |
| QA6QBBJA6R | (*N 1133) | Lao | ( 1341 1133) | 8-bit ASCII/ISO Lao |
| QA6Q697037 | (*N 1133) | Lao | ( 697 037) | USA/Canada |
| QA6Q697500 | (*N 1133) | Lao | ( 697500 ) | Multinational \#5 |
| QA6Q697819 | (*N 1133) | Lao | ( 697 819) | 8-bit ASCII/ISO Latin 1 |


| Table Name | From | From text | To | To text |
| :--- | :--- | :--- | :--- | :--- |
| QA6RBBJA6Q | (*N 1133) | 8-bit ASCII/ISO Lao | $(13411133)$ | Lao |
| QA99BBEA6O | (*N 1258) | MS Window, <br> Vietnamese | $\left(\begin{array}{l}13361130)\end{array}\right.$ | Vietnamese |

## International DP 9400103 (ASCII)

| A Lacoocon | $\begin{gathered} \text { B } \\ \text { Lucosocos } \end{gathered}$ |  | D <br> LDoancon | $\underset{\text { Lucascos }}{\mathrm{E}}$ | $\begin{gathered} \text { F } \\ \text { Lrooscos } \end{gathered}$ | $\underset{\text { LGa000000 }}{\mathbf{G}}$ | $\underset{\text { Luwrosco }}{\mathrm{H}}$ | $\begin{gathered} \text { I } \\ \hline \end{gathered}$ | $\underset{\text { Lumone }}{\mathbf{J}}$ | $\underset{\text { Lexamone }}{\mathbf{K}}$ | $\underset{\text { unamo }}{\mathbf{L}}$ | $\underset{\text { M }}{\mathbf{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { Lun20sco }}{\mathrm{N}}$ | $\begin{gathered} \mathrm{O} \\ \text { Locoscos } \\ \hline \end{gathered}$ | $\underset{\text { Lowococo }}{\mathbf{P}}$ | $\underset{\text { LQacoscoo }}{Q}$ | $\begin{gathered} \mathrm{R} \\ \text { Lnemsoos } \end{gathered}$ | $\underset{\text { L5220000 }}{\mathrm{S}}$ | $\underset{\text { LTTOE0000 }}{\mathbf{T}}$ | $\underset{\text { Lun20000 }}{\mathrm{U}}$ | $\begin{gathered} \mathrm{V} \\ \text { Lne00000 } \end{gathered}$ | $\begin{gathered} \text { W } \\ \text { Lwoscose } \end{gathered}$ | $\underset{\text { Lutrotccoo }}{\mathrm{X}}$ | $\underset{\text { Lyezecce }}{\mathbf{Y}}$ | $\underset{\text { L212313n }}{\mathbf{Z}}$ |
| $\begin{gathered} a \\ \text { Lnowso0 } \end{gathered}$ | b <br> LBON0000 |  | $\underset{L 000060}{\mathrm{~d}}$ | $\stackrel{\mathrm{e}}{\text { Leovecos }}$ | $\underset{\text { Lfoncos }}{\mathrm{f}}$ |  | $\underset{\text { Lintoceo }}{\mathbf{h}}$ | $\underset{\text { in }}{\substack{\text { nioum }}}$ | $\underset{\text { jotrone }}{ }$ | $\underset{\text { untron }}{\mathrm{k}}$ | $\begin{gathered} 1 \\ \omega 0000 \end{gathered}$ | $\mathrm{m}_{\text {WOtoco }}$ |
| $\begin{gathered} \mathrm{n} \\ \text { Lestoseo } \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ \text { LoOsocos } \end{gathered}$ |  | $\underset{\text { L9000000 }}{\mathrm{q}^{2}}$ | $\begin{gathered} \mathbf{r} \\ \text { Lnowta00 } \end{gathered}$ | $\begin{gathered} 8 \\ \text { Lsotcose } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{t} \\ \text { LTOH000 } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{u} \\ \text { Lunto00 } \end{gathered}$ | $\begin{gathered} \mathrm{V} \\ \text { LW01000 } \end{gathered}$ |  |  | $\underset{\text { Lyeveceo }}{y^{\prime}}$ | $\begin{gathered} 2 \\ \text { L2113n3 } \end{gathered}$ |
| $\begin{gathered} 0 \\ \text { nowsose } \end{gathered}$ | $\begin{gathered} 1 \\ \text { Novteose } \\ \hline \end{gathered}$ | $\underset{\substack{2 \\ \text { novenoco }}}{ }$ | $\begin{gathered} 3 \\ \text { Hococose } \\ \hline \end{gathered}$ | $4$ | $\begin{gathered} 5 \\ \text { nocssoon } \end{gathered}$ | $\begin{gathered} 6 \\ \text { Hosecose } \end{gathered}$ | $\begin{gathered} 7 \\ \text { nowoce } \end{gathered}$ | $\begin{gathered} 8 \\ \text { Notetet } \end{gathered}$ | $\begin{gathered} 9 \\ \text { novesono } \end{gathered}$ |  |  |  |
| $\stackrel{+}{\text { santros }}$ |  | $\underset{\operatorname{san}(0) 000}{-}$ | sanscoos | $\underset{\operatorname{scoscon}}{\$}$ | sotsone |  | sorsonco |  |  |  |  |  |
| $\begin{gathered} \# \\ \text { Smitoce } \\ \hline \end{gathered}$ | $\begin{gathered} \% \\ \text { Smasoco } \\ \hline \end{gathered}$ | $\underset{\text { swascois }}{\&}$ |  | @ <br> sucosen |  |  | ${ }_{\text {smascoso }}^{]}$ | $\underset{\sin +1+0 \times 0}{1}$ | $\begin{gathered} \text { \| } \\ \text { sи13 } \end{gathered}$ | $\underset{\text { sintacee }}{\}}$ | 1 <br> sperdece |  |
| spesosco |  | $\underset{\text { SPDOTON0 }}{ }$ | speasco | sposeose | $S P 100 \times 00$ | SpItivens | sptrace | $\begin{gathered} \vdots \\ \text { spım } \\ \hline \end{gathered}$ | ; ; | $\begin{gathered} ? \\ \text { spispove } \end{gathered}$ |  |  |

## Character Set 00103

## Character set 01169 (International Alphabet 5)

| A LABCOSOO | B <br> L8000000 | $\underset{\operatorname{cosen} c o s}{C}$ | $\underset{\text { LO2S00N0 }}{\mathbf{D}}$ | E <br> LEO2000 | $\underset{\text { Lfooven }}{\mathrm{F}}$ | $\underset{\operatorname{Gon} 2000}{\mathbf{G}}$ | H <br> LH2S0060 | $\underset{\text { Insom }}{\text { I }}$ | $\underset{\text { Lazopm }}{\mathbf{J}}$ | K LKOCOMO | $\underset{\omega 000000}{\mathrm{~L}}$ | $\underset{\text { UMe }}{\mathbf{M}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N <br> L4060)(0 | $\underset{\text { Locescoin }}{\mathrm{O}}$ | $\underset{\text { Pame }}{\text { P }}$ | $\underset{\text { Lenewne }}{Q}$ | R <br> LATSONCO | $\underset{\text { L9vopen }}{S}$ | $\underset{\text { LTroscope }}{\mathrm{T}}$ | U Lunenco | $\underset{\text { Lyeasop }}{\text { V }}$ | W <br> LW0e0000 | $\underset{\text { X }}{\mathrm{X}}$ | $\underset{\text { เพะะม่า }}{\mathbf{Y}}$ | $\underset{1220000}{\mathbf{Z}}$ |
| $\begin{gathered} \mathrm{a} \\ \text { LABNONO } \end{gathered}$ | b LBOtONO | $\underset{\text { LConcon }}{\text { C }}$ | $\underset{\text { Lostane }}{\mathrm{d}}$ | $\underset{\text { Leotcone }}{\mathrm{e}}$ | $\begin{gathered} \mathrm{f} \\ \text { Letoren } \end{gathered}$ | $\underset{\text { Lositoco }}{g}$ | h <br> LHSTONCO | $\begin{gathered} \mathrm{i} \\ \text { Lnற933 } \end{gathered}$ | $\underset{\text { inions }}{\text { j }}$ | k LKOHOCO | $\begin{gathered} 1 \\ \text { U0trox } \end{gathered}$ | $\mathrm{m}_{\text {UMOLOX0 }}$ |
|  | $\begin{gathered} 0 \\ \text { LCosecos } \\ \hline \end{gathered}$ | $\underset{\text { LeONOM0 }}{\text { P }}$ | $\begin{gathered} \mathbf{q}^{2} 1000 \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{r} \\ \text { LROTONO } \end{gathered}$ | $\underset{\text { LSOH000 }}{\mathbf{S}}$ | $\begin{gathered} \mathrm{t} \\ \text { LT0*000 } \\ \hline \end{gathered}$ |  | $\begin{gathered} \mathrm{V} \\ \text { เขจ1มว勹巳 } \end{gathered}$ | $\begin{gathered} \text { W } \\ \text { Lwot1000 } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{X} \\ \text { vorococo } \\ \hline \end{gathered}$ | $\underset{\text { ㄴำวม่า }}{\mathbf{y}}$ | $\underset{12313090}{\mathbf{Z}}$ |
| $\begin{gathered} 0 \\ \text { NDTONOON } \end{gathered}$ | $\begin{gathered} 1 \\ \text { ncota0se } \end{gathered}$ | $\begin{gathered} 2 \\ \text { niverown } \end{gathered}$ | $\stackrel{3}{\text { nicascos }}$ | $\begin{gathered} 4 \\ 00040000 \end{gathered}$ | $5$ | $\begin{gathered} 6 \\ \text { NDNOCO } \end{gathered}$ | $\begin{gathered} 7 \\ 10070000 \end{gathered}$ | $\begin{gathered} 8 \\ \operatorname{ncomanom} \end{gathered}$ | $9$ |  |  |  |
| $\underset{\text { snonvoos }}{+}$ | 30000009 | $=$ <br> snencose | 3ADO5000 | $\underset{\text { scevoso }}{\pi /}$ | SD230050 | 30150000 | 5D190000 | \# | $\begin{gathered} \% / 6 \\ 5 м 1280090 \end{gathered}$ | $\underset{\text { swacceco }}{\&}$ | $\begin{gathered} * \\ \text { รм3 } \end{gathered}$ |  |
|  |  | $\underset{\text { succovcos }}{]}$ |  |  | $\underset{\operatorname{sen}+40000}{ }$ | $\stackrel{!}{\text { sporoveo }}$ | $\begin{gathered} " \\ \text { spoenoco } \end{gathered}$ | spreteto | ( | $\underset{\text { sparamen }}{\text { ) }}$ | spatete | sprecte |
| SP100560 | SP1tosco | $\int_{300000}$ | $\underset{\text { SP130000 }}{:}$ | spacosco | $\begin{gathered} ? \\ \text { spisscos } \end{gathered}$ |  |  |  |  |  |  |  |

Character Set 01169

## Invariant character set

The following table illustrates the invariant character set (character set 00640).
With only a few exceptions, each EBCDIC code page contains a common set of graphic characters. Within an encoding scheme, the common characters can be found at the same code points. The exceptions are as follows:

- EBCDIC code page 290 has Katakana characters at the code points where lowercase a through z are in the invariant character set
- EBCDIC code page 905 where the quotation mark (") is not at the same code point as it is in the invariant character set
- EBCDIC code page 1026 where the quotation mark (") is not at the same code point as it is in the invariant character set
- EBCDIC code page 420 does not contain the invariant character SM040000 (asterisk (*)). However, code page 420 has a similar character named SM040007 ( ${ }^{*}$ ) at the same code point where SM040000 normally exists.
- EBCDIC code page 420 does not contain the invariant character SM020000 (percent sign (\%)).


However, code page 420 has a similar character named SM020007 ( ) at the same code point where SM020000 normally exists.

## Invariant character set symbols

| GCGID | Description | Graphic character |
| :---: | :---: | :---: |
| LA010000 | Latin small letter a | a |
| LA020000 | Latin capital letter A | A |
| LB010000 | Latin small letter b | b |
| LB020000 | Latin capital letter B | B |
| LC010000 | Latin small letter c | c |
| LC020000 | Latin capital letter C | C |
| LD010000 | Latin small letter d | d |
| LD020000 | Latin capital letter D | D |
| LE010000 | Latin small letter e | e |
| LE020000 | Latin capital letter E | E |
| LF010000 | Latin small letter f | f |
| LF020000 | Latin capital letter F | F |
| LG010000 | Latin small letter g | g |
| LG020000 | Latin capital letter G | G |
| LH010000 | Latin small letter h | h |
| LH020000 | Latin capital letter H | H |
| LI010000 | Latin small letter i | i |
| LI020000 | Latin capital letter I | I |
| LJ010000 | Latin small letter j | j |
| LJ020000 | Latin capital letter J | J |
| LK010000 | Latin small letter k | k |
| LK020000 | Latin capital letter K | K |
| LL010000 | Latin small letter I | 1 |
| LL020000 | Latin capital letter L | L |
| LM010000 | Latin small letter m | m |
| LM020000 | Latin capital letter M | M |
| LN010000 | Latin small letter n | n |
| LN020000 | Latin capital letter N | N |
| LO010000 | Latin small letter o | 0 |
| LO020000 | Latin capital letter O | 0 |
| LP010000 | Latin small letter p | p |
| LP020000 | Latin capital letter P | P |
| LQ010000 | Latin small letter q | q |


| GCGID | Description | Graphic character |
| :---: | :---: | :---: |
| LQ020000 | Latin capital letter Q | Q |
| LR010000 | Latin small letter r | r |
| LR020000 | Latin capital letter R | R |
| LS010000 | Latin small letter s | s |
| LS020000 | Latin capital letter S | S |
| LT010000 | Latin small letter t | t |
| LT020000 | Latin capital letter T | T |
| LU010000 | Latin small letter u | u |
| LU020000 | Latin capital letter U | U |
| LV010000 | Latin small letter v | v |
| LV020000 | Latin capital letter V | V |
| LW010000 | Latin small letter w | w |
| LW020000 | Latin capital letter W | W |
| LX010000 | Latin small letter x | x |
| LX020000 | Latin capital letter X | X |
| LY010000 | Latin small letter y | y |
| LY020000 | Latin capital letter Y | Y |
| LZ010000 | Latin small letter z | z |
| LZ020000 | Latin capital letter Z | Z |
| ND100000 | Arabic number zero | 0 |
| ND010000 | Arabic number one | 1 |
| ND020000 | Arabic number two | 2 |
| ND030000 | Arabic number three | 3 |
| ND040000 | Arabic number four | 4 |
| ND050000 | Arabic number five | 5 |
| ND060000 | Arabic number six | 6 |
| ND070000 | Arabic number seven | 7 |
| ND080000 | Arabic number eight | 8 |
| ND090000 | Arabic number nine | 9 |
| SA010000 | Plus sign | + |
| SA030000 | Less than sign | < |
| SA040000 | Equal sign | = |
| SA050000 | Greater than sign | > |
| SM020000 | Percent sign | \% |
| SM030000 | Ampersand |  |
| SM040000 | Asterisk | * |
| SP040000 | Straight double quote | " |
| SP050000 | Straight single quote | , |
| SP060000 | Left parenthesis | ( |
| SP070000 | Right parenthesis | ) |
| SP080000 | Comma | , |

344 OS/400 Globalization V5R3

| GCGID | Description | Graphic character |
| :--- | :--- | :--- |
| SP090000 | Underscore | - |
| SP100000 | Hyphen | - |
| SP110000 | Period | - |
| SP120000 | Slash right | $/$ |
| SP130000 | Colon | $:$ |
| SP140000 | Semicolon | $;$ |
| SP150000 | Question mark | $?$ |

## Monocase tables

The following is a list of monocase tables on $\mathrm{OS} / 400^{(\mathrm{R})}$.

| Code Page | Table Object for Monocase | Description |
| :---: | :---: | :---: |
| 00037 | Q037 | USA/Canada (EBCDIC) |
| 00256 | Q256 | International 1 (EBCDIC) |
| 00260 | Q260 | Canadian French (EBCDIC) |
| 00273 | Q273 | Germany/Austria (EBCDIC) |
| 00277 | Q277 | Denmark, Norway (EBCDIC) |
| 00278 | Q278 | Finland, Sweden (EBCDIC) |
| 00280 | Q280 | Italy (EBCDIC) |
| 00281 | Q281 | Japan Latin (EBCDIC) |
| 00284 | Q284 | Spain/Latin America (EBCDIC) |
| 00285 | Q285 | United Kingdom (EBCDIC) |
| 00290 | Q290 | Japanese Katakana extended |
| 00297 | Q297 | France (EBCDIC) |
| 00420 | Q420 | Arabic Bilingual (EBCDIC) |
| 00423 | Q423 | Greece (EBCDIC) |
| 00424 | Q424 | Israel (Hebrew) |
| 00437 | Q437 | USA (IBM ${ }^{(\mathrm{R})}$ Personal Computer) |
| 00500 | Q500 | Multilingual \#5 |
| 00833 | Q833 | Korean Extended (EBCDIC) |
| 00836 | Q836 | Simplified Chinese Extended (EBCDIC) |
| 00838 | Q838 | Thai Extended (EBCDIC) |
| 00850 | Q850 | Multilingual (IBM Personal Computer) |
| 00851 | Q851 | Greece (IBM Personal Computer) |
| 00857 | Q857 | Turkey (ISO 8859-5) |
| 00860 | Q860 | Portugal (IBM Personal Computer) |
| 00861 | Q861 | Iceland (IBM Personal Computer) |
| 00862 | Q862 | Israel (IBM Personal Computer) |
| 00863 | Q863 | Canadian French (IBM Personal Computer) |
| 00864 | Q864 | Arabic (IBM Personal Computer) |
| 00865 | Q865 | Nordic (IBM Personal Computer) |


| Code Page | Table Object for Monocase | Description |
| :---: | :---: | :--- |
| 00870 | Q870 | Multilingual (ISO 8859-2) |
| 00871 | Q871 | Iceland (EBCDIC) |
| 00875 | Q875 | Greece (EBCDIC) |
| 00880 | Q880 | Cyrillic, Multilingual |
| 00891 | Q891 | Korea (IBM Personal Computer) |
| 00897 | Q897 | Japan PC \#1 (IBM Personal Computer) |
| 00903 | Q903 | People's Republic of China (IBM Personal Computer) |
| 00904 | Q904 | Taiwan (IBM Personal Computer) |
| 00905 | Q905 | PC-Turkey (ISO 8859-9) |
| 01025 | QA3R | Cyrillic, Multilingual (EBCDIC) |
| 01026 | QA3S | Turkey (ISO 8859-9) |
| 01027 | QA3T | Japanese (Latin) Extended (EBCDIC) |
| 01097 | QA5R | Farsi Bilingual (EBCDIC) |

## Portable character set

The X/Open portable character set is a superset of the $\mathrm{IBM}^{(\mathrm{R})}$ invariant character set (00640). The portable character set includes the following 13 symbols that are not represented in the IBM invariant character set 00640:

| GCGID | Description | Graphic character |
| :--- | :--- | :--- |
| SC030000 | Dollar | $\$$ |
| SD110000 | Accent acute | , |
| SD150000 | Caret | $\wedge$ |
| SD190000 | Tilde | $\sim$ |
| SM010000 | Number sign | $\#$ |
| SM050000 | At sign | @ |
| SM060000 | Left bracket | [ |
| SM070000 | Back slash | $]$ |
| SM080000 | Right bracket | $\{$ |
| SM110000 | Left brace | I |
| SM130000 | Logical or | $\}$ |
| SM140000 | Right brace | $!$ |
| SP020000 | Exclamation point |  |

The portable character set also includes the space character and control characters representing the horizontal tab, the vertical tab, and form feed.

## Syntactic/invariant character set 00640

With only a few exceptions, each EBCDIC code page contains a common set of graphic characters. Within an encoding scheme, the common characters can be found at the same code points. The exceptions are as follows:

- EBCDIC code page 290 has Katakana characters at the code points where lowercase a through z are in the invariant character set
－EBCDIC code page 905 where the quotation mark（＂）is not at the same code point as it is in the invariant character set
－EBCDIC code page 1026 where the quotation mark（＂）is not at the same code point as it is in the invariant character set
－EBCDIC code page 420 does not contain the invariant character SM040000（asterisk（＊））．However， code page 420 has a similar character named SM040007（＊）at the same code point where SM040000 normally exists
－EBCDIC code page 420 does not contain the invariant character SM020000（percent sign（\％））．

However，code page 420 has a similar character named SM020007（ point where SM020000 normally exists

| A | $\underset{\text { L }}{\text { B }}$ | $\underset{\text { C }}{C}$ |  | E <br> Lexam | $\underset{\text { LHeven }}{ }$ |  | H <br> $\mathrm{H}^{2}$ | ${ }_{\mathrm{Inm}}$ | $\underset{\text { Unam }}{\mathrm{J}}$ | K <br> ккамо | $\stackrel{\mathrm{L}}{\text { Lemose }}$ | M <br> M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{O} \\ \hline \text { conecono } \end{gathered}$ | $\underset{\text { Laxescos }}{\mathrm{P}}$ | $\mathrm{Q}$ | $\underset{\text { Lenexe }}{\mathrm{R}}$ | $\underset{\mathrm{S}}{\mathbf{S}}$ | $\underset{\substack{\mathrm{T} \\ \mathrm{~T} \\ \hline}}{ }$ | $\mathrm{U}$ | $\begin{gathered} \mathrm{V} \\ \text { cverono } \end{gathered}$ | $\begin{gathered} \text { W } \\ \text { twapmo } \end{gathered}$ | $\mathrm{X}^{2}$ | $\begin{gathered} \mathrm{Y} \\ \text { Lу } 23 \end{gathered}$ | $\mathbf{Z}$ |
| $\underset{\substack{\text { a } \\ \text { Lanoxe }}}{ }$ | $\stackrel{\mathrm{b}}{\mathrm{~b}}$ | $\underset{\substack{\mathrm{c} \\ \text { coveno }}}{ }$ | $\underset{\text { cомахо }}{\mathrm{d}}$ | $\underset{\substack{\mathrm{e} \\ \text { entione }}}{ }$ | $\underset{\substack{\text { LFen } \\ \hline}}{ }$ |  | $\underset{\substack{\mathrm{h} \\ \text { Luroveo }}}{ }$ | $\begin{gathered} \mathrm{i} \\ \text { innom } \end{gathered}$ | $\underset{\text { inn }}{j}$ | $\underset{c}{\mathrm{k}}$ | $\begin{gathered} 1 \\ \text { uоио } \end{gathered}$ | $\underset{\text { mporam }}{\mathrm{m}}$ |
| $\underset{\substack{\mathrm{n} \\ \text { Levosso }}}{ }$ | $\begin{gathered} 0 \\ \text { cooverons } \end{gathered}$ | $\underset{\text { Lencoos }}{\text { p }}$ | $\stackrel{q}{q}^{\text {Lososo }}$ | $\stackrel{\mathrm{r}}{\mathrm{r}}$ | $\begin{gathered} \text { S } \\ \text { Lstoven } \end{gathered}$ | $\underset{\substack{\mathrm{t} \\ \text { LToweso }}}{ }$ | $\underset{\substack{\mathrm{u} \\ \text { Whoreve }}}{ }$ | $\underset{\substack{\mathrm{v} \\ \text { Lvono }}}{ }$ | $\stackrel{\text { w }}{\text { Lwomo }}$ | $\underset{\text { vincex }}{\text { x }}$ |  | $\underset{\text { z }}{\mathrm{z} 1000}$ |
| $\begin{array}{\|c} 0 \\ \text { мпоохоо } \end{array}$ | $\begin{gathered} 1 \\ \text { noporos } \end{gathered}$ | $\stackrel{2}{\text { нгхамох }}$ | $\begin{gathered} 3 \\ \text { nucasoo } \end{gathered}$ | $4$ | $5$ | $\begin{gathered} 6 \\ \text { птхерео } \end{gathered}$ | $\begin{gathered} 7 \\ \text { nomeose } \end{gathered}$ | 8 | $\begin{gathered} 9 \\ \text { nomone } \end{gathered}$ |  |  |  |
|  | $\underset{\text { Sncoscos }}{<}$ | $=$ | $\underset{\operatorname{sinaxcoc}}{>}$ | $\%$ | $\underset{s w a x=0}{\&}$ |  |  | spesecte | ( | sprom | spatete | spustero |
|  | spriveco |  |  | $\underset{\text { spionso }}{j}$ | $\stackrel{?}{?}$ |  |  |  |  |  |  |  |

