
iSeries

DB2 UDB for iSeries Database programming

Version 5 Release 3

ERserver

���

iSeries

DB2 UDB for iSeries Database programming

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 257.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400® (product number

5722-SS1) and to all subsequent releases and modifications until otherwise indicated in new editions. This version

does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|

Contents

Database programming 1

What’s new for V5R3 1

Print this topic 2

Database file concepts 2

DB2 Universal Database for iSeries 2

Interfaces to DB2 UDB for iSeries 2

Traditional system interface 2

SQL 3

iSeries Navigator 3

IBM Query for iSeries 3

Database files 3

Source file 3

Physical file 3

Logical file 4

Member 4

Record 4

How database files are described 4

Externally and program-described data . . . 4

Dictionary-described data 5

Record format description 5

Access path description 6

Naming conventions used in a database file . . 6

Database data protection and monitoring 7

Database file sizes 7

Examples: Database file sizes 10

Set up database files 12

Creating and describing database files 12

Creating a library 13

Creating a schema using iSeries Navigator 13

Setting up source files 13

Why source files are used 14

Creating a source file 14

Describing database files 16

Describing database files using DDS . . . 17

Specifying database file and member

attributes 25

Setting up physical files 31

Creating a physical file 31

Specifying physical file and member

attributes when creating a physical file . . 32

Implicit journaling when creating a

physical file 34

Setting up logical files 34

Creating a logical file 35

Creating a logical file with more than one

record format 35

Defining logical file members 39

Describing logical file record formats 40

Describing field use for logical files . . . 43

Deriving new fields from existing fields . . 43

Describing floating-point fields in logical

files 46

Describing access paths for logical files . . . 46

Selecting and omitting records using logical

files 47

Using existing access paths 50

Setting up a join logical file 52

Basic concepts of joining two physical files

(Example 1) 53

Setting up a join logical file 60

Using more than one field to join files

(Example 2) 61

Reading duplicate records in secondary

files (Example 3) 62

Using join fields whose attributes are

different (Example 4) 64

Describing fields that never appear in the

record format (Example 5) 65

Specifying key fields in join logical files

(Example 6) 66

Specifying select/omit statements in join

logical files 67

Joining three or more physical files

(Example 7) 67

Joining a physical file to itself (Example 8) 69

Using default data for missing records from

secondary files (Example 9) 70

A complex join logical file (Example 10) . . 72

Join logical file considerations 74

Describing access paths for database files . . . 75

Using arrival sequence access path for

database files 76

Using a keyed sequence access path for

database files 76

Arranging key fields using an alternative

collating sequence 77

Arranging key fields using the SRTSEQ

parameter 78

Arranging key fields in ascending or

descending sequence 79

Using more than one key field 79

Preventing duplicate key values 81

Arranging duplicate keys 81

Using existing access path specifications . . . 84

Using floating point fields in database file

access paths 84

Securing a database 84

Granting file and data authority 84

Authorizing a user or group using iSeries

Navigator 85

Types of object authority for database files 85

Types of data authorities for database files 86

Specifying public authority 87

Defining public authority for a file using

iSeries Navigator 87

Setting a default public authority for new

files using iSeries Navigator 88

Using database file capabilities to control I/O

operations 88

Limiting access to specific fields of a database

file 89

Using logical files to secure data 89

© Copyright IBM Corp. 1998, 2005 iii

|
||

Process database files 89

Database file processing: Run time considerations 90

File and member name 91

File processing options 91

Specifying the type of processing 91

Specifying the initial file position 92

Reusing deleted records 92

Ignoring the keyed sequence access path 92

Delaying end of file processing 93

Specifying the record length 93

Ignoring record formats 93

Determining if duplicate keys exist . . . 93

Data recovery and integrity 94

Protecting your file with journaling and

commitment control 94

Writing data and access paths to auxiliary

storage 94

Checking changes to the record format

description 94

Checking for the expiration date of the file 94

Preventing the job from changing data in

the file 94

Locking shared data 95

Locking records 95

Displaying locked rows using iSeries

Navigator 95

Displaying locked records using

DSPRCDLCK 96

Locking files 96

Locking members 96

Locking record format data 96

Database lock considerations 96

Sharing database files in the same job or

activation group 98

Open considerations for files shared in a

job or activation group 99

Input/output considerations for files

shared in a job or activation group . . . 100

Close considerations for files shared in a

job or activation group 100

Sequential-only processing of database files 104

Open considerations for sequential-only

processing 105

Input/output considerations for

sequential-only processing 106

Close considerations for sequential-only

processing 106

Summary of run time considerations for

processing database files 107

Storage pool paging option effect on

database performance 109

Opening a database file 110

Opening a database file member 110

Using the Open Database File (OPNDBF)

command 110

Using the Open Query File (OPNQRYF)

command 111

Creating a query with the OPNQRYF

command 113

Using an existing record format in the file 113

Using a file with a different record format 115

OPNQRYF examples 116

CL program coding with the OPNQRYF

command 117

The zero length literal and the contains

(*CT) function 117

Selecting records without using DDS . . 117

Considerations for creating a file and

using the FORMAT parameter 142

Considerations for arranging records . . 142

Considerations for DDM files 143

Considerations for writing a high-level

language program 143

Messages sent when the Open Query File

(OPNQRYF) command is run 143

Using the Open Query File (OPNQRYF)

command for more than just input . . . 145

Comparing date, time, and timestamp

using the OPNQRYF command 145

Performing date, time, and timestamp

arithmetic using the OPNQRYF command . 146

Using the Open Query File (OPNQRYF)

command for random processing 150

Open Query File command: Performance

considerations 150

Open Query File command: Performance

considerations for sort sequence tables . . 152

Performance comparisons with other

database functions 152

Considerations for field use 153

Considerations for files shared in a job 153

Considerations for checking if the record

format description changed 154

Other run time considerations for the

OPNQRYF command 154

Typical errors when using the Open

Query File (OPNQRYF) command . . . 156

Basic database file operations in programs . . . 157

Setting a position in the file 157

Reading database records 158

Reading database records using an arrival

sequence access path 158

Reading database records using a keyed

sequence access path 159

Waiting for more records when end of file

is reached 161

Releasing locked records 163

Updating database records 163

Adding database records 164

Identifying which record format to add in

a file with multiple formats 164

Using the force-end-of-data operation . . 166

Deleting database records 166

Closing a database file 167

Monitoring database file errors in a program 168

System handling of error messages 168

Effect of error messages on file positioning 168

Determining which messages you want to

monitor 168

Manage database files 169

Basic operations for managing database files 170

Copying a file 170

iv OS/400 DB2 UDB for iSeries Database programming V5R3

Copying a file (table) using iSeries

Navigator 170

Copying a file using CPYF 170

Moving a file 171

Moving a file (table) using iSeries

Navigator 171

Moving a file using the MOVOBJ

command 171

Managing database members 171

Member operations common to all database

files 172

Adding members to files 172

Changing member attributes 172

Renaming members 172

Removing members from files 172

Physical file member operations 172

Initializing data in a physical file member 173

Clearing data from physical file members 173

Reorganizing a physical file 173

Displaying records in a physical file

member 178

Using database attribute and cross-reference

information 178

Displaying information about database files 178

Displaying attributes for a file using

display table description in iSeries

Navigator 179

Displaying attributes for a file using

DSPFD 179

Displaying the descriptions of the fields in

a file 179

Displaying the relationships between files

on the system 179

Displaying the files used by programs . . 180

Displaying the system cross-reference files 181

Writing the output from a command directly

to a database file 182

Example: Using a command output file 182

Output file for the Display File

Description command 183

Output files for the Display Journal

command 183

Output files for the Display Problem

command 183

Changing database file descriptions and

attributes 183

Effect of changing fields in a file description 184

Changing a physical file description and

attributes 185

Example 1: Changing a physical file

description and attributes 186

Example 2: Changing a physical file

description and attributes 186

Changing a logical file description and

attributes 187

Recovering and restoring your database . . . 187

Recovering data in a database file 188

Managing journals 188

Ensuring data integrity with commitment

control 194

Reducing time in access path recovery . . . 195

Saving access paths 195

Restoring access paths 195

Journaling access paths 196

System-managed access-path protection

(SMAPP) 197

Rebuilding access paths 197

The database recovery process after an

abnormal system end 199

Database file recovery during the IPL . . 199

Database file recovery after the IPL . . . 200

Effects of the storage pool paging option

on database recovery 200

Database file recovery options table . . . 201

Database save and restore 201

Database considerations for save and restore 201

Force-writing data to auxiliary storage . . 202

Using source files 202

Working with source files 202

Using the Source Entry Utility (SEU) . . 202

Using device source files 202

Copying source file data 203

Loading and unloading data from

non-iSeries systems 204

Using source files in a program 204

Creating an object using a source file . . . 205

Creating an object from source statements

in a batch job 205

Determining which source file member

was used to create an object 206

Managing a source file 206

Changing source file attributes 207

Reorganizing source file member data . . 207

Determining when a source statement was

changed 207

Using source files for documentation . . 207

Controlling the integrity of your database with

constraints 208

Setting up constraints for your database . . 208

Details: Setting up constraints 208

Removing unique, primary key, or check

constraints 209

Details: Removing constraints 209

Working with a group of constraints . . . 210

Details: Working with a group of

constraints 210

Working with constraints that are in check

pending status 210

Unique constraints 212

Primary key constraints 213

Check constraints 213

Ensuring data integrity with referential

constraints 213

Adding a referential constraint 214

Before you add a referential constraint 214

Defining the parent file in a referential

constraint 214

Defining the dependent file in a referential

constraint 215

Specifying referential constraint rules . . 215

Details: Specifying referential constraint

delete rules 216

Contents v

Details: Specifying referential constraint

update rules 216

Details: Specifying referential constraint

rules—journaling requirements 217

Details: Adding a referential constraint 217

Details: Avoiding constraint cycles . . . 217

Verifying a referential constraint 217

Enabling and disabling referential constraints 218

Details: Enabling or disabling a referential

constraint 218

Removing referential constraints 219

Details: Removing a constraint with the

CST parameter 219

Details: Removing a constraint with the

TYPE parameter 219

Details: Ensuring data integrity with

referential constraints 220

Example: Ensuring data integrity with

referential constraints 220

Referential integrity terms 220

Referential integrity enforcement 221

Foreign key enforcement 221

Parent key enforcement 221

Constraint states 222

Check pending status in referential

constraints 222

Dependent file restrictions in check

pending 223

Parent file restrictions in check pending 223

Referential integrity and iSeries functions . . 223

Triggering automatic events in your database 225

Uses for triggers 225

Benefits of using triggers in your business 226

Creating trigger programs 226

Adding triggers using iSeries Navigator 226

How trigger programs work 227

Other important information about

working with triggers 227

Examples of trigger programs 227

Trigger buffer sections 240

Recommendations for trigger programs 242

Precautions to take when coding trigger

programs 243

Trigger and application programs that are

under commitment control 245

Trigger and application programs that are

not under commitment control 245

Trigger program error messages 245

Monitoring the use of trigger programs 245

Adding a trigger to a file 246

Required authorities and data capabilities

for triggers 247

Displaying triggers 247

Removing a trigger 248

Enabling and disabling a trigger 248

Triggers and their relationship to other

iSeries functions 248

Triggers and their relationship to referential

integrity 249

Database distribution 250

Double-byte character set (DBCS) considerations 250

DBCS field data types 251

DBCS constants 251

DBCS field mapping considerations 251

DBCS field concatenation 252

DBCS field substring operations 253

Comparing DBCS fields in a logical file . . . 253

Using DBCS fields in the Open Query File

(OPNQRYF) command 254

Using the wildcard function with DBCS

fields 254

Comparing DBCS fields through OPNQRYF 254

Using concatenation with DBCS fields

through OPNQRYF 254

Using sort sequence with DBCS 255

Related information 255

Appendix. Notices 257

Trademarks 258

Terms and conditions for downloading and

printing publications 259

vi OS/400 DB2 UDB for iSeries Database programming V5R3

Database programming

The database programming topic contains information about the DB2 Universal Database for iSeries (DB2

UDB for iSeries) database management system, and describes how to set up and use the database on

iSeries servers using traditional system interfaces.

See the following topics for detailed information about database programming on OS/400®.

What’s new for V5R3
Find out how this topic has changed since the last release.

Print this topic
Learn how to display or print a PDF version of this topic.

Database file concepts
Learn some of the basic concepts relating to database files on OS/400.

Set up database files
Find out how to create and describe database files, how to set up logical files, how to describe

access paths for database files, and how to secure a database.

Process database files
Find out how to make your database files process more efficiently on OS/400; how to open,

manipulate, and close database files; and how to monitor and manage error messages relating to

your database files.

Manage database files
Find out how to maintain control of database files on your system by managing the files, their

descriptions, and their attributes. Find out how to maintain control over your data to protect it from

loss, ensure its integrity with constraints, and to set up trigger events when the data changes.

Related information
Find information in the iSeries Information Center and on the Internet that offers additional topics

about database programming.

What’s new for V5R3

The following information was added or updated in this release of the information:

v Up to 256 members can be joined in a logical file.

v Packed and zoned decimals have a maximum precision of 63 digits.

v UTF-8 and UTF-16 support in physical file fields.

v Reorganization of physical members provides options for parallel, concurrent, and interruptible

processes. See “Reorganizing a physical file” on page 173.

v Physical files can be journaled implicitly. See “Implicit journaling when creating a physical file” on

page 34.

© Copyright IBM Corp. 1998, 2005 1

Print this topic

To view or download the PDF version of this document, select Database programming

(about 2500

KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using

Netscape Communicator.

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html)

.

Database file concepts

This section discusses database concepts and things to consider when you set up or work with IBM®

OS/400 database files.

v “DB2 Universal Database for iSeries”

v “Interfaces to DB2 UDB for iSeries”

v “Database files” on page 3

v “How database files are described” on page 4

v “Database data protection and monitoring” on page 7

v “Database file sizes” on page 7

DB2 Universal Database for iSeries

DB2 Universal Database for iSeries (DB2 UDB for iSeries) is the integrated relational database manager

on OS/400. It is part of the base operating system, and provides access to and protection for data. It also

provides advanced functions such as referential integrity and parallel database processing.

With DB2 UDB for iSeries, independent auxiliary storage pools (ASPs), or independent disk pools, allow

you to have one or more separate databases associated with each ASP group. Databases are set up using

primary independent disk pools. For more information, see the Independent disk pools topic.

Interfaces to DB2 UDB for iSeries

DB2 UDB for iSeries provides several independent interfaces to the database.

v “Traditional system interface”

v “SQL” on page 3

v “iSeries Navigator” on page 3

v “IBM Query for iSeries” on page 3

Traditional system interface

The OS/400 traditional system interface is the full set of system commands and other non-SQL facilities

that let users access and modify DB2 UDB for iSeries data. The traditional system interface provides a

2 OS/400 DB2 UDB for iSeries Database programming V5R3

rbafo.pdf
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

control language (CL) that can be used to create database objects. The system interface also has an

integrated facility for describing data called Data Description Specifications (DDS).

Websphere Development Studio for iSeries™, an IBM licensed program, provides several utilities to

describe and process data. The data file utility (DFU) can add, change, and delete data in a database file

described by RPG/400®, DDS, and Interactive Data Description Utility (IDDU). The source entry utility

(SEU) can be used to specify and change data in files.

SQL

Structured Query Language (SQL) is a language that can be used within host programming languages or

interactively to access information from a database. SQL is the industry standard database interface used

for accessing and modifying relational database products. SQL uses a relational model of data; that is, it

perceives all data as existing in tables. The DB2 UDB for iSeries database has SQL processing capability

integrated into the system. It processes compiled programs that contain SQL statements. To develop SQL

applications, you need DB2 UDB Query Manager and SQL Development Kit, an IBM licensed program,

for the system on which you develop your applications.

Interactive SQL is a function of the DB2 UDB Query Manager and SQL Development Kit licensed

program that allows SQL statements to run dynamically instead of in batch mode. Every interactive SQL

statement is read from the work station, prepared, and run dynamically.

For more information about SQL, see the SQL programming and Introduction to DB2® UDB for iSeries

Structured Query Language topics.

iSeries Navigator

iSeries Navigator is a no-charge feature of iSeries Access for Windows® that is bundled with OS/400.

iSeries Navigator provides a graphical, Microsoft® Windows interface to common OS/400 management

functions, including database. Most database operations that you can access using iSeries Navigator are

based on Structured Query Language (SQL) functions. However, some operations are based on traditional

system interfaces, such as Control Language (CL) commands.

For more information about iSeries Navigator, see the iSeries Navigator topic in the Information Center.

IBM Query for iSeries

IBM Query for iSeries is an IBM licensed program used to select, format, and analyze information from

database files to produce reports and other files.

Database files

A database file is one of several types of the system object type *FILE kept in the system that contains

descriptions of how input data is to be presented to a program from internal storage and how output

data is to be presented to internal storage from a program. There are several types of database files:

v “Source file”

v “Physical file”

v “Logical file” on page 4

Database files contain members (see “Member” on page 4) and records (see “Record” on page 4) .

Source file

A source file contains uncompiled programming code and input data needed to create some types of

objects. A source file can contain source statements for such items as high-level language programs and

data description specifications. A source file can be a source physical file, diskette file, tape file, or inline

data file.

Physical file

A physical file is a database file that stores application data. It contains a description of how data is to be

presented to or received from a program and how data is actually stored in the database. A physical file

Database programming 3

consists of fixed-length records that can have variable-length fields. Physical files contain one record

format and one or more members. From the perspective of the SQL interface, physical files are identical

to tables.

Logical file

A logical file is a database file that logically represents one or more physical files. It contains a

description of how data is to be presented to or received from a program. This type of database file

contains no data, but it defines record formats for one or more physical files. Logical files let users access

data in a sequence and format that is different from the physical files they represent. From the

perspective of the SQL interface, logical files are identical to views and indexes.

Member

Members are different sets of data, each with the same format, within one database file. Before you

perform any input or output operations on a file, the file must have at least one member. As a general

rule, database files have only one member, the one created when the file is created. If a file contains more

than one member, each member serves as a subset of the data in the file.

Record

A record is a group of related data within a file. From the perspective of the SQL interface, records are

identical to rows.

How database files are described

Records in database files can be described in two ways:

v Field level description. The fields in the record are described to the system. Some of the things you can

describe for each field include: name, length, data type, validity checks, and text description. Database

files that are created with field level descriptions are referred to as externally described files.

v Record level description. Only the length of the record in the file is described to the system. The

system does not know about fields in the file. These database files are referred to as program-described

files.

Regardless of whether a file is described to the field or record level, you must describe and create the file

before you can compile a program that uses that file. That is, the file must exist on the system before you

use it.

See the following topics for more information about specific ways that data is described:

v “Externally and program-described data”

v “Dictionary-described data” on page 5

v “Record format description” on page 5

v “Access path description” on page 6

v “Naming conventions used in a database file” on page 6

Externally and program-described data

Programs can use file descriptions in two ways:

v The program uses the field-level descriptions that are part of the file. Because the field descriptions are

external to the program itself, the data is called externally described data.

v The program uses fields that are described in the program itself; therefore, the data is called

program-described data. Fields in files that are only described to the record level must be described in

the program using the file.

Programs can use either externally described or program-described files. However, if you choose to

describe a file to the field level, the system can do more for you. For example, when you compile your

programs, the system can extract information from an externally described file and automatically include

field information in your programs. Therefore, you do not have to code the field information in each

program that uses the file.

4 OS/400 DB2 UDB for iSeries Database programming V5R3

The following figure shows the typical relationships between files and programs on the iSeries server:

�1� Externally Described Data

The program uses the field level description of a file that is defined to the system. At compilation

time, the language compiler copies the external description of the file into the program.

�2� Program-Described Data

The program uses a file that is described to the field level to the system, but it does not use the

actual field descriptions. At compilation time, the language compiler does not copy the external

description of the file into the program. The fields in the file are described in the program. In this

case, the field attributes (for example, field length) used in the program must be the same as the

field attributes in the external description.

�3� Program-Described Data

The program uses a file that is described only to the record level to the system. The fields in the

file must be described in the program.

 Externally described files can also be described in a program. You might want to use this method for

compatibility with previous systems. For example, you want to run programs on the iSeries server that

originally came from a traditional file system. Those programs use program-described data, and the file

itself is only described to the record level. At a later time, you describe the file to the field level

(externally described file) to use more of the database functions available on the system. Your old

programs, containing program-described data, can continue to use the externally described file while new

programs use the field-level descriptions that are part of the file. Over time, you can change one or more

of your old programs to use the field level descriptions.

Dictionary-described data

A program-described file can be dictionary-described. You can describe the record format information

using interactive data definition utility (IDDU). Even though the file is program-described, IBM Query for

iSeries, iSeries Access, and data file utility (DFU) will use the record format description stored in the data

dictionary.

An externally described file can also be dictionary-described. You can use IDDU to describe a file, then

create the file using IDDU. The file created is an externally described file. You can also move into the

data dictionary the file description stored in an externally described file. The system always ensures that

the definitions in the data dictionary and the description stored in the externally described file are

identical.

Record format description

When you describe a database file to the system, you describe the two major parts of that file: the record

format and the access path.The record format describes the order of the fields in each record. The record

Database programming 5

format also describes each field in detail including: length, data type (for example, packed decimal or

character), validity checks, text description, and other information.

The following example shows the relationship between the record format and the records in a physical

file:

In this example of specifications for record format ITMMST, there are three fields. Field ITEM is zoned

decimal, five digits, with no decimal position. Field DESCRP is character, with 18 positions. FieldPRICE is

zoned decimal, five digits, with two decimal positions.

A physical file can have only one record format. The record format in a physical file describes the way

the data is actually stored.

A logical file contains no data. Logical files are used to arrange data from one or more physical files into

different formats and sequences. For example, a logical file could change the order of the fields in the

physical file, or present to the program only some of the fields stored in the physical file.

A logical file record format can change the length and data type of fields stored in physical files. The

system does the necessary conversion between the physical file field description and the logical file field

description. For example, a physical file could describe FLDA as a packed decimal field of 5 digits and a

logical file using FLDA might redefine it as a zoned decimal field of 7 digits. In this case, when your

program used the logical file to read a record, the system would automatically convert (unpack) FLDA to

zoned decimal format.

Access path description

When you describe a database file to the system, you describe the two major parts of that file: the record

format and the access path. An access path describes the order in which records are to be retrieved. When

you describe an access path, you describe whether it will be a keyed sequence or arrival sequence access

path. Access paths are discussed in more detail in “Describing access paths for database files” on page 75.

Naming conventions used in a database file

The file name, record format name, and field name can be as long as 10 characters and must follow all

system naming conventions, but you should keep in mind that some high-level languages have more

restrictive naming conventions than the system does. For example, the RPG/400* language allows only

6-character names, while the system allows 10-character names. In some cases, you can temporarily

change (rename) the system name to one that meets the high-level language restrictions. For more

information about renaming database fields in programs, see your high-level language guide.

In addition, names must be unique as follows:

v Field names must be unique in a record format.

v Record format names and member names must be unique in a file.

6 OS/400 DB2 UDB for iSeries Database programming V5R3

v File names must be unique in a library.

Database data protection and monitoring

The system provides features to improve the integrity and consistency of your data. Enforcing business

rules is one way of protecting data. You can enforce business rules using the following:

v Referential constraints let you put controls (constraints) on data in files you define as having a mutual

dependency. A referential constraint lets you specify rules to be followed when changes are made to

files with constraints. Constraints are described in detail in “Ensuring data integrity with referential

constraints” on page 213.

v Triggers let you run your own program to take any action or evaluate changes when files are changed.

When predefined changes are made or attempted, a trigger program is run. Triggers are described in

detail in “Triggering automatic events in your database” on page 225.

Enforcing data type rules is another way of protecting data. The system performs data type checking in

certain instances to ensure, for example, that data in a numeric field is really numeric.

In addition, the system protects data from loss using the following:

v Journaling and commitment control functions

v System-managed access path protection (SMAPP) support

For more information about these types of data protection, see “Recovering and restoring your database”

on page 187.

Database file sizes

The following database file maximums should be kept in mind when designing files on the iSeries server:

 Description Maximum Value

Number of bytes in a record 32,766 bytes

Number of fields in a record format 8,000 fields

Number of key fields in a file 120 fields

Size of key for physical and logical files 2000 characters1

Size of key for ORDER BY (SQL) and KEYFLD

(OPNQRYF)

10,000 bytes

Number of records contained in a file member 4,294,967,294 records2

Number of bytes in a file member 1,869,162,846,624 bytes3

Number of bytes in an access path 1,099,511,627,776 bytes3 5

Number of keyed logical files built over a physical file

member

3,686 files

Number of physical file members in a logical file

member

32 members

Number of members that can be joined 256 members

Size of a character or DBCS field 32,766 bytes4

Size of a zoned decimal or packed decimal field 63 digits

Maximum number of distinct database files that can be

in use at one time

∼500,000

Maximum number of members in a physical or logical

file

32,767

Maximum number of constraints per physical file 300 constraints

Maximum number of triggers per physical file 300 triggers

Maximum number of recursive insert and update trigger

calls

200

Database programming 7

||

|

||
|
|
|

|
|
|

||

Description Maximum Value

:

1 When a first-changed-first-out (FCFO) access path is specified for the file, the maximum value for the size

of the key for physical and logical files is 1995 characters.

2 For files with keyed sequence access paths, the maximum number of records in a member varies and can

be estimated using the following formula:

2,867,200,000

10 + (.8 x key length)

 This is an estimated value, the actual maximum number of records can vary significantly from the number

determined by this formula.

3 Both the number of bytes in a file member and the number of bytes in an access path must be looked at

when message CPF5272 is sent indicating that the maximum system object size has been reached.

4 The maximum size of a variable-length character or DBCS field is 32,740 bytes. DBCS-graphic field lengths

are expressed in terms of characters; therefore, the maximums are 16,383 characters (fixed length) and

16,370 characters (variable length).

5 The maximum is 4,294,966,272 bytes if the access path is created with a maximum size of 4 gigabytes (GB),

ACCPTHSIZE(*MAX4GB).

These are maximum values. There are situations where the actual limit you experience will be less than

the stated maximum. For example, certain high-level languages can have more restrictive limits than

those described above.

Keep in mind that performance can suffer as you approach some of these maximums. For example, the

more logical files you have built over a physical file, the greater the chance that system performance can

suffer (if you are frequently changing data in the physical file that causes a change in many logical file

access paths).

Normally, an iSeries database file can grow until it reaches the maximum size allowed on the system. The

system normally will not allocate all the file space at once. Rather, the system will occasionally allocate

additional space as the file grows larger. This method of automatic storage allocation provides the best

combination of good performance and effective auxiliary storage space management.

If you want to control the size of the file, the storage allocation, and whether the file should be connected

to auxiliary storage, you can use the SIZE, ALLOCATE, and CONTIG parameters on the Create Physical

File (CRTPF) and the Create Source Physical File (CRTSRCPF) commands.

You can use the following formulas to estimate the disk size of your physical and logical files.

v For a physical file (excluding the access path) that does not contain null capable fields:

Disk size = (number of valid and deleted records + 1) x

 (record length + 1) + 12288 x (number of members) + 4096

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and

CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on

the SIZE keyword must be used instead of the number of records.
v For a physical file (excluding the access path) that contains null capable fields:

Disk size = (number of valid and deleted records + 1) x

 (record length + 1) + 12288 x (number of members) +

 4096 + ((number of fields in format) ÷8) rounded up) x

 (number of valid and deleted records + 1)

8 OS/400 DB2 UDB for iSeries Database programming V5R3

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and

CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on

the SIZE keyword must be used instead of the number of records.

v For a logical file (excluding the access path):

 Disk size = (12288) x (number of members) + 4096

v For a keyed sequence access path the generalized equation for index size, per member, is:

let a = (LimbPageUtilization - LogicalPageHeaderSize) *

 (LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)

let b = NumKeys * (TerminalTextPerKey + 2 * NodeSize) *

 (LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)

 + CommonTextPerKey * [LimbPageUtilization + LeafPageUtilization

 - 2 * (LogicalPageHeaderSize - NodeSize)]

 - 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize

 + 2 * NodeSize)

let c = CommonTextPerKey * [2 * NodeSize - CommonTextPerKey

 - NumKeys * (TerminalTextPerKey + 2 * NodeSize)]

then NumberLogicalPages = ceil([-b - sqrt(b ** 2 - 4 * a * c)]

 / (2 * a))

and TotalIndexSize = NumberLogicalPages * LogicalPageSize

This equation is used for both three and four byte indexes by changing the set of constants in the

equation as follows:

 Constant Three-byte Index Four-byte Index

NodeSize 3 4

LogicalPageHeaderSize 16 64

LimbPageUtilization .75 * LogicalPageSize .75 * LogicalPageSize

LeafPageUtilization .75 * LogicalPageSize .80 * LogicalPageSize

The remaining constants, CommonTextPerKey and TerminalTextPerKey, are probably best estimated by

using the following formulas:

CommonTextPerKey = [min(max(NumKeys - 256,0),256)

 + min(max(NumKeys - 256 * 256,0),256 * 256)

 + min(max(NumKeys - 256 * 256 * 256,0),

 256 * 256 * 256)

 + min(max(NumKeys - 256 * 256 * 256 * 256,0),

 256 * 256 * 256 * 256)]

 * (NodeSize + 1) / NumKeys

TerminalTextPerKey = KeySizeInBytes - CommonTextPerKey

This should reduce everything needed to calculate the index size to the type of index (that is, 3 or 4

byte), the total key size, and the number of keys. The estimate should be greater than the actual index

size because the common text estimate is minimal.

Database programming 9

Given this generalized equation for index size, the LogicalPageSize is as follows:

 Table 1. LogicalPageSize Values

Key Length *MAX4GB (3-byte) LogicalPageSize *MAX1TB (4-byte) LogicalPageSize

1 - 500 4096 bytes 8192 bytes

501 - 1000 8192 bytes 16384 bytes

1001 - 2000 16384 bytes 32768 bytes

The LogicalPageSizes in Table 1 generate the following LimbPageUtilizations:

Key Length

*MAX4GB (3-byte)

LimbPageUtilization

*MAX1TB (4-byte)

LimbPageUtilization

1 - 500 3072 bytes 6144 bytes

501 - 1000 6144 bytes 12288 bytes

1001 - 2000 12288 bytes 24576 bytes

The LogicalPageSizes in Table 1 generate the following LeafPageUtilizations:

Key Length

*MAX4GB (3-byte)

LeafPageUtilization

*MAX1TB (4-byte)

LeafPageUtilization

1 - 500 3072 bytes 6554 bytes

501 - 1000 6144 bytes 13107 bytes

1001 - 2000 12288 bytes 26214 bytes

Then to simplify the generalized equation for index size, let:

CommonTextPerKey = 0

which would cause:

TerminalTextPerKey = KeySizeInBytes

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *

 (LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)

 - 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize

 + 2 * NodeSize)

c = 0

NumberLogicalPages = ceil([-b - sqrt(b ** 2)]

 / (2 * a))

 = ceil[(-2 * b) / (2 * a)]

 = ceil[-b/a]

See “Examples: Database file sizes” for an example.

Examples: Database file sizes

A *MAX1TB (4-byte) access path with 120 byte keys and 500,000 records TotalIndexSize would have a

TotalIndexSize in bytes as follows:

a = (LimbPageUtilization - LogicalPageHeaderSize) *

 (LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)

 = (6144 - 64) *

 (64 - 6554 - 2 * 4)

 = 6080 * -6498

 = -39,507,840

10 OS/400 DB2 UDB for iSeries Database programming V5R3

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *

 (LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)

 - 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize

 + 2 * NodeSize)

 = 500,000 * (120 + 2 * 4) *

 (6144 - 64 + 2 * 4)

 - 2 * 4 * (6554 - 64 + 2 * 4)

 = 500,000 * 128 *

 6088

 - 8 * 6498

 = 3.896319e+11

NumberLogicalPages = ceil[-b/a]

 = ceil[-3.896319e+11/-39507840]

 = 9863

TotalIndexSize = NumberLogicalPages * LogicalPageSize

 = 9863 * 8192

 = 80,797,696 bytes

The equation for index size in previous versions of the operating system would produce the following

result:

TotalIndexSize = (number of keys) * (key length + 8) *

 (0.8) * (1.85) + 4096

 = (NumKeys) * (KeySizeInBytes + 8) *

 (0.8) * (1.85) + 4096

 = 500000 * 128 *

 .8 * 1.85 + 4096

 = 94,724,096

This estimate can differ significantly from your file. The keyed sequence access path depends heavily on

the data in your records. The only way to get an accurate size is to load your data and display the file

description.

The following is a list of minimum file sizes:

 Description Minimum Size

Physical file without a member 8192 bytes

Physical file with a single member 20480 bytes

Keyed sequence access path 12288 bytes

Note: Additional space is not required for an arrival sequence access path.

In addition to the file sizes, the system maintains internal formats and directories for database files.

(These internal objects are owned by user profile QDBSHR.) The following are estimates of the sizes of

those objects:

v For any file not sharing another file’s format:

 Format size = (96 x number of fields) + 4096

v For files sharing their format with any other file:

 Format sharing directory size = (16 x number of files

 sharing the format) + 3856

v For each physical file and each physical file member having a logical file or logical file member built

over it:

Database programming 11

Data sharing directory size = (16 x number of files

 or members sharing data) + 3856

v For each file member having a logical file member sharing its access path:

 Access path sharing directory size = (16 x number of files

 or members sharing access path) + 3856

Set up database files

The information in this part describes in detail how to set up any iSeries database file.

“Creating and describing database files”
These topics provide an overview of the process of creating database files, libraries, source files, and

physical files.

v “Describing database files” on page 16

v “Setting up source files” on page 13

v “Setting up physical files” on page 31

“Setting up logical files” on page 34
This topic includes guidelines for describing and creating logical files. This includes information on

describing logical file record formats and different types of field use using data description

specifications (DDS). Information on defining logical file members to separate the data into logical

groups is also included in this chapter. A section on join logical files includes considerations for

using join logical files, including examples on how to join physical files and the different ways

physical files can be joined. Information on performance, integrity, and a summary of rules for join

logical files is also included.

“Describing access paths for database files” on page 75
This topic includes describing database files and access paths to the system and the different

methods that can be used. The ways that your programs use these file descriptions and the

differences between using data that is described in a separate file or in the program itself is

discussed. Information is included about describing access paths using DDS as well as using access

paths that already exist in the system.

“Securing a database” on page 84
This topic includes information on security functions such as file security, public authority,

restricting the ability to change or delete any data in a file, and using logical files to secure data.

The different types of authority that can be granted to a user for a database file and the types of

authorities you can grant to physical files are also included.

Creating and describing database files

This chapter provides an overview of the process of creating database files, libraries, source files, and

physical files.

The system supports several methods for describing and creating a database file:

v IDDU

You can create a database file by using Interactive Data Definition Utility (IDDU), part of the

WebSphere® Development Studio for iSeries licensed program. If you are using IDDU to describe your

database files, you might also consider using it to create your files.

v OS/400 control language (CL), using source entry utility (SEU) or data file utility (DFU) to specify data

description specifications (DDS).

You can create a database file by using CL. The CL database file create commands are: Create Physical

File (CRTPF), Create Logical File (CRTLF), and Create Source Physical File (CRTSRCPF). Once a

12 OS/400 DB2 UDB for iSeries Database programming V5R3

database file is created, you can use SEU or DFU to describe data in the file. SEU and DFU are part of

IBM WebSphere Development Studio for iSeries licensed program. This guide focuses on creating files

using these methods.

v Structured Query Language

You can create and describe a database file (table) by using Structured Query Language (SQL)

statements. SQL is the IBM relational database language, and can be used on iSeries to interactively

describe and create database files. See the SQL programming topic, and specifically the Creating and

using a table topic, for more information.

v iSeries Navigator

You can also create a database file (table) using iSeries Navigator. See Creating and using a table using

iSeries Navigator for more information.

To create and describe a database file using CL and DDS, use the following:

v “Creating a library”

v “Setting up source files”

v “Describing database files” on page 16

v “Setting up physical files” on page 31

v “Setting up logical files” on page 34

Creating a library

A library is a system object that serves as a directory to other objects. A library groups related objects,

and allows the user to find objects by name. The system-recognized identifier for the object type is *LIB.

Before you can create a database file, you must create a library to store it. You can create a library in the

following ways:

v You can use iSeries Navigator to create a library (in SQL, called a schema). See “Creating a schema

using iSeries Navigator.”

v You can use the Create Library (CRTLIB) command to create the library.

When creating a library, you can specify the auxiliary storage pool (ASP) in which the library is to be

stored. This allows you to create multiple, separate databases.

Creating a schema using iSeries Navigator: You can also create a library using iSeries Navigator.

 1. In the iSeries Navigator window, expand the system you want to use.

 2. Expand Databases and the database that you want to work with.

 3. Right-click Schemas and select New Schema.

 4. On the New Schema window, specify a schema name.

 5. To add this schema to the list of schemas displayed, select Add to displayed list of schemas.

 6. To create as a standard schema, select Create as a standard schema (optional).

 7. To create a data dictionary, select Create a data dictionary (optional).

 8. Specify a disk pool to contain the schema.

 9. Specify a description (optional).

10. Click OK.

Setting up source files

This chapter describes how to set up source files, and why you would use a source file.

To set up source files, use the following:

v “Why source files are used” on page 14

v “Creating a source file” on page 14

For more information about using source files, see “Using source files” on page 202.

Database programming 13

|

|

|

|

|

|

|

|

|

|

Why source files are used: A source file (see “Source file” on page 3) is used when a command alone

cannot supply sufficient information for creating an object. It contains input (source) data needed to

create some types of objects. For example, to create a control language (CL) program, you must use a

source file containing source statements, which are in the form of commands. To create a logical file, you

must use a source file containing DDS.

To create the following objects, source files are required:

v High-level language programs

v Control language programs

v Logical files

v Intersystem communications function (ICF) files

v Commands

To create the following objects, source files can be used, but are not required:

v Physical files

v Display files

v Printer files

v Translate tables

A source file can be a database file, diskette file, tape file, or inline data file. (An inline data file is

included as part of a job.) A source database file is simply another type of database file. You can use a

source database file as you would any other database file on the system.

Creating a source file: Before creating a source file, you should first have created a library (see

“Creating a library” on page 13). Then, to create a source file, you can use:

v Create Source Physical File (CRTSRCPF) command

Normally, you will use the CRTSRCPF command to create a source file, because many of the

parameters default to values that you usually want for a source file. To create a source file using

CRTSRCPF, see “Creating a source file using CRTSRCPF”

v Create Physical File (CRTPF), or Create Logical File (CRTLF) command

If you want to create a source file and define the record format and fields using DDS, use the Create

Physical File (CRTPF) or Create Logical File (CRTLF) command.

As an alternative to creating a source file, you can use source files supplied with OS/400 and other

licensed programs. See “IBM-supplied source files.”

For information about the attributes common to most source files, see “Source file attributes” on page 15.

Creating a source file using CRTSRCPF: The following example shows how to create a source file using the

CRTSRCPF command and using the command defaults:

CRTSRCPF FILE(QGPL/FRSOURCE) TEXT(’Source file’)

The Create Source Physical File (CRTSRCPF) command creates a physical file, but with attributes

appropriate for source physical files. For example, the default record length for a source file is 92 (80 for

the source data field, 6 for the source sequence number field, and 6 for the source date field).

You can create source files with or without DDS. See the following topics:

v “Creating source files without DDS” on page 16

v “Creating source files with DDS” on page 16

IBM-supplied source files: For your convenience, the OS/400 program and other licensed programs

provide a database source file for each type of source. These source files are:

14 OS/400 DB2 UDB for iSeries Database programming V5R3

File Name Library Name Used to Create

QCBLSRC QGPL System/38™ compatible COBOL

QCSRC QGPL C programs

QCLSRC QGPL CL programs

QCMDSRC QGPL Command definition statements

QDDSSRC QGPL Files

QFMTSRC QGPL Sort source

QLBLSRC QGPL COBOL/400® programs

QS36SRC #LIBRARY System/36™ compatible COBOL

programs

QREXSRC QGPL Procedures Language 400/REXX

programs

QRPGSRC QRPG RPG/400 programs

QAPLISRC QPLI PL/I programs

QPLISRC QGPL PL/I programs

QARPGSRC QRPG38 System/38 environment RPG

QRPG3SRC QRPG38 System/38 environment RPG

QRPG2SRC #RPGLIB System/36 compatible RPG II

QS36PRC #RPGLIB System/36 compatible RPG II

QS36SRC #LIBRARY System/36 compatible RPG II (after

install)

QPASSRC QPAS Pascal programs

QTBLSRC QGPL Translation tables

QTXTSRC QPDA Text

You can either add your source members to these files or create your own source files. Normally, you will

want to create your own source files using the same names as the IBM-supplied files, but in different

libraries (IBM-supplied files may get overlaid when a new release of the system is installed). The

IBM-supplied source files are created with the file names used for the corresponding create command (for

example, the CRTCLPGM command uses the QCLSRC file name as the default). Additionally, the

IBM-supplied programmer menu uses the same default names. If you create your own source files, do

not place them in the same library as the IBM-supplied source files. (If you use the same file names as

the IBM-supplied names, you should ensure that the library containing your source files precedes the

library containing the IBM-supplied source files in the library list.)

Source file attributes: Source files usually have the following attributes:

v A record length of 92 characters (this includes a 6-byte sequence number, a 6-byte date, and 80 bytes of

source).

v Keys (sequence numbers) that are unique even though the access path does not specify unique keys.

You are not required to specify a key for a source file. Default source files are created without keys

(arrival sequence access path). A source file created with an arrival sequence access path requires less

storage space and reduces save/restore time in comparison to a source file for which a keyed sequence

access path is specified.

v More than one member.

v Member names that are the same as the names of the objects that are created using them.

v The same record format for all records.

v Relatively few records in each member compared to most data files.

Some restrictions are:

v The source sequence number must be used as a key, if a key is specified.

v The key, if one is specified, must be in ascending sequence.

v The access path cannot specify unique keys.

Database programming 15

v The ALTSEQ keyword is not allowed in DDS for source files.

v The first field must be a 6-digit sequence number field containing zoned decimal data and two decimal

digits.

v The second field must be a 6-digit date field containing zoned decimal data and zero decimal digits.

v All fields following the second field must be zoned decimal or character.

Creating source files without DDS: When you create a source physical file without using DDS, but by

specifying the record length (RCDLEN parameter), the source created contains three fields: SRCSEQ,

SRCDAT, and SRCDTA. (The record length must include 12 characters for sequence number and

date-of-last-change fields so that the length of the data portion of the record equals the record length

minus 12.) The data portion of the record can be defined to contain more than one field (each of which

must be character or zoned decimal). If you want to define the data portion of the record as containing

more than one field, you must define the fields using DDS.

A record format consisting of the following three fields is automatically used for a source physical file

created using the Create Source Physical File (CRTSRCPF) command:

 Field Name Data Type and Length Description

1 SRCSEQ Zoned decimal, 6 digits, 2

decimal positions

Sequence number for record

2 SRCDAT Zoned decimal, 6 digits, no

decimal positions

Date of last update of record

3 SRCDTA Character, any length Data portion of the record (text)

Note: For all IBM-supplied database source files, the length of the data portion is 80 bytes. For

IBM-supplied device source files, the length of the data portion is the maximum record length for

the associated device.

Creating source files with DDS: If you want to create a source file for which you need to define the record

format, use the Create Physical File (CRTPF) or Create Logical File (CRTLF) command. If you create a

source logical file, the logical file member should only refer to one physical file member to avoid

duplicate keys.

The following example shows the DDS needed to define the record format for a source file using CRTPF.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* R RECORD1

 A F1 6S 2

 A F2 6S

 A F3 92A

Describing database files

This chapter tells how to describe iSeries database files.

If you want to describe a file just to the record level, you can use the record length (RCDLEN) parameter

on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF) commands.

If you want to describe your file to the field level, several methods can be used to describe data to the

database system: IDDU, SQL commands, or data description specifications (DDS).

Interactive Data Definition Utility (IDDU)

 Physical files can be described using IDDU. You might use IDDU because it is a menu-driven,

interactive method of describing data. You also might be familiar with describing data using

IDDU on a System/36. In addition, IDDU allows you to describe multiple-format physical files

for use with Query, iSeries Access, and DFU.

16 OS/400 DB2 UDB for iSeries Database programming V5R3

When you use IDDU to describe your files, the file definition becomes part of the OS/400 data

dictionary.

 For more information about IDDU, see the IDDU Use

book.

DB2 UDB for iSeries Structured Query Language (SQL)

 The Structured Query Language can be used to describe an iSeries database file. The SQL

language supports statements to describe the fields in the database file, and to create the file.

 SQL was created by IBM to meet the need for a standard and common database language. It is

currently used on all IBM DB2 platforms and on many other database implementations from

many different manufacturers.

 When database files are created using the DB2 UDB for iSeries SQL language, the description of

the file is automatically added to a data dictionary in the SQL collection. The data dictionary (or

catalog) is then automatically maintained by the system.

 The SQL language is the language of choice for accessing databases on many other platforms. It

is the only language for distributed database and heterogeneous systems.

 For more information about SQL, see SQL programming and DB2 UDB for iSeries SQL Reference.

Data Description Specifications (DDS)

 Externally described data files can be described using DDS. Using DDS, you provide descriptions

of the field, record, and file level information.

 You might use DDS because it provides the most options for the programmer to describe data in

the database. For example, only with DDS can you describe key fields in logical files.

 The DDS Form provides a common format for describing data externally. DDS data is column

sensitive. The examples in this manual have numbered columns and show the data in the correct

columns.

Because DDS has the most options for defining data for the programmer, this guide focuses on describing

database files using DDS. To describe a database file using DDS, use the following:

v “Describing database files using DDS”

v “Specifying database file and member attributes” on page 25

Once a database file is described, you can view the description. See “Displaying information about

database files” on page 178.

Describing database files using DDS: When you describe a database file using DDS, you can describe

information at the file, record format, join, field, key, and select/omit levels:

v File level DDS give the system information about the entire file. For example, you can specify whether

all the key field values in the file must be unique.

v Record format level DDS give the system information about a specific record format in the file. For

example, when you describe a logical file record format, you can specify the physical file that it is

based on.

v Join level DDS give the system information about physical files used in a join logical file. For example,

you can specify how to join two physical files.

v Field level DDS give the system information about individual fields in the record format. For example,

you can specify the name and attributes of each field.

v Key field level DDS give the system information about the key fields for the file. For example, you can

specify which fields in the record format are to be used as key fields.

v Select/omit field level DDS give the system information about which records are to be returned to the

program when processing the file. Select/omit specifications apply to logical files only.

Database programming 17

The following topics show examples of describing database files using DDS:

v “Example: Describing a physical file using DDS”

v “Example: Describing a logical file using DDS” on page 20

In addition, see the following topics for ways to use DDS with database files:

v “Additional field definition functions you can describe with DDS” on page 21

v “Using existing field descriptions and field reference files to describe a database file” on page 21

v “Using a data dictionary for field reference in a database file” on page 24

v “Sharing existing record format descriptions in a database file” on page 24

For more information about describing database files using DDS, see DDS Reference: Physical and

Logical Files.

Example: Describing a physical file using DDS: The DDS for a physical file, as shown in the next example,

must be in the following order:

�1� File level entries (optional). The UNIQUE keyword is used to indicate that the value of the key

field in each record in the file must be unique. Duplicate key values are not allowed in this file.

�2� Record format level entries. The record format name is specified, along with an optional text

description.

�3� Field level entries. The field names and field lengths are specified, along with an optional text

description for each field.

�4� Key field level entries (optional). The field names used as key fields are specified.

�5� Comment (optional).
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP)

 A �5�

 A �1� UNIQUE

 A �2� R ORDHDR TEXT(’Order header record’)

 A �3� CUST 5 0 TEXT(’Customer number’)

 A ORDER 5 0 TEXT(’Order number’)

 A .

 A .

 A .

 A K CUST

 A �4� K ORDER

The following example shows a physical file ORDHDRP (an order header file), with an arrival sequence

access path without key fields specified, and the DDS necessary to describe that file.

Record Format of physical file ORDHDR

 Customer Number (CUST) — Packed Decimal Length 5, No Decimals

Order Number (ORDER) — Packed Decimal Length 5, No Decimals

Order Date (ORDATE) — Packed Decimal Length 6, No Decimals

Purchase Order Number (CUSORD) — Packed Decimal Length 15, No Decimals

Shipping Instructions (SHPVIA) — Character Length 15

Order Status (ORDSTS) — Character Length 1

...

State (STATE) — Character Length 2

18 OS/400 DB2 UDB for iSeries Database programming V5R3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP)

 A R ORDHDR TEXT(’Order header record’)

 A CUST 5 0 TEXT(’Customer Number’)

 A ORDER 5 0 TEXT(’Order Number’)

 A ORDATE 6 0 TEXT(’Order Date’)

 A CUSORD 15 0 TEXT(’Customer Order No.’)

 A SHPVIA 15 TEXT(’Shipping Instr’)

 A ORDSTS 1 TEXT(’Order Status’)

 A OPRNME 10 TEXT(’Operator Name’)

 A ORDAMT 9 2 TEXT(’Order Amount’)

 A CUTYPE 1 TEXT(’Customer Type’)

 A INVNBR 5 0 TEXT(’Invoice Number’)

 A PRTDAT 6 0 TEXT(’Printed Date’)

 A SEQNBR 5 0 TEXT(’Sequence Number’)

 A OPNSTS 1 TEXT(’Open Status’)

 A LINES 3 0 TEXT(’Order Lines’)

 A ACTMTH 2 0 TEXT(’Accounting Month’)

 A ACTYR 2 0 TEXT(’Accounting Year’)

 A STATE 2 TEXT(’State’)

 A

The R in position 17 indicates that a record format is being defined. The record format name ORDHDR is

specified in positions 19 through 28.

You make no entry in position 17 when you are describing a field; a blank in position 17 along with a

name in positions 19 through 28 indicates a field name.

The data type is specified in position 35. The valid data types are:

Entry Meaning

A Character

P Packed decimal

S Zoned decimal

B Binary

F Floating point

H Hexadecimal

L Date

T Time

Z Timestamp

Notes:

1. For double-byte character set (DBCS) data types, see Double-byte character set (DBCS) considerations.

2. The iSeries system performs arithmetic operations more efficiently for packed decimal than for zoned

decimal.

3. Some high-level languages do not support floating-point data.

4. Some special considerations that apply when you are using floating-point fields are:

v The precision associated with a floating-point field is a function of the number of bits (single or

double precision) and the internal representation of the floating-point value. This translates into the

number of decimal digits supported in the significant and the maximum values that can be

represented in the floating-point field.

v When a floating-point field is defined with fewer digits than supported by the precision specified,

that length is only a presentation length and has no effect on the precision used for internal

calculations.

Database programming 19

v Although floating-point numbers are accurate to 7 (single) or 15 (double) decimal digits of

precision, you can specify up to 9 or 17 digits. You can use the extra digits to uniquely establish the

internal bit pattern in the internal floating-point format so identical results are obtained when a

floating-point number in internal format is converted to decimal and back again to internal format.

If the data type (position 35) is not specified, the decimal positions entry is used to determine the data

type. If the decimal positions (positions 36 through 37) are blank, the data type is assumed to be

character (A); if these positions contain a number 0 through 31, the data type is assumed to be packed

decimal (P).

The length of the field is specified in positions 30 through 34, and the number of decimal positions (for

numeric fields) is specified in positions 36 and 37. If a packed or zoned decimal field is to be used in a

high-level language program, the field length must be limited to the length allowed by the high-level

language you are using. The length is not the length of the field in storage but the number of digits or

characters specified externally from storage. For example, a 5-digit packed decimal field has a length of 5

specified in DDS, but it uses only 3 bytes of storage.

Character or hexadecimal data can be defined as variable length by specifying the VARLEN field level

keyword. Generally you would use variable length fields, for example, as an employee name within a

database. Names usually can be stored in a 30-byte field; however, there are times when you need 100

bytes to store a very long name. If you always define the field as 100 bytes, you waste storage. If you

always define the field as 30 bytes, some names are truncated.

You can use the DDS VARLEN keyword to define a character field as variable length. You can define this

field as:

v Variable-length with no allocated length. This allows the field to be stored using only the number of

bytes equal to the data (plus two bytes per field for the length value and a few overhead bytes per

record). However, performance might be affected because all data is stored in the variable portion of

the file, which requires two disk read operations to retrieve.

v Variable-length with an allocated length equal to the most likely size of the data. This allows most field

data to be stored in the fixed portion of the file and minimizes unused storage allocations common

with fixed-length field definitions. Only one read operation is required to retrieve field data with a

length less than the allocated field length. Field data with a length greater than the allocated length is

stored in the variable portion of the file and requires two read operations to retrieve the data.

Example: Describing a logical file using DDS: The DDS for a logical file, shown in the next example, must

be in the following order:

�1� File level entries (optional). In this example, the UNIQUE keyword indicates that for this file the

key value for each record must be unique; no duplicate key values are allowed.

For each record format:

�2� Record format level entries. In this example, the record format name, the associated physical file,

and an optional text description are specified.

�3� Field level entries (optional). In this example, each field name used in the record format is

specified.

�4� Key field level entries (optional). In this example, the Order field is used as a key field.

�5� Select/omit field level entries (optional). In this example, all records whose Opnsts field contains

a value of N are omitted from the file’s access path. That is, programs reading records from this

file will never see a record whose OPNSTS field contains an N value.

�6� Comment.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP)

 A �6�

20 OS/400 DB2 UDB for iSeries Database programming V5R3

A �1� UNIQUE

 A �2� R ORDHDR PFILE(ORDHDRP)

 A �3� ORDER TEXT(’Order number’)

 A CUST TEXT(’Customer number’)

 A .

 A .

 A .

 A �4� K ORDER

 A O OPNSTS �5� CMP(EQ ’N’)

 A S ALL

 A logical file must be created after all physical files on which it is based are created. The PFILE keyword

in the previous example is used to specify the physical file or files on which the logical file is based.

Record formats in a logical file can be:

v A new record format based on fields from a physical file

v The same record format as in a previously described physical or logical file (see “Sharing existing

record format descriptions in a database file” on page 24)

Fields in the logical file record format must either appear in the record format of at least one of the

physical files or be derived from the fields of the physical files on which the logical file is based.

For more information about describing logical files, see Setting up logical files.

Additional field definition functions you can describe with DDS: You can describe additional information

about the fields in the physical and logical file record formats with function keywords (positions 45

through 80 on the DDS Form). Some of the things you can specify include:

v Validity checking keywords to verify that the field data meets your standards. For example, you can

describe a field to have a valid range of 500 to 900. (This checking is done only when data is typed on

a keyboard to the display.)

v Editing keywords to control how a field should be displayed or printed. For example, you can use the

EDTCDE(Y) keyword to specify that a date field is to appear as MM/DD/YY. The EDTCDE and

EDTWRD keywords can be used to control editing. (This editing is done only when used in a display

or printer file.)

v Documentation, heading, and name control keywords to control the description and name of a field.

For example, you can use the TEXT keyword to document a description of each field. This text

description is included in your compiler list to better document the files used in your program. The

TEXT and COLHDG keywords control text and column-heading definitions. The ALIAS keyword can

be used to provide a more descriptive name for a field. The alias, or alternative name, is used in a

program (if the high-level language supports alias names).

v Content and default value keywords to control the null content and default data for a field. The

ALWNULL keyword specifies whether a null value is allowed in the field. If ALWNULL is used, the

default value of the field is null. If ALWNULL is not present at the field level, the null value is not

allowed, character and hexadecimal fields default to blanks, and numeric fields default to zeros, unless

the DFT (default) keyword is used to specify a different value.

Using existing field descriptions and field reference files to describe a database file: If a field was already

described in an existing file, and you want to use that field description in a new file you are setting up,

you can request the system to copy that description into your new file description. The DDS keywords

REF and REFFLD allow you to refer to a field description in an existing file. This helps reduce the effort

of coding DDS statements. It also helps ensure that the field attributes are used consistently in all files

that use the field.

Database programming 21

In addition, you can create a physical file for the sole purpose of using its field descriptions. That is, the

file does not contain data; it is used only as a reference for the field descriptions for other files. This type

of file is known as a field reference file. A field reference file is a physical file containing no data, just

field descriptions.

You can use a field reference file to simplify record format descriptions and to ensure field descriptions

are used consistently. You can define all the fields you need for an application or any group of files in a

field reference file. You can create a field reference file using DDS and the Create Physical File (CRTPF)

command.

After the field reference file is created, you can build physical file record formats from this file without

describing the characteristics of each field in each file. When you build physical files, all you need to do

is refer to the field reference file (using the REF and REFFLD keywords) and specify any changes. Any

changes to the field descriptions and keywords specified in your new file override the descriptions in the

field reference file.

In the following example, a field reference file named DSTREFP is created for distribution applications.

The following example shows the DDS needed to describe DSTREFP.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* FIELD REFERENCE FILE (DSTREFP)

 A R DSTREF TEXT(’Field reference file’)

 A

 A* FIELDS DEFINED BY CUSTOMER MASTER RECORD (CUSMST)

 A CUST 5 0 TEXT(’Customer numbers’)

 A COLHDG(’CUSTOMER’ ’NUMBER’)

 A NAME 20 TEXT(’Customer name’)

 A ADDR 20 TEXT(’Customer address’)

 A

 A CITY 20 TEXT(’Customer city’)

 A

 A STATE 2 TEXT(’State abbreviation’)

 A CHECK(MF)

 A CRECHK 1 TEXT(’Credit check’)

 A VALUES(’Y’ ’N’)

 A SEARCH 6 0 TEXT(’Customer name search’)

 A COLHDG(’SEARCH CODE’)

 A ZIP 5 0 TEXT(’Zip code’)

 A CHECK(MF)

 A CUTYPE 15 COLHDG(’CUSTOMER’ ’TYPE’)

 A RANGE(1 5)

 A

 A* FIELDS DEFINED BY ITEM MASTER RECORD (ITMAST)

 A ITEM 5 TEXT(’Item number’)

 A COLHDG(’ITEM’ ’NUMBER’)

 A CHECK(M10)

 A DESCRP 18 TEXT(’Item description’)

 A PRICE 5 2 TEXT(’Price per unit’)

 A EDTCDE(J)

 A CMP(GT 0)

 A COLHDG(’PRICE’)

 A ONHAND 5 0 TEXT(’On hand quantity’)

 A EDTCDE(Z)

 A CMP(GE 0)

 A COLHDG(’ON HAND’)

 A WHSLOC 3 TEXT(’Warehouse location’)

 A CHECK(MF)

 A COLHDG(’BIN NO’)

 A ALLOC R REFFLD(ONHAND *SRC)

 A TEXT(’Allocated quantity’)

 A CMP(GE 0)

 A COLHDG(’ALLOCATED’)

 A

 A* FIELDS DEFINED BY ORDER HEADER RECORD (ORDHDR)

22 OS/400 DB2 UDB for iSeries Database programming V5R3

A ORDER 5 0 TEXT(’Order number’)

 A COLHDG(’ORDER’ ’NUMBER’)

 A ORDATE 6 0 TEXT(’Order date’)

 A EDTCDE(Y)

 A COLHDG(’DATE’ ’ORDERED’)

 A CUSORD 15 TEXT(’Cust purchase ord no.’)

 A COLHDG(’P.O.’ ’NUMBER’)

 A SHPVIA 15 TEXT(’Shipping instructions’)

 A ORDSTS 1 TEXT(’Order status code’)

 A COLHDG(’ORDER’ ’STATUS’)

 A OPRNME R REFFLD(NAME *SRC)

 A TEXT(’Operator name’)

 A COLHDG(’OPERATOR NAME’)

 A ORDAMT 9 2 TEXT(’Total order value’)

 A COLHDG(’ORDER’ ’AMOUNT’)

 A INVNBR 5 0 TEXT(’Invoice number’)

 A COLHDG(’INVOICE’ ’NUMBER’)

 A PRTDAT 6 0 EDTCDE(Y)

 A COLHDG(’PRINTED’ ’DATE’)

 A SEQNBR 5 0 TEXT(’Sequence number’)

 A COLHDG(’SEQ’ ’NUMBER’)

 A OPNSTS 1 TEXT(’Open status’)

 A COLHDG(’OPEN’ ’STATUS’)

 A LINES 3 0 TEXT(’Lines on invoice’)

 A COLHDG(’TOTAL’ ’LINES’)

 A ACTMTH 2 0 TEXT(’Accounting month’)

 A COLHDG(’ACCT’ ’MONTH’)

 A ACTYR 2 0 TEXT(’Accounting year’)

 A COLHDG(’ACCT’ ’YEAR’)

 A

 A* FIELDS DEFINED BY ORDER DETAIL/LINE ITEM RECORD (ORDDTL)

 A LINE 3 0 TEXT(’Line no. this item’)

 A COLHDG(’LINE’ ’NO’)

 A QTYORD 3 0 TEXT(’Quantity ordered’)

 A COLHDG(’QTY’ ’ORDERED’

 A CMP(GE 0)

 A EXTENS 6 2 TEXT(’Ext of QTYORD x PRICE’)

 A EDTCDE(J)

 A COLHDG(’EXTENSION’)

 A

 A* FIELDS DEFINED BY ACCOUNTS RECEIVABLE

 A ARBAL 8 2 TEXT(’A/R balance due’)

 A EDTCDE(J)

 A

 A* WORK AREAS AND OTHER FIELDS THAT OCCUR IN MULTIPLE PROGRAMS

 A STATUS 12 TEXT(’status description’)

 A A

Assume that the DDS in the previous example is entered into a source file FRSOURCE; the member name

is DSTREFP. To then create a field reference file, use the Create Physical File (CRTPF) command as

follows:

CRTPF FILE(DSTPRODLB/DSTREFP)

 SRCFILE(QGPL/FRSOURCE) MBR(*NONE)

 TEXT(’Distribution field reference file’)

The parameter MBR(*NONE) tells the system not to add a member to the file (because the field reference

file never contains data and therefore does not need a member).

To describe the physical file ORDHDRP by referring to DSTREFP, use the following DDS example:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION

 A REF(DSTREFP)

 A R ORDHDR TEXT(’Order header record’)

 A CUST R

 A ORDER R

Database programming 23

A ORDATE R

 A CUSORD R

 A SHPVIA R

 A ORDSTS R

 A OPRNME R

 A ORDAMT R

 A CUTYPE R

 A INVNBR R

 A PRTDAT R

 A SEQNBR R

 A OPNSTS R

 A LINES R

 A ACTMTH R

 A ACTYR R

 A STATE R

 A

The REF keyword (positions 45 through 80) with DSTREFP (the field reference file name) specified

indicates the file from which field descriptions are to be used. The R in position 29 of each field indicates

that the field description is to be taken from the reference file.

When you create the ORDHDRP file, the system uses the DSTREFP file to determine the attributes of the

fields included in the ORDHDR record format. To create the ORDHDRP file, use the Create Physical File

(CRTPF) command. Assume that the DDS in the previous example was entered into a source file

QDDSSRC; the member name is ORDHDRP.

 CRTPF FILE(DSTPRODLB/ORDHDRP)

 TEXT(’Order Header physical file’)

Note: The files used in some of the examples in this guide refer to this field reference file.

Using a data dictionary for field reference in a database file: You can use a data dictionary and IDDU as an

alternative to using a DDS field reference file. IDDU allows you to define fields in a data dictionary. For

more information, see the IDDU Use

book.

Sharing existing record format descriptions in a database file: A record format can be described once in either

a physical or a logical file (except a join logical file) and can be used by many files. When you describe a

new file, you can specify that the record format of an existing file is to be used by the new file. This can

help reduce the number of DDS statements that you would normally code to describe a record format in

a new file and can save auxiliary storage space.

The file originally describing the record format can be deleted without affecting the files sharing the

record format. After the last file using the record format is deleted, the system automatically deletes the

record format description.

The following shows the DDS for two files. The first file describes a record format, and the second shares

the record format of the first:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD1 PFILE(CUSMSTP)

 A CUST

 A NAME

 A ADDR

 A SEARCH

 A K CUST

 A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RECORD1 PFILE(CUSMSTP)

 A FORMAT(CUSMSTL)

 A K NAME

 A

24 OS/400 DB2 UDB for iSeries Database programming V5R3

The first example shows file CUSMSTL, in which the fields Cust, Name, Addr, and Search make up the

record format. The Cust field is specified as a key field.

The DDS in the second example shows file CUSTMSTL1, in which the FORMAT keyword names

CUSMSTL to supply the record format. The record format name must be RECORD1, the same as the

record format name shown in the first example. Because the files are sharing the same format, both files

have fields Cust, Name, Addr, and Search in the record format. In file CUSMSTL1, a different key field,

Name is specified.

The following restrictions apply to shared record formats:

v A physical file cannot share the format of a logical file.

v A join logical file cannot share the format of another file, and another file cannot share the format of a

join logical file.

v A view cannot share the format of another file, and another file cannot share the format of a view. (In

SQL, a view is an alternative representation of data from one or more tables. A view can include all or

some of the columns contained in the table or tables on which it is defined.)

If the original record format is changed by deleting all related files and creating the original file and all

the related files again, it is changed for all files that share it. If only the file with the original format is

deleted and re-created with a new record format, all files previously sharing that file’s format continue to

use the original format.

If a logical file is defined but no field descriptions are specified and the FORMAT keyword is not

specified, the record format of the first physical file (specified first on the PFILE keyword for the logical

file) is automatically shared. The record format name specified in the logical file must be the same as the

record format name specified in the physical file.

To find out if a file shares a format with another file, use the RCDFMT parameter on the Display

Database Relations (DSPDBR) command.

For more information about record formats and physical and logical files, see the following topics:

v “Record format relationships between physical and logical database files”

v “Record format sharing limitation with physical and logical database files”

Record format relationships between physical and logical database files: When you change, add, and delete

fields with the Change Physical File (CHGPF) command, the following relationships exist between the

physical and logical files that share the same record format:

v When you change the length of a field in a physical file, you will also change the length of the logical

file’s field.

v When you add a field to the physical file, the field is also added to the logical file.

v When you delete a field in the physical file, the field will be deleted from the logical file unless there is

another dependency in the DDS, such as a keyed field or a select or omit statement.

Record format sharing limitation with physical and logical database files: A record format can only be shared

by 32K objects. Error messages are issued when you reach the limitation. You may encounter this

limitation in a circumstance where you are duplicating the same database object multiple times.

Note: Format sharing is performed for files that are duplicated. The format is shared up to 32,767 times.

Beyond that, if a file that shares the format is duplicated, a new format will be created for the

duplicated file.

Specifying database file and member attributes: When you create a database file, database attributes

are stored with the file and members. You specify attributes with database command parameters. See the

following topics:

Database programming 25

v “Specify file name and member name (FILE and MBR) parameters”

v “Specify the physical file member control (DTAMBRS) parameter” on page 27

v “Specify the source file and source member (SRCFILE and SRCMBR) parameters” on page 27

v “Specify the database file type (FILETYPE) parameter” on page 27

v “Specify the maximum number of members allowed (MAXMBRS) parameter” on page 27

v “Specify where to store the data (UNIT) parameter” on page 27

– “Tips for using the UNIT parameter” on page 27
v “Specify the frequency of writing data to auxiliary storage (FRCRATIO) parameter” on page 28

– “FRCRATIO parameter tip” on page 28
v “Specify the frequency of writing the access path (FRCACCPTH) parameter” on page 28

– “FRCACCPTH parameter tips” on page 28
v “Specify the check for record format description changes (LVLCHK) parameter” on page 28

– “Level check example” on page 28
v “Specify the current access path maintenance (MAINT) parameter” on page 28

– “MAINT parameter comparison” on page 29

– “MAINT parameter tips” on page 29
v “Specify the recover (RECOVER) parameter” on page 29

– “RECOVER parameter tip” on page 30
v “Specify the file sharing (SHARE) parameter” on page 30

v “Specify the locked file or record wait time (WAITFILE and WAITRCD) parameters” on page 30

v “Specify the public authority (AUT) parameter” on page 30

v “Specify the system on which the file Is created (SYSTEM) parameter” on page 31

v “Specify the file and member text (TEXT) parameter” on page 31

v “Specify the coded character set identifier (CCSID) parameter” on page 31

v “Specify the sort sequence (SRTSEQ) parameter” on page 31

v “Specify the language identifier (LANGID) parameter” on page 31

For further discussions on specifying attributes and their possible values, see the following commands in

the Control Language (CL) topic:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

v Add Physical File Member (ADDPFM)

v Add Logical File Member (ADDLFM)

v Change Physical File (CHGPF)

v Change Logical File (CHGLF)

v Change Physical File Member (CHGPFM)

v Change Source Physical File (CHGSRCPF)

v Change Logical File Member (CHGLFM)

Specify file name and member name (FILE and MBR) parameters: You name a file with the FILE parameter in

the create command. You also name the library in which the file will reside. When you create a physical

or logical file, the system normally creates a member with the same name as the file. You can, however,

specify a member name with the MBR parameter in the create commands. You can also choose not to

create any members by specifying MBR(*NONE) in the create command.

Note: The system does not automatically create a member for a source physical file.

26 OS/400 DB2 UDB for iSeries Database programming V5R3

Specify the physical file member control (DTAMBRS) parameter: You can control the reading of the physical

file members with the DTAMBRS parameter of the Create Logical File (CRTLF) command. You can

specify:

v The order in which the physical file members are to be read.

v The number of physical file members to be used.

For more information about using logical files in this way, see “Defining logical file members” on page

39.

Specify the source file and source member (SRCFILE and SRCMBR) parameters: The SRCFILE and SRCMBR

parameters specify the names of the source file and members containing the DDS statements that describe

the file being created. If you do not specify a name:

v The default source file name is QDDSSRC.

v The default member name is the name specified on the FILE parameter.

Specify the database file type (FILETYPE) parameter: A database file type is either data (*DATA) or source

(*SRC). The Create Physical File (CRTPF) and Create Logical File (CRTLF) commands use the default data

file type (*DATA).

Specify the maximum number of members allowed (MAXMBRS) parameter: The MAXMBRS parameter

specifies the maximum number of members the file can hold. The default maximum number of members

for physical and logical files is one, and the default for source physical files is *NOMAX.

Specify where to store the data (UNIT) parameter:

Note: Effective for Version 3 Release 6 the UNIT parameter is a no-operation (NOP) function for the

following commands:

v CRTPF

v CRTLF

v CRTSRCPF

v CHGPF

v CHGLF

v CHGSRCPF

The parameter can still be coded; its presence will not cause an error. It will be ignored.

The system finds a place for the file on auxiliary storage. To specify where to store the file, use the UNIT

parameter. The UNIT parameter specifies:

v The location of data records in physical files.

v The access path for both physical files and logical files.

The data is placed on different units if:

v There is not enough space on the unit.

v The unit is not valid for your system.

An informational message indicating that the file was not placed on the requested unit is sent when file

members are added. (A message is not sent when the file member is extended.)

Tips for using the UNIT parameter: In general, you should not specify the UNIT parameter. Let the system

place the file on the disk unit of its choosing. This is usually better for performance, and relieves you of

the task of managing auxiliary storage.

Database programming 27

If you specify a unit number and also an auxiliary storage pool, the unit number is ignored. For more

information about auxiliary storage pools, see the Independent disk pools topic, in the Systems

management, Storage solutions topic.

Specify the frequency of writing data to auxiliary storage (FRCRATIO) parameter: You can control when

database changes are written to auxiliary storage using the force write ratio (FRCRATIO) parameter on

either the create, change, or override database file commands. Normally, the system determines when to

write changed data from main storage to auxiliary storage. Closing the file (except for a shared close) and

the force-end-of-data operation forces remaining updates, deletions, and additions to auxiliary storage. If

you are journaling the file, the FRCRATIO parameter should normally be *NONE.

FRCRATIO parameter tip: Using the FRCRATIO parameter has performance and recovery considerations

for your system. To understand these considerations, see “Recovering and restoring your database” on

page 187.

Specify the frequency of writing the access path (FRCACCPTH) parameter: The force access path

(FRCACCPTH) parameter controls when an access path is written to auxiliary storage.

FRCACCPTH(*YES) forces the access path to auxiliary storage whenever the access path is changed. This

reduces the chance that the access path will need to be rebuilt should the system fail.

FRCACCPTH parameter tips: Specifying FRCACCPTH(*YES) can degrade performance when changes

occur to the access path. An alternative to forcing the access path is journaling the access path. For more

information about forcing access paths and journaling access paths, see “Recovering and restoring your

database” on page 187.

Specify the check for record format description changes (LVLCHK) parameter: When the file is opened, the

system checks for changes to the database file definition. When the file changes to an extent that your

program may not be able to process the file, the system notifies your program. The default is to do level

checking. You can specify if you want level checking when you:

v Create a file.

v Use a change database file command.

You can override the system and ignore the level check using the Override with Database File (OVRDBF)

command.

Level check example: For example, assume you compiled your program two months ago and, at that time,

the file the program was defined as having three fields in each record. Last week another programmer

decided to add a new field to the record format, so that now each record would have four fields. The

system notifies your program, when it tries to open the file, that a significant change occurred to the

definition of the file since the last time the program was compiled. This notification is known as a record

format level check.

Specify the current access path maintenance (MAINT) parameter: The MAINT parameter specifies how access

paths are maintained for closed files. While a file is open, the system maintains the access paths as

changes are made to the data in the file. However, because more than one access path can exist for the

same data, changing data in one file might cause changes to be made in access paths for other files that

are not currently open (in use). The three ways of maintaining access paths of closed files are:

v Immediate maintenance of an access path means that the access path is maintained as changes are

made to its associated data, regardless if the file is open. Access paths used by referential constraints

will always be in immediate maintenance.

v Rebuild maintenance of an access path means that the access path is only maintained while the file is

open, not when the file is closed; the access path is rebuilt when the file is opened the next time. When

a file with rebuild maintenance is closed, the system stops maintaining the access path. When the file is

opened again, the access path is totally rebuilt. If one or more programs has opened a specific file

member with rebuild maintenance specified, the system maintains the access path for that member

until the last user closes the file member.

28 OS/400 DB2 UDB for iSeries Database programming V5R3

v Delayed maintenance of an access path means that any maintenance for the access path is done after

the file member is opened the next time and while it remains open. However, the access path is not

rebuilt as it is with rebuild maintenance. Updates to the access path are collected from the time the

member is closed until it is opened again. When it is opened, only the collected changes are merged

into the access path.

If you do not specify the type of maintenance for a file, the default is immediate maintenance.

MAINT parameter comparison: Table 2 compares immediate, rebuild, and delayed maintenance as they

affect opening and processing files.

 Table 2. MAINT Values

Function Immediate Maintenance Rebuild Maintenance Delayed Maintenance

Open Fast open because the

access path is current.

Slow open because access

path must be rebuilt.

Moderately fast open

because the access path

does not have to be rebuilt,

but it must still be changed.

Slow open if extensive

changes are needed.

Process Slower update/output

operations when many

access paths with

immediate maintenance are

built over changing data

(the system must maintain

the access paths).

Faster update/output

operations when many

access paths with rebuild

maintenance are built over

changing data and are not

open (the system does not

have to maintain the access

paths).

Moderately fast

update/output operations

when many access paths

with delayed maintenance

are built over changing

data and are not open, (the

system records the changes,

but the access path itself is

not maintained).

Note:

1. Delayed or rebuild maintenance cannot be specified for a file that has unique keys.

2. Rebuild maintenance cannot be specified for a file if its access path is being journaled.

MAINT parameter tips: The type of access path maintenance to specify depends on the number of records

and the frequency of additions, deletions, and updates to a file while the file is closed.

You should use delayed maintenance for files that have relatively few changes to the access path while

the file members are closed. Delayed maintenance reduces system overhead by reducing the number of

access paths that are maintained immediately. It may also result in faster open processing, because the

access paths do not have to be rebuilt.

You may want to specify immediate maintenance for access paths that are used frequently, or when you

cannot wait for an access path to be rebuilt when the file is opened. You may want to specify delayed

maintenance for access paths that are not used frequently, if infrequent changes are made to the record

keys that make up the access path.

In general, for files used interactively, immediate maintenance results in good response time. For files

used in batch jobs, either immediate, delayed, or rebuild maintenance is adequate, depending on the size

of the members and the frequency of changes.

Specify the recover (RECOVER) parameter: After a failure, you must rebuild changed access paths that

were not forced to auxillary storage or journaled. To rebuild access paths and to recover data, you can

use the RECOVER parameter on the following commands. These commands specify when the access path

is to be rebuilt:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

Database programming 29

v Create Source Physical File (CRTSRCPF)

Note: Access paths are rebuilt either during the initial program load (IPL), after the IPL, or when a file is

opened.

For more information about recovering your data, see “Recovering and restoring your database” on page

187.

Table 3 shows your choices for possible combinations of duplicate key and maintenance options.

 Table 3. Recovery Options

With This Duplicate Key

Option

And This Maintenance

Option Your Recovery Options Are

Unique Immediate Rebuild during the IPL (*IPL) Rebuild after the IPL

(*AFTIPL, default) Do not rebuild at IPL, wait for first

open (*NO)

Not unique Immediate or delayed Rebuild during the IPL (*IPL) Rebuild after the IPL

(*AFTIPL) Do not rebuild at IPL, wait for first open

(*NO, default)

Not unique Rebuild Do not rebuild at IPL, wait for first open (*NO, default)

RECOVER parameter tip: A list of files that have access paths that need to be recovered is shown on the

Edit Rebuild of Access Paths display during the next initial program load (IPL) if the IPL is in manual

mode. You can edit the original recovery option for the file by selecting the desired option on the display.

