@server
iSeries
DB2 Universal Database for iSeries SQL Programming

Version 5 Release 3

@server
iSeries
DB2 Universal Database for iSeries SQL Programming

Version 5 Release 3

Note
Before using this information and the product it supports, be sure to read the information in

["Notices” on page 303

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722-SS1)
and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not
run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. SQL Programmlng e e a1 ROWDD. S .26
Code disclaimer2 | Creating and using sequences .. .27
I Comparing identity columns and sequences . .28
Chapter 2. What’s new for V5R3 in DB2 Creating descriptive labels using the LABEL ON .
. . . statement
Universal Patabase for iSeries SQL Describing an SQL ob]ect us1ng COMMENT ON . 30
Programmmg T | Changing a table definition30
Adding a column30
Chapter 3. Print thistopic 5 Changing a column.31
Allowable conversions.31
Chapter 4. Introduction to DB2 UDB for 8e;etmgf a Colutmn o ATER TABLE statoment g;
. : rder of operations for statemen
‘Iszir:g:C;::UCtured Query Language..) Z Creating and using ALIASnames33
SQL relational database and system termmology 9 Creﬁ;?%agggéﬁgoﬁgl\; (;n 2'1 V1ew T gg
SQL and system naming conventions9 Adding indexes . . . o 37
Types of SQL statements i s Catalogs in database des1gn38
SQL Communication Area (SQLCA) . i | Gettin talow information ab ut a table 38
SQL diagnostics area . . . B | €Long cara og T OTMarton avo o
& Getting catalog information about a column . . 38
SQ]S“C?E; C;s . E Dropping a database object39
Data Dictionar . P 2 . .
Journals and]gurnal Recelvers L. s 12 Chapter 6. Data Manipulation Language 4
Catalogs . . . 12 Retrieving data using the SELECT statement . . . 41
Tables, Rows, and Columns . L. 12 Basic SELECT statement . . .42
Aliases13 Specifying a search condition usmg the WHERE
Views13 clause . . . e R 4
Indexes.) 13 GROUP BY clause A 1o
Constraints13 HAVING clause47
Triggers R /] ORDER BY clause48
Stored Procedures S 14 Static SELECT statements.50
Sequences . . . 14 Handling Null values50
User-defined functlons 14 Special registers in SQL statementsbh1
User-defined types14 Casting data types53
SQL Packages15 Date, Time, and Timestamp data types53
Application program ob]ects e £} Handling duplicate rows . . . coe o4
User source file member16 Performing complex search condltlonsh4
Output source file member . 17 Joining data from more than one table57
Program17 Using table expressions62
SQL Package17 Using the UNION keyword to combme
Module.17 subselects64
Service program.18 I Using EXCEPT keyword S .. .68
| Using INTERSECT keyword.70
P Data retrieval errors72
Chapter 5. Data Definition Language Inserting rows using the INSERT statement .. .73

(ODL) . . « « « v 19

Inserting rows using the VALUES keyword. . .75
Creating a schema19 Inserting rows into a table using a
Creating a table Y select-statement75
Adding and removing constralnts to a table . .20 Inserting multiple rows in a table w1th the
Referential integrity and tables20 blocked INSERT statement . . . 76
Example: Removing constraints.22 Inserting into tables with referential constralnts 76
Check pending . . . Inserting into an identity column77
Creating a table using LIKE TG Changing data in a table using the UPDATE
Creating a table using AS.24 statement78
Creating and altering a materialized query table .. 24 Updating a table usmg a scalar subselect .80
Declaring a global temporary table25 Updating a table with rows from another table 80

Creating and altering an identity column25

© Copyright IBM Corp. 1998, 2004 iii

Updating tables with referential constraints. . 80
Updating an identity column . 81
Updating data as it is retrieved from a table .82 |
Removing rows from a table using the DELETE |
statement . - .8 |
Deleting from tables w1th referent1a1 constramts 84 |
Using Subqueries .86 |
Subqueries in SELECT statements . 87
Correlated subqueries . . 90
Chapter 7. Sort sequences and
normalization in SQL . 95
Sort sequence used with ORDER BY and row
selection .95
Sort sequence and ORDER BY . 96
Row selection. Lo .97
Sort sequence and views . . . 98
Sort Sequence and the CREATE INDEX Statement 98
Sort sequence and constraints e 09
ICU Sort Sequence . . .99
Normalization . . 100
Chapter 8. Data Protection. . 101
Security for SQL objects . . 101
Authorization ID . . 102
Views . . 102
Auditing . . 102
Data integrity . 102
Concurrency. . 103
Journaling . . 104
Commitment control . . 105
Savepoints . 108
Atomic operations . . 110
Constraints . 111
Save/Restore 112
Damage tolerance . . 113
Index recovery . . 113
Catalog integrity . 113
User auxiliary storage pool (ASP) . 114
Independent auxiliary storage pool (IASP). . 114
Chapter 9. Routines. . 115
Stored Procedures . . 115
Defining an external procedure . 116
Defining an SQL procedure. . 117
Invoking a stored procedure 121
Returning Result Sets from Stored Procedures 134
Parameter passing conventions for stored
procedures and UDFs . . 141
Indicator variables and stored procedures . 146
Returning a completion status to the calhng
program . . 148
Using User—Defmed Functlons (UDFs) . 149
UDF concepts . . . 149
Writing UDFs as SQL functrons . 151
Writing UDFs as external functions . . 152
Examples of UDF code . . . 163
Using UDFs in SQL statements . 172
Triggers . .o o . 175
SQL triggers. . 176
1V iSeries: DB2 Universal Database for iSeries SQL Programming

External triggers . 180
Debugging an SQL routine . . 185
Improving performance of procedures and
functions . . 186

Improving 1mp1ementat10n of procedures and

functions . . . 186

Redesigning routmes for performance . . 188
Chapter 10. Processing special data
types . . 191
Using Large Ob]ects (LOBs) . . 191

Understanding large object data types (BLOB

CLOB, DBCLOB) . . . 191

Understanding large object locators . . 192

Example: Using a locator to work with a CLOB

value . . 192

Indicator var1ables and LOB locators . 196

LOB file reference variables . . 197

Example: Extracting a document to a flle . . 197

Example: Inserting data into a CLOB column 200

Display layout of LOB columns . 200

Journal entry layout of LOB columns . 200
Using User-defined distinct types (UDT) . 201

Defining a UDT . . 202

Defining tables with UDTs . . 202

Manipulating UDTs . 203

Examples of using UDTs . 203
Examples of using UDTs, UDFs, and LOBs . 207

Example: Defining the UDT and UDFs . . 208

Example: Using LOB function to populate the

database . .. 209

Example: Using UDFs to query mstances of

UDTs . .. 209

Example: Usmg LOB locators to manlpulate

UDT instances . . 209
Using DataLinks . 210

NO LINK CONTROL. . . 211

FILE LINK CONTROL (with File System

Permissions). . . . 211

FILE LINK CONTROL (w1th Database

Permissions). . 211

Commands used for workmg w1th DataLlnks 211
Chapter 11. Using SQL in different
environments . 215
Using a Cursor . . 215

Types of cursors . . 215

Example of using a cursor . . . 217

Using the multiple-row FETCH statement . 222

Unit of work and open cursors . 226
Dynamic SQL Applications . . 226

Designing and running a dynamlc SQL

application . . . 229

Processing non—SELECT statements . . 229

Processing SELECT statements and using an

SQLDA . 231
Use of dynamic SQL through chent mterfaces . 243

Accessing data with Java . 243

Accessing data with Domino . . 243

Accessing data with Open Database

Connectivity (ODBC). . . 243
Accessing data with Portable Apphcatlon
Solutions Environment (PASE). . 243
Accessing data with iSeries Access for Wmdows
OLE DB Provider . . . 243
Accessing data with Net. data . . . 244
Accessing data through a Linux partltlon . . 244
Accessing data using Distributed Relational
Database (DRDA) . . 244
Using Interactive SQL . 244
Starting interactive SQL . . 245
Using statement entry function . 246
Prompting . 246
Using the list selectlon functlon . 249
Session services description . 251
Exiting interactive SQL . . 252
Using an existing SQL session . . 252
Recovering an SQL session . . . 253
Accessing remote databases with 1nteract1ve
SQL . . 253
Using the SQL Statement Processor . . . 255
Execution of statements after errors occur . . 256
Commitment control in the SQL statement
processor . . 256
Source member 11st1ng for the SQL statement
processor . . 256
Chapter 12. Distributed Relational
Database Function and SQL . . 259
DB2 UDB for iSeries distributed relational database
support . 259
DB2 UDB for 1Ser1es d1str1buted relatlonal database
example program . . 260
SQL package support. . . 261
Valid SQL statements in an SQL package . . 262
Considerations for creating an SQL package . . 262
CCSID considerations for SQL. . . 265
Connection management and activation groups 265
Connections and conversations . 265
Source code for PGM1: . . 266
Source code for PGM2: . 267
Source code for PGM3: . 267
Multiple connections to the same relatronal
database . . 269

Implicit connection management for the default

activation group . . 270
Implicit connection management for nondefault
activation groups . . 271
Distributed support . . 271
Determining connection type . . 272
Connect and commitment control restr1ctlons 274
Determining connection status. . 274
Distributed unit of work connection
considerations . . 276
Ending connections . 276
Distributed unit of work. . . 277
Managing distributed unit of work connectlons 277
Checking connection status. . 279
Cursors and prepared statements. . 280
Application requester driver programs . . 280
Problem handling . . 281
DRDA stored procedure con51derat10ns . 281
Chapter 13. Related information . 283
DB2 UDB for iSeries Sample Tables . . 283
Department Table (DEPARTMENT) . . 284
Employee Table (EMPLOYEE). . . 285
Employee Photo Table (EMP_PHOTO) . . 287
Employee ResumeTable (EMP_RESUME) . . 288
Employee to Project Activity Table
(EMPPROJACT) . . 289
Project Table (PROJECT). . 291
Project Activity Table (PROJACT). . 293
Activity Table (ACT) . . 296
Class Schedule Table (CL_! SCHED) . 297
In Tray Table (IN_TRAY) . 297
Organization Table (ORG) . . 298
Staff Table (STAFF) . 299
Sales Table (SALES) . 300
DB2 UDB for iSeries CL Command Descrlptlons 302
Notices . . . 303
Programming Interface Informatlon . 305
Trademarks . . . 305
Terms and conditions for downloadmg and
printing information . . 306
Index . . 307

Contents V

Vi iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 1. SQL Programming

These topics describe the iSeries server implementation of the Structured Query Language (SQL) using
DB2 UDB for iSeries and the DB2 UDB Query Manager and SQL Development Kit Version 5 licensed
program.

In this topic, you will find the following information

Chapter 2, “What's new for V5R3 in DB2 Universal Database for iSeries SQL Programming,” on|
age 3
This describes the new topics in V5R3

[Chapter 3, “Print this topic,” on page 5|
Learn how to display or print a PDF copy of this information

[Chapter 4, “Introduction to DB2 UDB for iSeries Structured Query Language,” on page 7|
Look here for SQL concepts, object definitions, and other conceptual info.

[Chapter 5, “Data Definition Language (DDL),” on page 19|
Learn how to create objects using SQL.

[Chapter 6, “Data Manipulation Language,” on page 41|
Learn how to manipulate objects using SQL.

[Chapter 7, “Sort sequences and normalization in SQL,” on page 95|
Learn how to use sort sequence.

[Chapter 8, “Data Protection,” on page 101
Learn about securing your data

[Chapter 9, “Routines,” on page 115|
Learn about procedures, functions, and triggers

[Chapter 10, “Processing special data types,” on page 191|
Learn about special data types

[Chapter 11, “Using SQL in different environments,” on page 215|
Use SQL in different environments

[Chapter 12, “Distributed Relational Database Function and SQL,” on page 259
Learn how to use Distributed Relational database function with SQL.

[Chapter 13, “Related information,” on page 283
Related information such as sample tables, and CL commands.

The examples of SQL statements shown in this guide are based on the sample tables in|DB2 UDB fo

liSeries Sample Tables| and assume the following:

They are shown in the interactive SQL environment or they are written in ILE C or in COBOL. EXEC
SQL and END-EXEC are used to delimit an SQL statement in a COBOL program. A description of how

to use SQL statements in a COBOL program and ILE C programs can be found in [Embedded SQIJ
Each SQL example is shown on several lines, with each clause of the statement on a separate line.
SQL keywords are highlighted.

© Copyright IBM Corp. 1998, 2004

* Table names provided in the sample tables use the schema CORPDATA. Table names that are not
found in the Sample Tables should use schemas you create.

* Calculated columns are enclosed in parentheses, (), and brackets, [].
* The SQL naming convention is used.

¢ The APOST and APOSTSQL precompiler options are assumed although they are not the default
options in COBOL. Character string literals within SQL and host language statements are delimited by
apostrophes ().

* A sort sequence of *HEX is used, unless otherwise noted.

* The complete syntax of the SQL statement is usually not shown in any one example. For the complete
description and syntax of any of the statements described in this guide, see the [SQL Reference
Whenever the examples vary from these assumptions, it is stated.

Because this guide is for the application programmer, most of the examples are shown as if they were
written in an application program. However, many examples can be slightly changed and run
interactively by using interactive SQL. The syntax of an SQL statement, when using interactive SQL,
differs slightly from the format of the same statement when it is embedded in a program.

Code disclaimer

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM®, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL
DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

I SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
| CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS
I MAY NOT APPLY TO YOU.

2 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 2. What’s new for V5R3 in DB2 Universal Database
for iSeries SQL Programming

The following information was added or updated in this release of the information:

* [“Creating and using sequences” on page 27]
* ["Using EXCEPT keyword” on page 68
* [‘Using INTERSECT keyword” on page 70|

* ['Creating and altering a materialized query table” on page 24|

* ["Normalization” on page 100|

* ['Returning Result Sets from Stored Procedures” on page 134]

* ["Improving performance of procedures and functions” on page 186

© Copyright IBM Corp. 1998, 2004

4 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 3. Print this topic

To view or download the PDF version of this document, select[SQL Programming| (about 2572KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using
Netscape Communicator.

3. Navigate to the directory in which you would like to save the PDE.
4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the
(www.adobe.com/products/acrobat/readstep.html)

O

© Copyright IBM Corp. 1998, 2004

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

6 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 4. Introduction to DB2 UDB for iSeries Structured
Query Language

These topics describe the iSeries server implementation of the Structured Query Language (SQL) using
DB2 UDB for iSeries and the DB2 UDB Query Manager and SQL Development Kit Version 5 licensed
program. SQL manages information based on the relational model of data. SQL statements can be
embedded in high-level languages, dynamically prepared and run, or run interactively. For information
about embedded SQL, see [Embedded SQL|

SQL consists of statements and clauses that describe what you want to do with the data in a database
and under what conditions you want to do it.

This topic describes the following:

* ['SQL concepts’]

* [“SQL objects” on page 11|

+ [“Application program objects” on page 15|

SQL can access data in a remote relational database, using the IBM Distributed Relational Database
Architecture* (DRDA*). This function is described in the [Chapter 12, “Distributed Relational Database]
Function and SQL”| topic in this guide. Further information about DRDA is contained in the |Distributed|
Database Programming| book.

SQL concepts

DB2 UDB for iSeries SQL consists of the following main parts:
* SQL run-time support

SQL run-time parses SQL statements and runs any SQL statements. This support is that part of the
Operating System/400* (OS/400) licensed program which allows applications that contain SQL
statements to be run on systems where the DB2 UDB Query Manager and SQL Development Kit
licensed program is not installed.

* SQL precompilers
SQL precompilers support precompiling embedded SQL statements in host languages. The following
languages are supported:
- ILEC
— ILE C++ for iSeries
- ILE COBOL
— COBOL for iSeries
— iSeries PL/I
— RPG III (part of RPG for iSeries)
- ILE RPG
The SQL host language precompilers prepare an application program containing SQL statements. The
host language compilers then compile the precompiled host source programs. For more information
about precompiling, see the topic [Preparing and Running a Program with SQL Statementd in the

Embedded SQL Programming information. The precompiler support is part of the DB2 UDB Query
Manager and SQL Development Kit licensed program.

* SQL interactive interface

© Copyright IBM Corp. 1998, 2004 7

8

SQL interactive interface allows you to create and run SQL statements. For more information about
interactive SQL, see [Using Interactive SQL} Interactive SQL is part of the DB2 UDB Query Manager
and SQL Development Kit licensed program.

Run SQL Scripts

The Run SQL Scripts window in iSeries Navigator allows you to create, edit, run, and troubleshoot
scripts of SQL statements. Run SQL Scripts is a part of iSeries” Navigator.

Run SQL Statements CL command

RUNSQLSTM allows you to run a series of SQL statements, which are stored in a source file. See [Using]
[the SQL Statement Processor| for more information about the Run SQL Statements command.

DB2 Query Manager for iSeries

DB2 Query Manager for iSeries provides a prompt-driven interactive interface that allows you to create
data, add data, maintain data, and run reports on the databases. Query Manager is part of the DB2
UDB Query Manager and SQL Development Kit licensed program. For more information, refer to the
Query Manager Use|book.

SQL REXX Interface

The SQL REXX interface allows you to run SQL statements in a REXX procedure. For more information
about using SQL statements in REXX procedures, see the topic [Coding SQL Statements in REXX|

in the Embedded SQL Programming information.

SQL Call Level Interface

DB2 UDB for iSeries supports the SQL Call Level Interface. This allows users of any of the ILE
languages to access SQL functions directly through bound calls to a service program provided by the
system. Using the SQL Call Level Interface, one can perform all the SQL functions without the need for
a precompile. This is a standard set of procedure calls to prepare SQL statements, run SQL statements,
fetch rows of data, and even do advanced functions such as accessing the catalogs and binding
program variables to output columns.

For a complete description of all the available functions, and their syntax, see the
[nterface (ODBC)| book.

QSQPRCED API

This Application Program Interface (API) provides an extended dynamic SQL capability. SQL

statements can be prepared into an SQL package and then run using this API. Statements prepared into
a package by this API persist until the package or statement is explicitly dropped. For more

information about the QSQPRCED API, see the |(QSQPRCED) topic in the Programming section of the
—

iSeries Information Center. For general information about APIs, see the [OS/ 400® API topic in the
iSeries Information Center.

QSQCHKS API
This API syntax checks SQL statements. For more information about the QSQCHKS API, see the

‘ topic in the Proiramming section of the iSeries Information Center. For general information

about APIs, see the[0S5/400 AP topic in the iSeries Information Center.
DB2 Multisystem

This feature of the operating system allows your data to be distributed across multiple servers. For
more information about DB2 Multisystem, see the [DB2® Multisystem| book.

DB2 UDB Symmetric Multiprocessing

This feature of the operating system provides the query optimizer with additional methods for
retrieving data that include parallel processing. Symmetric multiprocessing (SMP) is a form of
parallelism achieved on a single system where multiple processors (CPU and I/O processors) that
share memory and disk resource work simultaneously toward achieving a single end result. This
parallel processing means that the database manager can have more than one (or all) of the system
processors working on a single query simultaneously. See the topic [Controlling Parallel Processing] in
the Database Performance and Query Optimization information for details on how to control parallel
processing.

iSeries: DB2 Universal Database for iSeries SQL Programming

For more information, see the following sections:

* [‘SQL relational database and system terminology”]

* [’SQL and system naming conventions”]

* ["Types of SQL statements”]

* [SQL diagnostics area” on page 11|

* [‘SQL Communication Area (SQLCA)” on page 11|

SQL relational database and system terminology

In the relational model of data, all data is perceived as existing in tables. DB2 UDB for iSeries objects are
created and maintained as system objects. The following table shows the relationship between system
terms and SQL relational database terms. For more information about database programming using the

traditional file interface, see the [Database Programming|book.

Table 1. Relationship of System Terms to SQL Terms

System Terms

Library. Groups related objects and allows you to find
the objects by name.

Physical file. A set of records.
Record. A set of fields.

Field. One or more characters of related information of
one data type.

Logical file. A subset of fields and records of one or
more physical files.

SQL Package. An object type that is used to run SQL
statements.

User Profile

SQL Terms

Schema. Consists of a library, a journal, a journal
receiver, an SQL catalog, and optionally a data
dictionary. A schema groups related objects and allows
you to find the objects by name.

Table. A set of columns and rows.

Row. The horizontal part of a table containing a serial
set of columns.

Column. The vertical part of a table of one data type.

View. A subset of columns and rows of one or more
tables.

Package. An object type that is used to run SQL
statements.

Authorization name or Authorization ID.

SQL and system naming conventions

There are two naming conventions that can be used in DB2 UDB for iSeries programming: system (*SYS)
and SQL (*SQL). The naming convention used affects the method for qualifying file and table names and
the terms used on the interactive SQL displays. The naming convention used is selected by a parameter
on the SQL commands or, for REXX, selected through the SET OPTION statement. See Qualification of

unqualified object names in the SQL Reference for more details.

System naming (*SYS)

In the system naming convention, tables and other SQL objects in an SQL statement are qualified by

schema name in the form:

schema/table

SQL naming (*SQL)

In the SQL naming convention, tables and other SQL objects in an SQL statement are qualified by the

schema name in the form:
schema.table

Types of SQL statements
There are four basic types of SQL statements:
* Data definition language (DDL) statements

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language

9

¢ Data manipulation language (DML) statements

* Dynamic SQL statements

* Miscellaneous statements

SQL statements can operate on objects that are created by SQL as well as externally described physical

files and single-format logical files, whether they reside in an SQL schema. They do not refer to the IDDU
dictionary definition for program-described files. Program-described files appear as a table with only a

single column.

SQL DDL Statements
ALTER SEQUENCE
ALTER TABLE
COMMENT ON
CREATE ALIAS

CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE INDEX
CREATE PROCEDURE
CREATE SCHEMA
CREATE SEQUENCE
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
DECLARE GLOBAL TEMPORARY TABLE
DROP ALIAS

DROP DISTINCT TYPE
DROP FUNCTION
DROP INDEX

DROP PACKAGE

DROP PROCEDURE
DROP SEQUENCE
DROP SCHEMA

DROP TABLE

DROP TRIGGER

DROP VIEW

GRANT DISTINCT TYPE
GRANT FUNCTION
GRANT PACKAGE
GRANT PROCEDURE
GRANT SEQUENCE
GRANT TABLE

LABEL ON

RENAME

REVOKE DISTINCT TYPE
REVOKE FUNCTION
REVOKE PACKAGE
REVOKE PROCEDURE
REVOKE SEQUENCE
REVOKE TABLE

10 iSeries: DB2 Universal Database for iSeries SQL Programming

SQL DML Statements
CLOSE

COMMIT

DECLARE CURSOR
DELETE

FETCH

INSERT

LOCK TABLE

OPEN

REFRESH TABLE
RELEASE SAVEPOINT
ROLLBACK
SAVEPOINT

SELECT INTO

SET variable
UPDATE

VALUES INTO

Dynamic SQL Statements
DESCRIBE

EXECUTE

EXECUTE IMMEDIATE
PREPARE

SQL DDL statements are described in |Chapter 5, “Data Definition Language (DDL),” on page 19] SQL
DML statements are described in [‘Retrieving data using the SELECT statement” on page 41{and

Miscellaneous Statements
BEGIN DECLARE SECTION
CALL

CONNECT

DECLARE PROCEDURE
DECLARE STATEMENT
DECLARE VARIABLE
DESCRIBE TABLE
DISCONNECT

END DECLARE SECTION
FREE LOCATOR

GET DIAGNOSTICS
HOLD LOCATOR
INCLUDE

RELEASE

SET CONNECTION

SET ENCRYPTION PASSWORD
SET OPTION

SET PATH

SET RESULT SETS

SET SCHEMA

SET TRANSACTION
SIGNAL

WHENEVER

[Chapter 6, “Data Manipulation Language,” on page 41] You can find complete descriptions of these

statements in the [SQL Reference bookl

SQL Communication Area (SQLCA)

An SQLCA is a set of variables that is updated at the end of the execution of every SQL statement. For

more information, see SQL Communication Arealtopic in the SQL Reference or [Handling SQL error return|

in the Embedded SQL Programming.

SQL diagnostics area

The SQL diagnostics area is a set of information maintained by the database manager about the SQL
statement that was most recently run. It can be accessed from your program by using the GET

DIAGNOSTICS SQL statement. See the [GET DIAGNOSTICS| statement in the SQL Reference or

ISQL diagnostics area|in Embedded SQL Programming.

SQL objects

SQL objects are schemas, data dictionaries, journals, catalogs, tables, aliases, views, indexes, constraints,
triggers, sequences, stored procedures, user-defined functions, user-defined types, and SQL packages.
SQL creates and maintains these objects as system objects. A brief description of these objects follows:

[“Schemas” on page 12|

“Data Dictionary” on page 12|

“Journals and Journal Receivers” on page 12|

[‘Catalogs” on page 12]

"’Tables, Rows, and Columns” on page 12|

[Aliases” on page 13|

[“Views” on page 13|

[“Indexes” on page 13|

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language

11

* [’Constraints” on page 13|

* [‘Triggers” on page 14|

* ['Stored Procedures” on page 14

* ['Sequences” on page 14|

* ["User-defined functions” on page 14|

* [‘User-defined types” on page 14|
* [’SQL Packages” on page 15|

Schemas

A schema provides a logical grouping of SQL objects. A schema consists of a library, a journal, a journal

receiver, a catalog, and optionally, a data dictionary. Tables, views, and system objects (such as programs)
can be created, moved, or restored into any system library. All system files can be created or moved into
an SQL schema if the SQL schema does not contain a data dictionary. If the SQL schema contains a data

dictionary then:

 Source physical files or nonsource physical files with one member can be created, moved, or restored
into an SQL schema.

* Logical files cannot be placed in an SQL schema because they cannot be described in the data
dictionary.

You can create and own many schemas. The term collection can be used synonymously with schema.

Data Dictionary

A schema contains a data dictionary if it was created before Version 3 Release 1 or if the WITH DATA
DICTIONARY clause was specified on the CREATE SCHEMA statements. A data dictionary is a set of
tables containing object definitions. If SQL created the dictionary, then it is automatically maintained by
the system. You can work with data dictionaries by using the interactive data definition utility (IDDU),

which is part of the OS/400 program. For more information about IDDU, see the [DDU Use book.

Journals and Journal Receivers

A journal and journal receiver are used to record changes to tables and views in the database. The
journal and journal receiver are then used in processing SQL COMMIT, ROLLBACK, SAVEPOINT, and
RELEASE SAVEPOINT statements. The journal and journal receiver can also be used as an audit trail or
for forward or backward recovery. For more information about journaling, see the [Journaling] topic. For
more information about commitment control, see the |[Commitment control| topic.

Catalogs

An SQL catalog consists of a set of tables and views which describe tables, views, indexes, packages,
procedures, functions, files, sequences, triggers, and constraints. This information is contained in a set of
cross-reference tables in libraries QSYS and QSYS2. In each SQL schema there is a set of views built over
the catalog tables that contains information about the tables, views, indexes, packages, files, and
constraints in the schema.

A catalog is automatically created when you create a schema. You cannot drop or explicitly change the
catalog.

For more information about SQL catalogs, see the topic in the [SQL Reference| book.

Tables, Rows, and Columns

A table is a two-dimensional arrangement of data consisting of rows and columns. The row is the
horizontal part containing one or more columns. The column is the vertical part containing one or more

12 iSeries: DB2 Universal Database for iSeries SQL Programming

rows of data of one data type. All data for a column must be of the same type. A table in SQL is a keyed

or nonkeyed physical file. See the topic in the [SQL Reference| book for a description of data
types.

A materialized query table is a table that is used to contain materialized data that is derived from one or
more source tables specified by a select-statement. See [“Creating and altering a materialized query table”|

for more details.
A partitioned table is a table whose data is contained in one or more local partitions (members). See
_ ultisyste

for more details.

Data in a table can be distributed across servers. For more information about distributed tables, see the
[DB2 Multisystem| book.

Aliases

An alias is an alternate name for a table or view. You can use an alias to refer to a table or view in those
cases where an existing table or view can be referred to. Additionally, aliases can be used to join table

members. For more information about aliases, see the topic in the [SQL Reference| book.

Views

A view appears like a table to an application program; however, a view contains no data. It is created
over one or more tables. A view can contain all the columns of given tables or some subset of them, and
can contain all the rows of given tables or some subset of them. The columns can be arranged differently
in a view than they are in the tables from which they are taken. A view in SQL is a special form of a
nonkeyed logical file.

For more information about views, see in the SQL Reference book in the iSeries Information Center.

Indexes

An SQL index is a subset of the data in the columns of a table that are logically arranged in either
ascending or descending order. Each index contains a separate arrangement. These arrangements are used
for ordering (ORDER BY clause), grouping (GROUP BY clause), and joining. An SQL index is a keyed
logical file.

The index is used by the system for faster data retrieval. Creating an index is optional. You can create
any number of indexes. You can create or drop an index at any time. The index is automatically
maintained by the system. However, because the indexes are maintained by the system, a large number
of indexes can adversely affect the performance of applications that change the table.

For more information about coding effective indexes, see|Using indexes to speed access to large tableq
topic in the Database Performance and Query Optimization book in the iSeries Information Center.

Constraints

Constraints are rules enforced by the database manager. DB2 UDB for iSeries supports the following
constraints:

* Unique constraints

A unique constraint is the rule that the values of the key are valid only if they are unique. Unique
constraints can be created using the CREATE TABLE and ALTER TABLE statements. Although
CREATE INDEX can create a unique index that also guarantees uniqueness, such an index is not a
constraint.

Unique constraints are enforced during the execution of INSERT and UPDATE statements. A PRIMARY
KEY constraint is a form of UNIQUE constraint. The difference is that a PRIMARY KEY cannot contain
any nullable columns.

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 13

* Referential constraints
A referential constraint is the rule that the values of the foreign key are valid only if:
— They appear as values of a parent key, or
— Some component of the foreign key is null.
Referential constraints are enforced during the execution of INSERT, UPDATE, and DELETE
statements.
¢ Check constraints

A check constraint is a rule that limits the values allowed in a column or group of columns. Check
constraints can be added using the CREATE TABLE and ALTER TABLE statements. Check constraints
are enforced during the execution of INSERT and UPDATE statements. To satisfy the constraint, each
row of data inserted or updated in the table must make the specified condition either TRUE or
unknown (due to a null value).

For more information about constraints, see [“Constraints” on page 111

Triggers

A trigger is a set of actions that are run automatically whenever a specified event occurs to a specified
base table. An event can be an insert, update, delete, or read operation. The trigger can be run either
before or after the event. DB2 UDB for iSeries supports SQL insert, update, and delete triggers and
external triggers. For more information about triggers, sed”Triggers” on page 175|in this book or see the
[Trigeering automatic events in your database] topic in the Database Programming book.

Stored Procedures

A stored procedure is a program that can be called using the SQL CALL statement. DB2 UDB for iSeries
supports external stored procedures and SQL procedures. External stored procedures can be any system
program, service program, or REXX procedure. They cannot be System/36" programs or procedures. An
SQL procedure is defined entirely in SQL and can contain SQL statements including SQL control
statements. For more information about stored procedures, see the [Stored Procedureq topic in this book.

Sequences

A sequence is a data area object that provides a quick and easy way of generating unique numbers. You
can use sequences to replace an IDENTITY column or user-generated numeric column. A sequence has
similar uses as these alternatives. For more information about creating and using sequences, see the
|“Creating and using sequences” on page 27] topic in this book.

User-defined functions

A user-defined function is a program that can be invoked like any built-in function. DB2 UDB for iSeries
supports external functions, SQL functions, and sourced functions. External functions can be any system
ILE program or service program. An SQL function is defined entirely in SQL and can contain SQL
statements, including SQL control statements. A sourced function is built over any built-in or any existing
user-defined function. You can create a scalar function or a table function as either an SQL or external
function. For more information about user-defined functions, see [‘Using User-Defined Functions (UDFs)”|

User-defined types

A user-defined type is a distinct data type that users can define independently of those supplied by the
database management system. Distinct data types map on a one-to-one basis to existing database types.
For more information about user-defined types, see the [“Using User-defined distinct types (UDT)” on|

-ae 201.

14 iSeries: DB2 Universal Database for iSeries SQL Programming

SQL Packages

An SQL package is an object that contains the control structure produced when the SQL statements in an
application program are bound to a remote relational database management system (DBMS). The DBMS
uses the control structure to process SQL statements encountered while running the application program.

SQL packages are created when a relational database name (RDB parameter) is specified on a Create SQL
(CRTSQLxxx) command and a program object is created. Packages can also be created using the
CRTSQLPKG command. For more information about packages and distributed relational database
function, see [Chapter 12, “Distributed Relational Database Function and SQL.”|

SQL packages can also be created using the QSQPRCED API. The references to SQL Packages within this

book refer exclusively to Distributed Program SQL packages. QSQPRCED uses SQL Packages to provide
QSQPRCED

Extended Dynamic SQL support. For more information about QSQPRCED, see the topic in
the [0S/400 AP]| section of the iSeries Information Center.

Note: The xxx in this command refers to the host language indicators: CI for the ILE C language, CPPI
for the ILE C++ for iSeries language, CBL for the COBOL for iSeries language, CBLI for the ILE
COBOL language, PLI for the iSeries PL/I language, RPG for the RPG for iSeries language, and
RPGI for the ILE RPG language.

Application program objects

The process of creating a DB2 UDB for iSeries application program may result in the creation of several
objects. This section briefly describes the process of creating a DB2 UDB for iSeries application. DB2 UDB
for iSeries supports both non-ILE and ILE precompilers. Application programs may be either distributed
or nondistributed. Additional information about creating DB2 UDB for iSeries application programs is in
the topic|Preparing and Running a Program with SQL Statements|in the Embedded SQL Programming
information.

With DB2 UDB for iSeries you may need to manage the following objects:
* The original source

* Optionally, the module object for ILE programs

¢ The program or service program

* The SQL package for distributed programs

With a nondistributed non-ILE DB2 UDB for iSeries program, you must manage only the original source
and the resulting program. The following shows the objects involved and steps that happen during the
precompile and compile processes for a nondistributed non-ILE DB2 UDB for iSeries program:

Llger | . Temporary .

Source |LrECOmpile sy rce Compile |prggram

File File

Member Memhber Lo
Frocessed Access
SQL Flan
Statements

With a nondistributed ILE DB2 UDB for iSeries program, you may need to manage the original source,
the modules, and the resulting program or service program. The following shows the objects involved
and steps that happen during the precompile and compile processes for a nondistributed ILE DB2 UDB
for iSeries program when OBJTYPE(*PGM) is specified on the precompile command:

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 15

EEE:.EE Precompile ;ilufcﬂéaw Compile | Module |, [Frogram

File > File —]

Memhber Member S
Processed Processed Access
S@L SaGL Plan
Statements Statements

With a distributed non-ILE DB2 UDB for iSeries program, you must manage the original source, the
resulting program, and the resulting package. The following shows the objects and steps that occur
during the precompile and compile processes for a distributed non-ILE DB2 UDB for iSeries program:

- | P Create

User] . |Temporary .

Source .Plecnmplle. Source I:‘:""F:'”EI Program =9k pSGL

File File Fackage

Memher Memhber cremennaad Fackage ,________g__.
g:lnfessed Access Access
Statements Plan Plan

With a distributed ILE DB2 UDB for iSeries program, you must manage the original source, module
objects, the resulting program or service program, and the resulting packages. An SQL package can be
created for each distributed module in a distributed ILE program or service program. The following
shows the objects and steps that occur during the precompile and compile processes for a distributed ILE
DB2 UDB for iSeries program:

Create
S0l
User . . Tm'ﬂpnrary . . S@L
EFI"-”‘:E PlecnmplleSﬂumE _Cnmplle Module EmdF‘rugram PECHEQEFPECI{EQE:
e File
Member Member
Frocessed Frocessed ACCEES Access
Sl SoL Flan Plan
Statements Statements

Note: The access plans associated with the DB2 UDB for iSeries distributed program object are not
created until the program is run locally.

For more information, see the following sections:

« [“User source file member”|

* ["Output source file member” on page 17|

* [[Program” on page 17|
- ['sQL Package” on page 17|
* ['Module” on page 17

* ['Service program” on page 18|

User source file member

A source file member contains the programmer’s application language and SQL statements. You can
create and maintain the source file member by using the source entry utility (SEU), a part of the IBM IBM
WebSphere Studio Development Suite for iSeries for iSeries licensed program.

16 iSeries: DB2 Universal Database for iSeries SQL Programming

Output source file member

The SQL precompile creates an output source file member. By default, the precompile process creates a
temporary source file QSQLTxxxxx in QTEMP, or you can specify the output source file as a permanent
file name on the precompile command. If the precompile process uses the QTEMP library, the system
automatically deletes the file when the job completes. A member with the same name as the program
name is added to the output source file. This member contains the following items:

* Calls to the SQL run-time support, which have replaced embedded SQL statements
¢ Parsed and syntax-checked SQL statements
By default, the precompiler calls the host language compiler. For more information about precompilers,

see the topic|Preparing and Running a Program with SQL Statements|in the Embedded SQL Programming
information.

Program

A program is the object which you can run that is created as a result of the compile process for non-ILE
compiles or as a result of the bind process for ILE compiles.

An access plan is a set of internal structures and information that tells SQL how to run an embedded
SQL statement most effectively. It is created only when the program has successfully created. Access
plans are not created during program creation for SQL statements if the statements:

* Refer to a table or view that cannot be found
* Refer to a table or view to which you are not authorized

The access plans for such statements are created when the program is run. If, at that time, the table or
view still cannot be found or you are still not authorized, a negative SQLCODE is returned. Access plans
are stored and maintained in the program object for nondistributed SQL programs and in the SQL
package for distributed SQL programs.

SQL Package

An SQL package contains the access plans for a distributed SQL program.

An SQL package is an object that is created when:

A distributed SQL program is successfully created using the RDB parameter on CRTSQLxxx
commands.

* When the Create SQL Package (CRTSQLPKG) command is run.

When a distributed SQL program is created, the name of the SQL package and an internal consistency
token are saved in the program. These are used at run time to find the SQL package and to verify that
the SQL package is correct for this program. Because the name of the SQL package is critical for running
distributed SQL programs, an SQL package cannot be:

* Moved

* Renamed

* Duplicated

* Restored to a different library

Module

A module is an Integrated Language Environment® (ILE) object that is created by compiling source code
using the CRTxxxMOD command (or any of the CRTBNDxxx commands where xxx is C, CBL, CPP, or
RPG). You can run a module only if you use the Create Program (CRTPGM) command to bind it into a
program. You typically bind several modules together, but you can bind a module by itself. Modules
contain information about the SQL statements; however, the SQL access plans are not created until the

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 17

modules are bound into either a program or service program. See the|Create Program (CRTPGM)| in the
Command Language topic for more information about Create Program (CRTPGM).

Service program

A service program is an Integrated Language Environment (ILE) object that provides a means of
packaging externally supported callable routines (functions or procedures) into a separate object. Bound
programs and other service programs can access these routines by resolving their imports to the exports
provided by a service program. The connections to these services are made when the calling programs
are created. This improves call performance to these routines without including the code in the calling
program.

18 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 5. Data Definition Language (DDL)

Data Definition Language (DDL) describes the portion of SQL that allows you to create, alter, and destroy
database objects. These database objects include schemas, tables, views, sequences, catalogs, indexes, and
aliases. For a brief tutorial on how to use SQL to create objects, see [Getting started with SQI

For details, see the following sections:

* [‘Creating a schema”]

* [“Creating a table” on page 20|

* [‘Creating a table using LIKE” on page 23|
* [‘Creating a table using AS” on page 24

* ['Creating and altering a materialized query table” on page 24|

* [“Declaring a global temporary table” on page 25|

[‘Creating and altering an identity column” on page 25|
["'ROWID” on page 26|
* [“Creating and using sequences” on page 27|

[‘Creating descriptive labels using the LABEL ON statement” on page 29|
* [“Describing an SQL object using COMMENT ON” on page 30|
+ [“Changing a table definition” on page 30|

* [‘Creating and using ALIAS names” on page 33|

* [“Creating and using views” on page 33

[“Adding indexes” on page 37

[“‘Catalogs in database design” on page 38

* [‘Dropping a database object” on page 39|

Creating a schema

A schema provides a logical grouping of SQL objects. A schema consists of a library, a journal, a journal
receiver, a catalog, and optionally, a data dictionary. Tables, views, and system objects (such as programs)
can be created, moved, or restored into any system library. All system files can be created or moved into
an SQL schema if the SQL schema does not contain a data dictionary. If the SQL schema contains a data
dictionary then:

* Source physical files or nonsource physical files with one member can be created, moved, or restored
into an SQL schema.

* Logical files cannot be placed in an SQL schema because they cannot be described in the data
dictionary.

You can create and own many schemas.
Schemas are created using the CREATE SCHEMA statement. For example:

Create a schema called DBTEMP.
CREATE SCHEMA DBTEMP

For more information about the CREATE SCHEMA statement, see [CREATE SCHEMA|in the SQL
Reference book.

© Copyright IBM Corp. 1998, 2004 19

Creating a table

A table can be visualized as a two-dimensional arrangement of data consisting of rows and columns. The
row is the horizontal part containing one or more columns. The column is the vertical part containing one
or more rows of data of one data type. All data for a column must be of the same type. A table in SQL is
a keyed or nonkeyed physical file. See the topic in the SQL Reference book for a description
of data types.

Tables are created using the CREATE TABLE statement. The definition must include its name and the
names and attributes of its columns. The definition may include other attributes of the table such as
primary key.

Example: Given that you have administrative authority, create a table named INVENTORY’ with the
following columns:

* Part number: Integer between 1 and 9 999, must not be null
* Description: Character of length 0 to 24
* Quantity on hand: Integer between 0 and 100000

The primary key is PARTNO.
CREATE TABLE INVENTORY

(PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QONHAND INT,

PRIMARY KEY (PARTNO))

You can also add constraints to a table. See [“Adding and removing constraints to a table”|and
[“Referential integrity and tables”| for details.

For more information, see also{’Check pending” on page 23| and [“Example: Removing constraints” on|

Adding and removing constraints to a table

Constraints can be added to a new table or an existing table. You can add a unique or primary key, a
referential constraint, or a check constraint, using the ADD constraint clause on the CREATE TABLE or
the ALTER TABLE statements. For example, add a primary key to a new table or to an existing table. The
following example illustrates adding a primary key to an existing table using the ALTER TABLE
statement.

ALTER TABLE CORPDATA.DEPARTMENT
ADD PRIMARY KEY (DEPTNO)

To make this key a unique key, replace the keyword PRIMARY with UNIQUE.

You can remove a constraint using the same ALTER TABLE statement:

ALTER TABLE CORPDATA.DEPARTMENT
DROP PRIMARY KEY (DEPTNO)

Referential integrity and tables

Referential integrity is the condition of a set of tables in a database in which all references from one table
to another are valid.

Consider the following example: (These sample tables are given in[DB2 UDB for iSeries Sample Tables}
* CORPDATA.EMPLOYEE serves as a master list of employees.

* CORPDATA.DEPARTMENT acts as a master list of all valid department numbers.