## Character Set 00640

## T． 61 Character Set 01252

| A | $\stackrel{\mathrm{B}}{\mathrm{~L}}$ |  | $\mathrm{D}$ | E | $F$ Luravecoc | $\mathrm{G}$ | H | $\mathrm{I}$ | $\mathrm{J}$ | K | $\underset{\text { Lemex }}{\mathrm{L}}$ | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\stackrel{\mathrm{O}}{\mathrm{O}}$ | $\underset{\mathrm{P}}{\mathrm{P}}$ | $\mathrm{Q}$ | $\mathrm{R}$ | $\mathrm{S}$ |  | $\underset{\text { Whascose }}{\mathrm{U}}$ | $\begin{gathered} \mathrm{V} \\ \text { Lvarmon } \end{gathered}$ |  | $\mathrm{X}$ | $\underset{\text { Lum }}{\mathrm{Y}}$ | Z <br> Z |
|  | $\stackrel{\mathrm{b}}{\text { b }}$ | $\underset{\substack{c \\ \text { coneos }}}{ }$ | $\stackrel{\mathrm{d}}{\mathrm{~d}} \mathrm{Conox}$ | $\underset{\text { Levicose }}{\mathrm{e}}$ | foreve | $\mathrm{g}^{2}$ | $\begin{gathered} \mathrm{h} \\ \text { Herover } \end{gathered}$ | $\underset{i}{i}$ | jom | $\underset{\text { womaxo }}{\mathrm{k}}$ | $\begin{gathered} 1 \\ \text { H01000 } \end{gathered}$ | $m$ |
| $\underset{\mathrm{n}}{\mathrm{n}}$ | $\stackrel{0}{1} \stackrel{0}{1}$ | $\mathrm{p}_{\mathrm{p}}^{\mathrm{p}}$ | $\operatorname{con}^{q}$ | $\begin{gathered} \mathrm{r} \\ \text { L9 } \\ \hline 10 \times 0 \end{gathered}$ | $\underset{\text { sseiveco }}{\mathrm{s}}$ | $\underset{\text { стокеою }}{\mathrm{t}}$ | $\begin{gathered} \mathrm{u} \\ \text { Wh:ого } \end{gathered}$ | $\stackrel{\mathrm{v}}{\mathrm{v}} \mathrm{tvom}$ | $\stackrel{\text { W }}{\text { Whono }}$ | $\underset{\substack{\mathrm{X} \\ \text { unaxe }}}{ }$ | $\begin{aligned} & \mathbf{y} \\ & \text { (x) } \end{aligned}$ | $\underset{z n 000}{z}$ |
| $\underset{\text { Insonc }}{\text { I }}$ | $\underset{\substack{\text { Lокемхо }}}{ }$ | $\underset{\substack{\text { Hercos }}}{ }$ | $\underset{\text { IUsenve }}{\text { II }}$ | $\underset{(1)}{\mathbf{L}}$ | $\underset{\text { utaseon }}{\mathbf{E}}$ | $\begin{gathered} \text { D } \\ \text { wnencose } \end{gathered}$ | $\underset{\substack{\text { Lorever }}}{ }$ | $\underset{\text { covece }}{\varnothing}$ | $\underset{\substack{\text { ITevece }}}{ }$ | $\underset{\substack{\mathbf{p} \\ \text { LTнане }}}{ }$ |  |  |
|  | $\stackrel{\dagger}{\stackrel{a}{\text { Lovoseo }}}$ | $\stackrel{\delta}{\text { шercos }}$ | $\begin{gathered} \mathrm{\hbar} \\ \text { Unioxo } \end{gathered}$ | $\frac{\mathrm{ij}}{\substack{\text { untione }}}$ | $1.1060<09$ | $\begin{gathered} K \\ \text { vastase } \end{gathered}$ | $\stackrel{1}{1}$ | $\stackrel{\mathrm{r}}{\mathrm{r}}$ |  | $\mathrm{n}$ | œ <br> 9\＄15656 | ø |
| $\begin{gathered} B \\ \text { Bestooso } \end{gathered}$ | $t$ | $\underset{\text { trease }}{\mathbf{b}}$ |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{\|c\|c} \hline 0 \\ \text { notoxeo } \end{array}$ | $\underset{1}{1}$ | $\stackrel{2}{\text { moxase }}$ | $\begin{gathered} 3 \\ \text { nivesco } \end{gathered}$ | $\begin{gathered} 4 \\ \end{gathered}$ | $\begin{gathered} 5 \\ \text { nessoxa } \end{gathered}$ | поесесо | $\begin{gathered} 7 \\ \text { nomexos } \end{gathered}$ | $8$ | $9$ |  |  |  |
| $\begin{gathered} 2 \\ \text { nocetices } \\ \hline \end{gathered}$ | $\begin{gathered} 3^{3} \\ \text { но⿱土土卜⿴⿱冂一⿰丨丨丁口内 } \end{gathered}$ | $\begin{gathered} 1 / 2 \\ \text { ағонао } \end{gathered}$ | $\begin{gathered} 1 / 4 \\ \text { nesameso } \end{gathered}$ | $\begin{gathered} 3 / 4 \\ \text { nesboro } \end{gathered}$ | $+$ | $\pm$ |  | $=$ | $\stackrel{>}{>0}$ | $\div$ | $\underset{\text { satrete }}{\times}$ | $\begin{gathered} \square \\ \operatorname{scn}+t_{0} \end{gathered}$ |
| $\underset{\text { cotaseso }}{ }$ | $\begin{gathered} \$ \\ \text { sccosone } \end{gathered}$ | $\stackrel{申}{申}$ | $\underset{\text { socrave }}{7}$ | SDIt3s00 | $1$ | $\underset{\text { sotsexp }}{ }$ | SDHTat00 | solsexte | $\sec ^{2}$ | spezsops | soxemo | sогәксе |
|  | sosurno | satuono | sosexa | $\operatorname{soceax\infty }$ | $\underset{\text { suownom }}{\#}$ | \% | \＆ <br> sumzono |  | $\varliminf_{\text {sumino }}$ |  | $]$ | $\underset{\text { surim }}{1}$ |
| $\underset{\text { sмиторо }}{\mu}$ | $\begin{gathered} \Omega \\ \sin 18000 \end{gathered}$ | smaxion | $\stackrel{\varrho}{\underline{o}}$ | sменохо | $\frac{8}{8 \times 2 \times 00}$ | surwos | $\begin{gathered} 1 \\ \sin 2 \times 20 \end{gathered}$ | $\underset{\text { sésecece }}{ }$ | $\begin{gathered} " \prime \\ \text { secocceo } \end{gathered}$ | $\begin{gathered} \mathrm{s} \\ \hline \end{gathered}$ | spectece | веротен |
| speeswo | spempo |  | $-$ | sptoxe | spricocos |  | sp/onoo | ? | $\operatorname{spl}^{i}$ | $\stackrel{\alpha}{\alpha}$ | $\underset{\text { sphecee }}{\prime \prime}$ |  |

Character Set 01252

## T． 61 Character Repertoire 01253

| A | B | C | $\mathrm{D}$ | E | F | G | H | I | J | K | $\mathrm{L}$ | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\mathrm{O}}{\mathrm{O}}$ | $\begin{gathered} \mathrm{P} \\ \text { anccos } \end{gathered}$ |  | $\mathrm{R}$ | $\underset{\text { Isprove }}{S}$ | $\begin{gathered} \mathrm{T} \\ \text { Luvenow } \end{gathered}$ | $\begin{gathered} \mathrm{U} \\ \text { Unveroso } \end{gathered}$ | $\stackrel{V}{V}$ | $\underset{\text { Lwexoso }}{\text { W }}$ | $\underset{\text { unecese }}{ }$ | $\mathrm{Y}$ | Z |
| $\begin{gathered} a \\ \text { anowen } \end{gathered}$ | $\begin{gathered} \mathrm{b} \\ \text { LBovan } \end{gathered}$ |  | $\begin{gathered} \mathrm{d} \\ \text { Lоомхе } \end{gathered}$ | $\underset{\text { Leorxan }}{\mathrm{e}}$ |  | $\underset{\text { Looweon }}{\mathrm{g}}$ | $\underset{\substack{\mathrm{h} \\ \text { untoxe }}}{ }$ | $\underset{i}{i}$ | ${ }^{\mathbf{j}}$ | $\mathrm{k}$ | $\begin{aligned} & 1 \\ & \text { uriox } \end{aligned}$ | $\mathrm{m}_{\text {wox }}$ $N 010000$ |
| $\underset{\sim}{\mathrm{n}} \mathrm{n}$ | $\stackrel{0}{100400}$ |  | $\stackrel{q}{\mathrm{q}}$ | Lantuan | ISnicox | $\stackrel{\mathrm{t}}{\text { LTo土é }}$ | $\underset{\text { untoxe }}{u}$ | $\underset{\sim}{v}$ | $\underset{\text { Lworacen }}{\mathrm{w}}$ | $\frac{\mathbf{x}}{1}$ | ${ }_{\text {Cveroce }}^{\mathrm{y}}$ | $\begin{gathered} z \\ \square 2110 n \end{gathered}$ |
| $\underset{\text { LAT2000 }}{\mathrm{A}}$ | $\underset{A}{\AA}$ | $\underset{\text { Laномо }}{\hat{\mathrm{A}}}$ |  | $\tilde{\mathrm{A}}$ | $\underset{\sim}{\AA}$ | $\underset{L}{\AA}$ | $\overline{\mathrm{A}}$ | $\mathrm{A}$ | $\begin{gathered} A \\ \text { astece } \end{gathered}$ | $\hat{C}^{\text {Cempon }}$ | C <br> cheace | C сиишо |
| $\underset{\text { Comen }}{\text { Con }}$ | C | $\stackrel{\mathrm{D}}{1}$ | $\underset{\text { וnewcen }}{\square}$ | $\underset{\text { Extaxac }}{\text { en }}$ |  | $\underset{\text { Litimeo }}{\hat{\mathrm{E}}}$ | $\stackrel{\text { Ë }}{\text { Lremos }}$ |  |  | $\underset{\text { Expaceo }}{\hat{L}}$ | $\underset{\mathrm{E}}{\mathrm{E}}$ | $\underset{\text { Gintece }}{\hat{c}}$ |
| $\underset{\text { LGavoos }}{G}$ | $\underset{\text { LGancoon }}{G}$ | $\underset{\text { Gutione }}{G}$ | $\underset{\text { Lทим }}{\hat{\mathrm{A}}}$ | $\underset{\text { Haroose }}{\boldsymbol{H}}$ | $\frac{\mathrm{I}}{\text { Lurose }}$ | $\underset{\text { ur } 10 \times 000}{ }$ | $\frac{\mathrm{I}}{\text { Lnsoono }}$ | $\underset{\sim}{Y}$ | $\underset{\text { urceces }}{\tilde{I}^{\prime}}$ | $\begin{aligned} & 1 \\ & u \quad 00000 \end{aligned}$ | $\underset{\text { In }}{\overline{\mathrm{I}}}$ | I I |
| $\begin{array}{\|c\|} \hline \text { IJ } \\ \text { Lraveso } \end{array}$ | $\begin{gathered} \mathbf{j} \\ \text { Lutases } \end{gathered}$ | K | $\begin{gathered} \mathrm{L} \\ \text { utrones } \end{gathered}$ | $\begin{gathered} \text { L } \\ \text { 山zrowa } \end{gathered}$ | $\underset{\text { Leveos }}{\mathrm{L}}$ | $\underset{\sim}{\text { Luracoco }}$ | $\underset{\text { Lewoon }}{\mathrm{L}}$ | $\begin{gathered} \mathbf{N} \\ \text { Luxum } \end{gathered}$ | $\stackrel{\hat{\mathbf{N}}}{\text { nexteo }}$ | $\stackrel{\widetilde{N}}{ }$ | $\underset{\text { Lneacese }}{N}$ | 눈ut |
|  |  |  |  | $\underset{\text { OToscose }}{\tilde{O}}$ | $\begin{gathered} \text { Ö } \\ \text { Lemonso } \end{gathered}$ | $\underset{\text { Lomsons }}{\bar{O}}$ | $\underset{\text { Lospose }}{\mathrm{E}}$ |  | $\underset{\substack{\mathrm{R} \\ \text { Lnizecte }}}{ }$ | $\stackrel{\check{R}}{ }$ | R natisce | $\underset{\text { SLiman }}{ }$ |
| $\underset{\text { Ismown }}{\mathrm{S}}$ | $\underset{\text { Surnow }}{\text { Sun }}$ | Snex | $\underset{\text { LTzaseo }}{\overline{1}}$ | $\underset{\text { LTeseos }}{T}$ | $\underset{\substack{\mathrm{T} \\ \text { Lnacoos }}}{ }$ | $\underset{\substack{\text { LTeosco }}}{ }$ | Uutuse | Ù Un | $\begin{gathered} 0 \\ \text { wheteso } \end{gathered}$ | U | Uneces | Ŭ Watte |
|  | $\underset{\text { Uuscos }}{\text { Ủ }}$ | $\begin{gathered} \hat{0} \\ \text { unatene } \end{gathered}$ | $\begin{gathered} \mathrm{U} \\ \text { Luesixe } \end{gathered}$ | iw | $\begin{gathered} \text { LY' } \\ \text { LYtanse } \end{gathered}$ | $\hat{\text { Crisencos }}$ | $\underset{\text { Lry }}{\substack{\text { Lence }}}$ | $\mathcal{Z ́}^{\mathbf{Z}}$ | Izzomon | $\dot{\mathrm{z}}$ |  |  |
| $\begin{gathered} \text { ád } \\ \text { Latwoon } \end{gathered}$ | $\underset{\text { Lataseos }}{\text { à }}$ | $\underset{\text { antsone }}{\hat{a}}$ | $\underset{\substack{a \\ \text { Latrece }}}{\text { and }}$ | $\underset{\text { atzoxe }}{\tilde{\mathrm{a}}}$ | A250）000 | $\underset{L \operatorname{Larzvenos}}{\mathrm{a}}$ | $\begin{gathered} \bar{a} \\ \text { ansoxe } \end{gathered}$ | レaim | $\underset{\substack{a \\ \text { Latiece }}}{ }$ | $\underbrace{}_{\text {Lectrome }}$ | $\underset{c\|c\| 18000}{\hat{c}}$ | $\underset{\underset{c}{\text { chtue }}}{\chi}$ |
|  | $\underset{\substack{\mathrm{C} \\ \text { Letione }}}{ }$ | $\underset{c}{\mathrm{~d}}$ | $\begin{gathered} a \\ \operatorname{cosencon} \end{gathered}$ | $\delta$ cossan | $\begin{gathered} \text { é } \\ \text { Levtover } \end{gathered}$ | $\underset{\text { LE130no }}{\substack{2}}$ | $\frac{\hat{e}}{\substack{e \\ \text { Letsoone }}}$ |  | $\underset{\text { Lervon }}{\underset{y}{c}}$ | $\begin{gathered} \text { é } \\ \text { Lегесою } \end{gathered}$ | $\underset{\substack{\mathrm{e} \\ \mathrm{e} \\ \hline}}{ }$ | $\underset{\text { Lefon }}{\substack{e \\ \hline}}$ |
| $\stackrel{\hat{g}}{\substack{0 \\ \hline \\ \hline}}$ | $\begin{gathered} \stackrel{\mathrm{g}}{1} \\ \mathbf{1 0 2 0 0 0 0} \end{gathered}$ |  | $\underset{\substack{\mathrm{g} \\ \operatorname{cosen} \times \infty}}{ }$ | $\hat{h}_{\text {HHSNONO }}$ | $\begin{gathered} \mathrm{h} \\ \text { LHBOONO } \end{gathered}$ | $\begin{gathered} i \\ \text { U1weon } \end{gathered}$ | $\begin{gathered} 1 \\ 1 \\ \text { Unsono } \end{gathered}$ | $\begin{gathered} \hat{\mathbf{1}} \\ 1 \end{gathered}$ | $\begin{gathered} \text { i } \\ \text { unvece } \end{gathered}$ | $\begin{gathered} \text { I } \\ \text { Intaceo } \\ \hline \end{gathered}$ | $\begin{array}{\|} \overline{1} \mathbf{1} \\ \hline \end{array}$ |  |
| $\begin{array}{\|c\|} \hline \mathrm{ij} \\ \text { Lnsioneco } \end{array}$ |  | $\begin{gathered} \hat{\jmath} \\ \omega 1 \$ x e m \end{gathered}$ | k LKEPOCOO | $\begin{gathered} K \\ \text { Kiveno } \end{gathered}$ | $\begin{gathered} \mathrm{i} \\ \text { Luncoss } \end{gathered}$ | $\begin{gathered} \text { İ } \\ \text { แมtane } \end{gathered}$ | ! | $\begin{gathered} \mathrm{l} \\ \text { แйтет } \end{gathered}$ | $\begin{gathered} \mathrm{r} \\ \text { بhamen } \end{gathered}$ | $\begin{gathered} \text { ń } \\ \text { wnitexo } \end{gathered}$ |  | $\begin{gathered} \mathrm{n} \\ \text { whatue } \end{gathered}$ |
| $\begin{gathered} n \\ \text { Lusioxe } \end{gathered}$ | $\begin{aligned} & \text { I) } \\ & \text { Luntocon } \end{aligned}$ | $\begin{aligned} & \text { 'n } \\ & \hline \end{aligned}$ |  | $\stackrel{\grave{o}}{\text { tomase }}$ | $\underset{\text { cotsome }}{\hat{c}}$ | $\underset{\text { Lotrecon }}{ }$ | $\underset{\text { ontenco }}{ }$ | $\begin{gathered} 0 \\ \hline \end{gathered}$ | $\begin{gathered} \overline{0} \\ \text { costece } \end{gathered}$ | $\underset{\sim}{\mathbb{E}}$ | $\begin{array}{\|c} \boxed{5} \\ \text { Lonvece } \end{array}$ | $\underset{\text { Rnilece }}{\text { LR }}$ |
|  |  | $\underset{\substack{\text { s. } \\ \text { Lsikeos }}}{ }$ | $\underset{\substack{\hat{\mathbf{s}} \\ \text { sisposo }}}{ }$ | $\begin{gathered} \check{\zeta} \\ \text { Ispmose } \end{gathered}$ | $\stackrel{\$}{1} 51+000$ | $\begin{gathered} B \\ \text { Lsenoce } \end{gathered}$ | $\begin{gathered} \check{t} \\ \text { LIT2000 } \end{gathered}$ |  | $\stackrel{\mathbf{t}}{\substack{1010}}$ | $\mathbf{b}^{\mathbf{n}}$ | $\begin{gathered} \text { ú } \\ \text { untrese } \end{gathered}$ | $\begin{gathered} \text { ù } \\ \text { wimee } \end{gathered}$ |
| $\begin{gathered} \text { un } \\ \text { Lusposo } \end{gathered}$ | $\begin{gathered} \mathrm{u} \\ \text { Lutrecos } \end{gathered}$ | $\begin{gathered} \mathrm{u} \\ \text { untronos } \end{gathered}$ | $\underset{\text { unameo }}{\text { Lurn }}$ | $\begin{gathered} \tilde{u} \\ \text { unswase } \end{gathered}$ | $\begin{gathered} \mathrm{u} \\ \text { untroso } \end{gathered}$ | $\underset{\text { wurseco }}{0}$ |  | $\begin{gathered} \hat{\mathbf{w}} \\ \text { wwituev } \end{gathered}$ | $\begin{gathered} \dot{y} \\ \text { unveco } \end{gathered}$ | $\hat{\mathrm{y}}^{\text {Lrymon }}$ | $\underset{\text { Lyprece }}{\ddot{\mathrm{y}}}$ | $\begin{gathered} \dot{z} \\ \hline \text { zannan } \end{gathered}$ |
| $\begin{gathered} \text { Iz } \\ \text { In7 } \end{gathered}$ | $\dot{\dot{z}}$ | $\begin{gathered} 0 \\ \text { not1000 } \end{gathered}$ |  | $\begin{gathered} 2 \\ \text { nosmose } \end{gathered}$ | $\begin{gathered} 3 \\ \text { nicooscos } \end{gathered}$ | $4$ | $\begin{gathered} 5 \\ \text { nocosco } \end{gathered}$ | $\begin{gathered} 6 \\ \text { notetete } \end{gathered}$ | $\begin{gathered} 7 \\ n \end{gathered}$ |  | $\begin{gathered} 9 \\ \text { niccecco } \end{gathered}$ |  |
| $\begin{array}{\|c\|} \hline 2 \\ n 002000 \\ \hline \end{array}$ | $\begin{gathered} 3 \\ \text { H003tiose } \end{gathered}$ | $\begin{gathered} 1 / 2 \\ \text { HFOt } 1 / 2000 \end{gathered}$ | $\begin{gathered} 1 / 4 \\ \text { nrameco } \end{gathered}$ | $\begin{gathered} 1 / 4 \\ \text { aroscose } \end{gathered}$ | $+$ | $\stackrel{ \pm}{\sin 20030}$ | $\stackrel{<}{<}$ | $=$ | $>$ |  | $\underset{\text { sameceo }}{\times}$ |  |
| $\begin{gathered} \square \\ \text { schtose } \end{gathered}$ | $\underset{\text { ccicosos }}{£}$ | $\$$ | $\operatorname{scosercos}$ | $\begin{gathered} \mathbf{Y} \\ \sec +\cos 0 \end{gathered}$ | soltore | somex | sorsson | sorre |  | 50212000 | 80essoceo | ${ }^{\prime \prime}$ |
| sozencoos | sozscos | 3091050 | sosineco | sationos |  |  |  |  |  |  |  |  |
| $\underset{\text { sminax }}{\#}$ | $\begin{gathered} \% \\ \text { Smucove } \end{gathered}$ | $\underset{\substack{k \\ \text { sucocoson }}}{ }$ | $8 F b 340000$ |  |  | ${ }^{]}$ | smaxeos | $\underset{\operatorname{sen} 7000}{\mu}$ | $\begin{gathered} \Omega \\ \mathbf{s u} \\ \hline \end{gathered}$ | 9NATE0te | $\begin{gathered} 9 \\ 3 v 200000 \end{gathered}$ | $\begin{gathered} \underline{\mathrm{a}} \\ \text { survom } \end{gathered}$ |
| $\underset{\text { smzaso } 0}{\S}$ |  | $\begin{gathered} ! \\ \text { s. } \end{gathered}$ | $\underset{\text { spaxeo }}{i}$ |  |  | spoceoso | spinaso | spamm | sекесес | spomon | sprivece | sprizece |

Character Set 01253 （Sheet 1 of 2）

| $\begin{gathered} : \\ \text { sptance } \end{gathered}$ | $\stackrel{;}{\text { SP } 140005}$ | $\begin{gathered} ? \\ \text { spls0000 } \end{gathered}$ | $\begin{gathered} \text { i } \\ \text { sPtencoo } \end{gathered}$ | splpoope | $\begin{gathered} \text { s } \\ \text { sptence } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Character Set 01253 （Sheet 2 of 2）

## T． 61 graphic character conversions

The following table is a list of T .61 conversions supported on $\mathrm{OS} / 400^{(\mathrm{R})}$ ．It gives the table name and the description and value of the character set and code page converted from and converted to．The＊ N character in the From Value field means any character set is used．

These conversion tables are used to convert data to and from character set 01253 on code page 01024 to another supported character set and code page．

| Table Name | From Description | From Value | To Description | To Value |
| :--- | :--- | :--- | :--- | :--- |
| International Alphabet <br> 5 | （＊N 01009） | CCITT T．61（EBCDIC） | $(0125301024)$ |  |


| Table Name | From Description | From Value | To Description | To Value |
| :---: | :---: | :---: | :---: | :---: |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Cyrillic, Multilingual | (01150 01025) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Turkey EBCDIC | (01152 01026) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | International Alphabet 5 | (01169 01009) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | People's Republic of China | (01174 00836) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | ASCII | (00103 00367) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Greece | (00218 00423) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Japan Katakana | (00332 00290) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | USA/Canada | (00697 00037) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Austria/Germany | (00697 00273) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Denmark/Norway | (00697 00277) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Finland/Sweden | (00697 00278) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Italy | (00697 00280) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Spain/Latin America | (00697 00284) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | France | (00697 00297) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Multinational \#5 | (00697 00500) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Iceland | (00697 00871) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Greece | (00925 00875) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Korea | (00933 00833) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | People's Republic of China | (00936 00836) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Latin 2, Multilingual | (00959 00870) |  |
| CCITT T. 61 (EBCDIC) | (*N 01024) | Cyrillic, Multilingual (old) | (00960 00880) |  |
| Cyrillic, Multilingual | (*N 01025) | CCITT T. 61 (EBCDIC) | (01253 001024) |  |
| Turkey EBCDIC | (*N 01026) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| USA/Canada | (*N 00037) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Austria/Germany | (*N 00273) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Denmark/Norway | (*N 00277) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Finland/Sweden | (*N 00278) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Italy | (*N 00280) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Spain/Latin America | (*N 00284) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Japan Katakana | (*N 00290) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| France | (*N 00297) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| ASCII | (*N 00367) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Greece | (*N 00423) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Multinational \#5 | (*N 00500) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Korea | (*N 00833) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| People's Republic of China | (*N 00836) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Latin 2, Multilingual | (*N 00870) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Iceland | (*N 00871) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |
| Greece | (*N 00875) | CCITT T. 61 (EBCDIC) | (01253 01024) |  |


| Table Name | From Description | From Value | To Description | To Value |
| :--- | :--- | :--- | :--- | :--- |
| Cyrillic, Multilingual <br> (old) | (*N 00880) | CCITT T.61 (EBCDIC) | $(0125301024)$ |  |

## CCSID reference information

The following topics provide useful information about CCSIDs on OS/400 ${ }^{(\mathrm{R})}$ :

- CCSID values defined on OS/400
- Supported CCSID mappings
- Associated CCSID values
- Encoding schemes for CCSIDs
- Language identifiers and associated default CCSIDS