After the IPL is complete, you can use the Edit Rebuild of Access Paths (EDTRBDAP) command to set the

sequence in which access paths are rebuilt. If the IPL is unattended, the Edit Rebuild of Access Paths

display is not shown and the access paths are rebuilt in the order determined by the RECOVER

parameter. You only see the *AFTIPL and *NO (open) access paths.

For more information about recovering data, see Backup and Recovery

Specify the file sharing (SHARE) parameter: The database system lets multiple users access and change a

file at the same time. The SHARE parameter allows sharing of opened files in the same job. For example,

sharing a file in a job allows programs in the job to share a file’s status, record position, and buffer.

Sharing files in a job can improve performance by reducing:

v The amount of storage the job needs.

v The time required to open and close the file.

For more information about sharing files in the same job, see “Sharing database files in the same job or

activation group” on page 98.

Specify the locked file or record wait time (WAITFILE and WAITRCD) parameters: When you create a file, you

can specify how long a program should wait for either the file or a record in the file if another job has

the file or record locked. If the wait time ends before the file or record is released, a message is sent to

the program indicating that the job was not able to use the file or read the record. For more information

about record and file locks and wait times, see “Locking records” on page 95 and “Locking files” on page

96.

Specify the public authority (AUT) parameter: When you create a file, you can specify public authority.

Public authority is the authority a user has to a file (or other object on the system) if that user does not

have specific authority for the file or does not belong to a group with specific authority for the file. For

more information about public authority, see “Specifying public authority” on page 87.

30 OS/400 DB2 UDB for iSeries Database programming V5R3

Specify the system on which the file Is created (SYSTEM) parameter: You can specify if the file is to be created

on the local system or a remote system that supports distributed data management (DDM). For more

information about DDM, see Distributed Data Management.

Specify the file and member text (TEXT) parameter: You can specify a text description for each file and

member you create. The text data is useful in describing information about your file and members.

Specify the coded character set identifier (CCSID) parameter: You can specify a coded character set identifier

(CCSID) for physical files. The CCSID describes the encoding scheme and the character set for character

type fields contained in this file. For more information about CCSIDs, see iSeries Globalization.

Specify the sort sequence (SRTSEQ) parameter: You can specify the sort sequence for a file. The values of

the SRTSEQ parameter along with the CCSID and LANGID parameters determine which sort sequence

table the file uses. You can set the SETSEQ parameter for both the physical and the logical files.

You can specify:

v System supplied sort sequence tables with unique or shared collating weights. There are sort sequence

tables for each supported language.

v Any user-created sort sequence table.

v The hexadecimal value of the characters in the character set.

v The sort sequence of the current job or the one specified in the ALTSEQ parameter.

The sort sequence table is stored with the file, except when the sort sequence is *HEX.

Specify the language identifier (LANGID) parameter: You can specify the language identifier that the system

should use when the SRTSEQ parameter value is *LANGIDSHR or *LANGIDUNQ. The values of the

LANGID, CCSID, and SRTSEQ parameters determine which sort sequence table the file uses. You can set

the LANGID parameter for physical and logical files.

You can specify any language identifier supported on your system, or you can specify that the language

identifier for the current job be used.

Setting up physical files

This chapter discusses some of the unique considerations for creating a physical file.

v “Creating a physical file”

v “Specifying physical file and member attributes when creating a physical file” on page 32

v “Implicit journaling when creating a physical file” on page 34

For information about describing a physical file record format, see “Example: Describing a physical file

using DDS” on page 18.

For information about describing a physical file access path, refer to “Describing access paths for

database files” on page 75.

Creating a physical file: To create a physical file, you should first have created a library (see “Creating a

library” on page 13) and created a source file (see “Creating a source file” on page 14) . Then, take the

following steps:

1. If you are using DDS, enter DDS for the physical file into a source file. This can be done using the

source entry utility (SEU). SEU is part of IBM WebSphere Development Studio for iSeries. See

“Working with source files” on page 202 for more information about how source statements are

entered in source files. See “Describing database files” on page 16 for information about describing

database files.

2. Create the physical file. You can use the CRTPF (Create Physical File) command, or the CRTSRCPF

(Create Source Physical File) command.

Database programming 31

The following command creates a one-member file using DDS and places it in a library called

DSTPRODLB.

CRTPF FILE(DSTPRODLB/ORDHDRP)

 TEXT(’Order header physical file’)

As shown, this command uses defaults. For the SRCFILE and SRCMBR parameters, the system uses DDS

in the source file called QDDSSRC and the member named ORDHDRP (the same as the file name). The

file ORDHDRP with one member of the same name is placed in the library DSTPRODLB.

 Similar to physical files are tables. Tables can be created using iSeries Navigator or using the CREATE

TABLE SQL statement. For information, see the following:

v Creating and using a table using iSeries Navigator

v CREATE TABLE

Specifying physical file and member attributes when creating a physical file: Some of the attributes

you can specify for physical files and members on the Create Physical File (CRTPF), Create Source

Physical File (CRTSRCPF), Change Physical File (CHGPF), Change Source Physical File (CHGSRCPF),

Add Physical File Member (ADDPFM), and Change Physical File Member (CHGPFM) commands include

the following:

v “Expiration date”

v “Size of the physical file member”

v “Storage allocation” on page 33

v “Method of allocating storage” on page 33

v “Record length” on page 33

v “Deleted records” on page 33

v “Physical file capabilities” on page 34

v “Source type” on page 34

Expiration date: EXPDATE Parameter. This parameter specifies an expiration date for each member in the

file (ADDPFM, CHGPFM, CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands). If the expiration

date is past, the system operator is notified when the file is opened. The system operator can then

override the expiration date and continue, or stop the job. Each member can have a different expiration

date, which is specified when the member is added to the file. (The expiration date check can be

overridden; see “Checking for the expiration date of the file” on page 94.)

Size of the physical file member: SIZE Parameter. This parameter specifies the maximum number of records

that can be placed in each member (CRTPF, CHGPF, CRTSRCPF, AND CHGSRCPF commands). The

following formula can be used to determine the maximum:

R + (I * N)

where:

R is the starting record count

I is the number of records (increment) to add each time

N is the number of times to add the increment

The defaults for the SIZE parameter are:

R 10,000

I 1,000

N 3 (CRTPF command)

32 OS/400 DB2 UDB for iSeries Database programming V5R3

499 (CRTSRCPF command)

For example, assume that R is a file created for 5000 records plus 3 increments of 1000 records each. The

system can add 1000 to the initial record count of 5000 three times to make the total maximum 8000.

When the total maximum is reached, the system operator either stops the job or tells the system to add

another increment of records and continue. When increments are added, a message is sent to the system

history log. When the file is extended beyond its maximum size, the minimum extension is 10% of the

current size, even if this is larger than the specified increment.

Instead of taking the default size or specifying a size, you can specify *NOMAX. For information about

the maximum number of records allowed in a file, see Database file sizes.

Storage allocation: ALLOCATE Parameter. This parameter controls the storage allocated for members

when they are added to the file (CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands). The storage

allocated would be large enough to contain the initial record count for a member. If you do not allocate

storage when the members are added, the system will automatically extend the storage allocation as

needed. You can use the ALLOCATE parameter only if you specified a maximum size on the SIZE

parameter. If SIZE(*NOMAX) is specified, then ALLOCATE(*YES) cannot be specified.

Method of allocating storage: CONTIG Parameter. This parameter controls the method of allocating

physical storage for a member (CRTPF and CRTSRCPF commands). If you allocate storage, you can

request that the storage for the starting record count for a member be contiguous. That is, all the records

in a member are to physically reside together. If there is not enough contiguous storage, contiguous

storage allocation is not used and an informational message is sent to the job that requests the allocation,

at the time the member is added.

Note: When a physical file is first created, the system always tries to allocate its initial storage

contiguously. The only difference between using CONTIG(*NO) and CONTIG(*YES) is that with

CONTIG(*YES) the system sends a message to the job log if it is unable to allocate contiguous

storage when the file is created. No message is sent when a file is extended after creation,

regardless of what you specified on the CONTIG parameter.

Record length: RCDLEN Parameter. This parameter specifies the length of records in the file (CRTPF and

CRTSRCPF commands). If the file is described to the record level only, then you specify the RCDLEN

parameter when the file is created. This parameter cannot be specified if the file is described using DDS,

IDDU, or SQL (the system automatically determines the length of records in the file from the field level

descriptions).

Deleted records: DLTPCT Parameter. This parameter specifies the percentage of deleted records a file can

contain before you want the system to send a message to the system history log (CRTPF, CHGPF,

CRTSRCPF, and CHGSRCPF commands). When a file is closed, the system checks the member to

determine the percentage of deleted records. If the percentage exceeds that value specified in the DLTPCT

parameter, a message is sent to the history log. (For information about processing the history log, see the

chapter on message handling in the CL Programming

book.) One reason you might want to know

when a file reaches a certain percentage of deleted records is to reclaim the space used by the deleted

records. After you receive the message about deleted records, you could run the Reorganize Physical File

Member (RGZPFM) command to reclaim the space. (For more information about RGZPFM, see

“Reorganizing a physical file” on page 173.) You can also specify to bypass the deleted records check by

using the *NONE value for the DLTPCT parameter. *NONE is the default for the DLTPCT parameter.

REUSEDLT Parameter. This parameter specifies whether deleted record space should be reused on

subsequent write operations (CRTPF and CHGPF commands). When you specify *YES for the REUSEDLT

parameter, all insert requests on that file try to reuse deleted record space. Reusing deleted record space

allows you to reclaim space used by deleted records without having to issue a RGZPFM command. When

Database programming 33

the CHGPF command is used to change a file to reuse deleted records, the command could take a long

time to run, especially if the file is large and there are already a lot of deleted records in it. It is important

to note the following:

v The term arrival order loses its meaning for a file that reuses deleted record space. Records are no

longer always inserted at the end of the file when deleted record space is reused.

v If a new physical file is created with the reuse deleted record space attribute and the file is keyed, the

FIFO or LIFO access path attribute cannot be specified for the physical file, nor can any keyed logical

file with the FIFO or LIFO access path attribute be built over the physical file.

v You cannot change an existing physical file to reuse deleted record space if there are any logical files

over the physical file that specify FIFO or LIFO ordering for duplicate keys, or if the physical file has a

FIFO or LIFO duplicate key ordering.

v Reusing deleted record space should not be specified for a file that is processed as a direct file or if the

file is processed using relative record numbers.

Note: See “Reusing deleted records” on page 92 for more information on reusing deleted records.

*NO is the default for the REUSEDLT parameter.

Physical file capabilities: ALWUPD and ALWDLT Parameters. File capabilities are used to control which

input/output operations are allowed for a database file independent of database file authority. For more

information about database file capabilities and authority, see Securing a database.

Source type: SRCTYPE Parameter. This parameter specifies the source type for a member in a source file

(ADDPFM and CHGPFM commands). The source type determines the syntax checker, prompting, and

formatting that are used for the member. If the user specifies a unique source type (other than iSeries

supported types like COBOL and RPG), the user must provide the programming to handle the unique

type.

If the source type is changed, it is only reflected when the member is subsequently opened; members

currently open are not affected.

Implicit journaling when creating a physical file: When a physical file is created, journaling may be

started automatically. If the data area called QDFTJRN exists in the same library into which the physical

file is created, and the user is authorized to the data area, journaling will be started to the journal named

in the data area if all the following are true:

v The identified library for the physical file must not be QSYS, QSYS2, QRECOVERY, QSPL, QRCL,

QRPLOBJ, QGPL, or QTEMP.

v The journal specified in the data area must exist and the user must be authorized to start journaling to

the journal.

v The first 10 bytes of the data area must contain the name of the library in which to find the journal.

v The second 10 bytes must contain the name of the journal.

v The third n bytes must contain the value *FILE. The value *NONE can be used to prevent journaling

from being started.

Setting up logical files

This chapter discusses some of the unique considerations for creating a logical file. Many of the rules for

setting up logical files apply to all categories of logical files. In this guide, rules that apply only to one

category of logical file identify which category they refer to. Rules that apply to all categories of logical

files do not identify the specific categories they apply to.

To create logical file, use the following:

v “Creating a logical file” on page 35

v “Describing logical file record formats” on page 40

34 OS/400 DB2 UDB for iSeries Database programming V5R3

|

|
|
|
|

|
|

|
|

|

|

|
|

v “Describing access paths for logical files” on page 46

v “Setting up a join logical file” on page 52

Creating a logical file

Before creating a logical file, the physical file or files on which the logical file is based must already exist.

To create a logical file, take the following steps:

1. Type the DDS for the logical file into a source file. This can be done using SEU or another method.

See “Working with source files” on page 202 for how source is placed in source files. The following

shows the DDS for logical file ORDHDRL (an order header file):

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER LOGICAL FILE (ORDHDRL)

 A R ORDHDR PFILE(ORDHDRP)

 A K ORDER

This file uses the key field Order (order number) to define the access path. The record format is the

same as the associated physical file ORDHDRP. The record format name for the logical file must be

the same as the record format name in the physical file because no field descriptions are given.

2. Create the logical file. You can use the CRTLF (Create Logical File) command.

The following shows how the CRTLF command could be typed:

CRTLF FILE(DSTPRODLB/ORDHDRL)

 TEXT(’Order header logical file’)

As shown, this command uses some defaults. For example, because the SRCFILE and SRCMBR

parameters are not specified, the system used DDS from the IBM-supplied source file QDDSSRC, and the

source file member name is ORDHDRL (the same as the file name specified on the CRTLF command).

The file ORDHDRL with one member of the same name is placed in the library DSTPRODLB.

You can create multiple logical files over a single physical file. The maximum number of logical files that

can be created over a single physical file is 32K.

See the following topics for information about other things you can do with logical files:

v “Creating a logical file with more than one record format”

v “Identifying which record format to add in a file with multiple formats” on page 164

Similar to logical files are views. Views can be created using iSeries Navigator or using the CREATE

VIEW SQL statement. For information, see the following:

v Creating and using a view with iSeries Navigator

v CREATE VIEW

Creating a logical file with more than one record format: A multiple format logical file lets you use

related records from two or more physical files by referring to only one logical file. Each record format is

always associated with one or more physical files. You can use the same physical file in more than one

record format.

The following shows the DDS for a physical file, ORDDTLP, built from a field reference file:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER DETAIL FILE (ORDDTLP) - PHYSICAL FILE RECORD DEFINITION

 A REF(DSTREF)

 A R ORDDTL TEXT(’Order detail record’)

 A CUST R

 A ORDER R

 A LINE R

 A ITEM R

 A QTYORD R

 A DESCRP R

 A PRICE R

Database programming 35

A EXTENS R

 A WHSLOC R

 A ORDATE R

 A CUTYPE R

 A STATE R

 A ACTMTH R

 A ACTYR R

 A

The following example shows the DDS for the physical file ORDHDRP:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION

 A REF(DSTREFP)

 A R ORDHDR TEXT(’Order header record’)

 A CUST R

 A ORDER R

 A ORDATE R

 A CUSORD R

 A SHPVIA R

 A ORDSTS R

 A OPRNME R

 A ORDMNT R

 A CUTYPE R

 A INVNBR R

 A PRTDAT R

 A SEQNBR R

 A OPNSTS R

 A LINES R

 A ACTMTH R

 A ACTYR R

 A STATE R

 A

The following example shows how to create a logical file ORDFILL with two record formats. One record

format is defined for order header records from the physical file ORDHDRP; the other is defined for

order detail records from the physical file ORDDTLP.

The logical file record format ORDHDR uses one key field, Order, for sequencing; the logical file record

format ORDDTL uses two keys fields, Order and Line, for sequencing.

The following example shows the DDS for the logical file ORDFILL.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER TRANSACTION LOGICAL FILE (ORDFILL)

 A R ORDHDR PFILE(ORDHDRP)

 A K ORDER

 A

 A R ORDDTL PFILE(ORDDTLP)

 A K ORDER

 A K LINE

 A

To create the logical file ORDFILL with two associated physical files, use a Create Logical File (CRTLF)

command like the following:

CRTLF FILE(DSTPRODLB/ORDFILL)

 TEXT(’Order transaction logical file’)

The DDS source is in the member ORDFILL in the file QDDSSRC. The file ORDFILL with a member of

the same name is placed in the DSTPRODLB library. The access path for the logical file member

ORDFILL arranges records from both the ORDHDRP and ORDDTLP files. Record formats for both

physical files are keyed on Order as the common field. Because of the order in which they were specified

in the logical file description, they are merged in Order sequence with duplicates between files retrieved

36 OS/400 DB2 UDB for iSeries Database programming V5R3

first from the header file ORDHDRP and second from the detail file ORDDTLP. Because FIFO, LIFO, or

FCFO are not specified, the order of retrieval of duplicate keys in the same file is not guaranteed.

Note: In certain circumstances, it is better to use multiple logical files, rather than to use a

multiple-format logical file. For example, when keyed access is used with a multiple-format logical

file, it is possible to experience poor performance if one of the files has very few records. Even

though there are multiple formats, the logical file has only one index, with entries from each

physical file. Depending on the kind of processing being done by the application program (for

example, using RPG SETLL and READE with a key to process the small file), the system might

have to search all index entries in order to find an entry from the small file. If the index has many

entries, searching the index might take a long time, depending on the number of keys from each

file and the sequence of keys in the index. (If the small file has no records, performance is not

affected, because the system can take a fast path and avoid searching the index.)

See the following topics for more information about files with multiple formats:

v “Controlling how records are retrieved in a file with multiple formats”

v “Controlling how records are added to a file with multiple formats” on page 38

Controlling how records are retrieved in a file with multiple formats: In a logical file with more than one

record format, key field definitions are required. Each record format has its own key definition, and the

record format key fields can be defined to merge the records of the different formats. Each record format

does not have to contain every key field in the key. Consider the following records:

Header Record Format:

 Record Order Cust Ordate

1 41882 41394 050688

2 32133 28674 060288

Detail Record Format:

 Record Order Line Item Qtyord Extens

A 32133 01 46412 25 125000

B 32133 03 12481 4 001000

C 41882 02 46412 10 050000

D 32133 02 14201 110 454500

E 41882 01 08265 40 008000

In DDS, the header record format is defined before the detail record format. If the access path uses the

Order field as the first key field for both record formats and the Line field as the second key field for only

the second record format, both in ascending sequence, the order of the records in the access path is:

 Record 2

 Record A

 Record D

 Record B

 Record 1

 Record E

 Record C

Note: Records with duplicate key values are arranged first in the sequence in which the physical files are

specified. Then, if duplicates still exist within a record format, the duplicate records are arranged

in the order specified by the FIFO, LIFO, or FCFO keyword. For example, if the logical file

specified the DDS keyword FIFO, then duplicate records within the format would be presented in

first-in-first-out sequence.

Database programming 37

For logical files with more than one record format, you can use the *NONE DDS function for key fields

to separate records of one record format from records of other record formats in the same access path.

Generally, records from all record formats are merged based on key values. However, if *NONE is

specified in DDS for a key field, only the records with key fields that appear in all record formats before

the *NONE are merged. When such records are retrieved by key from more than one record format, only

key fields that appear in all record formats before the *NONE are used. To increase the number of key

fields that are used, limit the number of record formats considered.

The logical file in the following example contains three record formats, each associated with a different

physical file:

 Record Format Physical File Key Fields

EMPMSTR EMPMSTR Empnbr (employee number) �1�

EMPHIST EMPHIST Empnbr, Empdat (employed date) �2�

EMPEDUC EMPEDUC Empnbr, Clsnbr (class number) �3�

Note: All record formats have one key field in common, the Empnbr field.

The DDS for this example is:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A K EMPNBR �1�

 A

 A K EMPNBR �2�

 A K EMPDAT

 A

 A K EMPNBR �3�

 A K *NONE

 A K CLSNBR

 A

*NONE is assumed for the second and third key fields for EMPMSTR and the third key field for

EMPHIST because no key fields follow these key field positions.

The following shows the arrangement of the records:

 Empnbr Empdat Clsnbr Record Format Name

426 EMPMSTR

426 6/15/74 EMPHIST

426 412 EMPEDUC

426 520 EMPEDUC

427 EMPMSTR

427 9/30/75 EMPHIST

427 412 EMPEDUC

*NONE serves as a separator for the record formats EMPHIST and EMPEDUC. All the records for

EMPHIST with the same Empnbr field are grouped together and sorted by the Empdat field. All the

records for EMPEDUC with the same Empnbr field are grouped together and sorted by the Clsnbr field.

Note: Because additional key field values are placed in the key sequence access path to guarantee the

above sequencing, duplicate key values are not predictable.

See the DDS Reference for additional examples of the *NONE DDS function.

Controlling how records are added to a file with multiple formats: To add a record to a multiple format logical

file, identify the member of the based-on physical file to which you want the record written. If the

38 OS/400 DB2 UDB for iSeries Database programming V5R3

application you are using does not allow you to specify a particular member within a format, each of the

formats in the logical file needs to be associated with a single physical file member. If one or more of the

based-on physical files contains more than one member, you need to use the DTAMBRS parameter,

described in “Defining logical file members,” to associate a single member with each format. Finally, give

each format in the multiple format logical file a unique name. If the multiple format logical file is defined

in this way, then when you specify a format name on the add operation, you target a particular physical

file member into which the record is added.

When you add records to a multiple-format logical file and your application program uses a file name

instead of a record format name, you need to write a format selector program. For more information

about format selector programs, see “Identifying which record format to add in a file with multiple

formats” on page 164.

Defining logical file members: You can define members in logical files to separate the data into logical

groups. The logical file member can be associated with one physical file member or with several physical

file members.

The following illustrates this concept:

The record formats used with all logical members in a logical file must be defined in DDS when the file

is created. If new record formats are needed, another logical file or record format must be created.

The attributes of an access path are determined by information specified in DDS and on commands when

the logical file is created. The selection of data members is specified in the DTAMBRS parameter on the

Create Logical File (CRTLF) and Add Logical File Member (ADDLFM) commands.

When a logical file is defined, the physical files used by the logical file are specified in DDS by the record

level PFILE or JFILE keyword. If multiple record formats are defined in DDS, a PFILE keyword must be

specified for each record format. You can specify one or more physical files for each PFILE keyword.

When a logical file is created or a member is added to the file, you can use the DTAMBRS parameter on

the Create Logical File (CRTLF) or the Add Logical File Member (ADDLFM) command to specify which

members of the physical files used by the logical file are to be used for data. *NONE can be specified as

the physical file member name if no members from a physical file are to be used for data.

In the following example, the logical file has two record formats defined:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

00010A R LOGRCD2 PFILE(PF1 PF2)

 A .

 A .

 A .

00020A R LOGRCD3 PFILE(PF1 PF2 PF3)

Database programming 39

A .

 A .

 A .

 A

If the DTAMBRS parameter is specified on the CRTLF or ADDLFM command as in the following

example:

DTAMBRS((PF1 M1) (PF2 (M1 M2)) (PF1 M1) (PF2 (*NONE)) (PF3 M3))

Record format LOGRCD2 is associated with physical file member M1 in PF1 and M1 and M2 in file PF2.

Record format LOGRCD3 is associated with M1 in PF1 and M3 in PF3. No members in PF2 are

associated with LOGRCD3. If the same physical file name is specified on more than one PFILE keyword,

each occurrence of the physical file name is handled as a different physical file.

If a library name is not specified for the file on the PFILE keyword, the library list is used to find the

physical file when the logical file is created. The physical file name and the library name then become

part of the logical file description. The physical file names and the library names specified on the

DTAMBRS parameter must be the same as those stored in the logical file description.

If a file name is not qualified by a library name on the DTAMBRS parameter, the library name defaults to

*CURRENT, and the system uses the library name that is stored in the logical file description for the

respective physical file name. This library name is either the library name that was specified for the file

on the PFILE DDS keyword or the name of the library in which the file was found using the library list

when the logical file was created.

When you add a member to a logical file, you can specify data members as follows:

v Specify no associated physical file members (DTAMBRS (*ALL) default). The logical file member is

associated with all the physical file members of all physical files in all the PFILE keywords specified in

the logical file DDS.

v Specify the associated physical file members (DTAMBRS parameter). If you do not specify library

names, the logical file determines the libraries used. When more than one physical file member is

specified for a physical file, the member names should be specified in the order in which records are to

be retrieved when duplicate key values occur across those members. If you do not want to include any

members from a particular physical file, either do not specify the physical file name or specify the

physical file name and *NONE for the member name. This method can be used to define a logical file

member that contains a subset of the record formats defined for the logical file.

You can use the Create Logical File (CRTLF) command to create the first member when you create the

logical file. Subsequent members must be added using the Add Logical File Member (ADDLFM)

command. However, if you are going to add more members, you must specify more than 1 for the

MAXMBRS parameter on the CRTLF command. The following example of adding a member to a logical

file uses the CRTLF command used earlier in “Creating a logical file” on page 35.

CRTLF FILE(DSTPRODLB/ORDHDRL)

 MBR(*FILE) DTAMBRS(*ALL)

 TEXT(’Order header logical file’)

*FILE is the default for the MBR parameter and means the name of the member is the same as the name

of the file. All the members of the associated physical file (ORDHDRP) are used in the logical file

(ORDHDRL) member. The text description is the text description of the member.

Describing logical file record formats

For every logical file record format described with DDS, you must specify a record format name and

either the PFILE keyword (for simple and multiple format logical files), or the JFILE keyword (for join

logical files). The file names specified on the PFILE or JFILE keyword are the physical files that the

logical file is based on. A simple or multiple-format logical file record format can be specified with DDS

in any one of the following ways:

40 OS/400 DB2 UDB for iSeries Database programming V5R3

v In the simple logical file record format, specify only the record format name and the PFILE keyword.

The record format for the only (or first) physical file specified on the PFILE keyword is the record

format for the logical file. The record format name specified in the logical file must be the same as the

record format name in the only (or first) physical file. Consider this example of a simple logical file:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R ORDDTL PFILE(ORDDTLP)

 A

v Describe your own record format by listing the field names you want to include. You can specify the

field names in a different order, rename fields using the RENAME keyword, combine fields using the

CONCAT keyword, and use specific positions of a field using the SST keyword. You can also override

attributes of the fields by specifying different attributes in the logical file. Consider this example of a

simple logical file with fields specified::

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R ORDHDR PFILE(ORDHDRP)

 A ORDER

 A CUST

 A SHPVIA

 A

v Specify the name of a database file for the file name on the FORMAT keyword. The record format is

shared from this database file by the logical file being described. The file name can be qualified by a

library name. If a library name is not specified, the library list is used to find the file. The file must

exist when the file you are describing is created. In addition, the record format name you specify in the

logical file must be the same as one of the record format names in the file you specify on the FORMAT

keyword. Consider this example:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R CUSRCD PFILE(CUSMSTP)

 A FORMAT(CUSMSTL)

 A

In the following example, a program needs:

v The fields placed in a different order

v A subset of the fields from the physical file

v The data types changed for some fields

v The field lengths changed for some fields

You can use a logical file to make these changes.

For the logical file, the DDS would be as follows:

Database programming 41

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R LOGREC PFILE(PF1)

 A D 10S 0

 A A

 A C 5S 0

 A

For the physical file, the DDS would be as follows:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

 A R PHYREC

 A A 8S 2

 A B 32

 A C 2B 0

 A D 10

 A

When a record is read from the logical file, the fields from the physical file are changed to match the

logical file description. If the program updates or adds a record, the fields are changed back. For an add

or update operation using a logical file, the program must supply data that conforms with the format

used by the logical file.

The following chart shows what types of data mapping are valid between physical and logical files.

Physical File

Data Type

Logical File Data Type

Character or

Hexadecimal Zoned Packed Binary

Floating

Point Date Time Timestamp

Character or

Hexadecimal

Valid See Note 1 Not valid Not valid Not valid Not

valid

Not

valid

Not valid

Zoned See Note 1 Valid Valid See Note 2 Valid Not

valid

Not

valid

Not Valid

Packed Not valid Valid Valid See Note 2 Valid Not

valid

Not

valid

Not valid

Binary Not valid See Note 2 See Note 2 See Note 3 See Note 2 Not

valid

Not

valid

Not valid

Floating Point Not valid Valid Valid See Note 2 Valid Not

valid

Not

valid

Not valid

Date Not valid Valid Not valid Not valid Not valid Valid Not

valid

Not valid

Time Not valid Valid Not valid Not valid Not valid Not

valid

Valid Not valid

Time Stamp Not valid Not valid Not valid Not valid Not valid Valid Valid Valid

Notes:

1. Valid only if the number of characters or bytes equals the number of digits.

2. Valid only if the binary field has zero decimal positions.

3. Valid only if both binary fields have the same number of decimal positions.

Note: For information about mapping DBCS fields, see Double-byte character set (DBCS) considerations.

For more topics related to describing logical file record formats, see the following:

v “Describing field use for logical files” on page 43

v “Deriving new fields from existing fields” on page 43

42 OS/400 DB2 UDB for iSeries Database programming V5R3

v “Describing floating-point fields in logical files” on page 46

Describing field use for logical files: You can specify that fields in database files are to be input-only,

both (input/output), or neither fields. Do this by specifying one of the following in position 38:

Entry Meaning

Blank For simple or multiple format logical files, defaults to B (both) For join logical files, defaults to I

(input only).

B Both input and output allowed; not valid for join logical files. See “Describing field use for logical

files: Both.”

I Input only (read only). See “Describing field use for logical files: Input only.”

N Neither input nor output; valid only for join logical files. See “Describing field use for logical

files: Neither.”

Note: The usage value (in position 38) is not used on a reference function. When another file refers to a

field (using a REF or REFFLD keyword) in a logical file, the usage value is not copied into that

file.

Describing field use for logical files: Both: A both field can be used for both input and output operations.

Your program can read data from the field and write data to the field. Both fields are not valid for join

logical files, because join logical files are read-only files.

Describing field use for logical files: Input only: An input only field can be used for read operations only.

Your program can read data from the field, but cannot update the field in the file. Typical cases of

input-only fields are key fields (to reduce maintenance of access paths by preventing changes to key field

values), sensitive fields that a user can see but not update (for example, salary), and fields for which

either the translation table (TRNTBL) keyword or the substring (SST) keyword is specified.

If your program updates a record in which you have specified input-only fields, the input-only fields are

not changed in the file. If your program adds a record that has input-only fields, the input-only fields

take default values (DFT keyword).

Describing field use for logical files: Neither: A neither field is used neither for input nor for output. It is

valid only for join logical files. A neither field can be used as a join field in a join logical file, but your

program cannot read or update a neither field.

Use neither fields when the attributes of join fields in the physical files do not match. In this case, one or

both join fields must be defined again. However, you cannot include these redefined fields in the record

format (the application program does not see the redefined fields.) Therefore, redefined join fields can be

coded N so that they do not appear in the record format.

A field with N in position 38 does not appear in the buffer used by your program. However, the field

description is displayed with the Display File Field Description (DSPFFD) command.

Neither fields cannot be used as select/omit or key fields.

For an example of a neither field, see “Describing fields that never appear in the record format (Example

5)” on page 65.

Deriving new fields from existing fields: Fields in a logical file can be derived from fields in the

physical file the logical file is based on or from fields in the same logical file. For example, you can

concatenate, using the CONCAT keyword, two or more fields from a physical file to make them appear

as one field in the logical file. Likewise, you can divide one field in the physical file to make it appear as

multiple fields in the logical file with the SST keyword.

Database programming 43

See the following topics for information about how to derive fields using keywords.

v “Concatenated fields”

v “Substring fields” on page 45

v “Renamed fields” on page 45

v “Translated fields” on page 45

Concatenated fields: Using the CONCAT keyword, you can combine two or more fields from a physical

file record format to make one field in a logical file record format. For example, a physical file record

format contains the fields Month, Day, and Year. For a logical file, you concatenate these fields into one

field, Date.

The field length for the resulting concatenated field is the sum of the lengths of the included fields

(unless the fields in the physical file are binary or packed decimal, in which case they are changed to

zoned decimal). The field length of the resulting field is automatically calculated by the system. A

concatenated field can have:

v Column headings

v Validity checking

v Text description

v Edit code or edit word (numeric concatenated fields only)

Note: This editing and validity checking information is not used by the database management system

but is retrieved when field descriptions from the database file are referred to in a display or printer

file.

When fields are concatenated, the data types can change (the resulting data type is automatically

determined by the system). The following rules and restrictions apply:

v The OS/400 program assigns the data type based on the data types of the fields that are being

concatenated.

v The maximum length of a concatenated field varies depending on the data type of the concatenated

field and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its

total length cannot exceed 31 bytes; if it is character (A), its total length cannot exceed 32 766 bytes.

v In join logical files, the fields to be concatenated must be from the same physical file. The first field

specified on the CONCAT keyword identifies which physical file is to be used. The first field must,

therefore, be unique among the physical files on which the logical file is based, or you must also

specify the JREF keyword to specify which physical file to use.

v The use of a concatenated field must be I (input only) if the concatenated field is variable length.

Otherwise, the use may be B (both input and output).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

v If any of the fields contain the null value, the result of concatenation is the null value.

Note: For information about concatenating DBCS fields, see Double-byte character set (DBCS)

considerations.
When only numeric fields are concatenated, the sign of the last field in the group is used as the sign of

the concatenated field.

Notes:

1. Numeric fields with decimal precision other than zero cannot be included in a concatenated field.

2. Date, time, timestamp, and floating-point fields cannot be included in a concatenated field.

The following shows the field description in DDS for concatenation. (The CONCAT keyword is used to

specify the fields to concatenate.)

44 OS/400 DB2 UDB for iSeries Database programming V5R3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A

00101A MONTH

00102A DAY

00103A YEAR

00104A DATE CONCAT(MONTH DAY YEAR)

 A

In this example, the logical file record format includes the separate fields of Month, Day, and Year, as well

as the concatenated Date field. Any of the following can be used:

v A format with the separate fields of Month, Day, and Year

v A format with only the concatenated Date field

v A format with the separate fields Month, Day, Year and the concatenated Date field

When both separate and concatenated fields exist in the format, any updates to the fields are processed in

the sequence in which the DDS is specified. In the previous example, if the Date field contained 103188

and the Month field is changed to 12, when the record is updated, the month in the Date field would be

used. The updated record would contain 103188. If the Date field were specified first, the updated record

would contain 123188.

Concatenated fields can also be used as key fields and select/omit fields.

Substring fields: You can use the SST keyword to specify which fields (character, hexadecimal, or zoned

decimal) are in a substring. (You can also use substring with a packed field in a physical file by

specifying S (zoned decimal) as the data type in the logical file.) For example, assume you defined the

Date field in physical file PF1 as 6 characters in length. You can describe the logical file with three fields,

each 2 characters in length. You can use the SST keyword to define MM as 2 characters starting in

position 1 of the Date field, DD as 2 characters starting in position 3 of the Date field, and YY as 2

characters starting in position 5 of the Date field.

The following shows the field descriptions in DDS for these substring fields. The SST keyword is used to

specify the field to substring.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1 PFILE(PF1)

 A

 A MM I SST(DATE 1 2)

 A DD I SST(DATE 3 2)

 A YY I SST(DATE 5 2)

 A

Note that the starting position of the substring is specified according to its position in the field being

operated on (Date), not according to its position in the file. The I in the Usage column indicates

input-only.

Substring fields can also be used as key fields and select/omit fields.

Renamed fields: You can name a field in a logical file differently than in a physical file using the

RENAME keyword. You might want to rename a field in a logical file because the program was written

using a different field name or because the original field name does not conform to the naming

restrictions of the high-level language you are using.

Translated fields: You can specify a translation table for a field using the TRNTBL keyword. When you

read a logical file record and a translation table was specified for one or more fields in the logical file, the

system translates the data from the field value in the physical file to the value determined by the

translation table.

Database programming 45

Describing floating-point fields in logical files: You can use floating-point fields as mapped fields in

logical files. A single- or double-precision floating-point field can be mapped to or from a zoned, packed,

zero-precision binary, or another floating-point field. You cannot map between a floating-point field and a

nonzero-precision binary field, a character field, a hexadecimal field, or a DBCS field.

Mapping between floating-point fields of different precision, single or double, or between floating-point

fields and other numeric fields, can result in rounding or a loss of precision. Mapping a double-precision

floating-point number to a single-precision floating-point number can result in rounding, depending on

the particular number involved and its internal representation. Rounding is to the nearest (even) bit. The

result always contains as much precision as possible. A loss of precision can also occur between two

decimal numbers if the number of digits of precision is decreased.

You can inadvertently change the value of a field which your program did not explicitly change. For

floating-point fields, this can occur if a physical file has a double-precision field that is mapped to a

single-precision field in a logical file, and you issue an update for the record through the logical file. If

the internal representation of the floating-point number causes it to be rounded when it is mapped to the

logical file, then the update of the logical record causes a permanent loss of precision in the physical file.

If the rounded number is the key of the physical record, then the sequence of records in the physical file

can also change.

A fixed-point numeric field can also be updated inadvertently if the precision is decreased in the logical

file.

Describing access paths for logical files

The access path for a logical file record format can be specified in one of the following ways:

v Keyed sequence access path specification. Specify key fields after the last record or field level

specification. The key field names must be in the record format. For join logical files, the key fields

must come from the first, or primary, physical file.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R CUSRCD PFILE(CUSMSTP)

 A K ARBAL

 A K CRDLMT

 A

v Encoded vector access path specification. You define the encoded vector access path with the SQL

CREATE INDEX statement.

v Arrival sequence access path specification. Specify no key fields. You can specify only one physical file

on the PFILE keyword (and only one of the physical file’s members when you add the logical file

member).

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R CUSRCD PFILE(CUSMSTP)

v Previously defined keyed-sequence access path specification (for simple and multiple format logical

files only). Specify the REFACCPTH keyword at the file level to identify a previously created database

file whose access path and select/omit specifications are to be copied to this logical file. You cannot

specify individual key or select/omit fields with the REFACCPTH keyword.

Note: Even though the specified file’s access path specifications are used, the system determines which

file’s access path, if any, will actually be shared. The system always tries to share access paths,

regardless of whether the REFACCPTH keyword is used.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 REFACCPTH(DSTPRODLIB/ORDHDRL)

 A R CUSRCD PFILE(CUSMSTP)

When you define a record format for a logical file that shares key field specifications of another file’s

access path (using the DDS keyword, REFACCPTH), you can use any fields from the associated physical

46 OS/400 DB2 UDB for iSeries Database programming V5R3

file record format. These fields do not have to be used in the file that describes the access path. However,

all key and select/omit fields used in the file that describes the access path must be used in the new

record format.

See the following topics for more information about describing access paths for logical files:

v “Selecting and omitting records using logical files”

v “Using existing access paths” on page 50

Selecting and omitting records using logical files: The system can select and omit records when using

a logical file. This can help you to exclude records in a file for processing convenience or for security.

The process of selecting and omitting records is based on comparisons identified in position 17 of the

DDS Form for the logical file, and is similar to a series of comparisons coded in a high-level language

program. For example, in a logical file that contains order detail records, you can specify that the only

records you want to use are those in which the quantity ordered is greater than the quantity shipped. All

other records are omitted from the access path. The omitted records remain in the physical file but are

not retrieved for the logical file. If you are adding records to the physical file, all records are added, but

only selected records that match the select/omit criteria can be retrieved using the select/omit access

path.

In DDS, to specify select or omit, you specify an S (select) or O (omit) in position 17 of the DDS Form.

You then name the field (in positions 19 through 28) that will be used in the selection or omission

process. In positions 45 through 80 you specify the comparison.

Note: Select/omit specifications appear after key specifications (if keys are specified).

Records can be selected and omitted by several types of comparisons:

v VALUES. The contents of the field are compared to a list of not more than 100 values. If a match is

found, the record is selected or omitted. In the following example, a record is selected if one of the

values specified in the VALUES keyword is found in the Itmnbr field.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ITMNBR VALUES(301542 306902 382101 422109 +

 A 431652 486592 502356 556608 590307)

 A

v RANGE. The contents of the field are compared to lower and upper limits. If the contents are greater

than or equal to the lower limit and less than or equal to the upper limit, the record is selected or

omitted. In the following example, all records with a range 301000 through 599999 in the Itmnbr field

are selected.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ITMNBR RANGE(301000 599999)

 A

v CMP. The contents of a field are compared to a value or the contents of another field. Valid comparison

codes are EQ, NE, LT, NL, GT, NG, LE, and GE. If the comparison is met, the record is selected or

omitted. In the following example, a record is selected if its Itmnbr field is less than or equal to 599999:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ITMNBR CMP(LE 599999)

 A

The value for a numeric field for which the CMP, VALUES, or RANGE keyword is specified is aligned

based on the decimal positions specified for the field and filled with zeros where necessary. If decimal

positions were not specified for the field, the decimal point is placed to the right of the farthest right digit

in the value. For example, for a numeric field with length 5 and decimal position 2, the value 1.2 is

interpreted as 001.20 and the value 100 is interpreted as 100.00.

Database programming 47

The status of a record is determined by evaluating select/omit statements in the sequence you specify

them. If a record qualifies for selection or omission, subsequent statements are ignored.

Normally the select and omit comparisons are treated independently from one another; the comparisons

are ORed together. That is, if the select or omit comparison is met, the record is either selected or

omitted. If the condition is not met, the system proceeds to the next comparison. To connect comparisons

together, you simply leave a space in position 17 of the DDS Form. Then, all the comparisons that were

connected in this fashion must be met before the record is selected or omitted. That is, the comparisons

are ANDed together.

The fewer comparisons, the more efficient the task is. So, when you have several select/omit

comparisons, try to specify the one that selects or omits the most records first.

The following examples show ways to code select/omit functions. In these examples, few records exist

for which the Rep field is JSMITH. The examples show how to use DDS to select all the records before

1988 for a sales representative named JSMITH in the state of New York. All give the same results with

different efficiency. �3� shows the most efficient way.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S ST CMP(EQ ’NY’) �1�

 A REP CMP(EQ ’JSMITH’)

 A YEAR CMP(LT 88)

 A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A O YEAR CMP(GE 88) �2�

 A S ST CMP(EQ ’NY’)

 A REP CMP(EQ ’JSMITH’)

 A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A O REP CMP(NE ’JSMITH’) �3�

 A O ST CMP(NE ’NY’)

 A S YEAR CMP(LT 88)

 A

�1� All records must be compared with all of the select fields St, Rep, and Year before they can be

selected or omitted.

�2� All records are compared with the Year field. Then, the records before 1988 have to be compared

with the St and Rep fields.

�3� All records are compared with the Rep field. Then, only the few for JSMITH are compared with

the St field. Then, the few records that are left are compared to the Year field.

 As another example, assume that you want to select the following:

v All records for departments other than Department 12.

v Only those records for Department 12 that contain an item number 112505, 428707, or 480100. No other

records for Department 12 are to be selected.

If you create the preceding example with a sort sequence table, the select/omit fields are translated

according to the sort table before the comparison. For example, with a sort sequence table using shared

weightings for uppercase and lowercase, NY and ny are equal. For details, see the DDS information.

The following diagram shows the logic included in this example:

48 OS/400 DB2 UDB for iSeries Database programming V5R3

The following shows how to code this example using the DDS select and omit functions:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A S DPTNBR CMP(NE 12)

 A S ITMNBR VALUES(112505 428707 480100)

 A

It is possible to have an access path with select/omit values and process the file in arrival sequence. For

example, a high-level language program can specify that the keyed access path is to be ignored. In this

case, every record is read from the file in arrival sequence, but only those records meeting the select/omit

values specified in the file are returned to the high-level language program.

A logical file with key fields and select/omit values specified can be processed in arrival sequence or

using relative record numbers randomly. Records omitted by the select/omit values are not processed.

That is, if an omitted record is requested by relative record number, the record is not returned to the

high-level language program.

The system does not ensure that any additions or changes through a logical file will allow the record to

be accessed again in the same logical file. For example, if the selection values of the logical file specifies

only records with an A in Fld1 and the program updates the record with a B in Fld1, the program cannot

retrieve the record again using this logical file.

Note: You cannot select or omit based on the values of a floating-point field.

The two kinds of select/omit operations are: access path select/omit and dynamic select/omit. The

default is access path select/omit. The select/omit specifications themselves are the same in each kind,

but the system actually does the work of selecting and omitting records at different times. See the

following topics:

v “Access path select/omit” on page 50

v “Dynamic select/omit” on page 50

You can also use the Open Query File (OPNQRYF) command to select or omit records. See “Using the

Open Query File command to select/omit records” on page 50.

Database programming 49

Access path select/omit: With access path select/omit, the access path only contains keys that meet the

select/omit values specified for the logical file. When you specify key fields for a file, an access path is

kept for the file and maintained by the system when you add or update records in the physical file(s)

used by the logical file. The only index entries in the access path are those that meet the select/omit

values.

Dynamic select/omit: With dynamic select/omit, when a program reads records from the file, the system

only returns those records that meet the select/omit values. That is, the actual select/omit processing is

done when records are read by a program, rather than when the records are added or changed. However,

the keyed sequence access path contains all the keys, not just keys from selected records. Access paths

using dynamic select/omit allow more access path sharing, which can improve performance. For more

information about access path sharing, see “Using existing access paths.”

To specify dynamic select/omit, use the dynamic selection (DYNSLT) keyword. With dynamic

select/omit, key fields are not required.

If you have a file that is updated frequently and read infrequently, you may not need to update the

access path for select/omit purposes until your program reads the file. In this case, dynamic select/omit

might be the correct choice. The following example helps describe this.

You use a code field (A=active, I=inactive), which is changed infrequently, to select/omit records. Your

program processes the active records and the majority (over 80%) of the records are active. It can be more

efficient to use DYNSLT to dynamically select records at processing time rather than perform access path

maintenance when the code field is changed.

Using the Open Query File command to select/omit records: Another method of selecting records is using the

QRYSLT parameter on the Open Query File (OPNQRYF) command. The open data path created by the

OPNQRYF command is like a temporary logical file; that is, it is automatically deleted when it is closed.

A logical file, on the other hand, remains in existence until you specifically delete it. For more details

about the OPNQRYF command, see “Using the Open Query File (OPNQRYF) command” on page 111.

Using existing access paths: When two or more files are based on the same physical files and the same

key fields in the same order, they automatically share the same keyed sequence access path. When access

paths are shared, the amount of system activity required to maintain access paths and the amount of

auxiliary storage used by the files is reduced.

When a logical file with a keyed sequence access path is created, the system always tries to share an

existing access path. For access path sharing to occur, an access path must exist on the system that

satisfies the following conditions:

v The logical file member to be added must be based on the same physical file members that the existing

access path is based on.

v The length, data type, and number of decimal positions specified for each key field must be identical

in both the new file and the existing file.

v If the FIFO, LIFO, or FCFO keyword is not specified, the new file can have fewer key fields than the

existing access paths. That is, a new logical file can share an existing access path if the beginning part

of the key is identical. However, when a file shares a partial set of keys from an existing access path,

any record updates made to fields that are part of the set of keys for the shared access path may

change the record position in that access path. See “Example of implicitly shared access paths” on page

51 for a description of such a circumstance.

v The attributes of the access path (such as UNIQUE, LIFO, FIFO, or FCFO) and the attributes of the key

fields (such as DESCEND, ABSVAL, UNSIGNED, and SIGNED) must be identical.

Exceptions:

1. A FIFO access path can share an access path in which the UNIQUE keyword is specified if all the

other requirements for access path sharing are met.

50 OS/400 DB2 UDB for iSeries Database programming V5R3

2. A UNIQUE access path can share a FIFO access path that needs to be rebuilt (for example, has

*REBLD maintenance specified), if all the other requirements for access path sharing are met.
v If the new logical file has select/omit specifications, they must be identical to the select/omit

specifications of the existing access path. However, if the new logical file specifies DYNSLT, it can

share an existing access path if the existing access path has either:

– The dynamic select (DYNSLT) keyword specified

– No select/omit keywords specified
v The alternative collating sequence (ALTSEQ keyword) and the translation table (TRNTBL keyword) of

the new logical file member, if any, must be identical to the alternative collating sequence and

translation table of the existing access path.

Note: Logical files that contain concatenated or substring fields cannot share access paths with physical

files.

The owner of any access path is the logical file member that originally created the access path. For a

shared access path, if the logical member owning the access path is deleted, the first member to share the

access path becomes the new owner. The FRCACCPTH, MAINT, and RECOVER parameters on the

Create Logical File (CRTLF) command need not match the same parameters on an existing access path for

that access path to be shared. When an access path is shared by several logical file members, and the

FRCACCPTH, MAINT, and RECOVER parameters are not identical, the system maintains the access path

by the most restrictive value for each of the parameters specified by the sharing members. The following

illustrates how this occurs:

 MBRA specifies the following: FRCACCPTH (*NO)

MAINT (*IMMED)

RECOVER (*AFTIPL)

MBRB specifies the following: FRCACCPTH (*YES)

MAINT (*DLY)

RECOVER (*NO)

System does the following: FRCACCPTH (*YES)

MAINT (*IMMED)

RECOVER (*AFTIPL)

Access path sharing does not depend on sharing between members; therefore, it does not restrict the

order in which members can be deleted.

The Display File Description (DSPFD) and Display Database Relations (DSPDBR) commands show access

path sharing relationships.

Example of implicitly shared access paths: The purpose of this example is help you fully understand implicit

access path sharing.

Two logical files, LFILE1 and LFILE2, are built over the physical file PFILE. LFILE1, which was created

first, has two key fields, KFD1 and KFD2. LFILE2 has three key fields, KFD1, KFD2, and KFD3. The two

logical files use two of the same key fields, but no access path is shared because the logical file with three

key fields was created after the file with two key fields.

 Table 4. Physical and Logical Files Before Save and Restore

Physical File (PFILE) Logical File 1 (LFILE1) Logical File 2 (LFILE2)

Access Path KFD1, KFD2 KFD1, KFD2, KFD3

Fields KFD1, KFD2, KFD3, A, B, C,

D, E, F, G

KFD1, KFD2, KFD3, F, C, A KFD1, KFD2, KFD3, D, G, F, E

Database programming 51

An application uses LFILE1 to access the records and to change the KFD3 field to blank if it contains a C,

and to a C if it is blank. This application causes the user no unexpected results because the access paths

are not shared. However, after a save and restore of the physical file and both logical files, the program

appears to do nothing and takes longer to process.

Unless you do something to change the restoration, the iSeries system:

v Restores the logical file with the largest number of keys first

v Does not build unnecessary access paths

Because it has three key fields, LFILE2 is restored first. After recovery, LFILE1 implicitly shares the access

path for LFILE2. Users who do not understand implicitly shared access paths do not realize that when

they use LFILE1 after a recovery, they are really using the key for LFILE2.

 Table 5. Physical and Logical Files After Save and Restore. Note that the only difference from before the save and

restore is that the logical files now share the same access path.

Physical File (PFILE) Logical File 1 (LFILE1) Logical File 2 (LFILE2)

Access Path KFD1, KFD2, KFD3 KFD1, KFD2, KFD3

Fields KFD1, KFD2, KFD3, A, B, C,

D, E, F, G

KFD1, KFD2, KFD3, F, C, A KFD1, KFD2, KFD3, D, G, F, E

The records to be tested and changed contain:

 Relative Record KFD1 KFD2 KFD3

001 01 01 <blank>

002 01 01 <blank>

003 01 01 <blank>

004 01 01 <blank>

The first record is read via the first key of 0101<blank> and changed to 0101C. The records now look like:

 Relative Record KFD1 KFD2 KFD3

001 01 01 C

002 01 01 <blank>

003 01 01 <blank>

004 01 01 <blank>

When the application issues a get next key, the next higher key above 0101<blank> is 0101C. This is the

record that was just changed. However, this time the application changes the KFD3 field from C to blank.

Because the user does not understand implicit access path sharing, the application accesses and changes

every record twice. The end result is that the application takes longer to run, and the records look like

they have not changed.

Setting up a join logical file

This section covers the following topics:

v “Basic concepts of joining two physical files (Example 1)” on page 53

v “Setting up a join logical file” on page 60

v “Using more than one field to join files (Example 2)” on page 61

v “Reading duplicate records in secondary files (Example 3)” on page 62

v “Using join fields whose attributes are different (Example 4)” on page 64

v “Describing fields that never appear in the record format (Example 5)” on page 65

52 OS/400 DB2 UDB for iSeries Database programming V5R3

v “Specifying key fields in join logical files (Example 6)” on page 66

v “Specifying select/omit statements in join logical files” on page 67

v “Joining three or more physical files (Example 7)” on page 67

v “Joining a physical file to itself (Example 8)” on page 69

v “Using default data for missing records from secondary files (Example 9)” on page 70

v “A complex join logical file (Example 10)” on page 72

v “Join logical file considerations” on page 74

In general, the examples in this section include a picture of the files, DDS for the files, and sample data.

For Example 1, several cases are given that show how to join files in different situations (when data in

the physical files varies).

In the examples, for convenience and ease of recognition, join logical files are shown with the label JLF,

and physical files are illustrated with the labels PF1, PF2, PF3, and so forth.

For more information about joins, see Joining data from more than one table in the SQL programming

topic.

Basic concepts of joining two physical files (Example 1): A join logical file is a logical file that

combines (in one record format) fields from two or more physical files. In the record format, not all the

fields need to exist in all the physical files.

The following example illustrates a join logical file that joins two physical files. This example is used for

the five cases discussed in Example 1.

In this example, the join logical file (JLF) has field Employee Number, Name, and Salary. Physical file 1

(PF1) has Employee Number and Name, while physical file 2 (PF2) has Employee Number and Salary.

Employee Number is common to both physical files (PF1 and PF2), but Name is found only in PF1, and

Salary is found only in PF2.

With a join logical file, the application program does one read operation (to the record format in the join

logical file) and gets all the data needed from both physical files. Without the join specification, the

logical file would contain two record formats, one based on PF1 and the other based on PF2, and the

application program would have to do two read operations to get all the needed data from the two

physical files. Thus, join provides more flexibility in designing your database.

However, a few restrictions are placed on join logical files:

v You cannot change a physical file through a join logical file. To do update, delete, or write (add)

operations, you must create a second multiple format logical file and use it to change the physical files.

You can also use the physical files, directly, to do the change operations.

v You cannot use DFU to display a join logical file.

v You can specify only one record format in a join logical file.

v The record format in a join logical file cannot be shared.

v A join logical file cannot share the record format of another file.

Database programming 53

v Key fields must be fields defined in the join record format and must be fields from the first file

specified on the JFILE keyword (which is called the primary file).

v Select/omit fields must be fields defined in the join record format, but can come from any of the

physical files.

v Commitment control cannot be used with join logical files.

The following shows the DDS for Example 1:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NBR)

 A NBR JREF(PF1)

 A NAME

 A SALARY

 A K NBR

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NBR 10

 A NAME 20

 A K NBR

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NBR 10

 A SALARY 7 2

 A K NBR

 A

The following describes the DDS for the join logical file in Example 1 (see the DDS Reference for more

information on the specific keywords):

The record level specification identifies the record format name used in the join logical file.

R Identifies the record format. Only one record format can be placed in a join logical file.

JFILE Replaces the PFILE keyword used in simple and multiple-format logical files. You must specify at

least two physical files. The first file specified on the JFILE keyword is the primary file. The

other files specified on the JFILE keyword are secondary files.

The join specification describes the way a pair of physical files is joined. The second file of the pair is

always a secondary file, and there must be one join specification for each secondary file.

J Identifies the start of a join specification. You must specify at least one join specification in a join

logical file. A join specification ends at the first field name specified in positions 19 through 28 or

at the next J specified in position 17.

JOIN Identifies which two files are joined by the join specification. If only two physical files are joined

by the join logical file, the JOIN keyword is optional. See “Joining three or more physical files

(Example 7)” on page 67 later in this section for an example of how to use this keyword.

JFLD Identifies the join fields that join records from the physical files specified on the JOIN. JFLD

must be specified at least once for each join specification. The join fields are fields common to the

physical files. The first join field is a field from the first file specified on the JOIN keyword, and

the second join field is a field from the second file specified on the JOIN keyword.

54 OS/400 DB2 UDB for iSeries Database programming V5R3

Join fields, except character type fields, must have the same attributes (data type, length, and

decimal positions). If the fields are character type fields, they do not need to have the same

length. If you are joining physical file fields that do not have the same attributes, you can

redefine them for use in a join logical file. See “Using join fields whose attributes are different

(Example 4)” on page 64 for a description and example.

The field level specification identifies the fields included in the join logical file.

Field names Specifies which fields (in this example, Nbr, Name, and Salary) are used by the application

program. At least one field name is required. You can specify any field names from the

physical files used by the logical file. You can also use keywords like RENAME,

CONCAT, or SST as you would in simple and multiple format logical files.

JREF In the record format (which follows the join specification level and precedes the key field

level, if any), the field names must uniquely identify which physical file the field comes

from. In this example, the Nbr field occurs in both PF1 and PF2. Therefore, the JREF

keyword is required to identify the file from which the Nbr field description will be used.

The key field level specification is optional, and includes the key field names for the join logical file.

K Identifies a key field specification. The K appears in position 17. Key field specifications

are optional.

Key field names

Key field names (in this example, Nbr is the only key field) are optional and make the

join logical file an indexed (keyed sequence) file. Without key fields, the join logical file is

an arrival sequence file. In join logical files, key fields must be fields from the primary

file, and the key field name must be specified in positions 19 through 28 in the logical file

record format.

The select/omit field level specification is optional, and includes select/omit field names for the join

logical file.

S or O Identifies a select or omit specification. The S or O appears in position 17. Select/omit

specifications are optional.

Select/omit field names

Only those records meeting the select/omit values will be returned to the program using

the logical file. Select/omit fields must be specified in positions 19 through 28 in the

logical file record format.

The following topics describe specific cases of joining physical files:

v “Reading a join logical file”

v “Matching records in primary and secondary files (Case 1)” on page 56

v “Record missing in secondary file; JDFTVAL keyword not specified (Case 2A)” on page 57

v “Secondary file has more than one match for a record in the primary file (Case 3)” on page 58

v “Extra record in secondary file (Case 4)” on page 59

v “Random access (Case 5)” on page 59

Reading a join logical file: The following cases describe how the join logical file in “Basic concepts of

joining two physical files (Example 1)” on page 53 presents records to an application program.

The PF1 file is specified first on the JFILE keyword, and is therefore the primary file. When the

application program requests a record, the system does the following:

1. Uses the value of the first join field in the primary file (the Nbr field in PF1).

2. Finds the first record in the secondary file with a matching join field (the Nbr field in PF2 matches the

Nbr field in PF1).

Database programming 55

3. For each match, joins the fields from the physical files into one record and provides this record to

your program. Depending on how many records are in the physical files, one of the following

conditions could occur:

a. For all records in the primary file, only one matching record is found in the secondary file. The

resulting join logical file contains a single record for each record in the primary file. See “Matching

records in primary and secondary files (Case 1).”

b. For some records in the primary file, no matching record is found in the secondary file.

If you specify the JDFTVAL keyword:

v For those records in the primary file that have a matching record in the secondary file, the system joins

to the secondary, or multiple secondaries. The result is one or more records for each record in the

primary file.

v For those records in the primary file that do not have a matching record in the secondary file, the

system adds the default value fields for the secondary file and continues the join operation. You can

use the DFT keyword in the physical file to define which defaults are used. See “Record missing in

secondary file; JDFTVAL keyword not specified (Case 2A)” on page 57 and “Record missing in

secondary file; JDFTVAL keyword specified (Case 2B)” on page 57.

Note: If the DFT keyword is specified in the secondary file, the value specified for the DFT keyword is

used in the join. The result would be at least one join record for each primary record.

v If a record exists in the secondary file, but the primary file has no matching value, no record is

returned to your program. A second join logical file can be used that reverses the order of primary and

secondary files to determine if secondary file records exist with no matching primary file records.

If you do not specify the JDFTVAL keyword:

v If a matching record in a secondary file exists, the system joins to the secondary, or multiple

secondaries. The result is one or more records for each record in the primary file.

v If a matching record in a secondary file does not exist, the system does not return a record.

Note: When the JDFTVAL is not specified, the system returns a record only if a match is found in every

secondary file for a record in the primary file.

In the following examples, cases 1 through 4 describe sequential read operations, and case 5 describes

reading by key.

Matching records in primary and secondary files (Case 1): Assume that a join logical file is specified as in

“Basic concepts of joining two physical files (Example 1)” on page 53, and that four records are contained

in both PF1 and PF2, as follows:

Physical file 1 (PF1)

 235 Anne

440 Doug

500 Mark

729 Sue

Physical file 2 (PF2)

 235 1700.00

440 950.50

500 2100.00

56 OS/400 DB2 UDB for iSeries Database programming V5R3

729 1400.90

The program does four read operations and gets the following records:

Join logical file (JLF)

 235 Anne 1700.00

440 Doug 950.50

500 Mark 2100.00

729 Sue 1400.90

Record missing in secondary file; JDFTVAL keyword not specified (Case 2A): Assume that a join logical file is

specified as in “Basic concepts of joining two physical files (Example 1)” on page 53, and that there are

four records in PF1 and three records in PF2, as follows:

Physical file 1 (PF1)

 235 Anne

440 Doug

500 Mark

729 Sue

Physical file 2 (PF2)

 235 1700.00

440 950.50

729 1400.90

In PF2, no record is found for number 500.

The program reads the join logical file and gets the following records:

Join logical file (JLF)

 235 Anne 1700.00

440 Doug 950.50

729 Sue 1400.90

If you do not specify the JDFTVAL keyword and no match is found for the join field in the secondary

file, the record is not included in the join logical file.

Record missing in secondary file; JDFTVAL keyword specified (Case 2B): Assume that a join logical file is

specified as in “Basic concepts of joining two physical files (Example 1)” on page 53, except that the

JDFTVAL keyword is specified, as shown in the following DDS:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A JDFTVAL

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

Database programming 57

A JFLD(NBR NBR)

 A NBR JREF(PF1)

 A NAME

 A SALARY

 A K NBR

 A

The program reads the join logical file and gets the following records:

Join logical file (JLF)

 235 Anne 1700.00

440 Doug 950.50

500 Mark 0000.00

729 Sue 1400.90

With JDFTVAL specified, the system returns a record for 500, even though the record is missing in PF2.

Without that record, some field values can be missing in the join record. In this case, the Salary field is

missing. With JDFTVAL specified, missing character fields normally use blanks; missing numeric fields

use zeros. Therefore, in this case, the value for the missing record in the join record is 0. However, if the

DFT keyword is specified for the field in the physical file, the default value specified on the DFT

keyword is used.

Secondary file has more than one match for a record in the primary file (Case 3): Assume that a join logical file

is specified as in “Basic concepts of joining two physical files (Example 1)” on page 53, and that four

records in PF1 and five records in PF2, as follows:

Physical file 1 (PF1)

 235 Anne

440 Doug

500 Mark

729 Sue

Physical file 2 (PF2)

 235 1700.00

235 1500.00

440 950.50

500 2100.00

729 1400.90

In PF2, the record for 235 is duplicated.

The program gets five records:

Join logical file (JLF)

 235 Anne 1700.00

235 Anne 1500.00

58 OS/400 DB2 UDB for iSeries Database programming V5R3

440 Doug 950.50

500 Mark 0000.00

729 Sue 1400.90

In the join records, the record for 235 is duplicated. The order of the records received for the duplicated

record is unpredictable unless the JDUPSEQ keyword is used. For more information, see “Reading

duplicate records in secondary files (Example 3)” on page 62.

Extra record in secondary file (Case 4): Assume that a join logical file is specified as in “Basic concepts of

joining two physical files (Example 1)” on page 53, and that four records are contained in PF1 and five

records in PF2, as follows:

The record for 301 exists only in PF2.

The program reads the join logical file and gets only four records. The record for 301 does not appear.

Join logical file (JLF)

 235 Anne 1700.00

440 Doug 950.50

500 Mark 2100.00

729 Sue 1400.90

These results would be the same even if the JDFTVAL keyword were specified, because a record must

always be contained in the primary file to receive a join record.

Random access (Case 5): Assume that a join logical file is specified as in “Basic concepts of joining two

physical files (Example 1)” on page 53. Note that the join logical file has key fields defined. This case

shows which records would be returned for a random access read operation using the join logical file.

Assume that PF1 and PF2 have the following records:

Physical file 1 (PF1)

 235 Anne

440 Doug

500 Mark

729 Sue

997 Tim

Physical file 2 (PF2)

 235 1700.00

440 950.50

729 1400.90

984 878.25

997 331.00

997 555.00

Database programming 59

In PF2, no record is found for record 500, record 984 exists only in PF2, and duplicate records are found

for 997.

The program can get the following records:

Given a value of 235 from the program for the Nbr field in the logical file, the system supplies the

following record:

 235 Anne 1700.00

Given a value of 500 from the program for the Nbr field in the logical file and with the JDFTVAL

keyword specified, the system supplies the following record:

 500 Mark 0000.00

Note: If the JDFTVAL keyword was not specified in the join logical file, no record would be found for a

value of 500 because no matching record is contained in the secondary file.

Given a value of 984 from the program for the Nbr field in the logical file, the system supplies no record

and a no record found exception occurs because record 984 is not in the primary file.

Given a value of 997 from the program for the Nbr field in the logical file, the system returns one of the

following records:

 997 Tim 331.00

or

 997 Tim 555.00

Which record is returned to the program cannot be predicted. To specify which record is returned, specify

the JDUPSEQ keyword in the join logical file. See “Reading duplicate records in secondary files (Example

3)” on page 62.

Notes:

1. With random access, the application programmer must be aware that duplicate records could be

contained in PF2, and ensure that the program does more than one read operation for records with

duplicate keys. If the program were using sequential access, a second read operation would get the

second record.

2. If you specify the JDUPSEQ keyword, the system can create a separate access path for the join logical

file (because there is less of a chance the system will find an existing access path that it can share). If

you omit the JDUPSEQ keyword, the system can share the access path of another file. (In this case,

the system would share the access path of PF2.)

Setting up a join logical file: To set up a join logical file, do the following:

1. Find the field names of all the physical file fields you want in the logical file record format. (You can

display the fields contained in files using the Display File Field Description [DSPFFD] command.)

2. Describe the fields in the record format. Write the field names in a vertical list. This is the start of the

record format for the join logical file.

Note: You can specify the field names in any order. If the same field names appear in different

physical files, specify the name of the physical file on the JREF keyword for those fields. You

can rename fields using the RENAME keyword, and concatenate fields from the same physical

60 OS/400 DB2 UDB for iSeries Database programming V5R3

file using the CONCAT keyword. A subset of an existing character, hexadecimal, or zoned

decimal field can be defined using the SST keyword. The substring of a character or zoned

decimal field is a character field, and the substring of a hexadecimal field is also a hexadecimal

field. You can redefine fields: changing their data type, length, or decimal positions.

3. Specify the names of the physical files as parameter values on the JFILE keyword. The first name you

specify is the primary file. The others are all secondary files. For best performance, specify the

secondary files with the least records first after the primary file.

4. For each secondary file, code a join specification. On each join specification, identify which pair of

files are joined (using the JOIN keyword; optional if only one secondary file), and identify which

fields are used to join the pair (using the JFLD keyword; at least one required in each join

specification).

5. Optionally, specify the following:

a. The JDFTVAL keyword. Do this if you want to return a record for each record in the primary file

even if no matching record exists in a secondary file.

b. The JDUPSEQ keyword. Do this for fields that might have duplicate values in the secondary files.

JDUPSEQ specifies on which field (other than one of the join fields) to sort these duplicates, and

the sequence that should be used.

c. Key fields. Key fields cannot come from a secondary file. If you omit key fields, records are

returned in arrival sequence as they appear in the primary file.

d. Select/omit fields. In some situations, you must also specify the dynamic selection (DYNSLT)

keyword at the file level.

e. Neither fields. For a description, see “Describing fields that never appear in the record format

(Example 5)” on page 65.

Using more than one field to join files (Example 2): You can specify more than one join field to join a

pair of files. The following shows the fields in the logical file and the two physical files.

The join logical file (JLF) has fields Part Number, Color, Price, and Quantity on Hand. Physical file 1 (PF1)

has Part Number, Color, Price, and Vendor, while physical file 2 (PF2) has Part Number, Color, Quantity on

Hand, and Warehouse. The DDS for these files is as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(PTNBR PTNBR)

 A JFLD(COLOR COLOR)

 A PTNBR JREF(PF1)

 A COLOR JREF(PF1)

 A PRICE

 A QUANTOH

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A PTNBR 4

Database programming 61

A COLOR 20

 A PRICE 7 2

 A VENDOR 40

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A PTNBR 4

 A COLOR 20

 A QUANTOH 5 0

 A WAREHSE 30

 A

Assume that the physical files have the following records:

Physical file 1 (PF1)

 100 Black 22.50 ABC Corp.

100 White 20.00 Ajax Inc.

120 Yellow 3.75 ABC Corp.

187 Green 110.95 ABC Corp.

187 Red 110.50 ABC Corp.

190 Blue 40.00 Ajax Inc.

Physical file 2 (PF2)

 100 Black 23 ABC Corp.

100 White 15 Ajax Inc.

120 Yellow 102 ABC Corp.

187 Green 0 ABC Corp.

187 Red 2 ABC Corp.

190 Blue 2 Ajax Inc.

If the file is processed sequentially, the program receives the following records:

Join logical file (JLF)

 100 Black 22.50 23

100 White 20.00 15

120 Yellow 3.75 102

187 Green 110.95 0

187 Red 110.50 2

Note that no record for part number 190, color blue, is available to the program, because a match was not

found on both fields in the secondary file. Because JDFTVAL was not specified, no record is returned.

Reading duplicate records in secondary files (Example 3): Sometimes a join to a secondary file

produces more than one record from the secondary file. When this occurs, specifying the JDUPSEQ

keyword in the join specification for that secondary file tells the system to base the order of the duplicate

records on the specified field in the secondary file.

62 OS/400 DB2 UDB for iSeries Database programming V5R3

The DDS for the physical files and for the join logical file are as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NAME1 NAME2)

 A JDUPSEQ(TELEPHONE)

 A NAME1

 A ADDR

 A TELEPHONE

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NAME1 10

 A ADDR 20

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NAME2 10

 A TELEPHONE 8

 A

The physical files have the following records:

Physical file 1 (PF1)

 Anne 120 1st St.

Doug 40 Pillsbury

Mark 2 Lakeside Dr.

Physical file 2 (PF2)

 Anne 555–1111

Anne 555–6666

Anne 555–2222

Doug 555–5555

The join logical file returns the following records:

Join logical file (JLF)

 Anne 120 1st St. 555–1111

Anne 120 1st St. 555–2222

Anne 120 1st St. 555–6666

Doug 40 Pillsbury 555–5555

The program reads all the records available for Anne, then Doug, then Mark. Anne has one address, but

three telephone numbers. Therefore, there are three records returned for Anne.

Database programming 63

The records for Anne sort in ascending sequence by telephone number because the JDUPSEQ keyword

sorts in ascending sequence unless you specify *DESCEND as the keyword parameter. The following

example shows the use of *DESCEND in DDS:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NAME1 NAME2)

 A JDUPSEQ(TELEPHONE *DESCEND)

 A NAME1

 A ADDR

 A TELEPHONE

 A

When you specify JDUPSEQ with *DESCEND, the records are returned as follows:

Join logical file (JLF)

 Anne 120 1st St. 555–6666

Anne 120 1st St. 555–2222

Anne 120 1st St. 555–1111

Doug 40 Pillsbury 555–5555

Note: The JDUPSEQ keyword applies only to the join specification in which it is specified. For an

example showing the JDUPSEQ keyword in a join logical file with more than one join specification,

see “A complex join logical file (Example 10)” on page 72.

Using join fields whose attributes are different (Example 4): Fields from physical files that you are

using as join fields generally have the same attributes (length, data type, and decimal positions). For

example, as in the example in “Reading duplicate records in secondary files (Example 3)” on page 62, the

Name1 field is a character field 10 characters long in physical file PF1, and can be joined to the Name2

field, a character field 10 characters long in physical file PF2. The Name1 and Name2 fields have the same

characteristics and, therefore, can easily be used as join fields.

You can also use character type fields that have different lengths as join fields without requiring any

redefinition of the fields. For example, if the NAME1 Field of PF1 was 10 characters long and the

NAME2 field of PF2 was 15 characters long, those fields could be used as join fields without redefining

one of the fields.

The following is an example in which the join fields do not have the same attributes. Both physical files

have fields for employee number. The Nbr field in physical file PF1 and the Nbr field in physical file PF2

both have a length of 3 specified in position 34, but in the PF1 file the field is zoned (S in position 35),

and in the PF2 file the field is packed (P in position 35). To join the two files using these fields as join

fields, you must redefine one or both fields to have the same attributes.

The following illustrates the fields in the logical and physical files:

64 OS/400 DB2 UDB for iSeries Database programming V5R3

The join logical file (JLF) contains Employee Number, Name, and Salary fields. Physical file 1 (PF1) contains

Employee Number (zoned) and Name. Physical file 2 (PF2) contains Employee Number (packed) and Salary.

The DDS for these files is as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NBR)

 A NBR S JREF(2)

 A NAME

 A SALARY

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NBR 3S 0 <-Zoned

 A NAME 20

 A K NBR

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NBR 3P 0 <-Packed

 A SALARY 7 2

 A K NBR

 A

Note: In this example, the Nbr field in the logical file comes from PF2, because JREF(2) is specified.

Instead of specifying the physical file name, you can specify a relative file number on the JREF

keyword; in this example, the 2 indicates PF2.

Because the Nbr fields in the PF1 and PF2 files are used as the join fields, they must have the same

attributes. In this example, they do not. Therefore, you must redefine one or both of them to have the

same attributes. In this example, to resolve the difference in the attributes of the two employee number

fields, the Nbr field in JLF (which is coming from the PF2 file) is redefined as zoned (S in position 35 of

JLF).

Describing fields that never appear in the record format (Example 5): A neither field (N specified in

position 38) can be used in join logical files for neither input nor output. Programs using the join logical

file cannot see or read neither fields. Neither fields are not included in the record format. Neither fields

cannot be key fields or used in select/omit statements in the joined file. You can use a neither field for a

join field (specified at the join specification level on the JFLD keyword) that is redefined at the record

level only to allow the join, but is not needed or wanted in the program.

In the following example, the program reads the descriptions, prices, and quantity on hand of parts in

stock. The part numbers themselves are not wanted except to bring together the records of the parts.

However, because the part numbers have different attributes, at least one must be redefined.

Database programming 65

The join logical file (JLF) has fields Description, Price, and Quantity on Hand. Physical file 1 (PF1) has

Description and Part Number, while physical file 2 (PF2) has Part number, Price, and Quantity on Hand. The

DDS for these files is as follows:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(PRTNBR PRTNBR)

 A PRTNBR S N JREF(1)

 A DESC

 A PRICE

 A QUANT

 A K DESC

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A DESC 30

 A PRTNBR 6P 0

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A PRTNBR 6S 0

 A PRICE 7 2

 A QUANT 8 0

 A

In PF1, the Prtnbr field is a packed decimal field; in PF2, the Prtnbr field is a zoned decimal field. In the

join logical file, they are used as join fields, and the Prtnbr field from PF1 is redefined to be a zoned

decimal field by specifying an S in position 35 at the field level. The JREF keyword identifies which

physical file the field comes from. However, the field is not included in the record format; therefore, N is

specified in position 38 to make it a neither field. A program using this file would not see the field.

In this example, a sales clerk can type a description of a part. The program can read the join logical file

for a match or a close match, and display one or more parts for the user to examine, including the

description, price, and quantity. This application assumes that part numbers are not necessary to

complete a customer order or to order more parts for the warehouse.

Specifying key fields in join logical files (Example 6): If you specify key fields in a join logical file, the

following rules apply:

v The key fields must exist in the primary physical file.

v The key fields must be named in the join record format in the logical file in positions 19 through 28.

v The key fields cannot be fields defined as neither fields (N specified in position 38 for the field) in the

logical file.

The following illustrates the rules for key fields:

66 OS/400 DB2 UDB for iSeries Database programming V5R3

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2)

 A J JOIN(PF1 PF2)

 A JFLD(NBR NUMBER)

 A JFLD(FLD3 FLD31)

 A FLD1 RENAME(F1)

 A FLD2 JREF(2)

 A FLD3 35 N

 A NAME

 A TELEPHONE CONCAT(AREA LOCAL)

 A K FLD1

 A K NAME

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NBR 4

 A F1 20

 A FLD2 7 2

 A FLD3 40

 A NAME 20

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NUMBER 4

 A FLD2 7 2

 A FLD31 35

 A AREA 3

 A LOCAL 7

 A

The following fields cannot be key fields:

 Nbr (not named in positions 19 through 28)

 Number (not named in positions 19 through 28)

 F1 (not named in positions 19 through 28)

 Fld31 (comes from a secondary file)

 Fld2 (comes from a secondary file)

 Fld3 (is a neither field)

 Area and Local (not named in positions 19 through 28)

 Telephone (is based on fields from a secondary file)

Specifying select/omit statements in join logical files: If you specify select/omit statements in a join

logical file, the following rules apply:

v The fields can come from any physical file the logical file uses (specified on the JFILE keyword).

v The fields you specify on the select/omit statements cannot be fields defined as neither fields (N

specified in position 38 for the field).

v In some circumstances, you must specify the DYNSLT keyword when you specify select/omit

statements in join logical files. For more information and examples, see the DYNSLT keyword in the

DDS Reference.

For an example showing select/omit statements in a join logical file, see “A complex join logical file

(Example 10)” on page 72.