* CORPDATA.EMP_ACT provides a master list of activities performed for projects.

20 iSeries: DB2 Universal Database for iSeries SQL Programming

Other tables refer to the same entities described in these tables. When a table contains data for which
there is a master list, that data should actually appear in the master list, or the reference is not valid. The
table that contains the master list is the parent table, and the table that refers to it is a dependent table.
When the references from the dependent table to the parent table are valid, the condition of the set of
tables is called referential integrity.

Stated another way, referential integrity is the state of a database in which all values of all foreign keys
are valid. Each value of the foreign key must also exist in the parent key or be null. This definition of
referential integrity requires an understanding of the following terms:

* A unique key is a column or set of columns in a table which uniquely identify a row. Although a table
can have several unique keys, no two rows in a table can have the same unique key value.

* A primary key is a unique key that does not allow nulls. A table cannot have more than one primary
key.
e A parent key is either a unique key or a primary key which is referenced in a referential constraint.

* A foreign key is a column or set of columns whose values must match those of a parent key. If any
column value used to build the foreign key is null, then the rule does not apply.

* A parent table is a table that contains the parent key.
* A dependent table is the table that contains the foreign key.
* A descendent table is a table that is a dependent table or a descendent of a dependent table.

Enforcement of referential integrity prevents the violation of the rule which states that every non-null
foreign key must have a matching parent key.

For more information about referential integrity, see the following topics:

+ [“Adding or dropping referential constraints”|

* [“Example: Adding referential constraints”|

SQL supports the referential integrity concept with the CREATE TABLE and ALTER TABLE statements.

For detailed descriptions of these commands, see the SQL Reference|book.

Adding or dropping referential constraints
Constraints are rules that ensure that references from one table, a dependent table, to data in another
table, the parent table, are valid. You use referential constraints to ensure Referential integrity.

Use the SQL|CREATE TABLE|and [ALTER TABLE|statements to add or change referential constraints.

With a referential constraint, non-null values of the foreign key are valid only if they also appear as
values of a parent key. When you define a referential constraint, you specify:

* A primary or unique key
* A foreign key

* Delete and update rules that specify the action taken with respect to dependent rows when the parent
row is deleted or updated.

Optionally, you can specify a name for the constraint. If a name is not specified, one is automatically
generated.

Once a referential constraint is defined, the system enforces the constraint on every INSERT, DELETE,
and UPDATE operation performed through SQL or any other interface including iSeries Navigator, CL
commands, utilities, or high-level language statements.

Example: Adding referential constraints
The rule that every department number shown in the sample employee table must appear in the
department table is a referential constraint. This constraint ensures that every employee belongs to an

Chapter 5. Data Definition Language (DDL) 21

existing department. The following SQL statements create the CORPDATA.DEPARTMENT and
CORPDATA.EMPLOYEE tables with those constraint relationships defined.

CREATE TABLE CORPDATA.DEPARTMENT
(DEPTNO CHAR(3) NOT NULL PRIMARY KEY,
DEPTNAME VARCHAR(29) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL
CONSTRAINT REPORTS_TO_EXISTS
REFERENCES CORPDATA.DEPARTMENT (DEPTNO)
ON DELETE CASCADE)

CREATE TABLE CORPDATA.EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,

FIRSTNME VARCHAR(12) NOT NULL,

MIDINIT CHAR(1) NOT NULL,

LASTNAME VARCHAR(15) NOT NULL,

WORKDEPT ~ CHAR(3) CONSTRAINT WORKDEPT EXISTS
REFERENCES CORPDATA.DEPARTMENT (DEPTNO)
ON DELETE SET NULL ON UPDATE RESTRICT,

PHONENO CHAR(4),

HIREDATE DATE,

JOB CHAR(8),
EDLEVEL ~ SMALLINT NOT NULL,
SEX CHAR(1),

BIRTHDATE DATE,

SALARY DECIMAL(9,2),

BONUS DECIMAL(9,2),

COMM DECIMAL(9,2),

CONSTRAINT UNIQUE_LNAME_IN_DEPT UNIQUE (WORKDEPT, LASTNAME))

In this case, the DEPARTMENT table has a column of unique department numbers (DEPTNO) which
functions as a primary key, and is a parent table in two constraint relationships:

REPORTS_TO_EXISTS
is a self-referencing constraint in which the DEPARTMENT table is both the parent and the
dependent in the same relationship. Every non-null value of ADMRDEPT must match a value of
DEPTNO. A department must report to an existing department in the database. The DELETE
CASCADE rule indicates that if a row with a DEPTNO value 7 is deleted, every row in the table
for which the ADMRDEPT is 7 is also deleted.

WORKDEPT_EXISTS
establishes the EMPLOYEE table as a dependent table, and the column of employee department
assignments (WORKDEPT) as a foreign key. Thus, every value of WORKDEPT must match a
value of DEPTNO. The DELETE SET NULL rule says that if a row is deleted from
DEPARTMENT in which the value of DEPTNO is n, then the value of WORKDEPT in
EMPLOYEE is set to null in every row in which the value was n. The UPDATE RESTRICT rule
says that a value of DEPTNO in DEPARTMENT cannot be updated if there are values of
WORKDEPT in EMPLOYEE that match the current DEPTNO value.

Constraint UNIQUE_LNAME_IN_DEPT in the EMPLOYEE table causes LASTNAME to be unique within
a department. While this constraint is unlikely, it illustrates how a constraint made up of several columns
can be defined at the table level.

Example: Removing constraints

The following example removes the primary key over column DEPTNO in table DEPARTMENT. The
constraints REPORTS_TO_EXISTS, defined on table DEPARTMENT, and WORKDEPT_EXISTS, defined on
table EMPLOYEE, will be removed as well, since the primary key being removed is the parent key in
those constraint relationships.

ALTER TABLE CORPDATA.EMPLOYEE DROP PRIMARY KEY

22 iSeries: DB2 Universal Database for iSeries SQL Programming

You can also remove a constraint by name, as in the following example:

ALTER TABLE CORPDATA.DEPARTMENT
DROP CONSTRAINT UNIQUE_LNAME_IN_DEPT

Check pending

Referential constraints and check constraints can be in a state known as check pending, where potential
violations of the constraint exist. For referential constraints, a violation occurs when potential mismatches
exist between parent and foreign keys. For check constraints, a violation occurs when potential values
exist in columns which are limited by the check constraint. When the system determines that the
constraint may have been violated (such as after a restore operation), the constraint is marked as check
pending. When this happens, restrictions are placed on the use of tables involved in the constraint. For
referential constraints, the following restrictions apply:

* No input or output operations are allowed on the dependent file.
* Only read and insert operations are allowed on the parent file.

When a check constraint is in check pending, the following restrictions apply:
* Read operations are not allowed on the file.

* Inserts and updates are allowed and the constraint is enforced.

To get a constraint out of check pending, you must:
1. Disable the relationship with the Change Physical File Constraint (CHGPFCST) CL command.

2. Correct the key (foreign, parent, or both) data for referential constraints or column data for check
constraints.

3. Enable the constraint again with the CHGPFCST CL command.

You can identify the rows that are in violation of the constraint with the Display Check Pending
Constraint (DSPCPCST) CL command.

For more information about working with tables in check pending, see the [Database Programming|book.

Creating a table using LIKE

You can create a table that looks like another table. That is, you can create a table that includes all of the
column definitions from an existing table. The definitions that are copied are:

¢ Column names (and system column names)
* Data type, precision, length, and scale

« CCSID

* Column text (LABEL ON)

¢ Column heading (LABEL ON)

If the LIKE clause immediately follows the table name and is not enclosed in parenthesis, the following
attributes are also included:

* Default value

¢ Nullability

If the specified table or view contains an identity column, you must specify INCLUDING IDENTITY on
the CREATE TABLE statement if you want the identity column to exist in the new table. The default

behavior for CREATE TABLE is EXCLUDING IDENTITY. If the specified table or view is a non-SQL
created physical file or logical file, any non-SQL attributes are removed.

Create a table EMPLOYEE?2 that includes all of the columns in EMPLOYEE.
CREATE TABLE EMPLOYEE2 LIKE EMPLOYEE

Chapter 5. Data Definition Language (DDL) 23

For complete details about CREATE TABLE LIKE, see [CREATE TABLE|in the SQL Reference topic.

Creating a table using AS

CREATE TABLE AS creates a table from the result of a SELECT statement. All of the expressions that can
be used in a SELECT statement can be used in a CREATE TABLE AS statement. You can also include all
of the data from the table or tables that you are selecting from.

For example, create a table named EMPLOYEES3 that includes all of the column definitions from
EMPLOYEE where the DEPTNO = D11.
CREATE TABLE EMPLOYEE3 AS

(SELECT PROJNO, PROJNAME, DEPTNO

FROM EMPLOYEE
WHERE DEPTNO = 'D11') WITH NO DATA

If the specified table or view contains an identity column, you must specify INCLUDING IDENTITY on
the CREATE TABLE statement if you want the identity column to exist in the new table. The default
behavior for CREATE TABLE is EXCLUDING IDENTITY. The WITH NO DATA clause indicates that the
column definitions are to be copied without the data. If you wanted to include the data in the new table,
EMPLOYEES3, include the WITH DATA clause. For more information about using SELECT, see
[“Retrieving data using the SELECT statement” on page 41)If the specified query includes a non-SQL
created physical file or logical file, any non-SQL result attributes are removed. For complete details about
CREATE TABLE AS, see [CREATE TABLH in the SQL Reference topic.

Creating and altering a materialized query table

A materialized query table is a table whose definition is based on the result of a query. As such, the
materialized query table typically contains precomputed results based on the data existing in the table or
tables that its definition is based on. In a future release, the optimizer will look at the materialized query
table and determine whether a query will run more efficiently against a materialized query table than the
base table or tables. If it will run faster, then the query will run against the materialized query table. You
can directly query a materialized query table.

Assume a very large transaction table named TRANS contains one row for each transaction processed by
a company. The table is defined with many columns. Create a materialized query table for the TRANS
table that contains daily summary data for the date and amount of a transaction by issuing the following:
CREATE TABLE STRANS
AS (SELECT YEAR AS SYEAR, MONTH AS SMONTH, DAY AS SDAY, SUM(AMOUNT) AS SSUM
FROM TRANS
GROUP BY YEAR, MONTH, DAY)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY USER

This materialized query table specifies that the table is not populated at the time that it is created by
using the DATA INITIALLY DEFERRED clause. REFRESH DEFERRED indicates that changes made to
TRANS are not reflected in STRANS. Additionally, this table is maintained by the user, enabling the user
to use ALTER, INSERT, DELETE, and UPDATE.

To populate the materialized query table or refresh the table after it has already been populated, use the
REFRESH TABLE statement. This will cause the query associated with the materialized query table to be
run and the table filled with the results of the query. To populate table STRANS, run the following
statement:

REFRESH TABLE STRANS

You can create a materialized query table from an existing base table as long as the result of the
select-statement provides a set of columns that match the columns in the existing table (same number of

24 iSeries: DB2 Universal Database for iSeries SQL Programming

columns and compatible column definitions). For example, create a table TRANSCOUNT. Then, change
the base table TRANSCOUNT into a materialized query table:

To create the table:

CREATE TABLE TRANSCOUNT
(ACCTID SMALLINT NOT NULL,
LOCID SMALLINT,
YEAR DATE
CNT INTEGER)

You can alter this table to be a materialized query table:

ALTER TABLE TRANSCOUNT

ADD MATERIALIZED QUERY
(SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT
FROM TRANS
GROUP BY ACCTID, LOCID, YEAR)

DATA INITIALLY DEFERRED

REFRESH DEFERRED

MAINTAINED BY USER

Finally, you can change a materialized query table back to a base table. For example:
ALTER TABLE TRANSCOUNT
DROP MATERIALIZED QUERY

In this example, the table TRANSCOUNT is not dropped, but it is no longer a materialized query table.

Declaring a global temporary table

You can create a temporary table for use with your current session using the DECLARE GLOBAL
TEMPORARY TABLE statement. This temporary table does not appear in the system catalog and cannot
be shared by other sessions. When you end your session, the rows of the table are deleted and the table
is dropped.

The syntax of this statement is similar to CREATE TABLE, including the LIKE and AS clause.

For example, create a temporary table ORDERS:

DECLARE GLOBAL TEMPORARY TABLE ORDERS
(PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QONHAND INT)
ON COMMIT DELETE ROWS

This table is created in QTEMP. To reference the table using a schema name, use either SESSION or
QTEMP. You can issue SELECT, INSERT, UPDATE, and DELETE statements against this table, the same
as any other table. You can drop this table by issuing the DROP TABLE statement:

DROP TABLE ORDERS

For complete details, see[DECLARE GLOBAL TEMPORARY TABLE|in the SQL Reference topic.

Creating and altering an identity column

Every time that a new row is added to a table with an identity column, the identity column value in the
new row is incremented (or decremented) by the system. Only columns of type SMALLINT, INTEGER,
BIGINT, DECIMAL, or NUMERIC can be created as identity columns. You are allowed only one identity
column per table. When you are changing a table definition, only a column that you are adding can be
specified as an identity column; existing columns cannot.

Chapter 5. Data Definition Language (DDL) 25

When you create a table, you can define a column in the table to be an identity column. For example,
create a table ORDERS with 3 columns called ORDERNO, SHIPPED_TO, and ORDER_DATE. Define
ORDERNO as an identity column.
CREATE TABLE ORDERS

(ORDERNO SMALLINT NOT NULL

GENERATED ALWAYS AS IDENTITY

(START WITH 5600

INCREMENT BY 1

CYCLE),

SHIPPED_TO VARCHAR (36) ,

ORDER_DATE DATE)

This column is defined with starting value of 500, incremented by 1 for every new row inserted, and will
recycle when the maximum value is reached. In this example, the maximum value for the identity
column is the maximum value for the data type. Because the data type is defined as SMALLINT, the
range of values that can be assigned to ORDERNO is from 500 to 32767. When this column value reaches
32767, it will restart at 500 again. If 500 is still assigned to a column, and a unique key is specified on the
identity column, then a duplicate key error is returned. The next insert will attempt to use 501. If you do
not have a unique key specified for the identity column, 500 is used again, regardless of how many times
it appears in the table.

For a larger range of values, specify the column to be an INTEGER or even a BIGINT. If you wanted the
value of the identity column to decrease, specify a negative value for the INCREMENT option. It is also
possible to specify the exact range of numbers by using MINVALUE and MAXVALUE.

You can modify the attributes of an existing identity column using the ALTER TABLE statement. For
example, if you wanted to restart the identity column with a new value:
ALTER TABLE ORDER

ALTER COLUMN ORDERNO
RESTART WITH 1

You can also drop the identity attribute from a column:

ALTER TABLE ORDER
ALTER COLUMN ORDERNO
DROP IDENTITY

The column ORDERNO remains as a SMALLINT column, but the identity attribute is dropped. The
system will no longer generate values for this column.

Identity columns are similar to sequences. See [‘Comparing identity columns and sequences” on page 28|
for details.

ROWID

Using ROWID is another way to have the system assign a unique value to a column in a table. ROWID is
similar to identity columns, but rather than being an attribute of a numeric column, it is a separate data
type. To create a table similar to the identity column example:
CREATE TABLE ORDERS

(ORDERNO ROWID

GENERATED ALWAYS,

SHIPPED_TO VARCHAR (36) ,

ORDER_DATE DATE)

For complete details about ROWID, see the [SQL Reference|topic.

26 iSeries: DB2 Universal Database for iSeries SQL Programming

Creating and using sequences

A sequence is an object that allows you to generate values quickly and easily. Sequences are similar to
identity columns in that they both generate unique values. However, sequences are independent objects
from a table. As such, they are not tied to a column and are accessed separately. Additionally, they are
not treated as any part of a transaction’s unit of work.

You create a sequence using the CREATE SEQUENCE statement. For an example similar to the identity
column example, create a sequence ORDER_SEQ:

CREATE SEQUENCE ORDER_SEQ

START WITH 500

INCREMENT BY 1

MAXVALUE 1000

CYCLE

CACHE 24

This sequence is defined with starting value of 500, incremented by 1 for every use, and will recycle
when the maximum value is reached. In this example, the maximum value for the sequence is 1000.
When this value reaches 1000, it will restart at 500 again.

Once this sequence is created, you can insert values into a column using the sequence. For example,
insert the next value of the sequence ORDER_SEQ into a table ORDERS with columns ORDERNO and
CUSTNO.

First, create table ORDERS:

CREATE TABLE ORDERS
(ORDERNO SMALLINT NOT NULL,
CUSTNO SMALLINT);

Then, insert the sequence value:

INSERT INTO ORDERS (ORDERNO, CUSTNO)
VALUES (NEXT VALUE FOR ORDER_SEQ, 12)

Running the following statement, returns the values in the columns:

SELECT *
FROM ORDERS

Table 2. Results for SELECT from table ORDERS
ORDERNO CUSTNO
500 12

In this example, the next value for the sequence ORDER is inserted into the ORDERNO column. Issue the
INSERT statement again. Then run the SELECT.

Table 3. Results for SELECT from table ORDERS

ORDERNO CUSTNO
500 12
501 12

You can also insert the previous value for sequence ORDER by using the PREVIOUS VALUE expression.
You can use NEXT VALUE and PREVIOUS VALUE in the following expressions:

* Within the select-clause of a SELECT statement or SELECT INTO statement as long as the statement
does not contain a DISTINCT keyword, a GROUP BY clause, an ORDER BY clause, a UNION
keyword, an INTERSECT keyword, or EXCEPT keyword

e Within a VALUES clause of an INSERT statement

Chapter 5. Data Definition Language (DDL) 27

e Within the select-clause of the fullselect of an INSERT statement

* Within the SET clause of a searched or positioned UPDATE statement, though NEXT VALUE cannot be
specified in the select-clause of the subselect of an expression in the SET clause

You can alter a sequence by issuing the ALTER SEQUENCE statement. Sequences can be altered in the
following ways:

* Restarting the sequence

* Changing the increment between future sequence values

* Setting or eliminating the minimum or maximum values

* Changing the number of cached sequence numbers

* Changing the attribute that determines whether the sequence can cycle or not

* Changing whether sequence numbers must be generated in order of request

For example, change the increment of values of sequence ORDER from 1 to 5:

ALTER SEQUENCE ORDER_SEQ
INCREMENT BY 5

After this alter is complete, run the INSERT statement again, and then the SELECT. Now the table
contains the following columns:

Table 4. Results for SELECT from table ORDERS

ORDERNO CUSTNO
500 12
501 12
528 12

Notice that the next value that the sequence uses is a 528. At first glance, this number appears to be
incorrect. However, look at the events that lead up to this assignment. First, when the sequence was
originally create, a cache value of 24 was assigned. The system assigns the first 24 values for this cache.
Next, the sequence was altered. When the ALTER SEQUENCE statement is issued, the system drops the
assigned values and starts up again with the next available value; in this case the original 24 that was
cached, plus the next increment, 5. If the original CREATE SEQUENCE statement did not have the
CACHE clause, the system automatically assigns a default cache value of 20. If that sequence was altered,
then the next available value is 25.

Identity columns are similar to sequence objects. See [“Comparing identity columns and sequences”]| for
details.

Comparing identity columns and sequences

While IDENTITY columns and sequences are similar in many ways, there are also differences. Examine
these differences before you decide which to use.

An identity column has the following characteristics:

* An identity column can be defined as part of a table only when the table is created. Once a table is
created, you cannot alter it to add an identity column. (However, existing identity column
characteristics may be altered.)

* An identity column automatically generates values for a single table.

* When an identity column is defined as GENERATED ALWAYS, the values used are always generated
by the database manager. Applications are not allowed to provide their own values during the
modification of the contents of the table.

e The IDENTITY_VAL_LOCAL function can be used to see the most recently assigned value for an
identity column.

A sequence has the following characteristics:

28 iSeries: DB2 Universal Database for iSeries SQL Programming

* A sequence is a system object of type *DTAARA that is not tied to a table.
* A sequence generates sequential values that can be used in any SQL statement.

* There are two expressions used to retrieve the next values in the sequence and to look at the previous
value assigned for the sequence. The PREVIOUS VALUE expression returns the most recently
generated value for the specified sequence for a previous statement within the current session. The
NEXT VALUE expression returns the next value for the specified sequence. The use of these
expressions allows the same value to be used across several SQL statements within several tables.

While these are not all of the characteristics of these two items, these characteristics will assist you in
determining which to use depending on your database design and the applications using the database.

Creating descriptive labels using the LABEL ON statement

Sometimes the table name, column name, view name, sequence name, alias name, or SQL package name
does not clearly define data that is shown on an interactive display of the table. By using the LABEL ON
statement, you can create a more descriptive label for the table name, column name, view name, sequence
name, alias name, or SQL package name. These labels can be seen in the SQL catalog in the LABEL
column.

The LABEL ON statement looks like this:

LABEL ON
TABLE CORPDATA.DEPARTMENT IS 'Department Structure Table'

LABEL ON
COLUMN CORPDATA.DEPARTMENT.ADMRDEPT IS 'Reports to Dept.'

After these statements are run, the table named DEPARTMENT displays the text description as
Department Structure Table and the column named ADMRDEPT displays the heading Reports to Dept. The
label for tables, views, sequence, SQL packages, and column text cannot be more than 50 characters and
the label for column headings cannot be more than 60 characters (blanks included). The following are
examples of LABEL ON statements for column headings:

This LABEL ON statement provides column heading 1 and column heading 2.

L R YA PO SR PR S O DUP O T
LABEL ON COLUMN CORPDATA.EMPLOYEE.EMPNO IS
"Employee Number'

This LABEL ON statement provides 3 levels of column headings for the SALARY column.

P U P A RPN OO DUPIPIE: Oy SUVE AU DU U ¢ PO
LABEL ON COLUMN CORPDATA.EMPLOYEE.SALARY IS
'Yearly Salary (in dollars)'

This LABEL ON statement removes the column heading for SALARY.

LABEL ON COLUMN CORPDATA.EMPLOYEE.SALARY IS "'

An example of a DBCS column heading with two levels specified.

LT R R TN . PR ST JUMI I s DR S
LABEL ON COLUMN CORPDATA.EMPLOYEE.SALARY IS
'<AABBCCDD> <EEFFGG>'

This LABEL ON statement provides column text for the EDLEVEL column.

LI A I PN AP, PRV UPPUY' S UPRPE. DUPIPE DU PP
LABEL ON COLUMN CORPDATA.EMPLOYEE.EDLEVEL TEXT IS
'"Number of years of formal education'

Chapter 5. Data Definition Language (DDL) 29

For more information about the LABEL ON statement, see the [LABEL ON]statement in the
book.

Describing an SQL object using COMMENT ON

After you create an SQL object such as a table, view, index, package, procedure, parameter, user-defined
type, function, trigger, or sequence, you can supply information about it for future reference, such as the
purpose of the object, who uses it, and anything unusual or special about it. You can also include similar
information about each column of a table or view. Your comment must not be more than 2000 characters
500 characters for sequences. For more information about the COMMENT ON statement, see
@ in the SQL Reference book.

A comment is especially useful if your names do not clearly indicate the contents of the columns or
objects. In that case, use a comment to describe the specific contents of the column or objects.

An example of using COMMENT ON follows:

COMMENT ON TABLE CORPDATA.EMPLOYEE IS
"Employee table. Each row in this table represents
one employee of the company.'

Getting comments after running a COMMENT ON statement

After running a COMMENT ON statement for a table, your comments are stored in the
LONG_COMMENT column of SYSTABLES. Comments for the other objects are stored in the
LONG_COMMENT column of the appropriate catalog table. If the indicated row had already contained a
comment, the old comment is replaced by the new one. The following example gets the comments added
by the COMMENT ON statement in the previous example:

SELECT LONG_COMMENT

FROM CORPDATA.SYSTABLES
WHERE NAME = 'EMPLOYEE'

Changing a table definition

Changing the definition of a table allows you to add new columns, change an existing column definition
(change its length, default value, and so on), drop existing columns, and add and remove constraints.
Table definitions are changed using the SQL[ALTER TABLH statement.

You can add, change, or drop columns and add or remove constraints all with one ALTER TABLE
statement. However, a single column can be referenced only once in the ADD COLUMN, ALTER

COLUMN, and DROP COLUMN clauses. That is, you cannot add a column and then alter that column in
the same ALTER TABLE statement.

For more information, see the following topics:

¢ ["Adding a column”
| g |

* [“Changing a column” on page 31|

+ [“Allowable conversions” on page 31|

* [‘Deleting a column” on page 32|
* ["Order of operations for ALTER TABLE statement” on page 32|

Adding a column
You can add a column to a table using the ADD COLUMN clause of the SQL|ALTER TABLE| statement.

When you add a new column to a table, the column is initialized with its default value for all existing
rows. If NOT NULL is specified, a default value must also be specified.

30 iSeries: DB2 Universal Database for iSeries SQL Programming

The altered table may consist of up to 8000 columns. The sum of the byte counts of the columns must not
be greater than 32766 or, if a VARCHAR or VARGRAPHIC column is specified, 32740. If a LOB column is
specified, the sum of record data byte counts of the columns must not be greater than 15 728 640.

Changing a column

You can change a column definition in a table using the ALTER COLUMN clause of the
statement. When you change the data type of an existing column, the old and new attributes must be
compatible. [Allowable conversions”| shows the conversions with compatible data types. You can always
change a character, graphic, or binary column from fixed length to varying length or LOB; or from
varying length or LOB to fixed length.

When you convert to a data type with a longer length, data will be padded with the appropriate pad
character. When you convert to a data type with a shorter length, data may be lost due to truncation. An
inquiry message prompts you to confirm the request.

If you have a column that does not allow the null value and you want to change it to now allow the null
value, use the DROP NOT NULL clause. If you have a column that allows the null value and you want
to prevent the use of null values, use the SET NOT NULL clause. If any of the existing values in that
column are the null value, the ALTER TABLE will not be performed and an SQLCODE of -190 will result.

Allowable conversions

Table 5. Allowable Conversions

FROM data type

TO data type

Decimal Numeric

Decimal Bigint, Integer, Smallint
Decimal Float

Numeric Decimal

Numeric Bigint, Integer, Smallint
Numeric Float

Bigint, Integer, Smallint Decimal

Bigint, Integer, Smallint Numeric

Bigint, Integer, Smallint Float

Float Numeric

Float Bigint, Integer, Smallint
Character DBCS-open

Character UCS-2 or UTF-16 graphic
DBCS-open Character

DBCS-open UCS-2 or UTF-16 graphic
DBCS-either Character

DBCS-either DBCS-open

DBCS-either UCS-2 or UTF-16 graphic
DBCS-only DBCS-open

DBCS-only DBCS graphic
DBCS-only UCS-2 or UTF-16 graphic

DBCS graphic

UCS-2 or UTF-16 graphic

UCS-2 or UTF-16 graphic

Character

Chapter 5. Data Definition Language (DDL)

31

Table 5. Allowable Conversions (continued)

FROM data type TO data type
UCS-2 or UTF-16 graphic DBCS-open
UCS-2 or UTF-16 graphic DBCS graphic
distinct type source type
source type distinct type

When modifying an existing column, only the attributes that you specify will be changed. All other
attributes will remain unchanged. For example, given the following table definition:

CREATE TABLE EX1 (COL1 CHAR(10) DEFAULT 'COL1',
COL2 VARCHAR(20) ALLOCATE(10) CCSID 937,
COL3 VARGRAPHIC(20) ALLOCATE(10)
NOT NULL WITH DEFAULT)

After running the following ALTER TABLE statement:

ALTER TABLE EX1 ALTER COLUMN COL2 SET DATA TYPE VARCHAR(30)
ALTER COLUMN COL3 DROP NOT NULL

COL2 still has an allocated length of 10 and CCSID 937, and COL3 still has an allocated length of 10.

Deleting a column
You can delete a column using the DROP COLUMN clause of the [ALTER TABLH statement.

Dropping a column deletes that column from the table definition. If CASCADE is specified, any views,
indexes, and constraints dependent on that column will also be dropped. If RESTRICT is specified, and
any views, indexes, or constraints are dependent on the column, the column will not be dropped and
SQLCODE of -196 will be issued.

ALTER TABLE DEPT
DROP COLUMN NUMDEPT

Order of operations for ALTER TABLE statement

An ALTER TABLE statement is performed as a set of steps as follows:
1. Drop constraints
2. Drop materialized query table

w

Drop partition information

»

Drop columns for which the RESTRICT option was specified

o

Alter column definitions (this includes adding columns and dropping columns for which the
CASCADE option was specified)

Add or alter materialized query table

o

7. Add partitioning to a table
8. Add constraints

Within each of these steps, the order in which you specify the clauses is the order in which they are
performed, with one exception. If any columns are being dropped, that operation is logically done before
any column definitions are added or altered, in case record length is increased as a result of the ALTER
TABLE statement.

32 iSeries: DB2 Universal Database for iSeries SQL Programming

Creating and using ALIAS names

When you refer to an existing table or view, or to a physical file that consists of multiple members, you
can avoid using file overrides by creating an alias. You can use the SQL [CREATE ALIAS|statement to do
this.

You can create an alias for
e A table or view
e A member of a table

A table alias defines a name for the file, including the specific member name. You can use this alias name
in an SQL statement in the same way that a table name is used. Unlike overrides, alias names are objects
that exist until they are dropped.

For example, if there is a multiple member file MYLIB.MYFILE with members MBR1 and MBR?2, an alias
can be created for the second member so that SQL can easily refer to it.

CREATE ALIAS MYLIB.MYMBR2_ALIAS FOR MYLIB.MYFILE (MBR2)

When alias MYLIB.MYMBR2_ALIAS is specified on the following insert statement, the values are inserted
into member MBR2 in MYLIB.MYFILE.

INSERT INTO MYLIB.MYMBR2_ALIAS VALUES('ABC', 6)

Alias names can also be specified on DDL statements. Assume that alias MYLIB.MYALIAS exists and is
an alias for table MYLIB.MYTABLE. The following DROP statement will drop table MYLIB.MYTABLE.

DROP TABLE MYLIB.MYALIAS

If you really want to drop the alias name instead, specify the ALIAS keyword on the drop statement:
DROP ALIAS MYLIB.MYALIAS

Creating and using views

A view can be used to access data in one or more tables or views. This is done by using a SELECT
statement. See [“Retrieving data using the SELECT statement” on page 41|for detail about using the
SELECT clause. For views, the ORDER BY clause cannot be used.

For example, to create a view that selects only the family name and the department of all the managers,
specify:
CREATE VIEW CORPDATA.EMP_MANAGERS AS

SELECT LASTNAME, WORKDEPT FROM CORPDATA.EMPLOYEE
WHERE JOB = 'MANAGER'

Once you have created the view, you can use it in SQL statements just like a table name. You can also
change the data in the base table. The following SELECT statement displays the contents of
EMP_MANAGERS:

SELECT *
FROM CORPDATA.EMP_MANAGERS

The results are:

LASTNAME WORKDEPT
THOMPSON B01
KWAN C01
GEYER EO01

Chapter 5. Data Definition Language (DDL) 33

LASTNAME WORKDEPT
STERN D11
PULASKI D21
HENDERSON E11
SPENSER E21

If the select list contains elements other than columns such as expressions, functions, constants, or special
registers, and the AS clause was not used to name the columns, a column list must be specified for the
view. In the following example, the columns of the view are LASTNAME and YEARSOFSERVICE.

CREATE VIEW CORPDATA.EMP_YEARSOFSERVICE
(LASTNAME, YEARSOFSERVICE) AS
SELECT LASTNAME, YEAR (CURRENT DATE - HIREDATE)
FROM CORPDATA.EMPLOYEE

Since the results of querying this view change as the current year changes, they are not included here.

The previous view can also be defined by using the AS clause in the select list to name the columns in
the view. For example:

CREATE VIEW CORPDATA.EMP_YEARSOFSERVICE AS
SELECT LASTNAME,
YEARS (CURRENT_DATE - HIREDATE) AS YEARSOFSERVICE
FROM CORPDATA.EMPLOYEE

Using the UNION keyword, you can combine two or more subselects to form a single view. For example:

CREATE VIEW D11_EMPS_PROJECTS AS
(SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'
UNION
SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'")

Results in a view with the following data:

Table 6. Creating a view as UNION results

EMPNO

000060

000150

000160

000170

000180

000190

000200

000210

000220

000230

000240

200170

34 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 6. Creating a view as UNION results (continued)
EMPNO
200220

See [“Using the UNION keyword to combine subselects” on page 64 for more detail about UNION.

For restrictions when creating a view, see (CREATE VIEW|in the SQL Reference.

Views are created with the sort sequence in effect at the time the CREATE VIEW statement is run. The
sort sequence applies to all character, or UCS-2 or UTF-16 graphic comparisons in the CREATE VIEW
statement subselect. See [Chapter 7, “Sort sequences and normalization in SQL,” on page 95| for more
information about sort sequences.

Views can also be created using the WITH CHECK OPTION to specify the level of checking that should
be done when data is inserted or updated through the view. See [“WITH CHECK OPTION on a View” on|
for more information.

WITH CHECK OPTION on a View

WITH CHECK OPTION is an optional clause on the CREATE VIEW statement that specifies the level of
checking to be done when inserting or updating data through a view. If the option is specified, every row
that is inserted or updated through the view must conform to the definition of that view.

WITH CHECK OPTION cannot be specified if the view is read-only. The definition of the view must not
include a subquery.

If the view is created without a WITH CHECK OPTION clause, insert and update operations that are
performed on the view are not checked for conformance to the view definition. Some checking might still
occur if the view is directly or indirectly dependent on another view that includes WITH CHECK
OPTION. Because the definition of the view is not used, rows might be inserted or updated through the
view that do not conform to the definition of the view. This means that the rows cannot be selected again
using the view.

The checking can be on of the following;:
* ["'WITH CASCADED CHECK OPTION”|
+ ["WITH LOCAL CHECK OPTION” on page 36|

For an example of using WITH CHECK OPTION, see|“Example: Cascaded check option” on page 37

See the [CREATE VIEW]| topic in the SQL Reference topic for additional discussion of WITH CHECK
OPTION.

WITH CASCADED CHECK OPTION

The WITH CASCADED CHECK OPTION specifies that every row that is inserted or updated through
the view must conform to the definition of the view. In addition, the search conditions of all dependent
views are checked when a row is inserted or updated. If a row does not conform to the definition of the
view, that row cannot be retrieved using the view.

For example, consider the following updatable view:

CREATE VIEW V1 AS SELECT COL1
FROM T1 WHERE COL1 > 10

Because no WITH CHECK OPTION is specified, the following INSERT statement is successful even
though the value being inserted does not meet the search condition of the view.

INSERT INTO V1 VALUES (5)

Chapter 5. Data Definition Language (DDL) 35

Create another view over V1, specifying the WITH CASCADED CHECK OPTION:

CREATE VIEW V2 AS SELECT COL1
FROM V1 WITH CASCADED CHECK OPTION

The following INSERT statement fails because it produces a row that does not conform to the definition
of V2:

INSERT INTO V2 VALUES (5)

Consider one more view created over V2:

CREATE VIEW V3 AS SELECT COL1
FROM V2 WHERE COL1 < 100

The following INSERT statement fails only because V3 is dependent on V2, and V2 has a WITH
CASCADED CHECK OPTION.

INSERT INTO V3 VALUES (5)

However, the following INSERT statement is successful because it conforms to the definition of V2.
Because V3 does not have a WITH CASCADED CHECK OPTION, it does not matter that the statement
does not conform to the definition of V3.

INSERT INTO V3 VALUES (200)

WITH LOCAL CHECK OPTION

WITH LOCAL CHECK OPTION is identical to WITH CASCADED CHECK OPTION except that you can
update a row so that it no longer can be retrieved through the view. This can only happen when the view
is directly or indirectly dependent on a view that was defined with no WITH CHECK OPTION clause.

For example, consider the same updatable view used in the previous example:

CREATE VIEW V1 AS SELECT COL1
FROM T1 WHERE COL1 > 10

Create second view over V1, this time specifying WITH LOCAL CHECK OPTION:

CREATE VIEW V2 AS SELECT COL1
FROM V1 WITH LOCAL CHECK OPTION

The same INSERT that failed in the previous CASCADED CHECK OPTION example succeeds now
because V2 does not have any search conditions, and the search conditions of V1 do not need to be
checked since V1 does not specify a check option.

INSERT INTO V2 VALUES (5)

Consider one more view created over V2:

CREATE VIEW V3 AS SELECT COL1
FROM V2 WHERE COL1 < 100

The following INSERT is successful again because the search condition on V1 is not checked due to the
WITH LOCAL CHECK OPTION on V2, versus the WITH CASCADED CHECK OPTION in the previous
example.

INSERT INTO V3 VALUES (5)

The difference between LOCAL and CASCADED CHECK OPTION lies in how many of the dependent
views’ search conditions are checked when a row is inserted or updated.

* WITH LOCAL CHECK OPTION specifies that the search conditions of only those dependent views
that have the WITH LOCAL CHECK OPTION or WITH CASCADED CHECK OPTION are checked
when a row is inserted or updated.

* WITH CASCADED CHECK OPTION specifies that the search conditions of all dependent views are
checked when a row is inserted or updated.

36 iSeries: DB2 Universal Database for iSeries SQL Programming

Example: Cascaded check option
Use the following table and views:

CREATE TABLE T1 (COL1 CHAR(10))

CREATE VIEW V1 AS SELECT COL1
FROM T1 WHERE COL1 LIKE 'A%

CREATE VIEW V2 AS SELECT COL1
FROM V1 WHERE COL1 LIKE '%Z'
WITH LOCAL CHECK OPTION

CREATE VIEW V3 AS SELECT COL1
FROM V2 WHERE COL1 LIKE 'AB%'

CREATE VIEW V4 AS SELECT COL1
FROM V3 WHERE COL1 LIKE '%YZ'
WITH CASCADED CHECK OPTION

CREATE VIEW V5 AS SELECT COL1
FROM V4 WHERE COL1 LIKE 'ABC%'

Different search conditions are going to be checked depending on which view is being operated on with
an INSERT or UPDATE.

* If V1 is operated on, no conditions are checked because V1 does not have a WITH CHECK OPTION
specified.
* If V2 is operated on,

— COL1 must end in the letter Z, but it doesn’t need to start with the letter A. This is because the

check option is LOCAL, and view V1 does not have a check option specified.
* If V3 is operated on,

— COL1 must end in the letter Z, but it does not need to start with the letter A. V3 does not have a
check option specified, so its own search condition must not be met. However, the search condition
for V2 must be checked since V3 is defined on V2, and V2 has a check option.

 If V4 is operated on,

— COL1 must start with "AB’, and must end with "YZ’. Because V4 has the WITH CASCADED
CHECK OPTION specified, every search condition for every view on which V4 is dependent must
be checked.

 If V5 is operated on,

— COL1 must start with "AB’, but not necessarily "ABC’. This is because V5 does not specify a check
option, so its own search condition does not need to be checked. However, because V5 is defined on
V4, and V4 had a cascaded check option, every search condition for V4, V3, V2, and V1 must be
checked. That is, COL1 must start with "AB” and end with "YZ’".

If V5 were created WITH LOCAL CHECK OPTION, operating on V5 means that COL1 must start with
"ABC’” and end with "YZ’. The LOCAL CHECK OPTION adds the additional requirement that the third
character must be a 'C’.

Adding indexes

You can use indexes to sort and select data. In addition, indexes help the system retrieve data faster for
better query performance.

Use the CREATE INDEX statement to create indexes. The following example creates an index over the
column LASTNAME in the CORPDATA EMPLOYEE table:

CREATE INDEX CORPDATA.INX1 ON CORPDATA.EMPLOYEE (LASTNAME)

For more information about the CREATE INDEX statement, see [CREATE INDEX| in the SQL Reference.

Chapter 5. Data Definition Language (DDL) 37

You can create any number of indexes. However, because the indexes are maintained by the system, a
large number of indexes can adversely affect performance. One type of index, the encoded vector index
(EVI), allows for faster scans that can be more easily processed in parallel. For more information about
indexes and query performance, see|Creating an index strategy|in the Database Performance and Query
Optimization information.

If an index is created that has exactly the same attributes as an existing index, the new index shares the
existing indexes’ binary tree. Otherwise, another binary tree is created. If the attributes of the new index
are exactly the same as another index, except that the new index has fewer columns, another binary tree
is still created. It is still created because the extra columns prevent the index from being used by cursors
or UPDATE statements that update those extra columns.

Indexes are created with the sort sequence in effect at the time the CREATE INDEX statement is run. The
sort sequence applies to all SBCS character fields, or UCS-2 or UTF-16 graphic fields of the index. See
[Chapter 7, “Sort sequences and normalization in SQL,” on page 95| for more information about sort
sequences.

Catalogs in database design

A catalog is automatically created when you create a schema. There is also a system-wide catalog that is
always in the QSYS2 library. When an SQL object is created in a schema, information is added to both the
system catalog tables and the schema’s catalog tables. When an SQL object is created in a library, only the
QSYS2 catalog is updated. A table created with DECLARE GLOBAL TEMPORARY TABLE is not added

to a catalog. For more information about catalogs, see the|SQL Reference|book.

As the following examples show, you can display catalog information. You cannot INSERT, DELETE, or
UPDATE catalog information. You must have SELECT privileges on the catalog views to run the
following examples.

s ["Getting catalog information about a table”]

* ["Getting catalog information about a column”]

Getting catalog information about a table

SYSTABLES contains a row for every table and view in the SQL schema. It tells you if the object is a table
or view, the object name, the owner of the object, what SQL schema it is in, and so forth.

The following sample statement displays information for the CORPDATA.DEPARTMENT table:

SELECT ~
FROM CORPDATA.SYSTABLES
WHERE TABLE_NAME = 'DEPARTMENT'

Getting catalog information about a column

SYSCOLUMNS contains a row for each column of every table and view in the schema.

The following sample statement displays all the column names in the CORPDATA.DEPARTMENT table:

SELECT ~
FROM CORPDATA.SYSCOLUMNS
WHERE TABLE_NAME = 'DEPARTMENT'

The result of the previous sample statement is a row of information for each column in the table. Some of
the information is not visible because the width of the information is wider than the display screen.

For more information about each column, specify a select-statement like this:

SELECT COLUMN_NAME, TABLE_NAME, DATA_TYPE, LENGTH, HAS_DEFAULT
FROM CORPDATA.SYSCOLUMNS
WHERE TABLE_NAME = 'DEPARTMENT'

38 iSeries: DB2 Universal Database for iSeries SQL Programming

In addition to the column name for each column, the select-statement shows:

e The name of the table that contains the column

¢ The data type of the column

¢ The length attribute of the column

e If the column allows default values

The result looks like this:

COLUMN_NAME TABLE_NAME DATA_TYPE LENGTH HAS_DEFAULT
DEPTNO DEPARTMENT CHAR 3 N
DEPTNAME DEPARTMENT VARCHAR 29 N
MGRNO DEPARTMENT CHAR 6 Y
ADMRDEPT DEPARTMENT CHAR 3 N

Dropping a database object

The DROP statement deletes an object. Depending on the action requested, any objects that are directly or
indirectly dependent on that object may also be deleted or may prevent the drop from happening. For
example, if you drop a table, any aliases, constraints, triggers, views, or indexes associated with that table
will also be dropped. Whenever an object is deleted, its description is deleted from the catalog.

