
iSeries

DB2 Universal Database for iSeries SQL Programming

Version 5 Release 3

ERserver

���

iSeries

DB2 Universal Database for iSeries SQL Programming

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices” on page 303.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722–SS1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not

run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|

Contents

Chapter 1. SQL Programming 1

Code disclaimer 2

Chapter 2. What’s new for V5R3 in DB2

Universal Database for iSeries SQL

Programming 3

Chapter 3. Print this topic 5

Chapter 4. Introduction to DB2 UDB for

iSeries Structured Query Language . . . 7

SQL concepts 7

SQL relational database and system terminology . 9

SQL and system naming conventions 9

Types of SQL statements 9

SQL Communication Area (SQLCA) 11

SQL diagnostics area 11

SQL objects 11

Schemas 12

Data Dictionary 12

Journals and Journal Receivers 12

Catalogs 12

Tables, Rows, and Columns 12

Aliases 13

Views 13

Indexes 13

Constraints 13

Triggers 14

Stored Procedures 14

Sequences 14

User-defined functions 14

User-defined types 14

SQL Packages 15

Application program objects 15

User source file member 16

Output source file member 17

Program 17

SQL Package 17

Module 17

Service program 18

Chapter 5. Data Definition Language

(DDL) 19

Creating a schema 19

Creating a table 20

Adding and removing constraints to a table . . 20

Referential integrity and tables 20

Example: Removing constraints 22

Check pending 23

Creating a table using LIKE 23

Creating a table using AS 24

Creating and altering a materialized query table . . 24

Declaring a global temporary table 25

Creating and altering an identity column 25

ROWID 26

Creating and using sequences 27

Comparing identity columns and sequences . . 28

Creating descriptive labels using the LABEL ON

statement 29

Describing an SQL object using COMMENT ON . . 30

Changing a table definition 30

Adding a column 30

Changing a column 31

Allowable conversions 31

Deleting a column 32

Order of operations for ALTER TABLE statement 32

Creating and using ALIAS names 33

Creating and using views 33

WITH CHECK OPTION on a View 35

Adding indexes 37

Catalogs in database design 38

Getting catalog information about a table . . . 38

Getting catalog information about a column . . 38

Dropping a database object 39

Chapter 6. Data Manipulation Language 41

Retrieving data using the SELECT statement . . . 41

Basic SELECT statement 42

Specifying a search condition using the WHERE

clause 43

GROUP BY clause 45

HAVING clause 47

ORDER BY clause 48

Static SELECT statements 50

Handling Null values 50

Special registers in SQL statements 51

Casting data types 53

Date, Time, and Timestamp data types 53

Handling duplicate rows 54

Performing complex search conditions 54

Joining data from more than one table 57

Using table expressions 62

Using the UNION keyword to combine

subselects 64

Using EXCEPT keyword 68

Using INTERSECT keyword 70

Data retrieval errors 72

Inserting rows using the INSERT statement 73

Inserting rows using the VALUES keyword . . . 75

Inserting rows into a table using a

select-statement 75

Inserting multiple rows in a table with the

blocked INSERT statement 76

Inserting into tables with referential constraints 76

Inserting into an identity column 77

Changing data in a table using the UPDATE

statement 78

Updating a table using a scalar-subselect . . . 80

Updating a table with rows from another table 80

© Copyright IBM Corp. 1998, 2004 iii

||

||

||

 | |
 | |

 | |
 | |

 | |

Updating tables with referential constraints . . . 80

Updating an identity column 81

Updating data as it is retrieved from a table . . 82

Removing rows from a table using the DELETE

statement 83

Deleting from tables with referential constraints 84

Using Subqueries 86

Subqueries in SELECT statements 87

Correlated subqueries 90

Chapter 7. Sort sequences and

normalization in SQL 95

Sort sequence used with ORDER BY and row

selection 95

Sort sequence and ORDER BY 96

Row selection 97

Sort sequence and views 98

Sort Sequence and the CREATE INDEX Statement 98

Sort sequence and constraints 99

ICU Sort Sequence 99

Normalization 100

Chapter 8. Data Protection 101

Security for SQL objects 101

Authorization ID 102

Views 102

Auditing 102

Data integrity 102

Concurrency 103

Journaling 104

Commitment control 105

Savepoints 108

Atomic operations 110

Constraints 111

Save/Restore 112

Damage tolerance 113

Index recovery 113

Catalog integrity 113

User auxiliary storage pool (ASP) 114

Independent auxiliary storage pool (IASP) . . . 114

Chapter 9. Routines 115

Stored Procedures 115

Defining an external procedure 116

Defining an SQL procedure 117

Invoking a stored procedure 121

Returning Result Sets from Stored Procedures 134

Parameter passing conventions for stored

procedures and UDFs 141

Indicator variables and stored procedures . . . 146

Returning a completion status to the calling

program 148

Using User-Defined Functions (UDFs) 149

UDF concepts 149

Writing UDFs as SQL functions 151

Writing UDFs as external functions 152

Examples of UDF code 163

Using UDFs in SQL statements 172

Triggers 175

SQL triggers 176

External triggers 180

Debugging an SQL routine 185

Improving performance of procedures and

functions 186

Improving implementation of procedures and

functions 186

Redesigning routines for performance 188

Chapter 10. Processing special data

types 191

Using Large Objects (LOBs) 191

Understanding large object data types (BLOB,

CLOB, DBCLOB) 191

Understanding large object locators 192

Example: Using a locator to work with a CLOB

value 192

Indicator variables and LOB locators 196

LOB file reference variables 197

Example: Extracting a document to a file . . . 197

Example: Inserting data into a CLOB column 200

Display layout of LOB columns 200

Journal entry layout of LOB columns 200

Using User-defined distinct types (UDT) 201

Defining a UDT 202

Defining tables with UDTs 202

Manipulating UDTs 203

Examples of using UDTs 203

Examples of using UDTs, UDFs, and LOBs . . . 207

Example: Defining the UDT and UDFs 208

Example: Using LOB function to populate the

database 209

Example: Using UDFs to query instances of

UDTs 209

Example: Using LOB locators to manipulate

UDT instances 209

Using DataLinks 210

NO LINK CONTROL 211

FILE LINK CONTROL (with File System

Permissions) 211

FILE LINK CONTROL (with Database

Permissions) 211

Commands used for working with DataLinks 211

Chapter 11. Using SQL in different

environments 215

Using a Cursor 215

Types of cursors 215

Example of using a cursor 217

Using the multiple-row FETCH statement . . . 222

Unit of work and open cursors 226

Dynamic SQL Applications 226

Designing and running a dynamic SQL

application 229

Processing non-SELECT statements 229

Processing SELECT statements and using an

SQLDA 231

Use of dynamic SQL through client interfaces . . 243

Accessing data with Java 243

Accessing data with Domino 243

iv iSeries: DB2 Universal Database for iSeries SQL Programming

||
||

 |
 | |
 |
 | |
 | |

Accessing data with Open Database

Connectivity (ODBC) 243

Accessing data with Portable Application

Solutions Environment (PASE) 243

Accessing data with iSeries Access for Windows

OLE DB Provider 243

Accessing data with Net.data 244

Accessing data through a Linux partition . . . 244

Accessing data using Distributed Relational

Database (DRDA) 244

Using Interactive SQL 244

Starting interactive SQL 245

Using statement entry function 246

Prompting 246

Using the list selection function 249

Session services description 251

Exiting interactive SQL 252

Using an existing SQL session 252

Recovering an SQL session 253

Accessing remote databases with interactive

SQL 253

Using the SQL Statement Processor 255

Execution of statements after errors occur . . . 256

Commitment control in the SQL statement

processor 256

Source member listing for the SQL statement

processor 256

Chapter 12. Distributed Relational

Database Function and SQL 259

DB2 UDB for iSeries distributed relational database

support 259

DB2 UDB for iSeries distributed relational database

example program 260

SQL package support 261

Valid SQL statements in an SQL package . . . 262

Considerations for creating an SQL package . . 262

CCSID considerations for SQL 265

Connection management and activation groups 265

Connections and conversations 265

Source code for PGM1: 266

Source code for PGM2: 267

Source code for PGM3: 267

Multiple connections to the same relational

database 269

Implicit connection management for the default

activation group 270

Implicit connection management for nondefault

activation groups 271

Distributed support 271

Determining connection type 272

Connect and commitment control restrictions 274

Determining connection status 274

Distributed unit of work connection

considerations 276

Ending connections 276

Distributed unit of work 277

Managing distributed unit of work connections 277

Checking connection status 279

Cursors and prepared statements 280

Application requester driver programs 280

Problem handling 281

DRDA stored procedure considerations 281

Chapter 13. Related information . . . 283

DB2 UDB for iSeries Sample Tables 283

Department Table (DEPARTMENT) 284

Employee Table (EMPLOYEE) 285

Employee Photo Table (EMP_PHOTO) 287

Employee ResumeTable (EMP_RESUME) . . . 288

Employee to Project Activity Table

(EMPPROJACT) 289

Project Table (PROJECT) 291

Project Activity Table (PROJACT) 293

Activity Table (ACT) 296

Class Schedule Table (CL_SCHED) 297

In Tray Table (IN_TRAY) 297

Organization Table (ORG) 298

Staff Table (STAFF) 299

Sales Table (SALES) 300

DB2 UDB for iSeries CL Command Descriptions 302

Notices 303

Programming Interface Information 305

Trademarks 305

Terms and conditions for downloading and

printing information 306

Index 307

Contents v

|
||
||
||
|
||

 | |

 | |

 |
 | |

vi iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 1. SQL Programming

These topics describe the iSeries server implementation of the Structured Query Language (SQL) using

DB2 UDB for iSeries and the DB2 UDB Query Manager and SQL Development Kit Version 5 licensed

program.

In this topic, you will find the following information

Chapter 2, “What’s new for V5R3 in DB2 Universal Database for iSeries SQL Programming,” on

page 3
This describes the new topics in V5R3

Chapter 3, “Print this topic,” on page 5
Learn how to display or print a PDF copy of this information

Chapter 4, “Introduction to DB2 UDB for iSeries Structured Query Language,” on page 7
Look here for SQL concepts, object definitions, and other conceptual info.

Chapter 5, “Data Definition Language (DDL),” on page 19
Learn how to create objects using SQL.

Chapter 6, “Data Manipulation Language,” on page 41
Learn how to manipulate objects using SQL.

Chapter 7, “Sort sequences and normalization in SQL,” on page 95
Learn how to use sort sequence.

Chapter 8, “Data Protection,” on page 101
Learn about securing your data

Chapter 9, “Routines,” on page 115
Learn about procedures, functions, and triggers

Chapter 10, “Processing special data types,” on page 191
Learn about special data types

Chapter 11, “Using SQL in different environments,” on page 215
Use SQL in different environments

Chapter 12, “Distributed Relational Database Function and SQL,” on page 259
Learn how to use Distributed Relational database function with SQL.

Chapter 13, “Related information,” on page 283
Related information such as sample tables, and CL commands.

 The examples of SQL statements shown in this guide are based on the sample tables in DB2 UDB for

iSeries Sample Tables, and assume the following:

v They are shown in the interactive SQL environment or they are written in ILE C or in COBOL. EXEC

SQL and END-EXEC are used to delimit an SQL statement in a COBOL program. A description of how

to use SQL statements in a COBOL program and ILE C programs can be found in Embedded SQL.

v Each SQL example is shown on several lines, with each clause of the statement on a separate line.

v SQL keywords are highlighted.

© Copyright IBM Corp. 1998, 2004 1

v Table names provided in the sample tables use the schema CORPDATA. Table names that are not

found in the Sample Tables should use schemas you create.

v Calculated columns are enclosed in parentheses, (), and brackets, [].

v The SQL naming convention is used.

v The APOST and APOSTSQL precompiler options are assumed although they are not the default

options in COBOL. Character string literals within SQL and host language statements are delimited by

apostrophes (’).

v A sort sequence of *HEX is used, unless otherwise noted.

v The complete syntax of the SQL statement is usually not shown in any one example. For the complete

description and syntax of any of the statements described in this guide, see the SQL Reference

Whenever the examples vary from these assumptions, it is stated.

Because this guide is for the application programmer, most of the examples are shown as if they were

written in an application program. However, many examples can be slightly changed and run

interactively by using interactive SQL. The syntax of an SQL statement, when using interactive SQL,

differs slightly from the format of the same statement when it is embedded in a program.

Code disclaimer

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM®, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

2 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|
|
|

|
|

|

|
|

|

|
|
|

Chapter 2. What’s new for V5R3 in DB2 Universal Database

for iSeries SQL Programming

The following information was added or updated in this release of the information:

v “Creating and using sequences” on page 27

v “Using EXCEPT keyword” on page 68

v “Using INTERSECT keyword” on page 70

v “Creating and altering a materialized query table” on page 24

v “Normalization” on page 100

v “Returning Result Sets from Stored Procedures” on page 134

v “Improving performance of procedures and functions” on page 186

© Copyright IBM Corp. 1998, 2004 3

4 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 3. Print this topic

To view or download the PDF version of this document, select SQL Programming (about 2572KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using

Netscape Communicator.

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html)

.

© Copyright IBM Corp. 1998, 2004 5

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

6 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 4. Introduction to DB2 UDB for iSeries Structured

Query Language

These topics describe the iSeries server implementation of the Structured Query Language (SQL) using

DB2 UDB for iSeries and the DB2 UDB Query Manager and SQL Development Kit Version 5 licensed

program. SQL manages information based on the relational model of data. SQL statements can be

embedded in high-level languages, dynamically prepared and run, or run interactively. For information

about embedded SQL, see Embedded SQL.

SQL consists of statements and clauses that describe what you want to do with the data in a database

and under what conditions you want to do it.

This topic describes the following:

v “SQL concepts”

v “SQL objects” on page 11

v “Application program objects” on page 15

SQL can access data in a remote relational database, using the IBM Distributed Relational Database

Architecture* (DRDA*). This function is described in the Chapter 12, “Distributed Relational Database

Function and SQL” topic in this guide. Further information about DRDA® is contained in the Distributed

Database Programming book.

SQL concepts

DB2 UDB for iSeries SQL consists of the following main parts:

v SQL run-time support

SQL run-time parses SQL statements and runs any SQL statements. This support is that part of the

Operating System/400* (OS/400) licensed program which allows applications that contain SQL

statements to be run on systems where the DB2 UDB Query Manager and SQL Development Kit

licensed program is not installed.

v SQL precompilers

SQL precompilers support precompiling embedded SQL statements in host languages. The following

languages are supported:

– ILE C

– ILE C++ for iSeries

– ILE COBOL

– COBOL for iSeries

– iSeries PL/I

– RPG III (part of RPG for iSeries)

– ILE RPG

The SQL host language precompilers prepare an application program containing SQL statements. The

host language compilers then compile the precompiled host source programs. For more information

about precompiling, see the topic Preparing and Running a Program with SQL Statements in the

Embedded SQL Programming information. The precompiler support is part of the DB2 UDB Query

Manager and SQL Development Kit licensed program.

v SQL interactive interface

© Copyright IBM Corp. 1998, 2004 7

SQL interactive interface allows you to create and run SQL statements. For more information about

interactive SQL, see Using Interactive SQL. Interactive SQL is part of the DB2 UDB Query Manager

and SQL Development Kit licensed program.

v Run SQL Scripts

The Run SQL Scripts window in iSeries Navigator allows you to create, edit, run, and troubleshoot

scripts of SQL statements. Run SQL Scripts is a part of iSeries™ Navigator.

v Run SQL Statements CL command

RUNSQLSTM allows you to run a series of SQL statements, which are stored in a source file. See Using

the SQL Statement Processor for more information about the Run SQL Statements command.

v DB2 Query Manager for iSeries

DB2 Query Manager for iSeries provides a prompt-driven interactive interface that allows you to create

data, add data, maintain data, and run reports on the databases. Query Manager is part of the DB2

UDB Query Manager and SQL Development Kit licensed program. For more information, refer to the

Query Manager Use book.

v SQL REXX Interface

The SQL REXX interface allows you to run SQL statements in a REXX procedure. For more information

about using SQL statements in REXX procedures, see the topic Coding SQL Statements in REXX

Applications in the Embedded SQL Programming information.

v SQL Call Level Interface

DB2 UDB for iSeries supports the SQL Call Level Interface. This allows users of any of the ILE

languages to access SQL functions directly through bound calls to a service program provided by the

system. Using the SQL Call Level Interface, one can perform all the SQL functions without the need for

a precompile. This is a standard set of procedure calls to prepare SQL statements, run SQL statements,

fetch rows of data, and even do advanced functions such as accessing the catalogs and binding

program variables to output columns.

For a complete description of all the available functions, and their syntax, see the SQL Call Level

Interface (ODBC) book.

v QSQPRCED API

This Application Program Interface (API) provides an extended dynamic SQL capability. SQL

statements can be prepared into an SQL package and then run using this API. Statements prepared into

a package by this API persist until the package or statement is explicitly dropped. For more

information about the QSQPRCED API, see the QSQPRCED topic in the Programming section of the

iSeries Information Center. For general information about APIs, see the OS/400® API topic in the

iSeries Information Center.

v QSQCHKS API

This API syntax checks SQL statements. For more information about the QSQCHKS API, see the

QSQCHKS topic in the Programming section of the iSeries Information Center. For general information

about APIs, see the OS/400 API topic in the iSeries Information Center.

v DB2 Multisystem

This feature of the operating system allows your data to be distributed across multiple servers. For

more information about DB2 Multisystem, see the DB2® Multisystem book.

v DB2 UDB Symmetric Multiprocessing

This feature of the operating system provides the query optimizer with additional methods for

retrieving data that include parallel processing. Symmetric multiprocessing (SMP) is a form of

parallelism achieved on a single system where multiple processors (CPU and I/O processors) that

share memory and disk resource work simultaneously toward achieving a single end result. This

parallel processing means that the database manager can have more than one (or all) of the system

processors working on a single query simultaneously. See the topic Controlling Parallel Processing in

the Database Performance and Query Optimization information for details on how to control parallel

processing.

8 iSeries: DB2 Universal Database for iSeries SQL Programming

For more information, see the following sections:

v “SQL relational database and system terminology”

v “SQL and system naming conventions”

v “Types of SQL statements”

v “SQL diagnostics area” on page 11

v “SQL Communication Area (SQLCA)” on page 11

SQL relational database and system terminology

In the relational model of data, all data is perceived as existing in tables. DB2 UDB for iSeries objects are

created and maintained as system objects. The following table shows the relationship between system

terms and SQL relational database terms. For more information about database programming using the

traditional file interface, see the Database Programming book.

 Table 1. Relationship of System Terms to SQL Terms

System Terms SQL Terms

Library. Groups related objects and allows you to find

the objects by name.

Schema. Consists of a library, a journal, a journal

receiver, an SQL catalog, and optionally a data

dictionary. A schema groups related objects and allows

you to find the objects by name.

Physical file. A set of records. Table. A set of columns and rows.

Record. A set of fields. Row. The horizontal part of a table containing a serial

set of columns.

Field. One or more characters of related information of

one data type.

Column. The vertical part of a table of one data type.

Logical file. A subset of fields and records of one or

more physical files.

View. A subset of columns and rows of one or more

tables.

SQL Package. An object type that is used to run SQL

statements.

Package. An object type that is used to run SQL

statements.

User Profile Authorization name or Authorization ID.

SQL and system naming conventions

There are two naming conventions that can be used in DB2 UDB for iSeries programming: system (*SYS)

and SQL (*SQL). The naming convention used affects the method for qualifying file and table names and

the terms used on the interactive SQL displays. The naming convention used is selected by a parameter

on the SQL commands or, for REXX, selected through the SET OPTION statement. See Qualification of

unqualified object names in the SQL Reference for more details.

System naming (*SYS)

In the system naming convention, tables and other SQL objects in an SQL statement are qualified by

schema name in the form:

schema/table

SQL naming (*SQL)

In the SQL naming convention, tables and other SQL objects in an SQL statement are qualified by the

schema name in the form:

schema.table

Types of SQL statements

There are four basic types of SQL statements:

v Data definition language (DDL) statements

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 9

v Data manipulation language (DML) statements

v Dynamic SQL statements

v Miscellaneous statements

SQL statements can operate on objects that are created by SQL as well as externally described physical

files and single-format logical files, whether they reside in an SQL schema. They do not refer to the IDDU

dictionary definition for program-described files. Program-described files appear as a table with only a

single column.

 SQL DDL Statements SQL DML Statements

ALTER SEQUENCE

ALTER TABLE

COMMENT ON

CREATE ALIAS

CREATE DISTINCT TYPE

CREATE FUNCTION

CREATE INDEX

CREATE PROCEDURE

CREATE SCHEMA

CREATE SEQUENCE

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

DECLARE GLOBAL TEMPORARY TABLE

DROP ALIAS

DROP DISTINCT TYPE

DROP FUNCTION

DROP INDEX

DROP PACKAGE

DROP PROCEDURE

DROP SEQUENCE

DROP SCHEMA

DROP TABLE

DROP TRIGGER

DROP VIEW

GRANT DISTINCT TYPE

GRANT FUNCTION

GRANT PACKAGE

GRANT PROCEDURE

GRANT SEQUENCE

GRANT TABLE

LABEL ON

RENAME

REVOKE DISTINCT TYPE

REVOKE FUNCTION

REVOKE PACKAGE

REVOKE PROCEDURE

REVOKE SEQUENCE

REVOKE TABLE

CLOSE

COMMIT

DECLARE CURSOR

DELETE

FETCH

INSERT

LOCK TABLE

OPEN

REFRESH TABLE

RELEASE SAVEPOINT

ROLLBACK

SAVEPOINT

SELECT INTO

SET variable

UPDATE

VALUES INTO

10 iSeries: DB2 Universal Database for iSeries SQL Programming

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Dynamic SQL Statements Miscellaneous Statements

DESCRIBE

EXECUTE

EXECUTE IMMEDIATE

PREPARE

BEGIN DECLARE SECTION

CALL

CONNECT

DECLARE PROCEDURE

DECLARE STATEMENT

DECLARE VARIABLE

DESCRIBE TABLE

DISCONNECT

END DECLARE SECTION

FREE LOCATOR

GET DIAGNOSTICS

HOLD LOCATOR

INCLUDE

RELEASE

SET CONNECTION

SET ENCRYPTION PASSWORD

SET OPTION

SET PATH

SET RESULT SETS

SET SCHEMA

SET TRANSACTION

SIGNAL

WHENEVER

SQL DDL statements are described in Chapter 5, “Data Definition Language (DDL),” on page 19. SQL

DML statements are described in “Retrieving data using the SELECT statement” on page 41 and

Chapter 6, “Data Manipulation Language,” on page 41. You can find complete descriptions of these

statements in the SQL Reference book.

SQL Communication Area (SQLCA)

An SQLCA is a set of variables that is updated at the end of the execution of every SQL statement. For

more information, see SQL Communication Area topic in the SQL Reference or Handling SQL error return

codes in the Embedded SQL Programming.

SQL diagnostics area

The SQL diagnostics area is a set of information maintained by the database manager about the SQL

statement that was most recently run. It can be accessed from your program by using the GET

DIAGNOSTICS SQL statement. See the GET DIAGNOSTICS statement in the SQL Reference or Using the

SQL diagnostics area in Embedded SQL Programming.

SQL objects

SQL objects are schemas, data dictionaries, journals, catalogs, tables, aliases, views, indexes, constraints,

triggers, sequences, stored procedures, user-defined functions, user-defined types, and SQL packages.

SQL creates and maintains these objects as system objects. A brief description of these objects follows:

v “Schemas” on page 12

v “Data Dictionary” on page 12

v “Journals and Journal Receivers” on page 12

v “Catalogs” on page 12

v “Tables, Rows, and Columns” on page 12

v “Aliases” on page 13

v “Views” on page 13

v “Indexes” on page 13

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 11

|

|
|
|
|

|
|
|

|

|

|

|

|

|

|

|

v “Constraints” on page 13

v “Triggers” on page 14

v “Stored Procedures” on page 14

v “Sequences” on page 14

v “User-defined functions” on page 14

v “User-defined types” on page 14

v “SQL Packages” on page 15

Schemas

A schema provides a logical grouping of SQL objects. A schema consists of a library, a journal, a journal

receiver, a catalog, and optionally, a data dictionary. Tables, views, and system objects (such as programs)

can be created, moved, or restored into any system library. All system files can be created or moved into

an SQL schema if the SQL schema does not contain a data dictionary. If the SQL schema contains a data

dictionary then:

v Source physical files or nonsource physical files with one member can be created, moved, or restored

into an SQL schema.

v Logical files cannot be placed in an SQL schema because they cannot be described in the data

dictionary.

You can create and own many schemas. The term collection can be used synonymously with schema.

Data Dictionary

A schema contains a data dictionary if it was created before Version 3 Release 1 or if the WITH DATA

DICTIONARY clause was specified on the CREATE SCHEMA statements. A data dictionary is a set of

tables containing object definitions. If SQL created the dictionary, then it is automatically maintained by

the system. You can work with data dictionaries by using the interactive data definition utility (IDDU),

which is part of the OS/400 program. For more information about IDDU, see the IDDU Use

book.

Journals and Journal Receivers

A journal and journal receiver are used to record changes to tables and views in the database. The

journal and journal receiver are then used in processing SQL COMMIT, ROLLBACK, SAVEPOINT, and

RELEASE SAVEPOINT statements. The journal and journal receiver can also be used as an audit trail or

for forward or backward recovery. For more information about journaling, see the Journaling topic. For

more information about commitment control, see the Commitment control topic.

Catalogs

An SQL catalog consists of a set of tables and views which describe tables, views, indexes, packages,

procedures, functions, files, sequences, triggers, and constraints. This information is contained in a set of

cross-reference tables in libraries QSYS and QSYS2. In each SQL schema there is a set of views built over

the catalog tables that contains information about the tables, views, indexes, packages, files, and

constraints in the schema.

A catalog is automatically created when you create a schema. You cannot drop or explicitly change the

catalog.

For more information about SQL catalogs, see the Catalogs topic in the SQL Reference book.

Tables, Rows, and Columns

A table is a two-dimensional arrangement of data consisting of rows and columns. The row is the

horizontal part containing one or more columns. The column is the vertical part containing one or more

12 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|

|

|

|

|

|

rows of data of one data type. All data for a column must be of the same type. A table in SQL is a keyed

or nonkeyed physical file. See the Data types topic in the SQL Reference book for a description of data

types.

A materialized query table is a table that is used to contain materialized data that is derived from one or

more source tables specified by a select-statement. See “Creating and altering a materialized query table”

on page 24 for more details.

A partitioned table is a table whose data is contained in one or more local partitions (members). See DB2

Multisystem for more details.

Data in a table can be distributed across servers. For more information about distributed tables, see the

DB2 Multisystem book.

Aliases

An alias is an alternate name for a table or view. You can use an alias to refer to a table or view in those

cases where an existing table or view can be referred to. Additionally, aliases can be used to join table

members. For more information about aliases, see the Alias topic in the SQL Reference book.

Views

A view appears like a table to an application program; however, a view contains no data. It is created

over one or more tables. A view can contain all the columns of given tables or some subset of them, and

can contain all the rows of given tables or some subset of them. The columns can be arranged differently

in a view than they are in the tables from which they are taken. A view in SQL is a special form of a

nonkeyed logical file.

For more information about views, see Views in the SQL Reference book in the iSeries Information Center.

Indexes

An SQL index is a subset of the data in the columns of a table that are logically arranged in either

ascending or descending order. Each index contains a separate arrangement. These arrangements are used

for ordering (ORDER BY clause), grouping (GROUP BY clause), and joining. An SQL index is a keyed

logical file.

The index is used by the system for faster data retrieval. Creating an index is optional. You can create

any number of indexes. You can create or drop an index at any time. The index is automatically

maintained by the system. However, because the indexes are maintained by the system, a large number

of indexes can adversely affect the performance of applications that change the table.

For more information about coding effective indexes, see Using indexes to speed access to large tables

topic in the Database Performance and Query Optimization book in the iSeries Information Center.

Constraints

Constraints are rules enforced by the database manager. DB2 UDB for iSeries supports the following

constraints:

v Unique constraints

A unique constraint is the rule that the values of the key are valid only if they are unique. Unique

constraints can be created using the CREATE TABLE and ALTER TABLE statements. Although

CREATE INDEX can create a unique index that also guarantees uniqueness, such an index is not a

constraint.

Unique constraints are enforced during the execution of INSERT and UPDATE statements. A PRIMARY

KEY constraint is a form of UNIQUE constraint. The difference is that a PRIMARY KEY cannot contain

any nullable columns.

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 13

v Referential constraints

A referential constraint is the rule that the values of the foreign key are valid only if:

– They appear as values of a parent key, or

– Some component of the foreign key is null.

Referential constraints are enforced during the execution of INSERT, UPDATE, and DELETE

statements.

v Check constraints

A check constraint is a rule that limits the values allowed in a column or group of columns. Check

constraints can be added using the CREATE TABLE and ALTER TABLE statements. Check constraints

are enforced during the execution of INSERT and UPDATE statements. To satisfy the constraint, each

row of data inserted or updated in the table must make the specified condition either TRUE or

unknown (due to a null value).

For more information about constraints, see “Constraints” on page 111.

Triggers

A trigger is a set of actions that are run automatically whenever a specified event occurs to a specified

base table. An event can be an insert, update, delete, or read operation. The trigger can be run either

before or after the event. DB2 UDB for iSeries supports SQL insert, update, and delete triggers and

external triggers. For more information about triggers, see“Triggers” on page 175 in this book or see the

Triggering automatic events in your database topic in the Database Programming book.

Stored Procedures

A stored procedure is a program that can be called using the SQL CALL statement. DB2 UDB for iSeries

supports external stored procedures and SQL procedures. External stored procedures can be any system

program, service program, or REXX procedure. They cannot be System/36™ programs or procedures. An

SQL procedure is defined entirely in SQL and can contain SQL statements including SQL control

statements. For more information about stored procedures, see the Stored Procedures topic in this book.

Sequences

A sequence is a data area object that provides a quick and easy way of generating unique numbers. You

can use sequences to replace an IDENTITY column or user-generated numeric column. A sequence has

similar uses as these alternatives. For more information about creating and using sequences, see the

“Creating and using sequences” on page 27 topic in this book.

User-defined functions

A user-defined function is a program that can be invoked like any built-in function. DB2 UDB for iSeries

supports external functions, SQL functions, and sourced functions. External functions can be any system

ILE program or service program. An SQL function is defined entirely in SQL and can contain SQL

statements, including SQL control statements. A sourced function is built over any built-in or any existing

user-defined function. You can create a scalar function or a table function as either an SQL or external

function. For more information about user-defined functions, see “Using User-Defined Functions (UDFs)”

on page 149.

User-defined types

A user-defined type is a distinct data type that users can define independently of those supplied by the

database management system. Distinct data types map on a one-to-one basis to existing database types.

For more information about user-defined types, see the “Using User-defined distinct types (UDT)” on

page 201.

14 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|
|
|

SQL Packages

An SQL package is an object that contains the control structure produced when the SQL statements in an

application program are bound to a remote relational database management system (DBMS). The DBMS

uses the control structure to process SQL statements encountered while running the application program.

SQL packages are created when a relational database name (RDB parameter) is specified on a Create SQL

(CRTSQLxxx) command and a program object is created. Packages can also be created using the

CRTSQLPKG command. For more information about packages and distributed relational database

function, see Chapter 12, “Distributed Relational Database Function and SQL.”

SQL packages can also be created using the QSQPRCED API. The references to SQL Packages within this

book refer exclusively to Distributed Program SQL packages. QSQPRCED uses SQL Packages to provide

Extended Dynamic SQL support. For more information about QSQPRCED, see the QSQPRCED topic in

the OS/400 API section of the iSeries Information Center.

Note: The xxx in this command refers to the host language indicators: CI for the ILE C language, CPPI

for the ILE C++ for iSeries language, CBL for the COBOL for iSeries language, CBLI for the ILE

COBOL language, PLI for the iSeries PL/I language, RPG for the RPG for iSeries language, and

RPGI for the ILE RPG language.

Application program objects

The process of creating a DB2 UDB for iSeries application program may result in the creation of several

objects. This section briefly describes the process of creating a DB2 UDB for iSeries application. DB2 UDB

for iSeries supports both non-ILE and ILE precompilers. Application programs may be either distributed

or nondistributed. Additional information about creating DB2 UDB for iSeries application programs is in

the topic Preparing and Running a Program with SQL Statements in the Embedded SQL Programming

information.

With DB2 UDB for iSeries you may need to manage the following objects:

v The original source

v Optionally, the module object for ILE programs

v The program or service program

v The SQL package for distributed programs

With a nondistributed non-ILE DB2 UDB for iSeries program, you must manage only the original source

and the resulting program. The following shows the objects involved and steps that happen during the

precompile and compile processes for a nondistributed non-ILE DB2 UDB for iSeries program:

 With a nondistributed ILE DB2 UDB for iSeries program, you may need to manage the original source,

the modules, and the resulting program or service program. The following shows the objects involved

and steps that happen during the precompile and compile processes for a nondistributed ILE DB2 UDB

for iSeries program when OBJTYPE(*PGM) is specified on the precompile command:

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 15

With a distributed non-ILE DB2 UDB for iSeries program, you must manage the original source, the

resulting program, and the resulting package. The following shows the objects and steps that occur

during the precompile and compile processes for a distributed non-ILE DB2 UDB for iSeries program:

 With a distributed ILE DB2 UDB for iSeries program, you must manage the original source, module

objects, the resulting program or service program, and the resulting packages. An SQL package can be

created for each distributed module in a distributed ILE program or service program. The following

shows the objects and steps that occur during the precompile and compile processes for a distributed ILE

DB2 UDB for iSeries program:

Note: The access plans associated with the DB2 UDB for iSeries distributed program object are not

created until the program is run locally.

For more information, see the following sections:

v “User source file member”

v “Output source file member” on page 17

v “Program” on page 17

v “SQL Package” on page 17

v “Module” on page 17

v “Service program” on page 18

User source file member

A source file member contains the programmer’s application language and SQL statements. You can

create and maintain the source file member by using the source entry utility (SEU), a part of the IBM IBM

WebSphere Studio Development Suite for iSeries for iSeries licensed program.

16 iSeries: DB2 Universal Database for iSeries SQL Programming

Output source file member

The SQL precompile creates an output source file member. By default, the precompile process creates a

temporary source file QSQLTxxxxx in QTEMP, or you can specify the output source file as a permanent

file name on the precompile command. If the precompile process uses the QTEMP library, the system

automatically deletes the file when the job completes. A member with the same name as the program

name is added to the output source file. This member contains the following items:

v Calls to the SQL run-time support, which have replaced embedded SQL statements

v Parsed and syntax-checked SQL statements

By default, the precompiler calls the host language compiler. For more information about precompilers,

see the topic Preparing and Running a Program with SQL Statements in the Embedded SQL Programming

information.

Program

A program is the object which you can run that is created as a result of the compile process for non-ILE

compiles or as a result of the bind process for ILE compiles.

An access plan is a set of internal structures and information that tells SQL how to run an embedded

SQL statement most effectively. It is created only when the program has successfully created. Access

plans are not created during program creation for SQL statements if the statements:

v Refer to a table or view that cannot be found

v Refer to a table or view to which you are not authorized

The access plans for such statements are created when the program is run. If, at that time, the table or

view still cannot be found or you are still not authorized, a negative SQLCODE is returned. Access plans

are stored and maintained in the program object for nondistributed SQL programs and in the SQL

package for distributed SQL programs.

SQL Package

An SQL package contains the access plans for a distributed SQL program.

An SQL package is an object that is created when:

v A distributed SQL program is successfully created using the RDB parameter on CRTSQLxxx

commands.

v When the Create SQL Package (CRTSQLPKG) command is run.

When a distributed SQL program is created, the name of the SQL package and an internal consistency

token are saved in the program. These are used at run time to find the SQL package and to verify that

the SQL package is correct for this program. Because the name of the SQL package is critical for running

distributed SQL programs, an SQL package cannot be:

v Moved

v Renamed

v Duplicated

v Restored to a different library

Module

A module is an Integrated Language Environment® (ILE) object that is created by compiling source code

using the CRTxxxMOD command (or any of the CRTBNDxxx commands where xxx is C, CBL, CPP, or

RPG). You can run a module only if you use the Create Program (CRTPGM) command to bind it into a

program. You typically bind several modules together, but you can bind a module by itself. Modules

contain information about the SQL statements; however, the SQL access plans are not created until the

Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language 17

modules are bound into either a program or service program. See the Create Program (CRTPGM) in the

Command Language topic for more information about Create Program (CRTPGM).

Service program

A service program is an Integrated Language Environment (ILE) object that provides a means of

packaging externally supported callable routines (functions or procedures) into a separate object. Bound

programs and other service programs can access these routines by resolving their imports to the exports

provided by a service program. The connections to these services are made when the calling programs

are created. This improves call performance to these routines without including the code in the calling

program.

18 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 5. Data Definition Language (DDL)

Data Definition Language (DDL) describes the portion of SQL that allows you to create, alter, and destroy

database objects. These database objects include schemas, tables, views, sequences, catalogs, indexes, and

aliases. For a brief tutorial on how to use SQL to create objects, see Getting started with SQL.

For details, see the following sections:

v “Creating a schema”

v “Creating a table” on page 20

v “Creating a table using LIKE” on page 23

v “Creating a table using AS” on page 24

v “Creating and altering a materialized query table” on page 24

v “Declaring a global temporary table” on page 25

v “Creating and altering an identity column” on page 25

v “ROWID” on page 26

v “Creating and using sequences” on page 27

v “Creating descriptive labels using the LABEL ON statement” on page 29

v “Describing an SQL object using COMMENT ON” on page 30

v “Changing a table definition” on page 30

v “Creating and using ALIAS names” on page 33

v “Creating and using views” on page 33

v “Adding indexes” on page 37

v “Catalogs in database design” on page 38

v “Dropping a database object” on page 39

Creating a schema

A schema provides a logical grouping of SQL objects. A schema consists of a library, a journal, a journal

receiver, a catalog, and optionally, a data dictionary. Tables, views, and system objects (such as programs)

can be created, moved, or restored into any system library. All system files can be created or moved into

an SQL schema if the SQL schema does not contain a data dictionary. If the SQL schema contains a data

dictionary then:

v Source physical files or nonsource physical files with one member can be created, moved, or restored

into an SQL schema.

v Logical files cannot be placed in an SQL schema because they cannot be described in the data

dictionary.

You can create and own many schemas.

Schemas are created using the CREATE SCHEMA statement. For example:

Create a schema called DBTEMP.

CREATE SCHEMA DBTEMP

For more information about the CREATE SCHEMA statement, see CREATE SCHEMA in the SQL

Reference book.

© Copyright IBM Corp. 1998, 2004 19

Creating a table

A table can be visualized as a two-dimensional arrangement of data consisting of rows and columns. The

row is the horizontal part containing one or more columns. The column is the vertical part containing one

or more rows of data of one data type. All data for a column must be of the same type. A table in SQL is

a keyed or nonkeyed physical file. See the Data types topic in the SQL Reference book for a description

of data types.

Tables are created using the CREATE TABLE statement. The definition must include its name and the

names and attributes of its columns. The definition may include other attributes of the table such as

primary key.

Example: Given that you have administrative authority, create a table named ’INVENTORY’ with the

following columns:

v Part number: Integer between 1 and 9 999, must not be null

v Description: Character of length 0 to 24

v Quantity on hand: Integer between 0 and 100000

The primary key is PARTNO.

CREATE TABLE INVENTORY

 (PARTNO SMALLINT NOT NULL,

 DESCR VARCHAR(24),

 QONHAND INT,

 PRIMARY KEY(PARTNO))

You can also add constraints to a table. See “Adding and removing constraints to a table” and

“Referential integrity and tables” for details.

For more information, see also:“Check pending” on page 23 and “Example: Removing constraints” on

page 22.

Adding and removing constraints to a table

Constraints can be added to a new table or an existing table. You can add a unique or primary key, a

referential constraint, or a check constraint, using the ADD constraint clause on the CREATE TABLE or

the ALTER TABLE statements. For example, add a primary key to a new table or to an existing table. The

following example illustrates adding a primary key to an existing table using the ALTER TABLE

statement.

ALTER TABLE CORPDATA.DEPARTMENT

 ADD PRIMARY KEY (DEPTNO)

To make this key a unique key, replace the keyword PRIMARY with UNIQUE.

You can remove a constraint using the same ALTER TABLE statement:

ALTER TABLE CORPDATA.DEPARTMENT

 DROP PRIMARY KEY (DEPTNO)

Referential integrity and tables

Referential integrity is the condition of a set of tables in a database in which all references from one table

to another are valid.

Consider the following example: (These sample tables are given in DB2 UDB for iSeries Sample Tables:

v CORPDATA.EMPLOYEE serves as a master list of employees.

v CORPDATA.DEPARTMENT acts as a master list of all valid department numbers.

v CORPDATA.EMP_ACT provides a master list of activities performed for projects.

20 iSeries: DB2 Universal Database for iSeries SQL Programming

Other tables refer to the same entities described in these tables. When a table contains data for which

there is a master list, that data should actually appear in the master list, or the reference is not valid. The

table that contains the master list is the parent table, and the table that refers to it is a dependent table.

When the references from the dependent table to the parent table are valid, the condition of the set of

tables is called referential integrity.

Stated another way, referential integrity is the state of a database in which all values of all foreign keys

are valid. Each value of the foreign key must also exist in the parent key or be null. This definition of

referential integrity requires an understanding of the following terms:

v A unique key is a column or set of columns in a table which uniquely identify a row. Although a table

can have several unique keys, no two rows in a table can have the same unique key value.

v A primary key is a unique key that does not allow nulls. A table cannot have more than one primary

key.

v A parent key is either a unique key or a primary key which is referenced in a referential constraint.

v A foreign key is a column or set of columns whose values must match those of a parent key. If any

column value used to build the foreign key is null, then the rule does not apply.

v A parent table is a table that contains the parent key.

v A dependent table is the table that contains the foreign key.

v A descendent table is a table that is a dependent table or a descendent of a dependent table.

Enforcement of referential integrity prevents the violation of the rule which states that every non-null

foreign key must have a matching parent key.

For more information about referential integrity, see the following topics:

v “Adding or dropping referential constraints”

v “Example: Adding referential constraints”

SQL supports the referential integrity concept with the CREATE TABLE and ALTER TABLE statements.

For detailed descriptions of these commands, see the SQL Reference book.

Adding or dropping referential constraints

Constraints are rules that ensure that references from one table, a dependent table, to data in another

table, the parent table, are valid. You use referential constraints to ensure Referential integrity.

Use the SQL CREATE TABLE and ALTER TABLE statements to add or change referential constraints.

With a referential constraint, non-null values of the foreign key are valid only if they also appear as

values of a parent key. When you define a referential constraint, you specify:

v A primary or unique key

v A foreign key

v Delete and update rules that specify the action taken with respect to dependent rows when the parent

row is deleted or updated.

Optionally, you can specify a name for the constraint. If a name is not specified, one is automatically

generated.

Once a referential constraint is defined, the system enforces the constraint on every INSERT, DELETE,

and UPDATE operation performed through SQL or any other interface including iSeries Navigator, CL

commands, utilities, or high-level language statements.

Example: Adding referential constraints

The rule that every department number shown in the sample employee table must appear in the

department table is a referential constraint. This constraint ensures that every employee belongs to an

Chapter 5. Data Definition Language (DDL) 21

existing department. The following SQL statements create the CORPDATA.DEPARTMENT and

CORPDATA.EMPLOYEE tables with those constraint relationships defined.

CREATE TABLE CORPDATA.DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL PRIMARY KEY,

 DEPTNAME VARCHAR(29) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL

 CONSTRAINT REPORTS_TO_EXISTS

 REFERENCES CORPDATA.DEPARTMENT (DEPTNO)

 ON DELETE CASCADE)

CREATE TABLE CORPDATA.EMPLOYEE

 (EMPNO CHAR(6) NOT NULL PRIMARY KEY,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) CONSTRAINT WORKDEPT_EXISTS

 REFERENCES CORPDATA.DEPARTMENT (DEPTNO)

 ON DELETE SET NULL ON UPDATE RESTRICT,

 PHONENO CHAR(4),

 HIREDATE DATE,

 JOB CHAR(8),

 EDLEVEL SMALLINT NOT NULL,

 SEX CHAR(1),

 BIRTHDATE DATE,

 SALARY DECIMAL(9,2),

 BONUS DECIMAL(9,2),

 COMM DECIMAL(9,2),

 CONSTRAINT UNIQUE_LNAME_IN_DEPT UNIQUE (WORKDEPT, LASTNAME))

In this case, the DEPARTMENT table has a column of unique department numbers (DEPTNO) which

functions as a primary key, and is a parent table in two constraint relationships:

REPORTS_TO_EXISTS

is a self-referencing constraint in which the DEPARTMENT table is both the parent and the

dependent in the same relationship. Every non-null value of ADMRDEPT must match a value of

DEPTNO. A department must report to an existing department in the database. The DELETE

CASCADE rule indicates that if a row with a DEPTNO value n is deleted, every row in the table

for which the ADMRDEPT is n is also deleted.

WORKDEPT_EXISTS

establishes the EMPLOYEE table as a dependent table, and the column of employee department

assignments (WORKDEPT) as a foreign key. Thus, every value of WORKDEPT must match a

value of DEPTNO. The DELETE SET NULL rule says that if a row is deleted from

DEPARTMENT in which the value of DEPTNO is n, then the value of WORKDEPT in

EMPLOYEE is set to null in every row in which the value was n. The UPDATE RESTRICT rule

says that a value of DEPTNO in DEPARTMENT cannot be updated if there are values of

WORKDEPT in EMPLOYEE that match the current DEPTNO value.

Constraint UNIQUE_LNAME_IN_DEPT in the EMPLOYEE table causes LASTNAME to be unique within

a department. While this constraint is unlikely, it illustrates how a constraint made up of several columns

can be defined at the table level.

Example: Removing constraints

The following example removes the primary key over column DEPTNO in table DEPARTMENT. The

constraints REPORTS_TO_EXISTS, defined on table DEPARTMENT, and WORKDEPT_EXISTS, defined on

table EMPLOYEE, will be removed as well, since the primary key being removed is the parent key in

those constraint relationships.

 ALTER TABLE CORPDATA.EMPLOYEE DROP PRIMARY KEY

22 iSeries: DB2 Universal Database for iSeries SQL Programming

You can also remove a constraint by name, as in the following example:

 ALTER TABLE CORPDATA.DEPARTMENT

 DROP CONSTRAINT UNIQUE_LNAME_IN_DEPT

Check pending

Referential constraints and check constraints can be in a state known as check pending, where potential

violations of the constraint exist. For referential constraints, a violation occurs when potential mismatches

exist between parent and foreign keys. For check constraints, a violation occurs when potential values

exist in columns which are limited by the check constraint. When the system determines that the

constraint may have been violated (such as after a restore operation), the constraint is marked as check

pending. When this happens, restrictions are placed on the use of tables involved in the constraint. For

referential constraints, the following restrictions apply:

v No input or output operations are allowed on the dependent file.

v Only read and insert operations are allowed on the parent file.

When a check constraint is in check pending, the following restrictions apply:

v Read operations are not allowed on the file.

v Inserts and updates are allowed and the constraint is enforced.

To get a constraint out of check pending, you must:

1. Disable the relationship with the Change Physical File Constraint (CHGPFCST) CL command.

2. Correct the key (foreign, parent, or both) data for referential constraints or column data for check

constraints.

3. Enable the constraint again with the CHGPFCST CL command.

You can identify the rows that are in violation of the constraint with the Display Check Pending

Constraint (DSPCPCST) CL command.

For more information about working with tables in check pending, see the Database Programming book.

Creating a table using LIKE

You can create a table that looks like another table. That is, you can create a table that includes all of the

column definitions from an existing table. The definitions that are copied are:

v Column names (and system column names)

v Data type, precision, length, and scale

v CCSID

v Column text (LABEL ON)

v Column heading (LABEL ON)

If the LIKE clause immediately follows the table name and is not enclosed in parenthesis, the following

attributes are also included:

v Default value

v Nullability

If the specified table or view contains an identity column, you must specify INCLUDING IDENTITY on

the CREATE TABLE statement if you want the identity column to exist in the new table. The default

behavior for CREATE TABLE is EXCLUDING IDENTITY. If the specified table or view is a non-SQL

created physical file or logical file, any non-SQL attributes are removed.

Create a table EMPLOYEE2 that includes all of the columns in EMPLOYEE.

CREATE TABLE EMPLOYEE2 LIKE EMPLOYEE

Chapter 5. Data Definition Language (DDL) 23

For complete details about CREATE TABLE LIKE, see CREATE TABLE in the SQL Reference topic.

Creating a table using AS

CREATE TABLE AS creates a table from the result of a SELECT statement. All of the expressions that can

be used in a SELECT statement can be used in a CREATE TABLE AS statement. You can also include all

of the data from the table or tables that you are selecting from.

For example, create a table named EMPLOYEE3 that includes all of the column definitions from

EMPLOYEE where the DEPTNO = D11.

CREATE TABLE EMPLOYEE3 AS

 (SELECT PROJNO, PROJNAME, DEPTNO

 FROM EMPLOYEE

 WHERE DEPTNO = ’D11’) WITH NO DATA

If the specified table or view contains an identity column, you must specify INCLUDING IDENTITY on

the CREATE TABLE statement if you want the identity column to exist in the new table. The default

behavior for CREATE TABLE is EXCLUDING IDENTITY. The WITH NO DATA clause indicates that the

column definitions are to be copied without the data. If you wanted to include the data in the new table,

EMPLOYEE3, include the WITH DATA clause. For more information about using SELECT, see

“Retrieving data using the SELECT statement” on page 41. If the specified query includes a non-SQL

created physical file or logical file, any non-SQL result attributes are removed. For complete details about

CREATE TABLE AS, see CREATE TABLE in the SQL Reference topic.

Creating and altering a materialized query table

A materialized query table is a table whose definition is based on the result of a query. As such, the

materialized query table typically contains precomputed results based on the data existing in the table or

tables that its definition is based on. In a future release, the optimizer will look at the materialized query

table and determine whether a query will run more efficiently against a materialized query table than the

base table or tables. If it will run faster, then the query will run against the materialized query table. You

can directly query a materialized query table.

Assume a very large transaction table named TRANS contains one row for each transaction processed by

a company. The table is defined with many columns. Create a materialized query table for the TRANS

table that contains daily summary data for the date and amount of a transaction by issuing the following:

CREATE TABLE STRANS

 AS (SELECT YEAR AS SYEAR, MONTH AS SMONTH, DAY AS SDAY, SUM(AMOUNT) AS SSUM

 FROM TRANS

 GROUP BY YEAR, MONTH, DAY)

 DATA INITIALLY DEFERRED

 REFRESH DEFERRED

 MAINTAINED BY USER

This materialized query table specifies that the table is not populated at the time that it is created by

using the DATA INITIALLY DEFERRED clause. REFRESH DEFERRED indicates that changes made to

TRANS are not reflected in STRANS. Additionally, this table is maintained by the user, enabling the user

to use ALTER, INSERT, DELETE, and UPDATE.

To populate the materialized query table or refresh the table after it has already been populated, use the

REFRESH TABLE statement. This will cause the query associated with the materialized query table to be

run and the table filled with the results of the query. To populate table STRANS, run the following

statement:

REFRESH TABLE STRANS

You can create a materialized query table from an existing base table as long as the result of the

select-statement provides a set of columns that match the columns in the existing table (same number of

24 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

columns and compatible column definitions). For example, create a table TRANSCOUNT. Then, change

the base table TRANSCOUNT into a materialized query table:

To create the table:

CREATE TABLE TRANSCOUNT

 (ACCTID SMALLINT NOT NULL,

 LOCID SMALLINT,

 YEAR DATE

 CNT INTEGER)

You can alter this table to be a materialized query table:

ALTER TABLE TRANSCOUNT

 ADD MATERIALIZED QUERY

 (SELECT ACCTID, LOCID, YEAR, COUNT(*) AS CNT

 FROM TRANS

 GROUP BY ACCTID, LOCID, YEAR)

 DATA INITIALLY DEFERRED

 REFRESH DEFERRED

 MAINTAINED BY USER

Finally, you can change a materialized query table back to a base table. For example:

ALTER TABLE TRANSCOUNT

 DROP MATERIALIZED QUERY

In this example, the table TRANSCOUNT is not dropped, but it is no longer a materialized query table.

Declaring a global temporary table

You can create a temporary table for use with your current session using the DECLARE GLOBAL

TEMPORARY TABLE statement. This temporary table does not appear in the system catalog and cannot

be shared by other sessions. When you end your session, the rows of the table are deleted and the table

is dropped.

The syntax of this statement is similar to CREATE TABLE, including the LIKE and AS clause.

For example, create a temporary table ORDERS:

DECLARE GLOBAL TEMPORARY TABLE ORDERS

 (PARTNO SMALLINT NOT NULL,

 DESCR VARCHAR(24),

 QONHAND INT)

 ON COMMIT DELETE ROWS

This table is created in QTEMP. To reference the table using a schema name, use either SESSION or

QTEMP. You can issue SELECT, INSERT, UPDATE, and DELETE statements against this table, the same

as any other table. You can drop this table by issuing the DROP TABLE statement:

DROP TABLE ORDERS

For complete details, see DECLARE GLOBAL TEMPORARY TABLE in the SQL Reference topic.

Creating and altering an identity column

Every time that a new row is added to a table with an identity column, the identity column value in the

new row is incremented (or decremented) by the system. Only columns of type SMALLINT, INTEGER,

BIGINT, DECIMAL, or NUMERIC can be created as identity columns. You are allowed only one identity

column per table. When you are changing a table definition, only a column that you are adding can be

specified as an identity column; existing columns cannot.

Chapter 5. Data Definition Language (DDL) 25

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|

|

When you create a table, you can define a column in the table to be an identity column. For example,

create a table ORDERS with 3 columns called ORDERNO, SHIPPED_TO, and ORDER_DATE. Define

ORDERNO as an identity column.

CREATE TABLE ORDERS

 (ORDERNO SMALLINT NOT NULL

 GENERATED ALWAYS AS IDENTITY

 (START WITH 500

 INCREMENT BY 1

 CYCLE),

 SHIPPED_TO VARCHAR (36) ,

 ORDER_DATE DATE)

This column is defined with starting value of 500, incremented by 1 for every new row inserted, and will

recycle when the maximum value is reached. In this example, the maximum value for the identity

column is the maximum value for the data type. Because the data type is defined as SMALLINT, the

range of values that can be assigned to ORDERNO is from 500 to 32767. When this column value reaches

32767, it will restart at 500 again. If 500 is still assigned to a column, and a unique key is specified on the

identity column, then a duplicate key error is returned. The next insert will attempt to use 501. If you do

not have a unique key specified for the identity column, 500 is used again, regardless of how many times

it appears in the table.

For a larger range of values, specify the column to be an INTEGER or even a BIGINT. If you wanted the

value of the identity column to decrease, specify a negative value for the INCREMENT option. It is also

possible to specify the exact range of numbers by using MINVALUE and MAXVALUE.

You can modify the attributes of an existing identity column using the ALTER TABLE statement. For

example, if you wanted to restart the identity column with a new value:

ALTER TABLE ORDER

 ALTER COLUMN ORDERNO

 RESTART WITH 1

You can also drop the identity attribute from a column:

ALTER TABLE ORDER

 ALTER COLUMN ORDERNO

 DROP IDENTITY

The column ORDERNO remains as a SMALLINT column, but the identity attribute is dropped. The

system will no longer generate values for this column.

Identity columns are similar to sequences. See “Comparing identity columns and sequences” on page 28

for details.

ROWID

Using ROWID is another way to have the system assign a unique value to a column in a table. ROWID is

similar to identity columns, but rather than being an attribute of a numeric column, it is a separate data

type. To create a table similar to the identity column example:

CREATE TABLE ORDERS

 (ORDERNO ROWID

 GENERATED ALWAYS,

 SHIPPED_TO VARCHAR (36) ,

 ORDER_DATE DATE)

For complete details about ROWID, see the SQL Reference topic.

26 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|

Creating and using sequences

A sequence is an object that allows you to generate values quickly and easily. Sequences are similar to

identity columns in that they both generate unique values. However, sequences are independent objects

from a table. As such, they are not tied to a column and are accessed separately. Additionally, they are

not treated as any part of a transaction’s unit of work.

You create a sequence using the CREATE SEQUENCE statement. For an example similar to the identity

column example, create a sequence ORDER_SEQ:

CREATE SEQUENCE ORDER_SEQ

START WITH 500

INCREMENT BY 1

MAXVALUE 1000

CYCLE

CACHE 24

This sequence is defined with starting value of 500, incremented by 1 for every use, and will recycle

when the maximum value is reached. In this example, the maximum value for the sequence is 1000.

When this value reaches 1000, it will restart at 500 again.

Once this sequence is created, you can insert values into a column using the sequence. For example,

insert the next value of the sequence ORDER_SEQ into a table ORDERS with columns ORDERNO and

CUSTNO.

First, create table ORDERS:

CREATE TABLE ORDERS

(ORDERNO SMALLINT NOT NULL,

CUSTNO SMALLINT);

Then, insert the sequence value:

INSERT INTO ORDERS (ORDERNO, CUSTNO)

VALUES (NEXT VALUE FOR ORDER_SEQ, 12)

Running the following statement, returns the values in the columns:

SELECT *

FROM ORDERS

 Table 2. Results for SELECT from table ORDERS

ORDERNO CUSTNO

500 12

In this example, the next value for the sequence ORDER is inserted into the ORDERNO column. Issue the

INSERT statement again. Then run the SELECT.

 Table 3. Results for SELECT from table ORDERS

ORDERNO CUSTNO

500 12

501 12

You can also insert the previous value for sequence ORDER by using the PREVIOUS VALUE expression.

You can use NEXT VALUE and PREVIOUS VALUE in the following expressions:

v Within the select-clause of a SELECT statement or SELECT INTO statement as long as the statement

does not contain a DISTINCT keyword, a GROUP BY clause, an ORDER BY clause, a UNION

keyword, an INTERSECT keyword, or EXCEPT keyword

v Within a VALUES clause of an INSERT statement

Chapter 5. Data Definition Language (DDL) 27

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|

|

|
|

||

||

||
|
|
|

||

||

||

||
|

|
|

|
|
|

|

v Within the select-clause of the fullselect of an INSERT statement

v Within the SET clause of a searched or positioned UPDATE statement, though NEXT VALUE cannot be

specified in the select-clause of the subselect of an expression in the SET clause

You can alter a sequence by issuing the ALTER SEQUENCE statement. Sequences can be altered in the

following ways:

v Restarting the sequence

v Changing the increment between future sequence values

v Setting or eliminating the minimum or maximum values

v Changing the number of cached sequence numbers

v Changing the attribute that determines whether the sequence can cycle or not

v Changing whether sequence numbers must be generated in order of request

For example, change the increment of values of sequence ORDER from 1 to 5:

ALTER SEQUENCE ORDER_SEQ

INCREMENT BY 5

After this alter is complete, run the INSERT statement again, and then the SELECT. Now the table

contains the following columns:

 Table 4. Results for SELECT from table ORDERS

ORDERNO CUSTNO

500 12

501 12

528 12

Notice that the next value that the sequence uses is a 528. At first glance, this number appears to be

incorrect. However, look at the events that lead up to this assignment. First, when the sequence was

originally create, a cache value of 24 was assigned. The system assigns the first 24 values for this cache.

Next, the sequence was altered. When the ALTER SEQUENCE statement is issued, the system drops the

assigned values and starts up again with the next available value; in this case the original 24 that was

cached, plus the next increment, 5. If the original CREATE SEQUENCE statement did not have the

CACHE clause, the system automatically assigns a default cache value of 20. If that sequence was altered,

then the next available value is 25.

Identity columns are similar to sequence objects. See “Comparing identity columns and sequences” for

details.

Comparing identity columns and sequences

While IDENTITY columns and sequences are similar in many ways, there are also differences. Examine

these differences before you decide which to use.

An identity column has the following characteristics:

v An identity column can be defined as part of a table only when the table is created. Once a table is

created, you cannot alter it to add an identity column. (However, existing identity column

characteristics may be altered.)

v An identity column automatically generates values for a single table.

v When an identity column is defined as GENERATED ALWAYS, the values used are always generated

by the database manager. Applications are not allowed to provide their own values during the

modification of the contents of the table.

v The IDENTITY_VAL_LOCAL function can be used to see the most recently assigned value for an

identity column.

A sequence has the following characteristics:

28 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|

|
|

|

|

|

|

|

|

|

|
|

|
|

||

||

||

||

||
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|

|

|
|
|

|
|

|

v A sequence is a system object of type *DTAARA that is not tied to a table.

v A sequence generates sequential values that can be used in any SQL statement.

v There are two expressions used to retrieve the next values in the sequence and to look at the previous

value assigned for the sequence. The PREVIOUS VALUE expression returns the most recently

generated value for the specified sequence for a previous statement within the current session. The

NEXT VALUE expression returns the next value for the specified sequence. The use of these

expressions allows the same value to be used across several SQL statements within several tables.

While these are not all of the characteristics of these two items, these characteristics will assist you in

determining which to use depending on your database design and the applications using the database.

Creating descriptive labels using the LABEL ON statement

Sometimes the table name, column name, view name, sequence name, alias name, or SQL package name

does not clearly define data that is shown on an interactive display of the table. By using the LABEL ON

statement, you can create a more descriptive label for the table name, column name, view name, sequence

name, alias name, or SQL package name. These labels can be seen in the SQL catalog in the LABEL

column.

The LABEL ON statement looks like this:

 LABEL ON

 TABLE CORPDATA.DEPARTMENT IS ’Department Structure Table’

 LABEL ON

 COLUMN CORPDATA.DEPARTMENT.ADMRDEPT IS ’Reports to Dept.’

After these statements are run, the table named DEPARTMENT displays the text description as

Department Structure Table and the column named ADMRDEPT displays the heading Reports to Dept. The

label for tables, views, sequence, SQL packages, and column text cannot be more than 50 characters and

the label for column headings cannot be more than 60 characters (blanks included). The following are

examples of LABEL ON statements for column headings:

This LABEL ON statement provides column heading 1 and column heading 2.

 ...+....1....+....2....+....3....+....4....+....5....+....6..

 LABEL ON COLUMN CORPDATA.EMPLOYEE.EMPNO IS

 ’Employee Number’

This LABEL ON statement provides 3 levels of column headings for the SALARY column.

 ...+....1....+....2....+....3....+....4....+....5....+....6..

 LABEL ON COLUMN CORPDATA.EMPLOYEE.SALARY IS

 ’Yearly Salary (in dollars)’

This LABEL ON statement removes the column heading for SALARY.

 ...+....1....+....2....+....3....+....4....+....5....+....6..

 LABEL ON COLUMN CORPDATA.EMPLOYEE.SALARY IS ’’

An example of a DBCS column heading with two levels specified.

 ...+....1....+....2....+....3....+....4....+....5....+....6..

 LABEL ON COLUMN CORPDATA.EMPLOYEE.SALARY IS

 ’<AABBCCDD> <EEFFGG>’

This LABEL ON statement provides column text for the EDLEVEL column.

 ...+....1....+....2....+....3....+....4....+....5....+....6..

 LABEL ON COLUMN CORPDATA.EMPLOYEE.EDLEVEL TEXT IS

 ’Number of years of formal education’

Chapter 5. Data Definition Language (DDL) 29

|

|

|
|
|
|
|

|
|

For more information about the LABEL ON statement, see the LABEL ON statement in the SQL

Reference book.

Describing an SQL object using COMMENT ON

After you create an SQL object such as a table, view, index, package, procedure, parameter, user-defined

type, function, trigger, or sequence, you can supply information about it for future reference, such as the

purpose of the object, who uses it, and anything unusual or special about it. You can also include similar

information about each column of a table or view. Your comment must not be more than 2000 characters,

500 characters for sequences. For more information about the COMMENT ON statement, see COMMENT

ON in the SQL Reference book.

A comment is especially useful if your names do not clearly indicate the contents of the columns or

objects. In that case, use a comment to describe the specific contents of the column or objects.

An example of using COMMENT ON follows:

 COMMENT ON TABLE CORPDATA.EMPLOYEE IS

 ’Employee table. Each row in this table represents

 one employee of the company.’

Getting comments after running a COMMENT ON statement

After running a COMMENT ON statement for a table, your comments are stored in the

LONG_COMMENT column of SYSTABLES. Comments for the other objects are stored in the

LONG_COMMENT column of the appropriate catalog table. If the indicated row had already contained a

comment, the old comment is replaced by the new one. The following example gets the comments added

by the COMMENT ON statement in the previous example:

 SELECT LONG_COMMENT

 FROM CORPDATA.SYSTABLES

 WHERE NAME = ’EMPLOYEE’

Changing a table definition

Changing the definition of a table allows you to add new columns, change an existing column definition

(change its length, default value, and so on), drop existing columns, and add and remove constraints.

Table definitions are changed using the SQL ALTER TABLE statement.

You can add, change, or drop columns and add or remove constraints all with one ALTER TABLE

statement. However, a single column can be referenced only once in the ADD COLUMN, ALTER

COLUMN, and DROP COLUMN clauses. That is, you cannot add a column and then alter that column in

the same ALTER TABLE statement.

For more information, see the following topics:

v “Adding a column”

v “Changing a column” on page 31

v “Allowable conversions” on page 31

v “Deleting a column” on page 32

v “Order of operations for ALTER TABLE statement” on page 32

Adding a column

You can add a column to a table using the ADD COLUMN clause of the SQL ALTER TABLE statement.

When you add a new column to a table, the column is initialized with its default value for all existing

rows. If NOT NULL is specified, a default value must also be specified.

30 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|
|
|
|

The altered table may consist of up to 8000 columns. The sum of the byte counts of the columns must not

be greater than 32766 or, if a VARCHAR or VARGRAPHIC column is specified, 32740. If a LOB column is

specified, the sum of record data byte counts of the columns must not be greater than 15 728 640.

Changing a column

You can change a column definition in a table using the ALTER COLUMN clause of the ALTER TABLE

statement. When you change the data type of an existing column, the old and new attributes must be

compatible. “Allowable conversions” shows the conversions with compatible data types. You can always

change a character, graphic, or binary column from fixed length to varying length or LOB; or from

varying length or LOB to fixed length.

When you convert to a data type with a longer length, data will be padded with the appropriate pad

character. When you convert to a data type with a shorter length, data may be lost due to truncation. An

inquiry message prompts you to confirm the request.

If you have a column that does not allow the null value and you want to change it to now allow the null

value, use the DROP NOT NULL clause. If you have a column that allows the null value and you want

to prevent the use of null values, use the SET NOT NULL clause. If any of the existing values in that

column are the null value, the ALTER TABLE will not be performed and an SQLCODE of -190 will result.

Allowable conversions

 Table 5. Allowable Conversions

FROM data type TO data type

Decimal Numeric

Decimal Bigint, Integer, Smallint

Decimal Float

Numeric Decimal

Numeric Bigint, Integer, Smallint

Numeric Float

Bigint, Integer, Smallint Decimal

Bigint, Integer, Smallint Numeric

Bigint, Integer, Smallint Float

Float Numeric

Float Bigint, Integer, Smallint

Character DBCS-open

Character UCS-2 or UTF-16 graphic

DBCS-open Character

DBCS-open UCS-2 or UTF-16 graphic

DBCS-either Character

DBCS-either DBCS-open

DBCS-either UCS-2 or UTF-16 graphic

DBCS-only DBCS-open

DBCS-only DBCS graphic

DBCS-only UCS-2 or UTF-16 graphic

DBCS graphic UCS-2 or UTF-16 graphic

UCS-2 or UTF-16 graphic Character

Chapter 5. Data Definition Language (DDL) 31

|
|
|
|
|

Table 5. Allowable Conversions (continued)

FROM data type TO data type

UCS-2 or UTF-16 graphic DBCS-open

UCS-2 or UTF-16 graphic DBCS graphic

distinct type source type

source type distinct type

When modifying an existing column, only the attributes that you specify will be changed. All other

attributes will remain unchanged. For example, given the following table definition:

 CREATE TABLE EX1 (COL1 CHAR(10) DEFAULT ’COL1’,

 COL2 VARCHAR(20) ALLOCATE(10) CCSID 937,

 COL3 VARGRAPHIC(20) ALLOCATE(10)

 NOT NULL WITH DEFAULT)

After running the following ALTER TABLE statement:

 ALTER TABLE EX1 ALTER COLUMN COL2 SET DATA TYPE VARCHAR(30)

 ALTER COLUMN COL3 DROP NOT NULL

COL2 still has an allocated length of 10 and CCSID 937, and COL3 still has an allocated length of 10.

Deleting a column

You can delete a column using the DROP COLUMN clause of the ALTER TABLE statement.

Dropping a column deletes that column from the table definition. If CASCADE is specified, any views,

indexes, and constraints dependent on that column will also be dropped. If RESTRICT is specified, and

any views, indexes, or constraints are dependent on the column, the column will not be dropped and

SQLCODE of -196 will be issued.

ALTER TABLE DEPT

 DROP COLUMN NUMDEPT

Order of operations for ALTER TABLE statement

An ALTER TABLE statement is performed as a set of steps as follows:

1. Drop constraints

2. Drop materialized query table

3. Drop partition information

4. Drop columns for which the RESTRICT option was specified

5. Alter column definitions (this includes adding columns and dropping columns for which the

CASCADE option was specified)

6. Add or alter materialized query table

7. Add partitioning to a table

8. Add constraints

Within each of these steps, the order in which you specify the clauses is the order in which they are

performed, with one exception. If any columns are being dropped, that operation is logically done before

any column definitions are added or altered, in case record length is increased as a result of the ALTER

TABLE statement.

32 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|

|

|

|
|

|

|

|

Creating and using ALIAS names

When you refer to an existing table or view, or to a physical file that consists of multiple members, you

can avoid using file overrides by creating an alias. You can use the SQL CREATE ALIAS statement to do

this.

You can create an alias for

v A table or view

v A member of a table

A table alias defines a name for the file, including the specific member name. You can use this alias name

in an SQL statement in the same way that a table name is used. Unlike overrides, alias names are objects

that exist until they are dropped.

For example, if there is a multiple member file MYLIB.MYFILE with members MBR1 and MBR2, an alias

can be created for the second member so that SQL can easily refer to it.

CREATE ALIAS MYLIB.MYMBR2_ALIAS FOR MYLIB.MYFILE (MBR2)

When alias MYLIB.MYMBR2_ALIAS is specified on the following insert statement, the values are inserted

into member MBR2 in MYLIB.MYFILE.

INSERT INTO MYLIB.MYMBR2_ALIAS VALUES(’ABC’, 6)

Alias names can also be specified on DDL statements. Assume that alias MYLIB.MYALIAS exists and is

an alias for table MYLIB.MYTABLE. The following DROP statement will drop table MYLIB.MYTABLE.

DROP TABLE MYLIB.MYALIAS

If you really want to drop the alias name instead, specify the ALIAS keyword on the drop statement:

DROP ALIAS MYLIB.MYALIAS

Creating and using views

A view can be used to access data in one or more tables or views. This is done by using a SELECT

statement. See “Retrieving data using the SELECT statement” on page 41 for detail about using the

SELECT clause. For views, the ORDER BY clause cannot be used.

For example, to create a view that selects only the family name and the department of all the managers,

specify:

 CREATE VIEW CORPDATA.EMP_MANAGERS AS

 SELECT LASTNAME, WORKDEPT FROM CORPDATA.EMPLOYEE

 WHERE JOB = ’MANAGER’

Once you have created the view, you can use it in SQL statements just like a table name. You can also

change the data in the base table. The following SELECT statement displays the contents of

EMP_MANAGERS:

 SELECT *

 FROM CORPDATA.EMP_MANAGERS

The results are:

 LASTNAME WORKDEPT

THOMPSON B01

KWAN C01

GEYER E01

Chapter 5. Data Definition Language (DDL) 33

LASTNAME WORKDEPT

STERN D11

PULASKI D21

HENDERSON E11

SPENSER E21

If the select list contains elements other than columns such as expressions, functions, constants, or special

registers, and the AS clause was not used to name the columns, a column list must be specified for the

view. In the following example, the columns of the view are LASTNAME and YEARSOFSERVICE.

 CREATE VIEW CORPDATA.EMP_YEARSOFSERVICE

 (LASTNAME, YEARSOFSERVICE) AS

 SELECT LASTNAME, YEAR (CURRENT DATE - HIREDATE)

 FROM CORPDATA.EMPLOYEE

Since the results of querying this view change as the current year changes, they are not included here.

The previous view can also be defined by using the AS clause in the select list to name the columns in

the view. For example:

 CREATE VIEW CORPDATA.EMP_YEARSOFSERVICE AS

 SELECT LASTNAME,

 YEARS (CURRENT_DATE - HIREDATE) AS YEARSOFSERVICE

 FROM CORPDATA.EMPLOYEE

Using the UNION keyword, you can combine two or more subselects to form a single view. For example:

CREATE VIEW D11_EMPS_PROJECTS AS

 (SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

 UNION

 SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO = ’MA2112’ OR

 PROJNO = ’MA2113’ OR

 PROJNO = ’AD3111’)

Results in a view with the following data:

 Table 6. Creating a view as UNION results

EMPNO

000060

000150

000160

000170

000180

000190

000200

000210

000220

000230

000240

200170

34 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 6. Creating a view as UNION results (continued)

EMPNO

200220

See “Using the UNION keyword to combine subselects” on page 64 for more detail about UNION.

For restrictions when creating a view, see CREATE VIEW in the SQL Reference.

Views are created with the sort sequence in effect at the time the CREATE VIEW statement is run. The

sort sequence applies to all character, or UCS-2 or UTF-16 graphic comparisons in the CREATE VIEW

statement subselect. See Chapter 7, “Sort sequences and normalization in SQL,” on page 95 for more

information about sort sequences.

Views can also be created using the WITH CHECK OPTION to specify the level of checking that should

be done when data is inserted or updated through the view. See “WITH CHECK OPTION on a View” on

page 35 for more information.

WITH CHECK OPTION on a View

WITH CHECK OPTION is an optional clause on the CREATE VIEW statement that specifies the level of

checking to be done when inserting or updating data through a view. If the option is specified, every row

that is inserted or updated through the view must conform to the definition of that view.

WITH CHECK OPTION cannot be specified if the view is read-only. The definition of the view must not

include a subquery.

If the view is created without a WITH CHECK OPTION clause, insert and update operations that are

performed on the view are not checked for conformance to the view definition. Some checking might still

occur if the view is directly or indirectly dependent on another view that includes WITH CHECK

OPTION. Because the definition of the view is not used, rows might be inserted or updated through the

view that do not conform to the definition of the view. This means that the rows cannot be selected again

using the view.

The checking can be on of the following:

v “WITH CASCADED CHECK OPTION”

v “WITH LOCAL CHECK OPTION” on page 36

For an example of using WITH CHECK OPTION, see “Example: Cascaded check option” on page 37.

See the CREATE VIEW topic in the SQL Reference topic for additional discussion of WITH CHECK

OPTION.

WITH CASCADED CHECK OPTION

The WITH CASCADED CHECK OPTION specifies that every row that is inserted or updated through

the view must conform to the definition of the view. In addition, the search conditions of all dependent

views are checked when a row is inserted or updated. If a row does not conform to the definition of the

view, that row cannot be retrieved using the view.

For example, consider the following updatable view:

 CREATE VIEW V1 AS SELECT COL1

 FROM T1 WHERE COL1 > 10

Because no WITH CHECK OPTION is specified, the following INSERT statement is successful even

though the value being inserted does not meet the search condition of the view.

 INSERT INTO V1 VALUES (5)

Chapter 5. Data Definition Language (DDL) 35

Create another view over V1, specifying the WITH CASCADED CHECK OPTION:

 CREATE VIEW V2 AS SELECT COL1

 FROM V1 WITH CASCADED CHECK OPTION

The following INSERT statement fails because it produces a row that does not conform to the definition

of V2:

 INSERT INTO V2 VALUES (5)

Consider one more view created over V2:

 CREATE VIEW V3 AS SELECT COL1

 FROM V2 WHERE COL1 < 100

The following INSERT statement fails only because V3 is dependent on V2, and V2 has a WITH

CASCADED CHECK OPTION.

 INSERT INTO V3 VALUES (5)

However, the following INSERT statement is successful because it conforms to the definition of V2.

Because V3 does not have a WITH CASCADED CHECK OPTION, it does not matter that the statement

does not conform to the definition of V3.

 INSERT INTO V3 VALUES (200)

WITH LOCAL CHECK OPTION

WITH LOCAL CHECK OPTION is identical to WITH CASCADED CHECK OPTION except that you can

update a row so that it no longer can be retrieved through the view. This can only happen when the view

is directly or indirectly dependent on a view that was defined with no WITH CHECK OPTION clause.

For example, consider the same updatable view used in the previous example:

 CREATE VIEW V1 AS SELECT COL1

 FROM T1 WHERE COL1 > 10

Create second view over V1, this time specifying WITH LOCAL CHECK OPTION:

 CREATE VIEW V2 AS SELECT COL1

 FROM V1 WITH LOCAL CHECK OPTION

The same INSERT that failed in the previous CASCADED CHECK OPTION example succeeds now

because V2 does not have any search conditions, and the search conditions of V1 do not need to be

checked since V1 does not specify a check option.

 INSERT INTO V2 VALUES (5)

Consider one more view created over V2:

 CREATE VIEW V3 AS SELECT COL1

 FROM V2 WHERE COL1 < 100

The following INSERT is successful again because the search condition on V1 is not checked due to the

WITH LOCAL CHECK OPTION on V2, versus the WITH CASCADED CHECK OPTION in the previous

example.

 INSERT INTO V3 VALUES (5)

The difference between LOCAL and CASCADED CHECK OPTION lies in how many of the dependent

views’ search conditions are checked when a row is inserted or updated.

v WITH LOCAL CHECK OPTION specifies that the search conditions of only those dependent views

that have the WITH LOCAL CHECK OPTION or WITH CASCADED CHECK OPTION are checked

when a row is inserted or updated.

v WITH CASCADED CHECK OPTION specifies that the search conditions of all dependent views are

checked when a row is inserted or updated.

36 iSeries: DB2 Universal Database for iSeries SQL Programming

Example: Cascaded check option

Use the following table and views:

 CREATE TABLE T1 (COL1 CHAR(10))

 CREATE VIEW V1 AS SELECT COL1

 FROM T1 WHERE COL1 LIKE ’A%’

 CREATE VIEW V2 AS SELECT COL1

 FROM V1 WHERE COL1 LIKE ’%Z’

 WITH LOCAL CHECK OPTION

 CREATE VIEW V3 AS SELECT COL1

 FROM V2 WHERE COL1 LIKE ’AB%’

 CREATE VIEW V4 AS SELECT COL1

 FROM V3 WHERE COL1 LIKE ’%YZ’

 WITH CASCADED CHECK OPTION

 CREATE VIEW V5 AS SELECT COL1

 FROM V4 WHERE COL1 LIKE ’ABC%’

Different search conditions are going to be checked depending on which view is being operated on with

an INSERT or UPDATE.

v If V1 is operated on, no conditions are checked because V1 does not have a WITH CHECK OPTION

specified.

v If V2 is operated on,

– COL1 must end in the letter Z, but it doesn’t need to start with the letter A. This is because the

check option is LOCAL, and view V1 does not have a check option specified.
v If V3 is operated on,

– COL1 must end in the letter Z, but it does not need to start with the letter A. V3 does not have a

check option specified, so its own search condition must not be met. However, the search condition

for V2 must be checked since V3 is defined on V2, and V2 has a check option.
v If V4 is operated on,

– COL1 must start with ’AB’, and must end with ’YZ’. Because V4 has the WITH CASCADED

CHECK OPTION specified, every search condition for every view on which V4 is dependent must

be checked.
v If V5 is operated on,

– COL1 must start with ’AB’, but not necessarily ’ABC’. This is because V5 does not specify a check

option, so its own search condition does not need to be checked. However, because V5 is defined on

V4, and V4 had a cascaded check option, every search condition for V4, V3, V2, and V1 must be

checked. That is, COL1 must start with ’AB’ and end with ’YZ’.

If V5 were created WITH LOCAL CHECK OPTION, operating on V5 means that COL1 must start with

’ABC’ and end with ’YZ’. The LOCAL CHECK OPTION adds the additional requirement that the third

character must be a ’C’.

Adding indexes

You can use indexes to sort and select data. In addition, indexes help the system retrieve data faster for

better query performance.

Use the CREATE INDEX statement to create indexes. The following example creates an index over the

column LASTNAME in the CORPDATA.EMPLOYEE table:

 CREATE INDEX CORPDATA.INX1 ON CORPDATA.EMPLOYEE (LASTNAME)

For more information about the CREATE INDEX statement, see CREATE INDEX in the SQL Reference.

Chapter 5. Data Definition Language (DDL) 37

You can create any number of indexes. However, because the indexes are maintained by the system, a

large number of indexes can adversely affect performance. One type of index, the encoded vector index

(EVI), allows for faster scans that can be more easily processed in parallel. For more information about

indexes and query performance, see Creating an index strategy in the Database Performance and Query

Optimization information.

If an index is created that has exactly the same attributes as an existing index, the new index shares the

existing indexes’ binary tree. Otherwise, another binary tree is created. If the attributes of the new index

are exactly the same as another index, except that the new index has fewer columns, another binary tree

is still created. It is still created because the extra columns prevent the index from being used by cursors

or UPDATE statements that update those extra columns.

Indexes are created with the sort sequence in effect at the time the CREATE INDEX statement is run. The

sort sequence applies to all SBCS character fields, or UCS-2 or UTF-16 graphic fields of the index. See

Chapter 7, “Sort sequences and normalization in SQL,” on page 95 for more information about sort

sequences.

Catalogs in database design

A catalog is automatically created when you create a schema. There is also a system-wide catalog that is

always in the QSYS2 library. When an SQL object is created in a schema, information is added to both the

system catalog tables and the schema’s catalog tables. When an SQL object is created in a library, only the

QSYS2 catalog is updated. A table created with DECLARE GLOBAL TEMPORARY TABLE is not added

to a catalog. For more information about catalogs, see the SQL Reference book.

As the following examples show, you can display catalog information. You cannot INSERT, DELETE, or

UPDATE catalog information. You must have SELECT privileges on the catalog views to run the

following examples.

v “Getting catalog information about a table”

v “Getting catalog information about a column”

Getting catalog information about a table

SYSTABLES contains a row for every table and view in the SQL schema. It tells you if the object is a table

or view, the object name, the owner of the object, what SQL schema it is in, and so forth.

The following sample statement displays information for the CORPDATA.DEPARTMENT table:

 SELECT *

 FROM CORPDATA.SYSTABLES

 WHERE TABLE_NAME = ’DEPARTMENT’

Getting catalog information about a column

SYSCOLUMNS contains a row for each column of every table and view in the schema.

The following sample statement displays all the column names in the CORPDATA.DEPARTMENT table:

 SELECT *

 FROM CORPDATA.SYSCOLUMNS

 WHERE TABLE_NAME = ’DEPARTMENT’

The result of the previous sample statement is a row of information for each column in the table. Some of

the information is not visible because the width of the information is wider than the display screen.

For more information about each column, specify a select-statement like this:

 SELECT COLUMN_NAME, TABLE_NAME, DATA_TYPE, LENGTH, HAS_DEFAULT

 FROM CORPDATA.SYSCOLUMNS

 WHERE TABLE_NAME = ’DEPARTMENT’

38 iSeries: DB2 Universal Database for iSeries SQL Programming

In addition to the column name for each column, the select-statement shows:

v The name of the table that contains the column

v The data type of the column

v The length attribute of the column

v If the column allows default values

The result looks like this:

 COLUMN_NAME TABLE_NAME DATA_TYPE LENGTH HAS_DEFAULT

DEPTNO DEPARTMENT CHAR 3 N

DEPTNAME DEPARTMENT VARCHAR 29 N

MGRNO DEPARTMENT CHAR 6 Y

ADMRDEPT DEPARTMENT CHAR 3 N

Dropping a database object

The DROP statement deletes an object. Depending on the action requested, any objects that are directly or

indirectly dependent on that object may also be deleted or may prevent the drop from happening. For

example, if you drop a table, any aliases, constraints, triggers, views, or indexes associated with that table

will also be dropped. Whenever an object is deleted, its description is deleted from the catalog.

For example, to drop table EMPLOYEE, issue the following statement:

DROP TABLE EMPLOYEE RESTRICT

See the DROP statement in the SQL Reference book for more details.

Chapter 5. Data Definition Language (DDL) 39

40 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 6. Data Manipulation Language

Data Manipulation Language (DML) describes the portion of SQL that allows you to manipulate or

control your data.

In this topic, you will find the following information:

“Retrieving data using the SELECT statement”
Learn how to retrieve information using SELECT

“Inserting rows using the INSERT statement” on page 73
Add information using INSERT

“Changing data in a table using the UPDATE statement” on page 78
Change information using UPDATE

“Removing rows from a table using the DELETE statement” on page 83
Remove information using DELETE

“Using Subqueries” on page 86
Use Subqueries as your search condition

Retrieving data using the SELECT statement

You can use a variety of statements and clauses to query your data. One way to do this is to use the

SELECT statement in a program to retrieve a specific row (for example, the row for an employee). For

introductory information about SELECT statement, see “Basic SELECT statement” on page 42.

Furthermore, you can use a variety of clauses to gather data in a specific way. SQL provides you with

several ways of tailoring your query to gather data in a specific manner. These methods are:

v “Specifying a search condition using the WHERE clause” on page 43

v “GROUP BY clause” on page 45

v “HAVING clause” on page 47

v “ORDER BY clause” on page 48

Once you understand these methods, you can use other methods of tailoring your information:

v “Static SELECT statements” on page 50

v “Handling Null values” on page 50

v “Special registers in SQL statements” on page 51

v “Casting data types” on page 53

v “Date, Time, and Timestamp data types” on page 53

v “Handling duplicate rows” on page 54

v “Performing complex search conditions” on page 54

v “Joining data from more than one table” on page 57

v “Using table expressions” on page 62

v “Using the UNION keyword to combine subselects” on page 64

v “Using EXCEPT keyword” on page 68

v “Using INTERSECT keyword” on page 70

© Copyright IBM Corp. 1998, 2004 41

Finally, “Data retrieval errors” on page 72 can help you determine why your statement is not working

properly.

Basic SELECT statement

You can write SQL statements on one line or on many lines. For SQL statements in precompiled

programs, the rules for the continuation of lines are the same as those of the host language (the language

the program is written in). A SELECT statement can also be used by a cursor in a program. Finally, a

SELECT statement can be prepared in a dynamic application.

Notes:

1. The SQL statements described in this section can be run on SQL tables and views, and database

physical and logical files.

2. Character strings specified in an SQL statement (such as those used with WHERE or VALUES clauses)

are case sensitive; that is, uppercase characters must be entered in uppercase and lowercase characters

must be entered in lowercase.

WHERE ADMRDEPT=’a00’ (does not return a result)

WHERE ADMRDEPT=’A00’ (returns a valid department number)

Comparisons may not be case sensitive if a shared-weight sort sequence is being used where

uppercase and lowercase characters are treated as the same character.

The format and syntax shown here are very basic. SELECT statements can be more varied than the

examples presented in this chapter. A SELECT statement can include the following:

1. The name of each column you want to include

2. The name of the table or view that contains the data

3. A search condition to uniquely identify the row that contains the information you want

4. The name of each column used to group your data

5. A search condition that uniquely identifies a group that contains the information you want

6. The order of the results so a specific row among duplicates can be returned.

A SELECT statement looks like this:

 SELECT column names

 FROM table or view name

 WHERE search condition

 GROUP BY column names

 HAVING search condition

 ORDER BY column-name

The SELECT and FROM clauses must be specified. The other clauses are optional.

With the SELECT clause, you specify the name of each column you want to retrieve. For example:

 SELECT EMPNO, LASTNAME, WORKDEPT

 ...

You can specify that only one column be retrieved, or as many as 8000 columns. The value of each

column you name is retrieved in the order specified in the SELECT clause.

If you want to retrieve all columns (in the same order as they appear in the table’s definition), use an

asterisk (*) instead of naming the columns:

42 iSeries: DB2 Universal Database for iSeries SQL Programming

SELECT *

 ...

The FROM clause specifies the table that you want to select data from. You can select columns from more

than one table. When issuing a SELECT, you must specify a FROM clause. Issue the following statement:

SELECT *

 FROM EMPLOYEE

The result is all of the columns and rows from table EMPLOYEE.

The SELECT list can also contain expressions, including constants, special registers, and scalar subselects.

An AS clause can also be used to give the resulting column a name. For example, issue the following

statement:

SELECT LASTNAME, SALARY * .05 AS RAISE

 FROM EMPLOYEE

 WHERE EMPNO = ’200140’

The result of this statement is:

 Table 7. Results for query

LASTNAME RAISE

NATZ 1421

 If SQL is unable to find a row that satisfies the search condition, an SQLCODE of +100 is returned.

If SQL finds errors while running your select-statement, a negative SQLCODE is returned. If SQL finds

more host variables than results, +326 is returned.