Joining three or more physical files (Example 7): You can use a join logical file to join as many as 32

physical files. These files must be specified on the JFILE keyword. The first file specified on the JFILE

keyword is the primary file; the other files are all secondary files.

Database programming 67

The physical files must be joined in pairs, with each pair described by a join specification. Each join

specification must have one or more join fields identified.

The following shows the fields in the files and one field common to all the physical files in the logical

file:

The join logical file (JLF2) contains Name, Address, Telephone, and Salary. Physical file 1 (PF1) has Name

and Address, physical file 2 (PF2) has Name and Telephone, and physical file 3 (PF3) has Name and Salary.

In this example, the Name field is common to all the physical files (PF1, PF2, and PF3), and serves as the

join field.

The following shows the DDS for the physical and logical files:

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R JOINREC JFILE(PF1 PF2 P3)

 A J JOIN(PF1 PF2)

 A JFLD(NAME NAME)

 A J JOIN(PF2 PF3)

 A JFLD(NAME NAME)

 A NAME JREF(PF1)

 A ADDR

 A TELEPHONE

 A SALARY

 A K NAME

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC1

 A NAME 10

 A ADDR 20

 A K NAME

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC2

 A NAME 10

 A TELEPHONE 7

 A K NAME

 A

PF3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R REC3

 A NAME 10

 A SALARY 9 2

 A K NAME

 A

Assume the physical files have the following records:

68 OS/400 DB2 UDB for iSeries Database programming V5R3

Physical file 1 (PF1)

 Anne 120 1st St.

Doug 40 Pillsbury

Mark 2 Lakeside Dr.

Tom 335 Elm St.

Physical file 2 (PF2)

 Anne 555–1111

Doug 555–5555

Mark 555–0000

Sue 555–3210

Physical file 3 (PF3)

 Anne 1700.00

Doug 950.00

Mark 2100.00

The program reads the following logical file records:

Join logical file (JLF)

 Anne 120 1st St. 555–1111 1700.00

Doug 40 Pillsbury 555–5555 950.00

Mark 2 Lakeside Dr.. 555–0000 2100.00

Doug 40 Pillsbury 555–5555

No record is returned for Tom because a record is not found for him in PF2 and PF3 and the JDFTVAL

keyword is not specified. No record is returned for Sue because the primary file has no record for Sue.

Joining a physical file to itself (Example 8): You can join a physical file to itself to read records that are

formed by combining two or more records from the physical file itself. The following example shows

how:

The join logical file (JLF) contains Employee Number, Name, and Manager’s Name. The physical file (PF1)

contains Employee Number, Name, and Manager’s Employee Number. The following shows the DDS for these

files:

Database programming 69

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A JDFTVAL

 A R JOINREC JFILE(PF1 PF1)

 A J JOIN(1 2)

 A JFLD(MGRNBR NBR)

 A NBR JREF(1)

 A NAME JREF(1)

 A MGRNAME RENAME(NAME)

 A JREF(2)

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD1

 A NBR 3

 A NAME 10 DFT(’none’)

 A MGRNBR 3

 A

Notes:

1. Relative file numbers must be specified on the JOIN keyword because the same file name is specified

twice on the JFILE keyword. Relative file number 1 refers to the first physical file specified on the

JFILE keyword, 2 refers to the second, and so forth.

2. With the same physical files specified on the JFILE keyword, the JREF keyword is required for each

field specified at the field level.

Assume the following records are contained in PF1:

Physical file 1 (PF1)

 235 Anne 440

440 Doug 729

500 Mark 440

729 Sue 888

The program reads the following logical file records:

Join logical file(JLF)

 235 Anne Doug

440 Doug Sue

500 Mark Doug

729 Sue none

Note that a record is returned for the manager name of Sue because the JDFTVAL keyword was specified.

Also note that the value none is returned because the DFT keyword was used on the Name field in the

PF1 physical file.

Using default data for missing records from secondary files (Example 9): If you are joining more than

two files, and you specify the JDFTVAL keyword, the default value supplied by the system for a join

field missing from a secondary file is used to join to other secondary files. If the DFT keyword is

specified in the secondary file, the value specified for the DFT keyword is used in the logical file.

The DDS for the files is as follows:

70 OS/400 DB2 UDB for iSeries Database programming V5R3

JLF

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A JDFTVAL

 A R JRCD JFILE(PF1 PF2 PF3)

 A J JOIN(PF1 PF2)

 A JFLD(NAME NAME)

 A J JOIN(PF2 PF3)

 A JFLD(TELEPHONE TELEPHONE)

 A NAME JREF(PF1)

 A ADDR

 A TELEPHONE JREF(PF2)

 A LOC

 A

PF1

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD1

 A NAME 20

 A ADDR 40

 A COUNTRY 40

 A

PF2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD2

 A NAME 20

 A TELEPHONE 8 DFT(’999-9999’)

 A

PF3

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD3

 A TELEPHONE 8

 A LOC 30 DFT(’No location assigned’)

 A

Assume that PF1, PF2, and PF3 have the following records:

Physical file 1 (PF1)

 Anne 120 1st St. USA

Doug 40 Pillsbury Canada

Mark 2 Lakeside Dr. Canada

Sue 120 Broadway USA

Physical file 2 (PF2)

 Anne 555–1234

Doug 555–2222

Sue 555–1144

Physical file 3 (PF3)

 555–1234 Room 312

555–2222 Main lobby

999–9999 No telephone number

Database programming 71

With JDFTVAL specified in the join logical file, the program reads the following logical file records:

Join logical file (JLF)

 Anne 120 1st St. 555–1234 Room 312

Doug 40 Pillsbury 555–2222 Main lobby

Mark 2 Lakeside Dr. 999–9999 No telephone number

Sue 120 Broadway 555–1144 No location assigned

In this example, complete data is found for Anne and Doug. However, part of the data is missing for

Mark and Sue.

v PF2 is missing a record for Mark because he has no telephone number. The default value for the

Telephone field in PF2 is defined as 999-9999 using the DFT keyword. In this example, therefore,

999-9999 is the telephone number returned when no telephone number is assigned. The JDFTVAL

keyword specified in the join logical file causes the default value for the Telephone field (which is

999-9999) in PF2 to be used to match with a record in PF3. (In PF3, a record is included to show a

description for telephone number 999-9999.) Without the JDFTVAL keyword, no record would be

returned for Mark.

v Sue’s telephone number is not yet assigned a location; therefore, a record for 555-1144 is missing in

PF3. Without JDFTVAL specified, no record would be returned for Sue. With JDFTVAL specified, the

system supplies the default value specified on the DFT keyword in PF3 the Loc field (which is No

location assigned).

A complex join logical file (Example 10): The following example shows a more complex join logical file.

Assume the data is in the following three physical files:

Vendor Master File (PF1)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD1 TEXT(’VENDOR INFORMATION’)

 A VDRNBR 5 TEXT(’VENDOR NUMBER’)

 A VDRNAM 25 TEXT(’VENDOR NAME’)

 A STREET 15 TEXT(’STREET ADDRESS’)

 A CITY 15 TEXT(’CITY’)

 A STATE 2 TEXT(’STATE’)

 A ZIPCODE 5 TEXT(’ZIP CODE’)

 A DFT(’00000’)

 A PAY 1 TEXT(’PAY TERMS’)

 A

Order File (PF2)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD2 TEXT(’VENDORS ORDER’)

 A VDRNUM 5S 0 TEXT(’VENDOR NUMBER’)

 A JOBNBR 6 TEXT(’JOB NUMBER’)

 A PRTNBR 5S 0 TEXT(’PART NUMBER’)

 A DFT(99999)

 A QORDER 3S 0 TEXT(’QUANTITY ORDERED’)

 A UNTPRC 6S 2 TEXT(’PRICE’)

 A

Part File (PF3)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A R RCD3 TEXT(’DESCRIPTION OF PARTS’)

 A PRTNBR 5S 0 TEXT(’PART NUMBER’)

 A DFT(99999)

 A DESCR 25 TEXT(’DESCRIPTION’)

 A UNITPRICE 6S 2 TEXT(’UNIT PRICE’)

72 OS/400 DB2 UDB for iSeries Database programming V5R3

A WHSNBR 3 TEXT(’WAREHOUSE NUMBER’)

 A PRTLOC 4 TEXT(’LOCATION OF PART’)

 A QOHAND 5 TEXT(’QUANTITY ON HAND’)

 A

The join logical file record format should contain the following fields:

 Vdrnam (vendor name)

 Street, City, State, and Zipcode (vendor address)

 Jobnbr (job number)

 Prtnbr (part number)

 Descr (description of part)

 Qorder (quantity ordered)

 Untprc (unit price)

 Whsnbr (warehouse number)

 Prtloc (location of part)

The DDS for this join logical file is as follows:

Join Logical File (JLF)

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A �1� DYNSLT

 A �2� JDFTVAL

 A R RECORD1 JFILE(PF1 PF2 PF3)

 A �3� J JOIN(1 2)

 A JFLD(VDRNBR VDRNUM)

 A �4� JDUPSEQ(JOBNBR)

 A �5� J JOIN(2 3)

 A �6� JFLD(PRTNBR PRTNBR)

 A JFLD(UNTPRC UNITPRICE)

 A �7� VDRNUM 5A N TEXT(’CHANGED ZONED TO CHAR’)

 A VDRNAM

 A ADDRESS �8� CONCAT(STREET CITY STATE +

 A ZIPCODE)

 A JOBNBR

 A PRTNBR �9� JREF(2)

 A DESCR

 A QORDER

 A UNTPRC

 A WHSNBR

 A PRTLOC

 A �10� S VDRNAM COMP(EQ ’SEWING COMPANY’)

 A S QORDER COMP(GT 5)

 A

�1� The DYNSLT keyword is required because the JDFTVAL keyword and select fields are specified.

�2� The JDFTVAL keyword is specified to pick up default values in physical files.

�3� First join specification.

�4� The JDUPSEQ keyword is specified because duplicate vendor numbers occur in PF2.

�5� Second join specification.

�6� Two JFLD keywords are specified to ensure the correct records are joined from the PF2 and PF3

files.

�7� The Vdrnum field is redefined from zoned decimal to character (because it is used as a join field

and it does not have the same attributes in PF1 and PF2).

�8� The CONCAT keyword concatenates four fields from the same physical file into one field.

�9� The JREF keyword must be specified because the Prtnbr field exists in two physical files and you

want to use the one in PF2.

Database programming 73

�10� The select/omit fields are Vdrnam and Qorder. (Note that they come from two different physical

files.)

Join logical file considerations: See the following topics for join logical file considerations.

v “Performance considerations”

v “Data integrity considerations”

v “Summary of rules”

Performance considerations: You can do the following to improve the performance of join logical files:

v If the physical files you are joining have a different number of records, specify the physical file with

fewest records first (first parameter following the JOIN keyword).

v Consider using the DYNSLT keyword. See “Dynamic select/omit” on page 50 for more details.

v Consider describing your join logical file so it can automatically share an existing access path. See

“Using existing access paths” on page 50 for more details.

Note: Join logical files always have access paths using the second field of the pair of fields specified in

the JFLD keyword. This field acts like a key field in simple logical files. If an access path does

not already exist, the access path is implicitly created with immediate maintenance.

Data integrity considerations: Unless you have a lock on the physical files used by the join logical file, the

following can occur:

v Your program reads a record for which there are two or more records in a secondary file. The system

supplies one record to your program.

v Another program updates the record in the primary file that your program has just read, changing the

join field.

v Your program issues another read request. The system supplies the next record based on the current

(new) value of the join field in the primary file.

These same considerations apply to secondary files as well.

Summary of rules: The following topics summarize the rules that you must follow when you join

database files.

v “Requirements”

v “Join fields” on page 75

v “Fields in join logical files” on page 75

v “Miscellaneous rules” on page 75

Requirements: The principal requirements for join logical files are:

v Each join logical file must have:

– Only one record format, with the JFILE keyword specified for it.

– At least two physical file names specified on the JFILE keyword. (The physical file names on the

JFILE keyword do not have to be different files.)

– At least one join specification (J in position 17 with the JFLD keyword specified).

– A maximum of 255 secondary files.

– At least one field name with field use other than N (neither) at the field level.
v If only two physical files are specified for the JFILE keyword, the JOIN keyword is not required. Only

one join specification can be included, and it joins the two physical files.

v If more than two physical files are specified for the JFILE keyword, the following rules apply:

– The primary file must be the first file of the pair of files specified on the first JOIN keyword (the

primary file can also be the first of the pair of files specified on other JOIN keywords).

74 OS/400 DB2 UDB for iSeries Database programming V5R3

|

Note: Relative file numbers must be specified on the JOIN keyword and any JREF keyword when

the same file name is specified twice on the JFILE keyword.

– Every secondary file must be specified only once as the second file of the pair of files on the JOIN

keyword. This means that for every secondary file on the JFILE keyword, one join specification must

be included (two secondary files would mean two join specifications, three secondary files would

mean three join specifications).

– The order in which secondary files appear in join specifications must match the order in which they

are specified on the JFILE keyword.

Join fields: The rules to remember about join fields are:

v Every physical file you are joining must be joined to another physical file by at least one join field. A

join field is a field specified as a parameter value on the JFLD keyword in a join specification.

v Join fields (specified on the JFLD keyword) must have identical attributes (length, data type, and

decimal positions) or be redefined in the record format of the join logical file to have the same

attributes. If the join fields are of character type, the field lengths may be different.

v Join fields need not be specified in the record format of the join logical file (unless you must redefine

one or both so that their attributes are identical).

v If you redefine a join field, you can specify N in position 38 (making it a neither field) to prevent a

program using the join logical file from using the redefined field.

v The maximum length of fields used in joining physical files is equal to the maximum size of keys for

physical and logical files (see Database file sizes).

Fields in join logical files: The rules to remember about fields in join logical files are:

v Fields in a record format for a join logical file must exist in one of the physical files used by the logical

file or, if CONCAT, RENAME, TRNTBL, or SST is specified for the field, be a result of fields in one of

the physical files.

v Fields specified as parameter values on the CONCAT keyword must be from the same physical file. If

the first field name specified on the CONCAT keyword is not unique among the physical files, you

must specify the JREF keyword for that field to identify which file contains the field descriptions you

want to use.

v If a field name in the record format for a join logical file is specified in more than one of the physical

files, you must uniquely specify on the JREF keyword which file the field comes from.

v Key fields, if specified, must come from the primary file. Key fields in the join logical file need not be

key fields in the primary file.

v Select/omit fields can come from any physical file used by the join logical file, but in some

circumstances the DYNSLT keyword is required.

v If specified, key fields and select/omit fields must be defined in the record format.

v Relative file numbers must be used for the JOIN and JREF keywords if the name of the physical file is

specified more than once on the JFILE keyword.

Miscellaneous rules: Other rules to keep in mind when using join logical files are:

v Join logical files are read-only files.

v Join record formats cannot be shared, and cannot share other record formats.

v The following are not allowed in a join logical file:

– The REFACCPTH and FORMAT keywords

– Both fields (B specified in position 38)

Describing access paths for database files

This chapter tells how to describe access paths for database files.

Database programming 75

An access path describes the order in which records are to be retrieved. Records in a physical or logical

file can be retrieved using an arrival sequence access path or a keyed sequence access path. For logical

files, you can also select and omit records based on the value of one or more fields in each record. A key

field is a field used to arrange the records of a particular type within a file member.

You can describe access paths in the following ways:

v “Using arrival sequence access path for database files”

v “Using a keyed sequence access path for database files”

v “Using existing access path specifications” on page 84

v “Using floating point fields in database file access paths” on page 84

Using arrival sequence access path for database files

The arrival sequence access path is based on the order in which the records arrive and are stored in the

file. For reading or updating, records can be accessed:

v Sequentially, where each record is taken from the next sequential physical position in the file.

v Directly by relative record number, where the record is identified by its position from the start of the

file.

An externally described file has an arrival sequence access path when no key fields are specified for the

file.

An arrival sequence access path is valid only for the following:

v Physical files

v Logical files in which each member of the logical file is based on only one physical file member

v Join logical files

v Views

Following are some different ways that you can use arrival sequence access paths:

v Arrival sequence is the only processing method that allows a program to use the storage space

previously occupied by a deleted record by placing another record in that storage space. This method

requires explicit insertion of a record given a relative record number that you provide. Another

method, in which the system manages the space created by deleting records, is the reuse deleted

records attribute that can be specified for physical files. For more information and tips on using the

reuse deleted records attribute, see “Reusing deleted records” on page 92. For more information about

processing deleted records, see “Deleting database records” on page 166.

v Through your high-level language, the Display Physical File Member (DSPPFM) command, and the

Copy File (CPYF) command, you can process a keyed sequence file in arrival sequence. You can use

this function for a physical file, a simple logical file based on one physical file member, or a join logical

file.

v Through your high-level language, you can process a keyed sequence file directly by relative record

number. You can use this function for a physical file, a simple logical file based on one physical file

member, or a join logical file.

v An arrival sequence access path does not take up any additional storage and is always saved or

restored with the file. (Because the arrival sequence access path is nothing more than the physical order

of the data as it was stored, when you save the data you save the arrival sequence access path.)

Using a keyed sequence access path for database files

A keyed sequence access path is based on the contents of the key fields as defined in DDS. This type of

access path is updated whenever records are added or deleted, or when records are updated and the

contents of a key field is changed. The keyed sequence access path is valid for both physical and logical

files. The sequence of the records in the file is defined in DDS when the file is created and is maintained

automatically by the system.

76 OS/400 DB2 UDB for iSeries Database programming V5R3

Key fields defined as character fields are arranged based on the sequence defined for EBCDIC characters.

Key fields defined as numeric fields are arranged based on their algebraic values, unless the UNSIGNED

(unsigned value) or ABSVAL (absolute value) DDS keywords are specified for the field. Key fields

defined as DBCS are allowed, but are arranged only as single bytes based on their bit representation.

See the following topics for information about arranging key fields:

v “Arranging key fields using an alternative collating sequence”

v “Arranging key fields using the SRTSEQ parameter” on page 78

v “Arranging key fields in ascending or descending sequence” on page 79

v “Using more than one key field” on page 79

v “Preventing duplicate key values” on page 81

v “Arranging duplicate keys” on page 81

Arranging key fields using an alternative collating sequence: Keyed fields that are defined as character

fields can be arranged based either on the sequence for EBCDIC characters or on an alternative collating

sequence. Consider the following records:

 Record Empname Deptnbr Empnbr

1 Jones, Mary 45 23318

2 Smith, Ron 45 41321

3 JOHNSON, JOHN 53 41322

4 Smith, ROBERT 27 56218

5 JONES, MARTIN 53 62213

If the Empname is the key field and is a character field, using the sequence for EBCDIC characters, the

records would be arranged as follows:

 Record Empname Deptnbr Empnbr

1 Jones, Mary 45 23318

3 JOHNSON, JOHN 53 41322

5 JONES, MARTIN 53 62213

2 Smith, Ron 45 41321

4 Smith, ROBERT 27 56218

Notice that the EBCDIC sequence causes an unexpected sort order because the lowercase characters are

sorted before uppercase characters. Thus, Smith, Ron sorts before Smith, ROBERT. An alternative collating

sequence could be used to sort the records when the records were entered using uppercase and lowercase

as shown in the following example:

 Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

5 JONES, MARTIN 53 62213

1 Jones, Mary 45 23318

4 Smith, ROBERT 27 56218

2 Smith, Ron 45 41321

To use an alternative collating sequence for a character key field, specify the ALTSEQ DDS keyword, and

specify the name of the table containing the alternative collating sequence. When setting up a table, each

2-byte position in the table corresponds to a character. To change the order in which a character is sorted,

change its 2-digit value to the same value as the character it should be sorted equal to. For more

Database programming 77

information about the ALTSEQ keyword, see DDS Reference. For information about sorting uppercase

and lowercase characters regardless of their case, the QCASE256 table in library QUSRSYS is provided for

you.

Arranging key fields using the SRTSEQ parameter: You can arrange key fields containing character

data according to several sorting sequences available with the SRTSEQ parameter. Consider the following

records:

 Record Empname Deptnbr Empnbr

1 Jones, Marilyn 45 23318

2 Smith, Ron 45 41321

3 JOHNSON, JOHN 53 41322

4 Smith, ROBERT 27 56218

5 JONES, MARTIN 53 62213

6 Jones, Martin 08 29231

If the Empname field is the key field and is a character field, the *HEX sequence (the EBCDIC sequence)

arranges the records as follows:

 Record Empname Deptnbr Empnbr

1 Jones, Marilyn 45 23318

6 Jones, Martin 08 29231

3 JOHNSON, JOHN 53 41322

5 JONES, MARTIN 53 62213

2 Smith, Ron 45 41321

4 Smith, ROBERT 27 56218

Notice that with the *HEX sequence, all lowercase characters are sorted before the uppercase characters.

Thus, Smith, Ron sorts before Smith, ROBERT, and JOHNSON, JOHN sorts between the lowercase and

uppercase Jones. You can use the *LANGIDSHR sort sequence to sort records when the records were

entered using a mixture of uppercase and lowercase. The *LANGIDSHR sequence, which uses the same

collating weight for lowercase and uppercase characters, results in the following:

 Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

1 Jones, Marilyn 45 23318

5 JONES, MARTIN 53 62213

6 Jones, Martin 08 29231

4 Smith, ROBERT 27 56218

2 Smith, Ron 45 41321

Notice that with the *LANGIDSHR sequence, the lowercase and uppercase characters are treated as

equal. Thus, JONES, MARTIN and Jones, Martin are equal and sort in the same sequence they have in the

base file. While this is not incorrect, it would look better in a report if all the lowercase Jones preceded

the uppercase JONES. You can use the *LANGIDUNQ sort sequence to sort the records when the records

were entered using an inconsistent uppercase and lowercase. The *LANGIDUNQ sequence, which uses

different but sequential collating weights for lowercase and uppercase characters, results in the following:

78 OS/400 DB2 UDB for iSeries Database programming V5R3

Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322

1 Jones, Marilyn 45 23318

6 Jones, Martin 08 29231

5 JONES, MARTIN 53 62213

4 Smith, ROBERT 27 56218

2 Smith, Ron 45 41321

The *LANGIDSHR and *LANGIDUNQ sort sequences exist for every language supported in your system.

The LANGID parameter determines which *LANGIDSHR or *LANGIDUNQ sort sequence to use. Use

the SRTSEQ parameter to specify the sort sequence and the LANGID parameter to specify the language.

Arranging key fields in ascending or descending sequence: Key fields can be arranged in either

ascending or descending sequence. Consider the following records:

 Record Empnbr Clsnbr Clsnam Cpdate

1 56218 412 Welding I 032188

2 41322 412 Welding I 011388

3 64002 412 Welding I 011388

4 23318 412 Welding I 032188

5 41321 412 Welding I 051888

6 62213 412 Welding I 032188

If the Empnbr field is the key field, the two possibilities for organizing these records are:

v In ascending sequence, where the order of the records in the access path is:

 Record Empnbr Clsnbr Clsnam Cpdate

4 23318 412 Welding I 032188

5 41321 412 Welding I 051888

2 41322 412 Welding I 011388

1 56218 412 Welding I 032188

6 62213 412 Welding I 032188

3 64002 412 Welding I 011388

v In descending sequence, where the order of the records in the access path is:

 Record Empnbr Clsnbr Clsnam Cpdate

3 64002 412 Welding I 011388

6 62213 412 Welding I 032188

1 56218 412 Welding I 032188

2 41322 412 Welding I 011388

5 41321 412 Welding I 051888

4 23318 412 Welding I 032188

When you describe a key field, the default is ascending sequence. However, you can use the DESCEND

DDS keyword to specify that you want to arrange a key field in descending sequence.

Using more than one key field: You can use more than one key field to arrange the records in a file.

The key fields do not have to use the same sequence. For example, when you use two key fields, one

field can use ascending sequence while the other can use descending sequence. Consider the following

records:

Database programming 79

Record Order Ordate Line Item Qtyord Extens

1 52218 063088 01 88682 425 031875

2 41834 062888 03 42111 30 020550

3 41834 062888 02 61132 4 021700

4 52218 063088 02 40001 62 021700

5 41834 062888 01 00623 50 025000

If the access path uses the Order field, then the Line field as the key fields, both in ascending sequence,

the order of the records in the access path is:

 Record Order Ordate Line Item Qtyord Extens

5 41834 062888 01 00623 50 025000

3 41834 062888 02 61132 4 021700

2 41834 062888 03 42111 30 020550

1 52218 063088 01 88682 425 031875

4 52218 063088 02 40001 62 021700

If the access path uses the key field Order in ascending sequence, then the Line field in descending

sequence, the order of the records in the access path is:

 Record Order Ordate Line Item Qtyord Extens

2 41834 062888 03 42111 30 020550

3 41834 062888 02 61132 4 021700

5 41834 062888 01 00623 50 025000

4 52218 063088 02 40001 62 021700

1 52218 063088 01 88682 425 031875

When a record has key fields whose contents are the same as the key field in another record in the same

file, then the file is said to have records with duplicate key values. However, the duplication must occur

for all key fields for a record if they are to be called duplicate key values. For example, if a record format

has two key fields Order and Ordate, duplicate key values occur when the contents of both the Order and

Ordate fields are the same in two or more records. These records have duplicate key values:

 Order Ordate Line Item Qtyord Extens

41834 062888 03 42111 30 020550

41834 062888 02 61132 04 021700

41834 062888 01 00623 50 025000

Using the Line field as a third key field defines the file so that there are no duplicate keys:

 (First Key Field)

Order

(Second Key Field)

Ordate

(Third Key Field)

Line Item Qtyord Extens

41834 062888 03 42111 30 020550

41834 062888 02 61132 04 021700

41834 062888 01 00623 50 025000

A logical file that has more than one record format can have records with duplicate key values, even

though the record formats are based on different physical files. That is, even though the key values come

from different record formats, they are considered duplicate key values.

80 OS/400 DB2 UDB for iSeries Database programming V5R3

Preventing duplicate key values: DB2 UDB for iSeries allows records with duplicate key values in your

files. However, you may want to prevent duplicate key values in some of your files. For example, you

can create a file where the key field is defined as the customer number field. In this case, you want the

system to ensure that each record in the file has a unique customer number.

You can prevent duplicate key values in your files by specifying the UNIQUE keyword in DDS. With the

UNIQUE keyword specified, a record cannot be entered or copied into a file if its key value is the same

as the key value of a record already existing in the file. You can also use unique constraints to enforce the

integrity of unique keys. For details on the supported constraints, see “Controlling the integrity of your

database with constraints” on page 208.

If records with duplicate key values already exist in a physical file, the associated logical file cannot have

the UNIQUE keyword specified. If you try to create a logical file with the UNIQUE keyword specified,

and the associated physical file contains duplicate key values, the logical file is not created. The system

sends you a message stating this and sends you messages (as many as 20) indicating which records

contain duplicate key values.

When the UNIQUE keyword is specified for a file, any record added to the file cannot have a key value

that duplicates the key value of an existing record in the file, regardless of the file used to add the new

record. For example, two logical files LF1 and LF2 are based on the physical file PF1. The UNIQUE

keyword is specified for LF1. If you use LF2 to add a record to PF1, you cannot add the record if it

causes a duplicate key value in LF1.

If any of the key fields allow null values, null values that are inserted into those fields may or may not

cause duplicates depending on how the access path was defined at the time the file was created. The

*INCNULL parameter of the UNIQUE keyword indicates that null values are included when determining

whether duplicates exist in the unique access path. The *EXCNULL parameter indicates that null values

are not included when determining whether duplicate values exist. For more information, see DDS

Reference.

The following shows the DDS for a logical file that requires unique key values:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDER TRANSACTION LOGICAL FILE (ORDFILL)

 A UNIQUE

 A R ORDHDR PFILE(ORDHDRP)

 A K ORDER

 A

 A R ORDDTL PFILE(ORDDTLP)

 A K ORDER

 A K LINE

 A

In this example, the contents of the key fields (the Order field for the ORDHDR record format, and the

Order and Line fields for the ORDDTL record format) must be unique whether the record is added

through the ORDHDRP file, the ORDDTLP file, or the logical file defined here. With the Line field

specified as a second key field in the ORDDTL record format, the same value can exist in the Order key

field in both physical files. Because the physical file ORDDTLP has two key fields and the physical file

ORDHDRP has only one, the key values in the two files do not conflict.

Arranging duplicate keys: If you do not specify the UNIQUE keyword in DDS, you can specify how the

system is to store records with duplicate key values, should they occur. You specify that records with

duplicate key values are stored in the access path in one of the following ways:

v Last-in-first-out (LIFO). When the LIFO keyword is specified (�1�), records with duplicate key values

are retrieved in last-in-first-out order by the physical sequence of the records. Following is an example

of DDS using the LIFO keyword.

Database programming 81

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* ORDERP2

 A �1� LIFO

 A R ORDER2

 A .

 A .

 A .

 A K ORDER

 A

v First-in-first-out (FIFO). If the FIFO keyword is specified, records with duplicate key values are

retrieved in first-in-first-out order by the physical sequence of the records.

v First-changed-first-out (FCFO). If the FCFO keyword is specified, records with duplicate key values are

retrieved in first-changed-first-out order by the physical sequence of the keys.

v No specific order for duplicate key fields (the default). When the FIFO, FCFO, or LIFO keywords are

not specified, no guaranteed order is specified for retrieving records with duplicate keys. No specific

order for duplicate key fields allows more access path sharing, which can improve performance. For

more information about access path sharing, see “Using existing access paths” on page 50.

When a simple- or multiple-format logical file is based on more than one physical file member, records

with duplicate key values are read in the order in which the files and members are specified on the

DTAMBRS parameter on the Create Logical File (CRTLF) or Add Logical File Member (ADDLFM)

command. Examples of logical files with more than one record format can be found in the DDS

Reference.

The LIFO or FIFO order of records with duplicate key values is not determined by the sequence of

updates made to the contents of the key fields, but solely by the physical sequence of the records in the

file member. Assume that a physical file has the FIFO keyword specified (records with duplicate keys are

in first-in-first-out order), and that the following shows the order in which records were added to the file:

 Order Records Were Added to File Key Value

1 A

2 B

3 C

4 C

5 D

The sequence of the access path is (FIFO, ascending key):

 Record Number Key Value

1 A

2 B

3 C

4 C

5 D

Records 3 and 4, which have duplicate key values, are in FIFO order. That is, because record 3 was added

to the file before record 4, it is read before record 4. This would become apparent if the records were read

in descending order. This could be done by creating a logical file based on this physical file, with the

DESCEND keyword specified in the logical file.

The sequence of the access path is (FIFO, descending key):

 Record Number Key Value

5 D

82 OS/400 DB2 UDB for iSeries Database programming V5R3

Record Number Key Value

3 C

4 C

2 B

1 A

If physical record 1 is changed such that the key value is C, the sequence of the access path for the

physical file is (FIFO, ascending key):

 Record Number Key Value

2 B

1 C

3 C

4 C

5 D

Finally, changing to descending order, the new sequence of the access path for the logical file is (FIFO,

descending key):

 Record Number Key Value

5 D

1 C

3 C

4 C

2 B

After the change, record 1 does not appear after record 4, even though the contents of the key field were

updated after record 4 was added.

The FCFO order of records with duplicate key values is determined by the sequence of updates made to

the contents of the key fields. In the example above, after record 1 is changed such that the key value is

C, the sequence of the access path (FCFO, ascending key only) is:

 Record Number Key Value

2 B

3 C

4 C

1 C

5 D

For FCFO, the duplicate key ordering can change when the FCFO access path is rebuilt or when a

rollback operation is performed. In some cases, your key field can change but the physical key does not

change. In these cases, the FCFO ordering does not change, even though the key field has changed. For

example, when the index ordering is changed to be based on the absolute value of the key, the FCFO

ordering does not change. The physical value of the key does not change even though your key changes

from negative to positive. Because the physical key does not change, FCFO ordering does not change.

If the reuse deleted records attribute is specified for a physical file, the duplicate key ordering must be

allowed to default or must be FCFO. The reuse deleted records attribute is not allowed for the physical

file if either the key ordering for the file is FIFO or LIFO, or if any of the logical files defined over the

physical file have duplicate key ordering of FIFO or LIFO.

Database programming 83

Using existing access path specifications

You can use the DDS keyword REFACCPTH to use another file’s access path specifications. When the file

is created, the system determines which access path to share. The file using the REFACCPTH keyword

does not necessarily share the access path of the file specified in the REFACCPTH keyword. The

REFACCPTH keyword is used to simply reduce the number of DDS statements that must be specified.

That is, rather than code the key field specifications for the file, you can specify the REFACCPTH

keyword. When the file is created, the system copies the key field and select/omit specifications from the

file specified on the REFACCPTH keyword to the file being created.

Using floating point fields in database file access paths

The collating sequence for records in a keyed database file depends on the presence of the SIGNED,

UNSIGNED, and ABSVAL DDS keywords. For floating-point fields, the sign is the farthest left bit, the

exponent is next, and the significant is last. The collating sequence with UNSIGNED specified is:

v Positive real numbers—positive infinity

v Negative real numbers—negative infinity

A floating-point key field with the SIGNED keyword specified, or defaulted to, on the DDS has an

algebraic numeric sequence. The collating sequence is negative infinity—real numbers—positive infinity.

A floating-point key field with the ABSVAL keyword specified on the DDS has an absolute value numeric

sequence.

The following floating-point collating sequences are observed:

v Zero (positive or negative) collates in the same manner as any other positive/negative real number.

v Negative zero collates before positive zero for SIGNED sequences.

v Negative and positive zero collate the same for ABSVAL sequences.

You cannot use not-a-number (*NAN) values in key fields. If you attempt this, and a *NAN value is

detected in a key field during file creation, the file is not created.

Securing a database

The following topics describe actions that you can take to secure your database.

v “Granting file and data authority”

v “Specifying public authority” on page 87

v “Using database file capabilities to control I/O operations” on page 88

v “Limiting access to specific fields of a database file” on page 89

v “Using logical files to secure data” on page 89

For more information about implementing security on the iSeries system, see the Security Reference

.

Granting file and data authority

There are several ways that you can grant file and data authority.

v You can use iSeries Navigator to authorize a user or group. See “Authorizing a user or group using

iSeries Navigator” on page 85.

v You can use the Grant Object Authority (GRTOBJAUT) command to specify the authority you want

users to have to access data in your database files.

v You can use the SQL GRANT statement.

See “Types of object authority for database files” on page 85 and “Types of data authorities for database

files” on page 86 for the types of authority you can grant.

84 OS/400 DB2 UDB for iSeries Database programming V5R3

Authorizing a user or group using iSeries Navigator: Some users may require different authority to an

object than the permissions allowed by Public authority. To authorize a user or group to an object:

1. In the iSeries Navigator window, expand the system you want to use.

2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and select Permissions.

4. On the Permissions window, click Add.

5. On the Add window, select one or more users and groups or enter the name of a user or group in the

user or group name field.

6. Click OK. This will add the users or groups to the top of the list.

Note: The user or group is given the default authority to the object. You can change a user’s authority to

one of the types defined by the system or you can customize the authority.

You can also remove and customize authority using iSeries Navigator.

Types of object authority for database files: The following are the types of authority you can grant to a

user for a database file:

Object Operational Authority

 Users need object operational authority to:

v Open the file for processing. (You must also have at least one data authority.)

v Compile a program which uses the file description.

v Display descriptive information about active members of a file.

v Open the file for query processing. For example, the Open Query File (OPNQRYF) command

opens a file for query processing.

Note: You must also have the appropriate data authorities required by the options specified on

the open operation.

Object Existence Authority

 Users need object existence authority to:

v Delete the file.

v Save, restore, and free the storage of the file. If the object existence authority has not been

explicitly granted to the user, the *SAVSYS special user authority allows the user to save,

restore, and free the storage of a file. *SAVSYS is not the same as object existence authority.

v Remove members from the file.

v Transfer ownership of the file.

Note: All these functions except save/restore also require object operational authority to the file.

Object Management Authority

 Users need object management authority to:

v Create a logical file with a keyed sequence access path (object management authority is

required for the physical file referred to by the logical file).

v Grant and revoke authority. You can grant and revoke only the authority that you already

have. (You must also have object operational authority to the file.)

v Change the file.

v Add members to the file. (The owner of the file becomes the owner of the new member.)

v Change the member in the file.

v Move the file.

v Rename the file.

Database programming 85

v Rename a member of the file.

v Clear a member of the file. (Delete data authority is also required.)

v Initialize a member of the file. (Add data authority is also required to initialize with default

records; delete data authority is required to initialize with deleted records.)

v Reorganize a member of the file. (All data authorities are also required.)

Object Alter Authority

 Users need object alter authority for many of the same operations as object management

authority (see preceding section). Object alter authority is a replacement authority for object

management authority.

Object Reference Authority

 Users need object reference authority when the authority needed to reference an object from

another object such that operations on that object may be restricted by the referencing object.

 Adding a physical file referential constraint checks for either object management authority or

object reference authority to the parent file. Physical file constraints are described in “Controlling

the integrity of your database with constraints” on page 208 and “Ensuring data integrity with

referential constraints” on page 213.

Types of data authorities for database files: You can use the following data authorities, or permissions,

to grant users access to physical and logical files.

Read Authority

Users can read the records in the file.

Add Authority

Users can add new records to the file.

Update Authority

Users can update existing records. (To read a record for update, you must also have read

authority.)

Delete Authority

Users can delete existing records. (To read a record for deletion, you must also have read

authority.)

Execute Authority

 You can use execute authority to work with libraries and to invoke programs. For example, if you

are changing a file associated with a trigger, you must have execute authority to the trigger

program. If you do not have execute authority, the system will not invoke the trigger program.

For detailed information on triggers, see “Triggering automatic events in your database” on page

225.

 Normally, the authority you have to the data in the file is not verified until you actually perform

the input/output operation. However, the Open Query File (OPNQRYF) and Open Database File

(OPNDBF) commands also verify data authority when the file is opened.

 If object operational authority is not granted to a user for a file, that user cannot open the file.

 The following example shows the relationship between authority granted for logical files and the

physical files used by the logical file. The logical files LF1, LF2, and LF3 are based on the

physical file PF1. USERA has read (*READ) and add (*ADD) authority to the data in PF1 and

object operational (*OBJOPR), read (*READ), and add (*ADD) authority for LF1 and LF2. This

means that USERA cannot open PF1 or use its data directly in any way because the user does not

have object operational authority (*OBJOPR) to PF1; USERA can open LF1 and LF2 and read

records from and add records to PF1 through LF1 and LF2. Note that the user was not given

authority for LF3 and, therefore, cannot use it.

86 OS/400 DB2 UDB for iSeries Database programming V5R3

Specifying public authority

When you create a file, you can specify public authority through the AUT parameter on the Create

Physical File or Create Source Physical File command. Public authority is authority available to any user

who does not have specific authority to the file or who is not a member of a group that has specific

authority to the file. Public authority is the last authority check made. That is, if the user has specific

authority to a file or the user is a member of a group with specific authority, then the public authority is

not checked. Public authority can be specified as:

v *LIBCRTAUT. The library in which the file is created is checked to determine the public authority of

the file when the file is created. An authority is associated with each library. This authority is specified

when the library is created, and all files created into the library are given this public authority if the

*LIBCRTAUT value is specified for the AUT parameter of the Create File (CRTLF, CRTPF, and

CRTSRCPF) commands. The *LIBCRTAUT value is the default public authority.

v *CHANGE. All users that do not have specific user or group authority to the file have authority to

change data in the file.

v *USE. All users that do not have specific user or group authority to the file have authority to read data

in the file.

v *EXCLUDE. Only the owner, security officer, users with specific authority, or users who are members

of a group with specific authority can use the file.

v *ALL. All users that do not have specific user or group authority to the file have all data authorities

along with object operational, object management, and object existence authorities.

v Authorization list name. An authorization list is a list of users and their authorities. The list allows

users and their different authorities to be grouped together.

Note: When creating a logical file, no data authorities are granted. Consequently, *CHANGE is the same

as *USE, and *ALL does not grant any data authority.

You can grant public authority in the following ways:

v Define public authority using iSeries Navigator. See “Defining public authority for a file using iSeries

Navigator.”

v Use the Edit Object Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), or Revoke Object

Authority (RVKOBJAUT) commands to grant or revoke the public authority of a file.

You can also use iSeries Navigator to set default public authority for a new file. See “Setting a default

public authority for new files using iSeries Navigator” on page 88.

Defining public authority for a file using iSeries Navigator: Public authority is defined for every

object on the system to describe what type of access a user who does not have specific access to an object.

To define public authority:

1. In the iSeries Navigator window, expand the system you want to use.

2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and select Permissions.

Database programming 87

4. On the Permissions window, select Public from the group list.

5. Click the Details button to implement detailed permissions. Apply the desired permissions for the

public by checking the box by the appropriate check box.

6. Click OK.

Setting a default public authority for new files using iSeries Navigator: Setting a default public

authority allows you to have a common authority that is assigned to all new objects when they are

created in library. You can edit the permissions for individual objects that require a different level of

security. To set a default public authority:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Right-click the library for which you want to set a public authority and select Permissions.

5. On the Permissions window, click New Object.

6. On the New Object window, select a default public authority.

7. To assign an Authorization List, you can enter or Browse for the name of the authorization list. To

view Authorization list properties, select Open.

8. Click OK.

From system value

Specifies to use the system value for the default public authority for a new object.

Use

Allows access to the object attributes and use of the object. The public may view, but not change, the

objects.

Change

Allows the contents of the object (with some exceptions) to be changed.

All

Allows all operations on the object, except those that are limited to the owner. The user or group can

control the object.s existence, specify the security for the object, change the object, and perform basic

functions on the object. The user or group can also change ownership of the object.

Exclude

All operations on the object are prohibited. No access nor operations are allowed to the object for the

users and groups having this permission. Specifies the public is not allowed to use the objects.

Use authorization list

Allows you specify an authorization list to use to secure the object.

Using database file capabilities to control I/O operations

File capabilities are used to control which input/output operations are allowed for a database file

independent of database file authority.

When you create a physical file, you can specify if the file is update-capable and delete-capable by using

the ALWUPD and ALWDLT parameters on the Create Physical File (CRTPF) and Create Source Physical

File (CRTSRCPF) commands. By creating a file that is not update-capable and not delete-capable, you can

effectively enforce an environment where data cannot be changed or deleted from a file once the data is

written.

File capabilities cannot be explicitly set for logical files. The file capabilities of a logical file are

determined by the file capabilities of the physical files it is based on.

You cannot change file capabilities after the file is created. You must delete the file then recreate it with

the desired capability. The Display File Description (DSPFD) command can be used to determine the

capabilities of a file.

88 OS/400 DB2 UDB for iSeries Database programming V5R3

Limiting access to specific fields of a database file

You can restrict user update and read requests to specific fields of a physical database file. There are two

ways to do this:

v Create a logical view of the physical file that includes only those fields to which you want your users

to have access. See “Using logical files to secure data” for more information.

v Use the SQL GRANT statement to grant update authority to specific columns of an SQL table. See the

SQL programming topic for more information.

Using logical files to secure data

You can use a logical file to prevent a field in a physical file from being viewed. This is accomplished by

describing a logical file record format that does not include fields you do not want the user to see. For

more information about this subject, see “Describing logical file record formats” on page 40.

You can also use a logical file to prevent one or more fields from being changed in a physical file by

specifying, for those fields you want to protect, an I (input only) in position 38 of the DDS form. For

more information about this subject, see “Describing field use for logical files” on page 43.

You can use a logical file to secure records in a physical file based on the contents of one or more fields

in that record. To secure records based on the contents of a field, use the select and omit keywords when

describing the logical file. For more information about this subject, see “Selecting and omitting records

using logical files” on page 47.

Process database files

The following topics include information about processing database files in your programs.

“Database file processing: Run time considerations” on page 90
This topic includes information about planning how the file will be used in the program or job and

improving the performance of your program. Descriptions of the file processing parameters and

run-time options that you can specify for more efficient file processing are included in this section.

This topic also discusses sharing database files across jobs so that they can be accessed by many

users at the same time. Locks on files, records, or members that can prevent them from being shared

across jobs are also discussed.

“Opening a database file” on page 110
This topic discusses Using the Open Query File (OPNQRYF) command and the Open Database File

(OPNDBF) command to open database file members in a program. Examples, performance

considerations, and guidelines to follow when writing a high-level language program are also

included. Also, typical errors that can occur are discussed.

“Basic database file operations in programs” on page 157
This topic discusses basic database operations. This discussion includes setting a position in the

database file, and reading, updating, adding, and deleting records in a database file. A description

of several ways to read database records is also included. Information about updating discusses

how to change an existing database record in a logical or physical file. Information about adding a

new record to a physical database member using the write operation is included.

“Closing a database file” on page 167
This topic includes ways you can close a database file when your program completes processing a

database file member, disconnecting your program from the file.

“Monitoring database file errors in a program” on page 168
This topic includes messages to monitor when handling database file errors in a program.

Database programming 89

Database file processing: Run time considerations

Before a file is opened for processing, you should consider how you will use the file in the program and

job. A better understanding of the run-time file processing parameters can help you avoid unexpected

results. In addition, you might improve the performance of your program.

When a file is opened, the attributes in the database file description are merged with the parameters in

the program. Normally, most of the information the system needs for your program to open and process

the file is found in the file attributes and in the application program itself.

Sometimes, however, it is necessary to override the processing parameters found in the file and in the

program. For example, if you want to process a member of the file other than the first member, you need

a way to tell the system to use the member you want to process. The Override with Database File

(OVRDBF) command allows you to do this. The OVRDBF command also allows you to specify

processing parameters that can improve the performance of your job, but that cannot be specified in the

file attributes or in the program. The OVRDBF command parameters take precedence over the file and

program attributes. For more information about how overrides behave in the Integrated Language

Environment®, see the ILE Concepts

book.

This chapter describes the file processing parameters and other methods or considerations that can be

used to affect database file processing. The parameter values are determined by the high-level language

program, the file attributes, and any open or override commands processed before the high-level

language program is called.

See the following topics describing these parameters or methods:

v “File and member name” on page 91

v “File processing options” on page 91

v “Data recovery and integrity” on page 94

v “Locking shared data” on page 95

v “Sharing database files in the same job or activation group” on page 98

v “Sequential-only processing of database files” on page 104

A summary of these parameters and where you specify them can be found in “Summary of run time

considerations for processing database files” on page 107. See “Storage pool paging option effect on

database performance” on page 109 for information about the storage pool paging option and its effect

on database file processing.

For more information about processing parameters from commands, see the Control Language (CL) topic

for the following commands:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

v Add Physical File Member (ADDPFM)

v Add Logical File Member (ADDLFM)

v Change Physical File (CHGPF)

v Change Physical File Member (CHGPFM)

v Change Logical File (CHGLF)

v Change Logical File Member (CHGLFM)

v Change Source Physical File (CHGSRCPF)

v Override with Database File (OVRDBF)

v Open Database File (OPNDBF)

90 OS/400 DB2 UDB for iSeries Database programming V5R3

v Open Query File (OPNQRYF)

v Close File (CLOF)

File and member name

FILE and MBR Parameter. Before you can process data in a database file, you must identify which file

and member you want to use. Normally, you specify the file name and, optionally, the member name in

your high-level language program. The system then uses this name when your program requests the file

to be opened. To override the file name specified in your program and open a different file, you can use

the TOFILE parameter on the Override with Database File (OVRDBF) command. If no member name is

specified in your program, the first member of the file (as defined by the creation date and time) is

processed.

If the member name cannot be specified in the high-level language program (some high-level languages

do not allow a member name), or you want a member other than the first member, you can use an

Override with Database File (OVRDBF) command or an open command (OPNDBF or OPNQRYF) to

specify the file and member you want to process (using the FILE and MBR parameters).

To process all the members of a file, use the OVRDBF command with the MBR(*ALL) parameter

specified. For example, if FILEX has three members and you want to process all the members, you can

specify:

OVRDBF FILE(FILEX) MBR(*ALL)

If you specify MBR(*ALL) on the OVRDBF command, your program reads the members in the order they

were created. For each member, your program reads the records in keyed or arrival sequence, depending

on whether the file is an arrival sequence or keyed sequence file.

File processing options

The following section describes several run-time processing options, including identifying the file

operations used by the program, specifying the starting file position, reusing deleted records, ignoring the

keyed sequence access path, specifying how to handle end-of-file processing, and identifying the length

of the record in the file.

See these topics:

v “Specifying the type of processing”

v “Specifying the initial file position” on page 92

v “Reusing deleted records” on page 92

v “Ignoring the keyed sequence access path” on page 92

v “Delaying end of file processing” on page 93

v “Specifying the record length” on page 93

v “Ignoring record formats” on page 93

v “Determining if duplicate keys exist” on page 93

Specifying the type of processing: OPTION Parameter. When you use a file in a program, the system

needs to know what types of operations you plan to use for that file. For example, the system needs to

know if you plan to just read data in the file or if you plan to read and update the data. The valid

operation options are: input, output, update, and delete. The system determines the options you are using

from information you specify in your high-level language program or from the OPTION parameter on

the Open Database File (OPNDBF) and Open Query File (OPNQRYF) commands.

The system uses the options to determine which operations are allowed in your program. For example, if

you open a file for input only and your program tries an output operation, your program receives an

error.

Database programming 91

Normally, the system verifies that you have the required data authority when you do an input/output

operation in your program. However, when you use the Open Query File (OPNQRYF) or Open Database

File (OPNDBF) commands, the system verifies at the time the file is opened that you have the required

data authority to perform the operations specified on the OPTION parameter. For more information

about data authority, see “Types of data authorities for database files” on page 86.

The system also uses these options to determine the locks to use to protect the data integrity of the files

and records being processed by your program. For more information on locks, see “Locking shared data”

on page 95.

Specifying the initial file position: POSITION Parameter. The system needs to know where it should

start processing the file after it is opened. The default is to start just before the first record in the file (the

first sequential read operation will read the first record). But, you can tell the system to start at the end of

the file, or at a certain record in the middle of the file using the Override with Database File (OVRDBF)

command. You can also dynamically set a position for the file in your program. For more information on

setting position for a file in a program, see “Setting a position in the file” on page 157.

Reusing deleted records: REUSEDLT Parameter. When you specify REUSEDLT(*YES) on the Create

Physical File (CRTPF) or Change Physical File (CHGPF) command, the following operations may work

differently:

v Arrival order becomes meaningless for a file that reuses deleted record space. Records might not be

added at the end of the file.

v End-of-file delay does not work for files that reuse deleted record space.

v One hundred percent reuse of deleted record space is not guaranteed. A file full condition may be

reached or the file may be extended even though deleted record space still exists in the file.

Because of the way the system reuses deleted record space, note that the following types of files should

not be created or changed to reuse deleted record space:

v Files processed using relative record numbers, and files used by an application to determine a relative

record number that is used as a key into another file

v Files used as queues

v Any files used by applications that assume new record inserts are at the end of the file

v When DB2 UDB Symmetric Multiprocessing is installed, files on which you expect to have parallel

index maintenance performed when rows are updated, inserted, or deleted

If you decide to change an existing physical file to reuse deleted record space, and there are logical files

with access paths with LIFO or FIFO duplicate key ordering over the physical file, you can re-create the

logical files without the FIFO or LIFO attribute and avoid rebuilding the existing access path by doing

the following:

1. Rename the existing logical file that has the FIFO or LIFO attribute.

2. Create a second logical file identical to the renamed file except that duplicate key ordering should not

be specified for the file. Give the new file the original file name. The new file shares the access path of

the renamed file.

3. Delete the renamed file.

Ignoring the keyed sequence access path: ACCPTH Parameter. When you process a file with a keyed

sequence access path, you normally want to use that access path to retrieve the data. The system

automatically uses the keyed sequence access path if a key field is defined for the file. However,

sometimes you can achieve better performance by ignoring the keyed sequence access path and

processing the file in arrival sequence.

You can tell the system to ignore the keyed sequence access path in some high-level languages, or on the

Open Database File (OPNDBF) command. When you ignore the keyed sequence access path, operations

that read data by key are not allowed. Operations are done sequentially along the arrival sequence access

92 OS/400 DB2 UDB for iSeries Database programming V5R3

|
|

|
|

|

|

|
|

path. (If this option is specified for a logical file with select/omit values defined, the arrival sequence

access path is used and only those records meeting the select/omit values are returned to the program.

The processing is done as if the DYNSLT keyword was specified for the file.)

Note: You cannot ignore the keyed sequence access path for logical file members that are based on more

than one physical file member.

Delaying end of file processing: EOFDLY Parameter. When you are reading a database file and your

program reaches the end of the data, the system normally signals your program that there is no more

data to read. Occasionally, instead of telling the program there is no more data, you might want the

system to hold your program until more data arrives in the file. When more data arrives in the file, the

program can read the newly arrived records. If you need that type of processing, you can use the

EOFDLY parameter on the Override with Database File (OVRDBF) command. For more information on

this parameter, see “Waiting for more records when end of file is reached” on page 161.

Note: End of file delay should not be used for files that reuse deleted records.

Specifying the record length: The system needs to know the length of the record your program will be

processing, but you do not have to specify record length in your program. The system automatically

determines this information from the attributes and description of the file named in your program.

However, as an option, you can specify the length of the record in your high-level language program.

If the file that is opened contains records that are longer than the length specified in the program, the

system allocates a storage area to match the file member’s record length and this option is ignored. In

this case, the entire record is passed to the program. (However, some high-level languages allow you to

access only that portion of the record defined by the record length specified in the program.) If the file

that is opened contains records that are less than the length specified in the program, the system allocates

a storage area for the program-specified record length. The program can use the extra storage space, but

only the record lengths defined for the file member are used for input/output operations.

Ignoring record formats: When you use a multiple format logical file, the system assumes you want to

use all formats defined for that file. However, if you do not want to use all of the formats, you can

specify which formats you want to use and which ones you want to ignore. If you do not use this option

to ignore formats, your program can process all formats defined in the file. For more information about

this processing option, see your high-level language guide.

Determining if duplicate keys exist: DUPKEYCHK Parameter. The set of keyed sequence access paths

used to determine if the key is a duplicate key differs depending on the I/O operation that is performed.

For input operations (reads), the keyed sequence access path used is the one that the file is opened with.

Any other keyed sequence access paths that can exist over the physical file are not considered. Also, any

records in the keyed sequence access path omitted because of select/omit specifications are not

considered when deciding if the key operation is a duplicate.

For output (write) and update operations, all nonunique keyed sequence access paths of *IMMED

maintenance that exist over the physical file are searched to determine if the key for this output or

update operation is a duplicate. Only keyed sequence access paths that have *RBLD and *DLY

maintenance are considered if the access paths are actively open over the file at feedback time.

When you process a keyed file with a COBOL program, you can specify duplicate key feedback to be

returned to your program through the COBOL language, or on the Open Database File (OPNDBF) or

Open Query File (OPNQRYF) commands. However, in COBOL having duplicate key feedback returned

can cause a decline in performance.

Database programming 93

Data recovery and integrity

The following section describes data integrity run-time considerations. See these topics:

v “Protecting your file with journaling and commitment control”

v “Writing data and access paths to auxiliary storage”

v “Checking changes to the record format description”

v “Checking for the expiration date of the file”

v “Preventing the job from changing data in the file”

Protecting your file with journaling and commitment control: COMMIT Parameter. Journaling and

commitment control are the preferred methods for data and transaction recovery on the iSeries system.

Database file journaling is started by running the Start Journal Physical File (STRJRNPF) command for

the file. Access path journaling is started by running the Start Journal Access Path (STRJRNAP) command

for the file or by using System-Managed Access-Path Protection (SMAPP). You tell the system that you

want your files to run under commitment control through the Start Commitment Control (STRCMTCTL)

command and through high-level language specifications. You can also specify the commitment control

(COMMIT) parameter on the Open Database File (OPNDBF) and Open Query File (OPNQRYF)

commands. For more information about journaling and commitment control, see “Managing journals” on

page 188 and “Ensuring data integrity with commitment control” on page 194.

If you are performing inserts, updates, or deletes on a file that is associated with a referential constraint

and the delete rule, update rule, or both is other than RESTRICT, you must use journaling. For more

information about referential constraints, see “Ensuring data integrity with referential constraints” on

page 213.

Writing data and access paths to auxiliary storage: FRCRATIO and FRCACCPTH Parameters.

Normally, DB2 UDB for iSeries determines when to write changed data from main storage to auxiliary

storage. If you want to control when database changes are written to auxiliary storage, you can use the

force write ratio (FRCRATIO) parameter on either the create, change, or override database file commands,

and the force access path (FRCACCPTH) parameter on the create and change database file commands.

Using the FRCRATIO and FRCACCPTH parameters have performance and recovery considerations for

your system. To understand these considerations, see “Recovering and restoring your database” on page

187.

Checking changes to the record format description: LVLCHK Parameter. The system checks, when you

open the file, if the description of the record format you are using was changed since the program was

compiled to an extent that your program cannot process the file. The system normally notifies your

program of this condition. This condition is known as a level check. When you use the create or change

file commands, you can specify that you want level checking. You can also override the level check

attribute defined for the file using the LVLCHK parameter on the Override with Database File (OVRDBF)

command. For more information about this parameter, see “Effect of changing fields in a file description”

on page 184.

Checking for the expiration date of the file: EXPDATE and EXPCHK Parameters. The system can

verify that the data in the file you specify is still current. You can specify the expiration date for a file or

member using the EXPDATE parameter on the create and change file commands, and you can specify

whether or not the system is to check that date using the EXPCHK parameter on the Override with

Database File (OVRDBF) command. If you do check the expiration date and the current date is greater

than the expiration date, a message is sent to the system operator when the file is opened.

Preventing the job from changing data in the file: INHWRT Parameter. If you want to test your

program, but do not want to actually change data in files used for the test, you can tell the system to not

write (inhibit) any changes to the file that the program attempts to make. To inhibit any changes to the

file, specify INHWRT(*YES) on the Override with Database File (OVRDBF) command.

94 OS/400 DB2 UDB for iSeries Database programming V5R3

Locking shared data

By definition, all database files can be used by many users at the same time. However, some operations

can lock the file, member, or data records in a member to prevent them from being shared across jobs.

While the file, member, or record is locked, no other job can read the same data for update, which keeps

another job from unintentionally deleting the first job’s update.

You can lock a row in iSeries Navigator by opening a table and editing the row you want to lock. You

can also use the SQL LOCK TABLE statement. Or, you can use the following operations to lock files,

members, or data records:

v “Locking records”

v “Locking files” on page 96

v “Locking members” on page 96

v “Locking record format data” on page 96

You can display locked records using either of the following methods:

v “Displaying locked records using DSPRCDLCK” on page 96

v “Displaying locked rows using iSeries Navigator”

For a list of commonly used database functions and the types of locks they place on database files, see

Database lock considerations.

Locking records: WAITRCD Parameter. DB2 UDB for iSeries has built-in integrity for records. For

example, if PGMA reads a record for update, it locks that record. Another program may not read the

same record for update until PGMA releases the record, but another program could read the record just

for inquiry. In this way, the system ensures the integrity of the database.

The system determines the lock condition based on the type of file processing specified in your program

and the operation requested. For example, if your open options include update or delete, each record

read is locked so that any number of users can read the record at the same time, but only one user can

update the record.

The system normally waits a specific number of seconds for a locked record to be released before it sends

your program a message that it cannot get the record you are requesting. The default record wait time is

60 seconds; however, you can set your own wait time through the WAITRCD parameter on the create

and change file commands and the override database file command. If your program is notified that the

record it wants is locked by another operation, you can have your program take the appropriate action

(for example, you could send a message to the operator that the requested record is currently

unavailable).

If the record lock is being implicitly acquired as a result of a referential integrity CASCADE DELETE,

SET NULL, or SET DEFAULT delete rule, the lock wait time is limited to 30 seconds.

The system automatically releases a lock when the locked record is updated or deleted. However, you

can release record locks without updating the record. For information on how to release a record lock, see

your high-level language guide.

Note: Using commitment control changes the record locking rules. See the Commitment Control topic for

more information about commitment control and its effect on the record locking rules.

You can display locked records using either of the following methods:

v “Displaying locked records using DSPRCDLCK” on page 96

v “Displaying locked rows using iSeries Navigator”

Displaying locked rows using iSeries Navigator: You can use iSeries Navigator to display locked rows.

Database programming 95

|
|

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Database.

3. Expand Libraries.

4. Click the library that contains the table for which you want to display locked row information.

5. Right-click the table and select Locked Rows.

6. The Locked Rows window displays the rows that are locked.

Displaying locked records using DSPRCDLCK: You can use the Display Record Locks (DSPRCDLCK)

command to display the current lock status (wait or held) of records for a physical file member. See

DSPRCDLCK (Display Record Locks) Command in the Control Language (CL) topic. The command will

also indicate what type of lock is currently held. (For more information about lock types, see the Backup

and Recovery

book.) Depending on the parameters you specify, this command displays the lock

status for a specific record or displays the lock status of all records in the member. You can also display

record locks from the Work with Job (WRKJOB) display.

Locking files: WAITFILE Parameter. Some file operations exclusively allocate the file for the length of

the operation. During the time the file is allocated exclusively, any program trying to open that file has to

wait until the file is released. You can control the amount of time a program waits for the file to become

available by specifying a wait time on the WAITFILE parameter of the create and change file commands

and the override database file command. If you do not specifically request a wait time, the system

defaults the file wait time to zero seconds.

A file is exclusively allocated when an operation that changes its attributes is run. These operations (such

as move, rename, grant or revoke authority, change owner, or delete) cannot be run at the same time with

any other operation on the same file or on members of that file. Other file operations (such as display,

open, dump, or check object) only use the file definition, and thus lock the file less exclusively. They can

run at the same time with each other and with input/output operations on a member.

Locking members: Member operations (such as add and remove) automatically allocate the file

exclusively enough to prevent other file operations from occurring at the same time. Input/output

operations on the same member cannot be run, but input/output operations on other members of the

same file can run at the same time.

Locking record format data: RCDFMTLCK Parameter. If you want to lock the entire set of records

associated with a record format (for example, all the records in a physical file), you can use the

RCDFMTLCK parameter on the OVRDBF command.

Database lock considerations: Table 6 summarizes some of the most commonly used database functions

and the types of locks they place on database files. The types of locks are explained on the next page.

 Table 6. Database Functions and Locks

Function Command File Lock Member/Data Lock Access Path Lock

Add Member ADDPFM, ADDLFM *EXCLRD *EXCLRD

Change File

Attributes

CHGPF, CHGLF *EXCL *EXCLRD *EXCLRD

Change Member

Attributes

CHGPFM, CHGLFM *SHRRD *EXCLRD

Change Object Owner CHGOBJOWN *EXCL

Check Object CHKOBJ *SHRNUPD

Clear Physical File

Member

CLRPFM *SHRRD *EXCLRD3

Create Duplicate

Object

CRTDUPOBJ *EXCL (new object)

*SHRNUPD (object)

96 OS/400 DB2 UDB for iSeries Database programming V5R3

Table 6. Database Functions and Locks (continued)

Function Command File Lock Member/Data Lock Access Path Lock

Create File CRTPF, CRTLF,

CRTSRCPF

*EXCL

Delete File DLTF *EXCL *EXCLRD

Grant/Revoke

Authority

GRTOBJAUT,

RVKOBJAUT

*EXCL

Initialize Physical File

Member

INZPFM *SHRRD *EXCLRD

Move Object MOVOBJ *EXCL

Open File OPNDBF, OPNQRYF *SHRRD *SHRRD *EXCLRD

Rebuild Access Path EDTRBDAP, OPNDBF *SHRRD *SHRRD *EXCLRD

Remove Member RMVM *EXCLRD *EXCL *EXCLRD

Rename File RNMOBJ *EXCL *EXCL *EXCL

Rename Member RNMM *EXCLRD *EXCL *EXCL

Reorganize Physical

File Member

RGZPFM *SHRRD *EXCL4

Restore File RSTLIB, RSTOBJ *EXCL

Save File SAVLIB, SAVOBJ,

SAVCHGOBJ

*SHRNUPD1 *SHRNUPD2

:

1 For save-while-active, the file lock is *SHRUPD initially, and then the lock is reduced to *SHRRD. See the

Backup and Recovery

for a description of save-while-active locks for the save commands.

2 For save-while-active, the member/data lock is *SHRRD.

3 The clear does not happen if the member is open in this process or any other process.

4 If ALWCANCEL(*YES) is specified, the LOCK keyword may specify a *SHRUPD or *EXCLRD lock instead.

The following table shows the valid lock combinations:

 Lock *EXCL *EXCLRD *SHRUPD *SHRNUPD *SHRRD

*EXCL1

*EXCLRD2

 X

*SHRUPD3

 X X

*SHRNUPD4

 X X

*SHRRD5

 X X X X

:

1 Exclusive lock (*EXCL). The object is allocated for the exclusive use of the requesting job; no other job can

use the object.

2 Exclusive lock, allow read (*EXCLRD). The object is allocated to the job that requested it, but other jobs can

read the object.

3 Shared lock, allow read and update (*SHRUPD). The object can be shared either for read or change with

other jobs.

4 Shared lock, read only (*SHRNUPD). The object can be shared for read with other jobs.

5 Shared lock (*SHRRD). The object can be shared with another job if the job does not request exclusive use

of the object.

Database programming 97

||

Table 7 shows database locking for constraints of a database file, depending on whether the constraint is

associated with the parent file (PAR) or the dependent file (DEP).

 Table 7. Database Constraint Locks. The numbers in parentheses refer to notes at the end of the table.

TYPE OF FUNCTION FILE TYPE FILE (5) MEMBER (5) OTHER FILE

OTHER

MEMBER

ADDPFM (1) DEP *EXCL *EXCL *EXCL *EXCL

ADDPFM (1) PAR *EXCL *EXCL *EXCL *EXCL

ADDPFCST (7) *REFCST *EXCL *EXCL *EXCL *EXCL

ADDPFCST (6) *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL

ADDPFCST *UNIQUE *PRIKEY *EXCL *EXCL

RMVM (2) DEP *EXCL *EXCL *EXCL *EXCL

RMVM (2) PAR *EXCL *EXCL *EXCL *EXCL

DLTF (3) DEP *EXCL *EXCL *EXCL *EXCL

DLTF (3) PAR *EXCL *EXCL *EXCL *EXCL

RMVPFCST (7) *REFCST *EXCL *EXCL *EXCL (4) *EXCL

RMVPFCST (6) *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL

RMVPFCST *UNIQUE *PRIKEY *EXCL *EXCL

CHGPFCST *EXCL *EXCL *SHRRD *EXCL

Note:

1. If the add of a physical file member will cause a referential constraint to be established.

2. If the remove of a physical file member will cause an established referential constraint to become defined.

3. When deleting a dependent or parent file that has constraints established or defined for the file.

4. When the remove physical file constraint command (RMVPFCST) is invoked for the parent file which has

constraints established or defined, the parent and any logical files over the parent file are all locked *EXCL.

5. For referential constraints, the column refers to the dependent file or the dependent member.

6. Unique constraint or primary key constraint is a parent key in a referential constraint where the other file is the

dependent file.

7. Other file is the parent file.

Sharing database files in the same job or activation group

SHARE Parameter. By default, the database management system lets one file be read and changed by

many users at the same time. You can also share a file in the same job or activation group by opening the

database file:

v More than once in the same program.

v In different programs in the same job or activation group.

Note: For more information on open sharing in the Integrated Language Environment see the ILE

Concepts

book.

The SHARE parameter on the create file, change file, and override database file commands allow sharing

in a job or activation group, including sharing the file, its status, its positions, and its storage area.

Sharing files in the job or activation group can improve performance by reducing the amount of main

storage needed and by reducing the time needed to open and close the file.

Using the SHARE(*YES) parameter lets two or more programs running in the same job or activation

group share an open data path (ODP). An open data path is the path through which all input/output

operations for the file are performed. In a sense, it connects the program to a file. If you do not specify

the SHARE(*YES) parameter, a new open data path is created every time a file is opened. If an active file

is opened more than once in the same job or activation group, you can use the active ODP for the file

with the current open of the file. You do not have to create a new open data path.

98 OS/400 DB2 UDB for iSeries Database programming V5R3

This reduces the amount of time required to open the file after the first open, and the amount of main

storage required by the job or activation group. SHARE(*YES) must be specified for the first open and

other opens of the same file for the open data path to be shared. A well-designed (for performance)

application normally shares an open data path with files that are opened in multiple programs in the

same job or activation group.

Specifying SHARE(*NO) tells the system not to share the open data path for a file. Normally, this is

specified only for those files that are seldom used or require unique processing in specific programs.

Note: A high-level language program processes an open or a close operation as though the file were not

being shared. You do not specify that the file is being shared in the high-level language program.

You indicate that the file is being shared in the same job or activation group through the SHARE

parameter. The SHARE parameter is specified only on the create, change, and override database

file commands.

See the following topics for other considerations when sharing database files:

v “Open considerations for files shared in a job or activation group”

v “Input/output considerations for files shared in a job or activation group” on page 100

v “Close considerations for files shared in a job or activation group” on page 100

Open considerations for files shared in a job or activation group: Consider the following items when

you open a database file that is shared in the same job or activation group.

v Make sure that when the shared file is opened for the first time in a job or activation group, all the

open options needed for subsequent opens of the file are specified. If the open options specified for

subsequent opens of a shared file do not match those specified for the first open of a shared file, an

error message is sent to the program. (You can correct this by making changes to your program or to

the OPNDBF or OPNQRYF command parameters, to remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job or activation group and PGMA only

needs to read the file. However, PGMA calls PGMB, which will delete records from the same shared

file. Because PGMB will delete records from the shared file, PGMA will have to open the file as if it,

PGMA, is also going to delete records. You can accomplish this by using the correct specifications in

the high-level language. (To accomplish this in some high-level languages, you may have to use file

operation statements that are never run. See your high-level language guide for more details.) You can

also specify the file processing option on the OPTION parameter on the Open Database File (OPNDBF)

and Open Query File (OPNQRYF) commands.

v Sometimes sharing a file within a job or activation group is not desirable. For example, one program

can need records from a file in arrival sequence and another program needs the records in keyed

sequence. In this situation, you should not share the open data path. You would specify SHARE(*NO)

on the Override with Database File (OVRDBF) command to ensure the file was not shared within the

job or activation group.

v If debug mode is entered with UPDPROD(*NO) after the first open of a shared file in a production

library, subsequent shared opens of the file share the original open data path and allow the file to be

changed. To prevent this, specify SHARE(*NO) on the OVRDBF command before opening files being

debugged.

v The use of commitment control for the first open of a shared file requires that all subsequent shared

opens also use commitment control.

v Key feedback, insert key feedback, or duplicate key feedback must be specified on the full open if any

of these feedback types are desired on the subsequent shared opens of the file.

v If you did not specify a library name in the program or on the Override with Database File (OVRDBF)

command (*LIBL is used), the system assumes the library list has not changed since the last open of

the same shared file with *LIBL specified. If the library list has changed, you should specify the library

name on the OVRDBF command to ensure the correct file is opened.

Database programming 99

v The record length that is specified on the full open is the record length that is used on subsequent

shared opens even if a larger record length value is specified on the shared opens of the file.

v Overrides and program specifications specified on the first open of the shared file are processed.

Overrides and program specifications specified on subsequent opens, other than those that change the

file name or the value specified on the SHARE or LVLCHK parameters on the OVRDBF command, are

ignored.

v Overrides specified for a first open using the OPNQRYF command can be used to change the names of

the files, libraries, and members that should be processed by the Open Query File command. Any

parameter values specified on the Override with Database File (OVRDBF) command other than

TOFILE, MBR, LVLCHK, and SEQONLY are ignored by the OPNQRYF command.

v The Open Database File (OPNDBF) and Open Query File (OPNQRYF) commands scope the ODP to the

level specified on the Open Scope (OPNSCOPE) parameter according to the following:

– The system searches for shared opens in the activation group first, and then in the job.

– Shared opens that are scoped to an activation group may not be shared between activation groups.

– Shared opens that are scoped to the job can be shared throughout the job, by any number of

activation groups at a time.

The CPF4123 diagnostic message lists the mismatches that can be encountered between the full open and

the subsequent shared opens. These mismatches do not cause the shared open to fail.

Note: The Open Query File (OPNQRYF) command never shares an existing shared open data path in the

job or activation group. If a shared ODP already exists in the job or activation group with the same

file, library, and member name as the one specified on the Open Query File command, the system

sends an error message and the query file is not opened.

Input/output considerations for files shared in a job or activation group: Consider the following items

when processing a database file that is shared in the same job or activation group.

v Because only one open data path is allowed for a shared file, only one record position is maintained

for all programs in the job or activation group that is sharing the file. If a program establishes a

position for a record using a read or a read-for-update operation, then calls another program that also

uses the shared file, the record position may have moved or a record lock been released when the

called program returns to the calling program. This can cause errors in the calling program because of

an unexpected record position or lock condition. When sharing files, it is your responsibility to manage

the record position and record locking considerations by re-establishing position and locks.

v If a shared file is first opened for update, this does not necessarily cause every subsequent program

that shares the file to request a record lock. The system determines the type of record lock needed for

each program using the file. The system tries to keep lock contention to a minimum, while still

ensuring data integrity.

For example, PGMA is the first program in the job or activation group to open a shared file. PGMA

intends to update records in the file; therefore, when the program reads a record for update, it will lock

the record. PGMA then calls PGMB. PGMB also uses the shared file, but it does not update any records

in the file; PGMB just reads records. Even though PGMA originally opened the shared file as

update-capable, PGMB will not lock the records it reads, because of the processing specifications in

PGMB. Thus, the system ensures data integrity, while minimizing record lock contention.

Close considerations for files shared in a job or activation group: Consider the following items when

closing a database file that is shared in the same job or activation group.

v The complete processing of a close operation (including releasing file, member, and record locks;

forcing changes to auxiliary storage; and destroying the open data path) is done only when the last

program to open the shared open data path closes it.

100 OS/400 DB2 UDB for iSeries Database programming V5R3

v If the file was opened with the Open Database File (OPNDBF) or the Open Query File (OPNQRYF)

command, use the Close File (CLOF) command to close the file. The Reclaim Resources (RCLRSC)

command can be used to close a file opened by the Open Query File (OPNQRYF) command when one

of the following is specified:

– OPNSCOPE(*ACTGRPDFN), and the open is requested from the default activation group.

– TYPE(*NORMAL) is specified.

If one of the following is specified, the file remains open even if the Reclaim Resources (RCLRSC)

command is run:

– OPNSCOPE(*ACTGRPDFN), and the open is requested from some activation group other than the

default

– OPNSCOPE(*ACTGRP)

– OPNSCOPE(*JOB)

– TYPE(*PERM)

See the following examples for things to consider when closing a file that is shared in the same job:

v “Example 1: Using a single set of files with similar processing options”

v “Example 2: Using multiple sets of files with similar processing options” on page 102

v “Example 3: Using a single set of files with different processing requirements” on page 103

Example 1: Using a single set of files with similar processing options: In this example, the user signs on and

most of the programs used process the same set of files.

A CL program (PGMA) is used as the first program (to set up the application, including overrides and

opening the shared files). PGMA then transfers control to PGMB, which displays the application menu.

Assume, in this example, that files A, B, and C are used, and files A and B are to be shared. Files A and B

were created with SHARE(*NO); therefore an OVRDBF command should precede each of the OPNDBF

commands to specify the SHARE(*YES) option. File C was created with SHARE(*NO) and File C is not to

be shared in this example.

PGMA: PGM /* PGMA - Initial program */

 OVRDBF FILE(A) SHARE(*YES)

 OVRDBF FILE(B) SHARE(*YES)

 OPNDBF FILE(A) OPTION(*ALL)

 OPNDBF FILE(B) OPTION(*INP) ...

 TFRCTL PGMB

 ENDPGM

PGMB: PGM /* PGMB - Menu program */

 DCLF FILE(DISPLAY)

BEGIN: SNDRCVF RCDFMT(MENU)

 IF (&RESPONSE *EQ ’1’) CALL PGM11

 IF (&RESPONSE *EQ ’2’) CALL PGM12

 .

 .

 IF (&RESPONSE *EQ ’90’) SIGNOFF

 GOTO BEGIN

 ENDPGM

The files opened in PGMA are either scoped to the job, or PGMA, PGM11, and PGM12 run in the same

activation group and the file opens are scoped to that activation group.

In this example, assume that:

v PGM11 opens files A and B. Because these files were opened as shared by the OPNDBF commands in

PGMA, the open time is reduced. The close time is also reduced when the shared open data path is

Database programming 101

closed. The Override with Database File (OVRDBF) commands remain in effect even though control is

transferred (with the Transfer Control [TFRCTL] command in PGMA) to PGMB.

v PGM12 opens files A, B, and C. File A and B are already opened as shared and the open time is

reduced. Because file C is used only in this program, the file is not opened as shared.

In this example, the Close File (CLOF) was not used because only one set of files is required. When the

operator signs off, the files are automatically closed. It is assumed that PGMA (the initial program) is

called only at the start of the job. For information on how to reclaim resources in the Integrated Language

Environment, see the ILE Concepts

book.

Note: The display file (DISPLAY) in PGMB can also be specified as a shared file, which would improve

the performance for opening the display file in any programs that use it later.

In Example 1, the OPNDBF commands are placed in a separate program (PGMA) so the other processing

programs in the job run as efficiently as possible. That is, the important files used by the other programs

in the job are opened in PGMA. After the files are opened by PGMA, the main processing programs

(PGMB, PGM11, and PGM12) can share the files; therefore, their open and close requests will process

faster. In addition, by placing the open commands (OPNDBF) in PGMA rather than in PGMB, the amount

of main storage used for PGMB is reduced.