For example, to drop table EMPLOYEE, issue the following statement:
DROP TABLE EMPLOYEE RESTRICT

See the [DROP statement|in the SQL Reference book for more details.

Chapter 5. Data Definition Language (DDL) 39

40 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 6. Data Manipulation Language

Data Manipulation Language (DML) describes the portion of SQL that allows you to manipulate or
control your data.

In this topic, you will find the following information:

[“Retrieving data using the SELECT statement”]|
Learn how to retrieve information using SELECT

“Inserting rows using the INSERT statement” on page 73|
Add information using INSERT

[“Changing data in a table using the UPDATE statement” on page 78|
Change information using UPDATE

[“Removing rows from a table using the DELETE statement” on page 83|
Remove information using DELETE

[“Using Subqueries” on page 86|
Use Subqueries as your search condition

Retrieving data using the SELECT statement

You can use a variety of statements and clauses to query your data. One way to do this is to use the
SELECT statement in a program to retrieve a specific row (for example, the row for an employee). For
introductory information about SELECT statement, see [‘Basic SELECT statement” on page 42|

Furthermore, you can use a variety of clauses to gather data in a specific way. SQL provides you with
several ways of tailoring your query to gather data in a specific manner. These methods are:

* [‘Specifying a search condition using the WHERE clause” on page 43|
+ ["GROUP BY clause” on page 45

* ["HAVING clause” on page 47|

 [‘ORDER BY clause” on page 48|

Once you understand these methods, you can use other methods of tailoring your information:
* [‘Static SELECT statements” on page 50)
* ["Handling Null values” on page 50|

* [‘Special registers in SQL statements” on page 51|

* [‘Casting data types” on page 53

* ["Date, Time, and Timestamp data types” on page 53|

* ["Handling duplicate rows” on page 54

* ["Performing complex search conditions” on page 54

* [‘Joining data from more than one table” on page 57|

* ["Using table expressions” on page 62

* [‘Using the UNION keyword to combine subselects” on page 64|
. "’Using EXCEPT keyword” on page 68
+ [“Using INTERSECT keyword” on page 70|

© Copyright IBM Corp. 1998, 2004

Finally, |“Data retrieval errors” on page 72| can help you determine why your statement is not working
properly.

Basic SELECT statement

You can write SQL statements on one line or on many lines. For SQL statements in precompiled
programs, the rules for the continuation of lines are the same as those of the host language (the language
the program is written in). A SELECT statement can also be used by a cursor in a program. Finally, a
SELECT statement can be prepared in a dynamic application.

Notes:

1. The SQL statements described in this section can be run on SQL tables and views, and database
physical and logical files.

2. Character strings specified in an SQL statement (such as those used with WHERE or VALUES clauses)
are case sensitive; that is, uppercase characters must be entered in uppercase and lowercase characters
must be entered in lowercase.

WHERE ADMRDEPT='a00' (does not return a result)

WHERE ADMRDEPT='A0O' (returns a valid department number)

Comparisons may not be case sensitive if a shared-weight sort sequence is being used where
uppercase and lowercase characters are treated as the same character.

The format and syntax shown here are very basic. SELECT statements can be more varied than the
examples presented in this chapter. A SELECT statement can include the following;:

The name of each column you want to include

The name of the table or view that contains the data

A search condition to uniquely identify the row that contains the information you want
The name of each column used to group your data

A search condition that uniquely identifies a group that contains the information you want

ook wn =

The order of the results so a specific row among duplicates can be returned.

A SELECT statement looks like this:

SELECT column names
FROM table or view name
WHERE search condition
GROUP BY column names
HAVING search condition
ORDER BY column-name

The SELECT and FROM clauses must be specified. The other clauses are optional.

With the SELECT clause, you specify the name of each column you want to retrieve. For example:
SELECT EMPNO, LASTNAME, WORKDEPT

You can specify that only one column be retrieved, or as many as 8000 columns. The value of each
column you name is retrieved in the order specified in the SELECT clause.

If you want to retrieve all columns (in the same order as they appear in the table’s definition), use an
asterisk (*) instead of naming the columns:

42 iSeries: DB2 Universal Database for iSeries SQL Programming

SELECT *

The FROM clause specifies the table that you want to select data from. You can select columns from more
than one table. When issuing a SELECT, you must specify a FROM clause. Issue the following statement:

SELECT *
FROM EMPLOYEE

The result is all of the columns and rows from table EMPLOYEE.

The SELECT list can also contain expressions, including constants, special registers, and scalar subselects.
An AS clause can also be used to give the resulting column a name. For example, issue the following
statement:

SELECT LASTNAME, SALARY = .05 AS RAISE
FROM EMPLOYEE
WHERE EMPNO = '200140'

The result of this statement is:
Table 7. Results for query

LASTNAME RAISE
NATZ 1421

If SQL is unable to find a row that satisfies the search condition, an SQLCODE of +100 is returned.

If SQL finds errors while running your select-statement, a negative SQLCODE is returned. If SQL finds
more host variables than results, +326 is returned.

Specifying a search condition using the WHERE clause

The WHERE clause specifies a search condition that identifies the row or rows you want to retrieve,
update, or delete. The number of rows you process with an SQL statement then depends on the number
of rows that satisfy the WHERE clause search condition. A search condition consists of one or more
predicates. A predicate specifies a test that you want SQL to apply to a specified row or rows of a table.
For more information about predicates, see [“Performing complex search conditions” on page 54

In the following example, WORKDEPT = 'C01' is a predicate, WORKDEPT and 'C01" are expressions, and
the equal sign (=) is a comparison operator. Note that character values are enclosed in apostrophes (');
numeric values are not. This applies to all constant values wherever they are coded within an SQL
statement. For example, to specify that you are interested in the rows where the department number is
C01, issue the following statement:

... WHERE WORKDEPT = 'CO1'
In this case, the search condition consists of one predicate: WORKDEPT = 'C01".

To further illustrate WHERE, put it into a SELECT statement. Assume that each department listed in the
CORPDATA.DEPARTMENT table has a unique department number. You want to retrieve the department
name and manager number from the CORPDATA DEPARTMENT table for department CO1. Issue the
following statement:

SELECT DEPTNAME, MGRNO

FROM CORPDATA.DEPARTMENT
WHERE DEPTNO = 'CO1'

Chapter 6. Data Manipulation Language 43

When this statement is run, the result is one row:

Table 8. Result table

DEPTNAME MGRNO
INFORMATION CENTER 000030

If the search condition contains character, or UCS-2 or UTF-16 graphic column predicates, the sort
sequence that is in effect when the query is run is applied to those predicates. See [Chapter 7, “Sort|
lsequences and normalization in SQL,” on page 95| for more information about sort sequence and
selection. If a sort sequence is not being used, character constants must be specified in uppercase or
lowercase to match the column or expression they are being compared to.

For more details about using the WHERE clause, see the following sections:
* [“Expressions in the WHERE clause”|

* ["Comparison operators” on page 45|

* ["'NOT keyword” on page 45|

Expressions in the WHERE clause

An expression in a WHERE clause names or specifies something you want to compare to something else.
Each expression, when evaluated by SQL, is a character string, date/time/timestamp, or a numeric value.
The expressions you specify can be:

* A column name names a column. For example:
... WHERE EMPNO = '000200'

EMPNO names a column that is defined as a 6-byte character value. Equality comparisons (that is, X =
Y or X <>Y) can be performed on character data. Other types of comparisons can also be evaluated for
character data.

However, you cannot compare character strings to numbers. You also cannot perform arithmetic
operations on character data (even though EMPNO is a character string that appears to be a number).
A cast function can be used to convert character and numeric data into values that can be compared.
You can add and subtract date/time values and durations.

* An expression identifies two values that are added (+), subtracted (-), multiplied (*), divided (/), have
exponentiation (**), or concatenated (CONCAT or | 1) to result in a value. The operands of an
expression can be:

A constant
A column
A host variable
A value returned from a function
A special register
A subquery
Another expression
For example:
... WHERE INTEGER(PRENDATE - PRSTDATE) > 100

When the order of evaluation is not specified by parentheses, the expression is evaluated in the
following order:

1. Prefix operators

2. Exponentiation

3. Multiplication, division, and concatenation

4. Addition and subtraction

Operators on the same precedence level are applied from left to right.

44 iSeries: DB2 Universal Database for iSeries SQL Programming

* A constant specifies a literal value for the expression. For example:
... WHERE 40000 < SALARY

SALARY names a column that is defined as an 9-digit packed decimal value (DECIMAL(9,2)). It is
compared to the numeric constant 40000.

* A host variable identifies a variable in an application program. For example:
... WHERE EMPNO = :EMP

* A special register identifies a special value defined by the database manager. For example:
... WHERE LASTNAME = USER

¢ The NULL value specifies the condition of having an unknown value.
... WHERE DUE_DATE IS NULL

* A subquery. For details about using subqueries, see [‘Using Subqueries” on page 86/

A search condition need not be limited to two column names or constants separated by arithmetic or
comparison operators. You can develop a complex search condition that specifies several predicates
separated by AND and OR. No matter how complex the search condition, it supplies a TRUE or FALSE
value when evaluated against a row. There is also an unknown truth value, which is effectively false. That
is, if the value of a row is null, this null value is not returned as a result of a search because it is not less
than, equal to, or greater than the value specified in the search condition. More complex search
conditions and predicates are described in [“Performing complex search conditions” on page 54)

To fully understand the WHERE clause, you need to know the order SQL evaluates search conditions and
predicates, and compares the values of expressions. This topic is discussed in the [SQL Reference| book.

Comparison operators
SQL supports the following comparison operators:

= Equal to

<>or=or!= Not equal to

< Less than

> Greater than

<=or => or !> Less than or equal to (or not greater than)
> = or °< or I< Greater than or equal to (or not less than)

NOT keyword

You can precede a predicate with the NOT keyword to specify that you want the opposite of the
predicate’s value (that is, TRUE if the predicate is FALSE, or vice versa). NOT applies only to the
predicate it precedes, not to all predicates in the WHERE clause. For example, to indicate that you are
interested in all employees except those working in department C01, you can say:

... WHERE NOT WORKDEPT = 'CO1'

which is equivalent to:
... WHERE WORKDEPT <> 'CO1'

GROUP BY clause

Without a GROUP BY clause, the application of SQL column functions returns one row. When GROUP BY
is used, the function is applied to each group, thereby returning as many rows as there are groups.

The GROUP BY clause allows you to find the characteristics of groups of rows rather than individual
rows. When you specify a GROUP BY clause, SQL divides the selected rows into groups such that the
rows of each group have matching values in one or more columns or expressions. Next, SQL processes
each group to produce a single-row result for the group. You can specify one or more columns or

Chapter 6. Data Manipulation Language 45

expressions in the GROUP BY clause to group the rows. The items you specify in the SELECT statement
are properties of each group of rows, not properties of individual rows in a table or view.

For example, the CORPDATA EMPLOYEE table has several sets of rows, and each set consists of rows
describing members of a specific department. To find the average salary of people in each department,
you can issue:

SELECT WORKDEPT, DECIMAL (AVG(SALARY),5,0)
FROM CORPDATA.EMPLOYEE
GROUP BY WORKDEPT

The result is several rows, one for each department.

WORKDEPT AVG-SALARY
A00 40850

BO1 41250

Co1 29722

D11 25147

D21 25668

EO1 40175

E11 21020

E21 24086

Notes:

1. Grouping the rows does not mean ordering them. Grouping puts each selected row in a group, which
SQL then processes to derive characteristics of the group. Ordering the rows puts all the rows in the
results table in ascending or descending collating sequence. ([“ORDER BY clause” on page 48|
describes how to do this.) Depending on the implementation selected by the database manager, the
resulting groups may appear to be ordered.

2. If there are null values in the column you specify in the GROUP BY clause, a single-row result is
produced for the data in the rows with null values.

3. If the grouping occurs over character, or UCS-2 or UTF-16 graphic columns, the sort sequence in effect
when the query is run is applied to the grouping. See [Chapter 7, “Sort sequences and normalization in|
ISQL,” on page 95| for more information about sort sequence and selection.

When you use GROUP BY, you list the columns or expressions you want SQL to use to group the rows.
For example, suppose you want a list of the number of people working on each major project described
in the CORPDATA.PROJECT table. You can issue:

SELECT SUM(PRSTAFF), MAJPROJ

FROM CORPDATA.PROJECT
GROUP BY MAJPROJ

The result is a list of the company’s current major projects and the number of people working on each
project:

SUM(PRSTAFF) MAJPROJ
6 AD3100
5 AD3110
10 MA2100
8 MA2110
5 OP1000
4 OP2000

46 iSeries: DB2 Universal Database for iSeries SQL Programming

SUM(PRSTAFF) MAJPROJ
3 OP2010
325 ?

You can also specify that you want the rows grouped by more than one column or expression. For
example, you can issue a select-statement to find the average salary for men and women in each
department, using the CORPDATA.EMPLOYEE table. To do this, you can issue:

SELECT WORKDEPT, SEX, DECIMAL(AVG(SALARY),5,0) AS AVG_WAGES

FROM CORPDATA.EMPLOYEE
GROUP BY WORKDEPT, SEX

Results in:

WORKDEPT SEX AVG_WAGES
A00 F 49625
A00 M 35000
BO1 M 41250
Co1 F 29722
D11 F 25817
D11 M 24764
D21 F 26933
D21 M 24720
EO01 M 40175
El1 F 22810
E11 M 16545
E21 F 25370
E21 M 23830

Because you did not include a WHERE clause in this example, SQL examines and process all rows in the
CORPDATA.EMPLOYEE table. The rows are grouped first by department number and next (within each
department) by sex before SQL derives the average SALARY value for each group.

HAVING clause

You can use the HAVING clause to specify a search condition for the groups selected based on a GROUP
BY clause. The HAVING clause says that you want only those groups that satisfy the condition in that
clause. Therefore, the search condition you specify in the HAVING clause must test properties of each
group rather than properties of individual rows in the group.

The HAVING clause follows the GROUP BY clause and can contain the same kind of search condition
you can specify in a WHERE clause. In addition, you can specify column functions in a HAVING clause.
For example, suppose you wanted to retrieve the average salary of women in each department. To do
this, use the AVG column function and group the resulting rows by WORKDEPT and specify a WHERE
clause of SEX = 'F'.

To specify that you want this data only when all the female employees in the selected department have
an education level equal to or greater than 16 (a college graduate), use the HAVING clause. The HAVING
clause tests a property of the group. In this case, the test is on MIN(EDLEVEL), which is a group

property:

Chapter 6. Data Manipulation Language 47

SELECT WORKDEPT, DECIMAL(AVG(SALARY),5,0) AS AVG_WAGES, MIN(EDLEVEL) AS MIN_EDUC
FROM CORPDATA.EMPLOYEE
WHERE SEX='F'
GROUP BY WORKDEPT
HAVING MIN(EDLEVEL)>=16

Results in:

WORKDEPT AVG_WAGES MIN_EDUC
A00 49625 18

Co1 29722 16

D11 25817 17

You can use multiple predicates in a HAVING clause by connecting them with AND and OR, and you
can use NOT for any predicate of a search condition.

Note: If you intend to update a column or delete a row, you cannot include a GROUP BY or HAVING
clause in the SELECT statement within a DECLARE CURSOR statement. (The DECLARE CURSOR
statement is described in [‘Using a Cursor” on page 215|) These clauses make it a read-only cursor.

Predicates with arguments that are not column functions can be coded in either WHERE or HAVING
clauses. It is typically more efficient to code the selection criteria in the WHERE clause because it is
handled earlier in the query processing. The HAVING selection is performed in post processing of the
result table.

If the search condition contains predicates involving character, or UCS-2 or UTF-16 graphic columns, the
sort sequence in effect when the query is run is applied to those predicates. See [Chapter 7, “Sor]
lsequences and normalization in SQL,” on page 95| for more information about sort sequence and
selection.

ORDER BY clause

You can specify that you want selected rows returned in a particular order, sorted by ascending or
descending collating sequence of a column’s or expression’s value, with the ORDER BY clause. For
example, to retrieve the names and department numbers of female employees listed in the alphanumeric
order of their department numbers, you can use this select-statement:
SELECT LASTNAME,WORKDEPT

FROM CORPDATA.EMPLOYEE

WHERE SEX='F'
ORDER BY WORKDEPT

Results in:

LASTNAME WORKDEPT
HAAS A00
HEMMINGER A00
KWAN Co01
QUINTANA C01
NICHOLLS Co01
NATZ C01
PIANKA D11
SCOUTTEN D11
LUTZ D11

48 iSeries: DB2 Universal Database for iSeries SQL Programming

LASTNAME WORKDEPT
JOHN D11
PULASKI D21
JOHNSON D21
PEREZ D21
HENDERSON Ell
SCHNEIDER Ell
SETRIGHT DIl
SCHWARTZ Ell
SPRINGER Ell
WONG E21

Note: Null values are ordered as the highest value.

The column specified in the ORDER BY clause does not need to be included in the SELECT clause. For
example, the following statement will return all female employees ordered with the largest salary first:
SELECT LASTNAME,FIRSTNME

FROM CORPDATA.EMPLOYEE

WHERE SEX='F'
ORDER BY SALARY DESC

If an AS clause is specified to name a result column in the select-list, this name can be specified in the
ORDER BY clause. The name specified in the AS clause must be unique in the select-list. For example, to
retrieve the full name of employees listed in alphabetic order, you can use this select-statement:

SELECT LASTNAME CONCAT FIRSTNME AS FULLNAME

FROM CORPDATA.EMPLOYEE
ORDER BY FULLNAME

This select-statement can optionally be written as:

SELECT LASTNAME CONCAT FIRSTNME
FROM CORPDATA.EMPLOYEE
ORDER BY LASTNAME CONCAT FIRSTNME

Instead of naming the columns to order the results, you can use a number. For example, ORDER BY 3
specifies that you want the results ordered by the third column of the results table, as specified by the
select-list. Use a number to order the rows of the results table when the sequencing value is not a named
column.

You can also specify whether you want SQL to collate the rows in ascending (ASC) or descending (DESC)
sequence. An ascending collating sequence is the default. In the previous select-statement, SQL first
returns the row with the lowest FULLNAME expression (alphabetically and numerically), followed by
rows with higher values. To order the rows in descending collating sequence based on this name, specify:

... ORDER BY FULLNAME DESC

As with GROUP BY, you can specify a secondary ordering sequence (or several levels of ordering
sequences) as well as a primary one. In the previous example, you might want the rows ordered first by
department number, and within each department, ordered by employee name. To do this, specify:

... ORDER BY WORKDEPT, FULLNAME

Chapter 6. Data Manipulation Language 49

If character columns, or UCS-2 or UTF-16 graphic columns are used in the ORDER BY clause, ordering
for these columns is based on the sort sequence in effect when the query is run. See [Chapter 7, “Sort|
lsequences and normalization in SQL,” on page 95| for more information about sort sequence and its affect
on ordering.

Static SELECT statements

For a static SELECT statement (one embedded in an SQL program), an INTO clause must be specified

before the FROM clause. The INTO clause names the host variables (variables in your program used to
contain retrieved column values). The value of the first result column specified in the SELECT clause is
put into the first host variable named in the INTO clause; the second value is put into the second host
variable, and so on.

The result table for a SELECT INTO should contain just one row. For example, each row in the
CORPDATA.EMPLOYEE table has a unique EMPNO (employee number) column. The result of a SELECT
INTO statement for this table if the WHERE clause contains an equal comparison on the EMPNO
column, will be exactly one row (or no rows). Finding more than one row is an error, but one row is still
returned. You can control which row will be returned in this error condition by specifying the ORDER BY
clause. If you use the ORDER BY clause, the first row in the result table is returned.

If you want more than one row to be the result of a SELECT INTO statement, use a DECLARE CURSOR
statement to select the rows, followed by a FETCH statement to move the column values into host
variables one or many rows at a time. Using cursors is described in [“Using a Cursor” on page 215)

When using the select-statement in an application program, list the column names to give your program
more data independence. There are two reasons for this:

1. When you look at the source code statement, you can easily see the one-to-one correspondence
between the column names in the SELECT clause and the host variables named in the INTO clause.

2. If a column is added to a table or view you access and you use “SELECT * ...,” and you create the
program again from source, the INTO clause does not have a matching host variable named for the
new column. The extra column causes you to get a warning (not an error) in the SQLCA (SQLWARN3
will contain a “W”). When using the GET DIAGNOSTICS statement, the RETURNED_SQLSTATE item
will have a value of "01503".

Handling Null values

A NULL value indicates the absence of a column value in a row. A null value is not the same as zero or
all blanks. A null value means unknown. Null values can be used as a condition in the WHERE and
HAVING clauses. For example, a WHERE clause can specify a column that, for some rows, contains a
null value. Normally, a comparison predicate using a column that contains null values does not select a
row that has a null value for the column. This is because a null value is neither less than, equal to, nor
greater than the value specified in the condition. To select the values for all rows that contain a null value
for the manager number, you can specify:

SELECT DEPTNO, DEPTNAME, ADMRDEPT

FROM CORPDATA.DEPARTMENT
WHERE MGRNO IS NULL

The result are:

DEPTNO DEPTNAME ADMRDEPT
D01 DEVELOPMENT CENTER A00
F22 BRANCH OFFICE EF2 EO01
G22 BRANCH OFFICE G2 EO01
H22 BRANCH OFFICE H2 EO01
122 BRANCH OFFICE 12 EO01

50 iSeries: DB2 Universal Database for iSeries SQL Programming

DEPTNO DEPTNAME ADMRDEPT
J22 BRANCH OFFICE]2 EO1

To get the rows that do not have a null value for the manager number, you can change the WHERE
clause like this:

WHERE MGRNO IS NOT NULL

Another predicate that is useful for comparing values that can contain the NULL value is the DISTINCT
predicate. Comparing two columns using a normal equal comparison (COL1 = COL2) will be true if both
columns contain an equal non-null value. If both columns are null, the result will be false since null is
never equal to any other value, not even another null value. Using the DISTINCT predicate, null values
are considered equal. So (COL1 is NOT DISTINCT from COL2) will be true if both columns contain an
equal non-null value and also when both columns are the null value.

For example, suppose you wanted to select information from 2 tables that contained null values. The first
table (T1) has a column (C1) with the following values:

C1
2
1

null

The second table (T2) has a column (C2) with the following values:

Cc2
2

null

Run the following SELECT statement:

SELECT *
FROM T1, T2
WHERE C1 IS DISTINCT FROM C2

The results are:

C1 C2
1 2
1 -
2 -
- 2

For more information about the use of null values, see the [SQL Reference| book.

Special registers in SQL statements

You can specify certain “special registers” in SQL statements. For locally run SQL statements, the special
registers and their contents are shown in the following table:

Chapter 6. Data Manipulation Language 51

Special Registers

Contents

CURRENT DATE
CURRENT_DATE

The current date.

CURRENT PATH
CURRENT_PATH

CURRENT FUNCTION PATH

The SQL path used to resolve unqualified data type
names, procedure names, and function names in
dynamically prepared SQL statements.

CURRENT SCHEMA

The schema name used to qualify unqualified database
object references where applicable in dynamically
prepared SQL statements.

CURRENT SERVER
CURRENT_SERVER

The name of the relational database currently being used.

CURRENT TIME
CURRENT_TIME

The current time.

CURRENT TIMESTAMP
CURRENT_TIMESTAMP

The current date and time in timestamp format.

CURRENT TIMEZONE
CURRENT_TIMEZONE

A duration of time that links local time to Universal Time
Coordinated (UTC) using the formula:

local time -
CURRENT TIMEZONE = UTC

It is taken from the system value QUTCOFFSET.

USER

The run-time authorization identifier (user profile) of the
job.

If a single statement contains more than one reference to any of CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP special registers, or the CURDATE, CURTIME, or NOW scalar functions, all

values are based on a single clock reading.

For remotely run SQL statements, the special registers and their contents are shown in the following table:

Special Registers

Contents

CURRENT DATE
CURRENT_DATE
CURRENT TIME
CURRENT_TIME
CURRENT TIMESTAMP
CURRENT_TIMESTAMP

The current date and time at the remote system, not the
local system.

CURRENT TIMEZONE
CURRENT_TIMEZONE

A duration of time that links the remote system time to
UTC.

CURRENT SERVER
CURRENT_SERVER

The name of the relational database currently being used.

CURRENT SCHEMA

The current schema value at the remote system.

USER

The run-time authorization identifier of the server job on
the remote system.

CURRENT PATH
CURRENT_PATH

CURRENT FUNCTION PATH

The current path value at the remote system.

When a query over a distributed table references a special register, the contents of the special register on
the system that requests the query are used. For more information about distributed tables, see
h ultisyste

book.

52 iSeries: DB2 Universal Database for iSeries SQL Programming

Casting data types

Sometimes you will find situations where the type of a data type needs to be cast, or changed, to a
different data type or to the same data type with a different length, precision, or scale. For example, if
you wanted to compare two columns of different types, such as a user defined type based on char and an
integer, you can change the char to an integer or the integer to a char to make the comparison possible. A
data type that can be changed to another data type is castable from the source data type to the target data

type.

You can use cast functions or CAST specifications to explicitly cast a data type to another data type. For
example, if you have a column of dates (BIRTHDATE) defined as DATE and wanted to cast the column
data type to CHARACTER with a fixed length of 10, enter the following:

SELECT CHAR (BIRTHDATE,USA)
FROM CORPDATA.EMPLOYEE

You can also use the CAST function to cast data types directly.

SELECT CAST(BIRTHDATE AS CHAR(10))
FROM CORPDATA.EMPLOYEE

For more details about casting data types, see [Casting between data typed in the SQL Reference topic.

Date, Time, and Timestamp data types

Date, time, and timestamp are data types represented in an internal form not seen by the SQL user. Date,
time, and timestamp can be represented by character string values and assigned to character string
variables. The database manager recognizes the following as date, time, and timestamp values:

¢ A value returned by the DATE, TIME, or TIMESTAMP scalar functions.

* A value returned by the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special
registers.

* A character string when it is an operand of an arithmetic expression or a comparison and the other
operand is a date, time, or timestamp. For example, in the predicate:

... WHERE HIREDATE < '1950-01-01'
if HIREDATE is a date column, the character string "1950-01-01" is interpreted as a date.

* A character string variable or constant used to set a date, time, or timestamp column in either the SET
clause of an UPDATE statement, or the VALUES clause of an INSERT statement.

For more information about character string formats of date, time, and timestamp values, see

in the SQL Reference|book .

See also the following topics:

* ['Specifying current date and time values”|

* [‘Date/Time arithmetic” on page 54|

Specifying current date and time values

You can specify a current date, time, or timestamp in an expression by specifying one of three special
registers: CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP. The value of each is based on
a time-of-day clock reading obtained during the running of the statement. Multiple references to
CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP within the same SQL statement use the
same value. The following statement returns the age (in years) of each employee in the EMPLOYEE table
when the statement is run:

SELECT YEAR(CURRENT DATE - BIRTHDATE)
FROM CORPDATA.EMPLOYEE

The CURRENT TIMEZONE special register allows a local time to be converted to Universal Time
Coordinated (UTC). For example, if you have a table named DATETIME, containing a time column type
with a name of STARTT, and you want to convert STARTT to UTC, you can use the following statement:

Chapter 6. Data Manipulation Language 53

SELECT STARTT - CURRENT TIMEZONE
FROM DATETIME

Date/Time arithmetic

Addition and subtraction are the only arithmetic operators applicable to date, time, and timestamp
values. You can increment and decrement a date, time, or timestamp by a duration; or subtract a date
from a date, a time from a time, or a timestamp from a timestamp. For a detailed description of date and
time arithmetic, see [Datetime arithmetic|in the [SQL Referencel book.

Handling duplicate rows

When SQL evaluates a select-statement, several rows might qualify to be in the result table, depending on
the number of rows that satisfy the select-statement’s search condition. Some of the rows in the result
table might be duplicates. You can specify that you do not want any duplicates by using the DISTINCT
keyword, followed by the list of column names:

SELECT DISTINCT JOB, SEX

DISTINCT means you want to select only the unique rows. If a selected row duplicates another row in
the result table, the duplicate row is ignored (it is not put into the result table). For example, suppose you
want a list of employee job codes. You do not need to know which employee has what job code. Because
it is probable that several people in a department have the same job code, you can use DISTINCT to
ensure that the result table has only unique values.

The following example shows how to do this:

SELECT DISTINCT JOB
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'

The result is two rows:.

JOB
DESIGNER
MANAGER

If you do not include DISTINCT in a SELECT clause, you might find duplicate rows in your result,
because SQL returns the JOB column’s value for each row that satisfies the search condition. Null values
are treated as duplicate rows for DISTINCT.

If you include DISTINCT in a SELECT clause and you also include a shared-weight sort sequence, fewer
values are returned. The sort sequence causes values that contain the same characters to be weighted the
same. If ' MGR', 'Mer', and 'mer' were all in the same table, only one of these values are returned. See
[Chapter 7, “Sort sequences and normalization in SQL,” on page 95| for more information about sort
sequence and selection.

Performing complex search conditions

In addition to the basic comparison predicates (=, >, <, and so on), a search condition can contain any of
the keywords BETWEEN, IN, EXISTS, IS NULL, and LIKE. A search condition can also include a
subquery. See [“Using Subqueries” on page 86 for more information and examples.

For character, or UCS-2 or UTF-16 graphic column predicates, the sort sequence is applied to the
operands before evaluation of the predicates for BETWEEN, IN, EXISTS, and LIKE clauses. See
[“Sort sequences and normalization in SQL,” on page 95| for more information about the using sort
sequence with selection.

54 iSeries: DB2 Universal Database for iSeries SQL Programming

You can also perform multiple search conditions. See ["Multiple search conditions within a WHERE]
fclause” on page 56| for more information.

¢ BETWEEN ... AND ... is used to specify a search condition that is satisfied by any value that falls on or
between two other values. For example, to find all employees who were hired in 1987, you can use
this:
WHERE HIREDATE BETWEEN '1987-01-01' AND '1987-12-31'
The BETWEEN keyword is inclusive. A more complex, but explicit, search condition that produces the
same result is:
... WHERE HIREDATE >= '1987-01-01' AND HIREDATE <= '1987-12-31'
* IN says you are interested in rows in which the value of the specified expression is among the values
you listed. For example, to find the names of all employees in departments A00, C01, and E21, you can
specify:
... WHERE WORKDEPT IN ('A60', 'COl', 'E21')
EXISTS says you are interested in testing for the existence of certain rows. For example, to find out if
there are any employees that have a salary greater than 60000, you can specify:
EXISTS (SELECT * FROM EMPLOYEE WHERE SALARY > 60000)
e IS NULL says that you are interested in testing for null values. For example, to find out if there are
any employees without a phone listing, you can specify:
... WHERE EMPLOYEE.PHONE IS NULL
* LIKE says you are interested in rows in which a column value is similar to the value you supply.
When you use LIKE, SQL searches for a character string similar to the one you specify. The degree of

similarity is determined by two special characters used in the string that you include in the search
condition:

An underline character stands for any single character.

% A percent sign stands for an unknown string of 0 or more characters. If the percent sign starts
the search string, then SQL allows 0 or more character(s) to precede the matching value in the
column. Otherwise, the search string must begin in the first position of the column.

Note: If you are operating on MIXED data, the following distinction applies: an SBCS underline
character refers to one SBCS character. No such restriction applies to the percent sign; that is, a
percent sign refers to any number of SBCS or DBCS characters. See the [SQL Reference|book for
more information about the LIKE predicate and MIXED data.

Use the underline character or percent sign either when you do not know or do not care about all the

characters of the column’s value. For example, to find out which employees live in Minneapolis, you

can specify:

... WHERE ADDRESS LIKE '%MINNEAPOLIS%'

SQL returns any row with the string MINNEAPOLIS in the ADDRESS column, no matter where the

string occurs.

In another example, to list the towns whose names begin with 'SAN', you can specify:

... WHERE TOWN LIKE 'SAN%'

If you want to find any addresses where the street name isn’t in your master street name list, you can

use an expression in the LIKE expression. In this example, the STREET column in the table is assumed

to be upper case.

... WHERE UCASE (:address_variable) NOT LIKE '%'||STREET||'%'

If you want to search for a character string that contains either the underscore or percent character, use

the ESCAPE clause to specify an escape character. For example, to see all businesses that have a
percent in their name, you can specify:

... WHERE BUSINESS_NAME LIKE '%@%%' ESCAPE '@’

The first and last percent characters are interpreted as typical. The combination ‘@%’ is taken as the
actual percent character. See |“Special considerations for LIKE” on page 56| for more details.

Chapter 6. Data Manipulation Language 55

For a complete listing of predicates, see in the SQL Reference topic.

Special considerations for LIKE

* When host variables are used in place of string constants in a search pattern, you should consider
using varying length host variables. This allows you to:
— Assign previously used string constants to host variables without any change.
— Obtain the same selection criteria and results as if a string constant was used.

* When fixed-length host variables are used in place of string constants in a search pattern, you should
ensure that the value specified in the host variable matches the pattern previously used by the string
constants. All characters in a host variable that are not assigned a value are initialized with a blank.
For example, if you did a search using the string pattern "ABC%’ in a varying length host variable,
these are some of the values that can be returned:

'ABCD ' 'ABCDE' "ABCxxx"' 'ABC '

However, if you did a search using the search pattern "ABC%" contained in a host variable with a fixed
length of 10, these are some the values that can be returned assuming the column has a length of 12:
"ABCDE ' 'ABCD " "ABCxxx " 'ABC !

Note that all returned values start with "ABC” and end with at least six blanks. This is because the last
six characters in the host variable were not assigned a specific value so blanks were used.

If you wanted to do a search using a fixed-length host variable where the last 7 characters can be
anything, search for "ABC%%%%%%%’. These are some values that can be returned:

"ABCDEFGHIJ' "ABCXXXXXXX' 'ABCDE' "ABCDD'

Multiple search conditions within a WHERE clause
In the section [“Specifying a search condition using the WHERE clause” on page 43} you saw how to use
one search condition. You can qualify your request further by coding a search condition that includes

several predicates. The search condition you specify can contain any of the comparison operators or the
predicates BETWEEN, IN, LIKE, EXISTS, IS NULL, and IS NOT NULL.

You can combine any two predicates with the connectors AND and OR. In addition, you can use the
NOT keyword to specify that the search condition that you want is the negated value of the specified
search condition. A WHERE clause can have as many predicates as you want.

* AND says that, for a row to qualify, the row must satisfy both predicates of the search condition. For
example, to find out which employees in department D21 were hired after December 31, 1987, specify:

WHERE WORKDEPT = 'D21' AND HIREDATE > '1987-12-31'

* OR says that, for a row to qualify, the row can satisfy the condition set by either or both predicates of
the search condition. For example, to find out which employees are in either department C01 or D11,
you can specify :

WHERE WORKDEPT = 'CO1' OR WORKDEPT = 'DI1'

Note: You can also use IN to specify this request: WHERE WORKDEPT IN ('C01', 'D11").

e NOT says that, to qualify, a row must not meet the criteria set by the search condition or predicate that
follows the NOT. For example, to find all employees in department E11 except those with a job code
equal to analyst, you can specify:

WHERE WORKDEPT = 'E11' AND NOT JOB = 'ANALYST'

When SQL evaluates search conditions that contain these connectors, it does so in a specific order. SQL
first evaluates the NOT clauses, next evaluates the AND clauses, and then the OR clauses.

56 iSeries: DB2 Universal Database for iSeries SQL Programming

You can change the order of evaluation by using parentheses. The search conditions enclosed in
parentheses are evaluated first. For example, to select all employees in departments E11 and E21 who
have education levels greater than 12, you can specify:

WHERE EDLEVEL > 12 AND
(WORKDEPT = 'E11' OR WORKDEPT = 'E21')

The parentheses determine the meaning of the search condition. In this example, you want all rows that
have a:

WORKDEPT value of E11 or E21, and
EDLEVEL value greater than 12

If you did not use parentheses:

WHERE EDLEVEL > 12 AND WORKDEPT = 'EI11'
OR WORKDEPT = 'E21'

Your result is different. The selected rows are rows that have:
WORKDEPT = E11 and EDLEVEL > 12, or
WORKDEPT = E21, regardless of the EDLEVEL value

Joining data from more than one table

Sometimes the information you want to see is not in a single table. To form a row of the result table, you
might want to retrieve some column values from one table and some column values from another table.
You can retrieve and join column values from two or more tables into a single row.

Several different types of joins are supported by DB2 UDB for iSeries: inner join, left outer join, right
outer join, left exception join, right exception join, and cross join.

* An[‘Inner Join” on page 5§ returns only the rows from each table that have matching values in the join
columns. Any rows that do not have a match between the tables will not appear in the result table.

+ Al“Left Outer Join” on page 59| returns values for all of the rows from the first table (the table on the
left) and the values from the second table for the rows that match. Any rows that do not have a match
in the second table will return the null value for all columns from the second table.

« A[’Right Outer Join” on page 60| return values for all of the rows from the second table (the table on
the right) and the values from the first table for the rows that match. Any rows that do not have a
match in the first table will return the null value for all columns from the first table.

+ A|Left Exception Join|returns only the rows from the left table that do not have a match in the right
table. Columns in the result table that come from the right table have the null value.

+ A[Right Exception Join| returns only the rows from the right table that do not have a match in the left
table. Columns in the result table that come from the left table have the null value.

* A[“Cross Join” on page 61| returns a row in the result table for each combination of rows from the
tables being joined (a Cartesian Product).

You can simulate a Full Outer Join using a Left Outer join and a Right Exception Join. See
[Full Outer Join” on page 61| for details. Additionally, you can use multiple join types in a single
statement. See ["Multiple join types in one statement” on page 62 for details.

Notes on joins

When you join two or more tables:

* If there are common column names, you must qualify each common name with the name of the table
(or a correlation name). Column names that are unique do not need to be qualified. However, the

Chapter 6. Data Manipulation Language 57

USING clause which allows you to identify columns that exist in both tables without specifying table
names. See [“Joining data with the USING clause” on page 59| for details.

* If you do not list the column names you want, but instead use SELECT *, SQL returns rows that
consist of all the columns of the first table, followed by all the columns of the second table, and so on.

* You must be authorized to select rows from each table or view specified in the FROM clause.
* The sort sequence is applied to all character, or UCS-2 or UTF-16 graphic columns being joined.

Inner Join

With an inner join, column values from one row of a table are combined with column values from
another row of another (or the same) table to form a single row of data. SQL examines both tables
specified for the join to retrieve data from all the rows that meet the search condition for the join. There
are two ways of specifying an inner join: using the JOIN syntax, and using the WHERE clause.

Suppose you want to retrieve the employee numbers, names, and project numbers for all employees that
are responsible for a project. In other words, you want the EMPNO and LASTNAME columns from the
CORPDATA.EMPLOYEE table and the PROJNO column from the CORPDATA.PROJECT table. Only
employees with last names starting with ’S” or later should be considered. To find this information, you
need to join the two tables.

For examples of using inner joins, see the following:

* [“Inner join using JOIN syntax”]

* [“Inner join using the WHERE clause”]
* [“Joining data with the USING clause” on page 59|

Inner join using JOIN syntax: To use the inner join syntax, both of the tables you are joining are listed
in the FROM clause, along with the join condition that applies to the tables. The join condition is
specified after the ON keyword and determines how the two tables are to be compared to each other to
produce the join result. The condition can be any comparison operator; it does not need to be the equal
operator. Multiple join conditions can be specified in the ON clause separated by the AND keyword. Any
additional conditions that do not relate to the actual join are specified in either the WHERE clause or as
part of the actual join in the ON clause.

SELECT EMPNO, LASTNAME, PROJNO

FROM CORPDATA.EMPLOYEE INNER JOIN CORPDATA.PROJECT

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S'

In this example, the join is done on the two tables using the EMPNO and RESPEMP columns from the
tables. Since only employees that have last names starting with at least 'S’ are to be returned, this

additional condition is provided in the WHERE clause.

This query returns the following output:

EMPNO LASTNAME PROJNO
000250 SMITH AD3112
000060 STERN MAZ2110
000100 SPENSER OP2010
000020 THOMPSON PL2100

Inner join using the WHERE clause: Using the WHERE clause to perform this same join is written by
entering both the join condition and the additional selection condition in the WHERE clause. The tables
to be joined are listed in the FROM clause, separated by commas.

58 iSeries: DB2 Universal Database for iSeries SQL Programming

SELECT EMPNO, LASTNAME, PROJNO

FROM CORPDATA.EMPLOYEE, CORPDATA.PROJECT

WHERE EMPNO = RESPEMP
AND LASTNAME > 'S

This query returns the same output as the previous example.

Joining data with the USING clause: You can use a shorthand method of defining join conditions with

the USING clause. The USING clause is equivalent to a join condition where each column from the left
table is compared to a column with the same name in the right table. For example, look at the USING

clause in this statement:
SELECT EMPNO, ACSTDATE

FROM CORPDATA.PROJACT INNER JOIN CORPDATA.EMPPROJACT

USING (PROJNO, ACTNO)
WHERE ACSDATE > '1982-12-31';

The syntax in this statement is valid and equivalent to the join condition in the following statement:

SELECT EMPNO, ACSTDATE

FROM CORPDATA.PROJACT INNER JOIN CORPDATA.EMPPROJACT

ON CORPDATA.PROJACT.PROJNO = CORPDATA.EMPPROJACT.PROJNO AND

CORPDATA.PROJACT.ACTNO = CORPDATA.EMPPROJACT.ACTNO

WHERE ACSTDATE > '1982-12-31';

Left Outer Join

A left outer join will return all the rows that an inner join returns plus one row for each of the other rows

in the first table that did not have a match in the second table.

Suppose you want to find all employees and the projects they are currently responsible for. You want to
see those employees that are not currently in charge of a project as well. The following query will return
a list of all employees whose names are greater than 'S’, along with their assigned project numbers.

SELECT EMPNO, LASTNAME, PROJNO

FROM CORPDATA.EMPLOYEE LEFT OUTER JOIN CORPDATA.PROJECT

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S'

The result of this query contains some employees that do not have a project number. They are listed in
the query, but have the null value returned for their project number.

EMPNO LASTNAME PROJNO
000020 THOMPSON PL2100
000060 STERN MAZ2110
000100 SPENSER OP2010
000170 YOSHIMURA -

000180 SCOUTTEN -

000190 WALKER -

000250 SMITH AD3112
000280 SCHNEIDER -

000300 SMITH -

000310 SETRIGHT -

200170 YAMAMOTO -

200280 SCHWARTZ -

200310 SPRINGER -

200330 WONG -

Chapter 6. Data Manipulation Language

59

Note: Using the RRN scalar function to return the relative record number for a column in the table on
the right in a left outer join or exception join will return a value of 0 for the unmatched rows.

Right Outer Join

A right outer join will return all the rows that an inner join returns plus one row for each of the other
rows in the second table that did not have a match in the first table. It is the same as a left outer join
with the tables specified in the opposite order.