Specifying a search condition using the WHERE clause

The WHERE clause specifies a search condition that identifies the row or rows you want to retrieve,

update, or delete. The number of rows you process with an SQL statement then depends on the number

of rows that satisfy the WHERE clause search condition. A search condition consists of one or more

predicates. A predicate specifies a test that you want SQL to apply to a specified row or rows of a table.

For more information about predicates, see “Performing complex search conditions” on page 54.

In the following example, WORKDEPT = 'C01' is a predicate, WORKDEPT and 'C01' are expressions, and

the equal sign (=) is a comparison operator. Note that character values are enclosed in apostrophes (’);

numeric values are not. This applies to all constant values wherever they are coded within an SQL

statement. For example, to specify that you are interested in the rows where the department number is

C01, issue the following statement:

... WHERE WORKDEPT = ’C01’

In this case, the search condition consists of one predicate: WORKDEPT = 'C01'.

To further illustrate WHERE, put it into a SELECT statement. Assume that each department listed in the

CORPDATA.DEPARTMENT table has a unique department number. You want to retrieve the department

name and manager number from the CORPDATA.DEPARTMENT table for department C01. Issue the

following statement:

SELECT DEPTNAME, MGRNO

 FROM CORPDATA.DEPARTMENT

 WHERE DEPTNO = ’C01’

Chapter 6. Data Manipulation Language 43

When this statement is run, the result is one row:

 Table 8. Result table

DEPTNAME MGRNO

INFORMATION CENTER 000030

If the search condition contains character, or UCS-2 or UTF-16 graphic column predicates, the sort

sequence that is in effect when the query is run is applied to those predicates. See Chapter 7, “Sort

sequences and normalization in SQL,” on page 95 for more information about sort sequence and

selection. If a sort sequence is not being used, character constants must be specified in uppercase or

lowercase to match the column or expression they are being compared to.

For more details about using the WHERE clause, see the following sections:

v “Expressions in the WHERE clause”

v “Comparison operators” on page 45

v “NOT keyword” on page 45

Expressions in the WHERE clause

An expression in a WHERE clause names or specifies something you want to compare to something else.

Each expression, when evaluated by SQL, is a character string, date/time/timestamp, or a numeric value.

The expressions you specify can be:

v A column name names a column. For example:

... WHERE EMPNO = ’000200’

EMPNO names a column that is defined as a 6-byte character value. Equality comparisons (that is, X =

Y or X <> Y) can be performed on character data. Other types of comparisons can also be evaluated for

character data.

However, you cannot compare character strings to numbers. You also cannot perform arithmetic

operations on character data (even though EMPNO is a character string that appears to be a number).

A cast function can be used to convert character and numeric data into values that can be compared.

You can add and subtract date/time values and durations.

v An expression identifies two values that are added (+), subtracted (−), multiplied (*), divided (/), have

exponentiation (**), or concatenated (CONCAT or ||) to result in a value. The operands of an

expression can be:

 A constant

 A column

 A host variable

 A value returned from a function

 A special register

 A subquery

 Another expression

For example:

... WHERE INTEGER(PRENDATE - PRSTDATE) > 100

When the order of evaluation is not specified by parentheses, the expression is evaluated in the

following order:

1. Prefix operators

2. Exponentiation

3. Multiplication, division, and concatenation

4. Addition and subtraction

Operators on the same precedence level are applied from left to right.

44 iSeries: DB2 Universal Database for iSeries SQL Programming

v A constant specifies a literal value for the expression. For example:

... WHERE 40000 < SALARY

SALARY names a column that is defined as an 9-digit packed decimal value (DECIMAL(9,2)). It is

compared to the numeric constant 40000.

v A host variable identifies a variable in an application program. For example:

... WHERE EMPNO = :EMP

v A special register identifies a special value defined by the database manager. For example:

... WHERE LASTNAME = USER

v The NULL value specifies the condition of having an unknown value.

... WHERE DUE_DATE IS NULL

v A subquery. For details about using subqueries, see “Using Subqueries” on page 86.

A search condition need not be limited to two column names or constants separated by arithmetic or

comparison operators. You can develop a complex search condition that specifies several predicates

separated by AND and OR. No matter how complex the search condition, it supplies a TRUE or FALSE

value when evaluated against a row. There is also an unknown truth value, which is effectively false. That

is, if the value of a row is null, this null value is not returned as a result of a search because it is not less

than, equal to, or greater than the value specified in the search condition. More complex search

conditions and predicates are described in “Performing complex search conditions” on page 54.

To fully understand the WHERE clause, you need to know the order SQL evaluates search conditions and

predicates, and compares the values of expressions. This topic is discussed in the SQL Reference book.

Comparison operators

SQL supports the following comparison operators:

 = Equal to

<> or ¬= or != Not equal to

< Less than

> Greater than

<= or ¬> or !> Less than or equal to (or not greater than)

> = or ¬< or !< Greater than or equal to (or not less than)

NOT keyword

You can precede a predicate with the NOT keyword to specify that you want the opposite of the

predicate’s value (that is, TRUE if the predicate is FALSE, or vice versa). NOT applies only to the

predicate it precedes, not to all predicates in the WHERE clause. For example, to indicate that you are

interested in all employees except those working in department C01, you can say:

... WHERE NOT WORKDEPT = 'C01'

which is equivalent to:

... WHERE WORKDEPT <> 'C01'

GROUP BY clause

Without a GROUP BY clause, the application of SQL column functions returns one row. When GROUP BY

is used, the function is applied to each group, thereby returning as many rows as there are groups.

The GROUP BY clause allows you to find the characteristics of groups of rows rather than individual

rows. When you specify a GROUP BY clause, SQL divides the selected rows into groups such that the

rows of each group have matching values in one or more columns or expressions. Next, SQL processes

each group to produce a single-row result for the group. You can specify one or more columns or

Chapter 6. Data Manipulation Language 45

expressions in the GROUP BY clause to group the rows. The items you specify in the SELECT statement

are properties of each group of rows, not properties of individual rows in a table or view.

For example, the CORPDATA.EMPLOYEE table has several sets of rows, and each set consists of rows

describing members of a specific department. To find the average salary of people in each department,

you can issue:

SELECT WORKDEPT, DECIMAL (AVG(SALARY),5,0)

 FROM CORPDATA.EMPLOYEE

 GROUP BY WORKDEPT

The result is several rows, one for each department.

 WORKDEPT AVG-SALARY

A00 40850

B01 41250

C01 29722

D11 25147

D21 25668

E01 40175

E11 21020

E21 24086

Notes:

1. Grouping the rows does not mean ordering them. Grouping puts each selected row in a group, which

SQL then processes to derive characteristics of the group. Ordering the rows puts all the rows in the

results table in ascending or descending collating sequence. (“ORDER BY clause” on page 48

describes how to do this.) Depending on the implementation selected by the database manager, the

resulting groups may appear to be ordered.

2. If there are null values in the column you specify in the GROUP BY clause, a single-row result is

produced for the data in the rows with null values.

3. If the grouping occurs over character, or UCS-2 or UTF-16 graphic columns, the sort sequence in effect

when the query is run is applied to the grouping. See Chapter 7, “Sort sequences and normalization in

SQL,” on page 95 for more information about sort sequence and selection.

When you use GROUP BY, you list the columns or expressions you want SQL to use to group the rows.

For example, suppose you want a list of the number of people working on each major project described

in the CORPDATA.PROJECT table. You can issue:

SELECT SUM(PRSTAFF), MAJPROJ

 FROM CORPDATA.PROJECT

 GROUP BY MAJPROJ

The result is a list of the company’s current major projects and the number of people working on each

project:

 SUM(PRSTAFF) MAJPROJ

6 AD3100

5 AD3110

10 MA2100

8 MA2110

5 OP1000

4 OP2000

46 iSeries: DB2 Universal Database for iSeries SQL Programming

SUM(PRSTAFF) MAJPROJ

3 OP2010

32.5 ?

You can also specify that you want the rows grouped by more than one column or expression. For

example, you can issue a select-statement to find the average salary for men and women in each

department, using the CORPDATA.EMPLOYEE table. To do this, you can issue:

SELECT WORKDEPT, SEX, DECIMAL(AVG(SALARY),5,0) AS AVG_WAGES

 FROM CORPDATA.EMPLOYEE

 GROUP BY WORKDEPT, SEX

Results in:

 WORKDEPT SEX AVG_WAGES

A00 F 49625

A00 M 35000

B01 M 41250

C01 F 29722

D11 F 25817

D11 M 24764

D21 F 26933

D21 M 24720

E01 M 40175

E11 F 22810

E11 M 16545

E21 F 25370

E21 M 23830

Because you did not include a WHERE clause in this example, SQL examines and process all rows in the

CORPDATA.EMPLOYEE table. The rows are grouped first by department number and next (within each

department) by sex before SQL derives the average SALARY value for each group.

HAVING clause

You can use the HAVING clause to specify a search condition for the groups selected based on a GROUP

BY clause. The HAVING clause says that you want only those groups that satisfy the condition in that

clause. Therefore, the search condition you specify in the HAVING clause must test properties of each

group rather than properties of individual rows in the group.

The HAVING clause follows the GROUP BY clause and can contain the same kind of search condition

you can specify in a WHERE clause. In addition, you can specify column functions in a HAVING clause.

For example, suppose you wanted to retrieve the average salary of women in each department. To do

this, use the AVG column function and group the resulting rows by WORKDEPT and specify a WHERE

clause of SEX = ’F’.

To specify that you want this data only when all the female employees in the selected department have

an education level equal to or greater than 16 (a college graduate), use the HAVING clause. The HAVING

clause tests a property of the group. In this case, the test is on MIN(EDLEVEL), which is a group

property:

Chapter 6. Data Manipulation Language 47

SELECT WORKDEPT, DECIMAL(AVG(SALARY),5,0) AS AVG_WAGES, MIN(EDLEVEL) AS MIN_EDUC

 FROM CORPDATA.EMPLOYEE

 WHERE SEX=’F’

 GROUP BY WORKDEPT

 HAVING MIN(EDLEVEL)>=16

Results in:

 WORKDEPT AVG_WAGES MIN_EDUC

A00 49625 18

C01 29722 16

D11 25817 17

You can use multiple predicates in a HAVING clause by connecting them with AND and OR, and you

can use NOT for any predicate of a search condition.

Note: If you intend to update a column or delete a row, you cannot include a GROUP BY or HAVING

clause in the SELECT statement within a DECLARE CURSOR statement. (The DECLARE CURSOR

statement is described in “Using a Cursor” on page 215.) These clauses make it a read-only cursor.

Predicates with arguments that are not column functions can be coded in either WHERE or HAVING

clauses. It is typically more efficient to code the selection criteria in the WHERE clause because it is

handled earlier in the query processing. The HAVING selection is performed in post processing of the

result table.

If the search condition contains predicates involving character, or UCS-2 or UTF-16 graphic columns, the

sort sequence in effect when the query is run is applied to those predicates. See Chapter 7, “Sort

sequences and normalization in SQL,” on page 95 for more information about sort sequence and

selection.

ORDER BY clause

You can specify that you want selected rows returned in a particular order, sorted by ascending or

descending collating sequence of a column’s or expression’s value, with the ORDER BY clause. For

example, to retrieve the names and department numbers of female employees listed in the alphanumeric

order of their department numbers, you can use this select-statement:

SELECT LASTNAME,WORKDEPT

 FROM CORPDATA.EMPLOYEE

 WHERE SEX=’F’

 ORDER BY WORKDEPT

Results in:

 LASTNAME WORKDEPT

HAAS A00

HEMMINGER A00

KWAN C01

QUINTANA C01

NICHOLLS C01

NATZ C01

PIANKA D11

SCOUTTEN D11

LUTZ D11

48 iSeries: DB2 Universal Database for iSeries SQL Programming

LASTNAME WORKDEPT

JOHN D11

PULASKI D21

JOHNSON D21

PEREZ D21

HENDERSON E11

SCHNEIDER E11

SETRIGHT D11

SCHWARTZ E11

SPRINGER E11

WONG E21

Note: Null values are ordered as the highest value.

The column specified in the ORDER BY clause does not need to be included in the SELECT clause. For

example, the following statement will return all female employees ordered with the largest salary first:

SELECT LASTNAME,FIRSTNME

 FROM CORPDATA.EMPLOYEE

 WHERE SEX=’F’

 ORDER BY SALARY DESC

If an AS clause is specified to name a result column in the select-list, this name can be specified in the

ORDER BY clause. The name specified in the AS clause must be unique in the select-list. For example, to

retrieve the full name of employees listed in alphabetic order, you can use this select-statement:

 SELECT LASTNAME CONCAT FIRSTNME AS FULLNAME

 FROM CORPDATA.EMPLOYEE

 ORDER BY FULLNAME

This select-statement can optionally be written as:

 SELECT LASTNAME CONCAT FIRSTNME

 FROM CORPDATA.EMPLOYEE

 ORDER BY LASTNAME CONCAT FIRSTNME

Instead of naming the columns to order the results, you can use a number. For example, ORDER BY 3

specifies that you want the results ordered by the third column of the results table, as specified by the

select-list. Use a number to order the rows of the results table when the sequencing value is not a named

column.

You can also specify whether you want SQL to collate the rows in ascending (ASC) or descending (DESC)

sequence. An ascending collating sequence is the default. In the previous select-statement, SQL first

returns the row with the lowest FULLNAME expression (alphabetically and numerically), followed by

rows with higher values. To order the rows in descending collating sequence based on this name, specify:

... ORDER BY FULLNAME DESC

As with GROUP BY, you can specify a secondary ordering sequence (or several levels of ordering

sequences) as well as a primary one. In the previous example, you might want the rows ordered first by

department number, and within each department, ordered by employee name. To do this, specify:

... ORDER BY WORKDEPT, FULLNAME

Chapter 6. Data Manipulation Language 49

If character columns, or UCS-2 or UTF-16 graphic columns are used in the ORDER BY clause, ordering

for these columns is based on the sort sequence in effect when the query is run. See Chapter 7, “Sort

sequences and normalization in SQL,” on page 95 for more information about sort sequence and its affect

on ordering.

Static SELECT statements

For a static SELECT statement (one embedded in an SQL program), an INTO clause must be specified

before the FROM clause. The INTO clause names the host variables (variables in your program used to

contain retrieved column values). The value of the first result column specified in the SELECT clause is

put into the first host variable named in the INTO clause; the second value is put into the second host

variable, and so on.

The result table for a SELECT INTO should contain just one row. For example, each row in the

CORPDATA.EMPLOYEE table has a unique EMPNO (employee number) column. The result of a SELECT

INTO statement for this table if the WHERE clause contains an equal comparison on the EMPNO

column, will be exactly one row (or no rows). Finding more than one row is an error, but one row is still

returned. You can control which row will be returned in this error condition by specifying the ORDER BY

clause. If you use the ORDER BY clause, the first row in the result table is returned.

If you want more than one row to be the result of a SELECT INTO statement, use a DECLARE CURSOR

statement to select the rows, followed by a FETCH statement to move the column values into host

variables one or many rows at a time. Using cursors is described in “Using a Cursor” on page 215.

When using the select-statement in an application program, list the column names to give your program

more data independence. There are two reasons for this:

1. When you look at the source code statement, you can easily see the one-to-one correspondence

between the column names in the SELECT clause and the host variables named in the INTO clause.

2. If a column is added to a table or view you access and you use “SELECT * ...,” and you create the

program again from source, the INTO clause does not have a matching host variable named for the

new column. The extra column causes you to get a warning (not an error) in the SQLCA (SQLWARN3

will contain a “W”). When using the GET DIAGNOSTICS statement, the RETURNED_SQLSTATE item

will have a value of ’01503’.

Handling Null values

A NULL value indicates the absence of a column value in a row. A null value is not the same as zero or

all blanks. A null value means unknown. Null values can be used as a condition in the WHERE and

HAVING clauses. For example, a WHERE clause can specify a column that, for some rows, contains a

null value. Normally, a comparison predicate using a column that contains null values does not select a

row that has a null value for the column. This is because a null value is neither less than, equal to, nor

greater than the value specified in the condition. To select the values for all rows that contain a null value

for the manager number, you can specify:

SELECT DEPTNO, DEPTNAME, ADMRDEPT

 FROM CORPDATA.DEPARTMENT

 WHERE MGRNO IS NULL

The result are:

 DEPTNO DEPTNAME ADMRDEPT

D01 DEVELOPMENT CENTER A00

F22 BRANCH OFFICE F2 E01

G22 BRANCH OFFICE G2 E01

H22 BRANCH OFFICE H2 E01

I22 BRANCH OFFICE I2 E01

50 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|
|
|

DEPTNO DEPTNAME ADMRDEPT

J22 BRANCH OFFICE J2 E01

To get the rows that do not have a null value for the manager number, you can change the WHERE

clause like this:

WHERE MGRNO IS NOT NULL

Another predicate that is useful for comparing values that can contain the NULL value is the DISTINCT

predicate. Comparing two columns using a normal equal comparison (COL1 = COL2) will be true if both

columns contain an equal non-null value. If both columns are null, the result will be false since null is

never equal to any other value, not even another null value. Using the DISTINCT predicate, null values

are considered equal. So (COL1 is NOT DISTINCT from COL2) will be true if both columns contain an

equal non-null value and also when both columns are the null value.

For example, suppose you wanted to select information from 2 tables that contained null values. The first

table (T1) has a column (C1) with the following values:

 C1

2

1

null

The second table (T2) has a column (C2) with the following values:

 C2

2

null

Run the following SELECT statement:

SELECT *

 FROM T1, T2

 WHERE C1 IS DISTINCT FROM C2

The results are:

 C1 C2

1 2

1 -

2 -

- 2

For more information about the use of null values, see the SQL Reference book.

Special registers in SQL statements

You can specify certain “special registers” in SQL statements. For locally run SQL statements, the special

registers and their contents are shown in the following table:

Chapter 6. Data Manipulation Language 51

|
|
|
|
|
|

|
|

||

|

|

|
|

|

||

|

|
|

|

|
|
|

|

|||

||

||

||

||
|

|

Special Registers Contents

CURRENT DATE

CURRENT_DATE

The current date.

CURRENT PATH

CURRENT_PATH

CURRENT FUNCTION PATH

The SQL path used to resolve unqualified data type

names, procedure names, and function names in

dynamically prepared SQL statements.

CURRENT SCHEMA The schema name used to qualify unqualified database

object references where applicable in dynamically

prepared SQL statements.

CURRENT SERVER

CURRENT_SERVER

The name of the relational database currently being used.

CURRENT TIME

CURRENT_TIME

The current time.

CURRENT TIMESTAMP

CURRENT_TIMESTAMP

The current date and time in timestamp format.

CURRENT TIMEZONE

CURRENT_TIMEZONE

A duration of time that links local time to Universal Time

Coordinated (UTC) using the formula:

local time -

CURRENT TIMEZONE = UTC

It is taken from the system value QUTCOFFSET.

USER The run-time authorization identifier (user profile) of the

job.

If a single statement contains more than one reference to any of CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP special registers, or the CURDATE, CURTIME, or NOW scalar functions, all

values are based on a single clock reading.

For remotely run SQL statements, the special registers and their contents are shown in the following table:

 Special Registers Contents

CURRENT DATE

CURRENT_DATE

CURRENT TIME

CURRENT_TIME

CURRENT TIMESTAMP

CURRENT_TIMESTAMP

The current date and time at the remote system, not the

local system.

CURRENT TIMEZONE

CURRENT_TIMEZONE

A duration of time that links the remote system time to

UTC.

CURRENT SERVER

CURRENT_SERVER

The name of the relational database currently being used.

CURRENT SCHEMA The current schema value at the remote system.

USER The run-time authorization identifier of the server job on

the remote system.

CURRENT PATH

CURRENT_PATH

CURRENT FUNCTION PATH

The current path value at the remote system.

When a query over a distributed table references a special register, the contents of the special register on

the system that requests the query are used. For more information about distributed tables, see DB2

Multisystem book.

52 iSeries: DB2 Universal Database for iSeries SQL Programming

Casting data types

Sometimes you will find situations where the type of a data type needs to be cast, or changed, to a

different data type or to the same data type with a different length, precision, or scale. For example, if

you wanted to compare two columns of different types, such as a user defined type based on char and an

integer, you can change the char to an integer or the integer to a char to make the comparison possible. A

data type that can be changed to another data type is castable from the source data type to the target data

type.

You can use cast functions or CAST specifications to explicitly cast a data type to another data type. For

example, if you have a column of dates (BIRTHDATE) defined as DATE and wanted to cast the column

data type to CHARACTER with a fixed length of 10, enter the following:

SELECT CHAR (BIRTHDATE,USA)

 FROM CORPDATA.EMPLOYEE

You can also use the CAST function to cast data types directly.

SELECT CAST(BIRTHDATE AS CHAR(10))

 FROM CORPDATA.EMPLOYEE

For more details about casting data types, see Casting between data types in the SQL Reference topic.

Date, Time, and Timestamp data types

Date, time, and timestamp are data types represented in an internal form not seen by the SQL user. Date,

time, and timestamp can be represented by character string values and assigned to character string

variables. The database manager recognizes the following as date, time, and timestamp values:

v A value returned by the DATE, TIME, or TIMESTAMP scalar functions.

v A value returned by the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special

registers.

v A character string when it is an operand of an arithmetic expression or a comparison and the other

operand is a date, time, or timestamp. For example, in the predicate:

... WHERE HIREDATE < ’1950-01-01’

if HIREDATE is a date column, the character string ’1950-01-01’ is interpreted as a date.

v A character string variable or constant used to set a date, time, or timestamp column in either the SET

clause of an UPDATE statement, or the VALUES clause of an INSERT statement.

For more information about character string formats of date, time, and timestamp values, see Datetime

Values in the SQL Reference book .

See also the following topics:

v “Specifying current date and time values”

v “Date/Time arithmetic” on page 54

Specifying current date and time values

You can specify a current date, time, or timestamp in an expression by specifying one of three special

registers: CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP. The value of each is based on

a time-of-day clock reading obtained during the running of the statement. Multiple references to

CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP within the same SQL statement use the

same value. The following statement returns the age (in years) of each employee in the EMPLOYEE table

when the statement is run:

 SELECT YEAR(CURRENT DATE - BIRTHDATE)

 FROM CORPDATA.EMPLOYEE

The CURRENT TIMEZONE special register allows a local time to be converted to Universal Time

Coordinated (UTC). For example, if you have a table named DATETIME, containing a time column type

with a name of STARTT, and you want to convert STARTT to UTC, you can use the following statement:

Chapter 6. Data Manipulation Language 53

SELECT STARTT - CURRENT TIMEZONE

 FROM DATETIME

Date/Time arithmetic

Addition and subtraction are the only arithmetic operators applicable to date, time, and timestamp

values. You can increment and decrement a date, time, or timestamp by a duration; or subtract a date

from a date, a time from a time, or a timestamp from a timestamp. For a detailed description of date and

time arithmetic, see Datetime arithmetic in the SQL Reference book.

Handling duplicate rows

When SQL evaluates a select-statement, several rows might qualify to be in the result table, depending on

the number of rows that satisfy the select-statement’s search condition. Some of the rows in the result

table might be duplicates. You can specify that you do not want any duplicates by using the DISTINCT

keyword, followed by the list of column names:

SELECT DISTINCT JOB, SEX

...

DISTINCT means you want to select only the unique rows. If a selected row duplicates another row in

the result table, the duplicate row is ignored (it is not put into the result table). For example, suppose you

want a list of employee job codes. You do not need to know which employee has what job code. Because

it is probable that several people in a department have the same job code, you can use DISTINCT to

ensure that the result table has only unique values.

The following example shows how to do this:

 SELECT DISTINCT JOB

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

The result is two rows:.

 JOB

DESIGNER

MANAGER

If you do not include DISTINCT in a SELECT clause, you might find duplicate rows in your result,

because SQL returns the JOB column’s value for each row that satisfies the search condition. Null values

are treated as duplicate rows for DISTINCT.

If you include DISTINCT in a SELECT clause and you also include a shared-weight sort sequence, fewer

values are returned. The sort sequence causes values that contain the same characters to be weighted the

same. If 'MGR', 'Mgr', and 'mgr' were all in the same table, only one of these values are returned. See

Chapter 7, “Sort sequences and normalization in SQL,” on page 95 for more information about sort

sequence and selection.

Performing complex search conditions

In addition to the basic comparison predicates (=, >, <, and so on), a search condition can contain any of

the keywords BETWEEN, IN, EXISTS, IS NULL, and LIKE. A search condition can also include a

subquery. See “Using Subqueries” on page 86 for more information and examples.

For character, or UCS-2 or UTF-16 graphic column predicates, the sort sequence is applied to the

operands before evaluation of the predicates for BETWEEN, IN, EXISTS, and LIKE clauses. See Chapter 7,

“Sort sequences and normalization in SQL,” on page 95 for more information about the using sort

sequence with selection.

54 iSeries: DB2 Universal Database for iSeries SQL Programming

You can also perform multiple search conditions. See “Multiple search conditions within a WHERE

clause” on page 56 for more information.

v BETWEEN ... AND ... is used to specify a search condition that is satisfied by any value that falls on or

between two other values. For example, to find all employees who were hired in 1987, you can use

this:

... WHERE HIREDATE BETWEEN ’1987-01-01’ AND ’1987-12-31’

The BETWEEN keyword is inclusive. A more complex, but explicit, search condition that produces the

same result is:

... WHERE HIREDATE >= ’1987-01-01’ AND HIREDATE <= ’1987-12-31’

v IN says you are interested in rows in which the value of the specified expression is among the values

you listed. For example, to find the names of all employees in departments A00, C01, and E21, you can

specify:

... WHERE WORKDEPT IN (’A00’, ’C01’, ’E21’)

v EXISTS says you are interested in testing for the existence of certain rows. For example, to find out if

there are any employees that have a salary greater than 60000, you can specify:

EXISTS (SELECT * FROM EMPLOYEE WHERE SALARY > 60000)

v IS NULL says that you are interested in testing for null values. For example, to find out if there are

any employees without a phone listing, you can specify:

... WHERE EMPLOYEE.PHONE IS NULL

v LIKE says you are interested in rows in which a column value is similar to the value you supply.

When you use LIKE, SQL searches for a character string similar to the one you specify. The degree of

similarity is determined by two special characters used in the string that you include in the search

condition:

_ An underline character stands for any single character.

% A percent sign stands for an unknown string of 0 or more characters. If the percent sign starts

the search string, then SQL allows 0 or more character(s) to precede the matching value in the

column. Otherwise, the search string must begin in the first position of the column.

Note: If you are operating on MIXED data, the following distinction applies: an SBCS underline

character refers to one SBCS character. No such restriction applies to the percent sign; that is, a

percent sign refers to any number of SBCS or DBCS characters. See the SQL Reference book for

more information about the LIKE predicate and MIXED data.

Use the underline character or percent sign either when you do not know or do not care about all the

characters of the column’s value. For example, to find out which employees live in Minneapolis, you

can specify:

... WHERE ADDRESS LIKE ’%MINNEAPOLIS%’

SQL returns any row with the string MINNEAPOLIS in the ADDRESS column, no matter where the

string occurs.

In another example, to list the towns whose names begin with 'SAN', you can specify:

... WHERE TOWN LIKE ’SAN%’

If you want to find any addresses where the street name isn’t in your master street name list, you can

use an expression in the LIKE expression. In this example, the STREET column in the table is assumed

to be upper case.

... WHERE UCASE (:address_variable) NOT LIKE ’%’||STREET||’%’

If you want to search for a character string that contains either the underscore or percent character, use

the ESCAPE clause to specify an escape character. For example, to see all businesses that have a

percent in their name, you can specify:

... WHERE BUSINESS_NAME LIKE ’%@%%’ ESCAPE ’@’

The first and last percent characters are interpreted as typical. The combination ’@%’ is taken as the

actual percent character. See “Special considerations for LIKE” on page 56 for more details.

Chapter 6. Data Manipulation Language 55

For a complete listing of predicates, see Predicates in the SQL Reference topic.

Special considerations for LIKE

v When host variables are used in place of string constants in a search pattern, you should consider

using varying length host variables. This allows you to:

– Assign previously used string constants to host variables without any change.

– Obtain the same selection criteria and results as if a string constant was used.
v When fixed-length host variables are used in place of string constants in a search pattern, you should

ensure that the value specified in the host variable matches the pattern previously used by the string

constants. All characters in a host variable that are not assigned a value are initialized with a blank.

For example, if you did a search using the string pattern ’ABC%’ in a varying length host variable,

these are some of the values that can be returned:

’ABCD ’ ’ABCDE’ ’ABCxxx’ ’ABC ’

However, if you did a search using the search pattern ’ABC%’ contained in a host variable with a fixed

length of 10, these are some the values that can be returned assuming the column has a length of 12:

’ABCDE ’ ’ABCD ’ ’ABCxxx ’ ’ABC ’

Note that all returned values start with ’ABC’ and end with at least six blanks. This is because the last

six characters in the host variable were not assigned a specific value so blanks were used.

If you wanted to do a search using a fixed-length host variable where the last 7 characters can be

anything, search for ’ABC%%%%%%%’. These are some values that can be returned:

’ABCDEFGHIJ’ ’ABCXXXXXXX’ ’ABCDE’ ’ABCDD’

Multiple search conditions within a WHERE clause

In the section “Specifying a search condition using the WHERE clause” on page 43, you saw how to use

one search condition. You can qualify your request further by coding a search condition that includes

several predicates. The search condition you specify can contain any of the comparison operators or the

predicates BETWEEN, IN, LIKE, EXISTS, IS NULL, and IS NOT NULL.

You can combine any two predicates with the connectors AND and OR. In addition, you can use the

NOT keyword to specify that the search condition that you want is the negated value of the specified

search condition. A WHERE clause can have as many predicates as you want.

v AND says that, for a row to qualify, the row must satisfy both predicates of the search condition. For

example, to find out which employees in department D21 were hired after December 31, 1987, specify:

...

 WHERE WORKDEPT = ’D21’ AND HIREDATE > ’1987-12-31’

v OR says that, for a row to qualify, the row can satisfy the condition set by either or both predicates of

the search condition. For example, to find out which employees are in either department C01 or D11,

you can specify :

...

 WHERE WORKDEPT = ’C01’ OR WORKDEPT = ’D11’

Note: You can also use IN to specify this request: WHERE WORKDEPT IN (’C01’, ’D11’).

v NOT says that, to qualify, a row must not meet the criteria set by the search condition or predicate that

follows the NOT. For example, to find all employees in department E11 except those with a job code

equal to analyst, you can specify:

...

 WHERE WORKDEPT = ’E11’ AND NOT JOB = ’ANALYST’

When SQL evaluates search conditions that contain these connectors, it does so in a specific order. SQL

first evaluates the NOT clauses, next evaluates the AND clauses, and then the OR clauses.

56 iSeries: DB2 Universal Database for iSeries SQL Programming

You can change the order of evaluation by using parentheses. The search conditions enclosed in

parentheses are evaluated first. For example, to select all employees in departments E11 and E21 who

have education levels greater than 12, you can specify:

...

 WHERE EDLEVEL > 12 AND

 (WORKDEPT = ’E11’ OR WORKDEPT = ’E21’)

The parentheses determine the meaning of the search condition. In this example, you want all rows that

have a:

 WORKDEPT value of E11 or E21, and

 EDLEVEL value greater than 12

If you did not use parentheses:

...

 WHERE EDLEVEL > 12 AND WORKDEPT = ’E11’

 OR WORKDEPT = ’E21’

Your result is different. The selected rows are rows that have:

 WORKDEPT = E11 and EDLEVEL > 12, or

 WORKDEPT = E21, regardless of the EDLEVEL value

Joining data from more than one table

Sometimes the information you want to see is not in a single table. To form a row of the result table, you

might want to retrieve some column values from one table and some column values from another table.

You can retrieve and join column values from two or more tables into a single row.

Several different types of joins are supported by DB2 UDB for iSeries: inner join, left outer join, right

outer join, left exception join, right exception join, and cross join.

v An “Inner Join” on page 58 returns only the rows from each table that have matching values in the join

columns. Any rows that do not have a match between the tables will not appear in the result table.

v A “Left Outer Join” on page 59 returns values for all of the rows from the first table (the table on the

left) and the values from the second table for the rows that match. Any rows that do not have a match

in the second table will return the null value for all columns from the second table.

v A “Right Outer Join” on page 60 return values for all of the rows from the second table (the table on

the right) and the values from the first table for the rows that match. Any rows that do not have a

match in the first table will return the null value for all columns from the first table.

v A Left Exception Join returns only the rows from the left table that do not have a match in the right

table. Columns in the result table that come from the right table have the null value.

v A Right Exception Join returns only the rows from the right table that do not have a match in the left

table. Columns in the result table that come from the left table have the null value.

v A “Cross Join” on page 61 returns a row in the result table for each combination of rows from the

tables being joined (a Cartesian Product).

You can simulate a Full Outer Join using a Left Outer join and a Right Exception Join. See “Simulating a

Full Outer Join” on page 61 for details. Additionally, you can use multiple join types in a single

statement. See “Multiple join types in one statement” on page 62 for details.

Notes on joins

When you join two or more tables:

v If there are common column names, you must qualify each common name with the name of the table

(or a correlation name). Column names that are unique do not need to be qualified. However, the

Chapter 6. Data Manipulation Language 57

USING clause which allows you to identify columns that exist in both tables without specifying table

names. See “Joining data with the USING clause” on page 59 for details.

v If you do not list the column names you want, but instead use SELECT *, SQL returns rows that

consist of all the columns of the first table, followed by all the columns of the second table, and so on.

v You must be authorized to select rows from each table or view specified in the FROM clause.

v The sort sequence is applied to all character, or UCS-2 or UTF-16 graphic columns being joined.

Inner Join

With an inner join, column values from one row of a table are combined with column values from

another row of another (or the same) table to form a single row of data. SQL examines both tables

specified for the join to retrieve data from all the rows that meet the search condition for the join. There

are two ways of specifying an inner join: using the JOIN syntax, and using the WHERE clause.

Suppose you want to retrieve the employee numbers, names, and project numbers for all employees that

are responsible for a project. In other words, you want the EMPNO and LASTNAME columns from the

CORPDATA.EMPLOYEE table and the PROJNO column from the CORPDATA.PROJECT table. Only

employees with last names starting with ’S’ or later should be considered. To find this information, you

need to join the two tables.

For examples of using inner joins, see the following:

v “Inner join using JOIN syntax”

v “Inner join using the WHERE clause”

v “Joining data with the USING clause” on page 59

Inner join using JOIN syntax: To use the inner join syntax, both of the tables you are joining are listed

in the FROM clause, along with the join condition that applies to the tables. The join condition is

specified after the ON keyword and determines how the two tables are to be compared to each other to

produce the join result. The condition can be any comparison operator; it does not need to be the equal

operator. Multiple join conditions can be specified in the ON clause separated by the AND keyword. Any

additional conditions that do not relate to the actual join are specified in either the WHERE clause or as

part of the actual join in the ON clause.

 SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.EMPLOYEE INNER JOIN CORPDATA.PROJECT

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’

In this example, the join is done on the two tables using the EMPNO and RESPEMP columns from the

tables. Since only employees that have last names starting with at least ’S’ are to be returned, this

additional condition is provided in the WHERE clause.

This query returns the following output:

 EMPNO LASTNAME PROJNO

000250 SMITH AD3112

000060 STERN MA2110

000100 SPENSER OP2010

000020 THOMPSON PL2100

Inner join using the WHERE clause: Using the WHERE clause to perform this same join is written by

entering both the join condition and the additional selection condition in the WHERE clause. The tables

to be joined are listed in the FROM clause, separated by commas.

58 iSeries: DB2 Universal Database for iSeries SQL Programming

SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.EMPLOYEE, CORPDATA.PROJECT

 WHERE EMPNO = RESPEMP

 AND LASTNAME > ’S’

This query returns the same output as the previous example.

Joining data with the USING clause: You can use a shorthand method of defining join conditions with

the USING clause. The USING clause is equivalent to a join condition where each column from the left

table is compared to a column with the same name in the right table. For example, look at the USING

clause in this statement:

SELECT EMPNO, ACSTDATE

 FROM CORPDATA.PROJACT INNER JOIN CORPDATA.EMPPROJACT

 USING (PROJNO, ACTNO)

 WHERE ACSDATE > ’1982-12-31’;

The syntax in this statement is valid and equivalent to the join condition in the following statement:

SELECT EMPNO, ACSTDATE

 FROM CORPDATA.PROJACT INNER JOIN CORPDATA.EMPPROJACT

 ON CORPDATA.PROJACT.PROJNO = CORPDATA.EMPPROJACT.PROJNO AND

 CORPDATA.PROJACT.ACTNO = CORPDATA.EMPPROJACT.ACTNO

 WHERE ACSTDATE > ’1982-12-31’;

Left Outer Join

A left outer join will return all the rows that an inner join returns plus one row for each of the other rows

in the first table that did not have a match in the second table.

Suppose you want to find all employees and the projects they are currently responsible for. You want to

see those employees that are not currently in charge of a project as well. The following query will return

a list of all employees whose names are greater than ’S’, along with their assigned project numbers.

 SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.EMPLOYEE LEFT OUTER JOIN CORPDATA.PROJECT

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’

The result of this query contains some employees that do not have a project number. They are listed in

the query, but have the null value returned for their project number.

 EMPNO LASTNAME PROJNO

000020 THOMPSON PL2100

000060 STERN MA2110

000100 SPENSER OP2010

000170 YOSHIMURA -

000180 SCOUTTEN -

000190 WALKER -

000250 SMITH AD3112

000280 SCHNEIDER -

000300 SMITH -

000310 SETRIGHT -

200170 YAMAMOTO -

200280 SCHWARTZ -

200310 SPRINGER -

200330 WONG -

Chapter 6. Data Manipulation Language 59

|

|
|
|
|

|
|
|
|

|

|
|
|
|
|

|

Note: Using the RRN scalar function to return the relative record number for a column in the table on

the right in a left outer join or exception join will return a value of 0 for the unmatched rows.

Right Outer Join

A right outer join will return all the rows that an inner join returns plus one row for each of the other

rows in the second table that did not have a match in the first table. It is the same as a left outer join

with the tables specified in the opposite order.

The query that was used as the left outer join example can be rewritten as a right outer join as follows:

 SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.PROJECT RIGHT OUTER JOIN CORPDATA.EMPLOYEE

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’

The results of this query are identical to the results from the left outer join query.

Exception Join

A left exception join returns only the rows from the first table that do NOT have a match in the second

table. Using the same tables as before, return those employees that are not responsible for any projects.

 SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.EMPLOYEE EXCEPTION JOIN CORPDATA.PROJECT

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’

This join returns the output:

 EMPNO LASTNAME PROJNO

000170 YOSHIMURA -

000180 SCOUTTEN -

000190 WALKER -

000280 SCHNEIDER -

000300 SMITH -

000310 SETRIGHT -

200170 YAMAMOTO -

200280 SCHWARTZ -

200310 SPRINGER -

200330 WONG -

An exception join can also be written as a subquery using the NOT EXISTS predicate. The previous query

can be rewritten in the following way:

 SELECT EMPNO, LASTNAME

 FROM CORPDATA.EMPLOYEE

 WHERE LASTNAME > ’S’

 AND NOT EXISTS

 (SELECT * FROM CORPDATA.PROJECT

 WHERE EMPNO = RESPEMP)

The only difference in this query is that it cannot return values from the PROJECT table.

There is a right exception join, too, that works just like a left exception join but with the tables reversed.

60 iSeries: DB2 Universal Database for iSeries SQL Programming

Cross Join

A cross join (or Cartesian Product join) will return a result table where each row from the first table is

combined with each row from the second table. The number of rows in the result table is the product of

the number of rows in each table. If the tables involved are large, this join can take a very long time.

A cross join can be specified in two ways: using the JOIN syntax or by listing the tables in the FROM

clause separated by commas without using a WHERE clause to supply join criteria.

Suppose the following tables exist.

 Table 9. Table A

ACOL1 ACOL2

A1 AA1

A2 AA2

A3 AA3

 Table 10. Table B

BCOL1 BCOL2

B1 BB1

B2 BB2

The following two select statements produce identical results.

 SELECT * FROM A CROSS JOIN B

 SELECT * FROM A, B

The result table for either of these select statements looks like this:

 ACOL1 ACOL2 BCOL1 BCOL2

A1 AA1 B1 BB1

A1 AA1 B2 BB2

A2 AA2 B1 BB1

A2 AA2 B2 BB2

A3 AA3 B1 BB1

A3 AA3 B2 BB2

Simulating a Full Outer Join

Like the left and right outer joins, a full outer join returns matching rows from both tables. However, a

full outer join also returns non-matching rows from both tables; left and right. While DB2 UDB for iSeries

does not support full outer join syntax, you can simulate a full outer join by using a left outer join and a

right exception join. Suppose you want to find all employees and all projects You want to see those

employees that are not currently in charge of a project as well. The following query will return a list of

all employees whose names are greater than ’S’, along with their assigned project numbers.

SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.EMPLOYEE LEFT OUTER JOIN CORPDATA.PROJECT

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’

 UNION

 (SELECT EMPNO, LASTNAME, PROJNO

 FROM CORPDATA.PROJECT EXCEPTION JOIN CORPDATA.EMPLOYEE

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’);

Chapter 6. Data Manipulation Language 61

Multiple join types in one statement

There are times when more than two tables need to be joined to produce the result that you want. If you

wanted to return all the employees, their department name, and the project they are responsible for, if

any, the EMPLOYEE table, DEPARTMENT table, and PROJECT table all need to be joined to get the

information. The following example shows the query and the results.

 SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO

 FROM CORPDATA.EMPLOYEE INNER JOIN CORPDATA.DEPARTMENT

 ON WORKDEPT = DEPTNO

 LEFT OUTER JOIN CORPDATA.PROJECT

 ON EMPNO = RESPEMP

 WHERE LASTNAME > ’S’

The result of this query is:

 EMPNO LASTNAME DEPTNAME PROJNO

000020 THOMPSON PLANNING PL2100

000060 STERN MANUFACTURING SYSTEMS MA2110

000100 SPENSER SOFTWARE SUPPORT OP2010

000170 YOSHIMURA MANUFACTURING SYSTEMS -

000180 SCOUTTEN MANUFACTURING SYSTEMS -

000190 WALKER MANUFACTURING SYSTEMS -

000250 SMITH ADMINISTRATION SYSTEMS AD3112

000280 SCHNEIDER OPERATIONS -

000300 SMITH OPERATIONS -

000310 SETRIGHT OPERATIONS -

For more information about joins, see the SQL Reference book.

Using table expressions

You can use table expressions to specify an intermediate result table. Table expressions can be used in

place of a view to avoid creating the view when general use of the view is not required. Table

expressions consist of nested table expressions (also called derived tables) and common table expressions.

Nested table expressions are specified within parentheses in the FROM clause. For example, suppose you

want a result table that shows the manager number, department number, and maximum salary for each

department. The manager number is in the DEPARTMENT table, the department number is in both the

DEPARTMENT and EMPLOYEE tables, and the salaries are in the EMPLOYEE table. You can use a table

expression in the FROM clause to select the maximum salary for each department. You can also add a

correlation name, T2, following the nested table expression to name the derived table. The outer select

then uses T2 to qualify columns that are selected from the derived table, in this case MAXSAL and

WORKDEPT. Note that the MAX(SALARY) column selected in the nested table expression must be

named in order to be referenced in the outer select. The AS clause is used to do that.

 SELECT MGRNO, T1.DEPTNO, MAXSAL

 FROM CORPDATA.DEPARTMENT T1,

 (SELECT MAX(SALARY) AS MAXSAL, WORKDEPT

 FROM CORPDATA.EMPLOYEE E1

 GROUP BY WORKDEPT) T2

 WHERE T1.DEPTNO = T2.WORKDEPT

 ORDER BY DEPTNO

62 iSeries: DB2 Universal Database for iSeries SQL Programming

The result of the query is:

 MGRNO DEPTNO MAXSAL

000010 A00 52750.00

000020 B01 41250.00

000030 C01 38250.00

000060 D11 32250.00

000070 D21 36170.00

000050 E01 40175.00

000090 E11 29750.00

000100 E21 26150.00

Common table expressions can be specified before the full-select in a SELECT statement, an INSERT

statement, or a CREATE VIEW statement. They can be used when the same result table needs to be

shared in a full-select. Common table expressions are preceded with the keyword WITH.

For example, suppose you want a table that shows the minimum and maximum of the average salary of

a certain set of departments. The first character of the department number has some meaning and you

want to get the minimum and maximum for those departments that start with the letter ’D’ and those

that start with the letter ’E’. You can use a common table expression to select the average salary for each

department. Again, you must name the derived table; in this case, the name is DT. You can then specify a

SELECT statement using a WHERE clause to restrict the selection to only the departments that begin with

a certain letter. Specify the minimum and maximum of column AVGSAL from the derived table DT.

Specify a UNION to get the results for the letter ’E’ and the results for the letter ’D’.

WITH DT AS (SELECT E.WORKDEPT AS DEPTNO, AVG(SALARY) AS AVGSAL

 FROM CORPDATA.DEPARTMENT D , CORPDATA.EMPLOYEE E

 WHERE D.DEPTNO = E.WORKDEPT

 GROUP BY E.WORKDEPT)

 SELECT ’E’, MAX(AVGSAL), MIN(AVGSAL) FROM DT

 WHERE DEPTNO LIKE ’E%’

 UNION

 SELECT ’D’, MAX(AVGSAL), MIN(AVGSAL) FROM DT

 WHERE DEPTNO LIKE ’D%’

The result of the query is:

 MAX(AVGSAL) MIN(AVGSAL)

E 40175.00 21020.00

D 25668.57 25147.27

Suppose you want to write a query against your ordering database that will return the top 5 items (in

total quantity ordered) within the last 1000 orders from customers who also ordered item ’XXX’.

WITH X AS (SELECT ORDER_ID, CUST_ID

 FROM ORDERS

 ORDER BY ORD_DATE DESC

 FETCH FIRST 1000 ROWS ONLY),

 Y AS (SELECT CUST_ID, LINE_ID, ORDER_QTY

 FROM X, ORDERLINE

 WHERE X.ORDER_ID = ORDERLINE.ORDER_ID)

SELECT LINE_ID

 FROM (SELECT LINE_ID

 FROM Y

 WHERE Y.CUST_ID IN (SELECT DISTINCT CUST_ID

 FROM Y

Chapter 6. Data Manipulation Language 63

WHERE LINE.ID = ’XXX’)

 GROUP BY LINE_ID

 ORDER BY SUM(ORDER_QTY) DESC)

 FETCH FIRST 5 ROWS ONLY

The first common table expression (X) returns the most recent 1000 order numbers. The result is ordered

by the date in descending order and then only the first 1000 of those ordered rows are returned as the

result table.

The second common table expression (Y) joins the most recent 1000 orders with the line item table and

returns (for each of the 1000 orders) the customer, line item, and quantity of the line item for that order.

The derived table in the main select statement returns the line items for the customers who are in the top

1000 orders who ordered item XXX. The results for all customers who ordered XXX are then grouped by

the line item and the groups are ordered by the total quantity of the line item.

Finally, the outer select selects only the first 5 rows from the ordered list that the derived table returned.

Using the UNION keyword to combine subselects

Using the UNION keyword, you can combine two or more subselects to form a fullselect. When SQL

encounters the UNION keyword, it processes each subselect to form an interim result table, then it

combines the interim result table of each subselect and deletes duplicate rows to form a combined result

table. You can use different clauses and techniques when coding select-statements. You can also use

UNION ALL. For details, see “Specifying UNION ALL” on page 67.

You can use UNION to eliminate duplicates when merging lists of values obtained from several tables.

For example, you can obtain a combined list of employee numbers that includes:

v People in department D11

v People whose assignments include projects MA2112, MA2113, and AD3111

The combined list is derived from two tables and contains no duplicates. To do this, specify:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

 UNION

 SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO = ’MA2112’ OR

 PROJNO = ’MA2113’ OR

 PROJNO = ’AD3111’

 ORDER BY EMPNO

To better understand the results from these SQL statements, imagine that SQL goes through the following

process:

Step 1. SQL processes the first SELECT statement:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

Which results in an interim result table:

 EMPNO from CORPDATA.EMPLOYEE

000060

000150

64 iSeries: DB2 Universal Database for iSeries SQL Programming

EMPNO from CORPDATA.EMPLOYEE

000160

000170

000180

000190

000200

000210

000220

200170

200220

Step 2. SQL processes the second SELECT statement:

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

Which results in another interim result table:

 EMPNO from CORPDATA.EMPPROJACT

000230

000230

000240

000230

000230

000240

000230

000150

000170

000190

000170

000190

000150

000160

000180

000170

000210

000210

Step 3. SQL combines the two interim result tables, removes duplicate rows, and orders the result:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

UNION

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

Chapter 6. Data Manipulation Language 65

WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

ORDER BY EMPNO

Which results in a combined result table with values in ascending sequence:

 EMPNO

000060

000150

000160

000170

000180

000190

000200

000210

000220

000230

000240

200170

200220

When you use UNION:

v Any ORDER BY clause must appear after the last subselect that is part of the union. In this example,

the results are sequenced on the basis of the first selected column, EMPNO. The ORDER BY clause

specifies that the combined result table is to be in collated sequence. ORDER BY is not allowed in a

view.

v A name may be specified on the ORDER BY clause if the result columns are named. A result column is

named if the corresponding columns in each of the unioned select-statements have the same name. An

AS clause can be used to assign a name to columns in the select list.

 SELECT A + B AS X ...

 UNION

 SELECT X ... ORDER BY X

If the result columns are unnamed, use a positive integer to order the result. The number refers to the

position of the expression in the list of expressions you include in your subselects.

 SELECT A + B ...

 UNION

 SELECT X ... ORDER BY 1

To identify which subselect each row is from, you can include a constant at the end of the select list of

each subselect in the union. When SQL returns your results, the last column contains the constant for the

subselect that is the source of that row. For example, you can specify:

 SELECT A, B, ’A1’ ...

 UNION

 SELECT X, Y, ’B2’...

When a row is returned, it includes a value (either A1 or B2) to indicate the table that is the source of the

row’s values. If the column names in the union are different, SQL uses the set of column names specified

in the first subselect when interactive SQL displays or prints the results, or in the SQLDA resulting from

processing an SQL DESCRIBE statement.

66 iSeries: DB2 Universal Database for iSeries SQL Programming

For information about compatibility of the length and data type for columns in a UNION, see the Rules

for result data type topic in the SQL Reference book.

Note: Sort sequence is applied after the fields across the UNION pieces are made compatible. The sort

sequence is used for the distinct processing that implicitly occurs during UNION processing. See

Chapter 7, “Sort sequences and normalization in SQL,” on page 95 for more details about sort

sequence.

Specifying UNION ALL

If you want to keep duplicates in the result of a UNION, specify UNION ALL instead of just UNION.

Using the same as steps and example as UNION:

Step 3. SQL combines two interim result tables:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

 UNION ALL

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

 ORDER BY EMPNO

Resulting in an ordered result table that includes duplicates:

 EMPNO

000060

000150

000150

000150

000160

000160

000170

000170

000170

000170

000180

000180

000190

000190

000190

000200

000210

000210

000210

000220

000230

000230

000230

Chapter 6. Data Manipulation Language 67

EMPNO

000230

000230

000240

000240

200170

200220

The UNION ALL operation is associative, for example:

(SELECT PROJNO FROM CORPDATA.PROJECT

UNION ALL

SELECT PROJNO FROM CORPDATA.PROJECT)

UNION ALL

SELECT PROJNO FROM CORPDATA.EMPPROJACT

This statement can also be written as:

SELECT PROJNO FROM CORPDATA.PROJECT

UNION ALL

(SELECT PROJNO FROM CORPDATA.PROJECT

UNION ALL

SELECT PROJNO FROM CORPDATA.EMPPROJACT)

When you include the UNION ALL in the same SQL statement as a UNION operator, however, the result

of the operation depends on the order of evaluation. Where there are no parentheses, evaluation is from

left to right. Where parentheses are included, the parenthesized subselect is evaluated first, followed,

from left to right, by the other parts of the statement.

Using EXCEPT keyword

The EXCEPT keyword returns the result set of the first subselect minus any matching rows from the

second subselect.

Suppose you want to find a list of employee numbers that includes:

v People in department D11

v Minus those people whose assignments include projects MA2112, MA2113, and AD3111

This query returns all of the people in department D11 who are not working on projects MA2112,

MA2113, and AD3111.

To do this, specify:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

 EXCEPT

 SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO = ’MA2112’ OR

 PROJNO = ’MA2113’ OR

 PROJNO = ’AD3111’

 ORDER BY EMPNO

To better understand the results from these SQL statements, imagine that SQL goes through the following

process:

Step 1. SQL processes the first SELECT statement:

68 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

Which results in an interim result table:

 EMPNO from CORPDATA.EMPLOYEE

000060

000150

000160

000170

000180

000190

000200

000210

000220

200170

200220

Step 2. SQL processes the second SELECT statement:

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

Which results in another interim result table:

 EMPNO from CORPDATA.EMPPROJACT

000230

000230

000240

000230

000230

000240

000230

000150

000170

000190

000170

000190

000150

000160

000180

000170

000210

000210

Chapter 6. Data Manipulation Language 69

|
|
|

|

||

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

Step 3. SQL takes the first interim result table, removes all of the rows that also appear in the second

interim result table, removes duplicate rows, and orders the result:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

EXCEPT

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

ORDER BY EMPNO

Which results in a combined result table with values in ascending sequence:

 EMPNO

000060

000200

000220

200170

200220

Using INTERSECT keyword

The INTERSECT keyword returns a combined result set that consists of all of the rows that exist in both

result sets.

Suppose you want to find a list of employee numbers that includes:

v People in department D11

v People whose assignments include projects MA2112, MA2113, and AD3111

INTERSECT returns the all of the employee numbers that exist in both result sets. In other words, this

query returns all of the people in department D11 who are also working on projects MA2112, MA2113,

and AD3111.

To do this, specify:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

 INTERSECT

 SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO = ’MA2112’ OR

 PROJNO = ’MA2113’ OR

 PROJNO = ’AD3111’

 ORDER BY EMPNO

To better understand the results from these SQL statements, imagine that SQL goes through the following

process:

Step 1. SQL processes the first SELECT statement:

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

70 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|

|
|
|
|
|
|
|
|
|
|

|

||

|

|

|

|

|
|

|

|
|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

Which results in an interim result table:

 EMPNO from CORPDATA.EMPLOYEE

000060

000150

000160

000170

000180

000190

000200

000210

000220

200170

200220

Step 2. SQL processes the second SELECT statement:

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

Which results in another interim result table:

 EMPNO from CORPDATA.EMPPROJACT

000230

000230

000240

000230

000230

000240

000230

000150

000170

000190

000170

000190

000150

000160

000180

000170

000210

000210

Step 3. SQL takes the first interim result table, compares it to the second interim result table, and returns

the rows that exist in both tables minus any duplicate rows, and orders the results.

Chapter 6. Data Manipulation Language 71

|

||

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|
|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

SELECT EMPNO

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

INTERSECT

SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO=’MA2112’ OR

 PROJNO= ’MA2113’ OR

 PROJNO= ’AD3111’

ORDER BY EMPNO

Which results in a combined result table with values in ascending sequence:

 EMPNO

000150

000160

000170

000180

000190

000210

Data retrieval errors

If SQL finds that a retrieved character or graphic column is too long to be placed in a host variable, SQL

does the following:

v Truncates the data while assigning the value to the host variable.

v Sets SQLWARN0 and SQLWARN1 in the SQLCA to the value 'W'or sets RETURNED_SQLSTATE to

’01004’ in the SQL diagnostics area.

v Sets the indicator variable, if provided, to the length of the value before truncation.

If SQL finds a data mapping error while running a statement, one of two things occurs:

v If the error occurs on an expression in the SELECT list and an indicator variable is provided for the

expression in error:

– SQL returns a −2 for the indicator variable corresponding to the expression in error.

– SQL returns all valid data for that row.

– SQL returns a positive SQLCODE.
v If an indicator variable is not provided, SQL returns the corresponding negative SQLCODE.

Data mapping errors include:

v +138 - Argument of the substringing function is not valid.

v +180 - Syntax for a string representation of a date, time, or timestamp is not valid.

v +181 - String representation of a date, time, or timestamp is not a valid value.

v +183 - Invalid result from a date/time expression. The resulting date or timestamp is not within the

valid range of dates or timestamps.

v +191 - MIXED data is not properly formed.

v +304 - Numeric conversion error (for example, overflow, underflow, or division by zero).

v +331 - Characters cannot be converted.

v +420 - Character in the CAST argument is not valid.

v +802 - Data conversion or data mapping error.

72 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|
|
|
|
|
|
|
|

|

||

|

|

|

|

|

|
|

|

|
|

For data mapping errors, the SQLCA reports only the last error detected. The indicator variable

corresponding to each result column having an error is set to −2.

For data mapping errors on a multi-row FETCH, each mapping error reported as a warning SQLSTATE

will have a separate condition area in the SQL diagnostics area. Note that SQL stops on the first error, so

only one mapping error that is reported as an error SQLSTATE will be returned in the SQL diagnostics

area.

For all other SQL statements, only the last warning SQLSTATE will be reported in the SQL diagnostics

area.

If the full-select contains DISTINCT in the select list and a column in the select list contains numeric data

that is not valid, the data is considered equal to a null value if the query is completed as a sort. If an

existing index is used, the data is not considered equal to a null.

The impact of data mapping errors on the ORDER BY clause depends on the situation:

v If the data mapping error occurs while data is being assigned to a host variable in a SELECT INTO or

FETCH statement, and that same expression is used in the ORDER BY clause, the result record is

ordered based on the value of the expression. It is not ordered as if it were a null (higher than all other

values). This is because the expression was evaluated before the assignment to the host variable is

attempted.

v If the data mapping error occurs while an expression in the select-list is being evaluated and the same

expression is used in the ORDER BY clause, the result column is normally ordered as if it were a null

value (higher than all other values). If the ORDER BY clause is implemented by using a sort, the result

column is ordered as if it were a null value. If the ORDER BY clause is implemented by using an

existing index, in the following cases, the result column is ordered based on the actual value of the

expression in the index:

– The expression is a date column with a date format of *MDY, *DMY, *YMD, or *JUL, and a date

conversion error occurs because the date is not within the valid range for dates.

– The expression is a character column and a character cannot be converted.

– The expression is a decimal column and a numeric value that is not valid is detected.

Inserting rows using the INSERT statement

This section shows the basic SQL statements and clauses that insert data into tables and views. Examples

using these SQL statements are supplied to help you develop SQL applications. Detailed syntax and

parameter descriptions for SQL statements are given in the SQL Reference book.

You can use the INSERT statement to add new rows to a table or view in one of the following ways:

v Specifying values in the INSERT statement for columns to be added. See “Inserting rows using the

VALUES keyword” on page 75 for more details about using the VALUES clause.

v Including a select-statement in the INSERT statement to tell SQL what data for the new row is

contained in another table or view. “Inserting rows into a table using a select-statement” on page 75

explains how to use the select-statement within an INSERT statement to add zero, one, or many rows

to a table.

v Specifying the blocked form of the INSERT statement to add multiple rows. “Inserting multiple rows in

a table with the blocked INSERT statement” on page 76 explains how to use the blocked form of the

INSERT statement to add multiple rows to a table.

Because views are built on tables and actually contain no data, working with views can be confusing. See

“Creating and using views” on page 33 for more information and restrictions about inserting data by

using a view. There are also rules that you must follow in order to insert a column into a table that has

referential constraints. See “Inserting into tables with referential constraints” on page 76 for details.

Chapter 6. Data Manipulation Language 73

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

For a complete description of INSERT, see INSERT statement in the SQL Reference.

For every row you insert, you must supply a value for each column defined with the NOT NULL

attribute if that column does not have a default value. The INSERT statement for adding a row to a table

or view may look like this:

 INSERT INTO table-name

 (column1, column2, ...)

 VALUES (value-for-column1, value-for-column2, ...)

The INTO clause names the columns for which you specify values. The VALUES clause specifies a value

for each column named in the INTO clause. The value you specify can be:

 A constant. Inserts the value provided in the VALUES clause.

 A null value. Inserts the null value, using the keyword NULL. The column must be defined as

capable of containing a null value or an error occurs.

 A host variable. Inserts the contents of a host variable.

 A special register. Inserts a special register value; for example, USER.

 An expression. Inserts the value that results from an expression.

 A subquery inserts the value that is the result of running the select statement.

 The DEFAULT keyword. Inserts the default value of the column. The column must have a default

value defined for it or allow the NULL value, or an error occurs.

You must provide a value in the VALUES clause for each column named in an INSERT statement’s

column list. The column name list can be omitted if all columns in the table have a value provided in the

VALUES clause. If a column has a default value, the keyword DEFAULT may be used as a value in the

VALUES clause. This causes the default value for the column to be placed in the column.

It is a good idea to name all columns into which you are inserting values because:

v Your INSERT statement is more descriptive.

v You can verify that you are providing the values in the proper order based on the column names.

v You have better data independence. The order in which the columns are defined in the table does not

affect your INSERT statement.

See “Inserting rows using the VALUES keyword” on page 75 for more details about using the VALUES

clause.

If the column is defined to allow null values or to have a default, you do not need to name it in the

column name list or specify a value for it. The default value is used. If the column is defined to have a

default value, the default value is placed in the column. If DEFAULT was specified for the column

definition without an explicit default value, SQL places the default value for that data type in the

column. If the column does not have a default value defined for it, but is defined to allow the null value

(NOT NULL was not specified in the column definition), SQL places the null value in the column.

v For numeric columns, the default value is 0.

v For fixed length character or graphic columns, the default is blanks.

v For varying length character or graphic columns or LOB columns, the default is a zero length string.

v For date, time, and timestamp columns, the default value is the current date, time, or timestamp. When

inserting a block of records, the default date/time value is extracted from the system when the block is

written. This means that the column will be assigned the same default value for each row in the block.

v For DataLink columns, the default value corresponds to DLVALUE(’’,’URL’,’’).

v For distinct-type columns, the default value is the default value of the corresponding source type.

v For ROWID columns or columns that are defined AS IDENTITY, the database manager generates a

default value. See “Inserting into an identity column” on page 77.

74 iSeries: DB2 Universal Database for iSeries SQL Programming

When your program attempts to insert a row that duplicates another row already in the table, an error

might occur. Multiple null values may or may not be considered duplicate values, depending on the

option used when the index was created.

v If the table has a primary key, unique key, or unique index, the row is not inserted. Instead, SQL

returns an SQLCODE of −803.

v If the table does not have a primary key, unique key, or unique index, the row can be inserted without

error.

If SQL finds an error while running the INSERT statement, it stops inserting data. If you specify

COMMIT(*ALL), COMMIT(*CS), COMMIT(*CHG), or COMMIT(*RR), no rows are inserted. Rows already

inserted by this statement, in the case of INSERT with a select-statement or blocked insert, are deleted. If

you specify COMMIT(*NONE), any rows already inserted are not deleted.

A table created by SQL is created with the Reuse Deleted Records parameter of *YES. This allows the

database manager to reuse any rows in the table that were marked as deleted. The CHGPF command can

be used to change the attribute to *NO. This causes INSERT to always add rows to the end of the table.

The order in which rows are inserted does not guarantee the order in which they will be retrieved.

If the row is inserted without error, the SQLERRD(3) field of the SQLCA has a value of 1.

Note: For blocked INSERT or for INSERT with select-statement, more than one row can be inserted. The

number of rows inserted is reflected in SQLERRD(3) in the SQLCA. It is also available from the

ROW_COUNT diagnostics item in the GET DIAGNOSTICS statement.

Inserting rows using the VALUES keyword

You can use the VALUES keyword to insert a single row or multiple rows into a table. An example of

this is to insert a new row into the DEPARTMENT table. The columns for the new row are as follows:

v Department number (DEPTNO) is ’E31’

v Department name (DEPTNAME) is ’ARCHITECTURE’

v Manager number (MGRNO) is ’00390’

v Reports to (ADMRDEPT) department ’E01’

The INSERT statement for this new row is as follows:

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT)

 VALUES(’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

You can also insert multiple rows into a table using the VALUES clause. The following example inserts

two rows into the PROJECT table. Values for the Project number (PROJNO) , Project name (PROJNAME),

Department number (DEPTNO), and Responsible employee (RESPEMP) are given in the values list. The

value for the Project start date (PRSTDATE) uses the current date. The rest of the columns in the table

that are not listed in the column list are assigned their default value.

INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

 VALUES(’HG0023’, ’NEW NETWORK’, ’E11’, ’200280’, CURRENT DATE),

 (’HG0024’, ’NETWORK PGM’, ’’E11", ’200310’, CURRENT DATE)

Inserting rows into a table using a select-statement

You can use a select-statement within an INSERT statement to insert zero, one, or more rows into a table

from the result table of the select-statement.

One use for this kind of INSERT statement is to move data into a table you created for summary data.

For example, suppose you want a table that shows each employee’s time commitments to projects. Create

a table called EMPTIME with the columns EMPNUMBER, PROJNUMBER, STARTDATE, and ENDDATE

and then use the following INSERT statement to fill the table:

Chapter 6. Data Manipulation Language 75

|

|
|

|

|

|

|

|

|
|

|
|
|
|
|

|
|
|

|

INSERT INTO CORPDATA.EMPTIME

 (EMPNUMBER, PROJNUMBER, STARTDATE, ENDDATE)

 SELECT EMPNO, PROJNO, EMSTDATE, EMENDATE

 FROM CORPDATA.EMPPROJACT

The select-statement embedded in the INSERT statement is no different from the select-statement you use

to retrieve data. With the exception of FOR READ ONLY, FOR UPDATE, or the OPTIMIZE clause, you

can use all the keywords, functions, and techniques used to retrieve data. SQL inserts all the rows that

meet the search conditions into the table you specify. Inserting rows from one table into another table

does not affect any existing rows in either the source table or the target table.

You should consider the following when inserting multiple rows into a table:

Notes:

1. The number of columns implicitly or explicitly listed in the INSERT statement must equal the number

of columns listed in the select-statement.

2. The data in the columns you are selecting must be compatible with the columns you are inserting into

when using the INSERT with select-statement.

3. In the event the select-statement embedded in the INSERT returns no rows, an SQLCODE of 100 is

returned to alert you that no rows were inserted. If you successfully insert rows, the SQLERRD(3)

field of the SQLCA has an integer representing the number of rows SQL actually inserted. This value

is also available from the ROW_COUNT diagnostics item in the GET DIAGNOSTICS statement.

4. If SQL finds an error while running the INSERT statement, SQL stops the operation. If you specify

COMMIT (*CHG), COMMIT(*CS), COMMIT (*ALL), or COMMIT(*RR), nothing is inserted into the

table and a negative SQLCODE is returned. If you specify COMMIT(*NONE), any rows inserted

before the error remain in the table.

Inserting multiple rows in a table with the blocked INSERT statement

A blocked INSERT can be used to insert multiple rows into a table with a single statement. The blocked

INSERT statement is supported in all of the languages except REXX. The data inserted into the table must

be in a host structure array. If indicator variables are used with a blocked INSERT, they must also be in a

host structure array. For information about host structure arrays for a particular language, refer to the

chapter on that language in the Embedded SQL Programming information.

For example, to add ten employees to the CORPDATA.EMPLOYEE table:

 INSERT INTO CORPDATA.EMPLOYEE

 (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT)

 10 ROWS VALUES(:DSTRUCT:ISTRUCT)

DSTRUCT is a host structure array with five elements that is declared in the program. The five elements

correspond to EMPNO, FIRSTNME, MIDINIT, LASTNAME, and WORKDEPT. DSTRUCT has a

dimension of at least ten to accommodate inserting ten rows. ISTRUCT is a host structure array that is

declared in the program. ISTRUCT has a dimension of at least ten small integer fields for the indicators.

Blocked INSERT statements are supported for non-distributed SQL applications and for distributed

applications where both the application server and the application requester are iSeries systems.

Inserting into tables with referential constraints

There are some important things to remember when inserting data into tables with referential constraints.

If you are inserting data into a parent table with a parent key, SQL does not allow:

v Duplicate values for the parent key

v If the parent key is a primary key, a null value for any column of the primary key

If you are inserting data into a dependent table with foreign keys:

76 iSeries: DB2 Universal Database for iSeries SQL Programming

v Each non-null value you insert into a foreign key column must be equal to some value in the

corresponding parent key of the parent table.

v If any column in the foreign key is null, the entire foreign key is considered null. If all foreign keys

that contain the column are null, the INSERT succeeds (as long as there are no unique index

violations).

Alter the sample application project table (PROJECT) to define two foreign keys:

v A foreign key on the department number (DEPTNO) which references the department table

v A foreign key on the employee number (RESPEMP) which references the employee table.

ALTER TABLE CORPDATA.PROJECT ADD CONSTRAINT RESP_DEPT_EXISTS

 FOREIGN KEY (DEPTNO)

 REFERENCES CORPDATA.DEPARTMENT

 ON DELETE RESTRICT

ALTER TABLE CORPDATA.PROJECT ADD CONSTRAINT RESP_EMP_EXISTS

 FOREIGN KEY (RESPEMP)

 REFERENCES CORPDATA.EMPLOYEE

 ON DELETE RESTRICT

Notice that the parent table columns are not specified in the REFERENCES clause. The columns are not

required to be specified as long as the referenced table has a primary key or eligible unique key which

can be used as the parent key.

Every row inserted into the PROJECT table must have a value of DEPTNO that is equal to some value of

DEPTNO in the department table. (The null value is not allowed because DEPTNO in the project table is

defined as NOT NULL.) The row must also have a value of RESPEMP that is either equal to some value

of EMPNO in the employee table or is null.

The tables with the sample data as they appear in DB2 UDB for iSeries Sample Tables conform to these

constraints. The following INSERT statement fails because there is no matching DEPTNO value (’A01’) in

the DEPARTMENT table.

 INSERT INTO CORPDATA.PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3120’, ’BENEFITS ADMIN’, ’A01’, ’000010’)

Likewise, the following INSERT statement is unsuccessful since there is no EMPNO value of ’000011’ in

the EMPLOYEE table.

 INSERT INTO CORPDATA.PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3130’, ’BILLING’, ’D21’, ’000011’)

The following INSERT statement completes successfully because there is a matching DEPTNO value of

’E01’ in the DEPARTMENT table and a matching EMPNO value of ’000010’ in the EMPLOYEE table.

 INSERT INTO CORPDATA.PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)

 VALUES (’AD3120’, ’BENEFITS ADMIN’, ’E01’, ’000010’)

Inserting into an identity column

You can insert a value into an identity column or allow the system to insert a value for you. For example,

the table created in “Creating and altering an identity column” on page 25, has columns called

ORDERNO (identity column), SHIPPED_TO (varchar(36)), and ORDER_DATE (date). You can insert a

row into this table by issuing the following statement:

INSERT INTO ORDERS (SHIPPED_TO, ORDER_DATE)

 VALUES (’BME TOOL’, 2002-02-04)

In this case, a value is generated by the system for the identity column automatically. You can also write

this statement using the DEFAULT keyword:

INSERT INTO ORDERS (SHIPPED_TO, ORDER_DATE, ORDERNO)

 VALUES (’BME TOOL’, 2002-02-04, DEFAULT)

Chapter 6. Data Manipulation Language 77

After the insert, you can use the IDENTITY_VAL_LOCAL function to determine the value that the system

assigned to the column. See IDENTITY_VAL_LOCAL function in the SQL Reference for more details and

examples.

Sometimes a value for an identity column is specified by the user, such as in this INSERT statement using

a SELECT:

INSERT INTO ORDERS OVERRIDING USER VALUE

 (SELECT * FROM TODAYS_ORDER)

In this case, OVERRIDING USER VALUE tells the system to ignore the value provided for the identity

column from the SELECT and to generate a new value for the identity column. OVERRIDING USER

VALUE must be used if the identity column was created with the GENERATED ALWAYS clause; it is

optional for GENERATED BY DEFAULT. If OVERRIDING USER VALUE is not specified for a

GENERATED BY DEFAULT identity column, the value provided for the column in the SELECT is

inserted.

You can force the system to use the value from the select for a GENERATED ALWAYS identity column by

specifying OVERRIDING SYSTEM VALUE. For example, issue the following statement:

INSERT INTO ORDERS OVERRIDING SYSTEM VALUE

 (SELECT * FROM TODAYS_ORDER)

This INSERT statement uses the value from SELECT; it does not generate a new value for the identity

column. You cannot provide a value for an identity column created using GENERATED ALWAYS without

using the OVERRIDING SYSTEM VALUE clause.

Changing data in a table using the UPDATE statement

This section shows the basic SQL statement and clauses that update data into tables and views. To change

the data in a table, use the UPDATE statement. With the UPDATE statement, you can change the value of

one or more columns in each row that satisfies the search condition of the WHERE clause. The result of

the UPDATE statement is one or more changed column values in zero or more rows of a table

(depending on how many rows satisfy the search condition specified in the WHERE clause). The

UPDATE statement looks like this:

 UPDATE table-name

 SET column-1 = value-1,

 column-2 = value-2, ...

 WHERE search-condition ...

For example, suppose an employee was relocated. To update several items of the employee’s data in the

CORPDATA.EMPLOYEE table to reflect the move, you can specify:

 UPDATE CORPDATA.EMPLOYEE

 SET JOB = :PGM-CODE,

 PHONENO = :PGM-PHONE

 WHERE EMPNO = :PGM-SERIAL

Use the SET clause to specify a new value for each column you want to update. The SET clause names

the columns you want updated and provides the values you want them changed to. The value you

specify can be:

 A column name. Replace the column’s current value with the contents of another column in the same

row.

 A constant. Replace the column’s current value with the value provided in the SET clause.

 A null value. Replace the column’s current value with the null value, using the keyword NULL. The

column must be defined as capable of containing a null value when the table was created, or an error

occurs.

 A host variable. Replace the column’s current value with the contents of a host variable.

78 iSeries: DB2 Universal Database for iSeries SQL Programming

A special register. Replace the column’s current value with a special register value; for example,

USER.

 An expression. Replace the column’s current value with the value that results from an expression.

 A scalar subselect. Replace the column’s current value with the value that the subquery returns.

 The DEFAULT keyword. Replace the column’s current value with the default value of the column.

The column must have a default value defined for it or allow the NULL value, or an error occurs.

For restrictions when using the UPDATE statement, see UPDATE in the SQL Reference.

The following is an example of a statement that uses many different values:

 UPDATE WORKTABLE

 SET COL1 = ’ASC’,

 COL2 = NULL,

 COL3 = :FIELD3,

 COL4 = CURRENT TIME,

 COL5 = AMT - 6.00,

 COL6 = COL7

 WHERE EMPNO = :PGM-SERIAL

To identify the rows to be updated, use the WHERE clause:

v To update a single row, use a WHERE clause that selects only one row.

v To update several rows, use a WHERE clause that selects only the rows you want to update.

You can omit the WHERE clause. If you do, SQL updates each row in the table or view with the values

you supply.

If the database manager finds an error while running your UPDATE statement, it stops updating and

returns a negative SQLCODE. If you specify COMMIT(*ALL), COMMIT(*CS), COMMIT(*CHG), or

COMMIT(*RR), no rows in the table are changed (rows already changed by this statement, if any, are

restored to their previous values). If COMMIT(*NONE) is specified, any rows already changed are not

restored to previous values.

If the database manager cannot find any rows that satisfy the search condition, an SQLCODE of +100 is

returned.

Note: The UPDATE statement may have updated more than one row. The number of rows updated is

reflected in SQLERRD(3) of the SQLCA. This value is also available from the ROW_COUNT

diagnostics item in the GET DIAGNOSTICS statement.

The SET clause of an UPDATE statement can be used in many ways to determine the actual values to be

set in each row being updated. The following example lists each column with its corresponding value:

UPDATE EMPLOYEE

 SET WORKDEPT = ’D11’,

 PHONENO = ’7213’,

 JOB = ’DESIGNER’

 WHERE EMPNO = ’000270’

The previous update can also be written by specifying all of the columns and then all of the values:

UPDATE EMPLOYEE

 SET (WORKDEPT, PHONENO, JOB)

 = (’D11’, ’7213’, ’DESIGNER’)

 WHERE EMPNO = ’000270’

For more ways of updating data in a table, see the following sections:

v “Updating a table using a scalar-subselect” on page 80

v “Updating a table with rows from another table” on page 80

Chapter 6. Data Manipulation Language 79

v “Updating tables with referential constraints”

v “Updating an identity column” on page 81

v “Updating data as it is retrieved from a table” on page 82

For a complete description of the UPDATE statement, see UPDATE in the SQL Reference.

Updating a table using a scalar-subselect

Another way to select a value (or multiple values) for an update is to use a scalar-subselect. The

scalar-subselect allows you to update one or more columns by setting them to one or more values

selected from another table. In the following example, an employee moves to a different department but

continues working on the same projects. The employee table has already been updated to contain the

new department number. Now the project table needs to be updated to reflect the new department

number of this employee (employee number is ’000030’).

UPDATE PROJECT

 SET DEPTNO =

 (SELECT WORKDEPT FROM EMPLOYEE

 WHERE PROJECT.RESPEMP = EMPLOYEE.EMPNO)

 WHERE RESPEMP=’000030’

This same technique can be used to update a list of columns with multiple values returned from a single

select.

Updating a table with rows from another table

It is also possible to update an entire row in one table with values from a row in another table. Suppose

there is a master class schedule table that needs to be updated with changes that have been made in a

copy of the table. The changes are made to the work copy and merged into the master table every night.

The two tables have exactly the same columns and one column, CLASS_CODE, is a unique key column.

UPDATE CL_SCHED

 SET ROW =

 (SELECT * FROM MYCOPY

 WHERE CL_SCHED.CLASS_CODE = MYCOPY.CLASS_CODE)

This update will update all of the rows in CL_SCHED with the values from MYCOPY.

Updating tables with referential constraints

If you are updating a parent table, you cannot modify a primary key for which dependent rows exist.

Changing the key violates referential constraints for dependent tables and leaves some rows without a

parent. Furthermore, you cannot give any part of a primary key a null value.

Update Rules

The action taken on dependent tables when an UPDATE is performed on a parent table depends on the

update rule specified for the referential constraint. If no update rule was defined for a referential

constraint, the UPDATE NO ACTION rule is used.

UPDATE NO ACTION

Specifies that the row in the parent table can be updated if no other row depends on it. If a

dependent row exists in the relationship, the UPDATE fails. The check for dependent rows is

performed at the end of the statement.

UPDATE RESTRICT

Specifies that the row in the parent table can be updated if no other row depends on it. If a

dependent row exists in the relationship, the UPDATE fails. The check for dependent rows is

performed immediately.

80 iSeries: DB2 Universal Database for iSeries SQL Programming

The subtle difference between the RESTRICT rule and the NO ACTION rule is easiest seen when looking

at the interaction of triggers and referential constraints. Triggers can be defined to fire either before or

after an operation (an UPDATE statement, in this case). A before trigger fires before the UPDATE is

performed and therefore before any checking of constraints. An after trigger is fired after the UPDATE is

performed, and after a constraint rule of RESTRICT (where checking is performed immediately), but

before a constraint rule of NO ACTION (where checking is performed at the end of the statement). The

triggers and rules occur in the following order:

1. A before trigger is fired before the UPDATE and before a constraint rule of RESTRICT or NO ACTION.

2. An after trigger is fired after a constraint rule of RESTRICT, but before a NO ACTION rule.

If you are updating a dependent table, any non-null foreign key values that you change must match the

primary key for each relationship in which the table is a dependent. For example, department numbers in

the employee table depend on the department numbers in the department table. You can assign an

employee to no department (the null value), but not to a department that does not exist.

If an UPDATE against a table with a referential constraint fails, all changes made during the update

operation are undone. For more information about the implications of commitment control and journaling

when working with constraints, see “Journaling” on page 104 and “Commitment control” on page 105.

For an example of updating a table that uses UPDATE rules, see “Examples: UPDATE rules.”

Examples: UPDATE rules

For example, you cannot update a department number from the department table if it is still responsible

for some project, which is described by a dependent row in the project table.

The following UPDATE fails because the PROJECT table has rows that are dependent on

DEPARTMENT.DEPTNO having a value of ’D01’ (the row targeted by the WHERE statement). If this

UPDATE were allowed, the referential constraint between the PROJECT and DEPARTMENT tables will

be broken.

 UPDATE CORPDATA.DEPARTMENT

 SET DEPTNO = ’D99’

 WHERE DEPTNAME = ’DEVELOPMENT CENTER’

The following statement fails because it violates the referential constraint that exists between the primary

key DEPTNO in DEPARTMENT and the foreign key DEPTNO in PROJECT:

 UPDATE CORPDATA.PROJECT

 SET DEPTNO = ’D00’

 WHERE DEPTNO = ’D01’;

The statement attempts to change all department numbers of D01 to department number D00. Since D00

is not a value of the primary key DEPTNO in DEPARTMENT, the statement fails.

Updating an identity column

You can update the value in an identity column to a specified value or have the system generate a new

value. For example, using the table created in “Creating and altering an identity column” on page 25,

with columns called ORDERNO (identity column), SHIPPED_TO (varchar(36)), and ORDER_DATE (date),

you can update the value in an identity column by issuing the following statement:

UPDATE ORDERS

 SET (ORDERNO, ORDER_DATE)=

 (DEFAULT, 2002-02-05)

 WHERE SHIPPED_TO = ’BME TOOL’

A value is generated by the system for the identity column automatically. You can override having the

system generate a value by using the OVERRIDING SYSTEM VALUE clause:

Chapter 6. Data Manipulation Language 81

UPDATE ORDERS OVERRIDING SYSTEM VALUE

 SET (ORDERNO, ORDER_DATE)=

 (553, ’2002-02-05’)

 WHERE SHIPPED_TO = ’BME TOOL’

Updating data as it is retrieved from a table

You can update rows of data as you retrieve them by using a cursor. See “Using a Cursor” on page 215

for more information about cursors. On the select-statement, use FOR UPDATE OF followed by a list of

columns that may be updated. Then use the cursor-controlled UPDATE statement. The WHERE

CURRENT OF clause names the cursor that points to the row you want to update. If a FOR UPDATE OF,

an ORDER BY, a FOR READ ONLY, or a SCROLL clause without the DYNAMIC clause is not specified,

all columns can be updated.

If a multiple-row FETCH statement has been specified and run, the cursor is positioned on the last row

of the block. Therefore, if the WHERE CURRENT OF clause is specified on the UPDATE statement, the

last row in the block is updated. If a row within the block must be updated, the program must first

position the cursor on that row. Then the UPDATE WHERE CURRENT OF can be specified. Consider the

following example:

 Table 11. Updating a Table

Scrollable Cursor SQL Statement Comments

EXEC SQL

 DECLARE THISEMP DYNAMIC SCROLL CURSOR FOR

 SELECT EMPNO, WORKDEPT, BONUS

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

 FOR UPDATE OF BONUS

 END-EXEC.

EXEC SQL

 OPEN THISEMP

END-EXEC.

EXEC SQL

 WHENEVER NOT FOUND

 GO TO CLOSE-THISEMP

END-EXEC.

EXEC SQL

 FETCH NEXT FROM THISEMP

 FOR 5 ROWS

 INTO :DEPTINFO :IND-ARRAY

 END-EXEC.

DEPTINFO and IND-ARRAY are

declared in the program as a host

structure array and an indicator

array.

... determine if any employees in department D11 receive a bonus less than

$500.00. If so, update that record to the new minimum of $500.00.

EXEC SQL

 FETCH RELATIVE :NUMBACK FROM THISEMP

END-EXEC.

... positions to the record in the

block to update by fetching in the

reverse order.

EXEC SQL

 UPDATE CORPDATA.EMPLOYEE

 SET BONUS = 500

 WHERE CURRENT OF THISEMP

 END-EXEC.

... updates the bonus for the

employee in department D11 that

is under the new $500.00

minimum.

82 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 11. Updating a Table (continued)

Scrollable Cursor SQL Statement Comments

EXEC SQL

 FETCH RELATIVE :NUMBACK FROM THISEMP

 FOR 5 ROWS

 INTO :DEPTINFO :IND-ARRAY

END-EXEC.

... positions to the beginning of

the same block that was already

fetched and fetches the block

again. (NUMBACK -(5 -

NUMBACK - 1))

... branch back to determine if any more employees in the block have a bonus

under $500.00.

... branch back to fetch and process the next block of rows.

CLOSE-THISEMP.

EXEC SQL

 CLOSE THISEMP

END-EXEC.

Removing rows from a table using the DELETE statement

This section shows the basic SQL statement and clauses that deletes data into tables and views. To

remove rows from a table, use the DELETE statement. When you DELETE a row, you remove the entire

row. DELETE does not remove specific columns from the row. The result of the DELETE statement is the

removal of zero or more rows of a table (depending on how many rows satisfy the search condition

specified in the WHERE clause). If you omit the WHERE clause from a DELETE statement, SQL removes

all the rows of the table. The DELETE statement looks like this:

 DELETE FROM table-name

 WHERE search-condition ...

For example, suppose department D11 was moved to another place. You want to delete each row in the

CORPDATA.EMPLOYEE table with a WORKDEPT value of D11 as follows:

 DELETE FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

The WHERE clause tells SQL which rows you want to delete from the table. SQL deletes all the rows that

satisfy the search condition from the base table. Deleting rows from a view deletes the rows from the

base table. You can omit the WHERE clause, but it is best to include one, because a DELETE statement

without a WHERE clause deletes all the rows from the table or view. To delete a table definition as well

as the table contents, issue the DROP statement. For more information about the DROP statement, see the

DROP statement topic in the SQL Reference book.

If SQL finds an error while running your DELETE statement, it stops deleting data and returns a negative

SQLCODE. If you specify COMMIT(*ALL), COMMIT(*CS), COMMIT(*CHG), or COMMIT(*RR), no rows

in the table are deleted (rows already deleted by this statement, if any, are restored to their previous

values). If COMMIT(*NONE) is specified, any rows already deleted are not restored to their previous

values.

If SQL cannot find any rows that satisfy the search condition, an SQLCODE of +100 is returned.

Note: The DELETE statement may have deleted more than one row. The number of rows deleted is

reflected in SQLERRD(3) of the SQLCA. This value is also available from the ROW_COUNT

diagnostics item in the GET DIAGNOSTICS statement.

See “Deleting from tables with referential constraints” on page 84 for details about tables with referential

constraints.

Chapter 6. Data Manipulation Language 83

For more information about the DELETE statement, see the DELETE statement topic in the SQL Reference

book.

Deleting from tables with referential constraints

If a table has a primary key but no dependents, DELETE operates as it does without referential

constraints. The same is true if a table has only foreign keys, but no primary key. If a table has a primary

key and dependent tables, DELETE deletes or updates rows according to the delete rules specified. All

delete rules of all affected relationships must be satisfied in order for the delete operation to succeed. If a

referential constraint is violated, the DELETE fails.

The action to be taken on dependent tables when a DELETE is performed on a parent table depends on

the delete rule specified for the referential constraint. If no delete rule was defined, the DELETE NO

ACTION rule is used.

DELETE NO ACTION

Specifies that the row in the parent table can be deleted if no other row depends on it. If a

dependent row exists in the relationship, the DELETE fails. The check for dependent rows is

performed at the end of the statement.

DELETE RESTRICT

Specifies that the row in the parent table can be deleted if no other row depends on it. If a

dependent row exists in the relationship, the DELETE fails. The check for dependent rows is

performed immediately.

 For example, you cannot delete a department from the department table if it is still responsible

for some project that is described by a dependent row in the project table.

DELETE CASCADE

Specifies that first the designated rows in the parent table are deleted. Then, the dependent rows

are deleted.

 For example, you can delete a department by deleting its row in the department table. Deleting

the row from the department table also deletes:

v The rows for all departments that report to it

v All departments that report to those departments and so forth.

DELETE SET NULL

Specifies that each nullable column of the foreign key in each dependent row is set to its default

value. This means that the column is only set to its default value if it is a member of a foreign

key that references the row being deleted. Only the dependent rows that are immediate

descendents are affected.

DELETE SET DEFAULT

Specifies that each column of the foreign key in each dependent row is set to its default value.

This means that the column is only set to its default value if it is a member of a foreign key that

references the row being deleted. Only the dependent rows that are immediate descendants are

affected.

 For example, you can delete an employee from the employee table (EMPLOYEE) even if the

employee manages some department. In that case, the value of MGRNO for each employee who

reported to the manager is set to blanks in the department table (DEPARTMENT). If some other

default value was specified on the create of the table, that value is used.

 This is due to the REPORTS_TO_EXISTS constraint defined for the department table.

If a descendent table has a delete rule of RESTRICT or NO ACTION and a row is found such that a

descendant row cannot be deleted, the entire DELETE fails.

84 iSeries: DB2 Universal Database for iSeries SQL Programming

When running this statement with a program, the number of rows deleted is returned in SQLERRD(3) in

the SQLCA. This number includes only the number of rows deleted in the table specified in the DELETE

statement. It does not include those rows deleted according to the CASCADE rule. SQLERRD(5) in the

SQLCA contains the number of rows that were affected by referential constraints in all tables. The

SQLERRD(3) value is also available from the ROW_COUNT item in the GET DIAGNOSTICS statement.