Any overrides and opens can be specified in the initial program (PGMA); then, that program can be

removed from the job (for example, by transferring out of it). However, the open data paths that the

program created when it opened the files remain in existence and can be used by other programs in the

job.

Note the handling of the OVRDBF commands in relation to the OPNDBF commands. Overrides must be

specified before the file is opened. Some of the parameters on the OVRDBF command also exist on the

OPNDBF command. If conflicts arise, the OVRDBF value is used. For more information on when

overrides take effect in the Integrated Language Environment, see the ILE Concepts

book.

Example 2: Using multiple sets of files with similar processing options: Assume that a menu requests the

operator to specify the application program (for example, accounts receivable or accounts payable) that

uses the Open Database File (OPNDBF) command to open the required files. When the application is

ended, the Close File (CLOF) command closes the files. The CLOF command is used to help reduce the

amount of main storage needed by the job. In this example, different files are used for each application.

The user normally works with one application for a considerable length of time before selecting a new

application.

An example of the accounts receivable programs follows:

PGMC: PGM /* PGMC PROGRAM */

 DCLF FILE(DISPLAY)

BEGIN: SNDRCVF RCDFMT(TOPMENU)

 IF (&RESPONSE *EQ ’1’) CALL ACCRECV

 IF (&RESPONSE *EQ ’2’) CALL ACCPAY

 .

 .

 IF (&RESPONSE *EQ ’90’) SIGNOFF

 GOTO BEGIN

 ENDPGM

ACCREC: PGM /* ACCREC PROGRAM */

 DCLF FILE(DISPLAY)

 OVRDBF FILE(A) SHARE(*YES)

 OVRDBF FILE(B) SHARE(*YES)

 OPNDBF FILE(A) OPTION(*ALL)

102 OS/400 DB2 UDB for iSeries Database programming V5R3

OPNDBF FILE(B) OPTIONS(*INP) ...

BEGIN: SNDRCVF RCDFMT(ACCRMENU)

 IF (&RESPONSE *EQ ’1’) CALL PGM21

 IF (&RESPONSE *EQ ’2’) CALL PGM22

 .

 .

 IF (&RESPONSE *EQ ’88’) DO /* Return */

 CLOF FILE(A)

 CLOF FILE(B)

 RETURN

 ENDDO

 GOTO BEGIN

 ENDPGM

The program for the accounts payable menu would be similar, but with a different set of OPNDBF and

CLOF commands.

For this example, files A and B were created with SHARE(*NO). Therefore, an OVRDBF command must

precede the OPNDBF command. As in Example 1, the amount of main storage used by each job could be

reduced by placing the OPNDBF commands in a separate program and calling it. A separate program

could also be created for the CLOF commands. The OPNDBF commands could be placed in an

application setup program that is called from the menu, which transfers control to the specific application

program menu (any overrides specified in this setup program are kept). However, calling separate

programs for these functions also uses system resources and, depending on the frequency with which the

different menus are used, it can be better to include the OPNDBF and CLOF commands in each

application program menu as shown in this example.

Another choice is to use the Reclaim Resources (RCLRSC) command in PGMC (the setup program)

instead of using the Close File (CLOF) commands. The RCLRSC command closes any files and frees any

leftover storage associated with any files and programs that were called and have since returned to the

calling program. However, RCLRSC does not close files that are opened with the following specified on

the Open Database File (OPNDBF) or Open Query File (OPNQRYF) commands:

v OPNSCOPE(*ACTGRPDFN), and the open is requested from some activation group other than the

default.

v OPNSCOPE(*ACTGRP) reclaims if the RCLRSC command is from an activation group with an

activation group number that is lower than the activation group number of the open.

v OPNSCOPE(*JOB).

v TYPE(*PERM).

The following example shows the RCLRSC command used to close files:

 .

 .

IF (&RESPONSE *EQ ’1’) DO

 CALL ACCRECV

 RCLRSC

 ENDDO

IF (&RESPONSE *EQ ’2’) DO

 CALL ACCPAY

 RCLRSC

 ENDDO

 .

 .

Example 3: Using a single set of files with different processing requirements: If some programs need read-only

file processing and others need some or all of the options (input/update/add/delete), one of the

following methods can be used. The same methods apply if a file is to be processed with certain

command parameters in some programs and not in others (for example, sometimes the commit option

should be used).

Database programming 103

A single Open Database File (OPNDBF) command could be used to specify OPTION(*ALL) and the open

data path would be opened shared (if, for example, a previous OVRDBF command was used to specify

SHARE(*YES)). Each program could then open a subset of the options. The program requests the type of

open depending on the specifications in the program. In some cases this does not require any more

considerations because a program specifying an open for input only would operate similarly as if it had

not done a shared open (for example, no additional record locking occurs when a record is read).

However, some options specified on the OPNDBF command can affect how the program operates. For

example, SEQONLY(*NO) is specified on the open command for a file in the program. An error would

occur if the OPNDBF command used SEQONLY(*YES) and a program attempted an operation that was

not valid with sequential-only processing.

The ACCPTH parameter must also be consistent with the way programs will use the access path (arrival

or keyed).

If COMMIT(*YES) is specified on the Open Database File (OPNDBF) command and the Start

Commitment Control (STRCMTCTL) command specifies LCKLVL(*ALL) or LCKLVL(*CS), any read

operation of a record locks that record (per commitment control record locking rules). This can cause

records to be locked unexpectedly and cause errors in the program.

Two OPNDBF commands could be used for the same data (for example, one with OPTION(*ALL) and

the other specifying OPTION(*INP)). The second use must be a logical file pointing to the same physical

file(s). This logical file can then be opened as SHARE(*YES) and multiple uses made of it during the

same job.

Sequential-only processing of database files

SEQONLY and NBRRCDS Parameters. If your program processes a database file sequentially for input

only or output only, you might be able to improve performance using the sequential-only processing

(SEQONLY) parameter on the Override with Database File (OVRDBF) or the Open Database File

(OPNDBF) commands. To use SEQONLY processing, the file must be opened for input-only or

output-only. The NBRRCDS parameter can be used with any combination of open options. (The Open

Query File [OPNQRYF] command uses sequential-only processing whenever possible.) Depending on

your high-level language specifications, the high-level language can also use sequential-only processing

as the default. For example, if you open a file for input only and the only file operations specified in the

high-level language program are sequential read operations, then the high-level language automatically

requests sequential-only processing.

Note: File positioning operations are not considered sequential read operations; therefore, a high-level

language program containing positioning operations will not automatically request sequential-only

processing. (The SETLL operation in the RPG/400 language and the START operation in the

COBOL/400* language are examples of file positioning operations.) Even though the high-level

language program can not automatically request sequential-only processing, you can request it

using the SEQONLY parameter on the OVRDBF command.

If you specify sequential-only processing, you can also specify the number of records to be moved as one

unit between the system database main storage area and the job’s internal data main storage area. If you

do not specify the sequential-only number of records to be moved, the system calculates a number based

on the number of records that fit into a 4096-byte buffer.

The system also provides you a way to control the number of records that are moved as a unit between

auxiliary storage and main storage. If you are reading the data in the file in the same order as the data is

physically stored, you can improve the performance of your job using the NBRRCDS parameter on the

OVRDBF command.

104 OS/400 DB2 UDB for iSeries Database programming V5R3

Note: Sequential-only processing should not be used with a keyed sequence access path file unless the

physical data is in the same order as the access path. SEQONLY(*YES) processing may cause poor

application performance until the physical data is reorganized into the access path’s order.

See the following topics for considerations when doing sequential-only processing:

v “Open considerations for sequential-only processing”

v “Input/output considerations for sequential-only processing” on page 106

v “Close considerations for sequential-only processing” on page 106

Open considerations for sequential-only processing: The following considerations apply for opening

files when sequential-only processing is specified. If the system determines that sequential-only

processing is not allowed, a message is sent to the program to indicate that the request for

sequential-only processing is not being accepted; however, the file is still opened for processing.

v If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of

records was not specified) and either the opened member is a logical member, a uniquely keyed

physical member, or there are other access paths to the physical member, SEQONLY(*YES) is changed

to SEQONLY(*NO) so the program can handle possible errors (for example, duplicate keys, conversion

mapping, and select/omit errors) at the time of the output operation. If you want the system to run

sequential-only processing, change the SEQONLY parameter to include both the *YES value and

number of records specification.

v Sequential-only processing can be specified only for input-only (read) or output-only (add) operations.

If the program specifies update or delete operations, sequential-only processing is not allowed by the

system.

v If a file is being opened for output, it must be a physical file or a logical file based on one physical file

member.

v Sequential-only processing can be specified with commitment control only if the member is opened for

output-only.

v If sequential-only processing is being used for files opened with commitment control and a rollback

operation is performed for the job, the records that reside in the job’s storage area at the time of the

rollback operation are not written to the system storage area and never appear in the journal for the

commitment control transaction. If no records were ever written to the system storage area prior to a

rollback operation being performed for a particular commitment control transaction, the entire

commitment control transaction is not reflected in the journal.

v For output-only, the number of records specified to be moved as a unit and the force ratio are

compared and automatically adjusted as necessary. If the number of records is larger than the force

ratio, the number of records is reduced to equal the force ratio. If the opposite is true, the force ratio is

reduced to equal the number of records.

v If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of

records was not specified), and duplicate or insert key feedback has been requested, SEQONLY(*YES)

will be changed to SEQONLY(*NO) to provide the feedback on a record-by-record basis when the

records are inserted into the file.

v The number of records in a block will be changed to one if all of the following are true:

– The member was opened for output-only processing.

– No override operations are in effect that have specified sequential-only processing.

– The file being opened is a file that cannot be extended because its increment number of records was

set to zero.

– The number of bytes available in the file is less than the number of bytes that fit into a block of

records.

The following considerations apply when sequential-only processing is not specified and the file is

opened using the Open Query File (OPNQRYF) command. If these conditions are satisfied, a message is

sent to indicate that sequential-only processing will be performed and the query file is opened.

Database programming 105

v If the OPNQRYF command specifies the name of one or more fields on the group field (GRPFLD)

parameter, or OPNQRYF requires group processing.

v If the OPNQRYF command specifies one or more fields, or *ALL on the UNIQUEKEY parameter.

v If a view is used with the DISTINCT option on the SQL SELECT statement, then SEQONLY(*YES)

processing is automatically performed.

For more details about the OPNQRYF command, see “Using the Open Query File (OPNQRYF)

command” on page 111.

Input/output considerations for sequential-only processing: The following considerations apply for

input/output operations on files when sequential-only processing is specified.

v For input, your program receives one record at a time from the input buffer. When all records in the

input buffer are processed, the system automatically reads the next set of records.

Note: Changes made after records are read into the input buffer are not reflected in the input buffer.

v For output, your program must move one record at a time to the output buffer. When the output

buffer is full, the system automatically adds the records to the database.

Note: If you are using a journal, the entire buffer is written to the journal at one time as if the entries

had logically occurred together. This journal processing occurs before the records are added to

the database.

If you use sequential-only processing for output, you might not see all the changes made to the file as

they occur. For example, if sequential-only is specified for a file being used by PGMA, and PGMA is

adding new records to the file and the SEQONLY parameter was specified with 5 as the number of

records in the buffer, then only when the buffer is filled will the newly added records be transferred to

the database. In this example, only when the fifth record was added, would the first five records be

transferred to the database, and be available for processing by other jobs in the system.

In addition, if you use sequential-only processing for output, some additions might not be made to the

database if you do not handle the errors that could occur when records are moved from the buffer to

the database. For example, assume the buffer holds five records, and the third record in the buffer had

a key that was a duplicate of another record in the file and the file was defined as a unique-key file. In

this case, when the system transfers the buffer to the database it would add the first two records and

then get a duplicate key error for the third. Because of this error, the third, fourth, and fifth records in

the buffer would not be added to the database.

v The force-end-of-data function can be used for output operations to force all records in the buffer to

the database (except those records that would cause a duplicate key in a file defined as having unique

keys, as described previously). The force-end-of-data function is only available in certain high-level

languages.

v The number of records in a block will be changed to one if all of the following are true:

– The member was opened for output-only processing or sequential-only processing.

– No override operations are in effect that have specified sequential-only processing.

– The file being opened is being extended because the increment number of records was set to zero.

– The number of bytes available in the file is less than the number of bytes that fit into a block of

records.

Close considerations for sequential-only processing: When a file for which sequential-only processing

is specified is closed, all records still in the output buffer are added to the database. However, if an error

occurs for a record, any records following that record are not added to the database.

If multiple programs in the same job are sharing a sequential-only output file, the output buffer is not

emptied until the final close occurs. Consequently, a close (other than the last close in the job) does not

cause the records still in the buffer to appear in the database for this or any other job.

106 OS/400 DB2 UDB for iSeries Database programming V5R3

Summary of run time considerations for processing database files

The following tables list parameters that control your program’s use of the database file member, and

indicates where these parameters can be specified. For parameters that can be specified in more than one

place, the system merges the values. The Override with Database File (OVRDBF) command parameters

take precedence over program parameters, and Open Database File (OPNDBF) or Open Query File

(OPNQRYF) command parameters take precedence over create or change file parameters.

Note: Any override parameters other than TOFILE, MBR, LVLCHK, SEQONLY, SHARE, WAITRCD, and

INHWRT are ignored by the OPNQRYF command.

A table of database processing options specified on control language (CL) commands is shown below:

 Table 8. Database Processing Options Specified on CL Commands

Description Parameter

Command

CRTPF, CRTLF

CHGPF,

CHGLF OPNDBF OPNQRYF OVRDBF

File name FILE X X1 X X X

Library name X X2 X X X

Member name MBR X X X X

Member

processing

options

OPTION X X

Record format

lock state

RCDFMTLCK X

Starting file

position after

open

POSITION X

Program

performs only

sequential

processing

SEQONLY X X X

Ignore keyed

sequence

access path

ACCPTH X

Time to wait

for file locks

WAITFILE X X X

Time to wait

for record

locks

WAITRCD X X X

Prevent

overrides

SECURE X

Number of

records to be

transferred

from auxiliary

to main

storage

NBRRCDS X

Share open

data path with

other programs

SHARE X X X

Format selector FMTSLR X3 X3

 X

Force ratio FRCRATIO X X X

Database programming 107

Table 8. Database Processing Options Specified on CL Commands (continued)

Description Parameter

Command

CRTPF, CRTLF

CHGPF,

CHGLF OPNDBF OPNQRYF OVRDBF

Inhibit write INHWRT X

Level check

record formats

LVLCHK X X X

Expiration date

checking

EXPCHK X

Expiration date EXPDATE X4 X4

 X

Force access

path

FRCACCPTH X X

Commitment

control

COMMIT X X

End-of-file

delay

EOFDLY X

Duplicate key

check

DUPKEYCHK X X

Reuse deleted

record space

REUSEDLT X4 X4

Coded

character set

identifier

CCSID X4 X4

Sort Sequence SRTSEQ X X X

Language

identifier

LANGID X X X

Notes:

1 File name: The CHGPF and CHGLF commands use the file name for identification only. You cannot change

the file name.

2 Library name: The CHGPF and CHGLF commands use the library name for identification only. You cannot

change the library name.

3 Format selector: Used on the CRTLF and CHGLF commands only.

4 Expiration date, reuse deleted records, and coded character set identifier: Used on the CRTPF and CHGPF

commands only.

A table of database processing options specified in programs is shown below:

 Table 9. Database Processing Options Specified in Programs

Description

RPG/400

Language

COBOL/400

Language iSeries BASIC iSeries PL/I iSeries Pascal

File name X X X X X

Library name X X X

Member name X X X

Program record

length

X X X X X

Member

processing

options

X X X X X

108 OS/400 DB2 UDB for iSeries Database programming V5R3

Table 9. Database Processing Options Specified in Programs (continued)

Description

RPG/400

Language

COBOL/400

Language iSeries BASIC iSeries PL/I iSeries Pascal

Record format

lock state

 X X

Record formats

the program will

use

X X

Clear physical file

member of

records

 X X X

Program

performs only

sequential

processing

X X X X

Ignore keyed

sequence access

path

X X X X X

Share open data

path with other

programs

 X X

Level check

record formats

X X X X

Commitment

control

X X X

Duplicate key

check

 X

: Control language (CL) programs can also specify many of these parameters. See Table 8 on page 107 for more

information about the database processing options that can be specified on CL commands.

Storage pool paging option effect on database performance

The Paging option of shared pools can have a significant impact on the performance of reading and

changing database files.

v A paging option of *FIXED causes the program to minimize the amount of memory it uses by:

– Transferring data from auxiliary storage to main memory in smaller blocks

– Writing file changes (updates to existing records or newly added records) to auxiliary storage

frequently

This option allows the system to perform much like it did before the paging option was added.

v A paging option of *CALC may improve how the program performs when it reads and updates

database files. In cases where there is sufficient memory available within a shared pool, the program

may:

– Transfer larger blocks of data to memory from auxiliary storage.

– Write changed data to auxiliary storage less frequently.

The paging operations done on database files vary dynamically based on file use and memory

availability. Frequently referenced files are more likely to remain resident than those less often

accessed. The memory is used somewhat like a cache for popular data. The overall number of I/O

operations may be reduced using the *CALC paging option.

For more information on the paging option, see the Performance topic in the Information Center.

Database programming 109

Opening a database file

This chapter discusses opening a database file. In addition, the CL commands Open Database File

(OPNDBF) and Open Query File (OPNQRYF) are discussed. See the following topics:

v “Opening a database file member”

v “Using the Open Database File (OPNDBF) command”

v “Using the Open Query File (OPNQRYF) command” on page 111

Opening a database file member

To use a database file in a program, your program must issue an open operation to the database file. If

you do not specify an open operation in some programming languages, they automatically open the file

for you. If you did not specify a member name in your program or on an Override with Database File

(OVRDBF) command, the first member (as defined by creation date and time) in the file is used.

If you specify a member name, files that have the correct file name but do not contain the member name

are ignored. If you have multiple database files named FILEA in different libraries, the member that is

opened is the first one in the library list that matches the request. For example, LIB1, LIB2, and LIB3 are

in your library list and all three contain a file named FILEA. Only FILEA in LIB3 has a member named

MBRA that is to be opened. Member MRBA in FILEA in LIB3 is opened; the other FILEAs are ignored.

After finding the member, the system connects your program to the database file. This allows your

program to perform input/output operations to the file. For more information about opening files in your

high-level language program, see the appropriate high-level language guide.

You can open a database file with statements in your high-level language program. You can also use the

CL open commands: Open Database File (OPNDBF) and Open Query File (OPNQRYF). The OPNDBF

command is useful in an initial program in a job for opening shared files. The OPNQRYF command is

very effective in selecting and arranging records outside of your program. Then, your program can use

the information supplied by the OPNQRYF command to process only the data it needs. See OPNDF

(Open Database File) Command and OPNQRYF (Open Query File) Command in the Control Language

(CL) topic.

Using the Open Database File (OPNDBF) command

Usually, when you use the OPNDBF command, you can use the defaults for the command parameter

values. In some instances you may want to specify particular values, instead of using the default values,

for the following parameters:

OPTION Parameter. Specify the *INP option if your application programs uses input-only processing

(reading records without updating records). This allows the system to read records without trying to lock

each one for possible update. Specify the *OUT option if your application programs uses output-only

processing (writing records into a file but not reading or updating existing records).

Note: If your program does direct output operations to active records (updating by relative record

number), *ALL must be specified instead of *OUT. If your program does direct output operations

to deleted records only, *OUT must be specified.

MBR Parameter. If a member, other than the first member in the file, is to be opened, you must specify

the name of the member to be opened or issue an Override with Database File (OVRDBF) command

before the Open Database File (OPNDBF) command.

Note: You must specify a member name on the OVRDBF command to use a member (other than the first

member) to open in subsequent programs.

OPNID Parameter. If an identifier other than the file name is to be used, you must specify it. The open

identifier can be used in other CL commands to process the file. For example, the Close File (CLOF)

command uses the identifier to specify which file is to be closed.

110 OS/400 DB2 UDB for iSeries Database programming V5R3

ACCPTH Parameter. If the file has a keyed sequence access path and either (1) the open option is *OUT,

or (2) the open option is *INP or *ALL, but your program does not use the keyed sequence access path,

then you can specify ACCPTH(*ARRIVAL) on the OPNDBF parameter. Ignoring the keyed sequence

access path can improve your job’s performance.

SEQONLY Parameter. Specify *YES if subsequent application programs process the file sequentially. This

parameter can also be used to specify the number of records that should be transferred between the

system data buffers and the program data buffers. SEQONLY(*YES) is not allowed unless OPTION(*INP)

or OPTION(*OUT) is also specified on the Open Database File (OPNDBF) command. Sequential-only

processing should not be used with a keyed sequence access path file unless the physical data is in access

path order.

COMMIT Parameter. Specify *YES if the application programs use commitment control. If you specify

*YES you must be running in a commitment control environment (the Start Commitment Control

[STRCMTCTL] command was processed) or the OPNDBF command will fail. Use the default of *NO if

the application programs do not use commitment control.

OPNSCOPE Parameter. Specifies the scoping of the open data path (ODP). Specify *ACTGRPDFN if the

request is from the default activation group, and the ODP is to be scoped to the call level of the program

issuing the command. If the request is from any other activation group, the ODP is scoped to that

activation group. Specify *ACTGRP if the ODP is to be scoped to the activation group of the program

issuing the command. Specify *JOB if the ODP is to be scoped to the job. If you specify this parameter

and the TYPE parameter you get an error message.

DUPKEYCHK Parameter. Specify whether or not you want duplicate key feedback. If you specify *YES,

duplicate key feedback is returned on I/O operations. If you specify *NO, duplicate key feedback is not

returned on I/O operations. Use the default (*NO) if the application programs are not written in the

COBOL/400 language or C/400* language, or if your COBOL or C programs do not use the

duplicate-key feedback information that is returned.

TYPE Parameter. Specify what you wish to happen when exceptions that are not monitored occur in your

application program. If you specify *NORMAL one of the following can happen:

v Your program can issue a Reclaim Resources (RCLRSC) command to close the files opened at a higher

level in the call stack than the program issuing the RCLRSC command.

v The high-level language you are using can perform a close operation.

Specify *PERM if you want to continue the application without opening the files again. TYPE(*NORMAL)

causes files to be closed if both of the following occur:

v Your program receives an error message

v The files are opened at a higher level in the call stack.

TYPE(*PERM) allows the files to remain open even if an error message is received. Do not specify this

parameter if you specified the OPNSCOPE parameter.

Using the Open Query File (OPNQRYF) command

The Open Query File (OPNQRYF) command is a CL command that allows you to perform many data

processing functions on database files. Essentially, the OPNQRYF command acts as a filter between the

processing program and the database records. The database file can be a physical or logical file. Unlike

the Create Physical File (CRTPF) or Create Logical File (CRTLF) commands, the OPNQRYF command

creates only a temporary file for processing the data; it does not create a permanent file.

The OPNQRYF command has functions similar to those in DDS, and the CRTPF and CRTLF commands.

DDS requires source statements and a separate step to create the file. OPNQRYF allows a dynamic

definition without using DDS. The OPNQRYF command does not support all of the DDS functions, but it

Database programming 111

supports significant functions that go beyond the capabilities of DDS. In addition, Query for iSeries can

be used to perform some of the function the OPNQRYF command performs. However, the OPNQRYF

command is more useful as a programmer’s tool.

The OPNQRYF command parameters also have many functions similar to the SQL SELECT statements.

For example, the FILE parameter is similar to the SQL FROM statement, the QRYSLT parameter is similar

to the SQL WHERE statement, the GRPFLD parameter is similar to the SQL GROUP BY statement, and

the GRPSLT parameter is similar to the SQL HAVING statement. For more information about SQL, see

the SQL programming topic.

The following is a list of the major functions supplied by OPNQRYF.

v Dynamic record selection

v Dynamic keyed sequence access path

v Dynamic keyed sequence access path over a join

v Dynamic join

v Handling missing records in secondary join files

v Unique-key processing

v Mapped field definitions

v Group processing

v Final total-only processing

v Improving performance

v Open Query Identifier (ID)

v Sort sequence processing

See the Control Language (CL) topic for OPNQRYF command syntax and parameter descriptions.

For information about creating a query using the OPNQRYF command, see “Creating a query with the

OPNQRYF command” on page 113.

To understand the OPNQRYF command, you must be familiar with its two processing approaches: using

a format in the file, and using a file with a different format. The typical use of the OPNQRYF command

is to select, arrange, and format the data so it can be read sequentially by your high-level language

program. See the following topics for information about these processing approaches:

v “Using an existing record format in the file” on page 113

v “Using a file with a different record format” on page 115

For more detailed information about how to specify parameters for the major functions of OPNQRYF and

how to use the Open Query File command with your high-level language program, see the following

topics:

v “CL program coding with the OPNQRYF command” on page 117

v “The zero length literal and the contains (*CT) function” on page 117

v “Selecting records without using DDS” on page 117

Examples are included in these topics. For notes about the examples, see “OPNQRYF examples” on page

116.

For considerations when using OPNQRYF for these major functions, see the following topics:

v “Considerations for creating a file and using the FORMAT parameter” on page 142

v “Considerations for arranging records” on page 142

v “Considerations for DDM files” on page 143

v “Considerations for writing a high-level language program” on page 143

112 OS/400 DB2 UDB for iSeries Database programming V5R3

For information about messages issued when using OPNQRYF, see “Messages sent when the Open Query

File (OPNQRYF) command is run” on page 143.

For information about other ways to use OPNQRYF, see the following topics:

v “Using the Open Query File (OPNQRYF) command for more than just input” on page 145

v “Comparing date, time, and timestamp using the OPNQRYF command” on page 145

v “Performing date, time, and timestamp arithmetic using the OPNQRYF command” on page 146

v “Using the Open Query File (OPNQRYF) command for random processing” on page 150

For information about OPNQRYF performance and other considerations, see the following topics:

v “Open Query File command: Performance considerations” on page 150

v “Open Query File command: Performance considerations for sort sequence tables” on page 152

v “Performance comparisons with other database functions” on page 152

v “Considerations for field use” on page 153

v “Considerations for files shared in a job” on page 153

v “Considerations for checking if the record format description changed” on page 154

v “Other run time considerations for the OPNQRYF command” on page 154

For information about errors when using OPNQRYF, see “Typical errors when using the Open Query File

(OPNQRYF) command” on page 156.

Creating a query with the OPNQRYF command: To create a query, you can use the OPNQRYF

command. Alternatively, you can create a query using the Run SQL Scripts window in iSeries Navigator.

See Creating a script (query) using Run SQL Scripts.

Using an existing record format in the file: Assume you only want your program to process the

records in which the Code field is equal to D. You create the program as if there were only records with a

D in the Code field. That is, you do not code any selection operations in the program. You then run the

OPNQRYF command, and specify that only the records with a D in the Code field are to be returned to

the program. The OPNQRYF command does the record selection and your program processes only the

records that meet the selection values. You can use this approach to select a set of records, return records

in a different sequence than they are stored, or both. The following is an example of using the OPNQRYF

command to select and sequence records:

Database programming 113

�1� Create the high-level language program to process the database file as you would any normal

program using externally described data. Only one format can be used, and it must exist in the

file.

�2� Run the OVRDBF command specifying the file and member to be processed and SHARE(*YES).

(If the member is permanently changed to SHARE(*YES) and the first or only member is the one

you want to use, this step is not necessary.)

 The OVRDBF command can be run after the OPNQRYF command, unless you want to override

the file name specified in the OPNQRYF command. In this discussion and in the examples, the

OVRDBF command is shown first.

 Some restrictions are placed on using the OVRDBF command with the OPNQRYF command. For

example, MBR(*ALL) causes an error message and the file is not opened. Refer to

“Considerations for files shared in a job” on page 153 for more information.

�3� Run the OPNQRYF command, specifying the database file, member, format names, any selection

options, any sequencing options, and the scope of influence for the opened file.

�4� Call the high-level language program you created in step 1. Besides using a high-level language,

the Copy from Query File (CPYFRMQRYF) command can also be used to process the file created

by the OPNQRYF command. Other CL commands (for example, the Copy File [CPYF] and the

Display Physical File Member [DSPPFM] commands) and utilities (for example, Query) do not

work on files created with the OPNQRYF command.

�5� Close the file that you opened in step 3, unless you want the file to remain open. The Close File

(CLOF) command can be used to close the file.

�6� Delete the override specified in step 2 with the Delete Override (DLTOVR) command. It may not

always be necessary to delete the override, but the command is shown in all the examples for

consistency.

114 OS/400 DB2 UDB for iSeries Database programming V5R3

Using a file with a different record format: For more advanced functions of the Open Query File

(OPNQRYF) command (such as dynamically joining records from different files), you must define a new

file that contains a different record format. This new file is a separate file from the one you are going to

process. This new file contains the fields that you want to create with the OPNQRYF command. This

powerful capability also lets you define fields that do not currently exist in your database records, but

can be derived from them.

When you code your high-level language program, specify the name of the file with the different format

so the externally described field definitions of both existing and derived fields can be processed by the

program.

Before calling your high-level language program, you must specify an Override with Database File

(OVRDBF) command to direct your program file name to the open query file. On the OPNQRYF

command, specify both the database file and the new file with the special format to be used by your

high-level language program. If the file you are querying does not have SHARE(*YES) specified, you

must specify SHARE(*YES) on the OVRDBF command.

The following shows the process flow:

�1� Specify the DDS for the file with the different record format, and create the file. This file contains

the fields that you want to process with your high-level language program. Normally, data is not

contained in this file, and it does not require a member. You normally create this file as a physical

file without keys. A field reference file can be used to describe the fields. The record format name

can be different from the record format name in the database file that is specified. You can use

any database or DDM file for this function. The file could be a logical file and it could be

indexed. It could have one or more members, with or without data.

Database programming 115

�2� Create the high-level language program to process the file with the record format that you

created in step 1. In this program, do not name the database file that contains the data.

�3� Run the Override with Database File (OVRDBF) command. Specify the name of the file with the

different (new) record format on the FILE parameter. Specify the name of the database file that

you want to query on the TOFILE parameter. You can also specify a member name on the MBR

parameter. If the database member you are querying does not have SHARE(*YES) specified, you

must also specify SHARE(*YES) on the OVRDBF command.

�4� Run the Open Query File (OPNQRYF) command. Specify the database file to be queried on the

FILE parameter, and specify the name of the file with the different (new) format that was created

in step 1 on the FORMAT parameter. Mapped field definitions can be required on the OPNQRYF

command to describe how to map the data from the database file into the format that was

created in step 1. You can also specify selection options, sequencing options, and the scope of

influence for the opened file.

�5� Call the high-level language program you created in step 2.

�6� The first file named in step 4 for the FILE parameter was opened with OPNQRYF as

SHARE(*YES) and is still open. The file must be closed. The Close File (CLOF) command can be

used.

�7� Delete the override that was specified in step 3.

 The previous steps show the normal flow using externally described data. It is not necessary to create

unique DDS and record formats for each OPNQRYF command. You can reuse an existing record format.

However, all fields in the record format must be actual fields in the real database file or defined by

mapped field definitions. If you use program-described data, you can create the program at any time.

You can use the file created in step 1 to hold the data created by the Open Query File (OPNQRYF)

command. For example, you can replace step 5 with a high-level language processing program that

copies data to the file with the different format, or you may use the Copy from Query File

(CPYFRMQRYF) command. The Copy File (CPYF) command cannot be used. You can then follow step 5

with the CPYF command or Query.

OPNQRYF examples: The following sections describe how to specify both the OPNQRYF parameters for

each of the major functions discussed earlier and how to use the Open Query File command with your

high-level language program.

Notes:

1. If you run the OPNQRYF command from a command entry line with the OPNSCOPE(*ACTGRPDFN)

or TYPE(*NORMAL) parameter option, error messages that occur after the OPNQRYF command

successfully runs will not close the file. Such messages would have closed the file prior to Version 2

Release 3 when TYPE(*NORMAL) was used. The system automatically runs the Reclaim Resources

(RCLRSC) command if an error message occurs, except for message CPF0001, which is sent when the

system detects an error in the command. However, the RCLRSC command only closes files opened

from the default activation group at a higher level in the call stack than the level at which the

RCLRSC command was run.

2. After running a program that uses the Open Query File command for sequential processing, the file

position is normally at the end of the file. If you want to run the same program or a different

program with the same files, you must position the file or close the file and open it with the same

OPNQRYF command. You can position the file with the Position Database File (POSDBF) command.

In some cases, a high-level language program statement can be used.

See the following sections for OPNQRYF examples:

v “CL program coding with the OPNQRYF command” on page 117

v “The zero length literal and the contains (*CT) function” on page 117

v “Selecting records without using DDS” on page 117

116 OS/400 DB2 UDB for iSeries Database programming V5R3

CL program coding with the OPNQRYF command: The Open Query File (OPNQRYF) command has

three basic rules that can prevent coding errors.

1. Specify selection fields from a database file without an ampersand (&). Fields declared in the CL

program with DCL or DCLF require the ampersand.

2. Enclose fields defined in the CL program with DCL or DCLF within single quotes (’&testfld’, for

example).

3. Enclose all parameter comparisons within double quotes when compared to character fields, single

quotes when compared to numeric fields.

In the following example, the fields INVCUS and INVPRD are defined as character data:

QRYSLT(’INVCUS *EQ "’ *CAT &K1CUST *CAT ’" *AND +

 INVPRD *GE "’ *CAT &LPRD *CAT ’" *AND +

 INVPRD *LE "’ *CAT &HPRD *CAT ’"’)

If the fields were defined numeric data, the QRYSLT parameter could look like the following:

QRYSLT(’INVCUS *EQ ’ *CAT &K1CUST *CAT ’ *AND +

 INVPRD *GE ’ *CAT &LPRD *CAT ’ *AND +

 INVPRD *LE ’ *CAT &HPRD *CAT ’ ’)

The zero length literal and the contains (*CT) function: The concept of a zero length literal was

introduced in Version 2, Release 1, Modification 1. In the OPNQRYF command, a zero length literal is

denoted as a quoted string with nothing, not even a blank, between the quotes (″″).

Zero length literal support changes the results of a comparison when used as the compare argument of

the contains (*CT) function. Consider the statement:

QRYSLT(’field *CT ""’)

With zero length literal support, the statement returns records that contain anything. It is, in essence, a

wildcard comparison for any number of characters followed by any number of characters. It is equivalent

to:

’field = %WLDCRD("**")’

Before zero length literal support, (before Version 2, Release 1, Modification 1), the argument (″″) was

interpreted as a single-byte blank. The statement returned records that contained a single blank

somewhere in the field. It was, in essence, a wildcard comparison for any number of characters, followed

by a blank, followed by any number of characters. It was equivalent to:

’field = %WLDCRD("* *")’

To get pre-Version 2, Release 1, Modification 1 results with the contains function, you must code the

QRYSLT to explicitly look for the blank:

QRYSLT(’field *CT " "’)

Selecting records without using DDS: Dynamic record selection allows you to request a subset of the

records in a file without using DDS. For example, you can select records that have a specific value or

range of values (for example, all customer numbers between 1000 and 1050). The Open Query File

(OPNQRYF) command allows you to combine these and other selection functions to produce powerful

record selection capabilities.

See the following topics for examples:

v “Selecting records using the Open Query File (OPNQRYF) command” on page 118

v “Specifying a keyed sequence access path without using DDS” on page 128

v “Specifying key fields from different files” on page 129

v “Dynamically joining database files without DDS” on page 130

v “Handling missing records in secondary join files” on page 133

Database programming 117

v “Unique-key processing” on page 133

v “Defining fields derived from existing field definitions” on page 134

v “Handling divide by zero” on page 137

v “Summarizing data from database file records (Grouping)” on page 137

v “Final total-only processing” on page 140

v “Controlling how the system runs the open query file command” on page 141

Selecting records using the Open Query File (OPNQRYF) command: In all of the following examples, it is

assumed that a single-format database file (physical or logical) is being processed. (The FILE parameter

on the OPNQRYF command allows you to specify a record format name if the file is a multiple format

logical file.)

v “Example 1: Selecting records using the OPNQRYF command”

v “Example 2: Selecting records using the OPNQRYF command” on page 119

v “Example 3: Selecting records using the OPNQRYF command” on page 121

v “Example 4: Selecting records using the OPNQRYF command” on page 121

v “Example 5: Selecting records using the OPNQRYF command” on page 121

v “Example 6: Selecting records using the OPNQRYF command” on page 122

v “Example 7: Selecting records using the OPNQRYF command” on page 123

v “Example 8: Selecting records using the OPNQRYF command” on page 124

v “Example 9: Selecting records using the OPNQRYF command” on page 125

v “Example 10: Selecting records using the OPNQRYF command” on page 126

v “Example 11: Selecting records using the OPNQRYF command” on page 126

See the OPNQRYF command in the Control Language (CL) topic for a complete description of the format

of expressions used with the QRYSLT parameter.

Example 1: Selecting records using the OPNQRYF command: Selecting records with a specific value

Assume you want to select all the records from FILEA where the value of the Code field is D. Your

processing program is PGMB. PGMB only sees the records that meet the selection value (you do not have

to test in your program).

Note: You can specify parameters easier by using the prompt function for the OPNQRYF command. For

example, you can specify an expression for the QRYSLT parameter without the surrounding

delimiters because the system will add the apostrophes.

Specify the following:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’CODE *EQ "D" ’)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Notes:

1. The entire expression in the QRYSLT parameter must be enclosed in apostrophes.

2. When specifying field names in the OPNQRYF command, the names in the record are not enclosed in

apostrophes.

3. Character literals must be enclosed by quotation marks or two apostrophes. (The quotation mark

character is used in the examples.) It is important to place the character(s) between the quotation

marks in either uppercase or lowercase to match the value you want to find in the database. (The

examples are all shown in uppercase.)

4. To request a selection against a numeric constant, specify:

118 OS/400 DB2 UDB for iSeries Database programming V5R3

OPNQRYF FILE(FILEA) QRYSLT(’AMT *GT 1000.00’)

Notice that numeric constants are not enclosed by two apostrophes (quotation marks).

5. When comparing a field value to a CL variable, use apostrophes as follows (only character CL

variables can be used):

v If doing selection against a character, date, time, or timestamp field, specify:

OPNQRYF FILE(FILEA) QRYSLT(’"’ *CAT &CHAR *CAT ’" *EQ FIELDA’)

or, in reverse order:

OPNQRYF FILE(FILEA) QRYSLT(’FIELDA *EQ "’ *CAT &CHAR *CAT ’"’)

Notice that apostrophes and quotation marks enclose the CL variables and *CAT operators.

v If doing selection against a numeric field, specify:

OPNQRYF FILE(FILEA) QRYSLT(&CHARNUM *CAT ’ *EQ NUM’)

or, in reverse order:

OPNQRYF FILE(FILEA) QRYSLT(’NUM *EQ ’ *CAT &CHARNUM);

Notice that apostrophes enclose the field and operator only.

When comparing two fields or constants, the data types must be compatible. The following table

describes the valid comparisons.

 Table 10. Valid Data Type Comparisons for the OPNQRYF Command

 Any Numeric Character Date1 Time1 Timestamp1

Any Numeric Valid Not Valid Not Valid Not Valid Not Valid

Character Not Valid Valid Valid2 Valid2 Valid2

Date1 Not Valid Valid2 Valid Not Valid Not Valid

Time1 Not Valid Valid2 Not Valid Valid Not Valid

Timestamp1 Not Valid Valid2 Not Valid Not Valid Valid

:

1 Date, time, and timestamp data types can be represented by fields and expressions, but not constants;

however, character constants can represent date, time, or timestamp values.

2 The character field or constant must represent a valid date value if compared to a date data type, a valid

time value if compared to a time data type, or a valid timestamp value if compared to a timestamp data

type.

Note: For DBCS information, see Double-byte character set (DBCS) considerations.

The performance of record selection can be greatly enhanced if some file on the system uses the field

being selected in a keyed sequence access path. This allows the system to quickly access only the records

that meet the selection values. If no such access path exists, the system must read every record to

determine if it meets the selection values.

Even if an access path exists on the field you want to select from, the system may not use the access

path. For example, if it is faster for the system to process the data in arrival sequence, it will do so. See

the discussion in “Open Query File command: Performance considerations” on page 150 for more details.

Example 2: Selecting records using the OPNQRYF command: Selecting records with a specific date value

Assume you want to process all records in which the Date field in the record is the same as the current

date. Also assume the Date field is in the same format as the system date. In a CL program, you can

specify:

Database programming 119

DCL VAR(&CURDAT); TYPE(*CHAR) LEN(6)

RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CURDAT);

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’"’ *CAT &CURDAT *CAT ’" *EQ DATE’)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

A CL variable is assigned with a leading ampersand (&); and is not enclosed in apostrophes. The whole

expression is enclosed in apostrophes. The CAT operators and CL variable are enclosed in both

apostrophes and quotes.

It is important to know whether the data in the database is defined as character, date, time, timestamp, or

numeric. In the preceding example, the Date field is assumed to be character.

If the DATE field is defined as date data type, the preceding example could be specified as:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’%CURDATE *EQ DATE’)

CALL PGM(PGMB)

CLOF OPENID(FILEA)

DLTOVR FILE(FILEA)

Note: The date field does not have to have the same format as the system date.
You could also specify the example as:

DCL VAR(&CVTDAT); TYPE(*CHAR) LEN(6)

DCL VAR(&CURDAT); TYPE(*CHAR) LEN(8)

RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CVTDAT);

CVTDAT DATE(&CVTDAT); TOVAR(&CURDAT); TOSEP(/)

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA)

 QRYSLT(’"’ *CAT &CURDAT *CAT ’" *EQ DATE’)

CALL PGM(PGMB)

CLOF OPNID (FILEA)

DLTOVR FILE(FILEA)

This is where DATE has a date data type in FILEA, the job default date format is MMDDYY, and the job

default date separator is the slash (/).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,

YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If, instead, you were using a constant, the QRYSLT would be specified as follows:

QRYSLT(’"12/31/87" *EQ DATE’)

The job default date format must be MMDDYY and the job default separator must be the slash (/).

If a numeric field exists in the database and you want to compare it to a variable, only a character

variable can be used. For example, to select all records where a packed Date field is greater than a

variable, you must ensure the variable is in character form. Normally, this will mean that before the Open

Query File (OPNQRYF) command, you use the Change Variable (CHGVAR) command to change the

variable from a decimal field to a character field. The CHGVAR command would be specified as follows:

CHGVAR VAR(&CHARVAR); VALUE(’123188’)

The QRYSLT parameter would be specified as follows (see the difference from the preceding examples):

QRYSLT(&CHARVAR *CAT ’ *GT DATE’)

If, instead, you were using a constant, the QRYSLT statement would be specified as follows:

QRYSLT(’123187 *GT DATE’)

120 OS/400 DB2 UDB for iSeries Database programming V5R3

Example 3: Selecting records using the OPNQRYF command: Selecting records in a range of values

Assume you have a Date field specified in the character format YYMMDD and with the “.” separator, and

you want to process all records for 1988. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’DATE *EQ %RANGE("88.01.01" +

 "88.12.31") ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

This example would also work if the DATE field has a date data type, the job default date format is

YYMMDD, and the job default date separator is the period (.).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,

YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If the ranges are variables defined as character data types, and the DATE field is defined as a character

data type, specify the QRYSLT parameter as follows:

QRYSLT(’DATE *EQ %RANGE("’ *CAT &LORNG *CAT ’"’ *BCAT ’"’ +

 *CAT &HIRNG *CAT ’")’)

However, if the DATE field is defined as a numeric data type, specify the QRYSLT parameter as follows:

QRYSLT(’DATE *EQ %RANGE(’ *CAT &LORNG *BCAT &HIRNG *CAT ’)’)

Note: *BCAT can be used if the QRYSLT parameter is in a CL program, but it is not allowed in an

interactive command.

Example 4: Selecting records using the OPNQRYF command: Selecting records using the contains function

Assume you want to process all records in which the Addr field contains the street named BROADWAY.

The contains (*CT) function determines if the characters appear anywhere in the named field. You can

specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’ADDR *CT "BROADWAY" ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this example, assume that the data is in uppercase in the database record. If the data was in lowercase

or mixed case, you could specify a translation function to translate the lowercase or mixed case data to

uppercase before the comparison is made. The system-provided table QSYSTRNTBL translates the letters

a through z to uppercase. (You could use any translation table to perform the translation.) Therefore, you

can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’%XLATE(ADDR QSYSTRNTBL) *CT +

 "BROADWAY" ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

When the %XLATE function is used on the QRYSLT statement, the value of the field passed to the

high-level language program appears as it is in the database. You can force the field to appear in

uppercase using the %XLATE function on the MAPFLD parameter.

Example 5: Selecting records using the OPNQRYF command: Selecting records using multiple fields

Database programming 121

Assume you want to process all records in which either the Amt field is equal to zero, or the Lstdat field

(YYMMDD order in character format) is equal to or less than 88-12-31. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’AMT *EQ 0 *OR LSTDAT +

 *LE "88-12-31" ’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

This example would also work if the LSTDAT field has a date data type. The LSTDAT field may be in

any valid date format; however, the job default date format must be YYMMDD and the job default date

separator must be the dash (–).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,

YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If variables are used, the QRYSLT parameter is typed as follows:

QRYSLT(’AMT *EQ ’ *CAT &VARAMT *CAT ’ *OR +

 LSTDAT *LE "’ *CAT &VARDAT *CAT ’"’)

or, typed in reverse order:

QRYSLT(’"’ *CAT &VARDAT *CAT ’" *GT LSTDAT *OR ’ +

 *CAT &VARAMT *CAT ’ *EQ AMT’)

Note that the &VARAMT variable must be defined as a character type. If the variable is passed to your

CL program as a numeric type, you must convert it to a character type to allow concatenation. You can

use the Change Variable (CHGVAR) command to do this conversion.

Example 6: Selecting records using the OPNQRYF command: Using the Open Query File (OPNQRYF)

command many times in a program

You can use the OPNQRYF command more than once in a high-level language program. For example,

assume you want to prompt the user for some selection values, then display one or more pages of

records. At the end of the first request for records, the user may want to specify other selection values

and display those records. This can be done by doing the following:

1. Before calling the high-level language program, use an Override with Database File (OVRDBF)

command to specify SHARE(*YES).

2. In the high-level language program, prompt the user for the selection values.

3. Pass the selection values to a CL program that issues the OPNQRYF command (or run the command

with a call to program QCMDEXC). The file must be closed before your program processes the

OPNQRYF command. You normally use the Close File (CLOF) command and monitor for the file not

being open.

4. Return to the high-level language program.

5. Open the file in the high-level language program.

6. Process the records.

7. Close the file in the program.

8. Return to step 2.

When the program completes, run the Close File (CLOF) command or the Reclaim Resources (RCLRSC)

command to close the file, then delete the Override with Database File command specified in step 1.

Note: An override command in a called CL program does not affect the open in the main program. All

overrides are implicitly deleted when the program is ended. (However, you can use a call to

program QCMDEXC from your high-level language program to specify an override, if needed.)

122 OS/400 DB2 UDB for iSeries Database programming V5R3

Example 7: Selecting records using the OPNQRYF command: Mapping fields for packed numeric data fields

Assume you have a packed decimal Date field in the format MMDDYY and you want to select all the

records for the year 1988. You cannot select records directly from a portion of a packed decimal field, but

you can use the MAPFLD parameter on the OPNQRYF command to create a new field that you can then

use for selecting part of the field.

The format of each mapped field definition is:

(result field ’expression’ attributes)

where:

 result field = The name of the result field.

expression = How the result field should be

derived. The expression can include

substring, other built-in functions, or

mathematical statements.

attributes = The optional attributes of the result

field. If no attributes are given (or the

field is not defined in a file), the

OPNQRYF command calculates a

field attribute determined by the

fields in the expression.

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’YEAR *EQ "88" ’) +

 MAPFLD((CHAR6 ’%DIGITS(DATE)’) +

 (YEAR ’%SST(CHAR6 5 2)’ *CHAR 2))

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this example, if DATE was a date data type, it could be specified as follows:

OPNQRYF FILE(FILEA) +

QRYSLT (’YEAR *EQ 88’) +

MAPFLD((YEAR ’%YEAR(DATE)’))

The first mapped field definition specifies that the Char6 field be created from the packed decimal Date

field. The %DIGITS function converts from packed decimal to character and ignores any decimal

definitions (that is, 1234.56 is converted to ’123456’). Because no definition of the Char6 field is specified,

the system assigns a length of 6. The second mapped field defines the Year field as type *CHAR

(character) and length 2. The expression uses the substring function to map the last 2 characters of the

Char6 field into the Year field.

Note that the mapped field definitions are processed in the order in which they are specified. In this

example, the Date field was converted to character and assigned to the Char6 field. Then, the last two

digits of the Char6 field (the year) were assigned to the Year field. Any changes to this order would have

produced an incorrect result.

Note: Mapped field definitions are always processed before the QRYSLT parameter is evaluated.

You could accomplish the same result by specifying the substring on the QRYSLT parameter and

dropping one of the mapped field definitions as follows:

OPNQRYF FILE(FILEA) +

 QRYSLT(’%SST(CHAR6 5 2) *EQ "88" ’) +

 MAPFLD((CHAR6 ’%DIGITS(DATE)’))

Database programming 123

Example 8: Selecting records using the OPNQRYF command: Using the “wildcard” function

Assume you have a packed decimal Date field in the format MMDDYY and you want to select the

records for March 1988. To do this, you can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) +

 QRYSLT(’%DIGITS(DATE) *EQ %WLDCRD("03__88")’)

CALL PGM(PGMC)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Note that the only time the MAPFLD parameter is needed to define a database field for the result of the

%DIGITS function is when the result needs to be used with a function that only supports a simple field

name (not a function or expression) as an argument. The %WLDCRD operation has no such restriction on

the operand that appears before the *EQ operator.

Note that although the field in the database is in numeric form, double apostrophes surround the literal

to make its definition the same as the Char6 field. The wildcard function is not supported for DATE,

TIME, or TIMESTAMP data types.

The %WLDCRD function lets you select any records that match your selection values, in which the

underline (_) will match any single character value. The two underline characters in Example 8 allow any

day in the month of March to be selected. The %WLDCRD function also allows you to name the wild

card character (underline is the default).

The wild card function supports two different forms:

v A fixed-position wild card as shown in the previous example in which the underline (or your

designated character) matches any single character as in the following example:

QRYSLT(’FLDA *EQ %WLDCRD("A_C")’)

This compares successfully to ABC, ACC, ADC, AxC, and so on. In this example, the field being

analyzed only compares correctly if it is exactly 3 characters in length. If the field is longer than 3

characters, you also need the second form of wild card support.

v A variable-position wild card will match any zero or more characters. The Open Query File

(OPNQRYF) command uses an asterisk (*) for this type of wild card variable character or you can

specify your own character. An asterisk is used in the following example:

QRYSLT(’FLDB *EQ %WLDCRD("A*C*") ’)

This compares successfully to AC, ABC, AxC, ABCD, AxxxxxxxC, and so on. The asterisk causes the

command to ignore any intervening characters if they exist. Notice that in this example the asterisk is

specified both before and after the character or characters that can appear later in the field. If the

asterisk were omitted from the end of the search argument, it causes a selection only if the field ends

with the character C.

You must specify an asterisk at the start of the wild card string if you want to select records where the

remainder of the pattern starts anywhere in the field. Similarly, the pattern string must end with an

asterisk if you want to select records where the remainder of the pattern ends anywhere in the field.

For example, you can specify:

QRYSLT(’FLDB *EQ %WLDCRD("*ABC*DEF*") ’)

You get a match on ABCDEF, ABCxDEF, ABCxDEFx, ABCxxxxxxDEF, ABCxxxDEFxxx, xABCDEF,

xABCxDEFx, and so on.

You can combine the two wildcard functions as in the following example:

QRYSLT(’FLDB *EQ %WLDCRD("ABC_*DEF*") ’)

You get a match on ABCxDEF, ABCxxxxxxDEF, ABCxxxDEFxxx, and so on. The underline forces at least

one character to appear between the ABC and DEF (for example, ABCDEF would not match).

124 OS/400 DB2 UDB for iSeries Database programming V5R3

Assume you have a Name field that contains:

 JOHNS

 JOHNS SMITH

 JOHNSON

 JOHNSTON

If you specify the following you will only get the first record:

QRYSLT(’NAME *EQ "JOHNS"’)

You would not select the other records because a comparison is made with blanks added to the value you

specified. The way to select all four names is to specify:

QRYSLT(’NAME *EQ %WLDCRD("JOHNS*")’)

Note: For information about using the %WLDCRD function for DBCS, see Double-byte character set

(DBCS) considerations.

Example 9: Selecting records using the OPNQRYF command: Using complex selection statements

Complex selection statements can also be specified. For example, you can specify:

QRYSLT(’DATE *EQ "880101" *AND AMT *GT 5000.00’)

QRYSLT(’DATE *EQ "880101" *OR AMT *GT 5000.00’)

You can also specify:

QRYSLT(’CODE *EQ "A" *AND TYPE *EQ "X" *OR CODE *EQ "B")

The rules governing the priority of processing the operators are described in the Control Language (CL)

topic. Some of the rules are:

v The *AND operations are processed first; therefore, the record would be selected if:

 The Code field = "A" and The Type field = "X"

 or

 The Code field = "B"

v Parentheses can be used to control how the expression is handled, as in the following example:

QRYSLT(’(CODE *EQ "A" *OR CODE *EQ "B") *AND TYPE *EQ "X" +

 *OR CODE *EQ "C"’)

 The Code field = "A" and The Type field= "X"

 or

 The Code field = "B" and The Type field = "X"

 or

 The Code field = "C"

You can also use the symbols described in the Control Language (CL) topic instead of the abbreviated

form (for example, you can use = instead of *EQ) as in the following example:

QRYSLT(’CODE = "A" & TYPE = "X" | AMT > 5000.00’)

This command selects all records in which:

 The Code field = "A" and The Type field = "X"

 or

 The Amt field > 5000.00

A complex selection statement can also be written, as in the following example:

QRYSLT(’CUSNBR = %RANGE("60000" "69999") & TYPE = "B" +

 & SALES>0 & ACCRCV / SALES>.3’)

Database programming 125

This command selects all records in which:

 The Cusnbr field is in the range 60000-69999 and

 The Type field = "B" and

 The Sales fields are greater than 0 and

 Accrcv divided by Sales is greater than 30 percent

Example 10: Selecting records using the OPNQRYF command: Using coded character set identifiers (CCSIDs)

For general information about CCSIDs, see iSeries Globalization.

Each character and DBCS field in all database files is tagged with a CCSID. This CCSID allows you to

further define the data stored in the file so that any comparison, join, or display of the fields is performed

in a meaningful way. For example, if you compared FIELD1 in FILE1 where FIELD1 has a CCSID of 37

(USA) to FIELD2 in FILE2 where FILED2 has a CCSID of 273 (Austria, Germany) appropriate mapping

would occur to make the comparison meaningful.

OPNQRYF FILE(FILEA FILEB) FORMAT(RESULTF) +

 JFLD((FILEA/NAME FILEB/CUSTOMER))

If field NAME has a CCSID of 37 and field CUSTOMER has a CCSID of 273, the mapping of either

NAME or CUSTOMER is performed during processing of the OPNQRYF command so that the join of the

two fields provides a meaningful result.

Normally, constants defined in the MAPFLD, QRYSLT, and GRPSLT parameters are tagged with the

CCSID defined to the current job. This suggests that when two users with different job CCSIDs run the

same OPNQRYF command (or a program containing an OPNQRYF command) and the OPNQRYF has

constants defined in it, the users can get different results because the CCSID tagged to the constants may

cause the constants to be treated differently.

You can tag a constant with a specific CCSID by using the MAPFLD parameter. By specifying a MAPFLD

whose definition consists solely of a constant and then specifying a CCSID for the MAPFLD the constant

becomes tagged with the CCSID specified in the MAPFLD parameter. For example:

OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT(’NAME *EQ MAP1’) +

 MAPFLD((MAP1 ’"Smith"’ *CHAR 5 *N 37))

The constant “Smith” is tagged with the CCSID 37 regardless of the job CCSID of the user issuing the

OPNQRYF command. In this example, all users would get the same result records (although the result

records would be mapped to the user’s job CCSID). Conversely, if the query is specified as:

OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT(’NAME *EQ "Smith"’)

the results of the query may differ, depending on the job CCSID of the user issuing the OPNQRYF

command.

Example 11: Selecting records using the OPNQRYF command: Using Sort Sequence and Language Identifier

To see how to use a sort sequence, run the examples in this section against the STAFF file shown in

Table 11.

 Table 11. The STAFF File

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

20 Pernal 20 Sales 8 18171.25 612.45

30 Merenghi 38 MGR 5 17506.75 0

40 OBrien 38 Sales 6 18006.00 846.55

126 OS/400 DB2 UDB for iSeries Database programming V5R3

Table 11. The STAFF File (continued)

ID NAME DEPT JOB YEARS SALARY COMM

50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 00 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk 0 13504.60 128.20

90 Koonitz 42 sales 6 18001.75 1386.70

100 Plotz 42 mgr 6 18352.80 0

In the examples, the results are shown for a particular statement using each of the following:

v *HEX sort sequence.

v Shared-weight sort sequence for language identifier ENU.

v Unique-weight sort sequence for language identifier ENU.

Note: ENU is chosen as a language identifier by specifying either SRTSEQ(*LANGIDUNQ) or

SRTSEQ(*LANGIDSHR), and LANGID(ENU) in the OPNQRYF command.

The following command selects records with the value MGR in the JOB field:

OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ "MGR"’)

Table 12 shows the record selection with the *HEX sort sequence. The records that match the record

selection criteria for the JOB field are selected exactly as specified in the QRYSLT statement; only the

uppercase MGR is selected.

 Table 12. Using the *HEX Sort Sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’) SRTSEQ(*HEX)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Table 13 shows the record selection with the shared-weight sort sequence. The records that match the

record selection criteria for the JOB field are selected by treating uppercase and lowercase letters the

same. With this sort sequence, mgr, Mgr, and MGR values are selected.

 Table 13. Using the Shared-Weight Sort Sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)

SRTSEQ(LANGIDSHR) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0

100 Plotz 42 mgr 6 18352.80 0

Table 14 on page 128 shows the record selection with the unique-weight sort sequence. The records that

match the record selection criteria for the JOB field are selected by treating uppercase and lowercase

letters as unique. With this sort sequence, the mgr, Mgr, and MGR values are all different. The MGR value is

selected.

Database programming 127

Table 14. Using the Unique-Weight Sort Sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)

SRTSEQ(LANGIDUNQ) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Specifying a keyed sequence access path without using DDS: The dynamic access path function allows you to

specify a keyed access path for the data to be processed. If an access path already exists that can be

shared, the system can share it. If a new access path is required, it is built before any records are passed

to the program. See the following topics for examples:

v “Example 1: Specifying a keyed sequence access path without using DDS”

v “Example 2: Specifying a keyed sequence access path without using DDS”

v “Example 3: Specifying a keyed sequence access path without using DDS”

v “Example 4: Specifying a keyed sequence access path without using DDS” on page 129

Example 1: Specifying a keyed sequence access path without using DDS: Arranging records using one key

field

Assume you want to process the records in FILEA arranged by the value in the Cust field with program

PGMD. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) KEYFLD(CUST)

CALL PGM(PGMD)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Note: The FORMAT parameter on the Open Query File (OPNQRYF) command is not needed because

PGMD is created by specifying FILEA as the processed file. FILEA can be an arrival sequence or a

keyed sequence file. If FILEA is keyed, its key field can be the Cust field or a totally different field.

Example 2: Specifying a keyed sequence access path without using DDS: Arranging records using multiple key

fields

If you want the records to be processed by Cust sequence and then by Date in Cust, specify:

OPNQRYF FILE(FILEA) KEYFLD(CUST DATE)

If you want the Date to appear in descending sequence, specify:

OPNQRYF FILE(FILEA) KEYFLD((CUST) (DATE *DESCEND))

In these two examples, the FORMAT parameter is not used. (If a different format is defined, all key fields

must exist in the format.)

Example 3: Specifying a keyed sequence access path without using DDS: Arranging records using a

unique-weight sort sequence.

To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in

Table 11 on page 126, specify:

OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDUNQ) LANGID(ENU)

This query results in a JOB field in the following sequence:

 Clerk

 mgr

 Mgr

 Mgr

 MGR

128 OS/400 DB2 UDB for iSeries Database programming V5R3

sales

 Sales

 Sales

 Sales

 SALES

Example 4: Specifying a keyed sequence access path without using DDS: Arranging records using a

shared-weight sort sequence.

To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in

Table 11 on page 126, specify:

OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDSHR) LANGID(ENU)

The results from this query will be similar to the results in Example 3. The mgr and sales entries could be

in any sequence because the uppercase and lowercase letters are treated as equals. That is, the

shared-weight sort sequence treats mgr, Mgr, and MGR as equal values. Likewise, sales, Sales, and SALES

are treated as equal values.

Specifying key fields from different files: A dynamic keyed sequence access path over a join logical file

allows you to specify a processing sequence in which the keys can be in different physical files (DDS

restricts the keys to the primary file).

The specification is identical to the previous method. The access path is specified using whatever key

fields are required. There is no restriction on which physical file the key fields are in. However, if a key

field exists in other than the primary file of a join specification, the system must make a temporary copy

of the joined records. The system must also build a keyed sequence access path over the copied records

before the query file is opened. The key fields must exist in the format identified on the FORMAT

parameter.

See “Example: Specifying key fields from different files” for an example.

Example: Specifying key fields from different files: Using a field in a secondary file as a key field

Assume you already have a join logical file named JOINLF. FILEX is specified as the primary file and is

joined to FILEY. You want to process the records in JOINLF by the Descrp field which is in FILEY.

Assume the file record formats contain the following fields:

 FILEX FILEY JOINLF

Item Item Item

Qty Descrp Qty

 Descrp

You can specify:

OVRDBF FILE(JOINLF) SHARE(*YES)

OPNQRYF FILE(JOINLF) KEYFLD(DESCRP)

CALL PGM(PGMC)

CLOF OPNID(JOINLF)

DLTOVR FILE(JOINLF)

If you want to arrange the records by Qty in Descrp (Descrp is the primary key field and Qty is a

secondary key field) you can specify:

OPNQRYF FILE(JOINLF) KEYFLD(DESCRP QTY)

Database programming 129

Dynamically joining database files without DDS: The dynamic join function allows you to join files without

having to first specify DDS and create a join logical file. You must use the FORMAT parameter on the

Open Query File (OPNQRYF) command to specify the record format for the join. You can join any

physical or logical file including a join logical file and a view (DDS does not allow you to join logical

files). You can specify either a keyed or arrival sequence access path. If keys are specified, they can be

from any of the files included in the join (DDS restricts keys to just the primary file).

In the following examples, it is assumed that the file specified on the FORMAT parameter was created.

You will normally want to create the file before you create the processing program so you can use the

externally described data definitions.

The default for the join order (JORDER) parameter is used in all of the following examples. The default

for the JORDER parameter is *ANY, which tells the system that it can determine the order in which to

join the files. That is, the system determines which file to use as the primary file and which as the

secondary files. This allows the system to try to improve the performance of the join function.

The join criterion, like the record selection criterion, is affected by the sort sequence (SRTSEQ) and the

language identifier (LANGID) specified, as shown in “Example 11: Selecting records using the OPNQRYF

command” on page 126.

See the following topics for examples:

v “Example 1: Dynamically joining database files without DDS”

v “Example 2: Dynamically joining database files without DDS” on page 131

v “Example 3: Dynamically joining database files without DDS” on page 132

Example 1: Dynamically joining database files without DDS: Dynamically joining files

Assume you want to join FILEA and FILEB. Assume the files contain the following fields:

 FILEA FILEB JOINAB

Cust Cust Cust

Name Amt Name

Addr Amt

The join field is Cust which exists in both files. Any record format name can be specified in the Open

Query File (OPNQRYF) command for the join file. The file does not need a member. The records are not

required to be in keyed sequence.

You can specify:

OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 JFLD((FILEA/CUST FILEB/CUST)) +

 MAPFLD((CUST ’FILEA/CUST’))

CALL PGM(PGME) /* Created using file JOINAB as input */

CLOF OPNID(FILEA)

DLTOVR FILE(JOINAB)

File JOINAB is a physical file with no data. This is the file that contains the record format to be specified

on the FORMAT parameter in the Open Query File (OPNQRYF) command.

Notice that the TOFILE parameter on the Override with Database File (OVRDBF) command specifies the

name of the primary file for the join operation (the first file specified for the FILE parameter on the

OPNQRYF command). In this example, the FILE parameter on the Open Query File (OPNQRYF)

command identifies the files in the sequence they are to be joined (A to B). The format for the file is in

the file JOINAB.

130 OS/400 DB2 UDB for iSeries Database programming V5R3

The JFLD parameter identifies the Cust field in FILEA to join to the Cust field in FILEB. Because the Cust

field is not unique across all of the joined record formats, it must be qualified on the JFLD parameter. The

system attempts to determine, in some cases, the most efficient values even if you do not specify the

JFLD parameter on the Open Query File (OPNQRYF) command. For example, using the previous

example, if you specified:

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 QRYSLT(’FILEA/CUST *EQ FILEB/CUST’) +

 MAPFLD((CUST ’FILEA/CUST’))

The system joins FILEA and FILEB using the Cust field because of the values specified for the QRYSLT

parameter. Notice that in this example the JFLD parameter is not specified on the command. However, if

either JDFTVAL(*ONLYDFT) or JDFTVAL(*YES) is specified on the OPNQRYF command, the JFLD

parameter must be specified.

The MAPFLD parameter is needed on the Open Query File (OPNQRYF) command to describe which file

should be used for the data for the Cust field in the record format for file JOINAB. If a field is defined on

the MAPFLD parameter, its unqualified name (the Cust field in this case without the file name

identification) can be used anywhere else in the OPNQRYF command. Because the Cust field is defined

on the MAPFLD parameter, the first value of the JFLD parameter need not be qualified. For example, the

same result could be achieved by specifying:

JFLD((CUST FILEB/CUST)) +

MAPFLD((CUST ’FILEA/CUST’))

Any other uses of the same field name in the Open Query File (OPNQRYF) command to indicate a field

from a file other than the file defined by the MAPFLD parameter must be qualified with a file name.

Because no KEYFLD parameter is specified, the records appear in any sequence depending on how the

Open Query File (OPNQRYF) command selects the records. You can force the system to arrange the

records the same as the primary file. To do this, specify *FILE on the KEYFLD parameter. You can specify

this even if the primary file is in arrival sequence.

The JDFTVAL parameter (similar to the JDFTVAL keyword in DDS) can also be specified on the Open

Query File (OPNQRYF) command to describe what the system should do if one of the records is missing

from the secondary file. In this example, the JDFTVAL parameter was not specified, so only the records

that exist in both files are selected.

If you tell the system to improve the results of the query (through parameters on the OPNQRYF

command), it will generally try to use the file with the smallest number of records selected as the

primary file. However, the system will also try to avoid building a temporary file.

You can force the system to follow the file sequence of the join as you have specified it in the FILE

parameter on the Open Query File (OPNQRYF) command by specifying JORDER(*FILE). If

JDFTVAL(*YES) or JDFTVAL(*ONLYDFT) is specified, the system will never change the join file sequence

because a different sequence could cause different results.

Example 2: Dynamically joining database files without DDS: Reading only those records with secondary file

records

Assume you want to join files FILEAB, FILECD, and FILEEF to select only those records with matching

records in secondary files. Define a file JOINF and describe the format that should be used. Assume the

record formats for the files contain the following fields:

 FILEAB FILECD FILEEF JOINF

Abitm Cditm Efitm Abitm

Abord Cddscp Efcolr Abord

Abdat Cdcolr Efqty Cddscp

Database programming 131

FILEAB FILECD FILEEF JOINF

Cdcolr

Efqty

In this case, all field names in the files that make up the join file begin with a 2-character prefix (identical

for all fields in the file) and end with a suffix that is identical across all the files (for example, xxitm). This

makes all field names unique and avoids having to qualify them.

The xxitm field allows the join from FILEAB to FILECD. The two fields xxitm and xxcolr allow the join

from FILECD to FILEEF. A keyed sequence access path does not have to exist for these files. However, if

a keyed sequence access path does exist, performance may improve significantly because the system will

attempt to use the existing access path to arrange and select records, where it can. If access paths do not

exist, the system automatically creates and maintains them as long as the file is open.

OVRDBF FILE(JOINF) TOFILE(FILEAB) SHARE(*YES)

OPNQRYF FILE(FILEAB FILECD FILEEF) +

 FORMAT(JOINF) +

 JFLD((ABITM CDITM)(CDITM EFITM) +

 (CDCOLR EFCOLR))

CALL PGM(PGME) /* Created using file JOINF as input */

CLOF OPNID(FILEAB)

DLTOVR FILE(JOINF)

The join field pairs do not have to be specified in the order shown above. For example, the same result is

achieved with a JFLD parameter value of:

JFLD((CDCOLR EFCOLR)(ABITM CDITM) (CDITM EFITM))

The attributes of each pair of join fields do not have to be identical. Normal padding of character fields

and decimal alignment for numeric fields occurs automatically.

The JDFTVAL parameter is not specified so *NO is assumed and no default values are used to construct

join records. If you specified JDFTVAL(*YES) and there is no record in file FILECD that has the same join

field value as a record in file FILEAB, defaults are used for the Cddscp and Cdcolr fields to join to file

FILEEF. Using these defaults, a matching record can be found in file FILEEF (depending on if the default

value matches a record in the secondary file). If not, a default value appears for these files and for the

Efqty field.

Example 3: Dynamically joining database files without DDS: Using mapped fields as join fields

You can use fields defined on the MAPFLD parameter for either one of the join field pairs. This is useful

when the key in the secondary file is defined as a single field (for example, a 6-character date field) and

there are separate fields for the same information (for example, month, day, and year) in the primary file.

Assume FILEA has character fields Year, Month, and Day and needs to be joined to FILEB which has the

Date field in YYMMDD format. Assume you have defined file JOINAB with the desired format. You can

specify:

OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 JFLD((YYMMDD FILEB/DATE)) +

 MAPFLD((YYMMDD ’YEAR *CAT MONTH *CAT DAY’))

CALL PGM(PGME) /* Created using file JOINAB as input */

CLOF OPNID(FILEA)

DLTOVR FILE(JOINAB)

The MAPFLD parameter defines the YYMMDD field as the concatenation of several fields from FILEA.

You do not need to specify field attributes (for example, length or type) for the YYMMDD field on the

MAPFLD parameter because the system calculates the attributes from the expression.

132 OS/400 DB2 UDB for iSeries Database programming V5R3

Handling missing records in secondary join files: The system allows you to control whether to allow defaults

for missing records in secondary files (similar to the JDFTVAL DDS keyword for a join logical file). You

can also specify that only records with defaults be processed. This allows you to select only those records

in which there is a missing record in the secondary file.

See “Example: Handling missing records in secondary join files” for an example.

Example: Handling missing records in secondary join files: Reading records from the primary file that do not

have a record in the secondary file

In “Example 1: Dynamically joining database files without DDS” on page 130, the JDFTVAL parameter is

not specified, so the only records read are the result of a successful join from FILEA to FILEB. If you

want a list of the records in FILEA that do not have a match in FILEB, you can specify *ONLYDFT on the

JDFTVAL parameter as shown in the following example:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA FILEB) FORMAT(FILEA) +

 JFLD((CUST FILEB/CUST)) +

 MAPFLD((CUST ’FILEA/CUST’)) +

 JDFTVAL(*ONLYDFT)

CALL PGM(PGME) /* Created using file FILEA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

JDFTVAL(*ONLYDFT) causes a record to be returned to the program only when there is no equivalent

record in the secondary file (FILEB).

Because any values returned by the join operation for the fields in FILEB are defaults, it is normal to use

only the format for FILEA. The records that appear are those that do not have a match in FILEB. The

FORMAT parameter is required whenever the FILE parameter describes more than a single file, but the

file name specified can be one of the files specified on the FILE parameter. The program is created using

FILEA.

Conversely, you can also get a list of all the records where there is a record in FILEB that does not have a

match in FILEA. You can do this by making the secondary file the primary file in all the specifications.

You would specify:

OVRDBF FILE(FILEB) SHARE(*YES)

OPNQRYF FILE(FILEB FILEA) FORMAT(FILEB) JFLD((CUST FILEA/CUST)) +

 MAPFLD((CUST ’FILEB/CUST’)) JDFTVAL(*ONLYDFT)

CALL PGM(PGMF) /* Created using file FILEB as input */

CLOF OPNID(FILEB)

DLTOVR FILE(FILEB)

Note: The Override with Database File (OVRDBF) command in this example uses FILE(FILEB) because it

must specify the first file on the OPNQRYF FILE parameter. The Close File (CLOF) command also

names FILEB. The JFLD and MAPFLD parameters also changed. The program is created using

FILEB.

Unique-key processing: Unique-key processing allows you to process only the first record of a group. The

group is defined by one or more records with the same set of key values. Processing the first record

implies that the records you receive will have unique keys.

When you use Unique-key processing, you can only read the file sequentially. The key fields are sorted

according to the specified sort sequence (SRTSEQ) and language identifier (LANGID), as shown in

“Example 3: Specifying a keyed sequence access path without using DDS” on page 128 and “Example 4:

Specifying a keyed sequence access path without using DDS” on page 129.

If you specify Unique-key processing, and the file actually has duplicate keys, you will receive only a

single record for each group of records with the same key value.

Database programming 133

See the following topics for examples:

v “Example 1: Unique-key processing”

v “Example 2: Unique-key processing”

Example 1: Unique-key processing: Reading only unique-key records

Assume you want to process FILEA, which has records with duplicate keys for the Cust field. You want

only the first record for each unique value of the Cust field to be processed by program PGMF. You can

specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) KEYFLD(CUST) UNIQUEKEY(*ALL)

CALL PGM(PGMF)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Example 2: Unique-key processing: Reading records using only some of the key fields

Assume you want to process the same file with the sequence: Slsman, Cust, Date, but you want only one

record per Slsman and Cust. Assume the records in the file are:

 Slsman Cust Date Record #

01 5000 880109 1

01 5000 880115 2

01 4025 880103 3

01 4025 880101 4

02 3000 880101 5

You specify the number of key fields that are unique, starting with the first key field.

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) KEYFLD(SLSMAN CUST DATE) UNIQUEKEY(2)

CALL PGM(PGMD)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

The following records are retrieved by the program:

 Slsman Cust Date Record #

01 4025 880101 4

01 5000 880109 1

02 3000 880101 5

Note: Null values are treated as equal, so only the first null value would be returned.

Defining fields derived from existing field definitions: Mapped field definitions:

v Allow you to create internal fields that specify selection values, as shown in “Example 7: Selecting

records using the OPNQRYF command” on page 123.

v Allow you to avoid confusion when the same field name occurs in multiple files, as shown in

“Example 1: Dynamically joining database files without DDS” on page 130.

v Allow you to create fields that exist only in the format to be processed, but not in the database itself.

This allows you to perform translate, substring, concatenation, and complex mathematical operations.

The following examples describe this function.

For examples of creating fields that exist only in the format to be processed, see the following topics:

v “Example 1: Defining fields derived from existing field definitions” on page 135

134 OS/400 DB2 UDB for iSeries Database programming V5R3

v “Example 2: Defining fields derived from existing field definitions”

v “Example 3: Defining fields derived from existing field definitions” on page 136

Example 1: Defining fields derived from existing field definitions: Using derived fields

Assume you have the Price and Qty fields in the record format. You can multiply one field by the other

by using the Open Query File (OPNQRYF) command to create the derived Exten field. You want FILEA

to be processed, and you have already created FILEAA. Assume the record formats for the files contain

the following fields:

 FILEA FILEAA

Order Order

Item Item

Qty Exten

Price Brfdsc

Descrp

The Exten field is a mapped field. Its value is determined by multiplying Qty times Price. It is not

necessary to have either the Qty or Price field in the new format, but they can exist in that format, too if

you wish. The Brfdsc field is a brief description of the Descrp field (it uses the first 10 characters).

Assume you have specified PGMF to process the new format. To create this program, use FILEAA as the

file to read. You can specify:

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FILEAA) +

 MAPFLD((EXTEN ’PRICE * QTY’) +

 (BRFDSC ’DESCRP’))

CALL PGM(PGMF) /* Created using file FILEAA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEAA)

Notice that the attributes of the Exten field are those defined in the record format for FILEAA. If the

value calculated for the field is too large, an exception is sent to the program.

It is not necessary to use the substring function to map to the Brfdsc field if you only want the characters

from the beginning of the field. The length of the Brfdsc field is defined in the FILEAA record format.

All fields in the format specified on the FORMAT parameter must be described on the OPNQRYF

command. That is, all fields in the output format must either exist in one of the record formats for the

files specified on the FILE parameter or be defined on the MAPFLD parameter. If you have fields in the

format on the FORMAT parameter that your program does not use, you can use the MAPFLD parameter

to place zeros or blanks in the fields. Assume the Fldc field is a character field and the Fldn field is a

numeric field in the output format, and you are using neither value in your program. You can avoid an

error on the OPNQRYF command by specifying:

MAPFLD((FLDC ’ " " ’)(FLDN 0))

Notice quotation marks enclose a blank value. By using a constant for the definition of an unused field,

you avoid having to create a unique format for each use of the OPNQRYF command.