The query that was used as the left outer join example can be rewritten as a right outer join as follows:

SELECT EMPNO, LASTNAME, PROJNO
FROM CORPDATA.PROJECT RIGHT OUTER JOIN CORPDATA.EMPLOYEE
ON EMPNO = RESPEMP
WHERE LASTNAME > 'S

The results of this query are identical to the results from the left outer join query.

Exception Join
A left exception join returns only the rows from the first table that do NOT have a match in the second
table. Using the same tables as before, return those employees that are not responsible for any projects.
SELECT EMPNO, LASTNAME, PROJNO
FROM CORPDATA.EMPLOYEE EXCEPTION JOIN CORPDATA.PROJECT

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S'

This join returns the output:

EMPNO LASTNAME PROJNO
000170 YOSHIMURA -
000180 SCOUTTEN -
000190 WALKER -
000280 SCHNEIDER -
000300 SMITH -
000310 SETRIGHT -
200170 YAMAMOTO -
200280 SCHWARTZ -
200310 SPRINGER -
200330 WONG -

An exception join can also be written as a subquery using the NOT EXISTS predicate. The previous query
can be rewritten in the following way:
SELECT EMPNO, LASTNAME
FROM CORPDATA.EMPLOYEE
WHERE LASTNAME > 'S’
AND NOT EXISTS
(SELECT * FROM CORPDATA.PROJECT
WHERE EMPNO = RESPEMP)

The only difference in this query is that it cannot return values from the PROJECT table.

There is a right exception join, too, that works just like a left exception join but with the tables reversed.

60 iSeries: DB2 Universal Database for iSeries SQL Programming

Cross Join

A cross join (or Cartesian Product join) will return a result table where each row from the first table is
combined with each row from the second table. The number of rows in the result table is the product of
the number of rows in each table. If the tables involved are large, this join can take a very long time.

A cross join can be specified in two ways: using the JOIN syntax or by listing the tables in the FROM
clause separated by commas without using a WHERE clause to supply join criteria.

Suppose the following tables exist.

Table 9. Table A

ACOL1 ACOL2
Al AA1l
A2 AA2
A3 AA3

Table 10. Table B

BCOL1 BCOL2
Bl BB1
B2 BB2

The following two select statements produce identical results.
SELECT = FROM A CROSS JOIN B
SELECT = FROM A, B

The result table for either of these select statements looks like this:

ACOL1 ACOL2 BCOL1 BCOL2
Al AAl Bl BB1
Al AA1l B2 BB2
A2 AA2 Bl BB1
A2 AA2 B2 BB2
A3 AA3 Bl BB1
A3 AA3 B2 BB2

Simulating a Full Outer Join
Like the left and right outer joins, a full outer join returns matching rows from both tables. However, a
full outer join also returns non-matching rows from both tables; left and right. While DB2 UDB for iSeries
does not support full outer join syntax, you can simulate a full outer join by using a left outer join and a
right exception join. Suppose you want to find all employees and all projects You want to see those
employees that are not currently in charge of a project as well. The following query will return a list of
all employees whose names are greater than ’S’, along with their assigned project numbers.
SELECT EMPNO, LASTNAME, PROJNO
FROM CORPDATA.EMPLOYEE LEFT OUTER JOIN CORPDATA.PROJECT
ON EMPNO = RESPEMP
WHERE LASTNAME > 'S'
UNION
(SELECT EMPNO, LASTNAME, PROJNO
FROM CORPDATA.PROJECT EXCEPTION JOIN CORPDATA.EMPLOYEE

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S');

Chapter 6. Data Manipulation Language 61

Multiple join types in one statement
There are times when more than two tables need to be joined to produce the result that you want. If you
wanted to return all the employees, their department name, and the project they are responsible for, if
any, the EMPLOYEE table, DEPARTMENT table, and PROJECT table all need to be joined to get the
information. The following example shows the query and the results.
SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM CORPDATA.EMPLOYEE INNER JOIN CORPDATA.DEPARTMENT
ON WORKDEPT = DEPTNO
LEFT OUTER JOIN CORPDATA.PROJECT

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S'

The result of this query is:

EMPNO LASTNAME DEPTNAME PROJNO
000020 THOMPSON PLANNING PL2100
000060 STERN MANUFACTURING SYSTEMS MA2110
000100 SPENSER SOFTWARE SUPPORT OP2010
000170 YOSHIMURA MANUFACTURING SYSTEMS -
000180 SCOUTTEN MANUFACTURING SYSTEMS -
000190 WALKER MANUFACTURING SYSTEMS -
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000280 SCHNEIDER OPERATIONS -
000300 SMITH OPERATIONS -
000310 SETRIGHT OPERATIONS -

For more information about joins, see the SQL Reference|book.

Using table expressions

You can use table expressions to specify an intermediate result table. Table expressions can be used in
place of a view to avoid creating the view when general use of the view is not required. Table
expressions consist of nested table expressions (also called derived tables) and common table expressions.

Nested table expressions are specified within parentheses in the FROM clause. For example, suppose you
want a result table that shows the manager number, department number, and maximum salary for each
department. The manager number is in the DEPARTMENT table, the department number is in both the
DEPARTMENT and EMPLOYEE tables, and the salaries are in the EMPLOYEE table. You can use a table
expression in the FROM clause to select the maximum salary for each department. You can also add a
correlation name, T2, following the nested table expression to name the derived table. The outer select
then uses T2 to qualify columns that are selected from the derived table, in this case MAXSAL and
WORKDEPT. Note that the MAX(SALARY) column selected in the nested table expression must be
named in order to be referenced in the outer select. The AS clause is used to do that.
SELECT MGRNO, T1.DEPTNO, MAXSAL
FROM CORPDATA.DEPARTMENT T1,
(SELECT MAX(SALARY) AS MAXSAL, WORKDEPT
FROM CORPDATA.EMPLOYEE El
GROUP BY WORKDEPT) T2

WHERE T1.DEPTNO = T2.WORKDEPT
ORDER BY DEPTNO

62 iSeries: DB2 Universal Database for iSeries SQL Programming

The result of the query is:

MGRNO DEPTNO MAXSAL
000010 A00 52750.00
000020 B01 41250.00
000030 Co1 38250.00
000060 D11 32250.00
000070 D21 36170.00
000050 EO01 40175.00
000090 Ell 29750.00
000100 E21 26150.00

Common table expressions can be specified before the full-select in a SELECT statement, an INSERT
statement, or a CREATE VIEW statement. They can be used when the same result table needs to be
shared in a full-select. Common table expressions are preceded with the keyword WITH.

For example, suppose you want a table that shows the minimum and maximum of the average salary of
a certain set of departments. The first character of the department number has some meaning and you
want to get the minimum and maximum for those departments that start with the letter ‘D" and those
that start with the letter 'E’. You can use a common table expression to select the average salary for each
department. Again, you must name the derived table; in this case, the name is DT. You can then specify a
SELECT statement using a WHERE clause to restrict the selection to only the departments that begin with
a certain letter. Specify the minimum and maximum of column AVGSAL from the derived table DT.
Specify a UNION to get the results for the letter 'E” and the results for the letter 'D’.
WITH DT AS (SELECT E.WORKDEPT AS DEPTNO, AVG(SALARY) AS AVGSAL
FROM CORPDATA.DEPARTMENT D , CORPDATA.EMPLOYEE E
WHERE D.DEPTNO = E.WORKDEPT
GROUP BY E.WORKDEPT)
SELECT 'E', MAX(AVGSAL), MIN(AVGSAL) FROM DT
WHERE DEPTNO LIKE 'E%'
UNION

SELECT 'D', MAX(AVGSAL), MIN(AVGSAL) FROM DT
WHERE DEPTNO LIKE 'D%'

The result of the query is:

MAX(AVGSAL) MIN(AVGSAL)
E 40175.00 21020.00
D 25668.57 25147.27

Suppose you want to write a query against your ordering database that will return the top 5 items (in
total quantity ordered) within the last 1000 orders from customers who also ordered item "XXX'.

WITH X AS (SELECT ORDER ID, CUST_ID
FROM ORDERS
ORDER BY ORD_DATE DESC
FETCH FIRST 1000 ROWS ONLY),
Y AS (SELECT CUST_ID, LINE_ID, ORDER_QTY
FROM X, ORDERLINE
WHERE X.ORDER_ID = ORDERLINE.ORDER_ID)
SELECT LINE_ID
FROM (SELECT LINE_ID
FROM Y
WHERE Y.CUST_ID IN (SELECT DISTINCT CUST_ID
FROM Y

Chapter 6. Data Manipulation Language 63

WHERE LINE.ID = 'XXX')
GROUP BY LINE_ID
ORDER BY SUM(ORDER_QTY) DESC)
FETCH FIRST 5 ROWS ONLY

The first common table expression (X) returns the most recent 1000 order numbers. The result is ordered
by the date in descending order and then only the first 1000 of those ordered rows are returned as the
result table.

The second common table expression (Y) joins the most recent 1000 orders with the line item table and
returns (for each of the 1000 orders) the customer, line item, and quantity of the line item for that order.

The derived table in the main select statement returns the line items for the customers who are in the top
1000 orders who ordered item XXX. The results for all customers who ordered XXX are then grouped by
the line item and the groups are ordered by the total quantity of the line item.

Finally, the outer select selects only the first 5 rows from the ordered list that the derived table returned.

Using the UNION keyword to combine subselects

Using the UNION keyword, you can combine two or more subselects to form a fullselect. When SQL
encounters the UNION keyword, it processes each subselect to form an interim result table, then it
combines the interim result table of each subselect and deletes duplicate rows to form a combined result
table. You can use different clauses and techniques when coding select-statements. You can also use
UNION ALL. For details, see|“Specifying UNION ALL” on page 67

You can use UNION to eliminate duplicates when merging lists of values obtained from several tables.
For example, you can obtain a combined list of employee numbers that includes:

¢ People in department D11
* People whose assignments include projects MA2112, MA2113, and AD3111

The combined list is derived from two tables and contains no duplicates. To do this, specify:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'
UNION
SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'
ORDER BY EMPNO

To better understand the results from these SQL statements, imagine that SQL goes through the following
process:

Step 1. SQL processes the first SELECT statement:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'DI11'

Which results in an interim result table:

EMPNO from CORPDATA.EMPLOYEE

000060

000150

64 iSeries: DB2 Universal Database for iSeries SQL Programming

EMPNO from CORPDATA.EMPLOYEE
000160
000170
000180
000190
000200
000210
000220
200170
200220

Step 2. SQL processes the second SELECT statement:

SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'

Which results in another interim result table:

EMPNO from CORPDATA.EMPPROJACT
000230
000230
000240
000230
000230
000240
000230
000150
000170
000190
000170
000190
000150
000160
000180
000170
000210
000210

Step 3. SQL combines the two interim result tables, removes duplicate rows, and orders the result:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'
UNION
SELECT EMPNO
FROM CORPDATA.EMPPROJACT

Chapter 6. Data Manipulation Language 65

WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'
ORDER BY EMPNO

Which results in a combined result table with values in ascending sequence:

EMPNO

000060

000150

000160

000170

000180

000190

000200

000210

000220

000230

000240

200170

200220

When you use UNION:

¢ Any ORDER BY clause must appear after the last subselect that is part of the union. In this example,
the results are sequenced on the basis of the first selected column, EMPNO. The ORDER BY clause
specifies that the combined result table is to be in collated sequence. ORDER BY is not allowed in a
view.

* A name may be specified on the ORDER BY clause if the result columns are named. A result column is
named if the corresponding columns in each of the unioned select-statements have the same name. An
AS clause can be used to assign a name to columns in the select list.

SELECT A + B AS X ...

UNION

SELECT X ... ORDER BY X
If the result columns are unnamed, use a positive integer to order the result. The number refers to the
position of the expression in the list of expressions you include in your subselects.

SELECT A + B ...

UNION
SELECT X ... ORDER BY 1

To identify which subselect each row is from, you can include a constant at the end of the select list of
each subselect in the union. When SQL returns your results, the last column contains the constant for the
subselect that is the source of that row. For example, you can specify:

SELECT A, B, 'Al' ...

UNION
SELECT X, Y, 'B2'...

When a row is returned, it includes a value (either A1l or B2) to indicate the table that is the source of the
row’s values. If the column names in the union are different, SQL uses the set of column names specified
in the first subselect when interactive SQL displays or prints the results, or in the SQLDA resulting from

processing an SQL DESCRIBE statement.

66 iSeries: DB2 Universal Database for iSeries SQL Programming

For information about compatibility of the length and data type for columns in a UNION, see the
_

for result data type topic in the [SQL Reference book.

Note: Sort sequence is applied after the fields across the UNION pieces are made compatible. The sort
sequence is used for the distinct processing that implicitly occurs during UNION processing. See
[Chapter 7, “Sort sequences and normalization in SQL,” on page 95| for more details about sort
sequence.

Specifying UNION ALL
If you want to keep duplicates in the result of a UNION, specify UNION ALL instead of just UNION.
Using the same as steps and example as UNION:

Step 3. SQL combines two interim result tables:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'
UNION ALL
SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'
ORDER BY EMPNO

Resulting in an ordered result table that includes duplicates:

EMPNO

000060

000150

000150

000150

000160

000160

000170

000170

000170

000170

000180

000180

000190

000190

000190

000200

000210

000210

000210

000220

000230

000230

000230

Chapter 6. Data Manipulation Language

67

EMPNO

000230

000230

000240

000240

200170

200220

The UNION ALL operation is associative, for example:

(SELECT PROJNO FROM CORPDATA.PROJECT
UNION ALL

SELECT PROJNO FROM CORPDATA.PROJECT)
UNION ALL

SELECT PROJNO FROM CORPDATA.EMPPROJACT

This statement can also be written as:

SELECT PROJNO FROM CORPDATA.PROJECT
UNION ALL

(SELECT PROJNO FROM CORPDATA.PROJECT
UNION ALL

SELECT PROJNO FROM CORPDATA.EMPPROJACT)

When you include the UNION ALL in the same SQL statement as a UNION operator, however, the result
of the operation depends on the order of evaluation. Where there are no parentheses, evaluation is from
left to right. Where parentheses are included, the parenthesized subselect is evaluated first, followed,
from left to right, by the other parts of the statement.

Using EXCEPT keyword

The EXCEPT keyword returns the result set of the first subselect minus any matching rows from the
second subselect.

Suppose you want to find a list of employee numbers that includes:
* People in department D11
* Minus those people whose assignments include projects MA2112, MA2113, and AD3111

This query returns all of the people in department D11 who are not working on projects MA2112,
MAZ2113, and AD3111.

To do this, specify:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'DI11'
EXCEPT
SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'
ORDER BY EMPNO

To better understand the results from these SQL statements, imagine that SQL goes through the following
process:

Step 1. SQL processes the first SELECT statement:

68 iSeries: DB2 Universal Database for iSeries SQL Programming

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'

Which results in an interim result table:

EMPNO from CORPDATA.EMPLOYEE

000060

000150

000160

000170

000180

000190

000200

000210

000220

200170

200220

Step 2. SQL processes the second SELECT statement:

SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'

Which results in another interim result table:

EMPNO from CORPDATA.EMPPROJACT

000230

000230

000240

000230

000230

000240

000230

000150

000170

000190

000170

000190

000150

000160

000180

000170

000210

000210

Chapter 6. Data Manipulation Language

69

Step 3. SQL takes the first interim result table, removes all of the rows that also appear in the second
interim result table, removes duplicate rows, and orders the result:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'
EXCEPT
SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'
ORDER BY EMPNO

Which results in a combined result table with values in ascending sequence:

EMPNO

000060

000200

000220

200170

200220

Using INTERSECT keyword

The INTERSECT keyword returns a combined result set that consists of all of the rows that exist in both
result sets.

Suppose you want to find a list of employee numbers that includes:
* People in department D11
* People whose assignments include projects MA2112, MA2113, and AD3111

INTERSECT returns the all of the employee numbers that exist in both result sets. In other words, this
query returns all of the people in department D11 who are also working on projects MA2112, MA2113,
and AD3111.

To do this, specify:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'
INTERSECT
SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'
ORDER BY EMPNO

To better understand the results from these SQL statements, imagine that SQL goes through the following
process:

Step 1. SQL processes the first SELECT statement:

SELECT EMPNO
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'

70 iSeries: DB2 Universal Database for iSeries SQL Programming

Which results in an interim result table:

EMPNO from CORPDATA.EMPLOYEE
000060
000150
000160
000170
000180
000190
000200
000210
000220
200170
200220

Step 2. SQL processes the second SELECT statement:

SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'

Which results in another interim result table:

EMPNO from CORPDATA.EMPPROJACT
000230
000230
000240
000230
000230
000240
000230
000150
000170
000190
000170
000190
000150
000160
000180
000170
000210
000210

Step 3. SQL takes the first interim result table, compares it to the second interim result table, and returns
the rows that exist in both tables minus any duplicate rows, and orders the results.

Chapter 6. Data Manipulation Language 71

SELECT EMPNO

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'

INTERSECT
SELECT EMPNO

FROM CORPDATA.EMPPROJACT

WHERE PROJNO='MA2112' OR
PROJNO= 'MA2113' OR
PROJNO= 'AD3111'

ORDER BY EMPNO

Which results in a combined result table with values in ascending sequence:

EMPNO

000150

000160

000170

000180

000190

000210

Data retrieval errors

If SQL finds that a retrieved character or graphic column is too long to be placed in a host variable, SQL

does the following:

Truncates the data while assigning the value to the host variable.

Sets SQLWARNO and SQLWARN]1 in the SQLCA to the value 'W'or sets RETURNED_SQLSTATE to
’01004" in the SQL diagnostics area.

Sets the indicator variable, if provided, to the length of the value before truncation.

If SQL finds a data mapping error while running a statement, one of two things occurs:

If the error occurs on an expression in the SELECT list and an indicator variable is provided for the
expression in error:

— SQL returns a -2 for the indicator variable corresponding to the expression in error.

— SQL returns all valid data for that row.

— SQL returns a positive SQLCODE.

If an indicator variable is not provided, SQL returns the corresponding negative SQLCODE.

Data mapping errors include:

+138 - Argument of the substringing function is not valid.
+180 - Syntax for a string representation of a date, time, or timestamp is not valid.
+181 - String representation of a date, time, or timestamp is not a valid value.

+183 - Invalid result from a date/time expression. The resulting date or timestamp is not within the
valid range of dates or timestamps.

+191 - MIXED data is not properly formed.

+304 - Numeric conversion error (for example, overflow, underflow, or division by zero).
+331 - Characters cannot be converted.

+420 - Character in the CAST argument is not valid.

+802 - Data conversion or data mapping error.

72 iSeries: DB2 Universal Database for iSeries SQL Programming

For data mapping errors, the SQLCA reports only the last error detected. The indicator variable
corresponding to each result column having an error is set to —2.

For data mapping errors on a multi-row FETCH, each mapping error reported as a warning SQLSTATE
will have a separate condition area in the SQL diagnostics area. Note that SQL stops on the first error, so
only one mapping error that is reported as an error SQLSTATE will be returned in the SQL diagnostics
area.

For all other SQL statements, only the last warning SQLSTATE will be reported in the SQL diagnostics
area.

If the full-select contains DISTINCT in the select list and a column in the select list contains numeric data
that is not valid, the data is considered equal to a null value if the query is completed as a sort. If an
existing index is used, the data is not considered equal to a null.

The impact of data mapping errors on the ORDER BY clause depends on the situation:

* If the data mapping error occurs while data is being assigned to a host variable in a SELECT INTO or
FETCH statement, and that same expression is used in the ORDER BY clause, the result record is
ordered based on the value of the expression. It is not ordered as if it were a null (higher than all other
values). This is because the expression was evaluated before the assignment to the host variable is
attempted.

* If the data mapping error occurs while an expression in the select-list is being evaluated and the same
expression is used in the ORDER BY clause, the result column is normally ordered as if it were a null
value (higher than all other values). If the ORDER BY clause is implemented by using a sort, the result
column is ordered as if it were a null value. If the ORDER BY clause is implemented by using an
existing index, in the following cases, the result column is ordered based on the actual value of the
expression in the index:

— The expression is a date column with a date format of *MDY, *DMY, *YMD, or *JUL, and a date
conversion error occurs because the date is not within the valid range for dates.

— The expression is a character column and a character cannot be converted.
— The expression is a decimal column and a numeric value that is not valid is detected.

Inserting rows using the INSERT statement

This section shows the basic SQL statements and clauses that insert data into tables and views. Examples

using these SQL statements are supplied to help you develop SQL applications. Detailed syntax and
ﬂ

parameter descriptions for SQL statements are given in the [SQL Reference| book.

You can use the INSERT statement to add new rows to a table or view in one of the following ways:

* Specifying values in the INSERT statement for columns to be added. See|“Inserting rows using the
[VALUES keyword” on page 75| for more details about using the VALUES clause.

* Including a select-statement in the INSERT statement to tell SQL what data for the new row is
contained in another table or view. [“Inserting rows into a table using a select-statement” on page 75|
explains how to use the select-statement within an INSERT statement to add zero, one, or many rows
to a table.

» Specifying the blocked form of the INSERT statement to add multiple rows. [“Inserting multiple rows in|
fa table with the blocked INSERT statement” on page 76| explains how to use the blocked form of the
INSERT statement to add multiple rows to a table.

Because views are built on tables and actually contain no data, working with views can be confusing. See
[“Creating and using views” on page 33| for more information and restrictions about inserting data by
using a view. There are also rules that you must follow in order to insert a column into a table that has
referential constraints. See [“Inserting into tables with referential constraints” on page 76| for details.

Chapter 6. Data Manipulation Language 73

For a complete description of INSERT, see [[INSERT] statement in the SQL Reference.

For every row you insert, you must supply a value for each column defined with the NOT NULL
attribute if that column does not have a default value. The INSERT statement for adding a row to a table
or view may look like this:

INSERT INTO table-name
(columnl, column2, ...)
VALUES (value-for-columnl, value-for-column2, ...)

The INTO clause names the columns for which you specify values. The VALUES clause specifies a value
for each column named in the INTO clause. The value you specify can be:

A constant. Inserts the value provided in the VALUES clause.

A null value. Inserts the null value, using the keyword NULL. The column must be defined as
capable of containing a null value or an error occurs.

A host variable. Inserts the contents of a host variable.

A special register. Inserts a special register value; for example, USER.

An expression. Inserts the value that results from an expression.

A subquery inserts the value that is the result of running the select statement.

The DEFAULT keyword. Inserts the default value of the column. The column must have a default
value defined for it or allow the NULL value, or an error occurs.

You must provide a value in the VALUES clause for each column named in an INSERT statement’s
column list. The column name list can be omitted if all columns in the table have a value provided in the
VALUES clause. If a column has a default value, the keyword DEFAULT may be used as a value in the
VALUES clause. This causes the default value for the column to be placed in the column.

It is a good idea to name all columns into which you are inserting values because:
* Your INSERT statement is more descriptive.
* You can verify that you are providing the values in the proper order based on the column names.

* You have better data independence. The order in which the columns are defined in the table does not
affect your INSERT statement.

See [“Inserting rows using the VALUES keyword” on page 75 for more details about using the VALUES
clause.

If the column is defined to allow null values or to have a default, you do not need to name it in the
column name list or specify a value for it. The default value is used. If the column is defined to have a
default value, the default value is placed in the column. If DEFAULT was specified for the column
definition without an explicit default value, SQL places the default value for that data type in the
column. If the column does not have a default value defined for it, but is defined to allow the null value
(NOT NULL was not specified in the column definition), SQL places the null value in the column.

e For numeric columns, the default value is 0.
* For fixed length character or graphic columns, the default is blanks.
* For varying length character or graphic columns or LOB columns, the default is a zero length string.

* For date, time, and timestamp columns, the default value is the current date, time, or timestamp. When
inserting a block of records, the default date/time value is extracted from the system when the block is
written. This means that the column will be assigned the same default value for each row in the block.

* For DataLink columns, the default value corresponds to DLVALUE(”,’URL’,”).
* For distinct-type columns, the default value is the default value of the corresponding source type.

* For ROWID columns or columns that are defined AS IDENTITY, the database manager generates a
default value. See [“Inserting into an identity column” on page 77.|

74 iSeries: DB2 Universal Database for iSeries SQL Programming

When your program attempts to insert a row that duplicates another row already in the table, an error

might occur. Multiple null values may or may not be considered duplicate values, depending on the

option used when the index was created.

* If the table has a primary key, unique key, or unique index, the row is not inserted. Instead, SQL
returns an SQLCODE of —803.

* If the table does not have a primary key, unique key, or unique index, the row can be inserted without
error.

If SQL finds an error while running the INSERT statement, it stops inserting data. If you specify
COMMIT(*ALL), COMMIT(*CS), COMMIT(*CHG), or COMMIT(*RR), no rows are inserted. Rows already
inserted by this statement, in the case of INSERT with a select-statement or blocked insert, are deleted. If

you specify COMMIT(*NONE), any rows already inserted are not deleted.

A table created by SQL is created with the Reuse Deleted Records parameter of *YES. This allows the
database manager to reuse any rows in the table that were marked as deleted. The CHGPF command can
be used to change the attribute to *NO. This causes INSERT to always add rows to the end of the table.

The order in which rows are inserted does not guarantee the order in which they will be retrieved.
If the row is inserted without error, the SQLERRD(3) field of the SQLCA has a value of 1.

Note: For blocked INSERT or for INSERT with select-statement, more than one row can be inserted. The
number of rows inserted is reflected in SQLERRD(3) in the SQLCA. It is also available from the
ROW_COUNT diagnostics item in the GET DIAGNOSTICS statement.

Inserting rows using the VALUES keyword

You can use the VALUES keyword to insert a single row or multiple rows into a table. An example of
this is to insert a new row into the DEPARTMENT table. The columns for the new row are as follows:

e Department number (DEPTNO) is "E31

* Department name (DEPTNAME) is "ARCHITECTURE’
* Manager number (MGRNO) is "00390’

* Reports to (ADMRDEPT) department "E01’

The INSERT statement for this new row is as follows:

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT)
VALUES('E31', 'ARCHITECTURE', '00390', 'EO1')

You can also insert multiple rows into a table using the VALUES clause. The following example inserts
two rows into the PROJECT table. Values for the Project number (PROJNO) , Project name (PROJNAME),
Department number (DEPTNO), and Responsible employee (RESPEMP) are given in the values list. The
value for the Project start date (PRSTDATE) uses the current date. The rest of the columns in the table
that are not listed in the column list are assigned their default value.

INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

VALUES ('HGOO23', 'NEW NETWORK', 'E11', '200280', CURRENT DATE),
('HGOO24', 'NETWORK PGM', ''EI1", '200310', CURRENT DATE)

Inserting rows into a table using a select-statement

You can use a select-statement within an INSERT statement to insert zero, one, or more rows into a table
from the result table of the select-statement.

One use for this kind of INSERT statement is to move data into a table you created for summary data.
For example, suppose you want a table that shows each employee’s time commitments to projects. Create
a table called EMPTIME with the columns EMPNUMBER, PROJNUMBER, STARTDATE, and ENDDATE
and then use the following INSERT statement to fill the table:

Chapter 6. Data Manipulation Language 75

INSERT INTO CORPDATA.EMPTIME

(EMPNUMBER, PROJNUMBER, STARTDATE, ENDDATE)
SELECT EMPNO, PROJNO, EMSTDATE, EMENDATE

FROM CORPDATA.EMPPROJACT

The select-statement embedded in the INSERT statement is no different from the select-statement you use
to retrieve data. With the exception of FOR READ ONLY, FOR UPDATE, or the OPTIMIZE clause, you
can use all the keywords, functions, and techniques used to retrieve data. SQL inserts all the rows that
meet the search conditions into the table you specify. Inserting rows from one table into another table
does not affect any existing rows in either the source table or the target table.

You should consider the following when inserting multiple rows into a table:

Notes:

1. The number of columns implicitly or explicitly listed in the INSERT statement must equal the number
of columns listed in the select-statement.

2. The data in the columns you are selecting must be compatible with the columns you are inserting into
when using the INSERT with select-statement.

3. In the event the select-statement embedded in the INSERT returns no rows, an SQLCODE of 100 is
returned to alert you that no rows were inserted. If you successfully insert rows, the SQLERRD(3)
field of the SQLCA has an integer representing the number of rows SQL actually inserted. This value
is also available from the ROW_COUNT diagnostics item in the GET DIAGNOSTICS statement.

4. If SQL finds an error while running the INSERT statement, SQL stops the operation. If you specify
COMMIT (*CHG), COMMIT(*CS), COMMIT (*ALL), or COMMIT(*RR), nothing is inserted into the
table and a negative SQLCODE is returned. If you specify COMMIT(*NONE), any rows inserted
before the error remain in the table.

Inserting multiple rows in a table with the blocked INSERT statement

A blocked INSERT can be used to insert multiple rows into a table with a single statement. The blocked
INSERT statement is supported in all of the languages except REXX. The data inserted into the table must
be in a host structure array. If indicator variables are used with a blocked INSERT, they must also be in a
host structure array. For information about host structure arrays for a particular language, refer to the
chapter on that language in the [Embedded SQL Programming|information.

For example, to add ten employees to the CORPDATA.EMPLOYEE table:

INSERT INTO CORPDATA.EMPLOYEE
(EMPNO, FIRSTNME ,MIDINIT,LASTNAME ,WORKDEPT)
10 ROWS VALUES(:DSTRUCT:ISTRUCT)

DSTRUCT is a host structure array with five elements that is declared in the program. The five elements
correspond to EMPNO, FIRSTNME, MIDINIT, LASTNAME, and WORKDEPT. DSTRUCT has a
dimension of at least ten to accommodate inserting ten rows. ISTRUCT is a host structure array that is
declared in the program. ISTRUCT has a dimension of at least ten small integer fields for the indicators.

Blocked INSERT statements are supported for non-distributed SQL applications and for distributed
applications where both the application server and the application requester are iSeries systems.

Inserting into tables with referential constraints

There are some important things to remember when inserting data into tables with referential constraints.
If you are inserting data into a parent table with a parent key, SQL does not allow:

* Duplicate values for the parent key
* If the parent key is a primary key, a null value for any column of the primary key

If you are inserting data into a dependent table with foreign keys:

76 iSeries: DB2 Universal Database for iSeries SQL Programming

¢ Each non-null value you insert into a foreign key column must be equal to some value in the
corresponding parent key of the parent table.

¢ If any column in the foreign key is null, the entire foreign key is considered null. If all foreign keys
that contain the column are null, the INSERT succeeds (as long as there are no unique index
violations).

Alter the sample application project table (PROJECT) to define two foreign keys:
* A foreign key on the department number (DEPTNO) which references the department table
* A foreign key on the employee number (RESPEMP) which references the employee table.

ALTER TABLE CORPDATA.PROJECT ADD CONSTRAINT RESP_DEPT_EXISTS
FOREIGN KEY (DEPTNO)
REFERENCES CORPDATA.DEPARTMENT
ON DELETE RESTRICT

ALTER TABLE CORPDATA.PROJECT ADD CONSTRAINT RESP_EMP_EXISTS
FOREIGN KEY (RESPEMP)
REFERENCES CORPDATA.EMPLOYEE
ON DELETE RESTRICT

Notice that the parent table columns are not specified in the REFERENCES clause. The columns are not
required to be specified as long as the referenced table has a primary key or eligible unique key which
can be used as the parent key.

Every row inserted into the PROJECT table must have a value of DEPTNO that is equal to some value of
DEPTNO in the department table. (The null value is not allowed because DEPTNO in the project table is
defined as NOT NULL.) The row must also have a value of RESPEMP that is either equal to some value

of EMPNO in the employee table or is null.

The tables with the sample data as they appear in [DB2 UDB for iSeries Sample Tableg conform to these
constraints. The following INSERT statement fails because there is no matching DEPTNO value ("A01’) in
the DEPARTMENT table.

INSERT INTO CORPDATA.PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES ('AD3120', 'BENEFITS ADMIN', 'AOl', '000010')

Likewise, the following INSERT statement is unsuccessful since there is no EMPNO value of ‘000011" in
the EMPLOYEE table.

INSERT INTO CORPDATA.PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES ('AD3130', 'BILLING', 'D21', '000011')

The following INSERT statement completes successfully because there is a matching DEPTNO value of
"E01” in the DEPARTMENT table and a matching EMPNO value of '000010” in the EMPLOYEE table.

INSERT INTO CORPDATA.PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
VALUES ('AD3120', 'BENEFITS ADMIN', 'EO1', '000010')

Inserting into an identity column

You can insert a value into an identity column or allow the system to insert a value for you. For example,
the table created in [“Creating and altering an identity column” on page 25|has columns called
ORDERNO (identity column), SHIPPED_TO (varchar(36)), and ORDER_DATE (date). You can insert a
row into this table by issuing the following statement:

INSERT INTO ORDERS (SHIPPED TO, ORDER _DATE)
VALUES ('BME TOOL', 2002-02-04)

In this case, a value is generated by the system for the identity column automatically. You can also write
this statement using the DEFAULT keyword:

INSERT INTO ORDERS (SHIPPED_TO, ORDER_DATE, ORDERNO)
VALUES ('BME TOOL', 2002-02-04, DEFAULT)

Chapter 6. Data Manipulation Language 77

After the insert, you can use the IDENTITY_VAL_LOCAL function to determine the value that the system
assigned to the column. See [[DENTITY_VAL_LOCAL]function in the SQL Reference for more details and
examples.

Sometimes a value for an identity column is specified by the user, such as in this INSERT statement using
a SELECT:

INSERT INTO ORDERS OVERRIDING USER VALUE
(SELECT * FROM TODAYS_ORDER)

In this case, OVERRIDING USER VALUE tells the system to ignore the value provided for the identity
column from the SELECT and to generate a new value for the identity column. OVERRIDING USER
VALUE must be used if the identity column was created with the GENERATED ALWAYS clause; it is
optional for GENERATED BY DEFAULT. If OVERRIDING USER VALUE is not specified for a
GENERATED BY DEFAULT identity column, the value provided for the column in the SELECT is
inserted.

You can force the system to use the value from the select for a GENERATED ALWAYS identity column by
specifying OVERRIDING SYSTEM VALUE. For example, issue the following statement:

INSERT INTO ORDERS OVERRIDING SYSTEM VALUE
(SELECT * FROM TODAYS_ORDER)

This INSERT statement uses the value from SELECT; it does not generate a new value for the identity
column. You cannot provide a value for an identity column created using GENERATED ALWAYS without
using the OVERRIDING SYSTEM VALUE clause.

Changing data in a table using the UPDATE statement

This section shows the basic SQL statement and clauses that update data into tables and views. To change
the data in a table, use the UPDATE statement. With the UPDATE statement, you can change the value of
one or more columns in each row that satisfies the search condition of the WHERE clause. The result of
the UPDATE statement is one or more changed column values in zero or more rows of a table
(depending on how many rows satisfy the search condition specified in the WHERE clause). The
UPDATE statement looks like this:

UPDATE table-name

SET column-1 = value-1,

column-2 = value-2, ...
WHERE search-condition ...

For example, suppose an employee was relocated. To update several items of the employee’s data in the
CORPDATA.EMPLOYEE table to reflect the move, you can specify:
UPDATE CORPDATA.EMPLOYEE
SET JOB = :PGM-CODE,

PHONENO = :PGM-PHONE
WHERE EMPNO = :PGM-SERIAL

Use the SET clause to specify a new value for each column you want to update. The SET clause names
the columns you want updated and provides the values you want them changed to. The value you
specify can be:

A column name. Replace the column’s current value with the contents of another column in the same
row.

A constant. Replace the column’s current value with the value provided in the SET clause.

A null value. Replace the column’s current value with the null value, using the keyword NULL. The
column must be defined as capable of containing a null value when the table was created, or an error
occurs.

A host variable. Replace the column’s current value with the contents of a host variable.

78 iSeries: DB2 Universal Database for iSeries SQL Programming

A special register. Replace the column’s current value with a special register value; for example,
USER.

An expression. Replace the column’s current value with the value that results from an expression.
A scalar subselect. Replace the column’s current value with the value that the subquery returns.

The DEFAULT keyword. Replace the column’s current value with the default value of the column.
The column must have a default value defined for it or allow the NULL value, or an error occurs.

For restrictions when using the UPDATE statement, see[UPDATE|in the SQL Reference.

The following is an example of a statement that uses many different values:
UPDATE WORKTABLE

SET COL1 = 'ASC',
COLZ = NULL,
COL3 = :FIELD3,
COL4 = CURRENT TIME,
COL5 = AMT - 6.00,
CoLe = coL7

WHERE EMPNO = :PGM-SERIAL

To identify the rows to be updated, use the WHERE clause:
* To update a single row, use a WHERE clause that selects only one row.

* To update several rows, use a WHERE clause that selects only the rows you want to update.

You can omit the WHERE clause. If you do, SQL updates each row in the table or view with the values
you supply.

If the database manager finds an error while running your UPDATE statement, it stops updating and
returns a negative SQLCODE. If you specify COMMIT(*ALL), COMMIT(*CS), COMMIT(*CHG), or
COMMIT(*RR), no rows in the table are changed (rows already changed by this statement, if any, are
restored to their previous values). If COMMIT(*NONE) is specified, any rows already changed are not
restored to previous values.

If the database manager cannot find any rows that satisfy the search condition, an SQLCODE of +100 is
returned.

Note: The UPDATE statement may have updated more than one row. The number of rows updated is
reflected in SQLERRD(3) of the SQLCA. This value is also available from the ROW_COUNT
diagnostics item in the GET DIAGNOSTICS statement.

The SET clause of an UPDATE statement can be used in many ways to determine the actual values to be
set in each row being updated. The following example lists each column with its corresponding value:

UPDATE EMPLOYEE
SET WORKDEPT = 'D11',
PHONENO = '7213',
JOB = 'DESIGNER'
WHERE EMPNO = '000270'

The previous update can also be written by specifying all of the columns and then all of the values:

UPDATE EMPLOYEE
SET (WORKDEPT, PHONENO, JOB)
= ('D11', '7213', 'DESIGNER')
WHERE EMPNO = '000270'

For more ways of updating data in a table, see the following sections:

+ [“Updating a table using a scalar-subselect” on page 80|

* [“Updating a table with rows from another table” on page 80|

Chapter 6. Data Manipulation Language 79

* ["Updating tables with referential constraints”|

* [‘Updating an identity column” on page 81|

* ["Updating data as it is retrieved from a table” on page 82|
For a complete description of the UPDATE statement, see [UPDATH in the SQL Reference.

Updating a table using a scalar-subselect

Another way to select a value (or multiple values) for an update is to use a scalar-subselect. The
scalar-subselect allows you to update one or more columns by setting them to one or more values
selected from another table. In the following example, an employee moves to a different department but
continues working on the same projects. The employee table has already been updated to contain the
new department number. Now the project table needs to be updated to reflect the new department
number of this employee (employee number is “000030°).
UPDATE PROJECT

SET DEPTNO =

(SELECT WORKDEPT FROM EMPLOYEE

WHERE PROJECT.RESPEMP = EMPLOYEE.EMPNO)
WHERE RESPEMP='000030"'

This same technique can be used to update a list of columns with multiple values returned from a single
select.

Updating a table with rows from another table

It is also possible to update an entire row in one table with values from a row in another table. Suppose
there is a master class schedule table that needs to be updated with changes that have been made in a
copy of the table. The changes are made to the work copy and merged into the master table every night.
The two tables have exactly the same columns and one column, CLASS_CODE, is a unique key column.
UPDATE CL_SCHED

SET ROW =

(SELECT = FROM MYCOPY
WHERE CL_SCHED.CLASS_CODE = MYCOPY.CLASS_CODE)

This update will update all of the rows in CL_SCHED with the values from MYCOPY.

Updating tables with referential constraints

If you are updating a parent table, you cannot modify a primary key for which dependent rows exist.
Changing the key violates referential constraints for dependent tables and leaves some rows without a
parent. Furthermore, you cannot give any part of a primary key a null value.

Update Rules

The action taken on dependent tables when an UPDATE is performed on a parent table depends on the
update rule specified for the referential constraint. If no update rule was defined for a referential
constraint, the UPDATE NO ACTION rule is used.

UPDATE NO ACTION
Specifies that the row in the parent table can be updated if no other row depends on it. If a
dependent row exists in the relationship, the UPDATE fails. The check for dependent rows is
performed at the end of the statement.

UPDATE RESTRICT
Specifies that the row in the parent table can be updated if no other row depends on it. If a
dependent row exists in the relationship, the UPDATE fails. The check for dependent rows is
performed immediately.

80 iSeries: DB2 Universal Database for iSeries SQL Programming

The subtle difference between the RESTRICT rule and the NO ACTION rule is easiest seen when looking
at the interaction of triggers and referential constraints. Triggers can be defined to fire either before or
after an operation (an UPDATE statement, in this case). A before trigger fires before the UPDATE is
performed and therefore before any checking of constraints. An after trigger is fired after the UPDATE is
performed, and after a constraint rule of RESTRICT (where checking is performed immediately), but
before a constraint rule of NO ACTION (where checking is performed at the end of the statement). The
triggers and rules occur in the following order:

1. A before trigger is fired before the UPDATE and before a constraint rule of RESTRICT or NO ACTION.
2. An after trigger is fired after a constraint rule of RESTRICT, but before a NO ACTION rule.

If you are updating a dependent table, any non-null foreign key values that you change must match the
primary key for each relationship in which the table is a dependent. For example, department numbers in
the employee table depend on the department numbers in the department table. You can assign an
employee to no department (the null value), but not to a department that does not exist.

If an UPDATE against a table with a referential constraint fails, all changes made during the update
operation are undone. For more information about the implications of commitment control and journaling
when working with constraints, see [‘Tournaling” on page 104/ and [“Commitment control” on page 105

For an example of updating a table that uses UPDATE rules, see [“Examples: UPDATE rules.”]
Examples: UPDATE rules

For example, you cannot update a department number from the department table if it is still responsible
for some project, which is described by a dependent row in the project table.

The following UPDATE fails because the PROJECT table has rows that are dependent on
DEPARTMENT.DEPTNO having a value of ‘D01” (the row targeted by the WHERE statement). If this
UPDATE were allowed, the referential constraint between the PROJECT and DEPARTMENT tables will
be broken.

UPDATE CORPDATA.DEPARTMENT

SET DEPTNO = 'D99'
WHERE DEPTNAME = 'DEVELOPMENT CENTER'

The following statement fails because it violates the referential constraint that exists between the primary
key DEPTNO in DEPARTMENT and the foreign key DEPTNO in PROJECT:
UPDATE CORPDATA.PROJECT

SET DEPTNO = 'DOO'
WHERE DEPTNO = 'DO1';

The statement attempts to change all department numbers of D01 to department number D00. Since D00
is not a value of the primary key DEPTNO in DEPARTMENT, the statement fails.