The SQLERRD(5) value is available from the DB2_ROW_COUNT_SECONDARY item.

The subtle difference between RESTRICT and NO ACTION rules is easiest seen when looking at the

interaction of triggers and referential constraints. Triggers can be defined to fire either before or after an

operation (a DELETE statement, in this case). A before trigger fires before the DELETE is performed and

therefore before any checking of constraints. An after trigger is fired after the DELETE is performed, and

after a constraint rule of RESTRICT (where checking is performed immediately), but before a constraint

rule of NO ACTION (where checking is performed at the end of the statement). The triggers and rules

occur in the following order:

1. A before trigger is fired before the DELETE and before a constraint rule of RESTRICT or NO ACTION.

2. An after trigger is fired after a constraint rule of RESTRICT, but before a NO ACTION rule.

For an example of deleting from a table that uses UPDATE rules, see “Example: DELETE Cascade Rule.”

Example: DELETE Cascade Rule

Deleting a department from the DEPARTMENT table sets WORKDEPT (in the EMPLOYEE table) to null

for every employee assigned to that department. Consider the following DELETE statement:

 DELETE FROM CORPDATA.DEPARTMENT

 WHERE DEPTNO = ’E11’

Given the tables and the data as they appear in DB2 UDB for iSeries Sample Tables, one row is deleted

from table DEPARTMENT, and table EMPLOYEE is updated to set the value of WORKDEPT to its

default wherever the value was ’E11’. A question mark (’?’) in the sample data below reflects the null

value. The results appear as follows:

 Table 12. DEPARTMENT Table. Contents of the table after the DELETE statement is complete.

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER ? A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E01 SUPPORT SERVICES 000050 A00

E21 SOFTWARE SUPPORT 000100 E01

F22 BRANCH OFFICE F2 ? E01

G22 BRANCH OFFICE G2 ? E01

H22 BRANCH OFFICE H2 ? E01

I22 BRANCH OFFICE I2 ? E01

J22 BRANCH OFFICE J2 ? E01

Note that there were no cascaded deletes in the DEPARTMENT table because no department reported to

department ’E11’.

Chapter 6. Data Manipulation Language 85

|
|
|
|
|
|

Below are snapshots of one affected portion of the EMPLOYEE table before and after the DELETE

statement is completed.

 Table 13. Partial EMPLOYEE Table. Partial contents before the DELETE statement.

EMPNO FIRSTNME MI LASTNAME WORKDEPT PHONENO HIREDATE

000230 JAMES J JEFFERSON D21 2094 1966-11-21

000240 SALVATORE M MARINO D21 3780 1979-12-05

000250 DANIEL S SMITH D21 0961 1960-10-30

000260 SYBIL P JOHNSON D21 8953 1975-09-11

000270 MARIA L PEREZ D21 9001 1980-09-30

000280 ETHEL R SCHNEIDER E11 0997 1967-03-24

000290 JOHN R PARKER E11 4502 1980-05-30

000300 PHILIP X SMITH E11 2095 1972-06-19

000310 MAUDE F SETRIGHT E11 3332 1964-09-12

000320 RAMLAL V MEHTA E21 9990 1965-07-07

000330 WING LEE E21 2103 1976-02-23

000340 JASON R GOUNOT E21 5696 1947-05-05

 Table 14. Partial EMPLOYEE Table. Partial contents after the DELETE statement.

EMPNO FIRSTNME MI LASTNAME WORKDEPT PHONENO HIREDATE

000230 JAMES J JEFFERSON D21 2094 1966-11-21

000240 SALVATORE M MARINO D21 3780 1979-12-05

000250 DANIEL S SMITH D21 0961 1960-10-30

000260 SYBIL P JOHNSON D21 8953 1975-09-11

000270 MARIA L PEREZ D21 9001 1980-09-30

000280 ETHEL R SCHNEIDER ? 0997 1967-03-24

000290 JOHN R PARKER ? 4502 1980-05-30

000300 PHILIP X SMITH ? 2095 1972-06-19

000310 MAUDE F SETRIGHT ? 3332 1964-09-12

000320 RAMLAL V MEHTA E21 9990 1965-07-07

000330 WING LEE E21 2103 1976-02-23

000340 JASON R GOUNOT E21 5696 1947-05-05

Using Subqueries

You can use subqueries in a search condition as another way to select your data. Subqueries can be used

in expressions, in the select-list, and in the ORDER BY and the GROUP BY clauses.

Conceptually, a subquery is evaluated whenever a new row or group of rows must be processed. In fact,

if the subquery is the same for every row or group, it is evaluated only once. Subqueries like this are said

to be uncorrelated.

Some subqueries return different values from row to row or group to group. The mechanism that allows

this is called correlation, and the subqueries are said to be correlated.

For more details, see the following sections:

86 iSeries: DB2 Universal Database for iSeries SQL Programming

v “Subqueries in SELECT statements”

v “Correlated subqueries” on page 90

Subqueries in SELECT statements

In simple WHERE and HAVING clauses, you can specify a search condition by using a literal value, a

column name, an expression, or a special register. In those search conditions, you know that you are

searching for a specific value. However, sometimes you cannot supply that value until you have retrieved

other data from a table. For example, suppose you want a list of the employee numbers, names, and job

codes of all employees working on a particular project, say project number MA2100. The first part of the

statement is easy to write:

 SELECT EMPNO, LASTNAME, JOB

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO ...

But you cannot go further because the CORPDATA.EMPLOYEE table does not include project number

data. You do not know which employees are working on project MA2100 without issuing another

SELECT statement against the CORPDATA.EMP_ACT table.

With SQL, you can nest one SELECT statement within another to solve this problem. The inner SELECT

statement is called a subquery. The SELECT statement surrounding the subquery is called the outer-level

SELECT. Using a subquery, you can issue just one SQL statement to retrieve the employee numbers,

names, and job codes for employees who work on project MA2100:

 SELECT EMPNO, LASTNAME, JOB

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO IN

 (SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO = ’MA2100’)

To better understand what will result from this SQL statement, imagine that SQL goes through the

following process:

Step 1: SQL evaluates the subquery to obtain a list of EMPNO values:

(SELECT EMPNO

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO= ’MA2100’)

Which results in an interim results table:

 EMPNO from CORPDATA.EMPPROJACT

000010

000110

Step 2: The interim results table then serves as a list in the search condition of the outer-level SELECT.

Essentially, this is the statement that is run.

SELECT EMPNO, LASTNAME, JOB

 FROM CORPDATA.EMPLOYEE

 WHERE EMPNO IN

 (’000010’, ’000110’)

The final result table looks like this:

 EMPNO LASTNAME JOB

000010 HAAS PRES

000110 LUCCHESSI SALESREP

Chapter 6. Data Manipulation Language 87

For more details, see the following sections:

v “Subqueries and search conditions”

v “Using subqueries”

v “Including subqueries in WHERE or HAVING clauses”

Subqueries and search conditions

A subquery can be part of a search condition. The search condition is in the form operand operator operand.

Either operand can be a subquery. In the following example, the first operand is EMPNO and operator is

IN. The search condition can be part of a WHERE or HAVING clause. The clause can include more than

one search condition that contains a subquery. A search condition containing a subquery, like any other

search condition, can be enclosed in parentheses, can be preceded by the keyword NOT, and can be

linked to other search conditions through the keywords AND and OR. For example, the WHERE clause

of a query can look something like this:

WHERE (subquery1) = X AND (Y > SOME (subquery2) OR Z = 100)

Subqueries can also appear in the search conditions of other subqueries. Such subqueries are said to be

nested at some level of nesting. For example, a subquery within a subquery within an outer-level

SELECT is nested at a nesting level of two. SQL allows nesting down to a nesting level of 32.

Using subqueries

1. When nesting SELECT statements, you can use as many as you need to satisfy your requirements (1

to 31 subqueries), although performance is slower for each additional subquery.

2. When the outer statement is a SELECT statement (at any level of nesting):

v The subquery can be based on the same table or view as the outer statement, or on a different table

or view.

v You can use a subquery in the WHERE clause of the outer-level SELECT, even when the outer-level

SELECT is part of a DECLARE CURSOR, CREATE TABLE, CREATE VIEW, or INSERT statement.

v You can use a subquery in the HAVING clause of a SELECT statement. When you do, SQL

evaluates the subquery and uses it to qualify each group.
3. When the statement is an UPDATE or DELETE statement, you can use subqueries in the WHERE

clause of the UPDATE or DELETE statement. You can also use a subquery in the SET clause of an

UPDATE statement.

4. When a subquery is used in the SET clause of an UPDATE statement, the result table of a subselect

must contain the same number of values as the corresponding list of columns to be updated. In all

other cases, the result table for a subquery must consist of a single column, unless the subquery is

being used with the EXISTS keyword. For predicates using the keywords ALL, ANY, SOME, or

EXISTS, the number of rows returned from the subquery can vary from zero to many. For all other

subqueries, the number of rows returned must be zero or one.

5. A subquery cannot include the ORDER BY, UNION, UNION ALL, FOR READ ONLY, FETCH FIRST

n ROWS, UPDATE, or OPTIMIZE clauses.

Including subqueries in WHERE or HAVING clauses

There are several ways to include a subquery in either a WHERE or HAVING clause:

v Basic comparisons

v Quantified comparisons (ALL, ANY, and SOME)

v IN keyword

v EXISTS keyword

Basic comparisons

You can use a subquery before or after any of the comparison operators. The subquery can return at most

one value. The value can be the result of a column function or an arithmetic expression. SQL then

88 iSeries: DB2 Universal Database for iSeries SQL Programming

compares the value that results from the subquery with the value on the other side of the comparison

operator. For example, suppose you want to find the employee numbers, names, and salaries for

employees whose education level is higher than the average education level throughout the company.

 SELECT EMPNO, LASTNAME, SALARY

 FROM CORPDATA.EMPLOYEE

 WHERE EDLEVEL >

 (SELECT AVG(EDLEVEL)

 FROM CORPDATA.EMPLOYEE)

SQL first evaluates the subquery and then substitutes the result in the WHERE clause of the SELECT

statement. In this example, the result is the company-wide average educational level. Besides returning a

single value, a subquery can return no value at all. If it does, the result of the compare is unknown.

Quantified comparisons (ALL, ANY, and SOME)

You can use a subquery after a comparison operator followed by the keyword ALL, ANY, or SOME.

When used in this way, the subquery can return zero, one, or many values, including null values. You

can use ALL, ANY, and SOME in the following ways:

v Use ALL to indicate that the value you supplied must compare in the indicated way to ALL the values

the subquery returns. For example, suppose you use the greater-than comparison operator with ALL:

... WHERE expression > ALL (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than all the values (that is,

greater than the highest value) returned by the subquery. If the subquery returns an empty set (that is,

no values were selected), the condition is satisfied.

v Use ANY or SOME to indicate that the value you supplied must compare in the indicated way to at

least one of the values the subquery returns. For example, suppose you use the greater-than comparison

operator with ANY:

... WHERE expression > ANY (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than at least one of the

values (that is, greater than the lowest value) returned by the subquery. If what the subquery returns is

the empty set, the condition is not satisfied.

Note: The results when a subquery returns one or more null values may surprise you, unless you are

familiar with formal logic. For more details, see the discussion of quantified predicates in the SQL

Reference.

IN keyword

You can use IN to say that the value in the expression must be among the values returned by the

subquery. Using IN is equivalent to using =ANY or =SOME. Using ANY and SOME were previously

described. You can also use the IN keyword with the NOT keyword in order to select rows when the

value is not among the values returned by the subquery. For example, you can use:

... WHERE WORKDEPT NOT IN (SELECT ...)

EXISTS Keyword

In the subqueries presented so far, SQL evaluates the subquery and uses the result as part of the WHERE

clause of the outer-level SELECT. In contrast, when you use the keyword EXISTS, SQL checks whether

the subquery returns one or more rows. If it does, the condition is satisfied. If it returns no rows, the

condition is not satisfied. For example:

 SELECT EMPNO,LASTNAME

 FROM CORPDATA.EMPLOYEE

 WHERE EXISTS

 (SELECT *

 FROM CORPDATA.PROJECT

 WHERE PRSTDATE > ’1982-01-01’);

Chapter 6. Data Manipulation Language 89

In the example, the search condition is true if any project represented in the CORPDATA.PROJECT table

has an estimated start date that is later than January 1, 1982. This example does not show the full power

of EXISTS, because the result is always the same for every row examined for the outer-level SELECT. As

a consequence, either every row appears in the results, or none appear. In a more powerful example, the

subquery itself is be correlated, and changes from row to row. See “Correlated subqueries” for more

information about correlated subqueries.

As shown in the example, you do not need to specify column names in the select-list of the subquery of

an EXISTS clause. Instead, you should code SELECT *.

You can also use the EXISTS keyword with the NOT keyword in order to select rows when the data or

condition you specify does not exist. You can use the following:

... WHERE NOT EXISTS (SELECT ...)

Correlated subqueries

In the subqueries previously discussed, SQL evaluates the subquery once, substitutes the result of the

subquery in the search condition, and evaluates the outer-level SELECT based on the value of the search

condition. You can also write a subquery that SQL may need to re-evaluate as it examines each new row

(WHERE clause) or group of rows (HAVING clause) in the outer-level SELECT. This is called a correlated

subquery.

Find more information in the following sections:

v “Correlated names and references”

v “Example: Correlated subquery in a WHERE Clause” on page 91

v “Example: Correlated subquery in a HAVING Clause” on page 92

v “Example: Correlated subquery in select-list” on page 92

v “Example: Correlated subqueries in an UPDATE statement” on page 93

v “Example: Correlated subqueries in a DELETE statement” on page 94

Correlated names and references

A correlated reference can appear in a search condition in a subquery. The reference is always of the form

X.C, where X is a correlation name and C is the name of a column in the table that X represents.

You can define a correlation name for any table appearing in a FROM clause. A correlation name

provides a unique name for a table in a query. The same table name can be used many times within a

query and its nested subselects. Specifying different correlation names for each table reference makes it

possible to uniquely designate which table a column refers to.

The correlation name is defined in the FROM clause of a query. This query can be the outer-level

SELECT, or any of the subqueries that contain the one with the reference. Suppose, for example, that a

query contains subqueries A, B, and C, and that A contains B and B contains C. Then a correlation name

used in C can be defined in B, A, or the outer-level SELECT. To define a correlation name, include the

correlation name after the table name. Leave one or more blanks between a table name and its correlation

name, and place a comma after the correlation name if it is followed by another table name. The

following FROM clause defines the correlation names TA and TB for the tables TABLEA and TABLEB,

and no correlation name for the table TABLEC.

 FROM TABLEA TA, TABLEC, TABLEB TB

Any number of correlated references can appear in a subquery. For example, one correlated name in a

search condition can be defined in the outer-level SELECT, while another can be defined in a containing

subquery.

Before the subquery is executed, a value from the referenced column is always substituted for the

correlated reference.

90 iSeries: DB2 Universal Database for iSeries SQL Programming

Example: Correlated subquery in a WHERE Clause

Suppose that you want a list of all the employees whose education levels are higher than the average

education levels in their respective departments. To get this information, SQL must search the

CORPDATA.EMPLOYEE table. For each employee in the table, SQL needs to compare the employee’s

education level to the average education level for the employee’s department. In the subquery, you tell

SQL to calculate the average education level for the department number in the current row. For example:

 SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL

 FROM CORPDATA.EMPLOYEE X

 WHERE EDLEVEL >

 (SELECT AVG(EDLEVEL)

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = X.WORKDEPT)

A correlated subquery looks like an uncorrelated one, except for the presence of one or more correlated

references. In the example, the single correlated reference is the occurrence of X.WORKDEPT in the

subselect’s FROM clause. Here, the qualifier X is the correlation name defined in the FROM clause of the

outer SELECT statement. In that clause, X is introduced as the correlation name of the table

CORPDATA.EMPLOYEE.

Now, consider what happens when the subquery is executed for a given row of CORPDATA.EMPLOYEE.

Before it is executed, the occurrence of X.WORKDEPT is replaced with the value of the WORKDEPT

column for that row. Suppose, for example, that the row is for CHRISTINE I HAAS. Her work

department is A00, which is the value of WORKDEPT for this row. The subquery executed for this row

is:

 (SELECT AVG(EDLEVEL)

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’A00’)

Thus, for the row considered, the subquery produces the average education level of Christine’s

department. This is then compared in the outer statement to Christine’s own education level. For some

other row for which WORKDEPT has a different value, that value appears in the subquery in place of

A00. For example, for the row for MICHAEL L THOMPSON, this value is B01, and the subquery for his

row delivers the average education level for department B01.

The result table produced by the query has the following values:

 Table 15. Result set for previous query

EMPNO LASTNAME WORKDEPT EDLEVEL

000010 HAAS A00 18

000030 KWAN C01 20

000070 PULASKI D21 16

000090 HENDERSON E11 16

000110 LUCCHESSI A00 19

000160 PIANKA D11 17

000180 SCOUTTEN D11 17

000210 JONES D11 17

000220 LUTZ D11 18

000240 MARINO D21 17

000260 JOHNSON D21 16

000280 SCHNEIDER E11 17

000320 MEHTA E21 16

000340 GOUNOT E21 16

Chapter 6. Data Manipulation Language 91

Table 15. Result set for previous query (continued)

EMPNO LASTNAME WORKDEPT EDLEVEL

200010 HEMMINGER A00 18

200220 JOHN D11 18

200240 MONTEVERDE D21 17

200280 SCHWARTZ E11 17

200340 ALONZO E21 16

Example: Correlated subquery in a HAVING Clause

Suppose that you want a list of all the departments whose average salary is higher than the average

salary of their area (all departments whose WORKDEPT begins with the same letter belong to the same

area). To get this information, SQL must search the CORPDATA.EMPLOYEE table. For each department

in the table, SQL compares the department’s average salary to the average salary of the area. In the

subquery, SQL calculates the average salary for the area of the department in the current group. For

example:

 SELECT WORKDEPT, DECIMAL(AVG(SALARY),8,2)

 FROM CORPDATA.EMPLOYEE X

 GROUP BY WORKDEPT

 HAVING AVG(SALARY) >

 (SELECT AVG(SALARY)

 FROM CORPDATA.EMPLOYEE

 WHERE SUBSTR(X.WORKDEPT,1,1) = SUBSTR(WORKDEPT,1,1))

Consider what happens when the subquery is executed for a given department of

CORPDATA.EMPLOYEE. Before it is executed, the occurrence of X.WORKDEPT is replaced with the

value of the WORKDEPT column for that group. Suppose, for example, that the first group selected has

A00 for the value of WORKDEPT. The subquery executed for this group is:

 (SELECT AVG(SALARY)

 FROM CORPDATA.EMPLOYEE

 WHERE SUBSTR(’A00’,1,1) = SUBSTR(WORKDEPT,1,1))

Thus, for the group considered, the subquery produces the average salary for the area. This value is then

compared in the outer statement to the average salary for department 'A00'. For some other group for

which WORKDEPT is ’B01’, the subquery results in the average salary for the area where department B01

belongs.

The result table produced by the query has the following values:

 WORKDEPT AVG SALARY

D21 25668.57

E01 40175.00

E21 24086.66

Example: Correlated subquery in select-list

Suppose that you want a list of all of the departments, including the department name, number, and

manager’s name. Department names and numbers are found in the CORPDATA.DEPARTMENT table.

However, DEPARTMENT only has the manager’s number, not the manager’s name. To find the name of

the manager for each department, you need to find the employee number from the EMPLOYEE table that

matches the manager number in the DEPARTMENT table and return the name for the row that matches.

Only departments that currently have a manager assigned are to be returned. Execute the following:

SELECT DEPTNO, DEPTNAME,

 (SELECT FIRSTNME CONCAT ’ ’ CONCAT

 MIDINIT CONCAT ’ ’ CONCAT LASTNAME

92 iSeries: DB2 Universal Database for iSeries SQL Programming

FROM EMPLOYEE X

 WHERE X.EMPNO = Y.MGRNO) AS MANAGER_NAME

 FROM DEPARTMENT Y

 WHERE MGRNO IS NOT NULL

For each row returned for DEPTNO and DEPTNAME, the system finds where EMPNO = MGRNO and

returns the manager’s name. The result table produced by the query has the following values:

 Table 16.

DEPTNO DEPTNAME MANAGER_NAME

A00 SPIFFY COMPUTER SERVICE DIV. CHRISTINE I HAAS

B01 PLANNING MICHAEL L THOMPSON

C01 INFORMATION CENTER SALLY A KWAN

D11 MANUFACTURING SYSTEMS IRVING F STERN

D21 ADMINISTRATION SYSTEMS EVA D PULASKI

E01 SUPPORT SERVICES JOHN B GEYER

E11 OPERATIONS EILEEN W HENDERSON

E21 SOFTWARE SUPPORT THEODORE Q SPENSER

Example: Correlated subqueries in an UPDATE statement

When you use a correlated subquery in an UPDATE statement, the correlation name refers to the rows

you are interested in updating. For example, when all activities of a project must be completed before

September 1983, your department considers that project to be a priority project. You can use the SQL

statement below to evaluate the projects in the CORPDATA.PROJECT table, and write a 1 (a flag to

indicate PRIORITY) in the PRIORITY column (a column you added to CORPDATA.PROJECT for this

purpose) for each priority project.

 UPDATE CORPDATA.PROJECT X

 SET PRIORITY = 1

 WHERE ’1983-09-01’ >

 (SELECT MAX(EMENDATE)

 FROM CORPDATA.EMPPROJACT

 WHERE PROJNO = X.PROJNO)

As SQL examines each row in the CORPDATA.EMPPROJACT table, it determines the maximum activity

end date (EMENDATE) for all activities of the project (from the CORPDATA.PROJECT table). If the end

date of each activity associated with the project is before September 1983, the current row in the

CORPDATA.PROJECT table qualifies and is updated.

Update the master order table with any changes to the quantity ordered. If the quantity in the orders

table is not set (the NULL value), keep the value that is in the master order table.

UPDATE MASTER_ORDERS X

 SET QTY=(SELECT COALESCE (Y.QTY, X.QTY)

 FROM ORDERS Y

 WHERE X.ORDER_NUM = Y.ORDER_NUM)

 WHERE X.ORDER_NUM IN (SELECT ORDER_NUM

 FROM ORDERS)

In this example, each row of the MASTER_ORDERS table is checked to see if it has a corresponding row

in the ORDERS table. If it does have a matching row in the ORDERS table, the COALESCE function is

used to return a value for the QTY column. If QTY in the ORDERS table has a non-null value, that value

is used to update the QTY column in the MASTER_ORDERS table. If the QTY value in the ORDERS table

is NULL, the MASTER_ORDERS QTY column is updated with its own value.

Chapter 6. Data Manipulation Language 93

Example: Correlated subqueries in a DELETE statement

When you use a correlated subquery in a DELETE statement, the correlation name represents the row

you delete. SQL evaluates the correlated subquery once for each row in the table named in the DELETE

statement to decide whether to delete the row.

Suppose a row in the CORPDATA.PROJECT table was deleted. Rows related to the deleted project in the

CORPDATA.EMPPROJACT table must also be deleted. To do this, you can use:

 DELETE FROM CORPDATA.EMPPROJACT X

 WHERE NOT EXISTS

 (SELECT *

 FROM CORPDATA.PROJECT

 WHERE PROJNO = X.PROJNO)

SQL determines, for each row in the CORPDATA.EMP_ACT table, whether a row with the same project

number exists in the CORPDATA.PROJECT table. If not, the CORPDATA.EMP_ACT row is deleted.

94 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 7. Sort sequences and normalization in SQL

Sort Sequence

A sort sequence defines how characters in a character set relate to each other when they are compared or

ordered. The sort sequence is used for all character, and UCS-2 and UTF-16 graphic comparisons

performed in SQL statements. There are sort sequence tables for both single byte and double byte

character data. Each single byte sort sequence table has an associated double byte sort sequence table,

and vice versa. Conversion between the two tables is performed when necessary to implement a query. In

addition, the CREATE INDEX statement has the sort sequence (in effect at the time the statement was

run) applied to the character columns referred to in the index.

v “Sort sequence used with ORDER BY and row selection”

v “Sort sequence and views” on page 98

v “Sort Sequence and the CREATE INDEX Statement” on page 98

v “Sort sequence and constraints” on page 99

v “ICU Sort Sequence” on page 99

For a complete discussion about sort sequences, see the Sort Sequence section of the SQL Reference book.

Normalization

Normalization allows you to compare strings that contain combining characters. For more information,

see “Normalization” on page 100.

Sort sequence used with ORDER BY and row selection

To see how to use a sort sequence, run the examples in this section against the STAFF table shown in the

following table. Notice that the values in the JOB column are in mixed case. You can see the values 'Mgr',

'MGR', and 'mgr'.

 Table 17. The STAFF Table

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

20 Pernal 20 Sales 8 18171.25 612.45

30 Merenghi 38 MGR 5 17506.75 0

40 OBrien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 0 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk 0 13504.60 128.20

90 Koonitz 42 sales 6 18001.75 1386.70

100 Plotz 42 mgr 6 18352.80 0

In the following examples, the results are shown for each statement using:

v *HEX sort sequence

v Shared-weight sort sequence using the language identifier ENU

v Unique-weight sort sequence using the language identifier ENU

© Copyright IBM Corp. 1998, 2004 95

Note: ENU is chosen as a language identifier by specifying either SRTSEQ(*LANGIDUNQ), or

SRTSEQ(*LANGIDSHR) and LANGID(ENU), on the CRTSQLxxx, STRSQL, or RUNSQLSTM

commands, or by using the SET OPTION statement.
See the following topics for more details:

v “Sort sequence and ORDER BY”

v “Row selection” on page 97

Sort sequence and ORDER BY

The following SQL statement causes the result table to be sorted using the values in the JOB column:

SELECT * FROM STAFF ORDER BY JOB

Table 18 shows the result table using a *HEX sort sequence. The rows are sorted based on the EBCDIC

value in the JOB column. In this case, all lowercase letters sort before the uppercase letters.

 Table 18. ″SELECT * FROM STAFF ORDER BY JOB″ Using the *HEX Sort Sequence.

ID NAME DEPT JOB YEARS SALARY COMM

100 Plotz 42 mgr 6 18352.80 0

90 Koonitz 42 sales 6 18001.75 1386.70

80 James 20 Clerk 0 13504.60 128.20

10 Sanders 20 Mgr 7 18357.50 0

50 Hanes 15 Mgr 10 20659.80 0

30 Merenghi 38 MGR 5 17506.75 0

20 Pernal 20 Sales 8 18171.25 612.45

40 OBrien 38 Sales 6 18006.00 846.55

70 Rothman 15 Sales 7 16502.83 1152.00

60 Quigley 38 SALES 0 16808.30 650.25

Table 19 shows how sorting is done for a unique-weight sort sequence. After the sort sequence is applied

to the values in the JOB column, the rows are sorted. Notice that after the sort, lowercase letters are

before the same uppercase letters, and the values 'mgr', 'Mgr', and 'MGR' are adjacent to each other.

 Table 19. ″SELECT * FROM STAFF ORDER BY JOB″ Using the Unique-Weight Sort Sequence for the ENU

Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM

80 James 20 Clerk 0 13504.60 128.20

100 Plotz 42 mgr 6 18352.80 0

10 Sanders 20 Mgr 7 18357.50 0

50 Hanes 15 Mgr 10 20659.80 0

30 Merenghi 38 MGR 5 17506.75 0

90 Koonitz 42 sales 6 18001.75 1386.70

20 Pernal 20 Sales 8 18171.25 612.45

40 OBrien 38 Sales 6 18006.00 846.55

70 Rothman 15 Sales 7 16502.83 1152.00

60 Quigley 38 SALES 0 16808.30 650.25

Table 20 on page 97 shows how sorting is done for a shared-weight sort sequence. After the sort sequence

is applied to the values in the JOB column, the rows are sorted. For the sort comparison, each lowercase

96 iSeries: DB2 Universal Database for iSeries SQL Programming

letter is treated the same as the corresponding uppercase letter. In Table 20, notice that all the values

'MGR', 'mgr' and 'Mgr' are mixed together.

 Table 20. ″SELECT * FROM STAFF ORDER BY JOB″ Using the Shared-Weight Sort Sequence for the ENU

Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM

80 James 20 Clerk 0 13504.60 128.20

10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0

100 Plotz 42 mgr 6 18352.80 0

20 Pernal 20 Sales 8 18171.25 612.45

40 OBrien 38 Sales 6 18006.00 846.55

60 Quigley 38 SALES 0 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

90 Koonitz 42 sales 6 18001.75 1386.70

Row selection

The following SQL statement selects rows with the value 'MGR' in the JOB column:

SELECT * FROM STAFF WHERE JOB=’MGR’

Table 21 shows how row selection is done with a *HEX sort sequence. In Table 21, the rows that match

the row selection criteria for the column 'JOB' are selected exactly as specified in the select statement.

Only the uppercase 'MGR' is selected.

 Table 21. ″SELECT * FROM STAFF WHERE JOB=’MGR’ Using the *HEX Sort Sequence.″

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Table 22 shows how row selection is done with a unique-weight sort sequence. In Table 22, the lowercase

and uppercase letters are treated as unique. The lowercase 'mgr' is not treated the same as uppercase

'MGR'. Therefore, the lowercase 'mgr' is not selected.

 Table 22. ″SELECT * FROM STAFF WHERE JOB = ’MGR’ ″ Using Unique-Weight Sort Sequence for the ENU

Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Table 23 shows how row selection is done with a shared-weight sort sequence. In Table 23, the rows that

match the row selection criteria for the column 'JOB' are selected by treating uppercase letters the same as

lowercase letters. Notice that in Table 23 all the values 'mgr', 'Mgr' and 'MGR' are selected.

 Table 23. ″SELECT * FROM STAFF WHERE JOB = ’MGR’ ″ Using the Shared-Weight Sort Sequence for the ENU

Language Identifier.

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

Chapter 7. Sort sequences and normalization in SQL 97

Table 23. ″SELECT * FROM STAFF WHERE JOB = ’MGR’ ″ Using the Shared-Weight Sort Sequence for the ENU

Language Identifier. (continued)

ID NAME DEPT JOB YEARS SALARY COMM

50 Hanes 15 Mgr 10 20659.80 0

100 Plotz 42 mgr 6 18352.80 0

Sort sequence and views

Views are created with the sort sequence that was in effect when the CREATE VIEW statement was run.

When the view is referred to in a FROM clause, that sort sequence is used for any character comparisons

in the subselect of the CREATE VIEW. At that time, an intermediate result table is produced from the

view subselect. The sort sequence in effect when the query is being run is then applied to all the

character and UCS-2 graphic comparisons (including those comparisons involving implicit conversions to

character, or UCS-2 or UTF-16 graphic) specified in the query.

The following SQL statements and tables show how views and sort sequences work. View V1, used in the

following examples, was created with a shared-weight sort sequence of SRTSEQ(*LANGIDSHR) and

LANGID(ENU). The CREATE VIEW statement is as follows:

CREATE VIEW V1 AS SELECT *

 FROM STAFF

 WHERE JOB = ’MGR’ AND ID < 100

Table 24 shows the result table from the view.

 Table 24. ″SELECT * FROM V1″

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0

Any queries run against view V1 are run against the result table shown in Table 24. The query shown

below is run with a sort sequence of SRTSEQ(*LANGIDUNQ) and LANGID(ENU).

 Table 25. ″SELECT * FROM V1 WHERE JOB = ’MGR’″ Using the Unique-Weight Sort Sequence for Language

Identifier ENU

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Sort Sequence and the CREATE INDEX Statement

Indexes are created using the sort sequence that was in effect when the CREATE INDEX statement was

run. An entry is added to the index every time an insert is made into the table over which the index is

defined. Index entries contain the weighted value for character key, and UCS-2 and UTF-16 graphic key

columns. The system gets the weighted value by converting the key value based on the sort sequence of

the index.

When selection is made using that sort sequence and that index, the character, or UCS-2 or UTF-16

graphic keys do not need to be converted before comparison. This improves the performance of the

query. For more information about creating effective indexes and sort sequence, see Using indexes with

sort sequence in the Database Performance and Query Optimization book.

98 iSeries: DB2 Universal Database for iSeries SQL Programming

Sort sequence and constraints

Unique constraints are implemented with indexes. If the table on which a unique constraint is added was

defined with a sort sequence, the index will be created with that same sort sequence.

If defining a referential constraint, the sort sequence between the parent and dependent table must match.

For more information about sort sequence and constraints, see the Ensuring data integrity with referential

constraints topic in the Database Programming book in the iSeries Information Center.

The sort sequence used at the time a check constraint is defined is the same sort sequence the system

uses to validate adherence to the constraint at the time of an INSERT or UPDATE.

ICU Sort Sequence

When an ICU (International Components for Unicode) sort sequence table is used, the system’s ICU

support (Option 39) is used by the database to determine the weight of the data using language specific

rules according to the locale of the table. An ICU sort sequence table named en_us (United States locale)

can sort data differently than another ICU table named fr_FR (French locale) for example.

The system’s ICU support properly handles data that is not normalized, producing the same results as if

the data were normalized. The system’s ICU sort sequence table can sort all character, graphic, and

unicode (UTF-8, UTF-16 and UCS-2) data.

For example, a UTF-8 character column named NAME contains the following three names (the hex

values of the column are given as well) :

 NAME HEX (NAME)

Gómez 47C3B36D657A

Gomer 476F6D6572

Gumby 47756D6279

A *HEX sort sequence will order the NAME values as follows:

 NAME

Gomer

Gumby

Gómez

An ICU sort sequence table named en_us will correctly order the NAME values.

 NAME

Gomer

Gómez

Gumby

When an ICU sort sequence table is specified, the performance of SQL statements that use the table can

be much slower than using a non-ICU sort sequence table or *HEX sort sequence. The slower

performance results from calling the system’s ICU support to get the weighted value for each piece of

data that needs to be sorted. An ICU sort sequence table can provide more sorting function but at the

cost of slower running SQL statements. However, indexes created with an ICU sort sequence table can be

Chapter 7. Sort sequences and normalization in SQL 99

|

|
|
|
|

|
|
|

|
|

|||

||

||

||
|

|

||

|

|

|
|

|

||

|

|

|
|

|
|
|
|
|

created over columns to help reduce the need of calling the system’s ICU support. In this case the index

key would already contain the ICU weighted value so there is no need to call the system’s ICU support.

For more information about ICU sort sequence tables, see International Components for Unicode in the

Globalization topic.

Normalization

Data tagged with a UTF-8 or UTF-16 CCSID can contain combining characters. Combining characters

allow a resulting character to be composed of more than one character. After the first character of the

compound character, one of many different non-spacing characters such as umlauts and accents can

follow in the data string. If the resulting character is one that is already defined in the character set,

normalization of the string results in multiple combining characters being replaced by the value of the

defined character. For example, if your string contained the letter ’a’ followed by an ’..’, the string is

normalized to contain the single character ’ä’.

Normalization makes it possible to accurately compare strings. If data is not normalized, two strings that

look identical on the display may not compare equal since the stored representation can be different.

When UTF-8 and UTF-16 string data is not normalized, it is possible that a column in a table can have

one row with the letter ’a’ followed by the umlaut character and another row with the combined ’ä’

character. These two values are not both compare equal in a comparison predicate: WHERE C1 = ’ä’. For

this reason, it is recommended that all string columns in a table are stored in normalized form.

You can normalize the data yourself before inserting or updating it, or you can define a column in a table

to be automatically normalized by the database. To have the database perform the normalization, specify

NORMALIZED as part of the column definition. This option is only allowed for columns that are tagged

with a CCSID of 1208 (UTF-8) or 1200 (UTF-16). The database assumes all columns in a table have been

normalized.

The NORMALIZED clause can also be specified for function and procedure parameters. If it is specified

for an input parameter, the normalization will be done by the database for the parameter value before

invoking the function or procedure. If it is specified for an output parameter, the clause is not enforced; it

is assumed that the user’s routine code will return a normalized value.

The NORMALIZE_DATA option in the QAQQINI file is used to indicate whether the system is to

perform normalization when working with UTF-8 and UTF-16 data. This option controls whether the

system will normalize literals, host variables, parameter markers, and expressions that combine strings

before using them in SQL. The option is initialized to not perform normalization. This is the correct value

for you if the data in your tables and any literal values in your applications is always normalized already

through some other mechanism or never contains characters which will need to be normalized. If this is

the case, you will want to avoid the overhead of system normalization in your query. If your data is not

already normalized, you will want to switch the value of this option to have the system perform

normalization for you. For more information about the QAQQINI file options, see Change the attributes

of your queries with the Change Query Attributes (CHGQRYA) command in the Database Performance and

Query Optimization topic.

100 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Chapter 8. Data Protection

This topic describes the security plan for protecting SQL data from unauthorized users and the methods

for ensuring data integrity. For more information, see the following topics:

“Security for SQL objects”

“Data integrity” on page 102

Security for SQL objects

All objects on the server, including SQL objects, are managed by the system security function. Users may

authorize SQL objects through either the SQL GRANT and REVOKE statements or the CL commands

Edit Object Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), and Revoke Object

Authority (RVKOBJAUT). For more information about system security and the use of the GRTOBJAUT

and RVKOBJAUT commands, see the iSeries Security Reference

book.

The SQL GRANT and REVOKE statements operate on SQL packages, SQL procedures, tables, views, and

the individual columns of tables and views. Furthermore, SQL GRANT and REVOKE statements only

grant private and public authorities. In some cases, it is necessary to use EDTOBJAUT, GRTOBJAUT, and

RVKOBJAUT to authorize users to other objects, such as commands and programs.

For more information about the GRANT and REVOKE statements, see the SQL Reference book.

The authority checked for SQL statements depends on whether the statement is static, dynamic, or being

run interactively.

For static SQL statements:

v If the USRPRF value is *USER, the authority to run the SQL statement locally is checked using the user

profile of the user running the program. The authority to run the SQL statement remotely is checked

using the user profile at the application server. *USER is the default for system (*SYS) naming.

v If the USRPRF value is *OWNER, the authority to run the SQL statement locally is checked using the

user profiles of the user running the program and of the owner of the program. The authority to run

the SQL statement remotely is checked using the user profiles of the application server job and the

owner of the SQL package. The higher authority is the authority that is used. *OWNER is the default

for SQL (*SQL) naming.

For dynamic SQL statements:

v If the USRPRF value is *USER, the authority to run the SQL statement locally is checked using the user

profile of the person running the program. The authority to run the SQL statement remotely is checked

using the user profile of the application server job.

v If the USRPRF value is *OWNER and DYNUSRPRF is *USER, the authority to run the SQL statement

locally is checked using the user profile of the person running the program. The authority to run the

SQL statement remotely is checked using the user profile of the application server job.

v If the USRPRF value is *OWNER and DYNUSRPRF is *OWNER, the authority to run the SQL

statement locally is checked using the user profiles of the user running the program and the owner of

the program. The authority to run the SQL statement remotely is checked using the user profiles of the

application server job and the owner of the SQL package. The highest authority is the authority that is

used. Because of security concerns, you should use the *OWNER parameter value for DYNUSRPRF

carefully. This option gives the access authority of the owner program or package to those who run the

program.

© Copyright IBM Corp. 1998, 2004 101

For interactive SQL statements, authority is checked against the authority of the person processing the

statement. Adopted authority is not used for interactive SQL statements.

You can also use one of the following to secure your data:

v “Authorization ID”

v “Views”

v “Auditing”

Authorization ID

The authorization ID identifies a unique user and is a user profile object on the server. Authorization IDs

can be created using the system Create User Profile (CRTUSRPRF) command.

Views

A view can prevent unauthorized users from having access to sensitive data. The application program

can access the data it needs in a table, without having access to sensitive or restricted data in the table. A

view can restrict access to particular columns by not specifying those columns in the SELECT list (for

example, employee salaries). A view can also restrict access to particular rows in a table by specifying a

WHERE clause (for example, allowing access only to the rows associated with a particular department

number).

Auditing

DB2 UDB for iSeries is designed to comply with the U.S. government C2 security level. A key feature of

that level is the ability to audit actions on the system. DB2 UDB for iSeries uses the audit facilities

managed by the system security function. Auditing can be performed on an object level, user, or system

level. The system value QAUDCTL controls whether auditing is performed at the object or user level. The

Change User Audit (CHGUSRAUD) command and Change Object Audit (CHGOBJAUD) command

specify which users and objects are audited. The system value QAUDLVL controls what types of actions

are audited (for example, authorization failures, creates, deletes, grants, revokes, and so on.) For more

information about auditing see the iSeries Security Reference

book.

DB2 UDB for iSeries can also audit row changes by using the DB2 UDB for iSeries journal support.

In some cases, entries in the auditing journal will not be in the same order as they occured. For example,

a job that is running under commitment control deletes a table, creates a new table with the same name

as the one that was deleted, then does a commit. This will be recorded in the auditing journal as a create

followed by a delete. This is because objects that are created are journaled immediately. An object that is

deleted under commitment control is hidden and not actually deleted until a commit is done. Once the

commit is done, the action is journaled.

Data integrity

Data integrity protects data from being destroyed or changed by unauthorized persons, system operation

or hardware failures (such as physical damage to a disk), programming errors, interruptions before a job

is completed (such as a power failure), or interference from running applications at the same time (such

as serialization problems). Data integrity is ensured by the following functions:

v “Concurrency” on page 103

v “Journaling” on page 104

v “Commitment control” on page 105

v “Savepoints” on page 108

v “Atomic operations” on page 110

v “Constraints” on page 111

102 iSeries: DB2 Universal Database for iSeries SQL Programming

v “Save/Restore” on page 112

v “Damage tolerance” on page 113

v “Index recovery” on page 113

v “Catalog integrity” on page 113

v “User auxiliary storage pool (ASP)” on page 114

v “Independent auxiliary storage pool (IASP)” on page 114

The Commitment control topic, Journal Management topic, and the Database Programming topic contain

more information about each of these functions.

Concurrency

Concurrency is the ability for multiple users to access and change data in the same table or view at the

same time without risk of losing data integrity. This ability is automatically supplied by the DB2 UDB for

iSeries database manager. Locks are implicitly acquired on tables and rows to protect concurrent users

from changing the same data at precisely the same time.

Typically, DB2 UDB for iSeries will acquire locks on rows to ensure integrity. However, some situations

require DB2 UDB for iSeries to acquire a more exclusive table level lock instead of row locks. For more

information, see “Commitment control” on page 105.

For example, an update (exclusive) lock on a row currently held by one cursor can be acquired by

another cursor in the same program (or in a DELETE or UPDATE statement not associated with the

cursor). This will prevent a positioned UPDATE or positioned DELETE statement that references the first

cursor until another FETCH is performed. A read (shared no-update) lock on a row currently held by one

cursor will not prevent another cursor in the same program (or DELETE or UPDATE statement) from

acquiring a lock on the same row.

Default and user-specifiable lock-wait time-out values are supported. DB2 UDB for iSeries creates tables,

views, and indexes with the default record wait time (60 seconds) and the default file wait time

(*IMMED). This lock wait time is used for DML statements. You can change these values by using the CL

commands Change Physical File (CHGPF), Change Logical File (CHGLF), and Override Database File

(OVRDBF).

The lock wait time used for all DDL statements and the LOCK TABLE statement, is the job default wait

time (DFTWAIT). You can change this value by using the CL commands Change Job (CHGJOB) or

Change Class (CHGCLS).

In the event that a large record wait time is specified, deadlock detection is provided. For example,

assume one job has an exclusive lock on row 1 and another job has an exclusive lock on row 2. If the first

job attempts to lock row 2, it will wait because the second job is holding the lock. If the second job then

attempts to lock row 1, DB2 UDB for iSeries will detect that the two jobs are in a deadlock and an error

will be returned to the second job.

You can explicitly prevent other users from using a table at the same time by using the SQL LOCK

TABLE statement, described in the SQL Reference book. Using COMMIT(*RR) will also prevent other

users from using a table during a unit of work.

In order to improve performance, DB2 UDB for iSeries will frequently leave the open data path (ODP)

open (for details, see the Database Performance and Query Optimization information). This performance

feature also leaves a lock on tables referenced by the ODP, but does not leave any locks on rows. A lock

left on a table may prevent another job from performing an operation on that table. In most cases,

however, DB2 UDB for iSeries will detect that other jobs are holding locks and events will be signalled to

those jobs. The event causes DB2 UDB for iSeries to close any ODPs (and release the table locks) that are

Chapter 8. Data Protection 103

associated with that table and are currently only open for performance reasons. Note that the lock wait

time out must be large enough for the events to be signalled and the other jobs to close the ODPs or an

error will be returned.

Unless the LOCK TABLE statement is used to acquire table locks, or either COMMIT(*ALL) or

COMMIT(*RR) is used, data which has been read by one job can be immediately changed by another job.

Typically, the data that is read at the time the SQL statement is executed and therefore it is very current

(for example, during FETCH). In the following cases, however, data is read before the execution of the

SQL statement and therefore the data may not be current (for example, during OPEN).

v ALWCPYDTA(*OPTIMIZE) was specified and the optimizer determined that making a copy of the data

performs better than not making a copy.

v Some queries require the database manager to create a temporary result table. The data in the

temporary result table will not reflect changes made after the cursor was opened. A temporary result

table is required when:

– The total length in bytes of storage for the columns specified in an ORDER BY clause exceeds 2000

bytes.

– ORDER BY and GROUP BY clauses specify different columns or columns in a different order.

– UNION or DISTINCT clauses are specified.

– ORDER BY or GROUP BY clauses specify columns which are not all from the same table.

– Joining a logical file defined by the JOINDFT data definition specifications (DDS) keyword with

another file.

– Joining or specifying GROUP BY on a logical file which is based on multiple database file members.

– The query contains a join in which at least one of the files is a view which contains a GROUP BY

clause.

– The query contains a GROUP BY clause which references a view that contains a GROUP BY clause.
v A basic subquery is evaluated when the query is opened.

Journaling

The DB2 UDB for iSeries journal support supplies an audit trail and forward and backward recovery.

Forward recovery can be used to take an older version of a table and apply the changes logged on the

journal to the table. Backward recovery can be used to remove changes logged on the journal from the

table.

When an SQL schema is created, a journal and journal receiver are created in the schema. When SQL

creates the journal and journal receiver, they are only created on a user auxiliary storage pool (ASP) if the

ASP clause is specified on the CREATE SCHEMA statement. However, because placing journal receivers

on their own ASPs can improve performance, the person managing the journal might want to create all

future journal receivers on a separate ASP.

When a table is created into the schema, it is automatically journaled to the journal DB2 UDB for iSeries

created in the schema (QSQJRN). A table created in a non-schema will also have journaling started if a

journal named QSQJRN exists in that library. After this point, it is your responsibility to use the journal

functions to manage the journal, the journal receivers, and the journaling of tables to the journal. For

example, if a table is moved into a schema, no automatic change to the journaling status occurs. If a table

is restored, the normal journal rules apply. That is, if the table was journaled at the time of the save, it is

journaled to the same journal at restore time. If the table was not journaled at the time of the save, it is

not journaled at restore time.

The journal created in the SQL collection is normally the journal used for logging all changes to SQL

tables. You can, however, use the system journal functions to journal SQL tables to a different journal.

A user can stop journaling on any table using the journal functions, but doing so prevents an application

from running under commitment control. If journaling is stopped on a parent table of a referential

104 iSeries: DB2 Universal Database for iSeries SQL Programming

constraint with a delete rule of NO ACTION, CASCADE, SET NULL, or SET DEFAULT, all update and

delete operations will be prevented. Otherwise, an application is still able to function if you have

specified COMMIT(*NONE); however, this does not provide the same level of integrity that journaling

and commitment control provide.

For more information about journaling, see the Journaling topic.

Commitment control

The DB2 UDB for iSeries commitment control support provides a means to process a group of database

changes (updates, inserts, DDL operations, or deletes) as a single unit of work (transaction). A commit

operation guarantees that the group of operations is completed. A rollback operation guarantees that the

group of operations is backed out. A savepoint can be used to break a transaction into smaller units that

can be rolled back. A commit operation can be issued through several different interfaces. For example,

v An SQL COMMIT statement

v A CL COMMIT command

v A language commit statement (such as an RPG COMMIT statement)

A rollback operation can be issued through several different interfaces. For example,

v An SQL ROLLBACK statement

v A CL ROLLBACK command

v A language rollback statement (such as an RPG ROLBK statement)

The only SQL statements that cannot be committed or rolled back are:

v DROP SCHEMA

v GRANT or REVOKE if an authority holder exists for the specified object

If commitment control was not already started when either an SQL statement is executed with an

isolation level other than COMMIT(*NONE) or a RELEASE statement is executed, then DB2 UDB for

iSeries sets up the commitment control environment by implicitly calling the CL command Start

Commitment Control (STRCMTCTL). DB2 UDB for iSeries specifies NFYOBJ(*NONE) and

CMTSCOPE(*ACTGRP) parameters along with LCKLVL on the STRCMTCTL command. The LCKLVL

specified is the lock level on the COMMIT parameter on the CRTSQLxxx, STRSQL, or RUNSQLSTM

commands. In REXX, the LCKLVL specified is the lock level on the SET OPTION statement. You may use

the STRCMTCTL command to specify a different CMTSCOPE, NFYOBJ, or LCKLVL. If you specify

CMTSCOPE(*JOB) to start the job level commitment definition, DB2 UDB for iSeries uses the job level

commitment definition for programs in that activation group.

Notes:

1. When using commitment control, the tables referred to in the application program by Data

Manipulation Language statements must be journaled.

2. Note that the LCKLVL specified is only the default lock level. After commitment control is started, the

SET TRANSACTION SQL statement and the lock level specified on the COMMIT parameter on the

CRTSQLxxx, STRSQL, or RUNSQLSTM commands will override the default lock level.

For cursors that use column functions, GROUP BY, or HAVING, and are running under commitment

control, a ROLLBACK HOLD has no effect on the cursor’s position. In addition, the following occurs

under commitment control:

v If COMMIT(*CHG) and (ALWBLK(*NO) or (ALWBLK(*READ)) is specified for one of these cursors, a

message (CPI430B) is sent that says COMMIT(*CHG) requested but not allowed.

v If COMMIT(*ALL), COMMIT(*RR), or COMMIT(*CS) with the KEEP LOCKS clause is specified for one

of the cursors, DB2 UDB for iSeries will lock all referenced tables in shared mode (*SHRNUP). The lock

prevents concurrent application processes from executing any but read-only operations on the named

Chapter 8. Data Protection 105

table. A message (either SQL7902 or CPI430A) is sent that says COMMIT(*ALL), COMMIT(*RR), or

COMMIT(*CS) with the KEEP LOCKS clause is specified for one of the cursors requested but not

allowed. Message SQL0595 may also be sent.

For cursors where either COMMIT(*ALL), COMMIT(*RR), or COMMIT(*CS) with the KEEP LOCKS

clause is specified and either catalog files are used or a temporary result table is required, DB2 UDB for

iSeries will lock all referenced tables in shared mode (*SHRNUP). This will prevent concurrent processes

from executing anything but read-only operations on the table(s). A message (either SQL7902 or CPI430A)

is sent that says COMMIT(*ALL) is requested but not allowed. Message SQL0595 may also be sent.

If ALWBLK(*ALLREAD) and COMMIT(*CHG) were specified, when the program was precompiled, all

read-only cursors will allow blocking of rows and a ROLLBACK HOLD will not roll the cursor position

back.

If COMMIT(*RR) is requested, the tables will be locked until the query is closed. If the cursor is

read-only, the table will be locked (*SHRNUP). If the cursor is in update mode, the table will be locked

(*EXCLRD). Since other users will be locked out of the table, running with repeatable read will prevent

concurrent access of the table.

If an isolation level other then COMMIT(*NONE) was specified and the application issues a ROLLBACK

or the activation group ends abnormally (and the commitment definition is not *JOB), all updates, inserts,

deletes, and DDL operations made within the unit of work are backed out. If the application issues a

COMMIT or the activation group ends normally, all updates, inserts, deletes, and DDL operations made

within the unit of work are committed.

DB2 UDB for iSeries uses locks on rows to keep other jobs from accessing changed data before a unit of

work completes. If COMMIT(*ALL) is specified, read locks on rows fetched are also used to prevent other

jobs from changing data that was read before a unit of work completes. This will not prevent other jobs

from reading the unchanged rows. This ensures that, if the same unit of work rereads a row, it gets the

same result. Read locks do not prevent other jobs from fetching the same rows.

Commitment control handles up to 500 million distinct row changes in a unit of work. If COMMIT(*ALL)

or COMMIT(*RR) is specified, all rows read are also included in the limit. (If a row is changed or read

more than once in a unit of work, it is only counted once toward the limit.) Holding a large number of

locks adversely affects system performance and does not allow concurrent users to access rows locked in

the unit of work until the end of the unit of work. It is in your best interest to keep the number of rows

processed in a unit of work small.

Commitment control will allow up to 512 files for each journal to be open under commitment control or

closed with pending changes in a unit of work.

COMMIT HOLD and ROLLBACK HOLD allows you to keep the cursor open and start another unit of

work without issuing an OPEN again. The HOLD value is not available when you are connected to a

remote database that is not on an iSeries system. However, the WITH HOLD option on DECLARE

CURSOR may be used to keep the cursor open after a COMMIT. This type of cursor is supported when

you are connected to a remote database that is not on an iSeries system. Such a cursor is closed on a

rollback.

 Table 26. Row Lock Duration

SQL Statement

COMMIT Parameter

(See note 5) Duration of Row Locks Lock Type

SELECT INTO

SET variable

VALUES INTO

*NONE

*CHG

*CS (See note 7)

*ALL (See note 2)

No locks

No locks

Row locked when read and released

From read until ROLLBACK or COMMIT

READ

READ

106 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 26. Row Lock Duration (continued)

SQL Statement

COMMIT Parameter

(See note 5) Duration of Row Locks Lock Type

FETCH (read-only

cursor)

*NONE

*CHG

*CS (See note 7)

*ALL (See note 2)

No locks

No locks

From read until the next FETCH

From read until ROLLBACK or COMMIT

READ

READ

FETCH (update or

delete capable cursor)

(See note 1)

*NONE

*CHG

*CS

*ALL

When row not updated or deleted

from read until next FETCH

When row is updated or deleted

from read until UPDATE or DELETE

When row not updated or deleted

from read until next FETCH

When row is updated or deleted

from read until COMMIT or ROLLBACK

When row not updated or deleted

from read until next FETCH

When row is updated or deleted

from read until COMMIT or ROLLBACK

From read until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE

UPDATE

INSERT (target table) *NONE

*CHG

*CS

*ALL

No locks

From insert until ROLLBACK or COMMIT

From insert until ROLLBACK or COMMIT

From insert until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE3

INSERT (tables in

subselect)

*NONE

*CHG

*CS

*ALL

No locks

No locks

Each row locked while being read

From read until ROLLBACK or COMMIT

READ

READ

UPDATE (non-cursor) *NONE

*CHG

*CS

*ALL

Each row locked while being updated

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE

UPDATE

DELETE (non-cursor) *NONE

*CHG

*CS

*ALL

Each row locked while being deleted

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE (with cursor) *NONE

*CHG

*CS

*ALL

Lock released when row updated

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE

UPDATE

DELETE (with cursor) *NONE

*CHG

*CS

*ALL

Lock released when row deleted

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

From read until ROLLBACK or COMMIT

UPDATE

UPDATE

UPDATE

UPDATE

Subqueries (update or

delete capable cursor or

UPDATE or DELETE

non-cursor)

*NONE

*CHG

*CS

*ALL (see note 2)

From read until next FETCH

From read until next FETCH

From read until next FETCH

From read until ROLLBACK or COMMIT

READ

READ

READ

READ

Subqueries (read-only

cursor or SELECT

INTO)

*NONE

*CHG

*CS

*ALL

No locks

No locks

Each row locked while being read

From read until ROLLBACK or COMMIT

READ

READ

Chapter 8. Data Protection 107

Table 26. Row Lock Duration (continued)

SQL Statement

COMMIT Parameter

(See note 5) Duration of Row Locks Lock Type

Notes:

1. A cursor is open with UPDATE or DELETE capabilities if the result table is not read-only (see description of

DECLARE CURSOR in SQL Reference book) and if one of the following is true:

v The cursor is defined with a FOR UPDATE clause.

v The cursor is defined without a FOR UPDATE, FOR READ ONLY, or ORDER BY clause and the program

contains at least one of the following:

– Cursor UPDATE referring to the same cursor-name

– Cursor DELETE referring to the same cursor-name

– An EXECUTE or EXECUTE IMMEDIATE statement and ALWBLK(*READ) or ALWBLK(*NONE) was

specified on the CRTSQLxxx command.

2. A table or view can be locked exclusively in order to satisfy COMMIT(*ALL). If a subselect is processed that

includes a UNION, or if the processing of the query requires the use of a temporary result, an exclusive lock is

acquired to protect you from seeing uncommitted changes.

3. An UPDATE lock on rows of the target table and a READ lock on the rows of the subselect table.

4. A table or view can be locked exclusively in order to satisfy repeatable read. Row locking is still done under

repeatable read. The locks acquired and their duration are identical to *ALL.

5. Repeatable read (*RR) row locks will be the same as the locks indicated for *ALL.

6. For a detailed explanation of isolation levels and locking, see Isolation Level in the SQL Reference book.

7. If the KEEP LOCKS clause is specified with *CS, any read locks are held until the cursor is closed or until a

COMMIT or ROLLBACK is done. If no cursors are associated with the isolation clause, then locks are held until

the completion of the SQL statement.

For more details about commitment control, see the Commitment control topic.

Savepoints

Savepoints allow you to create milestones within a transaction. If the transaction rolls back, changes are

undone back to the specified savepoint, rather than to the beginning of the transaction. A savepoint is set

by using the SAVEPOINT SQL statement. For example, create a savepoint called STOP_HERE:

SAVEPOINT STOP_HERE

ON ROLLBACK RETAIN CURSORS

Program logic in the application dictates whether the savepoint name is reused as the application

progresses, or if the savepoint name denotes a unique milestone in the application that should not be

reused.

If the savepoint represents a unique milestone that should not be moved with another SAVEPOINT

statement, specify the UNIQUE keyword. This prevents the accidental reuse of the name that can occur

by invoking a stored procedure that uses the identical savepoint name in a SAVEPOINT statement.

However, if the SAVEPOINT statement is used in a loop, then the UNIQUE keyword should not be used.

The following SQL statement sets a unique savepoint named START_OVER.

SAVEPOINT START_OVER UNIQUE

 ON ROLLBACK RETAIN CURSORS

To rollback to a savepoint, use the ROLLBACK statement with the TO SAVEPOINT clause. The following

example illustrates using the SAVEPOINT and ROLLBACK TO SAVEPOINT statements:

This application logic books airline reservations on a preferred date, then books hotel reservations. If the

hotel is unavailable, it rolls back the airline reservations and then repeats the process for another date. Up

to 3 dates are tried.

108 iSeries: DB2 Universal Database for iSeries SQL Programming

got_reservations =0;

EXEC SQL SAVEPOINT START_OVER UNIQUE ON ROLLBACK RETAIN CURSORS;

if (SQLCODE != 0) return;

for (i=0; i<3 & got_reservations == 0; ++i)

{

 Book_Air(dates(i), ok);

 if (ok)

 {

 Book_Hotel(dates(i), ok);

 if (ok) got_reservations = 1;

 else

 {

 EXEC SQL ROLLBACK TO SAVEPOINT START_OVER;

 if (SQLCODE != 0) return;

 }

 }

}

EXEC SQL RELEASE SAVEPOINT START_OVER;

Savepoints are released using the RELEASE SAVEPOINT statement. If a RELEASE SAVEPOINT statement

is not used to explicitly release a savepoint, it is released at the end of the current savepoint level or at

the end of the transaction. The following statement releases savepoint START_OVER.

RELEASE SAVEPOINT START_OVER

Savepoints are released when the transaction is committed or rolled back. Once the savepoint name is

released, a rollback to the savepoint name is no longer possible. The COMMIT or ROLLBACK statement

releases all savepoint names established within a transactions. Since all savepoint names are released

within the transaction, all savepoint names can be reused following a commit or rollback.

Savepoints are scoped to a single connection only. Once a savepoint is established, it is not distributed to

all remote databases that the application connects to. The savepoint only applies to the current database

that the application is connected to when the savepoint is established.

A single statement can implicitly or explicitly invoke a user-defined function, trigger, or stored procedure.

This is known as nesting. In some cases when a new nesting level is initiated, a new savepoint level is

also initiated. A new savepoint level isolates the invoking application from any savepoint activity by the

lower level routine or trigger.

Savepoints can only be referenced within the same savepoint level (or scope) in which they are defined.

A ROLLBACK TO SAVEPOINT statement cannot be used to rollback to a savepoint established outside

the current savepoint level. Likewise, a RELEASE SAVEPOINT statement cannot be used to release a

savepoint established outside the current savepoint level. The following table summarizes when

savepoint levels are initiated and terminated:

 A new savepoint level is initiated when: That savepoint level terminates when:

A new unit of work is started COMMIT or ROLLBACK is issued

A trigger is invoked The trigger completes

A user-defined function is invoked The user-defined function returns to the invoker

A stored procedure is invoked, and that stored procedure

was created with the NEW SAVEPOINT LEVEL clause

The stored procedure returns to the caller

There is a BEGIN for an ATOMIC compound SQL

statement

There is an END for an ATOMIC compound statement

A savepoint that is established in a savepoint level is implicitly released when that savepoint level is

terminated.

Chapter 8. Data Protection 109

Atomic operations

When running under COMMIT(*CHG), COMMIT(*CS), or COMMIT(*ALL), all operations are guaranteed

to be atomic. That is, they will complete or they will appear not to have started. This is true regardless of

when or how the function was ended or interrupted (such as power failure, abnormal job end, or job

cancel).

If COMMIT (*NONE) is specified, however, some underlying database data definition functions are not

atomic. The following SQL data definition statements are guaranteed to be atomic:

 ALTER TABLE (See note 1)

 COMMENT ON (See note 2)

 LABEL ON (See note 2)

 GRANT (See note 3)

 REVOKE (See note 3)

 DROP TABLE (See note 4)

 DROP VIEW (See note 4)

 DROP INDEX

 DROP PACKAGE

 REFRESH TABLE

Notes:

1. If constraints need to be added or removed, as well as column definitions changed, the operations are

processed one at a time, so the entire SQL statement is not atomic. The order of operation is:

v Remove constraints

v Drop columns for which the RESTRICT option was specified

v All other column definition changes (DROP COLUMN CASCADE, ALTER COLUMN, ADD

COLUMN)

v Add constraints
2. If multiple columns are specified for a COMMENT ON or LABEL ON statement, the columns are

processed one at a time, so the entire SQL statement is not atomic, but the COMMENT ON or LABEL

ON to each individual column or object will be atomic.

3. If multiple tables, SQL packages, or users are specified for a GRANT or REVOKE statement, the tables

are processed one at a time, so the entire SQL statement is not atomic, but the GRANT or REVOKE to

each individual table will be atomic.

4. If dependent views need to be dropped during DROP TABLE or DROP VIEW, each dependent view

is processed one at a time, so the entire SQL statement is not atomic.

The following data definition statements are not atomic because they involve more than one database

operation:

 ALTER SEQUENCE

 CREATE ALIAS

 CREATE DISTINCT TYPE

 CREATE FUNCTION

 CREATE INDEX

 CREATE PROCEDURE

 CREATE SCHEMA

 CREATE SEQUENCE

 CREATE TABLE

 CREATE TRIGGER

110 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|

|

|

|

|

|

|

|

|

CREATE VIEW

 DROP ALIAS

 DROP DISTINCT TYPE

 DROP FUNCTION

 DROP PROCEDURE

 DROP SCHEMA

 DROP SEQUENCE

 DROP TRIGGER

 RENAME (See note 1)

Notes:

1. RENAME is atomic only if the name or the system name is changed. When both are changed, the

RENAME is not atomic.

For example, a CREATE TABLE can be interrupted after the DB2 UDB for iSeries physical file has been

created, but before the member has been added. Therefore, in the case of create statements, if an

operation ends abnormally, you may need to drop the object and then create it again. In the case of a

DROP SCHEMA statement, you may need to drop the schema again or use the CL command Delete

Library (DLTLIB) to remove the remaining parts of the schema.

Constraints

DB2 UDB for iSeries supports unique, referential, and check constraints. A unique constraint is a rule that

guarantees that the values of a key are unique. A referential constraint is a rule that all non-null values of

foreign keys in a dependent table have a corresponding parent key in a parent table. A check constraint is

a rule that limits the values allowed in a column or group of columns.

DB2 UDB for iSeries will enforce the validity of the constraint during any DML (data manipulation

language) statement. Certain operations (such as restore of the dependent table), however, cause the

validity of the constraint to be unknown. In this case, DML statements may be prevented until DB2 UDB

for iSeries has verified the validity of the constraint.

v Unique constraints are implemented with indexes. If an index that implements a unique constraint is

invalid, the Edit Rebuild of Access Paths (EDTRBDAP) command can be used to display any indexes

that currently require rebuild.

v If DB2 UDB for iSeries does not currently know whether a referential constraint or check constraint is

valid, the constraint is considered to be in a check pending state. The Edit Check Pending Constraints

(EDTCPCST) command can be used to display any indexes that currently require rebuild.

For more information about constraints, see “Adding and using check constraints,” “Referential integrity

and tables” on page 20, and the Database Programming book.

Adding and using check constraints

A check constraint assures the validity of data during inserts and updates by limiting the allowable values

in a column or group of columns. Use the SQL CREATE TABLE and ALTER TABLE statements to add or

drop check constraints.

In this example, the following statement creates a table with three columns and a check constraint over

COL2 that limits the values allowed in that column to positive integers:

CREATE TABLE T1 (COL1 INT, COL2 INT CHECK (COL2>0), COL3 INT)

Given this table, the following statement:

INSERT INTO T1 VALUES (-1, -1, -1)

Chapter 8. Data Protection 111

|

|

|

|

|

|

|

|

|

fails because the value to be inserted into COL2 does not meet the check constraint; that is, -1 is not

greater than 0.

The following statement is successful:

INSERT INTO T1 VALUES (1, 1, 1)

Once that row is inserted, the following statement fails:

ALTER TABLE T1 ADD CONSTRAINT C1 CHECK (COL1=1 AND COL1<COL2)

This ALTER TABLE statement attempts to add a second check constraint that limits the value allowed in

COL1 to 1 and also effectively rules that values in COL2 be greater than 1. This constraint is not allowed

because the second part of the constraint is not met by the existing data (the value of ’1’ in COL2 is not

less than the value of ’1’ in COL1).

Save/Restore

The OS/400 save/restore functions are used to save tables, views, indexes, journals, journal receivers,

sequences, SQL packages, SQL procedures, SQL triggers, user-defined functions, user-defined types, and

schemas on disk (save file) or to some external media (tape or diskette). The saved versions can be

restored onto any iSeries system at some later time. The save/restore function allows an entire collection,

selected objects, or only objects changed since a given date and time to be saved. All information needed

to restore an object to its previous state is saved. This function can be used to recover from damage to

individual tables by restoring the data with a previous version of the table or the entire collection.

When a program or service program that was created for an SQL procedure, an SQL function, or a

sourced function is restored, it is automatically added to the SYSROUTINES and SYSPARMS catalogs, as

long as a procedure or function does not already exist with the same signature and program name. SQL

programs created in QSYS will not be created as SQL procedures when restored. Additionally, external

programs or service programs that were referenced on a CREATE PROCEDURE or CREATE FUNCTION

statement may contain the information required to register the routine in SYSROUTINES. If the

information exists and the signature is unique, the functions or procedures will also be added to

SYSROUTINES and SYSPARMS when restored.

When an SQL table is restored, the definitions for the SQL triggers that are defined for the table are also

restored. The SQL trigger definitions are automatically added to the SYSTRIGGERS, SYSTRIGDEP,

SYSTRIGCOL, and SYSTRIGUPD catalogs. The program object that is created from the SQL CREATE

TRIGGER statement must also be saved and restored when the SQL table is saved and restored. The

saving and restoring of the program object is not automated by the database manager. The precautions

for self-referencing triggers should be reviewed when restoring SQL tables to a new library. See Invalid

triggers in the Notes of the CREATE TRIGGER statement section of the SQL Reference book.

When an *SQLUDT object is restored for a user-defined type, the user-defined type is automatically

added to the SYSTYPES catalog. The appropriate functions needed to cast between the user-defined type

and the source type are also created, as long as the type and functions do not already exist.

When a *DTAARA for a sequence is restored, the sequence is automatically added to the

SYSSEQUENCES catalog. If the catalog is not successfully updated, the *DTAARA will be modified so it

cannot be used as a sequence and an SQL9020 informational message will be output in the job log.

Either a distributed SQL program or its associated SQL package can be saved and restored to any number

of systems. This allows any number of copies of the SQL programs on different systems to access the

same SQL package on the same application server. This also allows a single distributed SQL program to

connect to any number of application servers that have the SQL package restored (CRTSQLPKG can also

be used). SQL packages cannot be restored to a different library.

112 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|

Note: Restoring a schema to an existing library or to a schema that has a different name does not restore

the journal, journal receivers, or IDDU dictionary (if one exists). If the schema is restored to a

schema with a different name, the catalog views in that schema will only reflect objects in the old

schema. The catalog views in QSYS2, however, will appropriately reflect all objects.

Damage tolerance

The server provides several mechanisms to reduce or eliminate damage caused by disk errors. For

example, mirroring, checksums, and RAID disks can all reduce the possibility of disk problems. The DB2

UDB for iSeries functions also have a certain amount of tolerance to damage caused by disk errors or

system errors.

A DROP operation always succeeds, regardless of the damage. This ensures that should damage occur, at

least the table, view, SQL package, index, procedure, function, or distinct type can be deleted and

restored or created again.

In the event that a disk error has damaged a small portion of the rows in a table, the DB2 UDB for iSeries

database manager allows you to read rows still accessible.

Index recovery

DB2 UDB for iSeries supplies several functions to deal with index recovery.

v System managed index protection

The EDTRCYAP CL command allows a user to instruct DB2 UDB for iSeries to guarantee that in the

event of a system or power failure, the amount of time required to recover all indexes on the system is

kept below a specified time. The system automatically journals enough information in a system journal

to limit the recovery time to the specified amount.

v Journaling of indexes

DB2 UDB for iSeries supplies an index journaling function that makes it unnecessary to rebuild an

entire index due to a power or system failure. If the index is journaled, the system database support

automatically makes sure the index is in synchronization with the data in the tables without having to

rebuild it from scratch. SQL indexes are not journaled automatically. You can, however, use the CL

command Start Journal Access Path (STRJRNAP) to journal any index created by DB2 UDB for iSeries.

v Index rebuild

All indexes on the system have a maintenance option that specifies when an index is maintained. SQL

indexes are created with an attribute of *IMMED maintenance.

In the event of a power failure or abnormal system failure, if indexes were not protected by one of the

previously described techniques, those indexes in the process of change may need to be rebuilt by the

database manager to make sure they agree with the actual data. All indexes on the system have a

recovery option that specifies when an index should be rebuilt if necessary. All SQL indexes with an

attribute of UNIQUE are created with a recovery attribute of *IPL (this means that these indexes are

rebuilt before the OS/400 has been started). All other SQL indexes are created with the *AFTIPL

recovery option (this means that after the operating system has been started, indexes are

asynchronously rebuilt). During an IPL, the operator can see a display showing indexes needing to be

rebuilt and their recovery option. The operator can override the recovery options.

v Save and restore of indexes

The save/restore function allows you to save indexes when a table is saved by using ACCPTH(*YES)

on the Save Object (SAVOBJ) or Save Library (SAVLIB) CL commands. In the event of a restore when

the indexes have also been saved, there is no need to rebuild the indexes. Any indexes not previously

saved and restored are automatically and asynchronously rebuilt by the database manager.

Catalog integrity

Catalogs contain information about tables, views, SQL packages, sequences, indexes, procedures,

functions, triggers, and parameters in a schema. The database manager ensures that the information in

Chapter 8. Data Protection 113

the catalog is accurate at all times. This is accomplished by preventing end users from explicitly changing

any information in the catalog and by implicitly maintaining the information in the catalog when changes

occur to the tables, views, SQL packages, sequences, indexes, types, procedures, functions, triggers, and

parameters described in the catalog.

The integrity of the catalog is maintained whether objects in the schema are changed by SQL statements,

OS/400 CL commands, System/38 Environment CL commands, System/36 Environment functions, or

any other product or utility on an iSeries system. For example, deleting a table can be done by running

an SQL DROP statement, issuing an OS/400 DLTF CL command, issuing a System/38 DLTF CL

command or entering option 4 on a WRKF or WRKOBJ display. Regardless of the interface used to delete

the table, the database manager will remove the description of the table from the catalog at the time the

delete is performed. The following is a list of functions and the associated effect on the catalog:

 Table 27. Effect of Various Functions on Catalogs

Function Effect on the Catalog

Add constraint to table Information added to catalog

Remove of constraint from table Related information removed from catalog

Create object into schema Information added to catalog

Delete of object from schema Related information removed from catalog

Restore of object into schema Information added to catalog

Change of object long comment Comment updated in catalog

Change of object label (text) Label updated in catalog

Change of object owner Owner updated in catalog

Move of object from a schema Related information removed from catalog

Move of object into schema Information added to catalog

Rename of object Name of object updated in catalog

User auxiliary storage pool (ASP)

A schema can be created in a user ASP by using the ASP clause on the CREATE COLLECTION and

CREATE SCHEMA statements. The CRTLIB command can also be used to create a library in a user ASP.

That library can then be used to receive SQL tables, views, and indexes. See the Backup and Recovery

book for more information about auxiliary storage pools.

Independent auxiliary storage pool (IASP)

Independent disk pools are used to set up user databases on the iSeries server. There are three types of

independent disk pools: primary, secondary, and user-defined file system (UDFS). Databases are set up

using primary independent disk pools.

With iSeries servers, you can work with multiple databases. The iSeries server provides a system

database (often referred to as SYSBAS) and the ability to work with one or more user databases. User

databases are implemented on the iSeries server through the use of independent disk pools, which are set

up in the Disk Management function of iSeries Navigator. Once an independent disk pool is set up, it

appears as another database under the Databases function of iSeries Navigator.

114 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 9. Routines

Routines are pieces of code or programs that you can call to perform operations.

“Stored Procedures”
Stored procedures are programs that you can call to perform different operations.

“Using User-Defined Functions (UDFs)” on page 149
User-defined functions are functions that you define that can be used much the same way as a

built-in function.

“Triggers” on page 175
Triggers are procedures that are automatically called whenever a specified action occurs.

“Debugging an SQL routine” on page 185
You can debug your SQL procedures, functions, and triggers.

“Improving performance of procedures and functions” on page 186
Learn how to make your procedures, functions, and triggers perform better.

Stored Procedures

A procedure (often called a stored procedure) is a program that can be called to perform operations that

can include both host language statements and SQL statements. Procedures in SQL provide the same

benefits as procedures in a host language.

DB2 SQL for iSeries stored procedure support provides a way for an SQL application to define and then

call a procedure through SQL statements. Stored procedures can be used in both distributed and

non-distributed DB2 SQL for iSeries applications. One of the big advantages in using stored procedures is

that for distributed applications, the execution of one CALL statement on the application requester, or

client, can perform any amount of work on the application server.

You may define a procedure as either an SQL procedure or an external procedure. An external procedure

can be any supported high level language program (except System/36* programs and procedures) or a

REXX procedure. The procedure does not need to contain SQL statements, but it may contain SQL

statements. An SQL procedure is defined entirely in SQL, and can contain SQL statements that include

SQL control statements.

Coding stored procedures requires that the user understand the following:

v Stored procedure definition through the CREATE PROCEDURE statement

v Stored procedure invocation through the CALL statement

v Parameter passing conventions

v Methods for returning a completion status to the program invoking the procedure.

You may define stored procedures by using the CREATE PROCEDURE statement. The CREATE

PROCEDURE statement adds procedure and parameter definitions to the catalog tables SYSROUTINES

and SYSPARMS. These definitions are then accessible by any SQL CALL statement on the system.

To create an external procedure or an SQL procedure, you can use the SQL CREATE PROCEDURE

statement.

© Copyright IBM Corp. 1998, 2004 115

The following sections describe the SQL statements used to define and call the stored procedure,

information about passing parameters to the stored procedure, and examples of stored procedure usage.

v “Defining an external procedure”

v “Defining an SQL procedure” on page 117

v “Invoking a stored procedure” on page 121

v “Returning Result Sets from Stored Procedures” on page 134

v “Parameter passing conventions for stored procedures and UDFs” on page 141

v “Indicator variables and stored procedures” on page 146

v “Returning a completion status to the calling program” on page 148

For a description of stored procedures coded in Java™, see Java SQL Routines in the IBM Developer Kit

for Java topic.

For information about using stored procedures with DRDA, see “DRDA stored procedure considerations”

on page 281.

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Defining an external procedure

The CREATE PROCEDURE statement for an external procedure:

v Names the procedure

v Defines the parameters and their attributes

v Gives other information about the procedure which the system uses when it calls the procedure.

Consider the following example:

 CREATE PROCEDURE P1

 (INOUT PARM1 CHAR(10))

 EXTERNAL NAME MYLIB.PROC1

 LANGUAGE C

 GENERAL WITH NULLS

This CREATE PROCEDURE statement:

v Names the procedure P1

v Defines one parameter which is used both as an input parameter and an output parameter. The

parameter is a character field of length ten. Parameters can be defined to be type IN, OUT, or INOUT.

The parameter type determines when the values for the parameters get passed to and from the

procedure.

v Defines the name of the program which corresponds to the procedure, which is PROC1 in MYLIB.

MYLIB.PROC1 is the program which is called when the procedure is called on a CALL statement.

v Indicates that the procedure P1 (program MYLIB.PROC1) is written in C. The language is important

since it impacts the types of parameters that can be passed. It also affects how the parameters are

passed to the procedure (for example, for ILE C procedures, a NUL-terminator is passed on character,

graphic, date, time, and timestamp parameters).

v Defines the CALL type to be GENERAL WITH NULLS. This indicates that the parameter for the

procedure can possibly contain the NULL value, and therefore will like an additional argument passed

to the procedure on the CALL statement. The additional argument is an array of N short integers,

where N is the number of parameters that are declared in the CREATE PROCEDURE statement. In this

example, the array contains only one element since there is only parameter.

It is important to note that it is not necessary to define a procedure in order to call it. However, if no

procedure definition is found, either from a prior CREATE PROCEDURE or from a DECLARE

PROCEDURE in this program, certain restrictions and assumptions are made when the procedure is

called on the CALL statement. For example, the NULL indicator argument cannot be passed. See “Using

116 iSeries: DB2 Universal Database for iSeries SQL Programming

embedded CALL statement where no procedure definition exists” on page 123 for an example of a CALL

statement without a corresponding procedure definition.

Defining an SQL procedure

The CREATE PROCEDURE statement for SQL procedures:

v Names the procedure

v Defines the parameters and their attributes

v Provides other information about the procedure which will be used when the procedure is called

v Defines the procedure body. The procedure body is the executable part of the procedure and is a single

SQL statement.

Consider the following simple example that takes as input an employee number and a rate and updates

the employee’s salary:

 CREATE PROCEDURE UPDATE_SALARY_1

 (IN EMPLOYEE_NUMBER CHAR(10),

 IN RATE DECIMAL(6,2))

 LANGUAGE SQL MODIFIES SQL DATA

 UPDATE CORPDATA.EMPLOYEE

 SET SALARY = SALARY * RATE

 WHERE EMPNO = EMPLOYEE_NUMBER

This CREATE PROCEDURE statement:

v Names the procedure UPDATE_SALARY_1.

v Defines parameter EMPLOYEE_NUMBER which is an input parameter and is a character data type of

length 6 and parameter RATE which is an input parameter and is a decimal data type.

v Indicates the procedure is an SQL procedure that modifies SQL data.

v Defines the procedure body as a single UPDATE statement. When the procedure is called, the UPDATE

statement is executed using the values passed for EMPLOYEE_NUMBER and RATE.

Instead of a single UPDATE statement, logic can be added to the SQL procedure using SQL control

statements. SQL control statements consist of the following:

v an assignment statement

v a CALL statement

v a CASE statement

v a compound statement

v a FOR statement

v a GET DIAGNOSTICS statement

v a GOTO statement

v an IF statement

v an ITERATE statement

v a LEAVE statement

v a LOOP statement

v a REPEAT statement

v a RESIGNAL statement

v a RETURN statement

v a SIGNAL statement

v a WHILE statement

Chapter 9. Routines 117

The following example takes as input the employee number and a rating that was received on the last

evaluation. The procedure uses a CASE statement to determine the appropriate increase and bonus for

the update:

 CREATE PROCEDURE UPDATE_SALARY_2

 (IN EMPLOYEE_NUMBER CHAR(6),

 IN RATING INT)

 LANGUAGE SQL MODIFIES SQL DATA

 CASE RATING

 WHEN 1 THEN

 UPDATE CORPDATA.EMPLOYEE

 SET SALARY = SALARY * 1.10,

 BONUS = 1000

 WHERE EMPNO = EMPLOYEE_NUMBER;

 WHEN 2 THEN

 UPDATE CORPDATA.EMPLOYEE

 SET SALARY = SALARY * 1.05,

 BONUS = 500

 WHERE EMPNO = EMPLOYEE_NUMBER;

 ELSE

 UPDATE CORPDATA.EMPLOYEE

 SET SALARY = SALARY * 1.03,

 BONUS = 0

 WHERE EMPNO = EMPLOYEE_NUMBER;

 END CASE

This CREATE PROCEDURE statement:

v Names the procedure UPDATE_SALARY_2.

v Defines parameter EMPLOYEE_NUMBER which is an input parameter and is a character data type of

length 6 and parameter RATING which is an input parameter and is an integer data type.

v Indicates the procedure is an SQL procedure that modifies SQL data.

v Defines the procedure body. When the procedure is called, input parameter RATING is checked and

the appropriate update statement is executed.

Multiple statements can be added to a procedure body by adding a compound statement. Within a

compound statement, any number of SQL statements can be specified. In addition, SQL variables, cursors,

and handlers can be declared.

The following example takes as input the department number. It returns the total salary of all the

employees in that department and the number of employees in that department who get a bonus.

CREATE PROCEDURE RETURN_DEPT_SALARY

 (IN DEPT_NUMBER CHAR(3),

 OUT DEPT_SALARY DECIMAL(15,2),

 OUT DEPT_BONUS_CNT INT)

 LANGUAGE SQL READS SQL DATA

 P1: BEGIN

 DECLARE EMPLOYEE_SALARY DECIMAL(9,2);

 DECLARE EMPLOYEE_BONUS DECIMAL(9,2);

 DECLARE TOTAL_SALARY DECIMAL(15,2)DEFAULT 0;

 DECLARE BONUS_CNT INT DEFAULT 0;

 DECLARE END_TABLE INT DEFAULT 0;

 DECLARE C1 CURSOR FOR

 SELECT SALARY, BONUS FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = DEPT_NUMBER;

 DECLARE CONTINUE HANDLER FOR NOT FOUND

 SET END_TABLE = 1;

 DECLARE EXIT HANDLER FOR SQLEXCEPTION

 SET DEPT_SALARY = NULL;

 OPEN C1;

 FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;

 WHILE END_TABLE = 0 DO

 SET TOTAL_SALARY = TOTAL_SALARY + EMPLOYEE_SALARY + EMPLOYEE_BONUS;

 IF EMPLOYEE_BONUS > 0 THEN

118 iSeries: DB2 Universal Database for iSeries SQL Programming

SET BONUS_CNT = BONUS_CNT + 1;

 END IF;

 FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;

 END WHILE;

 CLOSE C1;

 SET DEPT_SALARY = TOTAL_SALARY;

 SET DEPT_BONUS_CNT = BONUS_CNT;

 END P1

This CREATE PROCEDURE statement:

v Names the procedure RETURN_DEPT_SALARY.

v Defines parameter DEPT_NUMBER which is an input parameter and is a character data type of length

3, parameter DEPT_SALARY which is an output parameter and is a decimal data type, and parameter

DEPT_BONUS_CNT which is an output parameter and is an integer data type.

v Indicates the procedure is an SQL procedure that reads SQL data

v Defines the procedure body.

– Declares SQL variables EMPLOYEE_SALARY and TOTAL_SALARY as decimal fields.

– Declares SQL variables BONUS_CNT and END_TABLE which are integers and are initialized to 0.

– Declares cursor C1 that selects the columns from the employee table.

– Declares a continue handler for NOT FOUND, which, when called sets variable END_TABLE to 1.

This handler is called when the FETCH has no more rows to return. When the handler is called,

SQLCODE and SQLSTATE are reinitialized to 0.

– Declares an exit handler for SQLEXCEPTION. If called, DEPT_SALARY is set to NULL and the

processing of the compound statement is terminated. This handler is called if any errors occur, that

is, the SQLSTATE class is not ’00’, ’01’ or ’02’. Since indicators are always passed to SQL procedures,

the indicator value for DEPT_SALARY is −1 when the procedure returns. If this handler is called,

SQLCODE and SQLSTATE are reinitialized to 0.

If the handler for SQLEXCEPTION is not specified and an error occurs that is not handled in

another handler, execution of the compound statement is terminated and the error is returned in the

SQLCA. Similar to indicators, the SQLCA is always returned from SQL procedures.

– Includes an OPEN, FETCH, and CLOSE of cursor C1. If a CLOSE of the cursor is not specified, the

cursor is closed at the end of the compound statement since SET RESULT SETS is not specified in

the CREATE PROCEDURE statement.

– Includes a WHILE statement which loops until the last record is fetched. For each row retrieved, the

TOTAL_SALARY is incremented and, if the employee’s bonus is more than 0, the BONUS_CNT is

incremented.

– Returns DEPT_SALARY and DEPT_BONUS_CNT as output parameters.

Compound statements can be made atomic so if an error occurs that is not expected, the statements

within the atomic statement are rolled back. The atomic compound statements are implemented using

SAVEPOINTS. If the compound statement is successful, the transaction is committed. For more

information about using SAVEPOINTS, see “Savepoints” on page 108.

The following example takes as input the department number. It ensures the EMPLOYEE_BONUS table

exists, and inserts the name of all employees in the department who get a bonus. The procedure returns

the total count of all employees who get a bonus.

CREATE PROCEDURE CREATE_BONUS_TABLE

 (IN DEPT_NUMBER CHAR(3),

 INOUT CNT INT)

 LANGUAGE SQL MODIFIES SQL DATA

 CS1: BEGIN ATOMIC

 DECLARE NAME VARCHAR(30) DEFAULT NULL;

 DECLARE CONTINUE HANDLER FOR SQLSTATE ’42710’

 SELECT COUNT(*) INTO CNT

 FROM DATALIB.EMPLOYEE_BONUS;

Chapter 9. Routines 119

DECLARE CONTINUE HANDLER FOR SQLSTATE ’23505’

 SET CNT = CNT - 1;

 DECLARE UNDO HANDLER FOR SQLEXCEPTION

 SET CNT = NULL;

 IF DEPT_NUMBER IS NOT NULL THEN

 CREATE TABLE DATALIB.EMPLOYEE_BONUS

 (FULLNAME VARCHAR(30),

 BONUS DECIMAL(10,2),

 PRIMARY KEY (FULLNAME));

 FOR_1:FOR V1 AS C1 CURSOR FOR

 SELECT FIRSTNME, MIDINIT, LASTNAME, BONUS

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = CREATE_BONUS_TABLE.DEPT_NUMBER

 DO

 IF BONUS > 0 THEN

 SET NAME = FIRSTNME CONCAT ’ ’ CONCAT

 MIDINIT CONCAT ’ ’CONCAT LASTNAME;

 INSERT INTO DATALIB.EMPLOYEE_BONUS

 VALUES(CS1.NAME, FOR_1.BONUS);

 SET CNT = CNT + 1;

 END IF;

 END FOR FOR_1;

 END IF;

 END CS1

This CREATE PROCEDURE statement:

v Names the procedure CREATE_BONUS_TABLE.

v Defines parameter DEPT_NUMBER which is an input parameter and is a character data type of length

3 and parameter CNT which is an input/output parameter and is an integer data type.

v Indicates the procedure is an SQL procedure that modifies SQL data

v Defines the procedure body.

– Declares SQL variable NAME as varying character.

– Declares a continue handler for SQLSTATE 42710, table already exists. If the EMPLOYEE_BONUS

table already exists, the handler is called and retrieves the number of records in the table. The

SQLCODE and SQLSTATE are reset to 0 and processing continues with the FOR statement.

– Declares a continue handler for SQLSTATE 23505, duplicate key. If the procedure attempts to insert

a name that already exists in the table, the handler is called and decrements CNT. Processing

continues on the SET statement following the INSERT statement.

– Declares an UNDO handler for SQLEXCEPTION. If called, the previous statements are rolled back,

CNT is set to 0, and processing continues after the compound statement. In this case, since there is

no statement following the compound statement, the procedure returns.

– Uses the FOR statement to declare cursor C1 to read the records from the EMPLOYEE table. Within

the FOR statement, the column names from the select list are used as SQL variables that contain the

data from the row fetched. For each row, data from columns FIRSTNME, MIDINIT, and

LASTNAME are concatenated together with a blank in between and the result is put in SQL variable

NAME. SQL variables NAME and BONUS are inserted into the EMPLOYEE_BONUS table. Because

the data type of the select list items must be known when the procedure is created, the table

specified in the FOR statement must exist when the procedure is created.