Example 2: Defining fields derived from existing field definitions: Using built-in functions

Assume you want to calculate a mathematical function that is the sine of the Fldm field in FILEA. First

create a file (assume it is called FILEAA) with a record format containing the following fields:

Database programming 135

FILEA FILEAA

Code Code

Fldm Fldm

 Sinm

You can then create a program (assume PGMF) using FILEAA as input and specify:

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FILEAA) +

 MAPFLD((SINM ’%SIN(FLDM)’))

CALL PGM(PGMF) /* Created using file FILEAA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEAA)

The built-in function %SIN calculates the sine of the field specified as its argument. Because the Sinm

field is defined in the format specified on the FORMAT parameter, the OPNQRYF command converts its

internal definition of the sine value (in floating point) to the definition of the Sinm field. This technique

can be used to avoid certain high-level language restrictions regarding the use of floating-point fields. For

example, if you defined the Sinm field as a packed decimal field, PGMF could be written using any

high-level language, even though the value was built using a floating-point field.

There are many other functions besides sine that can be used. Refer to the OPNQRYF command in the

Control Language (CL) topic for a complete list of built-in functions.

Example 3: Defining fields derived from existing field definitions: Using derived fields and built-in functions

Assume, in the previous example, that a field called Fldx also exists in FILEA, and the Fldx field has

appropriate attributes used to hold the sine of the Fldm field. Also assume that you are not using the

contents of the Fldx field. You can use the MAPFLD parameter to change the contents of a field before

passing it to your high-level language program. For example, you can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) MAPFLD((FLDX ’%SIN(FLDM)’))

CALL PGM(PGMF) /* Created using file FILEA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

In this case, you do not need to specify a different record format on the FORMAT parameter. (The default

uses the format of the first file on the FILE parameter.) Therefore, the program is created by using FILEA.

When using this technique, you must ensure that the field you redefine has attributes that allow the

calculated value to process correctly. The least complicated approach is to create a separate file with the

specific fields you want to process for each query.

You can also use this technique with a mapped field definition and the %XLATE function to translate a

field so that it appears to the program in a different manner than what exists in the database. For

example, you can translate a lowercase field so the program only sees uppercase.

The sort sequence and language identifier can affect the results of the %MIN and %MAX built-in

functions. For example, the uppercase and lowercase versions of letters can be equal or unequal

depending on the selected sort sequence and language identifier. Note that the translated field value is

used to determine the minimum and maximum, but the untranslated value is returned in the result

record.

The example described uses FILEA as an input file. You can also update data using the OPNQRYF

command. However, if you use a mapped field definition to change a field, updates to the field are

ignored.

136 OS/400 DB2 UDB for iSeries Database programming V5R3

Handling divide by zero: Dividing by zero is considered an error by the Open Query File (OPNQRYF)

command.

Record selection is normally done before field mapping errors occur (for example, where field mapping

would cause a division error). Therefore, a record can be omitted (based on the QRYSLT parameter values

and valid data in the record) that would have caused a divide-by-zero error. In such an instance, the

record would be omitted and processing by the OPNQRYF command would continue.

If you want a zero answer, the following describes a solution that is practical for typical commercial data.

Assume you want to divide A by B giving C (stated as A / B = C). Assume the following definitions

where B can be zero.

 Field Digits Dec

A 6 2

B 3 0

C 6 2

The following algorithm can be used:

(A * B) / %MAX((B * B) .nnnn1)

The %MAX function returns the maximum value of either B * B or a small value. The small value must

have enough leading zeros so that it is less than any value calculated by B * B unless B is zero. In this

example, B has zero decimal positions so .1 could be used. The number of leading zeros should be 2

times the number of decimals in B. For example, if B had 2 decimal positions, then .00001 should be

used.

Specify the following MAPFLD definition:

MAPFLD((C ’(A * B) / %MAX((B * B) .1)’))

The intent of the first multiplication is to produce a zero dividend if B is zero. This will ensure a zero

result when the division occurs. Dividing by zero does not occur if B is zero because the .1 value will be

the value used as the divisor.

Summarizing data from database file records (Grouping): The group processing function allows you to

summarize data from existing database records. You can specify:

v The grouping fields

v Selection values both before and after grouping

v A keyed sequence access path over the new records

v Mapped field definitions that allow you to do such functions as sum, average, standard deviation, and

variance, as well as counting the records in each group

v The sort sequence and language identifier that supply the weights by which the field values are

grouped

You normally start by creating a file with a record format containing only the following types of fields:

v Grouping fields. Specified on the GRPFLD parameter that define groups. Each group contains a

constant set of values for all grouping fields. The grouping fields do not need to appear in the record

format identified on the FORMAT parameter.

v Aggregate fields. Defined by using the MAPFLD parameter with one or more of the following built-in

functions:

%COUNT

Counts the records in a group

Database programming 137

%SUM

A sum of the values of a field over the group

%AVG

Arithmetic average (mean) of a field, over the group

%MAX

Maximum value in the group for the field

%MIN

Minimum value in the group for the field

%STDDEV

Standard deviation of a field, over the group

%VAR Variance of a field, over the group
v Constant fields. Allow constants to be placed in field values. The restriction that the Open Query File

(OPNQRYF) command must know all fields in the output format is also true for the grouping function.

When you use group processing, you can only read the file sequentially.

For an example of group processing, see “Example: Summarizing data from database file records

(Grouping).”

Example: Summarizing data from database file records (Grouping): Using group processing

Assume you want to group the data by customer number and analyze the amount field. Your database

file is FILEA and you create a file named FILEAA containing a record format with the following fields:

 FILEA FILEAA

Cust Cust

Type Count (count of records per customer)

Amt Amtsum (summation of the amount field)

 Amtavg (average of the amount field)

 Amtmax (maximum value of the amount field)

When you define the fields in the new file, you must ensure that they are large enough to hold the

results. For example, if the Amt field is defined as 5 digits, you may want to define the Amtsum field as 7

digits. Any arithmetic overflow causes your program to end abnormally.

Assume the records in FILEA have the following values:

 Cust Type Amt

001 A 500.00

001 B 700.00

004 A 100.00

002 A 1200.00

003 B 900.00

001 A 300.00

004 A 300.00

003 B 600.00

You then create a program (PGMG) using FILEAA as input to print the records.

OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FILEAA) KEYFLD(CUST) +

 GRPFLD(CUST) MAPFLD((COUNT ’%COUNT’) +

 (AMTSUM ’%SUM(AMT)’) +

138 OS/400 DB2 UDB for iSeries Database programming V5R3

(AMTAVG ’%AVG(AMT)’) +

 (AMTMAX ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FILEAA as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FILEAA)

The records retrieved by the program appear as:

 Cust Count Amtsum Amtavg Amtmax

001 3 1500.00 500.00 700.00

002 1 1200.00 1200.00 1200.00

003 2 1500.00 750.00 900.00

004 2 400.00 200.00 300.00

Note: If you specify the GRPFLD parameter, the groups may not appear in ascending sequence. To

ensure a specific sequence, you should specify the KEYFLD parameter.

Assume you want to print only the summary records in this example in which the Amtsum value is

greater than 700.00. Because the Amtsum field is an aggregate field for a given customer, use the GRPSLT

parameter to specify selection after grouping. Add the GRPSLT parameter:

GRPSLT(’AMTSUM *GT 700.00’)

The records retrieved by your program are:

 Cust Count Amtsum Amtavg Amtmax

001 3 1500.00 500.00 700.00

002 1 1200.00 1200.00 1200.00

003 2 1500.00 750.00 900.00

The Open Query File (OPNQRYF) command supports selection both before grouping (QRYSLT

parameter) and after grouping (GRPSLT parameter).

Assume you want to select additional customer records in which the Type field is equal to A. Because

Type is a field in the record format for file FILEA and not an aggregate field, you add the QRYSLT

statement to select before grouping as follows:

QRYSLT(’TYPE *EQ "A" ’)

Note that fields used for selection do not have to appear in the format processed by the program.

The records retrieved by your program are:

 Cust Count Amtsum Amtavg Amtmax

001 2 800.00 400®.00 500.00

002 1 1200.00 1200.00 1200.00

Notice the values for CUST 001 changed because the selection took place before the grouping took place.

Assume you want to arrange the output by the Amtavg field in descending sequence, in addition to the

previous QRYSLT parameter value. You can do this by changing the KEYFLD parameter on the

OPNQRYF command as:

KEYFLD((AMTAVG *DESCEND))

Database programming 139

The records retrieved by your program are:

 Cust Count Amtsum Amtavg Amtmax

002 1 1200.00 1200.00 1200.00

001 2 800.00 400.00 500.00

Final total-only processing: Final-total-only processing is a special form of grouping in which you do not

specify grouping fields. Only one record is output. All of the special built-in functions for grouping can

be specified. You can also specify the selection of records that make up the final total.

For examples of final total-only processing, see the following topics:

v “Example 1: Final total-only processing”

v “Example 2: Final total-only processing”

v “Example 3: Final total-only processing”

Example 1: Final total-only processing: Simple total processing

Assume you have a database file FILEA and decide to create file FINTOT for your final total record as

follows:

 FILEA FINTOT

Code Count (count of all the selected records)

Amt Totamt (total of the amount field)

 Maxamt (maximum value in the amount field)

The FINTOT file is created specifically to hold the single record which is created with the final totals. You

would specify:

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

 MAPFLD((COUNT ’%COUNT’) +

 (TOTAMT ’%SUM(AMT)’) (MAXAMT ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FINTOT as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FINTOT)

Example 2: Final total-only processing: Total-only processing with record selection

Assume you want to change the previous example so that only the records where the Code field is equal

to B are in the final total. You can add the QRYSLT parameter as follows:

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

 QRYSLT(’CODE *EQ "B" ’) MAPFLD((COUNT ’%COUNT’) +

 (TOTAMT ’%SUM(AMT)’) (MAXAMT ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FINTOT as input */

CLOF OPNID(FILEA)

DLTOVR FILE(FINTOT)

You can use the GRPSLT keyword with the final total function. The GRPSLT selection values you specify

determines if you receive the final total record.

Example 3: Final total-only processing: Total-only processing using a new record format

Assume you want to process the new file/format with a CL program. You want to read the file and send

a message with the final totals. You can specify:

140 OS/400 DB2 UDB for iSeries Database programming V5R3

DCLF FILE(FINTOT)

DCL &COUNTA *CHAR LEN(7)

DCL &TOTAMTA *CHAR LEN(9)

OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) FORMAT(FINTOT) MAPFLD((COUNT ’%COUNT’) +

 (TOTAMT ’%SUM(AMT)’))

RCVF

CLOF OPNID(FILEA)

CHGVAR &COUNTA &COUNT

CHGVAR &TOTAMTA &TOTAMT

SNDPGMMSG MSG(’COUNT=’ *CAT &COUNTA *CAT +

 ’ Total amount=’ *CAT &TOTAMTA);

DLTOVR FILE(FINTOT)

You must convert the numeric fields to character fields to include them in an immediate message.

Controlling how the system runs the open query file command: The optimization function allows you to

specify how you are going to use the results of the query.

When you use the Open Query File (OPNQRYF) command there are two steps where performance

considerations exist. The first step is during the actual processing of the OPNQRYF command itself. This

step decides if OPNQRYF is going to use an existing access path or build a new one for this query

request. The second step when performance considerations play a role is when the application program is

using the results of the OPNQRYF to process the data. See Database Performance and Query

Optimization for more information.

For most batch type functions, you are usually only interested in the total time of both steps mentioned

above. Therefore, the default for OPNQRYF is OPTIMIZE(*ALLIO). This means that OPNQRYF will

consider the total time it takes for both steps.

If you use OPNQRYF in an interactive environment, you may not be interested in processing the entire

file. You may want the first screen full of records to be displayed as quickly as possible. For this reason,

you would want the first step to avoid building an access path, if possible. You might specify

OPTIMIZE(*FIRSTIO) in such a situation.

If you want to process the same results of OPNQRYF with multiple programs, you would want the first

step to make an efficient open data path (ODP). That is, you would try to minimize the number of

records that must be read by the processing program in the second step by specifying

OPTIMIZE(*MINWAIT) on the OPNQRYF command.

If the KEYFLD or GRPFLD parameters on the OPNQRYF command require that an access path be built

when there is no access path to share, the access path is built entirely regardless of the OPTIMIZE entry.

Optimization mainly affects selection processing.

For examples, see the following topics:

v “Example 1: Controlling how the system runs the open query file command”

v “Example 2: Controlling how the system runs the open query file command” on page 142

Example 1: Controlling how the system runs the open query file command: Optimizing for the first set of

records

Assume that you have an interactive job in which the operator requests all records where the Code field is

equal to B. Your program’s subfile contains 15 records per screen. You want to get the first screen of

results to the operator as quickly as possible. You can specify:

Database programming 141

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’CODE = "B" ’) +

 SEQONLY(*YES 15) OPTIMIZE(*FIRSTIO)

CALL PGM(PGMA)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

The system optimizes handling the query and fills the first buffer with records before completing the

entire query regardless of whether an access path already exists over the Code field.

Example 2: Controlling how the system runs the open query file command: Optimizing to minimize the

number of records read

Assume that you have multiple programs that will access the same file which is built by the Open Query

File (OPNQRYF) command. In this case, you will want to optimize the performance so that the

application programs read only the data they are interested in. This means that you want OPNQRYF to

perform the selection as efficiently as possible. You could specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) QRYSLT(’CODE *EQ "B"’) +

 KEYFLD(CUST) OPTIMIZE(*MINWAIT)

CALL PGM(PGMA)

POSDBF OPNID(FILEA) POSITION(*START)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Considerations for creating a file and using the FORMAT parameter: You must specify a record format

name on the FORMAT parameter when you request join processing by specifying multiple entries on the

FILE parameter (that is, you cannot specify FORMAT(*FILE)). Also, a record format name is normally

specified with the grouping function or when you specify a complex expression on the MAPFLD

parameter to define a derived field. Consider the following:

v The record format name is any name you select. It can differ from the format name in the database file

you want to query.

v The field names are any names you select. If the field names are unique in the database files you are

querying, the system implicitly maps the values for any fields with the same name in a queried file

record format (FILE parameter) and in the query result format (FORMAT parameter). See “Example 1:

Dynamically joining database files without DDS” on page 130 for more information.

v If the field names are unique, but the attributes differ between the file specified on the FILE parameter

and the file specified on the FORMAT parameter, the data is implicitly mapped.

v The correct field attributes must be used when using the MAPFLD parameter to define derived fields.

For example, if you are using the grouping %SUM function, you must define a field that is large

enough to contain the total. If not, an arithmetic overflow occurs and an exception is sent to the

program.

v Decimal alignment occurs for all field values mapped to the record format identified on the FORMAT

parameter. Assume you have a field in the query result record format with 5 digits with 0 decimals,

and the value that was calculated or must be mapped to that field is 0.12345. You will receive a result

of 0 in your field because digits to the right of the decimal point are truncated.

Considerations for arranging records: The default processing for the Open Query File (OPNQRYF)

command provides records in any order that improves performance and does not conflict with the order

specified on the KEYFLD parameter. Therefore, unless you specify the KEYFLD parameter to either name

specific key fields or specify KEYFLD(*FILE), the sequence of the records returned to your program can

vary each time you run the same Open Query File (OPNQRYF) command.

When you specify the KEYFLD(*FILE) parameter option for the Open Query File (OPNQRYF) command,

and a sort sequence other than *HEX has been specified for the query with the job default or the

OPNQRYF SRTSEQ parameter, you can receive your records in an order that does not reflect the true file

142 OS/400 DB2 UDB for iSeries Database programming V5R3

order. If the file is keyed, the query’s sort sequence is applied to the key fields of the file and

informational message CPI431F is sent. The file’s sort sequence and alternative collating sequence table

are ignored for the ordering, if they exist. This allows users to indicate which fields to apply a sort

sequence to without having to list all the field names. If a sort sequence is not specified for the query (for

example, *HEX), ordering is done as it was prior to Version 2 Release 3.

Considerations for DDM files: The Open Query File (OPNQRYF) command can process DDM files. All

files identified on the FILE parameter must exist on the same IBM iSeries system or System/38 target

system. An OPNQRYF which specifies group processing and uses a DDM file requires that both the

source and target system be the same type (either both System/38 or both iSeries systems).

Considerations for writing a high-level language program: For the method described under “Using an

existing record format in the file” on page 113 (where the FORMAT parameter is omitted), your

high-level language program is coded as if you are directly accessing the database file. Selection or

sequencing occurs external to your program, and the program receives the selected records in the order

you specified. The program does not receive records that are omitted by your selection values. This same

function occurs if you process through a logical file with select/omit values.

If you use the FORMAT parameter, your program specifies the same file name used on the FORMAT

parameter. The program is written as if this file contains actual data.

If you read the file sequentially, your high-level language can automatically specify that the key fields are

ignored. Normally you write the program as if it is reading records in arrival sequence. If the KEYFLD

parameter is used on the Open Query File (OPNQRYF) command, you receive a diagnostic message,

which can be ignored.

If you process the file randomly by keys, your high-level language probably requires a key specification.

If you have selection values, it can prevent your program from accessing a record that exists in the

database. A Record not found condition can occur on a random read whether the OPNQRYF command

was used or whether a logical file created using DDS select/omit logic was used.

In some cases, you can monitor exceptions caused by mapping errors such as arithmetic overflow, but it

is better to define the attributes of all fields to correctly handle the results.

Messages sent when the Open Query File (OPNQRYF) command is run: When the OPNQRYF

command is run, messages are sent informing the interactive user of the status of the OPNQRYF request.

For example, a message would be sent to the user if a keyed access path was built by the OPNQRYF to

satisfy the request. The following messages might be sent during a run of the OPNQRYF command:

 Message Identifier Description

CPI4301 Query running.

CPI4302 Query running. Building access path...

CPI4303 Query running. Creating copy of file...

CPI4304 Query running. Selection complete...

CPI4305 Query running. Sorting copy of file...

CPI4306 Query running. Building access path from file...

CPI4307 Query running. Building hash table from file &1 in

&2.

CPI4011 Query running. Number of records processed...

To stop these status messages from appearing, see the discussion about message handling in the CL

Programming

book.

When your job is running under debug (by using the STRDBG command), or requested with query

options file option of DEBUG_MESSAGES *YES, messages are sent to your job log. These messages

Database programming 143

describe the implementation method that is used to process the OPNQRYF request. These messages

provide information about the optimization processing that occurred. You can use these messages as a

tool for tuning the OPNQRYF request to achieve the best performance. The messages are as follows:

CPI4321

Access path built for file...

CPI4322

Access path built from keyed file...

CPI4324

Temporary file built from file...

CPI4325

Temporary file built for query

CPI4326

File processed in join position...

CPI4327

File processed in join position 1.

CPI4328

Access path of file that is used...

CPI4329

Arrival sequence that is used for file...

CPI432A

Query optimizer timed out...

CPI432C

All access paths considered for file...

CPI432E

Selection fields mapped to different attributes...

CPI432F

Access path suggestion for file...

CPI433B

Unable to update query options file.

CPI4330

&6 tasks used for parallel &10 scan of file &1.

CPI4332

&6 tasks used for parallel index that is created over file...

CPI4333

Hashing algorithm used to process join.

CPI4338

&1 access paths used for bitmap processing of file...

CPI4339

Query options retrieved file &2 in library &1.

CPI4341

Performing distributed query.

CPI4342

Performing distributed join for query.

CPI4345

Temporary distributed result file &4 built...

144 OS/400 DB2 UDB for iSeries Database programming V5R3

CPI4346

Optimizer debug messages for query join step &1 of &2 follow:

CPI4347

Query is processing in multiple steps.

Most of the messages provide a reason why the particular option was performed. The second level text

on each message gives an extended description of why the option was chosen. Some messages provide

suggestions to help improve the performance of the OPNQRYF request.

Using the Open Query File (OPNQRYF) command for more than just input: The OPNQRYF command

supports the OPTION parameter to determine the type of processing. The default is OPTION(*INP), so

the file is opened for input only. You can also use other OPTION values on the OPNQRYF command and

a high-level language program to add, update, or delete records through the open query file. However, if

you specify the UNIQUEKEY, GRPFLD, or GRPSLT parameters, use one of the aggregate functions, or

specify multiple files on the FILE parameter, your use of the file is restricted to input only.

A join logical file is limited to input-only processing. A view is limited to input-only processing, if group,

join, union, distinct processing, or a user-defined table function is specified in the definition of the view.

If the query optimizer needs to create a temporary file to implement the query, then the use of the file is

restricted to input only.

If you want to change a field value from the current value to a different value in some of the records in a

file, you can use a combination of the OPNQRYF command and a specific high-level language program.

For example, assume you want to change all the records where the Flda field is equal to ABC so that the

Flda field is equal to XYZ. You can specify:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT(’FLDA *EQ "ABC" ’)

CALL PGM(PGMA)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

Program PGMA processes all records it can read, but the query selection restricts these to records where

the Flda field is equal to ABC. The program changes the field value in each record to XYZ and updates

the record.

You can also delete records in a database file using the OPNQRYF command. For example, assume you

have a field in your record that, if equal to X, means the record should be deleted. Your program can be

written to delete any records it reads and use the OPNQRYF command to select those to be deleted such

as:

OVRDBF FILE(FILEA) SHARE(*YES)

OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT(’DLTCOD *EQ "X" ’)

CALL PGM(PGMB)

CLOF OPNID(FILEA)

DLTOVR FILE(FILEA)

You can also add records by using the OPNQRYF command. However, if the query specifications include

selection values, your program can be prevented from reading the added records because of the selection

values.

Comparing date, time, and timestamp using the OPNQRYF command: A date, time, or timestamp

value can be compared either with another value of the same data type or with a string representation of

that data type. All comparisons are chronological, which means the farther a time is from January 1, 0001,

the greater the value of that time.

Comparisons involving time values and string representations of time values always include seconds. If

the string representation omits seconds, zero seconds are implied.

Database programming 145

Comparisons involving timestamp values are chronological without regard to representations that might

be considered equivalent. Thus, the following predicate is true:

TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

When a character, DBCS-open, or DBCS-either field or constant is represented as a date, time, or

timestamp, the following rules apply:

Date: The length of the field or literal must be at least 8 if the date format is *ISO, *USA, *EUR, *JIS,

*YMD, *MDY, or *DMY. If the date format is *JUL (yyddd), the length of the variable must be at least 6

(includes the separator between yy and ddd). The field or literal may be padded with blanks.

Time: For all of the time formats (*USA, *ISO, *EUR, *JIS, *HMS), the length of the field or literal must be

at least 4. The field or literal may be padded with blanks.

Timestamp: For the timestamp format (yyyy-mm-dd-hh.mm.ss.uuuuuu), the length of the field or literal

must be at least 16. The field or literal may be padded with blanks.

Performing date, time, and timestamp arithmetic using the OPNQRYF command: Date, time, and

timestamp values can be incremented, decremented, and subtracted. These operations may involve

decimal numbers called durations. See “Durations” for a definition of durations and “Rules for date, time,

and timestamp arithmetic” on page 147 for a specification of the rules for performing arithmetic

operations on date, time, and timestamp values.

In addition, see the following topics for specifics about these operations:

v Date arithmetic:

– “Subtracting dates” on page 147

– “Incrementing and decrementing dates” on page 148
v Time arithmetic:

– “Subtracting times” on page 148

– “Incrementing and decrementing times” on page 149
v Timestamp arithmetic:

– “Subtracting timestamps” on page 149

– “Incrementing and decrementing timestamps” on page 150

Durations: A duration is a number representing an interval of time. The four types of durations are:

Labeled duration

A labeled duration represents a specific unit of time as expressed by a number (which can be the result

of an expression) used as an operand for one of the seven duration built-in functions: %DURYEAR,

%DURMONTH, %DURDAY, %DURHOUR, %DURMINUTE, %DURSEC, or %DURMICSEC. The

functions are for the duration of year, month, day, hour, minute, second, and microsecond, respectively.

The number specified is converted as if it was assigned to a DECIMAL(15,0) number. A labeled duration

can only be used as an operand of an arithmetic operator when the other operand is a value of data type

*DATE, *TIME, or *TIMESTP. Thus, the expression HIREDATE + %DURMONTH(2) + %DURDAY(14) is

valid, whereas the expression HIREDATE + (%DURMONTH(2) + %DURDAY(14)) is not. In both of these

expressions, the labeled durations are %DURMONTH(2) and %DURDAY(14).

Date duration

A date duration represents a number of years, months, and days, expressed as a DECIMAL(8,0) number.

To be properly interpreted, the number must have the format yyyymmdd, where yyyy represents the

146 OS/400 DB2 UDB for iSeries Database programming V5R3

number of years, mm the number of months, and dd the number of days. The result of subtracting one

date value from another, as in the expression HIREDATE - BRTHDATE, is a date duration.

Time duration

A time duration represents a number of hours, minutes, and seconds, expressed as a DECIMAL(6,0)

number. To be properly interpreted, the number must have the format hhmmss, where hh represents the

number of hours, mm the number of minutes, and ss the number of seconds. The result of subtracting one

time value from another is a time duration.

Timestamp duration

A timestamp duration represents a number of years, months, days, hours, minutes, seconds, and

microseconds, expressed as a DECIMAL(20,6) number. To be properly interpreted, the number must have

the format yyyymmddhhmmsszzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent, respectively, the

number of years, months, days, hours, minutes, seconds, and microseconds. The result of subtracting one

timestamp value from another is a timestamp duration.

Rules for date, time, and timestamp arithmetic: The only arithmetic operations that can be performed on

date and time values are addition and subtraction. If a date or time value is the operand of addition, the

other operand must be a duration. The specific rules governing the use of the addition operator with date

and time values follow:

v If one operand is a date, the other operand must be a date duration or a labeled duration of years,

months, or days.

v If one operand is a time, the other operand must be a time duration or a labeled duration of hours,

minutes, or seconds.

v If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.

The rules for the use of the subtraction operator on date and time values are not the same as those for

addition because a date or time value cannot be subtracted from a duration, and because the operation of

subtracting two date and time values is not the same as the operation of subtracting a duration from a

date or time value. The specific rules governing the use of the subtraction operator with date and time

values follow:

v If the first operand is a date, the second operand must be a date, a date duration, a string

representation of a date, or a labeled duration of years, months, or days.

v If the second operand is a date, the first operand must be a date or a string representation of a date.

v If the first operand is a time, the second operand must be a time, a time duration, a string

representation of a time, or a labeled duration of hours, minutes, or seconds.

v If the second operand is a time, the first operand must be a time or string representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a string representation of

a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or a string representation

of a timestamp.

Subtracting dates: The result of subtracting one date (DATE2) from another (DATE1) is a date duration

that specifies the number of years, months, and days between the two dates. The data type of the result

is DECIMAL(8,0). If DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1. If

DATE1 is less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result is

made negative. The following procedural description clarifies the steps involved in the operation RESULT

= DATE1 - DATE2.

Database programming 147

For example, the result of %DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration of 0 years, 2 months,

and 15 days).

Incrementing and decrementing dates: The result of adding a duration to a date, or of subtracting a

duration from a date, is itself a date. (For the purposes of this operation, a month denotes the equivalent

of a calendar page. Adding months to a date, then, is like turning the pages of a calendar, starting with

the page on which the date appears.) The result must fall between the dates January 1, 0001, and

December 31, 9999, inclusive. If a duration of years is added or subtracted, only the year portion of the

date is affected. The month is unchanged, as is the day unless the result would be February 29 of a year

that is not a leap year. In this case, the day is changed to 28.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are

affected. The day portion of the date is unchanged unless the result would not be valid (September 31,

for example). In this case, the day is set to the last day of the month.

Adding or subtracting a duration of days will, of course, affect the day portion of the date, and

potentially the month and year.

Date durations, whether positive or negative, may also be added to and subtracted from dates. As with

labeled durations, the result is a valid date.

When a positive date duration is added to a date, or a negative date duration is subtracted from a date,

the date is incremented by the specified number of years, months, and days, in that order. Thus, DATE1

+ X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 +

%DURYEAR(%YEAR(X)) + %DURMONTH(%MONTH(X)) + %DURDAY(%DAY(X))

When a positive date duration is subtracted from a date, or a negative date duration is added to a date,

the date is decremented by the specified number of days, months, and years, in that order. Thus, DATE1

- X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 -

%DURDAY(%DAY(X)) - %DURMONTH(%MONTH(X)) - %DURYEAR(%YEAR(X))

When adding durations to dates, adding one month to a given date gives the same date one month later

unless that date does not exist in the later month. In that case, the date is set to that of the last day of the

later month. For example, January 28 plus one month gives February 28; and one month added to

January 29, 30, or 31 results in either February 28 or, for a leap year, February 29.

Note: If one or more months are added to a given date and then the same number of months is

subtracted from the result, the final date is not necessarily the same as the original date.

Subtracting times: The result of subtracting one time (TIME2) from another (TIME1) is a time duration

that specifies the number of hours, minutes, and seconds between the two times. The data type of the

result is DECIMAL(6,0). If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If

TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of the result is made

If %DAY(DATE2) <= %DAY(DATE1) ;

 then %DAY(RESULT) = %DAY(DATE1) - %DAY(DATE2).

If %DAY(DATE2) > %DAY(DATE1) ;

 then %DAY(RESULT) = N + %DAY(DATE1) - %DAY(DATE2) ;

 where N = the last day of %MONTH(DATE2). ;

 %MONTH(DATE2) is then incremented by 1.

If %MONTH(DATE2) <= %MONTH(DATE1) ;

 then %MONTH(RESULT) = %MONTH(DATE1) - %MONTH(DATE2).

If %MONTH(DATE2) > %MONTH(DATE1) ;

 then %MONTH(RESULT) = 12 + %MONTH(DATE1) - %MONTH(DATE2). ;

 %YEAR(DATE2) is then incremented by 1.

%YEAR(RESULT) = %YEAR(DATE1) - %YEAR(DATE2).

148 OS/400 DB2 UDB for iSeries Database programming V5R3

negative. The following procedural description clarifies the steps involved in the operation RESULT =

TIME1 - TIME2.

For example, the result of %TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10 hours, 29 minutes, and

30 seconds).

Incrementing and decrementing times: The result of adding a duration to a time, or of subtracting a

duration from a time, is itself a time. Any overflow or underflow of hours is discarded, thereby ensuring

that the result is always a time. If a duration of hours is added or subtracted, only the hours portion of

the time is affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are

affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds portion of the time, and

potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from times. The result

is a time that has been incremented or decremented by the specified number of hours, minutes, and

seconds, in that order. TIME1 + X, where X is a DECIMAL(6,0) number, is equivalent to the expression:

TIME1 + %DURHOUR(%HOUR(X)) + %DURMINUTE(%MINUTE(X)) + %DURSEC(%SECOND(X))

Subtracting timestamps: The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp

duration that specifies the number of years, months, days, hours, minutes, seconds, and microseconds

between the two timestamps. The data type of the result is DECIMAL(20,6). If TS1 is greater than or

equal to TS2, TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is subtracted from TS2 and

the sign of the result is made negative. The following procedural description clarifies the steps involved

in the operation RESULT = TS1 - TS2:

If %MICSEC(TS2) <= %MICSEC(TS1) ;

 then %MICSEC(RESULT) = %MICSEC(TS1) - ;

 %MICSEC(TS2).

If %MICSEC(TS2) > %MICSEC(TS1) ;

 then %MICSEC(RESULT) = 1000000 + ;

 %MICSEC(TS1) - %MICSEC(TS2) ;

 and %SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the rules for subtracting

times:

If %SECOND(TIME2) <= %SECOND(TIME1) ;

 then %SECOND(RESULT) = %SECOND(TIME1) - %SECOND(TIME2).

If %SECOND(TIME2) > %SECOND(TIME1) ;

 then %SECOND(RESULT) = 60 + %SECOND(TIME1) - %SECOND(TIME2). ;

 %MINUTE(TIME2) is then incremented by 1.

If %MINUTE(TIME2) <= %MINUTE(TIME1) ;

 then %MINUTE(RESULT) = %MINUTE(TIME1) - %MINUTE(TIME2).

If %MINUTE(TIME2) > %MINUTE(TIME1) ;

 then %MINUTE(RESULT) = 60 + %MINUTE(TIME1) - %MINUTE(TIME2). ;

 %HOUR(TIME2) is then incremented by 1.

%HOUR(RESULT) = %HOUR(TIME1) - %HOUR(TIME2).

Database programming 149

If %HOUR(TS2) <= %HOUR(TS1) ;

 then %HOUR(RESULT) = %HOUR(TS1) - %HOUR(TS2).

If %HOUR(TS2) > %HOUR(TS1) ;

 then %HOUR(RESULT) = 24 + %HOUR(TS1) - %HOUR(TS2) ;

 and %DAY(TS2) is incremented by 1.

The date part of the timestamp is subtracted as specified in the rules for subtracting dates.

Incrementing and decrementing timestamps: The result of adding a duration to a timestamp, or of

subtracting a duration from a timestamp, is itself a timestamp. Date and time arithmetic is performed as

previously defined, except that an overflow or underflow of hours is carried into the date part of the

result, which must be within the range of valid dates. Microseconds overflow into seconds.

Using the Open Query File (OPNQRYF) command for random processing: Most of the previous

examples show the OPNQRYF command using sequential processing. Random processing operations (for

example, the RPG/400 language operation CHAIN or the COBOL/400 language operation READ) can be

used in most cases. However, if you are using the group or unique-key functions, you cannot process the

file randomly.

Open Query File command: Performance considerations: See Database Performance and Query

Optimization for tips and techniques for optimizing the performance of a query application.

The best performance can occur when the Open Query File (OPNQRYF) command uses an existing keyed

sequence access path. For example, if you want to select all the records where the Code field is equal to B

and an access path exists over the Code field, the system can use the access path to perform the selection

(key positioning selection) rather than read the records and select at run time (dynamic selection).

The Open Query File (OPNQRYF) command cannot use an existing index when any of the following are

true:

v The key field in the access path is derived from a substring function.

v The key field in the access path is derived from a concatenation function.

v Both of the following are true of the sort sequence table associated with the query (specified on the

SRTSEQ parameter):

– It is a shared-weight sequence table.

– It does not match the sequence table associated with the access path (a sort sequence table or an

alternate collating sequence table).
v Both of the following are true of the sort sequence table associated with the query (specified on the

SRTSEQ parameter):

– It is a unique-weight sequence table.

– It does not match the sequence table associated with the access path (a sort sequence table or an

alternate collating sequence table) when either:

- Ordering is specified (KEYFLD parameter).

- Record selection exists (QRYSLT parameter) that does not use *EQ, *NE, *CT, %WLDCRD, or

%VALUES.

- Join selection exists (JFLD parameter) that does not use *EQ or *NE operators.

Part of the OPNQRYF processing is to determine what is the fastest approach to satisfying your request.

If the file you are using is large and most of the records have the Code field equal to B, it is faster to use

arrival sequence processing than to use an existing keyed sequence access path. Your program will still

see the same records. OPNQRYF can only make this type of decision if an access path exists on the Code

150 OS/400 DB2 UDB for iSeries Database programming V5R3

field. In general, if your request will include approximately 20% or more of the number of records in the

file, OPNQRYF will tend to ignore the existing access paths and read the file in arrival sequence.

If no access path exists over the Code field, the program reads all of the records in the file and passes

only the selected records to your program. That is, the file is processed in arrival sequence.

The system can perform selection faster than your application program. If no appropriate keyed sequence

access path exists, either your program or the system makes the selection of the records you want to

process. Allowing the system to perform the selection process is considerably faster than passing all the

records to your application program.

This is especially true if you are opening a file for update operations because individual records must be

passed to your program, and locks are placed on every record read (in case your program needs to

update the record). By letting the system perform the record selection, the only records passed to your

program and locked are those that meet your selection values.

If you use the KEYFLD parameter to request a specific sequence for reading records, the fastest

performance results if an access path already exists that uses the same key specification or if a keyed

sequence access path exists that is similar to your specifications (such as a key that contains all the fields

you specified plus some additional fields on the end of the key). This is also true for the GRPFLD

parameter and on the to-fields of the JFLD parameter. If no such access path exists, the system builds an

access path and maintains it as long as the file is open in your job.

Processing all of the records in a file by an access path that does not already exist is generally not as

efficient as using a full record sort, if the number of records to be arranged (not necessarily the total

number of records in the file) exceeds 1000 and is greater than 20% of the records in the file. While it is

generally faster to build the keyed sequence access path than to do the sort, faster processing allowed by

the use of arrival sequence processing normally favors sorting the data when looking at the total job time.

If a usable access path already exists, using the access path can be faster than sorting the data. You can

use the ALWCPYDTA(*OPTIMIZE) parameter of the Open Query File (OPNQRYF) command to allow the

system to use a full record sort if that is the fastest method of processing records.

If you do not intend to read all of the query records and if the OPTIMIZE parameter is *FIRSTIO or

*MINWAIT, you can specify a number to indicate how many records you intend to retrieve. If the

number of records is considerably less than the total number the query is expected to return, the system

may select a faster access method.

If you use the grouping function, faster performance is achieved if you specify selection before grouping

(QRYSLT parameter) instead of selection after grouping (GRPSLT parameter). Only use the GRPSLT

parameter for comparisons involving aggregate functions.

For most uses of the OPNQRYF command, new or existing access paths are used to access the data and

present it to your program. In some cases of the OPNQRYF command, the system must create a

temporary file. The rules for when a temporary file is created are complex, but the following are typical

cases in which this occurs:

v When you specify a dynamic join, and the KEYFLD parameter describes key fields from different

physical files.

v When you specify a dynamic join and the GRPFLD parameter describes fields from different physical

files.

v When you specify both the GRPFLD and KEYFLD parameters but they are not the same.

v When the fields specified on the KEYFLD parameter total more than 2000 bytes in length.

v When you specify a dynamic join and *MINWAIT for the OPTIMIZE parameter.

v When you specify a dynamic join using a join logical file and the join type (JDFTVAL) of the join

logical file does not match the join type of the dynamic join.

Database programming 151

v When you specify a logical file and the format for the logical file refers to more than one physical file.

v When you specify an SQL view, the system may require a temporary file to contain the results of the

view.

v When the ALWCPYDTA(*OPTIMIZE) parameter is specified and using a temporary result would

improve the performance of the query.

When a dynamic join occurs (JDFTVAL(*NO)), OPNQRYF attempts to improve performance by

reordering the files and joining the file with the smallest number of selected records to the file with the

largest number of selected records. To prevent OPNQRYF from reordering the files, specify

JORDER(*FILE). This forces OPNQRYF to join the files in the sequence specify in the OPNQRYF

command.

Open Query File command: Performance considerations for sort sequence tables: See the following

topics for performance considerations for sort sequence tables.

v “Grouping, joining, and selection: OPNQRYF performance considerations”

v “Ordering: OPNQRYF performance considerations”

Grouping, joining, and selection: OPNQRYF performance considerations: When using an existing index, the

optimizer ensures that the attributes of the selection, join, and grouping fields match the attributes of the

keys in the existing index. Also, the sort sequence table associated with the query must match the

sequence table (a sort sequence table or an alternate collating sequence table) associated with the key

field of the existing index. If the sequence tables do not match, the existing index cannot be used.

However, if the sort sequence table associated with the query is a unique-weight sequence table

(including *HEX), some additional optimization is possible. The optimizer acts as though no sort

sequence table is specified for any grouping fields or any selection or join predicates that use the

following operators or functions:

v *EQ

v *NE

v *CT

v %WLDCRD

v %VALUES

The advantage is that the optimizer is free to use any existing access path where the keys match the field

and the access path either:

v Does not contain a sequence table.

v Contains a unique-weight sequence table (the table does not have to match the unique-weight sort

sequence table associated with the query).

Ordering: OPNQRYF performance considerations: For ordering fields, the optimizer is not free to use any

existing access path. The sort sequence tables associated with the index and the query must match unless

the optimizer chooses to do a sort to satisfy the ordering request. When a sort is used, the translation is

performed during the sort, leaving the optimizer free to use any existing access path that meets the

selection criteria.

Performance comparisons with other database functions: The Open Query File (OPNQRYF) command

uses the same database support as logical files and join logical files. Therefore, the performance of

functions like building a keyed access path or doing a join operation will be the same.

The selection functions done by the OPNQRYF command (for the QRYSLT and GRPSLT parameters) are

similar to logical file select/omit. The main difference is that for the OPNQRYF command, the system

decides whether to use access path selection or dynamic selection (similar to omitting or specifying the

DYNSLT keyword in the DDS for a logical file), as a result of the access paths available on the system

and what value was specified on the OPTIMIZE parameter.

152 OS/400 DB2 UDB for iSeries Database programming V5R3

Considerations for field use: When the grouping function is used, all fields in the record format for the

open query file (FORMAT parameter) and all key fields (KEYFLD parameter) must either be grouping

fields (specified on the GRPFLD parameter) or mapped fields (specified on the MAPFLD parameter) that

are defined using only grouping fields, constants, and aggregate functions. The aggregate functions are:

%AVG, %COUNT, %MAX (using only one operand), %MIN (using only one operand), %STDDEV,

%SUM, and %VAR. Group processing is required in the following cases:

v When you specify grouping field names on the GRPFLD parameter

v When you specify group selection values on the GRPSLT parameter

v When a mapped field that you specified on the MAPFLD parameter uses an aggregate function in its

definition

Fields that have any of the large object data types: BLOB, CLOB, or DBCLOB, can only be read using the

Copy From Query File (CPYFRMQRYF) command or Structured Query Language (SQL). Large object

field data cannot be directly accessed from an open query file. TheCPYFRMQRYF command must be

used to access large object fields from an open query file. A field with a large object data type (BLOB,

CLOB or DBCLOB) cannot be specified on the following OPNQRYF parameters: KEYFLD, UNIQUEKEY,

JFLD, and GRPFLD.

Fields of type DATALINK may not appear in selection, grouping, ordering, or joins. If a DATALINK field

appears in that format, it will be returned in its unprocessed form, as it exists in the data space.

Fields contained in a record format, identified on the FILE parameter, and defined (in the DDS used to

create the file) with a usage value of N (neither input nor output) cannot be specified on any parameter

of the OPNQRYF command. Only fields defined as either I (input-only) or B (both input and output)

usage can be specified. Any fields with usage defined as N in the record format identified on the

FORMAT parameter are ignored by the OPNQRYF command.

Fields in the open query file records normally have the same usage attribute (input-only or both input

and output) as the fields in the record format identified on the FORMAT parameter, with the exceptions

noted below. If the file is opened for any option (OPTION parameter) that includes output or update and

any usage, and if any B (both input and output) field in the record format identified on the FORMAT

parameter is changed to I (input only) in the open query file record format, then an information message

is sent by the OPNQRYF command.

If you request join processing or group processing, or if you specify UNIQUEKEY processing, all fields in

the query records are given input-only use. Any mapping from an input-only field from the file being

processed (identified on the FILE parameter) is given input-only use in the open query file record format.

Fields defined using the MAPFLD parameter are normally given input-only use in the open query file. A

field defined on the MAPFLD parameter is given a value that matches the use of its constituent field if

all of the following are true:

v Input-only is not required because of any of the conditions previously described in this section.

v The field-definition expression specified on the MAPFLD parameter is a field name (no operators or

built-in functions).

v The field used in the field-definition expression exists in one of the file, member, or record formats

specified on the FILE parameter (not in another field defined using the MAPFLD parameter).

v The base field and the mapped field are compatible field types (the mapping does not mix numeric

and character field types, unless the mapping is between zoned and character fields of the same

length).

v If the base field is binary with nonzero decimal precision, the mapped field must also be binary and

have the same precision.

Considerations for files shared in a job: In order for your application program to use the open data

path built by the Open Query File (OPNQRYF) command, your program must share the query file. If

your program does not open the query file as shared, then it actually does a full open of the file it was

Database programming 153

originally compiled to use (not the query open data path built by the OPNQRYF command). Your

program will share the query open data path, depending on the following conditions:

v Your application program must open the file as shared. Your program meets this condition when the

first or only member queried (as specified on the FILE parameter) has an attribute of SHARE(*YES). If

the first or only member has an attribute of SHARE(*NO), then you must specify SHARE(*YES) in an

Override with Database File (OVRDBF) command before calling your program.

v The file opened by your application program must have the same name as the file opened by the

OPNQRYF command. Your program meets this condition when the file specified in your program has

the same file and member name as the first or only member queried (as specified on the FILE

parameter). If the first or only member has a different name, then you must specify an Override with

Database File (OVRDBF) command of the name of the file your program was compiled against to the

name of the first or only member queried.

v Your program must be running in the same activation group to which the query open data path (ODP)

is scoped. If the query ODP is scoped to the job, your program may run in any activation group within

the job.

The OPNQRYF command never shares an existing open data path in the job or activation group. A

request to open a query file fails with an error message if the open data path has the same library, file,

and member name that is in the open request, and if either of the following is true:

v OPNSCOPE(*ACTGRPDFN) or OPNSCOPE(*ACTGRP) is specified for the OPNQRYF command, and

the open data path is scoped to the same activation group or job from which the OPNQRYF command

is run.

v OPNSCOPE(*JOB) is specified for the OPNQRYF command, and the open data path is scoped to the

same job from which the OPNQRYF command is run.

Subsequent shared opens adhere to the same open options (such as SEQONLY) that were in effect when

the OPNQRYF command was run.

See “Sharing database files in the same job or activation group” on page 98 for more information about

sharing files in a job or activation group.

Considerations for checking if the record format description changed: If record format level checking

is indicated, the format level number of the open query file record format (identified on the FORMAT

parameter) is checked against the record format your program was compiled against. This occurs when

your program shares the previously opened query file. Your program’s shared open is checked for record

format level if the following conditions are met:

v The first or only file queried (as specified on the FILE parameter) must have the LVLCHK(*YES)

attribute.

v There must not be an override of the first or only file queried to LVLCHK(*NO).

Other run time considerations for the OPNQRYF command: The following are other run time

considerations for OPNQRYF:

v “Overrides and the OPNQRYF command”

v “Copying from an open query file”

Overrides and the OPNQRYF command: Overrides can change the name of the file, library, and member

that should be processed by the open query file. (However, any parameter values other than TOFILE,

MBR, LVLCHK, INHWRT, or SEQONLY specified on an Override with Database File (OVRDBF)

command are ignored by the OPNQRYF command.) If a name change override applies to the first or only

member queried, any additional overrides must be against the new name, not the name specified for the

FILE parameter on the OPNQRYF command.

Copying from an open query file: The Copy from Query File (CPYFRMQRYF) command can be used to

copy from an open query file to another file or to print a formatted listing of the records. Any open

154 OS/400 DB2 UDB for iSeries Database programming V5R3

query file, except those using distributed data management (DDM) files, specified with the input, update,

or all operation value on the FILE parameter of the Open Query File (OPNQRYF) command can be

copied using the CPYFRMQRYF command. The CPYFRMQRYF command cannot be used to copy to

logical files. For more information, see File Management.

Although the CPYFRMQRYF command uses the open data path of the open query file, it does not open

the file. Consequently, you do not have to specify SHARE(*YES) for the database file you are copying.

The following are examples of how the OPNQRYF and CPYFRMQRYF commands can be used:

v “Example 1: Copying from an open query file”

v “Example 2: Copying from an open query file”

v “Example 3: Copying from an open query file”

v “Example 4: Copying from an open query file”

Example 1: Copying from an open query file: Building a file with a subset of records

Assume you want to create a file from the CUSTOMER/ADDRESS file containing only records where the

value of the STATE field is Texas. You can specify the following:

OPNQRYF FILE(CUSTOMER/ADDRESS) QRYSLT(’STATE *EQ "TEXAS"’)

CPYFRMQRYF FROMOPNID(ADDRESS) TOFILE(TEXAS/ADDRESS) CRTFILE(*YES)

Example 2: Copying from an open query file: Printing records based on selection

Assume you want to print all records from FILEA where the value of the CITY field is Chicago. You can

specify the following:

OPNQRYF FILE(FILEA) QRYSLT(’CITY *EQ "CHICAGO"’)

CPYFRMQRYF FROMOPNID(FILEA) TOFILE(*PRINT)

Example 3: Copying from an open query file: Copying a subset of records to a diskette

Assume you want to copy all records from FILEB where the value of FIELDB is 10 to a diskette. You can

specify the following:

OPNQRYF FILE(FILEB) QRYSLT(’FIELDB *EQ "10"’) OPNID(MYID)

CPYFRMQRYF FROMOPNID(MYID) TOFILE(DISK1)

Example 4: Copying from an open query file: Creating a copy of the output of a dynamic join

Assume you want to create a physical file that has the format and data of the join of FILEA and FILEB.

Assume the files contain the following fields:

FILEA FILEB JOINAB

Cust Cust Cust

Name Amt Name

Addr Amt

The join field is Cust, which exists in both files. To join the files and save a copy of the results in a new

physical file MYLIB/FILEC, you can specify:

OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

 JFLD((FILEA/CUST FILEB/CUST)) +

 MAPFLD((CUST ’FILEA/CUST’)) OPNID(QRYFILE)

CPYFRMQRYF FROMOPNID(QRYFILE) TOFILE(MYLIB/FILEC) CRTFILE(*YES)

The file MYLIB/FILEC will be created by the CPYFRMQRYF command. The file will have file attributes

like those of FILEA although some file attributes may be changed. The format of the file will be like

JOINAB. The file will contain the data from the join of FILEA and FILEB using the Cust field. File FILEC

in library MYLIB can be processed like any other physical file with CL commands, such as the Display

Database programming 155

Physical File Member (DSPPFM) command and utilities, such as Query. For more information about the

CPYFRMQRYF command and other copy commands, see File Management.

Typical errors when using the Open Query File (OPNQRYF) command: Several functions must be

correctly specified for the OPNQRYF command and your program to get the correct results. The Display

Job (DSPJOB) command is your most useful tool if problems occur. This command supports both the

open files option and the file overrides option. You should look at both of these if you are having

problems.

These are the most common problems and how to correct them:

v Shared open data path (ODP). The OPNQRYF command operates through a shared ODP. In order for

the file to process correctly, the member must be opened for a shared ODP. If you are having problems,

use the open files option on the DSPJOB command to determine if the member is opened and has a

shared ODP.

There are normally two reasons that the file is not open:

– The member to be processed must be SHARE(*YES). Either use an Override with Database File

(OVRDBF) command or permanently change the member.

– The file is closed. You have run the OPNQRYF command with the OPNSCOPE(*ACTGRPDFN) or

TYPE(*NORMAL) parameter option from a program that was running in the default activation

group at a higher level in the call stack than the program that is getting an error message or that is

simply running the Reclaim Resources (RCLRSC) command. This closes the open query file because

it was opened from a program at a higher level in the call stack than the program that ran the

RCLRSC command. If the open query file was closed, you must run the OPNQRYF command again.

Note that when using the OPNQRYF command with the TYPE(*NORMAL) parameter option on

releases prior to Version 2 Release 3, the open query file is closed even if it was opened from the

same program that reclaims the resources.
v Level check. Level checking is normally used because it ensures that your program is running against

the same record format that the program was compiled with. If you are experiencing level check

problems, it is normally because of one of the following:

– The record format was changed since the program was created. Creating the program again should

correct the problem.

– An override is directing the program to an incorrect file. Use the file overrides option on the

DSPJOB command to ensure that the overrides are correctly specified.

– The FORMAT parameter is needed but is either not specified or incorrectly specified. When a file is

processed with the FORMAT parameter, you must ensure:

- The Override with Database File (OVRDBF) command, used with the TOFILE parameter,

describes the first file on the FILE parameter of the Open Query File (OPNQRYF) command.

- The FORMAT parameter identifies the file that contains the format used to create the program.
– The FORMAT parameter is used to process a format from a different file (for example, for group

processing), but SHARE(*YES) was not requested on the OVRDBF command.
v The file to be processed is at end of file. The normal use of the OPNQRYF command is to process a file

sequentially where you can only process the file once. At that point, the position of the file is at the

end of the file and you will not receive any records if you attempt to process it again. To process the

file again from the start, you must either run the OPNQRYF command again or reposition the file

before processing. You can reposition the file by using the Position Database File (POSDBF) command,

or through a high-level language program statement.

v No records exist. This can be caused when you use the FORMAT keyword, but do not specify the

OVRDBF command.

v Syntax errors. The system found an error in the specification of the OPNQRYF command.

v Operation not valid. The definition of the query does not include the KEYFLD parameter, but the

high-level language program attempts to read the query file using a key field.

156 OS/400 DB2 UDB for iSeries Database programming V5R3

v Get option not valid. The high-level language program attempted to read a record or set a record

position before the current record position, and the query file used either the group by option, the

unique key option, or the distinct option on the SQL statement.

Basic database file operations in programs

The basic database file operations that can be performed in a program are discussed in this chapter. See

the following topics:

v “Setting a position in the file”

v “Reading database records” on page 158

v “Updating database records” on page 163

v “Adding database records” on page 164

v “Deleting database records” on page 166

Setting a position in the file

After a file is opened by a job, the system maintains a position in the file for that job. The file position is

used in processing the file. For example, if a program does a read operation requesting the next

sequential record, the system uses the file position to determine which record to return to the program.

The system will then set the file position to the record just read, so that another read operation requesting

the next sequential record will return the correct record. The system keeps track of all file positions for

each job. In addition, each job can have multiple positions in the same file.

The file position is first set to the position specified in the POSITION parameter on the Override with

Database File (OVRDBF) command. See OVRDBF (Override with Database File) Command in the Control

Language (CL) topic. If you do not use an OVRDBF command, or if you take the default for the

POSITION parameter, the file position is set just before the first record in the member’s access path.

A program can change the current file position by using the appropriate high-level language program file

positioning operation (for example, SETLL in the RPG/400 language or START in the COBOL/400

language). A program can also change the file position by using the CL Position Database File (POSDBF)

command.

Note: File positioning by means of the Override with Database File (OVRDBF) command does not occur

until the next time the file is opened. Because a file can be opened only once within a CL program,

this command cannot be used within a single CL program to affect what will be read through the

RCVF command.

At end of file, after the last read, the file member is positioned to *START or *END file position,

depending on whether the program was reading forward or backward through the file. The following

diagram shows *START and *END file positions. *START is at the top, with three records following, and

*END at the bottom.

Only a read operation, force-end-of-data operation, high-level language positioning operation, or specific

CL command to change the file position can change the file position. Add, update, and delete operations

do not change the file position. After a read operation, the file is positioned to the new record. This

Database programming 157

record is then returned to your program. After the read operation is completed, the file is positioned at

the record just returned to your program. If the member is open for input, a force-end-of-data operation

positions the file after the last record in the file (*END) and sends the end-of-file message to your

program.

For sequential read operations, the current file position is used to locate the next or previous record on

the access path. For read-by-key or read-by-relative-record-number operations, the file position is not

used. If POSITION(*NONE) is specified at open time, no starting file position is set. In this case, you

must establish a file position in your program, if you are going to read sequentially.

If end-of-file delay was specified for the file on an Override With Database File (OVRDBF) command, the

file is not positioned to *START or *END when the program reads the last record. The file remains

positioned at the last record read. A file with end-of-file delay processing specified is positioned to

*START or *END only when a force-end-of-data (FEOD) occurs or a controlled job end occurs. For more

information about end-of-file delay, see “Waiting for more records when end of file is reached” on page

161.

You can also use the Position Database File (POSDBF) command to set or change the current position in

your file for files opened using either the Open Database File (OPNDBF) command or the Open Query

File (OPNQRYF) command.

Reading database records

The iSeries system provides a number of ways to read database records. The next sections describe those

ways in detail. (Some high-level languages do not support all of the read operations available on the

system. See your high-level language guide for more information about reading database records.)

See the following topics:

v “Reading database records using an arrival sequence access path”

v “Reading database records using a keyed sequence access path” on page 159

v “Waiting for more records when end of file is reached” on page 161

v “Releasing locked records” on page 163

Reading database records using an arrival sequence access path: The system performs the following

read operations based on the operations you specify using your high-level language. These operations are

allowed if the file was defined with an arrival sequence access path; or if the file was defined with a

keyed sequence access path with the ignore-keyed-sequence-access-path option specified in the program,

on the Open Database File (OPNDBF) command, or on the Open Query File (OPNQRYF) command. See

“Ignoring the keyed sequence access path” on page 92 for more details about the option to ignore a

keyed sequence access path.

Note: Your high-level language may not allow all of the following read operations. Refer to your

high-level language guide to determine which operations are allowed by the language.

See the following read operation topics:

v “Read next operation”

v “Read previous operation” on page 159

v “Read first operation” on page 159

v “Read last operation” on page 159

v “Read same operation” on page 159

v “Read by relative record number operation” on page 159

Read next operation: Positions the file to and gets the next record that is not deleted in the arrival

sequence access path. Deleted records between the current position in the file and the next active record

158 OS/400 DB2 UDB for iSeries Database programming V5R3

are skipped. (The READ statement in the RPG/400 language and the READ NEXT statement in the

COBOL/400 language are examples of this operation.)

Read previous operation: Positions the file to and gets the previous active record in the arrival sequence

access path. Deleted records between the current file position and the previous active record are skipped.

(The READP statement in the RPG/400 language and the READ PRIOR statement in the COBOL/400

language are examples of this operation.)

Read first operation: Positions the file to and gets the first active record in the arrival sequence access

path.

Read last operation: Positions the file to and gets the last active record in the arrival sequence access path.

Read same operation: Gets the record that is identified by the current position in the file. The file position

is not changed.

Read by relative record number operation: Positions the file to and gets the record in the arrival sequence

access path that is identified by the relative record number. The relative record number must identify an

active record and must be less than or equal to the largest active relative record number in the member.

This operation also reads the record in the arrival sequence access path identified by the current file

position plus or minus a specified number of records. (The CHAIN statement in the RPG/400 language

and the READ statement in the COBOL/400 language are examples of this operation.) Special

consideration should be given to creating or changing a file to reuse deleted records if the file is

processed by relative record processing. For more information, see “Reusing deleted records” on page 92.

Reading database records using a keyed sequence access path: The system performs the following read

operations based on the statements you specify using your high-level language. These operations can be

used with a keyed sequence access path to get database records.

When a keyed sequence access path is used, a read operation cannot position to the storage occupied by

a deleted record.

Note: Your high-level language may not allow all of the following operations. Refer to your high-level

language guide to determine which operations are allowed by the language.

See the following read operation topics:

v “Read next operation”

v “Read previous operation”

v “Read first operation” on page 160

v “Read last operation” on page 160

v “Read same operation” on page 160

v “Read by key operation” on page 160

v “Read by relative record number operation” on page 160

v “Read when logical file shares an access path with more keys operation” on page 160

Read next operation: Gets the next record on the keyed sequence access path. If a record format name is

specified, this operation gets the next record in the keyed sequence access path that matches the record

format. The current position in the file is used to locate the next record. (The READ statement in the

RPG/400 language and the READ NEXT statement in the COBOL/400 language are examples of this

operation.)

Read previous operation: Gets the previous record on the keyed sequence access path. If a record format

name is specified, this operation gets the previous record on the keyed sequence access path that matches

Database programming 159

the record format. The current position in the file is used to locate the previous record. (The READP

statement in the RPG/400 language and the READ PRIOR statement in the COBOL/400 language are

examples of this operation.)

Read first operation: Gets the first record on the keyed sequence access path. If a record format name is

specified, this operation gets the first record on the access path with the specified format name.

Read last operation: Gets the last record on the keyed sequence access path. If a record format name is

specified, this operation gets the last record on the access path with the specified format name.

Read same operation: Gets the record that is identified by the current file position. The position in the file

is not changed.

Read by key operation: Gets the record identified by the key value. Key operations of equal, equal or after,

equal or before, read previous key equal, read next key equal, after, or before can be specified. If a format

name is specified, the system searches for a record of the specified key value and record format name. If

a format name is not specified, the entire keyed sequence access path is searched for the specified key

value. If the key definition for the file includes multiple key fields, a partial key can be specified (you can

specify either the number of key fields or the key length to be used). This allows you to do generic key

searches. If the program does not specify a number of key fields, the system assumes a default number of

key fields. This default varies depending on if a record format name is passed by the program. If a record

format name is passed, the default number of key fields is the total number of key fields defined for that

format. If a record format name is not passed, the default number of key fields is the maximum number

of key fields that are common across all record formats in the access path. The program must supply

enough key data to match the number of key fields assumed by the system. (The CHAIN statement in

the RPG/400 language and the READ statement in the COBOL/400 language are examples of this

operation.)

Read by relative record number operation: For a keyed sequence access path, the relative record number can

be used. This is the relative record number in the arrival sequence, even though the member opened has

a keyed sequence access path. If the member contains multiple record formats, a record format name

must be specified. In this case, you are requesting a record in the associated physical file member that

matches the record format specified. If the member opened contains select/omit statements and the

record identified by the relative record number is omitted from the keyed sequence access path, an error

message is sent to your program and the operation is not allowed. After the operation is completed, the

file is positioned to the key value in the keyed sequence access path that is contained in the physical

record, which was identified by the relative record number. This operation also gets the record in the

keyed sequence access path identified by the current file position plus or minus some number of records.

(The CHAIN statement in the RPG/400 language and the READ statement in the COBOL/400 language

are examples of this operation.)

Read when logical file shares an access path with more keys operation: When the FIFO, LIFO, or FCFO

keyword is not specified in the data description specifications (DDS) for a logical file, the logical file can

implicitly share an access path that has more keys than the logical file being created. This sharing of a

partial set of keys from an existing access path can lead to perceived problems for database read

operations that use these partially shared keyed sequence access paths. The problems will appear to be:

v Records that should be read, are never returned to your program

v Records are returned to your program multiple times

What is actually happening is that your program or another currently active program is updating the

physical file fields that are keys within the partially shared keyed sequence access path, but that are not

actual keys for the logical file that is being used by your program (the fields being updated are beyond

the number of keys known to the logical file being used by your program). The updating of the actual

key fields for a logical file by your program or another program has always yielded the above results.

160 OS/400 DB2 UDB for iSeries Database programming V5R3

The difference with partially shared keyed sequence access paths is that the updating of the physical file

fields that are keys beyond the number of keys known to the logical file can cause the same

consequences.

If these consequences caused by partially shared keyed sequence access paths are not acceptable, the

FIFO, LIFO, or FCFO keyword can be added to the DDS for the logical file, and the logical file created

again.

Waiting for more records when end of file is reached: End-of-file delay is a method of continuing to

read sequentially from a database file (logical or physical) after an end-of-file condition occurs. When an

end-of-file condition occurs on a file being read sequentially (for example, next/previous record) and you

have specified an end-of-file delay time (EOFDLY parameter on the Override with Database File

[OVRDBF] command), the system waits for the time you specified. At the end of the delay time, another

read is done to determine if any new records were added to the file. If records were added, normal

record processing is done until an end-of-file condition occurs again. If records were not added to the file,

the system waits again for the time specified. Special consideration should be taken when using

end-of-file delay on a logical file with select/omit specifications, opened so that the keyed sequence

access path is not used. In this case, once end-of-file is reached, the system retrieves only those records

added to a based-on physical file that meet the select/omit specifications of the logical file.

Also, special consideration should be taken when using end-of-file delay on a file with a keyed sequence

access path, opened so that the keyed sequence access path is used. In this case, once end-of-file is

reached, the system retrieves only those records added to the file or those records updated in the file that

meet the specification of the read operation using the keyed sequence access path.

For example, end-of-file delay is used on a keyed file that has a numeric key field in ascending order. An

application program reads the records in the file using the keyed sequence access path. The application

program performs a read next operation and gets a record that has a key value of 99. The application

program performs another read next and no more records are found in the file, so the system attempts to

read the file again after the specified end-of-file delay time. If a record is added to the file or a record is

updated, and the record has a key value less than 99, the system does not retrieve the record. If a record

is added to the file or a record is updated and the record has a key value greater than or equal to 99, the

system retrieves the record.

For end-of-file delay times equal to or greater than 10 seconds, the job is eligible to be removed from

main storage during the wait time. If you do not want the job eligible to be moved from main storage,

specify PURGE(*NO) on the Create Class (CRTCLS) command for the CLASS the job is using.

To indicate which jobs have an end-of-file delay in progress, the status field of the Work with Active Jobs

(WRKACTJOB) display shows an end-of-file wait or end-of-file activity level for jobs that are waiting for

a record.

If a job uses end-of-file-delay and commitment control, it can hold its record locks for a longer period of

time. This increases the chances that some other job can try to access those same records and be locked

out. For that reason, be careful when using end-of-file-delay and commitment control in the same job.

If a file is shared, the Override with Database File (OVRDBF) command specifying an end-of-file delay

must be requested before the first open of the file because overrides are ignored that are specified after

the shared file is opened.

There are several ways to end a job that is waiting for more records because of an end-of-file-delay

specified on the Override with Database File (OVRDBF) command:

v Write a record to the file with the end-of-file-delay that will be recognized by the application program

as a last record. The application program can then specify a force-end-of-data (FEOD) operation. An

FEOD operation allows the program to complete normal end-of-file processing.

Database programming 161

v Do a controlled end of a job by specifying OPTION(*CNTRLD) on the End Job (ENDJOB) command,

with a DELAY parameter value time greater than the EOFDLY time. The DELAY parameter time

specified must allow time for the EOFDLY time to run out, time to process any new records that have

been put in the file, and any end-of-file processing required in your application. After new records are

processed, the system signals end of file, and a normal end-of-file condition occurs.

v Specify OPTION(*IMMED) on the End Job (ENDJOB) command. No end-of-file processing is done.

v If the job is interactive, press the System Request key to end the last request.

The following is an example of end-of-file delay operation:

The actual processing of the EOFDLY parameter is more complex than shown because it is possible to

force a true end-of-file if OPTION(*CNTRLD) on the End Job (ENDJOB) command is used with a long

delay time.

The job does not become active whenever a new record is added to the file. The job becomes active after

the specified end-of-file delay time ends. When the job becomes active, the system checks for any new

records. If new records were added, the application program gets control and processes all new records,

then waits again. Because of this, the job takes on the characteristic of a batch job when it is processing.

For example, it normally processes a batch of requests. When the batch is completed, the job becomes

162 OS/400 DB2 UDB for iSeries Database programming V5R3

inactive. If the delay is small, you can cause excessive system overhead because of the internal processing

required to start the job and check for new records. Normally, only a small amount of overhead is used

for a job waiting during end-of-file delay.

Note: When the job is inactive (waiting) it is in a long-wait status, which means it was released from an

activity level. After the long-wait status is satisfied, the system reschedules the job in an activity

level. (See the Work Management topic for more information about activity levels.)

Releasing locked records: The system automatically releases a locked record when the record is

updated, deleted, or when you read another record in the file. However, you may want to release a

locked record without performing these operations. Some high-level languages support an operation to

release a locked record. See your high-level language guide for more information about releasing record

locks.

Note: The rules for locking are different if your job is running under commitment control. See the

Commitment Control topic for more details.

Updating database records

The update operation allows you to change an existing database record in a logical or physical file. (The

UPDAT statement in the RPG/400 language and the REWRITE statement in the COBOL/400 language

are examples of this type operation.) Before you update a database record, the record must first be read

and locked. The lock is obtained by specifying the update option on any of the read operations listed

under the “Reading database records using an arrival sequence access path” on page 158 or “Reading

database records using a keyed sequence access path” on page 159.

If you issue several read operations with the update option specified, each read operation releases the

lock on the previous record before attempting to locate and lock the new record. When you do the

update operation, the system assumes that you are updating the currently locked record. Therefore, you

do not have to identify the record to be updated on the update operation. After the update operation is

done, the system releases the lock.

Note: The rules for locking are different if your job is running under commitment control. See the

Commitment Control topic for more details.

If the update operation changes a key field in an access path for which immediate maintenance is

specified, the access path is updated if the high-level language allows it. (Some high-level languages do

not allow changes to the key field in an update operation.)

If you request a read operation on a record that is already locked for update and if your job is running

under a commitment control level of *ALL or *CS (cursor stability), then you must wait until the record is

released or the time specified by the WAITRCD parameter on the create file or override commands has

been exceeded. If the WAITRCD time is exceeded without the lock being released, an exception is

returned to your program and a message is sent to your job stating the file, member, relative record

number, and the job which has the lock. If the job that is reading records is not running under a

commitment control level of *ALL or *CS, the job is able to read a record that is locked for update.

If the file you are updating has an update trigger associated with it, the trigger program is called before

or after updating the record. See “Triggering automatic events in your database” on page 225 for detailed

information on trigger programs.

If the files being updated are associated with referential constraints, the update operation can be affected.

See “Ensuring data integrity with referential constraints” on page 213 for detailed information on

referential constraints.

Database programming 163

Adding database records

The write operation is used to add a new record to a physical database file member. (The WRITE

statement in the RPG/400 language and the WRITE statement in the COBOL/400 language are examples

of this operation.) New records can be added to a physical file member or to a logical file member that is

based on the physical file member. When using a multiple format logical file, a record format name must

be supplied to tell the system which physical file member to add the record to.

The new record is normally added at the end of the physical file member. The next available relative

record number (including deleted records) is assigned to the new record. Some high-level languages

allow you to write a new record over a deleted record position (for example, the WRITE statement in

COBOL/400 when the file organization is defined as RELATIVE). For more information about writing

records over deleted record positions, see your high-level language guide.

If the physical file to which records are added reuses deleted records, the system tries to insert the

records into slots that held deleted records. Before you create or change a file to reuse deleted records,

you should review the restrictions and tips for use to determine whether the file is a candidate for reuse

of deleted record space. For more information on reusing deleted record space, see “Reusing deleted

records” on page 92.

If you are adding new records to a file member that has a keyed access path, the new record appears in

the keyed sequence access path immediately at the location defined by the record key. If you are adding

records to a logical member that contains select/omit values, the omit values can prevent the new record

from appearing in the member’s access path.

If the file to which you are adding a record has an insert trigger associated with it, the trigger program is

called before or after inserting the record. See “Triggering automatic events in your database” on page

225 for detailed information on trigger programs.

If the files you are adding to are associated with referential constraints, record insertion can be affected.

See “Ensuring data integrity with referential constraints” on page 213 for detailed information on

referential constraints.

The SIZE parameter on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF)

commands determines how many records can be added to a physical file member.

For more information about adding records, see the following topics:

v “Identifying which record format to add in a file with multiple formats”

v “Using the force-end-of-data operation” on page 166

Identifying which record format to add in a file with multiple formats: If your application uses a file

name instead of a record format name for records to be added to the database, and if the file used is a

logical file with more than one record format, you need to write a format selector program to determine

where a record should be placed in the database. A format selector can be a CL program or a high-level

language program.

A format selector program must be used if all of the following are true:

v The logical file is not a join and not a view logical file.

v The logical file is based on multiple physical files.

v The program uses a file name instead of a record format name on the add operation.

If you do not write a format selector program for this situation, your program ends with an error when it

tries to add a record to the database.

Note: A format selector program cannot be used to select a member if a file has multiple members; it can

only select a record format.

164 OS/400 DB2 UDB for iSeries Database programming V5R3

When an application program wants to add a record to the database file, the system calls the format

selector program. The format selector program examines the record and specifies the record format to be

used. The system then adds the record to the database file using the specified record format name.

The following example shows the programming statements for a format selector program written in the

RPG/400 language:

CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments+++...

+++*

C *ENTRY PLIST

C PARM RECORD 80

C* The length of field RECORD must equal the length of

C* the longest record expected.

C PARM FORMAT 10

C MOVELRECORD BYTE 1

C BYTE IFEQ ’A’

C MOVEL’HDR’ FORMAT

C ELSE

C MOVEL’DTL’ FORMAT

C END

The format selector receives the record in the first parameter; therefore, this field must be declared to be

the length of the longest record expected by the format selector. The format selector can access any

portion of the record to determine the record format name. In this example, the format selector checks the

first character in the record for the character A. If the first character is A, the format selector moves the

record format name HDR into the second parameter (FORMAT). If the character is not A, the format

selector moves the record format name DTL into the second parameter.

The format selector uses the second parameter, which is a 10-character field, to pass the record format

name to the system. When the system knows the name of the record format, it adds the record to the

database.

You do not need a format selector if:

v You are doing updates only. For updates, your program already retrieved the record, and the system

knows which physical file the record came from.

v Your application program specifies the record format name instead of a file name for an add or delete

operation.

v All the records used by your application program are contained in one physical file.

To create the format selector, you use the create program command for the language in which you wrote

the program. You cannot specify USRPRF(*OWNER) on the create command. The format selector must

run under the user’s user profile not the owner’s user profile.

Database programming 165

In addition, for security and integrity and because performance would be severely affected, you must not

have any calls or input/output operations within the format selector.

The name of the format selector is specified on the FMTSLR parameter of the Create Logical File

(CRTLF), Change Logical File (CHGLF), or Override with Database File (OVRDBF) command. The format

selector program does not have to exist when the file is created, but it must exist when the application

program is run.

Using the force-end-of-data operation: The force-end-of-data (FEOD) operation allows you to force all

changes to a file made by your program to auxiliary storage. Normally, the system determines when to

force changes to auxiliary storage. However, you can use the FEOD operation to ensure that all changes

are forced to auxiliary storage.

The force-end-of-data (FEOD) operation also allows you to position to either the beginning or the end of

a file if the file is open for input operations. *START sets the beginning or starting position in the

database file member currently open to just before the first record in the member (the first sequential

read operation reads the first record in the current member). If MBR(*ALL) processing is in effect for the

override with Database File (OVRDBF) command, a read previous operation gets the last record in the

previous member. If a read previous operation is done and the previous member does not exist, the end

of file message (CPF5001) is sent. *END sets the position in the database file member currently open to

just after the last record in the member (a read previous operation reads the last record in the current

member). If MBR(*ALL) processing is in effect for the Override with Database File (OVRDBF) command,

a read next operation gets the first record in the next member. If a read next operation is done and the

next member does not exist, the end of file message (CPF5001) occurs.

If the file has a delete trigger, the force-end-of-data operation is not allowed. See “Triggering automatic

events in your database” on page 225 for detailed information on triggers. If the file is part of a

referential parent relationship, the FEOD operation will not be allowed. See “Ensuring data integrity with

referential constraints” on page 213 for detailed information on referential constraints.

See your high-level language guide for more information about the FEOD operation (some high-level

languages do not support the FEOD operation).

Deleting database records

The delete operation allows you to delete an existing database record. (The DELET statement in the

RPG/400 language and the DELETE statement in the COBOL/400 language are examples of this

operation.) To delete a database record, the record must first be read and locked. The record is locked by

specifying the update option on any of the read operations listed under “Reading database records using

an arrival sequence access path” on page 158 or “Reading database records using a keyed sequence

access path” on page 159. The rules for locking records for deletion and identifying which record to

delete are the same as for update operations.

Note: Some high-level languages do not require that you read the record first. These languages allow you

to simply specify which record you want deleted on the delete statement. For example, the

RPG/400 language allows you to delete a record without first reading it.

When a database record is deleted, the physical record is marked as deleted. This is true even if the

delete operation is done through a logical file. A deleted record cannot be read. The record is removed

from all keyed sequence access paths that contain the record. The relative record number of the deleted

record remains the same. All other relative record numbers within the physical file member do not

change.

The space used by the deleted record remains in the file, but it is not reused until:

v The Reorganize Physical File Member (RGZPFM) command is run to compress and free these spaces in

the file member. See “Reorganizing a physical file” on page 173 for more information about this

command.

166 OS/400 DB2 UDB for iSeries Database programming V5R3

v Your program writes a record to the file by relative record number and the relative record number

used is the same as that of the deleted record.

Note: The system tries to reuse deleted record space automatically if the file has the reuse deleted record

space attribute specified. For more information, see “Reusing deleted records” on page 92.

The system does not allow you to retrieve the data for a deleted record. You can, however, write a new

record to the position (relative record number) associated with a deleted record. The write operation

replaces the deleted record with a new record. See your high-level language guide for more details about

how to write a record to a specific position (relative record number) in the file.

To write a record to the relative record number of a deleted record, that relative record number must exist

in the physical file member. You can delete a record in the file using the delete operation in your

high-level language. You can also delete records in your file using the Initialize Physical File Member

(INZPFM) command. The INZPFM command can initialize the entire physical file member to deleted

records. For more information about the INZPFM command, see “Initializing data in a physical file

member” on page 173.

If the file from which you are deleting has a delete trigger associated with it, the trigger program is

called before or after deleting the record. See “Triggering automatic events in your database” on page 225

for detailed information on triggers.

If the file is part of a referential constraint relationship, record deletion may be affected. See “Ensuring

data integrity with referential constraints” on page 213 for detailed information on referential constraints.

Closing a database file

When your program completes processing a database file member, it should close the file. Closing a

database file disconnects your program from the file. The close operation releases all record locks and

releases all file member locks, forces all changes made through the open data path (ODP) to auxiliary

storage, then destroys the ODP. (When a shared file is closed but the ODP remains open, the functions

differ. For more information about shared files, see “Sharing database files in the same job or activation

group” on page 98.)

To close a database file in a program, use one of the following methods:

v High-level language close statements

Most high-level languages allow you to specify that you want to close your database files. For more

information about how to close a database file in a high-level language program, see your high-level

language guide.

v Close File (CLOF) command

You can use the Close File (CLOF) command to close database files that were opened using either the

Open Database File (OPNDBF) or Open Query File (OPNQRYF) commands. See CLOF (Close File)

Command in the Control Language (CL) topic.

v Reclaim Resources (RCLRSC) command

The RCLRSC command releases all locks (except, under commitment control, locks on records that

were changed but not yet committed), forces all changes to auxiliary storage, then destroys the open

data path for that file. See RCLRSC (Reclaim Resources) Command in the Control Language (CL)

topic.You can use the RCLRSC command to allow a calling program to close a called program’s files.