Updating an identity column

You can update the value in an identity column to a specified value or have the system generate a new
value. For example, using the table created in [“Creating and altering an identity column” on page 25)
with columns called ORDERNO (identity column), SHIPPED_TO (varchar(36)), and ORDER_DATE (date),
you can update the value in an identity column by issuing the following statement:
UPDATE ORDERS

SET (ORDERNO, ORDER DATE)=

(DEFAULT, 2002-02-05)
WHERE SHIPPED TO = 'BME TOOL'

A value is generated by the system for the identity column automatically. You can override having the
system generate a value by using the OVERRIDING SYSTEM VALUE clause:

Chapter 6. Data Manipulation Language 81

UPDATE ORDERS OVERRIDING SYSTEM VALUE
SET (ORDERNO, ORDER_DATE)=
(553, '2002-02-05")
WHERE SHIPPED_TO = 'BME TOOL'

Updating data as it is retrieved from a table

You can update rows of data as you retrieve them by using a cursor. See [“Using a Cursor” on page 215|
for more information about cursors. On the select-statement, use FOR UPDATE OF followed by a list of
columns that may be updated. Then use the cursor-controlled UPDATE statement. The WHERE
CURRENT OF clause names the cursor that points to the row you want to update. If a FOR UPDATE OF,
an ORDER BY, a FOR READ ONLY, or a SCROLL clause without the DYNAMIC clause is not specified,
all columns can be updated.

If a multiple-row FETCH statement has been specified and run, the cursor is positioned on the last row
of the block. Therefore, if the WHERE CURRENT OF clause is specified on the UPDATE statement, the
last row in the block is updated. If a row within the block must be updated, the program must first
position the cursor on that row. Then the UPDATE WHERE CURRENT OF can be specified. Consider the
following example:

Table 11. Updating a Table

Scrollable Cursor SQL Statement Comments

EXEC SQL
DECLARE THISEMP DYNAMIC SCROLL CURSOR FOR
SELECT EMPNO, WORKDEPT, BONUS
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = ‘D11’
FOR UPDATE OF BONUS
END-EXEC.

EXEC SQL
OPEN THISEMP
END-EXEC.

EXEC SQL
WHENEVER NOT FOUND
GO TO CLOSE-THISEMP

END-EXEC.
EXEC SQL DEPTINFO and IND-ARRAY are
FETCH NEXT FROM THISEMP declared in the program as a host
FOR 5 ROWS structure array and an indicator
INTO :DEPTINFO :IND-ARRAY array.
END-EXEC.

... determine if any employees in department D11 receive a bonus less than
$500.00. If so, update that record to the new minimum of $500.00.

EXEC SQL ... positions to the record in the
FETCH RELATIVE :NUMBACK FROM THISEMP block to update by fetching in the
END-EXEC. reverse order.
EXEC SQL ... updates the bonus for the
UPDATE CORPDATA.EMPLOYEE employee in department D11 that
SET BONUS = 500 is under the new $500.00
WHERE CURRENT OF THISEMP minimum.
END-EXEC.

82 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 11. Updating a Table (continued)

Scrollable Cursor SQL Statement Comments
EXEC SQL ... positions to the beginning of
FETCH RELATIVE :NUMBACK FROM THISEMP the same block that was already
FOR 5 ROWS fetched and fetches the block
INTO :DEPTINFO :IND-ARRAY again. (NUMBACK -(5 -
END-EXEC. NUMBACK - 1))

... branch back to determine if any more employees in the block have a bonus
under $500.00.

... branch back to fetch and process the next block of rows.

CLOSE-THISEMP.
EXEC SQL

CLOSE THISEMP
END-EXEC.

Removing rows from a table using the DELETE statement

This section shows the basic SQL statement and clauses that deletes data into tables and views. To
remove rows from a table, use the DELETE statement. When you DELETE a row, you remove the entire
row. DELETE does not remove specific columns from the row. The result of the DELETE statement is the
removal of zero or more rows of a table (depending on how many rows satisfy the search condition
specified in the WHERE clause). If you omit the WHERE clause from a DELETE statement, SQL removes
all the rows of the table. The DELETE statement looks like this:

DELETE FROM table-name
WHERE search-condition ...

For example, suppose department D11 was moved to another place. You want to delete each row in the
CORPDATA.EMPLOYEE table with a WORKDEPT value of D11 as follows:

DELETE FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'D11'

The WHERE clause tells SQL which rows you want to delete from the table. SQL deletes all the rows that
satisfy the search condition from the base table. Deleting rows from a view deletes the rows from the
base table. You can omit the WHERE clause, but it is best to include one, because a DELETE statement
without a WHERE clause deletes all the rows from the table or view. To delete a table definition as well
as the table contents, issue the DROP statement. For more information about the DROP statement, see the
[DROP statement] topic in the SQL Reference book.

If SQL finds an error while running your DELETE statement, it stops deleting data and returns a negative
SQLCODE. If you specify COMMIT(*ALL), COMMIT(*CS), COMMIT(*CHG), or COMMIT(*RR), no rows
in the table are deleted (rows already deleted by this statement, if any, are restored to their previous
values). If COMMIT(*NONE) is specified, any rows already deleted are not restored to their previous
values.

If SQL cannot find any rows that satisfy the search condition, an SQLCODE of +100 is returned.
Note: The DELETE statement may have deleted more than one row. The number of rows deleted is

reflected in SQLERRD(3) of the SQLCA. This value is also available from the ROW_COUNT
diagnostics item in the GET DIAGNOSTICS statement.

See [“Deleting from tables with referential constraints” on page 84| for details about tables with referential
constraints.

Chapter 6. Data Manipulation Language 83

For more information about the DELETE statement, see the [DELETE statement] topic in the SQL Reference
book.

Deleting from tables with referential constraints

If a table has a primary key but no dependents, DELETE operates as it does without referential
constraints. The same is true if a table has only foreign keys, but no primary key. If a table has a primary
key and dependent tables, DELETE deletes or updates rows according to the delete rules specified. All
delete rules of all affected relationships must be satisfied in order for the delete operation to succeed. If a
referential constraint is violated, the DELETE fails.

The action to be taken on dependent tables when a DELETE is performed on a parent table depends on
the delete rule specified for the referential constraint. If no delete rule was defined, the DELETE NO
ACTION rule is used.

DELETE NO ACTION
Specifies that the row in the parent table can be deleted if no other row depends on it. If a
dependent row exists in the relationship, the DELETE fails. The check for dependent rows is
performed at the end of the statement.

DELETE RESTRICT
Specifies that the row in the parent table can be deleted if no other row depends on it. If a
dependent row exists in the relationship, the DELETE fails. The check for dependent rows is
performed immediately.

For example, you cannot delete a department from the department table if it is still responsible
for some project that is described by a dependent row in the project table.

DELETE CASCADE
Specifies that first the designated rows in the parent table are deleted. Then, the dependent rows
are deleted.

For example, you can delete a department by deleting its row in the department table. Deleting
the row from the department table also deletes:

¢ The rows for all departments that report to it
* All departments that report to those departments and so forth.

DELETE SET NULL
Specifies that each nullable column of the foreign key in each dependent row is set to its default
value. This means that the column is only set to its default value if it is a member of a foreign
key that references the row being deleted. Only the dependent rows that are immediate
descendents are affected.

DELETE SET DEFAULT
Specifies that each column of the foreign key in each dependent row is set to its default value.
This means that the column is only set to its default value if it is a member of a foreign key that
references the row being deleted. Only the dependent rows that are immediate descendants are
affected.

For example, you can delete an employee from the employee table (EMPLOYEE) even if the
employee manages some department. In that case, the value of MGRNO for each employee who
reported to the manager is set to blanks in the department table (DEPARTMENT). If some other
default value was specified on the create of the table, that value is used.

This is due to the REPORTS_TO_EXISTS constraint defined for the department table.

If a descendent table has a delete rule of RESTRICT or NO ACTION and a row is found such that a
descendant row cannot be deleted, the entire DELETE fails.

84 iSeries: DB2 Universal Database for iSeries SQL Programming

When running this statement with a program, the number of rows deleted is returned in SQLERRD(3) in
the SQLCA. This number includes only the number of rows deleted in the table specified in the DELETE
statement. It does not include those rows deleted according to the CASCADE rule. SQLERRD(5) in the
SQLCA contains the number of rows that were affected by referential constraints in all tables. The
SQLERRD(3) value is also available from the ROW_COUNT item in the GET DIAGNOSTICS statement.
The SQLERRD(5) value is available from the DB2_ROW_COUNT_SECONDARY item.

The subtle difference between RESTRICT and NO ACTION rules is easiest seen when looking at the
interaction of triggers and referential constraints. Triggers can be defined to fire either before or after an
operation (a DELETE statement, in this case). A before trigger fires before the DELETE is performed and
therefore before any checking of constraints. An after trigger is fired after the DELETE is performed, and
after a constraint rule of RESTRICT (where checking is performed immediately), but before a constraint
rule of NO ACTION (where checking is performed at the end of the statement). The triggers and rules
occur in the following order:

1. A before trigger is fired before the DELETE and before a constraint rule of RESTRICT or NO ACTION.
2. An after trigger is fired after a constraint rule of RESTRICT, but before a NO ACTION rule.

For an example of deleting from a table that uses UPDATE rules, see [“Example: DELETE Cascade Rule.”]

Example: DELETE Cascade Rule
Deleting a department from the DEPARTMENT table sets WORKDEPT (in the EMPLOYEE table) to null
for every employee assigned to that department. Consider the following DELETE statement:

DELETE FROM CORPDATA.DEPARTMENT
WHERE DEPTNO = 'EI11'

Given the tables and the data as they appear in[DB2 UDB for iSeries Sample Tables, one row is deleted
from table DEPARTMENT, and table EMPLOYEE is updated to set the value of WORKDEPT to its
default wherever the value was 'E11’. A question mark ('?’) in the sample data below reflects the null
value. The results appear as follows:

Table 12. DEPARTMENT Table. Contents of the table after the DELETE statement is complete.

DEPTNO DEPTNAME MGRNO ADMRDEPT
AQ00 SPIFFY COMPUTER SERVICE DIV. 000010 A00
BO1 PLANNING 000020 A00
Co01 INFORMATION CENTER 000030 A00
D01 DEVELOPMENT CENTER ? A00
D11 MANUFACTURING SYSTEMS 000060 D01
D21 ADMINISTRATION SYSTEMS 000070 D01
EO01 SUPPORT SERVICES 000050 A00
E21 SOFTWARE SUPPORT 000100 EO1
F22 BRANCH OFFICE F2 ? EO1
G22 BRANCH OFFICE G2 ? EO01
H22 BRANCH OFFICE H2 ? EO1
122 BRANCH OFFICE 12 ? EO01
J22 BRANCH OFFICE]2 ? EO1

Note that there were no cascaded deletes in the DEPARTMENT table because no department reported to
department "'E11".

Chapter 6. Data Manipulation Language 85

Below are snapshots of one affected portion of the EMPLOYEE table before and after the DELETE
statement is completed.

Table 13. Partial EMPLOYEE Table. Partial contents before the DELETE statement.

EMPNO FIRSTNME MI LASTNAME WORKDEPT PHONENO HIREDATE
000230 JAMES J JEFFERSON D21 2094 1966-11-21
000240 SALVATORE M MARINO D21 3780 1979-12-05
000250 DANIEL S SMITH D21 0961 1960-10-30
000260 SYBIL P JOHNSON D21 8953 1975-09-11
000270 MARIA L PEREZ D21 9001 1980-09-30
000280 ETHEL R SCHNEIDER E11 0997 1967-03-24
000290 JOHN R PARKER E11 4502 1980-05-30
000300 PHILIP X SMITH E11 2095 1972-06-19
000310 MAUDE F SETRIGHT E11 3332 1964-09-12
000320 RAMLAL \% MEHTA E21 9990 1965-07-07
000330 WING LEE E21 2103 1976-02-23
000340 JASON R GOUNOT E21 5696 1947-05-05

Table 14. Partial EMPLOYEE Table. Partial contents after the DELETE statement.

EMPNO FIRSTNME MI LASTNAME WORKDEPT PHONENO HIREDATE
000230 JAMES J JEFFERSON D21 2094 1966-11-21
000240 SALVATORE M MARINO D21 3780 1979-12-05
000250 DANIEL S SMITH D21 0961 1960-10-30
000260 SYBIL P JOHNSON D21 8953 1975-09-11
000270 MARIA L PEREZ D21 9001 1980-09-30
000280 ETHEL R SCHNEIDER ? 0997 1967-03-24
000290 JOHN R PARKER ? 4502 1980-05-30
000300 PHILIP X SMITH ? 2095 1972-06-19
000310 MAUDE F SETRIGHT ? 3332 1964-09-12
000320 RAMLAL \Y% MEHTA E21 9990 1965-07-07
000330 WING LEE E21 2103 1976-02-23
000340 JASON R GOUNOT E21 5696 1947-05-05

Using Subqueries

You can use subqueries in a search condition as another way to select your data. Subqueries can be used
in expressions, in the select-list, and in the ORDER BY and the GROUP BY clauses.

Conceptually, a subquery is evaluated whenever a new row or group of rows must be processed. In fact,
if the subquery is the same for every row or group, it is evaluated only once. Subqueries like this are said

to be uncorrelated.

Some subqueries return different values from row to row or group to group. The mechanism that allows
this is called correlation, and the subqueries are said to be correlated.

For more details, see the following sections:

86 iSeries: DB2 Universal Database for iSeries SQL Programming

* [’Subqueries in SELECT statements’]
* [‘Correlated subqueries” on page 9()

Subqueries in SELECT statements

In simple WHERE and HAVING clauses, you can specify a search condition by using a literal value, a
column name, an expression, or a special register. In those search conditions, you know that you are
searching for a specific value. However, sometimes you cannot supply that value until you have retrieved
other data from a table. For example, suppose you want a list of the employee numbers, names, and job
codes of all employees working on a particular project, say project number MA2100. The first part of the
statement is easy to write:

SELECT EMPNO, LASTNAME, JOB

FROM CORPDATA.EMPLOYEE
WHERE EMPNO ...

But you cannot go further because the CORPDATA.EMPLOYEE table does not include project number
data. You do not know which employees are working on project MA2100 without issuing another
SELECT statement against the CORPDATA . EMP_ACT table.

With SQL, you can nest one SELECT statement within another to solve this problem. The inner SELECT
statement is called a subquery. The SELECT statement surrounding the subquery is called the outer-level
SELECT. Using a subquery, you can issue just one SQL statement to retrieve the employee numbers,
names, and job codes for employees who work on project MA2100:

SELECT EMPNO, LASTNAME, JOB

FROM CORPDATA.EMPLOYEE

WHERE EMPNO IN

(SELECT EMPNO

FROM CORPDATA.EMPPROJACT
WHERE PROJNO = 'MA2100')

To better understand what will result from this SQL statement, imagine that SQL goes through the
following process:

Step 1: SQL evaluates the subquery to obtain a list of EMPNO values:

(SELECT EMPNO
FROM CORPDATA.EMPPROJACT
WHERE PROJNO= 'MA2160')

Which results in an interim results table:

EMPNO from CORPDATA.EMPPROJACT
000010
000110

Step 2: The interim results table then serves as a list in the search condition of the outer-level SELECT.
Essentially, this is the statement that is run.
SELECT EMPNO, LASTNAME, JOB

FROM CORPDATA.EMPLOYEE

WHERE EMPNO IN
('000010', '000110')

The final result table looks like this:

EMPNO LASTNAME JOB
000010 HAAS PRES
000110 LUCCHESSI SALESREP

Chapter 6. Data Manipulation Language 87

For more details, see the following sections:

* [‘Subqueries and search conditions”|

* ["Using subqueries”]
¢ ['Including subqueries in WHERE or HAVING clauses”]

Subqueries and search conditions

A subquery can be part of a search condition. The search condition is in the form operand operator operand.
Either operand can be a subquery. In the following example, the first operand is EMPNO and operator is
IN. The search condition can be part of a WHERE or HAVING clause. The clause can include more than
one search condition that contains a subquery. A search condition containing a subquery, like any other
search condition, can be enclosed in parentheses, can be preceded by the keyword NOT, and can be
linked to other search conditions through the keywords AND and OR. For example, the WHERE clause
of a query can look something like this:

WHERE (subqueryl) = X AND (Y > SOME (subquery2) OR Z = 100)

Subqueries can also appear in the search conditions of other subqueries. Such subqueries are said to be
nested at some level of nesting. For example, a subquery within a subquery within an outer-level
SELECT is nested at a nesting level of two. SQL allows nesting down to a nesting level of 32.

Using subqueries
1. When nesting SELECT statements, you can use as many as you need to satisfy your requirements (1
to 31 subqueries), although performance is slower for each additional subquery.

2. When the outer statement is a SELECT statement (at any level of nesting):

¢ The subquery can be based on the same table or view as the outer statement, or on a different table
or view.

* You can use a subquery in the WHERE clause of the outer-level SELECT, even when the outer-level
SELECT is part of a DECLARE CURSOR, CREATE TABLE, CREATE VIEW, or INSERT statement.

* You can use a subquery in the HAVING clause of a SELECT statement. When you do, SQL
evaluates the subquery and uses it to qualify each group.

3. When the statement is an UPDATE or DELETE statement, you can use subqueries in the WHERE
clause of the UPDATE or DELETE statement. You can also use a subquery in the SET clause of an
UPDATE statement.

4. When a subquery is used in the SET clause of an UPDATE statement, the result table of a subselect
must contain the same number of values as the corresponding list of columns to be updated. In all
other cases, the result table for a subquery must consist of a single column, unless the subquery is
being used with the EXISTS keyword. For predicates using the keywords ALL, ANY, SOME, or
EXISTS, the number of rows returned from the subquery can vary from zero to many. For all other
subqueries, the number of rows returned must be zero or one.

5. A subquery cannot include the ORDER BY, UNION, UNION ALL, FOR READ ONLY, FETCH FIRST
n ROWS, UPDATE, or OPTIMIZE clauses.

Including subqueries in WHERE or HAVING clauses
There are several ways to include a subquery in either a WHERE or HAVING clause:

* Basic comparisons

* Quantified comparisons (ALL, ANY, and SOME)
* IN keyword

* EXISTS keyword

Basic comparisons

You can use a subquery before or after any of the comparison operators. The subquery can return at most
one value. The value can be the result of a column function or an arithmetic expression. SQL then

88 iSeries: DB2 Universal Database for iSeries SQL Programming

compares the value that results from the subquery with the value on the other side of the comparison
operator. For example, suppose you want to find the employee numbers, names, and salaries for
employees whose education level is higher than the average education level throughout the company.

SELECT EMPNO, LASTNAME, SALARY

FROM CORPDATA.EMPLOYEE

WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM CORPDATA.EMPLOYEE)

SQL first evaluates the subquery and then substitutes the result in the WHERE clause of the SELECT
statement. In this example, the result is the company-wide average educational level. Besides returning a
single value, a subquery can return no value at all. If it does, the result of the compare is unknown.

Quantified comparisons (ALL, ANY, and SOME)

You can use a subquery after a comparison operator followed by the keyword ALL, ANY, or SOME.
When used in this way, the subquery can return zero, one, or many values, including null values. You
can use ALL, ANY, and SOME in the following ways:

* Use ALL to indicate that the value you supplied must compare in the indicated way to ALL the values
the subquery returns. For example, suppose you use the greater-than comparison operator with ALL:

... WHERE expression > ALL (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than all the values (that is,
greater than the highest value) returned by the subquery. If the subquery returns an empty set (that is,
no values were selected), the condition is satisfied.

* Use ANY or SOME to indicate that the value you supplied must compare in the indicated way to at
least one of the values the subquery returns. For example, suppose you use the greater-than comparison
operator with ANY:

... WHERE expression > ANY (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than at least one of the
values (that is, greater than the lowest value) returned by the subquery. If what the subquery returns is
the empty set, the condition is not satisfied.

Note: The results when a subquery returns one or more null values may surprise you, unless you are
familiar with formal logic. For more details, see the discussion of quantified predicates in the

Reference

IN keyword

You can use IN to say that the value in the expression must be among the values returned by the
subquery. Using IN is equivalent to using =ANY or =SOME. Using ANY and SOME were previously
described. You can also use the IN keyword with the NOT keyword in order to select rows when the
value is not among the values returned by the subquery. For example, you can use:

... WHERE WORKDEPT NOT IN (SELECT ...)
EXISTS Keyword

In the subqueries presented so far, SQL evaluates the subquery and uses the result as part of the WHERE
clause of the outer-level SELECT. In contrast, when you use the keyword EXISTS, SQL checks whether
the subquery returns one or more rows. If it does, the condition is satisfied. If it returns no rows, the
condition is not satisfied. For example:

SELECT EMPNO,LASTNAME
FROM CORPDATA.EMPLOYEE
WHERE EXISTS
(SELECT =
FROM CORPDATA.PROJECT
WHERE PRSTDATE > '1982-01-01');

Chapter 6. Data Manipulation Language 89

In the example, the search condition is true if any project represented in the CORPDATA.PROJECT table
has an estimated start date that is later than January 1, 1982. This example does not show the full power
of EXISTS, because the result is always the same for every row examined for the outer-level SELECT. As
a consequence, either every row appears in the results, or none appear. In a more powerful example, the
subquery itself is be correlated, and changes from row to row. See [“Correlated subqueries”| for more
information about correlated subqueries.

As shown in the example, you do not need to specify column names in the select-list of the subquery of
an EXISTS clause. Instead, you should code SELECT *.

You can also use the EXISTS keyword with the NOT keyword in order to select rows when the data or
condition you specify does not exist. You can use the following;:

... WHERE NOT EXISTS (SELECT ...)

Correlated subqueries

In the subqueries previously discussed, SQL evaluates the subquery once, substitutes the result of the
subquery in the search condition, and evaluates the outer-level SELECT based on the value of the search
condition. You can also write a subquery that SQL may need to re-evaluate as it examines each new row
(WHERE clause) or group of rows (HAVING clause) in the outer-level SELECT. This is called a correlated
subquery.

Find more information in the following sections:

[‘Correlated names and references”|

[“Example: Correlated subquery in a WHERE Clause” on page 91|

+ [“Example: Correlated subquery in a HAVING Clause” on page 92|

* [“Example: Correlated subquery in select-list” on page 92|

* [“Example: Correlated subqueries in an UPDATE statement” on page 93|

* [“Example: Correlated subqueries in a DELETE statement” on page 94|

Correlated names and references
A correlated reference can appear in a search condition in a subquery. The reference is always of the form
X.C, where X is a correlation name and C is the name of a column in the table that X represents.

You can define a correlation name for any table appearing in a FROM clause. A correlation name
provides a unique name for a table in a query. The same table name can be used many times within a
query and its nested subselects. Specifying different correlation names for each table reference makes it
possible to uniquely designate which table a column refers to.

The correlation name is defined in the FROM clause of a query. This query can be the outer-level
SELECT, or any of the subqueries that contain the one with the reference. Suppose, for example, that a
query contains subqueries A, B, and C, and that A contains B and B contains C. Then a correlation name
used in C can be defined in B, A, or the outer-level SELECT. To define a correlation name, include the
correlation name after the table name. Leave one or more blanks between a table name and its correlation
name, and place a comma after the correlation name if it is followed by another table name. The
following FROM clause defines the correlation names TA and TB for the tables TABLEA and TABLEB,
and no correlation name for the table TABLEC.

FROM TABLEA TA, TABLEC, TABLEB TB

Any number of correlated references can appear in a subquery. For example, one correlated name in a
search condition can be defined in the outer-level SELECT, while another can be defined in a containing
subquery.

Before the subquery is executed, a value from the referenced column is always substituted for the
correlated reference.

90 iSeries: DB2 Universal Database for iSeries SQL Programming

Example: Correlated subquery in a WHERE Clause
Suppose that you want a list of all the employees whose education levels are higher than the average
education levels in their respective departments. To get this information, SQL must search the
CORPDATA.EMPLOYEE table. For each employee in the table, SQL needs to compare the employee’s
education level to the average education level for the employee’s department. In the subquery, you tell
SQL to calculate the average education level for the department number in the current row. For example:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL
FROM CORPDATA.EMPLOYEE X
WHERE EDLEVEL >
(SELECT AVG(EDLEVEL)

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = X.WORKDEPT)

A correlated subquery looks like an uncorrelated one, except for the presence of one or more correlated
references. In the example, the single correlated reference is the occurrence of X.-WORKDEPT in the
subselect’'s FROM clause. Here, the qualifier X is the correlation name defined in the FROM clause of the
outer SELECT statement. In that clause, X is introduced as the correlation name of the table

CORPDATA EMPLOYEE.

Now, consider what happens when the subquery is executed for a given row of CORPDATA.EMPLOYEE.
Before it is executed, the occurrence of X.-WORKDEPT is replaced with the value of the WORKDEPT
column for that row. Suppose, for example, that the row is for CHRISTINE I HAAS. Her work
department is A00, which is the value of WORKDEPT for this row. The subquery executed for this row
is:

(SELECT AVG(EDLEVEL)

FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = 'A00')

Thus, for the row considered, the subquery produces the average education level of Christine’s
department. This is then compared in the outer statement to Christine’s own education level. For some
other row for which WORKDEPT has a different value, that value appears in the subquery in place of
A00. For example, for the row for MICHAEL L THOMPSON, this value is B01, and the subquery for his
row delivers the average education level for department B01.

The result table produced by the query has the following values:

Table 15. Result set for previous query

EMPNO LASTNAME WORKDEPT EDLEVEL
000010 HAAS A00 18
000030 KWAN C01 20
000070 PULASKI D21 16
000090 HENDERSON E11 16
000110 LUCCHESSI A00 19
000160 PIANKA D11 17
000180 SCOUTTEN D11 17
000210 JONES D11 17
000220 LUTZ D11 18
000240 MARINO D21 17
000260 JOHNSON D21 16
000280 SCHNEIDER E11 17
000320 MEHTA E21 16
000340 GOUNOT E21 16

Chapter 6. Data Manipulation Language 91

Table 15. Result set for previous query (continued)

EMPNO LASTNAME WORKDEPT EDLEVEL
200010 HEMMINGER A00 18
200220 JOHN D11 18
200240 MONTEVERDE D21 17
200280 SCHWARTZ El1 17
200340 ALONZO E21 16

Example: Correlated subquery in a HAVING Clause
Suppose that you want a list of all the departments whose average salary is higher than the average
salary of their area (all departments whose WORKDEPT begins with the same letter belong to the same
area). To get this information, SQL must search the CORPDATA.EMPLOYEE table. For each department
in the table, SQL compares the department’s average salary to the average salary of the area. In the
subquery, SQL calculates the average salary for the area of the department in the current group. For
example:

SELECT WORKDEPT, DECIMAL(AVG(SALARY),8,2)

FROM CORPDATA.EMPLOYEE X

GROUP BY WORKDEPT

HAVING AVG(SALARY) >

(SELECT AVG(SALARY)

FROM CORPDATA.EMPLOYEE
WHERE SUBSTR(X.WORKDEPT,1,1) = SUBSTR(WORKDEPT,1,1))

Consider what happens when the subquery is executed for a given department of
CORPDATA.EMPLOYEE. Before it is executed, the occurrence of X.- WORKDEPT is replaced with the
value of the WORKDEPT column for that group. Suppose, for example, that the first group selected has
AQO for the value of WORKDEPT. The subquery executed for this group is:

(SELECT AVG(SALARY)

FROM CORPDATA.EMPLOYEE
WHERE SUBSTR('A00',1,1) = SUBSTR(WORKDEPT,1,1))

Thus, for the group considered, the subquery produces the average salary for the area. This value is then
compared in the outer statement to the average salary for department 'A00'. For some other group for
which WORKDEPT is 'B01’, the subquery results in the average salary for the area where department B01
belongs.

The result table produced by the query has the following values:

WORKDEPT AVG SALARY
D21 25668.57
EO1 40175.00
E21 24086.66

Example: Correlated subquery in select-list

Suppose that you want a list of all of the departments, including the department name, number, and
manager’s name. Department names and numbers are found in the CORPDATA .DEPARTMENT table.
However, DEPARTMENT only has the manager’s number, not the manager’s name. To find the name of
the manager for each department, you need to find the employee number from the EMPLOYEE table that
matches the manager number in the DEPARTMENT table and return the name for the row that matches.
Only departments that currently have a manager assigned are to be returned. Execute the following:
SELECT DEPTNO, DEPTNAME,

(SELECT FIRSTNME CONCAT ' ' CONCAT
MIDINIT CONCAT ' ' CONCAT LASTNAME

92 iSeries: DB2 Universal Database for iSeries SQL Programming

FROM EMPLOYEE X

WHERE X.EMPNO = Y.MGRNO) AS MANAGER_NAME
FROM DEPARTMENT Y
WHERE MGRNO IS NOT NULL

For each row returned for DEPTNO and DEPTNAME, the system finds where EMPNO = MGRNO and
returns the manager’s name. The result table produced by the query has the following values:

Table 16.

DEPTNO DEPTNAME MANAGER_NAME

A00 SPIFFY COMPUTER SERVICE DIV. CHRISTINE I HAAS

BO1 PLANNING MICHAEL L THOMPSON
Co1 INFORMATION CENTER SALLY A KWAN

D11 MANUFACTURING SYSTEMS IRVING F STERN

D21 ADMINISTRATION SYSTEMS EVA D PULASKI

EO1 SUPPORT SERVICES JOHN B GEYER

E11 OPERATIONS EILEEN W HENDERSON
E21 SOFTWARE SUPPORT THEODORE Q SPENSER

Example: Correlated subqueries in an UPDATE statement
When you use a correlated subquery in an UPDATE statement, the correlation name refers to the rows
you are interested in updating. For example, when all activities of a project must be completed before
September 1983, your department considers that project to be a priority project. You can use the SQL
statement below to evaluate the projects in the CORPDATA.PROJECT table, and write a 1 (a flag to
indicate PRIORITY) in the PRIORITY column (a column you added to CORPDATA PROJECT for this
purpose) for each priority project.
UPDATE CORPDATA.PROJECT X
SET PRIORITY =1
WHERE '1983-09-01"' >
(SELECT MAX (EMENDATE)

FROM CORPDATA.EMPPROJACT
WHERE PROJNO = X.PROJNO)

As SQL examines each row in the CORPDATA . EMPPROJACT table, it determines the maximum activity
end date (EMENDATE) for all activities of the project (from the CORPDATA.PROJECT table). If the end
date of each activity associated with the project is before September 1983, the current row in the
CORPDATA.PROJECT table qualifies and is updated.

Update the master order table with any changes to the quantity ordered. If the quantity in the orders
table is not set (the NULL value), keep the value that is in the master order table.
UPDATE MASTER_ORDERS X
SET QTY=(SELECT COALESCE (Y.QTY, X.QTY)
FROM ORDERS Y
WHERE X.ORDER_NUM = Y.ORDER_NUM)
WHERE X.ORDER NUM IN (SELECT ORDER_NUM
FROM ORDERS)

In this example, each row of the MASTER_ORDERS table is checked to see if it has a corresponding row
in the ORDERS table. If it does have a matching row in the ORDERS table, the COALESCE function is
used to return a value for the QTY column. If QTY in the ORDERS table has a non-null value, that value
is used to update the QTY column in the MASTER_ORDERS table. If the QTY value in the ORDERS table
is NULL, the MASTER_ORDERS QTY column is updated with its own value.

Chapter 6. Data Manipulation Language 93

Example: Correlated subqueries in a DELETE statement

When you use a correlated subquery in a DELETE statement, the correlation name represents the row
you delete. SQL evaluates the correlated subquery once for each row in the table named in the DELETE
statement to decide whether to delete the row.

Suppose a row in the CORPDATA.PROJECT table was deleted. Rows related to the deleted project in the
CORPDATA.EMPPROJACT table must also be deleted. To do this, you can use:
DELETE FROM CORPDATA.EMPPROJACT X
WHERE NOT EXISTS
(SELECT *
FROM CORPDATA.PROJECT
WHERE PROJNO = X.PROJNO)

SQL determines, for each row in the CORPDATA.EMP_ACT table, whether a row with the same project
number exists in the CORPDATA.PROJECT table. If not, the CORPDATA.EMP_ACT row is deleted.

94 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 7. Sort sequences and normalization in SQL

Sort Sequence

A sort sequence defines how characters in a character set relate to each other when they are compared or
ordered. The sort sequence is used for all character, and UCS-2 and UTF-16 graphic comparisons
performed in SQL statements. There are sort sequence tables for both single byte and double byte
character data. Each single byte sort sequence table has an associated double byte sort sequence table,
and vice versa. Conversion between the two tables is performed when necessary to implement a query. In
addition, the CREATE INDEX statement has the sort sequence (in effect at the time the statement was
run) applied to the character columns referred to in the index.

* [’Sort sequence used with ORDER BY and row selection’]

* [‘Sort sequence and views” on page 98
* [“Sort Sequence and the CREATE INDEX Statement” on page 9§
* [“Sort sequence and constraints” on page 99|

+ [“ICU Sort Sequence” on page 99|

For a complete discussion about sort sequences, see the section of the SQL Reference|book.

Normalization

Normalization allows you to compare strings that contain combining characters. For more information,
see [“Normalization” on page 100.

Sort sequence used with ORDER BY and row selection

To see how to use a sort sequence, run the examples in this section against the STAFF table shown in the
following table. Notice that the values in the JOB column are in mixed case. You can see the values 'Mgr’,
'MGR', and 'mgr".

Table 17. The STAFF Table

ID NAME DEPT JOB YEARS SALARY COMM
10 Sanders 20 Mgr 7 18357.50 0

20 Pernal 20 Sales 8 18171.25 612.45
30 Merenghi 38 MGR 5 17506.75 0

40 OBrien 38 Sales 6 18006.00 846.55
50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 0 16808.30 650.25
70 Rothman 15 Sales 7 16502.83 1152.00
80 James 20 Clerk 0 13504.60 128.20
90 Koonitz 42 sales 6 18001.75 1386.70
100 Plotz 42 mgr 6 18352.80 0

In the following examples, the results are shown for each statement using:

e *HEX sort sequence

* Shared-weight sort sequence using the language identifier ENU

* Unique-weight sort sequence using the language identifier ENU

© Copyright IBM Corp. 1998, 2004

95

Note: ENU is chosen as a language identifier by specifying either SRTSEQ(*LANGIDUNQ), or
SRTSEQ(*LANGIDSHR) and LANGID(ENU), on the CRTSQLxxx, STRSQL, or RUNSQLSTM
commands, or by using the SET OPTION statement.

See the following topics for more details:

* [“Sort sequence and ORDER BY”|

* ['Row selection” on page 97

Sort sequence and ORDER BY

The following SQL statement causes the result table to be sorted using the values in the JOB column:
SELECT » FROM STAFF ORDER BY JOB

able 18|shows the result table using a *HEX sort sequence. The rows are sorted based on the EBCDIC

value in the JOB column. In this case, all lowercase letters sort before the uppercase letters.

Table 18. "SELECT * FROM STAFF ORDER BY JOB" Using the *HEX Sort Sequence.

ID NAME DEPT JOB YEARS SALARY COMM
100 Plotz 42 mgr 6 18352.80 0

90 Koonitz 42 sales 6 18001.75 1386.70
80 James 20 Clerk 0 13504.60 128.20
10 Sanders 20 Mgr 7 18357.50 0

50 Hanes 15 Mgr 10 20659.80 0

30 Merenghi 38 MGR 5 17506.75 0

20 Pernal 20 Sales 8 18171.25 612.45
40 OBrien 38 Sales 6 18006.00 846.55
70 Rothman 15 Sales 7 16502.83 1152.00
60 Quigley 38 SALES 0 16808.30 650.25

able 19|shows how sorting is done for a unique-weight sort sequence. After the sort sequence is applied
to the values in the JOB column, the rows are sorted. Notice that after the sort, lowercase letters are
before the same uppercase letters, and the values 'mgr', 'Mgr', and '"MGR' are adjacent to each other.

Table 19. "SELECT * FROM STAFF ORDER BY JOB" Using the Unique-Weight Sort Sequence for the ENU
Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM
80 James 20 Clerk 0 13504.60 128.20
100 Plotz 42 mgr 6 18352.80 0

10 Sanders 20 Mgr 7 18357.50 0

50 Hanes 15 Mgr 10 20659.80 0

30 Merenghi 38 MGR 5 17506.75 0

90 Koonitz 42 sales 6 18001.75 1386.70
20 Pernal 20 Sales 8 18171.25 612.45
40 OBrien 38 Sales 6 18006.00 846.55
70 Rothman 15 Sales 7 16502.83 1152.00
60 Quigley 38 SALES 0 16808.30 650.25

[Table 20 on page 97 shows how sorting is done for a shared-weight sort sequence. After the sort sequence
is applied to the values in the JOB column, the rows are sorted. For the sort comparison, each lowercase

96 iSeries: DB2 Universal Database for iSeries SQL Programming

letter is treated the same as the corresponding uppercase letter. In [Table 20} notice that all the values

'MGR', 'mgr' and 'Mgr' are mixed together.

Table 20. "SELECT * FROM STAFF ORDER BY JOB" Using the Shared-Weight Sort Sequence for the ENU
Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM
80 James 20 Clerk 0 13504.60 128.20
10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0

100 Plotz 42 mgr 6 18352.80 0

20 Pernal 20 Sales 8 18171.25 612.45
40 OBrien 38 Sales 6 18006.00 846.55
60 Quigley 38 SALES 0 16808.30 650.25
70 Rothman 15 Sales 7 16502.83 1152.00
90 Koonitz 42 sales 6 18001.75 1386.70

Row selection
The following SQL statement selects rows with the value 'MGR' in the JOB column:
SELECT = FROM STAFF WHERE JOB='MGR'

able 21|shows how row selection is done with a *HEX sort sequence. In [Table 21} the rows that match

the row selection criteria for the column 'JOB' are selected exactly as specified in the select statement.

Only the uppercase 'MGR' is selected.

Table 21. "SELECT * FROM STAFF WHERE JOB="MGR’ Using the *HEX Sort Sequence.”

ID

NAME

DEPT

JOB

YEARS

SALARY

COMM

30

Merenghi

38

MGR

5

17506.75

0

able 22|shows how row selection is done with a unique-weight sort sequence. In |Table 22} the lowercase

and uppercase letters are treated as unique. The lowercase 'mgr' is not treated the same as uppercase

'MGR'. Therefore, the lowercase 'mgr' is not selected.

Table 22. "SELECT * FROM STAFF WHERE JOB = 'MGR’ " Using Unique-Weight Sort Sequence for the ENU
Language Identifier.

ID

NAME

DEPT

JOB

YEARS

SALARY

COMM

30

Merenghi

38

MGR

5

17506.75

0

able 23|shows how row selection is done with a shared-weight sort sequence. In the rows that
match the row selection criteria for the column 'JOB' are selected by treating uppercase letters the same as
lowercase letters. Notice that in [Table 23|all the values 'mgr', 'Mgr' and 'MGR' are selected.

Table 23. "SELECT * FROM STAFF WHERE JOB = 'MGR’ " Using the Shared-Weight Sort Sequence for the ENU
Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM
10 Sanders 20 Mgr 7 18357.50 0
30 Merenghi 38 MGR 5 17506.75 0

Chapter 7. Sort sequences and normalization in SQL 97

Table 23. "SELECT * FROM STAFF WHERE JOB = 'MGR’ " Using the Shared-Weight Sort Sequence for the ENU

Language Identifier. (continued)

ID NAME DEPT JOB YEARS SALARY COMM
50 Hanes 15 Mgr 10 20659.80 0
100 Plotz 42 mgr 6 18352.80 0

Sort sequence and views

Views are created with the sort sequence that was in effect when the CREATE VIEW statement was run.
When the view is referred to in a FROM clause, that sort sequence is used for any character comparisons
in the subselect of the CREATE VIEW. At that time, an intermediate result table is produced from the
view subselect. The sort sequence in effect when the query is being run is then applied to all the
character and UCS-2 graphic comparisons (including those comparisons involving implicit conversions to
character, or UCS-2 or UTF-16 graphic) specified in the query.

The following SQL statements and tables show how views and sort sequences work. View V1, used in the
following examples, was created with a shared-weight sort sequence of SRTSEQ(*LANGIDSHR) and
LANGID(ENU). The CREATE VIEW statement is as follows:

CREATE VIEW V1 AS SELECT =
FROM STAFF
WHERE JOB = 'MGR' AND ID < 100

able 24| shows the result table from the view.

Table 24. "SELECT * FROM V1"

ID NAME DEPT JOB YEARS SALARY COMM
10 Sanders 20 Mgr 7 18357.50 0
30 Merenghi 38 MGR 5 17506.75 0
50 Hanes 15 Mgr 10 20659.80 0

Any queries run against view V1 are run against the result table shown in|Table 24, The query shown
below is run with a sort sequence of SRTSEQ(*LANGIDUNQ) and LANGID(ENU).

Table 25. "SELECT * FROM V1 WHERE JOB = 'MGR” Using the Unique-Weight Sort Sequence for Language

Identifier ENU
ID NAME DEPT JOB YEARS SALARY COMM
30 Merenghi 38 MGR 5 17506.75 0

Sort Sequence and the CREATE INDEX Statement

Indexes are created using the sort sequence that was in effect when the CREATE INDEX statement was
run. An entry is added to the index every time an insert is made into the table over which the index is
defined. Index entries contain the weighted value for character key, and UCS-2 and UTF-16 graphic key
columns. The system gets the weighted value by converting the key value based on the sort sequence of
the index.

When selection is made using that sort sequence and that index, the character, or UCS-2 or UTF-16
graphic keys do not need to be converted before comparison. This improves the performance of the

query. For more information about creating effective indexes and sort sequence, see|Using indexes with|
h

ort sequence] in the Database Performance and Query Optimization book.

98 iSeries: DB2 Universal Database for iSeries SQL Programming

Sort sequence and constraints

Unique constraints are implemented with indexes. If the table on which a unique constraint is added was
defined with a sort sequence, the index will be created with that same sort sequence.

If defining a referential constraint, the sort sequence between the parent and dependent table must match.
For more information about sort sequence and constraints, see the [Ensuring data integrity with referential

topic in the [Database Programming| book in the iSeries Information Center.

The sort sequence used at the time a check constraint is defined is the same sort sequence the system
uses to validate adherence to the constraint at the time of an INSERT or UPDATE.

ICU Sort Sequence

When an ICU (International Components for Unicode) sort sequence table is used, the system’s ICU
support (Option 39) is used by the database to determine the weight of the data using language specific
rules according to the locale of the table. An ICU sort sequence table named en_us (United States locale)
can sort data differently than another ICU table named fr_FR (French locale) for example.

The system’s ICU support properly handles data that is not normalized, producing the same results as if
the data were normalized. The system’s ICU sort sequence table can sort all character, graphic, and
unicode (UTF-8, UTF-16 and UCS-2) data.

For example, a UTF-8 character column named NAME contains the following three names (the hex
values of the column are given as well) :

NAME HEX (NAME)
Goémez 47C3B36D657A
Gomer 476F6D6572
Gumby 47756D6279

A *HEX sort sequence will order the NAME values as follows:

NAME

Gomer

Gumby

GoOmez

An ICU sort sequence table named en_us will correctly order the NAME values.

NAME

Gomer

Gomez

Gumby

When an ICU sort sequence table is specified, the performance of SQL statements that use the table can
be much slower than using a non-ICU sort sequence table or *HEX sort sequence. The slower
performance results from calling the system’s ICU support to get the weighted value for each piece of
data that needs to be sorted. An ICU sort sequence table can provide more sorting function but at the
cost of slower running SQL statements. However, indexes created with an ICU sort sequence table can be

Chapter 7. Sort sequences and normalization in SQL 99

created over columns to help reduce the need of calling the system’s ICU support. In this case the index
key would already contain the ICU weighted value so there is no need to call the system’s ICU support.

For more information about ICU sort sequence tables, see [[nternational Components for Unicode]in the
Globalization topic.

Normalization

Data tagged with a UTF-8 or UTF-16 CCSID can contain combining characters. Combining characters
allow a resulting character to be composed of more than one character. After the first character of the
compound character, one of many different non-spacing characters such as umlauts and accents can
follow in the data string. If the resulting character is one that is already defined in the character set,
normalization of the string results in multiple combining characters being replaced by the value of the
defined character. For example, if your string contained the letter ‘a” followed by an "..’, the string is
normalized to contain the single character 'd’".

Normalization makes it possible to accurately compare strings. If data is not normalized, two strings that
look identical on the display may not compare equal since the stored representation can be different.
When UTF-8 and UTF-16 string data is not normalized, it is possible that a column in a table can have
one row with the letter “a” followed by the umlaut character and another row with the combined "&@’
character. These two values are not both compare equal in a comparison predicate: WHERE C1 = "d". For
this reason, it is recommended that all string columns in a table are stored in normalized form.

You can normalize the data yourself before inserting or updating it, or you can define a column in a table
to be automatically normalized by the database. To have the database perform the normalization, specify
NORMALIZED as part of the column definition. This option is only allowed for columns that are tagged
with a CCSID of 1208 (UTE-8) or 1200 (UTF-16). The database assumes all columns in a table have been
normalized.

The NORMALIZED clause can also be specified for function and procedure parameters. If it is specified
for an input parameter, the normalization will be done by the database for the parameter value before
invoking the function or procedure. If it is specified for an output parameter, the clause is not enforced; it
is assumed that the user’s routine code will return a normalized value.

The NORMALIZE_DATA option in the QAQQINI file is used to indicate whether the system is to
perform normalization when working with UTF-8 and UTF-16 data. This option controls whether the
system will normalize literals, host variables, parameter markers, and expressions that combine strings
before using them in SQL. The option is initialized to not perform normalization. This is the correct value
for you if the data in your tables and any literal values in your applications is always normalized already
through some other mechanism or never contains characters which will need to be normalized. If this is
the case, you will want to avoid the overhead of system normalization in your query. If your data is not
already normalized, you will want to switch the value of this option to have the system perform
normalization for yvou. For more information about the QAQQINI file options, see |Change the attributes|
lof your queries with the Change Query Attributes (CHGQRYA) command)in the Database Performance and
Query Optimization topic.

100 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 8. Data Protection

This topic describes the security plan for protecting SQL data from unauthorized users and the methods
for ensuring data integrity. For more information, see the following topics:

[“Security for SQL objects”|

[“Data integrity” on page 102

Security for SQL objects

All objects on the server, including SQL objects, are managed by the system security function. Users may
authorize SQL objects through either the SQL GRANT and REVOKE statements or the CL commands
Edit Object Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), and Revoke Object
Authority (RVKOBJAUT). For more information about system security and the use of the GRTOBJAUT

and RVKOBJAUT commands, see the [iSeries Security Referencd@ book.

The SQL GRANT and REVOKE statements operate on SQL packages, SQL procedures, tables, views, and
the individual columns of tables and views. Furthermore, SQL GRANT and REVOKE statements only
grant private and public authorities. In some cases, it is necessary to use EDTOBJAUT, GRTOBJAUT, and
RVKOBJAUT to authorize users to other objects, such as commands and programs.

For more information about the GRANT and REVOKE statements, see the [SQL Reference| book.

The authority checked for SQL statements depends on whether the statement is static, dynamic, or being
run interactively.

For static SQL statements:

¢ If the USRPRF value is *USER, the authority to run the SQL statement locally is checked using the user
profile of the user running the program. The authority to run the SQL statement remotely is checked
using the user profile at the application server. *USER is the default for system (*SYS) naming.

* If the USRPRF value is *OWNER, the authority to run the SQL statement locally is checked using the
user profiles of the user running the program and of the owner of the program. The authority to run
the SQL statement remotely is checked using the user profiles of the application server job and the
owner of the SQL package. The higher authority is the authority that is used. *OWNER is the default
for SQL (*SQL) naming.

For dynamic SQL statements:

e If the USRPRF value is *USER, the authority to run the SQL statement locally is checked using the user
profile of the person running the program. The authority to run the SQL statement remotely is checked
using the user profile of the application server job.

e If the USRPRF value is *OWNER and DYNUSRPREF is *USER, the authority to run the SQL statement
locally is checked using the user profile of the person running the program. The authority to run the
SQL statement remotely is checked using the user profile of the application server job.

* If the USRPRF value is *OWNER and DYNUSRPREF is *OWNER, the authority to run the SQL
statement locally is checked using the user profiles of the user running the program and the owner of
the program. The authority to run the SQL statement remotely is checked using the user profiles of the
application server job and the owner of the SQL package. The highest authority is the authority that is
used. Because of security concerns, you should use the *OWNER parameter value for DYNUSRPRF
carefully. This option gives the access authority of the owner program or package to those who run the
program.

© Copyright IBM Corp. 1998, 2004 101

For interactive SQL statements, authority is checked against the authority of the person processing the
statement. Adopted authority is not used for interactive SQL statements.

You can also use one of the following to secure your data:
* [“Authorization ID”|

* [“Views”]

:

Authorization ID

The authorization ID identifies a unique user and is a user profile object on the server. Authorization IDs
can be created using the system Create User Profile (CRTUSRPRF) command.

Views

A view can prevent unauthorized users from having access to sensitive data. The application program
can access the data it needs in a table, without having access to sensitive or restricted data in the table. A
view can restrict access to particular columns by not specifying those columns in the SELECT list (for
example, employee salaries). A view can also restrict access to particular rows in a table by specifying a
WHERE clause (for example, allowing access only to the rows associated with a particular department
number).

Auditing

DB2 UDB for iSeries is designed to comply with the U.S. government C2 security level. A key feature of
that level is the ability to audit actions on the system. DB2 UDB for iSeries uses the audit facilities
managed by the system security function. Auditing can be performed on an object level, user, or system
level. The system value QAUDCTL controls whether auditing is performed at the object or user level. The
Change User Audit (CHGUSRAUD) command and Change Object Audit (CHGOBJAUD) command
specify which users and objects are audited. The system value QAUDLVL controls what types of actions
are audited (for example, authorization failures, creates, deletes, grants, revokes, and so on.) For more

information about auditing see the [iSeries Security Reference@ book.

DB2 UDB for iSeries can also audit row changes by using the DB2 UDB for iSeries journal support.

In some cases, entries in the auditing journal will not be in the same order as they occured. For example,
a job that is running under commitment control deletes a table, creates a new table with the same name
as the one that was deleted, then does a commit. This will be recorded in the auditing journal as a create
followed by a delete. This is because objects that are created are journaled immediately. An object that is
deleted under commitment control is hidden and not actually deleted until a commit is done. Once the
commit is done, the action is journaled.

Data integrity

Data integrity protects data from being destroyed or changed by unauthorized persons, system operation
or hardware failures (such as physical damage to a disk), programming errors, interruptions before a job
is completed (such as a power failure), or interference from running applications at the same time (such
as serialization problems). Data integrity is ensured by the following functions:

* [“Concurrency” on page 103]

* ["Journaling” on page 104

* ["Commitment control” on page 105

* [’Savepoints” on page 108

* ["Atomic operations” on page 110|

* [“Constraints” on page 111|

102 iSeries: DB2 Universal Database for iSeries SQL Programming

[‘Save/Restore” on page 112

* [‘Damage tolerance” on page 113|

* ["'Index recovery” on page 113

* [‘Catalog integrity” on page 113|

* ["User auxiliary storage pool (ASP)” on page 114|

[“Independent auxiliary storage pool (IASP)” on page 114]

The [Commitment control topic, [Journal Management] topic, and the [Database Programming] topic contain
more information about each of these functions.

Concurrency

Concurrency is the ability for multiple users to access and change data in the same table or view at the
same time without risk of losing data integrity. This ability is automatically supplied by the DB2 UDB for
iSeries database manager. Locks are implicitly acquired on tables and rows to protect concurrent users
from changing the same data at precisely the same time.

Typically, DB2 UDB for iSeries will acquire locks on rows to ensure integrity. However, some situations
require DB2 UDB for iSeries to acquire a more exclusive table level lock instead of row locks. For more
information, see [“Commitment control” on page 105

For example, an update (exclusive) lock on a row currently held by one cursor can be acquired by
another cursor in the same program (or in a DELETE or UPDATE statement not associated with the
cursor). This will prevent a positioned UPDATE or positioned DELETE statement that references the first
cursor until another FETCH is performed. A read (shared no-update) lock on a row currently held by one
cursor will not prevent another cursor in the same program (or DELETE or UPDATE statement) from
acquiring a lock on the same row.

Default and user-specifiable lock-wait time-out values are supported. DB2 UDB for iSeries creates tables,
views, and indexes with the default record wait time (60 seconds) and the default file wait time
(*IMMED). This lock wait time is used for DML statements. You can change these values by using the CL
commands Change Physical File (CHGPF), Change Logical File (CHGLF), and Override Database File
(OVRDBE).

The lock wait time used for all DDL statements and the LOCK TABLE statement, is the job default wait
time (DFTWAIT). You can change this value by using the CL commands Change Job (CHGJOB) or
Change Class (CHGCLS).

In the event that a large record wait time is specified, deadlock detection is provided. For example,
assume one job has an exclusive lock on row 1 and another job has an exclusive lock on row 2. If the first
job attempts to lock row 2, it will wait because the second job is holding the lock. If the second job then
attempts to lock row 1, DB2 UDB for iSeries will detect that the two jobs are in a deadlock and an error
will be returned to the second job.

You can explicitly prevent other users from usini a table at the same time by using the SQL[LOCK]

statement, described in the [SQL Reference| book. Using COMMIT(*RR) will also prevent other
users from using a table during a unit of work.

In order to improve performance, DB2 UDB for iSeries will frequently leave the open data path (ODP)
open (for details, see the [Database Performance and Query Optimization|information). This performance
feature also leaves a lock on tables referenced by the ODP, but does not leave any locks on rows. A lock
left on a table may prevent another job from performing an operation on that table. In most cases,
however, DB2 UDB for iSeries will detect that other jobs are holding locks and events will be signalled to
those jobs. The event causes DB2 UDB for iSeries to close any ODPs (and release the table locks) that are

Chapter 8. Data Protection 103

associated with that table and are currently only open for performance reasons. Note that the lock wait
time out must be large enough for the events to be signalled and the other jobs to close the ODPs or an
error will be returned.

Unless the LOCK TABLE statement is used to acquire table locks, or either COMMIT(*ALL) or
COMMIT(*RR) is used, data which has been read by one job can be immediately changed by another job.
Typically, the data that is read at the time the SQL statement is executed and therefore it is very current
(for example, during FETCH). In the following cases, however, data is read before the execution of the
SQL statement and therefore the data may not be current (for example, during OPEN).

* ALWCPYDTA(*OPTIMIZE) was specified and the optimizer determined that making a copy of the data
performs better than not making a copy.

e Some queries require the database manager to create a temporary result table. The data in the
temporary result table will not reflect changes made after the cursor was opened. A temporary result
table is required when:

— The total length in bytes of storage for the columns specified in an ORDER BY clause exceeds 2000
bytes.

— ORDER BY and GROUP BY clauses specify different columns or columns in a different order.
— UNION or DISTINCT clauses are specified.
— ORDER BY or GROUP BY clauses specify columns which are not all from the same table.

— Joining a logical file defined by the JOINDFT data definition specifications (DDS) keyword with
another file.

— Joining or specifying GROUP BY on a logical file which is based on multiple database file members.

— The query contains a join in which at least one of the files is a view which contains a GROUP BY
clause.

— The query contains a GROUP BY clause which references a view that contains a GROUP BY clause.
* A basic subquery is evaluated when the query is opened.

Journaling

The DB2 UDB for iSeries journal support supplies an audit trail and forward and backward recovery.
Forward recovery can be used to take an older version of a table and apply the changes logged on the
journal to the table. Backward recovery can be used to remove changes logged on the journal from the
table.

When an SQL schema is created, a journal and journal receiver are created in the schema. When SQL
creates the journal and journal receiver, they are only created on a user auxiliary storage pool (ASP) if the
ASP clause is specified on the CREATE SCHEMA statement. However, because placing journal receivers
on their own ASPs can improve performance, the person managing the journal might want to create all
future journal receivers on a separate ASP.

When a table is created into the schema, it is automatically journaled to the journal DB2 UDB for iSeries
created in the schema (QSQJRN). A table created in a non-schema will also have journaling started if a
journal named QSQJRN exists in that library. After this point, it is your responsibility to use the journal
functions to manage the journal, the journal receivers, and the journaling of tables to the journal. For
example, if a table is moved into a schema, no automatic change to the journaling status occurs. If a table
is restored, the normal journal rules apply. That is, if the table was journaled at the time of the save, it is
journaled to the same journal at restore time. If the table was not journaled at the time of the save, it is
not journaled at restore time.

The journal created in the SQL collection is normally the journal used for logging all changes to SQL
tables. You can, however, use the system journal functions to journal SQL tables to a different journal.

A user can stop journaling on any table using the journal functions, but doing so prevents an application
from running under commitment control. If journaling is stopped on a parent table of a referential

104 iSeries: DB2 Universal Database for iSeries SQL Programming

constraint with a delete rule of NO ACTION, CASCADE, SET NULL, or SET DEFAULT, all update and
delete operations will be prevented. Otherwise, an application is still able to function if you have
specified COMMIT(*NONE); however, this does not provide the same level of integrity that journaling
and commitment control provide.

For more information about journaling, see the topic.

Commitment control

The DB2 UDB for iSeries commitment control support provides a means to process a group of database
changes (updates, inserts, DDL operations, or deletes) as a single unit of work (transaction). A commit
operation guarantees that the group of operations is completed. A rollback operation guarantees that the
group of operations is backed out. A savepoint can be used to break a transaction into smaller units that
can be rolled back. A commit operation can be issued through several different interfaces. For example,
* An SQL COMMIT statement

* A CL COMMIT command

* A language commit statement (such as an RPG COMMIT statement)

A rollback operation can be issued through several different interfaces. For example,
* An SQL ROLLBACK statement

* A CL ROLLBACK command

* A language rollback statement (such as an RPG ROLBK statement)

The only SQL statements that cannot be committed or rolled back are:
¢ DROP SCHEMA
* GRANT or REVOKE if an authority holder exists for the specified object

If commitment control was not already started when either an SQL statement is executed with an
isolation level other than COMMIT(*NONE) or a RELEASE statement is executed, then DB2 UDB for
iSeries sets up the commitment control environment by implicitly calling the CL command Start
Commitment Control (STRCMTCTL). DB2 UDB for iSeries specifies NFYOBJ(*NONE) and
CMTSCOPE(*ACTGRP) parameters along with LCKLVL on the STRCMTCTL command. The LCKLVL
specified is the lock level on the COMMIT parameter on the CRTSQLxxx, STRSQL, or RUNSQLSTM
commands. In REXX, the LCKLVL specified is the lock level on the SET OPTION statement. You may use
the STRCMTCTL command to specify a different CMTSCOPE, NFYOBJ, or LCKLVL. If you specify
CMTSCOPE(*JOB) to start the job level commitment definition, DB2 UDB for iSeries uses the job level
commitment definition for programs in that activation group.

Notes:

1. When using commitment control, the tables referred to in the application program by Data
Manipulation Language statements must be journaled.

2. Note that the LCKLVL specified is only the default lock level. After commitment control is started, the
SET TRANSACTION SQL statement and the lock level specified on the COMMIT parameter on the
CRTSQLxxx, STRSQL, or RUNSQLSTM commands will override the default lock level.

For cursors that use column functions, GROUP BY, or HAVING, and are running under commitment
control, a ROLLBACK HOLD has no effect on the cursor’s position. In addition, the following occurs
under commitment control:

e If COMMIT(*CHG) and (ALWBLK(*NO) or (ALWBLK(*READ)) is specified for one of these cursors, a
message (CPI430B) is sent that says COMMIT(*CHG) requested but not allowed.

* If COMMIT(*ALL), COMMIT(*RR), or COMMIT(*CS) with the KEEP LOCKS clause is specified for one
of the cursors, DB2 UDB for iSeries will lock all referenced tables in shared mode (*SHRNUP). The lock
prevents concurrent application processes from executing any but read-only operations on the named

Chapter 8. Data Protection 105

table. A message (either SQL7902 or CPI430A) is sent that says COMMIT(*ALL), COMMIT(*RR), or
COMMIT(*CS) with the KEEP LOCKS clause is specified for one of the cursors requested but not
allowed. Message SQL0595 may also be sent.

For cursors where either COMMIT(*ALL), COMMIT(*RR), or COMMIT(*CS) with the KEEP LOCKS
clause is specified and either catalog files are used or a temporary result table is required, DB2 UDB for
iSeries will lock all referenced tables in shared mode (*SHRNUP). This will prevent concurrent processes
from executing anything but read-only operations on the table(s). A message (either SQL7902 or CPI430A)
is sent that says COMMIT(*ALL) is requested but not allowed. Message SQL0595 may also be sent.

If ALWBLK(*ALLREAD) and COMMIT(*CHG) were specified, when the program was precompiled, all
read-only cursors will allow blocking of rows and a ROLLBACK HOLD will not roll the cursor position
back.

If COMMIT(*RR) is requested, the tables will be locked until the query is closed. If the cursor is
read-only, the table will be locked (*SHRNUP). If the cursor is in update mode, the table will be locked
(*EXCLRD). Since other users will be locked out of the table, running with repeatable read will prevent
concurrent access of the table.

If an isolation level other then COMMIT(*NONE) was specified and the application issues a ROLLBACK
or the activation group ends abnormally (and the commitment definition is not *JOB), all updates, inserts,
deletes, and DDL operations made within the unit of work are backed out. If the application issues a
COMMIIT or the activation group ends normally, all updates, inserts, deletes, and DDL operations made
within the unit of work are committed.

DB2 UDB for iSeries uses locks on rows to keep other jobs from accessing changed data before a unit of
work completes. If COMMIT(*ALL) is specified, read locks on rows fetched are also used to prevent other
jobs from changing data that was read before a unit of work completes. This will not prevent other jobs
from reading the unchanged rows. This ensures that, if the same unit of work rereads a row, it gets the
same result. Read locks do not prevent other jobs from fetching the same rows.

Commitment control handles up to 500 million distinct row changes in a unit of work. If COMMIT(*ALL)
or COMMIT(*RR) is specified, all rows read are also included in the limit. (If a row is changed or read
more than once in a unit of work, it is only counted once toward the limit.) Holding a large number of
locks adversely affects system performance and does not allow concurrent users to access rows locked in
the unit of work until the end of the unit of work. It is in your best interest to keep the number of rows
processed in a unit of work small.

Commitment control will allow up to 512 files for each journal to be open under commitment control or
closed with pending changes in a unit of work.

COMMIT HOLD and ROLLBACK HOLD allows you to keep the cursor open and start another unit of
work without issuing an OPEN again. The HOLD value is not available when you are connected to a
remote database that is not on an iSeries system. However, the WITH HOLD option on DECLARE
CURSOR may be used to keep the cursor open after a COMMIT. This type of cursor is supported when
you are connected to a remote database that is not on an iSeries system. Such a cursor is closed on a
rollback.

Table 26. Row Lock Duration

COMMIT Parameter
SQL Statement (See note 5) Duration of Row Locks Lock Type
SELECT INTO *NONE No locks
SET variable *CHG No locks
VALUES INTO *CS (See note 7) Row locked when read and released READ
*ALL (See note 2) From read until ROLLBACK or COMMIT READ

106 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 26. Row Lock Duration (continued)

COMMIT Parameter
SQL Statement (See note 5) Duration of Row Locks Lock Type
FETCH (read-only *NONE No locks
cursor) *CHG No locks
*CS (See note 7) From read until the next FETCH READ
*ALL (See note 2) From read until ROLLBACK or COMMIT READ
FETCH (update or *NONE When row not updated or deleted UPDATE
delete capable cursor) from read until next FETCH
(See note 1) When row is updated or deleted
from read until UPDATE or DELETE
*CHG When row not updated or deleted UPDATE
from read until next FETCH
When row is updated or deleted
from read until COMMIT or ROLLBACK
*CS When row not updated or deleted UPDATE
from read until next FETCH
When row is updated or deleted
from read until COMMIT or ROLLBACK
*ALL From read until ROLLBACK or COMMIT UPDATE
INSERT (target table) *NONE No locks
*CHG From insert untili ROLLBACK or COMMIT UPDATE
*CS From insert until ROLLBACK or COMMIT UPDATE
*ALL From insert untii ROLLBACK or COMMIT UPDATE?
INSERT (tables in *NONE No locks
subselect) *CHG No locks
*CS Each row locked while being read READ
*ALL From read until ROLLBACK or COMMIT READ
UPDATE (non-cursor) *NONE Each row locked while being updated UPDATE
*CHG From read until ROLLBACK or COMMIT UPDATE
*CS From read until ROLLBACK or COMMIT UPDATE
*ALL From read until ROLLBACK or COMMIT UPDATE
DELETE (non-cursor) *NONE Each row locked while being deleted UPDATE
*CHG From read until ROLLBACK or COMMIT UPDATE
*CS From read until ROLLBACK or COMMIT UPDATE
*ALL From read until ROLLBACK or COMMIT UPDATE
UPDATE (with cursor) |[*NONE Lock released when row updated UPDATE
*CHG From read until ROLLBACK or COMMIT UPDATE
*CS From read until ROLLBACK or COMMIT UPDATE
*ALL From read until ROLLBACK or COMMIT UPDATE
DELETE (with cursor) *NONE Lock released when row deleted UPDATE
*CHG From read until ROLLBACK or COMMIT UPDATE
*CS From read until ROLLBACK or COMMIT UPDATE
*ALL From read until ROLLBACK or COMMIT UPDATE
Subqueries (update or *NONE From read until next FETCH READ
delete capable cursor or |*CHG From read until next FETCH READ
UPDATE or DELETE *CS From read until next FETCH READ
non-cursor) *ALL (see note 2) From read until ROLLBACK or COMMIT READ
Subqueries (read-only *NONE No locks
cursor or SELECT *CHG No locks
INTO) *CS Each row locked while being read READ
*ALL From read until ROLLBACK or COMMIT READ

Chapter 8. Data Protection 107

Table 26. Row Lock Duration (continued)

COMMIT Parameter

SQL Statement (See note 5) Duration of Row Locks Lock Type

Notes:

1. A cursor is open with UPDATE or DELETE capabilities if the result table is not read-only (see description of
[DECLARE CURSOR] in [SQL Reference| book) and if one of the following is true:

* The cursor is defined with a FOR UPDATE clause.

* The cursor is defined without a FOR UPDATE, FOR READ ONLY, or ORDER BY clause and the program
contains at least one of the following:

— Cursor UPDATE referring to the same cursor-name
— Cursor DELETE referring to the same cursor-name

— An EXECUTE or EXECUTE IMMEDIATE statement and ALWBLK(*READ) or ALWBLK(*NONE) was
specified on the CRTSQLxxx command.

2. A table or view can be locked exclusively in order to satisfy COMMIT(*ALL). If a subselect is processed that

acquired to protect you from seeing uncommitted changes.
3. An UPDATE lock on rows of the target table and a READ lock on the rows of the subselect table.

4. A table or view can be locked exclusively in order to satisfy repeatable read. Row locking is still done under
repeatable read. The locks acquired and their duration are identical to *ALL.

5. Repeatable read (*RR) row locks will be the same as the locks indicated for *ALL.

6. For a detailed explanation of isolation levels and locking, see in the [SQL Referencel book.

7. If the KEEP LOCKS clause is specified with *CS, any read locks are held until the cursor is closed or until a

the completion of the SQL statement.

includes a UNION, or if the processing of the query requires the use of a temporary result, an exclusive lock is

COMMIT or ROLLBACK is done. If no cursors are associated with the isolation clause, then locks are held until

For more details about commitment control, see the [Commitment control topic.

Savepoints

Savepoints allow you to create milestones within a transaction. If the transaction rolls back, changes are

undone back to the specified savepoint, rather than to the beginning of the transaction. A savepoint is set

by using the SAVEPOINT SQL statement. For example, create a savepoint called STOP_HERE:

SAVEPOINT STOP_HERE
ON ROLLBACK RETAIN CURSORS

Program logic in the application dictates whether the savepoint name is reused as the application
progresses, or if the savepoint name denotes a unique milestone in the application that should not be
reused.

If the savepoint represents a unique milestone that should not be moved with another SAVEPOINT
statement, specify the UNIQUE keyword. This prevents the accidental reuse of the name that can occur
by invoking a stored procedure that uses the identical savepoint name in a SAVEPOINT statement.

However, if the SAVEPOINT statement is used in a loop, then the UNIQUE keyword should not be used.

The following SQL statement sets a unique savepoint named START_OVER.

SAVEPOINT START_OVER UNIQUE
ON ROLLBACK RETAIN CURSORS

To rollback to a savepoint, use the ROLLBACK statement with the TO SAVEPOINT clause. The following

example illustrates using the SAVEPOINT and ROLLBACK TO SAVEPOINT statements:

This application logic books airline reservations on a preferred date, then books hotel reservations. If the
hotel is unavailable, it rolls back the airline reservations and then repeats the process for another date. Up

to 3 dates are tried.

108 iSeries: DB2 Universal Database for iSeries SQL Programming

got_reservations =0;
EXEC SQL SAVEPOINT START_OVER UNIQUE ON ROLLBACK RETAIN CURSORS;

if (SQLCODE != 0) return;

for (i=0; i<3 & got_reservations == 0; ++i)
{
Book Air(dates(i), ok);
if (ok)
{
Book_Hotel(dates(i), ok);
if (ok) got_reservations = 1;
else
{
EXEC SQL ROLLBACK TO SAVEPOINT START_OVER;
if (SQLCODE != 0) return;
}
}
1

EXEC SQL RELEASE SAVEPOINT START_OVER;

Savepoints are released using the RELEASE SAVEPOINT statement. If a RELEASE SAVEPOINT statement
is not used to explicitly release a savepoint, it is released at the end of the current savepoint level or at
the end of the transaction. The following statement releases savepoint START_OVER.

RELEASE SAVEPOINT START_OVER

Savepoints are released when the transaction is committed or rolled back. Once the savepoint name is
released, a rollback to the savepoint name is no longer possible. The COMMIT or ROLLBACK statement
releases all savepoint names established within a transactions. Since all savepoint names are released
within the transaction, all savepoint names can be reused following a commit or rollback.

Savepoints are scoped to a single connection only. Once a savepoint is established, it is not distributed to
all remote databases that the application connects to. The savepoint only applies to the current database
that the application is connected to when the savepoint is established.

A single statement can implicitly or explicitly invoke a user-defined function, trigger, or stored procedure.
This is known as nesting. In some cases when a new nesting level is initiated, a new savepoint level is
also initiated. A new savepoint level isolates the invoking application from any savepoint activity by the
lower level routine or trigger.

Savepoints can only be referenced within the same savepoint level (or scope) in which they are defined.
A ROLLBACK TO SAVEPOINT statement cannot be used to rollback to a savepoint established outside
the current savepoint level. Likewise, a RELEASE SAVEPOINT statement cannot be used to release a
savepoint established outside the current savepoint level. The following table summarizes when
savepoint levels are initiated and terminated:

A new savepoint level is initiated when: That savepoint level terminates when:

A new unit of work is started COMMIT or ROLLBACK is issued

A trigger is invoked The trigger completes

A user-defined function is invoked The user-defined function returns to the invoker

A stored procedure is invoked, and that stored procedure | The stored procedure returns to the caller
was created with the NEW SAVEPOINT LEVEL clause

There is a BEGIN for an ATOMIC compound SQL There is an END for an ATOMIC compound statement
statement

A savepoint that is established in a savepoint level is implicitly released when that savepoint level is
terminated.

Chapter 8. Data Protection 109

Atomic operations

When running under COMMIT(*CHG), COMMIT(*CS), or COMMIT(*ALL), all operations are guaranteed
to be atomic. That is, they will complete or they will appear not to have started. This is true regardless of
when or how the function was ended or interrupted (such as power failure, abnormal job end, or job
cancel).

If COMMIT (*NONE) is specified, however, some underlying database data definition functions are not
atomic. The following SQL data definition statements are guaranteed to be atomic:

ALTER TABLE (See note 1)
COMMENT ON (See note 2)
LABEL ON (See note 2)
GRANT (See note 3)
REVOKE (See note 3)

DROP TABLE (See note 4)
DROP VIEW (See note 4)
DROP INDEX

DROP PACKAGE

REFRESH TABLE

Notes:

1.

If constraints need to be added or removed, as well as column definitions changed, the operations are
processed one at a time, so the entire SQL statement is not atomic. The order of operation is:

* Remove constraints

¢ Drop columns for which the RESTRICT option was specified

* All other column definition changes (DROP COLUMN CASCADE, ALTER COLUMN, ADD
COLUMN)

* Add constraints

If multiple columns are specified for a COMMENT ON or LABEL ON statement, the columns are
processed one at a time, so the entire SQL statement is not atomic, but the COMMENT ON or LABEL
ON to each individual column or object will be atomic.

If multiple tables, SQL packages, or users are specified for a GRANT or REVOKE statement, the tables
are processed one at a time, so the entire SQL statement is not atomic, but the GRANT or REVOKE to
each individual table will be atomic.

If dependent views need to be dropped during DROP TABLE or DROP VIEW, each dependent view
is processed one at a time, so the entire SQL statement is not atomic.

The following data definition statements are not atomic because they involve more than one database
operation:

ALTER SEQUENCE
CREATE ALIAS

CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE INDEX

CREATE PROCEDURE
CREATE SCHEMA
CREATE SEQUENCE
CREATE TABLE

CREATE TRIGGER

110 iSeries: DB2 Universal Database for iSeries SQL Programming

CREATE VIEW

DROP ALIAS

DROP DISTINCT TYPE
DROP FUNCTION
DROP PROCEDURE
DROP SCHEMA
DROP SEQUENCE
DROP TRIGGER
RENAME (See note 1)

Notes:

1. RENAME is atomic only if the name or the system name is changed. When both are changed, the
RENAME is not atomic.

For example, a CREATE TABLE can be interrupted after the DB2 UDB for iSeries physical file has been
created, but before the member has been added. Therefore, in the case of create statements, if an
operation ends abnormally, you may need to drop the object and then create it again. In the case of a
DROP SCHEMA statement, you may need to drop the schema again or use the CL command Delete
Library (DLTLIB) to remove the remaining parts of the schema.

Constraints

DB2 UDB for iSeries supports unique, referential, and check constraints. A unique constraint is a rule that
guarantees that the values of a key are unique. A referential constraint is a rule that all non-null values of
foreign keys in a dependent table have a corresponding parent key in a parent table. A check constraint is
a rule that limits the values allowed in a column or group of columns.

DB2 UDB for iSeries will enforce the validity of the constraint during any DML (data manipulation
language) statement. Certain operations (such as restore of the dependent table), however, cause the
validity of the constraint to be unknown. In this case, DML statements may be prevented until DB2 UDB
for iSeries has verified the validity of the constraint.

* Unique constraints are implemented with indexes. If an index that implements a unique constraint is
invalid, the Edit Rebuild of Access Paths (EDTRBDAP) command can be used to display any indexes
that currently require rebuild.

 If DB2 UDB for iSeries does not currently know whether a referential constraint or check constraint is
valid, the constraint is considered to be in a check pending state. The Edit Check Pending Constraints
(EDTCPCST) command can be used to display any indexes that currently require rebuild.

For more information about constraints, see [’Adding and using check constraints,”|“Referential integrity]
land tables” on page 20)and the |Database Programming|book.

Adding and using check constraints

A check constraint assures the validity of data during inserts and updates by limiting the allowable values
in a column or group of columns. Use the SQL [CREATE TABLH and |ALTER TABLH statements to add or
drop check constraints.

In this example, the following statement creates a table with three columns and a check constraint over
COL2 that limits the values allowed in that column to positive integers:

CREATE TABLE T1 (COL1 INT, COL2 INT CHECK (COL2>0), COL3 INT)

Given this table, the following statement:
INSERT INTO T1 VALUES (-1, -1, -1)

Chapter 8. Data Protection 111

fails because the value to be inserted into COL2 does not meet the check constraint; that is, -1 is not
greater than 0.

The following statement is successful:
INSERT INTO T1 VALUES (1, 1, 1)

Once that row is inserted, the following statement fails:
ALTER TABLE T1 ADD CONSTRAINT C1 CHECK (COL1=1 AND COL1<COL2)

This ALTER TABLE statement attempts to add a second check constraint that limits the value allowed in
COL1 to 1 and also effectively rules that values in COL2 be greater than 1. This constraint is not allowed
because the second part of the constraint is not met by the existing data (the value of "1” in COL2 is not
less than the value of "1’ in COL1).

Save/Restore

The OS/400 save/restore functions are used to save tables, views, indexes, journals, journal receivers,
sequences, SQL packages, SQL procedures, SQL triggers, user-defined functions, user-defined types, and
schemas on disk (save file) or to some external media (tape or diskette). The saved versions can be
restored onto any iSeries system at some later time. The save/restore function allows an entire collection,
selected objects, or only objects changed since a given date and time to be saved. All information needed
to restore an object to its previous state is saved. This function can be used to recover from damage to
individual tables by restoring the data with a previous version of the table or the entire collection.

When a program or service program that was created for an SQL procedure, an SQL function, or a
sourced function is restored, it is automatically added to the SYSROUTINES and SYSPARMS catalogs, as
long as a procedure or function does not already exist with the same signature and program name. SQL
programs created in QSYS will not be created as SQL procedures when restored. Additionally, external
programs or service programs that were referenced on a CREATE PROCEDURE or CREATE FUNCTION
statement may contain the information required to register the routine in SYSROUTINES. If the
information exists and the signature is unique, the functions or procedures will also be added to
SYSROUTINES and SYSPARMS when restored.

When an SQL table is restored, the definitions for the SQL triggers that are defined for the table are also
restored. The SQL trigger definitions are automatically added to the SYSTRIGGERS, SYSTRIGDEP,
SYSTRIGCOL, and SYSTRIGUPD catalogs. The program object that is created from the SQL CREATE
TRIGGER statement must also be saved and restored when the SQL table is saved and restored. The
saving and restoring of the program object is not automated by the database manager. The precautions
for self-referencing triggers should be reviewed when restoring SQL tables to a new library. See
in the Notes of the CREATE TRIGGER statement section of the SQL Reference book.

When an *SQLUDT object is restored for a user-defined type, the user-defined type is automatically
added to the SYSTYPES catalog. The appropriate functions needed to cast between the user-defined type
and the source type are also created, as long as the type and functions do not already exist.

When a *DTAARA for a sequence is restored, the sequence is automatically added to the
SYSSEQUENCES catalog. If the catalog is not successfully updated, the “DTAARA will be modified so it
cannot be used as a sequence and an SQL9020 informational message will be output in the job log.

Either a distributed SQL program or its associated SQL package can be saved and restored to any number
of systems. This allows any number of copies of the SQL programs on different systems to access the
same SQL package on the same application server. This also allows a single distributed SQL program to
connect to any number of application servers that have the SQL package restored (CRTSQLPKG can also
be used). SQL packages cannot be restored to a different library.

112 iSeries: DB2 Universal Database for iSeries SQL Programming

Note: Restoring a schema to an existing library or to a schema that has a different name does not restore
the journal, journal receivers, or IDDU dictionary (if one exists). If the schema is restored to a
schema with a different name, the catalog views in that schema will only reflect objects in the old
schema. The catalog views in QSYS2, however, will appropriately reflect all objects.

Damage tolerance

The server provides several mechanisms to reduce or eliminate damage caused by disk errors. For
example, mirroring, checksums, and RAID disks can all reduce the possibility of disk problems. The DB2
UDB for iSeries functions also have a certain amount of tolerance to damage caused by disk errors or
system errors.

A DROP operation always succeeds, regardless of the damage. This ensures that should damage occur, at
least the table, view, SQL package, index, procedure, function, or distinct type can be deleted and
restored or created again.

In the event that a disk error has damaged a small portion of the rows in a table, the DB2 UDB for iSeries
database manager allows you to read rows still accessible.

Index recovery
DB2 UDB for iSeries supplies several functions to deal with index recovery.
¢ System managed index protection

The EDTRCYAP CL command allows a user to instruct DB2 UDB for iSeries to guarantee that in the
event of a system or power failure, the amount of time required to recover all indexes on the system is
kept below a specified time. The system automatically journals enough information in a system journal
to limit the recovery time to the specified amount.

* Journaling of indexes

DB2 UDB for iSeries supplies an index journaling function that makes it unnecessary to rebuild an
entire index due to a power or system failure. If the index is journaled, the system database support
automatically makes sure the index is in synchronization with the data in the tables without having to
rebuild it from scratch. SQL indexes are not journaled automatically. You can, however, use the CL
command Start Journal Access Path (STRJRNAP) to journal any index created by DB2 UDB for iSeries.

¢ Index rebuild

All indexes on the system have a maintenance option that specifies when an index is maintained. SQL
indexes are created with an attribute of *IMMED maintenance.

In the event of a power failure or abnormal system failure, if indexes were not protected by one of the
previously described techniques, those indexes in the process of change may need to be rebuilt by the
database manager to make sure they agree with the actual data. All indexes on the system have a
recovery option that specifies when an index should be rebuilt if necessary. All SQL indexes with an
attribute of UNIQUE are created with a recovery attribute of *IPL (this means that these indexes are
rebuilt before the OS/400 has been started). All other SQL indexes are created with the *AFTIPL
recovery option (this means that after the operating system has been started, indexes are
asynchronously rebuilt). During an IPL, the operator can see a display showing indexes needing to be
rebuilt and their recovery option. The operator can override the recovery options.

e Save and restore of indexes

The save/restore function allows you to save indexes when a table is saved by using ACCPTH(*YES)
on the Save Object (SAVOB]J) or Save Library (SAVLIB) CL commands. In the event of a restore when
the indexes have also been saved, there is no need to rebuild the indexes. Any indexes not previously
saved and restored are automatically and asynchronously rebuilt by the database manager.

Catalog integrity
Catalogs contain information about tables, views, SQL packages, sequences, indexes, procedures,
functions, triggers, and parameters in a schema. The database manager ensures that the information in

Chapter 8. Data Protection 113

the catalog is accurate at all times. This is accomplished by preventing end users from explicitly changing
any information in the catalog and by implicitly maintaining the information in the catalog when changes
occur to the tables, views, SQL packages, sequences, indexes, types, procedures, functions, triggers, and

parameters described in the catalog.

The integrity of the catalog is maintained whether objects in the schema are changed by SQL statements,
0S/400 CL commands, System/38 Environment CL commands, System/36 Environment functions, or
any other product or utility on an iSeries system. For example, deleting a table can be done by running
an SQL DROP statement, issuing an OS/400 DLTF CL command, issuing a System/38 DLTF CL
command or entering option 4 on a WRKF or WRKOB] display. Regardless of the interface used to delete
the table, the database manager will remove the description of the table from the catalog at the time the
delete is performed. The following is a list of functions and the associated effect on the catalog:

Table 27. Effect of Various Functions on Catalogs

Function

Effect on the Catalog

Add constraint to table

Information added to catalog

Remove of constraint from table

Related information removed from catalog

Create object into schema

Information added to catalog

Delete of object from schema

Related information removed from catalog

Restore of object into schema

Information added to catalog

Change of object long comment

Comment updated in catalog

Change of object label (text)

Label updated in catalog

Change of object owner

Owner updated in catalog

Move of object from a schema

Related information removed from catalog

Move of object into schema

Information added to catalog

Rename of object

User auxiliary storage pool (ASP)

Name of object updated in catalog

A schema can be created in a user ASP by using the ASP clause on the CREATE COLLECTION and
CREATE SCHEMA statements. The CRTLIB command can also be used to create a library in a user ASP.
That library can then be used to receive SQL tables, views, and indexes. See the [Backup and Recovery|

@ book for more information about auxiliary storage pools.

Independent auxiliary storage pool (IASP)

Independent disk pools are used to set up user databases on the iSeries server. There are three types of
independent disk pools: primary, secondary, and user-defined file system (UDES). Databases are set up

using primary independent disk pools.

With iSeries servers, you can work with multiple databases. The iSeries server provides a system
database (often referred to as SYSBAS) and the ability to work with one or more user databases. User
databases are implemented on the iSeries server through the use of independent disk pools, which are set
up in the Disk Management function of iSeries Navigator. Once an independent disk pool is set up, it
appears as another database under the Databases function of iSeries Navigator.

114 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 9. Routines

Routines are pieces of code or programs that you can call to perform operations.

[“Stored Procedures”]
Stored procedures are programs that you can call to perform different operations.

[“Using User-Defined Functions (UDFs)” on page 149
User-defined functions are functions that you define that can be used much the same way as a
built-in function.

[“Triggers” on page 175
Triggers are procedures that are automatically called whenever a specified action occurs.

[“Debugging an SQL routine” on page 185|
You can debug your SQL procedures, functions, and triggers.

[“Improving performance of procedures and functions” on page 186
Learn how to make your procedures, functions, and triggers perform better.

Stored Procedures

A procedure (often called a stored procedure) is a program that can be called to perform operations that
can include both host language statements and SQL statements. Procedures in SQL provide the same
benefits as procedures in a host language.

DB2 SQL for iSeries stored procedure support provides a way for an SQL application to define and then
call a procedure through SQL statements. Stored procedures can be used in both distributed and
non-distributed DB2 SQL for iSeries applications. One of the big advantages in using stored procedures is
that for distributed applications, the execution of one CALL statement on the application requester, or
client, can perform any amount of work on the application server.

You may define a procedure as either an SQL procedure or an external procedure. An external procedure
can be any supported high level language program (except System/36* programs and procedures) or a
REXX procedure. The procedure does not need to contain SQL statements, but it may contain SQL
statements. An SQL procedure is defined entirely in SQL, and can contain SQL statements that include
SQL control statements.

Coding stored procedures requires that the user understand the following:

* Stored procedure definition through the CREATE PROCEDURE statement

* Stored procedure invocation through the CALL statement

¢ Parameter passing conventions

* Methods for returning a completion status to the program invoking the procedure.

You may define stored procedures by using the CREATE PROCEDURE statement. The CREATE
PROCEDURE statement adds procedure and parameter definitions to the catalog tables SYSROUTINES
and SYSPARMS. These definitions are then accessible by any SQL CALL statement on the system.

To create an [external procedure or an[SQL procedure| you can use the SQL [CREATE PROCEDURE|

statement.

© Copyright IBM Corp. 1998, 2004 115

The following sections describe the SQL statements used to define and call the stored procedure,
information about passing parameters to the stored procedure, and examples of stored procedure usage.

* [‘Defining an external procedure’]

* [‘Defining an SQL procedure” on page 117

* [“Invoking a stored procedure” on page 121|

+ [“Returning Result Sets from Stored Procedures” on page 134|

* [‘Parameter passing conventions for stored procedures and UDFs” on page 141

+ [“Indicator variables and stored procedures” on page 14|

* [‘Returning a completion status to the calling program” on page 14§

For a description of stored procedures coded in Java', see [ava SQL Routines|in the IBM Developer Kit
for Java topic.

For information about using stored procedures with DRDA, see [“DRDA stored procedure considerations’]

Note: See [‘Code disclaimer” on page 2|information for information pertaining to code examples.

Defining an external procedure

The CREATE PROCEDURE statement for an external procedure:
* Names the procedure

* Defines the parameters and their attributes

* Gives other information about the procedure which the system uses when it calls the procedure.

Consider the following example:

CREATE PROCEDURE P1
(INOUT PARM1 CHAR(10))
EXTERNAL NAME MYLIB.PROC1
LANGUAGE C
GENERAL WITH NULLS

This CREATE PROCEDURE statement:
* Names the procedure P1

* Defines one parameter which is used both as an input parameter and an output parameter. The
parameter is a character field of length ten. Parameters can be defined to be type IN, OUT, or INOUT.
The parameter type determines when the values for the parameters get passed to and from the
procedure.

* Defines the name of the program which corresponds to the procedure, which is PROC1 in MYLIB.
MYLIB.PROC1 is the program which is called when the procedure is called on a CALL statement.

¢ Indicates that the procedure P1 (program MYLIB.PROC1) is written in C. The language is important
since it impacts the types of parameters that can be passed. It also affects how the parameters are
passed to the procedure (for example, for ILE C procedures, a NUL-terminator is passed on character,
graphic, date, time, and timestamp parameters).

* Defines the CALL type to be GENERAL WITH NULLS. This indicates that the parameter for the
procedure can possibly contain the NULL value, and therefore will like an additional argument passed
to the procedure on the CALL statement. The additional argument is an array of N short integers,
where N is the number of parameters that are declared in the CREATE PROCEDURE statement. In this
example, the array contains only one element since there is only parameter.

It is important to note that it is not necessary to define a procedure in order to call it. However, if no
procedure definition is found, either from a prior CREATE PROCEDURE or from a DECLARE
PROCEDURE in this program, certain restrictions and assumptions are made when the procedure is
called on the CALL statement. For example, the NULL indicator argument cannot be passed. See “Using

116 iSeries: DB2 Universal Database for iSeries SQL Programming

fembedded CALL statement where no procedure definition exists” on page 123|for an example of a CALL
statement without a corresponding procedure definition.

Defining an SQL procedure

The CREATE PROCEDURE statement for SQL procedures:

* Names the procedure

* Defines the parameters and their attributes

* Provides other information about the procedure which will be used when the procedure is called

* Defines the procedure body. The procedure body is the executable part of the procedure and is a single
SQL statement.

Consider the following simple example that takes as input an employee number and a rate and updates
the employee’s salary:

CREATE PROCEDURE UPDATE_SALARY 1
(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL MODIFIES SQL DATA
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPLOYEE_NUMBER

This CREATE PROCEDURE statement:
* Names the procedure UPDATE_SALARY_1.

* Defines parameter EMPLOYEE_NUMBER which is an input parameter and is a character data type of
length 6 and parameter RATE which is an input parameter and is a decimal data type.

* Indicates the procedure is an SQL procedure that modifies SQL data.

* Defines the procedure body as a single UPDATE statement. When the procedure is called, the UPDATE
statement is executed using the values passed for EMPLOYEE_NUMBER and RATE.

Instead of a single UPDATE statement, logic can be added to the SQL procedure using SQL control
statements. SQL control statements consist of the following:

* an assignment statement
* a CALL statement

* a CASE statement

e a compound statement

* a FOR statement

* a GET DIAGNOSTICS statement
* a GOTO statement

* an IF statement

* an ITERATE statement

* a LEAVE statement

* a LOQOP statement

* a REPEAT statement

* a RESIGNAL statement
* a RETURN statement

* a SIGNAL statement

* a WHILE statement

Chapter 9. Routines 117

The following example takes as input the employee number and a rating that was received on the last
evaluation. The procedure uses a CASE statement to determine the appropriate increase and bonus for
the update:

CREATE PROCEDURE UPDATE_SALARY_2
(IN EMPLOYEE_NUMBER CHAR(6),
IN RATING INT)
LANGUAGE SQL MODIFIES SQL DATA
CASE RATING
WHEN 1 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY = 1.10,
BONUS = 1000
WHERE EMPNO = EMPLOYEE_NUMBER;
WHEN 2 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY = 1.05,
BONUS = 500
WHERE EMPNO = EMPLOYEE_NUMBER;
ELSE
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.03,

BONUS = 0
WHERE EMPNO = EMPLOYEE_NUMBER;
END CASE

This CREATE PROCEDURE statement:
* Names the procedure UPDATE_SALARY_2.

* Defines parameter EMPLOYEE_NUMBER which is an input parameter and is a character data type of
length 6 and parameter RATING which is an input parameter and is an integer data type.

¢ Indicates the procedure is an SQL procedure that modifies SQL data.

* Defines the procedure body. When the procedure is called, input parameter RATING is checked and
the appropriate update statement is executed.

Multiple statements can be added to a procedure body by adding a compound statement. Within a
compound statement, any number of SQL statements can be specified. In addition, SQL variables, cursors,
and handlers can be declared.

The following example takes as input the department number. It returns the total salary of all the
employees in that department and the number of employees in that department who get a bonus.

CREATE PROCEDURE RETURN_DEPT SALARY
(IN DEPT_NUMBER CHAR(3),
OUT DEPT_SALARY DECIMAL(15,2),
OUT DEPT_BONUS_CNT INT)
LANGUAGE SQL READS SQL DATA
P1: BEGIN
DECLARE EMPLOYEE_SALARY DECIMAL(9,2);
DECLARE EMPLOYEE_BONUS DECIMAL(9,2);
DECLARE TOTAL_SALARY DECIMAL(15,2)DEFAULT 0;
DECLARE BONUS_CNT INT DEFAULT 0;
DECLARE END TABLE INT DEFAULT 0;
DECLARE C1 CURSOR FOR
SELECT SALARY, BONUS FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = DEPT NUMBER;
DECLARE CONTINUE HANDLER FOR NOT FOUND
SET END_TABLE = 1;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET DEPT_SALARY = NULL;
OPEN Cl;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE BONUS;
WHILE END_TABLE = 0 DO
SET TOTAL_SALARY = TOTAL_SALARY + EMPLOYEE_SALARY + EMPLOYEE_BONUS;
IF EMPLOYEE_BONUS > O THEN

118 iSeries: DB2 Universal Database for iSeries SQL Programming

SET BONUS_CNT = BONUS_CNT + 1;

END IF;

FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE BONUS;
END WHILE;
CLOSE C1;
SET DEPT_SALARY = TOTAL_SALARY;
SET DEPT_BONUS_CNT = BONUS_CNT;

END P1

This CREATE PROCEDURE statement:
¢ Names the procedure RETURN_DEPT_SALARY.

* Defines parameter DEPT_NUMBER which is an input parameter and is a character data type of length
3, parameter DEPT_SALARY which is an output parameter and is a decimal data type, and parameter
DEPT_BONUS_CNT which is an output parameter and is an integer data type.

* Indicates the procedure is an SQL procedure that reads SQL data

* Defines the procedure body.

Declares SQL variables EMPLOYEE_SALARY and TOTAL_SALARY as decimal fields.

Declares SQL variables BONUS_CNT and END_TABLE which are integers and are initialized to 0.
Declares cursor C1 that selects the columns from the employee table.

Declares a continue handler for NOT FOUND, which, when called sets variable END_TABLE to 1.
This handler is called when the FETCH has no more rows to return. When the handler is called,
SQLCODE and SQLSTATE are reinitialized to 0.

Declares an exit handler for SQLEXCEPTION. If called, DEPT_SALARY is set to NULL and the
processing of the compound statement is terminated. This handler is called if any errors occur, that
is, the SQLSTATE class is not '00”, 01" or "02". Since indicators are always passed to SQL procedures,
the indicator value for DEPT_SALARY is —1 when the procedure returns. If this handler is called,
SQLCODE and SQLSTATE are reinitialized to 0.

If the handler for SQLEXCEPTION is not specified and an error occurs that is not handled in
another handler, execution of the compound statement is terminated and the error is returned in the
SQLCA. Similar to indicators, the SQLCA is always returned from SQL procedures.

Includes an OPEN, FETCH, and CLOSE of cursor C1. If a CLOSE of the cursor is not specified, the
cursor is closed at the end of the compound statement since SET RESULT SETS is not specified in
the CREATE PROCEDURE statement.

Includes a WHILE statement which loops until the last record is fetched. For each row retrieved, the
TOTAL_SALARY is incremented and, if the employee’s bonus is more than 0, the BONUS_CNT is
incremented.

Returns DEPT_SALARY and DEPT_BONUS_CNT as output parameters.

Compound statements can be made atomic so if an error occurs that is not expected, the statements
within the atomic statement are rolled back. The atomic compound statements are implemented using
SAVEPOINTS. If the compound statement is successful, the transaction is committed. For more
information about using SAVEPOINTS, see [“Savepoints” on page 108

The following example takes as input the department number. It ensures the EMPLOYEE_BONUS table
exists, and inserts the name of all employees in the department who get a bonus. The procedure returns
the total count of all employees who get a bonus.

CREATE PROCEDURE CREATE_BONUS_TABLE

(IN DEPT_NUMBER CHAR(3),
INOUT CNT INT)
LANGUAGE SQL MODIFIES SQL DATA
CS1: BEGIN ATOMIC
DECLARE NAME VARCHAR(30) DEFAULT NULL;
DECLARE CONTINUE HANDLER FOR SQLSTATE '42710"
SELECT COUNT(*) INTO CNT
FROM DATALIB.EMPLOYEE_BONUS;

Chapter 9. Routines 119

DECLARE CONTINUE HANDLER FOR SQLSTATE '23505'
SET CNT = CNT - 1
DECLARE UNDO HANDLER FOR SQLEXCEPTION
SET CNT = NULL;
IF DEPT_NUMBER IS NOT NULL THEN
CREATE TABLE DATALIB.EMPLOYEE_BONUS
(FULLNAME VARCHAR(30),
BONUS DECIMAL(10,2),
PRIMARY KEY (FULLNAME));
FOR_1:FOR V1 AS C1 CURSOR FOR
SELECT FIRSTNME, MIDINIT, LASTNAME, BONUS
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = CREATE_BONUS_TABLE.DEPT NUMBER
DO
IF BONUS > O THEN
SET NAME = FIRSTNME CONCAT ' ' CONCAT
MIDINIT CONCAT ' 'CONCAT LASTNAME;
INSERT INTO DATALIB.EMPLOYEE_BONUS
VALUES (CS1.NAME, FOR_1.BONUS);
SET CNT = CNT + 1;
END IF;
END FOR FOR 1;
END IF;
END CS1

This CREATE PROCEDURE statement:
* Names the procedure CREATE_BONUS_TABLE.

* Defines parameter DEPT_NUMBER which is an input parameter and is a character data type of length
3 and parameter CNT which is an input/output parameter and is an integer data type.

* Indicates the procedure is an SQL procedure that modifies SQL data

¢ Defines the procedure body.

120

Declares SQL variable NAME as varying character.

Declares a continue handler for SQLSTATE 42710, table already exists. If the EMPLOYEE_BONUS
table already exists, the handler is called and retrieves the number of records in the table. The
SQLCODE and SQLSTATE are reset to 0 and processing continues with the FOR statement.

Declares a continue handler for SQLSTATE 23505, duplicate key. If the procedure attempts to insert
a name that already exists in the table, the handler is called and decrements CNT. Processing
continues on the SET statement following the INSERT statement.

Declares an UNDO handler for SQLEXCEPTION. If called, the previous statements are rolled back,
CNT is set to 0, and processing continues after the compound statement. In this case, since there is
no statement following the compound statement, the procedure returns.

Uses the FOR statement to declare cursor C1 to read the records from the EMPLOYEE table. Within
the FOR statement, the column names from the select list are used as SQL variables that contain the
data from the row fetched. For each row, data from columns FIRSTNME, MIDINIT, and
LASTNAME are concatenated together with a blank in between and the result is put in SQL variable
NAME. SQL variables NAME and BONUS are inserted into the EMPLOYEE_BONUS table. Because
the data type of the select list items must be known when the procedure is created, the table
specified in the FOR statement must exist when the procedure is created.

An SQL variable name can be qualified with the label name of the FOR statement or compound
statement in which it is defined. In the example, FOR_1.BONUS refers to the SQL variable that
contains the value of column BONUS for each row selected. CS1.NAME is the variable NAME
defined in the compound statement with the beginning label CS1. Parameter names can also be
qualified with the procedure name. CREATE_BONUS_TABLE.DEPT_NUMBER is the
DEPT_NUMBER parameter for the procedure CREATE_BONUS_TABLE. If unqualified SQL variable
names are used in SQL statements where column names are also allowed, and the variable name is
the same as a column name, the name will be used to refer to the column.

iSeries: DB2 Universal Database for iSeries SQL Programming

You can also use dynamic SQL in an SQL procedure. The following example creates a table that contains
all employees in a specific department. The department number is passed as input to the procedure and
is concatenated to the table name.

CREATE PROCEDURE CREATE_DEPT TABLE (IN P_DEPT CHAR(3))
LANGUAGE SQL
BEGIN
DECLARE STMT CHAR(1000);
DECLARE MESSAGE CHAR(20);
DECLARE TABLE_NAME CHAR(30);
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET MESSAGE = 'ok';
SET TABLE_NAME = 'CORPDATA.DEPT ' CONCAT P_DEPT CONCAT ' T';
SET STMT = 'DROP TABLE ' CONCAT TABLE_NAME;
PREPARE S1 FROM STMT;
EXECUTE S1;
SET STMT = 'CREATE TABLE ' CONCAT TABLE_NAME CONCAT
"(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME CHAR(15) NOT NULL,
SALARY DECIMAL(9,2))';
PREPARE S2 FROM STMT;
EXECUTE S2;
SET STMT = 'INSERT INTO ' CONCAT TABLE_NAME CONCAT
'SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY
FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = ?';
PREPARE S3 FROM STMT;
EXECUTE S3 USING P_DEPT;
END

This CREATE PROCEDURE statement:
* Names the procedure CREATE_DEPT_TABLE
* Defines parameter P_DEPT which is an input parameter and is a character data type of length 3.
* Indicates the procedure is an SQL procedure.
* Defines the procedure body.
— Declares SQL variable STMT and an SQL variable TABLE_NAME as character.
— Declares a CONTINUE handler. The procedure attempts to DROP the table in case it already exists.
If the table does not exist, the first EXECUTE fails. With the handler, processing will continue.
— Sets variable TABLE_NAME to 'DEPT_’ followed by the characters passed in parameter P_DEPT,
followed by "_T".
— Sets variable STMT to the DROP statement, and prepares and executes the statement.
— Sets variable STMT to the CREATE statement, and prepares and executes the statement.
— Sets variable STMT to the INSERT statement, and prepares and executes the statement. A parameter

marker is specified in the where clause. When the statement is executed, the variable P_DEPT is
passed on the USING clause.

If the procedure is called passing value 'D21” for the department, table DEPT_D21_T is created and the
table is initialized with all the employees that are in department 'D21".

Invoking a stored procedure

The SQL CALL statement calls a stored procedure. On the CALL statement, the name of the stored
procedure and any arguments are specified. Arguments may be constants, special registers, or host
variables. The external stored procedure specified in the CALL statement does not need to have a
corresponding CREATE PROCEDURE statement. Programs created by SQL procedures can only be called
by invoking the procedure name specified on the CREATE PROCEDURE statement.

Chapter 9. Routines 121

Although procedures are system program objects, using the CALL CL command will not typically work
to call a procedure. The CALL CL command does not use the procedure definition to map the input and
output parameters, nor does it pass parameters to the program using the procedure’s parameter style.

There are three types of CALL statements which need to be addressed since DB2 SQL for iSeries has
different rules for each type. They are:

* Embedded or dynamic CALL statement where a procedure definition exists
¢ Embedded CALL statement where no procedure definition exists
* Dynamic CALL statement where no CREATE PROCEDURE exists

Note: Dynamic here refers to:
* A dynamically prepared and executed CALL statement

¢ A CALL statement issued in an interactive environment (for example, through STRSQL or Query
Manager)

* A CALL statement executed in an EXECUTE IMMEDIATE statement.

Following is a discussion of each type.

+ [“Using CALL statement where procedure definition exists”|

* [“Using embedded CALL statement where no procedure definition exists” on page 123|
* [“Using Embedded CALL statement with an SQLDA” on page 123|
* [“Using dynamic CALL statement where no CREATE PROCEDURE exists” on page 124|

Additionally, you can find more examples at [“Examples of CALL statements” on page 125

Using CALL statement where procedure definition exists

This type of CALL statement reads all the information about the procedure and the argument attributes
from the CREATE PROCEDURE catalog definition. The following PL/I example shows a CALL statement
that corresponds to the CREATE PROCEDURE statement shown.

DCL HV1 CHAR(10);
DCL IND1 FIXED BIN(15);

EXEC SQL CREATE P1 PROCEDURE
(INOUT PARM1 CHAR(10))
EXTERNAL NAME MYLIB.PROC1
LANGUAGE C
GENERAL WITH NULLS;

EXEC SQL CALL P1 (:HV1 :IND1);

When this CALL statement is issued, a call to program MYLIB/PROCI is made and two arguments are
passed. Since the language of the program is ILE C, the first argument is a C NUL-terminated string
eleven characters long containing the contents of host variable HV1. Note that on a call to an ILE C
procedure, DB2 SQL for iSeries adds one character to the parameter declaration if the parameter is
declared to be a character, graphic, date, time, or timestamp variable. The second argument is the
indicator array. In this case, it is one short integer since there is only one parameter in the CREATE
PROCEDURE statement. This argument contains the contents of indicator variable IND1 on entry to the
procedure.

Since the first parameter is declared as INOUT, SQL updates the host variable HV1 and the indicator
variable IND1 with the values returned from MYLIB.PROC1 before returning to the user program.
Notes:

1. The procedure names specified on the CREATE PROCEDURE and CALL statements must match
EXACTLY in order for the link between the two to be made during the SQL precompile of the
program.

122 iSeries: DB2 Universal Database for iSeries SQL Programming

2. For an embedded CALL statement where both a CREATE PROCEDURE and a DECLARE
PROCEDURE statement exist, the DECLARE PROCEDURE statement will be used.

Using embedded CALL statement where no procedure definition exists

A static CALL statement without a corresponding CREATE PROCEDURE statement is processed with the

following rules:

 All host variable arguments are treated as INOUT type parameters.

¢ The CALL type is GENERAL (no indicator argument is passed).

* The program to call is determined based on the procedure name specified on the CALL, and, if
necessary, the naming convention.

* The language of the program to call is determined based on information retrieved from the system
about the program.

Example: Embedded CALL Statement Where No Procedure Definition Exists
The following is a PL/I example of an embedded CALL statement where no procedure definition exists:

DCL HV2 CHAR(10);

EXEC SQL CALL P2 (:HV2);

When the CALL statement is issued, DB2 SQL for iSeries attempts to find the program based on standard
SQL naming conventions. For the above example, assume that the naming option of *SYS (system
naming) is used and that a DFTRDBCOL parameter was not specified on the CRTSQLPLI command. In
this case, the library list is searched for a program named P2. Since the call type is GENERAL, no
additional argument is passed to the program for indicator variables.

Note: If an indicator variable is specified on the CALL statement and its value is less than zero when the
CALL statement is executed, an error results because there is no way to pass the indicator to the
procedure.

Assuming program P2 is found in the library list, the contents of host variable HV2 are passed in to the
program on the CALL and the argument returned from P2 is mapped back to the host variable after P2
has completed execution.

Note: See [‘Code disclaimer” on page 2|for details pertaining to code examples.

Using Embedded CALL statement with an SQLDA

In either type of embedded CALL (where a procedure definition may or may not exist), an SQLDA may
be passed rather than a parameter list, as illustrated in the following C example. Assume that the stored
procedure is expecting 2 parameters, the first of type SHORT INT and the second of type CHAR with a
length of 4.

#define SQLDA_HV_ENTRIES 2

#define SHORTINT 500
#define NUL_TERM CHAR 460

exec sql include sqlca;
exec sql include sqlda;

typedef struct sqlda Sqlda;
typedef struct sqlda* Sqldap;

main ()
Sqldap dap;

short coll;
char col2[4];

Chapter 9. Routines 123

int bc;
dap = (Sqldap) malloc(bc=SQLDASIZE(SQLDA HV_ENTRIES));
/* SQLDASIZE is a macro defined in the sqlda include */
coll = 431;
strcpy(col2,"abc");
strncpy(dap->sqldaid,"SQLDA ",8);
dap->sqldabc = bc; /* bc set in the malloc statement above */
dap->sqln = SQLDA_HV_ENTRIES;
dap->sqld = SQLDA_HV_ENTRIES;
dap->sqlvar[0].sqltype = SHORTINT;
dap->sqlvar[0] .sqllen 23

dap->sqlvar[0].sqldata = (charx) &coll;
dap->sqlvar[0].sqlname.length = 0;
dap->sqlvar[1].sqltype = NUL_TERM_CHAR;
dap->sqlvar[1].sqllen = 4;
dap->sqlvar[1].sqldata = col2;

EXEC SQL CALL P1 USING DESCRIPTOR :=dap;

o

The name of the called procedure may also be stored in a host variable and the host variable used in the
CALL statement, instead of the hard-coded procedure name. For example:

main()

{

char proc_name[15];

strcpy (proc_name, "MYLIB.P3");
EXEC SQL CALL :proc_name ...;

1

In the above example, if MYLIB.P3 is expecting parameters, then either a parameter list or an SQLDA
passed with the USING DESCRIPTOR clause may be used, as shown in the previous example.

When a host variable containing the procedure name is used in the CALL statement and a CREATE
PROCEDURE catalog definition exists, it will be used. The procedure name cannot be specified as a
parameter marker.

Using dynamic CALL statement where no CREATE PROCEDURE exists
The following rules pertain to the processing of a dynamic CALL statement when there is no CREATE
PROCEDURE definition:

* All arguments are treated as IN type parameters.
* The CALL type is GENERAL (no indicator argument is passed).

* The program to call is determined based on the procedure name specified on the CALL and the
naming convention.

* The language of the program to call is determined based on information retrieved from the system
about the program.

Example: Dynamic CALL statement where no CREATE PROCEDURE exists

The following is a C example of a dynamic CALL statement:
char hv3[10],string[100];

strcpy(string,"CALL MYLIB.P3 ('P3 TEST')");
EXEC SQL EXECUTE IMMEDIATE :string;

124 iSeries: DB2 Universal Database for iSeries SQL Programming

This example shows a dynamic CALL statement executed through an EXECUTE IMMEDIATE statement.
The call is made to program MYLIB.P3 with one parameter passed as a character variable containing 'P3
TEST".

When executing a CALL statement and passing a constant, as in the previous example, the length of the
expected argument in the program must be kept in mind. If program MYLIB.P3 expected an argument of
only 5 characters, the last 2 characters of the constant specified in the example is lost to the program.

Note: For this reason, it is always safer to use host variables on the CALL statement so that the attributes
of the procedure can be matched exactly and so that characters are not lost. For dynamic SQL, host
variables can be specified for CALL statement arguments if the PREPARE and EXECUTE
statements are used to process it.

Note: See [Code disclaimer” on page 2|information for information pertaining to code examples.

Examples of CALL statements
These examples show how the arguments of the CALL statement are passed to the procedure for several
languages. They also show how to receive the arguments into local variables in the procedure.

The first example shows the calling ILE C program that uses the CREATE PROCEDURE definitions to
call the P1 and P2 procedures. is written in C and has 10 parameters. |Procedure P2|is
written in PL/I and also has 10 parameters.

Assume two procedures are defined as follows:

EXEC SQL CREATE PROCEDURE P1 (INOUT PARM1 CHAR(10),

INOUT PARM2 INTEGER,
INOUT PARM3 SMALLINT,
INOUT PARM4 FLOAT(22),
INOUT PARM5 FLOAT(53),
INOUT PARM6 DECIMAL(10,5),
INOUT PARM7 VARCHAR(10),
INOUT PARMS8 DATE,
INOUT PARM9 TIME,
INOUT PARM10 TIMESTAMP)

EXTERNAL NAME TEST12.CALLPROC2

LANGUAGE C GENERAL WITH NULLS

EXEC SQL CREATE PROCEDURE P2 (INOUT PARMI CHAR(10),

INOUT PARM2 INTEGER,
INOUT PARM3 SMALLINT,
INOUT PARM4 FLOAT(22),
INOUT PARM5 FLOAT(53),
INOUT PARM6 DECIMAL(10,5),
INOUT PARM7 VARCHAR(10),
INOUT PARM8 DATE,
INOUT PARM9 TIME,
INOUT PARM10 TIMESTAMP)

EXTERNAL NAME TEST12.CALLPROC

LANGUAGE PLI GENERAL WITH NULLS

Example 1: ILE C and PL/I procedures called from ILE C applications:

Note: See [‘Code disclaimer” on page 2|information for information pertaining to code examples.

Chapter 9. Routines 125

R R R ST T Ty
[*xHkxxkkxxxx START OF SQL C App]ication kkkkkkkkkkkhkkkkkkkkkkk [

#include <stdio.h>
#include <string.h>
#include <decimal.h>
main()
{
EXEC SQL INCLUDE SQLCA;
char PARM1[10];
signed Tong int PARM2;
signed short int PARM3;
float PARM4;
double PARM5;
decimal(10,5) PARM6;
struct { signed short int parm71;
char parm7c[10];

} PARM7;
char PARM8[10]; /* FOR DATE =/
char PARM9[8]; /* FOR TIME =/
char PARM10[26]; /* FOR TIMESTAMP =/

Figure 1. Sample of CREATE PROCEDURE and CALL (Part 1 of 2)

126 iSeries: DB2 Universal Database for iSeries SQL Programming

/***/
/* Initialize variables for the call to the procedures x/
/***/
strcpy (PARM1, "PARM1") ;

PARM2 = 7000;

PARM3 = -1;
PARM4 = 1.2;
PARM5 = 1.0;

PARM6 = 10.555;
PARM7 .parm71 = 5;
strcpy (PARM7 .parm7c,"PARM7") ;
strncpy (PARM8,"1994-12-31",10) ; /* FOR DATE %/
strncpy (PARM9, "12.00.00",8) ; /* FOR TIME */
strncpy (PARM10,"1994-12-31-12.00.00.000000",26) ;

/* FOR TIMESTAMP =/

[kK gk ke kk ok kk ok k ok ok ke k ok ok dok ok ok kok ok ok kA Kk kkkhhh Kk *xkk [
/* Call the C procedure */
/% */
/% */

/***/

EXEC SQL CALL P1 (:PARM1, :PARM2, :PARM3,
:PARM4, :PARM5, :PARM6,
:PARM7, :PARM8, :PARM9,
:PARM10);

if (strncmp(SQLSTATE,"00000",5))

{
/* Handle error or warning returned on CALL statement =/

}

/* Process return values from the CALL. */

/***/

/* Call the PLI procedure x/
/* */
/* */
/***/
/* Reset the host variables before making the CALL */
/* */

EXEC SQL CALL P2 (:PARM1, :PARM2, :PARM3,
:PARM4, :PARM5, :PARM6,
:PARM7, :PARM8, :PARM9,
:PARM10);
if (strncmp(SQLSTATE,"00000",5))
{
/* Handle error or warning returned on CALL statement =*/

}

/* Process return values from the CALL. */
[xxwxxkkx END OF C APPLICATION *%kkskskkkokskhkkkkhkhhkhhkhkhkkhkkhkrkkkrk/
R R T T T T ey

Figure 1. Sample of CREATE PROCEDURE and CALL (Part 2 of 2)

Chapter 9. Routines

127

/******** START OF C PROCEDURE P1 *******************************/

/*

PROGRAM TEST12/CALLPROC2 */

/**/

#include <stdio.h>
#include <string.h>
#include <decimal.h>
main(argc,argv)

int argc;

char =*argv[];

char parml[11];
long int parm2;
short int parm3,i,j,*ind,indl,ind2,ind3,ind4,ind5,ind6,ind7,

ind8,ind9,ind10;

float parmd;

double parm5;
decimal(10,5) parm6;
char parm7[11];

char parm8[10];

char parm9[8];

char parml0[26];

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

khhkkhhkkhhkhkhhhdrhhhhhhhhhdhhhdhrhdhdhhdhhhdhrdrhdrhhrkhk *kkkkkkkk /
Receive the parameters into the local variables - */
Character, date, time, and timestamp are passed as */
NUL terminated strings - cast the argument vector to */
the proper data type for each variable. Note that */
the argument vector can be used directly instead of */
copying the parameters into local variables - the copy */
is done here just to illustrate the method. */
***/
Copy 10 byte character string into local variable */

strcpy(parml,argv[1]);

/* Copy 4 byte integer into local variable */
parm2 = *(int *) argv[2];

/* Copy 2 byte integer into local variable */
parm3 = *(short int) argv[3];

/* Copy floating point number into local variable */
parmd = =(float *) argv[4];

/* Copy double precision number into local variable */
parm5 = *(double *) argv[5];

/* Copy decimal number into local variable */

parmé = *(decimal(10,5) %) argv[6];

Figure 2. Sample Procedure P1 (Part 1 of 2)

128

iSeries: DB2 Universal Database for iSeries SQL Programming

/**/
/* Copy NUL terminated string into Tocal variable. */
/* Note that the parameter in the CREATE PROCEDURE was */
/* declared as varying length character. For C, varying */
/* length are passed as NUL terminated strings unless */
/* FOR BIT DATA is specified in the CREATE PROCEDURE */

/**/

strcpy(parm7,argv([7]);

/**/

/* Copy date into local variable. */
/* Note that date and time variables are always passed in */
/* 1SO format so that the lengths of the strings are */
/* known. strcpy works here just as well. */

/**/

strncpy(parm8,argv[8],10);

/* Copy time into local variable */
strncpy(parm9,argv[9],8);

/**/

/* Copy timestamp into Tocal variable. */
/* IBM SQL timestamp format is always passed so the length*/
/* of the string is known. */

/**/

strncpy(parml0,argv[10],26);

/**/

/* The indicator array is passed as an array of short */
/* integers. There is one entry for each parameter passed */
/* on the CREATE PROCEDURE (10 for this example). */
/* Below is one way to set each indicator into separate */
/* variables. */

/**/
ind = (short int *) argv[11];
indl = *(ind++);
ind2 = *(ind++);
ind3 = *(ind++);
ind4 = x(ind++);
ind5 = *(ind++);
ind6 = *(ind++);
ind7 = *(ind++);
ind8 = *(ind++);
ind9 = *(ind++);
ind10 = *(ind++);

/* Perform any additional processing here */

return;

}

[x*%xxk%% END OF C PROCEDURE P1 ##kkskkkkokkhhkskkhkhhkhhhkhkhkrkhsk/

Figure 2. Sample Procedure P1 (Part 2 of 2)

Chapter 9. Routines

129

[x%xxxx%%x START OF PL/I PROCEDURE P2 ##%kkkkkkkkshkhrhkhkrhrrkx/
[x*%xxkk% PROGRAM TEST12/CALLPROC %% kkkskkkkkkkhkkkhhhkhkkkkkkk/

/*~k**~k******~k******~k**********~k*****~k*-k************************/

CALLPROC :PROC(PARMI1,PARMZ2,PARM3,PARM4,PARM5, PARM6, PARM7,
PARM8,PARM9, PARM10, PARM11) ;

DCL SYSPRINT FILE STREAM OUTPUT EXTERNAL;

OPEN FILE(SYSPRINT);

DCL PARM1 CHAR(10);

DCL PARM2 FIXED BIN(31);

DCL PARM3 FIXED BIN(15);

DCL PARM4 BIN FLOAT(22);

DCL PARM5 BIN FLOAT(53);

DCL PARM6 FIXED DEC(10,5);

DCL PARM7 CHARACTER(10) VARYING;

DCL PARM8 CHAR(10); /* FOR DATE =*/
DCL PARM9 CHAR(8); /* FOR TIME */
DCL PARM10 CHAR(26); /* FOR TIMESTAMP =*/

DCL PARM11(10) FIXED BIN(15); /* Indicators =/

/* PERFORM LOGIC - Variables can be set to other values for =x/
/* return to the calling program. */

END CALLPROC;

Figure 3. Sample Procedure P2

The next example shows a REXX procedure called from an ILE C program.

Assume a procedure is defined as follows:

EXEC SQL CREATE PROCEDURE REXXPROC

(IN PARML CHARACTER(20),

IN PARM2 INTEGER,

IN PARM3 DECIMAL(10,5),

IN PARM4 DOUBLE PRECISION,

IN PARM5 VARCHAR(10),

IN PARM6 GRAPHIC(4),

IN PARM7 VARGRAPHIC(10),

IN PARMS DATE,

IN PARM9 TIME,

IN PARM10 TIMESTAMP)
EXTERNAL NAME 'TEST.CALLSRC(CALLREXX)"
LANGUAGE REXX GENERAL WITH NULLS

Example 2. Sample REXX Procedure Called From C Application:

Note: See [‘Code disclaimer” on page 2|information for information pertaining to code examples.

130 iSeries: DB2 Universal Database for iSeries SQL Programming

R R R T T e e 2
[*HxHkxxkkxxkx START OF SQL C App]'icat'ion kkkkkkhkkkkkkkkkkkhkkk [

#include <decimal.h>
#include <stdio.h>
#include <string.h>
#include <wcstr.h>

exec sql include sqlca;
exec sql include sqlda;
/* ***/
/* Declare host variable for the CALL statement */
/* "k‘k**‘k**"k***‘k**‘k‘k**‘k**‘k‘k*****‘k******‘k***‘k**‘k**‘k******‘k******/
char parml[20];
signed Tong int parm2;
decimal(10,5) parm3;
double parmé;
struct { short dlen;
char dat[10];
} parms;
wchar_t parm6[4] = { 0xC1Cl, 0xC2C2, 0xC3C3, 0x0000 };
struct { short dlen;
wchar_t dat[10];
} parm7 = {0x0009, OxE2E2,0xE3E3,0xE4E4, OXE5E5, OXE6E6,
OXE7E7, OXE8E8, OxE9E9, 0xC1Cl, 0x0000 };

char parm8[10];
char parm9[8];
char parml0[26];
main()

{

Figure 4. Sample REXX Procedure Called From C Application (Part 1 of 4)

Chapter 9. Routines

131

/* ***'k*‘k‘k**k‘k**‘k***‘k**k****‘k**k****‘k**k‘k******‘k**‘k***‘k**‘k**‘k‘k**‘k**‘k/
/* Call the procedure - on return from the CALL statement the =/
/* SQLCODE should be 0. If the SQLCODE is non-zero, */
/* the procedure detected an error. */
/* ***/
strcpy (parml,"TestingREXX");

parm2 = 12345;

parm3 = 5.5;

parmd = 3e3;

parm5.dlen = 5;

strcpy(parm5.dat,"parm6");

strcpy(parm8,"1994-01-01");

strcpy(parm9,"13.01.00");
strcpy(parml0,"1994-01-01-13.01.00.000000") ;

EXEC SQL CALL REXXPROC (:parml, :parm2,
:parm3, :parmé,
:parmb, :parm6,
:parm/,
:parm8, :parm9,
:parml10);
if (strncpy(SQLSTATE,"00000",5))
{
/* handle error or warning returned on CALL =*/
1
1

[*x%%x%x%x END OF SQL C APPLICATION B ey
R R R e T ST e e e ey

Figure 4. Sample REXX Procedure Called From C Application (Part 2 of 4)

132 iSeries: DB2 Universal Database for iSeries SQL Programming

/**/

[#%xxkx START OF REXX MEMBER TEST/CALLSRC CALLREXX sk toeseskotseseok ook toeoeos /

/**/

/* REXX source member TEST/CALLSRC CALLREXX */
/* Note the extra parameter being passed for the indicatorx/
/* array. */
/* */
/* ACCEPT THE FOLLOWING INPUT VARIABLES SET TO THE */
/* SPECIFIED VALUES : */
/* ARL CHAR(20) = 'TestingREXX' */
/* AR2 INTEGER = 12345 */
/* AR3 DECIMAL(10,5) = 5.5 */
/* AR4 DOUBLE PRECISION = 3e3 */
/* AR5 VARCHAR(10) = 'parmb’ */
/* AR6 GRAPHIC = @'C1C1c2c2c3cs! */
/* AR7 VARGRAPHIC = */
/* G'E2E2E3E3E4EAESESEGEGE7E7ESEBEQEQEAEA" =/
/* AR8 DATE = '1994-01-01" */
/* AR9 TIME = '13.01.00" */
/* AR10 TIMESTAMP = */
/* '1994-01-01-13.01.00.000000" */
/* AR11 INDICATOR ARRAY = +0+0+0+0+0+0+0+0+0+0 */

/**/
/* Parse the arguments into individual parameters */
/**/
parse arg arl ar2 ar3 ar4 ar5 ar6 ar’7 ar8 ar9 arl0 arll

/**/
/* Verify that the values are as expected */
/**/
if arl<>"'TestingREXX'" then signal arltag

if ar2<>12345 then signal ar2tag

if ar3<>5.5 then signal ar3tag

if ard4<>3e3 then signal arédtag

if arb<>"'parm6'" then signal arbtag

if ar6 <>"G'AABBCC'" then signal arb6tag

if ar7 <>"G'SSTTUUVVWWXXYYZZAA'" then ,

signal ar7tag

if ar8 <> "'1994-01-01"'" then signal ar8tag

if ar9 <> "'13.01.00'" then signal ar9tag

if arl® <> "'1994-01-01-13.01.00.000000'" then signal arlOtag
if arll <> "+0+0+0+0+0+0+0+0+0+0" then signal arlltag

Figure 4. Sample REXX Procedure Called From C Application (Part 3 of 4)

Chapter 9. Routines

133

/**/

/* Perform other processing as necessary .. */
/**/

/**/

/* Indicate the call was successful by exiting with a */
/* return code of 0 */
/**/
exit(0)

arltag:

say "arl did not match" arl

exit(1)

ar2tag:

say "ar2 did not match" ar2

exit(1)

[**Kkwkxxkkxxx% END OF REXX MEMBER **********************************/

Figure 4. Sample REXX Procedure Called From C Application (Part 4 of 4)

Returning Result Sets from Stored Procedures

In addition to returning output parameters, stored procedures have a feature by which a result table
associated with a cursor opened in the stored procedure (called a result set) can be returned to the
application issuing the CALL statement. That application can then issue fetch requests to read the rows of
the result set cursor. Whether a result set gets returned depends on the returnability attribute of the
cursor. The cursor’s returnability attribute can be explicitly given in the DECLARE CURSOR statement or
it can be defaulted. The SET RESULT SETS statement also allows for an indication of where the result
sets should be returned (see |[“Example 2: Call a stored procedure which returns a result set from a nested|
[procedure” on page 135). By default, cursors which are opened in a stored procedure are defined to have
a returnability attribute of RETURN TO CALLER. To return the result set associated with the cursor to
the application which called the outermost procedure in the call stack, the returnability attribute of
RETURN TO CLIENT is specified on the DECLARE CURSOR statement. This will allow inner procedures
to return result sets when the application calls nested procedures. For cursors whose result sets are never
to be returned to caller or client, the returnability attribute of WITHOUT RETURN is specified on the
DECLARE CURSOR statement.

There are many cases where opening the cursor in a stored procedure and returning its result set
provides advantages over opening the cursor directly in the application. For instance, security to the
tables referenced in the query can be adopted from the stored procedure so that users of the application
do not need to be granted direct authority to the tables. Instead, they are given authority to call the
stored procedure, which is compiled with adequate authority to access the tables. Another advantage to
opening the cursors in the stored procedure is that multiple result sets can be returned from a single call
to the stored procedure, which can be more efficient that opening the cursors separately from the calling
application. Additionally, each call to the same stored procedure may return a different number of result
sets, providing some application versatility.

The interfaces that can work with stored procedure result sets include JDBC, CLI, and ODBC. An
example on how to use these API interfaces for working with stored procedure result sets is included in
the following examples:

* ["Example 1: Call a stored procedure which returns a single result set” on page 135|

* ["Example 2: Call a stored procedure which returns a result set from a nested procedure” on page 135

Note: See [‘Code disclaimer” on page 2|information for information pertaining to code examples.

134 iSeries: DB2 Universal Database for iSeries SQL Programming

Example 1: Call a stored procedure which returns a single result set

This example shows the API calls ODBC application would make when calling a stored procedure that
returns a result set. Note that in this example the DECLARE CURSOR statement does not have an
explicit returnability specified. When there is only a single stored procedure on the call stack, the
returnability attribute of RETURN TO CALLER as well as that of RETURN TO CLIENT will make the
result set available to the caller of the application. Also note that the stored procedure is defined with a
DYNAMIC RESULT SETS clause. For SQL procedures, this clause is required if the stored procedure will
be returning result sets.

Defining the stored procedure:
PROCEDURE prod.resset

CREATE PROCEDURE prod.resset () LANGUAGE SQL
DYNAMIC RESULT SETS 1

BEGIN

DECLARE C1 CURSOR FOR SELECT * FROM QIWS.QCUSTCDT;
OPEN C1;

RETURN;

END

ODBC Application(Note: some of the logic has been removed).

strcpy(stmt,"call prod.resset()");
rc = SQLExecDirect(hstmt,stmt,SQL_NTS);
if (rc == SQL_SUCCESS)
{
// CALL statement has executed successfully. Process the result set.
// Get number of result columns for the result set.
rc = SQLNumResultCols(hstmt, &wNum);
if (rc == SQL_SUCCESS)
// Get description of result columns in result set
{ rc = SQLDescribeCol (hstmt,a);
if (rc == SQL_SUCCESS)

{

// Bind result columns based on attributes returned
//
rc = SQLBindCol (hstmt,a);

// FETCH records until EOF is returned
rc = SQLFetch(hstmt);
while (rc == SQL_SUCCESS)
{ // process result returned on the SQLFetch
rc = SQLFetch(hstmt);
1

// Close the result set cursor when done with it.
rc = SQLFreeStmt (hstmt,SQL_CLOSE);

Note: See [‘Code disclaimer” on page 2|information for information pertaining to code examples.

Example 2: Call a stored procedure which returns a result set from a nested
procedure

This example shows how a nested stored procedure can open and return a result set to the outermost
procedure. To return a result set to the outermost procedure in an environment where there are nested
stored procedures, the RETURN TO CLIENT returnability attribute should be used on the DECLARE

Chapter 9. Routines 135

CURSOR statement or on the SET RESULT SETS statement to indicate that the cursors are to be returned
to the application which called the outermost procedure. Note that this nested procedure returns two
result sets to the client; the first, an array result set, and the second a cursor result set. Both an ODBC
and a JDBC client application are shown below along with the stored procedures.