An SQL variable name can be qualified with the label name of the FOR statement or compound

statement in which it is defined. In the example, FOR_1.BONUS refers to the SQL variable that

contains the value of column BONUS for each row selected. CS1.NAME is the variable NAME

defined in the compound statement with the beginning label CS1. Parameter names can also be

qualified with the procedure name. CREATE_BONUS_TABLE.DEPT_NUMBER is the

DEPT_NUMBER parameter for the procedure CREATE_BONUS_TABLE. If unqualified SQL variable

names are used in SQL statements where column names are also allowed, and the variable name is

the same as a column name, the name will be used to refer to the column.

120 iSeries: DB2 Universal Database for iSeries SQL Programming

You can also use dynamic SQL in an SQL procedure. The following example creates a table that contains

all employees in a specific department. The department number is passed as input to the procedure and

is concatenated to the table name.

CREATE PROCEDURE CREATE_DEPT_TABLE (IN P_DEPT CHAR(3))

 LANGUAGE SQL

 BEGIN

 DECLARE STMT CHAR(1000);

 DECLARE MESSAGE CHAR(20);

 DECLARE TABLE_NAME CHAR(30);

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

 SET MESSAGE = ’ok’;

 SET TABLE_NAME = ’CORPDATA.DEPT_’ CONCAT P_DEPT CONCAT ’_T’;

 SET STMT = ’DROP TABLE ’ CONCAT TABLE_NAME;

 PREPARE S1 FROM STMT;

 EXECUTE S1;

 SET STMT = ’CREATE TABLE ’ CONCAT TABLE_NAME CONCAT

 ’(EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME CHAR(15) NOT NULL,

 SALARY DECIMAL(9,2))’;

 PREPARE S2 FROM STMT;

 EXECUTE S2;

 SET STMT = ’INSERT INTO ’ CONCAT TABLE_NAME CONCAT

 ’SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ?’;

 PREPARE S3 FROM STMT;

 EXECUTE S3 USING P_DEPT;

END

This CREATE PROCEDURE statement:

v Names the procedure CREATE_DEPT_TABLE

v Defines parameter P_DEPT which is an input parameter and is a character data type of length 3.

v Indicates the procedure is an SQL procedure.

v Defines the procedure body.

– Declares SQL variable STMT and an SQL variable TABLE_NAME as character.

– Declares a CONTINUE handler. The procedure attempts to DROP the table in case it already exists.

If the table does not exist, the first EXECUTE fails. With the handler, processing will continue.

– Sets variable TABLE_NAME to ’DEPT_’ followed by the characters passed in parameter P_DEPT,

followed by ’_T’.

– Sets variable STMT to the DROP statement, and prepares and executes the statement.

– Sets variable STMT to the CREATE statement, and prepares and executes the statement.

– Sets variable STMT to the INSERT statement, and prepares and executes the statement. A parameter

marker is specified in the where clause. When the statement is executed, the variable P_DEPT is

passed on the USING clause.

If the procedure is called passing value ’D21’ for the department, table DEPT_D21_T is created and the

table is initialized with all the employees that are in department ’D21’.

Invoking a stored procedure

The SQL CALL statement calls a stored procedure. On the CALL statement, the name of the stored

procedure and any arguments are specified. Arguments may be constants, special registers, or host

variables. The external stored procedure specified in the CALL statement does not need to have a

corresponding CREATE PROCEDURE statement. Programs created by SQL procedures can only be called

by invoking the procedure name specified on the CREATE PROCEDURE statement.

Chapter 9. Routines 121

Although procedures are system program objects, using the CALL CL command will not typically work

to call a procedure. The CALL CL command does not use the procedure definition to map the input and

output parameters, nor does it pass parameters to the program using the procedure’s parameter style.

There are three types of CALL statements which need to be addressed since DB2 SQL for iSeries has

different rules for each type. They are:

v Embedded or dynamic CALL statement where a procedure definition exists

v Embedded CALL statement where no procedure definition exists

v Dynamic CALL statement where no CREATE PROCEDURE exists

Note: Dynamic here refers to:

v A dynamically prepared and executed CALL statement

v A CALL statement issued in an interactive environment (for example, through STRSQL or Query

Manager)

v A CALL statement executed in an EXECUTE IMMEDIATE statement.

Following is a discussion of each type.

v “Using CALL statement where procedure definition exists”

v “Using embedded CALL statement where no procedure definition exists” on page 123

v “Using Embedded CALL statement with an SQLDA” on page 123

v “Using dynamic CALL statement where no CREATE PROCEDURE exists” on page 124

Additionally, you can find more examples at “Examples of CALL statements” on page 125.

Using CALL statement where procedure definition exists

This type of CALL statement reads all the information about the procedure and the argument attributes

from the CREATE PROCEDURE catalog definition. The following PL/I example shows a CALL statement

that corresponds to the CREATE PROCEDURE statement shown.

DCL HV1 CHAR(10);

DCL IND1 FIXED BIN(15);

 :

EXEC SQL CREATE P1 PROCEDURE

 (INOUT PARM1 CHAR(10))

 EXTERNAL NAME MYLIB.PROC1

 LANGUAGE C

 GENERAL WITH NULLS;

 :

EXEC SQL CALL P1 (:HV1 :IND1);

 :

When this CALL statement is issued, a call to program MYLIB/PROC1 is made and two arguments are

passed. Since the language of the program is ILE C, the first argument is a C NUL-terminated string

eleven characters long containing the contents of host variable HV1. Note that on a call to an ILE C

procedure, DB2 SQL for iSeries adds one character to the parameter declaration if the parameter is

declared to be a character, graphic, date, time, or timestamp variable. The second argument is the

indicator array. In this case, it is one short integer since there is only one parameter in the CREATE

PROCEDURE statement. This argument contains the contents of indicator variable IND1 on entry to the

procedure.

Since the first parameter is declared as INOUT, SQL updates the host variable HV1 and the indicator

variable IND1 with the values returned from MYLIB.PROC1 before returning to the user program.

Notes:

1. The procedure names specified on the CREATE PROCEDURE and CALL statements must match

EXACTLY in order for the link between the two to be made during the SQL precompile of the

program.

122 iSeries: DB2 Universal Database for iSeries SQL Programming

2. For an embedded CALL statement where both a CREATE PROCEDURE and a DECLARE

PROCEDURE statement exist, the DECLARE PROCEDURE statement will be used.

Using embedded CALL statement where no procedure definition exists

A static CALL statement without a corresponding CREATE PROCEDURE statement is processed with the

following rules:

v All host variable arguments are treated as INOUT type parameters.

v The CALL type is GENERAL (no indicator argument is passed).

v The program to call is determined based on the procedure name specified on the CALL, and, if

necessary, the naming convention.

v The language of the program to call is determined based on information retrieved from the system

about the program.

Example: Embedded CALL Statement Where No Procedure Definition Exists

The following is a PL/I example of an embedded CALL statement where no procedure definition exists:

DCL HV2 CHAR(10);

 :

EXEC SQL CALL P2 (:HV2);

 :

When the CALL statement is issued, DB2 SQL for iSeries attempts to find the program based on standard

SQL naming conventions. For the above example, assume that the naming option of *SYS (system

naming) is used and that a DFTRDBCOL parameter was not specified on the CRTSQLPLI command. In

this case, the library list is searched for a program named P2. Since the call type is GENERAL, no

additional argument is passed to the program for indicator variables.

Note: If an indicator variable is specified on the CALL statement and its value is less than zero when the

CALL statement is executed, an error results because there is no way to pass the indicator to the

procedure.

Assuming program P2 is found in the library list, the contents of host variable HV2 are passed in to the

program on the CALL and the argument returned from P2 is mapped back to the host variable after P2

has completed execution.

Note: See “Code disclaimer” on page 2 for details pertaining to code examples.

Using Embedded CALL statement with an SQLDA

In either type of embedded CALL (where a procedure definition may or may not exist), an SQLDA may

be passed rather than a parameter list, as illustrated in the following C example. Assume that the stored

procedure is expecting 2 parameters, the first of type SHORT INT and the second of type CHAR with a

length of 4.

#define SQLDA_HV_ENTRIES 2

#define SHORTINT 500

#define NUL_TERM_CHAR 460

exec sql include sqlca;

exec sql include sqlda;

...

typedef struct sqlda Sqlda;

typedef struct sqlda* Sqldap;

...

main()

{

 Sqldap dap;

 short col1;

 char col2[4];

Chapter 9. Routines 123

int bc;

 dap = (Sqldap) malloc(bc=SQLDASIZE(SQLDA_HV_ENTRIES));

 /* SQLDASIZE is a macro defined in the sqlda include */

 col1 = 431;

 strcpy(col2,"abc");

 strncpy(dap->sqldaid,"SQLDA ",8);

 dap->sqldabc = bc; /* bc set in the malloc statement above */

 dap->sqln = SQLDA_HV_ENTRIES;

 dap->sqld = SQLDA_HV_ENTRIES;

 dap->sqlvar[0].sqltype = SHORTINT;

 dap->sqlvar[0].sqllen = 2;

 dap->sqlvar[0].sqldata = (char*) &col1;

 dap->sqlvar[0].sqlname.length = 0;

 dap->sqlvar[1].sqltype = NUL_TERM_CHAR;

 dap->sqlvar[1].sqllen = 4;

 dap->sqlvar[1].sqldata = col2;

 ...

 EXEC SQL CALL P1 USING DESCRIPTOR :*dap;

 ...

}

The name of the called procedure may also be stored in a host variable and the host variable used in the

CALL statement, instead of the hard-coded procedure name. For example:

...

main()

{

 char proc_name[15];

 ...

 strcpy (proc_name, "MYLIB.P3");

 ...

 EXEC SQL CALL :proc_name ...;

 ...

}

In the above example, if MYLIB.P3 is expecting parameters, then either a parameter list or an SQLDA

passed with the USING DESCRIPTOR clause may be used, as shown in the previous example.

When a host variable containing the procedure name is used in the CALL statement and a CREATE

PROCEDURE catalog definition exists, it will be used. The procedure name cannot be specified as a

parameter marker.

Using dynamic CALL statement where no CREATE PROCEDURE exists

The following rules pertain to the processing of a dynamic CALL statement when there is no CREATE

PROCEDURE definition:

v All arguments are treated as IN type parameters.

v The CALL type is GENERAL (no indicator argument is passed).

v The program to call is determined based on the procedure name specified on the CALL and the

naming convention.

v The language of the program to call is determined based on information retrieved from the system

about the program.

Example: Dynamic CALL statement where no CREATE PROCEDURE exists

The following is a C example of a dynamic CALL statement:

 char hv3[10],string[100];

 :

 strcpy(string,"CALL MYLIB.P3 (’P3 TEST’)");

 EXEC SQL EXECUTE IMMEDIATE :string;

 :

124 iSeries: DB2 Universal Database for iSeries SQL Programming

This example shows a dynamic CALL statement executed through an EXECUTE IMMEDIATE statement.

The call is made to program MYLIB.P3 with one parameter passed as a character variable containing ’P3

TEST’.

When executing a CALL statement and passing a constant, as in the previous example, the length of the

expected argument in the program must be kept in mind. If program MYLIB.P3 expected an argument of

only 5 characters, the last 2 characters of the constant specified in the example is lost to the program.

Note: For this reason, it is always safer to use host variables on the CALL statement so that the attributes

of the procedure can be matched exactly and so that characters are not lost. For dynamic SQL, host

variables can be specified for CALL statement arguments if the PREPARE and EXECUTE

statements are used to process it.

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Examples of CALL statements

These examples show how the arguments of the CALL statement are passed to the procedure for several

languages. They also show how to receive the arguments into local variables in the procedure.

The first example shows the calling ILE C program that uses the CREATE PROCEDURE definitions to

call the P1 and P2 procedures. Procedure P1 is written in C and has 10 parameters. Procedure P2 is

written in PL/I and also has 10 parameters.

Assume two procedures are defined as follows:

EXEC SQL CREATE PROCEDURE P1 (INOUT PARM1 CHAR(10),

 INOUT PARM2 INTEGER,

 INOUT PARM3 SMALLINT,

 INOUT PARM4 FLOAT(22),

 INOUT PARM5 FLOAT(53),

 INOUT PARM6 DECIMAL(10,5),

 INOUT PARM7 VARCHAR(10),

 INOUT PARM8 DATE,

 INOUT PARM9 TIME,

 INOUT PARM10 TIMESTAMP)

 EXTERNAL NAME TEST12.CALLPROC2

 LANGUAGE C GENERAL WITH NULLS

EXEC SQL CREATE PROCEDURE P2 (INOUT PARM1 CHAR(10),

 INOUT PARM2 INTEGER,

 INOUT PARM3 SMALLINT,

 INOUT PARM4 FLOAT(22),

 INOUT PARM5 FLOAT(53),

 INOUT PARM6 DECIMAL(10,5),

 INOUT PARM7 VARCHAR(10),

 INOUT PARM8 DATE,

 INOUT PARM9 TIME,

 INOUT PARM10 TIMESTAMP)

 EXTERNAL NAME TEST12.CALLPROC

 LANGUAGE PLI GENERAL WITH NULLS

Example 1: ILE C and PL/I procedures called from ILE C applications:

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Chapter 9. Routines 125

/**/

/*********** START OF SQL C Application ***********************/

#include <stdio.h>

#include <string.h>

#include <decimal.h>

main()

{

 EXEC SQL INCLUDE SQLCA;

 char PARM1[10];

 signed long int PARM2;

 signed short int PARM3;

 float PARM4;

 double PARM5;

 decimal(10,5) PARM6;

 struct { signed short int parm7l;

 char parm7c[10];

 } PARM7;

char PARM8[10]; /* FOR DATE */

char PARM9[8]; /* FOR TIME */

char PARM10[26]; /* FOR TIMESTAMP */

Figure 1. Sample of CREATE PROCEDURE and CALL (Part 1 of 2)

126 iSeries: DB2 Universal Database for iSeries SQL Programming

/***/

/* Initialize variables for the call to the procedures */

/***/

strcpy(PARM1,"PARM1");

PARM2 = 7000;

PARM3 = -1;

PARM4 = 1.2;

PARM5 = 1.0;

PARM6 = 10.555;

PARM7.parm7l = 5;

strcpy(PARM7.parm7c,"PARM7");

strncpy(PARM8,"1994-12-31",10); /* FOR DATE */

strncpy(PARM9,"12.00.00",8); /* FOR TIME */

strncpy(PARM10,"1994-12-31-12.00.00.000000",26);

 /* FOR TIMESTAMP */

/***/

/* Call the C procedure */

/* */

/* */

/***/

EXEC SQL CALL P1 (:PARM1, :PARM2, :PARM3,

 :PARM4, :PARM5, :PARM6,

 :PARM7, :PARM8, :PARM9,

 :PARM10);

if (strncmp(SQLSTATE,"00000",5))

 {

 /* Handle error or warning returned on CALL statement */

 }

/* Process return values from the CALL. */

:

/***/

/* Call the PLI procedure */

/* */

/* */

/***/

/* Reset the host variables before making the CALL */

/* */

:

EXEC SQL CALL P2 (:PARM1, :PARM2, :PARM3,

 :PARM4, :PARM5, :PARM6,

 :PARM7, :PARM8, :PARM9,

 :PARM10);

if (strncmp(SQLSTATE,"00000",5))

 {

 /* Handle error or warning returned on CALL statement */

}

/* Process return values from the CALL. */

:

}

/******** END OF C APPLICATION **********************************/

/**/

Figure 1. Sample of CREATE PROCEDURE and CALL (Part 2 of 2)

Chapter 9. Routines 127

/******** START OF C PROCEDURE P1 *******************************/

/* PROGRAM TEST12/CALLPROC2 */

/**/

#include <stdio.h>

#include <string.h>

#include <decimal.h>

main(argc,argv)

 int argc;

 char *argv[];

 {

 char parm1[11];

 long int parm2;

 short int parm3,i,j,*ind,ind1,ind2,ind3,ind4,ind5,ind6,ind7,

 ind8,ind9,ind10;

 float parm4;

 double parm5;

 decimal(10,5) parm6;

 char parm7[11];

 char parm8[10];

 char parm9[8];

 char parm10[26];

 /* ***/

 /* Receive the parameters into the local variables - */

 /* Character, date, time, and timestamp are passed as */

 /* NUL terminated strings - cast the argument vector to */

 /* the proper data type for each variable. Note that */

 /* the argument vector can be used directly instead of */

 /* copying the parameters into local variables - the copy */

 /* is done here just to illustrate the method. */

 /* ***/

 /* Copy 10 byte character string into local variable */

 strcpy(parm1,argv[1]);

 /* Copy 4 byte integer into local variable */

 parm2 = *(int *) argv[2];

 /* Copy 2 byte integer into local variable */

 parm3 = *(short int *) argv[3];

 /* Copy floating point number into local variable */

 parm4 = *(float *) argv[4];

 /* Copy double precision number into local variable */

 parm5 = *(double *) argv[5];

 /* Copy decimal number into local variable */

 parm6 = *(decimal(10,5) *) argv[6];

Figure 2. Sample Procedure P1 (Part 1 of 2)

128 iSeries: DB2 Universal Database for iSeries SQL Programming

/**/

/* Copy NUL terminated string into local variable. */

/* Note that the parameter in the CREATE PROCEDURE was */

/* declared as varying length character. For C, varying */

/* length are passed as NUL terminated strings unless */

/* FOR BIT DATA is specified in the CREATE PROCEDURE */

/**/

strcpy(parm7,argv[7]);

/**/

/* Copy date into local variable. */

/* Note that date and time variables are always passed in */

/* ISO format so that the lengths of the strings are */

/* known. strcpy works here just as well. */

/**/

strncpy(parm8,argv[8],10);

/* Copy time into local variable */

strncpy(parm9,argv[9],8);

/**/

/* Copy timestamp into local variable. */

/* IBM SQL timestamp format is always passed so the length*/

/* of the string is known. */

/**/

strncpy(parm10,argv[10],26);

/**/

/* The indicator array is passed as an array of short */

/* integers. There is one entry for each parameter passed */

/* on the CREATE PROCEDURE (10 for this example). */

/* Below is one way to set each indicator into separate */

/* variables. */

/**/

 ind = (short int *) argv[11];

 ind1 = *(ind++);

 ind2 = *(ind++);

 ind3 = *(ind++);

 ind4 = *(ind++);

 ind5 = *(ind++);

 ind6 = *(ind++);

 ind7 = *(ind++);

 ind8 = *(ind++);

 ind9 = *(ind++);

 ind10 = *(ind++);

 :

/* Perform any additional processing here */

 :

return;

}

/******** END OF C PROCEDURE P1 *******************************/

Figure 2. Sample Procedure P1 (Part 2 of 2)

Chapter 9. Routines 129

The next example shows a REXX procedure called from an ILE C program.

Assume a procedure is defined as follows:

 EXEC SQL CREATE PROCEDURE REXXPROC

 (IN PARM1 CHARACTER(20),

 IN PARM2 INTEGER,

 IN PARM3 DECIMAL(10,5),

 IN PARM4 DOUBLE PRECISION,

 IN PARM5 VARCHAR(10),

 IN PARM6 GRAPHIC(4),

 IN PARM7 VARGRAPHIC(10),

 IN PARM8 DATE,

 IN PARM9 TIME,

 IN PARM10 TIMESTAMP)

 EXTERNAL NAME ’TEST.CALLSRC(CALLREXX)’

 LANGUAGE REXX GENERAL WITH NULLS

Example 2. Sample REXX Procedure Called From C Application:

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

/******** START OF PL/I PROCEDURE P2 **************************/

/******** PROGRAM TEST12/CALLPROC *****************************/

/**/

CALLPROC :PROC(PARM1,PARM2,PARM3,PARM4,PARM5,PARM6,PARM7,

 PARM8,PARM9,PARM10,PARM11);

 DCL SYSPRINT FILE STREAM OUTPUT EXTERNAL;

 OPEN FILE(SYSPRINT);

 DCL PARM1 CHAR(10);

 DCL PARM2 FIXED BIN(31);

 DCL PARM3 FIXED BIN(15);

 DCL PARM4 BIN FLOAT(22);

 DCL PARM5 BIN FLOAT(53);

 DCL PARM6 FIXED DEC(10,5);

 DCL PARM7 CHARACTER(10) VARYING;

 DCL PARM8 CHAR(10); /* FOR DATE */

 DCL PARM9 CHAR(8); /* FOR TIME */

 DCL PARM10 CHAR(26); /* FOR TIMESTAMP */

 DCL PARM11(10) FIXED BIN(15); /* Indicators */

 /* PERFORM LOGIC - Variables can be set to other values for */

 /* return to the calling program. */

 :

 END CALLPROC;

Figure 3. Sample Procedure P2

130 iSeries: DB2 Universal Database for iSeries SQL Programming

/**/

/*********** START OF SQL C Application ***********************/

 #include <decimal.h>

 #include <stdio.h>

 #include <string.h>

 #include <wcstr.h>

 /*---*/

 exec sql include sqlca;

 exec sql include sqlda;

 /* ***/

 /* Declare host variable for the CALL statement */

 /* ***/

 char parm1[20];

 signed long int parm2;

 decimal(10,5) parm3;

 double parm4;

 struct { short dlen;

 char dat[10];

 } parm5;

 wchar_t parm6[4] = { 0xC1C1, 0xC2C2, 0xC3C3, 0x0000 };

 struct { short dlen;

 wchar_t dat[10];

 } parm7 = {0x0009, 0xE2E2,0xE3E3,0xE4E4, 0xE5E5, 0xE6E6,

 0xE7E7, 0xE8E8, 0xE9E9, 0xC1C1, 0x0000 };

 char parm8[10];

 char parm9[8];

 char parm10[26];

 main()

 {

Figure 4. Sample REXX Procedure Called From C Application (Part 1 of 4)

Chapter 9. Routines 131

/* ***/

 /* Call the procedure - on return from the CALL statement the */

 /* SQLCODE should be 0. If the SQLCODE is non-zero, */

 /* the procedure detected an error. */

 /* ***/

 strcpy(parm1,"TestingREXX");

 parm2 = 12345;

 parm3 = 5.5;

 parm4 = 3e3;

 parm5.dlen = 5;

 strcpy(parm5.dat,"parm6");

 strcpy(parm8,"1994-01-01");

 strcpy(parm9,"13.01.00");

 strcpy(parm10,"1994-01-01-13.01.00.000000");

 EXEC SQL CALL REXXPROC (:parm1, :parm2,

 :parm3,:parm4,

 :parm5, :parm6,

 :parm7,

 :parm8, :parm9,

 :parm10);

 if (strncpy(SQLSTATE,"00000",5))

 {

 /* handle error or warning returned on CALL */

 :

 }

 :

 }

/****** END OF SQL C APPLICATION ************************************/

/**/

Figure 4. Sample REXX Procedure Called From C Application (Part 2 of 4)

132 iSeries: DB2 Universal Database for iSeries SQL Programming

/**/

/****** START OF REXX MEMBER TEST/CALLSRC CALLREXX ********************/

/**/

 /* REXX source member TEST/CALLSRC CALLREXX */

 /* Note the extra parameter being passed for the indicator*/

 /* array. */

 /* */

 /* ACCEPT THE FOLLOWING INPUT VARIABLES SET TO THE */

 /* SPECIFIED VALUES : */

 /* AR1 CHAR(20) = ’TestingREXX’ */

 /* AR2 INTEGER = 12345 */

 /* AR3 DECIMAL(10,5) = 5.5 */

 /* AR4 DOUBLE PRECISION = 3e3 */

 /* AR5 VARCHAR(10) = ’parm6’ */

 /* AR6 GRAPHIC = G’C1C1C2C2C3C3’ */

 /* AR7 VARGRAPHIC = */

 /* G’E2E2E3E3E4E4E5E5E6E6E7E7E8E8E9E9EAEA’ */

 /* AR8 DATE = ’1994-01-01’ */

 /* AR9 TIME = ’13.01.00’ */

 /* AR10 TIMESTAMP = */

 /* ’1994-01-01-13.01.00.000000’ */

 /* AR11 INDICATOR ARRAY = +0+0+0+0+0+0+0+0+0+0 */

 /**/

 /* Parse the arguments into individual parameters */

 /**/

 parse arg ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 ar10 ar11

 /**/

 /* Verify that the values are as expected */

 /**/

 if ar1<>"’TestingREXX’" then signal ar1tag

 if ar2<>12345 then signal ar2tag

 if ar3<>5.5 then signal ar3tag

 if ar4<>3e3 then signal ar4tag

 if ar5<>"’parm6’" then signal ar5tag

 if ar6 <>"G’AABBCC’" then signal ar6tag

 if ar7 <>"G’SSTTUUVVWWXXYYZZAA’" then ,

 signal ar7tag

 if ar8 <> "’1994-01-01’" then signal ar8tag

 if ar9 <> "’13.01.00’" then signal ar9tag

 if ar10 <> "’1994-01-01-13.01.00.000000’" then signal ar10tag

 if ar11 <> "+0+0+0+0+0+0+0+0+0+0" then signal ar11tag

Figure 4. Sample REXX Procedure Called From C Application (Part 3 of 4)

Chapter 9. Routines 133

Returning Result Sets from Stored Procedures

In addition to returning output parameters, stored procedures have a feature by which a result table

associated with a cursor opened in the stored procedure (called a result set) can be returned to the

application issuing the CALL statement. That application can then issue fetch requests to read the rows of

the result set cursor. Whether a result set gets returned depends on the returnability attribute of the

cursor. The cursor’s returnability attribute can be explicitly given in the DECLARE CURSOR statement or

it can be defaulted. The SET RESULT SETS statement also allows for an indication of where the result

sets should be returned (see “Example 2: Call a stored procedure which returns a result set from a nested

procedure” on page 135). By default, cursors which are opened in a stored procedure are defined to have

a returnability attribute of RETURN TO CALLER. To return the result set associated with the cursor to

the application which called the outermost procedure in the call stack, the returnability attribute of

RETURN TO CLIENT is specified on the DECLARE CURSOR statement. This will allow inner procedures

to return result sets when the application calls nested procedures. For cursors whose result sets are never

to be returned to caller or client, the returnability attribute of WITHOUT RETURN is specified on the

DECLARE CURSOR statement.

There are many cases where opening the cursor in a stored procedure and returning its result set

provides advantages over opening the cursor directly in the application. For instance, security to the

tables referenced in the query can be adopted from the stored procedure so that users of the application

do not need to be granted direct authority to the tables. Instead, they are given authority to call the

stored procedure, which is compiled with adequate authority to access the tables. Another advantage to

opening the cursors in the stored procedure is that multiple result sets can be returned from a single call

to the stored procedure, which can be more efficient that opening the cursors separately from the calling

application. Additionally, each call to the same stored procedure may return a different number of result

sets, providing some application versatility.

The interfaces that can work with stored procedure result sets include JDBC, CLI, and ODBC. An

example on how to use these API interfaces for working with stored procedure result sets is included in

the following examples:

v “Example 1: Call a stored procedure which returns a single result set” on page 135

v “Example 2: Call a stored procedure which returns a result set from a nested procedure” on page 135

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

 /**/

 /* Perform other processing as necessary .. */

 /**/

 :

 /**/

 /* Indicate the call was successful by exiting with a */

 /* return code of 0 */

 /**/

 exit(0)

 ar1tag:

 say "ar1 did not match" ar1

 exit(1)

 ar2tag:

 say "ar2 did not match" ar2

 exit(1)

 :

 :

/************ END OF REXX MEMBER **********************************/

Figure 4. Sample REXX Procedure Called From C Application (Part 4 of 4)

134 iSeries: DB2 Universal Database for iSeries SQL Programming

Example 1: Call a stored procedure which returns a single result set

This example shows the API calls ODBC application would make when calling a stored procedure that

returns a result set. Note that in this example the DECLARE CURSOR statement does not have an

explicit returnability specified. When there is only a single stored procedure on the call stack, the

returnability attribute of RETURN TO CALLER as well as that of RETURN TO CLIENT will make the

result set available to the caller of the application. Also note that the stored procedure is defined with a

DYNAMIC RESULT SETS clause. For SQL procedures, this clause is required if the stored procedure will

be returning result sets.

Defining the stored procedure:

PROCEDURE prod.resset

CREATE PROCEDURE prod.resset () LANGUAGE SQL

 DYNAMIC RESULT SETS 1

 BEGIN

 DECLARE C1 CURSOR FOR SELECT * FROM QIWS.QCUSTCDT;

 OPEN C1;

 RETURN;

 END

ODBC Application(Note: some of the logic has been removed).

 :

strcpy(stmt,"call prod.resset()");

rc = SQLExecDirect(hstmt,stmt,SQL_NTS);

if (rc == SQL_SUCCESS)

 {

 // CALL statement has executed successfully. Process the result set.

 // Get number of result columns for the result set.

 rc = SQLNumResultCols(hstmt, &wNum);

 if (rc == SQL_SUCCESS)

 // Get description of result columns in result set

 { rc = SQLDescribeCol(hstmt,à);

 if (rc == SQL_SUCCESS)

 :

 {

 // Bind result columns based on attributes returned

 //

 rc = SQLBindCol(hstmt,à);

 :

 // FETCH records until EOF is returned

 rc = SQLFetch(hstmt);

 while (rc == SQL_SUCCESS)

 { // process result returned on the SQLFetch

 :

 rc = SQLFetch(hstmt);

 }

 :

 }

 // Close the result set cursor when done with it.

 rc = SQLFreeStmt(hstmt,SQL_CLOSE);

 :

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Example 2: Call a stored procedure which returns a result set from a nested

procedure

This example shows how a nested stored procedure can open and return a result set to the outermost

procedure. To return a result set to the outermost procedure in an environment where there are nested

stored procedures, the RETURN TO CLIENT returnability attribute should be used on the DECLARE

Chapter 9. Routines 135

CURSOR statement or on the SET RESULT SETS statement to indicate that the cursors are to be returned

to the application which called the outermost procedure. Note that this nested procedure returns two

result sets to the client; the first, an array result set, and the second a cursor result set. Both an ODBC

and a JDBC client application are shown below along with the stored procedures.

Defining the stored procedures:

CREATE PROCEDURE prod.rtnnested () LANGUAGE CL DYNAMIC RESULT SET 2

 EXTERNAL NAME prod.rtnnested GENERAL

CREATE PROCEDURE prod.rtnclient () LANGUAGE RPGLE

 EXTERNAL NAME prod.rtnclient GENERAL

CL source for Stored Procedure prod.rtnnested

PGM

 CALL PGM(PROD/RTNCLIENT)

ILE RPG source for Stored Procedure prod.rtnclient

DRESULT DS OCCURS(20)

D COL1 1 16A

C 1 DO 10 X 2 0

C X OCCUR RESULT

C EVAL COL1=’array result set’

C ENDDO

C EVAL X=X-1

C/EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CLIENT

C+ FOR SELECT LSTNAM FROM QIWS.QCUSTCDT FOR FETCH ONLY

C/END-EXEC

C/EXEC SQL

C+ OPEN C2

C/END-EXEC

C/EXEC SQL

C+ SET RESULT SETS FOR RETURN TO CLIENT ARRAY :RESULT FOR :X ROWS,

C+ CURSOR C2

C/END-EXEC

C SETON LR

C RETURN

ODBC Application

//***

//

// Module:

// Examples.C

//

// Purpose:

// Perform calls to stored procedures to get back result sets.

//

// ***

#include "common.h"

#include "stdio.h"

// ***

//

// Local function prototypes.

//

// ***

136 iSeries: DB2 Universal Database for iSeries SQL Programming

SWORD FAR PASCAL RetClient(lpSERVERINFO lpSI);

BOOL FAR PASCAL Bind_Params(HSTMT);

BOOL FAR PASCAL Bind_First_RS(HSTMT);

BOOL FAR PASCAL Bind_Second_RS(HSTMT);

// ***

//

// Constant strings definitions for SQL statements used in

// the auto test.

//

// ***

//

// Declarations of variables global to the auto test.

//

// ***

#define ARRAYCOL_LEN 16

#define LSTNAM_LEN 8

char stmt[2048];

char buf[2000];

UDWORD rowcnt;

char arraycol[ARRAYCOL_LEN+1];

char lstnam[LSTNAM_LEN+1];

SDWORD cbcol1,cbcol2;

lpSERVERINFO lpSI; /* Pointer to a SERVERINFO structure. */

// **

//

// Define the auto test name and the number of test cases

// for the current auto test. These informations will

// be returned by AutoTestName().

//

// **

LPSTR szAutoTestName = CREATE_NAME("Result Sets Examples");

UINT iNumOfTestCases = 1;

// ***

//

// Define the structure for test case names, descriptions,

// and function names for the current auto test.

// Test case names and descriptions will be returned by

// AutoTestDesc(). Functions will be run by

// AutoTestFunc() if the bits for the corresponding test cases

// are set in the rglMask member of the SERVERINFO

// structure.

//

// ***

struct TestCase TestCasesInfo[] =

{

 "Return to Client",

 "2 result sets ",

 RetClient

};

// ***

//

// Sample return to Client:

// Return to Client result sets. Call a CL program which in turn

// calls an RPG program which returns 2 result sets. The first

Chapter 9. Routines 137

// result set is an array result set and the second is a cursor

// result set.

//

//

// ***

SWORD FAR PASCAL RetClient(lpSERVERINFO lpSI)

{

 SWORD sRC = SUCCESS;

 RETCODE returncode;

 HENV henv;

 HDBC hdbc;

 HSTMT hstmt;

 if (FullConnect(lpSI, &henv, &hdbc, &hstmt) == FALSE)

 {

 sRC = FAIL;

 goto ExitNoDisconnect;

 }

 // **

 // Call CL program PROD.RTNNESTED, which in turn calls RPG

 // program RTNCLIENT.

 // **

 strcpy(stmt,"CALL PROD.RTNNESTED()");

 // **

 // Call the CL program prod.rtnnested. This program will in turn

 // call the RPG program proc.rtnclient, which will open 2 result

 // sets for return to this ODBC application.

 // ***

 returncode = SQLExecDirect(hstmt,stmt,SQL_NTS);

 if (returncode != SQL_SUCCESS)

 {

 vWrite(lpSI, "CALL PROD.RTNNESTED is not Successful", TRUE);

 }

 else

 {

 vWrite(lpSI, "CALL PROC.RTNNESTED was Successful", TRUE);

 }

 // **

 // Bind the array result set output column. Note that the result

 // sets are returned to the application in the order that they

 // are specified on the SET RESULT SETS statement.

 // ***

 if (Bind_First_RS(hstmt) == FALSE)

 {

 myRETCHECK(lpSI, henv, hdbc, hstmt, SQL_SUCCESS,

 returncode, "Bind_First_RS");

 sRC = FAIL;

 goto ErrorRet;

 }

 else

 {

 vWrite(lpSI, "Bind_First_RS Complete...", TRUE);

 }

 // **

 // Fetch the rows from the array result set. After the last row

 // is read, a returncode of SQL_NO_DATA_FOUND will be returned to

 // the application on the SQLFetch request.

 // **

 returncode = SQLFetch(hstmt);

 while(returncode == SQL_SUCCESS)

 {

 wsprintf(stmt,"array column = %s",arraycol);

 vWrite(lpSI,stmt,TRUE);

 returncode = SQLFetch(hstmt);

 }

138 iSeries: DB2 Universal Database for iSeries SQL Programming

if (returncode == SQL_NO_DATA_FOUND) ;

 else {

 myRETCHECK(lpSI, henv, hdbc, hstmt, SQL_SUCCESS_WITH_INFO,

 returncode, "SQLFetch");

 sRC = FAIL;

 goto ErrorRet;

 }

 // **

 // Get any remaining result sets from the call. The next

 // result set corresponds to cursor C2 opened in the RPG

 // Program.

 // **

 returncode = SQLMoreResults(hstmt);

 if (returncode != SQL_SUCCESS)

 {

 myRETCHECK(lpSI, henv, hdbc, hstmt, SQL_SUCCESS, returncode, "SQLMoreResults");

 sRC = FAIL;

 goto ErrorRet;

 }

 // **

 // Bind the cursor result set output column. Note that the result

 // sets are returned to the application in the order that they

 // are specified on the SET RESULT SETS statement.

 // ***

 if (Bind_Second_RS(hstmt) == FALSE)

 {

 myRETCHECK(lpSI, henv, hdbc, hstmt, SQL_SUCCESS,

 returncode, "Bind_Second_RS");

 sRC = FAIL;

 goto ErrorRet;

 }

 else

 {

 vWrite(lpSI, "Bind_Second_RS Complete...", TRUE);

 }

 // **

 // Fetch the rows from the cursor result set. After the last row

 // is read, a returncode of SQL_NO_DATA_FOUND will be returned to

 // the application on the SQLFetch request.

 // **

 returncode = SQLFetch(hstmt);

 while(returncode == SQL_SUCCESS)

 {

 wsprintf(stmt,"lstnam = %s",lstnam);

 vWrite(lpSI,stmt,TRUE);

 returncode = SQLFetch(hstmt);

 }

 if (returncode == SQL_NO_DATA_FOUND) ;

 else {

 myRETCHECK(lpSI, henv, hdbc, hstmt, SQL_SUCCESS_WITH_INFO,

 returncode, "SQLFetch");

 sRC = FAIL;

 goto ErrorRet;

 }

 returncode = SQLFreeStmt(hstmt,SQL_CLOSE);

 if (returncode != SQL_SUCCESS)

 {

 myRETCHECK(lpSI, henv, hdbc, hstmt, SQL_SUCCESS,

 returncode, "Close statement");

 sRC = FAIL;

 goto ErrorRet;

 }

 else

 {

 vWrite(lpSI, "Close statement...", TRUE);

Chapter 9. Routines 139

}

ErrorRet:

 FullDisconnect(lpSI, henv, hdbc, hstmt);

 if (sRC == FAIL)

 {

 // a failure in an ODBC function that prevents completion of the

 // test - for example, connect to the server

 vWrite(lpSI, "\t\t *** Unrecoverable RTNClient Test FAILURE ***", TRUE);

 } /* endif */

ExitNoDisconnect:

 return(sRC);

} // RetClient

BOOL FAR PASCAL Bind_First_RS(HSTMT hstmt)

{

 RETCODE rc = SQL_SUCCESS;

 rc = SQLBindCol(hstmt,1,SQL_C_CHAR,arraycol,ARRAYCOL_LEN+1, &cbcol1);

 if (rc != SQL_SUCCESS) return FALSE;

 return TRUE;

}

BOOL FAR PASCAL Bind_Second_RS(HSTMT hstmt)

{

 RETCODE rc = SQL_SUCCESS;

 rc = SQLBindCol(hstmt,1,SQL_C_CHAR,lstnam,LSTNAM_LEN+1,&dbcol2);

 if (rc != SQL_SUCCESS) return FALSE;

 return TRUE;

}

JDBC Application

//---

// Call Nested procedures which return result sets to the

// client, in this case a JDBC client.

//---

import java.sql.*;

public class callNested

{

 public static void main (String argv[]) // Main entry point

 {

 try {

 Class.forName("com.ibm.db2.jdbc.app.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 try {

 Connection jdbcCon =

DriverManager.getConnection("jdbc:db2:lp066ab","Userid","xxxxxxx");

 jdbcCon.setAutoCommit(false);

 CallableStatement cs = jdbcCon.prepareCall("CALL PROD.RTNNESTED");

 cs.execute();

 ResultSet rs1 = cs.getResultSet();

 int r = 0;

while (rs1.next())

140 iSeries: DB2 Universal Database for iSeries SQL Programming

{

 r++;

 String s1 = rs1.getString(1);

 System.out.print("Result set 1 Row: " + r + ": ");

 System.out.print(s1 + " ");

 System.out.println();

 }

 cs.getMoreResults();

 r = 0;

 ResultSet rs2 = cs.getResultSet();

 while (rs2.next())

 {

 r++;

 String s2 = rs2.getString(1);

 System.out.print("Result set 2 Row: " + r + ": ");

 System.out.print(s2 + " ");

 System.out.println();

 }

 }

 catch (SQLException e) {

 System.out.println("SQLState: " + e.getSQLState());

 System.out.println("Message : " + e.getMessage());

 e.printStackTrace();

 }

 } // main

}

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Parameter passing conventions for stored procedures and UDFs

The CALL statement and a function invocation can pass arguments to programs written in all supported

host languages and REXX procedures. Each language supports different data types that are tailored to it,

as shown in the following tables. The SQL data type is contained in the leftmost column of the following

table. Other columns in that row contain an indication of whether that data type is supported as a

parameter type for a particular language. If the column contains a dash (-), the data type is not supported

as a parameter type for that language. A host variable declaration indicates that DB2 SQL for iSeries

supports this data type as a parameter in this language. The declaration indicates how host variables

must be declared to be received and set properly by the procedure or function. When calling an SQL

procedure or function, all SQL data types are supported so no column is provided in the table.

See the Embedded SQL Programming book and the Java SQL routines section of the IBM Developer’s Kit

for Java topic for more details.

 Table 28. Data Types of Parameters

SQL Data Type C and C++ CL

COBOL for iSeries and

ILE COBOL for iSeries

SMALLINT short - PIC S9(4) BINARY

INTEGER long - PIC S9(9) BINARY

BIGINT long long - PIC S9(18) BINARY Note:

Only supported for ILE

COBOL for iSeries.

DECIMAL(p,s) decimal(p,s) TYPE(*DEC) LEN(p s) PIC S9(p-s)V9(s)

PACKED-DECIMAL Note:

Precision must not be

greater than 18.

Chapter 9. Routines 141

Table 28. Data Types of Parameters (continued)

SQL Data Type C and C++ CL

COBOL for iSeries and

ILE COBOL for iSeries

NUMERIC(p,s) - - PIC S9(p-s)V9(s) DISPLAY

SIGN LEADING

SEPARATE Note: Precision

must not be greater than

18.

REAL or FLOAT(p) float - COMP-1 Note: Only

supported for ILE COBOL

for iSeries.

DOUBLE PRECISION or

FLOAT or FLOAT(p)

double - COMP-2 Note: Only

supported for ILE COBOL

for iSeries.

CHARACTER(n) char ... [n+1] TYPE(*CHAR) LEN(n) PIC X(n)

VARCHAR(n) char ... [n+1] - Varying-Length Character

String (see COBOL in

Embedded SQL

Programming).

VARCHAR(n) FOR BIT

DATA

VARCHAR structured form

(see C in Embedded SQL

Programming book.)

- Varying-Length Character

String (see COBOL in

Embedded SQL

Programming).

CLOB CLOB structured form (see

C in Embedded SQL

Programming)

- CLOB structured form (see

COBOL in Embedded SQL

Programming). Note: only

supported for ILE COBOL

for iSeries.

GRAPHIC(n) wchar_t ... [n+1] - PIC G(n) DISPLAY-1 or PIC

N(n) Note: Only

supported for ILE COBOL

for iSeries.

VARGRAPHIC(n) VARGRAPHIC structured

form (see C in Embedded

SQL Programming)

- Varying-Length Graphic

String (see COBOL in

Embedded SQL

Programming). Note:

Only supported for ILE

COBOL for iSeries.

DBCLOB DBCLOB structured form

(see C in Embedded SQL

Programming)

- DBCLOB structured form

(see COBOL in Embedded

SQL Programming). Note:

only supported for ILE

COBOL for iSeries.

BINARY BINARY structured form

(see C in Embedded SQL

Programming)

- BINARY structured form

(see COBOL in Embedded

SQL Programming)

VARBINARY VARBINARY structured

form (see C in Embedded

SQL Programming)

- VARBINARY structured

form (see COBOL in

Embedded SQL

Programming)

142 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 28. Data Types of Parameters (continued)

SQL Data Type C and C++ CL

COBOL for iSeries and

ILE COBOL for iSeries

BLOB BLOB structured form (see

C in Embedded SQL

Programming)

- BLOB structured form (see

COBOL in Embedded SQL

Programming)Note: only

supported for ILE COBOL

for iSeries.

DATE char ... [11] TYPE(*CHAR) LEN(10) PIC X(10)

For ILE COBOL for iSeries

only, FORMAT DATE.

TIME char ... [9] TYPE(*CHAR) LEN(8) PIC X(8)

For ILE COBOL for iSeries

only, FORMAT TIME.

TIMESTAMP char ... [27] TYPE(*CHAR) LEN(26) PIC X(26)

For ILE COBOL for iSeries

only, FORMAT

TIMESTAMP.

ROWID ROWID structured form

(see C in Embedded SQL

Programming)

- ROWID structured form

(see COBOL in Embedded

SQL Programming).

DataLink - - -

Indicator Variable short - PIC S9(4) BINARY

 Table 29. Data Types of Parameters

SQL Data Type Java Parameter Style JAVA

Java Parameter Style

DB2GENERAL PL/I

SMALLINT short short FIXED BIN(15)

INTEGER int int FIXED BIN(31)

BIGINT long long -

DECIMAL(p,s) BigDecimal BigDecimal FIXED DEC(p,s)

NUMERIC(p,s) BigDecimal BigDecimal -

REAL or FLOAT(p) float float FLOAT BIN(p)

DOUBLE PRECISION or

FLOAT or FLOAT(p)

double double FLOAT BIN(p)

CHARACTER(n) String String CHAR(n)

VARCHAR(n) String String CHAR(n) VAR

VARCHAR(n) FOR BIT

DATA

byte[] com.ibm.db2.app.Blob CHAR(n) VAR

CLOB java.sql.Clob com.ibm.db2.app.Clob CLOB structured form (see

PL/I in Embedded SQL

Programming)

GRAPHIC(n) String String -

VARGRAPHIC(n) String String -

DBCLOB java.sql.Clob com.ibm.db2.app.Clob DBCLOB structured form

(see PL/I in Embedded

SQL Programming)

Chapter 9. Routines 143

Table 29. Data Types of Parameters (continued)

SQL Data Type Java Parameter Style JAVA

Java Parameter Style

DB2GENERAL PL/I

BINARY byte[] com.ibm.db2.app.Blob BINARY structured form

(see PL/I in Embedded

SQL Programming)

VARBINARY byte[] com.ibm.db2.app.Blob VARBINARY structured

form (see PL/I in

Embedded SQL

Programming)

BLOB java.sql.Blob com.ibm.db2.app.Blob BLOB structured form (see

PL/I in Embedded SQL

Programming)

DATE Date String CHAR(10)

TIME Time String CHAR(8)

TIMESTAMP Timestamp String CHAR(26)

ROWID byte[] com.ibm.db2.app.Blob ROWID structured form

(see PL/I in Embedded

SQL Programming)

DataLink - - -

Indicator Variable - - FIXED BIN(15)

 Table 30. Data Types of Parameters

SQL Data Type REXX RPG ILE RPG

SMALLINT - Data structure that contains a

single sub-field. B in position 43,

length must be 2, and 0 in

position 52 of the sub-field

specification.

Data specification. B in position

40, length must be <= 4, and 00

in positions 41-42 of the sub-field

specification.

 or

Data specification. I in position

40, length must be 5, and 00 in

positions 41-42 of the sub-field

specification.

INTEGER numeric string with

no decimal (and an

optional leading sign)

Data structure that contains a

single sub-field. B in position 43,

length must be 4, and 0 in

position 52 of the sub-field

specification.

Data specification. B in position

40, length must be <=09 and

>=05, and 00 in positions 41-42

of the sub-field specification.

 or

Data specification. I in position

40, length must be 10, and 00 in

positions 41-42 of the sub-field

specification.

BIGINT - - Data specification. I in position

40, length must be 20, and 00 in

positions 41-42 of the sub-field

specification.

144 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 30. Data Types of Parameters (continued)

SQL Data Type REXX RPG ILE RPG

DECIMAL(p,s) numeric string with a

decimal (and an

optional leading sign)

Data structure that contains a

single sub-field. P in position 43

and 0 through 9 in position 52 of

the sub-field specification. or A

numeric input field or calculation

result field.

Data specification. P in position

40 and 00 through 31 in positions

41-42 of the sub-field

specification.

NUMERIC(p,s) - Data structure that contains a

single sub-field. Blank in position

43 and 0 through 9 in position 52

of the sub-field specification.

Data specification. S in position

40, or Blank in position 40 and

00 through 31 in position 41-42

of the sub-field specification.

REAL or FLOAT(p) string with digits,

then an E, (then an

optional sign), then

digits

- Data specification. F in position

40, length must be 4.

DOUBLE PRECISION

or FLOAT or

FLOAT(p)

string with digits,

then an E, (then an

optional sign), then

digits

- Data specification. F in position

40, length must be 8.

CHARACTER(n) string with n

characters within two

apostrophes

Data structure field without

sub-fields or data structure that

contains a single sub-field. Blank

in position 43 and 52 of the

sub-field specification. or A

character input field or

calculation result field.

Data specification. A in position

40, or Blank in position 40 and

41-42 of the sub-field

specification.

VARCHAR(n) string with n

characters within two

apostrophes

- Data specification. A in position

40, or Blank in position 40 and

41-42 of the sub-field

specification and the keyword

VARYING in positions 44-80.

VARCHAR(n) FOR

BIT DATA

string with n

characters within two

apostrophes

- Data specification. A in position

40, or Blank in position 40 and

41-42 of the sub-field

specification and the keyword

VARYING in positions 44-80.

CLOB - - CLOB structured form (see RPG

chapter in Embedded SQL

Programming)

GRAPHIC(n) string starting with

G’, then n double

byte characters, then ’

- Data specification. G in position

40 of the sub-field specification.

VARGRAPHIC(n) string starting with

G’, then n double

byte characters, then ’

- Data specification. G in position

40 of the sub-field specification

and the keyword VARYING in

positions 44-80.

DBCLOB - - DBCLOB structured form (see

ILE RPG in Embedded SQL

Programming)

BINARY - - BINARY structured form (see ILE

RPG in Embedded SQL

Programming)

Chapter 9. Routines 145

Table 30. Data Types of Parameters (continued)

SQL Data Type REXX RPG ILE RPG

VARBINARY - - VARBINARY structured form

(see ILE RPG in Embedded SQL

Programming)

BLOB - - BLOB structured form (see ILE

RPG in Embedded SQL

Programming)

DATE string with 10

characters within two

apostrophes

Data structure field without

sub-fields or data structure that

contains a single sub-field. Blank

in position 43 and 52 of the

sub-field specification. Length is

10. or A character input field or

calculation result field.

Data specification. D in position

40 of the sub-field specification.

DATFMT(*ISO) in position 44-80.

TIME string with 8

characters within two

apostrophes

Data structure field without

sub-fields or data structure that

contains a single sub-field. Blank

in position 43 and 52 of the

sub-field specification. Length is

8. or A character input field or

calculation result field.

Data specification. T in position

40 of the sub-field specification.

TIMFMT(*ISO) in position 44-80.

TIMESTAMP string with 26

characters within two

apostrophes

Data structure field without

sub-fields or data structure that

contains a single sub-field. Blank

in position 43 and 52 of the

sub-field specification. Length is

26. or A character input field or

calculation result field.

Data specification. Z in position

40 of the sub-field specification.

ROWID - - ROWID structured form (see ILE

RPG in Embedded SQL

Programming)

DataLink - - -

Indicator Variable numeric string with

no decimal (and an

optional leading sign).

Data structure that contains a

single sub-field. B in position 43,

length must be 2, and 0 in

position 52 of the sub-field

specification.

Data specification. B in position

40, length must be <=4, and 00 in

positions 41-42 of the sub-field

specification.

Indicator variables and stored procedures

Indicator variables can be used with the CALL statement, provided host variables are used for the

parameters, to pass additional information to and from the procedure. Indicator variables are the SQL

standard means of denoting that the associated host variable should be interpreted as containing the null

value, and this is their primary use.

To indicate that an associated host variable contains the null value, the indicator variable, which is a

two-byte integer, is set to a negative value. A CALL statement with indicator variables is processed as

follows:

v If the indicator variable is negative, this denotes the null value. A default value is passed for the

associated host variable on the CALL and the indicator variable is passed unchanged.

v If the indicator variable is not negative, this denotes that the host variable contains a non-null value. In

this case, the host variable and the indicator variable are passed unchanged.

146 iSeries: DB2 Universal Database for iSeries SQL Programming

These rules of processing are the same for input parameters to the procedure as well as output

parameters returned from the procedure. When indicator variables are used with stored procedures, the

correct method of coding their handling is to check the value of the indicator variable first before using

the associated host variable.

The following example illustrates the handling of indicator variables in CALL statements. Notice that the

logic checks the value of the indicator variable before using the associated variable. Also note the method

that the indicator variables are passed into procedure PROC1 (as a third argument consisting of an array

of two-byte values).

Assume a procedure was defined as follows:

 CREATE PROCEDURE PROC1

 (INOUT DECIMALOUT DECIMAL(7,2), INOUT DECOUT2 DECIMAL(7,2))

 EXTERNAL NAME LIB1.PROC1 LANGUAGE RPGLE

 GENERAL WITH NULLS)

++

Program CRPG

++

 D INOUT1 S 7P 2

 D INOUT1IND S 4B 0

 D INOUT2 S 7P 2

 D INOUT2IND S 4B 0

 C EVAL INOUT1 = 1

 C EVAL INOUT1IND = 0

 C EVAL INOUT2 = 1

 C EVAL INOUT2IND = -2

 C/EXEC SQL CALL PROC1 (:INOUT1 :INOUT1IND , :INOUT2

 C+ :INOUT2IND)

 C/END-EXEC

 C EVAL INOUT1 = 1

 C EVAL INOUT1IND = 0

 C EVAL INOUT2 = 1

 C EVAL INOUT2IND = -2

 C/EXEC SQL CALL PROC1 (:INOUT1 :INOUT1IND , :INOUT2

 C+ :INOUT2IND)

 C/END-EXEC

 C INOUT1IND IFLT 0

 C* :

 C* HANDLE NULL INDICATOR

 C* :

 C ELSE

 C* :

 C* INOUT1 CONTAINS VALID DATA

 C* :

 C ENDIF

 C* :

 C* HANDLE ALL OTHER PARAMETERS

 C* IN A SIMILAR FASHION

 C* :

 C RETURN

++

End of PROGRAM CRPG

++

Figure 5. Handling of Indicator Variables in CALL Statements (Part 1 of 2)

Chapter 9. Routines 147

Returning a completion status to the calling program

For SQL procedures, any errors that are not handled in the procedure are returned to the caller in the

SQLCA. The SIGNAL and RESIGNAL control statements can be used to send error information as well.

See the SQL Control Statements topic in the SQL Reference for more information.

For external procedures, there are two ways to return status information. One method of returning a

status to the SQL program issuing the CALL statement is to code an extra INOUT type parameter and set

it before returning from the procedure. When the procedure being called is an existing program, this is

not always possible.

Another method of returning a status to the SQL program issuing the CALL statement is to send an

escape message to the calling program (operating system program QSQCALL) which calls the procedure.

The calling program that issues the procedure is QSQCALL. Each language has methods for signalling

conditions and sending messages. Refer to the respective language reference to determine the proper way

to signal a message. When the message is signalled, QSQCALL turns the error into

SQLCODE/SQLSTATE -443/38501.

++

Program PROC1

++

 D INOUTP S 7P 2

 D INOUTP2 S 7P 2

 D NULLARRAY S 4B 0 DIM(2)

 C *ENTRY PLIST

 C PARM INOUTP

 C PARM INOUTP2

 C PARM NULLARRAY

 C NULLARRAY(1) IFLT 0

 C* :

 C* INOUTP DOES NOT CONTAIN MEANINGFUL DATA

 C*

 C ELSE

 C* :

 C* INOUTP CONTAINS MEANINGFUL DATA

 C* :

 C ENDIF

 C* PROCESS ALL REMAINING VARIABLES

 C*

 C* BEFORE RETURNING, SET OUTPUT VALUE FOR FIRST

 C* PARAMETER AND SET THE INDICATOR TO A NON-NEGATIV

 C* VALUE SO THAT THE DATA IS RETURNED TO THE CALLING

 C* PROGRAM

 C*

 C EVAL INOUTP2 = 20.5

 C EVAL NULLARRAY(2) = 0

 C*

 C* INDICATE THAT THE SECOND PARAMETER IS TO CONTAIN

 C* THE NULL VALUE UPON RETURN. THERE IS NO POINT

 C* IN SETTING THE VALUE IN INOUTP SINCE IT WON’T BE

 C* PASSED BACK TO THE CALLER.

 C EVAL NULLARRAY(1) = -5

 C RETURN

++

End of PROGRAM PROC1

++

Figure 5. Handling of Indicator Variables in CALL Statements (Part 2 of 2)

148 iSeries: DB2 Universal Database for iSeries SQL Programming

Using User-Defined Functions (UDFs)

In writing SQL applications, you can implement some actions or operations as a UDF or as a subroutine

in your application: Although it may appear easier to implement new operations as subroutines in your

application, you might want to consider the advantages of using a UDF instead.

For example, if the new operation is something that other users or programs can take advantage of, a

UDF can help to reuse it. In addition, the function can be called directly in SQL wherever an expression

can be used. The database takes care of many data type promotions of the function arguments

automatically. For example, with DECIMAL to DOUBLE, the database allows your function to be applied

to different, but compatible data types.

In certain cases, calling the UDF directly from the database engine instead of from your application can

have a considerable performance advantage. You will notice this advantage in cases where the function

may be used in the qualification of data for further processing. These cases occur when the function is

used in row selection processing.

Consider a simple scenario where you want to process some data. You can meet some selection criteria

which can be expressed as a function SELECTION_CRITERIA(). Your application can issue the following

select statement:

 SELECT A, B, C FROM T

When it receives each row, it runs the program’s SELECTION_CRITERIA function against the data to decide

if it is interested in processing the data further. Here, every row of table T must be passed back to the

application. But, if SELECTION_CRITERIA() is implemented as a UDF, your application can issue the

following statement:

 SELECT C FROM T WHERE SELECTION_CRITERIA(A,B)=1

In this case, only the rows and one column of interest are passed across the interface between the

application and the database.

Another case where a UDF can offer a performance benefit is when dealing with Large Objects (LOB).

Suppose you have a function that extracts some information from a value of a LOB. You can perform this

extraction right on the database server and pass only the extracted value back to the application. This is

more efficient than passing the entire LOB value back to the application and then performing the

extraction. The performance value of packaging this function as a UDF can be enormous, depending on

the particular situation. (Note that you can also extract a portion of a LOB by using a LOB locator. See

“Indicator variables and LOB locators” on page 196 for an example of a similar scenario.)

See the following sections for more information about UDFs:

“UDF concepts”

“Writing UDFs as SQL functions” on page 151

“Writing UDFs as external functions” on page 152

“Examples of UDF code” on page 163

“Using UDFs in SQL statements” on page 172

UDF concepts

The following is a discussion of the important concepts you need to know before coding UDFs:

Types of function

Chapter 9. Routines 149

There are several types of functions:

v Built-in. These are functions provided by and shipped with the database. SUBSTR() is an example.

v System-generated. These are functions implicitly generated by the database engine when a DISTINCT

TYPE is created. These functions provide casting operations between the DISTINCT TYPE and its base

type.

v User-defined. These are functions created by users and registered to the database.

In addition, each function can be further classified as a scalar, column, or table function.

A scalar function returns a single value answer each time it is called. For example, the built-in function

SUBSTR() is a scalar function, as are many built-in functions. System-generated functions are always scalar

functions. Scalar UDFs can either be external (coded in a programming language such as C), written in

SQL, or sourced (using the implementation of an existing function).

A column function receives a set of like values (a column of data) and returns a single value answer from

this set of values. These are also called aggregating functions in DB2. Some built-in functions are column

functions. An example of a column function is the built-in function AVG(). An external UDF cannot be

defined as a column function. However, a sourced UDF is defined to be a column function if it is sourced

on one of the built-in column functions. The latter is useful for distinct types. For example, if a distinct

type SHOESIZE exists that is defined with base type INTEGER, you can define a UDF, AVG(SHOESIZE), as a

column function sourced on the existing built-in column function, AVG(INTEGER).

A table function returns a table to the SQL statement that references it. It must be referenced in the FROM

clause of a SELECT. A table function can be used to apply SQL language processing power to data that is

not DB2 data, or to convert such data into a DB2 table. It can, for example, take a file and convert it to a

table, sample data from the World Wide Web and tabularize it, or access a Lotus® Notes® database and

return information about mail messages, such as the date, sender, and the text of the message. This

information can be joined with other tables in the database. A table function can be defined as a external

function or an SQL function; it cannot be defined as a sourced function.

Full name of a function

The full name of a function using *SQL naming is <schema-name>.<function-name>.

The full name of a function in *SYS naming is <schema-name>/<function-name>. Function names cannot

be qualified using *SYS naming in DML statements.

You can use this full name anywhere you refer to a function. For example:

 QGPL.SNOWBLOWER_SIZE SMITH.FOO QSYS2.SUBSTR QSYS2.FLOOR

However, you may also omit the <schema-name>., in which case, DB2 must determine the function to

which you are referring. For example:

 SNOWBLOWER_SIZE FOO SUBSTR FLOOR

Path

The concept of path is central to DB2’s resolution of unqualified references that occur when schema-name is

not specified. The path is an ordered list of schema names that is used for resolving unqualified

references to UDFs and UDTs. In cases where a function reference matches a function in more than one

schema in the path, the order of the schemas in the path is used to resolve this match. The path is

established by means of the SQLPATH option on the precompile commands for static SQL. The path is

set by the SET PATH statement for dynamic SQL. When the first SQL statement that runs in an activation

group runs with SQL naming, the path has the following default value:

 "QSYS","QSYS2","<ID>"

150 iSeries: DB2 Universal Database for iSeries SQL Programming

This applies to both static and dynamic SQL, where <ID> represents the current statement authorization

ID.

When the first SQL statement in an activation group runs with system naming, the default path is *LIBL.

Overloaded function names

Function names can be overloaded. Overloaded means that multiple functions, even in the same schema,

can have the same name. Two functions cannot, however, have the same signature. A function signature is

the qualified function name and the data types of all the function parameters in the order in that they are

defined.

Function resolution

It is the function resolution algorithm that takes into account the facts of overloading and function path to

choose the best fit for every function reference, whether it is a qualified or an unqualified reference. All

functions, even built-in functions, are processed through the function selection algorithm. The function

resolution algorithm does not take into account the type of a function. So a table function may be

resolved to as the best fit function, even though the usage of the reference requires an scalar function, or

vice-versa.

The concept of path, the SET PATH statement, signatures, and the function resolution algorithm are

discussed in detail in the SQL Reference.

Length of time that the UDF runs

UDFs are called from within an SQL statement execution, which is normally a query operation that

potentially runs against thousands of rows in a table. Because of this, the UDF needs to be called from a

low level of the database.

As a consequence of being called from such a low level, there are certain resources (locks and seizes)

being held at the time the UDF is called and for the duration of the UDF execution. These resources are

primarily locks on any tables and indexes involved in the SQL statement that is calling the UDF. Due to

these held resources, it is important that the UDF not perform operations that may take an extended

period of time (minutes or hours). Because of the critical nature of holding resources for long periods of

time, the database only waits for a certain period of time for the UDF to finish. If the UDF does not finish

in the time allocated, the SQL statement calling the UDF will fail.

The default UDF wait time used by the database should be more than sufficient to allow a normal UDF

to run to completion. However, if you have a long running UDF and want to increase the wait time, this

can be done using the UDF_TIME_OUT option in the query INI file. See Query Options File QAQQINI in

the Database Performance and Query Optimization information for details on the INI file. Note, however,

that there is a maximum time limit that the database will not exceed, regardless of the value specified for

UDF_TIME_OUT.

Since resources are held while the UDF is run, it is important that the UDF not operate on the same

tables or indexes allocated for the original SQL statement or, if it does, that it does not perform an

operation that conflicts with the one being performed in the SQL statement. Specifically, the UDF should

not try to perform any insert, update, or delete row operation on those tables.

Writing UDFs as SQL functions

SQL functions are UDFs that you have defined, written, and registered using the CREATE FUNCTION

SQL statement. As such, they are written using only the SQL language and their definition is completely

Chapter 9. Routines 151

contained within one (potentially large) CREATE FUNCTION statement. The creation of an SQL function

causes the registration of the UDF, generates the executable code for the function, and defines to the

database the details of how parameters are passed.

See the following examples:

v “SQL scalar UDFs example”

v “SQL table UDFs example”

SQL scalar UDFs example

For example, a function that returns a priority based on a date:

CREATE FUNCTION PRIORITY(indate DATE) RETURNS CHAR(7)

LANGUAGE SQL

BEGIN

RETURN(

 CASE WHEN indate>CURRENT DATE-3 DAYS THEN ’HIGH’

 WHEN indate>CURRENT DATE-7 DAYS THEN ’MEDIUM’

 ELSE ’LOW’

 END

);

END

The function can then be called as:

SELECT ORDERNBR, PRIORITY(ORDERDUEDATE) FROM ORDERS

SQL table UDFs example

For example, a function that returns data based on a date:

CREATE FUNCTION PROJFUNC(indate DATE)

 RETURNS TABLE (PROJNO CHAR(6), ACTNO SMALLINT, ACTSTAFF DECIMAL(5,2),

 ACSTDATE DATE, ACENDATE DATE)

 LANGUAGE SQL

 BEGIN

 RETURN SELECT * FROM PROJACT

 WHERE ACSTDATE<=indate;

 END

The function can then be called as:

SELECT * FROM TABLE(PROJFUNC(:datehv)) X

SQL table functions are required to have one and only one RETURN statement.

Writing UDFs as external functions

You can write the executable code of a UDF in a language other than SQL. While this method is slightly

more cumbersome than an SQL function, it provides the flexibility for you to use whatever language is

most effective for you. The executable code can be contained in either a program or service program.

External functions can also be written in Java. For a description of the parameters, see Java SQL Routines

in the IBM Developer Kit for Java topic.

To write a UDF as an external function, examine these topics:

v “Registering UDFs” on page 153

v “Passing arguments from DB2 to external functions” on page 156

v “Table function considerations” on page 161

v “Error processing for UDFs” on page 161

v “Threads considerations” on page 162

v “Parallel processing” on page 162

152 iSeries: DB2 Universal Database for iSeries SQL Programming

v “Fenced or unfenced considerations” on page 163

v “Save and restore considerations” on page 163

Registering UDFs

A UDF must be registered in the database before the function can be recognized and used by SQL. You

can register a UDF using the CREATE FUNCTION statement.

The statement allows you to specify the language and name of the program, along with options such as

DETERMINISTIC, ALLOW PARALLEL, and RETURNS NULL ON NULL INPUT. These options help to

more specifically identify to the database the intention of the function and how calls to the database can

be optimized.

You should register an external UDF after you have written and completely tested the actual code. It is

possible to define the UDF before actually writing it. However, to avoid any problems with running your

UDF, you are encouraged to write and test it extensively before registering it.

For examples of registering UDFs, see the following:

v “Example: Exponentiation”

v “Example: String search”

v “Example: String search over UDT” on page 154

v “Example: AVG over a UDT” on page 154

v “Example: Counting” on page 155

v “Example: Table function returning Document IDs” on page 155

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

Example: Exponentiation: Suppose you have written an external UDF to perform exponentiation of

floating point values, and want to register it in the MATH schema.

 CREATE FUNCTION MATH.EXPON (DOUBLE, DOUBLE)

 RETURNS DOUBLE

 EXTERNAL NAME ’MYLIB/MYPGM(MYENTRY)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 RETURNS NULL ON NULL INPUT

 ALLOW PARALLEL

In this example, the RETURNS NULL ON NULL INPUT is specified since you want the result to be

NULL if either argument is NULL. As there is no reason why EXPON cannot be parallel, the ALLOW

PARALLEL value is specified.

Example: String search: Suppose you have written a UDF to look for the existence of a given short

string, passed as an argument, within a given CLOB value, that is also passed as an argument. The UDF

returns the position of the string within the CLOB if it finds the string, or zero if it does not.

The C program was written to return a FLOAT result. Suppose you know that when it is used in SQL, it

should always return an INTEGER. You can create the following function:

 CREATE FUNCTION FINDSTRING (CLOB(500K), VARCHAR(200))

 RETURNS INTEGER

 CAST FROM FLOAT

 SPECIFIC FINDSTRING

 EXTERNAL NAME ’MYLIB/MYPGM(FINDSTR)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

Chapter 9. Routines 153

NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 RETURNS NULL ON NULL INPUT

Note that a CAST FROM clause is used to specify that the UDF program really returns a FLOAT value,

but you want to cast this to INTEGER before returning the value to the SQL statement which used the

UDF. Also, you want to provide your own specific name for the function. Because the UDF was not

written to handle NULL values, you use the RETURNS NULL ON NULL INPUT.

Example: BLOB string search: Because you want the ″string_find″ function to work on BLOBs as well

as on CLOBs, you define another FINDSTRING taking BLOB as the first parameter:

 CREATE FUNCTION FINDSTRING (BLOB(500K), VARCHAR(200))

 RETURNS INTEGER

 CAST FROM FLOAT

 SPECIFIC FINDSTRING_BLOB

 EXTERNAL NAME ’MYLIB/MYPGM(FINDSTR)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 RETURNS NULL ON NULL INPUT

This example illustrates overloading of the UDF name and shows that multiple UDFs can share the same

program. Note that although a BLOB cannot be assigned to a CLOB, the same source code can be used.

There is no programming problem in the above example as the interface for BLOB and CLOB between

DB2 and the UDF program is the same: length followed by data.

Example: String search over UDT: This example is a continuation of the previous example. Say you are

satisfied with the FINDSTRING functions from “Example: BLOB string search,” but now you have

defined a distinct type BOAT with source type BLOB. You also want FINDSTRING to operate on values

having data type BOAT, so you create another FINDSTRING function. This function is sourced on the

FINDSTRING which operates on BLOB values in “Example: BLOB string search.” Note the further

overloading of FINDSTRING in this example:

 CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(200))

 RETURNS INT

 SPECIFIC "slick_fboat"

 SOURCE SPECIFIC FINDSTRING_BLOB

Note that this FINDSTRING function has a different signature from the FINDSTRING functions in

“Example: BLOB string search,” so there is no problem overloading the name. Because you are using the

SOURCE clause, you cannot use the EXTERNAL NAME clause or any of the related keywords specifying

function attributes. These attributes are taken from the source function. Finally, observe that in identifying

the source function you are using the specific function name explicitly provided in “Example: BLOB

string search.” Because this is an unqualified reference, the schema in which this source function resides

must be in the function path, or the reference will not be resolved.

Example: AVG over a UDT: This example implements the AVG column function over the

CANADIAN_DOLLAR distinct type. See “Example: Money” on page 202 for the definition of

CANADIAN_DOLLAR. Strong typing prevents you from using the built-in AVG function on a distinct

type. It turns out that the source type for CANADIAN_DOLLAR was DECIMAL, and so you implement

the AVG by sourcing it on the AVG(DECIMAL) built-in function.

 CREATE FUNCTION AVG (CANADIAN_DOLLAR)

 RETURNS CANADIAN_DOLLAR

 SOURCE "QSYS2".AVG(DECIMAL(9,2))

Note that in the SOURCE clause you have qualified the function name, just in case there might be some

other AVG function lurking in your SQL path.

154 iSeries: DB2 Universal Database for iSeries SQL Programming

Example: Counting: Your simple counting function returns a 1 the first time and increments the result

by one each time it is called. This function takes no SQL arguments, and by definition it is a NOT

DETERMINISTIC function since its answer varies from call to call. It uses the SCRATCHPAD to save the

last value returned. Each time it is called, the function increments this value and returns it.

 CREATE FUNCTION COUNTER ()

 RETURNS INT

 EXTERNAL NAME ’MYLIB/MYFUNCS(CTR)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 NOT DETERMINISTIC

 NOT FENCED

 SCRATCHPAD 4

 DISALLOW PARALLEL

Note that no parameter definitions are provided, just empty parentheses. The above function specifies

SCRATCHPAD and uses the default specification of NO FINAL CALL. In this case, the size of the

scratchpad is set to only 4 bytes, which is sufficient for a counter. Since the COUNTER function requires

that a single scratchpad be used to operate properly, DISALLOW PARALLEL is added to prevent DB2

from operating it in parallel.

Example: Table function returning Document IDs: You have written a table function that returns a row

consisting of a single document identifier column for each known document in your text management

system that matches a given subject area (the first parameter) and contains the given string (second

parameter). This UDF uses the functions of the text management system to quickly identify the

documents:

 CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))

 RETURNS TABLE (DOC_ID CHAR(16))

 EXTERNAL NAME ’DOCFUNCS/UDFMATCH(udfmatch)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 NOT FENCED

 SCRATCHPAD

 NO FINAL CALL

 DISALLOW PARALLEL

 CARDINALITY 20

Within the context of a single session it will always return the same table, and therefore it is defined as

DETERMINISTIC. The RETURNS clause defines the output from DOCMATCH, including the column

name DOC_ID. FINAL CALL does not need to be specified for this table function. The DISALLOW

PARALLEL keyword is required since table functions cannot operate in parallel. Although the size of the

output from DOCMATCH can be a large table, CARDINALITY 20 is a representative value, and is

specified to help the optimizer make good decisions.

Typically, this table function is used in a join with the table containing the document text, as follows:

 SELECT T.AUTHOR, T.DOCTEXT

 FROM DOCS AS T, TABLE(DOCMATCH(’MATHEMATICS’, ’ZORN’’S LEMMA’)) AS F

 WHERE T.DOCID = F.DOC_ID

Note the special syntax (TABLE keyword) for specifying a table function in a FROM clause. In this

invocation, the DOCMATCH() table function returns a row containing the single column DOC_ID for

each MATHEMATICS document referencing ZORN’S LEMMA. These DOC_ID values are joined to the

master document table, retrieving the author’s name and document text.

Chapter 9. Routines 155

Passing arguments from DB2 to external functions

DB2 provides storage for all parameters passed to a UDF. Therefore, parameters are passed to the

external function by address. This is the normal parameter passing method for programs. For service

programs, ensure that the parameters are defined correctly in the function code.

When defining and using the parameters in the UDF, care should be taken to ensure that no more storage

is referenced for a given parameter than is defined for that parameter. The parameters are all stored in

the same space and exceeding a given parameter’s storage space can overwrite another parameter’s

value. This, in turn, can cause the function to see invalid input data or cause the value returned to the

database to be invalid.

There are several supported parameter styles available to external UDFs. For the most part, the styles

differ in how many parameters are passed to the external program or service program. The styles are:

v “Parameter style SQL”

v “Parameter style DB2SQL” on page 157

v “Parameter Style GENERAL (or SIMPLE CALL)” on page 159

v “Parameter Style GENERAL WITH NULLS” on page 160

v “Parameter style DB2GENERAL” on page 161

v “Parameter style Java” on page 161

Parameter style SQL: The parameter style SQL conforms to the industry standard Structured Query

Language (SQL). This parameter style can only be used with scalar UDFs. With parameter style SQL, the

parameters are passed into the external program as follows (in the order specified):

��

�

SQL-argument

 SQL-result

�

SQL-argument-ind

 SQL-result-ind SQL-state �

� function-name specific-name diagnostic-message ��

SQL-argument

This argument is set by DB2 before calling the UDF. This value repeats n times, where n is the

number of arguments specified in the function reference. The value of each of these arguments is

taken from the expression specified in the function invocation. It is expressed in the data type of

the defined parameter in the create function statement. Note: These parameters are treated as

input only; any changes to the parameter values made by the UDF are ignored by DB2.

SQL-result

This argument is set by the UDF before returning to DB2. The database provides the storage for

the return value. Since the parameter is passed by address, the address is of the storage where

the return value should be placed. The database provides as much storage as needed for the

return value as defined on the CREATE FUNCTION statement. If the CAST FROM clause is used

in the CREATE FUNCTION statement, DB2 assumes the UDF returns the value as defined in the

CAST FROM clause, otherwise DB2 assumes the UDF returns the value as defined in the

RETURNS clause.

SQL-argument-ind

This argument is set by DB2 before calling the UDF. It can be used by the UDF to determine if

the corresponding SQL-argument is null or not. The nth SQL-argument-ind corresponds to the nth

SQL-argument, described previously. Each indicator is defined as a two-byte signed integer. It is

set to one of the following values:

0 The argument is present and not null.

-1 The argument is null.

156 iSeries: DB2 Universal Database for iSeries SQL Programming

If the function is defined with RETURNS NULL ON NULL INPUT, the UDF does not need to

check for a null value. However, if it is defined with CALLS ON NULL INPUT, any argument

can be NULL and the UDF should check for null input. Note: these parameters are treated as

input only; any changes to the parameter values made by the UDF are ignored by DB2.

SQL-result-ind

This argument is set by the UDF before returning to DB2. The database provides the storage for

the return value. The argument is defined as a two-byte signed integer. If set to a negative value,

the database interprets the result of the function as null. If set to zero or a positive value, the

database uses the value returned in SQL-result. The database provides the storage for the return

value indicator. Since the parameter is passed by address, the address is of the storage where the

indicator value should be placed.

SQL-state

This argument is a CHAR(5) value that represents the SQLSTATE.

 This parameter is passed in from the database set to '00000' and can be set by the function as a

result state for the function. While normally the SQLSTATE is not set by the function, it can be

used to signal an error or warning to the database as follows:

01Hxx The function code detected a warning situation. This results in an SQL warning, Here xx

may be one of several possible strings.

38xxx The function code detected an error situation. It results in a SQL error. Here xxx may be

one of several possible strings.

See SQL Messages and Codes for more information about valid SQLSTATEs that the function

may use.

function-name

This argument is set by DB2 before calling the UDF. It is a VARCHAR(139) value that contains

the name of the function on whose behalf the function code is being called.

 The form of the function name that is passed is:

 <schema-name>.<function-name>

This parameter is useful when the function code is being used by multiple UDF definitions so

that the code can distinguish which definition is being called. Note: This parameter is treated as

input only; any changes to the parameter value made by the UDF are ignored by DB2.

specific-name

This argument is set by DB2 before calling the UDF. It is a VARCHAR(128) value that contains

the specific name of the function on whose behalf the function code is being called.

 Like function-name, this parameter is useful when the function code is being used by multiple

UDF definitions so that the code can distinguish which definition is being called. See the

CREATE FUNCTION statement for more information about specific-name. Note: This parameter is

treated as input only; any changes to the parameter value made by the UDF are ignored by DB2.

diagnostic-message

This argument is set by DB2 before calling the UDF. It is a VARCHAR(70) value that can be used

by the UDF to send message text back when an SQLSTATE warning or error is signaled by the

UDF.

 It is initialized by the database on input to the UDF and may be set by the UDF with descriptive

information. Message text is ignored by DB2 unless the SQL-state parameter is set by the UDF.

Parameter style DB2SQL: With the DB2SQL parameter style, the same parameters and same order of

parameters are passed into the external program or service program as are passed in for parameter style

SQL. However, DB2SQL allows additional optional parameters to be passed along as well. If more than

Chapter 9. Routines 157

one of the optional parameters below is specified in the UDF definition, they are passed to the UDF in

the order defined below. Refer to parameter style SQL for the common parameters. This parameter style

can be used for both scalar and table UDFs.

For scalar functions:

��

�

SQL-argument

 SQL-result

�

SQL-argument-ind

 SQL-result-ind SQL-state �

� function-name specific-name diagnostic-message

scratchpad

call-type

dbinfo
 ��

For table functions:

��

�

SQL-argument

�

SQL-result

�

SQL-argument-ind

�

SQL-result-ind

SQL-state

�

� function-name specific-name diagnostic-message

scratchpad
 call-type

dbinfo
 ��

scratchpad

This argument is set by DB2 before calling the UDF. It is only present if the CREATE FUNCTION

statement for the UDF specified the SCRATCHPAD keyword. This argument is a structure with

the following elements:

v An INTEGER containing the length of the scratchpad.

v The actual scratchpad, initialized to all binary 0’s by DB2 before the first call to the UDF.

The scratchpad can be used by the UDF either as working storage or as persistent storage, since it

is maintained across UDF invocations.

For table functions, the scratchpad is initialized as above before the FIRST call to the UDF if

FINAL CALL is specified on the CREATE FUNCTION. After this call, the scratchpad content is

totally under control of the table function. DB2 does not examine or change the content of the

scratchpad thereafter. The scratchpad is passed to the function on each invocation. The function

can be re-entrant, and DB2 preserves its state information in the scratchpad.

 If NO FINAL CALL was specified or defaulted for a table function, then the scratchpad is

initialized as above for each OPEN call, and the scratchpad content is completely under control of

the table function between OPEN calls. This can be very important for a table function used in a

join or subquery. If it is necessary to maintain the content of the scratchpad across OPEN calls,

then FINAL CALL must be specified in your CREATE FUNCTION statement. With FINAL CALL

specified, in addition to the normal OPEN, FETCH, and CLOSE calls, the table function will also

receive FIRST and FINAL calls, for the purpose of scratchpad maintenance and resource release.

call-type

This argument is set by DB2 before calling the UDF. For scalar functions, it is only present if the

CREATE FUNCTION statement for the UDF specified the FINAL CALL keyword. However, for

158 iSeries: DB2 Universal Database for iSeries SQL Programming

table functions it is always present. It follows the scratchpad argument; or the diagnostic-message

argument if the scratchpad argument is not present. This argument takes the form of an

INTEGER value.

 For scalar functions:

-1 This is the first call to the UDF for this statement. A first call is a normal call in that all

SQL argument values are passed.

0 This is a normal call. (All the normal input argument values are passed).

1 This is a final call. No SQL-argument or SQL-argument-ind values are passed. A UDF

should not return any answer using the SQL-result, SQL-result-ind arguments, SQL-state,

or diagnostic-message arguments. These arguments are ignored by the system when

returned from the UDF.

For table functions:

-2 This is the first call to the UDF for this statement. A first call is a normal call in that all

SQL argument values are passed.

-1 This is the open call to the UDF for this statement. The scratchpad is initialized if NO

FINAL CALL is specified, but not necessarily otherwise. All SQL argument values are

passed.

0 This is a fetch call. DB2 expects the table function to return either a row comprising the

set of return values, or an end-of-table condition indicated by SQLSTATE value ’02000’.

1 This is a close call. This call balances the OPEN call, and can be used to perform any

external CLOSE processing and resource release.

2 This is a final call. No SQL-argument or SQL-argument-ind values are passed. A UDF

should not return any answer using the SQL-result, SQL-result-ind arguments, SQL-state,

or diagnostic-message arguments. These arguments are ignored by the system when

returned from the UDF.

dbinfo This argument is set by DB2 before calling the UDF. It is only present if the CREATE FUNCTION

statement for the UDF specifies the DBINFO keyword. The argument is a structure whose

definition is contained in the sqludf include.

Parameter Style GENERAL (or SIMPLE CALL): With parameter style GENERAL, the parameters are

passed into the external service program just as they are specified in the CREATE FUNCTION statement.

This parameter style can only be used with scalar UDFs. The format is:

��

�

SQL-result = func

(

)

SQL-argument

��

SQL-argument

This argument is set by DB2 before calling the UDF. This value repeats n times, where n is the

number of arguments specified in the function reference. The value of each of these arguments is

taken from the expression specified in the function invocation. It is expressed in the data type of

the defined parameter in the CREATE FUNCTION statement. Note: These parameters are treated

as input only; any changes to the parameter values made by the UDF are ignored by DB2.

SQL-result

This value is returned by the UDF. DB2 copies the value into database storage. In order to return

the value correctly, the function code must be a value-returning function. The database copies

only as much of the value as defined for the return value as specified on the CREATE

FUNCTION statement. If the CAST FROM clause is used in the CREATE FUNCTION statement,

Chapter 9. Routines 159

DB2 assumes the UDF returns the value as defined in the CAST FROM clause, otherwise DB2

assumes the UDF returns the value as defined in the RETURNS clause.

 Because of the requirement that the function code be a value-returning function, any function

code used for parameter style GENERAL must be created into a service program.

Parameter Style GENERAL WITH NULLS: The parameter style GENERAL WITH NULLS can only be

used with scalar UDFs. With this parameter style, the parameters are passed into the service program as

follows (in the order specified):

��

SQL-result = funcname

(

�

SQL-argument

SQL-result-ind

)

SQL-argument-ind-array

��

SQL-argument

This argument is set by DB2 before calling the UDF. This value repeats n times, where n is the

number of arguments specified in the function reference. The value of each of these arguments is

taken from the expression specified in the function invocation. It is expressed in the data type of

the defined parameter in the CREATE FUNCTION statement. Note: These parameters are treated

as input only; any changes to the parameter values made by the UDF are ignored by DB2.

SQL-argument-ind-array

This argument is set by DB2 before calling the UDF. It can be used by the UDF to determine if

one or more SQL-arguments are null or not. It is an array of two-byte signed integers (indicators).

The nth array argument corresponds corresponds to the nth SQL-argument. Each array entry is set

to one of the following values:

0 The argument is present and not null.

-1 The argument is null.

The UDF should check for null input. Note: This parameter is treated as input only; any changes

to the parameter value made by the UDF is ignored by DB2.

SQL-result-ind

This argument is set by the UDF before returning to DB2. The database provides the storage for

the return value. The argument is defined as a two-byte signed integer. If set to a negative value,

the database interprets the result of the function as null. If set to zero or a positive value, the

database uses the value returned in SQL-result. The database provides the storage for the return

value indicator. Since the parameter is passed by address, the address is of the storage where the

indicator value should be placed.

SQL-result

This value is returned by the UDF. DB2 copies the value into database storage. In order to return

the value correctly, the function code must be a value-returning function. The database copies

only as much of the value as defined for the return value as specified on the CREATE

FUNCTION statement. If the CAST FROM clause is used in the CREATE FUNCTION statement,

DB2 assumes the UDF returns the value as defined in the CAST FROM clause, otherwise DB2

assumes the UDF returns the value as defined in the RETURNS clause.

 Because of the requirement that the function code be a value-returning function, any function

code used for parameter style GENERAL WITH NULLS must be created into a service program.

Notes:

1. The external name specified on the CREATE FUNCTION statement can be specified either

with quotes or without quotes. If the name is not quoted, it is uppercased before it is stored;

if it is quoted, it is stored as specified. This becomes important when naming the actual

program, as the database searches for the program that has a name that exactly matches the

name stored with the function definition. For example, if a function was created as:

160 iSeries: DB2 Universal Database for iSeries SQL Programming

CREATE FUNCTION X(INT) RETURNS INT

 LANGUAGE C

 EXTERNAL NAME ’MYLIB/MYPGM(MYENTRY)’

and the source for the program was:

 void myentry(

 int*in

 int*out,

 .

 .

 . .

the database will not find the entry because it is in lowercase myentry and the database was

instructed to look for uppercase MYENTRY.

2. For service programs with C++ modules, make sure in the C++ source code to precede the

program function definition with extern ″C″. Otherwise, the C++ compiler will perform ’name

mangling’ of the function’s name and the database will not find it.

Parameter style DB2GENERAL: Parameter style DB2GENERAL is used by Java UDFs. For a description

of this parameter style, see Java SQL Routines in the IBM Developer Kit for Java topic.

Parameter style Java: The Java parameter style is the style specified by the SQLJ Part 1: SQL Routines

standard. For a description of this parameter style, see Java SQL Routines in the IBM Developer Kit for

Java topic.

Table function considerations

An external table function is a UDF that delivers a table to the SQL in which it was referenced. A table

function reference is only valid in a FROM clause of a SELECT. When using table functions, observe the

following:

v Even though a table function delivers a table, the physical interface between DB2 and the UDF is

one-row-at-a-time. There are five types of calls made to a table function: OPEN, FETCH, CLOSE,

FIRST, and FINAL. The existence of FIRST and FINAL calls depends on how you define the UDF. The

same call-type mechanism that can be used for scalar functions is used to distinguish these calls.

v The standard interface used between DB2 and user-defined scalar functions is extended to

accommodate table functions. The SQL-result argument repeats for table functions; each instance

corresponding to a column to be returned as defined in the RETURNS TABLE clause of the CREATE

FUNCTION statement. The SQL-result-ind argument likewise repeats, each instance related to the

corresponding SQL-result instance.

v Not every result column defined in the RETURNS clause of the CREATE FUNCTION statement for the

table function has to be returned. The DBINFO keyword of CREATE FUNCTION, and corresponding

dbinfo argument enable the optimization that only those columns needed for a particular table function

reference need be returned.

v The individual column values returned conform in format to the values returned by scalar functions.

v The CREATE FUNCTION statement for a table function has a CARDINALITY n specification. This

specification enables the definer to inform the DB2 optimizer of the approximate size of the result so

that the optimizer can make better decisions when the function is referenced. Regardless of what has

been specified as the CARDINALITY of a table function, exercise caution against writing a function

with infinite cardinality; that is, a function that always returns a row on a FETCH call. DB2 expects the

end-of-table condition, as a catalyst within its query processing. So a table function that never returns

the end-of-table condition (SQL-state value ’02000’) will cause an infinite processing loop.

Error processing for UDFs

The following is a discussion about error processing for UDFs:

Table function error processing

Chapter 9. Routines 161

The error processing model for table function calls is as follows:

1. If FIRST call fails, no further calls are made.

2. If FIRST call succeeds, the nested OPEN, FETCH, and CLOSE calls are made, and the FINAL call is

always made.