(For example, if the called program returns to the calling program without closing its files, the calling

program can then close the called program’s files.) However, the normal way of closing files in a

program is with the high-level language close operation or through the Close File (CLOF) command.

For more information on resource reclamation in the integrated language environment, see the ILE

Concepts

book.

Database programming 167

If a job ends normally (for example, a user signs off) and all the files associated with that job were not

closed, the system automatically closes all the remaining open files associated with that job, forces all

changes to auxiliary storage, and releases all record locks for those files. If a job ends abnormally, the

system also closes all files associated with that job, releases all record locks for those files, and forces all

changes to auxiliary storage.

When a process is trying to lock a file that is held by another process, the Close database file exit

program is called. This exit is called in the process that is holding the lock. For more information, refer to

(need to add link to particular information in API reference).

Monitoring database file errors in a program

As your database applications perform actions on your database files, you should monitor messages

about file errors that the program detected so that you can take the proper actions to prevent the errors.

Each high-level language provides its own procedure for monitoring these messages, and you should see

the documentation for the language you are using to implement error message monitoring.

One or more of the following events occurs when error conditions are detected during processing of a

database file:

v Messages can be sent to the program message queue for the program processing the file.

v An inquiry message can be sent to the system operator message queue.

v File errors and diagnostic information can appear to your program as return codes and status

information in the file feedback area.

For example, the COBOL language sets a return code in the file status field, if it is defined in the

program.

See these topics for additional information:

v “System handling of error messages”

v “Effect of error messages on file positioning”

v “Determining which messages you want to monitor”

System handling of error messages

If you do not monitor for messages, the system handles the error. The system also sets the appropriate

error return code in the program. Depending on the error, the system can end the job or send a message

to the operator requesting further action.

Effect of error messages on file positioning

If a message is sent to your program while processing a database file member, the position in the file is

not lost. It remains at the record it was positioned to before the message was sent, except:

v After an end-of-file condition is reached and a message is sent to the program, the file is positioned at

*START or *END.

v After a conversion mapping message on a read operation, the file is positioned to the record containing

the data that caused the message.

Determining which messages you want to monitor

If your programming language allows you to monitor for error messages, you can choose which ones you

wish to monitor for. The following messages are a small sample of the error messages you can monitor.

See your high-level language guide, or see Monitorable Messages in the Control Language (CL) topic for

information about which messages you can monitor. To display the full description of these messages, use

the Display Message Description (DSPMSGD) command. See DSPMSGD (Display Message Description)

Command in the Control Language (CL) topic.

 Message Identifier Description

CPF5001 End of file reached

168 OS/400 DB2 UDB for iSeries Database programming V5R3

Message Identifier Description

CPF5006 Record not found

CPF5007 Record deleted

CPF5018 Maximum file size reached

CPF5025 Read attempted past *START or *END

CPF5026 Duplicate key

CPF5027 Record in use by another job

CPF5028 Record key changed

CPF5029 Data mapping error

CPF502B Error in trigger program

CPF502D Referential constraint violation

CPF5030 Partial damage on member

CPF5031 Maximum number of record locks exceeded

CPF5032 Record already allocated to job

CPF5033 Select/omit error

CPF5034 Duplicate key in another member’s access path

CPF503A Referential constraint violation

CPF5040 Omitted record not retrieved

CPF5072 Join value in member changed

CPF5079 Commitment control resource limit exceeded

CPF5084 Duplicate key for uncommitted key

CPF5085 Duplicate key for uncommitted key in another access path

CPF5090 Unique access path problem prevents access to member

CPF5097 Key mapping error

Manage database files

The following topics contain information on managing database files.

“Basic operations for managing database files” on page 170
This section discusses some of the ways to manage database files with basic file operations.

“Managing database members” on page 171
This section discusses some of the ways to manage database file members, including adding

members, changing member attributes, renaming members, and removing members. It also

discusses member operations unique to physical files.

“Using database attribute and cross-reference information” on page 178
This section discusses how to change database file, physical file, and logical file descriptions and

attributes.

“Changing database file descriptions and attributes” on page 183
This section contains information about how to change how to display and use database file

attributes, field relationships, and cross reference information. In addition, it discusses how to write

command output directly to a database file.

“Recovering and restoring your database” on page 187
This section contains information about planning for recovery of your database files in the event of

a system failure:

v Saving and restoring

v Journaling

v Using auxiliary storage

v Using commitment control

Database programming 169

“Using source files” on page 202
This section describes how to enter and maintain data in a source file, and how to use that source

file to create another object on the system.

“Controlling the integrity of your database with constraints” on page 208
This section describes how to use constraints to ensure that data in your database remains consistent

as you add, change, and remove records.

“Ensuring data integrity with referential constraints” on page 213
This section contains information about using referential constraints in your database to ensure that

your database contains only valid data.

“Triggering automatic events in your database” on page 225
This section discusses the use of triggers to initiate a set of actions to be run automatically when a

specified change or read operation is performed on a specified physical database file.

“Database distribution” on page 250
This section introduces DB2 Multisystem, a separately priced feature, which provides a simple and

direct method of distributing a database file over multiple systems in a loosely-coupled

environment.

Basic operations for managing database files

This chapter tells about some of the more basic database file operations. See the following topics:

v “Copying a file”

v “Moving a file” on page 171

Copying a file

You can copy a file using the Copy a Table operation in iSeries Navigator. See “Copying a file (table)

using iSeries Navigator.” Or, you can use the Copy File (CPYF) command. See “Copying a file using

CPYF.”

Copying a file (table) using iSeries Navigator: Copying a table to different schema creates two

instances of the same table. To copy a table to a different schema:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and schema that you want to work with.

4. Click the Tables container.

5. Right-click the table and select Copy.

6. Right-click the schema you want to copy the table to and select Paste.

Distributed data management (DDM) is used by iSeries Navigator to actually move or copy the table. If

the source system is Version 4 Release 4 or later and if the target system is Version 4 Release 2 or later,

the operation will be performed using DDM over TCP/IP. Otherwise the operation will be performed

using DDM over SNA. For a move or copy using DDM over SNA, the names by which iSeries Access

knows the systems must be the same as the remote location names specified in the APPC or APPN

device descriptions used by DDM. For a move or copy using DDM over TCP/IP, TCP communications

must be enabled between the systems. For TCP/IP, it is important to note that TCP/IP must be enabled

between the systems as they are known to iSeries Access. For more information, see Distributed Database

Management.

Copying a file using CPYF: The Copy File (CPYF) command copies all or part of a database or external

device file to a database or external device file. See CPYF (Copy File) Command in the Control Language

(CL) topic for more information.

170 OS/400 DB2 UDB for iSeries Database programming V5R3

|

|

|

|

|

|

Moving a file

You can move a file from one library to another using the Move a Table operation in iSeries Navigator.

See “Moving a file (table) using iSeries Navigator.” Or, you can use the Move Object (MOVOBJ)

command. See “Moving a file using the MOVOBJ command.”

Moving a file (table) using iSeries Navigator: To move a file (table) to a different library:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and schema that you want to work with.

4. Click the Tables container.

5. Right-click the table and select Cut.

6. Right-click the schema you want to move the table to and select Paste.

7. OR You can drag the table and drop it on anther library on the same system or a different system.

Note: Moving a table to a new location does not always remove it from the source system. For example,

if you have read authority but not delete authority to the source table, the table will be moved to

the target system. However, it will not be deleted from the source system, causing two instances of

the table to exist.

Distributed data management (DDM) is used by iSeries Navigator to actually move or copy the table. If

the source system is Version 4 Release 4 or later and if the target system is Version 4 Release 2 or later,

the operation will be performed using DDM over TCP/IP. Otherwise the operation will be performed

using DDM over SNA. For a move or copy using DDM over SNA, the names by which iSeries Access

knows the systems must be the same as the remote location names specified in the APPC or APPN

device descriptions used by DDM. For a move or copy using DDM over TCP/IP, TCP communications

must be enabled between the systems. For TCP/IP, it is important to note that TCP/IP must be enabled

between the systems as they are known to iSeries Access. For more information, see Distributed Database

Management.

Moving a file using the MOVOBJ command: The Move Object (MOVOBJ) command removes an object

from its currently assigned library and places it in a different library. The type of the object moved is

specified in the OBJTYPE parameter. See MOVOBJ (Move Object) Command in the Control Language

(CL) topic for more information.

Managing database members

Before you perform any input or output operations on a file, the file must have at least one member. As a

general rule, database files have only one member, the one created when the file is created. The name of

this member is the same as the file name, unless you give it a different name. Because most operations on

database files assume that the member being used is the first member in the file, and because most files

only have one member, you do not normally have to be concerned with, or specify, member names.

If a file contains more than one member, each member serves as a subset of the data in the file. This

allows you to classify data easier. For example, you define an accounts receivable file. You decide that

you want to keep data for a year in that file, but you frequently want to process data just one month at a

time. For example, you create a physical file with 12 members, one named for each month. Then, you

process each month’s data separately (by individual member). You can also process several or all

members together.

See the following topics for managing members:

v “Member operations common to all database files” on page 172

v “Physical file member operations” on page 172

Database programming 171

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

Member operations common to all database files

The system supplies a way for you to make changes to file definitions. You can use CL commands to

perform most of these operations. See the Control Language (CL) topic for more information about these

commands.

See the following topics:

v “Adding members to files”

v “Changing member attributes”

v “Renaming members”

v “Removing members from files”

Adding members to files: You can add members to files in any of these ways:

v Automatically. When a file is created using the Create Physical File (CRTPF) or Create Logical File

(CRTLF) commands, the default is to automatically add a member (with the same name as the file) to

the newly created file. (The default for the Create Source Physical File (CRTSRCPF) command is not to

add a member to the newly created file.) You can specify a different member name using the MBR

parameter on the create database file commands. If you do not want a member added when the file is

created, specify *NONE on the MBR parameter.

v Specifically. After the file is created, you can add a member using the Add Physical File Member

(ADDPFM) or Add Logical File Member (ADDLFM) commands.

v Copy File (CPYF) command. If the member you are copying does not exist in the file being copied to,

the member is added to the file by the CPYF command.

Changing member attributes: You can use the Change Physical File Member (CHGPFM) or Change

Logical File Member (CHGLFM) command to change certain attributes of a physical or a logical file

member. For a physical file member, you can change the following parameters: SRCTYPE (the member’s

source type), EXPDATE (the member’s expiration date), SHARE (whether the member can be shared

within a job), and TEXT (the text description of the member). For a logical file member you can change

the SHARE and TEXT parameters.

Note: You can use the Change Physical File (CHGPF) and Change Logical File (CHGLF) commands to

change many other file attributes. For example, to change the maximum size allowed for each

member in the file, you would use the SIZE parameter on the CHGPF command.

Renaming members: The Rename Member (RNMM) command changes the name of an existing

member in a physical or logical file. The file name is not changed.

Removing members from files: The Remove Member (RMVM) command is used to remove the

member and its contents. Both the member data and the member itself are removed. After the member is

removed, it can no longer be used by the system. This is different from just clearing or deleting the data

from the member. If the member still exists, programs can continue to use (for example, add data to) the

member.

Physical file member operations

The following section describes member operations that are unique to physical file members. Those

operations include initializing data, clearing data, reorganizing data, and displaying data in a physical file

member. See the following topics:

v “Initializing data in a physical file member” on page 173

v “Clearing data from physical file members” on page 173

v “Reorganizing a physical file” on page 173

v “Displaying records in a physical file member” on page 178

172 OS/400 DB2 UDB for iSeries Database programming V5R3

If the file member being operated on is associated with referential constraints, the operation can be

affected. See “Ensuring data integrity with referential constraints” on page 213 for detailed information

on referential constraints.

Initializing data in a physical file member: To use relative record processing in a program, the database

file must contain a number of record positions equal to the highest relative record number used in the

program. Programs using relative-record-number processing sometimes require that these records be

initialized.

You can use the Initialize Physical File Member (INZPFM) command to initialize members with one of

two types of records:

v Default records

v Deleted records

You specify which type of record you want using the RECORDS parameter on the Initialize Physical File

Member (INZPFM) command.

If you initialize records using default records, the fields in each new record are initialized to the default

field values defined when the file was created. If no default field value was defined, then numeric fields

are filled with zeros and character fields are filled with blanks.

Variable-length character fields have a zero-length default value. The default value for null-capable fields

is the null value. The default value for dates, times, and timestamps is the current date, time, or

timestamp if no default value is defined. Program-described files have a default value of all blanks.

Note: You can initialize one default record if the UNIQUE keyword is specified in DDS for the physical

file member or any associated logical file members. Otherwise, you would create a series of

duplicate key records.

If the records are initialized to the default records, you can read a record by relative record number and

change the data.

If the records were initialized to deleted records, you can change the data by adding a record using a

relative record number of one of the deleted records. (You cannot add a record using a relative record

number that was not deleted.)

Deleted records cannot be read; they only hold a place in the member. A deleted record can be changed

by writing a new record over the deleted record. Refer to “Deleting database records” on page 166 for

more information about processing deleted records.

Clearing data from physical file members: The Clear Physical File Member (CLRPFM) command is

used to remove the data from a physical file member. After the clear operation is complete, the member

description remains, but the data is gone.

Reorganizing a physical file: The following topics describe how you reorganize physical files on

OS/400:

v “Reorganizing a table using iSeries Navigator”

v “Reorganizing a physical file using RGZPFM” on page 174

v “Usage notes: Reorganizing a file” on page 175

v “Types of reorganizes” on page 176

v “Suspending or canceling a reorganize” on page 177

Reorganizing a table using iSeries Navigator: Reorganizing a table restores it to its ideal physical

organization. The ideal organization for a database table is for its rows to be laid out on pages, ordered

Database programming 173

by their key values in some frequently used index. You can reorganize a table by compressing out deleted

records, by table key, or by a selected index. To reorganize a table:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database folder that you want to work with.

4. Expand the Schemas folder.

5. Click the schema that contains the table you want to reorganize.

6. Click Tables.

7. In the detail pane, right-click the table you want to reorganize and select Reorganize.

On the Reorganize window, select one of the options below to specify how the rows will be reorganized

in the table:

v By compressing out deleted rows without preserving the arrival row sequence: specifies that valid

rows at the end of the table are moved to deleted rows until no deleted rows remain.

v By compressing out deleted rows and preserving the arrival row sequence: specifies that all valid rows

after the first deleted row in the table are moved forward in the table to compress out any deleted

rows.

v By table key: specifies that the rows of the table are rearranged by the key values of the table’s access

path. The table must have a primary key or must be a keyed physical file.

v By a selected index from library: specifies that the rows of the table are rearranged by the key values of

an index or keyed logical file that is built over the specified table. You can select only an existing

index. Your list of indexes is determined by the library you select.

You can specify other options on the Reorganize window to control performance and concurrency of the

reorganize operation:

v Specify which partition of a partitioned file (or which member of a multiple member physical file)

should be reorganized

v Specify whether the reorganize can be suspended and subsequently restarted.

If you do not specify that the reorganize can be suspended, the table will be allocated exclusively for

the duration of the reorganize operation and can only be suspended by ending the job immediately.

If you specify that the reorganize can be suspended:

– The file must be journaled since the rows are moved under commitment control to ensure that no

rows are lost if the reorganize operation is suspended.

– You can also specify whether other users can read the table or change the table during the

reorganize. Locks are acquired for short periods of time on rows that are moved during the

reorganize. If concurrent jobs also acquire locks on rows, record lock time-outs may occur. You can

change the record lock wait time for the file, or you can use the OVRDBF command to specify an

appropriate record wait time. For more information, see “Locking records” on page 95.
v Specify how indexes are maintained:

– If you specify that the reorganize can be suspended, you may also specify that all indexes should be

maintained during the reorganize. No index rebuilds are necessary.

– Otherwise, you may specify that indexes be rebuilt synchronously or asynchronously. You can see

the progress of asynchronously built indexes by using the EDTRBDAP command.

Reorganizing a physical file using RGZPFM: You can use the Reorganize Physical File Member (RGZPFM)

command to:

v Remove deleted records to make the space occupied by them available.

v Reorganize the records of a file in the order in which you normally access them sequentially, thereby

minimizing the time required to retrieve records. This is done using the KEYFILE parameter. This may

be advantageous for files that are primarily accessed in an order other than arrival sequence. A

member can be reorganized using either of the following:

174 OS/400 DB2 UDB for iSeries Database programming V5R3

|

|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|

|
|

|
|

|

– Key fields of the physical file

– Key fields of a logical file based on the physical file
v Reorganize a source file member, insert new source sequence numbers, and reset the source date fields

(using the SRCOPT and SRCSEQ parameters on the Reorganize Physical File Member command).

v If you specify that the reorganize cannot be canceled, reclaim space in the variable portion of the file

that was previously used by variable-length fields in the physical file format and that has become

fragmented.

See “Example: Reorganizing a physical file” for an example of reorganizing a physical file using the

Reorganize Physical File Member command. Also, see “Usage notes: Reorganizing a file” for notes about

using the command.

Example: Reorganizing a physical file: For example, the following Reorganize Physical File Member

(RGZPFM) command reorganizes the first member of a physical file using an access path from a logical

file:

RGZPFM FILE(DSTPRODLB/ORDHDRP)

 KEYFILE(DSTPRODLB/ORDFILL ORDFILL)

The physical file ORDHDRP has an arrival sequence access path. It was reorganized using the access path

in the logical file ORDFILL. Assume the key field is the Order field. The following illustrates how the

records were arranged.

The following is an example of the original ORDHDRP file. Note that record 3 was deleted before the

RGZPFM command was run:

 Relative Record Number Cust Order Ordate. . .

1 41394 41882 072480. . .

2 28674 32133 060280. . .

3 deleted record

4 56325 38694 062780. . .

The following example shows the ORDHDRP file reorganized using the Order field as the key field in

ascending sequence:

 Relative Record Number Cust Order Ordate. . .

1 28674 32133 060280. . .

2 56325 38694 062780. . .

3 41394 41882 072480. . .

Usage notes: Reorganizing a file:

1. If a file with an arrival sequence access path is reorganized using a keyed sequence access path, the

arrival sequence access path is changed. That is, the records in the file are physically placed in the

order of the keyed sequence access path used. By reorganizing the data into a physical sequence that

closely matches the keyed access path you are using, you can improve the performance of processing

the data sequentially.

2. Reorganizing a file compresses deleted records, which changes subsequent relative record numbers.

3. Because access paths with either the FCFO, FIFO, or LIFO DDS keyword specified depend on the

physical sequence of records in the physical file, the sequence of the records with duplicate key fields

may change after reorganizing a physical file using a keyed sequence access path. The sequence of the

records with duplicate key fields are maintained only for the access path specified in the KEYFILE

parameter. If the access path specified in the KEYFILE parameter has a LIFO DDS keyword, the

duplicate key fields are maintained only if you specify that the reorganize can be canceled

(suspended).

Database programming 175

|
|
|

|
|
|
|
|
|
|

4. If you specify that the reorganize cannot be canceled and you end the job running the RGZPFM

command, all the access paths over the physical file member might have to be rebuilt. If you specify

that the reorganize can be canceled, and you cancel the RGZPFM command, only those access paths

that are not maintained during the reorganize might have to be rebuilt.

5. If you use the RGZPFM command twice in a row, you may notice that the total size of the file after

the first time differs from the total size after the second. This is because the amount of space allocated

for the reorganized file is only an estimate that allows extra space for future inserts. After records are

reorganized the first time, the space allocated is calculated exactly.

Types of reorganizes: There are two basic methods for reorganizing data:

v ALWCANCEL(*NO) - This is the traditional type of reorganize. A full copy of the data might be made,

so you need up to two times the amount of space. This option cannot be canceled (suspended) and

cannot fully run in parallel. It requires exclusive use of the file.

v ALWCANCEL(*YES) - The data rows are moved within the file so that a full copy of the data is not

required. The file must be journaled, however, so storage is necessary for the journal entries. You can

use the journal receiver threshold to minimize the amount of storage used in a specific journal receiver.

This option can be canceled (suspended) and restarted. It can run in parallel if the DB2 UDB

Symmetric Multiprocessing option is installed. To control the amount of resources used by the

reorganize operation, you might want to change the query attributes using the CHGQRYA CL

command or Change Query Attributes from iSeries Navigator.

This option requires exclusive use for only a few seconds after the reorganize is complete to return

storage to the system. If the exclusive lock cannot be acquired, a warning message is sent to the job log

indicating that space could not be recovered. To recover the space, you can issue the reorganize again

when no concurrent users are accessing the file. The reorganize operation then immediately attempt to

recover the space before starting the reorganize. If concurrent data changes have occurred since the

initial reorganize, only a portion of the space might be recovered.

If LOCK(*EXCLRD) or LOCK(*SHRUPD) is specified, the result of the reorganize is not guaranteed to

be exact, since concurrent users may be locking rows or changing rows in the file.

The type of reorganize you decide to use will depend on several factors. For example, is your goal simply

to recover space, or is the sequence of the rows important? Is it important that the reorganize can be

canceled (suspended)? Is it important to allow concurrent access to the file? Use the following table to

determine which option is most appropriate based on these factors. The shaded entries (which are also

identified by an asterisk) are the characteristics of a key file option that make its choice particularly

desirable.

 ALWCANCEL(*NO) ALWCANCEL(*YES)

KEYFILE(*NONE) KEYFILE(*FILE or

keyfile)

KEYFILE

(*RPLDLTRCD)

KEYFILE(*NONE) KEYFILE(*FILE or

keyfile)

Cancel and restart No No Yes* Yes* Yes*

Concurrent access No No Yes* Yes* Yes*

Parallel processing Only index rebuilds Only index rebuilds Data movement and

index rebuilds*

Data movement and

index rebuilds*

Data movement and

index rebuilds*

Non-parallel

performance

Very fast Fast Very fast* Slower* Slowest*

Temporary storage Double data storage Double data storage Journal receiver

storage*

Journal receiver

storage*

Journal receiver

storage*

LIFO KEYFILE

index processing

N/A Duplicates reversed N/A* N/A* Duplicate ordering

preserved*

Index processing

(non-KEYFILE)

Synchronous or

asynchronous

rebuilds*

Synchronous or

asynchronous

rebuilds*

Maintain indexes or

synchronous or

asynchronous

rebuilds*

Maintain indexes or

synchronous or

asynchronous

rebuilds*

Maintain indexes or

synchronous or

asynchronous

rebuilds*

176 OS/400 DB2 UDB for iSeries Database programming V5R3

|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

||||

|||
|
|
|
||
|

||||||

||||||

||||
|
|
|
|
|

|
|
|||||

||||
|
|
|
|
|

|
|
|||||
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

ALWCANCEL(*NO) ALWCANCEL(*YES)

KEYFILE(*NONE) KEYFILE(*FILE or

keyfile)

KEYFILE

(*RPLDLTRCD)

KEYFILE(*NONE) KEYFILE(*FILE or

keyfile)

Final row position

exact

Yes* Yes* Only if

LOCK(*EXCL) and

not restarted

Only if

LOCK(*EXCL) and

not restarted

Only if

LOCK(*EXCL) and

not restarted

Amount of CPU

and I/O used

Smallest* Next smallest* Smallest More Most

Variable lengths

segment reorganize

Good* Good* Worse Worse Worse

Allows referential

integrity parents

and FILE LINK

CONTROL

DataLinks

Yes* Yes* No No No

Allows QTEMP and

database

cross-reference files

Yes* Yes* No No No

Replication cost Minimal (one

journal entry)*

Minimal (one

journal entry)*

More (journal

entries for all rows

moved)

Most (journal

entries for all rows

moved)

Most (journal

entries for all rows

moved)

Suspending or canceling a reorganize: If you specify that the reorganize cannot be canceled and one of the

following conditions occur while the Reorganize Physical File Member (RGZPFM) command is running,

the records may not be reorganized at all:

v The system ends abnormally.

v The job containing the RGZPFM command is ended with an *IMMED option.

v The subsystem in which the RGZPFM command is running ends with an *IMMED option.

v The system stops with an *IMMED option.

In addition, when the Reorganize Physical File Member (RGZPFM) command is running, records

associated with large objects (LOBs) may not be reorganized and a deleted record may remain in the file.

If you specify that the reorganize can be canceled and one of the above conditions occurs, or you cancel

the reorganize, the reorganize might be only partially completed. If you issue the same reorganize

operation later, the reorganize might simply continue from where it was interrupted. If significant

changes have occurred since the reorganize was canceled, however, the reorganize will not be continued

and will start over.

The status of the member being reorganized also depends on how much the system was able to do before

the reorganization was ended and what you specified in the SRCOPT parameter.

If the SRCOPT parameter was specified, any of the following could have happened to the member:

v It was completely reorganized. A completion message is sent to your job log indicating the reorganize

operation was completely successful.

v It was not reorganized at all, or only partially reorganized. A message is sent to your job log indicating

that the reorganize operation was not successful. If this occurs, run the Reorganize Physical File

Member (RGZPFM) command again.

v It was reorganized, but only some of the sequence numbers were changed. A completion message is

sent to your job log indicating that the member was reorganized, but all the sequence numbers were

not changed. If this occurs, issue the RGZPFM command again with KEYFILE(*NONE) specified.

If the SRCOPT parameter was not specified, the member is either completely reorganized or not

reorganized at all. You can display the contents of the file, using either the Display Physical File Member

Database programming 177

|||

|||
|
|
|
||
|

|
|
|||
|
|

|
|
|

|
|
|

|
|
|||||

|
|
|||||

|
|
|
|
|

|||||

|
|
|

|||||

||
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|
|

|
|
|
|
|

|
|

|

|
|

|
|
|

|
|
|

|
|

(DSPPFM) command or the Quick View in iSeries Navigator, to determine how much of the file, if any,

was reorganized, and run the Reorganize Physical File Member (RGZPFM) command again, if necessary.

To reduce the number of deleted records that exist in a physical file member, you can create or change

the file to reuse deleted record space. For more information, see “Reusing deleted records” on page 92.

Displaying records in a physical file member: The Display Physical File Member (DSPPFM) command

can be used to display the data in the physical database file members by arrival sequence. The command

can be used for:

v Problem analysis

v Debugging

v Record inquiry

You can display source files or data files, regardless if they are keyed or arrival sequence. Records are

displayed in arrival sequence, even if the file is a keyed file. You can page through the file, locate a

particular record by record number, or shift the display to the right or left to see other parts of the

records. You can also press a function key to show either character data or hexadecimal data on the

display.

If you have Query installed, you can use the Start Query (STRQRY) command to select and display

records, too.

If you have the SQL language installed, you can use the Start SQL (STRSQL) command to interactively

select and display records.

Using database attribute and cross-reference information

The iSeries integrated database provides file attribute and cross-reference information. Some of the

cross-reference information includes:

v The files used in a program

v The files that depend on other files for data or access paths

v File attributes

v The fields defined for a file

v Constraints associated with a file

v Key fields for a file

Each of the commands described in the following sections can present information on a display, a

printout, or write the cross-reference information to a database file that, in turn, can be used by a

program or utility (for example, Query) for analysis.

For information about displaying attribute information, see “Displaying information about database files.”

For information about writing the output to a database file, see “Writing the output from a command

directly to a database file” on page 182.

You can retrieve information about a member of a database file for use in your applications with the

Retrieve Member Description (RTVMBRD) command. See the Control Language (CL) topic and the

section on “Retrieving Member Description Information” in CL Programming

for an example of how

the RTVMBRD command is used in a CL program to retrieve the description of a specific member.

Displaying information about database files

You can display the file attributes for database files and device files using the Display Table Description

operation in iSeries Navigator. See “Displaying attributes for a file using display table description in

iSeries Navigator” on page 179. Or, you can use the Display File Description (DSPFD) command. See

“Displaying attributes for a file using DSPFD” on page 179.

178 OS/400 DB2 UDB for iSeries Database programming V5R3

|
|

|
|

In addition, see the following topics about displaying information about database files:

v “Displaying attributes for a file using DSPFD”

v “Displaying the descriptions of the fields in a file”

v “Displaying the relationships between files on the system”

v “Displaying the files used by programs” on page 180

v “Displaying the system cross-reference files” on page 181

Displaying attributes for a file using display table description in iSeries Navigator: In iSeries

Navigator, the Description of window allows you to display table (database file) attribute information.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Click the library that contains the table or view for which you want to display information.

5. Right-click the table, view, or index and select Description.

On the description window, you can select general, allocation, usage, activity, and detailed.

Displaying attributes for a file using DSPFD: Use the Display File Description (DSPFD) command to

display attributes for a database file. The information can be displayed, printed, or written to a database

output file (OUTFILE). The information supplied by this command includes (parameter values given in

parentheses):

v Basic attributes (*BASATR)

v File attributes (*ATR)

v Access path specifications (*ACCPTH, logical and physical files only)

v Select/omit specifications (*SELECT, logical files only)

v Join logical file specifications (*JOIN, join logical files only)

v Alternative collating sequence specifications (*SEQ, physical and logical files only)

v Record format specifications (*RCDFMT)

v Member attributes (*MBR, physical and logical files only)

v Spooling attributes (*SPOOL, printer and diskette files only)

v Member lists (*MBRLIST, physical and logical files only)

v File constraints (*CST)

v Triggers (*TRG)

Displaying the descriptions of the fields in a file: You can use the Display File Field Description

(DSPFFD) command to display field information for both database and device files. The information can

be displayed, printed, or written to a database output file (OUTFILE).

Displaying the relationships between files on the system: You can use the Display Database Relations

(DSPDBR) command to display the following information about the organization of your database:

v A list of database files (physical and logical) that use a specific record format.

v A list of database files (physical and logical) that depend on the specified file for data sharing.

v A list of members (physical and logical) that depend on the specified member for sharing data or

sharing an access path.

v A list of physical files that are dependent files in a referential constraint relationship with this file.

This information can be displayed, printed, or written to a database output file (OUTFILE).

For example, to display a list of all database files associated with physical file ORDHDRP, with the record

format ORDHDR, type the following DSPDBR command:

Database programming 179

DSPDBR FILE(DSTPRODLB/ORDHDRP) RCDFMT(ORDHDR)

Note: See the DSPDBR command description in the Control Language (CL) topic for details of this

display.

This display presents header information when a record format name is specified on the RCDFMT

parameter, and presents information about which files are using the specified record format.

If a member name is specified on the MBR parameter of the DSPDBR command, the dependent members

are shown.

If the Display Database Relations (DSPDBR) command is specified with the default MBR(*NONE)

parameter value, the dependent data files are shown. To display the shared access paths, you must

specify a member name.

The Display Database Relations (DSPDBR) command output identifies the type of sharing involved. If the

results of the command are displayed, the name of the type of sharing is displayed. If the results of the

command are written to a database file, the code for the type of sharing (shown below) is placed in the

WHTYPE field in the records of the output file.

 Type Code Description

Constraint C The physical file is dependent on the

data in another physical file to which

it is associated via a constraint.

Data D The file or member is dependent on

the data in a member of another file.

Access path sharing I The file member is sharing an access

path.

Access path owner O If an access path is shared, one of the

file members is considered the owner.

The owner of the access path is

charged with the storage used for the

access path. If the member displayed

is designated the owner, one or more

file members are designated with an I

for access path sharing.

SQL View V The SQL view or member is

dependent upon another SQL view.

Displaying the files used by programs: You can use the Display Program Reference (DSPPGMREF)

command to determine which files, data areas, and other programs are used by a program. This

information is available for compiled programs only.

The information can be displayed, printed, or written to a database output file (OUTFILE).

When a program is created, the information about certain objects used in the program is stored. This

information is then available for use with the Display Program References (DSPPGMREF) command.

The following chart shows the objects for which the high-level languages and utilities save information:

 Language or Utility Files Programs Data Areas See Notes

BASIC Yes Yes No 1

C/400® Language No No N/A

CL Yes Yes Yes 2

COBOL/400 Language Yes Yes No 3

CSP Yes Yes No 4

180 OS/400 DB2 UDB for iSeries Database programming V5R3

Language or Utility Files Programs Data Areas See Notes

DFU Yes N/A N/A

FORTRAN/400* Language No No N/A

Pascal No No N/A

PL/I Yes Yes N/A 3

RPG/400 Language Yes Yes Yes 5

SQL Language Yes N/A N/A

:

Notes:

1. Externally described file references, programs, and data areas are stored.

2. All system commands that refer to files, programs, or data areas specify in the command definition that the

information should be stored when the command is compiled in a CL program. If a variable is used, the name

of the variable is used as the object name (for example, &FILE); If an expression is used, the name of the object

is stored as *EXPR. User-defined commands can also store the information for files, programs, or data areas

specified on the command. See the description of the FILE, PGM, and DTAARA parameters on the PARM or

ELEM command statements in the CL Programming

book.

3. The program name is stored only when a literal is used for the program name (this is a static call, for example,

CALL ’PGM1’), not when a COBOL/400 identifier is used for the program name (this is a dynamic call, for

example, CALL PGM1).

4. CSP programs also save information for an object of type *MSGF, *CSPMAP, and *CSPTBL.

5. The use of the local data area is not stored.

The stored file information contains an entry (a number) for the type of use. In the database file output of

the Display Program References (DSPPGMREF) command (built when using the OUTFILE parameter),

this is specified as:

Code Meaning

1 Input

2 Output

3 Input and Output

4 Update

8 Unspecified

Combinations of codes are also used. For example, a file coded as a 7 would be used for input, output,

and update.

Displaying the system cross-reference files: The system manages eight database files that contain:

v Basic database file attribute information (QSYS/QADBXREF)

v Cross-reference information (QSYS/QADBFDEP) about all the database files on the system (except

those database files that are in the QTEMP library)

v Database file field information (QSYS/QADBIFLD)

v Database file key field information (QSYS/QADBKFLD)

v Referential constraint file information (QSYS/QADBFCST)

v Referential constraint field information (QSYS/QADBCCST)

v SQL package information (QSYS/QADBPKG)

v Remote database directory information (QSYS/QADBXRDBD)

You can use these files to determine basic attribute and database file requirements. To display the fields

contained in these files, use the Display File Field Description (DSPFFD) command.

Database programming 181

Note: The authority to use these files is restricted to the security officer. However, all users have

authority to view the data by using one of (or the only) logical file built over each file. The

authorities for these files cannot be changed because they are always open.

Writing the output from a command directly to a database file

You can store the output from many CL commands in an output physical file by specifying the OUTFILE

parameter on the command. You can then use the output files in programs or utilities (for example,

Query) for data analysis. For example, you can send the output of the Display Program References

(DSPPGMREF) command to a physical file, then query that file to determine which programs use a

specific file.

The physical files are created for you when you specify the OUTFILE parameter on the commands.

Initially, the files are created with private authority; only the owner (the person who ran the command)

can use it. However, the owner can authorize other users to these files as you would for any other

database file.

The system supplies model files that identify the record format for each command that can specify the

OUTFILE parameter. If you specify a file name on the OUTFILE parameter for a file that does not already

exist, the system creates the file using the same record format as the model files. If you specify a file

name for an existing output file, the system checks to see if the record format is the same record format

as the model file. If the record formats do not match, the system sends a message to the job and the

command does not complete.

Note: You must use your own files for output files, rather than specifying the system-supplied model

files on the OUTFILE parameter.

See the Control Language (CL) topic for a list of commands that allow output files and the names of the

model files supplied for those commands.

Note: All system-supplied model files are located in the QSYS library.

You can display the fields contained in the record formats of the system-supplied model files using the

Display File Field Descriptions (DSPFFD) command.

See the following topics for more information about writing command output to a file:

v “Example: Using a command output file”

v “Output file for the Display File Description command” on page 183

v “Output files for the Display Journal command” on page 183

v “Output files for the Display Problem command” on page 183

Example: Using a command output file: The following example uses the Display Program References

(DSPPGMREF) command to collect information for all compiled programs in all libraries, and place the

output in a database file named DBROUT:

DSPPGMREF PGM(*ALL/*ALL) OUTPUT(*OUTFILE) OUTFILE(DSTPRODLB/DBROUT)

You can use Query to process the output file. Another way to process the output file is to create a logical

file to select information from the file. The following is the DDS for such a logical file. Records are

selected based on the file name.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

 A* Logical file DBROUTL for query

 A

 A R DBROUTL PFILE(DBROUT)

 A S WHFNAM VALUES(’ORDHDRL’ ’ORDFILL’)

 A

182 OS/400 DB2 UDB for iSeries Database programming V5R3

Output file for the Display File Description command: The Display File Description (DSPFD)

command provides unique output files, depending on the parameters specified. See the Control Language

(CL) topic for a list of the model files for the DSPFD command.

Note: All system-supplied model files are in the QSYS library.

To collect access path information about all files in the LIBA library, you could specify:

DSPFD FILE(LIBA/*ALL) TYPE(*ACCPTH) OUTPUT(*OUTFILE) +

 OUTFILE(LIBB/ABC)

The file ABC is created in library LIBB and is externally described with the same field descriptions as in

the system-supplied file QSYS/QAFDACCP. The ABC file then contains a record for each key field in

each file found in library LIBA that has an access path.

If the Display File Description (DSPFD) command is coded as:

DSPFD FILE(LIBX/*ALL) TYPE(*ATR) OUTPUT(*OUTFILE) +

 FILEATR(*PF) OUTFILE(LIBB/DEF)

the file DEF is created in library LIBB and is externally described with the same field descriptions as exist

in QSYS/QAFDPHY. The DEF file then contains a record for each physical file found in library LIBX.

You can display the field names of each model file supplied by IBM using the DSPFFD command. For

example, to display the field description for the access path model file (*ACCPTH specified on the TYPE

parameter), specify the following:

DSPFFD QSYS/QAFDACCP

Output files for the Display Journal command: See the Control Language (CL) topic for a list of model

output files supplied on the system that can be shown with the Display Journal (DSPJRN) command.

Output files for the Display Problem command: See the Control Language (CL) topic for a list of

model output files supplied on the system for the Display Problem (DSPPRB) command. The command

provides unique output files depending on the type of record:

v Basic problem data record (*BASIC). This includes problem type, status, machine type/model/serial

number, product ID, contact information, and tracking data.

v Point of failure, isolation, or answer FRU records (*CAUSE). Answer FRUs are used if they are

available. If answer FRUs are not available, isolation FRUs are used if they are available. If answer

FRUs and isolation FRUs are not available, then point of failure FRUs are used.

v PTF fix records (*FIX).

v User-entered text (note records) (*USRTXT).

v Supporting data identifier records (*SPTDTA).

The records in all five output files have a problem identifier so that the cause, fix, user text information,

and supporting data can be correlated with the basic problem data. Only one type of data can be written

to a particular output file. The cause, fix, user text, and supporting data output files can have multiple

records for a particular problem.

Changing database file descriptions and attributes

This chapter describes the things to consider when planning to change the description or attributes of a

database file. See the following topics:

v “Effect of changing fields in a file description” on page 184

v “Changing a physical file description and attributes” on page 185

v “Changing a logical file description and attributes” on page 187

Database programming 183

Effect of changing fields in a file description

When a program that uses externally described data is compiled, the compiler copies the file descriptions

of the files into the compiled program. When you run the program, the system can verify that the record

formats the program was compiled with are the same as the record formats currently defined for the file.

The default is to do level checking.

The system assigns a unique level identifier for each record format when the file it is associated with is

created. The system uses the information in the record format description to determine the level

identifier. This information includes the total length of the record format, the record format name, the

number and order of fields defined, the data type, the size of the fields, the field names, the number of

decimal positions in the field, and whether the field allows the null value. Changes to this information in

a record format cause the level identifier to change.

The following DDS information has no effect on the level identifier and, therefore, can be changed

without recompiling the program that uses the file:

v TEXT keyword

v COLHDG keyword

v CHECK keyword

v EDTCDE keyword

v EDTWRD keyword

v REF keyword

v REFFLD keyword

v CMP, RANGE, and VALUES keywords

v TRNTBL keyword

v REFSHIFT keyword

v DFT keyword

v CCSID keyword

v Join specifications and join keywords

v Key fields

v Access path keywords

v Select/omit fields

Keep in mind that even though changing key fields or select/omit fields will not cause a level check, the

change may cause unexpected results in programs using the new access path. For example, changing the

key field from the customer number to the customer name changes the order in which the records are

retrieved, and may cause unexpected problems in the programs processing the file.

If level checking is specified (or defaulted to), the level identifier of the file to be used is compared to the

level identifier of the file in your program when the file is opened. If the identifiers differ, a message is

sent to the program to identify the changed condition and the changes may affect your program. You can

simply compile your program again so that the changes are included.

An alternative is to display the file description to determine if the changes affect your program. You can

use the Display File Field Description (DSPFFD) command to display the description or, if you have SEU,

you can display the source file containing the DDS for the file.

The format level identifier defined in the file can be displayed by the Display File Description (DSPFD)

command. When you are displaying the level identifier, remember that the record format identifier is

compared, rather than the file identifier.

Not every change in a file necessarily affects your program. For example, if you add a field to the end of

a file and your program does not use the new field, you do not have to recompile your program. If the

184 OS/400 DB2 UDB for iSeries Database programming V5R3

changes do not affect your program, you can use the Change Physical File (CHGPF) or the Change

Logical File (CHGLF) commands with LVLCHK(*NO) specified to turn off level checking for the file, or

you can enter an Override with Database File (OVRDBF) command with LVLCHK(*NO) specified so that

you can run your program without level checking.

Keep in mind that level checking is the preferred method of operating. The use of LVLCHK(*YES) is a

good database integrity practice. The results produced by LVLCHK(*NO) cannot always be predicted.

Changing a physical file description and attributes

Sometimes, when you make a change to a physical file description and then re-create the file, the level

identifier can change. For example, the level identifier will change if you add a field to the file

description, or change the length of an existing field. If the level identifier changes, you can compile the

programs again that use the physical file. After the programs are recompiled, they will use the new level

check identifier.

You can avoid compiling again by creating a logical file that presents data to your programs in the

original record format of the physical file. Using this approach, the logical file has the same level check

identifier as the physical file before the change.

For example, you decide to add a field to a physical file record format. You can avoid compiling your

program again by doing the following:

1. Change the DDS and create a new physical file (FILEB in LIBA) to include the new field:

CRTPF FILE(LIBA/FILEB) MBR(*NONE)...

FILEB does not have a member. (The old file FILEA is in library LIBA and has one member MBRA.)

2. Copy the member of the old physical file to the new physical file:

CPYF FROMFILE(LIBA/FILEA) TOFILE(LIBA/FILEB)

 FROMMBR(*ALL) TOMBR(*FROMMBR)

 MBROPT(*ADD) FMTOPT(*MAP)

The member in the new physical file is automatically named the same as the member in the old

physical file because FROMMBR(*ALL) and TOMBR(*FROMMBR) are specified. The FMTOPT

parameter specifies to copy (*MAP) the data in the fields by field name.

3. Describe a new logical file (FILEC) that looks like the original physical file (the logical file record

format does not include the new physical file field). Specify FILEB for the PFILE keyword. (When a

level check is done, the level identifier in the logical file and the level identifier in the program match

because FILEA and FILEC have the same format.)

4. Create the new logical file:

CRTLF FILE(LIBA/FILEC)...

5. You can now do one of the following:

a. Use an Override with Database File (OVRDBF) command in the appropriate jobs to override the

old physical file referred to in the program with the logical file (the OVRDBF command

parameters are described in more detail in Database file processing: Run time considerations).

OVRDBF FILE(FILEA) TOFILE(LIBA/FILEC)

b. Delete the old physical file and rename the logical file to the name of the old physical file so the

file name in the program does not have to be overridden.

DLTF FILE(LIBA/FILEA)

RNMOBJ OBJ(LIBA/FILEC) OBJTYPE(*FILE)

 NEWOBJ(FILEA)

The following illustrates the relationship of the record formats used in the three files:

FILEA (old physical file)

 FLDA FLDB FLDC FLDD

Database programming 185

In FILEB, FLDB1 was added to the record format:

FILEB (new physical file)

 FLDB1

FILEC shares the record format of FILEA. FLDB1 is not used in the record format for the logical file.

FILEC (logical file)

 FLDA FLDB FLDC FLDD

When you make changes to a physical file that cause you to create the file again, all logical files referring

to it must first be deleted before you can delete and create the new physical file. After the physical file is

re-created, you can re-create or restore the logical files referring to it. The following examples show two

ways to do this:

v “Example 1: Changing a physical file description and attributes”

v “Example 2: Changing a physical file description and attributes”

Example 1: Changing a physical file description and attributes: Create a new physical file with the

same name in a different library

1. Create a new physical file with a different record format in a library different from the library the old

physical file is in. The name of new file should be the same as the name of the old file. (The old

physical file FILEPFC is in library LIBB and has two members, MBRC1 and MBRC2.)

CRTPF FILE(NEWLIB/FILEPFC) MAXMBRS(2)...

2. Copy the members of the old physical file to the new physical file. The members in the new physical

file are automatically named the same as the members in the old physical file because

TOMBR(*FROMMBR) and FROMMBR(*ALL) are specified.

CPYF FROMFILE(LIBB/FILEPFC) TOFILE(NEWLIB/FILEPFC)

 FROMMBR(*ALL) TOMBR(*FROMMBR)

 FMTOPT(*MAP *DROP) MBROPT(*ADD)

3. Describe and create a new logical file in a library different from the library the old logical file is in.

The name of the new logical file should be the same as the old logical file name. You can use the

FORMAT keyword to use the same record formats as in the current logical file if no changes need to

be made to the record formats. You can also use the Create Duplicate Object (CRTDUPOBJ) command

to create another logical file from the old logical file FILELFC in library LIBB.

CRTLF FILE(NEWLIB/FILELFC)

4. Delete the old logical and physical files.

DLTF FILE(LIBB/FILELFC)

DLTF FILE(LIBB/FILEPFC)

5. Move the newly created files to the original library by using the following commands:

MOVOBJ OBJ(NEWLIB/FILELFC) OBJTYPE(*FILE) TOLIB(LIBB)

MOVOBJ OBJ(NEWLIB/FILEPFC) OBJTYPE(*FILE) TOLIB(LIBB)

Example 2: Changing a physical file description and attributes: Creating new versions of files in the

same libraries

1. Create a new physical file with a different record format in the same library the old physical file is in.

The names of the files should be different. (The old physical file FILEPFA is in library LIBA and has

two members MBRA1 and MBRA2.)

CRTPF FILE(LIBA/FILEPFB) MAXMBRS(2)...

186 OS/400 DB2 UDB for iSeries Database programming V5R3

2. Copy the members of the old physical file to the new physical file.

CPYF FROMFILE(LIBA/FILEPFA) TOFILE(LIBA/FILEPFB)

 FROMMBR(*ALL) TOMBR(*FROMMBR)

 FMTOPT(*MAP *DROP) MBROPT(*REPLACE)

3. Create a new logical file in the same library as the old logical file is in. The names of the old and new

files should be different. (You can use the FORMAT keyword to use the same record formats as are in

the current logical file if no changes need be made to the record formats.) The PFILE keyword must

refer to the new physical file created in step 1. The old logical file FILELFA is in library LIBA.

CRTLF FILE(LIBA/FILELFB)

4. Delete the old logical and physical files.

DLTF FILE(LIBA/FILELFA)

DLTF FILE(LIBA/FILEPFA)

5. Rename the new logical file to the name of the old logical file. (If you also decide to rename the

physical file, be sure to change the DDS for logical file so that the PFILE keyword refers to the new

physical file name.)

RNMOBJ(LIBA/FILELFB) OBJTYPE(*FILE) NEWOBJ(FILELFA)

6. If the logical file member should be renamed, and assuming the default was used on the Create

Logical File (CRTLF) command, issue the following command:

RNMM FILE(LIBA/FILELFA) MBR(FILELFB) NEWMBR(FILELFA)

You can use the Change Physical File (CHGPF) command to change some of the attributes of a physical

file and its members. For information on these parameters, see the Change Physical File (CHGPF)

command in the Control Language (CL) topic.

Changing a logical file description and attributes

As a general rule, when you make changes to a logical file that will cause a change to the level identifier

(for example, adding a new field, deleting a field, or changing the length of a field), it is strongly

recommended that you recompile the programs that use the logical file. Sometimes you can make

changes to a file that change the level identifier and which do not require you to recompile your program

(for example, adding a field that will not be used by your program to the end of the file). However, in

those situations you will be forced to turn off level checking to run your program using the changed file.

That is not the preferred method of operating. It increases the chances of incorrect data in the future.

To avoid recompiling, you can keep the current logical file (unchanged) and create a new logical file with

the added field. Your program refers to the old file, which still exists.

You can use the Change Logical File (CHGLF) command to change most of the attributes of a logical file

and its members that were specified on the Create Logical File (CRTLF) command.

Recovering and restoring your database

The following topics describe the iSeries functions that let you recover or restore your database after your

system has lost data. The following topics will guide you on how to guard and recover your data:

v “Recovering data in a database file” on page 188 describes the iSeries journaling and commitment

control functions, which assist you in recovering data from your database files.

v “Reducing time in access path recovery” on page 195 discusses iSeries access paths, and how you can

use them effectively for database recovery.

v “The database recovery process after an abnormal system end” on page 199 provides an overview of

the processes that the iSeries system completes in the event of an abnormal system end.

For more information about saving and restoring information, see the Backup and Recovery

book,

the Backup and Recovery topic, and the following:

v “Database save and restore” on page 201

Database programming 187

v “Database considerations for save and restore” on page 201

Recovering data in a database file

The iSeries system uses journaling and commitment control to help you recover data in a database file.

v “Managing journals” allows you to record all the data changes occurring to one or more database files.

You can then use the journal for recovery.

v “Ensuring data integrity with commitment control” on page 194, an extension of the journal

management function, ensures that complex application transactions are logically synchronized even if

the job or system ends.

Managing journals: Journal management allows you to record all the data changes occurring to one or

more database files. You can then use the journal for recovery. If a database file is destroyed or becomes

unusable and you are using journals, you can reconstruct most of the activity for the file. The journal also

allows you to remove revisions made to the file.

See the following topics for information about managing journals:

v “Journals”

v “Working with journals”

In addition, see the Journal Management topic.

Journals: When a change is made to a file and you are using journals, the system records the change in a

journal receiver and writes the receiver to auxiliary storage before it is recorded in the file. Therefore, the

journal receiver always has the latest database information.

Journal entries record activity for a specific record or for the file as a whole. Each entry includes bytes of

control information that identify the source of the activity (such as user, job, program, time, and date).

For changes that affect a single record, record images are included after the control information. The

record image before the change can also be included. You can control whether to create a journal both

before and after record images or just after record images by specifying the IMAGES parameter on the

Start Journal Physical File (STRJRNPF) command.

All journaled database files are automatically synchronized with the journal when the system is started

(IPL time). If the system session ended abnormally, some database changes may be in the journal, but

some of these changes may not be reflected in the database files. If that is the case, the system

automatically updates the database files from the journal.

Journals make saving database files an easier and faster task. For example, instead of saving an entire file

every day, simply save the journal receiver that contains the changes to that file. You might still save the

entire file on a weekly basis. This method can reduce the amount of time it takes to perform your daily

save operations.

For more information about journals, refer to the the Journal Management topic.

Working with journals: You can use the following CL commands to work with journals:

v To recover a damaged or unusable database file member that contains journaled changes, use the

Apply Journaled Changes (APYJRNCHG) and Remove Journaled Changes (RMVJRNCHG) commands.

v To apply the changes that were recorded in a journal receiver to the designated physical file member,

use the APYJRNCHG command. However, depending on the type of damage to the physical file and

the amount of activity since the file was last saved, removing changes from the file using the

RMVJRNCHG command can be easier.

v To convert journal entries to a database file, use the Display Journal (DSPJRN) command. Use this file

for activity reports, audit trails, security, and program debugging.

188 OS/400 DB2 UDB for iSeries Database programming V5R3

For more information about using CL commands to work with journals, refer to the the Journal

Management topic and to the Control Language (CL) topic information in the Information Center.

In addition, the following iSeries Navigator functions can be used to work with journals.

v “Creating a journal using iSeries Navigator”

v “Creating a journal receiver using iSeries Navigator”

v “Adding a remote journal using iSeries Navigator” on page 190

v “Removing a remote journal using iSeries Navigator” on page 191

v “Activating a remote journal using iSeries Navigator” on page 191

v “Deactivating a remote journal using iSeries Navigator” on page 192

v “Display journal information for a table using iSeries Navigator” on page 192

v “Swapping receivers using iSeries Navigator” on page 192

v “Starting/stopping a journal for a table (file) using iSeries Navigator” on page 193

Creating a journal using iSeries Navigator: Creating a journal causes a new instance of a journal on your

system. You must start journaling the table to a journal before it will begin journaling information.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to create the new journal in.

4. Right-click a library object and select New Journal.

5. On the New Journal window, specify a name in the Name field.

6. Specify a description in the Description field (optional).

7. Select a library in which to store the journal receivers.

You can now create the journal using the default values . You can edit the journal default values by

clicking Advanced. To create the journal using the default values, click OK.

To edit the journal default values, you must first create the journal.

 1. Click Advanced on the New Journal window.

 2. Select the journal message queue in the Journal message queue field. The default is the System

Operator message queue. You can specify another message queue. However, if the message queue

that you specify is not available when the message is sent, the message is sent to the System

Operator message queue.

 3. Specify the library where the journal message queue will reside.

 4. Edit or specify a description in the Description field (optional).

 5. Select a Receivers managed by option. Your choices are System or User.

 6. Select Minimize fixed portion of entries if you do not want to record the job, program and user

profile information. This will minimize the size of each journal entry but limits the selection criteria

that can be used on other journal commands.

 7. Select Remove internal entries if you want to automatically remove only the internal journal entries

required for system restart recovery. Removing these entries reduces the size of the journal receiver.

 8. A new journal receiver is created at the same time as the journal. You can edit the default values of

the receiver by click New Receiver.

 9. Once you have completed the Advanced options, click OK to return to the New Journal window.

10. Click OK to create the journal.

Creating a journal receiver using iSeries Navigator: A journal receiver is the file that contains the

information that the journal is recording. A journal receiver is automatically created when you create a

journal. However, if you want to manually swap receivers, you must first create a new journal receiver.

 1. In the iSeries Navigator window, expand the system you want to use.

Database programming 189

2. Expand Databases.

 3. Expand the database and library that contains the journal for which you want to add a receiver.

 4. Right-click the journal for which you want to add a receiver and select Properties.

 5. Click Receivers.

 6. On the Receivers for Journal... window, click New.

 7. Specify a name (limited to 10 characters), a library to contain the receiver, a description and a

storage space threshold.

 8. Click OK to close the New Journal Receiver window.

 9. Click OK to close the Receivers for Journal... window.

10. Click OK to close the Journal Properties window.

Note: You can also create a new receiver when you create a new journal.

1. On the Advanced Journal Attributes window, click New Receiver.

2. On the New Journal Receiver window, specify a name (limited to 10 characters), a library to contain

the receiver, a description and a storage space threshold.

3. Click OK to close the New Journal Receiver window.

4. Click OK to close the Advanced Journal Attributes window. If you do not specify values for the

journal receiver, it will be created with the default values.

Values used when creating new journals and new journal receivers: The journal and the journal receiver are

created or changed using the values you specified on the Advanced Journal Attributes or the Journal

Properties window. If you do not specify any values, the journal and journal receiver are created using

default values. For journals:

v The journal is created in the library in focus.

v The storage space for the journal is allocated from the same auxiliary storage pool (ASP) as the storage

space of the journal’s library’s ASP. This value cannot be changed.

v The message queue associated with the journal is the System Operator message queue.

v The swapping of journal receivers is set so that the system automatically does the swapping.

v The journal receivers are not automatically deleted by the system during swap processing.

v The fixed portion of journal entries are not minimized, but the internal journal entries are removed.

v The public authority for the journal is taken from the default public authority for the library.

v No default text description is created for the journal.

For journal receivers:

v The storage space for the journal receiver is allocated from the same auxiliary storage pool (ASP) as the

storage space of the journal receiver’s library’s ASP. This value cannot be changed.

v The storage space threshold for the journal receiver is set at 500 megabyte (MB).

v The public authority for the journal receiver is taken from the default public authority for the library.

v A default text description is created for the journal receiver.

Adding a remote journal using iSeries Navigator: Remote journals allow you to replicate journal information

to a separate system. A remote journal is associated with an existing journal. The journal on the source

system may be either a local journal or another remote journal.

 1. In the iSeries Navigator window, expand the system you want to use.

 2. Expand Databases.

 3. Expand the database that you want to work with and Libraries.

 4. Click the library that contains the journal that you want to add a remote journal to.

 5. Right-click the journal you want to add a remote journal to and select Properties.

 6. On the Journal Properties window, click Remote Journals.

190 OS/400 DB2 UDB for iSeries Database programming V5R3

7. To add (associate) a remote journal to this journal, click Add.

 8. To display a list of relational database (RDB) directory entries, click the down arrow in the

Relational database name box on the Add a Remote Journal window.

 9. Select the journal type (Type 1 or Type 2).

10. To associate the remote journal receivers on the target system with a different library from that used

on the source system, select Redirect receiver.

11. In the Target receiver library field, specify the library on the target system where the remote journal

receivers are to be located

12. Click OK.

The remote journal type influences the redirection capabilities, journal receiver restore operations, and

remote journal association characteristics.

Limited redirection (Type 1) If the remote journal being added is Type 1, the journal library name may be

redirected to a single different library from that of the local journal. All Type 1 remote journals associated

with a given local journal must reside in the same library A Type 1 remote journal cannot be added to a

Type 2 remote journal.

Flexible redirection (Type 2) If the remote journal being added is Type 2, you may specify a redirected

library that is the same as or different from the redirected library specified on previous additions of Type

2 remote journals. Subsequent additions of Type 2 remote journals may specify a different library

redirection from what was specified on any previously added remote journal.

Once you have added a remote journal, you must activate it.

Note: This task assumes that you have an RDB directory entry and that you have a user profile on the

target system.

Removing a remote journal using iSeries Navigator: Removing a remote journal disassociates it from the

journal on the source system. It will not delete the journal or the journal receivers. You must deactivate a

remote journal before you can remove it.

Activating a remote journal using iSeries Navigator: Once you have added a remote journal , you must

activate it.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to work with and Libraries.

4. Click the library that contains the journal that has the associated remote journal that you want to

activate.

5. Right-click the journal, and select Properties.

6. On the Journal Properties window, click Remote Journals.

7. On the Remote Journals for window, select the remote journal in the list of remote journals, then click

Activate to activate the selected remote journal.

8. On the Activate window, select the delivery mode, the starting receiver, and the processing mode for

the activate request.

9. Click OK.

Note:

1. Activating a remote journal for the first time creates one or more journal receivers on the target

system.

2. Activating the remote journal establishes the connection between the source and remote journal

so that journal entry replication can begin.

Database programming 191

3. The remote journal must be inactive before you can activate it. Also, the remote journal that

you are activating must not itself already be replicating journal entries to other remote journals.

Deactivating a remote journal using iSeries Navigator: Deactivating a remote journal causes it to stop

collecting data.

If you are deactivating a synchronously maintained journal, the remote journal function is ended

immediately, regardless of whether an immediate or controlled end is requested. If the remote journal is

in the catch-up phase of processing, the remote journal function is ended immediately, regardless of

whether an immediate or controlled end is requested. (Catch-up processing refers to the process of

replicating journal entries that existed in the journal receivers of the source journal before the remote

journal was activated.) Remote journals are in catch-up if they have a delivery mode of asynchronous

pending or synchronous pending.

Controlled

Deactivates the remote journal function in a controlled manner. This means that the system should

replicate all journals entries already queued to be sent from the source system to the target system

before deactivating the remote journal. Until all queued entries have been replicated, the remote

journal will be in a state of inactive pending. While in a state of inactive pending, the Remote

Journals window provides inactive pending information. When all queued entries have been sent to

the target system, the system sends a message to the journal message queue, indicating that the

remote journal function has been ended.

Immediately

Deactivates the remote journal function immediately. This means that the system should not continue

to replicate any journal entries that are already queued before deactivating the remote journal.

Display journal information for a table using iSeries Navigator:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Click the library that contains the table for which you want to display journal information.

5. Right-click the table and select Journaling.

6. If the table has never been journaled, you can choose the journal you want to use by typing the

journal and library names in the appropriate boxes, or by clicking on the Browse button and

navigating to the location of the journal that you want to use for the table.

7. To journal before images, select the Journal image before change option.

8. To omit open and close entries from being journaled, select the Exclude open and close entries

option.

Swapping receivers using iSeries Navigator: Swapping journal receivers replaces the current journal receiver

with a new journal receiver that is automatically created and attached to the journal by the system. There

are two methods that you can use to swap receivers for journaling. The first does not allow you to

change the attributes of the new receiver; the second does.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Right-click the journal you want to use and select Swap Receivers. The system generates a new name

when it creates the receiver.

OR

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

192 OS/400 DB2 UDB for iSeries Database programming V5R3

4. Double-click the journal you want to use.

5. Click Receivers This window displays all of the receivers that are associated with the journal.

6. To add a new receiver, click New.

7. Click OK.

8. Click OK to close the Journal Receivers window. Click OK again, and the new journal receiver

changes its status to attached.

The status of the journal receiver can be one of the following:

Attached

Indicates that the journal receiver is currently attached to the journal. Empty Indicates that the

receiver has never been attached to a journal.

Freed

Indicates that the journal receiver was saved after is was detached. The receiver storage was freed

when the receiver was saved.

Online

Indicates that the journal receiver is online.

Partial

Indicates that the status is partial for one of the following reasons:

v The journal receiver was restored from a version that was saved while it was attached to the

journal. Additional journal entries may have been written that were not restored.

v The journal receiver was one of a pair of dual journal receivers, and it was found damaged while

attached to the journal. The journal receiver has since been detached. This journal receiver is

considered partial because additional journal entries may have been written to the dual journal

receiver.

v The journal receiver is associated with a remote journal and it does not contain all the journal

entries that are in the associated journal receiver attached to the source journal. Pending Indicates

that the journal receiver is not yet created. It will be created and attached after OK is selected on

the Journal Properties window. Saved Indicates that the journal receiver was saved after it was

detached. The journal receiver storage was not freed when the receiver was saved.

Starting/stopping a journal for a table (file) using iSeries Navigator: Once a journal is created, it must be

started for a table. If you want to delete a journal, it must be stopped.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that contains the journal you want to edit.

4. Click the library that contains the journal you want to edit.

5. Right-click the journal and select Starts and ends table journaling.

6. To start journaling for a table (file), select the table that you want to journal from the Tables list and

then click Add. Or you can drag a table from the Tables list and drop it on the Tables to journal list.

7. To end journaling for a table, select the table that you no longer want to journal from the Tables

already being journaled list, and then click Remove.

8. To end journaling for all the tables at once, click Select all to select all the tables listed in the Tables

already being journaled list, and then click Remove.

9. Click OK to close the Start/End journaling window.

OR

1. From the library tree list, right-click the object for which you want to start or stop journaling and

select Journaling.

2. Click Stop to stop journaling for the selected object.

3. To start journaling from an object:

Database programming 193

a. Select a journal to associate with the object. You may browse for the journal by selecting Browse.

b. Select a library that the journal is located in. This field is automatically filled in when you select a

journal from Browse.

c. To journal before images, select the Journal images before change option.

d. To omit open and close entries from being journaled, select the Exclude open and close entries

option.

e. Click Start to start journaling for the selected object.

Ensuring data integrity with commitment control: Commitment control lets you define and process a

number of changes to database files in a single unit (transaction). Commitment control can ensure that

complex application transactions are logically synchronized, even if the job or system ends. Two-phase

commitment control ensures that committable resources, such as database files on multiple systems,

remain synchronized.

You implement commitment control in your database by executing commit and rollback operations.

Using SQL, you use the COMMIT and ROLLBACK statements.

See the following topics related to commitment control:

v “Transactions”

v “Benefits of using commitment control”

v “Usage notes: commitment control” on page 195

In addition, see the Commitment Control topic.

Transactions: A transaction is a group of changes that appear as a single change, such as the transfer of

funds from a savings account to a checking account. Transactions can be classified as follows:

v Inquiries in which no file changes occur.

v Simple transactions in which one file is changed each time you press the Enter key.

v Complex transactions in which two or more files are changed each time you press the Enter key.

v Complex transactions in which one or more files are changed each time you press the Enter key. These

changes represent only part of a logical group of transactions.

Revisions made to files during transaction processing are journaled when using commitment control.

If the system or job ends abnormally, journaling alone can ensure that, at most, only the very last record

change is lost. However, if the system or job ends abnormally during a complex transaction, the files

reflect an incomplete logical transaction. For example, the job may have updated a record in file A, but

before it updated a corresponding record in file B, the job ended abnormally. In this case, the logical

transaction consisted of two updates, but only one update completed before the job ended abnormally.

Benefits of using commitment control: Recovering a complex application requires detailed application

knowledge. Programs cannot be restarted. For example, record changes may have to be made with an

application program or data file utility to reverse the files to just before the last complex transaction

began. This task becomes more complex if multiple users were accessing the files at the same time.

Commitment control helps solve these problems. Commitment control locks records from other users

during a complex transaction. This ensures that other users do not use the records until the transaction is

complete. At the end of the transaction, the program issues the commit operation, freeing the records.

However, should the system end abnormally before performing the commit operation, all record changes

for that job since the last time a commit operation occurred are rolled back. Any affected records that are

still locked are then unlocked. In other words, database changes roll back to a clean transaction boundary.

194 OS/400 DB2 UDB for iSeries Database programming V5R3

Usage notes: commitment control: The commit and rollback operations are available in several iSeries

programming languages including the RPG/400, COBOL/400, PL/I, SQL, and the OS/400 control

language (CL).

You can open logical files for output under commitment control when underlying physical files are

journaled to different journals. However, the checks for violations are deferred if a record change affects

underlying physical files that are journaled to the same journal. If the record change affects underlying

physical files that are not journaled to the same journal, and it causes a duplicate key or referential

constraint violation, an error will occur during the I/O operation. For example, assume physical file A

with a unique key is journaled to journal X, while physical file B with a unique key is journaled to

journal Y. Logical file C is created over physical files A and B and opened under commitment control. A

delete operation performed using logical file C removes a record from physical file A with key K. It

would be possible to add a record back to physical file A with key K before the transaction is committed.

However, an attempt to add a record to physical file B with key K, before the transaction is committed,

would fail since physical files A and B are journaled to different journals.

Commitment control can also be used in a batch environment. Just as it provides assistance in interactive

transaction recovery, commitment control can help in batch job recovery. See the Commitment Control

topic for more information about commitment control.

Reducing time in access path recovery

The system ensures the integrity of an access path before you can use it. If the system determines that the

access path is unusable, the system attempts to recover it. You can control when an access path will be

recovered.

Access path recovery can take a long time, especially if you have large access paths or many access paths

to be rebuilt. You can reduce this recovery time in several ways.

Journaling access paths is often faster than rebuilding access paths. With the System-managed access path

protection (SMAPP) support, you do not have to use the journaling commands, such as STRJRNAP, to get

the benefits of access path journaling. SMAPP support recovers access paths after an abnormal system

end rather than rebuilding them during IPL.

The following topics describe in more detail how you can reduce access path recovery time:

v “Saving access paths”

v “Restoring access paths”

v “Journaling access paths” on page 196

v “System-managed access-path protection (SMAPP)” on page 197

v “Rebuilding access paths” on page 197

Saving access paths: You can reduce the recovery time of access paths by saving access paths. The

access path (ACCPTH) parameter on the SAVCHGOBJ, SAVLIB, and SAVOBJ commands allows you to

save access paths. Normally, the system saves only descriptions of logical files; however, the system saves

access paths under the following conditions:

v ACCPTH(*YES) is specified.

v All physical files under the logical file are being saved and are in the same library.

v The logical file is MAINT(*IMMED) or MAINT(*DLY).

Note that the logical file itself is not saved when you have specified the ACCPTH(*YES) parameter. You

have to save the logical file explicitly. For more information, see the Backup and Recovery

book.

Restoring access paths: The system has the ability to restore access paths if:

v They were previously saved.

Database programming 195

v All the physical files on which they depend are restored at the same time.

The system usually restores an access path faster than it rebuilds it.

For example, assume that a logical file is built over a physical file that contains 500,000 records. You have

determined through the Display Object Description (DSPOBJD) command that the size of the logical file

is about 15 megabytes.

In this example, it takes about 50 minutes to rebuild the access path for the logical file. It takes about 1

minute to restore the same access path from a tape. (This assumes that the system builds approximately

10,000 index entries per minute.)

After restoring the access path, you may need to update the file by applying the latest journal changes.

For example, the system applies approximately 80,000 to 100,000 journal entries to the file per hour. This

assumes that each of the physical files to which entries are being applied has only one access path built

over it. This rate will drop proportionally for each access path of *IMMED maintenance that is present

over the physical file. Even with this additional recovery time, you will usually find that it is faster to

restore access paths rather than to rebuild them.

See the Journal Management topic for additional information.

Journaling access paths: Journaling access paths can significantly reduce recovery time by reducing the

number of access paths that need to be rebuilt after an abnormal system end. It is recommended that you

journal access paths for iSeries Version 2 Release 2 and following releases because the larger access paths

require more time to rebuild.

When you journal database files, you record images of changes to the file in the journal. The system uses

these record images to recover the file after an abnormal system end.

After an abnormal end, the system may find that access paths are not synchronized with the data in the

file. If an access path does not synchronize with its data, the system rebuilds the access path to ensure

that the two are synchronized and usable.

When journaling access paths, the system records images of the access path in the journal to provide

known synchronization points between the access path and its data. By having that information in the

journal, the system recovers both the data files and the access paths. The system then synchronizes the

two. In such cases, you avoid the lengthy time to rebuild access paths.

In addition, other system recovery functions work with journaling access paths. For example, the system

has a number of options to reduce recovery time from the failure and replacement of a disk unit. These

options include user auxiliary storage pools and checksum protection. These options further reduce the

chances that the entire system must reload because of the disk failure. However, you may still need to

rebuild access paths when the system is started following replacement of the failed disk. By using access

path journaling and some of the recovery options, you reduce your chances of having to reload the entire

system and having to rebuild access paths.

Before journaling an access path, you must journal the physical files that are associated with the access

path. In addition, you must use the same journal for the access path and its associated physical files. It is

easy to start journaling access paths:

v You can use the system-managed access-path protection (SMAPP) facility.

v You can manage the journaling environment yourself with the Start Journal Access Path (STRJRNAP)

command.

– To start journaling the access path for the specified file, use the STRJRNAP command. You can

journal access paths that have a maintenance attribute of immediate (*IMMED) or delayed (*DLY).

– Once you start journaling, the system protects the access path until the access path is deleted or

until you run the End Journal Access Path (ENDJRNAP) command for that access path.

196 OS/400 DB2 UDB for iSeries Database programming V5R3

Access path journaling minimizes additional output operations. For example, the system will write the

journal data for the changed record and the changed access path in the same output operation. However,

you should seriously consider isolating your journal receivers in user auxiliary storage pools when you

start journaling your access paths. Placing journal receivers in their own user auxiliary storage pool

provides the best journaling performance, while helping to protect them from a disk failure. See the

Journal Management topic for more information about journaling access paths.

System-managed access-path protection (SMAPP): System-managed access-path protection (SMAPP)

provides automatic protection for access paths. WIth SMAPP support, you do not have to use the

journaling commands, such as STRJRNAP, to get the benefits of access path journaling. SMAPP support

recovers access paths after an abnormal system end rather than rebuilding them during IPL. The shipped

system automatically turns on SMAPP support. The system sets SMAPP support to a value of 70 minutes.

The system determines which access paths to protect based on:

v Target access path recovery times provided by the user, or

v A system-provided default time.

You specify target access path recovery times as a system-wide value or on an ASP basis. Access paths

already in a user-defined journal are ineligible for SMAPP protection because they are already protected.

See the Journal Management topic for more information about SMAPP.

Rebuilding access paths: Rebuilding a database access path may take as much as one minute for every

10,000 records.

The following factors affect the time estimate when rebuilding access paths:

v Storage pool size. You can improve the rebuild time by running the job in a larger storage pool.

v The system model. The speed of the processing unit is a key factor.

v Key length. A large key length will slow rebuilding the access path because the access path constructs

and stores more key information.

v Select/omit values. Select/omit processing slows the rebuilding of an access path because the system

compares each record to see if it meets the select/omit values.

v Record length. A large record length slows the rebuilding of an access path because the system looks at

more data.

v Storage device that contains the data. The relative speed of the storage device that contains the actual

data and the device that stores the access path affects the time needed to rebuild an access path.

v The order of the records in the file. The system tries to rebuild an access path so that it can find

information quickly when using that access path. The order of the records in a file has a small affect on

how fast the system builds the access path while trying to maintain an efficient access path.

The following topics describe in more detail the techniques involved with rebuilding access paths:

v “Controlling when access paths are rebuilt”

v “Designing files to reduce access path rebuilding time” on page 198

v “Other methods to avoid rebuilding access paths” on page 198

Controlling when access paths are rebuilt: If the system ends abnormally, during the next IPL, the system

automatically lists those files that require access path recovery. You can then decide whether to rebuild

the access path:

v During the IPL

v After the IPL

v When you first use the file.

You can also:

v Change the scheduling order in which the access paths are rebuilt

Database programming 197

v Hold rebuilding of an access path indefinitely

v Continue the IPL process while access paths with a sequence value that is less than or equal to the *IPL

threshold value are rebuilding.

v Control the rebuilding of access paths after the system has completed the IPL process by using the Edit

Rebuild of Access Paths (EDTRBDAP) command.

The IPL threshold value determines which access paths to rebuild during the IPL. All access paths with a

sequence value that is less than or equal to the IPL threshold value rebuild during the IPL. Changing the

IPL threshold value to 99 means that all access paths with a sequence value of 1 through 99 rebuild

during the IPL. Changing the IPL threshold value to 0 means that no access paths rebuild until after the

system completes its IPL, except those access paths that were being journaled and those access paths for

system files.

The access path recovery value for a file is determined by the value you specified for the RECOVER

parameter on the create and change file commands. The default recovery value for *IPL (rebuild during

IPL) is 25 and the default value for AFTIPL (rebuild after IPL) is 75; therefore, RECOVER(*IPL) will show

as 25. The initial IPL threshold value is 50; this allows the parameters to affect when the access path is

rebuilt. You can override this value on the Edit Rebuild of Access Paths display.

If a file is not needed immediately after IPL time, specify that the file can be rebuilt at a later time. This

should reduce the number of access paths that need to be rebuilt at IPL, allowing the system to complete

its IPL much faster.

For example, you can specify that all files that must have their access paths rebuilt should rebuild the

access paths when the file is first used. In this case, no access paths are rebuilt at IPL. You can control the

order in which the access paths are rebuilt by running only those programs that use the files you want to

rebuild first. This method shortens the IPL time and could make the first of several applications available

faster. However, the overall time to rebuild access paths probably is longer. (Other work may be running

when the access paths are being rebuilt, and there may be less main storage available to rebuild the

access paths).

Designing files to reduce access path rebuilding time: File design can also help reduce access path recovery

time. For example, you might divide a large master file into a history file and a transaction file. The

system uses the transaction file for adding new data. The system uses the history file for inquiry only. On

a daily basis, you might merge the transaction data into the history file, then clear the transaction file for

the next day’s data. With this design, you shorten the time to rebuild access paths.

However, if the system abnormally ended during the day, the access path to the smaller transaction file

might need to be rebuilt. Still, the access path to the large history file, being read-only for most of the

day, would rarely be unsynchronized with its data. Therefore, you reduce the chance of rebuilding this

access path.

Consider the trade-off between using a file design to reduce access path rebuilding time and using

system-supplied functions like access path journaling. The above file design may require a more complex

application design. After evaluating your situation, you may decide to use system-supplied functions like

journaling your access paths rather than design applications that are more complex.

Other methods to avoid rebuilding access paths: If you do not journal your access paths or do not take

advantage of SMAPP, then consider other system functions that reduce the chances of rebuilding access

paths.

The system uses a file synchronization indicator to determine if an access path needs to be rebuilt.

Normally, the synchronization indicator is on, indicating the synchronization of the access path and its

associated data. When a job changes a file that affects an access path, the system turns off the

synchronization indicator in the file. If the system ends abnormally, it must rebuild any access path

whose file has its synchronization indicator off.

198 OS/400 DB2 UDB for iSeries Database programming V5R3

You need to periodically synchronize the data with its access path to reduce the number of access paths

you must rebuild. There are several methods to synchronize a file with its access path:

v Full file close. The last full (that is, not shared) system-wide close performed against a file will

synchronize the access path and the data.

v Force access path. Specify the force-access-path (FRCACCPTH) parameter on the create, change, or

override database file commands.

v Force write ratio of 2 or greater. Specify the force-write-ratio (FRCRATIO) parameter on the create,

change, or override database file commands.

v Force end of data. Running the force-end-of-data operation in your program can synchronize the file’s

data and its access path. (Some high-level languages do not have a force-end-of-data operation. See

your high-level language guide for further details.)

Performing one of the methods mentioned previously synchronizes the access path and the data.

However, the next change to the data in the file can turn the synchronization indicator off again.

Note that each of the methods can be costly in terms of performance; therefore, use them with caution.

Consider journaling access paths along with saving access paths or using SMAPP as the primary means

of protecting access paths.

The database recovery process after an abnormal system end

After an abnormal system end, the system proceeds through several automatic recovery steps. The system

rebuilds the directory and synchronizes the journal to the files being journaled. The system performs

recovery operations during IPL and after IPL.