Defining the stored procedures:

CREATE PROCEDURE prod.rtnnested () LANGUAGE CL DYNAMIC RESULT SET 2
EXTERNAL NAME prod.rtnnested GENERAL

CREATE PROCEDURE prod.rtnclient () LANGUAGE RPGLE
EXTERNAL NAME prod.rtnclient GENERAL
CL source for Stored Procedure prod.rtnnested

PGM
CALL PGM(PROD/RTNCLIENT)

ILE RPG source for Stored Procedure prod.rtnclient

DRESULT DS 0CCURS (20)

D COL1 1 16A

C 1 DO 10 X 20
C X 0CCUR RESULT

C EVAL COL1="array result set'

C ENDDO

C EVAL X=X-1

C/EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CLIENT

C+ FOR SELECT LSTNAM FROM QIWS.QCUSTCDT FOR FETCH ONLY

C/END-EXEC

C/EXEC SQL

C+ OPEN C2

C/END-EXEC

C/EXEC SQL

C+ SET RESULT SETS FOR RETURN TO CLIENT ARRAY :RESULT FOR :X ROWS,
C+ CURSOR C2

C/END-EXEC
C SETON LR
C RETURN

ODBC Application

//***

//

// Module:

// Examples.C

//

// Purpose:

// Perform calls to stored procedures to get back result sets.
//

// B e o e T T T T T T T T S S et S L e s L e s

#include "common.h"
#include "stdio.h"

// B g e o e T T S T T R T S e e S L e s L e e

//
// Local function prototypes.

//

// B R e e e R S S T S S e S e S e e S L e e L e s L et

136 iSeries: DB2 Universal Database for iSeries SQL Programming

SWORD FAR PASCAL RetClient(1pSERVERINFO 1pSI);
BOOL FAR PASCAL Bind_Params (HSTMT);

BOOL FAR PASCAL Bind_First_RS(HSTMT);

BOOL FAR PASCAL Bind_Second_RS(HSTMT);

// khhkkhhkhkhkkhhhhhhdhhdhhhhhhhdhhhhdrhhrhhhhhhdrhdrhhhhhhdhhdrhdrhrhhxk
/1l

// Constant strings definitions for SQL statements used in

// the auto test.

//

// dhkkhkhkkhkhkhhkhkhhhhhhhhhhhhhhdhhdhdhhhdhhhhhhhhhhhhhhhhhhhhhdrhhhhhhhkkkhxkx
// Declarations of variables global to the auto test.

[] Frrkkkkkkkkk ok kkk ok kk ok ok dkok ok kok ok kA B T KrKEAKKEFRKRE

#define ARRAYCOL_LEN 16
#define LSTNAM_LEN 8
char stmt[2048];

char buf[2000];

UDWORD rowcnt;

char arraycol [ARRAYCOL_LEN+1];
char 1stnam[LSTNAM_LEN+1];
SDWORD chcoll,cbhcol2;

TpSERVERINFO 1pSI; /+ Pointer to a SERVERINFO structure. */

[FErkkk B R L R L E R R e o B R L R L E R e o KRk Kk kKKK KR *kx
//

// Define the auto test name and the number of test cases

// for the current auto test. These informations will

// be returned by AutoTestName().

//

// B R R R R R R R R R R o o o o R R R T e R T T R S

LPSTR szAutoTestName = CREATE_NAME("Result Sets Examples");
UINT iNumOfTestCases = 1;

// B R R R R R R R R R R R R R o R R R S R T R T T S S T

//

// Define the structure for test case names, descriptions,

// and function names for the current auto test.

// Test case names and descriptions will be returned by

// AutoTestDesc(). Functions will be run by

// AutoTestFunc() if the bits for the corresponding test cases
// are set in the rglMask member of the SERVERINFO

// structure.

//

// khkkkkhkkkkkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhkhkhhkkhhkkkhhkkkhkkxkx
struct TestCase TestCasesInfo[] =

{
"Return to Client",
"2 result sets ",
RetClient
}s
[FErkkw ook ko ok ke ko ok ke ko ok ok ok ok ok ok ok ok o ok ook ko ok ke ko ok ok ko ok ok ok ok ok ok ok o ok ek ook ook ok ok kR *%
//
// Sample return to Client:
// Return to Client result sets. Call a CL program which in turn
// calls an RPG program which returns 2 result sets. The first

Chapter 9. Routines

137

// result set is an array result set and the second is a cursor
// result set.

//

//

// B e o e R R T T T T T S S T T S L s Lt

SWORD FAR PASCAL RetClient(1pSERVERINFO 1pSI)

{
SWORD sRC = SUCCESS;
RETCODE returncode;
HENV henv;
HDBC hdbc;
HSTMT hstmt;

if (FullConnect(1pSI, &henv, &hdbc, &hstmt) == FALSE)
{

sRC = FAIL;

goto ExitNoDisconnect;

}

// khkkkhkhhkhhhhhhhhdhhdrhhhhhhdhhdrhhhhhhdhhdrhdrdrhhrhdhrkhdx

// Call CL program PROD.RTNNESTED, which in turn calls RPG

// program RTNCLIENT.

// kkhkkkkhkhkkkhkkhkhkkhhkkhhhkhhkkhhhhhhkhhhdhhkhhhkhhkhhhkhdhkkhhhkhhhkhhkkhdkk,xx
strcpy(stmt,"CALL PROD.RTNNESTED()");

// AR KRAA KA A AR I A kI A kA A kA h bk hhkhhdhkddhhhkhdhhdhhdhhdrhdhhdhdhhdrhdhxx
// Call the CL program prod.rtnnested. This program will in turn
// call the RPG program proc.rtnclient, which will open 2 result
// sets for return to this ODBC application.

[] FErkkkkkkkkkk ok kok ok ok ok kkh ook ko ok ok ko ok ok ok o ok ok ok ok ok ok ok ok ok ok ook ko ok ke ok ok k K%
returncode = SQLExecDirect(hstmt,stmt,SQL _NTS);

if (returncode != SQL_SUCCESS)

viirite(1pSI, "CALL PROD.RTNNESTED is not Successful", TRUE);

else

{
vWrite(1pSI, "CALL PROC.RTNNESTED was Successful", TRUE);

// khhkkhkhkhhhkhhhhhhdhhhrhhhhhhdhhdhhdhhhhdhhdhhdhdrhdrhdhdhhkdrhdhxx
// Bind the array result set output column. Note that the result
// sets are returned to the application in the order that they

// are specified on the SET RESULT SETS statement.

[] FErkkkkkkkok ko kkok ok ke kok ok kk ok ok kR *k kK xrrhhhhhhhkkrhh kKK Kk kKKK IKKRK
if (Bind_First_RS(hstmt) == FALSE)
{

myRETCHECK (1pSI, henv, hdbc, hstmt, SQL_SUCCESS,
returncode, "Bind_First RS");

sRC = FAIL;

goto ErrorRet;

}

else
vWrite(1pSI, "Bind_First RS Complete...", TRUE);

// khkkkhkhhhkhhhhhhhhhhhkrhhhhhhhhhdrhhrhhhhhhdhhdrhdrhdhdhhdhrhdrdhdkx
// Fetch the rows from the array result set. After the last row
// is read, a returncode of SQL_NO_DATA FOUND will be returned to
// the application on the SQLFetch request.

// kkhkkkkhkkkhkkhkhkkhhkkhhkkhhkhkhkkhhkhkkhhkkhhkhkhkkhkhkkhhkhkhhkhkkhkkhkhkkhkhkhkhkkhkhkkhkhkkkx
returncode = SQLFetch(hstmt);

while(returncode == SQL_SUCCESS)

wsprintf(stmt,"array column = %s",arraycol);
vWrite(1pSI,stmt,TRUE);

returncode = SQLFetch(hstmt);

}

138 iSeries: DB2 Universal Database for iSeries SQL Programming

if (returncode == SQL_NO_DATA_FOUND) ;
else {
myRETCHECK(1pSI, henv, hdbc, hstmt, SQL SUCCESS WITH_INFO,
returncode, "SQLFetch");
sRC = FAIL;
goto ErrorRet;
// **i***
// Get any remaining result sets from the call. The next
// result set corresponds to cursor C2 opened in the RPG
// Program.
// khkhkkkhkkhkhhhkhhhdhhdhhhhhhhdhhdhhdhhhhdhhdhdhhdrhdrhdhidtxkx
returncode = SQLMoreResults(hstmt);
if (returncode != SQL_SUCCESS)
{
myRETCHECK (1pSI, henv, hdbc, hstmt, SQL_SUCCESS, returncode, "SQLMoreResults");
sRC = FAIL;
goto ErrorRet;
/5 kkhkkkkhkkhkhkkhhkkhhkkhhkhkhkkhhkhkhhkhkhhkhhhkkhhkhkhhkhhkkhhkkhhkhkhkkhkhkkhkhkkhhkkkkkx*
// Bind the cursor result set output column. Note that the result
// sets are returned to the application in the order that they
// are specified on the SET RESULT SETS statement.

// dhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkkhhhhhhhhhhdhdhddhdhdhdhdhdhdhdhhhhhhhhhhhhhhhhhdhdx
if (Bind_Second RS(hstmt) == FALSE)

myRETCHECK (1pSI, henv, hdbc, hstmt, SQL_SUCCESS,
returncode, "Bind_Second RS");

sRC = FAIL;
goto ErrorRet;
1
else
{
vWrite(1pSI, "Bind_Second RS Complete...", TRUE);
1
[xEEEFRIEIIEFERKEKIRFERHR KR A HRF KA KKK KR KA A KK KA KKK KKK ko ok ok ok ke

// Fetch the rows from the cursor result set. After the last row
// is read, a returncode of SQL_NO_DATA_FOUND will be returned to
// the application on the SQLFetch request.
// khkkhkhkhkhkhkhkhkhkhkhhkhkkhhhkhkhhhkhkhkhkhkhkhkhkhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhkhhxkx
returncode = SQLFetch(hstmt);
while(returncode == SQL_SUCCESS)
{
wsprintf(stmt,"1stnam = %s",1stnam);
viWrite(1pSI,stmt,TRUE);
returncode = SQLFetch(hstmt);
1
if (returncode == SQL_NO_DATA_FOUND) ;
else {
myRETCHECK(1pSI, henv, hdbc, hstmt, SQL_SUCCESS_WITH_INFO,
returncode, "SQLFetch");
sRC = FAIL;
goto ErrorRet;

}

returncode = SQLFreeStmt (hstmt,SQL_CLOSE);
if (returncode != SQL_SUCCESS)
{
myRETCHECK(1pSI, henv, hdbc, hstmt, SQL_SUCCESS,
returncode, "Close statement");

sRC = FAIL;
goto ErrorRet;
1
else
{

viWrite(1pSI, "Close statement...", TRUE);

Chapter 9. Routines

139

ErrorRet:
FullDisconnect(1pSI, henv, hdbc, hstmt);
if (sRC == FAIL)
{
// a failure in an ODBC function that prevents completion of the
// test - for example, connect to the server
virite(1pSI, "\t\t *xx Unrecoverable RTNClient Test FAILURE #**", TRUE);
} /* endif =/

ExitNoDisconnect:

return(sRC);
} // RetClient

BOOL FAR PASCAL Bind First RS(HSTMT hstmt)

{

RETCODE rc = SQL_SUCCESS;
rc = SQLBindCol (hstmt,1,SQL_C_CHAR,arraycol,ARRAYCOL_LEN+1, &cbcoll);
if (rc != SQL_SUCCESS) return FALSE;
return TRUE;

1

BOOL FAR PASCAL Bind_Second RS(HSTMT hstmt)

{

RETCODE rc = SQL_SUCCESS;
rc = SQLBindCol (hstmt,1,SQL_C_CHAR,1stnam,LSTNAM_LEN+1,&dbcol12);
if (rc != SQL_SUCCESS) return FALSE;
return TRUE;

1

JDBC Application

// Call Nested procedures which return result sets to the
// client, in this case a JDBC client.

import java.sql.=;
public class callNested
{
public static void main (String argv[]) // Main entry point
{
try {
Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

}
catch (ClassNotFoundException e) {
e.printStackTrace();

}

try {
Connection jdbcCon =

DriverManager.getConnection("jdbc:db2:1p066ab","Userid", "xxxxxxx");
jdbcCon.setAutoCommit(false);
CallableStatement cs = jdbcCon.prepareCall("CALL PROD.RTNNESTED");
cs.execute();
ResultSet rsl = cs.getResultSet();
int r = 0;

while (rsl.next())

140 iSeries: DB2 Universal Database for iSeries SQL Programming

{

r++;

String sl = rsl.getString(1);
System.out.print("Result set 1 Row: " + r + ": ");
System.out.print(sl + " ");
System.out.printin();

}

cs.getMoreResults();

r=0;

ResultSet rs2 = cs.getResultSet();

while (rs2.next())

{

r++;

String s2 = rs2.getString(1);
System.out.print("Result set 2 Row: " + r + ": ");
System.out.print(s2 + " ");
System.out.printin();

catch (SQLException e) {
System.out.printin("SQLState: " + e.getSQLState());
System.out.printin("Message : " + e.getMessage());
e.printStackTrace();
}
}// main
1

Note: See[‘Code disclaimer” on page 2|information for information pertaining to code examples.

Parameter passing conventions for stored procedures and UDFs

The CALL statement and a function invocation can pass arguments to programs written in all supported
host languages and REXX procedures. Each language supports different data types that are tailored to it,
as shown in the following tables. The SQL data type is contained in the leftmost column of the following
table. Other columns in that row contain an indication of whether that data type is supported as a
parameter type for a particular language. If the column contains a dash (-), the data type is not supported
as a parameter type for that language. A host variable declaration indicates that DB2 SQL for iSeries
supports this data type as a parameter in this language. The declaration indicates how host variables
must be declared to be received and set properly by the procedure or function. When calling an SQL
procedure or function, all SQL data types are supported so no column is provided in the table.

See the [Embedded SQL Programming] book and the [Java SQL routines| section of the IBM Developer’s Kit
for Java topic for more details.

Table 28. Data Types of Parameters

COBOL for iSeries and

SQL Data Type C and C++ CL ILE COBOL for iSeries
SMALLINT short - PIC S9(4) BINARY
INTEGER long - PIC S9(9) BINARY

BIGINT long long - PIC S9(18) BINARY Note:

Only supported for ILE
COBOL for iSeries.

DECIMAL(p,s) decimal(p,s) TYPE(*DEC) LEN(p s) PIC S9(p-s)VI(s)
PACKED-DECIMAL Note:
Precision must not be
greater than 18.

Chapter 9. Routines 141

Table 28. Data Types of Parameters (continued)

SQL Data Type

C and C++

CL

COBOL for iSeries and
ILE COBOL for iSeries

NUMERIC(p,s)

PIC S9(p-s)V9(s) DISPLAY
SIGN LEADING
SEPARATE Note: Precision
must not be greater than
18.

REAL or FLOAT(p)

float

COMP-1 Note: Only
supported for ILE COBOL
for iSeries.

DOUBLE PRECISION or
FLOAT or FLOAT(p)

double

COMP-2 Note: Only
supported for ILE COBOL
for iSeries.

CHARACTER(n)

char ... [n+1]

TYPE(*CHAR) LEN(n)

PIC X(n)

VARCHAR(n)

char ... [n+1]

Varying-Length Character

String (see COBOL in
Embedded SQL
Programming).

VARCHAR(n) FOR BIT
DATA

VARCHAR structured form

(see C inlEmbedded SQLl
|Programming| book.)

Varying-Length Character

String (see COBOL in
Embedded SQL
Programming).

form (see C in |Embedded|

[SOL Programming)

CLOB CLOB structured form (see |- CLOB structured form (see
Cin Embedded SQi] COBOL in |Embedded SQLl
|Programmingb |Programmingb. Note: only

supported for ILE COBOL
for iSeries.

GRAPHIC(n) wchar_t ... [n+1] - PIC G(n) DISPLAY-1 or PIC
N(n) Note: Only
supported for ILE COBOL
for iSeries.

VARGRAPHIC(n) VARGRAPHIC structured |- Varying-Length Graphic
form (see C in |Embedded| String (see COBOL in
[SQOL Programming) Embedded SQL|

Programming). Note:
Only supported for ILE
COBOL for iSeries.

DBCLOB DBCLOB structured form |- DBCLOB structured form
(see C inlEmbedded SQLl (see COBOL in |Embedded|
|Programming[) [SOL Programming). Note:

only supported for ILE
COBOL for iSeries.

BINARY BINARY structured form - BINARY structured form
(see C in|Embedded SQL| (see COBOL in |Embedded|
[Programming) [SOL Programming)

VARBINARY VARBINARY structured - VARBINARY structured

form (see COBOL in
Embedded SQL
Programmin

142 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 28. Data Types of Parameters (continued)

COBOL for iSeries and

SQL Data Type C and C++ CL ILE COBOL for iSeries

BLOB BLOB structured form (see |- BLOB structured form (see
C inlEmbedded SQEI COBOL in |Embedded SQLl
[Programming) [Programming)Note: only

supported for ILE COBOL
for iSeries.

DATE char ... [11] TYPE(*CHAR) LEN(10) PIC X(10)

For ILE COBOL for iSeries
only, FORMAT DATE.

TIME char ... [9] TYPE(*CHAR) LEN(8) PIC X(8)

For ILE COBOL for iSeries
only, FORMAT TIME.

TIMESTAMP char ... [27] TYPE(*CHAR) LEN(26) PIC X(26)

For ILE COBOL for iSeries
only, FORMAT
TIMESTAMP.

ROWID ROWID structured form - ROWID structured form
(see C inlEmbedded SQLl (see COBOL in Embeddedl
|Programmingb [SQL Programming).

DataLink - - -

Indicator Variable short - PIC S9(4) BINARY

Table 29. Data Types of Parameters

Java Parameter Style

SQL Data Type Java Parameter Style JAVA | DB2GENERAL PL1

SMALLINT short short FIXED BIN(15)

INTEGER int int FIXED BIN(31)

BIGINT long long -

DECIMAL(p,s) BigDecimal BigDecimal FIXED DEC(p,s)

NUMERIC(p,s) BigDecimal BigDecimal -

REAL or FLOAT(p) float float FLOAT BIN(p)

DOUBLE PRECISION or double double FLOAT BIN(p)

FLOAT or FLOAT(p)

CHARACTER(n) String String CHAR(n)

VARCHAR(n) String String CHAR(n) VAR

VARCHAR(n) FOR BIT byte[] com.ibm.db2.app.Blob CHAR(n) VAR

DATA

CLOB java.sql.Clob com.ibm.db2.app.Clob CLOB structured form ?see
PL/I in|[Embedded SQ
|Programmingb

GRAPHIC(n) String String -

VARGRAPHIC(n) String String -

DBCLOB java.sql.Clob com.ibm.db2.app.Clob DBCLOB structured form
(see PL/I in |Embeddea|
[SQL Programming)

Chapter 9. Routines 143

Table 29. Data Types of Parameters (continued)

Java Parameter Style

SQL Data Type Java Parameter Style JAVA | DB2GENERAL PL/1

BINARY byte[] com.ibm.db2.app.Blob BINARY structured form
(see PL/I in [Embedded]
[SQOL Programming)

VARBINARY byte[] com.ibm.db2.app.Blob VARBINARY structured
form (see PL/I in
[Embedded SQL
Programmin

BLOB java.sql.Blob com.ibm.db2.app.Blob BLOB structured form (see
PL/I in |Embedded SQi]
[Programming)

DATE Date String CHAR(10)

TIME Time String CHAR(8)

TIMESTAMP Timestamp String CHAR(26)

ROWID byte[] com.ibm.db2.app.Blob ROWID structured form
(see PL/I in |Embeddea|
[SQL Programming)

DataLink - - -

Indicator Variable - - FIXED BIN(15)

Table 30. Data Types of Parameters

SQL Data Type

REXX

RPG

ILE RPG

SMALLINT - Data structure that contains a Data specification. B in position
single sub-field. B in position 43, |40, length must be <= 4, and 00
length must be 2, and 0 in in positions 41-42 of the sub-field
position 52 of the sub-field specification.
specification.

or

Data specification. I in position
40, length must be 5, and 00 in
positions 41-42 of the sub-field
specification.

INTEGER numeric string with | Data structure that contains a Data specification. B in position

no decimal (and an single sub-field. B in position 43, |40, length must be <=09 and
optional leading sign) |length must be 4, and 0 in >=05, and 00 in positions 41-42
position 52 of the sub-field of the sub-field specification.
specification.
or
Data specification. I in position
40, length must be 10, and 00 in
positions 41-42 of the sub-field
specification.

BIGINT - - Data specification. I in position
40, length must be 20, and 00 in
positions 41-42 of the sub-field
specification.

144 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 30. Data Types of Parameters (continued)

SQL Data Type

REXX

RPG

ILE RPG

DECIMAL(p,s) numeric string with a | Data structure that contains a Data specification. P in position
decimal (and an single sub-field. P in position 43 |40 and 00 through 31 in positions
optional leading sign) |and 0 through 9 in position 52 of |41-42 of the sub-field

the sub-field specification. or A | specification.
numeric input field or calculation
result field.
NUMERIC(p,s) - Data structure that contains a Data specification. S in position

single sub-field. Blank in position
43 and 0 through 9 in position 52
of the sub-field specification.

40, or Blank in position 40 and
00 through 31 in position 41-42
of the sub-field specification.

REAL or FLOAT(p)

string with digits,
then an E, (then an
optional sign), then
digits

Data specification. F in position
40, length must be 4.

DOUBLE PRECISION

string with digits,

Data specification. F in position

or FLOAT or then an E, (then an 40, length must be 8.
FLOAT(p) optional sign), then
digits
CHARACTER(n) string with n Data structure field without Data specification. A in position
characters within two |sub-fields or data structure that |40, or Blank in position 40 and
apostrophes contains a single sub-field. Blank |41-42 of the sub-field
in position 43 and 52 of the specification.
sub-field specification. or A
character input field or
calculation result field.
VARCHAR(n) string with n - Data specification. A in position

characters within two
apostrophes

40, or Blank in position 40 and
41-42 of the sub-field
specification and the keyword
VARYING in positions 44-80.

VARCHAR(n) FOR
BIT DATA

string with n
characters within two
apostrophes

Data specification. A in position
40, or Blank in position 40 and
41-42 of the sub-field
specification and the keyword
VARYING in positions 44-80.

CLOB

CLOB structured form (see RPG
chapter in [Embedded SQI]
|l_’rogrammingb

GRAPHIC(n)

string starting with
G’, then n double
byte characters, then

7

Data specification. G in position
40 of the sub-field specification.

VARGRAPHIC(n)

string starting with
G’, then n double
byte characters, then ’

Data specification. G in position
40 of the sub-field specification
and the keyword VARYING in
positions 44-80.

DBCLOB

DBCLOB structured form (see
ILE RPG inlEmbedded SQLl

|!2rogramming|b

BINARY

BINARY structured form (see ILE

RPG in |Embedded SQLl
|!2rogramming|b

Chapter 9. Routines 145

Table 30. Data Types of Parameters (continued)

SQL Data Type

REXX

RPG

ILE RPG

VARBINARY - - VARBINARY structured form
(see ILE RPG in |Embedded SQi]
|Erogrammingb

BLOB - - BLOB structured form (see ILE
RPG in [Embedded SQIL]
|!2rogrammingb

DATE string with 10 Data structure field without Data specification. D in position
characters within two |sub-fields or data structure that |40 of the sub-field specification.
apostrophes contains a single sub-field. Blank | DATFMT(*ISO) in position 44-80.

in position 43 and 52 of the
sub-field specification. Length is
10. or A character input field or
calculation result field.

TIME string with 8 Data structure field without Data specification. T in position
characters within two |sub-fields or data structure that |40 of the sub-field specification.
apostrophes contains a single sub-field. Blank | TIMFEMT(*ISO) in position 44-80.

in position 43 and 52 of the
sub-field specification. Length is
8. or A character input field or
calculation result field.

TIMESTAMP string with 26 Data structure field without Data specification. Z in position
characters within two |sub-fields or data structure that |40 of the sub-field specification.
apostrophes contains a single sub-field. Blank

in position 43 and 52 of the
sub-field specification. Length is
26. or A character input field or
calculation result field.

ROWID - - ROWID structured form (see ILE
RPG in |Embedded SQLl
|Er0gramming)

DataLink - - -

Indicator Variable

numeric string with
no decimal (and an

optional leading sign).

Data structure that contains a
single sub-field. B in position 43,
length must be 2, and 0 in
position 52 of the sub-field
specification.

Data specification. B in position
40, length must be <=4, and 00 in
positions 41-42 of the sub-field
specification.

Indicator variables and stored procedures

Indicator variables can be used with the CALL statement, provided host variables are used for the
parameters, to pass additional information to and from the procedure. Indicator variables are the SQL
standard means of denoting that the associated host variable should be interpreted as containing the null
value, and this is their primary use.

To indicate that an associated host variable contains the null value, the indicator variable, which is a
two-byte integer, is set to a negative value. A CALL statement with indicator variables is processed as

follows:

e If the indicator variable is negative, this denotes the null value. A default value is passed for the
associated host variable on the CALL and the indicator variable is passed unchanged.

* If the indicator variable is not negative, this denotes that the host variable contains a non-null value. In
this case, the host variable and the indicator variable are passed unchanged.

146

iSeries: DB2 Universal Database for iSeries SQL Programming

These rules of processing are the same for input parameters to the procedure as well as output
parameters returned from the procedure. When indicator variables are used with stored procedures, the
correct method of coding their handling is to check the value of the indicator variable first before using
the associated host variable.

The following example illustrates the handling of indicator variables in CALL statements. Notice that the
logic checks the value of the indicator variable before using the associated variable. Also note the method
that the indicator variables are passed into procedure PROCI (as a third argument consisting of an array
of two-byte values).

Assume a procedure was defined as follows:

CREATE PROCEDURE PROCI
(INOUT DECIMALOUT DECIMAL(7,2), INOUT DECOUT2 DECIMAL(7,2))
EXTERNAL NAME LIB1.PROC1 LANGUAGE RPGLE
GENERAL WITH NULLS)

e B S

Program CRPG
B B

D INOUT1 S 7P 2

D INOUTIIND S 4B 0

D INOUT2 S 7P 2

D INOUT2IND S 4B 0

C EVAL INOUT1 = 1

C EVAL INOUTIIND = 0

C EVAL INOUT2 = 1

C EVAL INOUT2IND = -2
C/EXEC SQL CALL PROC1 (:INOUT1 :INOUTIIND , :INOUT2
C+ :INOUT2IND)
C/END-EXEC

C EVAL INOUT1 = 1

C EVAL INOUTIIND = 0

C EVAL INOUT2 =1

C EVAL INOUT2IND = -2
C/EXEC SQL CALL PROCI (:INOUT1 :INOUT1IND , :INOUT2
C+ :INOUT2IND)
C/END-EXEC

C INOUT1IND IFLT 0

C* :

C* HANDLE NULL INDICATOR

C* :

C ELSE

C* :

C* INOUT1 CONTAINS VALID DATA
C* :

C ENDIF

C* :

C* HANDLE ALL OTHER PARAMETERS
C* IN A SIMILAR FASHION

C* :

C RETURN

e e

End of PROGRAM CRPG
B

Figure 5. Handling of Indicator Variables in CALL Statements (Part 1 of 2)

Chapter 9. Routines 147

e B e e T B e

Program PROC1
A B

D INOUTP S 7P 2

D INOUTP2 S 7P 2

D NULLARRAY S 4B 0 DIM(2)

C *ENTRY PLIST

C PARM INOUTP

C PARM INOUTP2

C PARM NULLARRAY

C NULLARRAY (1) IFLT 0

C* :

C* INOUTP DOES NOT CONTAIN MEANINGFUL DATA

C*

C ELSE

C* :

C* INOUTP CONTAINS MEANINGFUL DATA

C* :

C ENDIF

C* PROCESS ALL REMAINING VARIABLES

C*

C* BEFORE RETURNING, SET OUTPUT VALUE FOR FIRST

C* PARAMETER AND SET THE INDICATOR TO A NON-NEGATIV
C* VALUE SO THAT THE DATA IS RETURNED TO THE CALLING
C* PROGRAM

C*

C EVAL INOUTPZ = 20.5

C EVAL NULLARRAY(2) = 0

C*

C* INDICATE THAT THE SECOND PARAMETER IS TO CONTAIN
C* THE NULL VALUE UPON RETURN. THERE IS NO POINT

C* IN SETTING THE VALUE IN INOUTP SINCE IT WON'T BE
C* PASSED BACK TO THE CALLER.

C EVAL NULLARRAY (1) = -5

C RETURN

e e T e E

End of PROGRAM PROC1
e e T B S

Figure 5. Handling of Indicator Variables in CALL Statements (Part 2 of 2)

Returning a completion status to the calling program

For SQL procedures, any errors that are not handled in the procedure are returned to the caller in the
SQLCA. The SIGNAL and RESIGNAL control statements can be used to send error information as well.
See the [SQL Control Statements| topic in the SQL Reference for more information.

For external procedures, there are two ways to return status information. One method of returning a
status to the SQL program issuing the CALL statement is to code an extra INOUT type parameter and set
it before returning from the procedure. When the procedure being called is an existing program, this is
not always possible.

Another method of returning a status to the SQL program issuing the CALL statement is to send an
escape message to the calling program (operating system program QSQCALL) which calls the procedure.
The calling program that issues the procedure is QSQCALL. Each language has methods for signalling
conditions and sending messages. Refer to the respective language reference to determine the proper way
to signal a message. When the message is signalled, QSQCALL turns the error into
SQLCODE/SQLSTATE -443/38501.

148 iSeries: DB2 Universal Database for iSeries SQL Programming

Using User-Defined Functions (UDFs)

In writing SQL applications, you can implement some actions or operations as a UDF or as a subroutine
in your application: Although it may appear easier to implement new operations as subroutines in your
application, you might want to consider the advantages of using a UDF instead.

For example, if the new operation is something that other users or programs can take advantage of, a
UDF can help to reuse it. In addition, the function can be called directly in SQL wherever an expression
can be used. The database takes care of many data type promotions of the function arguments
automatically. For example, with DECIMAL to DOUBLE, the database allows your function to be applied
to different, but compatible data types.

In certain cases, calling the UDF directly from the database engine instead of from your application can
have a considerable performance advantage. You will notice this advantage in cases where the function
may be used in the qualification of data for further processing. These cases occur when the function is
used in row selection processing.

Consider a simple scenario where you want to process some data. You can meet some selection criteria
which can be expressed as a function SELECTION_CRITERIA(). Your application can issue the following
select statement:

SELECT A, B, C FROM T

When it receives each row, it runs the program’s SELECTION_CRITERIA function against the data to decide
if it is interested in processing the data further. Here, every row of table T must be passed back to the
application. But, if SELECTION_CRITERIA() is implemented as a UDF, your application can issue the
following statement:

SELECT C FROM T WHERE SELECTION_CRITERIA(A,B)=1

In this case, only the rows and one column of interest are passed across the interface between the
application and the database.

Another case where a UDF can offer a performance benefit is when dealing with Large Objects (LOB).
Suppose you have a function that extracts some information from a value of a LOB. You can perform this
extraction right on the database server and pass only the extracted value back to the application. This is
more efficient than passing the entire LOB value back to the application and then performing the
extraction. The performance value of packaging this function as a UDF can be enormous, depending on
the particular situation. (Note that you can also extract a portion of a LOB by using a LOB locator. See
[“Indicator variables and LOB locators” on page 19 for an example of a similar scenario.)

See the following sections for more information about UDFs:

[“UDF concepts’]

[“Writing UDFs as SQL functions” on page 151

[“Writing UDFs as external functions” on page 152

[“Examples of UDF code” on page 163

[“Using UDFs in SQL statements” on page 172]

UDF concepts

The following is a discussion of the important concepts you need to know before coding UDFs:

Types of function

Chapter 9. Routines 149

There are several types of functions:
* Built-in. These are functions provided by and shipped with the database. SUBSTR() is an example.

* System-generated. These are functions implicitly generated by the database engine when a DISTINCT
TYPE is created. These functions provide casting operations between the DISTINCT TYPE and its base

type.

* User-defined. These are functions created by users and registered to the database.

In addition, each function can be further classified as a scalar, column, or table function.

A scalar function returns a single value answer each time it is called. For example, the built-in function
SUBSTR() is a scalar function, as are many built-in functions. System-generated functions are always scalar
functions. Scalar UDFs can either be external (coded in a programming language such as C), written in
SQL, or sourced (using the implementation of an existing function).

A column function receives a set of like values (a column of data) and returns a single value answer from
this set of values. These are also called aggregating functions in DB2. Some built-in functions are column
functions. An example of a column function is the built-in function AVG(). An external UDF cannot be
defined as a column function. However, a sourced UDF is defined to be a column function if it is sourced
on one of the built-in column functions. The latter is useful for distinct types. For example, if a distinct
type SHOESIZE exists that is defined with base type INTEGER, you can define a UDF, AVG(SHOESIZE), as a
column function sourced on the existing built-in column function, AVG(INTEGER).

A table function returns a table to the SQL statement that references it. It must be referenced in the FROM
clause of a SELECT. A table function can be used to apply SQL language processing power to data that is
not DB2 data, or to convert such data into a DB2 table. It can, for example, take a file and convert it to a
table, sample data from the World Wide Web and tabularize it, or access a Lotus® Notes® database and
return information about mail messages, such as the date, sender, and the text of the message. This
information can be joined with other tables in the database. A table function can be defined as a external
function or an SQL function; it cannot be defined as a sourced function.

Full name of a function
The full name of a function using *SQL naming is <schema-name>.<function-name>.

The full name of a function in *SYS naming is <schema-name>/<function-name>. Function names cannot
be qualified using *SYS naming in DML statements.

You can use this full name anywhere you refer to a function. For example:
QGPL.SNOWBLOWER _SIZE SMITH.FOO QSYS2.SUBSTR QSYS2.FLOOR

However, you may also omit the <schema-name>., in which case, DB2 must determine the function to
which you are referring. For example:

SNOWBLOWER_SIZE FOO SUBSTR FLOOR

Path

The concept of path is central to DB2’s resolution of unqualified references that occur when schema-name is
not specified. The path is an ordered list of schema names that is used for resolving unqualified
references to UDFs and UDTs. In cases where a function reference matches a function in more than one
schema in the path, the order of the schemas in the path is used to resolve this match. The path is
established by means of the SQLPATH option on the precompile commands for static SQL. The path is
set by the SET PATH statement for dynamic SQL. When the first SQL statement that runs in an activation
group runs with SQL naming, the path has the following default value:

"QSYS") IIQSYszll s II<ID>II

150 iSeries: DB2 Universal Database for iSeries SQL Programming

This applies to both static and dynamic SQL, where <ID> represents the current statement authorization
ID.

When the first SQL statement in an activation group runs with system naming, the default path is *LIBL.
Overloaded function names

Function names can be overloaded. Overloaded means that multiple functions, even in the same schema,
can have the same name. Two functions cannot, however, have the same signature. A function signature is
the qualified function name and the data types of all the function parameters in the order in that they are
defined.

Function resolution

It is the function resolution algorithm that takes into account the facts of overloading and function path to
choose the best fit for every function reference, whether it is a qualified or an unqualified reference. All
functions, even built-in functions, are processed through the function selection algorithm. The function
resolution algorithm does not take into account the type of a function. So a table function may be
resolved to as the best fit function, even though the usage of the reference requires an scalar function, or
vice-versa.

The concept of path, the SET PATH statement, signatures, and the function resolution algorithm are

discussed in detail in the SQL Reference

Length of time that the UDF runs

UDFs are called from within an SQL statement execution, which is normally a query operation that
potentially runs against thousands of rows in a table. Because of this, the UDF needs to be called from a
low level of the database.

As a consequence of being called from such a low level, there are certain resources (locks and seizes)
being held at the time the UDF is called and for the duration of the UDF execution. These resources are
primarily locks on any tables and indexes involved in the SQL statement that is calling the UDFE. Due to
these held resources, it is important that the UDF not perform operations that may take an extended
period of time (minutes or hours). Because of the critical nature of holding resources for long periods of
time, the database only waits for a certain period of time for the UDF to finish. If the UDF does not finish
in the time allocated, the SQL statement calling the UDF will fail.

The default UDF wait time used by the database should be more than sufficient to allow a normal UDF
to run to completion. However, if you have a long running UDF and want to increase the wait time, this
can be done using the UDF_TIME_OUT option in the query INI file. See [Query Options File QAQQINI| in
the Database Performance and Query Optimization information for details on the INI file. Note, however,
that there is a maximum time limit that the database will not exceed, regardless of the value specified for
UDF_TIME_OUT.

Since resources are held while the UDF is run, it is important that the UDF not operate on the same
tables or indexes allocated for the original SQL statement or, if it does, that it does not perform an
operation that conflicts with the one being performed in the SQL statement. Specifically, the UDF should
not try to perform any insert, update, or delete row operation on those tables.

Writing UDFs as SQL functions

SQL functions are UDFs that you have defined, written, and registered using the CREATE FUNCTION
SQL statement. As such, they are written using only the SQL language and their definition is completely

Chapter 9. Routines 151

contained within one (potentially large) CREATE FUNCTION statement. The creation of an SQL function
causes the registration of the UDF, generates the executable code for the function, and defines to the
database the details of how parameters are passed.

See the following examples:
* [SQL scalar UDFs example”|
* [’SQL table UDFs example”]|

SQL scalar UDFs example

For example, a function that returns a priority based on a date:

CREATE FUNCTION PRIORITY(indate DATE) RETURNS CHAR(7)
LANGUAGE SQL
BEGIN
RETURN (
CASE WHEN indate>CURRENT DATE-3 DAYS THEN 'HIGH'
WHEN indate>CURRENT DATE-7 DAYS THEN 'MEDIUM'
ELSE 'LOW'
EN
)s
END

The function can then be called as:
SELECT ORDERNBR, PRIORITY(ORDERDUEDATE) FROM ORDERS

SQL table UDFs example

For example, a function that returns data based on a date:

CREATE FUNCTION PROJFUNC(indate DATE)
RETURNS TABLE (PROJNO CHAR(6), ACTNO SMALLINT, ACTSTAFF DECIMAL(5,2),
ACSTDATE DATE, ACENDATE DATE)
LANGUAGE SQL
BEGIN
RETURN SELECT * FROM PROJACT
WHERE ACSTDATE<=indate;
END

The function can then be called as:
SELECT * FROM TABLE(PROJFUNC(:datehv)) X

SQL table functions are required to have one and only one RETURN statement.

Writing UDFs as external functions

You can write the executable code of a UDF in a language other than SQL. While this method is slightly
more cumbersome than an SQL function, it provides the flexibility for you to use whatever language is
most effective for you. The executable code can be contained in either a program or service program.

External functions can also be written in Java. For a description of the parameters, see [Java SQL Routines
in the IBM Developer Kit for Java topic.

To write a UDF as an external function, examine these topics:

“Registering UDFs” on page 153|

* ['Passing arguments from DB2 to external functions” on page 156|

* ['Table function considerations” on page 161|

* ["Error processing for UDFs” on page 161|

* ['Threads considerations” on page 162

[‘Parallel processing” on page 162|

152 iSeries: DB2 Universal Database for iSeries SQL Programming

* ["Fenced or unfenced considerations” on page 163|

* [’Save and restore considerations” on page 163]

Registering UDFs
A UDF must be registered in the database before the function can be recognized and used by SQL. You
can register a UDF using the [CREATE FUNCTION] statement.

The statement allows you to specify the language and name of the program, along with options such as
DETERMINISTIC, ALLOW PARALLEL, and RETURNS NULL ON NULL INPUT. These options help to
more specifically identify to the database the intention of the function and how calls to the database can
be optimized.

You should register an external UDF after you have written and completely tested the actual code. It is
possible to define the UDF before actually writing it. However, to avoid any problems with running your

UDE, you are encouraged to write and test it extensively before registering it.

For examples of registering UDFs, see the following:

* [“Example: Exponentiation”|

+ [“Example: String search”|

+ [“Example: String search over UDT” on page 154|
* [“Example: AVG over a UDT” on page 154
* [“Example: Counting” on page 155

* [“Example: Table function returning Document IDs” on page 155|

Note: See [‘Code disclaimer” on page 2| for information pertaining to code examples.

Example: Exponentiation: Suppose you have written an external UDF to perform exponentiation of
floating point values, and want to register it in the MATH schema.

CREATE FUNCTION MATH.EXPON (DOUBLE, DOUBLE)
RETURNS DOUBLE
EXTERNAL NAME 'MYLIB/MYPGM(MYENTRY)'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
RETURNS NULL ON NULL INPUT
ALLOW PARALLEL

In this example, the RETURNS NULL ON NULL INPUT is specified since you want the result to be
NULL if either argument is NULL. As there is no reason why EXPON cannot be parallel, the ALLOW
PARALLEL value is specified.

Example: String search: Suppose you have written a UDF to look for the existence of a given short
string, passed as an argument, within a given CLOB value, that is also passed as an argument. The UDF
returns the position of the string within the CLOB if it finds the string, or zero if it does not.

The C program was written to return a FLOAT result. Suppose you know that when it is used in SQL, it
should always return an INTEGER. You can create the following function:

CREATE FUNCTION FINDSTRING (CLOB(500K), VARCHAR(200))
RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRING
EXTERNAL NAME 'MYLIB/MYPGM(FINDSTR)'
LANGUAGE C
PARAMETER STYLE DB2SQL

Chapter 9. Routines 153

NO SQL

DETERMINISTIC

NO EXTERNAL ACTION

RETURNS NULL ON NULL INPUT

Note that a CAST FROM clause is used to specify that the UDF program really returns a FLOAT value,
but you want to cast this to INTEGER before returning the value to the SQL statement which used the
UDE Also, you want to provide your own specific name for the function. Because the UDF was not
written to handle NULL values, you use the RETURNS NULL ON NULL INPUT.

Example: BLOB string search: Because you want the "string_find” function to work on BLOBs as well
as on CLOBs, you define another FINDSTRING taking BLOB as the first parameter:

CREATE FUNCTION FINDSTRING (BLOB(500K), VARCHAR(200))
RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRING_BLOB
EXTERNAL NAME 'MYLIB/MYPGM(FINDSTR)'
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
RETURNS NULL ON NULL INPUT

This example illustrates overloading of the UDF name and shows that multiple UDFs can share the same
program. Note that although a BLOB cannot be assigned to a CLOB, the same source code can be used.
There is no programming problem in the above example as the interface for BLOB and CLOB between
DB2 and the UDF program is the same: length followed by data.

Example: String search over UDT: This example is a continuation of the previous example. Say you are
satisfied with the FINDSTRING functions from [“Example: BLOB string search,”| but now you have
defined a distinct type BOAT with source type BLOB. You also want FINDSTRING to operate on values
having data type BOAT, so you create another FINDSTRING function. This function is sourced on the
FINDSTRING which operates on BLOB values in [‘Example: BLOB string search.”| Note the further
overloading of FINDSTRING in this example:

CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(200))

RETURNS INT

SPECIFIC