## CCSID values defined on OS/400 ${ }^{(\mathrm{R})}$

The following table lists the coded character set identifiers (CCSIDs) that are defined on OS/400.
》 You can find more information about CCSIDs on the iSeries ${ }^{(T \mathrm{TM})}$ Globalization: iSeries CCSID Information
Web site (http://www.ibm.com/servers/eserver/iseries/software/globalization/ccsid.html). <

| CCSID | Encoding | Description |
| :--- | :--- | :--- |
| 00037 | 1100 | US, Canada, Netherlands, Portugal, Brazil, New Zealand, Australia |
| 00256 | 1100 | Netherlands |
| 00273 | 1100 | Austria, Germany |
| 00277 | 1100 | Denmark, Norway |
| 00278 | 1100 | Finland, Sweden |
| 00280 | 1100 | Italy |
| 00284 | 1100 | Spanish, Latin America |
| 00285 | 1100 | United Kingdom |
| 00290 | 1100 | Japan Katakana |
| 00297 | 1100 | France |
| 00300 | 1200 | Japan English |
| 00301 | 2200 | Japanese PC Data |
| 00367 | 1100 | ANSI X3.4 ASCII standard; USA |
| 00420 | 1100 | Arabic-speaking countries |
| 00423 | 1100 | Greece |
| 00424 | 1100 | Hebrew |
| 00425 | 2100 | Arabic-speaking countries |
| 00437 | 1100 | PC Data; PC Base; USA |
| 00500 | 2100 | Belgium, Canada, Switzerland, International Latin-1 |
| 00720 | 2100 | MS-DOS Arabic |
| 00737 | 2100 | MS-DOS Greek PC-Data |
| 00775 | 4100 | MS-DOS Baltic PC-Data |
| 00813 | 4100 | ISO 8859-7; Greek/Latin |
| 00819 | 1100 | ISO 8859-1; Latin Alphabet No. 1 |
| 00833 |  | Korea (extended range) |


| CCSID | Encoding | Description |
| :---: | :---: | :---: |
| 00834 | 1200 | Korea host double byte (including 1880 UDC) |
| 00835 | 1200 | Traditional Chinese host double byte (including 6204 UDC) |
| 00836 | 1100 | Simplified Chinese (extended range) |
| 00837 | 1200 | Simplified Chinese |
| 00838 | 1100 | Thailand (extended range) |
| 00850 | 2100 | PC Data; MLP 222 Latin Alphabet 1 |
| 00851 | 2100 | PC Data; Greek |
| 00852 | 2100 | PC Data; Latin-2 Multilingual |
| 00855 | 2100 | PC Data; ROECE Cyrillic |
| 00857 | 2100 | PC Data; Turkey Latin \#5 |
| 00858 | 2100 | PC Data: MLP 222; Latin Alphabet Number 1 w/euro; Latin-1 Countries |
| 00860 | 2100 | PC Data; Portugal |
| 00861 | 2100 | PC Data; Iceland |
| 00862 | 2100 | PC Data; Hebrew |
| 00863 | 2100 | PC Data; Canada |
| 00864 | 2100 | PC Data; Arabic |
| 00865 | 2100 | PC Data; Denmark, Norway |
| 00866 | 2100 | PC Data; Cyrillic \#2 - Personal Computer |
| 00868 | 2100 | PC Data: Urdu |
| 00869 | 2100 | PC Data; Greek |
| 00870 | 1100 | Latin-2 Multilingual |
| 00871 | 1100 | Iceland |
| 00874 | 2100 | Thai PC Data |
| 00875 | 1100 | Greece |
| 00878 | 4105 | Russian Internet KOI8-R Cyrillic |
| 00880 | 1100 | Cyrillic Multilingual |
| 00891 | 2100 | Korean PC Data (non-extended) |
| 00897 | 2100 | Japanese PC Data (non-extended) |
| 00903 | 2100 | Simplified Chinese PC Data (non-extended) |
| 00904 | 2100 | Traditional Chinese PC Data |
| 00905 | 1100 | Turkey Latin-3 |
| 00912 | 4100 | ISO 8859-2; ROECE Latin-2 Multilingual |
| 00914 | 4100 | Latin 4 - ISO 8859-4 |
| 00915 | 4100 | ISO 8859-5; Cyrillic; 8-bit ISO |
| 00916 | 4100 | ISO 8859-8; Hebrew |
| 00918 | 1100 | Urdu EBCDIC |
| 00920 | 4100 | ISO 8859-9; Latin 5 |
| 00921 | 4100 | Baltic, 8-bit (ISO 8859-13) |
| 00922 | 4100 | Estonia, 8-bit (ISO) |
| 00923 | 4100 | ISO 8859-15: Latin Alphabet with euro |


| CCSID | Encoding | Description |
| :---: | :---: | :---: |
| 00924 | 1100 | Latin 9 EBCDIC |
| 00926 | 2200 | Korean PC Data DBCS, UDC 1880 |
| 00927 | 2200 | Traditional Chinese PC Data DBCS, UDC 6204 |
| 00928 | 2200 | Simplified Chinese PC Data DBCS, UDC 1880 |
| 00930 | 1301 | Japan Katakana (extended range) 4370 UDC (User Defined Characters) |
| 00932 | 2300 | Japan PC Data Mixed |
| 00933 | 1301 | Korea (extended range), 1880 UDC |
| 00934 | 2300 | Korean PC Data |
| 00935 | 1301 | Simplified Chinese (extended range) |
| 00936 | 2300 | Simplified Chinese (non-extended) |
| 00937 | 1301 | Traditional Chinese (extended range) |
| 00938 | 2300 | Traditional Chinese (non-extended) |
| 00939 | 1301 | Japan English (extended range) 4370 UDC |
| 00941 | 2200 | Japanese DBCS PC for Open environment (Multi-vendor code): 6878 JIS X 0208-1990 characters, 386 IBM $^{(R)}$ selected characters, 1880 IBM UDC (X'F040' to X'F9FC') |
| 00942 | 2300 | Japanese PC Data Mixed |
| 00943 | 2300 | Japanese PC Data Mixed for Open environment (Multi-vendor code): 6878 JIS X 0208-1990 characters, 386 IBM selected DBCS characters, 1880 UDC (X'F040' to X'F9FC') |
| 00944 | 2300 | Korean PC Data Mixed |
| 00946 | 2300 | Simplified Chinese PC Data Mixed |
| 00947 | 2200 | ASCII Double-byte |
| 00948 | 2300 | Traditional Chinese PC Data Mixed 6204 UDC (User Defined Characters) |
| 00949 | 2300 | Republic of Korea National Standard Graphic Character Set (KS) PC Data mixed-byte including 1800 UDC |
| 00950 | 2300 | Traditional Chinese PC Data Mixed for Big5 |
| 00951 | 2200 | Republic of Korea National Standard Graphic Character Set (KS) PC Data double-byte including 1800 UDC |
| 00954 | 4403 | Japanese EUC; G0 - JIS X201 Roman set (00895); G1 - JIS X208-1990 set (00952); G2 - JIS X201 Katakana set (04992 ); G3 - JIS X212 set (00953) |
| 00956 | 5404 | JIS X201 Roman for CP 00895; JIS X208-1983 for CP 00952 |
| 00957 | 5404 | JIS X201 Roman for CP 00895; JIS X208-1978 for CP 00955 |
| 00958 | 5404 | ASCII for CP 00367; JIS X208-1983 for CP 00952 |
| 00959 | 5404 | ASCII for CP 00367; JIS X208-1978 for CP 00955 |
| 00964 | 4403 | G0-ASCII for CP 00367; G1- CNS 11643 plane 1 for CP 960 |
| 00965 | 5404 | ASCII for CP 00367; CNS 11643 plane 1 for CP 960 |
| 00970 | 4403 | G0 ASCII for CP 00367; G1 KSC X5601-1989 (including 188 UDCs) for CP 971 |
| 00971 | 8200 | Korean EUC, G1 - KS C5601-1989 (including 188 UDC) |
| 01008 | 4100 | Arabic 8-bit ISO/ASCII |


| CCSID | Encoding | Description |
| :---: | :---: | :---: |
| 01009 | 5100 | IS0-7: IRV |
| 01010 | 5100 | ISO-7; France |
| 01011 | 5100 | ISO-7; Germany |
| 01012 | 5100 | ISO-7; Italy |
| 01013 | 5100 | ISO-7; United Kingdom |
| 01014 | 5100 | ISO-7; Spain |
| 01015 | 5100 | ISO-7; Portugal |
| 01016 | 5100 | ISO-7; Norway |
| 01017 | 5100 | ISO-7; Denmark |
| 01018 | 5100 | ISO-7; Finland and Sweden |
| 01019 | 5100 | ISO-7; Belgium and Netherlands |
| 01025 | 1100 | Cyrillic Multilingual |
| 01026 | 1100 | Turkey Latin 5 CECP |
| 01027 | 1100 | Japan English (extended range) |
| 01040 | 2100 | Korean Latin PC Data extended |
| 01041 | 2100 | Japanese PC Data extended |
| 01042 | 2100 | Simplified Chinese PC Data extended |
| 01043 | 2100 | Traditional Chinese PC Data extended |
| 01046 | 2100 | PC Data - Arabic Extended |
| 01051 | 4100 | HP Emulation(for use with Latin 1). GCGID SF150000 is mapped to a control $\mathrm{X}^{\prime} 7 \mathrm{~F}$ ' |
| 01088 | 2100 | Korean PC Data single-byte |
| 01089 | 4100 | ISO 8859-6: Arabic (string type 5) |
| 01097 | 1100 | Farsi |
| 01098 | 2100 | Farsi (IBM-PC) |
| 01112 | 1100 | Baltic, Multilingual |
| 01114 | 2100 | Traditional Chinese, Taiwan Industry Graphic Character Set (Big5) |
| 01115 | 2100 | Simplified Chinese National Standard (GB), personal computer SBCS |
| 01122 | 1100 | Estonia |
| 01123 | 1100 | Cyrillic Ukraine EBCDIC |
| 01124 | 4100 | Cyrillic Ukraine 8-Bit |
| 01125 | 2100 | Cyrillic Ukraine PC-Data |
| 01126 | 2100 | Windows ${ }^{(\mathrm{R})}$ Korean PC Data Single-Byte |
| 01129 | 4100 | ISO-8 Vietnamese |
| 01130 | 1100 | EBCDIC Vietnamese |
| 01131 | 2100 | Cyrillic Belarus PC-Data |
| 01132 | 1100 | EBCDIC Lao |
| 01133 | 4100 | ISO-8 Lao |
| 01137 | 1100 | Devanagari EBCDIC |
| 01140 | 1100 | ECECP: USA, Canada, Netherlands, Portugal, Brazil, Australia, New Zealand |


| CCSID | Encoding | Description |
| :---: | :---: | :---: |
| 01141 | 1100 | ECECP: Austria, Germany |
| 01142 | 1100 | ECECP: Denmark, Norway |
| 01143 | 1100 | ECECP: Finland, Sweden |
| 01144 | 1100 | ECECP: Italy |
| 01145 | 1100 | ECECP: Spain, Latin America (Spanish) |
| 01146 | 1100 | ECECP: United Kingdom |
| 01147 | 1100 | ECECP: France |
| 01148 | 1100 | ECECP: International 1 |
| 01149 | 1100 | ECECP: Iceland |
| 01153 | 1100 | Latin-2 - EBCDIC Multilingual with euro |
| 01154 | 1100 | Cyrillic Multilingual with euro |
| 01155 | 1100 | Turkey Latin 5 with euro |
| 01156 | 1100 | Baltic, Multilingual with euro |
| 01157 | 1100 | Estonia EBCDIC with euro |
| 01158 | 1100 | Cyrillic Ukraine EBCDIC with euro |
| 01160 | 1100 | Thai host with euro |
| 01164 | 1100 | EBCDIC Vietnamese with euro |
| 01208 | 7807 | UTF-8 |
| 01250 | 4105 | Windows $^{(R)}$, Latin 2 |
| 01251 | 4105 | Windows, Cyrillic |
| 01252 | 4105 | Windows,Latin 1 |
| 01253 | 4105 | Windows, Greek |
| 01254 | 4105 | Windows, Turkish |
| 01255 | 4105 | Windows, Hebrew |
| 01256 | 4105 | Windows, Arabic |
| 01257 | 4105 | Windows, Baltic Rim |
| 01258 | 4105 | MS Windows, Vietnamese |
| 01275 | 4105 | Apple Latin-1 |
| 01280 | 4105 | Apple Greek |
| 01281 | 4105 | Apple Turkey |
| 01282 | 4105 | Apple Central European (Latin-2) |
| 01283 | 4105 | Apple Cyrillic |
| 01362 | 2200 | Windows Korean PC DBCS-PC, including 11,172 full hangul |
| 01363 | 2300 | Windows Korean PC Mixed, including 11,172 full hangul |
| 01364 | 1301 | Korean host mixed extended including 11,172 full hangul |
| 01380 | 2200 | Simplified Chinese, People's Republic of China National Standard (GB), personal computer DBCS |
| 01381 | 2300 | Simplified Chinese, People's Republic of China National Standard (GB) personal computer mixed SBCS and DBCS |
| 01382 | 8200 | Simplified Chinese DBCS PC GB 2312-80 set, including 31 IBM selected and 1360 UDC. |


| CCSID | Encoding | Description |
| :---: | :---: | :---: |
| 01383 | 4403 | Simplified Chinese, EUC <br> - G0 set; ASCII <br> - G1 set; GB 2312-80 set (1382) |
| 01385 | 2200 | Simplified Chinese DBCS-PC GBK, all GBK character set and others |
| 01386 | 2300 | Simplified Chinese PC Data GBK mixed, all GBK character set and others |
| 01388 | 1301 | Simplified Chinese DBCS- GB 18030 Host with UDCs and Uygur extension. |
| 01399 | 1301 | Japanese Latin-Kanji Host Mixed including 4370 UDC, Extended SBCS (includes SBCS and DBCS euro) |
| 04396 | 1200 | Japanese Host DB including 1880 |
| 04930 | 1200 | Korean DBCS-Host extended including 11,172 full hangul |
| 04933 | 1200 | Simplified Chinese DBCS Host (GBK), all GBK character set and others |
| 04948 | 2100 | Latin 2 PC Data Multilingual |
| 04951 | 2100 | Cyrillic PC Data Multilingual |
| 04952 | 2100 | Hebrew PC Data |
| 04953 | 2100 | Turkey PC Data Latin 5 |
| 04960 | 2100 | Arabic PC Data |
| 04965 | 2100 | Greek PC Data |
| 04970 | 2100 | Thai PC Data Single-Byte |
| 04971 | 1100 | Greek (including euro) |
| 05026 | 1301 | Japan Katakana (extended range) 1880 UDC |
| 05035 | 1301 | Japan English (extended range) 1880 UDC |
| 05050 | 4403 | G0-JIS X201 Roman for CP 895; G1 JIS X208-1990 for CP 952 |
| 05052 | 5404 | JIS X201 Roman for CP 895; JIS X208-1983 for CP 952 |
| 05053 | 5404 | JIS X201 Roman for CP 895; JIS X208-1978 for CP 955 |
| 05054 | 5404 | ASCII for CP 367; JIS X208-1983 for CP 952 |
| 05055 | 5404 | ASCII for CP 367; JIS X208-1978 for CP 955 |
| 05123 | 1100 | Japanese Latin Host Extended SBCS (includes euro) |
| 05210 | 2100 | Simplified Chinese PC Data Single-Byte (GBK), growing CS |
| 08612 | 01100 | Arabic (base shapes only) |
| 09030 | 1100 | Thai Host Extended SBCS |
| 09056 | 2100 | PC Data: Arabic PC Storage/Interchange |
| 09066 | 2100 | Thai PC Data Extended SBCS |
| 12708 | 1100 | Arabic (base shapes, Lamaleph ligatures and Hindi digits) (string type 7) |
| 13121 | 1100 | Korean Host Extended SBCS |
| 13124 | 1100 | Simplified Chinese Host Data Single-Byte (GBK) equivalent to Simplified Chinese Host Data Single-Byte (GB) except growing CS |
| 13488 | 7200 | ISO/IEC 10646 Universal Coded Character Set Level 2 (UCS-2) |


| CCSID | Encoding | Description |
| :--- | :--- | :--- |
| 16684 | 1200 | Japanese Latin Host Double-Byte including 4370 UDC (includes <br> euro) |
| 17354 | 5404 | GO - ASCII for CP 00367; G1 - KSC X5601-1989 (including 188 <br> UDCs) for CP 00971 |
| 25546 | 5409 | Korean 2022-KR TCP, ASCII, KS C5601-1989 (includes 188 UDC, <br> RFC1557 using SO/SI) |
| 28709 | 1100 | Traditional Chinese (extended range) |
| 33722 | 4403 | Japanese EUC <br> GO; JIS X201 Roman set (00895) <br> - G1; JIS X208-1990 set (00952) |
| 67345 | 5404 | G2; JIS X201 Katakana set (04992) |
| 61952 | 7200 | G3; JIS X212 set (09145) |

## Supported CCSID mappings

The following CCSID mappings are supported on OS $/ 400^{(\mathrm{R})}$.

## >

## From CCSID

00037

## To CCSID

00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00901, 00902, 00903, 00904, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00924, 00930, 00933, 00935, 00937, 00939, 00948, 01025, 01026, 01027, 01041, 01043, 01051, 01088, 01089, 01097, 01098, 01112, 01114, 01115, 01122, 01123, 01124, 01126, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04909, 04970, 04971, 05026, 05035, 05123, 05348, 08612, 09030, 12708, 13121, 13124, 13488, 28709, 61952, 62211, 62224, 62235, 62245, 62251
00256 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00737, 00775, 00819, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01112, 01122, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 08612, 09030, 13121, 13124, 13488, 28709, 61952
00273 00037, 00256, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01250, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952
00277 00037, 00256, 00273, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952
00278 00037, 00256, 00273, 00277, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952
00280 00037, 00256, 00273, 00277, 00278, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952
00284 00037, 00256, 00273, 00277, 00278, 00280, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952
00285 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952
00290 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 01025, 01027, 01041, 01112, 01122, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952

## From CCSID

00297

## To CCSID

00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952

| 00300 | 00301, 00930, 00939, 00941, 01200, 01208, 04396, 05026, 05035, 13488, 61952 |
| :---: | :---: |
| 00301 | 00300, 01200, 01208, 04396, 13488, 16684, 61952 |
| 00367 | 00037, 00500, 00833, 01200, 01208, 13121, 13124, 13488, 61952 |
| 00420 | 00037, 00256, 00425, 00500, 00720, 00737, 00775, 00819, 00850, 00864, 00937, 01008, 01046, 01089, 01112, 01122, 01200, 01208, 01252, 01256, 04960, 08612, 09030, 09056, 12708, 13488, 28709, 61952, 62218, 62224, 62228, 62248, 62251 |
| 00423 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01112, 01122, 01200, 01208, 01252, 01253, 04965, 04971, 05123, 09030, 13488, 28709, 61952 |
| 00424 | 00037, 00256, 00500, 00737, 00775, 00819, 00850, 00862, 00916, 00937, 01112, 01122, 01200 , 01208, 01252, 01255, 04952, 09030, 13488, 28709, 61952, 62210, 62211, 62215, 62222, 62223, | 62235, 62238, 62239, 62245

00425 00037, 00420, 00500, 00819, 00864, 01046, 01089, 01140, 01148, 01200, 01208, 01252, 01256, 08612, 12708, 13488, 61952, 62224, 62228
00437 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00863, 00865, 00866, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00937, 01025, 01026, 01027, 01042, 01051, 01097, 01098, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01257, 01275, 01280, 01281, 01282, 01283, 04971, 05123, 05348, 13121, 13124, 13488, 28709, 61952
00500 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00420, 00423, 00424, 00425, 00437, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00875, 00880, 00891, 00897, 00901, 00902, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00924, 00930, 00933, 00935, 00937, 00939, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01051, 01088, 01089, 01097, 01098, 01112, 01114, 01115, 01122, 01123, 01124, 01126, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01250, 01251, 01252, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04909, 04970, 04971, 05026, 05035, 05123, 05348, 08612, 09030, 12708, 13121, 13124, 13488, 28709, 61952, 62211, 62224, 62235, 62245, 62251
00720 00037, 00420, 00864, 01200, 01208, 01256, 13488, 61952
00737 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00833, 00836, 00838, 00850, 00869, 00870, 00871, 00875, 00880, 00905, 01025, 01026, 01027, 01097, 01200, 01208, 01252, 01253, 04971, 05123, 13121, 13124, 13488, 28709, 61952
00775 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 01025, 01026, 01027, 01097, 01112, 01122, 01200, 01208, 01252, 01257, 05123, 13121, 13124, 13488, 28709, 61952
00813 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01200, 01208, 01252, 04909, 04971, 05123, 13488, 28709, 61952

From CCSID
00819

To CCSID
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00425, 00437, 00500, 00813, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00924, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01041, 01042, 01043, 01051, 01088, 01089, 01097, 01098, 01112, 01114, 01122, 01126, 01130, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04971, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952, 62211, 62235, 62245, 62251
00833

00834
00835
00836

00837
00838

00850

00851
00852

00855
00857
$00858 \quad 00901,00902,01140,01141,01142,01143,01144,01145,01146,01147,01148,01149,01399$, 04909, 04971, 05123, 05348
00860 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00861, 00863, 00865, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01027, 01041, 01042, 01043, 01200, 01208, 01252, 05123, 13488, 28709, 61952
00861

00862 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00860, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01149, 01200, 01208, 01252, 05123, 13488, 28709, 61952 00037, 00424, 00500, 00819, 00850, 00916, 01200, 01208, 01252, 01255, 13488, 61952, 62211, 62235, 62245
00863

00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00857, 00860, 00861, 00865, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01200, 01208, 01252, 05123, 13488, 28709, 61952

| From CCSID | To CCSID |
| :---: | :---: |
| 00864 | 00037, 00420, 00425, 00500, 00720, 00819, 00850, 01200, 01208, 01252, 08612, 09056, 13488, 61952, 62251 |
| 00865 | 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00860, 00863, 00871, 00937, 01200, 01208, 01252, 13488, 28709, 61952 |
| 00866 | 00037, 00437, 00500, 00819, 00850, 01025, 01200, 01208, 01252, 13488, 61952 |
| 00868 | 00918, 01200, 01208, 13488, 61952 |
| 00869 | 00037, 00423, 00500, 00737, 00813, 00819, 00838, 00850, 00852, 00870, 00874, 00875, 00880, 00897, 00903, 00912, 01025, 01027, 01041, 01042, 01043, 01200, 01208, 01252, 04971, 05123, 13488, 28709, 61952 |
| 00870 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00852, 00857, 00861, 00863, 00869, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00915, 00916, 00920, 00937, 01025, 01026, 01112, 01122, 01147, 01153, 01200, 01208, 01250, 01252, 01282, 04948, 04951, 09030, 13488, 28709, 61952 |
| 00871 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00870, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 05348, 09030, 13121, 13124, 13488, 28709, 61952 |
| 00874 | 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00875, 00880, 00897, 00903, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01200, 01208, 05123, 13488, 28709, 61952 |
| 00875 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00880, 00897, 00903, 00912, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01043, 01112, 01122, 01200, 01208, 01252, 01253, 01280, 04965, 04971, 05123, 09030, 13488, 28709, 61952 |
| 00878 | 01200, 01208, 13488, 61952 |
| 00880 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00897, 00903, 00912, 00915, 00916, 00920, 00937, 01025, 01026, 01027, 01041, 01042, 01043, 01112, 01122, 01200, 01208, 01251, 01252, 01283, 04948, 04951, 05123, 09030, 13488, 28709, 61952 |
| 00891 | 00500, 00833, 01200, 01208, 13121, 13488, 61952 |
| 00897 | 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00903, 00912, 00916, 00920, 00930, 00939, 01025, 01026, 01027, 01042, 01043, 01200, 01208, 01252, 01399, 05026, 05035, 05123, 13488, 28709, 61952 |
| 00901 | 00037, 00500, 00858, 01140, 01148, 01156, 01200, 01208, 05348, 13488, 61952 |
| 00902 | 00037, 00500, 00858, 01140, 01148, 01157, 01200, 01208, 05348, 13488, 61952 |
| 00903 | 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00813, 00819, 00836, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00912, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 05123, 13124, 28709 |
| 00904 | 00037, 28709 |
| 00905 | 00037, 00256, 00500, 00737, 00775, 00819, 00850, 00857, 00920, 00937, 01026, 01112, 01122, 01200, 01208, 01252, 01254, 04953, 09030, 13488, 28709, 61952 |
| 00912 | 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00852, 00857, 00860, 00861, 00863, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00916, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01153, 01200, 01208, 01252, 05123, 13488, 28709, 61952 |
| 00914 | 00037, 00437, 00500, 00819, 00850, 01200, 01208, 01252, 01257, 13488, 61952 |
| 00915 | 00037, 00437, 00500, 00819, 00850, 00855, 00870, 00880, 01025, 01200, 01208, 01252, 13488, 61952 |

From CCSID
00916

00918
00920

00921
00922
00923

00924
00926
00927
00928
00930

00932
00933

00934
00935

00936
00937

00938
00939

00941
00942
00943
00944
00946
00947
00948
00949
00950
00951
00954
00956
00957

To CCSID
00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00424, 00437, 00500, 00813, 00819, 00838, 00850, 00857, 00860, 00861, 00862, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00920, 01025, 01026, 01027, 01041, 01042, 01043, 01200, 01208, 01252, 01255, 05123, 13488, 28709, 61952, 62211, 62235, 62245 00037, 00437, 00500, 00819, 00850, 00868, 01200, 01208, 01252, 13488, 61952 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00813, 00819, 00838, 00850, 00860, 00861, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00916, 01025, 01026, 01155, 01200, 01208, 01252, 13488, 28709, 61952 00037, 00437, 00500, 00819, 00850, 01112, 01200, 01208, 01252, 01257, 13488, 61952 00037, 00437, 00500, 00819, 00850, 01122, 01200, 01208, 01252, 01257, 13488, 61952 00924, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 04971, 13488, 61952
00037, 00500, 00819, 00850, 00923, 01200, 01208, 13488, 61952
00834, 01200, 01208, 13488, 61952
00835, 01200, 01208, 13488, 61952
00837, 01200, 01208, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01200, 01208, 01252, 01364, 01388, 01399, 04396, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 16684, 28709, 33722, 61952
00290, 00930, 00939, 01027, 01200, 01208, 01399, 05026, 05035, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00834, 00836, 00850, 00871, 00930, 00934, 00935, 00937, 00939, 00944, 00949, 00970, 01027, 01040, 01200, 01208, 01252, 01363, 01364, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 17354, 25546, 28709, 61952

00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00837, 00850, 00871, 00930, 00933, 00936, 00937, 00939, 00946, 01027, 01042, 01200, 01208, 01252, 01364, 01381, 01383, 01386, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952

00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00819, 00833, 00835, 00836, 00838, 00850, 00860, 00863, 00865, 00870, 00871, 00875, 00880, 00905, 00930, 00933, 00935, 00938, 00939, 00948, 00950, 00964, 00965, 01025, 01026, 01027, 01043, 01114, 01140, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952 00937, 01200, 01208, 13488, 28709, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01200, 01208, 01252, 01364, 01388, 01399, 04396, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 16684, 28709, 33722, 61952
00300, 01200, 01208, 04396, 13488, 16684, 61952
00290, 00930, 00939, 01027, 01041, 01200, 01208, 01399, 05026, 05035, 05123, 13488, 61952
00290, 00930, 00939, 01027, 01200, 01208, 01399, 05026, 05035, 05123, 13488, 61952
00833, 00933, 01040, 01200, 01208, 01364, 13121, 13488, 61952
00836, 00935, 01042, 01200, 01208, 01388, 13124, 13488, 61952
00835, 01200, 01208, 13488, 61952
00037, 00937, 01043, 01200, 01208, 13488, 28709, 61952
00833, 00933, 01200, 01208, 01364, 13121, 13488, 61952
00937, 01200, 01208, 13488, 28709, 61952
00834, 01200, 01208, 04930, 13488, 61952
00290, 00930, 00939, 01027, 01200, 01208, 01399, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952

## From CCSID

00958
00959
00964
00965
00970
00971
01008
01009
01010
01011
01012
01013
01014
01015
01016
01017
01018
01019
01025

01026

01027

01040
01041

01042

01043

01046
01051

01088
01089
01097

01098
01112

01114
01115

## To CCSID

00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00937, 01200, 01208, 13488, 61952
00937, 01200, 01208, 13488, 61952
00933, 01200, 01208, 01364, 13488, 61952
00834, 04930
00420, 08612
01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00500, 01200, 01208, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00855, 00857, 00860, 00861, 00863, 00866, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00915, 00916, 00920, 00937, 01026, 01027, 01042, 01112, 01122, 01131, 01154, 01200, 01208, 01251, 01252, 01283, 04948, 04951, 05123, 09030, 13488, 28709, 61952

| 01026 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00838, 00850, 00857, 00861, 00863, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00905, 00912, 00916, 00920, 00937, 01025, 01042, 01112, 01122, 01155, 01200, 01208, 01252, 01254, 01281, 04953, 09030, 13488, 28709, 61952 |
| :---: | :---: |
| 01027 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00860, 00861, 00863, 00869, 00871, 00874, 00875, 00880, 00895, 00897, 00903, 00912, 00916, 00930, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 01025, 01041, 01042, 01112, 01122, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13121, 13124, 13488, 28709, 61952 |
| 01040 | 00833, 00933, 00944, 01364, 13121 |
| 01041 | 00037, 00290, 00423, 00813, 00819, 00838, 00850, 00860, 00861, 00863, 00869, 00874, 00875, 00880, 00903, 00912, 00916, 00930, 00939, 00942, 01027, 01042, 01399, 05026, 05035, 05123 |
| 01042 | 00423, 00437, 00813, 00819, 00836, 00838, 00857, 00860, 00861, 00863, 00869, 00874, 00880, 00897, 00903, 00912, 00916, 00935, 00946, 01025, 01026, 01027, 01041, 01043, 01388, 05123, 13124 |
| 01043 | 00037, 00423, 00813, 00819, 00838, 00860, 00861, 00863, 00869, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00937, 00948, 01042, 28709 |
| 01046 | 00420, 00425, 01200, 01208, 08612, 13488, 61952, 62251 |
| 01051 | 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00871, 01200, 01208, 01252, 05348, 13488, 61952 |
| 01088 | 00037, 00500, 00819, 00833, 13121, 28709 |
| 01089 | 00037, 00420, 00425, 00500, 00819, 00850, 01200, 01208, 13488, 61952, 62251 |
| 01097 | 00037, 00437, 00500, 00737, 00775, 00819, 00850, 01098, 01112, 01122, 01200, 01208, 01252, 01256, 09030, 13488, 61952 |
| 01098 | 00037, 00437, 00500, 00819, 00850, 01097, 01200, 01208, 01252, 13488, 61952 |
| 01112 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00775, 00819, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 00921, 01025, 01026, 01027, 01097, 01122, 01156, 01200, 01208, 01252, 01257, 05123, 09030, 13121, 13124, 13488, 28709, 61952 |
| 01114 | 00037, 00500, 00819, 00836, 00937, 13124, 28709 |
| 01115 | 00037, 00500, 00836, 13124 |

## From CCSID

 0112201123 01124 01125 01126 01129 01130 01131 01132 01133 01137 01140 $01141 \quad 00037,00273,00277,00278,00280,00284,00285,00297,00437,00500,00819,00850$, 00858, 00871, 00923, 01140, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
01142 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
01144 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01142, 01143, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
01145 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
01146 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
01147 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00870, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
01148 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00425, 00437, 00500, 00819, 00850, 00858, 00871, 00901, 00902, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952, 62251
01149 00037, 00273, 00277, 00278, 00280, 00284, 00285, 00297, 00437, 00500, 00819, 00850, 00858, 00861, 00871, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01252, 01399, 04909, 04971, 05123, 05348, 13488, 61952
$01153 \quad 00037,00500,00819,00850,00852,00870,00912,01140,01141,01142,01143,01144,01145$, 01146, 01147, 01148, 01149, 01200, 01208, 01250, 04971, 13488, 61952

| From CCSID | To CCSID |
| :---: | :---: |
| 01154 | 00037, 00500, 00819, 01025, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01251, 04971, 05123, 13488, 61952 |
| 01155 | 00037, 00500, 00819, 00920, 01026, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01254, 04971, 13488, 61952 |
| 01156 | 00037, 00500, 00819, 00901, 01112, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01257, 04971, 05123, 13488, 61952 |
| 01157 | 00037, 00500, 00819, 00902, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01257, 04971, 05123, 13488, 61952 |
| 01158 | 00037, 00500, 00819, 01123, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01251, 13488, 61952 |
| 01160 | 00037, 00500, 00819, 00838, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 05123, 13488, 61952 |
| 01164 | 00037, 00500, 00819, 01130, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01258, 13488, 61952 |
| 01200 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00901, 00902, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01208, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01392, 01399, 04396, 04909, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 05348, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 13488, 16684, 17354, 28709, 33722, 61952, 62211, 62224, 62235, 62245, 62248, 62251 |
| 01208 | 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00901, 00902, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01392, 01399, 04396, 04909, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 05348, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 13488, 16684, 17354, 28709, 33722, 62211, 62224, 62235, 62245, 62248, 62251 |
| 01250 | 00037, 00273, 00500, 00819, 00850, 00870, 01153, 01200, 01208, 01252, 01282, 13488, 61952 |
| 01251 | 00037, 00500, 00819, 00850, 00880, 01025, 01123, 01154, 01158, 01200, 01208, 01252, 01283, 13488, 61952 |

From CCSID
01252

To CCSID
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00425, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00869, 00870, 00871, 00875, 00880, 00897, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00930, 00933, 00935, 00937, 00939, 01025, 01026, 01027, 01051, 01097, 01098, 01112, 01122, 01126, 01130, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01250, 01251, 01254, 01255, 01256, 01257, 01275, 01280, 01281, 01282, 01283, 01364, 01388, 01399, 04971, 05026, 05035, 05123, 05348, 13121, 13124, 13488, 28709, 61952, 62211, 62235, 62245, 62251
01253
01254
01255

01256

01258
01275
01280
01281
01282
01283
01362
01363
01364

01380
01381
01382
01383
01385
01386
01388

01392
01399

04396
04909

04930
04933
04948
04951
04952
04953
04960
04965

01257 00037, 00437, 00500, 00775, 00819, 00850, 00914, 00921, 00922, 01112, 01122, 01156, 01157, 01200, 01208, 01252, 13488, 61952
00037, 00423, 00737, 00819, 00875, 01200, 01208, 01280, 04971, 13488, 61952
00037, 00500, 00819, 00850, 00905, 01026, 01155, 01200, 01208, 01252, 13488, 61952
00037, 00424, 00500, 00819, 00850, 00862, 00916, 01200, 01208, 01252, 01281, 13488, 61952, 62211, 62235, 62245
00037, 00420, 00425, 00500, 00720, 00819, 00850, 01097, 01200, 01208, 01252, 08612, 12708, 13488, 61952, 62224, 62251

00037, 00500, 00819, 01130, 01164, 01200, 01208, 13488, 61952
00037, 00437, 00500, 00819, 00850, 01200, 01208, 01252, 05348, 13488, 61952
00037, 00437, 00500, 00819, 00850, 00875, 01200, 01208, 01252, 01253, 13488, 61952
00037, 00437, 00500, 00819, 00850, 01026, 01200, 01208, 01252, 01255, 13488, 61952
00037, 00437, 00500, 00819, 00850, 00870, 01200, 01208, 01250, 01252, 13488, 61952
00037, 00437, 00500, 00819, 00850, 00880, 01025, 01200, 01208, 01251, 01252, 13488, 61952
00834, 01200, 01208, 04930, 13488, 61952
00833, 00933, 01200, 01208, 01364, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819,
00833, 00834, 00836, 00850, 00871, 00930, 00933, 00934, 00935, 00937, 00939, 00944,
00949, 00970, 01027, 01040, 01200, 01208, 01252, 01363, 01388, 01399, 05026, 05035,
05123, 13121, 13124, 13488, 28709, 61952
00837, 01200, 01208, 04933, 13488, 61952
00836, 00935, 01200, 01208, 01388, 13488, 61952
00837, 04933
00935, 01200, 01208, 01388, 13488, 61952
00837, 01200, 01208, 04933, 13488, 61952
00836, 00935, 01200, 01208, 01388, 13124, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00837, 00850, 00871, 00930, 00933, 00935, 00936, 00937, 00939, 00946, 01027, 01042, 01200, 01208, 01252, 01364, 01381, 01383, 01386, 01399, 05026, 05035, 05123, 13121, 13124, 13488, 28709, 61952
01200, 01208, 13488
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00500, 00819, 00833, 00836, 00850, 00858, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 01027, 01041, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01364, 01388, 05026, 05035, 05050, 05123, 13121, 13124, 13488, 16684, 28709, 33722, 61952
00300, 00301, 00930, 00939, 00941, 01200, 01208, 05026, 05035, 13488, 16684, 61952
00037, 00500, 00813, 00858, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 04971, 13488, 61952
00834, 00951, 00971, 01200, 01208, 01362, 13488, 61952
01200, 01208, 01380, 01382, 01385, 13488, 61952
00852, 00870, 00880, 01025, 01200, 01208, 13488, 61952
00870, 00880, 01025, 01200, 01208, 13488, 61952
00424, 01200, 01208, 13488, 61952
00857, 00905, 01026
00420, 01200, 01208, 08612, 13488, 61952
00423, 00875

08612 00037, 00256, 00420, 00425, 00500, 00850, 00864, 01008, 01046, 01200, 01208, 01256,

## From CCSID

04970

## 04971

05026

05052
05053
05054
05055
05123

05348

09030

09056
09066
12708
13121

13124
05035

05210

3124

To CCSID
00037, 00500, 00838
00037, 00423, 00437, 00500, 00737, 00813, 00819, 00850, 00858, 00869, 00875, 00923, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01200, 01208, 01252, 01253, 04909, 05348, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01200, 01208, 01252, 01364, 01388, 01399, 04396, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 16684, 28709, 33722, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00500, 00819, 00833, 00836, 00850, 00871, 00895, 00897, 00930, 00932, 00933, 00935, 00937, 00939, 00942, 00943, 00954, 00956, 00957, 00958, 00959, 01027, 01041, 01200, 01208, 01252, 01364, 01388, 01399, 04396, 05026, 05050, 05052, 05053, 05054, 05055, 05123, 13121, 13124, 13488, 16684, 28709, 33722, 61952
00930, 00939, 01200, 01208, 01399, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00930, 00939, 01200, 01208, 05026, 05035, 13488, 61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00423, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00858, 00860, 00861, 00863, 00869, 00871, 00874, 00875, 00880, 00897, 00903, 00912, 00916, 00930, 00933, 00935, 00937, 00939, 00942, 00943, 01025, 01027, 01041, 01042, 01112, 01122, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01154, 01156, 01157, 01160, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05348, 09030, 13121, 13124, 13488, 28709, 61952 13124
00037, 00273, 00277, 00278, 00280, 00284, 00285, 00437, 00500, 00819, 00850, 00858, 00871, 00901, 00902, 01051, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01200, 01208, 01252, 01275, 04971, 05123, 13488, 61952 04960, 12708, 13488, 28709, 61952, 62224, 62251
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00500, 00819, 00833, 00836, 00838, 00850, 00870, 00871, 00875, 00880, 00905, 01025, 01026, 01027, 01097, 01112, 01122, 01200, 01208, 05123, 09066, 13121, 13488, 28709, 61952
00420, 00850, 00864, 01200, 01208, 13488, 61952
01200, 01208, 09030, 13488, 61952
00037, 00420, 00425, 00500, 01200, 01208, 01256, 08612, 13488, 61952, 62224, 62251
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00871, 00891, 00930, 00933, 00935, 00937, 00939, 00944, 00949, 01027, 01040, 01088, 01112, 01122, 01126, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 09030, 13124, 13488, 28709, 61952 00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00367, 00437, 00500, 00737, 00775, 00819, 00833, 00836, 00850, 00871, 00903, 00930, 00933, 00935, 00937, 00939, 00946, 01027, 01042, 01112, 01114, 01115, 01122, 01200, 01208, 01252, 01364, 01386, 01388, 01399, 05026, 05035, 05123, 05210, 13121, 13488, 28709, 61952

## From CCSID

 13488To CCSID
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00901, 00902, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01208, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01392, 01399, 04396, 04909, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 05348, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 16684, 17354, 28709, 33722, 61952, 62211, 62224, 62235, 62245, 62248, 62251
00301, 00930, 00939, 00941, 01200, 01208, 01399, 04396, 05026, 05035, 13488, 61952 00933, 01200, 01208, 13488, 61952
00933
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00420, 00423, 00424, 00437, 00500, 00737, 00775, 00813, 00819, 00833, 00836, 00838, 00850, 00857, 00860, 00861, 00863, 00865, 00869, 00870, 00871, 00874, 00875, 00880, 00897, 00903, 00904, 00905, 00912, 00916, 00920, 00930, 00933, 00935, 00937, 00939, 00948, 00950, 01025, 01026, 01027, 01043, 01088, 01112, 01114, 01122, 01200, 01208, 01252, 01364, 01388, 01399, 05026, 05035, 05123, 08612, 09030, 13121, 13124, 13488, 61952

57345
00930, 00939, 01200, 01208, 01399, 05026, 05035, 13488, 61952
00930, 00939, 05026, 05035
01208, 13488
57777
61952
00037, 00256, 00273, 00277, 00278, 00280, 00284, 00285, 00290, 00297, 00300, 00301, 00367, 00420, 00423, 00424, 00425, 00437, 00500, 00720, 00737, 00775, 00813, 00819, 00833, 00834, 00835, 00836, 00837, 00838, 00850, 00851, 00852, 00855, 00857, 00860, 00861, 00862, 00863, 00864, 00865, 00866, 00868, 00869, 00870, 00871, 00874, 00875, 00878, 00880, 00891, 00897, 00901, 00902, 00905, 00912, 00914, 00915, 00916, 00918, 00920, 00921, 00922, 00923, 00924, 00926, 00927, 00928, 00930, 00932, 00933, 00934, 00935, 00937, 00938, 00939, 00941, 00942, 00943, 00944, 00946, 00947, 00948, 00949, 00950, 00951, 00954, 00956, 00957, 00958, 00959, 00964, 00965, 00970, 01009, 01010, 01011, 01012, 01013, 01014, 01015, 01016, 01017, 01018, 01019, 01025, 01026, 01027, 01046, 01051, 01089, 01097, 01098, 01112, 01122, 01123, 01124, 01125, 01129, 01130, 01131, 01132, 01137, 01140, 01141, 01142, 01143, 01144, 01145, 01146, 01147, 01148, 01149, 01153, 01154, 01155, 01156, 01157, 01158, 01160, 01164, 01200, 01250, 01251, 01252, 01253, 01254, 01255, 01256, 01257, 01258, 01275, 01280, 01281, 01282, 01283, 01362, 01363, 01364, 01380, 01381, 01383, 01385, 01386, 01388, 01399, 04396, 04909, 04930, 04933, 04948, 04951, 04952, 04960, 04971, 05026, 05035, 05050, 05052, 05053, 05054, 05055, 05123, 05348, 08612, 09030, 09056, 09066, 12708, 13121, 13124, 13488, 16684, 17354, 28709, 33722, 62211, 62224, 62235, 62245, 62248, 62251
62209
62211, 62235, 62245
62210
62211
62213
62215
62218
62221
62222
00424, 62211, 62235, 62245
00037, 00424, 00500, 00819, 00850, 00862, 00916, 01200, 01208, 01252, 01255, 13488, 61952, 62209, 62210, 62213, 62215, 62222, 62223, 62235, 62245
62211
00424, 62211, 62235, 62245
00420
62235

62223
00424, 62211, 62235, 62245
00424, 62211, 62235, 62245
00037, 00420, 00425, 00500, 01200, 01208, 01256, 08612, 12708, 13488, 61952, 62251
00420, 00425, 62251

From CCSID
62235

62238
62239
62245

62248
62251

To CCSID
00037, 00424, 00500, 00819, 00850, 00862, 00916, 01200, 01208, 01252, 01255, 13488, 61952, 62209, 62210, 62211, 62215, 62221, 62222, 62223, 62245
00424, 62245
00424, 62245
00037, 00424, 00500, 00819, 00850, 00862, 00916, 01200, 01208, 01252, 01255, 13488, 61952, 62209, 62210, 62211, 62215, 62222, 62223, 62235, 62238, 62239 00420, 01200, 01208, 13488, 61952
00037, 00420, 00500, 00819, 00864, 01046, 01089, 01140, 01148, 01200, 01208, 01252, 01256, 08612, 12708, 13488, 61952, 62224, 62228

## <

## Associated CCSIDs

The following table shows the associated CCSIDs for a given CCSID value and encoding scheme. If a CCSID does not have an associated CCSID value for an encoding scheme, - (not defined) is shown in the table.

Although not represented in the table, if you request an encoding scheme that is the same as the input CCSID, you will get back the input CCSID. For example, if you request the associated CCSID of CCSID 00037 with an encoding scheme of 01100, you will get back 00037.

| Input <br> CCSID | $\mathbf{1 1 0 0}$ | $\mathbf{1 2 0 0}$ | $\mathbf{1 3 0 1}$ | $\mathbf{2 1 0 0}$ | $\mathbf{2 2 0 0}$ | $\mathbf{2 3 0 0}$ | $\mathbf{4 1 0 0}$ | $\mathbf{4 1 0 5}$ | $\mathbf{4 4 0 3}$ | $\mathbf{5 1 0 0}$ | $\mathbf{5 4 0 4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00037 | - | 00835 | 00937 | 00437 | 00947 | 00950 | 00819 | 01252 | - | 00367 | - |
| 00256 | - | - | - | 00437 | - | - | 00819 | 01252 | - | 00367 | - |
| 00273 | - | - | - | 00850 | - | - | 00819 | 01252 | - | - | - |
| 00277 | - | - | - | 00865 | - | - | 00819 | 01252 | - | - | - |
| 00278 | - | - | - | 00865 | - | - | 00819 | 01252 | - | - | - |
| 00280 | - | - | - | 00850 | - | - | 00819 | 01252 | - | - | - |
| 00284 | - | - | - | 00850 | - | - | 00819 | 01252 | - | - | - |
| 00285 | - | - | - | 00850 | - | - | 00819 | 01252 | - | - | - |
| 00290 | - | 04396 | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00297 | - | - | - | 00850 | - | - | 00819 | 01252 | - | - | - |
| 00300 | 00290 | - | 00930 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00301 | 00290 | 04396 | 05026 | 01041 | - | 00942 | - | - | - | - | - |
| 00367 | 00500 | - | - | 00850 | - | - | 00819 | 01252 | - | - | - |
| 00420 | - | - | - | 00864 | - | - | 01089 | 01256 | - | - | - |
| 00423 | - | - | - | 00869 | - | - | 00813 | 01253 | - | - | - |
| 00424 | - | - | - | 00862 | - | - | 00916 | 01255 | - | - | - |
| 00437 | 00037 | - | - | - | - | - | 00819 | 01252 | - | - | - |
| 00500 | - | - | - | 00850 | - | - | 00819 | 01252 | - | 00367 | - |
| 00720 | 00420 | - | - | - | - | - | 01089 | 01256 | - | - | - |
| 00737 | 00875 | - | - | - | - | - | 00813 | 01253 | - | - | - |
| 00775 | 01112 | - | - | - | - | - | 00921 | 01257 | - | - | - |
| 00813 | 00875 | - | - | - | - | - | - | 01253 | - | - | - |
| 00819 | 00500 | - | - | 00850 | - | - | - | 01252 | - | 00367 | - |
| 00833 | - | 00834 | 00933 | 01088 | 00951 | 00949 | - | - | - | - | - |


| Input CCSID | 1100 | 1200 | 1301 | 2100 | 2200 | 2300 | 4100 | 4105 | 4403 | 5100 | 5404 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00834 | 00833 | - | 00933 | 01088 | 00951 | 00949 | - | - | - | - | - |
| 00835 | 28709 | - | 00937 | 01043 | 00927 | 00950 | - | - | - | - | - |
| 00836 | - | 00837 | 00935 | 01115 | 01380 | 01381 | - | - | - | - | - |
| 00837 | 00836 | - | 00935 | 01115 | 01380 | 01381 | - | - | - | - | - |
| 00838 | - | - | - | 00874 | - | - | - | - | - | - | - |
| 00850 | 00500 | - | - | - | - | - | 00819 | 01252 | - | - | - |
| 00851 | 00875 | - | - | - | - | - | 00813 | 01253 | - | - | - |
| 00852 | 00870 | - | - | - | - | - | 00912 | 01250 | - | - | - |
| 00855 | 01025 | - | - | - | - | - | - | 01251 | - | - | - |
| 00857 | 01026 | - | - | - | - | - | 00920 | 01254 | - | - | - |
| 00860 | 00037 | - | - | - | - | - | 00819 | 01252 | - | - | - |
| 00861 | 00871 | - | - | - | - | - | 00819 | 01252 | - | - | - |
| 00862 | 00424 | - | - | - | - | - | 00916 | 01255 | - | - | - |
| 00863 | 00500 | - | - | - | - | - | 00819 | 01252 | - | - | - |
| 00864 | 00420 | - | - | - | - | - | 01089 | 01256 | - | - | - |
| 00865 | 00277 | - | - | - | - | - | 00819 | 01252 | - | - | - |
| 00866 | 01025 | - | - | 00866 | - | - | - | 01251 | - | - | - |
| 00869 | 00875 | - | - | - | - | - | 00813 | 01253 | - | - | - |
| 00870 | - | - | - | 00852 | - | - | 00912 | 01250 | - | - | - |
| 00871 | - | - | - | 00861 | - | - | 00819 | 01252 | - | - | - |
| 00874 | 00838 | - | - | - | - | - | - | - | - | - | - |
| 00875 | - | - | - | 00869 | - | - | 00813 | 01253 | - | - | - |
| 00880 | - | - | - | 00855 | - | - | - | - | - | - | - |
| 00891 | 00833 | 00834 | 00933 | - | 00926 | 00934 | - | - | - | - | - |
| 00897 | 00290 | 04396 | 05026 | - | 00301 | 00932 | - | - | - | - | - |
| 00903 | 00836 | 00837 | 00935 | - | 00928 | 00936 | - | - | - | - | - |
| 00904 | 28709 | 00835 | 00937 | - | 00927 | 00938 | - | - | - | - | - |
| 00905 | - | - | - | 00857 | - | - | 00920 | - | - | - | - |
| 00912 | 00870 | - | - | 00852 | - | - | - | 01250 | - | - | - |
| 00915 | 01025 | - | - | 00855 | - | - | - | 01251 | - | - | - |
| 00916 | 00424 | - | - | 00862 | - | - | - | 01255 | - | - | - |
| 00920 | 01026 | - | - | 00857 | - | - | - | 01254 | - | - | - |
| 00921 | 01112 | - | - | 01125 | - | - | - | 01257 | - | - | - |
| 00922 | 01122 | - | - | 01125 | - | - | - | 01251 | - | - | - |
| 00923 | 00924 | - | - | 00850 | - | - | - | 01252 | - | 00367 | - |
| 00924 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 00926 | 00833 | 00834 | 00933 | 01040 | - | 00944 | - | - | - | - | - |
| 00927 | 28709 | 00835 | 00937 | 01043 | - | 00950 | - | - | - | - | - |
| 00928 | 00836 | 00837 | 00935 | 01042 | - | 00946 | - | - | - | - | - |
| 00930 | 00290 | 00300 | - | 01041 | 00301 | 00942 | - | - | - | - | 05052 |


| Input CCSID | 1100 | 1200 | 1301 | 2100 | 2200 | 2300 | 4100 | 4105 | 4403 | 5100 | 5404 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00932 | 00290 | 04396 | 05026 | 00897 | 00301 | - | - | - | - | - | - |
| 00933 | 00833 | 00834 | - | 01088 | 00951 | 00949 | - | - | 00970 | - | 17354 |
| 00934 | 00833 | 00834 | 00933 | 00891 | 00926 | - | - | - | - | - | - |
| 00935 | 00836 | 00837 | - | 01115 | 01380 | 01381 | - | - | - | - | - |
| 00936 | 00836 | 00837 | 00935 | 00903 | 00928 | - | - | - | - | - | - |
| 00937 | 28709 | 00835 | - | 01043 | 00927 | 00950 | - | - | 00964 | - | 00965 |
| 00938 | 28709 | 00835 | 00937 | 00904 | 00927 | - | - | - | - | - | - |
| 00939 | 01027 | 00300 | - | 01041 | 00301 | 00942 | - | - | - | - | 05052 |
| 00942 | 00290 | 04396 | 05026 | 01041 | 00301 | - | - | - | - | - | - |
| 00943 | 00290 | 04396 | 05026 | 00897 | 00301 | - | - | - | - | - | - |
| 00944 | 00833 | 00834 | 00933 | 01040 | 00926 | - | - | - | - | - | - |
| 00946 | 00836 | 00837 | 00935 | 01042 | 00928 | - | - | - | - | - | - |
| 00947 | - | 00835 | 00937 | - | - | - | - | - | - | - | - |
| 00948 | 28709 | 00835 | 00937 | 01043 | 00927 | - | - | - | - | - | - |
| 00949 | 00833 | 00834 | 00933 | 01088 | 00951 | - | - | - | 00970 | - | 17354 |
| 00950 | 28709 | 00835 | 00937 | 01114 | 00947 | - | - | - | - | - | - |
| 00951 | 00833 | 00834 | 00933 | 01088 | - | 00949 | - | - | 00970 | - | 17354 |
| 00956 | 00290 | 00300 | 05026 | - | - | - | - | - | - | - | - |
| 00957 | 00290 | 00300 | 05026 | - | - | - | - | - | - | - | - |
| 00958 | 00290 | 00300 | 05026 | - | - | - | - | - | - | - | - |
| 00959 | 00290 | 00300 | 05026 | - | - | - | - | - | - | - | - |
| 00964 | 00037 | 00835 | 00937 | - | - | - | - | - | - | - | - |
| 00965 | 00037 | 00835 | 00937 | - | - | - | - | - | - | - | - |
| 00970 | 13121 | 04930 | 01364 | - | - | - | - | - | - | - | - |
| 01008 | 00420 | - | - | - | - | - | - | - | - | - | - |
| 01009 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01010 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01011 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01012 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01013 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01014 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01015 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01016 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01017 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01018 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01019 | 00500 | - | - | - | - | - | - | - | - | - | - |
| 01025 | - | - | - | 00855 | - | - | - | 01251 | - | - | - |
| 01026 | - | - | - | 00857 | - | - | 00920 | 01254 | - | - | - |
| 01027 | - | 04396 | 05035 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 01040 | 00833 | 00834 | 00933 | - | 00926 | 00944 | - | - | - | - | - |


| Input CCSID | 1100 | 1200 | 1301 | 2100 | 2200 | 2300 | 4100 | 4105 | 4403 | 5100 | 5404 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01041 | 00290 | 04396 | 05026 | - | 00301 | 00942 | - | - | - | - | - |
| 01042 | 00836 | 00837 | 00935 | - | 00928 | 00946 | - | - | - | - | - |
| 01043 | 28709 | 00835 | 00937 | - | 00927 | 00950 | - | - | - | - | - |
| 01046 | 00420 | - | - | - | - | - | - | - | - | - | - |
| 01051 | 00037 | - | - | 00850 | - | - | - | - | - | - | - |
| 01088 | 00833 | 00834 | 00933 | - | 00951 | 00949 | - | - | 00970 | - | 17354 |
| 01089 | 00420 | - | - | - | - | - | - | 01256 | - | - | - |
| 01097 | - | - | - | 01098 | - | - | - | - | - | - | - |
| 01098 | 01097 | - | - | - | - | - | - | - | - | - | - |
| 01112 | - | - | - | - | - | - | - | 01257 | - | - | - |
| 01114 | 28709 | - | - | - | - | - | - | - | - | - | - |
| 01115 | 00836 | 00837 | 00935 | - | 01380 | 01381 | - | - | - | - | - |
| 01122 | - | - | - | 01125 | - | - | 01124 | 01257 | - | - | - |
| 01123 | - | - | - | 01125 | - | - | 01124 | 01251 | - | - | - |
| 01126 | 13121 | 04930 | 01364 | - | 01362 | 01363 | - | - | 00970 | - | 17354 |
| 01129 | 01130 | - | - | - | - | - | - | 01258 | - | - | - |
| 01130 | - | - | - | - | - | - | 01129 | 01258 | - | - | - |
| 01132 | - | - | - | - | - | - | 01133 | - | - | - | - |
| 01133 | 01132 | - | - | - | - | - | - | - | - | - | - |
| 01140 | - | - | - | 00437 | - | - | 00923 | 01252 | - | 00367 | - |
| 01141 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 01142 | - | - | - | 00865 | - | - | 00923 | 01252 | - | 00367 | - |
| 01143 | - | - | - | 00865 | - | - | 00923 | 01252 | - | 00367 | - |
| 01144 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 01145 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 01146 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 01147 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 01148 | - | - | - | 00850 | - | - | 00923 | 01252 | - | 00367 | - |
| 01149 | - | - | - | 00861 | - | - | 00923 | 01252 | - | 00367 | - |
| 01153 | - | - | - | 00852 | - | - | 00912 | 01250 | - | - | - |
| 01154 | - | - | - | 00855 | - | - | - | 01251 | - | - | - |
| 01155 | - | - | - | 00857 | - | - | 00920 | 01254 | - | - | - |
| 01156 | - | - | - | - | - | - | - | 01257 | - | - | - |
| 01157 | - | - | - | 01125 | - | - | 01124 | 01257 | - | - | - |
| 01158 | - | - | - | 01125 | - | - | 01124 | 01251 | - | - | - |
| 01160 | - | - | - | 00874 | - | - | - | - | - | - | - |
| 01164 | - | - | - | - | - | - | 01129 | 01258 | - | - | - |
| 01250 | 00870 | - | - | 00852 | - | - | - | - | - | - | - |
| 01251 | 01025 | - | - | 00855 | - | - | - | - | - | - | - |
| 01252 | 00500 | - | - | 00850 | - | - | 00819 | - | - | 00367 | - |


| Input CCSID | 1100 | 1200 | 1301 | 2100 | 2200 | 2300 | 4100 | 4105 | 4403 | 5100 | 5404 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01253 | 00875 | - | - | 00869 | - | - | - | - | - | - | - |
| 01254 | 01026 | - | - | 00857 | - | - | - | - | - | - | - |
| 01255 | 00424 | - | - | 00862 | - | - | - | - | - | - | - |
| 01256 | 00420 | - | - | 00864 | - | - | - | - | - | - | - |
| 01257 | 01112 | - | - | - | - | - | 00921 | - | - | - | - |
| 01258 | 01130 | - | - | 01258 | - | - | 01129 | - | - | - | - |
| 01275 | 00037 | - | - | 00850 | - | - | - | - | - | - | - |
| 01280 | 00875 | - | - | 00869 | - | - | - | - | - | - | - |
| 01281 | 01026 | - | - | 00857 | - | - | - | - | - | - | - |
| 01282 | 00870 | - | - | 00852 | - | - | - | - | - | - | - |
| 01283 | 01025 | - | - | 00855 | - | - | - | - | - | - | - |
| 01362 | 13121 | 04930 | 01364 | 01126 | - | 01363 | - | - | 00970 | - | 17354 |
| 01363 | 13121 | 04930 | 01364 | 01126 | 01362 | - | - | - | 00970 | - | 17354 |
| 01364 | 13121 | 04930 | - | 01126 | 01362 | 01363 | - | - | 00970 | - | 17354 |
| 01380 | 00836 | 00837 | 00935 | 01115 | - | 01381 | - | - | - | - | - |
| 01381 | 00836 | 00837 | 00935 | 01115 | 01380 | - | - | - | - | - | - |
| 01386 | 13124 | 04933 | 01388 | - | - | - | - | - | - | - | - |
| 01388 | 13124 | 04933 | - | 01114 | 01385 | 01386 | - | - | - | - | - |
| 01399 | 05123 | 16684 | - | 01041 | 00301 | 00942 | - | - | 05050 | - | 05052 |
| 04396 | 00290 | - | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 04930 | 13121 | - | 01364 | 01126 | 01362 | 01363 | - | - | - | - | - |
| 04933 | 13124 | - | 01388 | 01114 | 01385 | 01386 | - | - | - | - | - |
| 04948 | 00870 | - | - | - | - | - | - | - | - | - | - |
| 04951 | 01025 | - | - | - | - | - | - | - | - | - | - |
| 04952 | 00424 | - | - | - | - | - | - | - | - | - | - |
| 04953 | 01026 | - | - | - | - | - | - | - | - | - | - |
| 04960 | 00420 | - | - | - | - | - | - | - | - | - | - |
| 04965 | 00875 | - | - | - | - | - | - | - | - | - | - |
| 05026 | 00290 | 04396 | - | 01041 | 00301 | 00942 | - | - | 05050 | - | 05052 |
| 05035 | 01027 | 04396 | - | 01041 | 00301 | 00942 | - | - | - | - | 05052 |
| 05050 | 00290 | 00300 | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 05052 | 00290 | 00300 | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 05053 | 00290 | 00300 | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00000 | - | - | - | - | - | - | - | - | - | - | - |
| 05054 | 00290 | 00300 | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00000 | - | - | - | - | - | - | - | - | - | - | - |
| 05055 | 00290 | 00300 | 05026 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00000 | - | - | - | - | - | - | - | - | - | - | - |
| 05123 | - | 16684 | 01399 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00000 | - | - | - | - | - | - | - | - | - | - | - |


| Input <br> CCSID | $\mathbf{1 1 0 0}$ | $\mathbf{1 2 0 0}$ | $\mathbf{1 3 0 1}$ | $\mathbf{2 1 0 0}$ | $\mathbf{2 2 0 0}$ | $\mathbf{2 3 0 0}$ | $\mathbf{4 1 0 0}$ | $\mathbf{4 1 0 5}$ | $\mathbf{4 4 0 3}$ | $\mathbf{5 1 0 0}$ | $\mathbf{5 4 0 4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 09030 | - | - | - | 09066 | - | - | - | - | - | - | - |
| 09066 | 09030 | - | - | - | - | - | - | - | - | - | - |
| 13121 | - | 04930 | 01364 | 01126 | 01362 | 01363 | - | - | - | - | - |
| 13124 | - | 04933 | 01388 | 01114 | 01385 | 01386 | - | - | - | - | - |
| 00000 | - | - | - | - | - | - | - | - | - | - | - |
| 16684 | 05123 | - | 01399 | 01041 | 00301 | 00942 | - | - | - | - | - |
| 00000 | - | - | - | - | - | - | - | - | - | - | - |
| 17354 | 00833 | 00834 | 00933 | - | - | - | - | - | - | - | - |
| 25546 | 00833 | 00834 | 00933 | 01088 | 00951 | 00949 | - | - | - | - | - |
| 28709 | - | 00835 | 00937 | 01043 | 00927 | 00948 | - | - | - | - | - |
| 33722 | 00290 | 04366 | 05026 | - | - | - | - | - | - | - | - |
| 57345 | 00290 | 00300 | 05026 | - | - | - | - | - | - | - | - |

## Encoding schemes for the CCSIDs

The following table shows the encoding scheme values (from CDRA) that are used for the CCSIDs.

| ESID hex | Interpretation |
| :--- | :--- |
| 1100 | EBCDIC, single-byte, No code extension is allowed. Number of States $=1$. |
| 1200 | EBCDIC, double-byte, No code extension is allowed. Number of States $=1$. |
| 1300 | EBCDIC, mixed-byte, No code extension is allowed Number of States $=1$. |
| 1301 | EBCDIC, mixed single-byte and double-byte, using shift-in (SI) and shift-out (SO) code <br> extension method Number of States $=2$. |
| 2100 | IBM $^{(R)}$-PC Data, single-byte, No code extension is allowed Number of States $=1$. |
| 2200 | IBM-PC Data, double-byte, No code extension is allowed Number of States $=1$. |
| 2300 | IBM-PC Data, mixed single-byte and double-byte, with implicit code extension Number of States <br> $=2$. |
| 3100 | IBM-PC Display, single-byte, No code extension is allowed Number of States $=1$. |
| 3200 | IBM-PC Display, double-byte, No code extension is allowed Number of States $=1$. |
| 3300 | IBM-PC Display, mixed single-byte and double-byte, with implicit code extension Number of <br> States $=2$. |
| 4100 | ISO 8, single-byte, No code extension is allowed Number of States $=1$. |
| 4105 | ISO 8 (ASCII code), single-byte, Graphics in C1 Note that graphic characters may be present in <br> the area normally reserved for the C1 control codes. (ie X'80' to X'9F') Number of States $=1$. |
| 4403 | IBM EUC Number of States $=2$ to 4 |
| 5100 | ISO 7 (ASCII code), single-byte, No code extension is allowed Number of States = 1. |
| 5404 | ISO 2022 TCP/IP Number of States = 2 to 4. |
| 7200 | UCS-2, No code extension is allowed Number of States = 1. |
| 7808 | UTF-8, No code extension is allowed Number of States = 3. |

Language identifiers and associated default CCSIDs
The following table contains a list of language identifiers and the job default CCSID (DFTCCSID) values associated with those identifiers.

If the QTQ_DEFAULT_CCSID system level environment variable is not defined, then the defaults act as indicated in the table below.

》 If the QTQ_DEFAULT_CCSID system level environment variable is defined, then it consists of pairs of valid language ID and single byte or mixed byte EBCDIC CCSID values. You can use this environment variable to change to the Euro value. If this value is not properly defined, the system issues an informational message and uses the value in the table below.

For example, the following command specifies that you want the default CCSID to be 500 for the ENU and ENP language identifiers:

ADDENVVAR ENVVAR(QTQ_DEFAULT_CCSID) VALUE('ENU 00500 ENP 00500') LEVEL(*SYS)
You should be careful to ensure that this environment is set to a valid value. If this value is not set correctly, you might not be able to log in to the server. Before you change this value, you might consider having two signed-on sessions. Then, you can test your change on one of the sessions and make changes on the other if needed. <

See Job default coded character set identifier for more information about the QTQ_DEFAULT_CCSID system level environment variable.

| Language identifier | Single-byte CCSID | Mixed-byte CCSID | Language |
| :---: | :---: | :---: | :---: |
| AFR | 00037 | None | Afrikaans |
| ARA | 00420 | None | Arabic |
| BEL | 01025 | None | Byelorussian |
| BGR | 01025 | None | Bulgarian |
| CAT | 00284 | None | Catalan |
| CHS | 00836 | 00935 | Simplified Chinese |
| CHT | 00037 | 00937 | Traditional Chinese |
| CSY | 00870 | None | Czech |
| DAN | 00277 | None | Danish |
| DES | 00500 | None | Swiss German |
| DEU | 00273 (1141 with Euro) | None | German |
| ELL | 00875 (4971 with Euro) | None | Greek |
| ENA | 00037 | None | Australian English |
| ENG | 00285 | None | United Kingdom English |
| ENP | 00037 | None | Uppercase English |
| ENU | 00037 | None | United States English |
| ESP | 00284 (1145 with Euro) | None | Spanish |
| FAR | 01097 | None | Farsi |
| FIN | 00278 (1143 with Euro) | None | Finnish |
| FRA | 00297 (1147 with Euro) | None | French |
| FRB | 00500 (1148 with Euro) | None | Belgian French |
| FRC | 00500 | None | Canadian French |


| Language identifier | Single-byte CCSID | Mixed-byte CCSID | Language |
| :---: | :---: | :---: | :---: |
| FRS | 00500 | None | Swiss French |
| GAE | $00285 \text { (1146 with }$ Euro) | None | Irish Gaelic |
| HEB | 00424 | None | Hebrew |
| HRV | 00870 | None | Croatian |
| HUN | 00870 | None | Hungarian |
| ISL | 00871 (1149 with Euro) | None | Icelandic |
| ITA | 00280 (1144 with Euro) | None | Italian |
| ITS | 00500 | None | Swiss Italian |
| JPN | 00290 | 05026 | Japanese Katakana <br> The mixed value for DFTCCSID is 05026 when the job CCSID is 65535. In order for the DFTCCSID to be 05035, the job CCSID must be 05035. |
| KOR | 00833 | 00933 | Korean |
| MKD | 01025 | None | Macedonian |
| NLB | $00500 \text { (1148 with }$ Euro) | None | Belgian Dutch |
| NLD | 00037 (1140 with Euro) | None | Dutch |
| NON | 00277 | None | Norwegian Nynorsk |
| NOR | 00277 | None | Norwegian Bokmal |
| PLK | 00870 | None | Polish |
| PTB | 00037 | None | Brazilian Portuguese |
| PTG | 00037 (1140 with Euro) | None | Portuguese |
| ROM | 00870 | None | Romanian |
| RUS | 01025 | None | Russian |
| SKY | 00870 | None | Slovakian |
| SLO | 00870 | None | Slovenian |
| SQI | 00500 | None | Albanian |
| SRB | 01025 | None | Serbian Cyrillic |
| SRL | 00870 | None | Serbian Latin |
| SVE | 00278 | None | Swedish |
| THA | 00838 | None | Thai |
| TRK | 01026 | None | Turkish |

## Locale reference information

The following topics provide useful information about locales on OS/400 ${ }^{(\mathrm{R})}$ :

- System-supplied locales and recommended CCSIDs
- Mapping of locale symbolic names


## System-supplied locales and recommended CCSIDs

The system-supplied locale source definition file members are in the optionally installable library QSYSLOCALE in the QLOCALESRC source file. The source file members are encoded in CCSID 37 and are read-only. The following table shows the locale source file definition members that are shipped with $\mathrm{OS} / 400^{(\mathrm{R})}$; the table also provides the recommended CCSID for creating each locale, and how the locale is supplied (as source, object, or both).

The source definition file members themselves cannot be changed. They can be copied and then edited, if needed.

Note: The Japanese 5035 is shipped as an object but uses the same JA_JP source member as the Japanese.

| Description | Member | CCSID | How shipped |
| :--- | :---: | :---: | :---: |
| Albania/Albanian | SQ_AL | 500 | Both |
| Algeria/Arabic | AR_DZ | 420 | Source |
| Arabic-speaking countries/Arabic | AR_AA | 420 | Both |
| Argentina/Spanish | ES_AR | 284 | Source |
| Australia/English | EN_AU | 37 | Source |
| Austria/German | DE_AT | 273 | Source |
| Austria/German euro | DE_AT_E | 1141 | Source |
| Bahrain/Arabic | AR_BH | 420 | Source |
| Belgium/Dutch | NL_BE | 500 | Both |
| Belgium/Dutch euro | NL_BE_E | 1148 | Both |
| Belgium/English | EN_BE | 37 | Both |
| Belgium/English euro | EN_BE_E | 1148 | Source |
| Belgium/French | FR_BE | 500 | Both |
| Belgium/French euro | FR_BE_E | 1148 | Both |
| Bolivia/Spanish | ES_BO | 284 | Source |
| Brazil/Portugese | PT_BR | 37 | Both |
| Bulgaria/Bulgarian | BG_BG | 1025 | Both |
| Bulgaria/Bulgarian-Lotus | BG_BG_L | 1025 | Both |
| Byelorussia/Byelorussian | BE_BY | 1025 | Source |
| Canada/English | EN_CA | 37 | Source |
| Canada/French | FR_CA | 500 | Both |
| Chile/Spanish | ES_CL | 284 | Source |
| China/Simplified Chinese | ZH_CN | 1388 | Both |
| China/Simplified Chinese (old) | EN_HK | 37 | Source |
| China (Hong Kong S.A.R.)/English | ZH_HK_S | 1388 | Source |
| China (Hong Kong S.A.R.)/Simplified Chinese | ZH_HK_T | 937 | Source |
| China (Hong Kong S.A.R.)/Traditional Chinese | ES_CO | 284 | Source |
| Columbia/Spanish | ES_CR | 284 | Source |
| Costa Rica/Spanish | 870 | Both |  |
| Croatia/Croatian | BR_HR | Both |  |
| Czech Republic/Czech | 935 | Source |  |
|  |  |  |  |


| Description | Member | CCSID | How shipped |
| :---: | :---: | :---: | :---: |
| Denmark/Danish | DA_DK | 277 | Both |
| Denmark/Danish euro | DA_DK_E | 1142 | Source |
| Dominican Republic/Spanish | ES_DO | 284 | Source |
| Ecuador/Spanish | ES_EC | 284 | Source |
| Egypt/Arabic | AR_EG | 420 | Source |
| El Salvador/Spanish | ES_SV | 284 | Source |
| Estonia/Estonian | ET_EE | 1122 | Both |
| Finland/Finnish | FI_FI | 278 | Both |
| Finland/Finnish euro | FI_Fl_E | 1143 | Both |
| France/French | FR_FR | 297 | Both |
| France/French euro | FR_FR_E | 1147 | Both |
| Germany/German | DE_DE | 273 | Both |
| Germany/German euro | DE_DE_E | 1141 | Both |
| Great Britain/English | EN_GB | 285 | Both |
| Greece/Greek | EL_GR | 875 | Both |
| Greece/Greek euro | EL_GR_E | 875 | Source |
| Guatemala/Spanish | ES_GT | 284 | Source |
| Honduras/Spanish | ES_HN | 284 | Source |
| Hungary/Hungarian | HU_HU | 870 | Both |
| Iceland/Icelandic | IS_IS | 871 | Both |
| India/English | EN_IN | 37 | Source |
| India/Hindi | HI_IN | 1137 | Source |
| India/Tamil | TA_IN | 13488 | Source |
| India/Telugu | TE_IN | 13488 | Source |
| Indonesia/Indonesian | ID_ID | 500 | Source |
| Ireland/English | EN_IE | 37 | Source |
| Ireland/English euro | EN_IE_E | 1140 | Source |
| Israel/Hebrew | HE_IL | 424 | Both |
| Israel/English | IW_IL | 424 | Both |
| Italy/Italian | IT_IT | 280 | Both |
| Italy/Italian euro | IT_IT_E | 1144 | Both |
| Japan 13488 | JA_13488 | 13488 | Both |
| Japan 5035 | JA_5035 | 5035 | Object |
| Japan/Japanese | JA_JP | 5026 | Both |
| Jordan/Arabic | AR_JO | 420 | Source |
| Kazakstan/Kazakh | KK_KZ | 13488 | Source |
| Kuwait/Arabic | AR_KW | 420 | Source |
| Latvia/Latvian | LV_LV | 1112 | Both |
| Lebanon/Arabic | AR_LB | 420 | Source |
| Lithuania/Lithuanian | LT_LT | 1112 | Both |
| Luxembourg/French | FR_LU | 297 | Source |


| Description | Member | CCSID | How shipped |
| :---: | :---: | :---: | :---: |
| Luxembourg/French euro | FR_LU_E | 1147 | Source |
| Luxembourg/German | DE_LU | 273 | Source |
| Luxembourg/German euro | DE_LU_E | 1141 | Source |
| Macedonia/Macedonian | MK_MK | 1025 | Both |
| Macedonia/Macedonian-Lotus | MK_MK_L | 1025 | Both |
| Malaysia/Malaysian | MS_MY | 500 | Source |
| Mexico/Spanish | ES_MX | 284 | Source |
| Morocco/Arabic | AR_MA | 420 | Source |
| Netherlands/Dutch | NL_NL | 37 | Both |
| Netherlands/Dutch euro | NL_NL_E | 1140 | Both |
| New Zealand/English | EN_NZ | 37 | Source |
| Nicaragua/Spanish | ES_NI | 284 | Source |
| Norway/Norwegian | NO_NO | 277 | Both |
| Norway/Norwegian (Bokmal) | NB_NO | 277 | Source |
| Oman/Arabic | AR_OM | 420 | Source |
| Panama/Spanish | ES_PA | 284 | Source |
| Paraguay/Spanish | ES_PY | 284 | Source |
| Peru/Spanish | ES_PE | 284 | Source |
| Philippines/English | EN_PH | 37 | Source |
| Poland/Polish | PL_PL | 870 | Both |
| Portugal/Portuguese | PT_PT | 37 | Both |
| Portugal/Portuguese euro | PT_PT_E | 1140 | Both |
| Puerto Rico/Spanish | ES_PR | 284 | Source |
| Qatar/Arabic | AR_QA | 420 | Source |
| Romania/Romanian | RO_RO | 870 | Both |
| Russia/Russian | RU_RU | 1025 | Both |
| Saudi Arabia/Arabic | AR_SA | 420 | Source |
| Serbia/Serbian, Cyrillic | SR_SP | 1025 | Both |
| Serbia/Serbian, Cyrillic-Lotus | SR_SP_L | 1025 | Both |
| Serbia/Serbian, Latin | SH_SP | 870 | Both |
| Singapore/English | EN_SG | 37 | Source |
| Singapore/Simplified Chinese | ZH_SG | 1388 | Source |
| Slovak/Slovakian | SK_SK | 870 | Both |
| Slovenia/Slovenian | SL_SI | 870 | Both |
| South Africa/English | EN_ZA | 37 | Source |
| South Korea/Korean | KO_KR | 933 | Both |
| Spain/Catalan | CA_ES | 284 | Source |
| Spain/Catalan euro | CA_ES_E | 1145 | Source |
| Spain/Spanish | ES_ES | 284 | Both |
| Spain/Spanish euro | ES_ES_E | 1145 | Both |
| Sweden/Swedish | SV_SE | 278 | Both |


| Description | Member | CCSID | How shipped |
| :--- | :---: | :---: | :---: |
| Sweden/Swedish euro | SV_SE_E | 1143 | Source |
| Switzerland/French | FR_CH | 500 | Both |
| Switzerland/French-Lotus | FR_CH_L | 500 | Both |
| Switzerland/German | DE_CH | 500 | Both |
| Switzerland/German-Lotus | DE_CH_L | 500 | Both |
| Switzerland/Italian | IT_CH | 500 | Source |
| Syria/Arabic | AR_SY | 420 | Source |
| Taiwan/Mandarin, Traditional Chinese | ZH_TW | 937 | Both |
| Thailand/Thai | TH_TH | 838 | Both |
| Tunisia/Arabic | AR_TN | 420 | Source |
| Turkey/Turkish | TR_TR | 1026 | Both |
| Turkey/Turkish, English | TR_TR2 | 1026 | Source |
| Ukraine/Ukrainian | UK_UA | 1025 | Both |
| United Arab Emirates/Arabic | AR_AE | 420 | Source |
| United Kingdom/English euro | EN_GB_E | 1146 | Source |
| United States/Spanish | ES_US | 284 | Source |
| Uruguay/Spanish | ES_UY | 284 | Source |
| USA/English | EN_US | 37 | Both |
| USA/English,Upper Case | EN_UPPER | 37 | Both |
| Venezuela/Spanish | ES_VE | 284 | Source |
| Vietnam/Vietnamese | VI_VN | 1129 | Source |
| Yemen/Arabic | AR_YE | 420 | Source |
| Yugoslavia/Serbian, Latin | SH_YU | 870 | Source |
| Yugoslavia/Serbian, Cyrillic | 1025 | Source |  |

## Mapping of locale symbolic names

The following table shows:

- Some of the common locale symbolic names used by $\mathrm{OS} / 400^{(\mathrm{R})}$ and the UCS-2 code points they represent.
- When appropriate, a comparison of code points between UCS-2 code page and various IBM ${ }^{(\mathrm{R})}$ code pages
- The IBM graphic character global identifier (GCGID)
- An illustration of the GCGID

This table shows code points up through x'00FF'. The locale compiler understands most of the names defined by the Unicode organization. See the Unicode Web site (http://www.unicode.org) for an extended listing.

|  | Unicode (ISO <br> 10646) code <br> point <br> (hexadecimal) | Description | IBM code page <br> and code point <br> $(\mathbf{x x x} / \mathbf{x x})$ | IBM GCGID | GCGID <br> illustration |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Symbolic name | NULL (NUL) | $037 / 00$ |  |  |  |
| NUL> | 0000 |  |  |  |  |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <SOH> | 0001 | START OF HEADING (SOH) | 037/01 |  |  |
| <STX> | 0002 | START OF TEXT (STX) | 037/02 |  |  |
| <ETX> | 0003 | END OF TEXT (ETX) | 037/03 |  |  |
| <EOT> | 0004 | END OF TRANSMISSION (EOT) | 037/37 |  |  |
| <ENQ> | 0005 | ENQUIRY (ENQ) | 037/2D |  |  |
| <ACK> | 0006 | ACKNOWLEDGE (ACK) | 037/2E |  |  |
| <alert> | 0007 | BELL | 037/2F |  |  |
| <BEL> | 0007 | BELL (BEL) | 037/2F |  |  |
| <BS> | 0008 | BACKSPACE (BS) | 037/16 |  |  |
| <backspace> | 0008 | BACKSPACE | 037/16 |  |  |
| <tab> | 0009 | CHARACTER TABULATION | 037/05 |  |  |
| <HT> | 0009 | CHARACTER <br> TABULATION (HT) | 037/05 |  |  |
| <newline> | 000A | LINE FEED | 037/25 |  |  |
| <LF> | 000A | LINE FEED (LF) | 037/25 |  |  |
| <vertical-tab> | 000B | LINE <br> TABULATION | 037/0B |  |  |
| <VT> | 000B | LINE <br> TABULATION (VT) | 037/0B |  |  |
| <FF> | 000C | FORM FEED (FF) | 037/0C |  |  |
| <form-feed> | 000C | FORM FEED | 037/0C |  |  |
| <carriage-return> | 000D | CARRIAGE RETURN | 037/0D |  |  |
| <SO> | 000E | SHIFT OUT | 037/0E |  |  |
| <SI> | 000F | SHIFT IN | 037/0F |  |  |
| <DLE> | 0010 | DATALINK ESCAPE (DLE) | 037/10 |  |  |
| <DC1> | 0011 | DEVICE <br> CONTROL ONE <br> (DC1) | 037/11 |  |  |
| <DC2> | 0012 | DEVICE <br> CONTROL TWO <br> (DC2) | 037/12 |  |  |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <DC3> | 0013 | DEVICE CONTROL <br> THREE (DC3) | 037/13 |  |  |
| <DC4> | 0014 | DEVICE CONTROL FOUR (DC4) | 037/3C |  |  |
| <NAK> | 0015 | NEGATIVE ACKNOWLEDGE (NAK) | 037/3D |  |  |
| <SYN> | 0016 | SYNCRONOUS IDLE (SYN) | 037/32 |  |  |
| <ETB> | 0017 | END OF TRANSMISSION BLOCK (ETB) | 037/26 |  |  |
| <CAN> | 0018 | CANCEL (CAN) | 037/18 |  |  |
| <EM> | 0019 | END OF MEDIA | 037/19 |  |  |
| <SUB> | 001A | SUBSTITUTE (SUB) | 037/3F |  |  |
| <ESC> | 001B | ESCAPE (ESC) | 037/27 |  |  |
| <IS4> | 001C | FILE SEPARATOR (IS4) | 037/1C |  |  |
| <FS> | 001C | FILE SEPARATOR (IS4) | 037/1C |  |  |
| <IS3> | 001D | GROUP SEPARATOR (IS3) | 037/1D |  |  |
| <GS> | 001D | GROUP SEPARATOR (IS3) | 037/1D |  |  |
| <IS2> | 001E | RECORD SEPARATOR (IS2) | 037/1E |  |  |
| <RS> | 001E | $\begin{aligned} & \text { RECORD } \\ & \text { SEPARATOR } \\ & \text { (IS2) } \\ & \hline \end{aligned}$ | 037/1E |  |  |
| <IS1> | 001F | UNIT SEPARATOR (IS1) | 037/1F |  |  |
| <US> | 001F | UNIT SEPARATOR (IS1) | 037/1F |  |  |
| <DEL> | 007F | DELETE (DEL) | 037/07 |  |  |
| <space> | 0020 | SPACE | 037/40 | SP010000 | (SP) |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID <br> illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <exclamationmark> | 0021 | EXCLAMATION MARK | 500/4F | SP020000 | ! |
| <quotation-mark> | 0022 | QUOTATION MARK | 500/7F | SP040000 | " |
| <number-sign> | 0023 | NUMBER SIGN | 500/7B | SM010000 | \# |
| <dollar-sign> | 0024 | DOLLAR SIGN | 500/5B | SC030000 | \$ |
| <percent-sign> | 0025 | PERCENT SIGN | 500/6C | SM020000 | \% |
| <ampersand> | 0026 | AMPERSAND | 500/50 | SM030000 |  |
| <apostrophe> | 0027 | APOSTROPHE | 500/7D | SP050000 | ' |
| <left-parenthesis> | 0028 | LEFT <br> PARENTHESIS | 500/4D | SP060000 | ( |
| <rightparenthesis> | 0029 | RIGHT PARENTHESIS | 500/5D | SP070000 | ) |
| <asterisk> | 002A | ASTERISK | 500/5C | SM040000 | * |
| <plus-sign> | 002B | PLUS SIGN | 500/4E | SA010000 | + |
| <comma> | 002C | COMMA | 500/6B | SP080000 | , |
| <hyphen> | 002D | HYPHEN | 500/60 | SP100000 | - |
| <hyphen-minus> | 002D | HYPHEN-MINUS | 500/60 | SP100000 | - |
| <period> | 002E | PERIOD | 500/4B | SP110000 |  |
| <full-stop> | 002E | FULL STOP | 500/4B | SP110000 |  |
| <slash> | 002F | SLASH | 500/61 | SP120000 | / |
| <solidus> | 002F | SOLIDUS | 500/61 | SP120000 | / |
| <zero> | 0030 | DIGIT ZERO | 500/F0 | ND100000 | 0 |
| <one> | 0031 | DIGIT ONE | 500/F1 | ND010000 | 1 |
| <two> | 0032 | DIGIT TWO | 500/F2 | ND020000 | 2 |
| <three> | 0033 | DIGIT THREE | 500/F3 | ND030000 | 3 |
| <four> | 0034 | DIGIT FOUR | 500/F4 | ND040000 | 4 |
| <five> | 0035 | DIGIT FIVE | 500/F5 | ND050000 | 5 |
| <six> | 0036 | DIGIT SIX | 500/F6 | ND060000 | 6 |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <seven> | 0037 | DIGIT SEVEN | 500/F7 | ND070000 | 7 |
| <eight> | 0038 | DIGIT EIGHT | 500/F8 | ND080000 | 8 |
| <nine> | 0039 | DIGIT NINE | 500/F9 | ND090000 | 9 |
| <colon> | 003A | COLON | 500/7A | SP130000 | - |
| <semicolon> | 003B | SEMICOLON | 500/5E | SP140000 | ; |
| <less-than-sign> | 003C | LESS-THAN SIGN | 500/4C | SA030000 | $<$ |
| <equals-sign> | 003D | EQUALS SIGN | 500/7E | SA040000 | $=$ |
| <greater-thansign> | 003E | GREATER-THAN SIGN | 500/6E | SA050000 | > |
| <question-mark> | 003F | QUESTION MARK | 500/6F | SP150000 | ? |
| <commercial-at> | 0040 | COMMERCIAL AT | 500/7C | SM050000 | @ |
| <A> | 0041 | LATIN CAPITAL LETTER A | 500/C1 | LA020000 | A |
| <B> | 0042 | LATIN CAPITAL LETTER B | 500/C2 | LB020000 | B |
| <C> | 0043 | LATIN CAPITAL LETTER C | 500/C3 | LC020000 | C |
| <D> | 0044 | LATIN CAPITAL LETTER D | 500/C4 | LD020000 | D |
| <E> | 0045 | LATIN CAPITAL LETTER E | 500/C5 | LE020000 | E |
| <F> | 0046 | LATIN CAPITAL LETTER F | 500/C6 | LF020000 | F |
| <G> | 0047 | LATIN CAPITAL LETTER G | 500/C7 | LG020000 | G |
| <H> | 0048 | LATIN CAPITAL LETTER H | 500/C8 | LH020000 | H |
| <1> | 0049 | LATIN CAPITAL LETTER I | 500/C9 | LIO20000 | I |
| <J> | 004A | LATIN CAPITAL LETTER J | 500/D1 | LJ020000 | J |
| <K> | 004B | LATIN CAPITAL LETTER K | 500/D2 | LK020000 | K |
| <L> | 004C | LATIN CAPITAL LETTER L | 500/D3 | LL020000 | L |
| <M> | 004D | LATIN CAPITAL LETTER M | 500/D4 | LM020000 | M |
| <N> | 004E | LATIN CAPITAL LETTER N | 500/D5 | LN020000 | N |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point ( $x x x / x x$ ) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <O> | 004F | LATIN CAPITAL LETTER O | 500/D6 | LO020000 | O |
|  | 0050 | LATIN CAPITAL LETTER P | 500/D7 | LP020000 | P |
| <Q> | 0051 | LATIN CAPITAL LETTER Q | 500/D8 | LQ020000 | Q |
| <R> | 0052 | LATIN CAPITAL LETTER R | 500/D9 | LR020000 | R |
| <S> | 0053 | LATIN CAPITAL LETTER S | 500/E2 | LS020000 | S |
| <T> | 0054 | LATIN CAPITAL LETTER T | 500/E3 | LT020000 | T |
| <U> | 0055 | LATIN CAPITAL LETTER U | 500/E4 | LU020000 | U |
| <V> | 0056 | LATIN CAPITAL LETTER V | 500/E5 | LV020000 | V |
| <W> | 0057 | LATIN CAPITAL LETTER W | 500/E6 | LW020000 | W |
| <X> | 0058 | LATIN CAPITAL LETTER X | 500/E7 | LX020000 | X |
| <Y> | 0059 | LATIN CAPITAL LETTER Y | 500/E8 | LY020000 | Y |
| <Z> | 005A | LATIN CAPITAL LETTER Z | 500/E9 | LZ020000 | Z |
| <left-squarebracket> | 005B | LEFT SQUARE BRACKET | 500/4A | SM060000 | [ |
| <backslash> | 005C | BACKSLASH | 500/E0 | SM070000 | 1 |
| <reverse-solidus> | 005C | REVERSE SOLIDUS | 500/E0 | SM070000 | 1 |
| <right-squarebracket> | 005D | RIGHT SQUARE BRACKET | 500/5A | SM080000 | ] |
| <circumflex> | 005E | CIRCUMFLEX | 500/5F | SD150000 | $\wedge$ |
| <circumflexaccent> | 005E | CIRCUMFLEX ACCENT | 500/5F | SD150000 | $\wedge$ |
| <underscore> | 005F | UNDERSCORE | 500/6D | SP090000 | - |
| <underline> | 005F | UNDERLINE | 500/6D | SP090000 | - |
| <low-line> | 005F | LOW LINE | 500/6D | SP090000 | - |
| <grave-accent> | 0060 | GRAVE ACCENT | 500/79 | SD130000 | , |
| <a> | 0061 | LATIN SMALL LETTER A | 500/81 | LA010000 | a |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID <br> illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <b> | 0062 | LATIN SMALL LETTER B | 500/82 | LB010000 | b |
| <c> | 0063 | LATIN SMALL LETTER C | 500/83 | LC010000 | C |
| <d> | 0064 | LATIN SMALL LETTER D | 500/84 | LD010000 | d |
| <e> | 0065 | LATIN SMALL LETTER E | 500/85 | LE010000 | e |
| <f> | 0066 | LATIN SMALL LETTER F | 500/86 | LF010000 | f |
| <g> | 0067 | LATIN SMALL LETTER G | 500/87 | LG010000 | g |
| <h> | 0068 | LATIN SMALL LETTER H | 500/88 | LH010000 | h |
| <i> | 0069 | LATIN SMALL LETTER I | 500/89 | LI010000 | i |
| <j> | 006A | LATIN SMALL LETTER J | 500/91 | LJ010000 | ] |
| <k> | 006B | LATIN SMALL LETTER K | 500/92 | LK010000 | k |
| <1> | 006C | LATIN SMALL LETTER L | 500/93 | LL010000 | 1 |
| <m> | 006D | LATIN SMALL LETTER M | 500/94 | LM010000 | m |
| <n> | 006E | LATIN SMALL LETTER N | 500/95 | LN010000 | n |
| <0> | 006F | LATIN SMALL LETTER O | 500/96 | LO010000 | 0 |
|  | 0070 | LATIN SMALL LETTER P | 500/97 | LP010000 | p |
| <q> | 0071 | LATIN SMALL LETTER Q | 500/98 | LQ010000 | q |
| <r> | 0072 | LATIN SMALL LETTER R | 500/99 | LR010000 | r |
| <s> | 0073 | LATIN SMALL LETTER S | 500/A2 | LS010000 | S |
| <t> | 0074 | LATIN SMALL LETTER T | 500/A3 | LT010000 | t |
| <u> | 0075 | LATIN SMALL LETTER U | 500/A4 | LU010000 | u |
| <v> | 0076 | LATIN SMALL LETTER V | 500/A5 | LV010000 | V |
| <w> | 0077 | LATIN SMALL LETTER W | 500/A6 | LW010000 | W |
| <x> | 0078 | LATIN SMALL LETTER X | 500/A7 | LX010000 | X |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <y> | 0079 | LATIN SMALL LETTER Y | 500/A8 | LY010000 | y |
| <Z> | 007A | LATIN SMALL LETTER Z | 500/A9 | LZ010000 | Z |
| <left-brace> | 007B | LEFT BRACE | 500/C0 | SM110000 | \{ |
| <left-curlybracket> | 007B | LEFT CURLY BRACKET | 500/C0 | SM110000 | \{ |
| <vertical-line> | 007C | VERTICAL LINE | 500/BB | SM130000 |  |
| <right-brace> | 007D | RIGHT BRACE | 500/D0 | SM140000 | \} |
| <right-curlybracket> | 007D | RIGHT CURLY BRACKET | 500/D0 | SM140000 | \} |
| <tilde> | 007E | TILDE | 500/A1 | SD190000 | $\sim$ |
| <BPH> | 0082 | $\begin{aligned} & \hline \text { BREAK } \\ & \text { PERMITTED } \\ & \text { HERE } \end{aligned}$ | 037/22 |  |  |
| <NBH> | 0083 | NO BREAK HERE | 037/23 |  |  |
| <IND> | 0084 | INDEX | 037/24 |  |  |
| <NEL> | 0085 | NEXT LINE | 037/15 |  |  |
| <SSA> | 0086 | START OF SELECTED AREA | 037/06 |  |  |
| <ESA> | 0087 | $\begin{aligned} & \text { END OF } \\ & \text { SELECTED } \\ & \text { AREA } \end{aligned}$ | 037/17 |  |  |
| <HTS> | 0088 | CHARACTER TABULATION SET | 037/28 |  |  |
| <HTJ> | 0089 | CHARACTER TABULATION WITH JUSTIFICATION | 037/29 |  |  |
| <VTS> | 008A | LINE <br> TABULATION SET | 037/2A |  |  |
| <PLD> | 008B | PARTIAL LINE DOWN | 037/2B |  |  |
| <PLU> | 008C | PARTIAL LINE UP | 037/2C |  |  |
| <RI> | 008D | REVERSE INDEX | 037/09 |  |  |
| <SS2> | 008E | SINGLE SHIFT TWO | 037/0A |  |  |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <SS3> | 008F | SINGLE SHIFT THREE | 037/1B |  |  |
| <DCS> | 0090 | DEVICE CONTROL STRING | 037/30 |  |  |
| <PU1> | 0091 | PRIVATE USE ONE | 037/31 |  |  |
| <PU2> | 0092 | PRIVATE USE TWO | 037/1A |  |  |
| <STS> | 0093 | SET TRANSMIT STATE | 037/33 |  |  |
| <CCH> | 0094 | CANCEL CHARACTER | 037/34 |  |  |
| <MW> | 0095 | MESSAGE WAITING | 037/35 |  |  |
| <SPS> | 0096 | START OF <br> GUARDED AREA | 037/36 |  |  |
| <EPA> | 0097 | END OF GUARDED AREA | 037/08 |  |  |
| <SOS> | 0098 | START OF STRING | 037/38 |  |  |
| <SCl> | 009A | SINGLE CHARACTER INTRODUCER | 037/39 |  |  |
| <CSI> | 009B | CONTROL SEQUENCE INTRODUCER | 037/3B |  |  |
| <ST> | 009C | STRING TERMINATOR | 037/04 |  |  |
| <OSC> | 009D | OPERATING SYSTEM COMMAND | 037/14 |  |  |
| <PM> | 009E | PRIVACY MESSAGE | 037/3E |  |  |
| <APC> | 009F | APPLICATION PROGRAM COMMAND | 037/FF |  |  |
| <nobreakspace> | 00A0 | NO-BREAK SPACE | 500/41 | SP300000 | (RSP) |
| <exclamationdown> | 00A1 | INVERTED EXCLAMATION MARK | 500/AA | SP030000 | i |
| <cent> | 00A2 | CENT SIGN | 500/B0 | SC040000 | $\phi$ |
| <sterling> | 00A3 | POUND SIGN | 500/B1 | SC020000 | $£$ |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point ( $x x x / x x$ ) | IBM GCGID | GCGID <br> illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <currency> | 00A4 | CURRENCY SIGN | 500/9F | SC010000 | $\alpha$ |
| <yen> | 00A5 | YEN SIGN | 500/B2 | SC050000 | $Y$ |
| <yen-sign> | 00A5 | YEN SIGN | 850/BE | SC050000 | $Y$ |
| <broken-bar> | 00A6 | BROKEN VERTICAL BAR | 500/6A | SM650000 | I |
| <section> | 00A7 | SECTION SIGN | 500/B5 | SM240000 | § |
| <diaresis> | 00A8 | SPACING DIAERESIS | 500/8D | SD170000 | . |
| <copyright> | 00A9 | COPYRIGHT SIGN | 500/B4 | SM520000 | (C) |
| <feminine> | 00AA | FEMININE ORDINAL INDICATOR | 500/9A | SM210000 | $\underline{\square}$ |
| <guillemot-left> | 00AB | LEFT-POINTING DOUBLE ANGLE QUOTATION MARK | 500/8A | SP170000 | < |
| <not> | 00AC | NOT SIGN | 500/BA | SM660000 | 7 |
| <dash> | 00AD | SOFT HYPHEN | 500/CA | SP320000 | (S'今Y) |
| <registered> | OOAE | REGISTERED TRADE MARK SIGN | 500/AF | SM530000 | (B) |
| <macron> | 00AF | SPACING MACRON | 500/BC | SM150000 | - |
| <degree> | 00B0 | DEGREE SIGN | 500/90 | SM190000 | - |
| <plus-minus> | 00B1 | PLUS-OR-MINUS SIGN | 500/8F | SA020000 | $\pm$ |
| <two-superior> | 00B2 | SUPERSCRIPT DIGIT TWO | 500/EA | ND021000 | 2 |
| <three-superior> | 00B3 | SUPERSCRIPT DIGIT THREE | 500/FA | ND031000 | 3 |
| <acute> | 00B4 | SPACING ACUTE | 500/BE | SD110000 | , |
| <mu> | 00B5 | MICRO SIGN | 500/A0 | SM170000 | $\mu$ |
| <paragraph> | 00B6 | PARAGRAPH (PILCROW) SIGN | 500/B6 | SM250000 | - |
| <dot> | 00B7 | MIDDLE DOT | 500/B3 | SD630000 | - |
| <cedilla> | 00B8 | SPACING CEDILLA | 500/9D | SD410000 | , |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <one-superior> | 00B9 | SUPERSCRIPT DIGIT ONE | 500/DA | ND011000 | 1 |
| <masculine> | 00BA | MASCULINE ORDINAL INDICATOR | 500/9B | SM200000 | ㅇ |
| <guillemot-right> | 00BB | RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK | 500/8B | SP180000 | " |
| <one-quarter> | 00BC | FRACTION ONE QUARTER | 500/B7 | NF040000 | $1 / 4$ |
| <one-half> | O0BD | FRACTION ONE HALF | 500/B8 | NF010000 | $1 / 2$ |
| <three-quarters> | OOBE | FRACTION THREE QUARTERS | 500/B9 | NF050000 | $3 / 4$ |
| <question-down> | 00BF | INVERTED QUESTION MARK | 500/AB | SP160000 | i |
| <A-grave> | 00C0 | LATIN CAPITAL LETTER A GRAVE | 500/64 | LA140000 | À |
| <A-acute> | 00C1 | LATIN CAPITAL LETTER A ACUTE | 500/65 | LA120000 | Á |
| <A-circumflex> | 00C2 | LATIN CAPITAL LETTER A CIRCUMFLEX | 500/62 | LA160000 | $\widehat{\text { A }}$ |
| <A-tilde> | 00C3 | LATIN CAPITAL LETTER A TILDE | 500/66 | LA200000 | $\widetilde{\text { A }}$ |
| <A-diaresis> | 00C4 | LATIN CAPITAL LETTER A DIAERESIS | 500/63 | LA180000 | $\ddot{\text { A }}$ |
| <A-ring> | 00C5 | LATIN CAPITAL LETTER A RING ABOVE | 500/67 | LA280000 | Å |
| <AE> | 00C6 | LATIN CAPITAL LIGATURE AE | 500/9E | LA520000 | Æ |
| <C-cedilla> | 00C7 | LATIN CAPITAL LETTER C CEDILLA | 500/68 | LC420000 | C |
| <E-grave> | 00C8 | LATIN CAPITAL LETTER E GRAVE | 500/74 | LE140000 | E |
| <E-acute> | 00C9 | LATIN CAPITAL LETTER E ACUTE | 500/71 | LE120000 | É |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <E-circumflex> | 00CA | LATIN CAPITAL LETTER E CIRCUMFLEX | 500/72 | LE160000 | Ê |
| <E-diaresis> | 00CB | LATIN CAPITAL LETTER E DIAERESIS | 500/73 | LE180000 | Ë |
| <--grave> | O0CC | LATIN CAPITAL LETTER I GRAVE | 500/78 | LI140000 | İ |
| <l-acute> | OOCD | LATIN CAPITAL LETTER I ACUTE | 500/75 | LI120000 | Í |
| <l-circumflex> | OOCE | LATIN CAPITAL LETTER I CIRCUMFLEX | 500/76 | LI160000 | İ |
| <l-diaresis> | 00CF | LATIN CAPITAL LETTER I DIAERESIS | 500/77 | LI180000 | Ï |
| <Eth> | OODO | LATIN CAPITAL LETTER ETH (Icelandic) | 500/AC | LD620000 | Đ |
| <N-tilde> | 00D1 | LATIN CAPITAL LETTER N TILDE | 500/69 | LN200000 | N |
| <O-grave> | 00D2 | LATIN CAPITAL LETTER O GRAVE | 500/ED | LO140000 | Ò |
| <O-acute> | 00D3 | LATIN CAPITAL LETTER O ACUTE | 500/EE | LO120000 | Ó |
| <O-circumflex> | 00D4 | LATIN CAPITAL LETTER O CIRCUMFLEX | 500/EB | LO160000 | Ô |
| <O-tilde> | 00D5 | LATIN CAPITAL LETTER O TILDE | 500/EF | LO200000 | O |
| <O-diaresis> | 00D6 | LATIN CAPITAL LETTER O DIAERESIS | 500/EC | LO180000 | Ö |
| <multiply> | 00D7 | MULTIPLICATION SIGN | 500/BF | SA070000 | $\times$ |
| <O-slash> | 00D8 | LATIN CAPITAL LETTER O STROKE | 500/80 | LO620000 | $\varnothing$ |
| <U-grave> | 00D9 | LATIN CAPITAL LETTER U GRAVE | 500/FD | LU140000 | Ù |
| <U-acute> | 00DA | LATIN CAPITAL LETTER U ACUTE | 500/FE | LU120000 | Ú |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <U-circumflex> | 00DB | LATIN CAPITAL LETTER U CIRCUMFLEX | 500/FB | LU160000 | U |
| <U-diaresis> | 00DC | LATIN CAPITAL LETTER U DIAERESIS | 500/FC | LU180000 | Ü |
| <Y-acute> | O0DD | LATIN CAPITAL LETTER Y ACUTE | 500/AD | LY120000 | $\dot{Y}$ |
| <Thorn> | O0DE | LATIN CAPITAL LETTER THORN (Icelandic) | 500/AE | LT640000 | P |
| <s-sharp> | 00DF | LATIN SMALL LETTER SHARP S (German) | 500/59 | LS610000 | B |
| <a-grave> | O0E0 | LATIN SMALL LETTER A GRAVE | 500/44 | LA130000 | à |
| <a-acute> | 00E1 | LATIN SMALL LETTER A ACUTE | 500/45 | LA110000 | á |
| <a-circumflex> | 00E2 | LATIN SMALL LETTER A CIRCUMFLEX | 500/42 | LA150000 | â |
| <a-tilde> | 00E3 | LATIN SMALL LETTER A TILDE | 500/46 | LA190000 | ã |
| <a-diaresis> | 00E4 | LATIN SMALL LETTER A DIAERESIS | 500/43 | LA170000 | ä |
| <a-ring> | 00E5 | LATIN SMALL LETTER A RING ABOVE | 500/47 | LA270000 | å |
| <ae> | 00E6 | LATIN SMALL LIGATURE AE | 500/9C | LA510000 | æ |
| <c-cedilla> | 00E7 | LATIN SMALL LETTER C CEDILLA | 500/48 | LC410000 | ¢ |
| <e-grave> | 00E8 | LATIN SMALL LETTER E GRAVE | 500/54 | LE130000 | è |
| <e-acute> | 00E9 | LATIN SMALL LETTER E ACUTE | 500/51 | LE110000 | é |
| <e-circumflex> | 00EA | LATIN SMALL LETTER E CIRCUMFLEX | 500/52 | LE150000 | ê |
| <e-diaresis> | 00EB | LATIN SMALL LETTER E DIAERESIS | 500/53 | LE170000 | ë |


| Symbolic name | Unicode (ISO 10646) code point (hexadecimal) | Description | IBM code page and code point (xxx/xx) | IBM GCGID | GCGID <br> illustration |
| :---: | :---: | :---: | :---: | :---: | :---: |
| <i-grave> | 00EC | LATIN SMALL LETTER I GRAVE | 500/58 | LI130000 | ì |
| <i-acute> | O0ED | LATIN SMALL LETTER I ACUTE | 500/55 | LI110000 | í |
| <i-circumflex> | O0EE | LATIN SMALL LETTER I CIRCUMFLEX | 500/56 | LI150000 | î |
| <i-diaresis> | 00EF | LATIN SMALL LETTER I DIAERESIS | 500/57 | LI170000 | ï |
| <eth> | 00F0 | LATIN SMALL LETTER ETH (Icelandic) | 500/8C | LD630000 | ð |
| <n-tilde> | 00F1 | LATIN SMALL LETTER N TILDE | 500/49 | LN190000 | $\tilde{n}$ |
| <o-grave> | 00F2 | LATIN SMALL LETTER O GRAVE | 500/CD | LO130000 | Ò |
| <o-acute> | 00F3 | LATIN SMALL LETTER O ACUTE | 500/CE | LO110000 | Ó |
| <o-circumflex> | 00F4 | LATIN SMALL LETTER O CIRCUMFLEX | 500/CB | LO150000 | O |
| <o-tilde> | 00F5 | LATIN SMALL LETTER O TILDE | 500/CF | LO190000 | Õ |
| <o-diaresis> | 00F6 | LATIN SMALL LETTER O DIAERESIS | 500/CC | LO170000 | $\ddot{O}$ |
| <divide> | 00F7 | DIVISION SIGN | 500/E1 | SA060000 | $\div$ |
| <division> | 00F7 | DIVISION SIGN | 500/E1 | SA060000 | $\div$ |
| <o-slash> | 00F8 | LATIN SMALL LETTER O STROKE | 500/70 | LO610000 | $\varnothing$ |
| <u-grave> | 00F9 | LATIN SMALL LETTER U GRAVE | 500/DD | LU130000 | ù |
| <u-acute> | 00FA | LATIN SMALL LETTER U ACUTE | 500/DE | LU110000 | ú |
| <u-circumflex> | 00FB | LATIN SMALL LETTER U CIRCUMFLEX | 500/DB | LU150000 | û |
| <u-diaresis> | 00FC | LATIN SMALL LETTER U DIAERESIS | 500/DC | LU170000 | ü |


|  | Unicode (ISO <br> 10646) code <br> point <br> (hexadecimal) | Description | IBM code page <br> and code point <br> (xxx/xx) | IBM GCGID | GCGID <br> illustration |
| :--- | :--- | :--- | :--- | :--- | :--- |
| <ymbolic name | 00FD | LATIN SMALL <br> LETTER Y <br> ACUTE | $500 / 8 \mathrm{D}$ | LY110000 | ý |
| <thorn> | 00FE | LATIN SMALL <br> LETTER THORN <br> (Icelandic) | $500 / 8 E$ | LT630000 | $\mathbf{p}$ |
| <y-diaresis> | 00FF | LATIN SMALL <br> LETTER Y <br> DIAERESIS | $500 / D F$ | LY170000 | $\ddot{\mathrm{y}}$ |

## REXX extension characters

The following tables show the REXX extension characters that are supported on OS/400 ${ }^{(\mathrm{R})}$.

- Axxxxxxxx GCGIDs
- Bxxxxxxxx GCGIDs
- Gxxxxxxxx GCGIDs
- Hxxxxxxxx GCGIDs
- Jxxxxxxxx GCGIDs
- Kxxxxxxxx GCGIDs
- Lxxxxxxxx GCGIDs
- Nxxxxxxxx GCGIDs
- OxxxxxxxxGCGIDs
- Sxxxxxxxx GCGIDs


## REXX/400 extension characters: Axxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | ---: |
| AA010000 | Aleph (A/F/U) - Isolated | NAME |  |
| AA010002 | Aleph (A/F/U) - Final | NAME |  |
| AA010006 | Aleph (after Lam) (A/F/U) - Final | NAME |  |
| AA020000 | Aleph Maksura (A) - Isolated | NAME |  |
| AA020002 | Aleph Maksura (A) - Final | NAME |  |
| AA070009 | Fathatan (A) - Intrinsic | NAME |  |
| AA210000 | Aleph Madda (A), Aleph Maddey (F), Aleph <br> Madd (U) - Isolated | NAME |  |
| AA210002 | Aleph Madda (A), Aleph Maddey (F) - Final | NAME |  |
| AA210006 | Aleph Madda (after Lam) (A), Aleph Maddey <br> (after Lam) (F) - Final | NAME |  |
| AA310000 | Aleph Hamza (A), Aleph Hamzey (F) - Isolated | NAME |  |
| AA310002 | Aleph Hamza (A), Aleph Hamzey (F) - Final | NAME |  |
| AA310006 | Aleph Hamza (after Lam) (A), Aleph Hamzey <br> (after Lam) (F) - Final | NAME |  |
| AB010000 | Beh (A/F/U) - Isolated-Final | NAME |  |
| AB010003 | Beh (A/F/U) - Initial-Middle | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| AC210000 | Tcheh (F/U) - Isolated-Final | NAME |  |
| AC210003 | Tcheh (F/U) - Initial-Middle | NAME |  |
| AC470000 | Ayn (A/F/U) - Isolated | NAME |  |
| AC470002 | Ayn (A/F/U) - Final | NAME |  |
| AC470003 | Ayn (A/F/U) - Initial | NAME |  |
| AC470004 | Ayn (A/F/U) - Middle | NAME |  |
| AD010000 | Dal (A/F/U) - Isolated-Final | NAME |  |
| AD450000 | Dud (1st part) (A) - Isolated-Final | NAME |  |
| AD450003 | Dud (A), Zad (F), Duad (U) - Initial-Middle | NAME |  |
| AD450006 | Dud (A), Zad (F), Duad (U) - Isolated-Final | NAME |  |
| AD470000 | Thal (A), Zal (F/U) - Isolated-Final | NAME |  |
| AF010000 | Feh (A/F/U) - Isolated-Final | NAME |  |
| AF010003 | Feh (A/F/U) - Initial-Middle | NAME |  |
| AG010000 | Gaf (F/U) - Isolated-Final | NAME |  |
| AG010003 | Gaf (F/U) - Initial-Middle | NAME |  |
| AG230000 | Jeem (A/F/U) - Isolated-Final | NAME |  |
| AG230003 | Jeem (A/F/U) - Initial-Middle | NAME |  |
| AG310000 | Ghayn (A/F/U) - Isolated | NAME |  |
| AG310002 | Ghayn (A/F/U) - Final | NAME |  |
| AG310003 | Ghayn (A/F/U) - Initial | NAME |  |
| AG310004 | Ghayn (A/F/U) - Middle | NAME |  |
| AH010000 | Heh (A/F) - Isolated-Final | NAME |  |
| AH010003 | Heh (A/F) - Initial | NAME |  |
| AH010004 | Heh (A/F) - Middle | NAME |  |
| AH210000 | Heh Yey (F) - Isolated-Final | NAME |  |
| AH450000 | Hah (A), Hey (F), Heh (U) - Isolated-Final | NAME |  |
| AH450003 | Hah (A), Hey (F), Heh (U) - Initial-Middle | NAME |  |
| AH470000 | Khah (A), Khey (F), Kheh (U) - Isolated-Final | NAME |  |
| AH470003 | Khah (A), Khey (F), Kheh (U) - Initial-Middle | NAME |  |
| AK010000 | Caf (A) - Isolated-Final | NAME |  |
| AK010003 | Caf (A/F/U) - Initial-Middle | NAME |  |
| AK010006 | Caf (F/U) - Isolated-Final | NAME |  |
| AL010000 | Lam (A/F/U) - Isolated-Final | NAME |  |
| AL010003 | Lam (A/F) - Initial-Middle | NAME |  |
| AL020000 | Lamaleph (A/F) - Isolated | NAME |  |
| AL020003 | Lamaleph (A/F) - Final | NAME |  |
| AL220000 | Lamaleph Madda (A), Lamaleph Maddey (F) Isolated | NAME |  |
| AL220003 | Lamaleph Madda (A), Lamaleph Maddey (F) Final | NAME |  |
| AL320000 | Lamaleph Hamza (A), Lamaleph Hamzey (F) Isolated | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| AL320003 | Lamaleph Hamza (A), Lamaleph Hamzey (F) Final | NAME |  |
| AM010000 | Meem (A/F/U) - Isolated-Final | NAME |  |
| AM010003 | Meem (A/F/U) - Initial-Middle | NAME |  |
| AN010000 | Noon (A/F/U) - Isolated-Final | NAME |  |
| AN010003 | Noon (A/F/U) - Initial-Middle | NAME |  |
| AP010000 | Peh (F/U) - Isolated-Final | NAME |  |
| AP010003 | Peh (F/U) - Initial-Middle | NAME |  |
| AQ010000 | Qaf (A/F/U) - Isolated-Final | NAME |  |
| AQ010003 | Qaf (A/F/U) - Initial-Middle | NAME |  |
| AR010000 | Reh (A/F/U) - Isolated-Final | NAME |  |
| AS010000 | Seen (1st part) (A) - Isolated-Final | NAME |  |
| AS010003 | Seen (A/F/U) - Initial-Middle | NAME |  |
| AS010006 | Seen (A/F/U) - Isolated-Final | NAME |  |
| AS230000 | Sheen (1st part) (A) - Isolated-Final | NAME |  |
| AS230003 | Sheen (A/F/U) - Initial-Middle | NAME |  |
| AS230006 | Sheen (A/F/U) - Isolated-Final | NAME |  |
| AS450000 | Sad (1st part) (A) - Isolated-Final | NAME |  |
| AS450003 | Sad (A/F), Suad (U) - Initial-Middle | NAME |  |
| AS450006 | Sad (A/F), Suad (U) - Isolated-Final | NAME |  |
| AT010000 | Teh (A/F/U) - Isolated-Final | NAME |  |
| AT010003 | Teh (A/F/U) - Initial-Middle | NAME |  |
| AT020000 | Teh Marbuta (A), Teh Mudawara (U) -Isolated-Final | NAME |  |
| AT450000 | Tah (A/F), Toey (U) - Isolated-Final-InitialMiddle | NAME |  |
| AT450001 | Tah (A/F), Toey (U) - Isolated-Final | NAME |  |
| AT450002 | Tah (A/F), Toey (U) - Initial-Middle | NAME |  |
| AT470000 | Theh (A/F/U) - Isolated-Final | NAME |  |
| AT470003 | Theh (A/F/U) - Initial-Middle | NAME |  |
| AW010000 | Waw (A), Vav (F), Waow (U) - Isolated-Final | NAME |  |
| AW310000 | Waw Hamza (A), Vav Hamzey (F), Waow Hamza (U) - Isolated-Final | NAME |  |
| AX100000 | Shadda (A/F), Shadd (U) - Isolated | NAME |  |
| AX100004 | Shadda (A/F), Shadd (U) - Middle | NAME |  |
| AX300000 | Hamza (A), Hamzey (F), Hamza (U) - Isolated | NAME |  |
| AY010000 | Yeh (A) - Isolated | NAME |  |
| AY010002 | Yeh (A) - Final | NAME |  |
| AY010003 | Yeh (A) - Initial-Middle | NAME |  |
| AY020000 | Yey (F), Yeh Chotee (U) - Isolated | NAME |  |
| AY020002 | Yey (F), Yeh Chotee (U) - Final | NAME |  |
| AY020003 | Yey (F), Yeh Chotee (U) - Initial-Middle | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| AY310000 | Yeh Hamza (A) - Initial-Middle | NAME |  |
| AY320003 | Yey Hamzey (F), Yeh Chotee Hamza (U) - <br> Initial-Middle | NAME |  |
| AZ010000 | Zayn (A), Zey (F), Zeh (U) - Isolated-Final | NAME |  |
| AZ210000 | Jey (F), Zzeh (U) - Isolated-Final | NAME |  |
| AZ450000 | Zah (F), Zoey (U) - Isolated-Final-Initial-Middle | NAME |  |
| AZ450001 | Zah (A/F), Zoey (U) - Isolated-Final | NAME |  |
| AZ450002 | Zah (A/F), Zoey (U) - Initial-Middle | NAME |  |

## REXX/400 extension characters: Bxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| BA100000 | a - (Upper Vowel) | NAME |  |
| BA200000 | a - (Middle Vowel) | NAME |  |
| BA300000 | a - (Middle Vowel) | NAME |  |
| BA400000 | am - (Middle Vowel) | NAME |  |
| BA500000 | ai - (Middle Vowel) | NAME |  |
| BA600000 | ai - (Middle Vowel) | NAME |  |
| BA700000 | a - (Middle Vowel) | NAME |  |
| BB100000 | Bo | NAME |  |
| BC100000 | Cho | NAME |  |
| BD100000 | Do | NAME |  |
| BD200000 | Do | NAME |  |
| BE100000 | e/a - (Upper Vowel) | NAME |  |
| BE200000 | e - (Middle Vowel) | NAME |  |
| BE300000 | e - (Middle Vowel) | NAME |  |
| BE400000 | Yamakkan | NAME |  |
| BF100000 | Fo | NAME |  |
| BF200000 | Fo | NAME |  |
| BH100000 | Ho | NAME |  |
| BH200000 | Ho | NAME |  |
| BI100000 | i - (Upper Vowel) | NAME |  |
| BI200000 | i - (Upper Vowel) | NAME |  |
| BK100000 | Ko | NAME |  |
| BK200000 | Kho | NAME |  |
| BK300000 | Kho | NAME |  |
| BK400000 | Kho | NAME |  |
| BK500000 | Kho | NAME |  |
| BK600000 | Kho | NAME |  |
| BL100000 | Lo | NAME |  |
| BL200000 | Lu | NAME |  |
| BL300000 | Lo | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| BM100000 | Mo | NAME |  |
| BN100000 | Ngo | NAME |  |
| BN200000 | No | NAME |  |
| BN300000 | No | NAME |  |
| BN400000 | a - (Upper Vowel) | NAME |  |
| BO100000 | $\bigcirc$ | NAME |  |
| BO200000 | o- (Middle Vowel) | NAME |  |
| BP100000 | Po | NAME |  |
| BP200000 | Pho | NAME |  |
| BP300000 | Pho | NAME |  |
| BP400000 | Pho | NAME |  |
| BQ100000 | Thai Repeat Sign | NAME |  |
| BQ200000 | Thai Ellipsis | NAME |  |
| BQ300000 | a - (Lower Vowel) | NAME |  |
| BQ400000 | Fongmann | NAME |  |
| BQ500000 | Angkhankhu | NAME |  |
| BQ600000 | Komut | NAME |  |
| BR100000 | Ro | NAME |  |
| BR200000 | Ro | NAME |  |
| BS100000 | So | NAME |  |
| BS200000 | So | NAME |  |
| BS300000 | So | NAME |  |
| BS400000 | So | NAME |  |
| BT100000 | To | NAME |  |
| BT200000 | Tho | NAME |  |
| BT300000 | Tho | NAME |  |
| BT400000 | Tho | NAME |  |
| BT500000 | To | NAME |  |
| BT600000 | Tho | NAME |  |
| BT700000 | Tho | NAME |  |
| BT800000 | Tho | NAME |  |
| BU100000 | u - (Upper Vowel) | NAME |  |
| BU200000 | u - (Upper Vowel) | NAME |  |
| BU300000 | u - (Lower Vowel) | NAME |  |
| BU400000 | u - (Lower Vowel) | NAME |  |
| BW100000 | Wo | NAME |  |
| BX100000 | Xo | NAME |  |
| BX200000 | Хо | NAME |  |
| BX300000 | Хо | NAME |  |
| BY100000 | Jo | NAME |  |
| BY200000 | Yo | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| BZ100000 | 1st Tone Mark | NAME |  |
| BZ100300 | 1st Tone Mark, Low Position | NAME |  |
| BZ200000 | 2nd Tone Mark | NAME |  |
| BZ200300 | 2nd Tone Mark, Low Position | NAME |  |
| BZ300000 | 3rd Tone Mark | NAME |  |
| BZ300300 | 3rd Tone Mark, Low Position | NAME |  |
| BZ400000 | 4th Tone Mark | NAME |  |
| BZ400300 | 4th Tone Mark, Low Position | NAME |  |
| BZ500000 | 5th Tone Mark | NAME |  |
| BZ500300 | 5th Tone Mark, Low Position | NAME |  |
|  |  |  |  |

## REXX/400 extension characters: Gxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| GA010000 | Alpha Small | NAME |  |
| GA020000 | Alpha Capital | NAME |  |
| GA110000 | Alpha Acute Small | NAME |  |
| GA120000 | Alpha Acute Capital | NAME |  |
| GB010000 | Beta Small | NAME |  |
| GB020000 | Beta Capital | NAME |  |
| GD010000 | Delta Small | NAME |  |
| GD020000 | Delta Capital | NAME |  |
| GE010000 | Epsilon Small | NAME |  |
| GE020000 | Epsilon Capital | NAME |  |
| GE110000 | Epsilon Acute Small | NAME |  |
| GE120000 | Epsilon Acute Capital | NAME |  |
| GE310000 | Eta Small | NAME |  |
| GE320000 | Eta Capital | NAME |  |
| GE710000 | Eta Acute Small | NAME |  |
| GE720000 | Eta Acute Capital | NAME |  |
| GF010000 | Phi Small | NAME |  |
| GF020000 | Phi Capital | NAME |  |
| GG010000 | Gamma Small | NAME |  |
| GG020000 | Gamma Capital | NAME |  |
| GH010000 | Chi Small | NAME |  |
| GH020000 | Chi Capital | NAME |  |
| GI010000 | Iota Small | NAME |  |
| Gl020000 | Iota Capital | NAME |  |
| Gl110000 | Iota Acute Small | NAME |  |
| Gl120000 | Iota Acute Capital | NAME |  |
| Gl170000 | Iota Diaeresis Small | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| GI180000 | Iota Diaeresis Capital | NAME |  |
| GI730000 | Iota Acute and Diaeresis Small | NAME |  |
| GK010000 | Kappa Small | NAME |  |
| GK020000 | Kappa Capital | NAME |  |
| GL010000 | Lambda Small | NAME |  |
| GL020000 | Lambda Capital | NAME |  |
| GM010000 | Mu Small | NAME |  |
| GM020000 | Mu Capital | NAME |  |
| GN010000 | Nu Small | NAME |  |
| GN020000 | Nu Capital | NAME |  |
| GO010000 | Omicron Small | NAME |  |
| GO020000 | Omicron Capital | NAME |  |
| GO110000 | Omicron Acute Small | NAME |  |
| GO120000 | Omicron Acute Capital | NAME |  |
| GO310000 | Omega Small | NAME |  |
| GO320000 | Omega Capital | NAME |  |
| GO710000 | Omega Acute Small | NAME |  |
| GO720000 | Omega Acute Capital | NAME |  |
| GP010000 | Pi Small | NAME |  |
| GP020000 | Pi Capital | NAME |  |
| GP610000 | Psi Small | NAME |  |
| GP620000 | Psi Capital | NAME |  |
| GR010000 | Rho Small | NAME |  |
| GR020000 | Rho Capital | NAME |  |
| GS010000 | Sigma Small | NAME |  |
| GS020000 | Sigma Capital | NAME |  |
| GS610000 | Sigma Small (Final Form) | NAME |  |
| GT010000 | Tau Small | NAME |  |
| GT020000 | Tau Capital | NAME |  |
| GT610000 | Theta Small | NAME |  |
| GT620000 | Theta Capital | NAME |  |
| GU010000 | Upsilon Small | NAME |  |
| GU020000 | Upsilon Capital | NAME |  |
| GU110000 | Upsilon Acute Small | NAME |  |
| GU120000 | Upsilon Acute Capital | NAME |  |
| GU170000 | Upsilon Diaeresis Small | NAME |  |
| GU180000 | Upsilon Diaeresis Capital | NAME |  |
| GU730000 | Upsilon Acute and Diaeresis Small | NAME |  |
| GX010000 | Xi Small | NAME |  |
| GX020000 | Xi Capital | NAME |  |
| GZ010000 | Zeta Small | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| GZ020000 | Zeta Capital | NAME |  |

REXX/400 extension characters: Hxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| HB010000 | Bet | NAME |  |
| HD010000 | Dalet | NAME |  |
| HG010000 | Gimel | NAME |  |
| HH010000 | He | NAME |  |
| HH450000 | Het | NAME |  |
| HK010000 | Kaf | NAME |  |
| HK610000 | Kaf (Final Form) | NAME |  |
| HL010000 | Lamed | NAME |  |
| HM010000 | Mem | NAME |  |
| HM610000 | Mem (Final Form) | NAME |  |
| HN010000 | Nun | NAME |  |
| HN610000 | Nun (Final Form) | NAME |  |
| HP010000 | Pe | NAME |  |
| HP610000 | Pe (Final Form) | NAME |  |
| HQ010000 | Qof | NAME |  |
| HR010000 | Resh | NAME |  |
| HS010000 | Samech | NAME |  |
| HS210000 | Shin | NAME |  |
| HS450000 | Zadi | NAME |  |
| HS610000 | Zadi (Final Form) | NAME |  |
| HT010000 | Tav | NAME |  |
| HT450000 | Tet | NAME |  |
| HW010000 | Waw | NAME |  |
| HX330000 | Alef | NAME |  |
| HX350000 | Ayin | NAME |  |
| HY010000 | Yod | NAME |  |
| HZ010000 | Zayin | NAME |  |

## REXX/400 extension characters: Jxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| JA000000 | A | NAME |  |
| JA010000 | a | NAME |  |
| JE000000 | E | NAME |  |
| JE010000 | e | NAME |  |
| JH100000 | HA | NAME |  |
| JH200000 | HI | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| JH300000 | HU or FU | NAME |  |
| JH400000 | HE | NAME |  |
| JH500000 | HO | NAME |  |
| JI000000 | 1 | NAME |  |
| JI010000 | i | NAME |  |
| JK100000 | KA | NAME |  |
| JK200000 | KI | NAME |  |
| JK300000 | KU | NAME |  |
| JK400000 | KE | NAME |  |
| JK500000 | KO | NAME |  |
| JM100000 | MA | NAME |  |
| JM200000 | Ml | NAME |  |
| JM300000 | MU | NAME |  |
| JM400000 | ME | NAME |  |
| JM500000 | MO | NAME |  |
| JN000000 | N | NAME |  |
| JN100000 | NA | NAME |  |
| JN200000 | NI | NAME |  |
| JN300000 | NU | NAME |  |
| JN400000 | NE | NAME |  |
| JN500000 | NO | NAME |  |
| JO000000 | 0 | NAME |  |
| JO010000 | - | NAME |  |
| JQ700000 | Katakana Full Stop | NAME |  |
| JQ710000 | Katakana Left Bracket | NAME |  |
| JQ720000 | Katakana Right Bracket | NAME |  |
| JQ730000 | Katakana Comma | NAME |  |
| JQ740000 | Katakana Conjunctive Symbol | NAME |  |
| JR100000 | RA | NAME |  |
| JR200000 | RI | NAME |  |
| JR300000 | RU | NAME |  |
| JR400000 | RE | NAME |  |
| JR500000 | RO | NAME |  |
| JS100000 | SA | NAME |  |
| JS200000 | SI or SHI | NAME |  |
| JS300000 | SU | NAME |  |
| JS400000 | SE | NAME |  |
| JS500000 | SO | NAME |  |
| JT100000 | TA | NAME |  |
| JT200000 | TI or CHI | NAME |  |
| JT300000 | TU or TSU | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| JT310000 | tu or tsu | NAME |  |
| JT400000 | TE | NAME |  |
| JT500000 | TO | NAME |  |
| JU000000 | U | NAME |  |
| JU010000 | u | NAME |  |
| JW100000 | WA | NAME |  |
| JW500000 | WO, Katakana Participle | NAME |  |
| JX700000 | Prolonged Sound Symbol | NAME |  |
| JX710000 | Voiced Sound Symbol | NAME |  |
| JX720000 | Semi-Voiced Sound Symbol | NAME |  |
| JY100000 | YA | NAME |  |
| JY110000 | ya | NAME |  |
| JY300000 | YU | NAME |  |
| JY310000 | yu | NAME |  |
| JY500000 | YO | NAME |  |
| JY510000 | yo | NAME |  |

## REXX/400 extension characters: Kxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :--- | :--- | :--- | :--- |
| KA010000 | a Small | NAME |  |
| KA020000 | A Capital | NAME |  |
| KA150000 | ya Small | NAME |  |
| KA160000 | YA Capital | NAME |  |
| KB010000 | b Small | NAME |  |
| KB020000 | B Capital | NAME |  |
| KC010000 | ts Small | NAME |  |
| KC020000 | TS Capital | NAME |  |
| KC110000 | c Special Small | NAME |  |
| KC120000 | C Special Capital | NAME |  |
| KC210000 | ch Small | NAME |  |
| KC220000 | CH Capital | NAME |  |
| KD010000 | d Small | NAME |  |
| KD020000 | D Capital | NAME |  |
| KD610000 | d Special Small | NAME |  |
| KD620000 | D Special Capital | NAME |  |
| KE010000 | e Small | NAME |  |
| KE020000 | E Capital | NAME |  |
| KE130000 | e Special Small | NAME |  |
| KE140000 | E Special Capital | NAME |  |
| KE150000 | ye Small |  |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| KE160000 | YE Capital | NAME |  |
| KE170000 | e Diaeresis Small | NAME |  |
| KE180000 | E Diaeresis Capital | NAME |  |
| KF010000 | f Small | NAME |  |
| KF020000 | F Capital | NAME |  |
| KG010000 | g Small | NAME |  |
| KG020000 | G Capital | NAME |  |
| KG110000 | g Special Small | NAME |  |
| KG120000 | G Special Capital | NAME |  |
| KG210000 | dz Special Small | NAME |  |
| KG220000 | DZ Special Capital | NAME |  |
| KH010000 | kh Small | NAME |  |
| KH020000 | KH Capital | NAME |  |
| KI010000 | i Small | NAME |  |
| KI020000 | I Capital | NAME |  |
| KI110000 | i Special Small | NAME |  |
| KI120000 | I Special Capital | NAME |  |
| KI170000 | i Diaeresis Small | NAME |  |
| KI180000 | I Diaeresis Capital | NAME |  |
| KJ010000 | j Small | NAME |  |
| KJ020000 | J Capital | NAME |  |
| KJ110000 | j Special Small | NAME |  |
| KJ120000 | J Special Capital | NAME |  |
| KK010000 | k Small | NAME |  |
| KK020000 | K Capital | NAME |  |
| KK110000 | k Special Small | NAME |  |
| KK120000 | K Special Capital | NAME |  |
| KL010000 | I Small | NAME |  |
| KL020000 | L Capital | NAME |  |
| KL410000 | Ij Small | NAME |  |
| KL420000 | LJ Capital | NAME |  |
| KM010000 | m Small | NAME |  |
| KM020000 | M Capital | NAME |  |
| KN010000 | n Small | NAME |  |
| KN020000 | N Capital | NAME |  |
| KN110000 | nj Small | NAME |  |
| KN120000 | NJ Capital | NAME |  |
| KO010000 | - Small | NAME |  |
| KO020000 | O Capital | NAME |  |
| KP010000 | p Small | NAME |  |
| KP020000 | P Capital | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| KR010000 | r Small | NAME |  |
| KR020000 | R Capital | NAME |  |
| KS010000 | s Small | NAME |  |
| KS020000 | S Capital | NAME |  |
| KS150000 | shch Small | NAME |  |
| KS160000 | SHCH Capital | NAME |  |
| KS210000 | sh Small | NAME |  |
| KS220000 | SH Capital | NAME |  |
| KT010000 | t Small | NAME |  |
| KT020000 | T Capital | NAME |  |
| KU010000 | u Small | NAME |  |
| KU020000 | U Capital | NAME |  |
| KU150000 | yu Small | NAME |  |
| KU160000 | YU Capital | NAME |  |
| KU210000 | Hard Sign Small | NAME |  |
| KU220000 | Hard Sign Capital | NAME |  |
| KU230000 | u Breve Small | NAME |  |
| KU240000 | U Breve Capital | NAME |  |
| KV010000 | v Small | NAME |  |
| KV020000 | V Capital | NAME |  |
| KX110000 | Soft Sign Small | NAME |  |
| KX120000 | Soft Sign Capital | NAME |  |
| KY010000 | y Small | NAME |  |
| KY020000 | Y Capital | NAME |  |
| KZ010000 | z Small | NAME |  |
| KZ020000 | Z Capital | NAME |  |
| KZ150000 | s Special Small | NAME |  |
| KZ160000 | S Special Capital | NAME |  |
| KZ210000 | zh Small | NAME |  |
| KZ220000 | zh Capital | NAME |  |

## REXX/400 extension characters: Lxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :---: |
| LA010000 | a Small | NAME |  |
| LA020000 | A Capital | NAME |  |
| LA110000 | a Acute Small | NAME |  |
| LA120000 | A Acute Capital | NAME |  |
| LA130000 | a Grave Small | NAME |  |
| LA140000 | A Grave Capital | NAME |  |
| LA150000 | a Circumflex Small | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| LA160000 | A Circumflex Capital | NAME |  |
| LA170000 | a Diaeresis Small | NAME |  |
| LA180000 | A Diaeresis Capital | NAME |  |
| LA190000 | a Tilde Small | NAME |  |
| LA200000 | A Tilde Capital | NAME |  |
| LA230000 | a Breve Small | NAME |  |
| LA240000 | A Breve Capital | NAME |  |
| LA270000 | a Overcircle Small | NAME |  |
| LA280000 | A Overcircle Capital | NAME |  |
| LA430000 | a Ogonek Small | NAME |  |
| LA440000 | A Ogonek Capital | NAME |  |
| LA510000 | ae Diphthong Small | NAME |  |
| LA520000 | ae Diphthong Capital | NAME |  |
| LB010000 | b Small | NAME |  |
| LB020000 | B Capital | NAME |  |
| LC010000 | c Small | NAME |  |
| LC020000 | C Capital | NAME |  |
| LC110000 | c Acute Small | NAME |  |
| LC120000 | C Acute Capital | NAME |  |
| LC150000 | c Circumflex Small | NAME |  |
| LC160000 | C Circumflex Capital | NAME |  |
| LC210000 | c Caron Small | NAME |  |
| LC220000 | C Caron Capital | NAME |  |
| LC290000 | c Overdot Small | NAME |  |
| LC300000 | C Overdot Capital | NAME |  |
| LC410000 | c Cedilla Small | NAME |  |
| LC420000 | C Cedilla Capital | NAME |  |
| LD010000 | d Small | NAME |  |
| LD020000 | D Capital | NAME |  |
| LD210000 | d Caron Small | NAME |  |
| LD220000 | D Caron Capital | NAME |  |
| LD610000 | d Stroke Small | NAME |  |
| LD620000 | D Stroke Capital/Eth Icelandic Capital | NAME |  |
| LD630000 | eth Icelandic Small | NAME |  |
| LE010000 | e Small | NAME |  |
| LE020000 | E Capital | NAME |  |
| LE110000 | e Acute Small | NAME |  |
| LE120000 | E Acute Capital | NAME |  |
| LE130000 | e Grave Small | NAME |  |
| LE140000 | E Grave Capital | NAME |  |
| LE150000 | e Circumflex Small | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| LE160000 | E Circumflex Capital | NAME |  |
| LE170000 | e Diaeresis Small | NAME |  |
| LE180000 | E Diaeresis Capital | NAME |  |
| LE210000 | e Caron Small | NAME |  |
| LE220000 | E Caron Capital | NAME |  |
| LE430000 | e Ogonek Small | NAME |  |
| LE440000 | E Ogonek Capital | NAME |  |
| LF010000 | f Small | NAME |  |
| LF020000 | F Capital | NAME |  |
| LG010000 | g Small | NAME |  |
| LG020000 | G Capital | NAME |  |
| LG150000 | g Circumflex Small | NAME |  |
| LG160000 | G Circumflex Capital | NAME |  |
| LG230000 | g Breve Small | NAME |  |
| LG240000 | G Breve Capital | NAME |  |
| LG290000 | g Overdot Small | NAME |  |
| LG300000 | G Overdot Capital | NAME |  |
| LH010000 | h Small | NAME |  |
| LH020000 | H Capital | NAME |  |
| LH150000 | h Circumflex Small | NAME |  |
| LH160000 | H Circumflex Capital | NAME |  |
| LH610000 | h Stroke Small | NAME |  |
| LH620000 | H Stroke Capital | NAME |  |
| LI010000 | i Small | NAME |  |
| LI020000 | I Capital | NAME |  |
| LI110000 | i Acute Small | NAME |  |
| LI120000 | I Acute Capital | NAME |  |
| LI130000 | i Grave Small | NAME |  |
| LI140000 | I Grave Capital | NAME |  |
| LI150000 | i Circumflex Small | NAME |  |
| LI160000 | I Circumflex Capital | NAME |  |
| LI170000 | i Diaeresis Small | NAME |  |
| LI180000 | I Diaeresis Capital | NAME |  |
| LI300000 | I Overdot Capital | NAME |  |
| LI610000 | i Dotless Small | NAME |  |
| LJ010000 | j Small | NAME |  |
| LJ020000 | J Capital | NAME |  |
| LJ150000 | j Circumflex Small | NAME |  |
| LJ160000 | J Circumflex Capital | NAME |  |
| LK010000 | k Small | NAME |  |
| LK020000 | K Capital | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| LL010000 | I Small | NAME |  |
| LL020000 | L Capital | NAME |  |
| LL110000 | I Acute Small | NAME |  |
| LL120000 | L Acute Capital | NAME |  |
| LL210000 | I Caron Small | NAME |  |
| LL220000 | L Caron Capital | NAME |  |
| LL610000 | I Stroke Small | NAME |  |
| LL620000 | L Stroke Capital | NAME |  |
| LM010000 | m Small | NAME |  |
| LM020000 | M Capital | NAME |  |
| LN010000 | n Small | NAME |  |
| LN020000 | N Capital | NAME |  |
| LN110000 | n Acute Small | NAME |  |
| LN120000 | N Acute Capital | NAME |  |
| LN190000 | n Tilde Small | NAME |  |
| LN200000 | N Tilde Capital | NAME |  |
| LN210000 | n Caron Small | NAME |  |
| LN220000 | N Caron Capital | NAME |  |
| LO010000 | o Small | NAME |  |
| LO020000 | O Capital | NAME |  |
| LO110000 | - Acute Small | NAME |  |
| LO120000 | O Acute Capital | NAME |  |
| LO130000 | - Grave Small | NAME |  |
| LO140000 | O Grave Capital | NAME |  |
| LO150000 | o Circumflex Small | NAME |  |
| LO160000 | O Circumflex Capital | NAME |  |
| LO170000 | o Diaeresis Small | NAME |  |
| LO180000 | O Diaeresis Capital | NAME |  |
| LO190000 | - Tilde Small | NAME |  |
| LO200000 | O Tilde Capital | NAME |  |
| LO250000 | o Double Acute Small | NAME |  |
| LO260000 | O Double Acute Capital | NAME |  |
| LO610000 | - Slash Small | NAME |  |
| LO620000 | O Slash Capital | NAME |  |
| LP010000 | p Small | NAME |  |
| LP020000 | P Capital | NAME |  |
| LQ010000 | q Small | NAME |  |
| LQ020000 | Q Capital | NAME |  |
| LR010000 | r Small | NAME |  |
| LR020000 | R Capital | NAME |  |
| LR110000 | r Acute Small | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| LR120000 | R Acute Capital | NAME |  |
| LR210000 | r Caron Small | NAME |  |
| LR220000 | R Caron Capital | NAME |  |
| LS010000 | s Small | NAME |  |
| LS020000 | S Capital | NAME |  |
| LS110000 | s Acute Small | NAME |  |
| LS120000 | S Acute Capital | NAME |  |
| LS150000 | s Circumflex Small | NAME |  |
| LS160000 | S Circumflex Capital | NAME |  |
| LS210000 | s Caron Small | NAME |  |
| LS220000 | S Caron Capital | NAME |  |
| LS410000 | s Cedilla Small | NAME |  |
| LS420000 | S Cedilla Capital | NAME |  |
| LS610000 | Sharp s Small | NAME |  |
| LT010000 | t Small | NAME |  |
| LT020000 | T Capital | NAME |  |
| LT210000 | t Caron Small | NAME |  |
| LT220000 | T Caron Capital | NAME |  |
| LT410000 | t Cedilla Small | NAME |  |
| LT420000 | T Cedilla Capital | NAME |  |
| LT630000 | Thorn Icelandic Small | NAME |  |
| LT640000 | Thorn Icelandic Capital | NAME |  |
| LU010000 | u Small | NAME |  |
| LU020000 | U Capital | NAME |  |
| LU110000 | u Acute Small | NAME |  |
| LU120000 | U Acute Capital | NAME |  |
| LU130000 | u Grave Small | NAME |  |
| LU140000 | U Grave Capital | NAME |  |
| LU150000 | u Circumflex Small | NAME |  |
| LU160000 | U Circumflex Capital | NAME |  |
| LU170000 | u Diaeresis Small | NAME |  |
| LU180000 | U Diaeresis Capital | NAME |  |
| LU230000 | u Breve Small | NAME |  |
| LU240000 | U Breve Capital | NAME |  |
| LU250000 | u Double Acute Small | NAME |  |
| LU260000 | U Double Acute Capital | NAME |  |
| LU270000 | u Overcircle Small | NAME |  |
| LU280000 | u Overcircle Capital | NAME |  |
| LV010000 | v Small | NAME |  |
| LV020000 | V Capital | NAME |  |
| LW010000 | w Small | NAME |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| LW020000 | W Capital | NAME |  |
| LX010000 | x Small | NAME |  |
| LX020000 | X Capital | NAME |  |
| LY010000 | y Small | NAME |  |
| LY020000 | Y Capital | NAME |  |
| LY110000 | y Acute Small | NAME |  |
| LY120000 | Y Acute Capital | NAME |  |
| LY170000 | y Diaeresis Small | NAME |  |
| LZ010000 | z Small | NAME |  |
| LZ020000 | Z Capital | NAME |  |
| LZ110000 | z Acute Small | NAME |  |
| LZ120000 | Z Acute Capital | NAME |  |
| LZ210000 | z Caron Small | NAME |  |
| LZ220000 | Z Caron Capital | NAME |  |
| LZ290000 | z Overdot Small | NAME |  |
| LZ300000 | Z Overdot Capital | NAME |  |

REXX/400 extension characters: Nxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :--- | :--- | :--- | :--- |
| ND010000 | One | NUMBER |  |
| ND010001 | One (Arabic, Farsi, Urdu) | INVALID |  |
| ND010002 | One, Thai | INVALID |  |
| ND011000 | One Superscript | INVALID |  |
| ND020000 | Two | NUMBER |  |
| ND020001 | Two (Arabic, Farsi, Urdu) | INVALID |  |
| ND020002 | Two, Thai | INVALID |  |
| ND021000 | Two Superscript | INVALID |  |
| ND030000 | Three | NUMBER |  |
| ND030001 | Three (Arabic, Farsi, Urdu) | INVALID |  |
| ND030002 | Three, Thai | INVALID |  |
| ND031000 | Three Superscript | INVALID |  |
| ND040000 | Four | NUMBER |  |
| ND040001 | Four (Arabic) | INVALID |  |
| ND040002 | Four, Thai | INVALID |  |
| ND040003 | Four (Farsi) | INVALID |  |
| ND050000 | Five | NUMBER |  |
| ND050001 | Five (Arabic) | INVALID |  |
| ND050002 | Five, Thai | INVALID |  |
| ND050004 | Five (Farsi, Urdu) | INVALID |  |
| ND060000 | Six | NUMBER |  |


| GCGID | Description | Token Type | Token Flag |
| :--- | :--- | :--- | :--- |
| ND060001 | Six (Arabic, Urdu) | INVALID |  |
| ND060002 | Six, Thai | INVALID |  |
| ND060003 | Six (Farsi) | INVALID |  |
| ND070000 | Seven | NUMBER |  |
| ND070001 | Seven (Arabic, Farsi) | INVALID |  |
| ND070002 | Seven, Thai | INVALID |  |
| ND080000 | Eight | NUMBER |  |
| ND080001 | Eight (Arabic, Farsi, Urdu) | INVALID |  |
| ND080002 | Eight, Thai | INVALID |  |
| ND090000 | Nine | NUMBER |  |
| ND090001 | Nine (Arabic, Farsi, Urdu) | INVALID |  |
| ND090002 | Nine, Thai | INVALID |  |
| ND100000 | Zero | NUMBER |  |
| ND100001 | Zero (Arabic, Urdu) | INVALID |  |
| ND100002 | Zero, Thai | INVALID |  |
| ND100003 | Zero (Farsi) | INVALID |  |
| NF010000 | One Half | INVALID |  |
| NF040000 | One Quarter | INVALID |  |
| NF050000 | Three Quarters | INVALID |  |

## REXX/400 extension characters: Oxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| OA000000 | A (Basic Vowel) | NAME |  |
| OA200000 | AE (Compound Vowel) | NAME |  |
| OB000000 | B (Basic Consonant) | NAME |  |
| OB100000 | BB (Compound Consonant) | NAME |  |
| OB200000 | BS (Compound Consonant) | NAME |  |
| OC200000 | CH (Basic Consonant) | NAME |  |
| OD000000 | D (Basic Consonant) | NAME |  |
| OD100000 | DD (Compound Consonant) | NAME |  |
| OE000000 | E (Compound Vowel) | NAME |  |
| OE200000 | EO (Basic Vowel) | NAME |  |
| OE300000 | EU (Basic Vowel) | NAME |  |
| OE400000 | EUI (Compound Vowel) | NAME |  |
| OG000000 | G (Basic Consonant) | NAME |  |
| OG100000 | GG (Compound Consonant) | NAME |  |
| OG200000 | GS (Compound Consonant) | NAME |  |
| OH000000 | H (Basic Consonant) | NAME |  |
| OI000000 | I (Basic Vowel) | NAME |  |
| OJ000000 | J (Basic Consonant) |  |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| OJ100000 | JJ (Compound Consonant) | NAME |  |
| OK000000 | K (Basic Consonant) | NAME |  |
| OL000000 | L (Basic Consonant) | NAME |  |
| OL100000 | LB (Compound Consonant) | NAME |  |
| OL200000 | LG (Compound Consonant) | NAME |  |
| OL300000 | LH (Compound Consonant) | NAME |  |
| OL400000 | :c 2 .LM (Compound Consonant) | NAME |  |
| OL500000 | LP (Compound Consonant) | NAME |  |
| OL600000 | LS (Compound Consonant) | NAME |  |
| OL700000 | LT (Compound Consonant) | NAME |  |
| OM000000 | M (Basic Consonant) | NAME |  |
| ON000000 | N (Basic Consonant) | NAME |  |
| ON100000 | NH (Compound Consonant) | NAME |  |
| ON150000 | NJ (Compound Consonant) | NAME |  |
| ON200000 | NG or W (Basic Consonant) | NAME |  |
| 00000000 | O (Basic Vowel) | NAME |  |
| 00100000 | OA (Compound Vowel) | NAME |  |
| 00200000 | OAE (Compound Vowel) | NAME |  |
| 00300000 | Ol (Compound Vowel) | NAME |  |
| OP000000 | P (Basic Consonant) | NAME |  |
| OS000000 | S (Basic Consonant) | NAME |  |
| OS100000 | SS (Compound Consonant) | NAME |  |
| OT000000 | T (Basic Consonant) | NAME |  |
| OU000000 | U (Basic Vowel) | NAME |  |
| OU200000 | UE (Compound Vowel) | NAME |  |
| OU300000 | UEO (Compound Vowel) | NAME |  |
| OU400000 | UI (Compound Vowel) | NAME |  |
| OY200000 | YA (Basic Vowel) | NAME |  |
| OY250000 | YAE (Compound Vowel) | NAME |  |
| OY300000 | YE (Compound Vowel) | NAME |  |
| OY400000 | YEO (Basic Vowel) | NAME |  |
| OY500000 | YO (Basic Vowel) | NAME |  |
| OY600000 | YU (Basic Vowel) | NAME |  |

## REXX/400 extension characters: Sxxxxxxx GCGIDs

| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| SA010000 | Plus Sign | OPER | PLUS |
| SA020000 | Plus or Minus Sign | INVALID |  |
| SA030000 | Less Than Sign/Greater Than Sign <br> (Arabic) | OPER | LESS_THAN |
| SA040000 | Equal Sign | OPER | EQUAL |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| SA050000 | Greater Than Sign/Less Than Sign (Arabic) | OPER | GREAT_THAN |
| SA060000 | Divide Sign | INVALID |  |
| SA070000 | Multiply Sign | INVALID |  |
| SC010000 | International Currency Symbol | INVALID |  |
| SC020000 | Pound Sterling Sign | INVALID |  |
| SC030000 | Dollar Sign | INVALID |  |
| SC040000 | Cent Sign | INVALID |  |
| SC050000 | Yen Sign | INVALID |  |
| SC060000 | Peseta Sign | INVALID |  |
| SC070000 | Florin Sign | INVALID |  |
| SC120000 | Yuan Sign | INVALID |  |
| SC130000 | Currency Symbol, Thailand | INVALID |  |
| SC140000 | Won Sign | INVALID |  |
| SC160000 | Rial Sign, Iran | INVALID |  |
| SD110000 | Acute Accent | INVALID |  |
| SD130000 | Grave Accent | INVALID |  |
| SD150000 | Circumflex Accent | INVALID |  |
| SD170000 | Diaeresis/Umlaut Accent | INVALID |  |
| SD190000 | Tilde Accent | INVALID |  |
| SD210000 | Caron Accent | INVALID |  |
| SD230000 | Breve Accent | INVALID |  |
| SD250000 | Double Acute Accent | INVALID |  |
| SD290000 | Overdot Accent | INVALID |  |
| SD410000 | Cedilla or Sedila Accent | INVALID |  |
| SD430000 | Ogonek Accent | INVALID |  |
| SD630000 | Middle Dot | INVALID |  |
| SD730000 | Acute and Diaeresis Accent | INVALID |  |
| SM000000 | Numero Sign | INVALID |  |
| SM010000 | Number Sign | INVALID |  |
| SM020000 | Percent Sign | OPER | PERCENT |
| SM020007 | Percent Sign (Arabic) | OPER | PERCENT |
| SM030000 | Ampersand | OPER | AMPERSAND |
| SM040000 | Asterisk | OPER | ASTERISK |
| SM040007 | Asterisk (Arabic Preference - 5 points) | OPER | ASTERISK |
| SM050000 | At Sign | INVALID |  |
| SM060000 | Left Bracket | INVALID |  |
| SM070000 | Backslash | OPER | BACKSLASH |
| SM080000 | Right Bracket | INVALID |  |
| SM100000 | Double Underscore | INVALID |  |
| SM110000 | Left Brace | INVALID |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :---: | :---: | :---: |
| SM120000 | Long Dash/Throughscore | INVALID |  |
| SM130000 | Vertical Line/Logical OR | OPER | VERTI_BAR |
| SM140000 | Right Brace | INVALID |  |
| SM150000 | Overline | INVALID |  |
| SM170000 | Micro Symbol | INVALID |  |
| SM190000 | Degree Symbol | INVALID |  |
| SM200000 | Ordinal Indicator, Masculine | INVALID |  |
| SM210000 | Ordinal Indicator, Feminine | INVALID |  |
| SM240000 | Section Symbol (USA)/Paragraph Symbol (Europe) | INVALID |  |
| SM250000 | Paragraph Symbol (USA) | INVALID |  |
| SM520000 | Copyright Symbol | INVALID |  |
| SM530000 | Registered Trademark Symbol | INVALID |  |
| SM570000 | Bullet | INVALID |  |
| SM650000 | Vertical Line, Broken | INVALID |  |
| SM660000 | Logical NOT/End Of Line Symbol | OPER | NOT_SIGN |
| SM860000 | Tatweel (Connector) | INVALID |  |
| SM870000 | Kasseh (Tail) | INVALID |  |
| SP010000 | Space | WHITE | BLANK |
| SP020000 | Exclamation Point | NAME |  |
| SP030000 | Exclamation Point, Inverted | INVALID |  |
| SP040000 | Quotation Marks | STRING | QUOTE |
| SP050000 | Apostrophe | STRING | APOSTROPH |
| SP060000 | Left Parenthesis | PUNCT | L_PAREN |
| SP070000 | Right Parenthesis | PUNCT | R_PAREN |
| SP080000 | Comma | PUNCT | COMMA |
| SP080007 | Comma Rotated (Arabic) | INVALID |  |
| SP090000 | Underline/Continuous Underscore | NAME |  |
| SP100000 | Hyphen/Minus Sign | OPER | MINUS |
| SP110000 | Period/Full Stop | NAME | PERIOD |
| SP120000 | Slash | OPER | SLASH |
| SP130000 | Colon | PUNCT | COLON |
| SP140000 | Semicolon | PUNCT | SEMI_COLON |
| SP140007 | Semicolon, Rotated (Arabic) | INVALID |  |
| SP150000 | Question Mark | NAME | QUESTION |
| SP150007 | Question Mark, Reversed (Arabic) | INVALID |  |
| SP160000 | Question Mark, Inverted | INVALID |  |
| SP170000 | Left Angle Quotes | INVALID |  |
| SP180000 | Right Angle Quotes | INVALID |  |
| SP190000 | Left Single Quote | INVALID |  |
| SP200000 | Right Single Quote | INVALID |  |


| GCGID | Description | Token Type | Token Flag |
| :---: | :--- | :--- | :--- |
| SP300000 | Required Space | INVALID |  |
| SP310000 | Numeric Space | INVALID |  |
| SP320000 | Syllable Hyphen | INVALID |  |
| SP490000 | Korean Fill (NULL) Character | INVALID |  |

## Globalization checklists

This topic provides links to the numerous checklists that are presented within the globalization topics. They are useful tools for insuring that you have considered key issues that will be important in each particular aspect of your globalization planning and implementation. The following table provides the link to each checklist and shows where you can go to read related topics.

| Checklist | Where you can go to read related topics |
| :--- | :--- |
| Globalization planning | This comprehensive two-part checklist, which you can find in the Set up an iSeries <br> server with a national language version topic, provides a good summary of issues <br> relating to hardware installation, software installation, and system configuration. |
| replication design | Use this checklist as you begin planning the development of a globalized application. <br> You can find this checklist in the Design globalized applications topic. |
| User interface design | Use this checklist to insure that the user interfaces you create for your applications <br> anticipate unique requirements from multiple linguistic and cultural environments. You <br> can find this checklist in the User interfaces topic. |
| Bidirectional support | Languages such as Arabic and Hebrew are displayed in a right-to-left direction. <br> Because of this, you must take care that your applications handle bidirectional data <br> properly, and that your interfaces can accommodate this presentation of text and data. <br> You can find this checklist in the Work with bidirectional data topic. |
| DBCS application design | You need to take numerous issues under consideration when you develop applications <br> that use double-byte character set (DBCS) support. You can find this checklist in the <br> Work with DBCS data topic. |

## Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan
The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

[^0]Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

## COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

## Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both:
Advanced Function Printing
AFP
AS/400
C/400
DB2
Distributed Relational Database Architecture
DRDA
IBM
IPDS
iSeries
OfficeVision

Operating System/400
OS/400
PS/2
SAA
System/370
System/390
WebSphere
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Other company, product, and service names may be trademarks or service marks of others.

## Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative works of these Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these Publications, or reproduce, distribute or display these Publications or any portion thereof outside your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the Publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations. IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.
By downloading or printing a publication from this site, you have indicated your agreement with these terms and conditions.

## Code disclaimer information

This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS" without any warranties of any kind. The implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly disclaimed.

## 

Printed in USA


[^0]:    IBM Corporation
    Software Interoperability Coordinator, Department 49XA
    3605 Highway 52 N
    Rochester, MN 55901
    U.S.A.