The following topics describe the specifics of database file recovery:

v “Database file recovery during the IPL”

v “Database file recovery after the IPL” on page 200

v “Effects of the storage pool paging option on database recovery” on page 200

v “Database file recovery options table” on page 201

Database file recovery during the IPL: During the IPL, nothing but the recovery function is active on

the system. Database file recovery consists of the following:

v The following functions that were in progress when the system ended are completed:

– Delete file

– Remove member

– Rename member

– Move object

– Rename object

– Change object owner

– Change member

– Grant authority

– Revoke authority

– Start journal physical file

– Start journal access path

– End journal physical file

– End journal access path

– Change journal

– Delete journal

– Recover SQL views

– Remove physical file constraint
v The following functions that were in progress when the system ended are backed out (and you must

run them again):

– Create file

– Add member

Database programming 199

– Change file

– Create journal

– Restore journal

– Add physical file constraint
v If the operator is doing the IPL (attended IPL), the Edit Rebuild of Access paths display appears on the

operator’s display. The display allows the operator to edit the RECOVER option for the files that were

in use for which immediate or delayed maintenance was specified. If all access paths are valid, or the

IPL is unattended, no displays appear.

v Access paths that:

– have immediate or delayed maintenance

– are specified for recovery during IPL (from the RECOVER option or changed by the Edit Rebuild of

Access Paths display)

– are rebuilt and a message is sent when you start journaling your access paths. Placing journal

receivers in their own user auxiliary storage pool provides the best journaling performance, while

helping to protect them from a disk failure. See the the Journal Management topic for more

information about journaling access paths.

Database file recovery after the IPL: This recovery of database files runs after the IPL completes.

Interactive and batch jobs may run with these steps of database recovery.

Recovery after the IPL consists of the following:

v The access paths for immediate or delayed maintenance files which specify recovery after IPL are

rebuilt.

v The system history log receives messages that indicate the success or failure of the rebuild operations.

v After IPL completion, use the Edit Rebuilt of Access Paths (EDTRBDAP) command to order the

rebuilding of access paths.

v After IPL completion, the Edit Check Pending Constraints (EDTCPCST) command displays a list of the

physical file constraints in check pending. This command specifies the verification sequence of the

check pending constraints.

Note: If you are not using journaling for a file, records may or may not exist after IPL recovery, as

follows:

v For added records, if after the IPL recovery the Nth record added exists, then all records added

preceding N also exist.

v For updated and deleted records, if the update or delete to the Nth record is present after the IPL

recovery, there is no guarantee that the records updated or deleted prior to the Nth record are also

present in the database.

v For REUSEFLT(*YES), records added are treated as updates, and these records may not exist after IPL

recovery.

Effects of the storage pool paging option on database recovery: The shared pool paging option controls

whether the system dynamically adjusts the paging characteristics of the storage pool for optimum

performance.

v The system does not dynamically adjust paging characteristics for a paging option of *FIXED.

v The system dynamically adjusts paging characteristics for a paging option of *CALC.

v You can also control the paging characteristics through an application programming interface. For more

information, see Change Pool Tuning Information API (QWCCHGTN) in the Application programming

interfaces (APIs) topic.

A shared pool paging option other than *FIXED can have an impact on data loss for nonjournaled

physical files in a system failure. When you do not journal physical files, data loss from a system failure,

where memory is not saved, can increase for *CALC or USRDFN paging options. You may write file

200 OS/400 DB2 UDB for iSeries Database programming V5R3

changes to auxiliary storage less frequently for these options. There is a risk of data loss for nonjournaled

files with the *FIXED option, but the risk can be higher for *CALC or user defined (USRDFN) paging

options.

For more information on the paging option see the ″Automatic System Tuning″ section of the

Performance topic.

Database file recovery options table: The table below summarizes the file recovery options:

 RECOVER Parameter Specified

Access Path/ Maintenance *NO *AFTIPL *IPL

Keyed sequence access

path/ immediate or

delayed maintenance

v No database recovery at

IPL

v File available

immediately

v Access path rebuilt first

time file opened

v Access path rebuilt after

IPL

v Access path rebuilt

during IPL

Keyed sequence access path

rebuild maintenance

v No database recovery at

IPL

v File available

immediately

v Access path rebuilt first

time file opened

v Not applicable; no

recovery is done for

rebuild maintenance

v Not applicable; no

recovery is done for

rebuild maintenance

Arrival sequence access

path

v No database recovery at

IPL

v File available

immediately

v Not applicable; no

recovery is done for an

arrival sequence access

path

v Not applicable; no

recovery is done for an

arrival sequence access

path

Database save and restore

You can save and restore database files and related objects with any supported device and media or a

save file. A save file (or the media) receives a copy written in special format of the saved information.

You can remove and store media for future use on your system or on another iSeries system. Restored

information is read from the media or a save file into storage, where system users access the information.

Save files are disk-resident files that can be the target of a save operation or the source of a restore

operation. Save files allow unattended save operations. An operator does not need to load tapes or

diskettes when saving to a save file. However, periodically use the Save Save File Data (SAVSAVFDTA)

command to save the save file data on tape or diskette. Periodically remove and store the tapes or

diskettes away from the site. These media are then available to help you recover in case of a site disaster.

For more information about saving and restoring information, see the Backup and Recovery

book

and the Backup and Recovery topic.

Database considerations for save and restore

The following list gives tips for working with the save and restore functions.

v When you save an object to a save file, you can prevent the system from updating the date and time of

the save operation by specifying UPDHST(*NO) on the save command.

v When you restore an object, the system always updates the object description with the date and time of

the restore operation. Display the object description and other save/restore related information by

using the Display Object Description (DSPOBJD) command with DETAIL(*FULL).

v To display the objects in a save file, use the Display Save File (DSPSAVF) command.

Database programming 201

v To display the objects on the media, specify DATA(SAVRST) on the Display Diskette (DSPDKT) or

Display Tape (DSPTAP) command.

v To display the last save/restore date for a database file, type: DSPFD FILE(file-name) TYPE(*MBR).

Also consider automatically writing records to auxiliary storage. See “Force-writing data to auxiliary

storage.”

For more information about saving and restoring information, see the Backup and Recovery

book

and the Backup and Recovery topic.

Force-writing data to auxiliary storage: The force-write ratio (FRCRATIO) parameter on the Create File

and Override Database File commands indicates how often the records are to be written to auxiliary

storage. A force-write ratio of one immediately writes every add, update, and delete request to auxiliary

storage for the file in question. However, choosing this option can reduce system performance. Therefore,

consider saving your files and journaling your files as the primary methods for protecting database files.

Using source files

This chapter describes how to enter and maintain data in a source file, and how to use that source file to

create another object (for example, a file or program) on the system. See the following topics:

v “Working with source files”

v “Creating an object using a source file” on page 205

v “Managing a source file” on page 206

For information about how to set up a source file, see “Setting up source files” on page 13.

Working with source files

The following sections describe how to enter and maintain data using various methods.

v “Using the Source Entry Utility (SEU)”

v “Using device source files”

v “Copying source file data” on page 203

v “Loading and unloading data from non-iSeries systems” on page 204

v “Using source files in a program” on page 204

Using the Source Entry Utility (SEU): You can use the Source Entry Utility (SEU) to enter and change

source in a source file. SEU is part of IBM WebSphere Development Studio for iSeries. If you use SEU to

enter source in a database file, SEU adds the sequence number and date fields to each source record.

If you use SEU to update a source file, you can add records between existing records. For example, if you

add a record between records 0003.00 and 0004.00, the sequence number of the added record could be

0003.01. SEU will automatically arrange the newly added statements in this way.

When records are first placed in a source file, the date field is all zoned decimal zeros (unless DDS is

used with the DFT keyword specified). If you use SEU, the date field changes in a record when you

change the record.

See the ADTS for AS/400®: Source Entry Utility

book on the V5R1 Supplemental Manuals Web site

for information about how to update database source files.

Using device source files: Tape and diskette unit files can be created as source files. When device files

are used as source files, the record length must include the sequence number and date fields. Any

maximum record length restrictions must consider these additional 12 characters. For example, the

maximum record length for a tape record is 32 766. If data is to be processed as source input, the actual

tape data record has a maximum length of 32 754 (which is 32 766 minus 12).

202 OS/400 DB2 UDB for iSeries Database programming V5R3

If you open source device files for input, the system adds the sequence number and date fields, but there

are zeros in the date fields.

If you open a device file for output and the file is defined as a source file, the system deletes the

sequence number and date before writing the data to the device.

Copying source file data: The Copy Source File (CPYSRCF) and Copy File (CPYF) commands can be

used to write data to and from source file members. See “Using the Copy Source File (CPYSRCF)

command for copying to and from source files” and “Using the Copy File (CPYF) command for copying

to and from files.”

When you are copying from a database source file to another database source file that has an insert

trigger associated with it, the trigger program is called for each record copied.

See also “Source sequence numbers used in copies” for information about copying.

Using the Copy Source File (CPYSRCF) command for copying to and from source files: The Copy Source File

(CPYSRCF) command is designed to operate with database source files. Although it is similar in function

to the Copy File (CPYF) command, the CPYSRCF command provides defaults that are normally used

when copying a source file. For example, it has a default that assumes the TOMBR parameter is the same

as the FROMMBR parameter and that any TOMBR records will always be replaced. The CPYSRCF

command also supports a unique printing format when TOFILE(*PRINT) is specified. Therefore, when

you are copying database source files, you will probably want to use the CPYSRCF command.

The CPYSRCF command automatically converts the data from the from-file CCSID to the to-file CCSID.

Using the Copy File (CPYF) command for copying to and from files: The Copy File (CPYF) command

provides additional functions over the CPYSRCF command such as:

v Copying from database source files to device files

v Copying from device files to database source files

v Copying between database files that are not source files and source database files

v Printing a source member in hexadecimal format

v Copying source with selection values

Source sequence numbers used in copies: When you copy to a database source file, you can use the SRCOPT

parameter to update sequence numbers and initialize dates to zeros. By default, the system assigns a

sequence number of 1.00 to the first record and increases the sequence numbers by 1.00 for the remaining

records. You can use the SRCSEQ parameter to set a fractional increased value and to specify the

sequence number at which the renumbering is to start. For example, if you specify in the SRCSEQ

parameter that the increased value is .10 and is to start at sequence number 100.00, the copied records

have the sequence numbers 100.00, 100.10, 100.20, and so on.

If a starting value of .01 and an increased value of .01 are specified, the maximum number of records that

can have unique sequence numbers is 999,999. When the maximum sequence number (9999.99) is

reached, any remaining records will have a sequence number of 9999.99.

The following is an example of copying source from one member to another in the same file. If MBRB

does not exist, it is added; if it does exist, all records are replaced.

CPYSRCF FROMFILE(QCLSRC) TOFILE(QCLSRC) FROMMBR(MBRA) +

 TOMBR(MBRB)

The following is an example of copying a generic member name from one file to another. All members

starting with PAY are copied. If the corresponding members do not exist, they are added; if they do exist,

all records are replaced.

Database programming 203

CPYSRCF FROMFILE(LIB1/QCLSRC) TOFILE(LIB2/QCLSRC) +

 FROMMBR(PAY*)

The following is an example of copying the member PAY1 to the printer file QSYSPRT (the default for

*PRINT). A format similar to the one used by SEU is used to print the source statements.

CPYSRCF FROMFILE(QCLSRC) TOFILE(*PRINT) FROMMBR(PAY1)

When you copy from a device source file to a database source file, sequence numbers are added and

dates are initialized to zeros. Sequence numbers start at 1.00 and are increased by 1.00. If the file being

copied has more than 9999 records, then the sequence number is wrapped back to 1.00 and continues to

be increased unless the SRCOPT and SRCSEQ parameters are specified.

When you are copying from a database source file to a device source file, the date and sequence number

fields are removed.

Loading and unloading data from non-iSeries systems: You can use the Copy From Import File

(CPYFRMIMPF) and Copy To Import File (CPYTOIMPF) commands to import (load) or export (unload)

data from and to the iSeries.

To import data from a non-iSeries database into an externally-described DB2 UDB for iSeries database

file, perform the following steps:

1. Create an import file for the data that you want to copy. The import file can be a database source file

or an externally-described database file that has 1 field. The field must have a data type of

CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, or UCS-2.

2. Send the data to the import file (or, the from file). The system performs any required ASCII to

EBCDIC conversion during this process. You can send the data in several ways:

v TCP/IP file transfer (file transfer)

v iSeries Access support (file transfer, ODBC)

v Copy From Tape File (CPYFRMTAP) command
3. Create an externally-described DB2 UDB for iSeries database file, or a DDM file, into which you want

to copy the data.

4. Use the Copy From Import File (CPYFRMIMPF) command to copy the data from the import file to

your iSeries database file. If you have the DB2 UDB Symmetric Multiprocessing product installed on

your system, the system will copy the file in parallel.

To export iSeries database data to another system, use the Copy To Import File (CPYTOIMPF) command

to copy the data from your database file to the import file. Then send the data to the system to which

you are exporting the data.

Using source files in a program: You can process a source file in your program. You can use the

external definition of the source file and do any input/output operations for that file, just as you would

for any other database file.

Source files are externally described database files. As such, when you name a source file in your

program and compile it, the source file description is automatically included in your program printout.

For example, assume you wanted to read and update records for a member called FILEA in the source

file QDDSSRC. When you write the program to process this file, the system will include the SRCSEQ,

SRCDAT, and SRCDTA fields from the source file.

Note: You can display the fields defined in a file by using the Display File Field Description command

(DSPFFD). For more information about this command, see “Displaying the descriptions of the

fields in a file” on page 179.

The program processing the FILEA member of the QDDSSRC file could:

204 OS/400 DB2 UDB for iSeries Database programming V5R3

v Open the file member (just like any other database file member).

v Read and update records from the source file (probably changing the SRCDTA field where the actual

source data is stored).

v Close the source file member (just like any other database file member).

Creating an object using a source file

You can use a create command to create an object using a source file. If you create an object using a

source file, you can specify the name of the source file on the create command.

For example, to create a CL program, you use the Create Control Language Program (CRTCLPGM)

command. A create command specifies through a SRCFILE parameter where the source is stored.

The create commands are designed so that you do not have to specify source file name and member

name if you do the following:

1. Use the default source file name for the type of object you are creating. (To find the default source file

name for the command you are using, see “IBM-supplied source files” on page 14.)

2. Give the source member the same name as the object to be created.

For example, to create the CL program PGMA using the command defaults, you would simply type:

CRTCLPGM PGM(PGMA)

The system would expect the source for PGMA to be in the PGMA member in the QCLSRC source file.

The library containing the QCLSRC file would be determined by the library list.

As another example, the following Create Physical File (CRTPF) command creates the file DSTREF using

the database source file FRSOURCE. The source member is named DSTREF. Because the SRCMBR

parameter is not specified, the system assumes that the member name, DSTREF, is the same as the name

of the object being created.

CRTPF FILE (QGPL/DSTREF) SRCFILE(QGPL/FRSOURCE)

See the following topics for related information:

v “Creating an object from source statements in a batch job”

v “Determining which source file member was used to create an object” on page 206

Creating an object from source statements in a batch job: If your create command is contained in a

batch job, you can use an inline data file as the source file for the command. However, inline data files

used as a source file should not exceed 10,000 records. The inline data file can be either named or

unnamed. Named inline data files have a unique file name that is specified on the //DATA command.

For more information about inline data files, see File Management.

Unnamed inline data files are files without unique file names; they are all named QINLINE. The

following is an example of an inline data file used as a source file:

//BCHJOB

CRTPF FILE(DSTPRODLB/ORD199) SRCFILE(QINLINE)

//DATA FILETYPE(*SRC)

 .

 . (source statements)

 .

//

//ENDBCHJOB

In this example, no file name was specified on the //DATA command. An unnamed spooled file was

created when the job was processed by the spooling reader. The CRTPF command must specify QINLINE

as the source file name to access the unnamed file. The //DATA command also specifies that the inline

file is a source file (*SRC specified for the FILETYPE parameter).

Database programming 205

If you specify a file name on the //DATA command, you must specify the same name on the SRCFILE

parameter on the CRTPF command. For example:

//BCHJOB

CRTPF FILE(DSTPRODLB/ORD199) SRCFILE(ORD199)

//DATA FILE(ORD199) FILETYPE(*SRC)

 .

 . (source statements)

 .

//

//ENDBCHJOB

If a program uses an inline file, the system searches for the first inline file of the specified name. If that

file cannot be found, the program uses the first file that is unnamed (QINLINE).

If you do not specify a source file name on a create command, an IBM-supplied source file is assumed to

contain the needed source data. For example, if you are creating a CL program but you did not specify a

source file name, the IBM-supplied source file QCLSRC is used. You must have placed the source data in

QCLSRC.

If a source file is a database file, you can specify a source member that contains the needed source data.

If you do not specify a source member, the source data must be in a member that has the same name as

the object being created.

Determining which source file member was used to create an object: When an object is created from

source, the information about the source file, library, and member is held in the object. The date/time

that the source member was last changed before object creation is also saved in the object.

The information in the object can be displayed with the Display Object Description (DSPOBJD) command

and specifying DETAIL(*SERVICE).

This information can help you in determining which source member was used and if the existing source

member was changed since the object was created.

You can also ensure that the source used to create an object is the same as the source that is currently in

the source member using the following commands:

v The Display File Description (DSPFD) command using TYPE(*MBR). This display shows both

date/times for the source member. The Last source update date/time value should be used to

compare to the Source file date/time value displayed from the DSPOBJD command.

v The Display Object Description (DSPOBJD) command using DETAIL(*SERVICE). This display shows

the date/time of the source member used to create the object.

Note: If you are using the data written to output files to determine if the source and object dates are the

same, then you can compare the ODSRCD (source date) and ODSRCT (source time) fields from the

output file of the DSPOBJD DETAIL(*SERVICE) command to the MBUPDD (member update date)

and MBUPDT (member update time) fields from the output file of the DSPFD TYPE(*MBR)

command.

Managing a source file

This section describes several considerations for managing source files.

v “Changing source file attributes” on page 207

v “Reorganizing source file member data” on page 207

v “Determining when a source statement was changed” on page 207

v “Using source files for documentation” on page 207

206 OS/400 DB2 UDB for iSeries Database programming V5R3

Changing source file attributes: If you are using SEU to maintain database source files, see the ADTS

for AS/400: Source Entry Utility

book on the V5R1 Supplemental Manuals Web site for information

on how to change database source files. If you are not using SEU to maintain database source files, you

must totally replace the existing member.

If your source file is on a diskette, you can copy it to a database file, change it using SEU, and copy it

back to a diskette. If you do not use SEU, you have to delete the old source file and create a new source

file.

If you change a source file, the object previously created from the source file does not match the current

source. The old object must be deleted and then created again using the changed source file. For example,

if you change the source file FRSOURCE created in “Creating an object using a source file” on page 205,

you have to delete the file DSTREF that was created from the original source file, and create it again

using the new source file so that DSTREF matches the changed FRSOURCE source file.

Reorganizing source file member data: You usually do not need to reorganize a source file member if

you use arrival sequence source files.

To assign unique sequence numbers to all the records, specify the following parameters on the

Reorganize Physical File Member (RGZPFM) command:

v KEYFILE(*NONE), so that the records are not reorganized

v SRCOPT(*SEQNBR), so that the sequence numbers are changed

v SRCSEQ with a fractional value such as .10 or .01, so that all the sequence numbers are unique

Note: Deleted records, if they exist, will be compressed out.

A source file with an arrival sequence access path can be reorganized by sequence number if a logical file

for which a keyed sequence access path is specified is created over the physical file.

Determining when a source statement was changed: Each source record contains a date field which is

automatically updated by SEU if a change occurs to the statement. This can be used to determine when a

statement was last changed. Most high-level language compilers print these dates on the compiler lists.

The Copy File (CPYF) and Copy Source File (CPYSRCF) commands also print these dates.

Each source member description contains two date and time fields. The first date/time field reflects

changes to the member any time it is closed after being updated.

The second date/time field reflects any changes to the member. This includes all changes caused by SEU,

commands (such as CRYF and CPYSRCF), authorization changes, and changes to the file status. For

example, the FRCRATIO parameter on the Change Physical File (CHGPF) command changes the member

status. This date/time field is used by the Save Changed Objects (SAVCHGOBJ) command to determine

if the member should be saved. Both date/time fields can be displayed with the Display File Description

(DSPFD) command specifying TYPE(*MBR). There are two changed date/times shown with source

members:

v Last source update date/time. This value reflects any change to the source data records in the

member. When a source update occurs, the Last change date/time value is also updated, although

there may be a 1- or 2-second difference in that date/time value.

v Last change date/time. This value reflects any changes to the member. This includes all changes

caused by SEU, commands (such as CPYF and CPYSRCF), authorization changes, or changes to file

status. For example, the FRCRATIO parameter on the CHGPF command changes the member status,

and therefore, is reflected in the Last change date/time value.

Using source files for documentation: You can use the IBM-supplied source file QTXTSRC to help you

create and update online documentation.

Database programming 207

You can create and update QTXTSRC members just like any other application (such as QRPGSRC or

QCLSRC) available with SEU. The QTXTSRC file is most useful for narrative documentation, which can

be retrieved online or printed. The text that you put in a source member is easy to update by using the

SEU add, change, move, copy, and include operations. The entire member can be printed by specifying

Yes for the print current source file option on the exit prompt. You can also write a program to print all

or part of a source member.

Controlling the integrity of your database with constraints

A constraint is a restriction or limitation placed on a file to ensure that data in your database remains

consistent as you add, change, and remove records.

v Unique constraints and primary key constraints let you create enforced unique keys for a physical file

beyond the file access path. See “Unique constraints” on page 212 and “Primary key constraints” on

page 213.

v Check constraints provide another check for the validity of your data by testing the data in an

expression. See “Check constraints” on page 213.

Primary key and unique constraints can be used as the parent key when adding a referential constraint.

To use constraints, see the following topics:

v “Setting up constraints for your database”

v “Removing unique, primary key, or check constraints” on page 209

v “Working with a group of constraints” on page 210

v “Working with constraints that are in check pending status” on page 210

Setting up constraints for your database

You can use physical file constraints to control the integrity of data that is maintained in your database.

To add a physical file constraint, use the Add Physical File Constraint (ADDPFCST) command.

v To add a unique constraint, specify a value of *UNQCST on the Type parameter. You must also specify

one or more field names for the Key parameter.

v To add a primary key constraint, specify a value of *PRIKEY on the Type parameter. The key that you

specify on the command becomes the primary access path of the file. If the file does not have a keyed

access path that can be shared, the system creates one. You must also specify one or more field names

for the Key parameter.

v To add a check constraint, specify a value of *CHKCST on the Type parameter. You must also specify a

check constraint expression on the CHKCST parameter. The check constraint expression has the same

syntax as the expression used for check-conditions that are defined using Structured Query Language

(SQL). For information about using SQL to set up constraints, see DB2 UDB for iSeries SQL Reference.

You can also add constraints using iSeries Navigator. See the following topics in the SQL programming

topic:

v Adding key constraints using iSeries Navigator

v Adding check constraints using iSeries Navigator

You can also add constraints when using the SQL CREATE TABLE and ALTER TABLE statements.

For additional details on setting up constraints, see “Details: Setting up constraints.”

Details: Setting up constraints: The following rules apply to all physical file constraints:

v The file must be a physical file.

v A file can have a maximum of one member, MAXMBR(1).

208 OS/400 DB2 UDB for iSeries Database programming V5R3

v A constraint can be defined when the file has zero members. A constraint cannot be established,

however, until the file has one, and only one, member.

v A file can have a maximum of one primary key constraint, but may have many unique constraints.

v There is a maximum of 300 constraint relations per file. This maximum value is the sum of the

following:

– The unique constraints

– The primary key constraint

– The check constraints

– The referential constraints, whether they are participating as a parent or a dependent, and whether

the constraints are defined or established.
v Constraint names must be unique in a library.

v Constraints cannot be added to files in the QTEMP library.

v Referential constraints must have the parent and dependent file in the same auxiliary storage pool

(ASP).

Removing unique, primary key, or check constraints

To remove a physical file constraint, use the Remove Physical File Constraint (RMVPFCST) command.

The full effects of the command depend on the type of constraint you remove and how it is used.

v To remove a unique constraint, specify a value of *UNQCST on the Type parameter.

v To remove a primary key constraint, specify a value of *PRIKEY on the Type parameter.

v To remove a check constraint, specify a value of *CHKCST on the Type parameter.

You can specify any of the values below on the Constraint (CST) parameter for each of the constraint

types listed:

v CST(*ALL) to remove all of the constraints you specify on the Type parameter.

v CST(constraint-name) to remove a specific constraint.

v CST(*CHKPND) to remove only those constraints that are in check pending status.

v Use CST(*ALL) with TYPE(*ALL) to remove all constraints from the file.

You can also do the following to remove a constraint:

v Use Structured Query Language (SQL) to remove a constraint. See DB2 UDB for iSeries SQL Reference

v Remove a constraint using iSeries Navigator. See Removing constraints using iSeries Navigator in the

SQL programming topic for more information.

For additional details on removing constraints, see “Details: Removing constraints.”

Details: Removing constraints: If you remove a primary key or unique constraint and the associated

access path is shared by a logical file, ownership of the shared path transfers to the logical file. If the

access path is not shared, it is removed.

When you remove a primary key constraint with the RMVPFCST command, the system sends an inquiry

message to determine if the key specifications should be removed from the file. A reply of ’K’ maintains

the key specifications in the file. The file remains keyed. A reply of ’G’ indicates the file will have an

arrival sequence access path when the command completes.

Note: When you remove a primary key constraint with the Structured Query Language (SQL) ALTER

TABLE statement, the inquiry message is not sent. The key specifications are always removed and

the file will have an arrival sequence access path when the ALTER TABLE completes.

Database programming 209

Working with a group of constraints

To display a list of the constraints that exist for a particular file, use the Work with Physical File

Constraints (WRKPFCST) command. From this display, you can change or remove a constraint and

display a list of the records that placed a file constraint into check pending status.

For additional details about working with a group of constraints, see “Details: Working with a group of

constraints.”

Details: Working with a group of constraints:

 Work with Physical File Constraints

 Type options, press Enter.

 2=Change 4=Remove 6=Display records in check pending

 Check

 Opt Constraint File Library Type State Pending

 _ DEPTCST EMPDIV7 EPPROD *REFCST EST/ENB No

 _ ACCTCST EMPDIV7 EPPROD *REFCST EST/ENB Yes

 _ STAT84 EMPDIV7 EPPROD *REFCST DEF/ENB No

 _ FENSTER REVSCHED EPPROD *REFCST EST/DSB Yes

 _ IRSSTAT3 REVSCHED EPPROD *UNQCST

 _ IFRNUMBERO > REVSCHED EPPROD *UNQCST

 _ EVALDATE QUOTOSCHEM EPPROD *REFCST EST/ENB No

 _ STKOPT CANSCRONN9 EPPROD *PRIKEY

 _ CHKDEPT EMPDIV2 EPPROD *CHKCST EST/ENB No

 Parameters for options 2, 4, 6 or command

 ===>__

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F15=Sort by

 F16=Repeat position to F17=Position to F22=Display constraint name

The Work with Physical File Constraints display shows all the constraints defined for the file specified on

the WRKPFCST command. The display lists the constraint names, the file name, and the library name. In

addition, the following information is displayed:

v The Type column identifies the constraint as referential, check, unique, or primary key.

v The State column indicates whether the constraint is defined or established and whether it is enabled

or disabled. The State column only applies to referential and check constraints.

v The Check Pending column contains the check pending status of the constraint. Unique and primary

key constraints do not have a state because they are always established and enabled.

For each of the listed constraints, you can perform the following actions:

v To change a referential or check constraint to any of its permissible states, select Change (option 2). For

example, you can enable a constraint that is currently disabled. This option performs the same

functions as the CHGPFCST command.

v To remove a constraint, select Remove (option 4). This option performs the same functions as the

RMVPFCST command.

v To display the records that are in check pending state, select Display (option 6). This option performs

the same functions as the DSPCPCST command. The DSPCPCST command applies only to referential

and check constraints.

Working with constraints that are in check pending status: When you add a referential or check

constraint, the system automatically checks all of the records in the database file to ensure that they meet

the constraint definition. This check is also performed when the system is being restored.

210 OS/400 DB2 UDB for iSeries Database programming V5R3

If the constraint is not valid or if it cannot be verified, the system places it in check pending status.

To work with the constraints that are in check pending status, perform the following steps:

1. Make the constraint inactive. Run the Change Physical File Constraint (CHGPFCST) command and

specify *DISABLED on the Constraint state parameter.

2. Display the list of records that are causing the constraint to be marked as check pending. Run the

Display Check Pending Constraints (DSPCPCST) command. See “Displaying records that put a

constraint in check pending status” for additional information.

Note: The length of time that this command runs depends on the number of records the file contains.

3. Schedule the verification of the constraints that are in check pending status. Run the Edit Check

Pending Constraints (EDTCPCST) command. See “Processing constraints that are in check pending

status” for additional information.

4. Make the constraint active. Run the CHGPFCST command again and specify *ENABLED on the

Constraint state parameter.

Displaying records that put a constraint in check pending status: When a constraint is added, the system

verifies that the records in the file conform to the rules for the constraint. If the records are not valid, the

system places the constraint in check pending status.

It is often useful to examine the records that do not conform to the rules of your constraint. You can then

change either the record or the constraint as necessary.

Note: Before you perform the following step, you should run the Change Physical File Constraint

(CHGPFCST) command to disable the constraint.

To display or print the list of records that have caused a constraint to be placed in check pending status,

run the Display Check Pending Constraints (DSPCPCST) command.

Processing constraints that are in check pending status: Constraints that are created for large database files

can sometimes take a great deal of time to be validated by the system. You can list the constraints that

are in check pending and schedule them for verification as required.

To display and edit the list of constraints that are in check pending status, perform the following steps:

1. Run the Edit Check Pending Constraints (EDTCPCST) command.

2. Check the status of the constraint you want to process.

3. If the constraint is in a status other than RUN or READY, change the *HLD value in the Seq field to a

value between 1 and 99.

4. Press Enter.

Database programming 211

Edit Check Pending Constraints

 Type sequence, press Enter.

 Sequence: 1-99, *HLD

 ------------Constraints----------- Verify Elapsed

 Seq Status Cst File Library Time Time

 1 RUN EMP1 DEP EPPROD 00:01:00 00:00:50

 1 READY CONST > DEP EPPROD 00:02:00 00:00:00

 *HLD CHKPND FORTH > STYBAK EPPROD 00:03:00 00:00:00

 *HLD CHKPND CST88 STYBAK EPPROD 00:10:00 00:00:00

 *HLD CHKPND CS317 STYBAK EPPROD 00:20:00 00:00:00

 *HLD CHKPND KSTAN STYBAK EPPROD 02:30:00 00:00:00

 Bottom

 F3=Exit F5=Refresh F12=Cancel F13=Repeat all F15=Sort by

 F16=Repeat position to F17=Position to F22=Display constraint name

For additional information about processing constraints that are in check pending status, see “Details:

Processing constraints that are in check pending status.”

Details: Processing constraints that are in check pending status: The status field of the Edit Check Pending

Constraints display has one of the following values:

v RUN indicates that the constraint is being verified.

v READY indicates the constraint is ready to be verified.

v NOTVLD indicates that the access path that is associated with the constraint is not valid. Once the

access path has been rebuilt, the system automatically verifies the constraint. This value applies only to

a referential constraint.

v HELD indicates the constraint is not being verified. You must change the sequence to a value from 1 to

99 to change this state.

v CHKPND indicates that the system attempted to verify the constraint, but the constraint is still in

check pending. You must change the sequence to a value from 1 to 99 to change this state.

The Constraint column contains the first five characters of the constraint name. A > symbol follows the

name if it exceeds five characters. You can display the whole long name; put the cursor on that line and

press the F22 key.

The verify time column shows the time it would take to verify the constraint if there were no other jobs

on the system. The elapsed time column indicates the time already spent on verifying the constraint.

Unique constraints

Unique constraints act as controls in a database to ensure that rows are unique. For example, you can

specify a customer identification number as a unique constraint in your database. If anyone attempts to

create a new customer with the same customer number, an error message is sent to the database

administrator.

Unique constraints identify a field or set of fields in a database file whose values must be unique across

records in the file. The field must be in ascending order, and can be null-capable.

A file can have multiple unique constraints, but you cannot duplicate unique constraints. The same key

fields, regardless of order, constitute a duplicate constraint.

212 OS/400 DB2 UDB for iSeries Database programming V5R3

Unique constraints can be used as the parent key when adding a referential constraint.

Primary key constraints

A primary key constraint is a unique key with special attributes that make the key the primary access

path for the file.

Primary key constraints identify a field or set of fields in a database file whose values must be unique

across records in the file. The field must be in ascending order, and can be null-capable. If it is

null-capable, a check constraint is implicitly added so that null values cannot be entered in the field. You

can define only one primary key constraint for a file.

A primary key constraint can be used as the parent key when adding a referential constraint.

Check constraints

You use check constraints to maintain limits on the values of fields so that they conform to your database

requirements.

Check constraints assure the validity of data during insertions and updates by checking the data against

a check constraint expression that you define.

For example, you can create a check constraint on a field such that values that are inserted into that field

must be between 1 and 100. If a value does not fall within that range, the insert or update operation

against your database is not processed.

Check constraints are much like referential constraints in terms of their states:

v Defined and enabled — the constraint definition has been added to the file, and the constraint will be

enforced after the constraint is established.

v Defined and disabled — the constraint definition has been added to the file, but the constraint will not

be enforced.

v Established and enabled — the constraint has been added to the file and all of the pieces of the file are

there for enforcement.

v Established and disabled — the constraint has been added to the file and all of the pieces of the file are

there for enforcement, but the constraint will not be enforced.

A check constraint, like a referential constraint, can have a check pending status. If the data in any field

violates the check constraint expression, then the constraint is in check pending. For the insertion or

update of a record, if the data violates the check constraint expression, then the insert or update will not

be allowed.

A check constraint that contains one or more Large Object (LOB) fields is restricted to a narrower range

of operations than a check constraint without LOB fields. When the check constraint includes one or

more LOB fields, the LOB fields can only be involved in direct comparisons to:

v Other LOB fields of the same type and same maximum length.

v Literal values.

v The null value.

Operations known as derived operations, such as the Substring or Concat operations, are not allowed

against LOB fields in a check constraint. The diagnostic message CPD32E6 will be sent when trying to

add a check constraint that attempts a derived operation against a LOB field.

Ensuring data integrity with referential constraints

You can use referential constraints in iSeries databases to enforce the referential integrity of your system.

Referential integrity encompasses all of the mechanisms and techniques that you use to make sure that

your database contains only valid data.

Database programming 213

To use referential constraints, see the following topics:

1. “Adding a referential constraint”

2. “Verifying a referential constraint” on page 217

3. “Enabling and disabling referential constraints” on page 218

4. “Removing referential constraints” on page 219

In addition, the following topics provide important information about referential integrity:

v “Details: Ensuring data integrity with referential constraints” on page 220

v “Example: Ensuring data integrity with referential constraints” on page 220

v “Referential integrity terms” on page 220

v “Referential integrity enforcement” on page 221

v “Constraint states” on page 222

v “Check pending status in referential constraints” on page 222

v “Referential integrity and iSeries functions” on page 223

Adding a referential constraint

You can add referential constraints on physical files with no more than one member. A referential

constraint is a file-level attribute; therefore, you can create the constraint before the member exists.

To add a referential constraint, see the following topics:

1. “Before you add a referential constraint”

2. “Defining the parent file in a referential constraint”

3. “Defining the dependent file in a referential constraint” on page 215

4. “Specifying referential constraint rules” on page 215

For additional information about adding referential constraints, see the following topics:

 “Details: Adding a referential constraint” on page 217

 “Details: Avoiding constraint cycles” on page 217

Before you add a referential constraint: Before you can add a referential constraint, you must make

sure that you meet the following conditions:

v There must be a parent file with a key capable of being a parent key. If the parent file has no primary

key or unique constraint, the system tries to add a primary key constraint to the parent file if the field

attributes of the potential parent key match those of the foreign key field attributes of the dependent

file.

v There must be a dependent file with certain attributes that match the attributes of the parent file:

– Sort sequence (SRTSEQ) must match for data types CHAR, OPEN, EITHER, and HEX.

– The coded character set identifier (CCSID) must match for each SRTSEQ table unless either (or both)

of the CCSIDs is 65535.

– Each sort sequence table must match exactly.
v The dependent file must contain a foreign key that matches the following attributes of the parent key:

– Data type

– Length

– Precision (packed, zoned, or binary)

– CCSID (unless either has a CCSID of 65535)

– REFSHIFT (if data type is OPEN, EITHER, or ONLY)

Defining the parent file in a referential constraint: A parent file must be a physical file with a

maximum of one member. You can create a new file or use an existing file when you define the parent

file.

The concept of a parent key applies only in terms of a referential constraint. When a referential constraint

is added to the dependent file, a parent key is required for the parent file. To prepare for this, you must

214 OS/400 DB2 UDB for iSeries Database programming V5R3

first add either a primary key constraint or a unqiue constraint to the parent file with the appropriate set

of fields for the key. When the referential constraint is added, a search is conducted of unique constraints

(and primary key) for a match. If a match is found, then the access path of the constraint is used as the

parent key in the referential constraint relationship.

To create a new physical file as a parent file, perform the following steps:

1. Use the Create Physical File (CRTPF) command to create the file.

2. Use the Add Physical File Constraint (ADDPFCST) command to either add a primary key constraint

or a unique constraint. The primary key can be null-capable, but the system creates an implicit check

constraint to prevent the insertion of null values in the field.

Note: You can use the SQL CREATE TABLE statement to perform the above steps with one step.

To use an existing file as a parent file, choose from among the following options:

v You can add a primary key constraint to a file with the Add Physical File Constraint (ADDPFCST)

command. Specify *PRIKEY for the TYPE parameter. You must also specify the key field or fields with

the KEY parameter.

If a primary key constraint already exists for the file, the ADDPFCST command with TYPE(*PRIKEY)

will fail because a file can have only one primary key. If you want a different primary key constraint,

you must first remove the existing primary key constraint with the Remove Physical File Constraint

(RMVPFCST) command. Then you can add a new primary key constraint.

v You can add a unique constraint to a file with the Add Physical File Constraint (ADDPFCST)

command. Specify *UNQCST for the TYPE parameter. You must also specify the key field or fields

with the KEY parameter. You can also add a unique constraint with the Structured Query Language

(SQL) ALTER TABLE statement.

If the parent file does not have a primary key or unique constraint that can be used as the parent key,

the system will attempt to automatically add a primary key constraint when adding a referential

constraint.

If the parent file has a uniquely keyed access path, where the access path fields match the foreign key’s

fields (both for the number of fields and matching attributes), then a primary key constraint will be

implicitly added to the parent file. This will become the parent key for the referential constraint.

If the parent file is arrival sequence access path, then if the fields specified for the parent key match the

foreign key’s fields (matching attributes), then a primary key constraint will be implicitly added to the

parent file. This will become the parent key for the referential constraint.

If you cannot add a parent key, see “What to do when you cannot define a parent key” for information.

What to do when you cannot define a parent key: For an existing file with a primary key or unique

constraint, if neither constraint will suffice as the parent key, you have the following options:

v Delete the file and create it again with the appropriate keys.

v Add a unique or primary key constraint to the created file.

Defining the dependent file in a referential constraint: A dependent file must be a physical file with a

maximum of one member.

To create a dependent file, create the file as you would any physical file or use an existing file.

The dependent file does not require a keyed access path when you create the actual constraint. If no

existing access paths meet the foreign key criteria, the system adds an access path to the file.

Specifying referential constraint rules: Referential constraints allow you to specify rules that you want

the system to enforce when you delete or update records.

To specify the rules you want to enforce with your referential constraints, perform the following steps:

Database programming 215

1. Run the Add Physical File Constraint (ADDPFCST) command.

2. Specify the rule that you want to enforce when you delete records (the delete rule) by choosing a value

for the DLTRULE parameter.

3. Specify the rule that you want to enforce when you update records (the update rule) by choosing a

value for the UPDRULE parameter.

You can also add a referential constraint using iSeries Navigator. See Adding referential constraints using

iSeries Navigator in the SQL programming topic.

For additional information about specifying constraint rules, see the following topics:

 “Details: Specifying referential constraint delete rules”

 “Details: Specifying referential constraint update rules”

 “Details: Specifying referential constraint rules—journaling requirements” on page 217

Details: Specifying referential constraint delete rules: There are five possible values for the DLTRULE

parameter. The delete rule specifies the action the system takes when you delete a parent key value. The

delete rule does not affect null parent key values.

v *NOACTION (the default value)

– Record deletion in a parent file will not occur if the parent key value has a matching foreign key

value.
v *CASCADE

– Record deletion in a parent file causes records in the dependent file to be deleted when the parent

key value matches the foreign key value.
v *SETNULL

– Record deletion in a parent file updates those records in the dependent file where the value of the

parent non-null key matches the foreign key value. For those dependent records that meet the

preceding criteria, all null capable fields in the foreign key are set to null. Foreign key fields with

the non-null attribute are not updated.
v *SETDFT

– Record deletion in a parent file updates those records in the dependent file where the value of the

parent non-null key matches the foreign key value. For those dependent records that meet the

preceding criteria, the foreign key field or fields are set to their corresponding default values.
v *RESTRICT

– Record deletion in a parent file will not occur if the parent key value has a matching foreign key

value.

Note: The system enforces a delete *RESTRICT rule immediately when the deletion is attempted. The

system enforces other constraints at the logical end of the operation. The operation, in the case

of other constraints, includes any trigger programs that are run before or after the delete. It is

possible for a trigger program to correct a potential referential integrity violation. For example, a

trigger program could add a parent record if one does not exist. The *RESTRICT rule does not

prevent the violation.

Details: Specifying referential constraint update rules: There are two possible values for the UPDRULE

parameter. The UPDRULE parameter identifies the update rule for the constraint relationship between the

parent and dependent files. The update rule specifies the action that the system takes when it attempts to

update the parent file.

v *NOACTION (the default value)

– Record update in a parent file does not occur if there is a matching foreign key value in the

dependent file.
v *RESTRICT

– Record update in a parent file does not occur if a value of the non-null parent key matches a foreign

key value.

216 OS/400 DB2 UDB for iSeries Database programming V5R3

Note: The system enforces an update *RESTRICT rule immediately when you attempt the update. The

system enforces other constraints at the logical end of the operation. For example, a trigger

program could add a parent record if one does not exist. The *RESTRICT rule does not prevent

the violation.

Details: Specifying referential constraint rules—journaling requirements: If you perform inserts,

updates, or deletes on a file that is associated with a referential constraint and the delete rule, update

rule, or both is other than *RESTRICT, you must use journaling. You must journal both the parent and

dependent files to the same journal. In addition, you are responsible for starting the journaling for the

parent and dependent files with the Start Journal Physical File (STRJRNPF) command.

If you are inserting, updating, or deleting records to a file that is associated with a referential constraint

that has a delete rule, update rule, or both rules, other than *RESTRICT, commitment control is required.

If you have not started commitment control, the system will start and end the commit cycle automatically

for you.

Details: Adding a referential constraint: The following limitations apply to referential constraints:

v A parent file must be a physical file.

v A parent file can have a maximum of one member, MAXMBR(1).

v A dependent file must be a physical file.

v A dependent file can have a maximum of one member, MAXMBR(1).

v You can define a constraint when both or either of the dependent and parent files have zero members.

A constraint cannot be established unless both files have a member.

v A file can have a maximum of one primary key, but may have many unique constraints.

v There is a maximum of 300 constraint relations per file. This maximum value is the sum of:

– The referential constraints whether participating as a parent or a dependent, and whether the

constraints are defined or established.

– The unique constraints, which includes the primary key constraint.

– The check constraints.
v Only externally described files are allowed in referential constraints. Source files are not allowed.

Program described files are not allowed.

v Files with insert, update, or delete capabilities are not allowed in *RESTRICT relationships.

v Constraint names must be unique in a library.

v You cannot add constraints to files in the QTEMP library.

v You cannot add a referential constraint where the parent file is in one ASP and the dependent file is in

a different ASP.

Details: Avoiding constraint cycles: A constraint cycle is a sequence of constraint relationships in which

a descendent of a parent file becomes a parent to the original parent file.

You can use constraint cycles in a DB2 UDB for iSeries database; however, you should avoid using them.

Verifying a referential constraint

The system automatically verifies the validity of a referential constraint when you add the constraint with

the ADDPFCST command. The system verifies that every non-null value in the foreign key matches a

corresponding value in the parent key.

If the verification is successful, the constraint rules are enforced on subsequent accesses by a user or

application program. An unsuccessful verification causes the constraint to be marked as check pending. If

the constraint is added with the ADDPFCST command, then the constraint will be in check pending but

disabled state.

Database programming 217

Note: It is not uncommon to add a referential constraint to existing files that contain large amounts of

data. The ADDPFCST command can take several hours to complete when a very large number of

records is involved. The add process places an exclusive lock on the files. You should take this

time factor and file availability into account before you add a referential constraint.

Enabling and disabling referential constraints

To enable or disable a referential constraint relationship, use the Change Physical File Constraint

(CHGPFCST) command. You must specify the dependent file when changing a referential constraint; you

cannot disable or enable a constraint by specifying the parent file.

You can also enable and disable a referential constraint using iSeries Navigator. See Enabling and

disabling referential constraints using iSeries Navigator in the SQL programming topic.

You must have a minimum of object management authority (or ALTER privilege) to the dependent file in

order to enable or disable a constraint.

For additional information on enabling and disabling referential constraints, see “Details: Enabling or

disabling a referential constraint.”

Details: Enabling or disabling a referential constraint: When the system enables or disables a

constraint, it locks the parent and dependent files, both members, and both access paths. It removes the

locks when the enable or disable is complete.

Attempting to enable an enabled constraint or disable a disabled constraint does nothing but cause the

issuance of an informational message.

An established/disabled or check pending constraint relationship can be enabled. The enabling causes the

system to verify the constraint again. If verification finds mismatches between the parent and foreign

keys, the constraint is marked as check pending.

Disabling a constraint relationship allows all file I/O operations for both the parent and the dependent

files, if the user has the correct authority. The entire infrastructure of the constraint remains. The parent

key and foreign key access paths are still maintained. However, there is no referential enforcement that is

performed for the two files in the disabled relationship. All remaining enabled constraints are still

enforced.

Disabling a constraint can allow file I/O operations in performance-critical situations to run faster.

Always consider the trade-off in this kind of a situation. The file data can become referentially not valid.

When the constraint is enabled, depending on the file size, the system will take time to re-verify the

referential constraint relationship.

Note: Users and applications must be cautious when modifying files with a constraint relationship in the

established and disabled state. Relationships can be violated and not detected until the constraint

is enabled again.

The Allocate Object (ALCOBJ) command can allocate (lock) files while a constraint relationship is

disabled. This allocation prevents others from changing the files while this referential constraint

relationship is disabled. A lock for exclusive use allow read should be requested so that other users can

read the files. Once the constraint is enabled again, the Deallocate Object (DLCOBJ) command unlocks

the files.

When you enable or disable multiple constraints, they are processed sequentially. If a constraint cannot be

modified, you receive a diagnostic message, and the function proceeds to the next constraint in the list.

When all constraints have been processed, you receive a completion message listing the number of

constraints modified.

218 OS/400 DB2 UDB for iSeries Database programming V5R3

Removing referential constraints

You can remove referential constraints in a variety of ways. The full impact of the removal depends on

the constraint you are removing and certain conditions that surround the constraint.

To remove a referential constraint, perform the following steps:

1. Run the Remove Physical File Constraint (RMVPFCST) command.

2. Specify the constraint or constraints you want to remove using one of the following parameters:

v Use the CST parameter to specify all constraints or a specific constraint name.

v Use the TYPE parameter to specify a particular type of constraint.

You can also remove a referential constraint using iSeries Navigator. See Removing referential constraints

using iSeries Navigator in the SQL programming topic.

When you remove a referential constraint, the system removes the associated foreign keys and access

paths from the file. The system does not remove the foreign key access path if any logical file or other

constraint on the system uses it.

If you remove a referential, primary key, or unique constraint and the associated access path is shared by

a logical file, ownership of the shared path transfers to the logical file.

For additional information about removing referential constraints, see the following topics:

 “Details: Removing a constraint with the CST parameter”

 “Details: Removing a constraint with the TYPE parameter”

Details: Removing a constraint with the CST parameter: With the CST parameter, you can specify to

remove:

v All constraints CST(*ALL) associated with a file where TYPE(*ALL) is specified

v A specific referential constraint CST(constraint-name)

v Referential or check constraints in check pending CST(*CHKPND)

v All constraints CST(*ALL) associated with a specific TYPE of constraint

Details: Removing a constraint with the TYPE parameter: With the TYPE parameter, you can specify

the type of constraint that you want to remove.

v All types: TYPE(*ALL)

– All constraints for CST(*ALL)

– All constraints in check pending for CST(*CHKPND)

– The named constraint for CST(constraint-name)
v Referential constraints: TYPE(*REFCST)

– All referential constraints for CST(*ALL)

– All referential constraints in check pending for CST(*CHKPND)

– The named referential constraint for CST(constraint-name)
v Unique constraints: TYPE(*UNQCST)

– All unique constraints except the primary key constraint for CST(*ALL)

– Not applicable for CST(*CHKPND)—a unique constraint cannot be in check pending

– The named unique constraint for CST(constraint-name)
v Primary key constraints: TYPE(*PRIKEY)

– The primary constraint for CST(*ALL)

– Not applicable for CST(*CHKPND)—the primary constraint cannot be in check pending

– The named primary constraint for CST(constraint-name)
v Check constraints: TYPE(*CHKCST)

Database programming 219

– All check constraints for CST(*ALL)

– All check constraints in check pending for CST(*CHKPND)

– The named check constraint for CST(constraint-name)

Details: Ensuring data integrity with referential constraints

You might want to use referential integrity in your database management system for several reasons:

v To make sure that data values between files meet the rules of your business. For example, consider a

business that maintains a list of customers in one file and a list of their accounts in another file. It does

not make sense to allow the addition of an account if an associated customer does not exist. Likewise,

it is not reasonable to delete a customer until you delete all of their accounts.

v To be able to define the relationships between data values.

v To have the system enforce the data relationships no matter what application makes changes.

v To improve the performance of integrity checks that are made at a high-level language (HLL) or SQL

level by moving the checking into the database.

Example: Ensuring data integrity with referential constraints

A database contains an employee file and a department file. Both files have a department number field

named DEPTNO. The related records of these database files are those for which employee.DEPTNO

equals department.DEPTNO.

The desired goal of this example is to ensure that every employee in the employee file has a

corresponding department that they belong to in the department file. You can accomplish this with a

referential constraint.

1. Using the ADDPFCST command, add a primary key constraint or a unique constraint to the

department file for the DEPTNO field. This will later become a parent key. It is not yet a parent key

because a referential constraint has not yet been added.

2. Add a referential constraint to the employee file using the ADDPFCST command. The employee file

will be the dependent file. The foreign key will be employee.DEPTNO. The department file will be the

parent file with parent key department.DEPTNO. Because there is either a primary key constraint or a

unique constraint with the DEPTNO field as the key, the constraint will serve as the parent key

associated with the referential constraint.

The referential constraint has update and delete rules that must be followed for record inserts, updates,

and deletes on the parent or dependent file.

Referential integrity terms

A discussion of referential integrity requires an understanding of several terms. These terms are in an

order that may help you understand their relationship to each other.

Primary Key constraint. A field or set of fields in a database file that must be unique, ascending, and cannot

contain null values. The primary key is the primary file access path. The primary key constraint can be used as the

parent key when adding a referential constraint. A primary key constraint is really a unique constraint with some

special attributes.

Unique constraint. A field or set of fields in a database file that must be unique, ascending, and can contain null

values.

Parent Key. A field or set of fields in a database file that must be unique, ascending, and may or may not contain

null values. The parent key of the parent file is used to add a referential constraint to the dependent file. The parent

key must be either a primary key or a unique constraint.

Foreign Key. A field or set of fields in which each non-null value must match a value in the parent key of the

related parent file.

 The attributes (data type, length, and so forth) must be the same as the parent key of the parent file.

Parent file. The file in a referential constraint relationship that contains the parent key.

220 OS/400 DB2 UDB for iSeries Database programming V5R3

Dependent file. The file in a referential constraint relationship that contains the foreign key. The dependent file is

dependent upon the parent file. That is, for every non-null value in the foreign key of the dependent file, there must

be a corresponding non-null value in the parent key of the parent file.

Check pending. The state that occurs when the database does not know with certainty whether the following is true

for a referential constraint: for every non-null value in the foreign key of the dependent file, there must be a

corresponding non-null value in the parent key of the parent file.

Delete rule. A definition of what action the database should take when there is an attempt to delete a parent record.

Update rule. A definition of what action the database should take when there is an attempt to update a parent

record.

Referential integrity enforcement

The I/O access for files that are associated with established and enabled constraints varies. It depends on

whether the file contains the parent key or foreign key in the constraint relationship. The system enforces

referential integrity enforcement on all parent and dependent file I/O requests.

The database enforces constraint rules for all I/O requests whether from application programs or system

commands (such as the INZPFM command) or SQL statements or file I/O utilities (such as STRSEU).

For more information about the enforcement of referential integrity on iSeries systems, see the following

topics:

v “Foreign key enforcement”

v “Parent key enforcement”

Foreign key enforcement: The delete and update rules that you specify when you create a constraint

apply to parent key changes. The database enforces a no-action rule for foreign key updates and inserts

in order to maintain referential integrity. The system enforces this rule on foreign key updates and inserts

to ensure that the value of every non-null foreign key matches the value of the parent key.

The system returns a referential constraint violation if a matching parent key does not exist for the new

foreign key value, and does not insert or update the dependent record.

Parent key enforcement: The rules that you specify for the referential constraint determine how the

database processes deletions and updates of the parent key. The system enforces the unique attribute of a

parent key on all parent file I/O.

For more information on the enforcement of delete and update rules, see the following topics:

v “Enforcement of delete rules”

v “Enforcement of update rules” on page 222

Enforcement of delete rules: When you delete a record from a parent file, the system checks the dependant

file for any dependent records (matching non-null foreign key values). If it finds any dependent records,

the delete rule determines the action that is taken:

v No Action—if the system finds any dependent records, it returns a constraint violation and does not

delete records.

v Cascade—the system deletes dependent records that its finds in the dependent file.

v Set Null—the system sets null capable fields in the foreign key to null in every dependent record that

it finds.

v Set Default—the system sets all fields of the foreign key to their default value when it deletes the

matching parent key.

v Restrict—same as no action except that enforcement is immediate.

If part of the delete rule enforcement fails, the entire delete operation fails and all associated changes are

rolled back. For example, a delete cascade rule causes the database to delete ten dependent records, but a

Database programming 221

system failure occurs while deleting the last record. The database will not allow deletion of the parent

key record, and the deleted dependent records are re-inserted.

If a referential constraint enforcement causes a change to a record, the associated journal entry will have

an indicator value noting that a referential constraint caused the record change. For example, a dependent

record that is deleted by a delete cascade rule will have a journal entry indicator which indicates that the

record change was generated during referential constraint enforcement.

Enforcement of update rules: When the system updates a parent key in a parent file, it checks for any

dependent records (matching non-null foreign values) in the dependent file. If it finds any dependent

records, the update rule for the constraint relationship determines the action that it takes.

v No Action—if the system finds any dependent records, it returns a constraint violation, does not

update any records.

v Restrict—the system performs the same as above, but enforcement is immediate.

Constraint states

A file can be in one of three constraint states. In two of the states, the constraint can be enabled or

disabled.

v Non-constraint relationship state. No referential constraint exists for a file in this state. If a constraint

relationship once existed for the file, all information about it has been removed.

v Defined state. A constraint relationship is defined between a dependent and a parent file. It is not

necessary to create the member in either file to define a constraint relationship. In the defined state, the

constraint can be:

– Defined and enabled. A defined and enabled constraint relationship is for definition purposes only.

The rules for the constraint are not enforced. A constraint in this state remains enabled when it goes

to the established state.

– Defined and disabled. A defined constraint relationship that is disabled is for definition purposes

only. The rules for the constraint are not enforced. A constraint in this state remains disabled when it

goes to the established state.
v Established state. The dependent file has a constraint relationship with the parent file. A constraint

will be established only if the attributes match between the foreign and parent key. Members must

exist for both files. In the established state, the constraint can be:

– Established and enabled. An established constraint relationship that is enabled causes the database

to enforce referential integrity.

– Established and disabled. An established constraint relationship that is disabled directs the database

to not enforce referential integrity.

Check pending status in referential constraints

Check pending is the condition of a constraint relationship when potential mismatches exist between

parent and foreign keys. When the system determines that referential integrity may have been violated,

the constraint relationship is marked as check pending. For example:

v A restore operation where only data in the dependent file is restored and this data is no longer

synchronized (a foreign key does not have a parent) with the parent file on the system.

v A system failure allowed a parent key value to be deleted when a matching foreign key exists. This can

only occur when the dependent and parent files are not journaled.

v A foreign key value does not have a corresponding parent key value. This can happen when you add a

referential constraint to existing files that have never before been part of a constraint relationship.

Check pending status is either *NO or *YES.

Check pending applies only to constraints in the established state. A referential constraint that is

established and enabled can have a check pending status of *YES or *NO.

222 OS/400 DB2 UDB for iSeries Database programming V5R3

To get a constraint relationship out of check pending, you must disable the relationship, correct the key

(foreign, parent, or both) data, and then enable the constraint again. The database will then verify the

constraint relationship again.

When a relationship is in check pending, the parent and dependent files are in a situation that restricts

their use. The parent file I/O restrictions are different than the dependent file restrictions. Check pending

restrictions do not apply to constraints that are in the established and disabled state (which are always in

check pending status).

For additional information about check pending status and referential constraints, see the following

topics:

 “Dependent file restrictions in check pending”

 “Parent file restrictions in check pending”

Dependent file restrictions in check pending: The following applies to an established and enabled

referential constraint in check pending.

A dependent file in a constraint relationship that is marked as check pending cannot have any file I/O

operations performed on it. You must correct the file mismatches between the dependent and parent files.

Also, you must take the relationship out of check pending before the system allows any I/O operations.

The system does not allow records to be read from such a file because the user or application may not be

aware of the check pending status and the constraint violation.

To perform I/O operations on a dependent file with an enabled referential constraint in check pending,

you can first disable the constraint and then perform the desired I/O operations.

Parent file restrictions in check pending: The following applies to an established and enabled

referential constraint in check pending.

You can open the parent file of a constraint relationship that the system marks as check pending, but you

are limited in the types of I/O that you can do. You can read and insert records, but you cannot delete or

update records.

To perform updates and deletes on a parent file with an enabled referential constraint in check pending,

you can first disable the constraint and then perform the desired I/O operations.

Referential integrity and iSeries functions

Referential integrity affects the characteristics of the following iSeries system functions:

v Add Physical File Member (ADDPFM):

In the case where a constraint relationship is defined between a dependent file and a parent file each

having zero members:

– If a member is first added to the parent file, the constraint relationship remains in the defined state.

– If a member is then added to the dependent file, the foreign key access path is built, and a

constraint relationship is established with the parent.
v Change Physical File (CHGPF):

When a constraint relationship exists for a file, you cannot change certain parameters available in the

CHGPF command. The following parameters are restricted:

MAXMBRS

The maximum number of members for a file that has a constraint relationship is one:

MAXMBRS(1).

CCSID

The CCSID of a file that is not associated with a constraint, can be changed. If the file is associated

with a constraint, the CCSID can only be changed to 65535.

Database programming 223

v Clear Physical File Member (CLRPFM):

The CLRPFM command fails when issued for a parent file that contains records and is associated with

an enabled referential constraint.

v FORTRAN Force-End-Of-Data (FEOD):

The FEOD operation fails when issued for a parent file that is associated with an enabled referential

constraint relationship.

v Create Duplicate Object (CRTDUPOBJ):

When the CRTDUPOBJ command creates a file, any constraints that are associated with the from-file

are propagated to the to-file.

If the parent file is duplicated either to the same library or to a different library, the system cross

reference file is used to locate the dependent file of a defined referential constraint. Also, the system

attempts to establish the constraint relationship.

If the dependent file is duplicated, then the TOLIB is used to determine constraint relationships:

– If both the parent and dependent files are in the same library, the referential constraint relationship

will be established with the parent file in the TOLIB.

– If the parent and dependent files are in different libraries, then the referential constraint relationship

of the duplicated dependent file will be established with the original parent file.
v Copy File (CPYF):

When the CPYF command creates a new file and the original file has constraints, the constraints are

not copied to the new file.

v Move Object (MOVOBJ):

The MOVOBJ command moves a file from one library to another. The system attempts to establish any

defined referential constraints that may exist for the file in the new library.

v Rename Object (RNMOBJ):

The RNMOBJ command renames a file within the same library or renames a library.

An attempt is made to establish any defined referential constraints that may exist for the renamed file

or library.

v Delete File (DLTF):

The DLTF command has an optional keyword that specifies how referential constraint relationships are

handled. The RMVCST keyword applies to the dependent file in a constraint relationship. The

keyword specifies how much of the constraint relationship of the dependent file is removed when the

parent file is deleted:

*RESTRICT

If a constraint relationship is defined or established between a parent file and dependent file, the

parent file is not deleted and the constraint relationship is not removed. This is the default value.

*REMOVE

The parent file is deleted, and the constraint relationship and definition are removed. The

constraint relationship between the parent file and the dependent file is removed. The dependent

file’s corresponding foreign key access path or paths, as well as the constraint definition, are

removed.

*KEEP

The parent file is deleted, and the referential constraint relationship definition is left in the defined

state. The dependent file’s corresponding foreign key access path and constraint definition are not

removed.
v Remove Physical File Member (RMVM):

When the member of a parent file in a constraint relationship is removed, the constraint relationship is

put in the defined state. The foreign key access path and referential constraint definition are not

removed. The parent key access path is removed because the parent member was removed; the parent

constraint definition remains at the file level.

224 OS/400 DB2 UDB for iSeries Database programming V5R3

When the member of a dependent file in a constraint relationship is removed, the constraint

relationship is put in the defined state. The parent key access path and constraint definition are not

removed. The foreign key access path is removed because the dependent member was removed; the

referential constraint definition is not removed.

v Save/restore:

If the parent file is restored to a library, the system uses the system cross reference files to locate the

dependent file of a defined referential constraint. An attempt is made to establish the constraint

relationship.

If the dependent file is restored, the TOLIB is used to determine constraint relationships:

– If both the parent and dependent files are in the same library, the referential constraint relationship

is established with the parent file in the TOLIB.

– If the parent and dependent files are in different libraries, the referential constraint relationship of

the duplicated dependent file is established with the original parent file.

The order of the restore of dependent and parent files within a constraint relationship does not matter

(parent restored before dependent or dependent restored before parent). The constraint relationship

will eventually be established.

Triggering automatic events in your database

A trigger is a set of actions that are run automatically when a specified change or read operation is

performed on a specified physical database file. The change operation can be an insert, update, or delete

high level language statement in an application program. The read operation can be a fetch, get, or read

high level language statement in an application program.

On iSeries, you define a set of trigger actions in any supported high level language. The following topics

help you work with triggers using the traditional system interface:

v “Uses for triggers”

v “Benefits of using triggers in your business” on page 226

v “Creating trigger programs” on page 226

v “Adding a trigger to a file” on page 246

v “Displaying triggers” on page 247

v “Removing a trigger” on page 248

v “Enabling and disabling a trigger” on page 248

v “Triggers and their relationship to other iSeries functions” on page 248

v “Triggers and their relationship to referential integrity” on page 249

You can also use SQL triggers. See SQL triggers in the SQL programming topic for more information.

For comprehensive information about using triggers, see the Stored Procedures and Triggers on DB2

Universal Database™ for iSeries

redbook.

Uses for triggers

Triggers in the database allow you to do the following:

v Enforce business rules

v Validate input data

v Generate a unique value for a newly inserted row on a different file (surrogate function)

v Write to other files for audit trail purposes

v Query from other files for cross-referencing purposes

v Access system functions (for example, print an exception message when a rule is violated)

v Replicate data to different files to achieve data consistency

Database programming 225

http://www.redbooks.ibm.com/abstracts/sg246503.html
http://www.redbooks.ibm.com/abstracts/sg246503.html

Benefits of using triggers in your business

Triggers offer the following benefits to your business:

v Faster application development. Because the database stores triggers, you do not have to code the

trigger actions into each database application.

v Global enforcement of business rules. Define a trigger once and then reuse it for any application that

uses the database.

v Easier maintenance. If a business policy changes, you need to change only the corresponding trigger

program instead of each application program.

v Improve performance in client/server environment. All rules run in the server before the result returns.

Creating trigger programs

A trigger is a set of actions that are run automatically when a specified change or read operation is

performed on a specified physical database file. You can use triggers to enforce business rules, such as

authority protection. Triggers are useful for keeping audit trails, for detecting exceptional conditions, and

for maintaining relationships in the database.

To add a trigger to a physical file, do the following:

1. You must first supply a trigger program. You can write a trigger program in a high level language,

Structured Query Language (SQL), or Control Language (CL). See “Examples of trigger programs” on

page 227 coded in C, COBOL, and RPG.

2. Use one of the following methods to add the trigger:

v The Add Physical File Trigger (ADDPFTRG) command.You must specify your trigger program in

the trigger program (PGM) parameter on the command.

v Add a trigger using iSeries Navigator. See “Adding triggers using iSeries Navigator.”

v The CREATE TRIGGER SQL statement.

See the following topics for information about triggers:

v “How trigger programs work” on page 227

v “Other important information about working with triggers” on page 227

Adding triggers using iSeries Navigator: A trigger is a set of actions that are run automatically when a

specified change operation is performed on a specified physical database file. In this discussion, a table is

a physical file. The change operation can be an insert, update, or delete high level language statement in

an application program, or an SQL INSERT, UPDATE, or DELETE statement. Triggers are useful for tasks

such as enforcing business rules, validating input data, and keeping an audit trail.

Using iSeries Navigator, you can define system triggers and SQL triggers. Additionally, you can enable or

disable a trigger.

To add a trigger, do the following:

1. In the iSeries Navigator window, expand your server → Database → Libraries.

2. Click the library that contains the table to which you want to add the trigger.

3. Right-click the table to which you want to add the trigger and select Properties. On the Table

Properties dialog, click the Triggers tab.

4. Select Add system trigger to add a system trigger.

5. Select Add SQL trigger to add an SQL trigger.

For more information about system triggers, see “Triggering automatic events in your database” on page

225.

For more information about SQL triggers, see SQL triggers in SQL Programming.

226 OS/400 DB2 UDB for iSeries Database programming V5R3

How trigger programs work: When a user or application issues a change or read operation on a

physical file that has an associated trigger, the operation calls the appropriate trigger program or

programs.

The change or read operation passes two parameters to the trigger program, as described in the following

table.

 Parameter Description Input or output Type

1 Trigger buffer, which contains the

information about the current change

operation that is calling this trigger

program. See “Trigger buffer sections”

on page 240 for details.

Input CHAR(*)

2 Trigger buffer length. Input BINARY(4)

From these inputs, the trigger program can refer to a copy of the original or the new records. You must

code the trigger program so that it accepts these parameters.

Other important information about working with triggers: The following topics provide additional

information about coding trigger programs:

v “Recommendations for trigger programs” on page 242

v “Precautions to take when coding trigger programs” on page 243

v “Monitoring the use of trigger programs” on page 245

v “Trigger and application programs that are under commitment control” on page 245

v “Trigger and application programs that are not under commitment control” on page 245

v “Trigger program error messages” on page 245

Examples of trigger programs: See “Code disclaimer information” on page 228 for information

pertaining to code examples.

The following example trigger programs are triggered by write, update, and delete operations to the

ATMTRANS file. See “Trigger programs: Data structures of database used in the examples” on page 240

for a description of the database used in these examples.

These trigger programs are written in ILE C, ILE COBOL, and RPG/400. For an ILE RPG example, see

the Stored Procedures and Triggers on DB2 Universal Database for iSeries

redbook.

The application contains four types of transactions.

1. The application inserts three records into the ATMTRANS file which runs an insert trigger. The insert

trigger (“Example: Insert trigger written in RPG” on page 228)adds the correct amount to the ATMS

file and the ACCTS file to reflect the changes.

2. Next, the application makes two withdrawals, which run an update trigger (“Example: Update trigger

written in ILE COBOL” on page 231):

a. The application withdraws $25.00 from account number 20001 and ATM number 10001 which runs

the update trigger. The update trigger subtracts $25.00 from the ACCTS and ATMS files.

b. The application withdraws $900.00 from account number 20002 and ATM number 10002 which

runs an update trigger. The update trigger signals an exception to the application indicating that

the transaction fails.
3. Finally, the application deletes the ATM number from the ATMTRANS file which runs a delete trigger.

The delete trigger (“Example: Delete trigger written in ILE C” on page 235) deletes the corresponding

ACCTID from the ACCTS file and ATMID from the ATMS file.

Database programming 227

|||||

||
|
|
|
|

||

||||
|

|

|

http://www.redbooks.ibm.com/abstracts/sg246503.html

Code disclaimer information: This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Example: Insert trigger written in RPG: See “Code disclaimer information” for information pertaining to

code examples.

The following RPG trigger program inserts records into the ATMTRANS file.

* Program Name : INSTRG

 * This is an insert trigger for the application

 * file. The application inserts the following three

 * records into the ATMTRANS file.

 *

 * ATMID ACCTID TCODE AMOUNT

 * --------------------------------

 * 10001 20001 D 100.00

 * 10002 20002 D 250.00

 * 10003 20003 D 500.00

 *

 * When a record is inserted into ATMTRANS, the system calls

 * this program, which updates the ATMS and

 * ACCTS files with the correct deposit or withdrawal amount.

 * The input parameters to this trigger program are:

 * - TRGBUF : contains trigger information and newly inserted

 * record image of ATMTRANS.

 * - TRGBUF Length : length of TRGBUF.

 *

 H 1

 *

 * Open the ATMS file and the ACCTS file.

 *

 FATMS UF E DISK KCOMIT

 FACCTS UF E DISK KCOMIT

 *

 * DECLARE THE STRUCTURES THAT ARE TO BE PASSED INTO THIS PROGRAM.

 *

 IPARM1 DS

 * Physical file name

 I 1 10 FNAME

 * Physical file library

 I 11 20 LNAME

 * Member name

 I 21 30 MNAME

 * Trigger event

 I 31 31 TEVEN

 * Trigger time

 I 32 32 TTIME

 * Commit lock level

 I 33 33 CMTLCK

 * Reserved

 I 34 36 FILL1

 * CCSID

 I B 37 400CCSID

 * Reserved

 I 41 48 FILL2

228 OS/400 DB2 UDB for iSeries Database programming V5R3

* Offset to the original record

 I B 49 520OLDOFF

 * length of the original record

 I B 53 560OLDLEN

 * Offset to the original record null byte map

 I B 57 600ONOFF

 * length of the null byte map

 I B 61 640ONLEN

 * Offset to the new record

 I B 65 680NOFF

 * length of the new record

 I B 69 720NEWLEN

 * Offset to the new record null byte map

 I B 73 760NNOFF

 * length of the null byte map

 I B 77 800NNLEN

 * Reserved

 I 81 96 RESV3

 * Old record ** not applicable

 I 97 112 OREC

 * Null byte map of old record

 I 113 116 OOMAP

 * Newly inserted record of ATMTRANS

 I 117 132 RECORD

 * Null byte map of new record

 I 133 136 NNMAP

 IPARM2 DS

 I B 1 40LENG

 **

 * SET UP THE ENTRY PARAMETER LIST.

 **

 C *ENTRY PLIST

 C PARM PARM1

 C PARM PARM2

 **

 * Use NOFF, which is the offset to the new record, to

 * get the location of the new record from the first

 * parameter that was passed into this trigger program.

 * - Add 1 to the offset NOFF since the offset that was

 * passed to this program started from zero.

 * - Substring out the fields to a CHARACTER field and

 * then move the field to a NUMERIC field if it is

 * necessary.

 **

 C Z-ADDNOFF O 50

 C ADD 1 O

 **

 * - PULL OUT THE ATM NUMBER.

 **

 C 5 SUBSTPARM1:O CATM 5

 **

 * - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER

 * STRING. PULL OUT THE ACCOUNT NUMBER.

 **

 C ADD 5 O

 C 5 SUBSTPARM1:O CACC 5

 **

 * - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER

 * STRING. PULL OUT THE TRANSACTION CODE.

 **

 C ADD 5 O

 C 1 SUBSTPARM1:O TCODE 1

 **

 * - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER

 * STRING. PULL OUT THE TRANSACTION AMOUNT.

 **

 C ADD 1 O

Database programming 229

C 5 SUBSTPARM1:O CAMT 5

 C MOVELCAMT TAMT 52

 * PROCESS THE ATM FILE. ****************

 * READ THE FILE TO FIND THE CORRECT RECORD.

 C ATMN DOUEQCATM

 C READ ATMS 61EOF

 C END

 C 61 GOTO EOF

 * CHANGE THE VALUE OF THE ATM BALANCE APPROPRIATELY.

 C TCODE IFEQ ’D’

 C ADD TAMT ATMAMT

 C ELSE

 C TCODE IFEQ ’W’

 C SUB TAMT ATMAMT

 C ELSE

 C ENDIF

 C ENDIF

 * UPDATE THE ATM FILE.

 C EOF TAG

 C UPDATATMFILE

 C CLOSEATMS

 * PROCESS THE ACCOUNT FILE. ****************

 * READ THE FILE TO FIND THE CORRECT RECORD.

 C ACCTN DOUEQCACC

 C READ ACCTS 62 EOF2

 C END

 C 62 GOTO EOF2

 * CHANGE THE VALUE OF THE ACCOUNTS BALANCE APPROPRIATELY.

 C TCODE IFEQ ’D’

 C ADD TAMT BAL

 C ELSE

 C TCODE IFEQ ’W’

 C SUB TAMT BAL

 C ELSE

 C ENDIF

 C ENDIF

 * UPDATE THE ACCT FILE.

 C EOF2 TAG

 C UPDATACCFILE

 C CLOSEACCTS

 *

 C SETON LR

After the insertions by the application, the ATMTRANS file contains the following data:

 ATMID ACCTID TCODE AMOUNT

10001 20001 D 100.00

10002 20002 D 250.00

10003 20003 D 500.00

After being updated from the ATMTRANS file by the insert trigger program, the ATMS file and the

ACCTS file contain the following data:

 ATMN LOCAT ATMAMT

10001 MN 300.00

10002 MN 750.00

10003 CA 750.00

230 OS/400 DB2 UDB for iSeries Database programming V5R3

ACCTN BAL ACTACC

20001 200.00 A

20002 350.00 A

20003 500.00 C

Example: Update trigger written in ILE COBOL: See “Code disclaimer information” on page 228 for

information pertaining to code examples.

The following ILE COBOL trigger program runs when a record is updated in the ATMTRANS file.

 100 IDENTIFICATION DIVISION.

 200 PROGRAM-ID. UPDTRG.

 300 **

 400 **** Program Name : UPDTRG *

 500 ***** *

 600 ***** This trigger program is called when a record is updated *

 700 ***** in the ATMTRANS file. *

 800 ***** This program will check the balance of ACCTS and *

 900 ***** the total amount in ATMS.If either one of the amounts *

 1000 ***** is not enough to meet the withdrawal, an exception *

 1100 ***** message is signalled to the application. *

 1200 ***** If both ACCTS and ATMS files have enough money, this *

 1300 ***** program will update both files to reflect the changes. *

 1400 ***** *

 1500 ***** ATMIDs of 10001 and 10002 will be updated in the ATMTRANS *

 1600 ***** file with the following data: *

 1700 ***** *

 1800 ***** ATMID ACCTID TCODE AMOUNT *

 1900 ***** -------------------------------- *

 2000 ***** 10001 20001 W 25.00 *

 2100 ***** 10002 20002 W 900.00 *

 2200 ***** 10003 20003 D 500.00 *

 2300 ***** *

 2400 ***

 2500 ***

 2600 ENVIRONMENT DIVISION.

 2700 CONFIGURATION SECTION.

 2800 SOURCE-COMPUTER. IBM-AS400.

 2900 OBJECT-COMPUTER. IBM-AS400.

 3000 SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-JUNK.

 3100 INPUT-OUTPUT SECTION.

 3200 FILE-CONTROL.

 3300 SELECT ACC-FILE ASSIGN TO DATABASE-ACCTS

 3400 ORGANIZATION IS INDEXED

 3500 ACCESS IS RANDOM

 3600 RECORD KEY IS ACCTN

 3700 FILE STATUS IS STATUS-ERR1.

 3800

 3900 SELECT ATM-FILE ASSIGN TO DATABASE-ATMS

 4000 ORGANIZATION IS INDEXED

 4100 ACCESS IS RANDOM

 4200 RECORD KEY IS ATMN

 4300 FILE STATUS IS STATUS-ERR2.

 4400

 4500 ***

 4600 * COMMITMENT CONTROL AREA. *

 4700 ***

 4800 I-O-CONTROL.

 4900 COMMITMENT CONTROL FOR ATM-FILE, ACC-FILE.

 5000

 5100 ***

 5200 * DATA DIVISION *

 5300 **

 5400

Database programming 231

5500 DATA DIVISION.

 5600 FILE SECTION.

 5700 FD ATM-FILE

 5800 LABEL RECORDS ARE STANDARD.

 5900 01 ATM-REC.