3. If OPEN call fails, no FETCH or CLOSE call is made.

4. If OPEN call succeeds, then FETCH and CLOSE calls are made.

5. If a FETCH call fails, no further FETCH calls are made, but the CLOSE call is made.

Note: This model describes the ordinary error processing for table UDFs. In the event of a system failure

or communication problem, a call indicated by the error processing model may not be made.

Scalar function error processing

The error processing model for scalar UDFs which are defined with the FINAL CALL specification is as

follows:

1. If FIRST call fails, no further calls are made.

2. If FIRST call succeeds, then further NORMAL calls are made as warranted by the processing of the

statement, and a FINAL call is always made.

3. If NORMAL call fails, no further NORMAL calls are made, but the FINAL call is made (if you have

specified FINAL CALL). This means that if an error is returned on a FIRST call, the UDF must clean

up before returning, because no FINAL call will be made.

Note: This model describes the ordinary error processing for scalar UDFs. In the event of a system failure

or communication problem, a call indicated by the error processing model may not be made.

Threads considerations

A UDF, defined as FENCED, runs in the same job as the SQL statement that called it. However, the UDF

runs in a system thread, separate from the thread that is running the SQL statement. For more

information about threads, see Database considerations for multithreaded programming in the

Programming category of the Information Center.

Because the UDF runs in the same job as the SQL statement, it shares much of the same environment as

the SQL statement. However, because it runs under a separate thread, the following threads

considerations apply:

v The UDF will conflict with thread level resources held by the SQL statement’s thread. Primarily, these

are the table resources discussed above.

v UDFs do not inherit any program adopted authority that may have been active at the time the SQL

statement was called. UDF authority comes from either the authority associated with the UDF program

itself or the authority of the user running the SQL statement.

v The UDF cannot perform any operation that is blocked from being run in a secondary thread.

v The UDF program must be created such that it either runs under a named activation group or in the

activation group of its caller (ACTGRP parameter). Programs that specify ACTGRP(*NEW) will not be

allowed to run as UDFs.

For information about defining a function as UNFENCED, see “Fenced or unfenced considerations” on

page 163.

Parallel processing

A UDF can be defined to allow parallel processing. This means that the same UDF program can be

running in multiple threads at the same time. Therefore, if ALLOW PARALLEL is specified for the UDF,

ensure that it is thread safe. For more information about threads, see Database considerations for

multithreaded programming in the Programming category of the iSeries Information Center.

162 iSeries: DB2 Universal Database for iSeries SQL Programming

User-defined table functions cannot run in parallel; therefore, DISALLOW PARALLEL must be specified

when creating the function

Fenced or unfenced considerations

When creating a User Defined Function (UDF) consider whether to make the UDF an Unfenced UDF. By

default, UDFs are created as Fenced UDFs. Fenced indicates that the database should run the UDF in a

separate thread. For complex UDFs, this separation is meaningful as it will avoid potential problems such

as generating unique SQL cursor names. Not having to be concerned about resource conflicts is one

reason to stick with the default and create the UDF as a fenced UDF. A UDF created with the NOT

FENCED option indicates to the database that the user is requesting that the UDF can run within the

same thread that initiated the UDF. Unfenced is a suggestion to the database, which can still decide to

run the UDF in the same manner as a Fenced UDF.

CREATE FUNCTION QGPL.FENCED (parameter1 INTEGER)

RETURNS INTEGER LANGUAGE SQL

BEGIN

RETURN parameter1 * 3;

END;

CREATE FUNCTION QGPL.UNFENCED1 (parameter1 INTEGER)

RETURNS INTEGER LANGUAGE SQL NOT FENCED

-- Build the UDF to request faster execution via the NOT FENCED option

BEGIN

RETURN parameter1 * 3;

END;

Save and restore considerations

When an external function associated with an ILE external program or service program is created, an

attempt is made to save the function’s attributes in the associated program or service program object. If

the *PGM or *SRVPGM object is saved and then restored to this or another system, the catalogs are

automatically updated with those attributes. If the function’s attribute cannot be saved, then the catalogs

will not be automatically updated and the user must create the external function on the new system. The

attributes can be saved for external functions subject to the following restrictions:

v The external program library must not be QSYS or QSYS2.

v The external program must exist when the CREATE FUNCTION statement is issued.

v The external program must be an ILE *PGM or *SRVPGM object.

v The external program or service program must contain at least one SQL statement.

If the program object cannot be updated, the function will still be created.

Examples of UDF code

These examples show how to implement UDF code by using SQL functions and external functions:

v “Example: Square of a number UDF”

v “Example: Counter” on page 165

v “Example: Weather table function” on page 166

Example: Square of a number UDF

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Suppose that you wanted a function that returns the square of a number. The query statement is:

SELECT SQUARE(myint) FROM mytable

The following examples show how to define the UDF several different ways.

v Using an SQL function

Chapter 9. Routines 163

CREATE FUNCTION SQUARE(inval INT) RETURNS INT

LANGUAGE SQL

SET OPTION DBGVIEW=*SOURCE

BEGIN

RETURN(inval*inval);

END

This creates an SQL function that you can debug.

v Using an external function, parameter style SQL:

The CREATE FUNCTION statement:

CREATE FUNCTION SQUARE(INT) RETURNS INT CAST FROM FLOAT

LANGUAGE C

EXTERNAL NAME ’MYLIB/MATH(SQUARE)’

DETERMINISTIC

NO SQL

NO EXTERNAL ACTION

PARAMETER STYLE SQL

ALLOW PARALLEL

The code:

void SQUARE(int *inval,

double *outval,

short *inind,

short *outind,

char *sqlstate,

char *funcname,

char *specname,

char *msgtext)

 {

if (*inind<0)

 *outind=-1;

 else

 {

 *outval=*inval;

 *outval=(*outval)*(*outval);

 *outind=0;

 }

 return;

 }

To create the external service program so it can be debugged:

CRTCMOD MODULE(mylib/square) DBGVIEW(*SOURCE)

CRTSRVPGM SRVPGM(mylib/math) MODULE(mylib/square)

 EXPORT(*ALL) ACTGRP(*CALLER)

v Using an external function, parameter style GENERAL:

The CREATE FUNCTION statement:

CREATE FUNCTION SQUARE(INT) RETURNS INT CAST FROM FLOAT

LANGUAGE C

EXTERNAL NAME ’MYLIB/MATH(SQUARE)’

DETERMINISTIC

NO SQL

NO EXTERNAL ACTION

PARAMETER STYLE GENERAL

ALLOW PARALLEL

The code:

double SQUARE(int *inval)

{

 double outval;

 outval=*inval;

 outval=outval*outval;

 return(outval);

 }

To create the external service program so it can be debugged:

164 iSeries: DB2 Universal Database for iSeries SQL Programming

CRTCMOD MODULE(mylib/square) DBGVIEW(*SOURCE)

 CRTSRVPGM SRVPGM(mylib/math) MODULE(mylib/square)

 EXPORT(*ALL) ACTGRP(*CALLER)

Example: Counter

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Suppose you want to number the rows in your SELECT statement. So you write a UDF which increments

and returns a counter. This example uses an external function with DB2 SQL parameter style and a

scratchpad.

CREATE FUNCTION COUNTER()

 RETURNS INT

 SCRATCHPAD

 NOT DETERMINISTIC

 NO SQL

 NO EXTERNAL ACTION

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 EXTERNAL NAME ’MYLIB/MATH(ctr)’

 DISALLOW PARALLEL

/* structure scr defines the passed scratchpad for the function "ctr" */

struct scr {

 long len;

 long countr;

 char not_used[96];

};

void ctr (

 long *out, /* output answer (counter) */

 short *outnull, /* output NULL indicator */

 char *sqlstate, /* SQL STATE */

 char *funcname, /* function name */

 char *specname, /* specific function name */

 char *mesgtext, /* message text insert */

 struct scr *scratchptr) { /* scratch pad */

 out = ++scratchptr->countr; / increment counter & copy out */

 *outnull = 0;

 return;

}

/* end of UDF : ctr */

For this UDF, observe that:

v It has no input SQL arguments defined, but returns a value.

v It appends the scratchpad input argument after the four standard trailing arguments, namely SQL-state,

function-name, specific-name, and message-text.

v It includes a structure definition to map the scratchpad which is passed.

v No input parameters are defined. This agrees with the code.

v SCRATCHPAD is coded, causing DB2 to allocate, properly initialize and pass the scratchpad argument.

v You have specified it to be NOT DETERMINISTIC, because it depends on more than the SQL input

arguments, (none in this case).

v You have correctly specified DISALLOW PARALLEL, because correct functioning of the UDF depends

on a single scratchpad.

Chapter 9. Routines 165

Example: Weather table function

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

The following is an example table function that returns weather information for various cities in the

United States. The weather date for these cities is read in from an external file, as indicated in the

comments contained in the example program. The data includes the name of a city followed by its

weather information. This pattern is repeated for the other cities.

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <sqludf.h> /* for use in compiling User Defined Function */

#define SQL_NOTNULL 0 /* Nulls Allowed - Value is not Null */

#define SQL_ISNULL -1 /* Nulls Allowed - Value is Null */

#define SQL_TYP_VARCHAR 448

#define SQL_TYP_INTEGER 496

#define SQL_TYP_FLOAT 480

/* Short and long city name structure */

typedef struct {

 char * city_short ;

 char * city_long ;

} city_area ;

/* Scratchpad data */�1�

/* Preserve information from one function call to the next call */

typedef struct {

 /* FILE * file_ptr; if you use weather data text file */

 int file_pos ; /* if you use a weather data buffer */

} scratch_area ;

/* Field descriptor structure */

typedef struct {

 char fld_field[31] ; /* Field data */

 int fld_ind ; /* Field null indicator data */

 int fld_type ; /* Field type */

 int fld_length ; /* Field length in the weather data */

 int fld_offset ; /* Field offset in the weather data */

} fld_desc ;

/* Short and long city name data */

city_area cities[] = {

 { "alb", "Albany, NY" },

 { "atl", "Atlanta, GA" },

 .

 .

 .

 { "wbc", "Washington DC, DC" },

 /* You may want to add more cities here */

 /* Do not forget a null termination */

 { (char *) 0, (char *) 0 }

} ;

/* Field descriptor data */

fld_desc fields[] = {

 { "", SQL_ISNULL, SQL_TYP_VARCHAR, 30, 0 }, /* city */

 { "", SQL_ISNULL, SQL_TYP_INTEGER, 3, 2 }, /* temp_in_f */

 { "", SQL_ISNULL, SQL_TYP_INTEGER, 3, 7 }, /* humidity */

 { "", SQL_ISNULL, SQL_TYP_VARCHAR, 5, 13 }, /* wind */

 { "", SQL_ISNULL, SQL_TYP_INTEGER, 3, 19 }, /* wind_velocity */

 { "", SQL_ISNULL, SQL_TYP_FLOAT, 5, 24 }, /* barometer */

166 iSeries: DB2 Universal Database for iSeries SQL Programming

{ "", SQL_ISNULL, SQL_TYP_VARCHAR, 25, 30 }, /* forecast */

 /* You may want to add more fields here */

 /* Do not forget a null termination */

 { (char) 0, 0, 0, 0, 0 }

} ;

/* Following is the weather data buffer for this example. You */

/* may want to keep the weather data in a separate text file. */

/* Uncomment the following fopen() statement. Note that you */

/* need to specify the full path name for this file. */

char * weather_data[] = {

 "alb.forecast",

 " 34 28% wnw 3 30.53 clear",

 "atl.forecast",

 " 46 89% east 11 30.03 fog",

 .

 .

 .

 "wbc.forecast",

 " 38 96% ene 16 30.31 light rain",

 /* You may want to add more weather data here */

 /* Do not forget a null termination */

 (char *) 0

} ;

#ifdef __cplusplus

extern "C"

#endif

/* This is a subroutine. */

/* Find a full city name using a short name */

int get_name(char * short_name, char * long_name) {

 int name_pos = 0 ;

 while (cities[name_pos].city_short != (char *) 0) {

 if (strcmp(short_name, cities[name_pos].city_short) == 0) {

 strcpy(long_name, cities[name_pos].city_long) ;

 /* A full city name found */

 return(0) ;

 }

 name_pos++ ;

 }

 /* can not find such city in the city data */

 strcpy(long_name, "Unknown City") ;

 return(-1) ;

}

#ifdef __cplusplus

extern "C"

#endif

/* This is a subroutine. */

/* Clean all field data and field null indicator data */

int clean_fields(int field_pos) {

 while (fields[field_pos].fld_length !=0) {

 memset(fields[field_pos].fld_field, ’\0’, 31) ;

 fields[field_pos].fld_ind = SQL_ISNULL ;

 field_pos++ ;

 }

 return(0) ;

}

#ifdef __cplusplus

Chapter 9. Routines 167

extern "C"

#endif

/* This is a subroutine. */

/* Fills all field data and field null indicator data ... */

/* ... from text weather data */

int get_value(char * value, int field_pos) {

 fld_desc * field ;

 char field_buf[31] ;

 double * double_ptr ;

 int * int_ptr, buf_pos ;

 while (fields[field_pos].fld_length != 0) {

 field = &fields[field_pos] ;

 memset(field_buf, ’\0’, 31) ;

 memcpy(field_buf,

 (value + field->fld_offset),

 field->fld_length) ;

 buf_pos = field->fld_length ;

 while ((buf_pos > 0) &&

 (field_buf[buf_pos] == ’ ’))

 field_buf[buf_pos--] = ’\0’ ;

 buf_pos = 0 ;

 while ((buf_pos < field->fld_length) &&

 (field_buf[buf_pos] == ’ ’))

 buf_pos++ ;

 if (strlen((char *) (field_buf + buf_pos)) > 0 ||

 strcmp((char *) (field_buf + buf_pos), "n/a") != 0) {

 field->fld_ind = SQL_NOTNULL ;

 /* Text to SQL type conversion */

 switch(field->fld_type) {

 case SQL_TYP_VARCHAR:

 strcpy(field->fld_field,

 (char *) (field_buf + buf_pos)) ;

 break ;

 case SQL_TYP_INTEGER:

 int_ptr = (int *) field->fld_field ;

 *int_ptr = atoi((char *) (field_buf + buf_pos)) ;

 break ;

 case SQL_TYP_FLOAT:

 double_ptr = (double *) field->fld_field ;

 *double_ptr = atof((char *) (field_buf + buf_pos)) ;

 break ;

 /* You may want to add more text to SQL type conversion here */

 }

 }

 field_pos++ ;

 }

 return(0) ;

}

#ifdef __cplusplus

extern "C"

#endif

void SQL_API_FN weather(/* Return row fields */

 SQLUDF_VARCHAR * city,

 SQLUDF_INTEGER * temp_in_f,

 SQLUDF_INTEGER * humidity,

 SQLUDF_VARCHAR * wind,

 SQLUDF_INTEGER * wind_velocity,

 SQLUDF_DOUBLE * barometer,

 SQLUDF_VARCHAR * forecast,

 /* You may want to add more fields here */

168 iSeries: DB2 Universal Database for iSeries SQL Programming

/* Return row field null indicators */

 SQLUDF_NULLIND * city_ind,

 SQLUDF_NULLIND * temp_in_f_ind,

 SQLUDF_NULLIND * humidity_ind,

 SQLUDF_NULLIND * wind_ind,

 SQLUDF_NULLIND * wind_velocity_ind,

 SQLUDF_NULLIND * barometer_ind,

 SQLUDF_NULLIND * forecast_ind,

 /* You may want to add more field indicators here */

 /* UDF always-present (trailing) input arguments */

 SQLUDF_TRAIL_ARGS_ALL

) {

 scratch_area * save_area ;

 char line_buf[81] ;

 int line_buf_pos ;

 /* SQLUDF_SCRAT is part of SQLUDF_TRAIL_ARGS_ALL */

 /* Preserve information from one function call to the next call */

 save_area = (scratch_area *) (SQLUDF_SCRAT->data) ;

 /* SQLUDF_CALLT is part of SQLUDF_TRAIL_ARGS_ALL */

 switch(SQLUDF_CALLT) {

 /* First call UDF: Open table and fetch first row */

 case SQL_TF_OPEN:

 /* If you use a weather data text file specify full path */

 /* save_area->file_ptr = fopen("tblsrv.dat","r"); */

 save_area->file_pos = 0 ;

 break ;

 /* Normal call UDF: Fetch next row */�2�

 case SQL_TF_FETCH:

 /* If you use a weather data text file */

 /* memset(line_buf, ’\0’, 81); */

 /* if (fgets(line_buf, 80, save_area->file_ptr) == NULL) { */

 if (weather_data[save_area->file_pos] == (char *) 0) {

 /* SQLUDF_STATE is part of SQLUDF_TRAIL_ARGS_ALL */

 strcpy(SQLUDF_STATE, "02000") ;

 break ;

 }

 memset(line_buf, ’\0’, 81) ;

 strcpy(line_buf, weather_data[save_area->file_pos]) ;

 line_buf[3] = ’\0’ ;

 /* Clean all field data and field null indicator data */

 clean_fields(0) ;

 /* Fills city field null indicator data */

 fields[0].fld_ind = SQL_NOTNULL ;

 /* Find a full city name using a short name */

 /* Fills city field data */

 if (get_name(line_buf, fields[0].fld_field) == 0) {

 save_area->file_pos++ ;

 /* If you use a weather data text file */

 /* memset(line_buf, ’\0’, 81); */

 /* if (fgets(line_buf, 80, save_area->file_ptr) == NULL) { */

 if (weather_data[save_area->file_pos] == (char *) 0) {

 /* SQLUDF_STATE is part of SQLUDF_TRAIL_ARGS_ALL */

 strcpy(SQLUDF_STATE, "02000") ;

 break ;

 }

 memset(line_buf, ’\0’, 81) ;

Chapter 9. Routines 169

strcpy(line_buf, weather_data[save_area->file_pos]) ;

 line_buf_pos = strlen(line_buf) ;

 while (line_buf_pos > 0) {

 if (line_buf[line_buf_pos] >= ’ ’)

 line_buf_pos = 0 ;

 else {

 line_buf[line_buf_pos] = ’\0’ ;

 line_buf_pos-- ;

 }

 }

 }

 /* Fills field data and field null indicator data ... */

 /* ... for selected city from text weather data */

 get_value(line_buf, 1) ; /* Skips city field */

 /* Builds return row fields */

 strcpy(city, fields[0].fld_field) ;

 memcpy((void *) temp_in_f,

 fields[1].fld_field,

 sizeof(SQLUDF_INTEGER)) ;

 memcpy((void *) humidity,

 fields[2].fld_field,

 sizeof(SQLUDF_INTEGER)) ;

 strcpy(wind, fields[3].fld_field) ;

 memcpy((void *) wind_velocity,

 fields[4].fld_field,

 sizeof(SQLUDF_INTEGER)) ;

 memcpy((void *) barometer,

 fields[5].fld_field,

 sizeof(SQLUDF_DOUBLE)) ;

 strcpy(forecast, fields[6].fld_field) ;

 /* Builds return row field null indicators */

 memcpy((void *) city_ind,

 &(fields[0].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 memcpy((void *) temp_in_f_ind,

 &(fields[1].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 memcpy((void *) humidity_ind,

 &(fields[2].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 memcpy((void *) wind_ind,

 &(fields[3].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 memcpy((void *) wind_velocity_ind,

 &(fields[4].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 memcpy((void *) barometer_ind,

 &(fields[5].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 memcpy((void *) forecast_ind,

 &(fields[6].fld_ind),

 sizeof(SQLUDF_NULLIND)) ;

 /* Next city weather data */

 save_area->file_pos++ ;

 break ;

 /* Special last call UDF for clean up (no real args!): Close table */�3�

 case SQL_TF_CLOSE:

 /* If you use a weather data text file */

 /* fclose(save_area->file_ptr); */

 /* save_area->file_ptr = NULL; */

 save_area->file_pos = 0 ;

170 iSeries: DB2 Universal Database for iSeries SQL Programming

break ;

 }

}

Referring to the embedded numbers in this UDF code, observe that:

1. The scratchpad is defined. The row variable is initialized on the OPEN call, and the iptr array and

nbr_rows variable are filled in by the mystery function at open time.

2. FETCH traverses the iptr array, using row as an index, and moves the values of interest from the

current element of iptr to the location pointed to by out_c1, out_c2, and out_c3 result value

pointers.

3. Finally, CLOSE frees the storage acquired by OPEN and anchored in the scratchpad.

Following is the CREATE FUNCTION statement for this UDF:

 CREATE FUNCTION tfweather_u()

 RETURNS TABLE (CITY VARCHAR(25),

 TEMP_IN_F INTEGER,

 HUMIDITY INTEGER,

 WIND VARCHAR(5),

 WIND_VELOCITY INTEGER,

 BAROMETER FLOAT,

 FORECAST VARCHAR(25))

 SPECIFIC tfweather_u

 DISALLOW PARALLEL

 NOT FENCED

 DETERMINISTIC

 NO SQL

 NO EXTERNAL ACTION

 SCRATCHPAD

 NO FINAL CALL

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 EXTERNAL NAME ’LIB1/WEATHER(weather)’;

Referring to this statement, observe that:

v It does not take any input, and returns 7 output columns.

v SCRATCHPAD is specified, so DB2 allocates, properly initializes and passes the scratchpad argument.

v NO FINAL CALL is specified.

v The function is specified as NOT DETERMINISTIC, because it depends on more than the SQL input

arguments. That is, it depends on the mystery function and we assume that the content can vary from

execution to execution.

v DISALLOW PARALLEL is required for table functions.

v CARDINALITY 100 is an estimate of the expected number of rows returned, provided to the DB2

optimizer.

v DBINFO is not used, and the optimization to only return the columns needed by the particular

statement referencing the function is not implemented.

v NOT NULL CALL is specified, so the UDF will not be called if any of its input SQL arguments are

NULL, and does not need to check for this condition.

To select all of the rows generated by this table function, use the following query:

SELECT *

 FROM TABLE (tfweather_u())x

Chapter 9. Routines 171

Using UDFs in SQL statements

Scalar and column UDFs can be called within an SQL statement almost everywhere that an expression is

valid. Table UDFs can be called in the FROM clause of a SELECT. There are a few restrictions of UDF

usage, however:

v UDFs and system generated functions cannot be specified in check constraints. Check constraints also

cannot contain references to some built-in functions that are implemented by the system as UDFs. See

SQL Reference for a list.

v External UDFs, SQL UDFS and the built-in functions DLVALUE, DLURLPATH, DLURLPATHONLY,

DLURLSCHEME, DLURLCOMPLETE, and DLURLSERVER cannot be referenced in an ORDER BY or

GROUP BY clause, unless the SQL statement is read-only and allows temporary processing

(ALWCPYDTA(*YES) or (*OPTIMIZE)).

Refer to “UDF concepts” on page 149 for a summary of the use and importance of the path and the

function resolution algorithm. You can find the details for both of these concepts in the SQL Reference. The

resolution of any Data Manipulation Language (DML) reference to a function uses the function resolution

algorithm, so it is important to understand how it works.

For more information about using functions, see the following topics:

v “Using parameter markers or the NULL value as function arguments”

v “Using qualified function reference”

v “Using unqualified function reference” on page 173

v “Summary of function references” on page 173

Using parameter markers or the NULL value as function arguments

An important restriction involves both parameter markers and the NULL value; you cannot code the

following:

 BLOOP(?)

or

 BLOOP(NULL)

Since function resolution does not know what data type the argument may turn out to be, it cannot

resolve the reference. You can use the CAST specification to provide a data type for the parameter marker

or NULL value that function resolution can use:

 BLOOP(CAST(? AS INTEGER))

or

 BLOOP(CAST(NULL AS INTEGER))

Using qualified function reference

If you use a qualified function reference, you restrict the search for a matching function to that schema.

For example, you have the following statement:

 SELECT PABLO.BLOOP(COLUMN1) FROM T

Only the BLOOP functions in schema PABLO are considered. It does not matter that user SERGE has

defined a BLOOP function, or whether there is a built-in BLOOP function. Now suppose that user

PABLO has defined two BLOOP functions in his schema:

 CREATE FUNCTION BLOOP (INTEGER) RETURNS ...

 CREATE FUNCTION BLOOP (DOUBLE) RETURNS ...

BLOOP is thus overloaded within the PABLO schema, and the function selection algorithm chooses the

best BLOOP, depending on the data type of the argument, COLUMN1. In this case, both of the

PABLO.BLOOPs take numeric arguments, and if COLUMN1 is not one of the numeric types, the

172 iSeries: DB2 Universal Database for iSeries SQL Programming

statement will fail. On the other hand if COLUMN1 is either SMALLINT or INTEGER, function selection

will resolve to the first BLOOP, while if COLUMN1 is DECIMAL or DOUBLE, the second BLOOP will be

chosen.

Several points about this example:

1. It illustrates argument promotion. The first BLOOP is defined with an INTEGER parameter, yet you

can pass it a SMALLINT argument. The function selection algorithm supports promotions among the

built-in data types (for details, see the SQL Reference) and DB2 performs the appropriate data value

conversions.

2. If for some reason you want to call the second BLOOP with a SMALLINT or INTEGER argument,

you need to take an explicit action in your statement as follows:

 SELECT PABLO.BLOOP(DOUBLE(COLUMN1)) FROM T

3. If you want to call the first BLOOP with a DECIMAL or DOUBLE argument, you have your choice of

explicit actions, depending on your intent:

 SELECT PABLO.BLOOP(INTEGER(COLUMN1)) FROM T

 SELECT PABLO.BLOOP(FLOOR(COLUMN1)) FROM T

You can investigate these and other casting functions in the SQL Reference.

Using unqualified function reference

If, instead of a qualified function reference, you use an unqualified function reference, DB2’s search for a

matching function normally uses the function path to qualify the reference. In the case of the DROP

FUNCTION or COMMENT ON FUNCTION functions, the reference is qualified using the current

authorization ID, if they are unqualified for *SQL naming, or *LIBL for *SYS naming. Thus, it is important

that you know what your function path is, and what, if any, conflicting functions exist in the schemas of

your current function path. For example, suppose you are PABLO and your static SQL statement is as

follows, where COLUMN1 is data type INTEGER:

 SELECT BLOOP(COLUMN1) FROM T

You have created the two BLOOP functions cited in “Using qualified function reference” on page 172,

and you want and expect one of them to be chosen. If the following default function path is used, the

first BLOOP is chosen (since COLUMN1 is INTEGER), if there is no conflicting BLOOP in QSYS or

QSYS2:

 "QSYS","QSYS2","PABLO"

However, suppose you have forgotten that you are using a script for precompiling and binding which

you previously wrote for another purpose. In this script, you explicitly coded your SQLPATH parameter

to specify the following function path for another reason that does not apply to your current work:

 "KATHY","QSYS","QSYS2","PABLO"

If there is a BLOOP function in schema KATHY, the function selection can very well resolve to that

function, and your statement executes without error. You are not notified because DB2 assumes that you

know what you are doing. It is your responsibility to identify the incorrect output from your statement

and make the required correction.

Summary of function references

For both qualified and unqualified function references, the function selection algorithm looks at all the

applicable functions, both built-in and user-defined, that have:

v The given name

v The same number of defined parameters as arguments in the function reference

v Each parameter identical to or promotable from the type of the corresponding argument.

(Applicable functions means functions in the named schema for a qualified reference, or functions in the

schemas of the function path for an unqualified reference.) The algorithm looks for an exact match, or

failing that, a best match among these functions. The current function path is used, in the case of an

Chapter 9. Routines 173

unqualified reference only, as the deciding factor if two identically good matches are found in different

schemas. The details of the algorithm can be found in the SQL Reference.

An interesting feature, illustrated by the examples at the end of “Using qualified function reference” on

page 172, is the fact that function references can be nested, even references to the same function. This is

generally true for built-in functions as well as UDFs; however, there are some limitations when column

functions are involved.

Refining an earlier example:

 CREATE FUNCTION BLOOP (INTEGER) RETURNS INTEGER ...

 CREATE FUNCTION BLOOP (DOUBLE) RETURNS INTEGER ...

Now consider the following statement:

 SELECT BLOOP(BLOOP(COLUMN1)) FROM T

If COLUMN1 is a DECIMAL or DOUBLE column, the inner BLOOP reference resolves to the second

BLOOP defined above. Because this BLOOP returns an INTEGER, the outer BLOOP resolves to the first

BLOOP.

Alternatively, if COLUMN1 is a SMALLINT or INTEGER column, the inner BLOOP reference resolves to

the first BLOOP defined above. Because this BLOOP returns an INTEGER, the outer BLOOP also resolves

to the first BLOOP. In this case, you are seeing nested references to the same function.

A few additional points important for function references are:

v You can define a function with the name of one of the SQL operators. For example, suppose you can

attach some meaning to the "+" operator for values which have distinct type BOAT. You can define the

following UDF:

 CREATE FUNCTION "+" (BOAT, BOAT) RETURNS ...

Then you can write the following valid SQL statement:

 SELECT "+"(BOAT_COL1, BOAT_COL2)

 FROM BIG_BOATS

 WHERE BOAT_OWNER = ’Nelson Mattos’

You are not permitted to overload the built-in conditional operators such as >, =, LIKE, IN, and so on, in

this way.

v The function selection algorithm does not consider the context of the reference in resolving to a

particular function. Look at these BLOOP functions, modified a bit from before:

 CREATE FUNCTION BLOOP (INTEGER) RETURNS INTEGER ...

 CREATE FUNCTION BLOOP (DOUBLE) RETURNS CHAR(10)...

Now suppose you write the following SELECT statement:

 SELECT ’ABCDEFG’ CONCAT BLOOP(SMALLINT_COL) FROM T

Because the best match, resolved using the SMALLINT argument, is the first BLOOP defined above,

the second operand of the CONCAT resolves to data type INTEGER. The statement might not return

the expected result since the returned integer will be cast as a VARCHAR before the CONCAT is

performed. If the first BLOOP was not present, the other BLOOP is chosen and the statement execution

is successful.

v UDFs can be defined with parameters or results having any of the LOB types: BLOB, CLOB, or

DBCLOB. The system will materialize the entire LOB value in storage before calling such a function,

even if the source of the value is a LOB locator host variable. For example, consider the following

fragment of a C language application:

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB(150K) clob150K ; /* LOB host var */

 SQL TYPE IS CLOB_LOCATOR clob_locator1; /* LOB locator host var */

 char string[40]; /* string host var */

 EXEC SQL END DECLARE SECTION;

174 iSeries: DB2 Universal Database for iSeries SQL Programming

Either host variable :clob150K or :clob_locator1 is valid as an argument for a function whose

corresponding parameter is defined as CLOB(500K). Referring to the FINDSTRING defined in “Example:

String search” on page 153 both of the following are valid in the program:

 ... SELECT FINDSTRING (:clob150K, :string) FROM ...

 ... SELECT FINDSTRING (:clob_locator1, :string) FROM ...

v External UDF parameters or results which have one of the LOB types can be created with the AS

LOCATOR modifier. In this case, the entire LOB value is not materialized before invocation. Instead, a

LOB LOCATOR is passed to the UDF.

You can also use this capability on UDF parameters or results which have a distinct type that is based

on a LOB. This capability is limited to external UDFs. Note that the argument to such a function can be

any LOB value of the defined type; it does not need to be a host variable defined as one of the

LOCATOR types. The use of host variable locators as arguments is completely unrelated to the use of

AS LOCATOR in UDF parameters and result definitions.

v UDFs can be defined with distinct types as parameters or as the result. DB2 will pass the value to the

UDF in the format of the source data type of the distinct type.

Distinct type values that originate in a host variable and which are used as arguments to a UDF which

has its corresponding parameter defined as a distinct type must be explicitly cast to the distinct type

by the user. There is no host language type for distinct types. DB2’s strong typing necessitates this.

Otherwise your results may be ambiguous. So, consider the BOAT distinct type that is defined over a

BLOB that takes an object of type BOAT as its argument. In the following fragment of a C language

application, the host variable :ship holds the BLOB value that is to passed to the BOAT_COST

function:

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS BLOB(150K) ship;

 EXEC SQL END DECLARE SECTION;

Both of the following statements correctly resolve to the BOAT_COST function, because both cast the

:ship host variable to type BOAT:

 ... SELECT BOAT_COST (BOAT(:ship)) FROM ...

 ... SELECT BOAT_COST (CAST(:ship AS BOAT)) FROM ...

If there are multiple BOAT distinct types in the database, or BOAT UDFs in other schema, you must be

careful with your function path. Otherwise your results may be unpredictable.

Triggers

A trigger is a set of actions that are run automatically when a specified change operation is performed on

a specified table. The change operation can be an SQL INSERT, UPDATE, or DELETE statement, or an

insert, update, or delete high level language statement in an application program. Triggers are useful for

tasks such as enforcing business rules, validating input data, and keeping an audit trail.

Triggers can be defined in two different ways:

v “SQL triggers” on page 176

v “External triggers” on page 180

For an external trigger, the CRTPFTRG CL command is used. The program containing the set of trigger

actions can be defined in any supported high level language. External triggers can be insert, update,

delete, or read triggers.

For an SQL trigger, the CREATE TRIGGER statement is used. The trigger program is defined entirely

using SQL. SQL triggers can be insert, update, or delete triggers.

Once a trigger is associated with a table, the trigger support calls the trigger program whenever a change

operation is initiated against the table, or any logical file or view created over the table. SQL triggers and

external triggers can be defined for the same table. Up to 200 triggers can be defined for a single table.

Chapter 9. Routines 175

Each change operation can call a trigger before or after the change operation occurs. Additionally, you

can add a read trigger that is called every time the table is accessed. Thus, a table can be associated with

many types of triggers.

v Before delete trigger

v Before insert trigger

v Before update trigger

v After delete trigger

v After insert trigger

v After update trigger

v Read-only trigger (external trigger only)

See the ″Triggering automatic events in the your database″ section in Database Programming for

information about trigger limits, including how many triggers may be defined for an SQL table and the

maximum trigger nesting level, and for recommendations and precautions when coding a trigger.

SQL triggers

The SQL CREATE TRIGGER statement provides a way for the database management system to actively

control, monitor, and manage a group of tables whenever an insert, update, or delete operation is

performed. The statements specified in the SQL trigger are executed each time an SQL insert, update, or

delete operation is performed. An SQL trigger may call stored procedures or user-defined functions to

perform additional processing when the trigger is executed.

Unlike stored procedures, an SQL trigger cannot be directly called from an application. Instead, an SQL

trigger is invoked by the database management system on the execution of a triggering insert, update, or

delete operation. The definition of the SQL trigger is stored in the database management system and is

invoked by the database management system, when the SQL table, that the trigger is defined on, is

modified.

An SQL trigger can be created by specifying the CREATE TRIGGER SQL statement. The statements in the

routine-body of the SQL trigger are transformed by SQL into a program (*PGM) object. The program is

created in the schema specified by the trigger name qualifier. The specified trigger is registered in the

SYSTRIGGERS, SYSTRIGDEP, SYSTRIGCOL, and SYSTRIGUPD SQL Catalogs. See the ″SQL control

statements″ chapter in the SQL Reference for additional information about how to use variable control

statements in an SQL trigger and for infomation about how to debug an SQL trigger at the SQL statement

level.

For some examples and considerations of creating SQL triggers, see:

v “BEFORE SQL triggers”

v “AFTER SQL triggers” on page 177

v “Handlers in SQL triggers” on page 178

v “SQL trigger transition tables” on page 179

For complete details about using the CREATE TRIGGER statement, see the CREATE TRIGGER statement

in the SQL Reference topic.

BEFORE SQL triggers

BEFORE triggers may not modify tables, but they can be used to verify input column values, and also to

modify column values that are inserted or updated in a table. In the following example, the trigger is

used to set the fiscal quarter for the corporation before inserting the row into the target table.

CREATE TABLE TransactionTable (DateOfTransaction DATE, FiscalQuarter SMALLINT)

CREATE TRIGGER TransactionBeforeTrigger BEFORE INSERT ON TransactionTable

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

176 iSeries: DB2 Universal Database for iSeries SQL Programming

BEGIN

 DECLARE newmonth SMALLINT;

SET newmonth = MONTH(new_row.DateOfTransaction);

 IF newmonth < 4 THEN

 SET new_row.FiscalQuarter=3;

 ELSEIF newmonth < 7 THEN

 SET new_row.FiscalQuarter=4;

 ELSEIF newmonth < 10 THEN

 SET new_row.FiscalQuarter=1;

 ELSE

 SET new_row.FiscalQuarter=2;

 END IF;

END

For the SQL insert statement below, the ″FiscalQuarter″ column is set to 2, if the current date is

November 14, 2000.

INSERT INTO TransactionTable(DateOfTransaction)

 VALUES(CURRENT DATE)

SQL triggers have access to and can use User-defined Distinct Types (UDTs) and stored procedures. In

the following example, the SQL trigger calls a stored procedure to execute some predefined business

logic, in this case, to set a column to a predefined value for the business.

CREATE DISTINCT TYPE enginesize AS DECIMAL(5,2) WITH COMPARISONS

CREATE DISTINCT TYPE engineclass AS VARCHAR(25) WITH COMPARISONS

CREATE PROCEDURE SetEngineClass(IN SizeInLiters enginesize,

 OUT CLASS engineclass)

LANGUAGE SQL CONTAINS SQL

BEGIN

 IF SizeInLiters<2.0 THEN

 SET CLASS = ’Mouse’;

 ELSEIF SizeInLiters<3.1 THEN

 SET CLASS =’Economy Class’;

 ELSEIF SizeInLiters<4.0 THEN

 SET CLASS =’Most Common Class’;

 ELSEIF SizeInLiters<4.6 THEN

 SET CLASS = ’Getting Expensive’;

 ELSE

 SET CLASS =’Stop Often for Fillups’;

 END IF;

END

CREATE TABLE EngineRatings (VariousSizes enginesize, ClassRating engineclass)

CREATE TRIGGER SetEngineClassTrigger BEFORE INSERT ON EngineRatings

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

 CALL SetEngineClass(new_row.VariousSizes, new_row.ClassRating)

For the SQL insert statement below, the ″ClassRating″ column is set to ″Economy Class″, if the

″VariousSizes″ column has the value of 3.0.

INSERT INTO EngineRatings(VariousSizes) VALUES(3.0)

SQL requires all tables, user-defined functions, procedures and user-defined types to exist before creating

an SQL trigger. In the examples above, all of the tables, stored procedures, and user-defined types are

defined before the trigger is created.

AFTER SQL triggers

The WHEN condition can be used in an SQL trigger to specify a condition. If the condition evaluates to

true, then the SQL statements in the SQL trigger routine body are executed. If the condition evaluates to

false, the SQL statements in the SQL trigger routine body are not executed, and control is returned to the

Chapter 9. Routines 177

database system. In the following example, a query is evaluated to determine if the statements in the

trigger routine body should be run when the trigger is activated.

CREATE TABLE TodaysRecords(TodaysMaxBarometricPressure FLOAT,

 TodaysMinBarometricPressure FLOAT)

CREATE TABLE OurCitysRecords(RecordMaxBarometricPressure FLOAT,

 RecordMinBarometricPressure FLOAT)

CREATE TRIGGER UpdateMaxPressureTrigger

AFTER UPDATE OF TodaysMaxBarometricPressure ON TodaysRecords

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

WHEN (new_row.TodaysMaxBarometricPressure>

 (SELECT MAX(RecordMaxBarometricPressure) FROM

 OurCitysRecords))

 UPDATE OurCitysRecords

 SET RecordMaxBarometricPressure =

 new_row.TodaysMaxBarometricPressure

CREATE TRIGGER UpdateMinPressureTrigger

AFTER UPDATE OF TodaysMinBarometricPressure

ON TodaysRecords

REFERENCING NEW AS new_row

FOR EACH ROW MODE DB2ROW

WHEN(new_row.TodaysMinBarometricPressure<

 (SELECT MIN(RecordMinBarometricPressure) FROM

 OurCitysRecords))

 UPDATE OurCitysRecords

 SET RecordMinBarometricPressure =

 new_row.TodaysMinBarometricPressure

First the current values are initialized for the tables.

INSERT INTO TodaysRecords VALUES(0.0,0.0)

INSERT INTO OurCitysRecords VALUES(0.0,0.0)

For the SQL update statement below, the RecordMaxBarometricPressure in OurCitysRecords is updated

by the UpdateMaxPressureTrigger.

UPDATE TodaysRecords SET TodaysMaxBarometricPressure = 29.95

But tomorrow, if the TodaysMaxBarometricPressure is only 29.91, then the RecordMaxBarometricPressure

is not updated.

UPDATE TodaysRecords SET TodaysMaxBarometricPressure = 29.91

SQL allows the definition of multiple triggers for a single triggering action. In the previous example,

there are two AFTER UPDATE triggers: UpdateMaxPressureTrigger and UpdateMinPressureTrigger. These

triggers are only activated when specific columns of the table TodaysRecords are updated.

AFTER triggers may modify tables. In the example above, an UPDATE operation is applied to a second

table. Note that recursive insert and update operations should be avoided. The database management

system terminates the operation if the maximum trigger nesting level is reached. You can avoid recursion

by adding conditional logic so that the insert or update operation is exited before the maximum nesting

level is reached. The same situation needs to be avoided in a network of triggers that recursively cascade

through the network of triggers.

Handlers in SQL triggers

A handler in an SQL trigger gives the SQL trigger the ability to recover from an error or log information

about an error that has occurred while executing the SQL statements in the trigger routine body.

In the following example, there are two handlers defined: one to handle the overflow condition and a

second handler to handle SQL exceptions.

178 iSeries: DB2 Universal Database for iSeries SQL Programming

CREATE TABLE ExcessInventory(Description VARCHAR(50), ItemWeight SMALLINT)

CREATE TABLE YearToDateTotals(TotalWeight SMALLINT)

CREATE TABLE FailureLog(Item VARCHAR(50), ErrorMessage VARCHAR(50), ErrorCode INT)

CREATE TRIGGER InventoryDeleteTrigger

AFTER DELETE ON ExcessInventory

REFERENCING OLD AS old_row

FOR EACH ROW MODE DB2ROW

BEGIN

 DECLARE sqlcode INT;

 DECLARE invalid_number condition FOR ’22003’;

 DECLARE exit handler FOR invalid_number

 INSERT INTO FailureLog VALUES(old_row.Description,

 ’Overflow occurred in YearToDateTotals’, sqlcode);

 DECLARE exit handler FOR sqlexception

 INSERT INTO FailureLog VALUES(old_row.Description,

 ’SQL Error occurred in InventoryDeleteTrigger’, sqlcode);

 UPDATE YearToDateTotals SET TotalWeight=TotalWeight +

 old_row.itemWeight;

END

First, the current values for the tables are initialized.

INSERT INTO ExcessInventory VALUES(’Desks’,32500)

INSERT INTO ExcessInventory VALUES(’Chairs’,500)

INSERT INTO YearToDateTotals VALUES(0)

When the first SQL delete statement below is executed, the ItemWeight for the item ″Desks″ is added to

the column total for TotalWeight in the table YearToDateTotals. When the second SQL delete statement is

executed, an overflow occurs when the ItemWeight for the item ″Chairs″ is added to the column total for

TotalWeight, as the column only handles values up to 32767. When the overflow occurs, the

invalid_number exit handler is executed and a row is written to the FailureLog table. The sqlexception

exit handler runs, for example, if the YearToDateTotals table was deleted by accident. In this example, the

handlers are used to write a log so that the problem can be diagnosed at a later time.

DELETE FROM ExcessInventory WHERE Description=’Desks’

DELETE FROM ExcessInventory WHERE Description=’Chairs’

SQL trigger transition tables

An SQL trigger may need to refer to all of the affected rows for an SQL insert, update, or delete

operation. This is true, for example, if the trigger needs to apply aggregate functions, such as MIN or

MAX, to a specific column of the affected rows. The OLD_TABLE and NEW_TABLE transition tables can

be used for this purpose. In the following example, the trigger applies the aggregate function MAX to all

of the affected rows of the table StudentProfiles.

CREATE TABLE StudentProfiles(StudentsName VARCHAR(125),

 StudentsYearInSchool SMALLINT, StudentsGPA DECIMAL(5,2))

CREATE TABLE CollegeBoundStudentsProfile

 (YearInSchoolMin SMALLINT, YearInSchoolMax SMALLINT, StudentGPAMin

 DECIMAL(5,2), StudentGPAMax DECIMAL(5,2))

CREATE TRIGGER UpdateCollegeBoundStudentsProfileTrigger

AFTER UPDATE ON StudentProfiles

REFERENCING NEW_TABLE AS ntable

FOR EACH STATEMENT MODE DB2SQL

BEGIN

 DECLARE maxStudentYearInSchool SMALLINT;

 SET maxStudentYearInSchool =

 (SELECT MAX(StudentsYearInSchool) FROM ntable);

 IF maxStudentYearInSchool >

 (SELECT MAX (YearInSchoolMax) FROM

 CollegeBoundStudentsProfile) THEN

Chapter 9. Routines 179

UPDATE CollegeBoundStudentsProfile SET YearInSchoolMax =

 maxStudentYearInSchool;

 END IF;

END

In the preceding example, the trigger is executed a single time following the execution of a triggering

update statement because it is defined as a FOR EACH STATEMENT trigger. You will need to consider

the processing overhead required by the database management system for populating the transition tables

when you define a trigger that references transition tables.

External triggers

For a external trigger, the program containing the set of trigger actions can be defined in any supported

high level language that creates a *PGM object. The trigger program can have SQL embedded in it. To

define a external trigger, you must create a trigger program and add it to a table using the ADDPFTRG

CL command or you can add it using iSeries Navigator. To add a trigger to a table, you must:

v Identify the table

v Identify the kind of operation

v Identify the program that performs the actions that you want.

For an example of an external trigger, see “External trigger example program.”

External trigger example program

A sample external trigger program follows. It is written in ILE C, with embedded SQL.

See ″Triggering automatic events in the your database″ chapter in the Database Programming book for a

full discussion and more examples of external trigger usage in DB2 UDB for iSeries.

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

180 iSeries: DB2 Universal Database for iSeries SQL Programming

#include "string.h"

#include "stdlib.h"

#include "stdio.h"

#include <recio.h>

#include <xxcvt.h>

#include "qsysinc/h/trgbuf" /* Trigger input parameter */

#include "lib1/csrc/msghand1" /* User defined message handler */

/***/

/* This is a trigger program which is called whenever there is an */

/* update to the EMPLOYEE table. If the employee’s commission is */

/* greater than the maximum commission, this trigger program will */

/* increase the employee’s salary by 1.04 percent and insert into */

/* the RAISE table. */

/* */

/* The EMPLOYEE record information is passed from the input parameter*/

/* to this trigger program. */

/***/

Qdb_Trigger_Buffer_t *hstruct;

char *datapt;

 /***/

 /* Structure of the EMPLOYEE record which is used to */

 /* store the old or the new record that is passed to */

 /* this trigger program. */

 /* */

 /* Note : You must ensure that all the numeric fields */

 /* are aligned at 4 byte boundary in C. */

 /* Used either Packed struct or filler to reach */

 /* the byte boundary alignment. */

 /***/

_Packed struct rec{

 char empn[6];

 _Packed struct { short fstlen ;

 char fstnam[12];

 } fstname;

 char minit[1];

_Packed struct { short lstlen;

 char lstnam[15];

 } lstname;

 char dept[3];

 char phone[4];

 char hdate[10];

 char jobn[8];

 short edclvl;

 char sex1[1];

 char bdate[10];

 decimal(9,2) salary1;

 decimal(9,2) bonus1;

 decimal(9,2) comm1;

 } oldbuf, newbuf;

EXEC SQL INCLUDE SQLCA;

Figure 6. Sample Trigger Program (Part 1 of 5)

Chapter 9. Routines 181

main(int argc, char **argv)

{

int i;

int obufoff; /* old buffer offset */

int nuloff; /* old null byte map offset */

int nbufoff; /* new buffer offset */

int nul2off; /* new null byte map offset */

short work_days = 253; /* work days during in one year */

decimal(9,2) commission = 2000.00; /* cutoff to qualify for */

decimal(9,2) percentage = 1.04; /* raised salary as percentage */

char raise_date[12] = "1982-06-01";/* effective raise date */

struct {

 char empno[6];

 char name[30];

 decimal(9,2) salary;

 decimal(9,2) new_salary;

 } rpt1;

 /***/

 /* Start to monitor any exception. */

 /***/

 _FEEDBACK fc;

 _HDLR_ENTRY hdlr = main_handler;

 /**/

 /* Make the exception handler active. */

 /**/

 CEEHDLR(&hdlr, NULL, &fc);

 /**/

 /* Ensure exception handler OK */

 /**/

 if (fc.MsgNo != CEE0000)

 {

 printf("Failed to register exception handler.\n");

 exit(99);

 };

 /***/

 /* Move the data from the trigger buffer to the local */

 /* structure for reference. */

 /***/

hstruct = (Qdb_Trigger_Buffer_t *)argv[1];

datapt = (char *) hstruct;

obufoff = hstruct ->Old_Record_Offset; /* old buffer */

memcpy(&oldbuf,datapt+obufoff,; hstruct->Old_Record_Len);

nbufoff = hstruct ->New_Record_Offset; /* new buffer */

memcpy(&newbuf,datapt+nbufoff,; hstruct->New_Record_Len);

Figure 6. Sample Trigger Program (Part 2 of 5)

182 iSeries: DB2 Universal Database for iSeries SQL Programming

EXEC SQL WHENEVER SQLERROR GO TO ERR_EXIT;

 /***/

 /* Set the transaction isolation level to the same as */

 /* the application based on the input parameter in the */

 /* trigger buffer. */

 /***/

if(strcmp(hstruct->Commit_Lock_Level,"0") == 0)

 EXEC SQL SET TRANSACTION ISOLATION LEVEL NONE;

else{

 if(strcmp(hstruct->Commit_Lock_Level,"1") == 0)

 EXEC SQL SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED, READ

 WRITE;

 else {

 if(strcmp(hstruct->Commit_Lock_Level,"2") == 0)

 EXEC SQL SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

 else

 if(strcmp(hstruct->Commit_Lock_Level,"3") == 0)

 EXEC SQL SET TRANSACTION ISOLATION LEVEL ALL;

 }

}

 /**/

 /* If the employee’s commission is greater than maximum */

 /* commission, then increase the employee’s salary */

 /* by 1.04 percent and insert into the RAISE table. */

 /**/

if (newbuf.comm1 >= commission)

{

 EXEC SQL SELECT EMPNO, EMPNAME, SALARY

 INTO :rpt1.empno, :rpt1.name, :rpt1.salary

 FROM TRGPERF/EMP_ACT

 WHERE EMP_ACT.EMPNO=:newbuf.empn ;

 if (sqlca.sqlcode == 0) then

 {

 rpt1.new_salary = salary * percentage;

 EXEC SQL INSERT INTO TRGPERF/RAISE VALUES(:rpt1);

 }

 goto finished;

 }

 err_exit:

 exit(1);

 /* All done */

 finished:

 return;

} /* end of main line */

Figure 6. Sample Trigger Program (Part 3 of 5)

Chapter 9. Routines 183

/**/

/* INCLUDE NAME : MSGHAND1 */

/* */

/* DESCRIPTION : Message handler to signal an exception to */

/* the application to inform that an */

/* error occured in the trigger program. */

/* */

/* NOTE : This message handler is a user defined routine. */

/* */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

#include <leawi.h>

#pragma linkage (QMHSNDPM, OS)

void QMHSNDPM(char *, /* Message identifier */

 void *, /* Qualified message file name */

 void *, /* Message data or text */

 int, /* Length of message data or text */

 char *, /* Message type */

 char *, /* Call message queue */

 int, /* Call stack counter */

 void *, /* Message key */

 void *, /* Error code */

 ...); /* Optionals:

 length of call message queue

 name

 Call stack entry qualification

 display external messages

 screen wait time */

/***/

/******** This is the start of the exception handler function. */

/***/

 void main_handler(_FEEDBACK *cond, _POINTER *token, _INT4 *rc,

 _FEEDBACK *new)

 {

 /**/

 /* Initialize variables for call to */

 /* QMHSNDPM. */

 /* User must create a message file and */

 /* define a message ID to match the */

 /* following data. */

 /**/

 char message_id[7] = "TRG9999";

 char message_file[20] = "MSGF LIB1 ";

 char message_data[50] = "Trigger error " ;

 int message_len = 30;

 char message_type[10] = "*ESCAPE ";

 char message_q[10] = "_C_pep ";

 int pgm_stack_cnt = 1;

 char message_key[4];

Figure 6. Sample Trigger Program (Part 4 of 5)

184 iSeries: DB2 Universal Database for iSeries SQL Programming

Debugging an SQL routine

By specifying SET OPTION DBGVIEW = *SOURCE in your Create SQL Procedure, Create SQL Function,

or Create Trigger statement, you can debug the generated program or module at the SQL statement level.

You can also specify DBGVIEW(*SOURCE) as a parameter on a RUNSQLSTM command and it will apply

to all routines within the RUNSQLSTM.

The source view will be created by the system from your original routine body into source file QSQDSRC

in the routine library. If the library cannot be determined, QSQDSRC is created in QTEMP. The source

view is not saved with the program or service program. It will be broken into lines that correspond to

places you can stop in debug. The text, including parameter and variable names, will be folded to

uppercase.

All variables and parameters are generated as part of a structure. The structure name must be used when

evaluating a variable in debug. Variables are qualified by the current label name. Parameters are qualified

by the procedure or function name. Transition variables in a trigger are qualified by the appropriate

correlation name. It is highly recommended that you specify a label name for each compound statement

or FOR statement. If you don’t specify one, the system will generate one for you. This will make it nearly

impossible to evaluate variables. Remember that all variables and parameters must be evaluated as an

 /**/

 /* Declare error code structure for */

 /* QMHSNDPM. */

 /**/

struct error_code {

 int bytes_provided;

 int bytes_available;

 char message_id[7];

} error_code;

error_code.bytes_provided = 15;

 /**/

 /* Set the error handler to resume and */

 /* mark the last escape message as */

 /* handled. */

 /**/

*rc = CEE_HDLR_RESUME;

 /**/

 /* Send my own *ESCAPE message. */

 /**/

QMHSNDPM(message_id,

 &message_file,

 &message_data,

 message_len,

 message_type,

 message_q,

 pgm_stack_cnt,

 &message_key,

 &error_code);

 /**/

 /* Check that the call to QMHSNDPM */

 /* finished correctly. */

 /**/

if (error_code.bytes_available != 0)

 {

 printf("Error in QMHOVPM : %s\n", error_code.message_id);

 }

}

Figure 6. Sample Trigger Program (Part 5 of 5)

Chapter 9. Routines 185

uppercase name. You can also eval the name of the structure. This will show you all the variables within

the structure. If a variable or parameter is nullable, the indicator for that variable or parameter

immediately follows it in the structure.

Because SQL routines are generated in C, there are some restrictions in C that also affect SQL source

debug. Delimited names that are specified in the SQL routine body cannot be specified in C. Names are

generated for these names, which again makes it difficult to debug or eval. In order to eval the contents

of any character variable, specify an * prior to the name of the variable.

Since the system generates indicators for most variable and parameter names, there is no way to check

directly to see if a variable has the SQL null value. Evaluating a variable will always show a value, even

if the indicator is set to indicate the null value.

In order to determine if a handler is getting called, set a breakpoint on the first statement within the

handler. Variables that are declared in a compound statement or FOR statement within the handler can be

evaluated.

Improving performance of procedures and functions

The SQL procedural language processor on the iSeries does not always generate the most efficient code

when creating stored procedures and user-defined functions (UDFs). For example, differences between

how the C language compiler handles host variables and the way the SQL procedural processor requires

the host variables to be handled can cause many calls to the database engine. These calls are very

expensive and, when done many times, can significantly degrade performance. However, there are

changes that you can make to reduce the number of database engine calls needed and improve

performance. Some changes are in the design of a routine and some are in the implementation.

v “Improving implementation of procedures and functions”

v “Redesigning routines for performance” on page 188

Improving implementation of procedures and functions

These recommendations can be seen as simple coding techniques that can help reduce the processing

time of a function or procedure. These tips are especially important to follow in functions, as a function

will tend to be called multiple times from many different procedures.

v Use the NOT FENCED option so procedures and UDFs run in the same thread as the caller

v Use the DETERMINISTIC option on procedures and UDFs that return the same results for identical

inputs. This allows the optimizer to cache the results of a function call or order where the function is

called in the execution stream to reduce the run time.

v Use the NO EXTERNAL ACTION option on UDFs that do not take an action outside the scope of the

function. An example of an external action is a function that initiates a different process to fulfill a

transaction request.

Coding techniques used for the SQL routine body can have a major impact on the runtime performance

of the generated C program. By writing your routine to allow greater use of C code for assignments and

comparisons, the overhead of an equivalent SQL statement is avoided. The following tips should help

your routine generate more C code and fewer SQL statements.

v Declare host variables as NOT NULL when possible. This saves the generated code from having to

check and set the null value flags. Do not automatically set all variables to NOT NULL. When you

specify NOT NULL, you need to also give a default value. If a variable is always used in the routine, a

default value might help. However, if a variable is not always used, having a default value set may

cause additional initialization overhead that is not needed. A default value is best for numeric values,

where an additional database call to process the assignment of the default value is not needed.

v Avoid character and date data types when possible. An example of this is a variable used as a flag

with a value of 0, 1, 2, or 3. If this value is declared as a single character variable instead of an integer,

it causes calls to the database engine that can be avoided.

186 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|
|
|
|
|
|

|

|

|

|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

v Use integer instead of decimal with zero scale, especially when the variable is used as a counter.

v Do not use temporary variables. Look at the following example:

IF M_days<=30 THEN

 SET I = M_days-7;

 SET J = 23

 RETURN decimal(M_week_1 + ((M_month_1 - M_week_1)*I)/J,16,7);

END IF

This example can be rewritten without the temporary variables:

IF M_days<=30 THEN

 Return decimal(M-week_1 + ((M_month_1 - M_week_1)* (M_days-7))/23,16,7);

END IF

v Combine sequences of complex SET statements into one statement. This applies to statements where C

code only cannot be generated because of CCSIDS or data types.

SET var1 = function1(var2);

SET var2 = function2();

Can be rewritten into one statement:

SET var1 = function1(var2), var2 = function2();

v Use IF () ELSE IF () ... ELSE ... constructs instead of IF (x AND y) to avoid unnecessary comparisons.

v Do as much in SELECT statements as possible:

SELECT A INTO Y FROM B;

 SET Y=Y||’X’;

Rewrite this example:

SELECT A || ’X’ INTO Y FROM B

v Avoid doing character or date comparisons inside of loops when not necessary. In some cases the loop

can be rewritten to move a comparison to precede the loop and have the comparison set an integer

variable that is used within the loop. This causes the complex expression to be evaluated only one

time. An integer comparison within the loop is more efficient since it can be done with generated C

code.

v Avoid setting variables that might not be used. For example, if a variable is set outside of the an IF

statement, be sure that the variable will actually be used in all instances of the IF statement. If not,

then set the variable only in the portion of the IF statement that is it actually used.

v Replace sections of code with a single SELECT statement when possible. Look at the following code

snippet:

SET vnb_decimal = 4;

cdecimal:

 FOR vdec AS cdec CURSOR FOR

 SELECT nb_decimal

 FROM K$FX_RULES

 WHERE first_currency=Pi_curl AND second_currency=P1_cur2

 DO

 SET vnb_decimal=SMALLINT(cdecimal.nb_decimal);

END FOR cdecimal;

 IF vnb_decimal IS NULL THEN

 SET vnb_decimal=4;

 END IF;

 SET vrate=ROUND(vrate1/vrate2,vnb_decimal);

 RETURN vrate;

This code snippet can be more efficient if rewritten in the following way:

RETURN(SELECT

 CASE

 WHEN MIN(nb_decimal) IS NULL THEN ROUND(Vrate1/Vrate2,4)

 ELSE ROUND(Vrate1/Vrate2,SMALLINT(MIN(nb_decimal)))

Chapter 9. Routines 187

|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|

|

|

|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

END

 FROM K$FX_RULES

 WHERE first_currency=Pi_curl AND second_currency=Pi_cur2);

v C code can only be used for assignments and comparisons of character data if the CCSIDs of both

operands are the same, if one of the CCSIDs is 65535, if the CCSID is not UTF8, and if truncation of

character data is not possible. If the CCSID of the variable is not specified, the CCSID is not

determined until the procedure is called. In this case, code must be generated to determine and

compare the CCSID at runtime. If an alternate collating sequence is specified or if *JOBRUN is

specified, C code cannot be generated for character comparisons.

v Use the same data type, length and scale for numeric variables that are used together in assignments.

C code can only be generated if truncation is not possible.

DECLARE v1, v2 INT;

SET v1 = 100;

SET v1 = v2;

Redesigning routines for performance

Even following all of the implementation tips, sometimes a procedure or function may still not perform

as well as it needs to. In that case, you need to look at the design of the procedure or UDF and see if

there are any changes that can be made to improve the performance. There are two different types of

design changes that you can look at.

The first change is to reduce the number of database calls or function calls that a procedure makes, a

process similar to looking for blocks of code that can be converted to SQL statements. Many times you

can reduce the number of calls by adding additional logic to your code.

A more difficult design change is to restructure a whole function to get the same result a different way.

For example, your function uses a SELECT statement to find a route that meets a particular set of criteria

and then executes that statement dynamically. By looking at the work that the function is performing,

you might be able to change the logic so that the function can use a static SELECT query to find the

answer, thereby improving your performance.

You should also use nested compound statements to localize exception handling and cursors. If several

specific handlers are specified, code is generated to check to see if the error occurred after each statement.

Code is also generated to close cursors and process savepoints if an error occurs in a compound

statement. In routines with a single compound statement with multiple handlers and multiple cursors,

code is generated to process each handler and cursor after every SQL statement. If you scope the

handlers and cursors to a nested compound statement, the handlers and cursors are only checked within

the nested compound statement.

In the following routine, code to check the SQLSTATE ’22H11’ error will only be generated for the

statements within the lab2 compound statement. Specific checking for this error will not be done for any

statements in the routine outside of the lab2 block. Code to check the SQLEXCEPTION error will be

generated for all statements in both the lab1 and lab2 blocks. Likewise, error handling for closing cursor

c1 will be limited to the statements in the lab2 block.

Lab1: BEGIN

 DECLARE var1 INT;

 DECLARE EXIT HANDLER FOR SQLEXCEPTION

 RETURN -3;

 lab2: BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE ’22H11’

 RETURN -1;

 DECLARE c1 CURSOR FOR SELECT col1 FROM table1;

 OPEN c1;

 CLOSE c1;

 END lab2;

END Lab1

188 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

Because redesigning a whole routine takes a lot of effort, examine routines that are showing up as key

performance bottlenecks rather than looking at the application as a whole. More important than

redesigning existing performance bottlenecks is to spend time during the design of the application

thinking about the performance impacts of the design. Focusing on areas of the application that are

expected to be high use areas and making sure that they are designed with performance in mind saves

you from having to do a redesign of those areas later.

Chapter 9. Routines 189

|
|
|
|
|
|

190 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 10. Processing special data types

Most data types, such as INTEGER and CHARACTER, do not have any special processing characteristics.

However, there are a few data types that require special functions or locators in order to use them. This

topic discusses these data types and the processes that they require.

“Using Large Objects (LOBs)”

“Using User-defined distinct types (UDT)” on page 201

“Examples of using UDTs, UDFs, and LOBs” on page 207

“Using DataLinks” on page 210

Using Large Objects (LOBs)

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a limit of 32K bytes of storage. While

this may be sufficient for small to medium size text data, applications often need to store large text

documents. They may also need to store a wide variety of additional data types such as audio, video,

drawings, mixed text and graphics, and images. There are three data types to store these data objects as

strings of up to two (2) gigabytes (GB) in size. The three data types are: Binary Large OBjects (BLOBs),

single-byte Character Large OBjects (CLOBs), and Double-Byte Character Large OBjects (DBCLOBs). Each

table may have a large amount of associated LOB data. Although a single row containing one or more

LOB values cannot exceed 3.5 gigabytes, a table may contain nearly 256 gigabytes of LOB data.

You can refer to and manipulate LOBs using host variables just like any other data type. However, host

variables use the program’s storage which may not be large enough to hold LOB values. Other means are

necessary to manipulate these large values. Locators are useful to identify and manipulate a large object

value at the database server and for extracting pieces of the LOB value. File reference variables are useful

for physically moving a large object value (or a large part of it) to and from the client.

The subsections that follow discuss the topics that are introduced above in more detail:

v “Understanding large object data types (BLOB, CLOB, DBCLOB)”

v “Understanding large object locators” on page 192

v “Example: Using a locator to work with a CLOB value” on page 192

v “Indicator variables and LOB locators” on page 196

v “LOB file reference variables” on page 197

v “Example: Extracting a document to a file” on page 197

v “Example: Inserting data into a CLOB column” on page 200

v “Display layout of LOB columns” on page 200

v “Journal entry layout of LOB columns” on page 200

Understanding large object data types (BLOB, CLOB, DBCLOB)

Large object data types store data ranging in size from zero bytes to 2 gigabytes.

The three large object data types have the following definitions:

v Character Large OBjects (CLOBs) — A character string made up of single-byte characters with an

associated code page. This data type is appropriate for storing text-oriented information where the

amount of information can grow beyond the limits of a regular VARCHAR data type (upper limit of

32K bytes). Code page conversion of the information is supported.

© Copyright IBM Corp. 1998, 2004 191

v Double-Byte Character Large OBjects (DBCLOBs) — A character string made up of double-byte

characters with an associated code page. This data type is appropriate for storing text-oriented

information where double-byte character sets are used. Again, code page conversion of the information

is supported.

v Binary Large OBjects (BLOBs) — A binary string made up of bytes with no associated code page. This

data type can store binary data larger than VARBINARY (32K limit). This data type is good for storing

image, voice, graphical, and other types of business or application-specific data.

Understanding large object locators

LOB locators use a small, easily managed value to refer to a much larger value. Specifically, a LOB

locator is a 4 byte value stored in a host variable that a program uses to refer to a LOB value held in the

database system. Using a LOB locator, a program can manipulate the LOB value as if the LOB value was

stored in a regular host variable. When you use the LOB locator, there is no need to transport the LOB

value from the server to the application (and possibly back again).

The LOB locator is associated with a LOB value, not a row or physical storage location in the database.

Therefore, after selecting a LOB value into a locator, you cannot perform an operation on the original

row(s) or table(s) that have any effect on the value referenced by the locator. The value associated with

the locator is valid until the unit of work ends, or the locator is explicitly freed, whichever comes first.

The FREE LOCATOR statement releases a locator from its associated value. In a similar way, a commit or

rollback operation frees all LOB locators associated with the transaction.

LOB locators can also be passed to and returned from UDFs. Within the UDF, those functions that work

on LOB data can be used to manipulate the LOB values using LOB locators.

When selecting a LOB value, you have three options.

v Select the entire LOB value into a host variable. The entire LOB value is copied into the host variable.

v Select the LOB value into a LOB locator. The LOB value remains on the server; it is not copied to the

host variable.

v Select the entire LOB value into a file reference variable. The LOB value is moved to an Integrated File

System (IFS) file. See “LOB file reference variables” on page 197 for more details.

How a LOB value is used within the program can help the programmer to determine which method is

best. If the LOB value is very large and is needed only as an input value for one or more subsequent SQL

statements, keep the value in a locator.

If the program needs the entire LOB value regardless of the size, then there is no choice but to transfer

the LOB. Even in this case, there are still options available to you. You can select the entire value into a

regular or file reference host variable. You may also select the LOB value into a locator and read it

piecemeal from the locator into a regular host variable, as suggested in the following example, “Example:

Using a locator to work with a CLOB value.”

Example: Using a locator to work with a CLOB value

In this example, the application program retrieves a locator for a LOB value; then it uses the locator to

extract the data from the LOB value. Using this method, the program allocates only enough storage for

one piece of LOB data (the size is determined by the program). In addition, the program needs to issue

only one fetch call using the cursor.

How the sample LOBLOC program works

1. Declare host variables. The BEGIN DECLARE SECTION and END DECLARE SECTION statements

delimit the host variable declarations. Host variables are prefixed with a colon (:) when referenced in

an SQL statement. CLOB LOCATOR host variables are declared.

192 iSeries: DB2 Universal Database for iSeries SQL Programming

2. Fetch the LOB value into the locator host variable. A CURSOR and FETCH routine is used to obtain

the location of a LOB field in the database to a locator host variable.

3. Free the LOB LOCATORS. The LOB LOCATORS used in this example are freed, releasing the

locators from their previously associated values.

The CHECKERR macro/function is an error checking utility that is external to the program. The location

of this error checking utility depends on the programming language that is used. In this example, C

language is used so check_error is redefined as CHECKERR and is located in the util.c file.

This example is offered in C and COBOL. See the following examples:

v “C Sample: LOBLOC.SQC”

v “COBOL Sample: LOBLOC.SQB” on page 194

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

C Sample: LOBLOC.SQC

 #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "util.h"

EXEC SQL INCLUDE SQLCA;

#define CHECKERR(CE_STR) if (check_error (CE_STR, &sqlca) != 0) return 1;

int main(int argc, char *argv[]) {

#ifdef DB2MAC

 char * bufptr;

#endif

 EXEC SQL BEGIN DECLARE SECTION; �1�

 char number[7];

 long deptInfoBeginLoc;

 long deptInfoEndLoc;

 SQL TYPE IS CLOB_LOCATOR resume;

 SQL TYPE IS CLOB_LOCATOR deptBuffer;

 short lobind;

 char buffer[1000]="";

 char userid[9];

 char passwd[19];

 EXEC SQL END DECLARE SECTION;

 printf("Sample C program: LOBLOC\n");

 if (argc == 1) {

 EXEC SQL CONNECT TO sample;

 CHECKERR ("CONNECT TO SAMPLE");

 }

 else if (argc == 3) {

 strcpy (userid, argv[1]);

 strcpy (passwd, argv[2]);

 EXEC SQL CONNECT TO sample USER :userid USING :passwd;

 CHECKERR ("CONNECT TO SAMPLE");

 }

 else {

 printf ("\nUSAGE: lobloc [userid passwd]\n\n");

 return 1;

 } /* endif */

 /* Employee A10030 is not included in the following select, because

 the lobeval program manipulates the record for A10030 so that it is

 not compatible with lobloc */

Chapter 10. Processing special data types 193

EXEC SQL DECLARE c1 CURSOR FOR

 SELECT empno, resume FROM emp_resume WHERE resume_format=’ascii’

 AND empno <> ’A00130’;

 EXEC SQL OPEN c1;

 CHECKERR ("OPEN CURSOR");

 do {

 EXEC SQL FETCH c1 INTO :number, :resume :lobind; �2�

 if (SQLCODE != 0) break;

 if (lobind < 0) {

 printf ("NULL LOB indicated\n");

 } else {

 /* EVALUATE the LOB LOCATOR */

 /* Locate the beginning of "Department Information" section */

 EXEC SQL VALUES (POSSTR(:resume, ’Department Information’))

 INTO :deptInfoBeginLoc;

 CHECKERR ("VALUES1");

 /* Locate the beginning of "Education" section (end of "Dept.Info" */

 EXEC SQL VALUES (POSSTR(:resume, ’Education’))

 INTO :deptInfoEndLoc;

 CHECKERR ("VALUES2");

 /* Obtain ONLY the "Department Information" section by using SUBSTR */

 EXEC SQL VALUES(SUBSTR(:resume, :deptInfoBeginLoc,

 :deptInfoEndLoc - :deptInfoBeginLoc)) INTO :deptBuffer;

 CHECKERR ("VALUES3");

 /* Append the "Department Information" section to the :buffer var. */

 EXEC SQL VALUES(:buffer || :deptBuffer) INTO :buffer;

 CHECKERR ("VALUES4");

 } /* endif */

 } while (1);

#ifdef DB2MAC

 /* Need to convert the newline character for the Mac */

 bufptr = &(buffer[0]);

 while (*bufptr != ’\0’) {

 if (*bufptr == 0x0A) *bufptr = 0x0D;

 bufptr++;

 }

#endif

 printf ("%s\n",buffer);

 EXEC SQL FREE LOCATOR :resume, :deptBuffer; �3�

 CHECKERR ("FREE LOCATOR");

 EXEC SQL CLOSE c1;

 CHECKERR ("CLOSE CURSOR");

 EXEC SQL CONNECT RESET;

 CHECKERR ("CONNECT RESET");

 return 0;

}

/* end of program : LOBLOC.SQC */

COBOL Sample: LOBLOC.SQB

 Identification Division.

 Program-ID. "lobloc".

 Data Division.

 Working-Storage Section.

 copy "sqlenv.cbl".

 copy "sql.cbl".

 copy "sqlca.cbl".

194 iSeries: DB2 Universal Database for iSeries SQL Programming

EXEC SQL BEGIN DECLARE SECTION END-EXEC. �1�

 01 userid pic x(8).

 01 passwd.

 49 passwd-length pic s9(4) comp-5 value 0.

 49 passwd-name pic x(18).

 01 empnum pic x(6).

 01 di-begin-loc pic s9(9) comp-5.

 01 di-end-loc pic s9(9) comp-5.

 01 resume USAGE IS SQL TYPE IS CLOB-LOCATOR.

 01 di-buffer USAGE IS SQL TYPE IS CLOB-LOCATOR.

 01 lobind pic s9(4) comp-5.

 01 buffer USAGE IS SQL TYPE IS CLOB(1K).

 EXEC SQL END DECLARE SECTION END-EXEC.

 77 errloc pic x(80).

 Procedure Division.

 Main Section.

 display "Sample COBOL program: LOBLOC".

* Get database connection information.

 display "Enter your user id (default none): "

 with no advancing.

 accept userid.

 if userid = spaces

 EXEC SQL CONNECT TO sample END-EXEC

 else

 display "Enter your password : " with no advancing

 accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR

* format with the length of the input string.

 inspect passwd-name tallying passwd-length for characters

 before initial " ".

 EXEC SQL CONNECT TO sample USER :userid USING :passwd

 END-EXEC.

 move "CONNECT TO" to errloc.

 call "checkerr" using SQLCA errloc.

* Employee A10030 is not included in the following select, because

* the lobeval program manipulates the record for A10030 so that it is

* not compatible with lobloc

 EXEC SQL DECLARE c1 CURSOR FOR

 SELECT empno, resume FROM emp_resume

 WHERE resume_format = ’ascii’

 AND empno <> ’A00130’ END-EXEC.

 EXEC SQL OPEN c1 END-EXEC.

 move "OPEN CURSOR" to errloc.

 call "checkerr" using SQLCA errloc.

 Move 0 to buffer-length.

 perform Fetch-Loop thru End-Fetch-Loop

 until SQLCODE not equal 0.

* display contents of the buffer.

 display buffer-data(1:buffer-length).

 EXEC SQL FREE LOCATOR :resume, :di-buffer END-EXEC. �3�

 move "FREE LOCATOR" to errloc.

 call "checkerr" using SQLCA errloc.

 EXEC SQL CLOSE c1 END-EXEC.

 move "CLOSE CURSOR" to errloc.

 call "checkerr" using SQLCA errloc.

Chapter 10. Processing special data types 195

EXEC SQL CONNECT RESET END-EXEC.

 move "CONNECT RESET" to errloc.

 call "checkerr" using SQLCA errloc.

 End-Main.

 go to End-Prog.

 Fetch-Loop Section.

 EXEC SQL FETCH c1 INTO :empnum, :resume :lobind �2�

 END-EXEC.

 if SQLCODE not equal 0

 go to End-Fetch-Loop.

* check to see if the host variable indicator returns NULL.

 if lobind less than 0 go to NULL-lob-indicated.

* Value exists. Evaluate the LOB locator.

* Locate the beginning of "Department Information" section.

 EXEC SQL VALUES (POSSTR(:resume, ’Department Information’))

 INTO :di-begin-loc END-EXEC.

 move "VALUES1" to errloc.

 call "checkerr" using SQLCA errloc.

* Locate the beginning of "Education" section (end of Dept.Info)

 EXEC SQL VALUES (POSSTR(:resume, ’Education’))

 INTO :di-end-loc END-EXEC.

 move "VALUES2" to errloc.

 call "checkerr" using SQLCA errloc.

 subtract di-begin-loc from di-end-loc.

* Obtain ONLY the "Department Information" section by using SUBSTR

 EXEC SQL VALUES (SUBSTR(:resume, :di-begin-loc,

 :di-end-loc))

 INTO :di-buffer END-EXEC.

 move "VALUES3" to errloc.

 call "checkerr" using SQLCA errloc.

* Append the "Department Information" section to the :buffer var

 EXEC SQL VALUES (:buffer || :di-buffer) INTO :buffer

 END-EXEC.

 move "VALUES4" to errloc.

 call "checkerr" using SQLCA errloc.

 go to End-Fetch-Loop.

 NULL-lob-indicated.

 display "NULL LOB indicated".

 End-Fetch-Loop. exit.

 End-Prog.

 stop run.

Indicator variables and LOB locators

For normal host variables in an application program, when selecting a NULL value into a host variable, a

negative value is assigned to the indicator variable signifying that the value is NULL. In the case of LOB

locators, however, the meaning of indicator variables is slightly different. Since a locator host variable

itself can never be NULL, a negative indicator variable value indicates that the LOB value represented by

the LOB locator is NULL. The NULL information is kept local to the client using the indicator variable

value — the server does not track NULL values with valid locators.

196 iSeries: DB2 Universal Database for iSeries SQL Programming

LOB file reference variables

File reference variables are similar to host variables except that they are used to transfer data to and from

IFS files (not to and from memory buffers). A file reference variable represents (rather than contains) the

file, just as a LOB locator represents (rather than contains) the LOB value. Database queries, updates, and

inserts may use file reference variables to store, or to retrieve, single LOB values.

For very large objects, files are natural containers. It is likely that most LOBs begin as data stored in files

on the client before they are moved to the database on the server. The use of file reference variables

assists in moving LOB data. Programs use file reference variables to transfer LOB data from the IFS file

directly to the database engine. To carry out the movement of LOB data, the application does not need to

write utility routines to read and write files using host variables.

Note: The file referenced by the file reference variable must be accessible from (but not necessarily

resident on) the system on which the program runs. For a stored procedure, this is the server.

A file reference variable has a data type of BLOB, CLOB, or DBCLOB. It is used either as the source of

data (input) or as the target of data (output). The file reference variable may have a relative file name or

a complete path name of the file (the latter is advised). The file name length is specified within the

application program. The data length portion of the file reference variable is unused during input. During

output, the data length is set by the application requester code to the length of the new data that is

written to the file.

When using file reference variables there are different options on both input and output. You must choose

an action for the file by setting the file_options field in the file reference variable structure. Choices for

assignment to the field covering both input and output values are shown below.

Values (shown for C) and options when using input file reference variables are as follows:

v SQL_FILE_READ (Regular file) — This option has a value of 2. This is a file that can be open, read,

and closed. DB2 determines the length of the data in the file (in bytes) when opening the file. DB2 then

returns the length through the data_length field of the file reference variable structure. (The value for

COBOL is SQL-FILE-READ.)

Values and options when using output file reference variables are as follows:

v SQL_FILE_CREATE (New file) — This option has a value of 8. This option creates a new file. Should

the file already exist, an error message is returned. (The value for COBOL is SQL-FILE-CREATE.)

v SQL_FILE_OVERWRITE (Overwrite file) — This option has a value of 16. This option creates a new

file if none already exists. If the file already exists, the new data overwrites the data in the file. (The

value for COBOL is SQL-FILE-OVERWRITE.)

v SQL_FILE_APPEND (Append file) — This option has a value of 32. This option has the output

appended to the file, if it exists. Otherwise, it creates a new file. (The value for COBOL is

SQL-FILE-APPEND.)

Note: If a LOB file reference variable is used in an OPEN statement, do not delete the file associated with

the LOB file reference variable until the cursor is closed.

For more information about integrated file system, see Integrated File System.

Example: Extracting a document to a file

This program example shows how CLOB elements can be retrieved from a table into an external file.

How the sample LOBFILE program works

1. Declare host variables. The BEGIN DECLARE SECTION and END DECLARE SECTION statements

delimit the host variable declarations. Host variables are prefixed with a colon (:) when referenced in

an SQL statement. A CLOB FILE REFERENCE host variable is declared.

Chapter 10. Processing special data types 197

2. CLOB FILE REFERENCE host variable is set up. The attributes of the FILE REFERENCE are set up.

A file name without a fully declared path is, by default, placed in the user’s current directory. If the

path name does not begin with the forward slash (/) character, it is not qualified.

3. Select into the CLOB FILE REFERENCE host variable. The data from the resume field is selected into

the file name that is referenced by the host variable.

The CHECKERR macro/function is an error checking utility which is external to the program. The location

of this error checking utility depends on the programming language used:

C check_error is redefined as CHECKERR and is located in the util.c file.

COBOL CHECKERR is an external program named checkerr.cbl

This example is offered in C and COBOL. See the following examples:

v “C Sample: LOBFILE.SQC”

v “COBOL Sample: LOBFILE.SQB” on page 199

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

C Sample: LOBFILE.SQC

 #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sql.h>

#include "util.h"

EXEC SQL INCLUDE SQLCA;

#define CHECKERR(CE_STR) if (check_error (CE_STR, &sqlca) != 0) return 1;

int main(int argc, char *argv[]) {

 EXEC SQL BEGIN DECLARE SECTION; �1�

 SQL TYPE IS CLOB_FILE resume;

 short lobind;

 char userid[9];

 char passwd[19];

 EXEC SQL END DECLARE SECTION;

 printf("Sample C program: LOBFILE\n");

 if (argc == 1) {

 EXEC SQL CONNECT TO sample;

 CHECKERR ("CONNECT TO SAMPLE");

 }

 else if (argc == 3) {

 strcpy (userid, argv[1]);

 strcpy (passwd, argv[2]);

 EXEC SQL CONNECT TO sample USER :userid USING :passwd;

 CHECKERR ("CONNECT TO SAMPLE");

 }

 else {

 printf ("\nUSAGE: lobfile [userid passwd]\n\n");

 return 1;

 } /* endif */

 strcpy (resume.name, "RESUME.TXT"); �2�

 resume.name_length = strlen("RESUME.TXT");

 resume.file_options = SQL_FILE_OVERWRITE;

 EXEC SQL SELECT resume INTO :resume :lobind FROM emp_resume �3�

 WHERE resume_format=’ascii’ AND empno=’000130’;

 if (lobind < 0) {

 printf ("NULL LOB indicated \n");

198 iSeries: DB2 Universal Database for iSeries SQL Programming

} else {

 printf ("Resume for EMPNO 000130 is in file : RESUME.TXT\n");

 } /* endif */

 EXEC SQL CONNECT RESET;

 CHECKERR ("CONNECT RESET");

 return 0;

}

/* end of program : LOBFILE.SQC */

COBOL Sample: LOBFILE.SQB

 Identification Division.

 Program-ID. "lobfile".

 Data Division.

 Working-Storage Section.

 copy "sqlenv.cbl".

 copy "sql.cbl".

 copy "sqlca.cbl".

 EXEC SQL BEGIN DECLARE SECTION END-EXEC. �1�

 01 userid pic x(8).

 01 passwd.

 49 passwd-length pic s9(4) comp-5 value 0.

 49 passwd-name pic x(18).

 01 resume USAGE IS SQL TYPE IS CLOB-FILE.

 01 lobind pic s9(4) comp-5.

 EXEC SQL END DECLARE SECTION END-EXEC.

 77 errloc pic x(80).

 Procedure Division.

 Main Section.

 display "Sample COBOL program: LOBFILE".

* Get database connection information.

 display "Enter your user id (default none): "

 with no advancing.

 accept userid.

 if userid = spaces

 EXEC SQL CONNECT TO sample END-EXEC

 else

 display "Enter your password : " with no advancing

 accept passwd-name.

* Passwords in a CONNECT statement must be entered in a VARCHAR

* format with the length of the input string.

 inspect passwd-name tallying passwd-length for characters

 before initial " ".

 EXEC SQL CONNECT TO sample USER :userid USING :passwd

 END-EXEC.

 move "CONNECT TO" to errloc.

 call "checkerr" using SQLCA errloc.

 move "RESUME.TXT" to resume-NAME. �2�

 move 10 to resume-NAME-LENGTH.

 move SQL-FILE-OVERWRITE to resume-FILE-OPTIONS.

 EXEC SQL SELECT resume INTO :resume :lobind �3�

 FROM emp_resume

 WHERE resume_format = ’ascii’

 AND empno = ’000130’ END-EXEC.

 if lobind less than 0 go to NULL-LOB-indicated.

 display "Resume for EMPNO 000130 is in file : RESUME.TXT".

 go to End-Main.

Chapter 10. Processing special data types 199

NULL-LOB-indicated.

 display "NULL LOB indicated".

 End-Main.

 EXEC SQL CONNECT RESET END-EXEC.

 move "CONNECT RESET" to errloc.

 call "checkerr" using SQLCA errloc.

 End-Prog.

 stop run.

Example: Inserting data into a CLOB column

In the path description of the following C program segment:

v userid represents the directory for one of your users.

v dirname represents a subdirectory name of “userid”.

v filnam.1 can become the name of one of your documents that you want to insert into the table.

v clobtab is the name of the table with the CLOB data type.

The following example shows how to insert data from a regular file referenced by :hv_text_file into a

CLOB column:

 strcpy(hv_text_file.name, "/home/userid/dirname/filnam.1");

 hv_text_file.name_length = strlen("/home/userid/dirname/filnam.1");

 hv_text_file.file_options = SQL_FILE_READ; /* this is a ’regular’ file */

 EXEC SQL INSERT INTO CLOBTAB

 VALUES(:hv_text_file);

Display layout of LOB columns

When a row of data from a table holding LOB columns is displayed using CL commands such as Display

Physical File Member (DSPPFM), the LOB data stored in that row will not be displayed. Instead, the

Database will show a special value for the LOB columns. The layout of this special value is as follows:

v 13 to 28 bytes of hex zeros.

v 16 bytes beginning with *POINTER and followed by blanks.

The number of bytes in the first portion of the value is set to the number needed to 16 byte boundary

align the second part of the value.

For example, say you have a table that holds three columns: ColumnOne Char(10), ColumnTwo

CLOB(40K), and ColumnThree BLOB(10M). If you were to issue a DSPPFM of this table, each row of data

looks as follows.

v For ColumnOne: 10 bytes filled with character data.

v For ColumnTwo: 22 bytes filled with hex zeros and 16 bytes filled with ’*POINTER ’.

v For ColumnThree: 16 bytes filled with hex zeros and 16 bytes filled with ’*POINTER ’.

The full set of commands that display LOB columns in this way is:

v Display Physical File Member (DSPPFM)

v Copy File (CPYF) when the value *PRINT is specified for the TOFILE keyword

v Display Journal (DSPJRN)

v Retrieve Journal Entry (RTVJRNE)

v Receive Journal Entry (RCVJRNE) when the values *TYPE1, *TYPE2, *TYPE3 and *TYPE4 are specified

for the ENTFMT keyword.

Journal entry layout of LOB columns

Two commands return a buffer that gives the user addressability to LOB data that had been journaled:

200 iSeries: DB2 Universal Database for iSeries SQL Programming

v Receive Journal Entry (RCVJRNE) CL command, when the value *TYPEPTR is specified for the

ENTFMT keyword

v Retrieve Journal Entries (QjoRetrieveJournalEntries) API

The layout of the LOB columns in these entries is as follows:

v 0 to 15 bytes of hex zeros

v 1 byte of system information set to ’00’x

v 4 bytes holding the length of the LOB data addressed by the pointer, below

v 8 bytes of hex zeros

v 16 bytes holding a pointer to the LOB data stored in the Journal Entry.

The first part of this layout is intended to 16 byte boundary align the pointer to the LOB data. The

number of bytes in this area depends on the length of the columns that proceed the LOB column. Refer

to the section above on the Display Layout of LOB Columns for an example of how the length of this

first part is calculated.

For more information about the Journal handling of LOB columns, refer to the Journaling topic.

Using User-defined distinct types (UDT)

A user-defined distinct type is a mechanism that allows you to extend DB2 capabilities beyond the

built-in data types available. User-defined distinct types enable you to define new data types to DB2

which gives you considerable power since you are no longer restricted to using the system-supplied

built-in data types to model your business and capture the semantics of your data. Distinct data types

allow you to map on a one-to-one basis to existing database types.

There are several benefits associated with UDTs:

1. Extensibility.

By defining new types, you can indefinitely increase the set of types provided by DB2 to support your

applications.

2. Flexibility.

You can specify any semantics and behavior for your new type by using user-defined functions

(UDFs) to augment the diversity of the types available in the system.

3. Consistent behavior.

Strong typing insures that your UDTs will behave appropriately. It guarantees that only functions

defined on your UDT can be applied to instances of the UDT.

4. Encapsulation.

The behavior of your UDTs is restricted by the functions and operators that can be applied on them.

This provides flexibility in the implementation since running applications do not depend on the

internal representation that you chose for your type.

5. Extensible behavior.

The definition of user-defined functions on types can augment the functionality provided to

manipulate your UDT at any time. (See “Using User-Defined Functions (UDFs)” on page 149)

6. Foundation for object-oriented extensions.

UDTs are the foundation for most object-oriented features. They represent the most important step

toward object-oriented extensions.

The following topics describe UDTs in more detail:

v “Defining a UDT” on page 202

v “Defining tables with UDTs” on page 202

v “Manipulating UDTs” on page 203

Chapter 10. Processing special data types 201

v “Examples of using UDTs” on page 203

Defining a UDT

UDT are defined with a CREATE DISTINCT TYPE statement.

For the CREATE DISTINCT TYPE statement, note that:

1. The name of the new UDT can be a qualified or an unqualified name.

2. The source type of the UDT is the type used by the system to internally represent the UDT. For this

reason, it must be a built-in data type. Previously defined UDTs cannot be used as source types of

other UDTs.

As part of a UDT definition, the system always generates cast functions to:

v Cast from the UDT to the source type, using the standard name of the source type. For example, if you

create a distinct type based on FLOAT, the cast function called DOUBLE is created.

v Cast from the source type to the UDT. See the CREATE DISTINCT TYPE in the SQL Reference for a

discussion of when additional casts to the UDTs are generated.

These functions are important for the manipulation of UDTs in queries.

The function path is used to resolve any references to an unqualified type name or function, except if the

type name or function is the main object of a CREATE, DROP, or COMMENT ON statement For

information about how unqualified function references are resolved, see “Using qualified function

reference” on page 172.

See the following examples:

v “Example: Money”

v “Example: Resume”

Example: Money

Suppose you are writing applications that need to handle different currencies and want to ensure that

DB2 does not allow these currencies to be compared or manipulated directly with one another in queries.

Remember that conversions are necessary whenever you want to compare values of different currencies.

So you define as many UDTs as you need; one for each currency that you may need to represent:

 CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,2)

 CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,2)

 CREATE DISTINCT TYPE GERMAN_MARK AS DECIMAL (9,2)

Example: Resume

Suppose you want to keep the application forms that are filled out by applicants to your company in a

table and you are going to use functions to extract the information from these forms. Because these

functions cannot be applied to regular character strings (because they are certainly not able to find the

information they are supposed to return), you define a UDT to represent the filled forms:

 CREATE DISTINCT TYPE PERSONAL.APPLICATION_FORM AS CLOB(32K)

Defining tables with UDTs

After you have defined several UDTs, you can start defining tables with columns whose types are UDTs.

Following are examples using CREATE TABLE:

v Example: Sales

v Example: Application forms

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

Example: Sales

Suppose you want to define tables to keep your company’s sales in different countries as follows:

202 iSeries: DB2 Universal Database for iSeries SQL Programming

CREATE TABLE US_SALES

 (PRODUCT_ITEM INTEGER,

 MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),

 YEAR INTEGER CHECK (YEAR > 1985),

 TOTAL US_DOLLAR)

 CREATE TABLE CANADIAN_SALES

 (PRODUCT_ITEM INTEGER,

 MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),

 YEAR INTEGER CHECK (YEAR > 1985),

 TOTAL CANADIAN_DOLLAR)

 CREATE TABLE GERMAN_SALES

 (PRODUCT_ITEM INTEGER,

 MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),

 YEAR INTEGER CHECK (YEAR > 1985),

 TOTAL GERMAN_MARK)

The UDTs in the above examples are created using the same CREATE DISTINCT TYPE statements in

“Example: Money” on page 202. Note that the above examples use check constraints. For information

about check constraints see the “Adding and using check constraints” on page 111.

Example: Application forms

Suppose you need to define a table in order to keep the forms filled out by applicants as follows:

 CREATE TABLE APPLICATIONS

 (ID INTEGER,

 NAME VARCHAR (30),

 APPLICATION_DATE DATE,

 FORM PERSONAL.APPLICATION_FORM)

You have fully qualified the UDT name because its qualifier is not the same as your authorization ID and

you have not changed the default function path. Remember that whenever type and function names are

not fully qualified, DB2 searches through the schemas listed in the current function path and looks for a

type or function name matching the given unqualified name.

Manipulating UDTs

One of the most important concepts associated with UDTs is strong typing. Strong typing guarantees that

only functions and operators defined on the UDT can be applied to its instances.

Strong typing is important to ensure that the instances of your UDTs are correct. For example, if you

have defined a function to convert US dollars to Canadian dollars according to the current exchange rate,

you do not want this same function to be used to convert German marks to Canadian dollars because it

will certainly return the wrong amount.

As a consequence of strong typing, DB2 does not allow you to write queries that compare, for example,

UDT instances with instances of the UDT source type. For the same reason, DB2 will not let you apply

functions defined on other types to UDTs. If you want to compare instances of UDTs with instances of

another type, you need to cast the instances of one or the other type. In the same sense, you need to cast

the UDT instance to the type of the parameter of a function that is not defined on a UDT if you want to

apply this function to a UDT instance.

See “Examples of using UDTs” for examples of manipulating UDTs.

Examples of using UDTs

For examples of using UDTs, see the following:

v “Example: Comparisons between UDTs and constants” on page 204

v “Example: Casting between UDTs” on page 204

v “Example: Comparisons involving UDTs” on page 205

Chapter 10. Processing special data types 203

v “Example: Sourced UDFs involving UDTs” on page 205

v “Example: Assignments involving UDTs” on page 206

v “Example: Assignments in dynamic SQL” on page 206

v “Example: Assignments involving different UDTs” on page 206

v “Example: Use of UDTs in UNION” on page 207

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

Example: Comparisons between UDTs and constants

Suppose you want to know which products sold more than US $100 000.00 in the US in the month of

July, 1992 (7/92).

 SELECT PRODUCT_ITEM

 FROM US_SALES

 WHERE TOTAL > US_DOLLAR (100000)

 AND month = 7

 AND year = 1992

Because you cannot compare US dollars with instances of the source type of US dollars (that is,

DECIMAL) directly, you have used the cast function provided by DB2 to cast from DECIMAL to US

dollars. You can also use the other cast function provided by DB2 (that is, the one to cast from US dollars

to DECIMAL) and cast the column total to DECIMAL. Either way you decide to cast, from or to the UDT,

you can use the cast specification notation to perform the casting, or the functional notation. That is, you

might have written the above query as:

 SELECT PRODUCT_ITEM

 FROM US_SALES

 WHERE TOTAL > CAST (100000 AS us_dollar)

 AND MONTH = 7

 AND YEAR = 1992

Example: Casting between UDTs

Suppose you want to define a UDF that converts Canadian dollars to U.S. dollars. Suppose you can

obtain the current exchange rate from a file managed outside of DB2. Then define a UDF that obtains a

value in Canadian dollars, accesses the exchange rate file and returns the corresponding amount in U.S.

dollars.

At first glance, such a UDF may appear easy to write. However, not all C compilers support DECIMAL

values. The UDTs representing different currencies have been defined as DECIMAL. Your UDF will need

to receive and return DOUBLE values, since this is the only data type provided by C that allows the

representation of a DECIMAL value without losing the decimal precision. Thus, your UDF should be

defined as follows:

 CREATE FUNCTION CDN_TO_US_DOUBLE(DOUBLE) RETURNS DOUBLE

 EXTERNAL NAME ’MYLIB/CURRENCIES(C_CDN_US)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 NOT DETERMINISTIC

The exchange rate between Canadian and U.S. dollars may change between two invocations of the UDF,

so you declare it as NOT DETERMINISTIC.

The question now is, how do you pass Canadian dollars to this UDF and get U.S. dollars from it? The

Canadian dollars must be cast to DECIMAL values. The DECIMAL values must be cast to DOUBLE. You

also need to have the returned DOUBLE value cast to DECIMAL and the DECIMAL value cast to U.S.

dollars.

Such casts are performed automatically by DB2 anytime you define sourced UDFs, whose parameter and

return type do not exactly match the parameter and return type of the source function. Therefore, you

204 iSeries: DB2 Universal Database for iSeries SQL Programming

need to define two sourced UDFs. The first brings the DOUBLE values to a DECIMAL representation.

The second brings the DECIMAL values to the UDT. Define the following:

 CREATE FUNCTION CDN_TO_US_DEC (DECIMAL(9,2)) RETURNS DECIMAL(9,2)

 SOURCE CDN_TO_US_DOUBLE (DOUBLE)

 CREATE FUNCTION US_DOLLAR (CANADIAN_DOLLAR) RETURNS US_DOLLAR

 SOURCE CDN_TO_US_DEC (DECIMAL())

Note that an invocation of the US_DOLLAR function as in US_DOLLAR(C1), where C1 is a column whose type

is Canadian dollars, has the same effect as invoking:

 US_DOLLAR (DECIMAL(CDN_TO_US_DOUBLE (DOUBLE (DECIMAL (C1)))))

That is, C1 (in Canadian dollars) is cast to decimal which in turn is cast to a double value that is passed

to the CDN_TO_US_DOUBLE function. This function accesses the exchange rate file and returns a double value

(representing the amount in U.S. dollars) that is cast to decimal, and then to U.S. dollars.

A function to convert German marks to U.S. dollars is similar to the example above:

 CREATE FUNCTION GERMAN_TO_US_DOUBLE(DOUBLE)

 RETURNS DOUBLE

 EXTERNAL NAME ’MYLIB/CURRENCIES(C_GER_US)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 NOT DETERMINISTIC

 CREATE FUNCTION GERMAN_TO_US_DEC (DECIMAL(9,2))

 RETURNS DECIMAL(9,2)

 SOURCE GERMAN_TO_US_DOUBLE(DOUBLE)

 CREATE FUNCTION US_DOLLAR(GERMAN_MARK) RETURNS US_DOLLAR

 SOURCE GERMAN_TO_US_DEC (DECIMAL())

Example: Comparisons involving UDTs

Suppose you want to know which products sold more in the US than in Canada and Germany for the

month of March, 1989 (3/89):

 SELECT US.PRODUCT_ITEM, US.TOTAL

 FROM US_SALES AS US, CANADIAN_SALES AS CDN, GERMAN_SALES AS GERMAN

 WHERE US.PRODUCT_ITEM = CDN.PRODUCT_ITEM

 AND US.PRODUCT_ITEM = GERMAN.PRODUCT_ITEM

 AND US.TOTAL > US_DOLLAR (CDN.TOTAL)

 AND US.TOTAL > US_DOLLAR (GERMAN.TOTAL)

 AND US.MONTH = 3

 AND US.YEAR = 1989

 AND CDN.MONTH = 3

 AND CDN.YEAR = 1989

 AND GERMAN.MONTH = 3

 AND GERMAN.YEAR = 1989

Because you cannot directly compare US dollars with Canadian dollars or German Marks, you use the

UDF to cast the amount in Canadian dollars to US dollars, and the UDF to cast the amount in German

Marks to US dollars. You cannot cast them all to DECIMAL and compare the converted DECIMAL values

because the amounts are not monetarily comparable as they are not in the same currency.

Example: Sourced UDFs involving UDTs

Suppose you have defined a sourced UDF on the built-in SUM function to support SUM on German

Marks:

 CREATE FUNCTION SUM (GERMAN_MARKS)

 RETURNS GERMAN_MARKS

 SOURCE SYSIBM.SUM (DECIMAL())

Chapter 10. Processing special data types 205

You want to know the total of sales in Germany for each product in the year of 1994. You want to obtain

the total sales in US dollars:

 SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))

 FROM GERMAN_SALES

 WHERE YEAR = 1994

 GROUP BY PRODUCT_ITEM

You cannot write SUM (US_DOLLAR (TOTAL)), unless you had defined a SUM function on US dollar in a

manner similar to the above.

Example: Assignments involving UDTs

Suppose you want to store the form filled out by a new applicant into the database. You have defined a

host variable containing the character string value used to represent the filled form:

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB(32K) hv_form;

 EXEC SQL END DECLARE SECTION;

 /* Code to fill hv_form */

 INSERT INTO APPLICATIONS

 VALUES (134523, ’Peter Holland’, CURRENT DATE, :hv_form)

You do not explicitly invoke the cast function to convert the character string to the UDT

personal.application_form. This is because DB2 allows you to assign instances of the source type of a

UDT to targets having that UDT.

Example: Assignments in dynamic SQL

If you want to use the same statement given in “Example: Assignments involving UDTs” in dynamic

SQL, you can use parameter markers as follows:

 EXEC SQL BEGIN DECLARE SECTION;

 long id;

 char name[30];

 SQL TYPE IS CLOB(32K) form;

 char command[80];

 EXEC SQL END DECLARE SECTION;

 /* Code to fill host variables */

 strcpy(command,"INSERT INTO APPLICATIONS VALUES");

 strcat(command,"(?, ?, CURRENT DATE, ?)");

 EXEC SQL PREPARE APP_INSERT FROM :command;

 EXEC SQL EXECUTE APP_INSERT USING :id, :name, :form;

You made use of DB2’s cast specification to tell DB2 that the type of the parameter marker is CLOB(32K),

a type that is assignable to the UDT column. Remember that you cannot declare a host variable of a UDT

type, since host languages do not support UDTs. Therefore, you cannot specify that the type of a

parameter marker is a UDT.

Example: Assignments involving different UDTs

Suppose you have defined two sourced UDFs on the built-in SUM function to support SUM on US and

Canadian dollars, similar to the UDF sourced on German Marks in “Example: Sourced UDFs involving

UDTs” on page 205:

 CREATE FUNCTION SUM (CANADIAN_DOLLAR)

 RETURNS CANADIAN_DOLLAR

 SOURCE SYSIBM.SUM (DECIMAL())

 CREATE FUNCTION SUM (US_DOLLAR)

 RETURNS US_DOLLAR

 SOURCE SYSIBM.SUM (DECIMAL())

206 iSeries: DB2 Universal Database for iSeries SQL Programming

Now suppose your supervisor requests that you maintain the annual total sales in US dollars of each

product and in each country, in separate tables:

 CREATE TABLE US_SALES_94

 (PRODUCT_ITEM INTEGER,

 TOTAL US_DOLLAR)

 CREATE TABLE GERMAN_SALES_94

 (PRODUCT_ITEM INTEGER,

 TOTAL US_DOLLAR)

 CREATE TABLE CANADIAN_SALES_94

 (PRODUCT_ITEM INTEGER,

 TOTAL US_DOLLAR)

 INSERT INTO US_SALES_94

 SELECT PRODUCT_ITEM, SUM (TOTAL)

 FROM US_SALES

 WHERE YEAR = 1994

 GROUP BY PRODUCT_ITEM

 INSERT INTO GERMAN_SALES_94

 SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))

 FROM GERMAN_SALES

 WHERE YEAR = 1994

 GROUP BY PRODUCT_ITEM

 INSERT INTO CANADIAN_SALES_94

 SELECT PRODUCT_ITEM, US_DOLLAR (SUM (TOTAL))

 FROM CANADIAN_SALES

 WHERE YEAR = 1994

 GROUP BY PRODUCT_ITEM

You explicitly cast the amounts in Canadian dollars and German Marks to US dollars since different

UDTs are not directly assignable to each other. You cannot use the cast specification syntax because UDTs

can only be cast to their own source type.

Example: Use of UDTs in UNION

Suppose you want to provide your American users with a query to show all the sales of every product of

your company:

 SELECT PRODUCT_ITEM, MONTH, YEAR, TOTAL

 FROM US_SALES

 UNION

 SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR (TOTAL)

 FROM CANADIAN_SALES

 UNION

 SELECT PRODUCT_ITEM, MONTH, YEAR, US_DOLLAR (TOTAL)

 FROM GERMAN_SALES

You cast Canadian dollars to US dollars and German Marks to US dollars because UDTs are union

compatible only with the same UDT. You must use the functional notation to cast between UDTs since

the cast specification only allows you to cast between UDTs and their source types.

Examples of using UDTs, UDFs, and LOBs

The following examples show how you can use UDTs, UDFs, and LOBs together in complex applications:

v “Example: Defining the UDT and UDFs” on page 208

v “Example: Using LOB function to populate the database” on page 209

v “Example: Using UDFs to query instances of UDTs” on page 209

v “Example: Using LOB locators to manipulate UDT instances” on page 209

Chapter 10. Processing special data types 207

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

Example: Defining the UDT and UDFs

Suppose you want to keep the electronic mail (e-mail) sent to your company in a table. Ignoring any

issues of privacy, you plan to write queries over such e-mail to find out their subject, how often your

e-mail service is used to receive customer orders, and so on. E-mail can be quite large, and it has a

complex internal structure (a sender, a receiver, the subject, date, and the e-mail content). Therefore, you

decide to represent the e-mail by means of a UDT whose source type is a large object. You define a set of

UDFs on your e-mail type, such as functions to extract the subject of the e-mail, the sender, the date, and

so on. You also define functions that can perform searches on the content of the e-mail. You do the above

using the following CREATE statements:

 CREATE DISTINCT TYPE E_MAIL AS BLOB (1M)

 CREATE FUNCTION SUBJECT (E_MAIL)

 RETURNS VARCHAR (200)

 EXTERNAL NAME ’LIB/PGM(SUBJECT)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 CREATE FUNCTION SENDER (E_MAIL)

 RETURNS VARCHAR (200)

 EXTERNAL NAME ’LIB/PGM(SENDER)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 CREATE FUNCTION RECEIVER (E_MAIL)

 RETURNS VARCHAR (200)

 EXTERNAL NAME ’LIB/PGM(RECEIVER)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 CREATE FUNCTION SENDING_DATE (E_MAIL)

 RETURNS DATE CAST FROM VARCHAR(10)

 EXTERNAL NAME ’LIB/PGM(SENDING_DATE)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 CREATE FUNCTION CONTENTS (E_MAIL)

 RETURNS BLOB (1M)

 EXTERNAL NAME ’LIB/PGM(CONTENTS)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

 DETERMINISTIC

 NO EXTERNAL ACTION

 CREATE FUNCTION CONTAINS (E_MAIL, VARCHAR (200))

 RETURNS INTEGER

 EXTERNAL NAME ’LIB/PGM(CONTAINS)’

 LANGUAGE C

 PARAMETER STYLE DB2SQL

 NO SQL

208 iSeries: DB2 Universal Database for iSeries SQL Programming

DETERMINISTIC

 NO EXTERNAL ACTION

 CREATE TABLE ELECTRONIC_MAIL

 (ARRIVAL_TIMESTAMP TIMESTAMP,

 MESSAGE E_MAIL)

Example: Using LOB function to populate the database

Suppose you populate your table by transferring your e-mail that is maintained in files into DB2. Run the

following INSERT statement multiple times with different values of the HV_EMAIL_FILE until you have

stored all your e-mail:

 EXEC SQL BEGIN DECLARE SECTION

 SQL TYPE IS BLOB_FILE HV_EMAIL_FILE;

 EXEC SQL END DECLARE SECTION

 strcpy (HV_EMAIL_FILE.NAME, "/u/mail/email/mbox");

 HV_EMAIL_FILE.NAME_LENGTH = strlen(HV_EMAIL_FILE.NAME);

 HV_EMAIL_FILE.FILE_OPTIONS = 2;

 EXEC SQL INSERT INTO ELECTRONIC_MAIL

 VALUES (CURRENT TIMESTAMP, :hv_email_file);

All the function provided by DB2 LOB support is applicable to UDTs whose source type are LOBs.

Therefore, you have used LOB file reference variables to assign the contents of the file into the UDT

column. You have not used the cast function to convert values of BLOB type into your e-mail type. This

is because DB2 let you assign values of the source type of a distinct type to targets of the distinct type.

Example: Using UDFs to query instances of UDTs

Suppose you need to know how much e-mail was sent by a specific customer regarding customer orders

and you have the e-mail address of your customers in the customers table.

 SELECT COUNT (*)

 FROM ELECTRONIC_MAIL AS EMAIL, CUSTOMERS

 WHERE SUBJECT (EMAIL.MESSAGE) = ’customer order’

 AND CUSTOMERS.EMAIL_ADDRESS = SENDER (EMAIL.MESSAGE)

 AND CUSTOMERS.NAME = ’Customer X’

You have used the UDFs defined on the UDT in this SQL query since they are the only means to

manipulate the UDT. In this sense, your UDT e-mail is completely encapsulated. Its internal

representation and structure are hidden and can only be manipulated by the defined UDFs. These UDFs

know how to interpret the data without the need to expose its representation.

Suppose you need to know the details of all the e-mail your company received in 1994 that had to do

with the performance of your products in the marketplace.

 SELECT SENDER (MESSAGE), SENDING_DATE (MESSAGE), SUBJECT (MESSAGE)

 FROM ELECTRONIC_MAIL

 WHERE CONTAINS (MESSAGE,

 ’"performance" AND "products" AND "marketplace"’) = 1

You have used the contains UDF which is capable of analyzing the contents of the message searching for

relevant keywords or synonyms.

Example: Using LOB locators to manipulate UDT instances

Suppose you want to obtain information about a specific e-mail without having to transfer the entire

e-mail into a host variable in your application program. (Remember that an e-mail can be quite large.)

Since your UDT is defined as a LOB, you can use LOB locators for that purpose:

 EXEC SQL BEGIN DECLARE SECTION

 long hv_len;

 char hv_subject[200];

Chapter 10. Processing special data types 209

char hv_sender[200];

 char hv_buf[4096];

 char hv_current_time[26];

 SQL TYPE IS BLOB_LOCATOR hv_email_locator;

 EXEC SQL END DECLARE SECTION

 EXEC SQL SELECT MESSAGE

 INTO :hv_email_locator

 FROM ELECTRONIC MAIL

 WHERE ARRIVAL_TIMESTAMP = :hv_current_time;

 EXEC SQL VALUES (SUBJECT (E_MAIL(:hv_email_locator))

 INTO :hv_subject;

 code that checks if the subject of the e_mail is relevant

 if the e_mail is relevant, then...............................

 EXEC SQL VALUES (SENDER (CAST (:hv_email_locator AS E_MAIL)))

 INTO :hv_sender;

Because your host variable is of type BLOB locator (the source type of the UDT), you have explicitly

converted the BLOB locator to your UDT, whenever it was used as an argument of a UDF defined on the

UDT.

Using DataLinks

The DataLink data type is one of the basic building blocks for extending the types of data that can be

stored in database files. The idea of a DataLink is that the actual data stored in the column is only a

pointer to the object. This object can be anything, an image file, a voice recording, a text file, and so on.

The method used for resolving to the object is to store a Uniform Resource Locator (URL). This means

that a row in a table can be used to contain information about the object in traditional data types, and the

object itself can be referenced using the DataLink data type. The user can use SQL scalar functions to get

back the path to the object and the server on which the object is stored (see Built-in functions in the SQL

Reference). With the DataLink data type, there is a fairly loose relationship between the row and the

object. For instance, deleting a row will sever the relationship to the object referenced by the DataLink,

but the object itself might not be deleted.

A table created with a DataLink column can be used to hold information about an object, without

actually containing the object itself. This concept gives the user much more flexibility in the types of data

that can be managed using atable. If, for instance, the user has thousands of video clips stored in the

integrated file system of their server, they may want to use an SQL table to contain information about

these video clips. But since the user already has the objects stored in a directory, they only want the SQL

table to contain references to the objects, not contain the actual bytes of storage. A good solution is to use

DataLinks. The SQL table uses traditional SQL data types to contain information about each clip, such as

title, length, date, and so on. But the clip itself is referenced using a DataLink column. Each row in the

table stores a URL for the object and an optional comment. Then an application that is working with the

clips can retrieve the URL using SQL interfaces, and then use a browser or other playback software to

work with the URL and display the video clip.

There are several advantages to using this technique:

v The integrated file system can store any type of stream file.

v The integrated file system can store extremely large objects, that does not fit into a character column,

or perhaps even a LOB column.

v The hierarchical nature of the integrated file system is well-suited to organizing and working with the

stream file objects.

v By leaving the bytes of the object outside the database and in the integrated file system, applications

can achieve better performance by allowing the SQL runtime engine to handle queries and reports, and

allowing the file system to handle streaming of video, displaying images, text, and so on.

210 iSeries: DB2 Universal Database for iSeries SQL Programming

Using DataLinks also gives control over the objects while they are in ″linked″ status. A DataLink column

can be created such that the referenced object cannot be deleted, moved, or renamed while there is a row

in the SQL table that references that object. This object are considered linked. Once the row containing

that reference is deleted, the object is unlinked. To understand this concept fully, one should know the

levels of control that can be specified when creating a DataLink column. Refer to the SQL Reference for

the exact syntax used when creating DataLink columns.

For more details on DataLinks, see the following sections:

v “NO LINK CONTROL”

v “FILE LINK CONTROL (with File System Permissions)”

v “FILE LINK CONTROL (with Database Permissions)”

v “Commands used for working with DataLinks”

NO LINK CONTROL

When a column is created with NO LINK CONTROL, there is no linking that takes place when rows are

added to the SQL table. The URL is verified to be syntactically correct, but there is no check to make sure

that the server is accessible, or that the file even exists.

FILE LINK CONTROL (with File System Permissions)

When the DataLink column is created as FILE LINK CONTROL with file system (FS) permissions, the

system will verify that any DataLink value is a valid URL, with a valid server name and file name. The

file must exist at the time that row is being inserted into the SQL table. When the object is found, it will

be marked as linked. This means that the object cannot be moved, deleted, or renamed during the time

that it is linked. Also, an object cannot be linked more than once. If the server name portion of the URL

specifies a remote system, that system must be accessible. If a row containing a DataLink value is deleted,

the object is unlinked. If a DataLink value is updated to a different value, the old object is unlinked, and

the new object is linked.

The integrated file system is still responsible for managing permissions for the linked object. The

permissions are not modified during the link or unlink processes. This option provides control of the

object’s existence for the duration of time that it is linked.

FILE LINK CONTROL (with Database Permissions)

When the DataLink column is create as FILE LINK CONTROL with database permissions, the URL is

verified, and all existing permissions to the object are removed. The ownership of the object is changed to

a special system-supplied user profile. During the time that the object is linked, the only access to the

object is by obtaining the URL from the SQL table that has the object linked. This is handled by using a

special access token that is appended to the URL returned by SQL. Without the access token, all attempts

to access the object will fail with an authority violation. If the URL with the access token is retrieved from

the SQL table by normal means (FETCH, SELECT INTO, and so on.) the file system filter will validate the

access token and allow the access to the object.

This option provides the control of preventing updates to the linked object for users trying to access the

object by direct means. Since the only access to the object is by obtaining the access token from an SQL

operation, an administrator can effectively control access to the linked objects by using the database

permissions to the SQL table that contains the DataLink column.

Commands used for working with DataLinks

Support for the DataLink data type can be broken down into 3 different components:

1. The DB2 database support has a data type called DATALINK. This can be specified on SQL

statements such as CREATE TABLE and ALTER TABLE. The column cannot have any default other

than NULL. Access to the data must be using SQL interfaces. This is because the DATALINK itself is

Chapter 10. Processing special data types 211

not compatible with any host variable type. SQL scalar functions can be used to retrieve the

DATALINK value in character form. There is a DLVALUE scalar function that must be used in SQL to

INSERT and UPDATE the values in the column.

2. The DataLink File Manager (DLFM) is the component that maintains the link status for the files on a

server, and keeps track of meta-data for each file. This code handles linking, unlinking, and

commitment control issues. An important aspect of DataLinks is that the DLFM need not be on the

same physical system as the SQL table that contains the DataLink column. So an SQL table can link

an object that resides in either the same system’s integrated file system, or a remote server’s

integrated file system.

3. The DataLink filter must be run when the file system tries operations against files that are in

directories designated as containing linked objects. This component determines if the file is linked,

and optionally, if the user is authorized to access the file. If the file name includes an access token, the

token will be verified. Since there is extra overhead in this filter process, it is only run when the

accessed object exists in one of the directories within a DataLink ″prefix’. See the discussion below on

prefixes.

When working with DataLinks, there are several steps that must be taken to properly configure the

system:

v TCP/IP must be configured on any systems that are going to be used when working with DataLinks.

This includes the systems on which the SQL tables with DataLink columns are going to be created, as

well as the systems that will contain the objects to be linked. In most cases, this will be the same

system. Since the URL that is used to reference the object contains a TCP/IP server name, this name

must be recognized by the system that is going to contain the DataLink. The command CFGTCP can be

used to configure the TCP/IP names, or to register a TCP/IP name server.

v The system that contains the SQL tables must have the Relational Database Directory updated to reflect

the local database system, and any optional remote systems. The command WRKRDBDIRE can be used

to add or modify information in this directory. For consistency, it is recommended that the same names

be used as the TCP/IP server name and the Relational Database name.

v The DLFM server must be started on any systems that will contain objects to be linked. The command

STRTCPSVR *DLFM can be used to start the DLFM server. The DLFM server can be ended by using

the CL command ENDTCPSVR *DLFM.

Once the DLFM has been started, there are some steps needed to configure the DLFM. These DLFM

functions are available via an executable script that can be entered from the QShell interface. To get to the

interactive shell interface, use the CL command QSH. This will open a command entry screen from which

you can enter the DLFM script commands. The script command dfmadmin -help can be used to display

help text and syntax diagrams. For the most commonly used functions, CL commands have also been

provided. Using the CL commands, most or all of the DLFM configuration can be accomplished without

using the script interface. Depending on your preferences, you can choose to use either the script

commands from the QSH command entry screen or the CL commands from the CL command entry

screen.

Since these functions are meant for a system administrator or a database administrator, they all require

the *IOSYSCFG special authority.

Adding a prefix - A prefix is a path or directory that will contain objects to be linked. When setting up

the DLFM on a system, the administrator must add any prefixes that will be used for DataLinks. The

script command dfmadmin -add_prefix is used to add prefixes. The CL command to add prefixes is

ADDPFXDLFM.

For instance, on server TESTSYS1, there is a directory called /mydir/datalinks/ that contains the objects

that will be linked. The administrator uses the command ADDPFXDLFM PREFIX((’/mydir/datalinks/’))

to add the prefix. The following links for URLs are valid since their path beings with a valid prefix:

212 iSeries: DB2 Universal Database for iSeries SQL Programming

http://TESTSYS1/mydir/datalinks/videos/file1.mpg

or

file://TESTSYS1/mydir/datalinks/text/story1.txt

It is also possible to remove a prefix using the script command dfmadmin -del_prefix. This is not a

commonly used function since it can only be run if there are no linked objects anywhere in the directory

structure contained within the prefix name.

Notes:

1. The following directories, or any of their subdirectories, should not be used as prefixes for DataLinks:

v /QIBM

v /QReclaim

v /QSR

v /QFPNWSSTG
2. Additionally, common base directories such as the following should not be used unless the prefix is a

subdirectory within one of the base directories:

v /home

v /dev

v /bin

v /etc

v /tmp

v /usr

v /lib

Adding a Host Database - A host database is a relational database system from which a link request

originates. If the DLFM is on the same system as the SQL tables that will contain the DataLinks, then

only the local database name needs to be added. If the DLFM will have link requests coming from remote

systems, then all of their names must be registered with the DLFM. The script command to add a host

database is dfmadmin -add_db and the CL command is ADDHDBDLFM. This function also requires that

the libraries containing the SQL tables also be registered.

For instance, on server TESTSYS1, where you have already added the /mydir/datalinks/ prefix, you

want SQL tables on the local system in either library TESTDB or PRODDB to be allowed to link objects

on this server. Use the following command:

ADDHDBDLFM HOSTDBLIB((TESTDB) (PRODDB)) HOSTDB(TESTSYS1)

Once the DLFM has been started, and the prefixes and host database names have been registered, you

can begin linking objects in the file system.

Chapter 10. Processing special data types 213

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

214 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 11. Using SQL in different environments

This topic discusses the many ways of using SQL.

“Using a Cursor”
Find out information about using a cursor in your SQL statements.

“Dynamic SQL Applications” on page 226
You can use dynamic SQL to allow an application to define and run SQL statements at program run

time.

“Use of dynamic SQL through client interfaces” on page 243
Find out more information about using SQL through different interfaces.

“Using Interactive SQL” on page 244
Issue SQL statements interactive through the Interactive SQL environment.

“Using the SQL Statement Processor” on page 255
Run your statements using the statement processor from the RUN SQL STATEMENT command.

Using a Cursor

When SQL runs a select statement, the resulting rows comprise the result table. A cursor provides a way

to access a result table. It is used within an SQL program to maintain a position in the result table. SQL

uses a cursor to work with the rows in the result table and to make them available to your program.

Your program can have several cursors, although each must have a unique name.

Statements related to using a cursor include the following:

v A DECLARE CURSOR statement to define and name the cursor and specify the rows to be retrieved

with the embedded select statement.

v OPEN and CLOSE statements to open and close the cursor for use within the program. The cursor

must be opened before any rows can be retrieved.

v A FETCH statement to retrieve rows from the cursor’s result table or to position the cursor on another

row.

v An UPDATE ... WHERE CURRENT OF statement to update the current row of a cursor.

v A DELETE ... WHERE CURRENT OF statement to delete the current row of a cursor.

For a complete discussion of these statements, see the SQL Reference book.

See the following topics for more information about cursors:

v “Types of cursors”

v “Example of using a cursor” on page 217

v “Using the multiple-row FETCH statement” on page 222

v “Unit of work and open cursors” on page 226

Note: See “Code disclaimer” on page 2 for information pertaining to code examples.

Types of cursors

SQL supports serial and scrollable cursors. The type of cursor determines the positioning methods which

can be used with the cursor. For more information, see:

© Copyright IBM Corp. 1998, 2004 215

v “Serial cursor”

v “Scrollable cursor”

Serial cursor

A serial cursor is one defined without the SCROLL keyword.

For a serial cursor, each row of the result table can be fetched only once per OPEN of the cursor. When

the cursor is opened, it is positioned before the first row in the result table. When a FETCH is issued, the

cursor is moved to the next row in the result table. That row is then the current row. If host variables are

specified (with the INTO clause on the FETCH statement), SQL moves the current row’s contents into

your program’s host variables.

This sequence is repeated each time a FETCH statement is issued until the end-of-data (SQLCODE = 100)

is reached. When you reach the end-of-data, close the cursor. You cannot access any rows in the result

table after you reach the end-of-data. To use a serial cursor again, you must first close the cursor and

then re-issue the OPEN statement. You can never back up using a serial cursor.

Scrollable cursor

For a scrollable cursor, the rows of the result table can be fetched many times. The cursor is moved

through the result table based on the position option specified on the FETCH statement. When the cursor

is opened, it is positioned before the first row in the result table. When a FETCH is issued, the cursor is

positioned to the row in the result table that is specified by the position option. That row is then the

current row. If host variables are specified (with the INTO clause on the FETCH statement), SQL moves

the current row’s contents into your program’s host variables. Host variables cannot be specified for the

BEFORE and AFTER position options.

This sequence is repeated each time a FETCH statement is issued. The cursor does not need to be closed

when an end-of-data or beginning-of-data condition occurs. The position options enable the program to

continue fetching rows from the table.

The following scroll options are used to position the cursor when issuing a FETCH statement. These

positions are relative to the current cursor location in the result table.

 NEXT Positions the cursor on the next row. This is the default if no position is

specified.

PRIOR Positions the cursor on the previous row.

FIRST Positions the cursor on the first row.

LAST Positions the cursor on the last row.

BEFORE Positions the cursor before the first row.

AFTER Positions the cursor after the last row.

CURRENT Does not change the cursor position.

RELATIVE n Evaluates a host variable or integer n in relationship to the cursor’s current

position. For example, if n is -1, the cursor is positioned on the previous row of

the result table. If n is +3, the cursor is positioned three rows after the current

row.

For a scrollable cursor, the end of the table can be determined by the following:

 FETCH AFTER FROM C1

Once the cursor is positioned at the end of the table, the program can use the PRIOR or RELATIVE scroll

options to position and fetch data starting from the end of the table.

216 iSeries: DB2 Universal Database for iSeries SQL Programming

Example of using a cursor

Suppose your program examines data about people in department D11. The following examples show the

SQL statements you would include in a program to define and use a serial and a scrollable cursor. These

cursors can be used to obtain information about the department from the CORPDATA.EMPLOYEE table.

For the serial cursor example, the program processes all of the rows from the table, updating the job for

all members of department D11 and deleting the records of employees from the other departments.

 Table 31. A Serial Cursor Example

Serial Cursor SQL Statement Described in Section

EXEC SQL

 DECLARE THISEMP CURSOR FOR

 SELECT EMPNO, LASTNAME,

 WORKDEPT, JOB

 FROM CORPDATA.EMPLOYEE

 FOR UPDATE OF JOB

END-EXEC.

“Step 1: Define the cursor” on page 218.

EXEC SQL

 OPEN THISEMP

END-EXEC.

“Step 2: Open the cursor” on page 219.

EXEC SQL

 WHENEVER NOT FOUND

 GO TO CLOSE-THISEMP

END-EXEC.

“Step 3: Specify what to do when

end-of-data is reached” on page 220.

EXEC SQL

 FETCH THISEMP

 INTO :EMP-NUM, :NAME2,

 :DEPT, :JOB-CODE

END-EXEC.

“Step 4: Retrieve a row using a cursor”

on page 220.

... for all employees

 in department D11, update

 the JOB value:

EXEC SQL

 UPDATE CORPDATA.EMPLOYEE

 SET JOB = :NEW-CODE

 WHERE CURRENT OF THISEMP

END-EXEC.

... then print the row.

“Step 5a: Update the current row” on

page 221.

... for other employees,

 delete the row:

EXEC SQL

 DELETE FROM CORPDATA.EMPLOYEE

 WHERE CURRENT OF THISEMP

END-EXEC.

“Step 5b: Delete the current row” on page

221.

Branch back to fetch and process the next row.

CLOSE-THISEMP.

EXEC SQL

 CLOSE THISEMP

END-EXEC.

“Step 6: Close the cursor” on page 221.

For the scrollable cursor example, the program uses the RELATIVE position option to obtain a

representative sample of salaries from department D11.

Chapter 11. Using SQL in different environments 217

Table 32. Scrollable Cursor Example

Scrollable Cursor SQL Statement Described in Section

EXEC SQL

 DECLARE THISEMP DYNAMIC SCROLL CURSOR FOR

 SELECT EMPNO, LASTNAME,

 SALARY

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’

END-EXEC.

“Step 1: Define the cursor.”

EXEC SQL

 OPEN THISEMP

END-EXEC.

“Step 2: Open the cursor” on page 219.

EXEC SQL

 WHENEVER NOT FOUND

 GO TO CLOSE-THISEMP

END-EXEC.

“Step 3: Specify what to do when end-of-data is

reached” on page 220.

...initialize program summation

 salary variable

EXEC SQL

 FETCH RELATIVE 3 FROM THISEMP

 INTO :EMP-NUM, :NAME2,

 :JOB-CODE

END-EXEC.

 ...add the current salary to

 program summation salary

 ...branch back to fetch and

 process the next row.

“Step 4: Retrieve a row using a cursor” on page

220.

...calculate the average

 salary

CLOSE-THISEMP.

EXEC SQL

 CLOSE THISEMP

END-EXEC.

“Step 6: Close the cursor” on page 221.

Step 1: Define the cursor

To define a result table to be accessed with a cursor, use the DECLARE CURSOR statement.

The DECLARE CURSOR statement names a cursor and specifies a select-statement. The select-statement

defines a set of rows that, conceptually, make up the result table. For a serial cursor, the statement looks

like this (the FOR UPDATE OF clause is optional):

EXEC SQL

 DECLARE cursor-name CURSOR FOR

 SELECT column-1, column-2 ,...

 FROM table-name , ...

 FOR UPDATE OF column-2 ,...

END-EXEC.

For a scrollable cursor, the statement looks like this (the WHERE clause is optional):

EXEC SQL

 DECLARE cursor-name SCROLL CURSOR FOR

 SELECT column-1, column-2 ,...

 FROM table-name ,...

 WHERE column-1 = expression ...

END-EXEC.

218 iSeries: DB2 Universal Database for iSeries SQL Programming

The select-statements shown here are rather simple. However, you can code several other types of clauses

in a select-statement within a DECLARE CURSOR statement for a serial and a scrollable cursor.

If you intend to update any columns in any or all of the rows of the identified table (the table named in

the FROM clause), include the FOR UPDATE OF clause. It names each column you intend to update. If

you do not specify the names of columns, and you specify either the ORDER BY clause or FOR READ

ONLY clause, a negative SQLCODE is returned if an update is attempted. If you do not specify the FOR

UPDATE OF clause, the FOR READ ONLY clause, the ORDER BY clause, and the result table is not

read-only and the cursor is not scrollable, you can update any of the columns of the specified table.

You can update a column of the identified table even though it is not part of the result table. In this case,

you do not need to name the column in the SELECT statement. When the cursor retrieves a row (using

FETCH) that contains a column value you want to update, you can use UPDATE ... WHERE CURRENT

OF to update the row.

For example, assume that each row of the result table includes the EMPNO, LASTNAME, and

WORKDEPT columns from the CORPDATA.EMPLOYEE table. If you want to update the JOB column

(one of the columns in each row of the CORPDATA.EMPLOYEE table), the DECLARE CURSOR

statement should include FOR UPDATE OF JOB ... even though JOB is omitted from the SELECT

statement.

The result table and cursor are read-only if any of the following are true:

v The first FROM clause identifies more than one table or view.

v The first FROM clause identifies a read-only view.

v The first FROM clause identifies a user-defined table function.

v The first SELECT clause specifies the keyword DISTINCT.

v The outer subselect contains a GROUP BY clause.

v The outer subselect contains a HAVING clause.

v The first SELECT clause contains a column function.

v The select-statement contains a subquery such that the base object of the outer subselect and of the

subquery is the same table.

v The select-statement contains a UNION or UNION ALL operator.

v The select-statement contains an ORDER BY clause, and the SENSITIVE keyword and FOR UPDATE

OF clause are not specified.

v The select-statement includes a FOR READ ONLY clause.

v The SCROLL keyword is specified, a FOR UPDATE OF clause is not specified, and the SENSITIVE

keyword is not specified.

v The select-list includes a DataLink column and a FOR UPDATE OF clause is not specified.

v The first subselect requires a temporary result table.

v The select-statement includes a FETCH FIRST n ROWS ONLY.

Step 2: Open the cursor

To begin processing the rows of the result table, issue the OPEN statement. When your program issues

the OPEN statement, SQL processes the select-statement within the DECLARE CURSOR statement to

identify a set of rows, called a result table, using the current value of any host variables specified in the

select-statement. A result table can contain zero, one, or many rows, depending on the extent to which

the search condition is satisfied. The OPEN statement looks like this:

EXEC SQL

 OPEN cursor-name

END-EXEC.

Chapter 11. Using SQL in different environments 219

|
|
|
|
|
|

Step 3: Specify what to do when end-of-data is reached

To find out when the end of the result table is reached, test the SQLCODE field for a value of 100 or test

the SQLSTATE field for a value of '02000' (that is, end-of-data). This condition occurs when the FETCH

statement has retrieved the last row in the result table and your program issues a subsequent FETCH. For

example:

...

IF SQLCODE =100 GO TO DATA-NOT-FOUND.

or

IF SQLSTATE =’02000’ GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER statement. Using WHENEVER NOT FOUND

can result in a branch to another part of your program, where a CLOSE statement is issued. The

WHENEVER statement looks like this:

EXEC SQL

 WHENEVER NOT FOUND GO TO symbolic-address

END-EXEC.

Your program should anticipate an end-of-data condition whenever a cursor is used to fetch a row, and

should be prepared to handle this situation when it occurs.

When you are using a serial cursor and the end-of-data is reached, every subsequent FETCH statement

returns the end-of-data condition. You cannot position the cursor on rows that are already processed. The

CLOSE statement is the only operation that can be performed on the cursor.

When you are using a scrollable cursor and the end-of-data is reached, the result table can still process

more data. You can position the cursor anywhere in the result table using a combination of the position

options. You do not need to CLOSE the cursor when the end-of-data is reached.

Step 4: Retrieve a row using a cursor

To move the contents of a selected row into your program’s host variables, use the FETCH statement. The

SELECT statement within the DECLARE CURSOR statement identifies rows that contain the column

values your program wants. However, SQL does not retrieve any data for your application program until

the FETCH statement is issued.

When your program issues the FETCH statement, SQL uses the current cursor position as a starting point

to locate the requested row in the result table. This changes that row to the current row. If an INTO

clause was specified, SQL moves the current row’s contents into your program’s host variables. This

sequence is repeated each time the FETCH statement is issued.

SQL maintains the position of the current row (that is, the cursor points to the current row) until the next

FETCH statement for the cursor is issued. The UPDATE statement does not change the position of the

current row within the result table, although the DELETE statement does.

The serial cursor FETCH statement looks like this:

EXEC SQL

 FETCH cursor-name

 INTO :host variable-1[, :host variable-2] ...

END-EXEC.

The scrollable cursor FETCH statement looks like this:

EXEC SQL

 FETCH RELATIVE integer

 FROM cursor-name

 INTO :host variable-1[, :host variable-2] ...

END-EXEC.

220 iSeries: DB2 Universal Database for iSeries SQL Programming

Step 5a: Update the current row

When your program has positioned the cursor on a row, you can update its data by using the UPDATE

statement with the WHERE CURRENT OF clause. The WHERE CURRENT OF clause specifies a cursor

that points to the row you want to update. The UPDATE ... WHERE CURRENT OF statement looks like

this:

EXEC SQL

 UPDATE table-name

 SET column-1 = value [, column-2 = value] ...

 WHERE CURRENT OF cursor-name

END-EXEC.

When used with a cursor, the UPDATE statement:

v Updates only one row—the current row

v Identifies a cursor that points to the row to be updated

v Requires that the columns updated be named previously in the FOR UPDATE OF clause of the

DECLARE CURSOR statement, if an ORDER BY clause was also specified

After you update a row, the cursor’s position remains on that row (that is, the current row of the cursor

does not change) until you issue a FETCH statement for the next row.

Step 5b: Delete the current row

When your program has retrieved the current row, you can delete the row by using the DELETE

statement. To do this, you issue a DELETE statement designed for use with a cursor; the WHERE

CURRENT OF clause specifies a cursor that points to the row you want to delete. The DELETE ...

WHERE CURRENT OF statement looks like this:

EXEC SQL

 DELETE FROM table-name

 WHERE CURRENT OF cursor-name

END-EXEC.

When used with a cursor, the DELETE statement:

v Deletes only one row—the current row

v Uses the WHERE CURRENT OF clause to identify a cursor that points to the row to be deleted

After you delete a row, you cannot update or delete another row using that cursor until you issue a

FETCH statement to position the cursor.

“Removing rows from a table using the DELETE statement” on page 83 shows you how to use the

DELETE statement to delete all rows that meet a specific search condition. You can also use the FETCH

and DELETE ... WHERE CURRENT OF statements when you want to obtain a copy of the row, examine

it, then delete it.

Step 6: Close the cursor

If you processed the rows of a result table for a serial cursor, and you want to use the cursor again, issue

a CLOSE statement to close the cursor prior to re-opening it.

EXEC SQL

 CLOSE cursor-name

END-EXEC.

If you processed the rows of a result table and you do not want to use the cursor again, you can let the

system close the cursor. The system automatically closes the cursor when:

v A COMMIT without HOLD statement is issued and the cursor is not declared using the WITH HOLD

clause.

v A ROLLBACK without HOLD statement is issued.

v The job ends.

Chapter 11. Using SQL in different environments 221

v The activation group ends and CLOSQLCSR(*ENDACTGRP) was specified on the precompile.

v The first SQL program in the call stack ends and neither CLOSQLCSR(*ENDJOB) or

CLOSQLCSR(*ENDACTGRP) was specified when the program was precompiled.

v The connection to the application server is ended using the DISCONNECT statement.

v The connection to the application server was released and a successful COMMIT occurred.

v An *RUW CONNECT occurred.

Because an open cursor still holds locks on referred-to-tables or views, you should explicitly close any

open cursors as soon as they are no longer needed.

Using the multiple-row FETCH statement

The multiple-row FETCH statement can be used to retrieve multiple rows from a table or view with a

single FETCH. The program controls the blocking of rows by the number of rows requested on the

FETCH statement (OVRDBF has no effect). The maximum number of rows that can be requested on a

single fetch call is 32767. Once the data is retrieved, the cursor is positioned on the last row retrieved.

There are two ways to define the storage where fetched rows are placed: a host structure array or a row

storage area with an associated descriptor. Both methods can be coded in all of the languages supported

by the SQL precompilers, with the exception of the host structure array in REXX. Refer to the Embedded

SQL Programming information for details on the programming languages. Both forms of the

multiple-row FETCH statement allow the application to code a separate indicator array. The indicator

array should contain one indicator for each host variable that is null capable.

The multiple-row FETCH statement can be used with both serial and scrollable cursors. The operations

used to define, open, and close a cursor for a multiple-row FETCH remain the same. Only the FETCH

statement changes to specify the number of rows to retrieve and the storage where the rows are placed.

After each multiple-row FETCH, information is returned to the program through the SQLCA. In addition

to the SQLCODE and SQLSTATE fields, the SQLERRD provides the following information:

v SQLERRD3 contains the number of rows retrieved on the multiple-row FETCH statement. If

SQLERRD3 is less than the number of rows requested, then an error or end-of-data condition occurred.

v SQLERRD4 contains the length of each row retrieved.

v SQLERRD5 contains an indication that the last row in the table was fetched. It can be used to detect

the end-of-data condition in the table being fetched when the cursor does not have immediate

sensitivity to updates. Cursors which do have immediate sensitivity to updates should continue

fetching until an SQLCODE +100 is received to detect an end-of-data condition.

For more information and examples, see the following sections:

v “Multiple-row FETCH using a host structure array”

v “Multiple-row FETCH using a row storage area” on page 224

Multiple-row FETCH using a host structure array

To use the multiple-row FETCH with the host structure array, the application must define a host structure

array that can be used by SQL. Each language has its own conventions and rules for defining a host

structure array. Host structure arrays can be defined by using variable declarations or by using compiler

directives to retrieve External File Descriptions (such as the COBOL COPY directive).

The host structure array consists of an array of structures. Each structure corresponds to one row of the

result table. The first structure in the array corresponds to the first row, the second structure in the array

corresponds to the second row, and so on. SQL determines the attributes of elementary items in the host

structure array based on the declaration of the host structure array. To maximize performance, the

attributes of the items that make up the host structure array should match the attributes of the columns

being retrieved.

Consider the following COBOL example:

222 iSeries: DB2 Universal Database for iSeries SQL Programming

EXEC SQL INCLUDE SQLCA

 END-EXEC.

...

 01 TABLE-1.

 02 DEPT OCCURS 10 TIMES.

 05 EMPNO PIC X(6).

 05 LASTNAME.

 49 LASTNAME-LEN PIC S9(4) BINARY.

 49 LASTNAME-TEXT PIC X(15).

 05 WORKDEPT PIC X(3).

 05 JOB PIC X(8).

 01 TABLE-2.

 02 IND-ARRAY OCCURS 10 TIMES.

 05 INDS PIC S9(4) BINARY OCCURS 4 TIMES.

...

 EXEC SQL

 DECLARE D11 CURSOR FOR

 SELECT EMPNO, LASTNAME, WORKDEPT, JOB

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = "D11"

 END-EXEC.

...

 EXEC SQL

 OPEN D11

 END-EXEC.

 PERFORM FETCH-PARA UNTIL SQLCODE NOT EQUAL TO ZERO.

 ALL-DONE.

 EXEC SQL CLOSE D11 END-EXEC.

...

 FETCH-PARA.

 EXEC SQL WHENEVER NOT FOUND GO TO ALL-DONE END-EXEC.

 EXEC SQL FETCH D11 FOR 10 ROWS INTO :DEPT :IND-ARRAY

 END-EXEC.

...

In this example, a cursor was defined for the CORPDATA.EMPLOYEE table to select all rows where the

WORKDEPT column equals 'D11'. The result table contains eight rows. The DECLARE CURSOR and

OPEN statements do not have any special syntax when they are used with a multiple-row FETCH

statement. Another FETCH statement that returns a single row against the same cursor can be coded

elsewhere in the program. The multiple-row FETCH statement is used to retrieve all of the rows in the

result table. Following the FETCH, the cursor position remains on the last row retrieved.

The host structure array DEPT and the associated indicator array IND-ARRAY are defined in the

application. Both arrays have a dimension of ten. The indicator array has an entry for each column in the

result table.

The attributes of type and length of the DEPT host structure array elementary items match the columns

that are being retrieved.

When the multiple-row FETCH statement has successfully completed, the host structure array contains

the data for all eight rows. The indicator array, IND_ARRAY, contains zeros for every column in every

row because no NULL values were returned.

The SQLCA that is returned to the application contains the following information:

Chapter 11. Using SQL in different environments 223

v SQLCODE contains 0

v SQLSTATE contains '00000'

v SQLERRD3 contains 8, the number of rows fetched

v SQLERRD4 contains 34, the length of each row

v SQLERRD5 contains +100, indicating the last row in the result table is in the block

See Appendix B of the SQL Reference book for a description of the SQLCA.

Multiple-row FETCH using a row storage area

The application must define a row storage area and an associated description area before the application

can use a multiple-row FETCH with a row storage area. The row storage area is a host variable defined

in the application program. The row storage area contains the results of the multiple-row FETCH. A row

storage area can be a character variable with enough bytes to hold all of the rows requested on the

multiple-row FETCH.

An SQLDA that contains the SQLTYPE and SQLLEN for each returned column is defined by the

associated descriptor used on the row storage area form of the multiple-row FETCH. The information

provided in the descriptor determines the data mapping from the database to the row storage area. To

maximize performance, the attribute information in the descriptor should match the attributes of the

columns retrieved.

See Appendix C of the SQL Reference book for a description of the SQLDA.

Consider the following PL/I example:

 +....1....+....2....+....3....+....4....+....5....+....6....+....7...

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL INCLUDE SQLDA;

...

 DCL DEPTPTR PTR;

 DCL 1 DEPT(20) BASED(DEPTPTR),

 3 EMPNO CHAR(6),

 3 LASTNAME CHAR(15) VARYING,

 3 WORKDEPT CHAR(3),

 3 JOB CHAR(8);

 DCL I BIN(31) FIXED;

 DEC J BIN(31) FIXED;

 DCL ROWAREA CHAR(2000);

...

 ALLOCATE SQLDA SET(SQLDAPTR);

 EXEC SQL

 DECLARE D11 CURSOR FOR

 SELECT EMPNO, LASTNAME, WORKDEPT, JOB

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D11’;

Figure 7. Example of Multiple-Row FETCH Using a Row Storage Area (Part 1 of 2)

224 iSeries: DB2 Universal Database for iSeries SQL Programming

In this example, a cursor has been defined for the CORPDATA.EMPLOYEE table to select all rows where

the WORKDEPT column equal 'D11'. The sample EMPLOYEE table in DB2 UDB for iSeries Sample Tables

shows the result table contains multiple rows. The DECLARE CURSOR and OPEN statements do not

have special syntax when they are used with a multiple-row FETCH statement. Another FETCH

statement that returns a single row against the same cursor can be coded elsewhere in the program. The

multiple-row FETCH statement is used to retrieve all rows in the result table. Following the FETCH, the

cursor position remains on the final row in the block.

...

 EXEC SQL

 OPEN D11;

 /* SET UP THE DESCRIPTOR FOR THE MULTIPLE-ROW FETCH */

 /* 4 COLUMNS ARE BEING FETCHED */

 SQLD = 4;

 SQLN = 4;

 SQLDABC = 366;

 SQLTYPE(1) = 452; /* FIXED LENGTH CHARACTER - */

 /* NOT NULLABLE */

 SQLLEN(1) = 6;

 SQLTYPE(2) = 456; /*VARYING LENGTH CHARACTER */

 /* NOT NULLABLE */

 SQLLEN(2) = 15;

 SQLTYPE(3) = 452; /* FIXED LENGTH CHARACTER - */

 SQLLEN(3) = 3;

 SQLTYPE(4) = 452; /* FIXED LENGTH CHARACTER - */

 /* NOT NULLABLE */

 SQLLEN(4) = 8;

 /*ISSUE THE MULTIPLE-ROW FETCH STATEMENT TO RETRIEVE*/

 /*THE DATA INTO THE DEPT ROW STORAGE AREA */

 /*USE A HOST VARIABLE TO CONTAIN THE COUNT OF */

 /*ROWS TO BE RETURNED ON THE MULTIPLE-ROW FETCH */

 J = 20; /*REQUESTS 20 ROWS ON THE FETCH */

 ...

 EXEC SQL

 WHENEVER NOT FOUND

 GOTO FINISHED;

 EXEC SQL

 WHENEVER SQLERROR

 GOTO FINISHED;

 EXEC SQL

 FETCH D11 FOR :J ROWS

 USING DESCRIPTOR :SQLDA INTO :ROWAREA;

 /* ADDRESS THE ROWS RETURNED */

 DEPTPTR = ADDR(ROWAREA);

 /*PROCESS EACH ROW RETURNED IN THE ROW STORAGE */

 /*AREA BASED ON THE COUNT OF RECORDS RETURNED */

 /*IN SQLERRD3. */

 DO I = 1 TO SQLERRD(3);

 IF EMPNO(I) = ’000170’ THEN

 DO;

 :

 END;

 END;

 IF SQLERRD(5) = 100 THEN

 DO;

 /* PROCESS END OF FILE */

 END;

 FINISHED:

Figure 7. Example of Multiple-Row FETCH Using a Row Storage Area (Part 2 of 2)

Chapter 11. Using SQL in different environments 225

The row area, ROWAREA, is defined as a character array. The data from the result table is placed in the

host variable. In this example, a pointer variable is assigned to the address of ROWAREA. Each item in

the rows that are returned is examined and used with the based structure DEPT.

The attributes (type and length) of the items in the descriptor match the columns that are retrieved. In

this case, no indicator area is provided.

After the FETCH statement is completed, the ROWAREA contains all of the rows that equal 'D11', in this

case 11 rows. The SQLCA that is returned to the application contains the following:

v SQLCODE contains 0

v SQLSTATE contains '00000'

v SQLERRD3 contains 11, the number of rows returned

v SQLERRD4 contains 34, for the length of the row fetched

v SQLERRD5 contains +100, indicating the last row in the result table was fetched

In this example, the application has taken advantage of the fact that SQLERRD5 contains an indication of

the end of the file being reached. As a result, the application does not need to call SQL again to attempt

to retrieve more rows. If the cursor has immediate sensitivity to inserts, you should call SQL in case any

records were added. Cursors have immediate sensitivity when the commitment control level is something

other than *RR.

Unit of work and open cursors

When your program completes a unit of work, it should commit or rollback the changes you made.

Unless you specified HOLD on the COMMIT or ROLLBACK statement, all open cursors are

automatically closed by SQL. Cursors that are declared with the WITH HOLD clause are not

automatically closed on COMMIT. They are automatically closed on a ROLLBACK (the WITH HOLD

clause specified on the DECLARE CURSOR statement is ignored).

If you want to continue processing from the current cursor position after a COMMIT or ROLLBACK, you

must specify COMMIT HOLD or ROLLBACK HOLD. When HOLD is specified, any open cursors are left

open and keep their cursor position so processing can resume. On a COMMIT statement, the cursor

position is maintained. On a ROLLBACK statement, the cursor position is restored to just after the last

row retrieved from the previous unit of work. All record locks are still released.

After issuing a COMMIT or ROLLBACK statement without HOLD, all locks are released and all cursors

are closed. You can open the cursor again, but you will begin processing at the first row of the result

table.

Note: Specification of the ALWBLK(*ALLREAD) parameter of the CRTSQLxxx commands can change the

restoration of the cursor position for read-only cursors. See Dynamic SQL Applications for

information on the use of the ALWBLK parameter and other performance related options on the

CRTSQLxxx commands.

For more information about commitment control and unit of work, see the Commitment control topic.

Dynamic SQL Applications

Dynamic SQL allows an application to define and run SQL statements at program run time. An

application that provides for dynamic SQL accepts as input (or builds) an SQL statement in the form of a

character string. The application does not need to know what type of SQL statement it will run. The

application:

v Builds or accepts as input an SQL statement

v Prepares the SQL statement for running

226 iSeries: DB2 Universal Database for iSeries SQL Programming

v Runs the statement

v Handles SQL return codes

See “Designing and running a dynamic SQL application” on page 229 for information about designing

and running dynamic SQL statements. See “Processing non-SELECT statements” on page 229 and

“Processing SELECT statements and using an SQLDA” on page 231 for information about processing

statements.

Interactive SQL (described in Using Interactive SQL) is an example of a dynamic SQL program. SQL

statements are processed and run dynamically by interactive SQL.

Notes:

1. The run-time overhead is greater for statements processed using dynamic SQL than for static SQL

statements. The additional process is similar to that required for precompiling, binding, and then

running a program, instead of only running it. Therefore, only applications requiring the flexibility of

dynamic SQL should use it. Other applications should access data from the database using normal

(static) SQL statements.

2. Programs that contain an EXECUTE or EXECUTE IMMEDIATE statement and that use a FOR READ

ONLY clause to make a cursor read-only experience better performance because blocking is used to

retrieve rows for the cursor.

The ALWBLK(*ALLREAD) CRTSQLxxx option will imply a FOR READ ONLY declaration for all

cursors that do not explicitly code FOR UPDATE OF or have positioned deletes or updates that refer

to the cursor. Cursors with an implied FOR READ ONLY will benefit from the second item in this list.

Some dynamic SQL statements require use of address variables. RPG for iSeries programs require the aid

of PL/I, COBOL, C, or ILE RPG for iSeries programs to manage the address variables.

The following table shows all the statements supported by DB2 UDB for iSeries and indicates if they can

be used in a dynamic application.

 Table 33. List of SQL Statements Allowed in Dynamic Applications

SQL Statement Static SQL Dynamic SQL

ALTER SEQUENCE Y Y

ALTER TABLE Y Y

BEGIN DECLARE SECTION Y N

CALL Y Y

CLOSE Y N

COMMENT ON Y Y

COMMIT Y Y

CONNECT Y N

CREATE ALIAS Y Y

CREATE DISTINCT TYPE Y Y

CREATE FUNCTION Y Y

CREATE INDEX Y Y

CREATE PROCEDURE Y Y

CREATE SCHEMA Y Y

CREATE SEQUENCE Y Y

CREATE TABLE Y Y

CREATE TRIGGER Y Y

CREATE VIEW Y Y

Chapter 11. Using SQL in different environments 227

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 33. List of SQL Statements Allowed in Dynamic Applications (continued)

SQL Statement Static SQL Dynamic SQL

DECLARE CURSOR Y See Note 1.

DECLARE GLOBAL TEMPORARY TABLE Y Y

DECLARE PROCEDURE Y N

DECLARE STATEMENT Y N

DECLARE VARIABLE Y N

DELETE Y Y

DESCRIBE Y See Note 2.

DESCRIBE TABLE Y N

DISCONNECT Y N

DROP Y Y

END DECLARE SECTION Y N

EXECUTE Y See Note 3.

EXECUTE IMMEDIATE Y See Note 4.

FETCH Y N

FREE LOCATOR Y Y

GET DIAGNOSTICS Y N

GRANT Y Y

HOLD LOCATOR Y Y

INCLUDE Y N

INSERT Y Y

LABEL ON Y Y

LOCK TABLE Y Y

OPEN Y N

PREPARE Y See Note 5.

REFRESH TABLE Y Y

RELEASE Y N

RELEASE SAVEPOINT Y Y

RENAME Y Y

REVOKE Y Y

ROLLBACK Y Y

SAVEPOINT Y Y

SELECT INTO Y See Note 6.

SELECT statement Y See Note 7.

SET CONNECTION Y N

SET ENCRYPTION PASSWORD Y Y

SET OPTION Y See Note 8.

SET PATH Y Y

SET RESULT SETS Y N

SET SCHEMA Y Y

SET TRANSACTION Y Y

228 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 33. List of SQL Statements Allowed in Dynamic Applications (continued)

SQL Statement Static SQL Dynamic SQL

SET variable Y N

SIGNAL Y N

UPDATE Y Y

VALUES INTO Y Y

WHENEVER Y N

Notes:

1. Cannot be prepared, but used to define the cursor for the associated dynamic SELECT statement

before running.

2. Cannot be prepared, but used to return a description of a prepared statement.

3. Cannot be prepared, but used to run prepared SQL statements. The SQL statement must be previously

prepared by the PREPARE statement before using the EXECUTE statement. See example for PREPARE

under “Using the PREPARE and EXECUTE statements” on page 230.

4. Cannot be prepared, but used with dynamic statement strings that do not have any ? parameter

markers. The EXECUTE IMMEDIATE statement causes the statement strings to be prepared and run

dynamically at program run time. See example for EXECUTE IMMEDIATE under “Processing

non-SELECT statements.”

5. Cannot be prepared, but used to parse, optimize, and set up dynamic SELECT statements before

running. See example for PREPARE under “Processing non-SELECT statements.”

6. A SELECT INTO statement cannot be prepared or used in EXECUTE IMMEDIATE.

7. Cannot be used with EXECUTE or EXECUTE IMMEDIATE but can be prepared and used with

OPEN.

8. Can only be used when running a REXX procedure or in a precompiled program.

Note: See “Code disclaimer” on page 2 information for information pertaining to code examples.

Designing and running a dynamic SQL application

To issue a dynamic SQL statement, you must use the statement with either an EXECUTE statement or an

EXECUTE IMMEDIATE statement, because dynamic SQL statements are not prepared at precompile time

and therefore must be prepared at run time. The EXECUTE IMMEDIATE statement causes the SQL

statement to be prepared and run dynamically at program run time.

There are two basic types of dynamic SQL statements: SELECT statements and non-SELECT statements.

Non-SELECT statements include such statements as DELETE, INSERT, and UPDATE.

Client server applications that use interfaces such as ODBC typically use dynamic SQL to access the

database. For more information about developing client server applications that use iSeries Access, see

Programming for iSeries Access Express.

Processing non-SELECT statements

To build a dynamic SQL non-SELECT statement:

1. Verify that the SQL statement you want to build is one that can be run dynamically (see Table 33 on

page 227).

2. Build the SQL statement. (Use Interactive SQL for an easy way to build, verify, and run your SQL

statement. See Using Interactive SQL for more information.)

To run a dynamic SQL non-SELECT statement:

Chapter 11. Using SQL in different environments 229

|

|||

|||

|||

|||

|||

|||
|

1. Run the SQL statement using EXECUTE IMMEDIATE, or PREPARE the SQL statement, then

EXECUTE the prepared statement.

2. Handle any SQL return codes that might result.

The following is an example of an application running a dynamic SQL non-SELECT statement (stmtstrg):

 EXEC SQL

 EXECUTE IMMEDIATE :stmtstrg;

See the following for more information:

v “CCSID of dynamic SQL statements”

v “Using the PREPARE and EXECUTE statements”

CCSID of dynamic SQL statements

The SQL statement is normally a host variable. The CCSID of the host variable is used as the CCSID of

the statement text. In PL/I, it also can be a string expression. In this case, the job CCSID is used as the

CCSID of the statement text.

Dynamic SQL statements are processed using the CCSID of the statement text. This affects variant

characters the most. For example, the not sign (¬) is located at 'BA'X in CCSID 500. This means that if the

CCSID of your statement text is 500, SQL expects the not sign (¬) to be located at 'BA'X.

If the statement text CCSID is 65535, SQL processes variant characters as if they had a CCSID of 37. This

means that SQL looks for the not sign (¬) at '5F'X.

Using the PREPARE and EXECUTE statements

If non-SELECT statements contain no parameter markers, they can be run dynamically using the

EXECUTE IMMEDIATE statement. However, if the non-SELECT statements have parameter markers,

they must be run using PREPARE and EXECUTE.

The PREPARE statement prepares the non-SELECT statement (for example, the DELETE statement) and

gives it a name of your choosing. If DLYPRP (*YES) is specified on the CRTSQLxxx command, the

preparation is delayed until the first time the statement is used in an EXECUTE or DESCRIBE statement,

unless the USING clause is specified on the PREPARE statement. In this instance, call it S1. After the

statement has been prepared, it can be run many times within the same program, using different values

for the parameter markers. The following example is of a prepared statement being run multiple times:

 DSTRING = ’DELETE FROM CORPDATA.EMPLOYEE WHERE EMPNO = ?’;

 /*The ? is a parameter marker which denotes

 that this value is a host variable that is

 to be substituted each time the statement is run.*/

 EXEC SQL PREPARE S1 FROM :DSTRING;

 /*DSTRING is the delete statement that the PREPARE statement is

 naming S1.*/

 DO UNTIL (EMP =0);

 /*The application program reads a value for EMP from the

 display station.*/

 EXEC SQL

 EXECUTE S1 USING :EMP;

 END;

In routines similar to the example above, you must know the number of parameter markers and their

data types, because the host variables that provide the input data are declared when the program is being

written.

230 iSeries: DB2 Universal Database for iSeries SQL Programming

Note: All prepared statements that are associated with an application server are destroyed whenever the

connection to the application server ends. Connections are ended by a CONNECT (Type 1)

statement, a DISCONNECT statement, or a RELEASE followed by a successful COMMIT.

Processing SELECT statements and using an SQLDA

There are two basic types of SELECT statements: fixed-list and varying-list.

To process a fixed-list SELECT statement, an SQLDA is not necessary.

To process a varying-list SELECT statement, you must first declare an SQLDA structure. The SQLDA is a

control block used to pass host variable input values from an application program to SQL and to receive

output values from SQL. In addition, information about SELECT list expressions can be returned in a

PREPARE or DESCRIBE statement.

You can find more information in the following topics:

v “Fixed-list SELECT statements”

v “Varying-list Select-statements” on page 232

v “SQL Descriptor Area (SQLDA)” on page 233

v “SQLDA format” on page 233

v “Example: Select-statement for allocating storage for SQLDA” on page 237

v “Parameter markers” on page 241

Fixed-list SELECT statements

In dynamic SQL, fixed-list SELECT statements are those statements designed to retrieve data of a

predictable number and type. When using these statements, you can anticipate and define host variables

to accommodate the retrieved data, so that an SQLDA is not necessary. Each successive FETCH returns

the same number of values as the last, and these values have the same data formats as those returned for

the last FETCH. You can specify host variables in the same manner as for any SQL application.

You can use fixed-list dynamic SELECT statements with any SQL-supported application program.

To run fixed-list SELECT statements dynamically, your application must:

1. Place the input SQL statement into a host variable.

2. Issue a PREPARE statement to validate the dynamic SQL statement and put it into a form that can be

run. If DLYPRP (*YES) is specified on the CRTSQLxxx command, the preparation is delayed until the

first time the statement is used in an EXECUTE or DESCRIBE statement, unless the USING clause is

specified on the PREPARE statement.

3. Declare a cursor for the statement name.

4. Open the cursor.

5. FETCH a row into a fixed list of variables (rather than into a descriptor area, as if you were using a

varying-list SELECT statement, described in the following section, Varying-list Select-statements).

6. When end of data occurs, close the cursor.

7. Handle any SQL return codes that result.

For example:

 MOVE ’SELECT EMPNO, LASTNAME FROM CORPDATA.EMPLOYEE WHERE EMPNO>?’

 TO DSTRING.

 EXEC SQL

 PREPARE S2 FROM :DSTRING END-EXEC.

 EXEC SQL

 DECLARE C2 CURSOR FOR S2 END-EXEC.

Chapter 11. Using SQL in different environments 231

EXEC SQL

 OPEN C2 USING :EMP END-EXEC.

 PERFORM FETCH-ROW UNTIL SQLCODE NOT=0.

 EXEC SQL

 CLOSE C2 END-EXEC.

 STOP-RUN.

 FETCH-ROW.

 EXEC SQL

 FETCH C2 INTO :EMP, :EMPNAME END-EXEC.

Note: Remember that because the SELECT statement, in this case, always returns the same number and

type of data items as previously run fixed-list SELECT statements, you do not need to use the SQL

descriptor area (SQLDA).

Varying-list Select-statements

In dynamic SQL, varying-list SELECT statements are ones for which the number and format of result

columns to be returned are not predictable; that is, you do not know how many variables you need, or

what the data types are. Therefore, you cannot define host variables in advance to accommodate the

result columns returned.

Note: In REXX, steps 5.b, 6, and 7 are not applicable.

If your application accepts varying-list SELECT statements, your program has to:

 1. Place the input SQL statement into a host variable.

 2. Issue a PREPARE statement to validate the dynamic SQL statement and put it into a form that can

be run. If DLYPRP (*YES) is specified on the CRTSQLxxx command, the preparation is delayed until

the first time the statement is used in an EXECUTE or DESCRIBE statement, unless the USING

clause is specified on the PREPARE statement.

 3. Declare a cursor for the statement name.

 4. Open the cursor (declared in step 3) that includes the name of the dynamic SELECT statement.

 5. Issue a DESCRIBE statement to request information from SQL about the type and size of each

column of the result table.

Notes:

a. You can also code the PREPARE statement with an INTO clause to perform the functions of

PREPARE and DESCRIBE with a single statement.

b. If the SQLDA is not large enough to contain column descriptions for each retrieved column, the

program must determine how much space is needed, get storage for that amount of space, build

a new SQLDA, and reissue the DESCRIBE statement.
 6. Allocate the amount of storage needed to contain a row of retrieved data.

 7. Put storage addresses into the SQLDA (SQL descriptor area) to tell SQL where to put each item of

retrieved data.

 8. FETCH a row.

 9. When end of data occurs, close the cursor.

10. Handle any SQL return codes that might result.

See “Example: Select-statement for allocating storage for SQLDA” on page 237 for details on how to

perform these steps.

232 iSeries: DB2 Universal Database for iSeries SQL Programming

SQL Descriptor Area (SQLDA)

Dynamic SQL uses a structure of variables called the SQL descriptor area (SQLDA) to pass information

about an SQL statement between SQL and your application. The SQLDA is required for running the

DESCRIBE and DESCRIBE TABLE statements, and can also be used on the PREPARE, OPEN, FETCH,

CALL, and EXECUTE statements.

The meaning of the information in an SQLDA depends on its use. In PREPARE and DESCRIBE, an

SQLDA provides information to an application program about a prepared statement. In DESCRIBE

TABLE, the SQLDA provides information to an application program about the columns in a table or view.

In OPEN, EXECUTE, CALL, and FETCH, an SQLDA provides information about host variables. For

example, you can read values into the SQLDA using a DESCRIBE statement, change the values with the

addresses of host variables, and then reuse the values in a FETCH statement.

If your application allows you have several cursors open at the same time, you can code several

SQLDAs, one for each dynamic SELECT statement. For more information, see SQLDA and SQLCA in the

SQL Reference book.

SQLDAs can be used in C, C++, COBOL, PL/I, REXX, and RPG. Because RPG for iSeries does not

provide a way to set pointers, the SQLDA must be set outside the RPG for iSeries program by a PL/I, C,

C++, COBOL, or ILE RPG for iSeries program. That program must then call the RPG for iSeries program.

SQLDA format

The SQLDA consists of four variables followed by an arbitrary number of occurrences of a sequence of

six variables collectively named SQLVAR.

Note: The SQLDA in REXX is different. For more information, see the topic Coding SQL Statements in

REXX Applications in the Embedded SQL Programming information.
When an SQLDA is used in OPEN, FETCH, CALL, and EXECUTE, each occurrence of SQLVAR describes

a host variable.

The fields of the SQLDA are as follows:

SQLDAID

SQLDAID is as used an ’eyecatcher″ for storage dumps. It is a string of 8 characters that have the

value ’SQLDA’ after the SQLDA is used in a PREPARE or DESCRIBE statement. This variable is

not used for FETCH, OPEN, CALL, or EXECUTE.

 Byte 7 can be used to determine if more than one SQLVAR entry is needed for each column.

Multiple SQLVAR entries may be needed if there are any LOB or distinct type columns. This flag

is set to a blank if there are not any LOBs or distinct types.

 SQLDAID is not applicable in REXX.

SQLDABC

SQLDABC indicates the length of the SQLDA. It is a 4-byte integer that has the value

SQLN*LENGTH(SQLVAR) + 16 after the SQLDA is used in a PREPARE or DESCRIBE statement.

SQLDABC must have a value equal to or greater than SQLN*LENGTH(SQLVAR) + 16 before it is

used by FETCH, OPEN, CALL, or EXECUTE.

 SQLABC is not applicable in REXX.

SQLN SQLN is a 2-byte integer that specifies the total number of occurrences of SQLVAR. It must be set

before being used by any SQL statement to a value greater than or equal to 0.

 SQLN is not applicable in REXX.

SQLD SQLD is a 2-byte integer that specifies the number of occurrences of SQLVAR, in other words, the

number of host variables or columns described by the SQLDA. This field is set by SQL on a

DESCRIBE or PREPARE statement. In other statements, this field must be set before being used to

a value greater than or equal to 0 and less than or equal to SQLN.

Chapter 11. Using SQL in different environments 233

SQLVAR

This group of values are repeated once for each host variable or column. These variables are set

by SQL on a DESCRIBE or PREPARE statement. In other statements, they must be set before

being used. These variables are defined as follows:

SQLTYPE

SQLTYPE is a 2-byte integer that specifies the data type of the host variable or column as

shown in the Table 34 on page 235. Odd values for SQLTYPE show that the host variable

has an associated indicator variable addressed by SQLIND.

SQLLEN

SQLLEN is a 2-byte integer variable that specifies the length attribute of the host variable

or column.

SQLRES

SQLRES is a 12-byte reserved area for boundary alignment purposes. Note that, in

OS/400, pointers must be on a quad-word boundary.

 SQLRES is not applicable in REXX.

SQLDATA

SQLDATA is a 16-byte pointer variable that specifies the address of the host variables

when the SQLDA is used on OPEN, FETCH, CALL, and EXECUTE.

 When the SQLDA is used on PREPARE and DESCRIBE, this area is overlaid with the

following information:

 The CCSID of a character or graphic field is stored in the third and fourth bytes of

SQLDATA. For BIT data, the CCSID is 65535. In REXX, the CCSID is returned in the

variable SQLCCSID.

SQLIND

SQLIND is a 16-byte pointer that specifies the address of a small integer host variable

that is used as an indication of null or not null when the SQLDA is used on OPEN,

FETCH, CALL, and EXECUTE. A negative value indicates null and a non-negative

indicates not null. This pointer is only used if SQLTYPE contains an odd value.

 When the SQLDA is used on PREPARE and DESCRIBE, this area is reserved for future

use.

SQLNAME

SQLNAME is a variable-length character variable with a maximum length of 30. After a

PREPARE or DESCRIBE, this variable contains the name of selected column, label, or

system column name. In OPEN, FETCH, EXECUTE, or CALL, this variable can be used

to pass the CCSID of character strings. CCSIDs can be passed for character and graphic

host variables.

 The SQLNAME field in an SQLVAR array entry of an input SQLDA can be set to specify

the CCSID:

Data Type Sub-type

Length of

SQLNAME

SQLNAME Bytes 1

& 2

SQLNAME Bytes 3

& 4

Character SBCS 8 X’0000’ CCSID

Character MIXED 8 X’0000’ CCSID

Character BIT 8 X’0000’ X’FFFF’

GRAPHIC not applicable 8 X’0000’ CCSID

Any other data type not applicable not applicable not applicable not applicable

Note: It is important to remember that the SQLNAME field is only for overriding the

CCSID. Applications that use the defaults do not need to pass CCSID information.

If a CCSID is not passed, the default CCSID for the job is used.

234 iSeries: DB2 Universal Database for iSeries SQL Programming

The default for graphic host variables is the associated double-byte CCSID for the job

CCSID. If an associated double-byte CCSID does not exist, 65535 is used.

 Table 34. SQLTYPE and SQLLEN Values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or EXECUTE

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA TYPE SQLLEN

HOST VARIABLE DATA

TYPE SQLLEN

384/385 Date 10 Fixed-length character

string representation of a

date

Length attribute

of the host

variable

388/389 Time 8 Fixed-length character

string representation of a

time

Length attribute

of the host

variable

392/393 Timestamp 26 Fixed-length character

string representation of a

timestamp

Length attribute

of the host

variable

396/397 DataLink Note #1 Length attribute

of the column

N/A N/A

400/401 N/A N/A NUL-terminated graphic

string

Length attribute

of the host

variable

392/393 Timestamp 26 Fixed-length character

string representation of a

timestamp

Length attribute

of the host

variable

404/405 BLOB 0 (See Note #2) BLOB Not used. (See

Note #2)

408/409 CLOB 0 (See Note #2) CLOB Not used. (See

Note #2)

412/413 DBCLOB 0 (See Note #2) DBCLOB Not used. (See

Note #2)

452/453 Fixed-length character

string

Length attribute

of the column

Fixed-length character

string

Length attribute

of the host

variable

456/457 Long varying-length

character string

Length attribute

of the column

Long varying-length

character string

Length attribute

of the host

variable

460/461 N/A N/A NUL-terminated character

string

Length attribute

of the host

variable

464/465 Varying-length graphic

string

Length attribute

of the column

Varying-length graphic

string

Length attribute

of the host

variable

468/469 Fixed-length graphic string Length attribute

of the column

Fixed-length graphic string Length attribute

of the host

variable

472/473 Long varying-length

graphic string

Length attribute

of the column

Long graphic string Length attribute

of the host

variable

476/477 N/A N/A PASCAL L-string Length attribute

of the host

variable

Chapter 11. Using SQL in different environments 235

||

|

||

||
|
||

||||
|
|

|
|
|

||||
|
|

|
|
|

||||
|
|

|
|
|

|||
|
||

||||
|
|
|
|

||||
|
|

|
|
|

|||||
|

|||||
|

|||||
|

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

||||
|
|
|
|

||
|
|
|
|
|
|
|
|

|||
|
||
|
|

||
|
|
|
||
|
|

|||||
|
|

Table 34. SQLTYPE and SQLLEN Values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or

EXECUTE (continued)

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA TYPE SQLLEN

HOST VARIABLE DATA

TYPE SQLLEN

480/481 Floating point 4 for single

precision, 8 for

double precision

Floating point 4 for single

precision, 8 for

double precision

484/485 Packed decimal Precision in byte

1; scale in byte 2

Packed decimal Precision in byte

1; scale in byte 2

488/489 Zoned decimal Precision in byte

1; scale in byte 2

Zoned decimal Precision in byte

1; scale in byte 2

492/493 Big integer 8 Big integer 8

496/497 Large integer 4 (See Note #3) Large integer 4

500/501 Small integer 2 (See Note #3) Small integer 2

504/505 N/A N/A DISPLAY SIGN LEADING

SEPARATE

Precision in byte

1; scale in byte 2

904/905 ROWID 40 ROWID 40

908/909 Varying-length binary

string

Length attribute

of the column

Varying-length binary

string

Length attribute

of the host

variable

912/913 Fixed-length binary string Length attribute

of the column

Fixed-length binary string Length attribute

of the host

variable

916/917 N/A N/A BLOB file reference

variable

267

920/921 N/A N/A CLOB file reference

variable

267

924/925 N/A N/A DBCLOB file reference

variable

267

960/961 N/A N/A BLOB locator 4

964/965 N/A N/A CLOB locator 4

968/969 N/A N/A DBCLOB locator 4

Notes:

1. The DataLink data type is only returned on DESCRIBE TABLE.

2. The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.

3. Large and small binary numbers can be represented in the SQL descriptor area (SQLDA) as either

lengths 2 or 4. They can also be represented with the precision in byte 1 and the scale in byte 2. If the

first byte is greater than X’00’, it indicates precision and scale. Big integer numbers do not allow a

precision and scale. The SQLDA defines them as length 8.

SQLVAR2

This is the Extended SQLVAR structure that contains 3 fields. Extended SQLVARs are needed for

all columns of the result if the result includes any distinct type or LOB columns. For distinct

types, they contain the distinct type name. For LOBs, they contain the length attribute of the host

variable and a pointer to the buffer that contains the actual length. If locators are used to

represent LOBs, these entries are not necessary. The number of Extended SQLVAR occurrences

236 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|

|

||

||
|
||

|||
|
|

||
|
|

|||
|
||
|

|||
|
||
|

|||||

|||||

|||||

||||
|
|
|

|||||

||
|
|
|
|
|
|
|
|

|||
|
||
|
|

||||
|
|

||||
|
|

||||
|
|

|||||

|||||

|||||
|

needed depends on the statement that the SQLDA was provided for and the data types of the

columns or parameters being described. Byte 7 of SQLDAID is always set to the number of sets

of SQLVARs necessary.

 If SQLD is not set to a sufficient number of SQLVAR occurrences:

v SQLD is set to the total number of SQLVAR occurrences needed for all sets.

v A +237 warning is returned in the SQLCODE field of the SQLCA if at least enough were

specified for the Base SQLVAR Entries. The Base SQLVAR entries are returned, but no

Extended SQLVARs are returned.

v A +239 warning is returned in the SQLCODE field of the SQLCA if enough SQLVARs were not

specified for even the Base SQLVAR Entries. No SQLVAR entries are returned.

SQLLONGLEN

SQLLONGLEN is a 4-byte integer variable that specifies the length attribute of a LOB

(BLOB, CLOB, or DBCLOB) host variable or column.

SQLDATALEN

SQLDATALEN is a 16-byte pointer variable that specifies the address of the length of the

host variable. This variable is used for LOB (BLOB, CLOB, and DBCLOB) host variables

only. It is not used for DESCRIBE or PREPARE.

 If this field is NULL, then the actual length of the data is stored in the 4 bytes

immediately before the start of the data, and SQLDATA points to the first byte of the

field length. The length indicates the number of bytes for a BLOB or CLOB, and the

number of characters for a DBCLOB.

 If this field is not NULL, it contains a pointer to a 4-byte long buffer that contains the

actual length in bytes (even for DBCLOB) of the data in the buffer pointed to by the

SQLDATA field in the matching base SQLVAR.

SQLDATATYPE_NAME

SQLDATATYPE_NAME is a variable-length character variable with a maximum length of

30. It is only used for DESCRIBE or PREPARE. This variable is set to one of the

following:

v For a distinct type column, the database manager sets this to the fully qualified distinct

type name. If the qualified name is longer than 30 bytes, it is truncated.

v For a label, the database manager sets this to the first 20 bytes of the label.

v For a column name, the database manager sets this to the column name.

Example: Select-statement for allocating storage for SQLDA

Suppose your application needs to be able to handle a dynamic SELECT statement; one that changes

from one use to the next. This statement can be read from a display, passed in from another application,

or built by your application on the fly. In other words, you don’t know exactly what this statement is

going to be returning every time. Your application needs to be able to handle the varying number of

result columns with data types that are unknown ahead of time.

For example, the following statement needs to be processed:

 SELECT WORKDEPT, PHONENO

 FROM CORPDATA.EMPLOYEE

 WHERE LASTNAME = ’PARKER’

Note: This SELECT statement has no INTO clause. Dynamic SELECT statements must not have an INTO

clause, even if they return only one row.

The statement is assigned to a host variable. The host variable, in this case named DSTRING, is then

processed by using the PREPARE statement as shown:

EXEC SQL

PREPARE S1 FROM :DSTRING;

Chapter 11. Using SQL in different environments 237

Next, you need to determine the number of result columns and their data types. To do this, you need an

SQLDA.

The first step in defining an SQLDA, is to allocate storage for it. (Allocating storage is not necessary in

REXX.) The techniques for acquiring storage are language dependent. The SQLDA must be allocated on a

16-byte boundary. The SQLDA consists of a fixed-length header that is 16 bytes in length. The header is

followed by a varying-length array section (SQLVAR), each element of which is 80 bytes in length.

The amount of storage that you need to allocate depends on how many elements you want to have in the

SQLVAR array. Each column you select must have a corresponding SQLVAR array element. Therefore, the

number of columns listed in your SELECT statement determines how many SQLVAR array elements you

should allocate. Since this SELECT statement was specified at run time, it is impossible to know exactly

how many columns will be accessed. Consequently, you must estimate the number of columns. Suppose,

in this example, that no more than 20 columns are ever expected to be accessed by a single SELECT

statement. In this case, the SQLVAR array should have a dimension of 20, ensuring that each item in the

select-list has a corresponding entry in SQLVAR. This makes the total SQLDA size 20 x 80, or 1600, plus

16 for a total of 1616 bytes

Having allocated what you estimated to be enough space for your SQLDA, you need to set the SQLN

field of the SQLDA equal to the number of SQLVAR array elements, in this case 20.

Having allocated storage and initialized the size, you can now issue a DESCRIBE statement.

EXEC SQL

DESCRIBE S1 INTO :SQLDA;

When the DESCRIBE statement is run, SQL places values in the SQLDA that provide information about

the select-list for your statement. The following tables show the contents of the SQLDA after the

DESCRIBE is run. Only the entries that are meaningful in this context are shown.

The SQLDA header contains:

 Table 35. SQLDA Header

Description Value

SQLAID ’SQLDA’

SQLDABC 1616

SQLN 20

SQLD 2

SQLDAID is an identifier field initialized by SQL when a DESCRIBE is run. SQLDABC is the byte count

or size of the SQLDA. The SQLDA header is followed by 2 occurences of the SQLVAR structure, one for

each column in the result table of the SELECT statement being described:

 Table 36. SQLVAR Element 1

Description Value

SQLTYPE 453

SQLLEN 3

SQLDATA (3:4) 37

SQLNAME 8 WORKDEPT

238 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 37. SQLVAR Element 2

Description Value

SQLTYPE 453

SQLLEN 4

SQLDATA(3:4) 37

SQLNAME 7 PHONENO

Your program might need to alter the SQLN value if the SQLDA is not large enough to contain the

described SQLVAR elements. For example, suppose that instead of the estimated maximum of 20

columns, the SELECT statement actually returns 27. SQL cannot describe this select-list because the

SQLVAR needs more elements than the allocated space allows. Instead, SQL sets the SQLD to the actual

number of columns specified by the SELECT statement and the remainder of the structure is ignored.

Therefore, after a DESCRIBE, you should compare the SQLN value to the SQLD value. If the value of

SQLD is greater than the value of SQLN, allocate a larger SQLDA based on the value in SQLD, as

follows, and perform the DESCRIBE again:

EXEC SQL

 DESCRIBE S1 INTO :SQLDA;

IF SQLN <= SQLD THEN

DO;

/*Allocate a larger SQLDA using the value of SQLD.*/

/*Reset SQLN to the larger value.*/

EXEC SQL

 DESCRIBE S1 INTO :SQLDA;

END;

If you use DESCRIBE on a non SELECT statement, SQL sets SQLD to 0. Therefore, if your program is

designed to process both SELECT and non SELECT statements, you can describe each statement after it is

prepared to determine whether it is a SELECT statement. This example is designed to process only

SELECT statements; the SQLD value is not checked.

Your program must now analyze the elements of SQLVAR returned from the successful DESCRIBE. The

first item in the select-list is WORKDEPT. In the SQLTYPE field, the DESCRIBE returns a value for the

data type of the expression and whether nulls are applicable or not (see Table 34 on page 235).

In this example, SQL sets SQLTYPE to 453 in SQLVAR element 1. This specifies that WORKDEPT is a

fixed-length character string result column and that nulls are permitted in the column.

SQL sets SQLLEN to the length of the column. Because the data type of WORKDEPT is CHAR, SQL sets

SQLLEN equal to the length of the character column. For WORKDEPT, that length is 3. Therefore, when

the SELECT statement is later run, a storage area large enough to hold a CHAR(3) string will be needed.

Because the data type of WORKDEPT is CHAR FOR SBCS DATA, the first 4 bytes of SQLDATA were set

to the CCSID of the character column.

The last field in an SQLVAR element is a varying-length character string called SQLNAME. The first 2

bytes of SQLNAME contain the length of the character data. The character data itself is typically the

name of a column used in the SELECT statement, in this case WORKDEPT. The exceptions to this are

select-list items that are unnamed, such as functions (for example, SUM(SALARY)), expressions (for

example, A+B−C), and constants. In these cases, SQLNAME is an empty string. SQLNAME can also

contain a label rather than a name. One of the parameters associated with the PREPARE and DESCRIBE

statements is the USING clause. You can specify it this way:

Chapter 11. Using SQL in different environments 239

EXEC SQL

 DESCRIBE S1 INTO:SQLDA

 USING LABELS;

If you specify:

NAMES (or omit the USING parameter entirely)

Only column names are placed in the SQLNAME field.

SYSTEM NAMES

Only the system column names are placed in the SQLNAME field.

LABELS

Only labels associated with the columns listed in your SQL statement are entered here.

ANY Labels are placed in the SQLNAME field for those columns that have labels; otherwise, the

column names are entered.

BOTH Names and labels are both placed in the field with their corresponding lengths. Remember to

double the size of the SQLVAR array because you are including twice the number of elements.

ALL Column names, labels, and system column names are placed in the field with their corresponding

lengths. Remember to triple the size of the SQLVAR array

 For more information about the USING option, see the DESCRIBE statement and the SQLDA section in

the SQL Reference book.

In this example, the second SQLVAR element contains the information for the second column used in the

select: PHONENO. The 453 code in SQLTYPE specifies that PHONENO is a CHAR column. SQLLEN is

set to 4.

Now you need to set up to use the SQLDA to retrieve values when running the SELECT statement.

After analyzing the result of the DESCRIBE, you can allocate storage for variables that are to contain the

result of the SELECT statement. For WORKDEPT, a character field of length 3 must be allocated; for

PHONENO, a character field of length 4 must be allocated. Since both of these results can be the NULL

value, an indicator variable must be allocated for each field as well.

After the storage is allocated, you must set SQLDATA and SQLIND to point to the allocated storage

areas. For each element of the SQLVAR array, SQLDATA points to the place where the result value is to

be put. SQLIND points to the place where the null indicator value is to be put. The following tables show

what the structure looks like now. Only the entries that are meaningful in this context are shown:

 Table 38. SQLDA Header

Description Value

SQLAID ’SQLDA’

SQLDABC 1616

SQLN 20

SQLD 2

 Table 39. SQLVAR Element 1

Description Value

SQLTYPE 453

SQLLEN 3

SQLDATA Pointer to area for CHAR(3) result

SQLIND Pointer to 2 byte integer indicator for result column

240 iSeries: DB2 Universal Database for iSeries SQL Programming

Table 40. SQLVAR Element 2

Description Value

SQLTYPE 453

SQLLEN 4

SQLDATA Pointer to area for CHAR(4) result

SQLIND Pointer to 2 byte integer indicator for result column

You are now ready to retrieve the SELECT statements results. Dynamically defined SELECT statements

must not have an INTO statement. Therefore, all dynamically defined SELECT statements must use a

cursor. Special forms of the DECLARE, OPEN, and FETCH are used for dynamically defined SELECT

statements.

The DECLARE statement for the example statement is:

EXEC SQL DECLARE C1 CURSOR FOR S1;

As you can see, the only difference is that the name of the prepared SELECT statement (S1) is used

instead of the SELECT statement itself. The actual retrieval of result rows is made as follows:

EXEC SQL

 OPEN C1;

EXEC SQL

 FETCH C1 USING DESCRIPTOR :SQLDA;

DO WHILE (SQLCODE = 0);

/*Process the results pointed to by SQLDATA*/

EXEC SQL

 FETCH C1 USING DESCRIPTOR :SQLDA;

END;

EXEC SQL

 CLOSE C1;

The cursor is opened. The result rows from the SELECT are then returned one at a time using a FETCH

statement. On the FETCH statement, there is no list of output host variables. Instead, the FETCH

statement tells SQL to return results into areas described by your SQLDA. The results are returned into

the storage areas pointed to by the SQLDATA and SQLIND fields of the SQLVAR elements. After the

FETCH statement has been processed, the SQLDATA pointer for WORKDEPT has its referenced value set

to ’E11’. Its corresponding indicator value is 0 since a non-null value was returned. The SQLDATA

pointer for PHONENO has its referenced value set to ’4502’. Its corresponding indicator value is also 0

since a non-null value was returned.

Parameter markers

In the example used, the SELECT statement that was dynamically run had a constant value in the

WHERE clause. In the example, it was:

 WHERE LASTNAME = ’PARKER’

If you want to run the same SELECT statement several times, using different values for LASTNAME, you

can use an SQL statement that looks like this:

 SELECT WORKDEPT, PHONENO

 FROM CORPDATA.EMPLOYEE

 WHERE LASTNAME = ?

When your parameters are not predictable, your application cannot know the number or types of the

parameters until run time. You can arrange to receive this information at the time your application is run,

Chapter 11. Using SQL in different environments 241

and by using a USING DESCRIPTOR on the OPEN statement, you can substitute the values contained in

specific host variables for the parameter markers included in the WHERE clause of the SELECT

statement.

To code such a program, you need to use the OPEN statement with the USING DESCRIPTOR clause.

This SQL statement is used to not only open a cursor, but to replace each parameter marker with the

value of the corresponding host variable. The descriptor name that you specify with this statement must

identify an SQLDA that contains a valid description of those host variables. This SQLDA, unlike those

previously described, is not used to return information about data items that are part of a SELECT list.

That is, it is not used as output from a DESCRIBE statement, but as input to the OPEN statement. It

provides information about host variables that are used to replace parameter markers in the WHERE

clause of the SELECT statement. It gets this information from the application, which must be designed to

place appropriate values into the necessary fields of the SQLDA. The SQLDA is then ready to be used as

a source of information for SQL in the process of replacing parameter markers with host variable data.

When you use the SQLDA for input to the OPEN statement with the USING DESCRIPTOR clause, not all

of its fields need to be filled in. Specifically, SQLDAID, SQLRES, and SQLNAME can be left blank

(SQLNAME can be set if a specific CCSID is needed.) Therefore, when you use this method for replacing

parameter markers with host variable values, you need to determine:

v How many parameter markers are there

v What are the data types and attributes of these parameters markers (SQLTYPE, SQLLEN, and

SQLNAME)

v Do you want an indicator variable

In addition, if the routine is to handle both SELECT and non SELECT statements, you may want to

determine what category of statement it is. (Alternatively, you can write code to look for the SELECT

keyword.)

If your application uses parameter markers, your program has to:

1. Read a statement into the DSTRING varying-length character string host variable.

2. Determine the number of parameter markers.

3. Allocate an SQLDA of that size.

This is not applicable in REXX.

4. Set SQLN and SQLD to the number of ? parameter markers.

SQLN is not applicable in REXX.

5. Set SQLDABC equal to SQLN*LENGTH(SQLVAR) + 16.

This is not applicable in REXX.

6. For each parameter marker:

a. Determine the data types, lengths, and indicators.

b. Set SQLTYPE and SQLLEN.

c. Allocate storage to hold the input values (the ? values).

d. Set these values.

e. Set SQLDATA and SQLIND (if applicable) for each parameter marker.

f. If character variables are used, and they are in a CCSID other than the job default CCSID, set

SQLNAME (SQLCCSID in REXX) accordingly.

g. If graphic variables are used and they have a CCSID other than the associated DBCS CCSID for

the job CCSID, set the SQLNAME (SQLCCSID in REXX) to that CCSID.

h. Issue the OPEN statement with a USING DESCRIPTOR clause to open your cursor and substitute

a host variable value for each of the parameter markers.

The statement can then be processed normally.

242 iSeries: DB2 Universal Database for iSeries SQL Programming

Use of dynamic SQL through client interfaces

You can access DB2 UDB for iSeries data through client interfaces on the server. The following topics help

you get started with required tasks:

v “Accessing data with Java”

v “Accessing data with Domino”

v “Accessing data with Open Database Connectivity (ODBC)”

v “Accessing data with Portable Application Solutions Environment (PASE)”

v “Accessing data with iSeries Access for Windows OLE DB Provider”

v “Accessing data with Net.data” on page 244

v “Accessing data through a Linux partition” on page 244

v “Accessing data using Distributed Relational Database (DRDA)” on page 244

Accessing data with Java

You can access DB2 UDB for iSeries data in your Java programs with the Developer Kit for Java Database

Connectivity (JDBC) driver. The driver lets you perform the following tasks.

v Access database files

v Access JDBC database functions with embedded Structured Query Language (SQL) for Java

v Run SQL statements and process results.

See the topic ″Setting up to use the IBM Developer Kit for Java JDBC driver″ in the iSeries Information

Center for details on how you can use the JDBC driver.

Accessing data with Domino

Domino for iSeries is a Domino® server product that lets you integrate data from DB2 UDB for iSeries

databases and Domino databases in both directions. To take advantage of this integration, you need to

understand and manage how authorizations work between the two types of databases. For details, see

the Domino for iSeries category of the iSeries Information Center.

Accessing data with Open Database Connectivity (ODBC)

You use the iSeries Access for Windows ODBC Driver to enable your ODBC client applications to

effectively share data with each other and with the server. See ″ODBC administration″ in the iSeries

Access for Windows category of the iSeries Information Center.

Accessing data with Portable Application Solutions Environment

(PASE)

Portable Application Solutions Environment (PASE) is an integrated runtime environment for AIX® (or

other UNIX-like) applications running on the iSeries system. See ″OS/400 PASE″ in the Integrated

operating environments category of the iSeries Information Center for more information.

Accessing data with iSeries Access for Windows OLE DB Provider

The iSeries Access for Windows® OLE DB Provider, along with the Programmer’s Toolkit, makes iSeries

client/server application development quick and easy from the Windows client PC. The iSeries Access for

Windows OLE DB Provider gives iSeries programmers record-level access interfaces to iSeries logical and

physical DB2 Universal Database™ (UDB) for iSeries database files. In addition, it provides support for

SQL, data queues, programs, and commands. If you use Visual Basic, the Visual Basic Wizards make it

simple and easy to develop customized, working applications. See iSeries Access for Windows OLE DB

Provider for more information.

Chapter 11. Using SQL in different environments 243

|

|
|
|
|
|
|
|

Accessing data with Net.data

Net.Data® is an application that runs on a server and allows you to easily create dynamic Web

documents that are called Web macros. Web macros that are created for Net.Data have the simplicity of

HTML with the functionality of CGI-BIN applications. Net.Data makes it easy to add live data to static

Web pages. Live data includes information that is stored in databases, files, applications, and system

services. See Net.Data programs for the HTTP Server for more details.

Accessing data through a Linux partition

IBM and a variety of Linux® distributors have partnered to integrate the Linux operating system with the

reliability of the iSeries server. Linux brings a new generation of web-based applications to the iSeries.

IBM has modified the Linux PowerPC® kernel to run in a secondary logical partition and contributed the

kernel back to the Linux community. See Linux and your iSeries server for more information.

Accessing data using Distributed Relational Database (DRDA)

A distributed relational database consists of a set of SQL objects that are spread across interconnected

computer systems. Each relational database has a relational database manager to manage the tables in its

environment. The database managers communicate and cooperate with each other in a way that allows a

given database manager access to run SQL statements on a relational database on another system. See

Distributed Relational Database Function for more information.

Using Interactive SQL

Interactive SQL allows the programmer or database administrator to quickly and easily define, update,

delete, or look at data for testing, problem analysis, and database maintenance. A programmer, using

interactive SQL, can insert rows into a table and test the SQL statements before running them in an

application program. A database administrator can use interactive SQL to grant or revoke privileges,

create or drop schemas, tables, or views, or select information from system catalog tables.

After an interactive SQL statement is run, a completion message or an error message is displayed. In

addition, status messages are normally displayed during long-running statements.

You can see help on a message by positioning the cursor on the message and pressing F1=Help.

The basic functions supplied by interactive SQL are:

v The statement entry function allows you to:

– Type in an interactive SQL statement and run it.

– Retrieve and edit statements.

– Prompt for SQL statements.

– Page through previous statements and messages.

– Call session services.

– Start the list selection function.

– Exit interactive SQL.

For further details on these basic functions, see these topics:

– “Starting interactive SQL” on page 245

– “Using statement entry function” on page 246

– “Prompting” on page 246

– “Using the list selection function” on page 249

– “Session services description” on page 251

– “Exiting interactive SQL” on page 252

– “Using an existing SQL session” on page 252

244 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

– “Recovering an SQL session” on page 253

– “Accessing remote databases with interactive SQL” on page 253
v The prompt function allows you to type either a complete SQL statement or a partial SQL statement,

press F4=Prompt, and then be prompted for the syntax of the statement. It also allows you to press F4

to get a menu of all SQL statements. From this menu, you can select a statement and be prompted for

the syntax of the statement.

v The list selection function allows you to select from lists of your authorized relational databases,

schemas, tables, views, columns, constraints, or SQL packages.

The selections you make from the lists can be inserted into the SQL statement at the cursor position.

v The session services function allows you to:

– Change session attributes.

– Print the current session.

– Remove all entries from the current session.

– Save the session in a source file.

Notes:

1. The term collection is used synonymously with schema.

2. See “Code disclaimer” on page 2 information for information pertaining to code examples.

Starting interactive SQL

You can start using interactive SQL by typing STRSQL on an OS/400 command line. For a complete

description of the command and its parameters, see Start SQL Interactive Session (STRSQL) in the CL

Command information.

The Enter SQL Statements display appears. This is the main interactive SQL display. From this display,

you can enter SQL statements and use:

v F4=prompt

v F13=Session services

v F16=Select collections

v F17=Select tables

v F18=Select columns

 Enter SQL Statements

Type SQL statement, press Enter.

 Current connection is to relational database rdjacque.

===>___

 Bottom

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F10=Copy line

F12=Cancel F13=Services F24=More keys

Press F24=More keys to view the remaining function keys.

Chapter 11. Using SQL in different environments 245

 Bottom

F14=Delete line F15=Split line F16=Select collections (libraries)

F17=Select tables F18=Select columns F24=More keys

 (files) (fields)

Note: If you are using the system naming convention, the names in parentheses appear instead of the

names shown above.

An interactive session consists of:

v Parameter values you specified for the STRSQL command.

v SQL statements you entered in the session along with corresponding messages that follow each SQL

statement

v Values of any parameters you changed using the session services function

v List selections you have made

Interactive SQL supplies a unique session-ID consisting of your user ID and the current workstation ID.

This session-ID concept allows multiple users with the same user ID to use interactive SQL from more

than one workstation at the same time. Also, more than one interactive SQL session can be run from the

same workstation at the same time from the same user ID.

If an SQL session exists and is being re-entered, any parameters specified on the STRSQL command are

ignored. The parameters from the existing SQL session are used.

Using statement entry function

The statement entry function is the function you first enter when selecting interactive SQL. You return to

the statement entry function after processing each interactive SQL statement.

In the statement entry function, you type or prompt for the entire SQL statement and then submit it for

processing by pressing the Enter key.

The statement you type on the command line can be one or more lines long. You cannot type comments

for the SQL statement in interactive SQL. When the statement has been processed, the statement and the

resulting message are moved upward on the display. You can then enter another statement.

If a statement is recognized by SQL but contains a syntax error, the statement and the resulting text

message (syntax error) are moved upward on the display. In the input area, a copy of the statement is

shown with the cursor positioned at the syntax error. You can place the cursor on the message and press

F1=Help for more information about the error.

You can page through previous statements, commands, and messages. If you press F9=Retrieve with your

cursor on the statement entry line, your previous statement is copied to the input area. Pressing F9 again

causes it to scroll back one more statement and copy that to the input area. Continuing to press F9 allows

you to scroll back through your previous statements until you find the one that you want. If you need

more room to type an SQL statement, page down on the display.

Prompting

The prompt function helps you supply the necessary information for the syntax of the statement you

want to use. The prompt function can be used in any of the three statement processing modes: *RUN,

*VLD, and *SYN.

246 iSeries: DB2 Universal Database for iSeries SQL Programming

You have two options when using the prompter:

v Type the verb of the statement before pressing F4=Prompt.

The statement is parsed and the clauses that are completed are filled in on the prompt displays.

If you type SELECT and press F4=Prompt, the following display appears:

 Specify SELECT Statement

Type SELECT statement information. Press F4 for a list.

 FROM tables ___

 SELECT columns ___

 WHERE conditions ___

 GROUP BY columns ___

 HAVING conditions ___

 ORDER BY columns ___

 FOR UPDATE OF columns . . . ___

 Bottom

Type choices, press Enter.

 DISTINCT rows in result table N Y=Yes, N=No

 UNION with another SELECT N Y=Yes, N=No

 Specify additional options N Y=Yes, N=No

F3=Exit F4=Prompt F5=Refresh F6=Insert line F9=Specify subquery

F10=Copy line F12=Cancel F14=Delete line F15=Split line F24=More keys

v Press F4=Prompt before typing anything on the Enter SQL Statements display. You are shown a list of

statements. The list of statements varies and depends on the current interactive SQL statement

processing mode. For syntax check mode with a language other than *NONE, the list includes all SQL

statements. For run and validate modes, only statements that can be run in interactive SQL are shown.

You can select the number of the statement you want to use. The system prompts you for the

statement you selected.

If you press F4=Prompt without typing anything, the following display appears:

 Select SQL Statement

Select one of the following:

 1. ALTER TABLE

 2. CALL

 3. COMMENT ON

 4. COMMIT

 5. CONNECT

 6. CREATE ALIAS

 7. CREATE COLLECTION

 8. CREATE INDEX

 9. CREATE PROCEDURE

 10. CREATE TABLE

 11. CREATE VIEW

 12. DELETE

 13. DISCONNECT

 14. DROP ALIAS

 More...

Selection

 __

F3=Exit F12=Cancel

If you press F21=Display Statement on a prompt display, the prompter displays the formatted SQL

statement as it was filled in to that point.

Chapter 11. Using SQL in different environments 247

When Enter is pressed within prompting, the statement that was built through the prompt screens is

inserted into the session. If the statement processing mode is *RUN, the statement is run. The prompter

remains in control if an error is encountered.

For additional prompting considerations, see the following topics:

v “Syntax checking”

v “Statement processing mode”

v “Subqueries”

v “CREATE TABLE prompting”

v “Entering DBCS Data”

Syntax checking

The syntax of the SQL statement is checked when it enters the prompter. The prompter does not accept a

syntactically incorrect statement. You must correct the syntax or remove the incorrect part of the

statement or prompting will not be allowed.

Statement processing mode

The statement processing mode can be selected on the Change Session Attributes display. In *RUN (run)

or *VLD (validate) mode, only statements that are allowed to run in interactive SQL can be prompted. In

*SYN (syntax check) mode, all SQL statements are allowed. The statement is not actually run in *SYN or

*VLD modes; only the syntax and existence of objects are checked.

Subqueries

Subqueries can be selected on any display that has a WHERE or HAVING clause. To see the subquery

display, press F9=Specify subquery when the cursor is on a WHERE or HAVING input line. A display

appears that allows you to type in subselect information. If the cursor is within the parentheses of the

subquery when F9 is pressed, the subquery information is filled in on the next display. If the cursor is

outside the parentheses of the subquery, the next display is blank. For more information about

subqueries, see “Subqueries in SELECT statements” on page 87.

CREATE TABLE prompting

When prompting for CREATE TABLE, support is available for entering column definitions individually.

Place your cursor in the column definition section of the display, and press F4=Prompt. A display that

provides room for entering all the information for one column definition is shown.

To enter a column name longer than 18 characters, press F20=Display entire name. A window with

enough space for a 30 character name will be displayed.

The editing keys, F6=Insert line, F10=Copy line, and F14=Delete line, can be used to add and delete

entries in the column definition list.

Entering DBCS Data

The rules for processing DBCS data across multiple lines are the same on the Enter SQL Statements

display and in the SQL prompter. Each line must contain the same number of shift-in and shift-out

characters. When processing a DBCS data string that requires more than one line for entering, the extra

shift-in and shift-out characters are removed. If the last column on a line contains a shift-in and the first

column of the next line contains a shift-out, the shift-in and shift-out characters are removed by the

prompter when the two lines are assembled. If the last two columns of a line contain a shift-in followed

by a single-byte blank and the first column of the next line contains a shift-out, the shift-in, blank,

shift-out sequence is removed when the two lines are assembled. This removal allows DBCS information

to be read as one continuous character string.

As an example, suppose the following WHERE condition were entered. The shift characters are shown

here at the beginning and end of the string sections on each of the two lines.

248 iSeries: DB2 Universal Database for iSeries SQL Programming

Specify SELECT Statement

Type SELECT statement information. Press F4 for a list.

 FROM tables TABLE1_______________________________________

 SELECT columns *__

 WHERE conditions COL1 = ’<AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQ>

 <RRSS>’______________________________________

 GROUP BY columns ___

 HAVING conditions ___

 ORDER BY columns ___

 FOR UPDATE OF columns . . . ___

When Enter is pressed, the character string is put together, removing the extra shift characters. The

statement looks like this on the Enter SQL Statements display:

SELECT * FROM TABLE1 WHERE COL1 = ’<AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQQRRSS>’

Using the list selection function

The list selection function is available by pressing F4 on certain prompt displays, or F16, F17, or F18 on

the Enter SQL Statements display. After pressing the function key, you are given a list of authorized

relational databases, schemas, tables, views, aliases, columns, constraints, procedures, parameters, or

packages from which to choose. If you request a list of tables, but you have not previously selected a

schema, you are asked to select a schema first.

On a list, you can select one or more items, numerically specifying the order in which you want them to

appear in the statement. When the list function is exited, the selections you made are inserted at the

position of the cursor on the display you came from.

Always select the list you are primarily interested in. For example, if you want a list of columns, but you

believe that the columns you want are in a table not currently selected, press F18=Select columns. Then,

from the column list, press F17 to change the table. If the table list were selected first, the table name will

be inserted into your statement. You do not have a choice for selecting columns.

You can request a list at any time while typing an SQL statement on the Enter SQL Statements display.

The selections you make from the lists are inserted on the Enter SQL Statements display. They are

inserted where the cursor is located in the numeric order that you specified on the list display. Although

the selected list information is added for you, you must type the keywords for the statement.

The list function tries to provide qualifications that are necessary for the selected columns, tables, and

SQL packages. However, sometimes the list function cannot determine the intent of the SQL statement.

You need to review the SQL statement and verify that the selected columns, tables, and SQL packages are

properly qualified.

For an example about using the list selection function, see “Example: Using the list selection function.”

Example: Using the list selection function

The following example shows you how to use the list function to build a SELECT statement.

Assume you have:

v Just entered interactive SQL by typing STRSQL on an OS/400 command line.

v Made no list selections or entries.

v Selected *SQL for the naming convention.

Note: The example shows lists that are not on your server. They are used as an example only.

Begin using SQL statements:

Chapter 11. Using SQL in different environments 249

1. Type SELECT on the first statement entry line.

 2. Type FROM on the second statement entry line.

 3. Leave the cursor positioned after FROM.

 Enter SQL Statements

Type SQL statement, press Enter.

===> SELECT

 FROM _

 4. Press F17=Select tables to obtain a list of tables, because you want the table name to follow FROM.

Instead of a list of tables appearing as you expected, a list of collections appears (the Select and

Sequence collections display). You have just entered the SQL session and have not selected a schema

to work with.

 5. Type a 1 in the Seq column next to YOURCOLL2 schema.

 Select and Sequence Collections

Type sequence numbers (1-999) to select collection, press Enter.

Seq Collection Type Text

 YOURCOLL1 SYS Company benefits

1 YOURCOLL2 SYS Employee personal data

 YOURCOLL3 SYS Job classifications/requirements

 YOURCOLL4 SYS Company insurances

 6. Press Enter.

The Select and Sequence Tables display appears, showing the tables existing in the YOURCOLL2

schema.

 7. Type a 1 in the Seq column next to PEOPLE table.

 Select and Sequence Tables

Type sequence numbers (1-999) to select tables, press Enter.

Seq Table Collection Type Text

 EMPLCO YOURCOLL2 TAB Employee company data

1 PEOPLE YOURCOLL2 TAB Employee personal data

 EMPLEXP YOURCOLL2 TAB Employee experience

 EMPLEVL YOURCOLL2 TAB Employee evaluation reports

 EMPLBEN YOURCOLL2 TAB Employee benefits record

 EMPLMED YOURCOLL2 TAB Employee medical record

 EMPLINVST YOURCOLL2 TAB Employee investments record

 8. Press Enter.

The Enter SQL Statements display appears again with the table name, YOURCOLL2.PEOPLE, inserted

after FROM. The table name is qualified by the schema name in the *SQL naming convention.

 Enter SQL Statements

Type SQL statement, press Enter.

===> SELECT

 FROM YOURCOLL2.PEOPLE _

250 iSeries: DB2 Universal Database for iSeries SQL Programming

9. Position the cursor after SELECT.

10. Press F18=Select columns to obtain a list of columns, because you want the column name to follow

SELECT.

The Select and Sequence Columns display appears, showing the columns in the PEOPLE table.

11. Type a 2 in the Seq column next to the NAME column.

12. Type a 1 in the Seq column next to the SOCSEC column.

 Select and Sequence Columns

Type sequence numbers (1-999) to select columns, press Enter.

Seq Column Table Type Digits Length

2 NAME PEOPLE CHARACTER 6

 EMPLNO PEOPLE CHARACTER 30

1 SOCSEC PEOPLE CHARACTER 11

 STRADDR PEOPLE CHARACTER 30

 CITY PEOPLE CHARACTER 20

 ZIP PEOPLE CHARACTER 9

 PHONE PEOPLE CHARACTER 20

13. Press Enter.

The Enter SQL Statements display appears again with SOCSEC, NAME appearing after SELECT.

 Enter SQL Statements

Type SQL statement, press Enter.

===> SELECT SOCSEC, NAME

 FROM YOURCOLL2.PEOPLE

14. Press Enter.

The statement you created is now run.

Once you have used the list function, the values you selected remain in effect until you change them or

until you change the list of schemas on the Change Session Attributes display.

Session services description

The interactive SQL Session Services display is requested by pressing F13 on the Enter SQL Statements

display.

From this display you can change session attributes and print, clear, or save the session to a source file.

Option 1 (Change session attributes) displays the Change Session Attributes display, which allows you to

select the current values that are in effect for your interactive SQL session. The options shown on this

display change based on the statement processing option selected.

The following session attributes can be changed:

v Commitment control attributes.

v The statement processing control.

v The SELECT output device.

v The list of schemas.

v The list type to select either all your system and SQL objects, or only your SQL objects.

v The data refresh option when displaying data.

v The allow copy data option.

Chapter 11. Using SQL in different environments 251

v The naming option.

v The programming language.

v The date format.

v The time format.

v The date separator.

v The time separator.

v The decimal point representation.

v The SQL string delimiter.

v The sort sequence.

v The language identifier.

Option 2 (Print current session) accesses the Change Printer display, which lets you print the current

session immediately and then continue working. You are prompted for printer information. All the SQL

statements you entered and all the messages displayed are printed just as they appear on the Enter SQL

Statements display.

Option 3 (Remove all entries from current session) lets you remove all the SQL statements and messages

from the Enter SQL Statements display and the session history. You are prompted to ensure that you

really want to delete the information.

Option 4 (Save session in source file) accesses the Change Source File display, which lets you save the

session in a source file. You are prompted for the source file name. This function lets you embed the

source file into a host language program by using the source entry utility (SEU).

Note: Option 4 allows you to embed prototyped SQL statements in a high-level language (HLL) program

that uses SQL. The source file created by option 4 may be edited and used as the input source file

for the Run SQL Statements (RUNSQLSTM) command.

Exiting interactive SQL

Pressing F3=Exit on the Enter SQL Statements display allows you to exit the interactive SQL environment

and do one of the following:

1. Save and exit session. Leave interactive SQL. Your current session will be saved and used the next

time you start interactive SQL.

2. Exit without saving session. Leave interactive SQL without saving your session.

3. Resume session. Remain in interactive SQL and return to the Enter SQL Statements display. The

current session parameters remain in effect.

4. Save session in source file. Save the current session in a source file. The Change Source File display is

shown to allow you to select where to save the session. You cannot recover and work with this

session again in interactive SQL.

Notes:

1. Option 4 allows you to embed prototype SQL statements in a high-level language (HLL) program that

uses SQL. Use the source entry utility (SEU) to copy the statements into your program. The source file

can also be edited and used as the input source file for the Run SQL Statements (RUNSQLSTM)

command.

2. If rows have been changed and locks are currently being held for this unit of work and you attempt

to exit interactive SQL, a warning message is displayed.

Using an existing SQL session

If you saved only one interactive SQL session by using option 1 (Save and exit session) on the Exit

Interactive SQL display, you may resume that session at any workstation. However, if you use option 1 to

save two or more sessions on different workstations, interactive SQL will first attempt to resume a session

252 iSeries: DB2 Universal Database for iSeries SQL Programming

that matches your workstation. If no matching sessions are available, then interactive SQL will increase

the scope of the search to include all sessions that belong to your user ID. If no sessions for your user ID

are available, the system will create a new session for your user ID and current workstation.

For example, you saved a session on workstation 1 and saved another session on workstation 2 and you

are currently working at workstation 1. Interactive SQL will first attempt to resume the session saved for

workstation 1. If that session is currently in use, interactive SQL will then attempt to resume the session

that was saved for workstation 2. If that session is also in use, then the system will create a second

session for workstation 1.

However, suppose you are working at workstation 3 and want to use the ISQL session associated with

workstation 2. You then may need to first delete the session from workstation 1 by using option 2 (Exit

without saving session) on the Exit Interactive SQL display.

Recovering an SQL session

If the previous SQL session ended abnormally, interactive SQL presents the Recover SQL Session display

at the start of the next session (when the next STRSQL command is entered). From this display, you can

either:

v Recover the old session by selecting option 1 (Attempt to resume existing SQL session).

v Delete the old session and start a new session by selecting option 2 (Delete existing SQL session and

start a new session).

If you choose to delete the old session and continue with the new session, the parameters you specified

when you entered STRSQL are used. If you choose to recover the old session, or are entering a previously

saved session, the parameters you specified when you entered STRSQL are ignored and the parameters

from the old session are used. A message is returned to indicate which parameters were changed from

the specified value to the old session value.

Accessing remote databases with interactive SQL

In interactive SQL, you can communicate with a remote relational database by using the SQL CONNECT

statement. Interactive SQL uses the CONNECT (Type 2) semantics (distributed unit of work) for

CONNECT statements. Interactive SQL does an implicit connect to the local RDB when starting an SQL

session. When the CONNECT statement is completed, a message shows the relational database

connection that was established. If starting a new session and COMMIT(*NONE) was not specified, or if

restoring a saved session and the commit level saved with the session was not *NONE, the connection

will be registered with commitment control. This implicit connect and possible commitment control

registration may influence subsequent connections to remote databases. For further information, see

“Determining connection type” on page 272. It is recommended that prior to connecting to the remote

system:

v When connecting to an application server that does not support distributed unit of work, a RELEASE

ALL followed by a COMMIT be issued to end previous connections, including the implicit connection

to local.

v When connecting to a non-DB2 UDB for iSeries application server, a RELEASE ALL followed by a

COMMIT be issued to end previous connections, including the implicit connection to local, and change

the commitment control level to at least *CHG.

When you are connecting to a non-DB2 UDB for iSeries application server, some session attributes are

changed to attributes that are supported by that application server. The following table shows the

attributes that change.

Chapter 11. Using SQL in different environments 253

Table 41. Values Table

Session Attribute Original Value New Value

Date Format *YMD

*DMY

*MDY

*JUL

*ISO

*EUR

*USA

*USA

Time Format *HMS with a : separator *HMS with

any other separator

*JIS

*EUR

Commitment Control *CHG,

*NONE

*ALL

*CS Repeatable Read

Naming Convention *SYS *SQL

Allow Copy Data *NO, *YES *OPTIMIZE

Data Refresh *ALWAYS *FORWARD

Decimal Point *SYSVAL *PERIOD

Sort Sequence Any value other than *HEX *HEX

Notes:

1. If connecting to an server that is running a release prior to Version 2 Release 3, the sort sequence

value changes to *HEX.

2. When connecting to a DB2/2 or DB2/6000 application server, the date and time formats specified

must be the same format.

After the connection is completed, a message is sent stating that the session attributes have been changed.

The changed session attributes can be displayed by using the session services display. While interactive

SQL is running, no other connection can be established for the default activation group.

When connected to a remote system with interactive SQL, a statement processing mode of syntax-only

checks the syntax of the statement against the syntax supported by the local system instead of the remote

system. Similarly, the SQL prompter and list support use the statement syntax and naming conventions

supported by the local system. The statement is run, however, on the remote system. Because of

differences in the level of SQL support between the two systems, syntax errors may be found in the

statement on the remote system at run time.

Lists of schemas and tables are available when you are connected to the local relational database. Lists of

columns are available only when you are connected to a relational database manager that supports the

DESCRIBE TABLE statement.

When you exit interactive SQL with connections that have pending changes or connections that use

protected conversations, the connections remain. If you do not perform additional work over the

connections, the connections are ended during the next COMMIT or ROLLBACK operation. You can also

end the connections by doing a RELEASE ALL and a COMMIT before exiting interactive SQL.

Using interactive SQL for remote access to non-DB2 UDB for iSeries application servers can require some

setup. For more information, see the Distributed Database Programming book.

Note: In the output of a communications trace, there may be a reference to a ’CREATE TABLE XXX’

statement. This is used to determine package existence; it is part of normal processing, and can be

ignored.

254 iSeries: DB2 Universal Database for iSeries SQL Programming

Using the SQL Statement Processor

This section describes the SQL Statement processor. This processor is available by using the Run SQL

Statements (RUNSQLSTM) command.

The SQL statement processor allows SQL statements to be run from a source member. The statements in

the source member can be run repeatedly, or changed, without compiling the source. This makes the

setup of a database environment easier. The statements that can be used with the SQL statement

processor are:

v ALTER SEQUENCE

v ALTER TABLE

v CALL

v COMMENT ON

v COMMIT

v CREATE ALIAS

v CREATE DISTINCT TYPE

v CREATE FUNCTION

v CREATE INDEX

v CREATE PROCEDURE

v CREATE SCHEMA

v CREATE SEQUENCE

v CREATE TABLE

v CREATE TRIGGER

v CREATE VIEW

v DECLARE GLOBAL TEMPORARY TABLE

v DELETE

v DROP

v GRANT

v INSERT

v LABEL ON

v LOCK TABLE

v REFRESH TABLE

v RELEASE SAVEPOINT

v RENAME

v REVOKE

v ROLLBACK

v SAVEPOINT

v SET PATH

v SET SCHEMA

v SET TRANSACTION

v UPDATE

In the source member, statements end with a semicolon and do not begin with EXEC SQL. If the record

length of the source member is longer than 80, only the first 80 characters will be read. Comments in the

source member can be either line comments or block comments. Line comments begin with a double

hyphen (−−) and end at the end of the line. Block comments start with /* and can continue across many

Chapter 11. Using SQL in different environments 255

|

|

|

lines until the next */ is reached. Block comments can be nested. Only SQL statements and comments are

allowed in the source file. The output listing and the resulting messages for the SQL statements are sent

to a print file. The default print file is QSYSPRT.

To perform syntax checking only on all statements in the source member, specify the PROCESS(*SYN)

parameter on the RUNSQLSTM command.

For more details, see the following sections:

v “Execution of statements after errors occur”

v “Commitment control in the SQL statement processor”

v “Source member listing for the SQL statement processor”

Execution of statements after errors occur

When a statement returns an error with a severity higher than the value specified for the error level

(ERRLVL) parameter of the RUNSQLSTM command, the statement has failed. The rest of the statements

in the source will be parsed to check for syntax errors, but those statements will not be run. Most SQL

errors have a severity of 30. If you want to continue processing after an SQL statement fails, set the

ERRLVL parameter of the RUNSQLSTM command to 30 or higher.

Commitment control in the SQL statement processor

A commitment-control level is specified on the RUNSQLSTM command. If a commitment-control level

other than *NONE is specified, the SQL statements are run under commitment control. If all of the

statements successfully runs, a COMMIT is done at the completion of the SQL statement processor.

Otherwise, a ROLLBACK is done. A statement is considered successful if its return code severity is less

than or equal to the value specified on the ERRLVL parameter of the RUNSQLSTM command.

The SET TRANSACTION statement can be used within the source member to override the level of

commitment control specified on the RUNSQLSTM command.

Note: The job must be at a unit of work boundary to use the SQL statement processor with commitment

control.

Source member listing for the SQL statement processor

See “Code disclaimer” on page 2 information for information pertaining to code examples.

256 iSeries: DB2 Universal Database for iSeries SQL Programming

5722SS1 V5R3M0 040528 Run SQL Statements SCHEMA 08/06/02 15:35:18 Page 1

Source file...............CORPDATA/SRC

Member....................SCHEMA

Commit....................*NONE

Naming....................*SYS

Generation level..........10

Date format...............*JOB

Date separator............*JOB

Time format...............*HMS

Time separator*JOB

Default Collection........*NONE

IBM SQL flagging..........*NOFLAG

ANS flagging..............*NONE

Decimal point.............*JOB

Sort Sequence.............*JOB

Language ID...............*JOB

Printer file..............*LIBL/QSYSPRT

Source file CCSID.........65535

Job CCSID.................0

Statement processing......*RUN

Allow copy of data........*OPTIMIZE

Allow blocking............*READ

SQL rules.................*DB2

Decimal result options:

 Maximum precision.......31

 Maximum scale...........31

 Minimum divide scale....0

Source member changed on 04/01/98 11:54:10

Figure 8. QSYSPRT listing for SQL statement processor (Part 1 of 3)

5722SS1 V5R3M0 040528 Run SQL Statements SCHEMA 08/06/02 15:35:18 Page 2

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

 1

 2 DROP COLLECTION DEPT;

 3 DROP COLLECTION MANAGER;

 4

 5 CREATE SCHEMA DEPT

 6 CREATE TABLE EMP (EMPNAME CHAR(50), EMPNBR INT)

 7 -- EMP will be created in collection DEPT

 8 CREATE INDEX EMPIND ON EMP(EMPNBR)

 9 -- EMPIND will be created in DEPT

 10 GRANT SELECT ON EMP TO PUBLIC; -- grant authority

 11

 12 INSERT INTO DEPT/EMP VALUES(’JOHN SMITH’, 1234);

 13 /* table must be qualified since no

 14 longer in the schema */

 15

 16 CREATE SCHEMA AUTHORIZATION MANAGER

 17 -- this schema will use MANAGER’s

 18 -- user profile

 19 CREATE TABLE EMP_SALARY (EMPNBR INT, SALARY DECIMAL(7,2),

 20 LEVEL CHAR(10))

 21 CREATE VIEW LEVEL AS SELECT EMPNBR, LEVEL

 22 FROM EMP_SALARY

 23 CREATE INDEX SALARYIND ON EMP_SALARY(EMPNBR,SALARY)

 24

 25 GRANT ALL ON LEVEL TO JONES GRANT SELECT ON EMP_SALARY TO CLERK

 26 -- Two statements can be on the same line

* * * * * E N D O F S O U R C E * * * * *

Figure 8. QSYSPRT listing for SQL statement processor (Part 2 of 3)

Chapter 11. Using SQL in different environments 257

5722SS1 V5R3M0 040528 Run SQL Statements SCHEMA 08/06/02 15:35:18 Page 3

Record *...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 SEQNBR Last change

MSG ID SEV RECORD TEXT

SQL7953 0 1 Position 1 Drop of DEPT in QSYS complete.

SQL7953 0 3 Position 3 Drop of MANAGER in QSYS complete.

SQL7952 0 5 Position 3 Schema DEPT created.

SQL7950 0 6 Position 8 Table EMP created in DEPT.

SQL7954 0 8 Position 8 Index EMPIND created in DEPT on table EMP in

 DEPT.

SQL7966 0 10 Position 8 GRANT of authority to EMP in DEPT completed.

SQL7956 0 10 Position 40 1 rows inserted in EMP in DEPT.

SQL7952 0 13 Position 28 Schema MANAGER created.

SQL7950 0 19 Position 9 Table EMP_SALARY created in collection

 MANAGER.

SQL7951 0 21 Position 9 View LEVEL created in MANAGER.

SQL7954 0 23 Position 9 Index SALARYIND created in MANAGER on table

 EMP_SALARY in MANAGER.

SQL7966 0 25 Position 9 GRANT of authority to LEVEL in MANAGER

 completed.

SQL7966 0 25 Position 37 GRANT of authority to EMP_SALARY in MANAGER

 completed.

Message Summary

Total Info Warning Error Severe Terminal

 13 13 0 0 0 0

00 level severity errors found in source

* * * * * E N D O F L I S T I N G * * * * *

Figure 8. QSYSPRT listing for SQL statement processor (Part 3 of 3)

258 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 12. Distributed Relational Database Function and SQL

A distributed relational database consists of a set of SQL objects that are spread across interconnected

computer systems. These relational databases can be of the same type (for example, DB2 UDB for iSeries)

or of different types (DB2 Universal Database for OS/390®, DB2 for VSE and VM, DB2 Universal

Database (UDB), or non-IBM database management systems which support DRDA). Each relational

database has a relational database manager to manage the tables in its environment. The database

managers communicate and cooperate with each other in a way that allows a given database manager

access to run SQL statements on a relational database on another system.

The application requester supports the application side of a connection. The application server is the local

or remote database to which an application requester is connected. DB2 UDB for iSeries provides support

for Distributed Relational Database Architecture™ (DRDA) to allow an application requester to

communicate with application servers. In addition, DB2 UDB for iSeries can call exit programs to allow

access to data on other database management systems which do not support DRDA. These exit programs

are called application requester driver (ARD) programs.

DB2 UDB for iSeries supports two levels of distributed relational database:

v Remote unit of work (RUW)

Remote unit of work is where the preparation and running of SQL statements occurs at only one

application server during a unit of work. DB2 UDB for iSeries supports RUW over either APPC or

TCP/IP.

v Distributed unit of work (DUW)

Distributed unit of work is where the preparation and running of SQL statements can occur at multiple

applications servers during a unit of work. However, a single SQL statement can only refer to objects

located at a single application server. DB2 UDB for iSeries supports DUW over APPC and, beginning

in V5R1, introduced support for DUW over TCP/IP.

You can find more details about DRDA and SQL in the following topics:

v “DB2 UDB for iSeries distributed relational database support”

v “DB2 UDB for iSeries distributed relational database example program” on page 260

v “SQL package support” on page 261

v “CCSID considerations for SQL” on page 265

v “Connection management and activation groups” on page 265

v “Distributed support” on page 271

v “Distributed unit of work” on page 277

v “Application requester driver programs” on page 280

v “Problem handling” on page 281

v “DRDA stored procedure considerations” on page 281

For comprehensive information about distributed relational databases, see the Distributed Database

Programming book.

DB2 UDB for iSeries distributed relational database support

The DB2 UDB Query Manager and SQL Development Kit licensed program supports interactive access to

distributed databases with the following SQL statements:

v CONNECT

v SET CONNECTION

© Copyright IBM Corp. 1998, 2004 259

v DISCONNECT

v RELEASE

v DROP PACKAGE

v GRANT PACKAGE

v REVOKE PACKAGE

For detailed descriptions of these statements, see the SQL Reference book.

Additional support is provided by the development kit through parameters on the SQL precompiler

commands:

 Create SQL ILE C Object (CRTSQLCI) command

 Create SQL ILE C++ Object (CRTSQLCPPI) command

 Create SQL COBOL Program (CRTSQLCBL) command

 Create SQL ILE COBOL Object (CRTSQLCBLI) command

 Create SQL PL/I Program (CRTSQLPLI) command

 Create SQL RPG Program (CRTSQLRPG) command

 Create SQL ILE RPG Object (CRTSQLRPGI) command

For more information about the SQL precompiler commands, see the topic Preparing and Running a

Program with SQL Statements in the Embedded SQL Programming information. The create SQL Package

(CRTSQLPKG) command allows you to create an SQL package from an SQL program that was created as

a distributed program. Syntax and parameter definitions for the CRTSQLPKG and CRTSQLxxx

commands are provided in DB2 UDB for iSeries CL Command Descriptions.

 See “Code disclaimer” on page 2 information for information pertaining to code examples.

DB2 UDB for iSeries distributed relational database example program

A remote unit of work relational database sample program has been shipped with the SQL product.

There are several files and members within the QSQL library to help you set up an environment that will

run a distributed DB2 UDB for iSeries sample program.

To use these files and members, you need to run the SETUP batch job located in the file

QSQL/QSQSAMP. The SETUP batch job allows you to customize the example to do the following:

v Create the QSQSAMP library at the local and remote locations.

v Set up relational database directory entries at the local and remote locations.

v Create application panels at the local location.

v Precompile, compile, and run programs to create distributed sample application schemas, tables,

indexes, and views.

v Load data into the tables at the local and remote locations.

v Precompile and compile programs.

v Create SQL packages at the remote location for the application programs.

v Precompile, compile, and run the program to update the location column in the department table.

Before running the SETUP, you may need to edit the SETUP member of the QSQL/QSQSAMP file.

Instructions are included in the member as comments. To run the SETUP, specify the following command

on the system command line:

========> SBMDBJOB QSQL/QSQSAMP SETUP

Wait for the batch job to complete.

260 iSeries: DB2 Universal Database for iSeries SQL Programming

To use the sample program, specify the following command on the command line:

========> ADDLIBLE QSQSAMP

To call the first display that allows you to customize the sample program, specify the following command

on the command line.

========> CALL QSQ8HC3

The following display appears. From this display, you can customize your database sample program.

DB2 for OS/400 ORGANIZATION APPLICATION

ACTION...........: _ A (ADD) E (ERASE)

D (DISPLAY) U (UPDATE)

OBJECT...........: __ DE (DEPARTMENT) EM (EMPLOYEE)

DS (DEPT STRUCTURE)

SEARCH CRITERIA..: __ DI (DEPARTMENT ID) MN (MANAGER NAME)

DN (DEPARTMENT NAME) EI (EMPLOYEE ID)

MI (MANAGER ID) EN (EMPLOYEE NAME)

LOCATION.........: ________________ (BLANK IMPLIES LOCAL LOCATION)

DATA.............: _______________________________

 Bottom

F3=Exit

 (C) COPYRIGHT IBM CORP. 1982, 1991

SQL package support

The OS/400 program supports an object called an SQL package. (OS/400 object type is *SQLPKG.) The

SQL package contains the control structures and access plans necessary to process SQL statements on the

application server when running a distributed program. An SQL package can be created when:

v The RDB parameter is specified on the CRTSQLxxx command and the program object is successfully

created. The SQL package will be created on the system specified by the RDB parameter.

If the compile is unsuccessful or the compile only creates the module object, the SQL package will not

be created.

v Using the CRTSQLPKG command. The CRTSQLPKG can be used to create a package when the

package was not created at precompile time or if the package is needed at an RDB other than the one

specified on the precompile command.

The Delete SQL Package (DLTSQLPKG) command allows you to delete an SQL package on the local

system.

An SQL package is not created unless the privileges held by the authorization ID associated with the

creation of the SQL package includes appropriate authority for creating a package on the remote system

(the application server). To run the program, the authorization ID must include EXECUTE privileges on

the SQL package. On iSeries systems, the EXECUTE privilege includes system authority of *OBJOPR and

*EXECUTE.

The syntax for the Create SQL Package (CRTSQLPKG) command is shown in Create SQL Package

command description in the CL Command information.

For further details about SQL and SQL packages, see the following topics:

Chapter 12. Distributed Relational Database Function and SQL 261

v “Valid SQL statements in an SQL package”

v “Considerations for creating an SQL package”

Valid SQL statements in an SQL package

Programs that connect to another server can use any of the SQL statements as described in the SQL

Reference book, except the SET TRANSACTION statement. Programs compiled using DB2 UDB for

iSeries that refer to a system that is not DB2 UDB for iSeries can use executable SQL statements

supported by that remote system. The precompiler will continue to issue diagnostic messages for

statements it does not understand. These statements are sent to the remote system during the creation of

the SQL package. The run-time support will return a SQLCODE of -84 or -525 when the statement cannot

be run on the current application server. For example, multiple-row FETCH, blocked INSERT, and

scrollable cursor support are allowed only in distributed programs where both the application requester

and application server are OS/400 at Version 2 Release 2 or later, with the following exception. A

non-iSeries application requester can issue read-only, insensitive scrollable cursor operations on a V5R3

iSeries application server. A further restriction in the use of multiple-row FETCH, blocked INSERT, and

scrollable cursors is that the transmission of BLOB, CLOB and DBCLOB data is not allowed when using

those functions. For more information, see Considerations for Using Distributed Relational Database in

the SQL Reference book.

Considerations for creating an SQL package

There are many considerations to think about when you are creating an SQL package. Some of these

considerations are:

v “CRTSQLPKG Authorization”

v “Creating a Package on a non-DB2 UDB for iSeries”

v “Target Release (TGTRLS)” on page 263

v “SQL Statement Size” on page 263

v “Statements that do not require a package” on page 263

v “Package object type” on page 264

v “ILE programs and service programs” on page 264

v “Package creation connection” on page 264

v “Unit of work” on page 264

v “Creating packages locally” on page 264

v “Labels” on page 264

v “Consistency token” on page 264

v “SQL and recursion” on page 265

CRTSQLPKG Authorization

When creating an SQL package on an iSeries system the authorization ID used must have *USE authority

to the CRTSQLPKG command.

Creating a Package on a non-DB2 UDB for iSeries

When you create a program and SQL package for a non-DB2 UDB for iSeries, and try to use SQL

statements that are unique to that relational database, the CRTSQLxxx GENLVL parameter should be set

to 30. The program will be created unless a message with a severity level of greater than 30 is issued. If a

message is issued with a severity level of greater than 30, the statement is probably not valid for any

relational database. For example, undefined or unusable host variables or constants that are not valid

generate a message severity greater than 30.

The precompiler listing should be checked for unexpected messages when running with a GENLVL

greater than 10. When you are creating a package for a DB2 Universal Database, you must set the

GENLVL parameter to a value less than 20.

262 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|

If the RDB parameter specifies a system that is not a DB2 UDB for iSeries system, then the following

options should not be used on the CRTSQLxxx command:

v COMMIT(*NONE)

v OPTION(*SYS)

v DATFMT(*MDY)

v DATFMT(*DMY)

v DATFMT(*JUL)

v DATFMT(*YMD)

v DATFMT(*JOB)

v DYNUSRPRF(*OWNER)

v TIMFMT(*HMS) if TIMSEP(*BLANK) or TIMSEP(’,’) is specified

v SRTSEQ(*JOBRUN)

v SRTSEQ(*LANGIDUNQ)

v SRTSEQ(*LANGIDSHR)

v SRTSEQ(library-name/table-name)

Note: When connecting to a DB2 Universal Database server, the following additional rules apply:

v The specified date and time formats must be the same format

v A value of *BLANK must be used for the TEXT parameter

v Default schemas (DFTRDBCOL) are not supported

v The CCSID of the source program from which the package is being created must not be 65535; if 65535

is used, an empty package is created.

Target Release (TGTRLS)

While creating the package, the SQL statements are checked to determine which release can support the

function. This release is set as the restore level of the package. For example, if the package contains a

CREATE TABLE statement which adds a FOREIGN KEY constraint to the table, then the restore level of

the package will be Version 3 Release 1, because FOREIGN KEY constraints were not supported before

this release. TGTRLS message are suppressed when the TGTRLS parameter is *CURRENT.

SQL Statement Size

The create SQL package function may not be able to handle the same size SQL statement that the

precompiler can process. During the precompile of the SQL program, the SQL statement is placed into the

associated space of the program. When this occurs, each token is separated by a blank. In addition, when

the RDB parameter is specified, the host variables of the source statement are replaced with an ’H’. The

create SQL package function passes this statement to the application server, along with a list of the host

variables for that statement. The addition of the blanks between the tokens and the replacement of host

variables may cause the statement to exceed the maximum SQL statement size (SQL0101 reason 5).

Statements that do not require a package

In some cases, you might try to create an SQL package but the SQL package will not be created and the

program will still run. This situation occurs when the program contains only SQL statements that do not

require an SQL package to run. For example, a program that contains only the SQL statement DESCRIBE

TABLE will generate message SQL5041 during SQL package creation. The SQL statements that do not

require an SQL package are:

v COMMIT

v CONNECT

v DESCRIBE TABLE

v DISCONNECT

v RELEASE

Chapter 12. Distributed Relational Database Function and SQL 263

v RELEASE SAVEPOINT

v ROLLBACK

v SAVEPOINT

v SET CONNECTION

Package object type

SQL packages are always created as non-ILE objects and always run in the default activation group.

ILE programs and service programs

ILE programs and service programs that bind several modules containing SQL statements must have a

separate SQL package for each module.

Package creation connection

The type of connection done for the package creation is based on the type of connect requested using the

RDBCNNMTH parameter. If RDBCNNMTH(*DUW) was specified, commitment control is used and the

connection may be a read-only connection. If the connection is read-only, then the package creation will

fail.

Unit of work

Because package creation implicitly performs a commit or rollback, the commit definition must be at a

unit of work boundary before the package creation is attempted. The following conditions must all be

true for a commit definition to be at a unit of work boundary:

v SQL is at a unit of work boundary.

v There are no local or DDM files open using commitment control and no closed local or DDM files with

pending changes.

v There are no API resources registered.

v There are no LU 6.2 resources registered that are not associated with DRDA or DDM.

Creating packages locally

The name specified on the RDB parameter can be the name of the local system. If it is the name of the

local system, the SQL package will be created on the local system. The SQL package can be saved

(SAVOBJ command) and then restored (RSTOBJ command) to another server. When you run the program

with a connection to the local system, the SQL package is not used. If you specify *LOCAL for the RDB

parameter, an *SQLPKG object is not created, but the package information is saved in the *PGM object.

Labels

You can use the LABEL ON statement to create a description for the SQL package.

Consistency token

The program and its associated SQL package contain a consistency token that is checked when a call is

made to the SQL package. The consistency tokens must match or the package cannot be used. It is

possible for the program and SQL package to appear to be uncoordinated. Assume the program is on the

iSeries system and the application server is another iSeries system. The program is running in session A

and it is recreated in session B (where the SQL package is also recreated). The next call to the program in

session A might result in a consistency token error. To avoid locating the SQL package on each call, SQL

maintains a list of addresses for SQL packages that are used by each session. When session B re-creates

the SQL package, the old SQL package is moved to the QRPLOBJ library. The address to the SQL package

in session A is still valid. (This situation can be avoided by creating the program and SQL package from

the session that is running the program, or by submitting a remote command to delete the old SQL

package before creating the program.)

To use the new SQL package, you should end the connection with the remote system. You can either sign

off the session and then sign on again, or you can use the interactive SQL (STRSQL) command to issue a

DISCONNECT for unprotected network connections or a RELEASE followed by a COMMIT for protected

connections. RCLDDMCNV should then be used to end the network connections. Call the program again.

264 iSeries: DB2 Universal Database for iSeries SQL Programming

SQL and recursion

If you start SQL from an attention key program while you are already precompiling, you will receive

unpredictable results.

The CRTSQLxxx, CRTSQLPKG, STRSQL commands and the SQL run-time environment are not recursive.

They will produce unpredictable results if recursion is attempted. Recursion occurs if while one of the

commands is running, (or running a program with embedded SQL statements) the job is interrupted

before the command has completed, and another SQL function is started.

CCSID considerations for SQL

If you are running a distributed application and one of your systems is not an iSeries system, the job

CCSID value on the iSeries server cannot be set to 65535.

Before requesting that the remote system create an SQL package, the application requester always

converts the name specified on the RDB parameter, SQL package name, library name, and the text of the

SQL package from the CCSID of the job to CCSID 500. This is required by DRDA. When the remote

relational database is an iSeries system, the names are not converted from CCSID 500 to the job CCSID.

It is recommended that delimited identifiers not be used for table, view, index, schema, library, or SQL

package names. Conversion of names does not occur between systems with different CCSIDs. Consider

the following example with system A running with a CCSID of 37 and system B running with a CCSID

of 500.

v Create a program that creates a table with the name ″a¬b|c″ on system A.

v Save program ″a¬b|c″ on system A, then restore it to system B.

v The code point for ¬ in CCSID 37 is x’5F’ while in CCSID 500 it is x’BA’.

v On system B the name displays ″a[b]c″. If you created a program that referenced the table whose name

was ″a¬b|c.″, the program will not find the table.

The at sign (@), pound sign (#), and dollar sign ($) characters should not be used in SQL object names.

Their code points depend on the CCSID used. If you use delimited names or the three national extenders,

the name resolution functions may possibly fail in a future release.

Connection management and activation groups

For details, see the following topics:

v “Connections and conversations”

v “Source code for PGM1:” on page 266

v “Source code for PGM2:” on page 267

v “Source code for PGM3:” on page 267

v “Multiple connections to the same relational database” on page 269

v “Implicit connection management for the default activation group” on page 270

v “Implicit connection management for nondefault activation groups” on page 271

Connections and conversations

Before the use of TCP/IP by DRDA, the term ’connection’ was not ambiguous. It referred to a connection

from the SQL point of view. That is, a connection started at the time one did a CONNECT TO some RDB,

and ended when a DISCONNECT was done or a RELEASE ALL followed by a successful COMMIT

occurred. The APPC conversation may or may not have been kept up, depending on the job’s DDMCNV

attribute value, and whether the conversation was with an iSeries or other type of system.

Chapter 12. Distributed Relational Database Function and SQL 265

TCP/IP terminology does not include the term ’conversation’. A similar concept exists, however. With the

advent of TCP/IP support by DRDA, use of the term ’conversation’ will be replaced, in this book, by the

more general term ’connection’, unless the discussion is specifically about an APPC conversation.

Therefore, there are now two different types of connections about which the reader must be aware: SQL

connections of the type described above, and ’network’ connections which replace the term

’conversation’.

Where there might be the possibility of confusion between the two types of connections, the word will be

qualified by ’SQL’ or ’network’ to allow the reader to understand the intended meaning.

 SQL connections are managed at the activation group level. Each activation group within a job manages

its own connections and these connections are not shared across activation groups. For programs that run

in the default activation group, connections are still managed as they were before Version 2 Release 3.

The following is an example of an application that runs in multiple activation groups. This example is

used to illustrate the interaction between activation groups, connection management, and commitment

control. It is not a recommended coding style.

Source code for PGM1:

 Command to create program and SQL package for PGM1:

CRTSQLCBL PGM(PGM1) COMMIT(*NONE) RDB(SYSB)

 EXEC SQL

 CONNECT TO SYSB

 END-EXEC.

 EXEC SQL

 SELECT

 END-EXEC.

 CALL PGM2.

Figure 9. Source Code for PGM1

266 iSeries: DB2 Universal Database for iSeries SQL Programming

Source code for PGM2:

 Command to create program and SQL package for PGM2:

CRTSQLCI OBJ(PGM2) COMMIT(*CHG) RDB(SYSC) OBJTYPE(*PGM)

Source code for PGM3:

 Commands to create program and SQL package for PGM3:

CRTSQLCI OBJ(PGM3) COMMIT(*CHG) RDB(SYSD) OBJTYPE(*MODULE)

CRTPGM PGM(PGM3) ACTGRP(APPGRP)

CRTSQLPKG PGM(PGM3) RDB(SYSD)

 ...

 EXEC SQL

 CONNECT TO SYSC;

 EXEC SQL

 DECLARE C1 CURSOR FOR

 SELECT ;

 EXEC SQL

 OPEN C1;

 do {

 EXEC SQL

 FETCH C1 INTO :st1;

 EXEC SQL

 UPDATE ...

 SET COL1 = COL1+10

 WHERE CURRENT OF C1;

 PGM3(st1);

 } while SQLCODE == 0;

 EXEC SQL

 CLOSE C1;

 EXEC SQL COMMIT;

....

Figure 10. Source Code for PGM2

 ...

 EXEC SQL

 INSERT INTO TAB VALUES(:st1);

 EXEC SQL COMMIT;

Figure 11. Source Code for PGM3

Chapter 12. Distributed Relational Database Function and SQL 267

In this example, PGM1 is a non-ILE program created using the CRTSQLCBL command. This program

runs in the default activation group. PGM2 is created using the CRTSQLCI command, and it runs in a

system-named activation group. PGM3 is also created using the CRTSQLCI command, but it runs in the

activation group named APPGRP. Because APPGRP is not the default value for the ACTGRP parameter,

the CRTPGM command is issued separately. The CRTPGM command is followed by a CRTSQLPKG

command that creates the SQL package object on the SYSD relational database. In this example, the user

has not explicitly started the job level commitment definition. SQL implicitly starts commitment control.

1. PGM1 is called and runs in the default activation group.

2. PGM1 connects to relational database SYSB and runs a SELECT statement.

3. PGM1 then calls PGM2, which runs in a system-named activation group.

268 iSeries: DB2 Universal Database for iSeries SQL Programming

4. PGM2 does a connect to relational database SYSC. Because PGM1 and PGM2 are in different

activation groups, the connection started by PGM2 in the system-named activation group does not

disconnect the connection started by PGM1 in the default activation group. Both connections are

active. PGM2 opens the cursor and fetches and updates a row. PGM2 is running under commitment

control, is in the middle of a unit of work, and is not at a connectable state.

5. PGM2 calls PGM3, which runs in activation group APPGRP.

6. The INSERT statement is the first statement run in activation group APPGRP. The first SQL statement

causes an implicit connect to relational database SYSD. A row is inserted into table TAB located at

relational database SYSD. The insert is then committed. The pending changes in the system-named

activation group are not committed, because commitment control was started by SQL with a commit

scope of activation group.

7. PGM3 is then exited and control returns to PGM2. PGM2 fetches and updates another row.

8. PGM3 is called again to insert the row. An implicit connect was done on the first call to PGM3. It is

not done on subsequent calls because the activation group did not end between calls to PGM3.

Finally, all the rows are processed by PGM2 and the unit of work associated with the system-named

activation group is committed.

Multiple connections to the same relational database

If different activation groups connect to the same relational database, each SQL connection has its own

network connection and its own application server job. If activation groups are run with commitment

control, changes committed in one activation group do not commit changes in other activation groups

unless the job-level commitment definition is used.

Chapter 12. Distributed Relational Database Function and SQL 269

Implicit connection management for the default activation group

The application requester can implicitly connect to an application server. Implicit SQL connection occurs

when the application requester detects the first SQL statement is being issued by the first active SQL

program for the default activation group and the following items are true:

v The SQL statement being issued is not a CONNECT statement with parameters.

v SQL is not active in the default activation group.

For a distributed program, the implicit SQL connection is to the relational database specified on the RDB

parameter. For a nondistributed program, the implicit SQL connection is to the local relational database.

SQL will end any active connections in the default activation group when SQL becomes not active. SQL

becomes not active when:

v The application requester detects the first active SQL program for the process has ended and the

following are all true:

– There are no pending SQL changes

– There are no connections using protected connections

– A SET TRANSACTION statement is not active

– No programs that were precompiled with CLOSQLCSR(*ENDJOB) were run.

270 iSeries: DB2 Universal Database for iSeries SQL Programming

If there are pending changes, protected connections, or an active SET TRANSACTION statement, SQL

is placed in the exited state. If programs precompiled with CLOSQLCSR(*ENDJOB) were run, SQL will

remain active for the default activation group until the job ends.

v At the end of a unit of work, if SQL is in the exited state. This occurs when you issue a COMMIT or

ROLLBACK command outside of an SQL program.

v At the end of a job.

Implicit connection management for nondefault activation groups

The application requester can implicitly connect to an application server. Implicit SQL connection occurs

when the application requester detects that the first SQL statement issued for the activation group is not

a CONNECT statement with parameters.

For a distributed program, the implicit SQL connection is made to the relational database specified on the

RDB parameter. For a nondistributed program, the implicit SQL connection is made to the local relational

database.

Implicit disconnect can occur at the following times in a process:

v When the activation group ends, if commitment control is not active, activation group level

commitment control is active, or the job level commitment definition is at a unit of work boundary.

If the job level commitment definition is active and not at a unit of work boundary, SQL is placed in

the exited state.

v If SQL is in the exited state, when the job level commitment definition is committed or rolled back.

v At the end of a job.

Distributed support

DB2 UDB for iSeries supports two levels of distributed relational database:

v Remote unit of work (RUW)

Remote unit of work is where the preparation and running of SQL statements occurs at only one

application server during a unit of work. An activation group with an application process at an

application requester can connect to an application server and, within one or more units of work, run

any number of static or dynamic SQL statements that refer to objects on the application server. Remote

unit of work is also referred to as DRDA level 1.

v Distributed unit of work (DUW)

Distributed unit of work is where the preparation and running of SQL statements can occur at multiple

applications servers during a unit of work. However, a single SQL statement can only refer to objects

located at a single application server. Distributed unit of work is also referred to as DRDA level 2.

Distributed unit of work allows:

– Update access to multiple application servers in one logical unit of work

or

– Update access to a single application server with read access to multiple application servers, in one

logical unit of work.
Whether multiple application servers can be updated in a unit of work is dependent on the existence

of a sync point manager at the application requester, sync point managers at the application servers,

and two-phase commit protocol support between the application requester and the application servers.

The sync point manager is a system component that coordinates commit and rollback operations

among the participants in the two-phase commit protocol. When running distributed updates, the sync

point managers on the different systems cooperate to ensure that resources reach a consistent state. The

protocols and flows used by sync point managers are also referred to as two-phase commit protocols. If

two-phase commit protocols will be used, the connection is a protected resource; otherwise the

connection is an unprotected resource.

Chapter 12. Distributed Relational Database Function and SQL 271

The type of data transport protocols used between systems affects whether the network connection is

protected or unprotected. Before V5R1, TCP/IP connections were always unprotected; thus they can

participate in a distributed unit of work in only a limited way. In V5R1, full support for DUW with

TCP/IP was added. For example, if the first connection made from the program is to a pre-V5R1 server

over TCP/IP, updates can be performed over it, but any subsequent connections, even over APPC, will

be read-only.

Note that when using Interactive SQL, the first SQL connection is to the local system. Therefore, in the

pre-V5R1 environment, in order to make updates to a remote system using TCP/IP, you must do a

RELEASE ALL followed by a COMMIT to end all SQL connections before doing the CONNECT TO

remote-tcp-system.

For a more detailed discussion of distributed support, see the following topics:

v “Determining connection type”

v “Connect and commitment control restrictions” on page 274

v “Determining connection status” on page 274

v “Distributed unit of work connection considerations” on page 276

v “Ending connections” on page 276

Determining connection type

When a remote connection is established it will use either an unprotected or protected network

connection. With regards to committable updates, this SQL connection may be read-only, updatable, or

unknown whether it is updatable when the connection is established. A committable update is any insert,

delete, update, or DDL statement that is run under commitment control. If the connection is read-only,

changes using COMMIT(*NONE) can still be run. After a CONNECT or SET CONNECTION,

SQLERRD(4) of the SQLCA and DB2_CONNECTION_TYPE of the SQL diagnostic area indicate the type

of connection.

DB2_CONNECTION_TYPE specific values are:

1. The connection is to the local relational database and the connection is protected.

2. The connection is to a remote relational database and the connection is unprotected.

3. The connection is to a remote relational database and the connection is protected.

4. The connection is to an application requester driver program and the connection is protected.

SQLERRD(4) specific values are:

1. The connection is to a remote relational database and the connection is unprotected. Committable

updates can be performed on the connection. This will occur when any of the following are true:

v The connection is established using remote unit of work (RUW).

v If the connection is established using distributed unit of work (DUW) then all the following are

true:

– The connection is not local.

– The application server does not support distributed unit of work. For example, a DB2 UDB for

iSeries application server with a release of OS/400 before Version 3 Release 1.

– The commitment control level of the program issuing the connect is not *NONE.

– Either no connections to other application servers (including local) exist that can perform

committable updates or all connections are read-only connections to application servers that do

not support distributed unit of work.

– There are no open updatable local files under commitment control for the commitment

definition.

– There are no open updatable DDM files that use a different connection under commitment

control for the commitment definition.

– There are no API commitment control resources for the commitment definition.

272 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|
|
|
|
|
|

|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|
|
|

|
|

|
|

|

– There are no protected connections registered for the commitment definition.

If running with commitment control, SQL will register a one-phase updatable DRDA resource for

remote connections or a two-phase updatable DRDA resource for local and ARD connections.
2. The connection is to a remote relational database and the connection is unprotected. The connection is

read-only. This will occur only when the following are true:

v The connection is not local.

v The application server does not support distributed unit of work

v At least one of the following is true:

– The commitment control level of the program issuing the connect is *NONE.

– Another connection exists to an application server that does not support distributed unit-of-work

and that application server can perform committable updates

– Another connection exists to an application server that supports distributed unit-of-work

(including local).

– There are open updatable local files under commitment control for the commitment definition.

– There are open updatable DDM files that use a different connection under commitment control

for the commitment definition.

– There are no one-phase API commitment control resources for the commitment definition.

– There are protected connections registered for the commitment definition.

If running with commitment control, SQL will register a one-phase DRDA read-only resource.

3. The connection is to a remote relational database and the connection is protected. It is unknown if

committable updates can be performed. This will occur when all of the following are true:

v The connection is not local.

v The commitment control level of the program issuing the connect is not *NONE.

v The application server supports both distributed unit of work and two-phase commit protocol

(protected connections).

If running with commitment control, SQL will register a two-phase DRDA undetermined resource.

4. The connection is to a remote relational database and the connection is unprotected. It is unknown if

committable updates can be performed. This will occur only when all of the following are true:

v The connection is not local.

v The application server supports distributed unit of work

v Either the application server does not support two-phase commit protocols (protected connections)

or the commitment control level of the program issuing the connect is *NONE.

If running with commitment control, SQL will register a one-phase DRDA undetermined resource.

5. The connection is to the local database or an application requester driver (ARD) program and the

connection is protected. It is unknown if committable updates can be performed. If running with

commitment control, SQL will register a two-phase DRDA undetermined resource.

For more information about two-phase and one-phase resources, see the Commitment control

topic.Backup and Recovery

book.

The following table summarizes the type of connection that will result for remote distributed unit of

work connections. SQLERRD(4) is set on successful CONNECT and SET CONNECTION statements.

 Table 42. Summary of Connection Type

Connect under

Commitment Control

Application Server

Supports Two-phase

Commit

Application Server

Supports Distributed

Unit of Work

Other Updatable

One-phase Resource

Registered SQLERRD(4)

No No No No 2

Chapter 12. Distributed Relational Database Function and SQL 273

|

|
|

|
|

|

|

|

|

|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

|

|

|
|

|

|
|
|

|

|

|
|

||

|
|

|
|
|

|
|
|

|
|
||

|||||

Table 42. Summary of Connection Type (continued)

Connect under

Commitment Control

Application Server

Supports Two-phase

Commit

Application Server

Supports Distributed

Unit of Work

Other Updatable

One-phase Resource

Registered SQLERRD(4)

No No No Yes 2

No No Yes No 4

No No Yes Yes 4

No Yes No No 2

No Yes No Yes 2

No Yes Yes No 4

No Yes Yes Yes 4

Yes No No No 1

Yes No No Yes 2

Yes No Yes No 4

Yes No Yes Yes 4

Yes Yes No No N/A *

Yes Yes No Yes N/A *

Yes Yes Yes No 3

Yes Yes Yes Yes 3

*DRDA does not allow protected connections to be used to application servers which only support remote unit of

work (DRDA1). This includes all DB2 for iSeries TCP/IP connections.

Connect and commitment control restrictions

There are some restrictions on when you can connect using commitment control. These restrictions also

apply to attempting to run statements using commitment control but the connection was established

using COMMIT(*NONE).

If a two-phase undetermined or updatable resource is registered or a one-phase updatable resource is

registered, another one-phase updatable resource cannot not be registered.

Furthermore, when protected connections are inactive and the DDMCNV job attribute is *KEEP, these

unused DDM connections will also cause the CONNECT statements in programs compiled with RUW

connection management to fail.

If running with RUW connection management and using the job-level commitment definition, then there

are some restrictions.

v If the job-level commitment definition is used by more than one activation group, all RUW connections

must be to the local relational database.

v If the connection is remote, only one activation group may use the job-level commitment definition for

RUW connections.

Determining connection status

The CONNECT statement without parameters can be used to determine if the current connection is

updatable or read-only for the current unit of work. A value of 1 or 2 will be returned in SQLERRD(3) in

the SQLCA or DB2_CONNECTION_STATUS in the SQL diagnostic area. The value is determined as

follows:

1. Committable updates can be performed on the connection for the unit of work.

This will occur when one of the following is true:

274 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|

|
|
|

|
|
|

|
|
||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|
|
|

|

|

|
|
|
|

|

|

v The connection is established using remote unit of work (RUW)..

v If the connection is established using distributed unit of work (DUW) and all of the following are

true:

– No connection exists to an application server that does not support distributed unit of work

which can perform committable updates.

– One of the following is true:

- The first committable update is performed on a connection that uses a protected connection, is

performed on the local database, or is performed on a connection to an ARD program.

- There are open updatable local files under commitment control. .

- There are open updatable DDM files that use protected connections.

- There are two-phase API commitment control resources.

- No committable updates have been made.
v If the connection is established using distributed unit of work (DUW) and all of the following are

true:

– No other connections exist to an application server that does not support distributed unit of

work which can perform committable updates.

– The first committable update is performed on this connection or no committable updates have

been made.

– There are no open updatable DDM files that use protected connections.

– There are no open updatable local files under commitment control.

– There are no two-phase API commitment control resources.
2. No committable updates can be performed on the connection for this unit of work.

This will occur when one of the following is true:

v If the connection is established using distributed unit of work (DUW) and one of the following are

true:

– A connection exists to an updatable application server that only supports remote unit of work.

– The first committable update is performed on a connection that uses an unprotected connection.
v If the connection is established using distributed unit of work (DUW) and one of the following are

true:

– A connection exists to an updatable application server that only supports remote unit of work.

– The first committable update was not performed on this connection.

– There are open updatable DDM files that use protected connections.

– There are open updatable local files under commitment control.

– There are two-phase API commitment control resources.

The following table summarizes how the connection status is determined based on the connection type

value, if there is an updatable connection to an application server that only supports remote unit of work,

and where the first committable update occurred.

Chapter 12. Distributed Relational Database Function and SQL 275

|

|
|

|
|

|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

|
|
|

Table 43. Summary of Determining Connection Status Values

Connection method

Connection Exists to

Updatable Remote Unit of

Work Application Server

Where First Committable

Update Occurred *

SQLERRD(3) or

DB2_CONNECTION_STATUS

RUW -- -- 1

DUW Yes -- 2

DUW No no updates 1

DUW No one-phase 2

DUW No this connection 1

DUW No two-phase 1

* The terms in this column are defined as:

v No updates indicates no committable updates have been performed, no DDM files open for update using a

protected connection, no local files are open for update, and no commitment control APIs are registered.

v One-phase indicates the first committable update was performed using an unprotected connection or DDM files are

open for update using unprotected connections.

v Two-phase indicates a committable update was performed on a two-phase distributed-unit-of-work application

server, DDM files are open for update using a protected connection, commitment control APIs are registered, or

local files are open for update under commitment control.

If an attempt is made to perform a committable update over a read-only connection, the unit of work will

be placed in a rollback required state. If an unit of work is in a rollback required state, the only statement

allowed is a ROLLBACK statement; all other statements will result in SQLCODE -918.

Distributed unit of work connection considerations

When connecting in a distributed unit of work application, there are many considerations. This section

lists some design considerations.

v If the unit of work will perform updates at more than one application server and commitment control

will be used, all connections over which updates will be done should be made using commitment

control. If the connections are done not using commitment control and later committable updates are

performed, read-only connections for the unit of work are likely to result.

v Other non-SQL commit resources, such as local files, DDM files, and commitment control API

resources, will affect the updatable and read-only status of a connection.

v If connecting using commitment control to an application server that does not support distributed unit

of work (for example, a V4R5 iSeries using TCP/IP), that connection will be either updatable or

read-only. If the connection is updatable it is the only updatable connection. As of V5R3, updates done

as a result of triggers or user defined functions activated during a database query will be taken into

consideration during DRDA two-phase-commit operations.

Ending connections

Because remote connections use resources, connections that are no longer going to be used should be

ended as soon as possible. Connections can be ended implicitly or explicitly. For a description of when

connections are implicitly ended see “Implicit connection management for the default activation group”

on page 270 and “Implicit connection management for nondefault activation groups” on page 271.

Connections can be explicitly ended by either the DISCONNECT statement or the RELEASE statement

followed by a successful COMMIT. The DISCONNECT statement can only be used with connections that

use unprotected connections or with local connections. The DISCONNECT statement will end the

connection when the statement is run. The RELEASE statement can be used with either protected or

unprotected connections. When the RELEASE statement is run, the connection is not ended but instead

placed into the released state. A connection that is in the release stated can still be used. The connection is

not ended until a successful COMMIT is run. A ROLLBACK or an unsuccessful COMMIT will not end a

connection in the released state.

276 iSeries: DB2 Universal Database for iSeries SQL Programming

||

|

|
|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

When a remote SQL connection is established, a DDM network connection (APPC conversation or

TCP/IP connection) is used. When the SQL connection is ended, the network connection may either be

placed in the unused state or dropped. Whether a network connection is dropped or placed in the

unused state depends on the DDMCNV job attribute. If the job attribute value is *KEEP and the

connection is to another iSeries server, the connection becomes unused. If the job attribute value is

*DROP and the connection is to another iSeries server, the connection is dropped. If the connection is to a

non-iSeries server, the connection is always dropped. *DROP is desirable in the following situations:

v When the cost of maintaining the unused connection is high and the connection will not be used

relatively soon.

v When running with a mixture of programs, some compiled with RUW connection management and

some programs compiled with DUW connection management. Attempts to run programs compiled

with RUW connection management to remote locations will fail when protected connections exist.

v When running with protected connections using either DDM or DRDA. Additional overhead is

incurred on commits and rollbacks for unused protected connections.

The Reclaim DDM connections (RCLDDMCNV) command may be used to end all unused connections, if

they are at a commit boundary.

Distributed unit of work

Distributed unit of work (DUW) allows access to multiple application servers within the same unit of

work. Each SQL statement can access only one application server. Using distributed unit of work allows

changes at multiple applications servers to be committed or rolled back within a single unit of work.

See the following topics for more information:

v “Managing distributed unit of work connections”

v “Checking connection status” on page 279

v “Cursors and prepared statements” on page 280

Managing distributed unit of work connections

The CONNECT, SET CONNECTION, DISCONNECT, and RELEASE statements are used to manage

connections in the DUW environment. A distributed unit of work CONNECT is run when the program is

precompiled using RDBCNNMTH(*DUW), which is the default. This form of the CONNECT statement

does not disconnect existing connections but instead places the previous connection in the dormant state.

The relational database specified on the CONNECT statement becomes the current connection. The

CONNECT statement can only be used to start new connections; if you want to switch between existing

connections, the SET CONNECTION statement must be used. Because connections use system resources,

connections should be ended when they are no longer needed. The RELEASE or DISCONNECT

statement can be used to end connections. The RELEASE statement must be followed by a successful

commit in order for the connections to end.

The following is an example of a C program running in a DUW environment that uses commitment

control.

Chapter 12. Distributed Relational Database Function and SQL 277

....

 EXEC SQL WHENEVER SQLERROR GO TO done;

 EXEC SQL WHENEVER NOT FOUND GO TO done;

 EXEC SQL

 DECLARE C1 CURSOR WITH HOLD FOR

 SELECT PARTNO, PRICE

 FROM PARTS

 WHERE SITES_UPDATED = ’N’

 FOR UPDATE OF SITES_UPDATED;

 /* Connect to the systems */

 EXEC SQL CONNECT TO LOCALSYS;

 EXEC SQL CONNECT TO SYSB;

 EXEC SQL CONNECT TO SYSC;

 /* Make the local system the current connection */

 EXEC SQL SET CONNECTION LOCALSYS;

 /* Open the cursor */

 EXEC SQL OPEN C1;

Figure 12. Example of Distributed Unit of Work Program (Part 1 of 4)

 while (SQLCODE==0)

 {

 /* Fetch the first row */

 EXEC SQL FETCH C1 INTO :partnumber,:price;

 /* Update the row which indicates that the updates have been

 propagated to the other sites */

 EXEC SQL UPDATE PARTS SET SITES_UPDATED=’Y’

 WHERE CURRENT OF C1;

 /* Check if the part data is on SYSB */

 if ((partnumber > 10) && (partnumber < 100))

 {

 /* Make SYSB the current connection and update the price */

 EXEC SQL SET CONNECTION SYSB;

 EXEC SQL UPDATE PARTS

 SET PRICE=:price

 WHERE PARTNO=:partnumber;

 }

Figure 12. Example of Distributed Unit of Work Program (Part 2 of 4)

 /* Check if the part data is on SYSC */

 if ((partnumber > 50) && (partnumber < 200))

 {

 /* Make SYSC the current connection and update the price */

 EXEC SQL SET CONNECTION SYSC;

 EXEC SQL UPDATE PARTS

 SET PRICE=:price

 WHERE PARTNO=:partnumber;

 }

 /* Commit the changes made at all 3 sites */

 EXEC SQL COMMIT;

 /* Set the current connection to local so the next row

 can be fetched */

 EXEC SQL SET CONNECTION LOCALSYS;

 }

 done:

Figure 12. Example of Distributed Unit of Work Program (Part 3 of 4)

278 iSeries: DB2 Universal Database for iSeries SQL Programming

In this program, there are 3 application servers active: LOCALSYS which the local system, and 2 remote

systems, SYSB and SYSC. SYSB and SYSC also support distributed unit of work and two-phase commit.

Initially all connections are made active by using the CONNECT statement for each of the application

servers involved in the transaction. When using DUW, a CONNECT statement does not disconnect the

previous connection, but instead places the previous connection in the dormant state. After all the

application servers, have been connected, the local connection is made the current connection using the

SET CONNECTION statement. The cursor is then opened and the first row of data fetched. It is then

determined at which application servers the data needs to be updated. If SYSB needs to be updated, then

SYSB is made the current connection using the SET CONNECTION statement and the update is run. The

same is done for SYSC. The changes are then committed. Because two-phase commit is being used, it is

guaranteed that the changes are committed at the local system and the two remote systems. Because the

cursor was declared WITH HOLD, it remains open after the commit. The current connection is then

changed to the local system so that the next row of data can be fetched. This set of fetches, updates, and

commits is repeated until all the data has been processed. After all the data has been fetched, the

connections for both remote systems are released. They cannot be disconnected because they use

protected connections. After the connections are released, a commit is issued to end the connections. The

local system is still connected and continues processing.

Checking connection status

If running in an environment where it is possible to have read-only connections, the status of the

connection should be checked before doing committable updates. This will prevent the unit of work from

entering the rollback required state. The following COBOL example shows how to check the connection

status.

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 /* Release the connections that are no longer being used */

 EXEC SQL RELEASE SYSB;

 EXEC SQL RELEASE SYSC;

 /* Close the cursor */

 EXEC SQL CLOSE C1;

 /* Do another commit which will end the released connections.

 The local connection is still active because it was not

 released. */

 EXEC SQL COMMIT;

 ...

Figure 12. Example of Distributed Unit of Work Program (Part 4 of 4)

 ...

 EXEC SQL

 SET CONNECTION SYS5

 END-EXEC.

 ...

 * Check if the connection is updatable.

 EXEC SQL CONNECT END-EXEC.

 * If connection is updatable, update sales information otherwise

 * inform the user.

 IF SQLERRD(3) = 1 THEN

 EXEC SQL

 INSERT INTO SALES_TABLE

 VALUES(:SALES-DATA)

 END-EXEC

 ELSE

 DISPLAY ’Unable to update sales information at this time’.

 ...

Figure 13. Example of Checking Connection Status

Chapter 12. Distributed Relational Database Function and SQL 279

Cursors and prepared statements

Cursors and prepared statements are scoped to the compilation unit and also to the connection. Scoping

to the compilation unit means that a program called from another separately compiled program cannot

use a cursor or prepared statement that was opened or prepared by the calling program. Scoping to the

connection means that each connection within a program can have its own separate instance of a cursor

or prepared statement.

The following distributed unit of work example shows how the same cursor name is opened in two

different connections, resulting in two instances of cursor C1.

Application requester driver programs

To complement database access provided by products that implement DRDA, DB2 UDB for iSeries

provides an interface for writing exit programs on a DB2 UDB for iSeries application requester to process

SQL requests. Such an exit program is called an application requester driver. The server calls the ARD

program during the following operations:

v During package creation performed using the CRTSQLPKG or CRTSQLxxx commands, when the

relational database (RDB) parameter matches the RDB name corresponding to the ARD program.

v Processing of SQL statements when the current connection is to an RDB name corresponding to the

ARD program.

These calls allow the ARD program to pass the SQL statements and information about the statements to a

remote relational database and return results back to the system. The system then returns the results to

the application or the user. Access to relational databases accessed by ARD programs appears like access

to DRDA application servers in the unlike environment. However, not all DRDA function is supported in

the ARD environment. Examples of function not supported are Large objects (LOBs) and long passwords

(passphrases).

For more information about application requester driver programs, see the OS/400 File APIs.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT * FROM CORPDATA.EMPLOYEE;

 /* Connect to local and open C1 */

 EXEC SQL CONNECT TO LOCALSYS;

 EXEC SQL OPEN C1;

 /* Connect to the remote system and open C1 */

 EXEC SQL CONNECT TO SYSA;

 EXEC SQL OPEN C1;

 /* Keep processing until done */

 while (NOT_DONE) {

 /* Fetch a row of data from the local system */

 EXEC SQL SET CONNECTION LOCALSYS;

 EXEC SQL FETCH C1 INTO :local_emp_struct;

 /* Fetch a row of data from the remote system */

 EXEC SQL SET CONNECTION SYSA;

 EXEC SQL FETCH C1 INTO :rmt_emp_struct;

 /* Process the data */

 }

 /* Close the cursor on the remote system */

 EXEC SQL CLOSE C1;

 /* Close the cursor on the local system */

 EXEC SQL SET CONNECTION LOCALSYS;

 EXEC SQL CLOSE C1;

Figure 14. Example of Cursors in a DUW program

280 iSeries: DB2 Universal Database for iSeries SQL Programming

Problem handling

The primary strategy for capturing and reporting error information for the distributed database function

is called first failure data capture (FFDC). The purpose of FFDC support is to provide accurate

information about errors detected in the DDM components of the OS/400 system from which an APAR

(Authorized Program Analysis Report) can be created. By means of this function, key structures and the

DDM data stream are automatically dumped to a spool file. The first 1024 bytes of the error information

are also logged in the system error log. This automatic dumping of error information about the first

occurrence of an error means that the failure must not need to be recreated to be reported by the

customer. FFDC is active in both the application requester and application server functions of the OS/400

DDM component. However, for the FFDC data to be logged, the system value QSFWERRLOG must be

set to *LOG.

Note: Not all negative SQLCODEs are dumped; only those that can be used to produce an APAR are

dumped. For more information about handling problems on distributed relational database

operations, see the Distributed Database Problem Determination Guide

When an SQL error is detected, an SQLCODE with a corresponding SQLSTATE is returned in the

SQLCA. For more information about these codes, see the SQL messages and codes topic in the iSeries

Information Center.

DRDA stored procedure considerations

The iSeries DRDA server supports the return of one or more result sets from a stored procedure. Note,

however, that in V5R1, only server enablement is provided, so that the feature can be used only from a

non-iSeries client that supports stored procedure result sets to a V5R1 server..

In V5R2, iSeries client-side support was added for applications that use the CLI interface for SQL.

However, you must apply a PTF to enable V5R1 iSeries servers to return stored procedure result sets to

V5R2 iSeries clients. These are the required PTRs:

v SI06869

v SI07372

v SI07375

v SI07376

v SI07377

v SI07378

v SI07379

v SI06851

Result sets can be generated in the stored procedure by opening one or more SQL cursors associated with

SQL SELECT statements. In addition, a maximum of one array result set can also be returned. Before

V5R3, only one instance of a query opened in a stored procedure was allowed to be open at one time.

Now multiple calls to the same stored procedure can be made without closing the result set cursors so

that more than one instance of a query can be open simultaneously. For more information about writing

stored procedures that return result sets, see the descriptions of the SET RESULT SETS, CREATE

PROCEDURE (SQL), and CREATE PROCEDURE (External) statements in the SQL Reference book. For

general information about the use of stored procedures with DRDA, see the Distributed Database

Programming book.

Chapter 12. Distributed Relational Database Function and SQL 281

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

282 iSeries: DB2 Universal Database for iSeries SQL Programming

Chapter 13. Related information

“DB2 UDB for iSeries Sample Tables”
Sample tables information

“DB2 UDB for iSeries CL Command Descriptions” on page 302
CL commands for SQL

DB2 UDB for iSeries Sample Tables

This appendix contains the sample tables referred to and used in this guide and the SQL Reference book.

Along with the tables are the SQL statements for creating the tables.

As a group, the tables include information that describes employees, departments, projects, and activities.

This information makes up a sample application demonstrating some of the features of the DB2 UDB

Query Manager and SQL Development Kit licensed program. All examples assume the tables are in a

schema named CORPDATA (for corporate data).

A stored procedure is shipped as part of the system that contains the DDL statements to create all of

these tables, and the INSERT statements to populate them. The procedure will create the schema specified

on the call to the procedure. Since this is an SQL external stored procedure, it can be called from any SQL

interface, including interactive SQL and iSeries Navigator. To call the procedure where SAMPLE is the

schema you want to create, issue the following statement:

CALL QSYS.CREATE_SQL_SAMPLE (’SAMPLE’)

The schema name must be specified in uppercase. The schema must not already exist.

The tables are:

v “Department Table (DEPARTMENT)” on page 284

v “Employee Table (EMPLOYEE)” on page 285

v “Employee Photo Table (EMP_PHOTO)” on page 287

v “Employee ResumeTable (EMP_RESUME)” on page 288

v “Employee to Project Activity Table (EMPPROJACT)” on page 289

v “Project Table (PROJECT)” on page 291

v “Project Activity Table (PROJACT)” on page 293

v “Activity Table (ACT)” on page 296

v “Class Schedule Table (CL_SCHED)” on page 297

v “In Tray Table (IN_TRAY)” on page 297

Indexes, aliases, and views are created for many of these tables. The view definitions are not included

here.

There are three other tables created as well that are not related to the first set.

v “Organization Table (ORG)” on page 298

v “Staff Table (STAFF)” on page 299

v “Sales Table (SALES)” on page 300

Notes:

1. In these sample tables, a question mark (?) indicates a null value.

© Copyright IBM Corp. 1998, 2004 283

Department Table (DEPARTMENT)

The department table describes each department in the enterprise and identifies its manager and the

department it reports to. The department table is created with the following CREATE TABLE and ALTER

TABLE statements:

CREATE TABLE DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6) ,

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION CHAR(16),

 PRIMARY KEY (DEPTNO))

ALTER TABLE DEPARTMENT

 ADD FOREIGN KEY ROD (ADMRDEPT)

 REFERENCES DEPARTMENT

 ON DELETE CASCADE

The following foreign key is added later

ALTER TABLE DEPARTMENT

 ADD FOREIGN KEY RDE (MGRNO)

 REFERENCES EMPLOYEE

 ON DELETE SET NULL

The following indexes are created:

CREATE UNIQUE INDEX XDEPT1

 ON DEPARTMENT (DEPTNO)

CREATE INDEX XDEPT2

 ON DEPARTMENT (MGRNO)

CREATE INDEX XDEPT3

 ON DEPARTMENT (ADMRDEPT)

The following alias is created for the table:

CREATE ALIAS DEPT FOR DEPARTMENT

The following table shows the content of the columns:

 Table 44. Columns of the Department Table

Column Name Description

DEPTNO Department number or ID.

DEPTNAME A name describing the general activities of the department.

MGRNO Employee number (EMPNO) of the department manager.

ADMRDEPT The department (DEPTNO) to which this department reports; the department at the

highest level reports to itself.

LOCATION Location of the department.

For a complete listing of DEPARTMENT, see “DEPARTMENT.”

DEPARTMENT

 DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00 ?

B01 PLANNING 000020 A00 ?

C01 INFORMATION CENTER 000030 A00 ?

284 iSeries: DB2 Universal Database for iSeries SQL Programming

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

D01 DEVELOPMENT CENTER ? A00 ?

D11 MANUFACTURING SYSTEMS 000060 D01 ?

D21 ADMINISTRATION SYSTEMS 000070 D01 ?

E01 SUPPORT SERVICES 000050 A00 ?

E11 OPERATIONS 000090 E01 ?

E21 SOFTWARE SUPPORT 000100 E01 ?

F22 BRANCH OFFICE F2 ? E01 ?

G22 BRANCH OFFICE G2 ? E01 ?

H22 BRANCH OFFICE H2 ? E01 ?

I22 BRANCH OFFICE I2 ? E01 ?

J22 BRANCH OFFICE J2 ? E01 ?

Employee Table (EMPLOYEE)

The employee table identifies all employees by an employee number and lists basic personnel

information. The employee table is created with the following CREATE TABLE and ALTER TABLE

statements:

CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) ,

 PHONENO CHAR(4) ,

 HIREDATE DATE ,

 JOB CHAR(8) ,

 EDLEVEL SMALLINT NOT NULL,

 SEX CHAR(1) ,

 BIRTHDATE DATE ,

 SALARY DECIMAL(9,2) ,

 BONUS DECIMAL(9,2) ,

 COMM DECIMAL(9,2)

 PRIMARY KEY (EMPNO))

ALTER TABLE EMPLOYEE

 ADD FOREIGN KEY RED (WORKDEPT)

 REFERENCES DEPARTMENT

 ON DELETE SET NULL

ALTER TABLE EMPLOYEE

 ADD CONSTRAINT NUMBER

 CHECK (PHONENO >= ’0000’ AND PHONENO <= ’9999’)

The following indexes are created:

CREATE UNIQUE INDEX XEMP1

 ON EMPLOYEE (EMPNO)

CREATE INDEX XEMP2

 ON EMPLOYEE (WORKDEPT)

The following alias is created for the table:

CREATE ALIAS EMP FOR EMPLOYEE

Chapter 13. Related information 285

The table below shows the content of the columns.

 Column Name Description

EMPNO Employee number

FIRSTNME First name of employee

MIDINIT Middle initial of employee

LASTNAME Family name of employee

WORKDEPT ID of department in which the employee works

PHONENO Employee telephone number

HIREDATE Date of hire

JOB Job held by the employee

EDLEVEL Number of years of formal education

SEX Sex of the employee (M or F)

BIRTHDATE Date of birth

SALARY Yearly salary in dollars

BONUS Yearly bonus in dollars

COMM Yearly commission in dollars

For a complete listing of EMPLOYEE, see “EMPLOYEE” on page 287.

286 iSeries: DB2 Universal Database for iSeries SQL Programming

EMPLOYEE

Employee Photo Table (EMP_PHOTO)

The employee photo table contains a photo for employees stored by employee number. The employee

photo table is created with the following CREATE TABLE and ALTER TABLE statements:

CREATE TABLE EMP_PHOTO

 (EMPNO CHAR(6) NOT NULL,

 PHOTO_FORMAT VARCHAR(10) NOT NULL,

 PICTURE BLOB(100K),

 EMP_ROWID CHAR(40) NOT NULL DEFAULT ’’,

 PRIMARY KEY (EMPNO,PHOTO_FORMAT))

ALTER TABLE EMP_PHOTO

 ADD COLUMN DL_PICTURE DATALINK(1000)

 LINKTYPE URL NO LINK CONTROL

ALTER TABLE EMP_PHOTO

 ADD FOREIGN KEY (EMPNO)

 REFERENCES EMPLOYEE

 ON DELETE RESTRICT

The following index is created:

CREATE UNIQUE INDEX XEMP_PHOTO

 ON EMP_PHOTO (EMPNO,PHOTO_FORMAT)

 FIRST MID WORK PHONE ED SAL-

EMP NO NAME INIT LASTNAME DEPT NO HIRE DATE JOB LEVEL SEX BIRTH DATE ARY BONUS COMM

000010 CHRISTINE I HAAS A00 3978 1965-01-01 PRES 18 F 1933-08-24 52750 1000 4220

000020 MICHAEL L THOMPSON B01 3476 1973-10-10 MANAGER 18 M 1948-02-02 41250 800 3300

000030 SALLY A KWAN C01 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250 800 3060

000050 JOHN B GEYER E01 6789 1949-08-17 MANAGER 16 M 1925-09-15 40175 800 3214

000060 IRVING F STERN D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250 500 2580

000070 EVA D PULASKI D21 7831 1980-09-30 MANAGER 16 F 1953-05-26 36170 700 2893

000090 EILEEN W HENDERSON E11 5498 1970-08-15 MANAGER 16 F 1941-05-15 29750 600 2380

000100 THEODORE Q SPENSER E21 0972 1980-06-19 MANAGER 14 M 1956-12-18 26150 500 2092

000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16 SALESREP 19 M 1929-11-05 46500 900 3720

000120 SEAN O’CONNELL A00 2167 1963-12-05 CLERK 14 M 1942-10-18 29250 600 2340

000130 DOLORES M QUINTANA C01 4578 1971-07-28 ANALYST 16 F 1925-09-15 23800 500 1904

000140 HEATHER A NICHOLLS C01 1793 1976-12-15 ANALYST 18 F 1946-01-19 28420 600 2274

000150 BRUCE ADAMSON D11 4510 1972-02-12 DESIGNER 16 M 1947-05-17 25280 500 2022

000160 ELIZABETH R PIANKA D11 3782 1977-10-11 DESIGNER 17 F 1955-04-12 22250 400 1780

000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15 DESIGNER 16 M 1951-01-05 24680 500 1974

000180 MARILYN S SCOUTTEN D11 1682 1973-07-07 DESIGNER 17 F 1949-02-21 21340 500 1707

000190 JAMES H WALKER D11 2986 1974-07-26 DESIGNER 16 M 1952-06-25 20450 400 1636

000200 DAVID BROWN D11 4501 1966-03-03 DESIGNER 16 M 1941-05-29 27740 600 2217

000210 WILLIAM T JONES D11 0942 1979-04-11 DESIGNER 17 M 1953-02-23 18270 400 1462

000220 JENNIFER K LUTZ D11 0672 1968-08-29 DESIGNER 18 F 1948-03-19 29840 600 2387

000230 JAMES J JEFFERSON D21 2094 1966-11-21 CLERK 14 M 1935-05-30 22180 400 1774

000240 SALVATORE M MARINO D21 3780 1979-12-05 CLERK 17 M 1954-03-31 28760 600 2301

000250 DANIEL S SMITH D21 0961 1969-10-30 CLERK 15 M 1939-11-12 19180 400 1534

000260 SYBIL P JOHNSON D21 8953 1975-09-11 CLERK 16 F 1936-10-05 17250 300 1380

000270 MARIA L PEREZ D21 9001 1980-09-30 CLERK 15 F 1953-05-26 27380 500 2190

000280 ETHEL R SCHNEIDER E11 8997 1967-03-24 OPERATOR 17 F 1936-03-28 26250 500 2100

000290 JOHN R PARKER E11 4502 1980-05-30 OPERATOR 12 M 1946-07-09 15340 300 1227

000300 PHILIP X SMITH E11 2095 1972-06-19 OPERATOR 14 M 1936-10-27 17750 400 1420

000310 MAUDE F SETRIGHT E11 3332 1964-09-12 OPERATOR 12 F 1931-04-21 15900 300 1272

000320 RAMLAL V MEHTA E21 9990 1965-07-07 FILEREP 16 M 1932-08-11 19950 400 1596

000330 WING LEE E21 2103 1976-02-23 FILEREP 14 M 1941-07-18 25370 500 2030

000340 JASON R GOUNOT E21 5698 1947-05-05 FILEREP 16 M 1926-05-17 23840 500 1907

200010 DIAN J HEMMINGER A00 3978 1965-01-01 SALESREP 18 F 1933-08-14 46500 1000 4220

200120 GREG ORLANDO A00 2167 1972-05-05 CLERK 14 M 1942-10-18 29250 600 2340

200140 KIM N NATZ C01 1793 1976-12-15 ANALYST 18 F 1946-01-19 28420 600 2274

200170 KIYOSHI YAMAMOTO D11 2890 1978-09-15 DESIGNER 16 M 1951-01-05 24680 500 1974

200220 REBA K JOHN D11 0672 1968-08-29 DESIGNER 18 F 1948-03-19 29840 600 2387

200240 ROBERT M MONTEVERDE D21 3780 1979-12-05 CLERK 17 M 1954-03-31 28760 600 2301

200280 EILEEN R SCHWARTZ E11 8997 1967-03-24 OPERATOR 17 F 1936-03-28 26250 500 2100

200310 MICHELLE F SPRINGER E11 3332 1964-09-12 OPERATOR 12 F 1931-04-21 15900 300 1272

200330 HELENA WONG E21 2103 1976-02-23 FIELDREP 14 F 1941-07-18 25370 500 2030

200340 ROY R ALONZO E21 5698 1947-05-05 FIELDREP 16 M 1926-05-17 23840 500 1907

Chapter 13. Related information 287

The table below shows the content of the columns.

 Column Name Description

EMPNO Employee number

PHOTO_FORMAT Format of image stored in PICTURE

PICTURE Photo image

EMP_ROWID Unique row id, not currently used

For a complete listing of EMP_PHOTO, see “EMP_PHOTO.”

EMP_PHOTO

 EMPNO PHOTO_FORMAT PICTURE EMP_ROWID

000130 bitmap ?

000130 gif ?

000140 bitmap ?

000140 gif ?

000150 bitmap ?

000150 gif ?

000190 bitmap ?

000190 gif ?

Employee ResumeTable (EMP_RESUME)

The employee photo table contains a resumefor employees stored by employee number. The employee

resumetable is created with the following CREATE TABLE and ALTER TABLE statements:

CREATE TABLE EMP_RESUME

 (EMPNO CHAR(6) NOT NULL,

 RESUME_FORMAT VARCHAR(10) NOT NULL,

 RESUME CLOB(5K),

 EMP_ROWID CHAR(40) NOT NULL DEFAULT ’’,

 PRIMARY KEY (EMPNO,RESUME_FORMAT))

ALTER TABLE EMP_RESUME

 ADD COLUMN DL_RESUME DATALINK(1000)

 LINKTYPE URL NO LINK CONTROL

ALTER TABLE EMP_RESUME

 ADD FOREIGN KEY (EMPNO)

 REFERENCES EMPLOYEE

 ON DELETE RESTRICT

The following index is created:

CREATE UNIQUE INDEX XEMP_RESUME

 ON EMP_RESUME (EMPNO,RESUME_FORMAT)

The table below shows the content of the columns.

 Column Name Description

EMPNO Employee number

RESUME_FORMAT Format of text stored in RESUME

RESUME Resume

288 iSeries: DB2 Universal Database for iSeries SQL Programming

Column Name Description

EMP_ROWID Unique row id, not currently used

For a complete listing of EMP_RESUME, see “EMP_RESUME.”

EMP_RESUME

 EMPNO RESUME_FORMAT RESUME EMP_ROWID

000130 ascii ?

000130 html ?

000140 ascii ?

000140 html ?

000150 ascii ?

000150 html ?

000190 ascii ?

000190 html ?

Employee to Project Activity Table (EMPPROJACT)

The employee to project activity table identifies the employee who performs each activity listed for each

project. The employee’s level of involvement (full-time or part-time) and schedule for activity are also in

the table. The employee to project activity table is created with the following CREATE TABLE and ALTER

TABLE statements:

CREATE TABLE EMPPROJACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2) ,

 EMSTDATE DATE ,

 EMENDATE DATE)

ALTER TABLE EMPPROJACT

 ADD FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)

 REFERENCES PROJACT

 ON DELETE RESTRICT

The following aliases are created for the table:

CREATE ALIAS EMPACT FOR EMPPROJACT

CREATE ALIAS EMP_ACT FOR EMPPROJACT

The table below shows the content of the columns.

 Table 45. Columns of the Employee to Project Activity Table

Column Name Description

EMPNO Employee ID number

PROJNO PROJNO of the project to which the employee is assigned

ACTNO ID of an activity within a project to which an employee is assigned

EMPTIME A proportion of the employee’s full time (between 0.00 and 1.00) to be spent on

the project from EMSTDATE to EMENDATE

EMSTDATE Start date of the activity

EMENDATE Completion date of the activity

Chapter 13. Related information 289

For a complete listing of EMPPROJACT, see “EMPPROJACT.”

EMPPROJACT

 EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000010 AD3100 10 .50 1982-01-01 1982-07-01

000070 AD3110 10 1.00 1982-01-01 1983-02-01

000230 AD3111 60 1.00 1982-01-01 1982-03-15

000230 AD3111 60 .50 1982-03-15 1982-04-15

000230 AD3111 70 .50 1982-03-15 1982-10-15

000230 AD3111 80 .50 1982-04-15 1982-10-15

000230 AD3111 180 .50 1982-10-15 1983-01-01

000240 AD3111 70 1.00 1982-02-15 1982-09-15

000240 AD3111 80 1.00 1982-09-15 1983-01-01

000250 AD3112 60 1.00 1982-01-01 1982-02-01

000250 AD3112 60 .50 1982-02-01 1982-03-15

000250 AD3112 60 1.00 1983-01-01 1983-02-01

000250 AD3112 70 .50 1982-02-01 1982-03-15

000250 AD3112 70 1.00 1982-03-15 1982-08-15

000250 AD3112 70 .25 1982-08-15 1982-10-15

000250 AD3112 80 .25 1982-08-15 1982-10-15

000250 AD3112 80 .50 1982-10-15 1982-12-01

000250 AD3112 180 .50 1982-08-15 1983-01-01

000260 AD3113 70 .50 1982-06-15 1982-07-01

000260 AD3113 70 1.00 1982-07-01 1983-02-01

000260 AD3113 80 1.00 1982-01-01 1982-03-01

000260 AD3113 80 .50 1982-03-01 1982-04-15

000260 AD3113 180 .50 1982-03-01 1982-04-15

000260 AD3113 180 1.00 1982-04-15 1982-06-01

000260 AD3113 180 1.00 1982-06-01 1982-07-01

000270 AD3113 60 .50 1982-03-01 1982-04-01

000270 AD3113 60 1.00 1982-04-01 1982-09-01

000270 AD3113 60 .25 1982-09-01 1982-10-15

000270 AD3113 70 .75 1982-09-01 1982-10-15

000270 AD3113 70 1.00 1982-10-15 1983-02-01

000270 AD3113 80 1.00 1982-01-01 1982-03-01

000270 AD3113 80 .50 1982-03-01 1982-04-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000130 IF1000 90 1.00 1982-10-01 1983-01-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

290 iSeries: DB2 Universal Database for iSeries SQL Programming

EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1983-03-01

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000200 MA2111 50 1.00 1982-01-01 1982-06-15

000200 MA2111 60 1.00 1982-06-15 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

000150 MA2112 60 1.00 1982-01-01 1982-07-15

000150 MA2112 180 1.00 1982-07-15 1983-02-01

000170 MA2112 60 1.00 1982-01-01 1983-06-01

000170 MA2112 70 1.00 1982-06-01 1983-02-01

000190 MA2112 70 1.00 1982-01-01 1982-10-01

000190 MA2112 80 1.00 1982-10-01 1983-10-01

000160 MA2113 60 1.00 1982-07-15 1983-02-01

000170 MA2113 80 1.00 1982-01-01 1983-02-01

000180 MA2113 70 1.00 1982-04-01 1982-06-15

000210 MA2113 80 .50 1982-10-01 1983-02-01

000210 MA2113 180 .50 1982-10-01 1983-02-01

000050 OP1000 10 .25 1982-01-01 1983-02-01

000090 OP1010 10 1.00 1982-01-01 1983-02-01

000280 OP1010 130 1.00 1982-01-01 1983-02-01

000290 OP1010 130 1.00 1982-01-01 1983-02-01

000300 OP1010 130 1.00 1982-01-01 1983-02-01

000310 OP1010 130 1.00 1982-01-01 1983-02-01

000050 OP2010 10 .75 1982-01-01 1983-02-01

000100 OP2010 10 1.00 1982-01-01 1983-02-01

000320 OP2011 140 .75 1982-01-01 1983-02-01

000320 OP2011 150 .25 1982-01-01 1983-02-01

000330 OP2012 140 .25 1982-01-01 1983-02-01

000330 OP2012 160 .75 1982-01-01 1983-02-01

000340 OP2013 140 .50 1982-01-01 1983-02-01

000340 OP2013 170 .50 1982-01-01 1983-02-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

Project Table (PROJECT)

The project table describes each project that the business is currently undertaking. Data contained in each

row include the project number, name, person responsible, and schedule dates. The project table is

created with the following CREATE TABLE and ALTER TABLE statements:

Chapter 13. Related information 291

CREATE TABLE PROJECT

 (PROJNO CHAR(6) NOT NULL,

 PROJNAME VARCHAR(24) NOT NULL DEFAULT,

 DEPTNO CHAR(3) NOT NULL,

 RESPEMP CHAR(6) NOT NULL,

 PRSTAFF DECIMAL(5,2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6) ,

 PRIMARY KEY (PROJNO))

ALTER TABLE PROJECT

 ADD FOREIGN KEY (DEPTNO)

 REFERENCES DEPARTMENT

 ON DELETE RESTRICT

ALTER TABLE PROJECT

 ADD FOREIGN KEY (RESPEMP)

 REFERENCES EMPLOYEE

 ON DELETE RESTRICT

ALTER TABLE PROJECT

 ADD FOREIGN KEY RPP (MAJPROJ)

 REFERENCES PROJECT

 ON DELETE CASCADE

The following indexes are created:

CREATE UNIQUE INDEX XPROJ1

 ON PROJECT (PROJNO)

CREATE INDEX XPROJ2

 ON PROJECT (RESPEMP)

The following alias is created for the table:

CREATE ALIAS PROJ FOR PROJECT

The table below shows the contents of the columns:

 Column Name Description

PROJNO Project number

PROJNAME Project name

DEPTNO Department number of the department responsible for the project

RESPEMP Employee number of the person responsible for the project

PRSTAFF Estimated mean staffing

PRSTDATE Estimated start date of the project

PRENDATE Estimated end date of the project

MAJPROJ Controlling project number for sub projects

For a complete listing of PROJECT, see “PROJECT.”

PROJECT

 PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

AD3100 ADMIN SERVICES D01 000010 6.5 1982-01-01 1983-02-01 ?

AD3110 GENERAL ADMIN

SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

292 iSeries: DB2 Universal Database for iSeries SQL Programming

PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

AD3111 PAYROLL

PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL

PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT

PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY SERVICES C01 000030 2 1982-01-01 1983-02-01 ?

IF2000 USER

EDUCATION

C01 000030 1 1982-01-01 1983-02-01 ?

MA2100 WELD LINE

AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 ?

MA2110 W L

PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L PROGRAM

DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT

DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD CONT

PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION

SUPPORT

E01 000050 6 1982-01-01 1983-02-01 ?

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN SYSTEMS

SERVICES

E01 000050 5 1982-01-01 1983-02-01 ?

OP2010 SYSTEMS

SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP SYSTEMS

SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS

SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC SUPPORT E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE

PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

Project Activity Table (PROJACT)

The project activity table describes each project that the business is currently undertaking. Data contained

in each row include the project number, activity number, and schedule dates. The project activity table is

created with the following CREATE TABLE and ALTER TABLE statements:

CREATE TABLE PROJACT

 (PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 ACSTAFF DECIMAL(5,2),

 ACSTDATE DATE NOT NULL,

 ACENDATE DATE ,

 PRIMARY KEY (PROJNO, ACTNO, ACSTDATE))

ALTER TABLE PROJACT

 ADD FOREIGN KEY RPAP (PROJNO)

 REFERENCES PROJECT

 ON DELETE RESTRICT

Chapter 13. Related information 293

The following foreign key is added later:

ALTER TABLE PROJACT

 ADD FOREIGN KEY RPAA (ACTNO)

 REFERENCES ACT

 ON DELETE RESTRICT

The following index is created:

CREATE UNIQUE INDEX XPROJAC1

 ON PROJACT (PROJNO, ACTNO, ACSTDATE)

The table below shows the contents of the columns:

 Column Name Description

PROJNO Project number

ACTNO Activity number

ACSTAFF Estimated mean staffing

ACSTDATE Activity start date

ACENDATE Activity end date

For a complete listing of PROJACT, see “PROJACT.”

PROJACT

 PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 ? 1982-01-01 ?

AD3110 10 ? 1982-01-01 ?

AD3111 60 ? 1982-01-01 ?

AD3111 60 ? 1982-03-15 ?

AD3111 70 ? 1982-03-15 ?

AD3111 80 ? 1982-04-15 ?

AD3111 180 ? 1982-10-15 ?

AD3111 70 ? 1982-02-15 ?

AD3111 80 ? 1982-09-15 ?

AD3112 60 ? 1982-01-01 ?

AD3112 60 ? 1982-02-01 ?

AD3112 60 ? 1983-01-01 ?

AD3112 70 ? 1982-02-01 ?

AD3112 70 ? 1982-03-15 ?

AD3112 70 ? 1982-08-15 ?

AD3112 80 ? 1982-08-15 ?

AD3112 80 ? 1982-10-15 ?

AD3112 180 ? 1982-08-15 ?

AD3113 70 ? 1982-06-15 ?

AD3113 70 ? 1982-07-01 ?

AD3113 80 ? 1982-01-01 ?

AD3113 80 ? 1982-03-01 ?

AD3113 180 ? 1982-03-01 ?

294 iSeries: DB2 Universal Database for iSeries SQL Programming

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3113 180 ? 1982-04-15 ?

AD3113 180 ? 1982-06-01 ?

AD3113 60 ? 1982-03-01 ?

AD3113 60 ? 1982-04-01 ?

AD3113 60 ? 1982-09-01 ?

AD3113 70 ? 1982-09-01 ?

AD3113 70 ? 1982-10-15 ?

IF1000 10 ? 1982-06-01 ?

IF1000 90 ? 1982-10-01 ?

IF1000 100 ? 1982-10-01 ?

IF2000 10 ? 1982-01-01 ?

IF2000 100 ? 1982-01-01 ?

IF2000 100 ? 1982-03-01 ?

IF2000 110 ? 1982-03-01 ?

IF2000 110 ? 1982-10-01 ?

MA2100 10 ? 1982-01-01 ?

MA2100 20 ? 1982-01-01 ?

MA2110 10 ? 1982-01-01 ?

MA2111 50 ? 1982-01-01 ?

MA2111 60 ? 1982-06-15 ?

MA2111 40 ? 1982-01-01 ?

MA2112 60 ? 1982-01-01 ?

MA2112 180 ? 1982-07-15 ?

MA2112 70 ? 1982-06-01 ?

MA2112 70 ? 1982-01-01 ?

MA2112 80 ? 1982-10-01 ?

MA2113 60 ? 1982-07-15 ?

MA2113 80 ? 1982-01-01 ?

MA2113 70 ? 1982-04-01 ?

MA2113 80 ? 1982-10-01 ?

MA2113 180 ? 1982-10-01 ?

OP1000 10 ? 1982-01-01 ?

OP1010 10 ? 1982-01-01 ?

OP1010 130 ? 1982-01-01 ?

OP2010 10 ? 1982-01-01 ?

OP2011 140 ? 1982-01-01 ?

OP2011 150 ? 1982-01-01 ?

OP2012 140 ? 1982-01-01 ?

OP2012 160 ? 1982-01-01 ?

OP2013 140 ? 1982-01-01 ?

OP2013 170 ? 1982-01-01 ?

Chapter 13. Related information 295

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

PL2100 30 ? 1982-01-01 ?

Activity Table (ACT)

The activity table describes each activity. The activity table is created with the following CREATE TABLE

statement:

CREATE TABLE ACT

 (ACTNO SMALLINT NOT NULL,

 ACTKWD CHAR(6) NOT NULL,

 ACTDESC VARCHAR(20) NOT NULL,

 PRIMARY KEY (ACTNO))

The following indexes are created:

CREATE UNIQUE INDEX XACT1

 ON ACT (ACTNO)

CREATE UNIQUE INDEX XACT2

 ON ACT (ACTKWD)

The table below shows the contents of the columns.

 Column Name Description

ACTNO Activity number

ACTKWD Keyword for activity

ACTDESC Description of activity

For a complete listing of ACT, see “ACT.”

ACT

 ACTNO ACTKWD ACTDESC

10 MANAGE MANAGE/ADVISE

20 ECOST ESTIMATE COST

30 DEFINE DEFINE SPECS

40 LEADPR LEAD PROGRAM/DESIGN

50 SPECS WRITE SPECS

60 LOGIC DESCRIBE LOGIC

70 CODE CODE PROGRAMS

80 TEST TEST PROGRAMS

90 ADMQS ADM QUERY SYSTEM

100 TEACH TEACH CLASSES

110 COURSE DEVELOP COURSES

120 STAFF PERS AND STAFFING

130 OPERAT OPER COMPUTER SYS

140 MAINT MAINT SOFTWARE SYS

150 ADMSYS ADM OPERATING SYS

160 ADMDB ADM DATA BASES

170 ADMDC ADM DATA COMM

296 iSeries: DB2 Universal Database for iSeries SQL Programming

ACTNO ACTKWD ACTDESC

180 DOC DOCUMENT

Class Schedule Table (CL_SCHED)

The class schedule table describes: each class, the start time for the class, the end time for the class, and

the class code. The class schedule table is created with the following CREATE TABLE statement:

CREATE TABLE CL_SCHED

 (CLASS_CODE CHAR(7),

 "DAY" SMALLINT,

 STARTING TIME,

 ENDING TIME)

The table below gives the contents of the columns.

 Column Name Description

CLASS_CODE Class code (room:teacher)

DAY Day number of 4 day schedule

STARTING Class start time

ENDING Class end time

For a complete listing of CL_SCHED, see “CL_SCHED.”

CL_SCHED

 CLASS_CODE DAY STARTING ENDING

042:BF 4 12:10:00 14:00:00

553:MJA 1 10:30:00 11:00:00

543:CWM 3 09:10:00 10:30:00

778:RES 2 12:10:00 14:00:00

044:HD 3 17:12:30 18:00:00

In Tray Table (IN_TRAY)

The in tray table describes an electronic in-basket containing: a timestamp from when the message was

received, the user ID of the person sending the message, and the message itself. The in tray table is

created with the following CREATE TABLE statement:

CREATE TABLE IN_TRAY

 (RECEIVED TIMESTAMP,

 SOURCE CHAR(8),

 SUBJECT CHAR(64),

 NOTE_TEXT VARCHAR(3000))

The table below gives the contents of the columns.

 Column Name Description

RECEIVED Date and time received

SOURCE User ID of person sending the note

SUBJECT Brief description of the note

NOTE_TEXT The note

Chapter 13. Related information 297

For a complete listing of IN_TRAY, see “IN_TRAY.”

IN_TRAY

 RECEIVED SOURCE SUBJECT NOTE_TEXT

1988-12-25-
17.12.30.000000

BADAMSON FWD: Fantastic year! 4th Quarter

Bonus.

To: JWALKER Cc: QUINTANA,

NICHOLLS Jim, Looks like our

hard work has paid off. I have

some good beer in the fridge if

you want to come over to

celebrate a bit. Delores and

Heather, are you interested as

well? Bruce <Forwarding from

ISTERN> Subject: FWD: Fantastic

year! 4th Quarter Bonus. To:

Dept_D11 Congratulations on a

job well done. Enjoy this year’s

bonus. Irv <Forwarding from

CHAAS> Subject: Fantastic year!

4th Quarter Bonus. To:

All_Managers Our 4th quarter

results are in. We pulled together

as a team and exceeded our plan!

I am pleased to announce a bonus

this year of 18%. Enjoy the

holidays. Christine Haas

1988-12-23-
08.53.58.000000

ISTERN FWD: Fantastic year! 4th Quarter

Bonus.

To: Dept_D11 Congratulations on

a job well done. Enjoy this year’s

bonus. Irv <Forwarding from

CHAAS> Subject: Fantastic year!

4th Quarter Bonus. To:

All_Managers Our 4th quarter

results are in. We pulled together

as a team and exceeded our plan!

I am pleased to announce a bonus

this year of 18%. Enjoy the

holidays. Christine Haas

1988-12-22-
14.07.21.136421

CHAAS Fantastic year! 4th Quarter

Bonus.

To: All_Managers Our 4th quarter

results are in. We pulled together

as a team and exceeded our plan!

I am pleased to announce a bonus

this year of 18%. Enjoy the

holidays. Christine Haas

Organization Table (ORG)

The organization table describes the organization of the corporation. The organization table is created

with the following CREATE TABLE statement:

CREATE TABLE ORG

 (DEPTNUMB SMALLINT NOT NULL,

 DEPTNAME VARCHAR(14),

 MANAGER SMALLINT,

 DIVISION VARCHAR(10),

 LOCATION VARCHAR(13))

298 iSeries: DB2 Universal Database for iSeries SQL Programming

The table below gives the contents of the columns.

 Column Name Description

DEPTNUMB Department number

DEPTNAME Department name

MANAGER Manager number for the department

DIVISION Division of the department

LOCATION Location of the department

For a complete listing of ORG, see “ORG.”

ORG

 DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

Staff Table (STAFF)

The staff table describes the employees. The staff table is created with the following CREATE TABLE

statement:

CREATE TABLE STAFF

 (ID SMALLINT NOT NULL,

 NAME VARCHAR(9),

 DEPT SMALLINT,

 JOB CHAR(5),

 YEARS SMALLINT,

 SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2))

The table below shows the contents of the columns.

 Column Name Description

ID Employee number

NAME Employee name

DEPT Department number

JOB Job title

YEARS Years with the company

SALARY Employee’s annual salary

COMM Employee’s commision

For a complete listing of STAFF, see “STAFF” on page 300.

Chapter 13. Related information 299

STAFF

 ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 ?

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 ?

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 ?

60 Quigley 38 Sales 7 16508.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk ? 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 ?

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk ? 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 ?

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 ?

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk ? 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 ?

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 ?

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 ?

270 Lea 66 Mgr 9 18555.50 ?

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 ?

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

3650 Gafney 84 Clerk 5 13030.50 188.00

Sales Table (SALES)

The sales table describes: each sales for each sales person. The sales table is created with the following

CREATE TABLE statement:

300 iSeries: DB2 Universal Database for iSeries SQL Programming

CREATE TABLE SALES

 (SALES_DATE DATE,

 SALES_PERSON VARCHAR(15),

 REGION VARCHAR(15),

 SALES INTEGER)

The table below gives the contents of the columns.

 Column Name Description

SALES_DATE Date the sale was made

SALES_PERSON Person making the sale

REGION Region where the sale was made

SALES Number of sales

For a complete listing of SALES, see “SALES.”

SALES

 SALES_DATE SALES_PERSON REGION SALES

12/31/1995 LUCCHESSI Ontario-South 1

12/31/1995 LEE Ontario-South 3

12/31/1995 LEE Quebec 1

12/31/1995 LEE Manitoba 2

12/31/1995 GOUNOT Quebec 1

03/29/1996 LUCCHESSI Ontario-South 3

03/29/1996 LUCCHESSI Quebec 1

03/29/1996 LEE Ontario-South 2

03/29/1996 LEE Ontario-North 2

03/29/1996 LEE Quebec 3

03/29/1996 LEE Manitoba 5

03/29/1996 GOUNOT Ontario-South 3

03/29/1996 GOUNOT Quebec 1

03/29/1996 GOUNOT Manitoba 7

03/30/1996 LUCCHESSI Ontario-South 1

03/30/1996 LUCCHESSI Quebec 2

03/30/1996 LUCCHESSI Manitoba 1

03/30/1996 LEE Ontario-South 7

03/30/1996 LEE Ontario-North 3

03/30/1996 LEE Quebec 7

03/30/1996 LEE Manitoba 4

03/30/1996 GOUNOT Ontario-South 2

03/30/1996 GOUNOT Quebec 18

03/30/1996 GOUNOT Manitoba 1

03/31/1996 LUCCHESSI Manitoba 1

03/31/1996 LEE Ontario-South 14

03/31/1996 LEE Ontario-North 3

Chapter 13. Related information 301

SALES_DATE SALES_PERSON REGION SALES

03/31/1996 LEE Quebec 7

03/31/1996 LEE Manitoba 3

03/31/1996 GOUNOT Ontario-South 2

03/31/1996 GOUNOT Quebec 1

04/01/1996 LUCCHESSI Ontario-South 3

04/01/1996 LUCCHESSI Manitoba 1

04/01/1996 LEE Ontario-South 8

04/01/1996 LEE Ontario-North ?

04/01/1996 LEE Quebec 8

04/01/1996 LEE Manitoba 9

04/01/1996 GOUNOT Ontario-South 3

04/01/1996 GOUNOT Ontario-North 1

04/01/1996 GOUNOT Quebec 3

04/01/1996 GOUNOT Manitoba 7

DB2 UDB for iSeries CL Command Descriptions

DB2 UDB for iSeries provides the following CL Commands for SQL:

v CRTSQLPKG (Create Structured Query Language Package) Command

v DLTSQLPKG (Delete Structured Query Language Package) Command

v PRTSQLINF (Print Structured Query Language Information) Command

v RUNSQLSTM (Run Structure Query Language Statement) Command

v STRSQL (Start Structure Query Language) Command

302 iSeries: DB2 Universal Database for iSeries SQL Programming

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2004 303

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

304 iSeries: DB2 Universal Database for iSeries SQL Programming

|
|
|

|
|
|
|
|

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

©IBM, August 2005. Portions of this code are derived from IBM Corp. Sample Programs. © Copyright

IBM Corp. 1998, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This information documents intended Programming Interfaces that allow the customer to write programs

to obtain the services of DB2 Universal Database SQL Programming.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

AIX

DB2

DB2 Universal Database

Distributed Relational Database Architecture

Domino

DRDA

IBM

iSeries

i5/OS

Language Environment

Lotus

Net.Data

Notes

OS/390

OS/400

PowerPC

System/36

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of Microsoft Corporation in

the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Notices 305

|
|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing information

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

306 iSeries: DB2 Universal Database for iSeries SQL Programming

|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

Index

A
access plan

definition 17

in a package 17

in a program 17

activation groups
connection management

example 265

aggregating function
See UDFs (User-defined functions)

alias
definition 13

ALIAS names
creating 33

ALTER TABLE statement 30

adding a column 30

changing a column 31

check constraints 111

constraints
example removing 22

data types
allowable conversions 31

deleting a column 32

order of operation 32

referential constraints 21

AND keyword 56

multiple search condition 56

API
QSQCHKS 8

QSQPRCED 8

application
creating program 15

dynamic SQL
designing and running 229

overview 226

program objects 15

module 17

output source file member 17

program 17

service program 18

SQL package 17

user source file member 16

application domain and

object-orientation 191

application requester 259

application requester driver (ARD)

programs
package creation 280

running statements 280

application server 259

ARD (application requester driver)

programs
See application requester driver (ARD)

programs

atomic operation
data definition statements (DDL) 110

data integrity 110

definition 110

auditing
C2 security 102

authorization
Create SQL Package (CRTSQLPKG)

command 262

for creating package 261

for running using a package 261

auxiliary storage pools 104

independent 114

user 114

B
BETWEEN keyword 55

Binary Large OBjects
See BLOBs (Binary Large OBjects)

BLOBs (Binary Large OBjects)
uses and definition 191

C
C2 security

auditing 102

call level interface 8

CALL statement
stored procedure 122, 123

dynamic CALL 124

example 123

with SQLDA 123

call-type, passing to UDF 158

casting, UDFs 174

catalog
database design, use in 38

definition 12

getting information about 38

column 38

integrity 113

LABEL ON information 29

QSYS2 views 12

table 38

CCSID
connection to non-DB2 UDB for

iSeries 265

delimited identifier effect 265

dynamic SQL statement 230

package considerations 265

Change Class (CHGCLS) command 103

Change Job (CHGJOB) command 103

Change Logical File (CHGLF)

command 103

Change Physical File (CHGPF)

command 103

Character Large OBjects
See CLOBs (Character Large OBjects)

check pending 23

data integrity 111

clause
DROP COLUMN 32

FROM
example 43

GROUP BY
example 45

clause (continued)
HAVING

example 47

INTO 74

PREPARE statement, use with in

dynamic SQL 232

restrictions in dynamic SQL 237

NULL value 50

ORDER BY
example 48

SET 78

column name 78

constant 78

DEFAULT 78

expression 78

host variable 78

NULL value 78

scalar subselect 78

special register 78

USING DESCRIPTOR 242

WHENEVER NOT FOUND 220

WHERE
column name 44

comparison operators 45

constant 44

dynamic SQL example 241

example 43

expression 44

host variable 44

joining tables 58

multiple search condition

within 56

NOT keyword 45

NULL value 44

special register 44

subquery 44

WHERE CURRENT OF 221

CLI 8

CLOBs (Character Large OBjects)
uses and definition 191

CLOSQLCSR parameter
effect on implicit disconnect 270

column
adding 30

changing definition 31

defining heading 29

definition 9, 12

deleting 32

FOR UPDATE OF clause 219

getting catalog information about 38

column function
See UDFs (User-defined functions)

command (CL)
Change Class (CHGCLS) 103

Change Job (CHGJOB) 103

Change Logical File (CHGLF) 103

Change Physical File (CHGPF) 103

CHGCLS (Change Class) 103

CHGJOB (Change Job) 103

CHGLF (Change Logical File) 103

CHGPF (Change Physical File) 103

© Copyright IBM Corp. 1998, 2004 307

command (CL) (continued)
Create SQL Package

(CRTSQLPKG) 261

Create User Profile

(CRTUSRPRF) 102

CRTUSRPRF (Create User

Profile) 102

Delete Library (DLTLIB) 111

Delete SQL Package

(DLTSQLPKG) 261

DLTLIB (Delete Library) 111

Edit Check Pending Constraints

(EDTCPCST) 111

Edit Rebuild of Access Paths

(EDTRBDAP) 111

Edit Recovery for Access Paths

(EDTRCYAP) 113

EDTCPCST (Edit Check Pending

Constraints) 111

EDTRBDAP (Edit Rebuild of Access

Paths) 111

EDTRCYAP (Edit Recovery for Access

Paths) 113

Grant Object Authority

(GRTOBJAUT) 101

GRTOBJAUT (Grant Object

Authority) 101, 103

Override Database File

(OVRDBF) 103, 222

OVRDBF (Override Database

File) 103, 222

Reclaim DDM connections

(RCLDDMCNV) 277

Revoke Object Authority

(RVKOBJAUT) 101

Run SQL Statements

(RUNSQLSTM) 8

RUNSQLSTM
errors 256

RUNSQLSTM (Run SQL

statements) 8

RUNSQLSTM (Run SQL

Statements) 255

RVKOBJAUT (Revoke Object

Authority) 101

Start Commitment Control

(STRCMTCTL) 105

Start Journal Access Path

(STRJRNAP) 113

STRCMTCTL (Start Commitment

Control) 105

STRJRNAP (Start Journal Access

Path) 113

COMMENT ON statement
using, example 30

COMMIT
keyword 105

prepared statements
in dynamic SQL 230

statement 263

statement description 12

COMMIT statement 105

commitment control
activation group

example 265

committable updates 272

description 105

commitment control (continued)
distributed connection

restrictions 274

DRDA resource 272

INSERT statement 75

job-level commitment definition 269,

274

protected resource 271

rollback required 276

RUNSQLSTM command 256

SQL statement processor 256

sync point manager 271

two-phase commit 271

unprotected resource 271

comparison operators 45

concurrency
data 103

deadlock detection 103

definition 103

CONNECT statement 259, 263

interactive SQL 254

connection
DDM 276

determining type 272

ending DDM 277

protected 272

unprotected 272

connection management
ARD programs 280

commitment control restrictions 274

distributed unit of work

considerations 276

ending connections
DDMCNV effect on 276

DISCONNECT statement 276

RELEASE statement 276

example 265

implicit connection
default activation group 270

nondefault activation group 271

implicit disconnection
default activation group 270

nondefault activation group 271

multiple connections to same

relational database 269

connection status
determining 274

example 279

consistency token 264

constraint
and sort sequence 99

check
adding 111

using 111

data integrity 111

definition 13

example
removing 22

referential 13

check pending 23

creating tables 21

delete rules 84

delete rules example 85

deleting from tables 84

inserting into tables 76

update rules 80

updating tables 80

constraint (continued)
unique 13

UPDATE rules example 81

correlation
subqueries 90

example DELETE statement 94

example HAVING clause 92

example select list 92

example UPDATE statement 93

example WHERE clause 91

names 90

references 90

CREATE ALIAS statement
creating and using 33

CREATE DISTINCT TYPE statement
to define a UDT 202

CREATE FUNCTION statement 159

See also UDFs (User-defined functions)

AVG over a UDT example 154

BLOB string search example 154

counter for UDF 165

counting example 155

exponentiation example 153

save and restore considerations 163

search string over UDT example 154

square of a number UDF 163

string search example 153

table function example 155

to register a UDF 153

weather table UDF 166

CREATE INDEX statement
example 37

sort sequence 98

CREATE PROCEDURE statement 115

debugging 185

defining external 116

defining SQL 117

invoking 121

returning result sets 134

CREATE SCHEMA statement 19

CREATE SEQUENCE statement 27

Create SQL Package (CRTSQLPKG)

command 261

authority required 262

CREATE TABLE statement 20

AS 24

check constraints 111

constraints
example removing 22

defining tables with UDTs 202, 203

examples of using 202

identity columns
creating 25

removing 26

LIKE 23

materialized query table 24

prompting
interactive SQL 248

referential constraints 21

ROWID 26

CREATE TRIGGER statement 176

AFTER trigger
example 177

BEFORE trigger
example 176

handlers 178

transition tables 179

308 iSeries: DB2 Universal Database for iSeries SQL Programming

Create User Profile (CRTUSRPRF)

command 102

CREATE VIEW statement 33

using UNION 34

WITH CASCADED CHECK

OPTION 35

WITH CHECK OPTION 35

WITH LOCAL CHECK OPTION 36

cross join 61

CRTUSRPRF command
create user profile 102

ctr() UDF C program listing 165

CURRENT DATE special register 51

CURRENT SCHEMA special register 51

CURRENT SERVER special register 51

CURRENT TIME special register 51

CURRENT TIMESTAMP special

register 51

CURRENT TIMEZONE special

register 51

cursor
closing

example 221

defining a cursor
example 218

delete current row
example 221

distributed unit of work 280

end-of-data
example 220

establishing position at end of

table 216

example overview 217

open during a unit of work 226

open effect of recovery on 226

opening a cursor
example 219

retrieving a row
example 220

retrieving SELECT statement result
dynamic SQL 241

scrollable 216

serial 216

update current row
example 221

using 215

WITH HOLD clause 226

D
damage tolerance 113

data
committable updates 272

data definition statements (DDL) 9, 19

atomic operation 110

data integrity 110

data dictionary
WITH DATA DICTIONARY clause

CREATE SCHEMA statement 12

data integrity
atomic operation 110

catalog 113

commitment control 105

concurrency 103

deadlock detection 103

constraint 111

damage tolerance 113

data integrity (continued)
data definition statements (DDL) 110

function 102

independent auxiliary storage pool

(IASP) 114

index recovery 113

journaling 104

save/restore 112

savepoint 108

user auxiliary storage pool (ASP) 114

data manipulation statement (DML) 9,

41, 73, 78, 83

data types
allowable conversions 31

BLOBs 191

casting 53

CLOBs 191

DataLinks 210

commands used 211

FILE LINK CONTROL (database

permissions) 211

FILE LINK CONTROL (file system

permissions) 211

NO LINK CONTROL 211

DBCLOBs 191

user-defined
See UDFs (User-defined functions)

database
design, using the catalog in 38

relational 9

DataLinks 210

commands used 211

FILE LINK CONTROL
(database permissions) 211

file system permissions 211

NO LINK CONTROL 211

date format 53

date/time arithmetic 54

DB2 Multisystem 8

DB2 Query Manager for iSeries 8

DB2 UDB for iSeries 7

See also Structured Query Language

considerations for packages 262

distributed relational database

support 259

DB2 UDB for iSeries sample table 283

DB2 UDB Query Manager and SQL

Development Kit 7

distributed relational database

support 259

DB2 UDB Symmetric Multiprocessing 8

DB2 Universal Database for iSeries
See DB2 UDB for iSeries

DBCLOBs (Double-Byte Character Large

OBjects)
uses and definition 191

DBCS (double-byte character set)
considerations in interactive SQL 248

DBINFO keyword
functions 159

deadlock detection 103

DECLARE CURSOR statement
using 50

DECLARE GLOBAL TEMPORARY

TABLE statement 25

Delete Library (DLTLIB) command 111

Delete SQL Package (DLTSQLPKG)

command 261

DELETE statement
correlated subquery, use in 94

delete rules 84

delete rules example 85

deleting from tables 84

description 83

derived table 62

DESCRIBE statement
use with dynamic SQL 231

DESCRIBE TABLE statement 263

DFT_SQLMATHWARN configuration

parameter 160

DISCONNECT statement 259, 263

ending connection 276

distributed relational database
accessing remote databases 253

application requester 259

application server 259

committable updates 272, 274

connection management 265

multiple connections 269

connection restrictions 274

connection type
determining 272

protected 272

unprotected 272

consideration for creating

packages 262

creating packages 262

DB2 UDB for iSeries support 259

determining connection status 274

distributed RUW example

program 260

distributed unit of work 259, 271,

277

ending connections
DDMCNV effect on 276

DISCONNECT statement 276

RELEASE statement 276

first failure data capture (FFDC) 281

implicit connection
default activation group 270

nondefault activation group 271

implicit disconnection
default activation group 270

nondefault activation group 271

interactive SQL 253

packages 261

statement in 262

precompiler diagnostic messages 262

problem handling 281

protected connection 271

protected resource 271

remote unit of work 259, 271

rollback required state 276

session attributes 254

SQL packages 261

stored procedure considerations 281

sync point manager 271

two-phase commit 271

unprotected connection 271

unprotected resource 271

valid SQL statements 262

Distributed Relational Database

Architecture (DRDA) 7

Index 309

distributed unit of work 259, 271, 277

connection considerations 276

connection status 274

connection type 272

cursors 280

managing connections 277

prepared statements 280

sample program 277

Double-Byte Character Large OBjects
See DBCLOBs (Double-Byte Character

Large OBjects)

DRDA (Distributed Relational Database

Architecture)
See Distributed Relational Database

Architecture (DRDA)

DRDA level 1
See remote unit of work

DRDA level 2
See distributed unit of work

DRDA resource 272

DROP COLUMN clause
example 32

DROP PACKAGE statement 259

DROP statement 39

dropping an alias 33

DUW (distributed unit of work)
See distributed unit of work

dynamic SQL
address variable 227

allocating storage 232

allocating storage for SQLDA 238

application 226, 229

assignments of UDTs 206

building and running statements 227

CCSID 230

cursor, use in 231

DESCRIBE statement 231

example of allocating storage for

SQLDA 237

fixed-list SELECT statement 231

parameter marker 241

processing non-SELECT

statements 229

replacing parameter markers with

host variables 242

run-time overhead 227

SELECT statement result
cursor, using 241

SQLDA (SQL descriptor area) 233

SQLDA (SQL descriptor area)

format 233

statements 9

using EXECUTE statement 230

using PREPARE statement 230

varying-list SELECT statement 231,

232

E
Edit Check Pending Constraints

(EDTCPCST) command 111

Edit Rebuild of Access Paths

(EDTRBDAP) command 111

Edit Recovery for Access Paths

(EDTRCYAP) command 113

error determination
in distributed relational database

first failure data capture

(FFDC) 281

examples
adding constraints 21

AFTER trigger 177

assignments in dynamic SQL 206

assignments involving different

UDTs 206

assignments involving UDTs 206

AVG over a UDT 154

BEFORE trigger 176

BETWEEN 55

casting between UDTs 204

catalog
getting column information 38

getting table information 38

changing data
SET clause 78

with host variables 78

changing rows in table
host variables 79

check constraints 111

closing a cursor 221

COMMENT ON statement 30

comparisons involving UDTs 204,

205

connection management 265

correlated subquery
DELETE statement 94

HAVING clause 92

select list 92

UPDATE statement 93

WHERE clause 91

counter for UDFs 165

counting and defining UDFs 155

CREATE ALIAS statement 33

CREATE SCHEMA statement 19

CREATE SEQUENCE statement 27

CREATE TABLE AS materialized

query table statement 24

CREATE TABLE AS statement 24

CREATE TABLE LIKE statement 23

CREATE TABLE statement 20

CREATE VIEW 33

creating
index 37

creating identity columns 25

CROSS JOIN 61

ctr() UDF C program listing 165

CURRENT DATE 53

CURRENT TIMEZONE 53

cursor 217

cursor in DUW program 280

debugging routine 185

DECLARE GLOBAL TEMPORARY

TABLE statement 25

defining a cursor 218

defining stored procedures
with CREATE PROCEDURE 116,

117

defining tables with UDTs 202, 203

defining the UDT and UDFs 208

DELETE
from table 83

delete current row 221

examples (continued)
delete rules example 85

determining connection status 279

distributed RUW program 260

distributed unit of work

program 277

DROP statement 39

dynamic CALL 124

stored procedure 124

embedded CALL 122, 123

with SQLDA 123

end-of-data 220

EXCEPT 68

EXCEPTION JOIN 60

EXISTS 55

exponentiation and defining

UDFs 153

external trigger 180

extracting a document to a file (CLOB

elements in a table) 197

getting comment 30

IN 55

INNER JOIN 58

using WHERE 58

INSERT statement
inserting into identity columns 77

inserting
row to table 74

inserting data into a CLOB

column 200

inserting data with constraints 77

inserting multiple rows
using blocked INSERT 76

using SELECT 75

inserting rows
using VALUES 75

INTERSECT 70

invoking stored procedures 123, 124

where a CREATE PROCEDURE

exists 122

where no CREATE PROCEDURE

exists 123

IS NULL 55

LABEL ON statement 29

LEFT OUTER JOIN 59

LIKE 55

list function in interactive SQL 249

LOB function to populate the

database 209

LOB locators to manipulate UDT

instances 209

LOBFILE.SQB COBOL program

listing 199

LOBFILE.SQC C program listing 198

LOBLOC.SQB COBOL program

listing 194

LOBLOC.SQC C program listing 193

multiple join types in one

statement 62

multiple search condition (WHERE

clause) 56

opening a cursor 219

ORDER BY
sort sequence 96

parameter markers in functions 172

preventing duplicate rows 54

310 iSeries: DB2 Universal Database for iSeries SQL Programming

examples (continued)
QSYSPRT listing

SQL statement processor 256

REFRESH TABLE statement 24

removing constraints 22

removing identity columns 26

retrieving a row 220

returning a table function 155

RIGHT OUTER JOIN 60

ROWID 26

sample table 283

search string and BLOBs 154

SELECT rows
sort sequence 97

SELECT statement 42

performing complex search

condition 54

SELECT statement allocating storage

for SQLDA 237

simulating a full outer join 61

special register 53

square of a number UDF 163

stored procedures
returning completion status 125

returning completion status ILE C

and PL/I 125

returning completion status

REXX 130

string search and defining UDFs 153

string search over UDT 154

subquery
basic comparisons 88

comparisons 89

EXISTS 89

IN 89

subquery in SELECT 87

table
ACT 296

CL_SCHED 297

DEPARTMENT 284

EMP_PHOTO 287

EMP_RESUME 288

EMPLOYEE 285

EMPPROJACT 289

IN_TRAY 297

ORG 298

PROJACT 293

PROJECT 291

SALES 300

STAFF 299

UDFs to query instances of

UDTs 209

UNION 64, 66

UNION ALL 67

unqualified function reference 173

update current row 221

UPDATE rules for constraints 81

UPDATE statement
as data is retrieved 82

identity column 81

scalar subselect 80

using SELECT 80

use of UDTs in UNION 207

user-defined sourced functions on

UDTs 205

using a locator to work with a CLOB

value 192

examples (continued)
using qualified function

reference 172

using table expressions 62

view
sort sequence 98

view WITH CASCADED CHECK

OPTION 37

view WITH LOCAL CHECK

OPTION 37

weather table UDF 166

WHERE clause
AND 57

OR 57

exception join 60

EXECUTE privileges
for packages 261

EXECUTE statement
in dynamic SQL 230

EXISTS keyword 55

use in subquery 89

extended dynamic
QSQPRCED 8

F
FETCH statement 222

dynamic SQL 241

using descriptor area 224

using host structure array 222

using row storage area 224

FFDC (first failure data capture)
See first failure data capture (FFDC)

field
definition 9

file reference variables
examples of using 197

input values 197

output values 197

first failure data capture (FFDC) 281

FOR UPDATE OF clause
restrictions 219

FROM clause
description 43

function
See also UDFs (User-defined functions)

references, summary for UDFs 173

G
Grant Object Authority (GRTOBJAUT)

command 101

GRANT PACKAGE statement 259

GROUP BY
clause 45

using NULL value with 46

H
HAVING

clause 47

I
IDDU (interactive data definition

utility) 12

identity column
compare with sequence 28

creating 25

inserting into 77

removing 26

ILE programs
package 264

ILE service programs
package 264

implicit connect
See connection management

implicit disconnect
See connection management

IN keyword
description 55

subquery, use in 89

independent auxiliary storage pool

(IASP) 114

index
add 37

definition 13

journaling 113

rebuild 113

recovery 113

save and restore 113

indicator variables
and LOB locators 196

stored procedures 146

infix notation and UDFs 174

inner join 58

INSERT statement
and referential constraints 76

blocked 73

commitment control 75

default value 74

description 73

inserting constant 74

inserting data with constraints

example 77

inserting DEFAULT 74

inserting expression 74

inserting host variable 74

inserting identity column 77

inserting into alias 33

inserting multiple rows
using blocked INSERT 76

using SELECT 75

inserting NULL 74

inserting rows
using VALUES 75

inserting special register 74

inserting subquery 74

INTO clause 74

NULL value 74

reusing deleted rows 75

VALUES clause 73

Integrated Language Environment (ILE)
module 17

program 17

service program 18

interactive data definition utility
See IDDU

interactive interface
concepts 7

Index 311

interactive SQL 7

accessing remote databases 253

adding DBCS data 248

change session attributes 251

description 244

exiting 252

function 244

general use 244

getting started 245

list selection function 249

overview 244

package 254

printing current session 252

prompting 246

DBCS consideration 248

overview 245

prompting subquery 248

recovering an SQL session 253

removing all entries from current

session 252

saving session 252

session services 245, 251

statement entry 244, 246

statement processing mode 248

syntax checking 248

terminology 9

testing your SQL statements

with 244

using an existing session 252

INTO clause
description 74

PREPARE statements
in dynamic SQL 232

restriction
dynamic SQL 237

IS NULL keyword 55

J
job attribute

DDMCNV 276

job-level commitment definition 269, 274

join
data from multiple tables 57

journal
definition 12

journal receiver
definition 12

journaling 104

K
keyword

AND 56

BETWEEN 55

COMMIT 105

DISTINCT 54

EXISTS 55, 89

IN 55

IS NULL 55

LIKE 55

considerations 56

NOT 45, 56

OR 56

UNION 64

UNION ALL 67

L
LABEL ON statement 29

information in catalog 29

package 264

left outer join 59

library
definition 9

LIKE keyword 55

considerations 56

LOBs (Large Objects)
control information to access large

object data 191

display layout of columns 200

file reference variables 191

examples of using 197

input values 197

output values 197

SQL_FILE_APPEND, output value

option 197

SQL_FILE_CREATE, output value

option 197

SQL_FILE_OVERWRITE, output

value option 197

SQL_FILE_READ, input value

option 197

journal entry layout 200

large object descriptor 191

large object value 191

LOB function to populate the database

example 209

LOB locators to manipulate UDT

instances example 209

LOBEVAL.SQB COBOL program

listing 199, 200

LOBEVAL.SQC C program

listing 198

LOBLOC.SQB COBOL program

listing 194

LOBLOC.SQC C program listing 193

locators 191, 192

example of using 192

indicator variables 196

maximum size for large object

columns, defining 191

programming options for values 192

LOCK TABLE statement 103

logical file 13

definition 9

Loosely Coupled Parallelism 8

M
materialized query table

definition 12

member
output source file 17

mode
interactive SQL 248

module
Integrated Language Environment

(ILE)
object 17

N
naming convention

*SQL 9

*SYS 9

SQL 9

system 9

NOT keyword 45, 56

multiple search condition 56

NULL value 50

INSERT INTO clause, value 74

INSERT statement 74

SET clause, value 78

UPDATE statement 78

used with GROUP BY clause 46

used with ORDER BY clause 49

WHERE clause 44

O
object-relational

application domain and

object-orientation 191

definition 191

OPEN statement 241

operators, comparison 45

OR keyword 56

multiple search condition 56

ORDER BY
clause 48

using NULL values with 49

sort sequence, using 95

with sort sequence 96

output source file member
definition 17

Override Database File (OVRDBF)

command 103, 222

P
package

authority to create 261

authority to run 261

bind to an application 15

CCSID considerations for 265

consistency token 264

Create SQL Package (CRTSQLPKG)

command 261

authority required 262

creating
authority required 261

effect of ARD programs 280

errors during 262

on local system 264

RDB parameter 261

RDBCNNMTH parameter 264

TGTRLS parameter 263

type of connection 264

unit of work boundary 264

creating on a non-DB2 UDB for iSeries
errors during 262

required precompiler options for

DB2 Common Server 262

unsupported precompiler

options 262

DB2 UDB for iSeries support 261

definition 15, 17, 261

312 iSeries: DB2 Universal Database for iSeries SQL Programming

package (continued)
Delete SQL Package (DLTSQLPKG)

command 261

deleting 261

interactive SQL 254

labeling 264

object type 264

restore 264

save 264

SQL statement size 263

statements that do not require

package 263

parameter markers
in dynamic SQL 241

in functions example 172

parameter passing
stored procedures 141, 146

partitioned table
definition 12

physical file 12

definition 9

precompiler
concepts 7

diagnostic messages 262

precompiler command
CRTSQLxxx 96, 262

PREPARE statement
in dynamic SQL 230

prepared statement
distributed unit of work 280

program
definition 17

Integrated Language Environment

(ILE) object 17

non-ILE object 17

protected connections
dropping 274

protected resource 271

public authority 101

Q
QSQCHKS 8

QSQPRCED 8

package 15

QSYS2
catalog views 12

QSYSPRT listing
SQL statement processor

example 256

R
read-only

table
cursor 219

read-only connection 272

Reclaim DDM connections

(RCLDDMCNV) command 277

record
definition 9

recursion
SQL 265

referential constraints
inserting into tables 76

referential integrity 20

referential integrity (continued)
definition 13

REFRESH TABLE statement 24

relational database 9

RELEASE statement 259, 263

ending connection 276

remote databases
accessing from interactive SQL 253

remote unit of work 259, 271

connection status 274

connection type 272

example program 260

Revoke Object Authority (RVKOBJAUT)

command 101

REVOKE PACKAGE statement 259

REXX 8

right outer join 60

rollback
rollback required state 276

ROLLBACK statement 105, 263

prepared statements
in dynamic SQL 230

routine
debugging 185

row
definition 9, 12

inserting multiple using blocked

INSERT
into a table 76

inserting multiple using SELECT
into a table 75

inserting using VALUES
into a table 75

preventing duplicate 54

reusing deleted with INSERT 75

selection using sort sequence 95

row selection
and sort sequence 97

ROWID
using in a table 26

RRN scalar function 60

Run SQL Scripts 8

Run SQL Statements (RUNSQLSTM)

command 8

run-time support
concepts 7

RUNSQLSTM (Run SQL Statements)
command 8

command (CL) 255

command errors 256

comment 255

commitment control 256

source file 255

RUW (remote unit of work)
See remote unit of work

S
sample programs

distributed RUW program 260

sample tables DB2 UDB for iSeries 283

ACT 296

CL_SCHED 297

DEPARTMENT 284

EMP_PHOTO 287

EMP_RESUME 288

EMPLOYEE 285

sample tables DB2 UDB for iSeries

(continued)
EMPPROJACT 289

IN_TRAY 297

ORG 298

PROJACT 293

PROJECT 291

SALES 300

STAFF 299

save/restore 112

packages 264

savepoint
data integrity 108

definition 108

SAVEPOINT statement 108

considerations for distributed

databases 109

levels 109

scalar function
See UDFs (User-defined functions)

schema
auxiliary storage pools 104

definition 9, 12

scrollable cursor
See cursor

search condition
performing complex 54

security 101

authorization ID 102

commitment control 105

data integrity 102

concurrency 103

public authority 101

view 102

SELECT INTO statement 50

in dynamic SQL 229

SELECT statement 41, 42

AND keyword 56

example 57

asterisk (select all columns) 42

BETWEEN 55

casting data types 53

CROSS JOIN 61

data retrieval errors 72

date value 53

date/time arithmetic 54

DISTINCT keyword 54

dynamic SQL
retrieving SELECT statement

result 241

example of allocating storage for

SQLDA 237

EXCEPTOIN JOIN 60

EXISTS 55

FROM clause 43

GROUP BY
example 45

using NULL value with 46

HAVING
example 47

IN 55

INNER JOIN 58

IS NULL 55

joins 57

LEFT OUTER JOIN 59

LIKE 55

considerations 56

Index 313

SELECT statement (continued)
multiple join types in one

statement 62

NOT keyword 56

NULL value
example 50

OR keyword 56

example 57

ORDER BY
example 48

using NULL values with 49

performing complex search

condition 54

preventing duplicate rows 54

processing and using SQLDA 231

RIGHT OUTER JOIN 60

simulating a full outer join 61

special register
example 51

specifying column 42

subquery
definition 87

example 87

time value 53

timestamp value 53

UNION 64

UNION ALL 67

using fixed-list 231

using table expressions 62

using varying-list 232

WHERE
multiple search conditions 56

WHERE clause 43

column name 44

comparison operators 45

constant 44

expressions 44

host variable 44

inner join 58

NOT keyword 45

NULL value 44

predicates 44

special register 44

subquery 44

sequences
compare with identity 28

create 27

definition 14

serial cursor
See cursor

service program
Integrated Language Environment

(ILE)
object 18

session services
accessing remote databases 253

change session attributes in interactive

SQL 251

exiting interactive SQL 252

in interactive SQL 251

printing current session in interactive

SQL 252

recovering an SQL session 253

removing all entries from current

session 252

saving session 252

using an existing session 252

SET clause
column name 78

constant 78

DEFAULT 78

description 78

expression 78

host variable 78

NULL value 78

scalar subselect 78

special register 78

SET CONNECTION statement 259, 263

SET CURRENT FUNCTION PATH

statement 151

SET TRANSACTION statement
effect on implicit disconnect 270

not allowed in package 262

sort sequence
and constraints 99

and row selection 97

CREATE INDEX 98

used with ORDER BY 95

used with row selection 95

using 95

using with ORDER BY 96

views 98

source file
member, output

definition 17

member, user 16

sourced function
See UDFs (User-defined functions)

sourced UDF
See UDFs (User-defined functions)

special register
CURRENT DATE 51

CURRENT SCHEMA 51

CURRENT SERVER 51

CURRENT TIME 51

CURRENT TIMESTAMP 51

CURRENT TIMEZONE 51

USER 51

SQL 7

call level interface 8

introduction 7

naming conventions 9

object descriptions 11

recursion 265

statements
types 9

SQL Communication Area (SQLCA)
See SQLCA (SQL Communication

Area)

SQL descriptor area (SQLDA)
See SQLDA (SQL descriptor area)

SQL naming convention 9

SQL package
definition 9

SQL statement processor
commitment control 256

example
QSYSPRT listing 256

using 255

SQL_FILE_READ, input value

option 197

SQLCA (SQL Communication Area) 11

SQLERRD field 272, 274

SQLCA (SQL Communication Area)

(continued)
SQLERRD(4)

determining connection

status 274

determining connection type 272

SQLDA (SQL descriptor area)
allocating storage for 238

format 233

processing SELECT statement 231

programming language, use in 233

SELECT statement for allocating

storage for SQLDA 237

SQLD 233

SQLDABC 233

SQLDAID 233

SQLDATA 234

SQLDATALEN 237

SQLDATATYPE_NAME 237

SQLIND 234

SQLLEN 234

SQLLONGLEN 237

SQLN 233

SQLNAME 234

SQLRES 234

SQLTYPE 234

SQLVAR 234

SQLVAR2 236

Start Commitment Control

(STRCMTCTL) command 105

Start Journal Access Path (STRJRNAP)

command 113

statements
CALL 122, 123

dynamic with stored

procedure 124

example 123

with SQLDA 123

COMMENT ON statement 30

COMMIT 12, 105

CONNECT 259

CREATE ALIAS statement
example 33

CREATE INDEX
sort sequence 98

CREATE PROCEDURE
debugging 185

defining external 116

defining SQL 117

external procedure 115

invoking 121, 134

SQL procedure 115

CREATE SCHEMA statement
example 19

CREATE SEQUENCE statement 27

CREATE TABLE AS materialized

query table statement 24

CREATE TABLE AS statement
example 24

CREATE TABLE LIKE statement
example 23

CREATE TABLE statement 20

CREATE VIEW 33

data definition (DDL) 9

data manipulation (DML) 9

date value 53

date/time arithmetic 54

314 iSeries: DB2 Universal Database for iSeries SQL Programming

statements (continued)
DECLARE CURSOR 50

DECLARE GLOBAL TEMPORARY

TABLE statement
example 25

DELETE
example 83

DISCONNECT 259

DROP PACKAGE 259

dynamic 9

EXECUTE 230

FETCH
dynamic SQL 241

multiple-row 222

using descriptor area 224

using host structure array 222

using row storage area 224

GRANT PACKAGE 259

INSERT 73

INTO clause 74

using 73

LABEL ON statement
example 29

LOCK TABLE 103

OPEN 241

package not required 263

packages 262

PREPARE
non-SELECT statement 230

processing non select 229

REFRESH TABLE statement 24

RELEASE 259

REVOKE PACKAGE 259

ROLLBACK 12, 105

SAVEPOINT 108, 109

SELECT
AND keyword 56

BETWEEN 55

example 42

EXISTS 55

IN 55

IS NULL 55

LIKE 55

LIKE, considerations 56

NOT keyword 56

OR keyword 56

performing complex search

condition 54

preventing duplicate rows 54

specifying column 42

WHERE, multiple search

conditions 56

SELECT INTO
dynamic SQL 229

SET CONNECTION 259

SQL packages 262

testing
using interactive SQL 244

time value 53

timestamp value 53

UPDATE
example 78

stored procedure
returning completion status 125

ILE C and PL/I 125

REXX 130

stored procedures 115

stored procedures (continued)
considerations in distributed relational

database 281

defining external 116

defining SQL 117

definition 14

dynamic CALL 124

embedded CALL
with SQLDA 123

invoking 121

invoking using CALL 122

invoking using embedded CALL 123

parameter passing 141

indicator variables 146

returning a completion status
with SQLDA 148

returning result sets 134

strong typing and UDTs 203

STRSQL (Start SQL) command 245

Structured Query Language 7

subquery 86

ALL 89

ANY 89

basic comparison 88

correlated 90

example DELETE statement 94

example HAVING clause 92

example select list 92

example UPDATE statement 93

example WHERE clause 91

correlated names and references 90

definition 87

examples
in SELECT 87

EXISTS keyword 89

IN keyword 89

notes on using 88

prompting 248

quantified comparison 89

search condition 88

SOME 89

Symmetric Multiprocessing 8

sync point manager 271

syntax check
QSQCHKS 8

system naming convention 9

T
table

changing data
SET CLAUSE 78

with host variables 78

changing definition 30

CROSS JOIN 61

DB2 UDB for iSeries sample 283

defining name 29

definition 9, 12

derived 62

establishing position at the end 216

EXCEPTION JOIN 60

getting catalog information
about column 38

INNER JOIN 58

using WHERE 58

inserting multiple rows into
using blocked INSERT 76

table (continued)
inserting multiple rows into

(continued)
using SELECT 75

inserting rows into
using VALUES 75

joining 57

LEFT OUTER JOIN 59

multiple join types in one

statement 62

RIGHT OUTER JOIN 60

simulating a full outer join 61

updating data 78

used in examples
ACT 296

CL_SCHED 297

DEPARTMENT 284

EMP_PHOTO 287

EMP_RESUME 288

EMPLOYEE 285

EMPPROJACT 289

IN_TRAY 297

ORG 298

PROJACT 293

PROJECT 291

SALES 300

STAFF 299

using table expressions 62

table function
See UDFs (User-defined functions)

time format 53

timestamp format 53

trigger 175

AFTER trigger
example 177

BEFORE trigger
example 176

definition 14

external trigger 180

example 180

handlers 178

SQL 176

transition tables 179

two-phase commit 271

U
UDFs (User-defined functions)

aggregating functions 149

calling
examples of invocations 172

parameter markers in

functions 172

qualified function reference 172

unqualified function

reference 173

CAST FROM clause 156, 159, 160

casting 174

column functions 149

concepts 149

defining the UDT and UDFs

example 208

definition 14

fenced versus unfenced 163

function path 149

function selection algorithm 149

general considerations 174

Index 315

UDFs (User-defined functions) (continued)
infix notation 174

length of time 151

LOB types 174

overloaded function names 149

parallel processing 162

parameter style DB2GENERAL 161

parameter style DB2SQL 157

parameter style GENERAL 159

parameter style GENERAL WITH

NULLS 160

parameter style JAVA 161

parameter style SQL 156

paramter style SIMPLE CALL 159

passing argument with DBINFO 159

passing call-type 158

passing diagnostic-message 157

passing function-name 157

passing scratchpad 158

passing specific-name 157

passing SQL-argument 156, 159, 160

passing SQL-argument-ind 156

passing SQL-argument-ind-array 160

passing SQL-result 156, 159, 160

passing SQL-result-ind 157, 160

passing SQL-state 157

registering UDFs 153

examples of registering 153

RETURNS TABLE clause 156, 159,

160

save and restore considerations 163

scalar function
error processing 162

scalar functions 149

schema-name 149

schema-name and UDFs 149

signature, two functions and the

same 149

sourced 204

summary of function references 173

table function
considerations 161

error processing 161

table function example 155

table functions 149

thread considerations 162

type of functions 149

UDFs to query instances of UDTs

example 209

unqualified reference 149

user-defined sourced functions on

UDTs 205

writing your own UDF
external 152

SQL 151

UDTs (User-defined types)
assignments in dynamic SQL

example 206

assignments involving different UDTs

example 206

assignments involving UDTs

example 206

casting between UDTs 204

comparisons involving UDTs

example 204, 205

defining a UDT 202

defining tables 202

UDTs (User-defined types) (continued)
defining tables with UDTs 202, 203

defining the UDT and UDFs

example 208

definition 14

LOB locators to manipulate UDT

instances example 209

manipulating
examples of 203

strong typing 203

UDFs to query instances of UDTs

example 209

use of UDTs in UNION example 207

user-defined sourced functions on

UDTs 205

why use UDTs 201

UNION ALL 67

UNION keyword 64

use of UDTs in UNION example 207

unit of work
boundary for package creation 264

distributed 259

effect on open cursor 226

package creation 264

remote 259

rollback required 276

unprotected resource 271

UPDATE statement
and referential constraints 80

changing data
with host variables 78

correlated subquery, using in 93

description 78

identity column
example 81

scalar subselect
example 80

SET clause
column name 78

constant 78

DEFAULT 78

expression 78

host variable 78

NULL value 78

scalar subselect 78

special register 78

SET CLAUSE 78

update rules for constraints 80

updating data as it is retrievied
example 82

using SELECT
example 80

user auxiliary storage pool (ASP) 114

user profile
authorization ID 9

authorization name 9

user source file member
definition 16

USER special register 51

USING
clause

dynamic SQL 239

DESCRIPTOR clause 242

V
view

creating 33

definition 9, 13

security 102

sort sequence 98

using 33

WITH CASCADED CHECK 35

WITH CHECK 35

WITH LOCAL CHECK 36

W
WHENEVER NOT FOUND clause 220

WHERE clause
AND 56

column name 44

comparison operators 45

constant 44

description 43

example
dynamic SQL 241

expressions 44

host variable 44

joining tables 58

multiple search condition within

a 56

NOT 56

NOT keyword 45

NULL value 44

OR 56

special register 44

subquery 44

WHERE CURRENT OF clause 221

X
X/Open call level interface 8

316 iSeries: DB2 Universal Database for iSeries SQL Programming

����

Printed in USA

	Contents
	Chapter 1. SQL Programming
	Code disclaimer

	Chapter 2. What's new for V5R3 in DB2 Universal Database for iSeries SQL Programming
	Chapter 3. Print this topic
	Chapter 4. Introduction to DB2 UDB for iSeries Structured Query Language
	SQL concepts
	SQL relational database and system terminology
	SQL and system naming conventions
	Types of SQL statements
	SQL Communication Area (SQLCA)
	SQL diagnostics area

	SQL objects
	Schemas
	Data Dictionary
	Journals and Journal Receivers
	Catalogs
	Tables, Rows, and Columns
	Aliases
	Views
	Indexes
	Constraints
	Triggers
	Stored Procedures
	Sequences
	User-defined functions
	User-defined types
	SQL Packages

	Application program objects
	User source file member
	Output source file member
	Program
	SQL Package
	Module
	Service program

	Chapter 5. Data Definition Language (DDL)
	Creating a schema
	Creating a table
	Adding and removing constraints to a table
	Referential integrity and tables
	Adding or dropping referential constraints
	Example: Adding referential constraints

	Example: Removing constraints
	Check pending

	Creating a table using LIKE
	Creating a table using AS
	Creating and altering a materialized query table
	Declaring a global temporary table
	Creating and altering an identity column
	ROWID
	Creating and using sequences
	Comparing identity columns and sequences

	Creating descriptive labels using the LABEL ON statement
	Describing an SQL object using COMMENT ON
	Changing a table definition
	Adding a column
	Changing a column
	Allowable conversions
	Deleting a column
	Order of operations for ALTER TABLE statement

	Creating and using ALIAS names
	Creating and using views
	WITH CHECK OPTION on a View
	WITH CASCADED CHECK OPTION
	WITH LOCAL CHECK OPTION
	Example: Cascaded check option

	Adding indexes
	Catalogs in database design
	Getting catalog information about a table
	Getting catalog information about a column

	Dropping a database object

	Chapter 6. Data Manipulation Language
	Retrieving data using the SELECT statement
	Basic SELECT statement
	Specifying a search condition using the WHERE clause
	Expressions in the WHERE clause
	Comparison operators
	NOT keyword

	GROUP BY clause
	HAVING clause
	ORDER BY clause
	Static SELECT statements
	Handling Null values
	Special registers in SQL statements
	Casting data types
	Date, Time, and Timestamp data types
	Specifying current date and time values
	Date/Time arithmetic

	Handling duplicate rows
	Performing complex search conditions
	Special considerations for LIKE
	Multiple search conditions within a WHERE clause

	Joining data from more than one table
	Inner Join
	Left Outer Join
	Right Outer Join
	Exception Join
	Cross Join
	Simulating a Full Outer Join
	Multiple join types in one statement

	Using table expressions
	Using the UNION keyword to combine subselects
	Specifying UNION ALL

	Using EXCEPT keyword
	Using INTERSECT keyword
	Data retrieval errors

	Inserting rows using the INSERT statement
	Inserting rows using the VALUES keyword
	Inserting rows into a table using a select-statement
	Inserting multiple rows in a table with the blocked INSERT statement
	Inserting into tables with referential constraints
	Inserting into an identity column

	Changing data in a table using the UPDATE statement
	Updating a table using a scalar-subselect
	Updating a table with rows from another table
	Updating tables with referential constraints
	Examples: UPDATE rules

	Updating an identity column
	Updating data as it is retrieved from a table

	Removing rows from a table using the DELETE statement
	Deleting from tables with referential constraints
	Example: DELETE Cascade Rule

	Using Subqueries
	Subqueries in SELECT statements
	Subqueries and search conditions
	Using subqueries
	Including subqueries in WHERE or HAVING clauses

	Correlated subqueries
	Correlated names and references
	Example: Correlated subquery in a WHERE Clause
	Example: Correlated subquery in a HAVING Clause
	Example: Correlated subquery in select-list
	Example: Correlated subqueries in an UPDATE statement
	Example: Correlated subqueries in a DELETE statement

	Chapter 7. Sort sequences and normalization in SQL
	Sort sequence used with ORDER BY and row selection
	Sort sequence and ORDER BY
	Row selection

	Sort sequence and views
	Sort Sequence and the CREATE INDEX Statement
	Sort sequence and constraints
	ICU Sort Sequence
	Normalization

	Chapter 8. Data Protection
	Security for SQL objects
	Authorization ID
	Views
	Auditing

	Data integrity
	Concurrency
	Journaling
	Commitment control
	Savepoints
	Atomic operations
	Constraints
	Adding and using check constraints

	Save/Restore
	Damage tolerance
	Index recovery
	Catalog integrity
	User auxiliary storage pool (ASP)
	Independent auxiliary storage pool (IASP)

	Chapter 9. Routines
	Stored Procedures
	Defining an external procedure
	Defining an SQL procedure
	Invoking a stored procedure
	Using CALL statement where procedure definition exists
	Using embedded CALL statement where no procedure definition exists
	Using Embedded CALL statement with an SQLDA
	Using dynamic CALL statement where no CREATE PROCEDURE exists
	Examples of CALL statements

	Returning Result Sets from Stored Procedures
	Example 1: Call a stored procedure which returns a single result set
	Example 2: Call a stored procedure which returns a result set from a nested procedure

	Parameter passing conventions for stored procedures and UDFs
	Indicator variables and stored procedures
	Returning a completion status to the calling program

	Using User-Defined Functions (UDFs)
	UDF concepts
	Writing UDFs as SQL functions
	SQL scalar UDFs example
	SQL table UDFs example

	Writing UDFs as external functions
	Registering UDFs
	Passing arguments from DB2 to external functions
	Table function considerations
	Error processing for UDFs
	Threads considerations
	Parallel processing
	Fenced or unfenced considerations
	Save and restore considerations

	Examples of UDF code
	Example: Square of a number UDF
	Example: Counter
	Example: Weather table function

	Using UDFs in SQL statements
	Using parameter markers or the NULL value as function arguments
	Using qualified function reference
	Using unqualified function reference
	Summary of function references

	Triggers
	SQL triggers
	BEFORE SQL triggers
	AFTER SQL triggers
	Handlers in SQL triggers
	SQL trigger transition tables

	External triggers
	External trigger example program

	Debugging an SQL routine
	Improving performance of procedures and functions
	Improving implementation of procedures and functions
	Redesigning routines for performance

	Chapter 10. Processing special data types
	Using Large Objects (LOBs)
	Understanding large object data types (BLOB, CLOB, DBCLOB)
	Understanding large object locators
	Example: Using a locator to work with a CLOB value
	C Sample: LOBLOC.SQC
	COBOL Sample: LOBLOC.SQB

	Indicator variables and LOB locators
	LOB file reference variables
	Example: Extracting a document to a file
	C Sample: LOBFILE.SQC
	COBOL Sample: LOBFILE.SQB

	Example: Inserting data into a CLOB column
	Display layout of LOB columns
	Journal entry layout of LOB columns

	Using User-defined distinct types (UDT)
	Defining a UDT
	Example: Money
	Example: Resume

	Defining tables with UDTs
	Example: Sales
	Example: Application forms

	Manipulating UDTs
	Examples of using UDTs
	Example: Comparisons between UDTs and constants
	Example: Casting between UDTs
	Example: Comparisons involving UDTs
	Example: Sourced UDFs involving UDTs
	Example: Assignments involving UDTs
	Example: Assignments in dynamic SQL
	Example: Assignments involving different UDTs
	Example: Use of UDTs in UNION

	Examples of using UDTs, UDFs, and LOBs
	Example: Defining the UDT and UDFs
	Example: Using LOB function to populate the database
	Example: Using UDFs to query instances of UDTs
	Example: Using LOB locators to manipulate UDT instances

	Using DataLinks
	NO LINK CONTROL
	FILE LINK CONTROL (with File System Permissions)
	FILE LINK CONTROL (with Database Permissions)
	Commands used for working with DataLinks

	Chapter 11. Using SQL in different environments
	Using a Cursor
	Types of cursors
	Serial cursor
	Scrollable cursor

	Example of using a cursor
	Step 1: Define the cursor
	Step 2: Open the cursor
	Step 3: Specify what to do when end-of-data is reached
	Step 4: Retrieve a row using a cursor
	Step 5a: Update the current row
	Step 5b: Delete the current row
	Step 6: Close the cursor

	Using the multiple-row FETCH statement
	Multiple-row FETCH using a host structure array
	Multiple-row FETCH using a row storage area

	Unit of work and open cursors

	Dynamic SQL Applications
	Designing and running a dynamic SQL application
	Processing non-SELECT statements
	CCSID of dynamic SQL statements
	Using the PREPARE and EXECUTE statements

	Processing SELECT statements and using an SQLDA
	Fixed-list SELECT statements
	Varying-list Select-statements
	SQL Descriptor Area (SQLDA)
	SQLDA format
	Example: Select-statement for allocating storage for SQLDA
	Parameter markers

	Use of dynamic SQL through client interfaces
	Accessing data with Java
	Accessing data with Domino
	Accessing data with Open Database Connectivity (ODBC)
	Accessing data with Portable Application Solutions Environment (PASE)
	Accessing data with iSeries Access for Windows OLE DB Provider
	Accessing data with Net.data
	Accessing data through a Linux partition
	Accessing data using Distributed Relational Database (DRDA)

	Using Interactive SQL
	Starting interactive SQL
	Using statement entry function
	Prompting
	Syntax checking
	Statement processing mode
	Subqueries
	CREATE TABLE prompting
	Entering DBCS Data

	Using the list selection function
	Example: Using the list selection function

	Session services description
	Exiting interactive SQL
	Using an existing SQL session
	Recovering an SQL session
	Accessing remote databases with interactive SQL

	Using the SQL Statement Processor
	Execution of statements after errors occur
	Commitment control in the SQL statement processor
	Source member listing for the SQL statement processor

	Chapter 12. Distributed Relational Database Function and SQL
	DB2 UDB for iSeries distributed relational database support
	DB2 UDB for iSeries distributed relational database example program
	SQL package support
	Valid SQL statements in an SQL package
	Considerations for creating an SQL package
	CRTSQLPKG Authorization
	Creating a Package on a non-DB2 UDB for iSeries
	Target Release (TGTRLS)
	SQL Statement Size
	Statements that do not require a package
	Package object type
	ILE programs and service programs
	Package creation connection
	Unit of work
	Creating packages locally
	Labels
	Consistency token
	SQL and recursion

	CCSID considerations for SQL
	Connection management and activation groups
	Connections and conversations
	Source code for PGM1:
	Source code for PGM2:
	Source code for PGM3:
	Multiple connections to the same relational database
	Implicit connection management for the default activation group
	Implicit connection management for nondefault activation groups

	Distributed support
	Determining connection type
	Connect and commitment control restrictions
	Determining connection status
	Distributed unit of work connection considerations
	Ending connections

	Distributed unit of work
	Managing distributed unit of work connections
	Checking connection status
	Cursors and prepared statements

	Application requester driver programs
	Problem handling
	DRDA stored procedure considerations

	Chapter 13. Related information
	DB2 UDB for iSeries Sample Tables
	Department Table (DEPARTMENT)
	DEPARTMENT

	Employee Table (EMPLOYEE)
	EMPLOYEE

	Employee Photo Table (EMP_PHOTO)
	EMP_PHOTO

	Employee ResumeTable (EMP_RESUME)
	EMP_RESUME

	Employee to Project Activity Table (EMPPROJACT)
	EMPPROJACT

	Project Table (PROJECT)
	PROJECT

	Project Activity Table (PROJACT)
	PROJACT

	Activity Table (ACT)
	ACT

	Class Schedule Table (CL_SCHED)
	CL_SCHED

	In Tray Table (IN_TRAY)
	IN_TRAY

	Organization Table (ORG)
	ORG

	Staff Table (STAFF)
	STAFF

	Sales Table (SALES)
	SALES

	DB2 UDB for iSeries CL Command Descriptions

	Notices
	Programming Interface Information
	Trademarks
	Terms and conditions for downloading and printing information

	Index