 6000 COPY DDS-ATMFILE OF ATMS.

 6100

 6200 FD ACC-FILE

 6300 LABEL RECORDS ARE STANDARD.

 6400 01 ACC-REC.

 6500 COPY DDS-ACCFILE OF ACCTS.

 6600

 7000

 7100 ***

 7200 * WORKING-STORAGE SECTION *

 7300 ***

 7400 WORKING-STORAGE SECTION.

 7500 01 STATUS-ERR1 PIC XX.

 7600 01 STATUS-ERR2 PIC XX.

 7700 01 TEMP-PTR USAGE IS POINTER.

 7800

 7900 01 NUMBERS-1.

 8000 03 NUM1 PIC 9(10).

 8100 03 NUM2 PIC 9(10).

 8200 03 NUM3 PIC 9(10).

 8300

 8400 01 FEEDBACK-STUFF PIC X(500) VALUE SPACES.

 8500

 8600 ***

 8700 * MESSAGE FOR SIGNALLING ANY TRIGGER ERROR *

 8800 * - Define any message ID and message file in the following*

 8900 * message data. *

 9000 ***

 9100 01 SNDPGMMSG-PARMS.

 9200 03 SND-MSG-ID PIC X(7) VALUE "TRG9999".

 9300 03 SND-MSG-FILE PIC X(20) VALUE "MSGF LIB1 ".

 9400 03 SND-MSG-DATA PIC X(25) VALUE "Trigger Error".

 9500 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 25.

 9600 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE ".

 9700 03 SND-PGM-QUEUE PIC X(10) VALUE "* ".

 9800 03 SND-PGM-STACK-CNT PIC 9(8) BINARY VALUE 1.

 9900 03 SND-MSG-KEY PIC X(4) VALUE " ".

10000 03 SND-ERROR-CODE.

10100 05 PROVIDED PIC 9(8) BINARY VALUE 66.

10200 05 AVAILABLE PIC 9(8) BINARY VALUE 0.

10300 05 RTN-MSG-ID PIC X(7) VALUE " ".

10400 05 FILLER PIC X(1) VALUE " ".

10500 05 RTN-DATA PIC X(50) VALUE " ".

10600

10700 ***

10800 * LINKAGE SECTION *

10900 * PARM 1 is the trigger buffer *

11000 * PARM 2 is the length of the trigger buffer *

11100 ***

11200 LINKAGE SECTION.

11300 01 PARM-1-AREA.

11400 03 FILE-NAME PIC X(10).

11500 03 LIB-NAME PIC X(10).

11600 03 MEM-NAME PIC X(10).

11700 03 TRG-EVENT PIC X.

11800 03 TRG-TIME PIC X.

11900 03 CMT-LCK-LVL PIC X.

12000 03 FILLER PIC X(3).

12100 03 DATA-AREA-CCSID PIC 9(8) BINARY.

12200 03 FILLER PIC X(8).

12300 03 DATA-OFFSET.

12400 05 OLD-REC-OFF PIC 9(8) BINARY.

232 OS/400 DB2 UDB for iSeries Database programming V5R3

12500 05 OLD-REC-LEN PIC 9(8) BINARY.

12600 05 OLD-REC-NULL-MAP PIC 9(8) BINARY.

12700 05 OLD-REC-NULL-LEN PIC 9(8) BINARY.

12800 05 NEW-REC-OFF PIC 9(8) BINARY.

12900 05 NEW-REC-LEN PIC 9(8) BINARY.

13000 05 NEW-REC-NULL-MAP PIC 9(8) BINARY.

13100 05 NEW-REC-NULL-LEN PIC 9(8) BINARY.

13200 05 FILLER PIC X(16).

13300 03 RECORD-JUNK.

13400 05 OLD-RECORD PIC X(16).

13500 05 OLD-NULL-MAP PIC X(4).

13600 05 NEW-RECORD PIC X(16).

13700 05 NEW-NULL-MAP PIC X(4).

13800

13900 01 PARM-2-AREA.

14000 03 TRGBUFL PIC X(2).

14100

14200 01 INPUT-RECORD2.

14300 COPY DDS-TRANS OF ATMTRANS.

14400

14500 05 OFFSET-NEW-REC2 PIC 9(8) BINARY.

14600

14700 ***

14800 ****** PROCEDURE DIVISION *

14900 ***

15000 PROCEDURE DIVISION USING PARM-1-AREA, PARM-2-AREA.

15100 MAIN-PROGRAM SECTION.

15200 000-MAIN-PROGRAM.

15300 OPEN I-O ATM-FILE.

15400 OPEN I-O ACC-FILE.

15500

15600 MOVE 0 TO BAL.

15700

15800 ***

15900 * SET UP THE OFFSET POINTER AND COPY THE NEW RECORD. *

16000 ***

16100 SET TEMP-PTR TO ADDRESS OF PARM-1-AREA.

16200 SET TEMP-PTR UP BY NEW-REC-OFFSET.

16300 SET ADDRESS OF INPUT-RECORD2 TO TEMP-PTR.

16400 MOVE INPUT-RECORD2 TO INPUT-RECORD.

16500

16600 **

16700 * READ THE RECORD FROM THE ACCTS FILE *

16800 **

16900 MOVE ACCTID TO ACCTN.

17000 READ ACC-FILE

17100 INVALID KEY PERFORM 900-OOPS

17200 NOT INVALID KEY PERFORM 500-ADJUST-ACCOUNT.

17300

17400 ***

17500 * READ THE RECORD FROM THE ATMS FILE. *

17600 ***

17700 MOVE ATMID TO ATMN.

17800 READ ATM-FILE

17900 INVALID KEY PERFORM 950-OOPS

18000 NOT INVALID KEY PERFORM 550-ADJUST-ATM-BAL.

18100 CLOSE ATM-FILE.

18200 CLOSE ACC-FILE.

18300 GOBACK.

18400

18500 ***

18600 ***

18700 ***

18800 ***

18900 ****** THIS PROCEDURE IS USED IF THERE IS NOT ENOUGH MONEY IN THE ****

19000 ****** ACCTS FOR THE WITHDRAWAL. ****

19100 ***

Database programming 233

19200 200-NOT-ENOUGH-IN-ACC.

19300 DISPLAY "NOT ENOUGH MONEY IN ACCOUNT.".

19400 CLOSE ATM-FILE.

19500 CLOSE ACC-FILE.

19600 PERFORM 999-SIGNAL-ESCAPE.

19700 GOBACK.

19800

19900 ***

20000 ****** THIS PROCEDURE IS USED IF THERE IS NOT ENOUGH MONEY IN THE

20100 ****** ATMS FOR THE WITHDRAWAL.

20200 ***

20300 250-NOT-ENOUGH-IN-ATM.

20400 DISPLAY "NOT ENOUGH MONEY IN ATM.".

20500 CLOSE ATM-FILE.

20600 CLOSE ACC-FILE.

20700 PERFORM 999-SIGNAL-ESCAPE.

20800 GOBACK.

20900

21000 ***

21100 ****** THIS PROCEDURE IS USED TO ADJUST THE BALANCE FOR THE ACCOUNT OF

21200 ****** THE PERSON WHO PERFORMED THE TRANSACTION.

21300 ***

21400 500-ADJUST-ACCOUNT.

21500 IF TCODE = "W" THEN

21600 IF (BAL < AMOUNT) THEN

21700 PERFORM 200-NOT-ENOUGH-IN-ACC

21800 ELSE

21900 SUBTRACT AMOUNT FROM BAL

22000 REWRITE ACC-REC

22100 ELSE IF TCODE = "D" THEN

22200 ADD AMOUNT TO BAL

22300 REWRITE ACC-REC

22400 ELSE DISPLAY "TRANSACTION CODE ERROR, CODE IS: ", TCODE.

22500

22600 ***

22700 ****** THIS PROCEDURE IS USED TO ADJUST THE BALANCE OF THE ATM FILE ***

22800 ****** FOR THE AMOUNT OF MONEY IN ATM AFTER A TRANSACTION. ***

22900 ***

23000 550-ADJUST-ATM-BAL.

23100 IF TCODE = "W" THEN

23200 IF (ATMAMT < AMOUNT) THEN

23300 PERFORM 250-NOT-ENOUGH-IN-ATM

23400 ELSE

23500 SUBTRACT AMOUNT FROM ATMAMT

23600 REWRITE ATM-REC

23700 ELSE IF TCODE = "D" THEN

23800 ADD AMOUNT TO ATMAMT

23900 REWRITE ATM-REC

24000 ELSE DISPLAY "TRANSACTION CODE ERROR, CODE IS: ", TCODE.

24100

24200 ** *******

24300 ****** THIS PROCEDURE IS USED IF THERE THE KEY VALUE THAT IS USED IS **

24400 ****** NOT FOUND IN THE ACCTS FILE. **

24500 ***

24600 900-OOPS.

24700 DISPLAY "INVALID KEY: ", ACCTN, " ACCOUNT FILE STATUS: ",

24800 STATUS-ERR1.

24900 CLOSE ATM-FILE.

25000 CLOSE ACC-FILE.

25100 PERFORM 999-SIGNAL-ESCAPE.

25200 GOBACK.

25300

25400 ***

25500 ****** THIS PROCEDURE IS USED IF THERE THE KEY VALUE THAT IS USED IS **

25600 ****** NOT FOUND IN THE ATM FILE. **

25700 ***

25800 950-OOPS.

234 OS/400 DB2 UDB for iSeries Database programming V5R3

25900 DISPLAY "INVALID KEY: ", ATMN, " ATM FILE STATUS: ",

26000 STATUS-ERR2.

26100 CLOSE ATM-FILE.

26200 CLOSE ACC-FILE.

26300 PERFORM 999-SIGNAL-ESCAPE.

26400 GOBACK.

26500

26600 ***

26700 ****** SIGNAL ESCAPE TO THE APPLICATION ********

26800 ***

26900 999-SIGNAL-ESCAPE.

27000

27100 CALL "QMHSNDPM" USING SND-MSG-ID,

27200 SND-MSG-FILE,

27300 SND-MSG-DATA,

27400 SND-MSG-LEN,

27500 SND-MSG-TYPE,

27600 SND-PGM-QUEUE,

27700 SND-PGM-STACK-CNT,

27800 SND-MSG-KEY,

27900 SND-ERROR-CODE.

28000 *DISPLAY RTN-MSG-ID.

28100 *DISPLAY RTN-DATA.

28200

After being updated from the ATMTRANS file by the update trigger programs, the ATMS and ACCTS

files contain the following data. The update to the ATMID 10002 fails because of insufficient amount in

the account.

 ATMN LOCAT ATMAMT

10001 MN 275.00

10002 MN 750.00

10003 CA 750.00

 ACCTN BAL ACTACC

20001 175.00 A

20002 350.00 A

20003 500.00 C

Example: Delete trigger written in ILE C: See “Code disclaimer information” on page 228 for information

pertaining to code examples.

The following ILE C trigger program runs when a record is deleted in the ATMTRANS file.

 /**/

 /* Program Name - DELTRG */

 /* This program is called when a delete operation occurs in */

 /* the ATMTRANS file. */

 /* */

 /* This program will delete the records from ATMS and ACCTS */

 /* based on the ATM ID and ACCT ID that are passed in from */

 /* the trigger buffer. */

 /* */

 /* The application will delete ATMID 10003 from the ATMTRANS */

 /* file. */

 /* */

 /**/

 #include <stdio.h>

 #include <stdlib.h>

 #include <recio.h>

 #include "applib/csrc/msghandler" /* message handler include */

 #include "qsysinc/h/trgbuf" /* trigger buffer include without*/

Database programming 235

/* old and new records */

 Qdb_Trigger_Buffer_t *hstruct; /* pointer to the trigger buffer */

 char *datapt;

 #define KEYLEN 5

 /**/

 /* Need to define file structures here since there are non- */

 /* character fields in each file. For each non-character */

 /* field, C requires boundary alignment. Therefore, a _PACKED */

 /* struct should be used in order to access the data that */

 /* is passed to the trigger program. */

 /* */

 /**/

 /** record area for ATMTRANS **/

_Packed struct rec {

 char atmid[5];

 char acctid[5];

 char tcode[1];

 char amount[5];

 } oldbuf, newbuf;

 /** record area for ATMS **/

 _Packed struct rec1{

 char atmn[5];

 char locat[2];

 char atmamt[9];

 } atmfile;

 /** record area for ACCTS **/

 _Packed struct rec2{

 char acctn[5];

 char bal[9];

 char actacc[1];

 } accfile;

 /**/

 /**/

 /* Start of the Main Line Code. ************************************/

 /**/

 /**/

 main(int argc, char **argv)

 {

 _RFILE *out1; /* file pointer for ATMS */

 _RFILE *out2; /* file pointer for ACCTS */

 _RIOFB_T *fb; /* file feedback pointer */

 char record[16]; /* record buffer */

 _FEEDBACK fc; /* feedback for message handler */

 _HDLR_ENTRY hdlr = main_handler;

 /********************************/

 /* active exception handler */

 /********************************/

 CEEHDLR(&hdlr, NULL, &fc);;

 /********************************/

 /* ensure exception handler OK */

 /********************************/

 if (fc.MsgNo != CEE0000)

 {

 printf("Failed to register exception handler.\n");

 exit(99);

 }

 /* set pointer to the input parameter */

 hstruct = (Qdb_Trigger_Buffer_t *)argv[1];

 datapt = (char *) hstruct;

236 OS/400 DB2 UDB for iSeries Database programming V5R3

/* Copy old and new record from the input parameter */

 if ((strncmp(hstruct ->trigger_event,"2",1)== 0)|| /* delete event */

 (strncmp(hstruct -> trigger_event,"3",1)== 0)) /* update event */

 { obufoff = hstruct ->old_record_offset;

 memcpy(&oldbuf,datapt+obufoff,; hstruct->old_record_len);

 }

 if ((strncmp(hstruct -> trigger_event,"1",1)== 0) || /* insert event */

 (strncmp(hstruct -> trigger_event,"3",1)== 0)) /* update event */

 { nbufoff = hstruct ->new_record_offset;

 memcpy(&newbuf,datapt+nbufoff,; hstruct->new_record_len);

 }

 /***/

 /* Open ATM and ACCTS files */

 /* */

 /* Check the application’s commit lock level. If it */

 /* runs under commitment control, then open both */

 /* files with commitment control. Otherwise, open */

 /* both files without commitment control. */

 /***/

 if(strcmp(hstruct->commit_lock_level,"0") == 0) /* no commit */

 {

 if ((out1=_Ropen("APPLIB/ATMS","rr+")) == NULL)

 {

 printf("Error opening ATM file");

 exit(1);

 }

 if ((out2=_Ropen("APPLIB/ACCTS","rr+")) == NULL)

 {

 printf("Error opening ACCTS file");

 exit(1);

 }

 }

 else /* with commitment control */

 {

 if ((out1=_Ropen("APPLIB/ATMS","rr+,commit=Y")) == NULL)

 {

 printf("Error opening ATMS file");

 exit(1);

 }

 if ((out2=_Ropen("APPLIB/ACCTS","rr+,commit=Y")) == NULL)

 {

 printf("Error opening ACCTS file");

 exit(1);

 }

 }

 /* Delete the record based on the input parameter */

 fb =_Rlocate(out1,&oldbuf.atmid,KEYLEN,__DFT);

 if (fb->num_bytes != 1)

 {

 printf("record not found in ATMS\n");

 _Rclose(out1);

 exit(1);

 }

 _Rdelete(out1); /* delete record from ATMS */

 _Rclose(out1);

 fb =_Rlocate(out2,&oldbuf.acctid,KEYLEN,__DFT);

 if (fb->num_bytes != 1)

 {

 printf("record not found in ACCOUNTS\n");

 _Rclose(out2);

 exit(1);

 }

Database programming 237

_Rdelete(out2); /* delete record from ACCOUNTS */

 _Rclose(out2);

 } /* end of main */

After the deletion by the application, the ATMTRANS file contains the following data:

 ATMID ACCTID TCODE AMOUNT

10001 20001 W 25.00

10002 20002 W 900.00

After being deleted from the ATMTRANS file by the delete trigger program, the ATMS file and the

ACCTS file contain the following data:

 ATMN LOCAT ATMAMT

10001 MN 275.00

10002 MN 750.00

 ACCTN BAL ACTACC

20001 175.00 A

20002 350.00 A

 /**/

 /* INCLUDE NAME : MSGHANDLER */

 /* */

 /* DESCRIPTION : Message handler to signal an exception message*/

 /* to the caller of this trigger program. */

 /* */

 /* Note: This message handler is a user defined routine. */

 /* */

 /**/

 #include <stdio.h>

 #include <stdlib.h>

 #include <recio.h>

 #include <leawi.h>

 #pragma linkage (QMHSNDPM, OS)

 void QMHSNDPM(char *, /* Message identifier */

 void *, /* Qualified message file name */

 void *, /* Message data or text */

 int, /* Length of message data or text */

 char *, /* Message type */

 char *, /* Call message queue */

 int, /* Call stack counter */

 void *, /* Message key */

 void *, /* Error code */

 ...); /* Optionals:

 length of call message queue

 name

 Call stack entry qualification

 display external messages

 screen wait time */

 /***/

 /******** This is the start of the exception handler function. */

 /***/

 void main_handler(_FEEDBACK *cond, _POINTER *token, _INT4 *rc,

 _FEEDBACK *new)

 {

 /**/

 /* Initialize variables for call to */

 /* QMHSNDPM. */

238 OS/400 DB2 UDB for iSeries Database programming V5R3

/* User defines any message ID and */

 /* message file for the following data */

 /**/

 char message_id[7] = "TRG9999";

 char message_file[20] = "MSGF LIB1 ";

 char message_data[50] = "Trigger error ";

 int message_len = 30;

 char message_type[10] = "*ESCAPE ";

 char message_q[10] = "_C_pep ";

 int pgm_stack_cnt = 1;

 char message_key[4];

 /**/

 /* Declare error code structure for */

 /* QMHSNDPM. */

 /**/

 struct error_code {

 int bytes_provided;

 int bytes_available;

 char message_id[7];

 } error_code;

 error_code.bytes_provided = 15;

 /**/

 /* Set the error handler to resume and */

 /* mark the last escape message as */

 /* handled. */

 /**/

 *rc = CEE_HDLR_RESUME;

 /**/

 /* Send my own *ESCAPE message. */

 /**/

 QMHSNDPM(message_id,

 &message_file,

 &message_data,

 message_len,

 message_type,

 message_q,

 pgm_stack_cnt,

 &message_key,

 &error_code);

 /**/

 /* Check that the call to QMHSNDPM */

 /* finished correctly. */

 /**/

 if (error_code.bytes_available != 0)

 {

 printf("Error in QMHOVPM : %s\n", error_code.message_id);

 }

 }

/**/

/* INCLUDE NAME : TRGBUF */

/* */

/* DESCRIPTION : The input trigger buffer structure for the */

/* user’s trigger program. */

/* */

/* LANGUAGE : ILE C */

/* */

/**/

/**/

/* Note: The following type definition only defines the fixed */

/* portion of the format. The data area of the original */

/* record, null byte map of the original record, the */

/* new record, and the null byte map of the new record */

/* is varying length and immediately follows what is */

/* defined here. */

/**/

 typedef _Packed struct Qdb_Trigger_Buffer {

Database programming 239

char file_name[10];

 char library_name[10];

 char member_name[10];

 char trigger_event[1];

 char trigger_time[1];

 char commit_lock_level[1];

 char reserved_1[3];

 int data_area_ccsid;

 char reserved_2]8];

 int old_record_offset;

 int old_record_len;

 int old_record_null_byte_map;

 int old_record_null_byte_map_len;

 int new_record_offset;

 int new_record_len;

 int new_record_null_byte_map;

 int new_record_null_byte_map_len;

 } Qdb_Trigger_Buffer_t;

Trigger programs: Data structures of database used in the examples: The data structures that are used in this

application are illustrated as follows:

v ATMTRANS : /* Transaction record */

 ATMID CHAR(5) (KEY) /* ATM** machine ID number */

 ACCTID CHAR(5) /* Account number */

 TCODE CHAR(1) /* Transaction code */

 AMOUNT ZONED /* Amount to be deposited or */

 /* withdrawn */

v ATMS : /* ATM machine record */

 ATMN CHAR(5) (KEY) /* ATM machine ID number */

 LOCAT CHAR(2) /* Location of ATM */

 ATMAMT ZONED /* Total amount in this ATM */

 /* machine */

 ATMN LOCAT ATMAMT

10001 MN 200.00

10002 MN 500.00

10003 CA 250.00

v ACCTS: /* Accounting record */

 ACCTN CHAR(5) (KEY) /* Account number */

 BAL ZONED /* Balance of account */

 ACTACC CHAR(1) /* Status of Account */

 ACCTN BAL ACTACC

20001 100.00 A

20002 100.00 A

20003 0.00 C

Trigger buffer sections: The trigger buffer has two logical sections: a static section and a variable

section.

v The static section contains the following:

– A trigger template that contains the physical file name, member name, trigger event, trigger time,

commit lock level, and CCSID of the current record and relative record number.

– Offsets and lengths of the record areas and null byte maps.

This section occupies (in decimal) offset 0 through 95

The variable section contains the following:

240 OS/400 DB2 UDB for iSeries Database programming V5R3

v Areas for the old record, old null byte map, new record, and new null byte map.

The following table provides a summary of the fields in the trigger buffer. If you want to know more

about these fields, see “Trigger buffer field descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Physical file name

10 A CHAR(10) Physical file library name

20 14 CHAR(10) Physical file member name

30 1E CHAR(1) Trigger event

31 1F CHAR(1) Trigger time

32 20 CHAR(1) Commit lock level

33 21 CHAR(3) Reserved

36 24 BINARY(4) CCSID of data

40 28 BIN(4) Relative Record Number

44 2C CHAR(4) Reserved

48 30 BINARY(4) Original record offset

52 34 BINARY(4) Original record length

56 38 BINARY(4) Original record null byte map offset

60 3C BINARY(4) Original record null byte map length

64 40 BINARY(4) New record offset

68 44 BINARY(4) New record length

72 48 BINARY(4) New record null byte map offset

76 4C BINARY(4) New record null byte map length

80 50 CHAR(*) Reserved

* * CHAR(*) Original record

* * CHAR(*) Original record null byte map

* * CHAR(*) New record

* * CHAR(*) New record null byte map

Trigger buffer field descriptions: The following list contains the fields that are contained in the trigger

buffer, in alphabetical order.

CCSID of data. The CCSID of the data in the new or the original records. The data is converted to the job CCSID

by the database. SBCS data is converted to the single byte associated CCSID. DBCS data is converted to the double

byte associated CCSID.

Commit lock level. The commit lock level of the current application program. The possible values are:

’0’ *NONE

’1’ *CHG

’2’ *CS

’3’ *ALL

New record. A copy of the record that is being inserted or updated in a physical file as a result of the change

operation. The new record only applies to the insert or update operations.

New record length. The maximum length is 32766 bytes.

Database programming 241

||||

New record null byte map. This structure contains the NULL value information for each field of the new record.

Each byte represents one field. The possible values for each byte are:

’0’ Not NULL

’1’ NULL

New record null byte map length. The length is equal to the number of fields in the physical file.

New record null byte map offset. The location of the null byte map of the new record. The offset value is from the

beginning of the trigger buffer. This field is not applicable if the new value of the record does not apply to the

change operation, for example, a delete operation.

New record offset. The location of the new record. The offset value is from the beginning of the trigger buffer. This

field is not applicable if the new value of the record does not apply to the change operation, for example, a delete

operation.

Original record. A copy of the original physical record before being updated, deleted, or read. The original record

applies only to update, delete, and read operations.

Original record length. The maximum length is 32766 bytes.

Original record null byte map. This structure contains the NULL value information for each field of the original

record. Each byte represents one field. The possible values for each byte are:

’0’ Not NULL

’1’ NULL

Original record null byte map length. The length is equal to the number of fields in the physical file.

Original record null byte map offset. The location of the null byte map of the original record. The offset value is

from the beginning of the trigger buffer. This field is not applicable if the original value of the record does not apply

to the change operation, for example, an insert operation.

Original record offset. The location of the original record. The offset value is from the beginning of the trigger

buffer. This field is not applicable if the original value of the record does not apply to the operation; for example, an

insert operation.

Physical file library name. The name of the library in which the physical file resides.

Physical file member name. The name of the physical file member.

Physical file name. The name of the physical file being changed.

Relative Record Number. The relative record number of the record to be updated or deleted (*BEFORE triggers) or

the relative record number of the record which was inserted, updated, deleted, or read(*AFTER triggers).

Trigger event. The event that caused the trigger program to be called. The possible values are:

’1’ Insert operation

’2’ Delete operation

’3’ Update operation

’4’ Read operation

Trigger time. Specifies the time, relative to the operation on the physical file, when the trigger program is called.

The possible values are:

’1’ After the change or read operation

’2’ Before the change operation

Recommendations for trigger programs: The following are recommended for a trigger program:

v Create the trigger program so that it runs under the user profile of the user who created it. In this way,

users who do not have the same level of authority to the program will not encounter errors.

242 OS/400 DB2 UDB for iSeries Database programming V5R3

v Create the program with USRPRF(*OWNER) and *EXCLUDE public authority, and do not grant

authorities to the trigger program to USER(*PUBLIC). Avoid having the trigger program altered or

replaced by other users. The database invokes the trigger program whether or not the user causing the

trigger program to run has authority to the trigger program.

v Create the program as ACTGRP(*CALLER) if the program is running in an ILE environment. This

allows the trigger program to run under the same commitment definition as the application.

v Open the file with a commit lock level the same as the application’s commit lock level. This allows the

trigger program to run under the same commit lock level as the application.

v Create the program in the physical file’s library.

v Use commit or rollback in the trigger program if the trigger program runs under a different activation

group than the application.

v Signal an exception if an error occurs or is detected in the trigger program. If an error message is not

signalled from the trigger program, the database assumes that the trigger ran successfully. This may

cause the user data to end up in an inconsistent state.

Precautions to take when coding trigger programs: Trigger programs can be very powerful. Be careful

when designing trigger programs that access a system resource like a tape drive. For instance, a trigger

program that copies record changes to tape media can be useful, but the program itself cannot detect if

the tape drive is ready or if it contains the correct tape. You must take these kind of resource issues into

account when designing trigger programs.

In addition, you should use extreme caution when using read triggers. Using a read trigger could cause a

trigger to be called for every record that is read. During a query, this means that triggers could be called

many times as records are processed multiple times by the query. This could impact system performance.

See the following topics related to trigger programs:

v “Functions to use with care in trigger programs”

v “Commands, statements, and operations that you cannot use in trigger programs”

Functions to use with care in trigger programs: The following CL commands and functions should be

carefully considered. They are not recommended in a trigger program:

v STRCMTCTL (Start Commitment Control)

v RCLSPLSTG (Reclaim Spool Storage)

v RCLRSC (Reclaim Resources)

v CHGSYSLIBL (Change System Library List)

v DLTLICPGM, RSTLICPGM, and SAVLICPGM (Delete, Restore, and Save Licensed Program)

v SAVLIB (Save Library) with SAVACT other than (*NO)

v Any commands with DKT or TAP

v Any migration commands

v The debug program (a security exposure)

v Any commands related to remote job entry (RJE)

v Invoking another CL or interactive entry—could reach lock resource limit.

Commands, statements, and operations that you cannot use in trigger programs: A trigger program cannot

include the following commands, statements, and operations. The system returns an exception if you use

these:

v The commitment definition associated with the insert, update, delete, or read operation that called the

trigger does not allow the COMMIT operation. A COMMIT operation IS allowed for any other

commitment definition in the job.

Database programming 243

v The commitment definition associated with the insert, update, delete, or read operation that called the

trigger does not allow the ROLLBACK operation.The ROLLBACK operation IS allowed for any other

commitment definition in the job.

v The SQL CONNECT, DISCONNECT, SET CONNECTION, and RELEASE statements ARE NOT

allowed.

v The commitment definition associated with the insert, update, delete, or read operation that called the

trigger does not allow the ENDCMTCTL CL command. An ENDCMTCTL CL command IS allowed for

any other commitment definition in the job.

v An attempt to add a local API commitment resource (QTNADDCR) to the same commitment definition

associated with the insert, update, delete, or read operation that called the trigger.

v An attempt to do any I/O to a file that a trigger program has opened with *SHARE and is the file that

caused the trigger program to be called.
v The invoked trigger program that uses the same commitment definition as the insert, update, delete, or

read operation that called the trigger and that already has an existing remote resource. However, the

system puts the entire transaction into a rollback-required state:

– If the trigger program fails and signals an escape message AND

– Any remote resource was updated during the non-primary commit cycle for either a non-iSeries

location or for one that is at a pre-Version 3 Release 2 level.
v The trigger program can add a remote resource to the commitment definition that associates with the

insert, update, delete, or read operation that called the trigger. This allows for LU62 remote resources

(protected conversation) and DFM remote resources (DDM file open), but not DRDA® remote

resources.

v If a failure occurs when changing a remote resource from a trigger program, the trigger program must

end by signalling an escape message. This allows the system to ensure that the entire transaction, for

all remote locations, properly rolls back. If the trigger program does not end with an escape message,

the databases on the various remote locations may become inconsistent.

v A commit lock level of the application program is passed to the trigger program. Run the trigger

program under the same lock level as the application program.

v The trigger program and application program may run in the same or different activation groups.

Compile the trigger program with ACTGRP(*CALLER) to achieve consistency between the trigger

program and the application program.

v A trigger program calls other programs or it can be nested (that is, a statement in a trigger program

causes the calling of another trigger program.) In addition, a trigger program itself may call a trigger

program. The maximum trigger nested level for insert, update, delete, or read is 200. When the trigger

program runs under commitment control, the following situations will result in an error:

– Any update of the same record that has already been changed by the change operation or by an

operation in the trigger program.

– Conflicting operations on the same record within one change operation. For example, the change

operation inserts a record, then the record is deleted by the trigger program.

Notes:

1. If the change operation is not running under commitment control, the system always protects the

change operation. However, the system does not monitor updating the same record within the

trigger program.

2. The ALWREPCHG(*NO|YES) parameter of the Add Physical File Trigger (ADDPFTRG) command

controls repeated changes under commitment control. Changing from the default value to

ALWREPCHG(*YES) allows the same record or updated record associated with the trigger program

to repeatedly change.
v The Allow Repeated Change ALWREPCHG(*YES) parameter on the Add Physical File Trigger

(ADDPFTRG) command also affects trigger programs defined to be called before insert and update

database operations. If the trigger program updates the new record in the trigger buffer and

ALWREPCHG(*YES) is specified, the actual insert or update operation on the associated physical file

244 OS/400 DB2 UDB for iSeries Database programming V5R3

uses the modified new record image. This option can be helpful in trigger programs that are designed

for data validation and data correction. Because the trigger program receives physical file record

images (even for logical files), the trigger program may change any field of that record image.

v The trigger program is called for each row that is changed in or read from the physical file.

v If the physical file or the dependent logical file is opened for insert SEQONLY(*YES) processing, and

the physical file has an insert trigger program associated with it, the system changes the open to

SEQONLY(*NO) so it can call the trigger program for each row that is inserted.

Trigger and application programs that are under commitment control: When the trigger program and

the application program runs under the same commitment definition, a failure of the trigger program

causes the rollback of all statements that are associated with the trigger program. This includes any

statement in a nested trigger program. The originating change operation also rolls back. This requires the

trigger program to signal an exception when it encounters an error.

When the trigger program and the application program run under different commitment definitions, the

COMMIT statements in the application program only affect its own commitment definition. The

programmer must commit the changes in the trigger program by issuing the COMMIT statement.

When insert or update record operations are performed under commitment control, the detection of any

specific duplicate key errors is deferred until the logical end of the operation, to allow for the possibility

that such errors have been resolved by that time. In the case of a trigger program running in the same

commitment definition as its calling program, the logical end of the operation occurs after the single or

blocked insert, update, or delete record operation is performed by the calling program, and control

returns from any called before or after trigger programs. As a result, duplicate key errors are not

detectable in trigger programs that use the same commitment definition as the insert, update, or delete

record operation that called the trigger programs.

Trigger and application programs that are not under commitment control: If both programs do not run

under commitment control, any error in a trigger program leaves files in the state that exists when the

error occurs. No rollback occurs.

If the trigger program does not run under commitment control and the application program does run

under commitment control, all changes from the trigger program are committed when either:

v A commit operation is performed in the trigger program.

v The activation group ends. In the normal case, an implicit commit is performed when the activation

group ends. However, if an abnormal system failure occurs, a rollback is performed.

Trigger program error messages: If a failure occurs while the trigger program is running, it must signal

an appropriate escape message before exiting. Otherwise, the application assumes that the trigger

program ran successfully. The message can be the original message that is signalled from the system or a

message that is created by the trigger program creator.

Monitoring the use of trigger programs: DB2 UDB for iSeries provides the capability to associate trigger

programs with database files. Trigger-program capability is common across the industry for high-function

database managers.

When you associate a trigger program with a database file, you specify when the trigger program runs.

For example, you can set up the customer order file to run a trigger program whenever a new record is

added to the file. When the customer’s outstanding balance exceeds the credit limit, the trigger program

can print a warning letter to the customer and send a message to the credit manager.

Trigger programs are a productive way both to provide application functions and to manage information.

Trigger programs also provide the ability for someone with devious intentions to create a “Trojan horse”

on your system. A destructive program may be sitting and waiting to run when a certain event occurs in

a database file on your system.

Database programming 245

Note: In history, the Trojan horse was a large hollow wooden horse that was filled with Greek soldiers.

After the horse was introduced within the walls of Troy, the soldiers climbed out of the horse and

fought the Trojans. In the computer world, a program that hides destructive functions is often

called a Trojan horse.

When your system ships, the ability to add a trigger program to a database file is restricted. If you are

managing object authority carefully, the typical user will not have sufficient authority to add a trigger

program to a database file. (Appendix D in the iSeries Security Reference book tells the authority that is

required or all commands, including the Add Physical File Trigger (ADDPFTRG) command.

You can use the Print Trigger Programs (PRTTRGPGM) command to print a list of all the trigger

programs in a specific library or in all libraries. The following shows an example of the report:

 Trigger Programs (Full Report)

Specified library : CUSTLIB

 Trigger Trigger Trigger Trigger Trigger

Library File Library Program Time Event Condition

CUSTLIB MB106 ARPGMLIB INITADDR Before Update Always

CUSTLIB MB107 ARPGMLIB INITNAME Before Update Always

You can use the initial report as a base to evaluate any trigger programs that already exist on your

system. Then, you can print the changed report regularly to see whether new trigger programs have been

added to your system.

When you evaluate trigger programs, consider the following:

v Who created the trigger program? You can use the Display Object Description (DSPOBJD) command to

determine this.

v What does the program do? You will have to look at the source program or talk to the program creator

to determine this. For example, does the trigger program check to see who the user is? Perhaps the

trigger program is waiting for a particular user (QSECOFR) in order to gain access to system resources.

After you have established a base of information, you can print the changed report regularly to monitor

new trigger programs that have been added to your system. The following shows an example of the

changed report:

 Trigger Programs (Changed Report)

Specified library : LIBX

Last changed report : 96/01/21 14:33:37

 Trigger Trigger Trigger Trigger Trigger

Library File Library Program Time Event Condition

INVLIB MB108 INVPGM NEWPRICE After Delete Always

INVLIB MB110 INVPGM NEWDSCNT After Delete Always

Adding a trigger to a file

To add a trigger, do the following:

1. Ensure that you have the proper authority and the file has the proper data capabilities. See “Required

authorities and data capabilities for triggers” on page 247 for information about these requirements.

2. Use one of the following methods to associate the trigger program to a specific physical file:

v Use iSeries Navigator to create a new table or edit the properties of an existing table.

v Use the Add Physical File Trigger (ADDPFTRG) command

v Use the CREATE TRIGGER SQL statement.

Note: If the trigger program resides in QTEMP library, the trigger program cannot be associated to a

physical file.

246 OS/400 DB2 UDB for iSeries Database programming V5R3

After you have created the association between the trigger program and the file, the system calls the

trigger program when a change operation is initiated against the physical file, a member of the physical

file, and any logical file created over the physical file.

You can associate a maximum of 300 triggers to one physical file. Each insert, delete, or update operation

can call multiple triggers before the operation occurs and after it occurs. Each read operation can call

multiple triggers after the operation occurs.

The number of triggers called after a read operation that is issued by a query may not be equal to the

number of records that are actually returned. This is because the query may have read a different number

of records, causing a trigger to be called for each read operation, before returning the correct number of

records.

An SQL update operation involves a simultaneous read operation followed by a write operation. Read

triggers will not be run for SQL update operations. An update trigger should be specified to cover this

read followed by a write operation.

Required authorities and data capabilities for triggers: To add a trigger, you must have the following

authorities:

v Object management or Alter authority to the file

v Object operational authority to the file

v Read data rights to the file

v Update data rights and Object operational authority to the file if CRTPFTRG ALWREPCHG(*YES) is

specified

v Execute authority to the file’s library

v Execute authority to the trigger program

v Execute authority to the trigger program’s library

The file must have appropriate data capabilities before you add a trigger:

v CRTPF ALWUPD(*NO) conflicts with *UPDATE Trigger

v CRTPF ALWDLT(*NO) conflicts with *DELETE Trigger

Displaying triggers

The Display File Description (DSPFD) command provides a list of the triggers that are associated with a

file. Specify TYPE(*TRG) or TYPE(*ALL) to get this list. The command provides the following

information:

v The number of trigger programs

v The trigger name and library

v The trigger status

v The trigger program names and libraries

v The trigger events

v The trigger times

v The trigger update conditions

v The trigger type

v The trigger mode

v The trigger orientation

v The trigger creation date/time

v The number of trigger update columns

v List of trigger update columns

Database programming 247

Removing a trigger

Use the Remove Physical File Trigger (RMVPFTRG) command to remove the association of a file and

trigger program. Once you remove the association, the system takes no action when a change or read

operation occurs to the physical file. The trigger program, however, remains on the system.

You can also remove a trigger using iSeries Navigator. See Removing triggers using iSeries Navigator in

the SQL programming topic.

Enabling and disabling a trigger

Use the Change Physical File Trigger (CHGPFTRG) command to enable or disable a named trigger, or to

enable or disable all triggers for a file. Disabling the trigger causes the trigger program not to be called

when a change operation occurs to the physical file. Enabling the trigger causes the trigger program

again to be called when a change operation occurs to the physical file

You can also enable or disable a trigger using iSeries Navigator. See Enable or disable a trigger using

iSeries Navigator in the SQL programming topic.

Triggers and their relationship to other iSeries functions

Triggers interact with the system in the following ways:

Save/Restore Base File (SAVOBJ/RSTOBJ)

v The Save/Restore function will not search for the trigger program during save/restore time. It is the

user’s responsibility to manage the program. During run-time, if the system has not restored the trigger

program, the system returns a hard error with the trigger program name, physical file name, and

trigger event.

v If the entire library (*ALL) is saved and the physical file and all trigger programs are in the same

library and they are restored in a different library, then all the trigger program names are changed in

the physical file to reflect the new library.

Save/Restore Trigger Program (SAVOBJ/RSTOBJ)

v If you restore the trigger program in a different library, the change operation fails because the trigger

program is not in the original library. A hard error returns the trigger program name, physical file

name, and trigger event information.

There are two ways to recover in this situation:

– Restore the trigger program to the same library

– Create a new trigger program with the same name in the new library

Delete File (DLTF)

v The association between trigger programs and a deleted file are removed. The trigger programs remain

on the system.

Copy File

v If a to-file associates with an insert trigger, each inserted record calls the trigger program.

v If a to-file associates with a delete trigger program and the CPYF command specifies

MBROPT(*REPLACE), the copy operation fails.

v Copy with CREATE(*YES) does not propagate the trigger information

Create Duplicate Object (CRTDUPOBJ)

v When a physical file and its trigger program are originally in the same library, the trigger program

library will always be changed to the new library, even if the trigger program doesn’t exist in the new

library. In addition, the following holds true:

– If the CRTDUPOBJ command is duplicating both the physical file and its trigger program to a new

library, then the new trigger program will be associated with the new physical file.

248 OS/400 DB2 UDB for iSeries Database programming V5R3

– If the CRTDUPOBJ command is duplicating only the physical file, then the trigger program with the

same program name in the TO library will be associated with the new physical file. This is true even

if there is no trigger program by that name in the TO library. The library of the trigger program will

be changed.

– If the CRTDUPOBJ command is duplicating only the trigger program, then the new trigger program

will not be associated with any physical files.
v When a physical file and its trigger program are originally in different libraries:

– The old trigger program will be associated with the new physical file. Even though the new physical

file is duplicated to the same library as the trigger program, the old trigger program will still be

associated with the new physical file.
v A trigger program cannot be added if the program is in the QTEMP library. For database files, the

CRTDUPOBJ command attempts to locate the trigger program in the TO library. If the CRTDUPOBJ

command is used with QTEMP specified as the new library, CRTDUPOBJ attempts to create as much

of the object as possible. The file is created, but the trigger cannot be added, so the file remains in

QTEMP without a member.

Clear Physical File Member (CLRPFM)

v If the physical file associates with a delete trigger, the CLRPFM operation fails.

Initialize Physical File Member (INZPFM)

v If the physical file associates with an insert trigger, the INZPFM operation fails.

FORTRAN Force-End-Of-Data (FEOD)

v If the physical file associates with a delete trigger, the FEOD operation fails.

Apply Journaled Changes or Remove Journaled Changes (APYJRNCHG/RMVJRNCHG)

v If the physical file associates with any type of trigger, the APYJRNCHG and RMVJRNCHG operations

do not start the trigger program. Therefore, you should be sure to have all the files within the trigger

program journaled. Then, when using the APYJRNCHG or RMVJRNCHG commands, make sure to

specify all of these files. This insures that all the physical file changes for the application program and

the trigger programs are consistent.

Note: If any trigger program functions do not relate to database files and cannot be explicitly

journaled, send journal entries to record relevant information. Use the Send Journal Entry

(SNDJRNE) command or the Send Journal Entry (QJOSJRNE) API. Use this information during

database file recovery to ensure consistency.

Triggers and their relationship to referential integrity

A physical file can have both triggers and referential constraints associated with it. The running order

among trigger actions and referential constraints depends on the constraints and triggers that associate

with the file.

In some cases, the system evaluates referential constraints before the system calls an after trigger

program. This is the case with constraints that specify the RESTRICT rule.

In some cases, all statements in the trigger program — including nested trigger programs — run before

the constraint is applied. This is true for NO ACTION, CASCADE, SET NULL, and SET DEFAULT

referential constraint rules. When you specify these rules, the system evaluates the file’s constraints based

on the nested results of trigger programs. For example, an application inserts employee records into an

EMP file that has a constraint and trigger:

v The referential constraint specifies that the department number for an inserted employee record to the

EMP file must exist in the DEPT file.

v Whenever an insert to the EMP file occurs, the trigger program checks if the department number exists

in the DEPT file. The trigger program then adds the number if it does not exist.

Database programming 249

When the insertion to the EMP file occurs, the system calls the trigger program first. If the department

number does not exist in the DEPT file, the trigger program inserts the new department number into the

DEPT file. Then the system evaluates the referential constraint. In this case, the insertion is successful

because the department number exists in the DEPT file.

There are some restrictions when both a trigger and referential constraint are defined for the same

physical file:

v If a delete trigger associates with a physical file, that file must not be a dependent file in a referential

constraint with a delete rule of CASCADE.

v If an update trigger associates with a physical file, no field in this physical file can be a foreign key in

a referential constraint with a delete rule of SET NULL or SET DEFAULT.

If failure occurs during either a trigger program or referential constraint validation, all trigger programs

associated with the change operation roll back if all the files run under the same commitment definition.

The referential constraints are guaranteed when all files in the trigger program and the referential

integrity network run under the same commitment definition. If you open the files without commitment

control or in a mixed scenario, undesired results may occur.

You can use triggers to enforce referential constraints and business rules. For example, you could use

triggers to simulate the update cascade constraints on a physical file. However, you would not have the

same functional capabilities as provided by the constraints that the system referential integrity functions

define. You may lose the following referential integrity advantages if you define them with triggers:

v Dependent files may contain rows that violate one or more referential constraints that put the

constraint into check pending but still allow file operations.

v The ability to inform users when the system places a constraint in check pending.

v When an application runs under COMMIT(*NONE) and an error occurs during a cascaded delete, the

database rolls back all changes.

v While saving a file that is associated with a constraint, the database network saves all dependent files

in the same library.

Database distribution

DB2 Multisystem, a separately priced feature, provides a simple and direct method of distributing a

database file over multiple systems in a loosely-coupled environment.

DB2 Multisystem allows users on distributed iSeries systems real-time query and update access to a

distributed database as if it existed totally on their particular system. DB2 Multisystem places new

records on the appropriate system based on a user-defined key field or fields. DB2 Multisystem chooses a

system on the basis of either a system-supplied or user-defined hashing algorithm.

Query performance is improved by a factor approaching the number of nodes in the environment. For

example, a query against a database distributed over four systems runs in approximately one quarter of

the time. However, performance can vary greatly when queries involve joins and grouping. Performance

is also influenced by the balance of the data across the multiple nodes. Multisystem runs the query on

each system concurrently. DB2 Multisystem can significantly reduce query time on very large databases.

For more information, see DB2 Multisystem.

Double-byte character set (DBCS) considerations

A double-byte character set (DBCS) is a character set that represents each character with 2 bytes. The

DBCS supports national languages that contain a large number of unique characters or symbols (the

maximum number of characters that can be represented with 1 byte is 256 characters). Examples of such

languages include Japanese, Korean, and Chinese.

250 OS/400 DB2 UDB for iSeries Database programming V5R3

This topic describes DBCS considerations as they apply to the database on the iSeries system. See the

following topics:

v “DBCS field data types”

v “DBCS field mapping considerations”

v “DBCS field concatenation” on page 252

v “DBCS field substring operations” on page 253

v “Comparing DBCS fields in a logical file” on page 253

v “Using DBCS fields in the Open Query File (OPNQRYF) command” on page 254

DBCS field data types

There are two general kinds of DBCS data: bracketed-DBCS data and graphic (nonbracketed) DBCS data.

Bracketed-DBCS data is preceded by a DBCS shift-out character and followed by a DBCS shift-in

character. Graphic-DBCS data is not surrounded by shift-out and shift-in characters. The application

program might require special processing to handle bracketed-DBCS data that would not be required for

graphic-DBCS data.

The specific DBCS data types (specified in position 35 on the DDS coding form.) are:

Entry Meaning

O DBCS-open: A character string that contains both single-byte and bracketed double-byte data.

E DBCS-either: A character string that contains either all single-byte data or all bracketed

double-byte data.

J DBCS-only: A character string that contains only bracketed double-byte data.

G DBCS-graphic: A character string that contains only nonbracketed double-byte data.

Note: Files containing DBCS data types can be created on a single-byte character set (SBCS) system. Files

containing DBCS data types can be opened and used on a SBCS system, however, coded character

set identifier (CCSID) conversion errors can occur when the system tries to convert from a DBCS

or mixed CCSID to a SBCS CCSID. These errors will not occur if the job CCSID is 65535.

In addition see “DBCS constants.”

DBCS constants

A constant identifies the actual character string to be used. The character string is enclosed in

apostrophes and a string of DBCS characters is surrounded by the DBCS shift-out and shift-in characters

(represented by the characters < and > in the following examples). A DBCS-graphic constant is preceded

by the character G. The types of DBCS constants are:

Type Example

DBCS-Only ’<A1A2A3>’

DBCS-Open ’<A1A2A3>BCD’

DBCS-Graphic

G’<A1A2A3>’

DBCS field mapping considerations

The following chart shows what types of data mapping are valid between physical and logical files for

DBCS fields:

Database programming 251

Physical File

Data Type

Logical File Data Type

Character Hex

DBCS-

Open

DBCS-
Either

DBCS-

Only

DBCS-
Graphic

UCS2-

Graphic UTF-8 UTF-16

Character Valid Valid Valid Not valid Not valid Not valid Valid Valid Valid

Hexadecimal Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Not valid

DBCS-open Not valid Valid Valid Not valid Not valid Not valid Valid Valid Valid

DBCS-either Not valid Valid Valid Valid Not valid Not valid Not valid1 Not valid1 Not valid1

DBCS-only Valid Valid Valid Valid Valid Valid Not valid1 Not valid1 Not valid1

DBCS-
graphic

Not valid Not valid Valid Valid Valid Valid Valid Valid Valid

UCS2-
graphic

Valid Not valid Valid Not valid1 Not valid1 Valid Valid Valid Valid

UTF-8 Valid Not valid Valid Not valid1 Not valid1 Valid Valid Valid Valid

UTF-16 Valid Not valid Valid Not valid1 Not valid1 Valid Valid Valid Valid

Note: In the table,

1 indicates that these mappings are not supported because of the possibility of

substitution characters appearing after conversion.

DBCS field concatenation

When fields are concatenated, the data types can change (the resulting data type is automatically

determined by the system).

v OS/400 assigns the data type based on the data types of the fields that are being concatenated. When

DBCS fields are included in a concatenation, the general rules are:

– If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

– If all fields in the concatenation are DBCS-only (J), the resulting data type is DBCS-only (J).

– If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal (H) fields, the

resulting data type is DBCS open (O).

– If the concatenation contains two or more DBCS open (O) fields, the resulting data type is a

variable-length DBCS open (O) field.

– If the concatenation contains one or more variable-length fields of any data type, the resulting data

type is variable length.

– A DBCS-graphic (G) field can be concatenated only to another DBCS-graphic field. The resulting

data type is DBCS-graphic (G).

– A UCS2-graphic (G) field can be concatenated to another UCS2-graphic field, a UTF-8 character

field, or a UTF-16 graphic field. The resulting data type is UTF-16 if one of the operands is UTF-16,

UTF-8 if one of the operands is UTF-8 and no operands are UTF-16, and otherwise UCS-2.

– A UTF-8 character (A) field can be concatenated with another UTF-8 field, a UTF-16 field, or a

UCS-2 field. The resulting data type is UTF-16 if one of the operands is UTF-16, UTF-8 if one of the

operands is UTF-8 and no operands are UTF-16, and otherwise UCS-2.

– A UTF-16 graphic (G) field can be concatenated with another UTF-16 field, a UTF-8 field, or a UCS-2

field. The resulting data type is UTF-16 if one of the operands is UTF-16, UTF-8 if one of the

operands is UTF-8 and no operands are UTF-16, and otherwise UCS-2.
v The maximum length of a concatenated field varies depending on the data type of the concatenated

field and length of the fields being concatenated. If the concatenated field is zoned decimal (S), its total

length cannot exceed 31 bytes. If the concatenated field is character (A), DBCS-open (O), or DBCS-only

(J), its total length cannot exceed 32,766 bytes (32,740 bytes if the field is variable length).

The length of DBCS-graphic (G) fields is expressed as the number of double-byte characters (the actual

length is twice the number of characters); therefore, the total length of the concatenated field cannot

exceed 16,383 characters (16,370 characters if the field is variable length).

v In join logical files, the fields to be concatenated must be from the same physical file. The first field

specified on the CONCAT keyword identifies which physical file is used. The first field must,

252 OS/400 DB2 UDB for iSeries Database programming V5R3

|

|
|

|

||
|
|
|
|
|
|
|
|
|

|
|
|||||||||

||||||||||
||||||||||
|

|
|

|
|
|

|
|
|

|
|
|

therefore, be unique among the physical files on which the logical file is based, or you must also

specify the JREF keyword to specify which physical file to use.

v The use of a concatenated field must be I (input only).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

Notes:

1. When bracketed-DBCS fields are concatenated, a shift-in at the end of one field and a shift-out at the

beginning of the next field are removed. If the concatenation contains one or more hexadecimal fields,

the shift-in and shift-out pairs are only eliminated for DBCS fields that precede the first hexadecimal

field.

2. A concatenated field that contains DBCS fields must be an input-only field.

3. Resulting data types for concatenated DBCS fields may differ when using The Open Query File

(OPNQRYF) command. See “Using concatenation with DBCS fields through OPNQRYF” on page 254

for general rules when DBCS fields are included in a concatenation.

DBCS field substring operations

A substring operation allows you to use part of a field or constant in a logical file. For bracketed-DBCS

data types, the starting position and the length of the substring refer to the number of bytes; therefore,

each double-byte character counts as two positions. For the DBCS-graphic (G) data type, the starting

position and the length of the substring refer to the number of characters; therefore, each double-byte

character counts as one position.

Comparing DBCS fields in a logical file

When comparing two fields or a field and constants, fixed-length fields can be compared to

variable-length fields as long as the types are compatible. Table 15 describes valid comparisons for DBCS

fields in a logical file.

 Table 15. Valid Comparisons for DBCS Fields in a Logical File

Any

Numeric

Char-

acter

Hexa-

decimal

DBCS-

Open

DBCS-

Either

DBCS-

Only

DBCS-

Graphic

UCS-2

Graphic UTF-8 UTF-16 Date Time

Time

Stamp

Any

Numeric

Valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not valid

Character Not valid Valid Valid Valid Valid Not

valid

Not

valid

Not

valid

Valid Valid Not

valid

Not

valid

Not valid

Hexa-

decimal

Not valid Valid Valid Valid Valid Valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not valid

DBCS-

Open

Not valid Valid Valid Valid Valid Valid Not

valid

Not

valid

Valid Valid Not

valid

Not

valid

Not valid

DBCS-

Either

Not valid Valid Valid Valid Valid Valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not valid

DBCS-

Only

Not valid Not

valid

Valid Valid Valid Valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not valid

DBCS-

Graphic

Not valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Valid Not

valid

Valid Valid Not

valid

Not

valid

Not valid

UCS2-

Graphic

Not valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Valid Valid Valid Not

valid

Not

valid

Not valid

UTF-8 Not valid Valid Not

valid

Valid Not

valid

Not

valid

Valid Valid Valid Valid Not

valid

Not

valid

Not valid

UTF-16 Not valid Valid Not

valid

Valid Not

valid

Not

valid

Valid Valid Valid Valid Not

valid

Not

valid

Not valid

Date Not valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Valid Not

valid

Not valid

Time Not valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Valid Not valid

Time

Stamp

Not valid Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Not

valid

Valid

Database programming 253

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||||||
|
|
|
|
|
|||
|
|
|
|

|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|||||||
|
|
|
|||
|
|
|
|

|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|

|
|
||
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|
|
|
|
|
||
|
|||
|
|
|
|

|
|
||
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|

||||
|
||
|
|
|
|||||
|
|
|
|

||||
|
||
|
|
|
|||||
|
|
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Using DBCS fields in the Open Query File (OPNQRYF) command

This section describes considerations when using DBCS fields in the Open Query File (OPNQRYF)

command. See the following topics:

v “Using the wildcard function with DBCS fields”

v “Comparing DBCS fields through OPNQRYF”

v “Using concatenation with DBCS fields through OPNQRYF”

v “Using sort sequence with DBCS” on page 255

Using the wildcard function with DBCS fields

Use of the wildcard (%WLDCRD) function with a DBCS field differs depending on whether the function

is used with a bracketed-DBCS field or a DBCS-graphic field.

When using the wildcard function with a bracketed-DBCS field, both single-byte and double-byte

wildcard values (asterisk and underline) are allowed. The following special rules apply:

v A single-byte underline refers to one EBCDIC character; a double-byte underline refers to one

double-byte character.

v A single- or double-byte asterisk refers to any number of characters of any type.

When using the wildcard function with a DBCS-graphic field, only double-byte wildcard values (asterisk

and underline) are allowed. The following special rules apply:

v A double-byte underline refers to one double-byte character.

v A double-byte asterisk refers to any number of double-byte characters.

Comparing DBCS fields through OPNQRYF

When comparing two fields or constants, fixed length fields can be compared to variable length fields as

long as the types are compatible. Table 16 describes valid comparisons for DBCS fields through the

OPNQRYF command.

 Table 16. Valid Comparisons for DBCS Fields through the OPNQRYF Command

Any

Numeric

Char-

acter

Hexa-

decimal

DBCS-

Open

DBCS-

Either

DBCS-

Only

DBCS-

Graphic

UCS2-

Graphic Date Time

Time

Stamp

Any

Numeric

Valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid Not valid

Character Not valid Valid Valid Valid Valid Not valid Not valid Valid Valid Valid Valid

Hexa-

decimal

Not valid Valid Valid Valid Valid Valid Not valid Not valid Valid Valid Valid

DBCS-

Open

Not valid Valid Valid Valid Valid Valid Not valid Valid Valid Valid Valid

DBCS-

Either

Not valid Valid Valid Valid Valid Valid Not valid Valid Valid Valid Valid

DBCS- Only Not valid Not valid Valid Valid Valid Valid Not valid Valid Not valid Not valid Not valid

DBCS-

Graphic

Not valid Not valid Not valid Not valid Not valid Not valid Valid Valid Not valid Not valid Not valid

UCS2-

Graphic

Not valid Valid Not valid Valid Valid Valid Valid Valid Not valid Not valid Not valid

Date Not valid Valid Valid Valid Valid Not valid Not valid Not valid Valid Not valid Not valid

Time Not valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Valid Not valid

Time Stamp Not valid Valid Valid Valid Valid Not valid Not valid Not valid Not valid Not valid Valid

Using concatenation with DBCS fields through OPNQRYF

When using the Open Query File (OPNQRYF) concatenation function, the OS/400 program assigns the

resulting data type based on the data types of the fields being concatenated. When DBCS fields are

included in a concatenation, the resulting data type is generally the same as concatenated fields in a

logical file, with some slight variations. The following rules apply:

254 OS/400 DB2 UDB for iSeries Database programming V5R3

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is

hexadecimal (H).

v If the concatenation contains one or more UCS2-graphic fields, the resulting data type is UCS2-graphic.

v If all fields in the concatenation are DBCS-only (J), the resulting data type is variable length DBCS-only

(J).

v If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal (H) or

UCS2-graphic fields, the resulting data type is variable length DBCS open (O).

v If the concatenation contains one or more variable length fields of any data type, the resulting data

type is variable length.

v If a DBCS-graphic (G) field is concatenated to another DBCS-graphic (G) field, the resulting data type

is DBCS-graphic (G).

Using sort sequence with DBCS

When a sort sequence is specified, no translation of the DBCS data is done. Only SBCS data in

DBCS-either or DBCS-open fields is translated. UCS2 data is translated.

Related information

The following iSeries books and Information Center topics contain information you may need. Some

books are listed with their full title and base order number. When these books are referred to in this

guide, the short title listed is used.

v Application Programming Interfaces (APIs) topic. This Information Center topic provides the

application programmer with information needed to develop system-level and other OS/400

applications using the application programming interfaces.

v Commitment Control topic. This Information Center topic contains information about using

commitment control to ensure that database changes are synchronized.

v Backup and Recovery topic. This Information Center topic contains information about how to plan a

backup and recovery strategy, how to set up disk protection for your data, how to back up your

system, and how to control your system shutdown in the event of a failure.

v Backup and Recovery Guide

. This guide provides general information about recovery and

availability options for the iSeries server.

v Control Language (CL) topic. This Information Center topic provides the application programmer and

system programmer with detailed information about iSeries control language (CL) and OS/400 and

licensed program commands.

v CL Programming

. This guide provides the application programmer and programmer with a

wide-ranging discussion of iSeries programming topics, including a general discussion of objects and

libraries, CL programming, controlling flow and communicating between programs, working with

objects in CL programs, and creating CL programs.

v DDS concepts topic. The DDS information is a five volume reference in the Information Center that

provides the application programmer with detailed descriptions of the entries and keywords needed to

describe database files (both logical and physical) and certain device files (for displays, printers, and

intersystem communications function (ICF)) external to the user’s programs.

v Distributed Data Management topic. This Information Center book provides the application

programmer with information about remote file processing. It describes how to define a remote file to

OS/400 distributed data management (DDM), how to create a DDM file, what file utilities are

supported through DDM, and the requirements of OS/400 DDM as related to other systems.

v Database file management topic. This Information Center topic provides the application programmer

with information about using files in application programs. Included are topics on the Copy File

(CPYF) command and the override commands.

v OS/400 Globalization topic. This Information Center topic provides the data processing manager,

system operator and manager, application programmer, end user, and system engineer with

Database programming 255

information about understanding and using the national language support function on the iSeries

system. It prepares the user for planning, installing, configuring, and using the iSeries globalization

and multilingual system. It also provides an explanation of database management of multilingual data

and application considerations for a multilingual system.

v IDDU Use

. This guide provides the administrative secretary, business professional, or programmer

with information about using interactive data definition utility (IDDU) to describe data dictionaries,

files, and records to the system.

v Managing Disk Units in Disk Pools topic. This Information Center topic helps you manage and protect

disk units and disk pools for continuously available information.

v Journal Management. This Information Center topic provides information about how to set up,

manage, and troubleshoot system-managed access-path protection (SMAPP), local journals, and remote

journals.

v Performance. This Information Center topic includes a description of tuning the system, collecting

performance data including information on record formats and contents of the data being collected,

working with system values to control or change the overall operation of the system, and a description

of how to gather data to determine who is using the system and what resources are being used.

v Query for iSeries Use. This Information Center supplemental manual provides the administrative

secretary, business professional, or programmer with information about using IBM Query for iSeries to

get data from any database file. It describes how to sign on to Query, and how to define and run

queries to create reports containing the selected data.

v Security. This Information Center topic explains why security is necessary, defines major concepts, and

provides information on planning, implementing, and monitoring basic security on the iSeries system.

v Security Reference

. This manual tells how system security support can be used to protect the

system and the data from being used by people who do not have the proper authorization, protect the

data from intentional or unintentional damage or destruction, keep security information up-to-date,

and set up security on the system.

v SQL programming. This Information Center topic provides the application programmer, programmer,

or database administrator with an overview of how to design, write, run, and test SQL statements. It

also describes interactive Structured Query Language (SQL).

v DB2 UDB for iSeries SQL Reference. This Information Center book provides the application

programmer, programmer, or database administrator with detailed information about Structured Query

Language statements and their parameters.

v System Values. This Information Center topic includes a list and descriptions of system values.

v Work Management. This Information Center topic provides the programmer with information about

how to create and change a work management environment.

256 OS/400 DB2 UDB for iSeries Database programming V5R3

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2005 257

|
|
|
|
|

|
|
|
|

|
|

|

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AS/400

 C/400

 COBOL/400

 DB2

 DB2 Universal Database

 DRDA

 IBM

 Integrated Language Environment

 iSeries

 Operating System/400

258 OS/400 DB2 UDB for iSeries Database programming V5R3

|
|
|
|

OS/400

 RPG/400

 System/36

 System/38

 WebSphere

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

Appendix. Notices 259

260 OS/400 DB2 UDB for iSeries Database programming V5R3

����

Printed in USA

	Contents
	Database programming
	What's new for V5R3
	Print this topic
	Database file concepts
	DB2 Universal Database for iSeries
	Interfaces to DB2 UDB for iSeries
	Traditional system interface
	SQL
	iSeries Navigator
	IBM Query for iSeries

	Database files
	Source file
	Physical file
	Logical file
	Member
	Record

	How database files are described
	Externally and program-described data
	Dictionary-described data
	Record format description
	Access path description
	Naming conventions used in a database file

	Database data protection and monitoring
	Database file sizes
	Examples: Database file sizes

	Set up database files
	Creating and describing database files
	Creating a library
	Creating a schema using iSeries Navigator

	Setting up source files
	Why source files are used
	Creating a source file
	Creating a source file using CRTSRCPF
	IBM-supplied source files
	Source file attributes
	Creating source files without DDS
	Creating source files with DDS

	Describing database files
	Describing database files using DDS
	Example: Describing a physical file using DDS
	Example: Describing a logical file using DDS
	Additional field definition functions you can describe with DDS
	Using existing field descriptions and field reference files to describe a database file
	Using a data dictionary for field reference in a database file
	Sharing existing record format descriptions in a database file

	Specifying database file and member attributes
	Specify file name and member name (FILE and MBR) parameters
	Specify the physical file member control (DTAMBRS) parameter
	Specify the source file and source member (SRCFILE and SRCMBR) parameters
	Specify the database file type (FILETYPE) parameter
	Specify the maximum number of members allowed (MAXMBRS) parameter
	Specify where to store the data (UNIT) parameter
	Specify the frequency of writing data to auxiliary storage (FRCRATIO) parameter
	Specify the frequency of writing the access path (FRCACCPTH) parameter
	Specify the check for record format description changes (LVLCHK) parameter
	Specify the current access path maintenance (MAINT) parameter
	Specify the recover (RECOVER) parameter
	Specify the file sharing (SHARE) parameter
	Specify the locked file or record wait time (WAITFILE and WAITRCD) parameters
	Specify the public authority (AUT) parameter
	Specify the system on which the file Is created (SYSTEM) parameter
	Specify the file and member text (TEXT) parameter
	Specify the coded character set identifier (CCSID) parameter
	Specify the sort sequence (SRTSEQ) parameter
	Specify the language identifier (LANGID) parameter

	Setting up physical files
	Creating a physical file
	Specifying physical file and member attributes when creating a physical file
	Expiration date
	Size of the physical file member
	Storage allocation
	Method of allocating storage
	Record length
	Deleted records
	Physical file capabilities
	Source type

	Implicit journaling when creating a physical file

	Setting up logical files
	Creating a logical file
	Creating a logical file with more than one record format
	Controlling how records are retrieved in a file with multiple formats
	Controlling how records are added to a file with multiple formats

	Defining logical file members

	Describing logical file record formats
	Describing field use for logical files
	Describing field use for logical files: Both
	Describing field use for logical files: Input only
	Describing field use for logical files: Neither

	Deriving new fields from existing fields
	Concatenated fields
	Substring fields
	Renamed fields
	Translated fields

	Describing floating-point fields in logical files

	Describing access paths for logical files
	Selecting and omitting records using logical files
	Access path select/omit
	Dynamic select/omit
	Using the Open Query File command to select/omit records

	Using existing access paths
	Example of implicitly shared access paths

	Setting up a join logical file
	Basic concepts of joining two physical files (Example 1)
	Reading a join logical file
	Matching records in primary and secondary files (Case 1)
	Record missing in secondary file; JDFTVAL keyword not specified (Case 2A)
	Record missing in secondary file; JDFTVAL keyword specified (Case 2B)
	Secondary file has more than one match for a record in the primary file (Case 3)
	Extra record in secondary file (Case 4)
	Random access (Case 5)

	Setting up a join logical file
	Using more than one field to join files (Example 2)
	Reading duplicate records in secondary files (Example 3)
	Using join fields whose attributes are different (Example 4)
	Describing fields that never appear in the record format (Example 5)
	Specifying key fields in join logical files (Example 6)
	Specifying select/omit statements in join logical files
	Joining three or more physical files (Example 7)
	Joining a physical file to itself (Example 8)
	Using default data for missing records from secondary files (Example 9)
	A complex join logical file (Example 10)
	Join logical file considerations
	Performance considerations
	Data integrity considerations
	Summary of rules

	Describing access paths for database files
	Using arrival sequence access path for database files
	Using a keyed sequence access path for database files
	Arranging key fields using an alternative collating sequence
	Arranging key fields using the SRTSEQ parameter
	Arranging key fields in ascending or descending sequence
	Using more than one key field
	Preventing duplicate key values
	Arranging duplicate keys

	Using existing access path specifications
	Using floating point fields in database file access paths

	Securing a database
	Granting file and data authority
	Authorizing a user or group using iSeries Navigator
	Types of object authority for database files
	Types of data authorities for database files

	Specifying public authority
	Defining public authority for a file using iSeries Navigator
	Setting a default public authority for new files using iSeries Navigator

	Using database file capabilities to control I/O operations
	Limiting access to specific fields of a database file
	Using logical files to secure data

	Process database files
	Database file processing: Run time considerations
	File and member name
	File processing options
	Specifying the type of processing
	Specifying the initial file position
	Reusing deleted records
	Ignoring the keyed sequence access path
	Delaying end of file processing
	Specifying the record length
	Ignoring record formats
	Determining if duplicate keys exist

	Data recovery and integrity
	Protecting your file with journaling and commitment control
	Writing data and access paths to auxiliary storage
	Checking changes to the record format description
	Checking for the expiration date of the file
	Preventing the job from changing data in the file

	Locking shared data
	Locking records
	Displaying locked rows using iSeries Navigator
	Displaying locked records using DSPRCDLCK
	Locking files
	Locking members
	Locking record format data
	Database lock considerations

	Sharing database files in the same job or activation group
	Open considerations for files shared in a job or activation group
	Input/output considerations for files shared in a job or activation group
	Close considerations for files shared in a job or activation group
	Example 1: Using a single set of files with similar processing options
	Example 2: Using multiple sets of files with similar processing options
	Example 3: Using a single set of files with different processing requirements

	Sequential-only processing of database files
	Open considerations for sequential-only processing
	Input/output considerations for sequential-only processing
	Close considerations for sequential-only processing

	Summary of run time considerations for processing database files
	Storage pool paging option effect on database performance

	Opening a database file
	Opening a database file member
	Using the Open Database File (OPNDBF) command
	Using the Open Query File (OPNQRYF) command
	Creating a query with the OPNQRYF command
	Using an existing record format in the file
	Using a file with a different record format
	OPNQRYF examples
	CL program coding with the OPNQRYF command
	The zero length literal and the contains (*CT) function
	Selecting records without using DDS
	Selecting records using the Open Query File (OPNQRYF) command
	Specifying a keyed sequence access path without using DDS
	Specifying key fields from different files
	Dynamically joining database files without DDS
	Handling missing records in secondary join files
	Unique-key processing
	Defining fields derived from existing field definitions
	Handling divide by zero
	Summarizing data from database file records (Grouping)
	Final total-only processing
	Controlling how the system runs the open query file command

	Considerations for creating a file and using the FORMAT parameter
	Considerations for arranging records
	Considerations for DDM files
	Considerations for writing a high-level language program
	Messages sent when the Open Query File (OPNQRYF) command is run
	Using the Open Query File (OPNQRYF) command for more than just input
	Comparing date, time, and timestamp using the OPNQRYF command
	Performing date, time, and timestamp arithmetic using the OPNQRYF command
	Durations
	Rules for date, time, and timestamp arithmetic
	Subtracting dates
	Incrementing and decrementing dates
	Subtracting times
	Incrementing and decrementing times
	Subtracting timestamps
	Incrementing and decrementing timestamps

	Using the Open Query File (OPNQRYF) command for random processing
	Open Query File command: Performance considerations
	Open Query File command: Performance considerations for sort sequence tables
	Grouping, joining, and selection: OPNQRYF performance considerations
	Ordering: OPNQRYF performance considerations

	Performance comparisons with other database functions
	Considerations for field use
	Considerations for files shared in a job
	Considerations for checking if the record format description changed
	Other run time considerations for the OPNQRYF command
	Overrides and the OPNQRYF command
	Copying from an open query file

	Typical errors when using the Open Query File (OPNQRYF) command

	Basic database file operations in programs
	Setting a position in the file
	Reading database records
	Reading database records using an arrival sequence access path
	Read next operation
	Read previous operation
	Read first operation
	Read last operation
	Read same operation
	Read by relative record number operation

	Reading database records using a keyed sequence access path
	Read next operation
	Read previous operation
	Read first operation
	Read last operation
	Read same operation
	Read by key operation
	Read by relative record number operation
	Read when logical file shares an access path with more keys operation

	Waiting for more records when end of file is reached
	Releasing locked records

	Updating database records
	Adding database records
	Identifying which record format to add in a file with multiple formats
	Using the force-end-of-data operation

	Deleting database records

	Closing a database file
	Monitoring database file errors in a program
	System handling of error messages
	Effect of error messages on file positioning
	Determining which messages you want to monitor

	Manage database files
	Basic operations for managing database files
	Copying a file
	Copying a file (table) using iSeries Navigator
	Copying a file using CPYF

	Moving a file
	Moving a file (table) using iSeries Navigator
	Moving a file using the MOVOBJ command

	Managing database members
	Member operations common to all database files
	Adding members to files
	Changing member attributes
	Renaming members
	Removing members from files

	Physical file member operations
	Initializing data in a physical file member
	Clearing data from physical file members
	Reorganizing a physical file
	Reorganizing a table using iSeries Navigator
	Reorganizing a physical file using RGZPFM
	Usage notes: Reorganizing a file
	Types of reorganizes
	Suspending or canceling a reorganize

	Displaying records in a physical file member

	Using database attribute and cross-reference information
	Displaying information about database files
	Displaying attributes for a file using display table description in iSeries Navigator
	Displaying attributes for a file using DSPFD
	Displaying the descriptions of the fields in a file
	Displaying the relationships between files on the system
	Displaying the files used by programs
	Displaying the system cross-reference files

	Writing the output from a command directly to a database file
	Example: Using a command output file
	Output file for the Display File Description command
	Output files for the Display Journal command
	Output files for the Display Problem command

	Changing database file descriptions and attributes
	Effect of changing fields in a file description
	Changing a physical file description and attributes
	Example 1: Changing a physical file description and attributes
	Example 2: Changing a physical file description and attributes

	Changing a logical file description and attributes

	Recovering and restoring your database
	Recovering data in a database file
	Managing journals
	Journals
	Working with journals

	Ensuring data integrity with commitment control
	Transactions
	Benefits of using commitment control
	Usage notes: commitment control

	Reducing time in access path recovery
	Saving access paths
	Restoring access paths
	Journaling access paths
	System-managed access-path protection (SMAPP)
	Rebuilding access paths
	Controlling when access paths are rebuilt
	Designing files to reduce access path rebuilding time
	Other methods to avoid rebuilding access paths

	The database recovery process after an abnormal system end
	Database file recovery during the IPL
	Database file recovery after the IPL
	Effects of the storage pool paging option on database recovery
	Database file recovery options table

	Database save and restore
	Database considerations for save and restore
	Force-writing data to auxiliary storage

	Using source files
	Working with source files
	Using the Source Entry Utility (SEU)
	Using device source files
	Copying source file data
	Using the Copy Source File (CPYSRCF) command for copying to and from source files
	Using the Copy File (CPYF) command for copying to and from files
	Source sequence numbers used in copies

	Loading and unloading data from non-iSeries systems
	Using source files in a program

	Creating an object using a source file
	Creating an object from source statements in a batch job
	Determining which source file member was used to create an object

	Managing a source file
	Changing source file attributes
	Reorganizing source file member data
	Determining when a source statement was changed
	Using source files for documentation

	Controlling the integrity of your database with constraints
	Setting up constraints for your database
	Details: Setting up constraints

	Removing unique, primary key, or check constraints
	Details: Removing constraints

	Working with a group of constraints
	Details: Working with a group of constraints
	Working with constraints that are in check pending status
	Displaying records that put a constraint in check pending status
	Processing constraints that are in check pending status

	Unique constraints
	Primary key constraints
	Check constraints

	Ensuring data integrity with referential constraints
	Adding a referential constraint
	Before you add a referential constraint
	Defining the parent file in a referential constraint
	What to do when you cannot define a parent key

	Defining the dependent file in a referential constraint
	Specifying referential constraint rules
	Details: Specifying referential constraint delete rules
	Details: Specifying referential constraint update rules
	Details: Specifying referential constraint rules—journaling requirements
	Details: Adding a referential constraint
	Details: Avoiding constraint cycles

	Verifying a referential constraint
	Enabling and disabling referential constraints
	Details: Enabling or disabling a referential constraint

	Removing referential constraints
	Details: Removing a constraint with the CST parameter
	Details: Removing a constraint with the TYPE parameter

	Details: Ensuring data integrity with referential constraints
	Example: Ensuring data integrity with referential constraints
	Referential integrity terms
	Referential integrity enforcement
	Foreign key enforcement
	Parent key enforcement
	Enforcement of delete rules
	Enforcement of update rules

	Constraint states
	Check pending status in referential constraints
	Dependent file restrictions in check pending
	Parent file restrictions in check pending

	Referential integrity and iSeries functions

	Triggering automatic events in your database
	Uses for triggers
	Benefits of using triggers in your business
	Creating trigger programs
	Adding triggers using iSeries Navigator
	How trigger programs work
	Other important information about working with triggers
	Examples of trigger programs
	Code disclaimer information
	Example: Insert trigger written in RPG
	Example: Update trigger written in ILE COBOL
	Example: Delete trigger written in ILE C
	Trigger programs: Data structures of database used in the examples

	Trigger buffer sections
	Trigger buffer field descriptions

	Recommendations for trigger programs
	Precautions to take when coding trigger programs
	Functions to use with care in trigger programs
	Commands, statements, and operations that you cannot use in trigger programs

	Trigger and application programs that are under commitment control
	Trigger and application programs that are not under commitment control
	Trigger program error messages
	Monitoring the use of trigger programs

	Adding a trigger to a file
	Required authorities and data capabilities for triggers

	Displaying triggers
	Removing a trigger
	Enabling and disabling a trigger
	Triggers and their relationship to other iSeries functions
	Triggers and their relationship to referential integrity

	Database distribution

	Double-byte character set (DBCS) considerations
	DBCS field data types
	DBCS constants

	DBCS field mapping considerations
	DBCS field concatenation
	DBCS field substring operations
	Comparing DBCS fields in a logical file
	Using DBCS fields in the Open Query File (OPNQRYF) command
	Using the wildcard function with DBCS fields
	Comparing DBCS fields through OPNQRYF
	Using concatenation with DBCS fields through OPNQRYF
	Using sort sequence with DBCS

	Related information

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications

