
iSeries

Performance Management APIs 

Version 5 Release 3 

 

 

 

ERserver  

���





iSeries

Performance Management APIs 

Version 5 Release 3 

 

 

 

ERserver  

���



Note  

Before  using  this  information  and  the  product  it supports,  be  sure  to read  the  information  in  

“Notices,”  on  page  119.

Sixth  Edition  (August  2005)  

This  edition  applies  to version  5, release  3, modification  0 of Operating  System/400  (product  number  5722-SS1)  and  

to  all subsequent  releases  and  modifications  until  otherwise  indicated  in new  editions.  This  version  does  not  run  on 

all  reduced  instruction  set  computer  (RISC)  models  nor  does  it run  on CISC  models.  

© Copyright  International  Business  Machines  Corporation  1998,  2005.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

Performance Management APIs  . . . . 1  

APIs   . . . . . . . . . . . . . . . . . 1 

Collection  Services  APIs   . . . . . . . . . . 1  

Collector  APIs   . . . . . . . . . . . . . . 1  

Add  Collector  Notification  

(QypsAddCollectorNotification)  API   . . . . . . 3  

Authorities  and  Locks   . . . . . . . . . . 3  

Required  Parameter  Group   . . . . . . . . 3 

Usage  Notes   . . . . . . . . . . . . . 5 

Notification  Record  Format   . . . . . . . . 5  

Notification  Record  Field  Descriptions  . . . . . 6  

Error  Messages   . . . . . . . . . . . . 6  

Change  System  Collector  Attributes  (QYPSCSCA,  

QypsChgSysCollectorAttributes)  API   . . . . . . 7  

Authorities  and  Locks   . . . . . . . . . . 7  

Required  Parameter  Group   . . . . . . . . 8 

Error  Messages   . . . . . . . . . . . . 9  

Cycle  Collector  (QYPSCYCC,  QypsCycleCollector)  

API   . . . . . . . . . . . . . . . . . 10 

Authorities  and  Locks   . . . . . . . . . . 10  

Required  Parameter  Group   . . . . . . . . 10  

Error  Messages   . . . . . . . . . . . . 10  

Deregister  Collector  Data  Category  

(QypsDeregCollectorDataCategory)  API   . . . . . 11 

Authorities  and  Locks   . . . . . . . . . . 11 

Required  Parameter  Group   . . . . . . . . 11 

Error  Messages   . . . . . . . . . . . . 12  

End  Collector  (QYPSENDC,  QypsEndCollector)  API  12 

Authorities  and  Locks   . . . . . . . . . . 12  

Required  Parameter  Group   . . . . . . . . 13  

Error  Messages   . . . . . . . . . . . . 13  

Register  Collector  Data  Category  

(QypsRegCollectorDataCategory)  API   . . . . . 14  

Authorities  and  Locks   . . . . . . . . . . 14  

Required  Parameter  Group   . . . . . . . . 14  

Format  of Data  Collection  Program  Attributes  . . 15 

Data  Collection  Program  Attributes  Field  

Descriptions   . . . . . . . . . . . . . 16 

Format  of Java  Options  Array   . . . . . . . 18 

Java  Options  Array  Field  Descriptions   . . . . 18  

Format  of Category  attributes   . . . . . . . 18 

Category  attributes  Field  Descriptions   . . . . 18  

Error  Messages   . . . . . . . . . . . . 19  

Remove  Collector  Notification  

(QypsRmvCollectorNotification)  API   . . . . . . 20 

Authorities  and  Locks   . . . . . . . . . . 20  

Required  Parameter  Group   . . . . . . . . 21  

Error  Messages   . . . . . . . . . . . . 22  

Retrieve  System  Collector  Attributes  (QYPSRSCA,  

QypsRtvSysCollectorAttributes)  API   . . . . . . 23 

Authorities  and  Locks   . . . . . . . . . . 23  

Required  Parameter  Group   . . . . . . . . 24  

Error  Messages   . . . . . . . . . . . . 25  

Start  Collector  (QYPSSTRC,  QypsStartCollector)  API  25 

Authorities  and  Locks   . . . . . . . . . . 26  

Required  Parameter  Group   . . . . . . . . 26  

Error  Messages   . . . . . . . . . . . . 26  

Management  Collection  Object  APIs   . . . . . . 27 

Close  Management  Collection  Object  

(QpmCloseMgtcol)  API   . . . . . . . . . . 27  

Authorities  and Locks   . . . . . . . . . . 28  

Required  Parameter  Group   . . . . . . . . 28 

Error  Messages   . . . . . . . . . . . . 28  

Close  Management  Collection  Object  Repository  

(QpmCloseMgtcolRepo)  API  . . . . . . . . . 29 

Authorities  and Locks   . . . . . . . . . . 29  

Required  Parameter  Group   . . . . . . . . 29 

Error  Messages   . . . . . . . . . . . . 29  

Open  Management  Collection  Object  

(QpmOpenMgtcol)  API   . . . . . . . . . . 30 

Authorities  and Locks   . . . . . . . . . . 30  

Required  Parameter  Group   . . . . . . . . 30 

Error  Messages   . . . . . . . . . . . . 31  

Open  Management  Collection  Object  Repository  

(QpmOpenMgtcolRepo)  API  . . . . . . . . . 32 

Authorities  and Locks   . . . . . . . . . . 32  

Required  Parameter  Group   . . . . . . . . 32 

Error  Messages   . . . . . . . . . . . . 33  

Read  Management  Collection  Object  Data  

(QpmReadMgtcolData)  API   . . . . . . . . . 34 

Authorities  and Locks   . . . . . . . . . . 34  

Required  Parameter  Group   . . . . . . . . 34 

Format  of Read  Options  Parameter   . . . . . 35 

Format  of Record  Information  Parameter   . . . 36 

Field  Descriptions   . . . . . . . . . . . 36 

Usage  Notes   . . . . . . . . . . . . . 37 

Error  Messages   . . . . . . . . . . . . 38  

Retrieve  Active  Management  Collection  Object  

Name  (QpmRtvActiveMgtcolName)  API  . . . . . 38 

Authorities  and Locks   . . . . . . . . . . 38  

Required  Parameter  Group   . . . . . . . . 39 

Error  Messages   . . . . . . . . . . . . 39  

Retrieve  Management  Collection  Object  Attributes  

(QpmRtvMgtcolAttrs)  API   . . . . . . . . . 39 

Authorities  and Locks   . . . . . . . . . . 40  

Required  Parameter  Group   . . . . . . . . 40 

MCOA0100  Format  . . . . . . . . . . . 40 

MCOA0200  Format  . . . . . . . . . . . 41 

Repository  entry  . . . . . . . . . . . . 41  

Collection  period  entry   . . . . . . . . . 42 

Field  Descriptions   . . . . . . . . . . . 42 

Error  Messages   . . . . . . . . . . . . 44  

User-Defined  Transaction  APIs   . . . . . . . . 44  

End  Transaction  (QYPEENDT,  qypeEndTransaction)  

API   . . . . . . . . . . . . . . . . . 45 

Authorities  and Locks   . . . . . . . . . . 46  

Required  Parameter  Group   . . . . . . . . 46 

Usage  Notes   . . . . . . . . . . . . . 47 

Error  Messages   . . . . . . . . . . . . 47  

Start  Transaction  (QYPESTRT, qypeStartTransaction)  

API   . . . . . . . . . . . . . . . . . 48 

Authorities  and Locks   . . . . . . . . . . 48  

 

© Copyright  IBM Corp. 1998, 2005 iii



Required  Parameter  Group   . . . . . . . . 49  

Usage  Notes   . . . . . . . . . . . . . 49 

How  the  data  is collected  . . . . . . . . . 49 

How  to use  collected  data   . . . . . . . . 50 

The  format  of the  QMUDTA  field  of the  

QAYPEMIUSR  file   . . . . . . . . . . . 51  

Error  Messages   . . . . . . . . . . . . 51  

Performance  Collector  APIs   . . . . . . . . . 52 

List  Performance  Data  (QPMLPFRD)  API   . . . . 52 

Authorities  and  Locks   . . . . . . . . . . 54  

Required  Parameter  Group   . . . . . . . . 54  

Format  of the  Generated  List   . . . . . . . 54 

Input  Parameter  Section   . . . . . . . . . 55 

Header  Section   . . . . . . . . . . . . 55 

Field  Descriptions   . . . . . . . . . . . 55 

Job  Format   . . . . . . . . . . . . . 56  

Job  Field  Descriptions   . . . . . . . . . . 58  

Pool  Format   . . . . . . . . . . . . . 61 

Pool  Field  Descriptions   . . . . . . . . . 62 

Disk  Format   . . . . . . . . . . . . . 63  

Disk  Field  Descriptions   . . . . . . . . . 64  

IOP  Format   . . . . . . . . . . . . . 66 

IOP  Field  Descriptions  . . . . . . . . . . 68 

Communications  Data  Formats  . . . . . . . 70 

Asynchronous  Format   . . . . . . . . . . 71 

Asynchronous  Field  Descriptions   . . . . . . 71  

Bisynchronous  Format  . . . . . . . . . . 72 

Bisynchronous  Field  Descriptions   . . . . . . 73 

Token-Ring  Format   . . . . . . . . . . . 74 

Token-Ring  Field  Descriptions   . . . . . . . 76 

Ethernet  Format   . . . . . . . . . . . . 79  

Ethernet  Field  Descriptions   . . . . . . . . 81 

IDLC  Format   . . . . . . . . . . . . . 84 

IDLC  Field  Descriptions   . . . . . . . . . 85 

LAPD  Format   . . . . . . . . . . . . 86  

LAPD  Field  Descriptions   . . . . . . . . . 87 

SDLC  Format  . . . . . . . . . . . . . 89 

SDLC  Field  Descriptions   . . . . . . . . . 89 

X.25  Format   . . . . . . . . . . . . . 91  

X.25  Field  Descriptions   . . . . . . . . . 91  

PPP  Format   . . . . . . . . . . . . . 92 

PPP  Field  Descriptions   . . . . . . . . . 93 

Error  Messages   . . . . . . . . . . . . 94  

Work with  Collector  (QPMWKCOL)  API   . . . . 94 

Authorities  and  Locks   . . . . . . . . . . 96  

Required  Parameter  Group   . . . . . . . . 96  

Usage  Notes   . . . . . . . . . . . . . 97 

Error  Messages   . . . . . . . . . . . . 97  

Performance  Explorer  (PEX)  APIs   . . . . . . . 98  

Add  Trace Point  (QYPEADDT,  qypeAddTracePoint)  

API   . . . . . . . . . . . . . . . . . 99 

Authorities  and  Locks   . . . . . . . . . . 99  

Required  Parameter  Group   . . . . . . . . 99 

Usage  Notes  . . . . . . . . . . . . . 100 

Error  Messages  . . . . . . . . . . . . 101  

Log  Transaction  (QYPELOGT,  qypeLogTransaction)  

API  . . . . . . . . . . . . . . . . . 101 

Authorities  and  Locks   . . . . . . . . . 102  

Required  Parameter  Group  . . . . . . . . 102  

Usage  Notes  . . . . . . . . . . . . . 102 

Error  Messages  . . . . . . . . . . . . 103  

Retrieve  PEX  Information  (QYPERPEX,  

qypeRetrievePexInfo)  API   . . . . . . . . . 103 

Authorities  and  Locks   . . . . . . . . . 104  

Required  Parameter  Group  . . . . . . . . 104  

Header  section   . . . . . . . . . . . . 104 

PEXI0100  Format   . . . . . . . . . . . 105  

PEXI0200  Format   . . . . . . . . . . . 105  

Field  Descriptions   . . . . . . . . . . . 106 

Error  messages:  . . . . . . . . . . . . 108  

IBM  Performance  Management  eServer  iSeries  APIs  108  

End  PM  eServer  iSeries  (Q1PENDPM)  API   . . . 108  

Authorities  and  Locks   . . . . . . . . . 109  

Required  Parameter  Group  . . . . . . . . 109  

Error  Messages  . . . . . . . . . . . . 109  

Retransmit  PM  eServer  iSeries  Data  (Q1PRTRN)  

API  . . . . . . . . . . . . . . . . . 110 

Authorities  and  Locks   . . . . . . . . . 110  

Required  Parameter  Group   . . . . . . . . 110 

Error  Messages   . . . . . . . . . . . . 110  

Start  PM  eServer  iSeries  (Q1PSTRPM)  API  . . . . 111 

Authorities  and  Locks   . . . . . . . . . 111 

Required  Parameter  Group   . . . . . . . . 111 

Error  Messages   . . . . . . . . . . . . 111  

Exit  Programs   . . . . . . . . . . . . . 112 

Collection  Services  Data  Collection  Exit  Program  112 

Required  Parameter  Group   . . . . . . . . 113 

Layout  of Collection  Request  Structure   . . . . 114 

Field  Descriptions   . . . . . . . . . . . 114 

Performance  Monitor  Exit  Program   . . . . . . 116 

Required  Parameter  Group   . . . . . . . . 116 

Error  Messages   . . . . . . . . . . . . 117  

Appendix. Notices  . . . . . . . . . 119 

Trademarks   . . . . . . . . . . . . . . 120 

Terms and  conditions  for downloading  and  

printing  publications   . . . . . . . . . . . 121 

Code  disclaimer  information   . . . . . . . . 122

 

iv iSeries:  Performance  Management  APIs



Performance  Management  APIs  

The  performance  management  APIs  allow  you  to collect  and  manage  performance  data  using  Collection  

Services,  performance  collector,  performance  explorer  (PEX),  and  IBM(R) Performance  Management
   

iSeries(TM) APIs.  

The  performance  management  APIs  include:  

v   “Collection  Services  APIs”  

v   “Performance  Collector  APIs”  on  page  52  

v   “Performance  Explorer  (PEX)  APIs”  on  page  98  

v   “IBM  Performance  Management  eServer  iSeries  APIs”  on  page  108  

For  additional  information,  see  the  Performance  topic.  

 APIs  by category
  

APIs 

These  are  the  APIs  for  this  category.  

Collection Services APIs 

For  information  about  Collection  Services,  see  Collection  Services.  

The  Collection  Services  APIs  include:  

v   “Collector  APIs”  

v   “Management  Collection  Object  APIs”  on  page  27  

v   “User-Defined  Transaction  APIs”  on  page  44  

The  Collection  Services  exit  program  is:  

v   “Collection  Services  Data  Collection  Exit  Program”  on  page  112 is called  by  Collection  Services  to  

collect  performance  data  for  a user-defined  performance  category.

  Top | “Performance  Management  APIs”  | APIs  by category
  

Collector APIs 

The  collector  APIs  provide  services  to  manage  collections.  These  APIs:  

v   Start,  end,  and  cycle  collections  

v   Change  and  retrieve  system  parameters  for  the  data  collected  

v   Register  and  deregister  a user-defined  data  category  

v   Add  and  remove  collector  notification  

The  collector  APIs  include:  

v   “Add  Collector  Notification  (QypsAddCollectorNotification)  API”  on  page  3 

(QypsAddCollectorNotification)  registers  with  a collector  to  provide  notifications  to  a specified  data  

queue  for  a collection  event.  

 

© Copyright  IBM Corp. 1998, 2005 1

aplist.htm
#TOP_OF_PAGE
aplist.htm


v   “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on  page  7 

(QYPSCSCA,  QypsChgSysCollectorAttributes)  changes  system  collection  attributes.  System  attributes  

provide  the  default  values  for  each  collector.  These  include  the  collection  interval  in  seconds,  the  

library  where  the  data  is to  be  stored,  the  retention  period  for  data,  the  cycle  time,  the  cycle  interval,  

the  companion  job  flag,  and  the  name  of  the  default  collection  definition.  

v   “Cycle  Collector  (QYPSCYCC,  QypsCycleCollector)  API”  on  page  10  (QYPSCYCC,  QypsCycleCollector)  

closes  current  collection  objects  and  opens  new  collection  objects.  

v   “Deregister  Collector  Data  Category  (QypsDeregCollectorDataCategory)  API”  on  page  11 

(QypsDeregCollectorDataCategory)  removes  a user-defined  data  category  from  the  Collection  Services  

function  of  Management  Central.  

v   “End  Collector  (QYPSENDC,  QypsEndCollector)  API”  on  page  12  (QYPSENDC,  QypsEndCollector)  

ends  a specified  collector.  

v   “Register  Collector  Data  Category  (QypsRegCollectorDataCategory)  API”  on  page  14  

(QypsRegCollectorDataCategory)  adds  a user-defined  data  category  to one  or  more  collector  definitions  

of  the  Collection  Services  function  of Management  Central.  

v   “Remove  Collector  Notification  (QypsRmvCollectorNotification)  API”  on  page  20  

(QypsRmvCollectorNotification)  removes  a notification  registration  from  a collector.  

v   “Retrieve  System  Collector  Attributes  (QYPSRSCA,  QypsRtvSysCollectorAttributes)  API”  on  page  23 

(QYPSRSCA,  QypsRtvSysCollectorAttributes)  retrieves  system  collection  attributes.  These  include  the  

collection  interval  in  seconds,  the  library  where  the  data  is to be  stored,  the  retention  period  for  data,  

the  cycle  time,  the  cycle  interval,  the  companion  job  flag,  the  name  of  the  default  collection  definition,  

and  the  currently  running  collection  definition,  if any.  

v   “Start  Collector  (QYPSSTRC,  QypsStartCollector)  API”  on  page  25  (QYPSSTRC,  QypsStartCollector)  

starts  a specified  collector.  

  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

2 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm


Add Collector Notification (QypsAddCollectorNotification) API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

I Char(10)  

2 Qualified  data  queue  name  

I Char(20)  

3 Notification  type  

I Binary(4)  

4 Category  list  

I Array  of Char(10)  

5 Category  count  

I Binary(4)  

6 Error  Code  

I/O  Char(*)

 

 Service  Program  Name:  QYPSCOLL  

 

 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  Yes
  

The  Add  Collector  Notification  (QypsAddCollectorNotification)  API  registers  with  a collector  to  provide  

notifications  to  a specified  data  queue  for  a collection  event.  A  collection  event  occurs  when:  

v   The  collector  cycle  interval  is reached.  

v   The  collector  is  ended.  

v   The  default  data  collection  interval  is  reached.  

When  a collector  is  ended,  notifications  are  removed.  When  a collector  is started,  no  notifications  are  

registered.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

Data  Queue  Authority  

*CHANGE

Library  Authority  

*EXECUTE

Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 

Performance  Management  APIs 3



The  name  of  the  collector  that  is adding  a notification.  One  of  these  special  values  must  be  used:  

 *PFR  Performance  Collector
  

Qualified  data  queue  name  

INPUT;  CHAR(20)  

 The  data  queue  used  to  send  the  event  notification.  The  first  ten  characters  contain  the  data  

queue  name,  and  the  second  ten  characters  contain  the  data  queue  library  name.  The  data  queue  

must  already  exist,  and  the  user  profile  running  the  API  must  have  *CHANGE  authority  to  it. 

You can  use  these  special  values  for  the  library  name:  

 *CURLIB  The  job’s  current  library.  

*LIBL  The  library  list.
  

Notification  type  

INPUT;  BINARY(4)  

 Notification  is to  be  sent  to  the  specified  data  queue  when  one  of these  events  occur:  

 0 Collector  - notify  when  a cycle,  end,  or interval  event  occurs.  

1 Cycle  - notify  when  the  collection  cycle  interval  occurs.  

2 End  - notify  when  the  collection  is ended.  

3 Interval  - notify  when  the  collection  interval  occurs.  

4 Category  - notify  when  the  category  interval  occurs.
  

For  more  information  on  the  format  of  the  notification  record,  see  “Notification  Record  Format”  

on  page  5.  

Category  list  

INPUT;  ARRAY  OF  CHAR(10)  

 List  of  category  names,  for  which  notification  is to be  sent.  This  field  is only  applicable  when  

Notification  type  is  set  to  category  notification  (4).  Category  name  can  be  a system-defined  

category  name  or  a user-defined  category  name.  

System-defined  category  name  

A  10  character  name  of  a system-defined  category.  For  the  *PFR  collector  system-defined  

categories  are:  

   

v   *APPN  

v   *CMNBASE  

v   *CMNSAP  

v   *CMNSTN  

v   *DISK  

v   *HDWCFG  

v   *IOPBASE  

v   *IPCS  

v   *JOBMI  

v   *JOBOS  

v   *LCLRSP  

v   *POOL  

v   *POOLTUNE  

v   *SNA  

 

4 iSeries:  Performance  Management  APIs



v   *SNADS  

v   *SUBSYSTEM  

v   *SYSBUS  

v   *SYSCPU  

v   *SYSLVL  

v   *TCPBASE  

v   *TCPIFC  

v   *USRTNS

Registered  user-defined  category  name  

A 10  character  name  of a user-defined  category  registered  by  the  Register  Collector  Data  Category  

(QypsRegCollectorDataCategory)  API.

Category  count  

INPUT;  BINARY(4)  

 The  number  of  categories  entered  in input  field  Category  list.  This  field  is only  applicable  when  

Notification  type  is  set  to  category  notification  (4).  Category  count  must  have  a value  of  ’0’  when  

Notification  type  is  not  a category  notification  (4).  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Usage Notes 

An  application  uses  the  Add  Collector  Notification  (QypsAddCollectorNotification)  API  to start  receiving  

notifications  about  collector  events.  The  collector  sends  notifications  using  the  data  queue.  The  

application  program  has  to  create  a data  queue  and  pass  the  qualified  name  of  this  data  queue  to  the  

Add  Collector  Notification  (QypsAddCollectorNotification)  API.  The  collector  sends  notification  messages  

or  records  to  the  specified  data  queue.  The  format  of the  notification  records  is shown  below.  The  

application  program  is  responsible  for  reading  and  removing  entries  from  the  data  queue.  

When  the  application  no  longer  needs  to  receive  notifications  from  the  collector,  it uses  the  Remove  

Collector  Notification  (QypsRmvCollectorNotification)  API.  

The  application  is  responsible  for  cleaning  up  the  data  queue.  

Notification Record Format 

For  detailed  descriptions  of the  fields  in  this  table,  see  “Notification  Record  Field  Descriptions”  on page  

6.  

 Offset  

Type Field  Dec  Hex  

0 0 Char(10)  Entry  type  

10 A Char(2)  Entry  identifier  

12 C Char(10)  Collection  object  name  

22 16 Char(10)  Library  name  

32 20 Char(8)  Sequence  identifier  

40 28 Char(10)  Category  

50 32 Char(40)  Reserved

 

Performance  Management  APIs 5

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Notification Record Field Descriptions 

Category    The  category  associated  with  the  notification.  This  field  is only  applicable  when  the  

notification  event  specified  in  Entry  identifier  is set  to category  notification  (’04’).  

Collection  object  name    The  name  of  the  collection  object  where  any  data  collected  was  placed.  This  

name  is generated  when  the  collector  starts  , and  is of the  form  QDDDHHMMSS.  

Entry  identifier    The  notification  event  that  occurred.  Values  are:  

 ’01’  Cycle  - a collection  cycle  interval  occurred.  

’02’  End  - a collection  has  ended.  

’03’  Interval  - a collection  interval  occurred.  

’04’  Category  - a category  collection  interval  occurred.
  

Entry  type    The  type  of this  data  queue  entry.  Set  to  value  ’*COLNOT  ’. 

Library  name    The  name  of  the  library  containing  the  collection  object  for  which  the  event  occurred.  

Reserved    This  space  is  reserved  for  possible  future  use.  

Sequence  identifier    A  unique  identifier  assigned  to  this  collection  event.  Its  format  is based  on  the  

time  since  the  collector  was  started  in the  format  DDHHMMSS  , where  00000000  represents  the  time  the  

collector  was  started.  

Error Messages 

 Message  ID  Error  Message  Text  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3C3C  E Value for parameter  &1  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPF9801  E Object  &2 in library  &3 not  found.  

CPF9802  E Not  authorized  to object  &2  in &3.  

CPF9810  E Library  &1  not  found.  

CPF9820  E Not  authorized  to use  library  &1.  

CPFB94A  E Collector  communications  error.  Reason  code  &1.
  

Introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

6 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm


Change System Collector Attributes (QYPSCSCA, 

QypsChgSysCollectorAttributes)  API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

Input  Char(10)  

2 Default  collection  interval  

Input  Binary(4)  

3 Library  

Input  Char(10)  

4 Retention  period  

Input  Binary(4)  

5 Cycle  time  

Input  Binary(4)  

6 Cycle  interval  

Input  Binary(4)  

7 Companion  user  job  flag  

Input  Binary(4)  

8 Default  collector  definition  

Input  Char(10)  

9 Error  code  

I/O  Char(*)
 Default  Public  Authority:  *USE  

 

 Service  program:  QYPSCOLL  

 

 Threadsafe:  No
  

The  Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API  changes  

system  or  global  collection  attributes.  Attributes  consist  of  the  default  collection  interval  in  seconds,  the  

library  used  to  store  the  collection  data,  the  retention  period  for  the  data,  the  time  the  initial  cycle  is to  

occur,  the  interval  between  cycles,  whether  a companion  job  is to  be  started,  and  the  default  collector  

definition.  If appropriate,  system  collector  attributes  changed  while  a collector  is  running  will  take  effect  

immediately.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Job  Authority  

*JOBCTL  

Library  Authority  

*EXECUTE

 

Performance  Management  APIs 7



Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  whose  default  values  are  to  be  altered.  The  special  value  is:  

 *PFR  Performance  collector
  

Default  collection  interval  

INPUT;  BINARY(4)  

 The  default  interval  to  use  when  collecting  data  for  a category  in  seconds.  This  may  be  specified  

as  15,  30,  60,  300,  900,  1800,  or  3600  seconds.  Changes  take  effect  immediately.  The  following  

special  values  are  allowed:  

 0 Do  not  collect  on  interval  

-2 No  change
  

Library  

INPUT;  CHAR(10)  

 The  name  of  the  library  used  to  store  the  collection  data.  Changes  take  effect  when  the  collector  

starts  or  cycles.  The  following  special  values  are  allowed:  

 *CURLIB  Current  library  of the  job  calling  the  API  

*SAME  No  change
  

Retention  period  

INPUT;  BINARY(4)  

 The  retention  period  is  used  to  determine  how  long  collection  data  is to exist.  Collection  data  

older  than  the  retention  period  is deleted.  The  retention  period  is specified  in  hours.  Changes  

take  effect  immediately.  The  value  specified  must  be  between  1 and  720  hours,  or  one  of  the  

following  special  values:  

 0 Permanent  

-2 No  change
  

Cycle  time  

INPUT;  BINARY(4)  

 The  time  at  which  the  first  cycle  is to  occur. The  cycle  time  is  specified  in  minutes  past  midnight.  

The  maximum  allowed  value  is  1439  minutes,  which  is  one  minute  less  than  24  hours.  Changes  

take  effect  immediately.  The  following  special  value  is allowed:  

 -2 No  change
  

Cycle  interval  

INPUT;  BINARY(4)  

 The  lapse  time  between  cycles.  The  cycle  time  is specified  in  hours,  and  can  range  from  a 

minimum  value  of  one  hour  to  a maximum  value  of  24  hours.  Changes  take  effect  immediately.  

The  following  special  value  is allowed:  

 -2 No  change
  

Companion  user  job  flag  

INPUT;  BINARY(4)  

 

8 iSeries:  Performance  Management  APIs



Whether  to  start  a job  to  run in  concert  with  the  collector.  Changes  take  effect  when  the  collector  

is started.  The  possible  special  values  are:  

 -2 No  change.  

0 No  companion  user  job  is started.  

1 A companion  user  job  is started.  (For  the  *PFR  collector, this is the  database  transfer  job 

CRTPFRDTA.)
  

Default  collector  definition  

INPUT;  CHAR(10)  

 The  name  of  the  collector  definition  to run. Changes  take  effect  when  the  collector  is started  or  

cycled.  The  possible  special  values  are:  

 *CURRENT
*CUSTOM
*MINIMUM
*ENHCPCPLN
*SAME
*STANDARD
*STANDARDP  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF222E  E &1  special  authority  is required.  

CPF3C1E  E Required  parameter  &1  omitted.  

CPF3C3C  E Value for  parameter  &1  is not  valid.  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3CF2  E Errors  occurred  during  running  of &1 API.  

CPF9810  E Library  &1  not  found.  

CPF9820  E Not  authorized  to use  library  &1.
  

API  introduced:  V4R4  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 9

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm


Cycle Collector (QYPSCYCC, QypsCycleCollector) API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

Input  Char(10)  

2 Error  code  

I/O  Char(*)
 Default  Public  Authority:  *USE  

 

 Service  program:  QYPSCOLL  

 

 Threadsafe:  No
  

The  Cycle  Collector  (QYPSCYCC,  QypsCycleCollector)  API  closes  current  collection  objects  and  begins  

writing  collection  data  to  new  collection  objects.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Job  Authority  

*JOBCTL

Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  to  be  cycled.  The  special  value  is:  

 *PFR  Performance  collector
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID  Error  Message  Text  

CPF222E  E &1 special  authority  is required.  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3C3C  E Value for parameter  &1  is not  valid.  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3CF2  E Errors  occurred  during  running  of &1  API.  

CPFB94A  E Collector  communications  error.  Reason  code  &1.
  

API  introduced:  V4R4  

 

10 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD


“Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Deregister Collector Data Category (QypsDeregCollectorDataCategory)  

API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

I Char(10)  

2 Category  name  

I Char(10)  

3 Error  Code  

I/O  Char(*)
 Service  Program  Name:  QYPSCOLL  

 

 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  Yes
  

The  Deregister  Collector  Data  Category  (QypsDeregCollectorDataCategory)  API  removes  a user-defined  

data  category  from  the  Collection  Services  function  of  Management  Central.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  where  the  category  will  be  removed.  The  only  currently  supported  

special  value  is:  

 *PFR  Performance  Collector
  

Category  name  

INPUT;  CHAR(10)  

 The  unique  name  of  the  user-defined  data  category.  Category  name  must  be  a valid  *NAME  

(basic  name)  and  all  uppercase.  See  ELEM  (Element)  Statement  in CL  Reference  for  more  

information  about  *NAME.  Names  of  user-defined  data  categories  registered  by  IBM  products  

start  with  ″Q″.  Non-IBM  applications  are  discouraged  from  prefixing  names  of user-defined  

categories  with  ″Q″.  

Error  code  

I/O;  CHAR(*)  

 

Performance  Management  APIs 11

aplist.htm


The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID  Error  Message  Text  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF222E  E &1 special  authority  is required.  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3C3C  E Value for parameter  &1  not  valid.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPFB94E  E Category  name  &1  does  not  exist.
  

Introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

End Collector (QYPSENDC, QypsEndCollector) API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

Input  Char(10)  

2 Error  code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Service  program:  QYPSCOLL  

 

 Threadsafe:  No
  

The  End  Collector  (QYPSENDC,QypsEndCollector)  API  ends  the  data  collection  associated  with  the  

current  collection  definition  of  the  specified  collector.  This  may  also  end  the  collector  job  if there  are  no  

other  data  requests  to  process.  

The  *PFR  collector  can  also  process  data  requests  from  the  Management  Central  monitors  and  

applications  that  are  collecting  performance  data  with  the  performance  collector  APIs  (QPMWKCOL  and  

QPMLPFRD).  

Note:  The  QPMASERV  and  QPMACLCT  jobs  will  be  active  if the  performance  collector  APIs  are  in  use.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Job  Authority  

*JOBCTL

 

12 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  to  be  ended.  The  special  value  is: 

 *PFR  Performance  collector  job QYPSPFRCOL
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF222E  E &1  special  authority  is required.  

CPF3C1E  E Required  parameter  &1  omitted.  

CPF3C3C  E Value for  parameter  &1  is not  valid.  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3CF2  E Errors  occurred  during  running  of &1 API.  

CPFB94A  E Collector  communications  error.  Reason  code  &1.
  

API  introduced:  V4R4  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 13

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm


Register Collector Data Category (QypsRegCollectorDataCategory)  API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

I Char(10)  

2 Category  name  

I Char(10)  

3 Collector  definition  

I Char(10)  

4 CCSID  

I Binary(4)  

5 Data  collection  program  attributes  

I Char(*)  

6 Category  attributes  

I Char(*)  

7 Error  Code  

I/O  Char(*)
 Service  Program  Name:  QYPSCOLL  

 

 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  Yes
  

The  Register  Collector  Data  Category  (QypsRegCollectorDataCategory)  API  adds  a user-defined  data  

category  to  one  or  more  collector  definitions  of the  Collection  Services  function  of  Management  Central.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

 API  caller  must  have  at  least  *USE  authority  to  the  user  profile  specified  in  the  Data  collection  program  

attributes  parameter.  

The  user  profile  specified  in  the  Data  collection  program  attributes  parameter  must  have  at least  *USE  

authority  to  the  specified  job  description.  

Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  where  the  user-defined  data  category  will  be  added.  The  only  currently  

supported  value  is: 

 *PFR  Performance  Collector
 

 

14 iSeries:  Performance  Management  APIs



Category  name  

INPUT;  CHAR(10)  

 The  unique  name  of  the  user-defined  data  category.  The  category  name  must  be  a valid  *NAME  

(basic  name)  and  all  uppercase.  See  ELEM  (Element)  Statement  in CL  Reference  for  more  

information  about  *NAME.  Names  of  user-defined  data  categories  registered  by  IBM  products  

start  with  ″Q″.  Non-IBM  applications  are  discouraged  from  prefixing  names  of user-defined  

categories  with  ″Q″.  

Collector  definition  

INPUT;  CHAR(10)  

 The  collector  definition  that  the  user-defined  data  category  will  be  added  to.  Only  one  collector  

definition  may  be  specified.  Specifying  *STANDARD  registers  the  category  to  the  *STANDARD,  

*STANDARDP  and  *CUSTOM  definitions.  Specifying  *STANDARDP  registers  the  category  to the  

*STANDARDP  and  *CUSTOM  definitions.  Specifying  *CUSTOM  registers  the  category  to  the  

*CUSTOM  definition  only.  The  possible  values  are:  

v   *CUSTOM  

v   *STANDARD  

v   *STANDARDP

CCSID  

INPUT;  BINARY(4)  

 The  coded  character  set  identifier  (CCSID)  for  the  user-defined  data  category.  Refer  to  specific  

field  descriptions  to  determine  where  the  CCSID  is applicable.  The  CCSID  will  be  validated  by  

the  API.  The  default  value  is 0. 

 0 Use  the  current  job  default  CCSID.  

CCSID  A valid  CCSID  number.  The  valid  range  for this  parameter  is 1 through  65533.
  

Data  collection  program  attributes  

INPUT;  CHAR(*)  

 The  attributes  of  the  data  collection  program  associated  with  the  category.  For  more  information  

on  the  format  of  the  attributes,  see  “Format  of  Data  Collection  Program  Attributes.”  

Category  attributes  

INPUT;  CHAR(*)  

   

 Additional  attributes  associated  with  the  category.  For  more  information  on  the  format  of  the  

category  attributes,  see  “Format  of Category  attributes”  on  page  18.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Format of Data Collection Program Attributes 

For  detailed  descriptions  of the  fields  in  this  table,  see  “Data  Collection  Program  Attributes  Field  

Descriptions”  on  page  16.  

 Offset  

Type Field  Dec  Hex  

0 0 Binary(4)  Size  of fixed  portion  of attributes  

4 4 Char(10)  Program  type  

 

Performance  Management  APIs 15

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Offset  

Type Field  Dec  Hex  

14  E Char(8)  Parameter  format  

22  16 Char(10)  User  profile  

32  20 Char(20)  Qualified  job  description  name  

52  34 Char(20)  Qualified  (service)  program  name  

72  48 Binary(4)  Size  of work  area  

76  4C  Binary(4)  Offset  to service  program  entry  point  name  

80  50 Binary(4)  Length  of service  program  entry  point  name  

84  54 Binary(4)  Offset  to Java  class  name  

88  58 Binary(4)  Length  of Java  class  name  

92  5C  Binary(4)  Offset  to Java  class  path  

96  60 Binary(4)  Length  of Java  class  path  

100  64 Binary(4)  Offset  to category  parameter  string  

104  68 Binary(4)  Length  of category  parameter  string  

108  6C  Binary(4)  Offset  to Java  options  array  

112 70 Binary(4)  Number  of entries  in Java  options  array  

116 74 Binary(4)  Reserved
  

  

Data Collection Program Attributes Field Descriptions 

Overview  of  Offset/Length  usage  of  variable  length  character  data    The  variable  length  character  data  

will  follow  the  fixed  portion  of  the  Data  collection  program  attributes  structure  and  reside  with  the  same  

address  space.  The  offset  to  the  variable  length  character  data  specified  in the  fixed  portion  of the  

structure  is the  offset  in  bytes  from  the  beginning  of  the  attribute  structure  to the  first  byte  of  the  

character  data.  

Length  of  category  parameter  string    The  length  of the  string  passed  in  for  the  category  parameter  

string.  If 0 is specified  then  the  null  parameter  string  will  be  passed  to the  data  collection  program.  

Length  of  Java  class  name    The  length  of  the  string  passed  in  for  the  Java  class  name.  This  parameter  

must  be  set  to  0 if Program  type  is  not  *JVAPGM.  

Length  of  Java  class  path    The  length  of  the  string  passed  in for  the  Java  class  path.  This  parameter  

must  be  set  to  0 if Program  type  is  not  *JVAPGM.  

Length  of  service  program  entry  point  name    The  length  of the  string  passed  in for  the  service  

program  entry  point  name.  This  parameter  must  be  set  to  0 if Program  type  is not  *SRVPGM.  

Number  of  entries  in  Java  Options  Array    The  number  of entries  in  the  Java  Options  Array  (see  

Format  of  Java  Options  Array  below).  If set  to 0, no  options  will  be  passed  to the  Java  Virtual  Machine  

(JVM).  This  parameter  must  be  set  to  0 if Program  type  is not  *JVAPGM.  

Offset  to  category  parameter  string    The  offset  of the  string  passed  in  for  the  category  parameter  string.  

The  category  parameter  string  is a character  string  which  is passed  to the  data  collection  program  to 

customize  its  processing.  The  category  parameter  string  must  contain  character  data.  The  CCSID  is 

applicable  to  the  category  parameter  string.  If 0 is specified  then  a null  parameter  string  will  be  passed  to 

the  data  collection  program.  

 

16 iSeries:  Performance  Management  APIs



Offset  to  Java  class  name    The  offset  in  bytes  to  the  string  passed  in  for  the  Java  class  name.  This  

parameter  must  be  set  to  0 if Program  type  is not  *JVAPGM.  The  Java  class  name  is the  name  of a Java  

class  which  implements  the  data  collection  program  interface  for  this  category.  Refer  to  the  Java  section  of  

the  iSeries  Information  Center  for  more  information  on  Java  class  name  format.  The  CCSID  is  applicable  

to  the  Java  class  name.  

Offset  to  Java  class  path    The  offset  in  bytes  to  the  string  passed  in  for  the  Java  class  path.  This  

parameter  must  be  set  to  0 if Program  type  is not  *JVAPGM.  Refer  to  the  Java  section  of  the  iSeries  

Information  Center  for  more  information  on  the  Java  class  path  format.  The  CCSID  is  applicable  to  the  

Java  class  path.  

Offset  to  Java  options  array    The  offset  of the  Java  Options  Array  (see  Format  of Java  Options  Array  

below).  The  Java  Options  Array  is an  array  of  options  passed  to  the  JVM.  If the  offset  is set  to  0, no  

options  will  be  passed  to  the  JVM.  This  parameter  must  be  set  to  0 if Program  type  is  not  *JVAPGM.  All  

options  are  character  strings  and  the  CCSID  is applicable  to them.  

Offset  to  service  program  entry  point  name    The  offset  in  bytes  to  the  string  passed  in  for  the  service  

program  entry  point  name.  This  parameter  must  be  set  to  0 if Program  type  is not  *SRVPGM.  The  service  

program  entry  point  name  is  the  name  of an  entry  point  in  a service  program  which  implements  the  data  

collection  program  for  this  category.  

Parameter  format    This  field  defines  the  format  of the  parameters  passed  to  the  data  collection  program  

when  it is called  by  Collection  Services  to  collect  data  for  the  category.  The  only  format  currently  

supported  is PMDC0100.  

Qualified  job  description  name    The  job  description  which  will  be  used  by  the  Collection  Services  

secondary  job  to  run the  data  collection  program.  The  first  10  characters  contain  the  job  description  name  

and  the  next  10  characters  contain  the  library  name.  The  following  special  values  can  be  used  for  the  job  

description  name:  

 *JOB  Use  the  job  description  associated  with  the  current  job. The  specified  library  parameter  is ignored  

and  must  be filled  with  blank  spaces  or hex  zeros.  

*USER  Use  the  job  description  associated  with  the  current  user.  The  specified  library  parameter  is ignored  

and  must  be filled  with  blank  spaces  or hex  zeros.
  

The  following  special  values  can  be  used  for  the  library  name:  

 *CURLIB  The  current  library  of the  job executing  this  API.  

*LIBL  Search  the  library  list  to find  the specified  job  description.
  

Qualified  (service)  program  name    The  qualified  name  of  a program  object  if Program  type  is *PGM  or  

the  qualified  name  of  a service  program  object  if Program  type  is *SRVPGM.  The  first  10  characters  

contain  the  program  or  service  program  name  and  the  next  10  characters  contain  the  library  name.  This  

parameter  must  be  set  to  0 if Program  type  is *JVAPGM.  

Size  of  fixed  portion  of  attributes    The  size  in bytes  of  the  fixed  portion  of  the  Data  collection  program  

attribute  structure.  

Size  of  work  area    The  size  in  bytes  of  a work  area  Collection  Services  will  provide  to  the  data  

collection  program  to  save  state  information  between  the  calls.  This  parameter  must  be  set  to 0 if 

Program  type  is  *JVAPGM.  

User  profile    User  profile  which  will  be  used  by  Collection  Services  to run the  data  collection  program.  

The  API  caller  must  have  at  least  *USE  authority  to this  user  profile.

 

Performance  Management  APIs 17



Format of Java Options Array 

For  detailed  descriptions  of  the  fields  in  this  table,  see  “Java  Options  Array  Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 Binary(4)  Offset  to Java  option  1 

4 4 Binary(4)  Length  of Java  option  1 

8 8 Binary(4)  Offset  to Java  option  2 

12  C Binary(4)  Length  of Java  option  2 

    ...   

    Char(*)  Java  option  1 

    Char(*)  Java  option  2
  

The  Java  options  array  contains  an  array  of  option  settings  which  will  be  passed  to the  Java  Virtual  

Machine  (JVM)  at  Java  initialization  time.  The  number  of elements  in  this  array  is determined  by  the  

Number  of entries  in  Java  options  array  field  in the  Data  collection  program  attributes  structure.  This  

array  is optional  and  is ignored  when  Program  type  is not  *JVAPGM.  

Java  options  are  not  validated  and  are  passed  to  the  JVM  exactly  as  specified  for  the  Registration  API.  

Java Options Array Field Descriptions 

Length  of  Java  option  N   

The  length  in  bytes  of  the  string  passed  in  for  the  Nth  Java  option.  

Offset  to  Java  option  N    

The  offset  in  bytes  from  the  beginning  of the  Java  Options  Array  to the  string  passed  in  for  the  Nth  Java  

option.  All  Java  options  are  character  strings  and  the  CCSID  applies  to them.  

Format of Category attributes 

For  detailed  descriptions  of  the  fields  in  this  table,  see  “Category  attributes  Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 Binary(4)  Size  of attribute  structure  

4 4 Binary(4)  Minimum  collection  interval  

8 8 Binary(4)  Maximum  collection  interval  

12  C Binary(4)  Default  collection  interval  

16  10 Char(27)  Qualified  message  file  and  message  identifier  

43  2B Char(50)  Text description  

93  5D  Char(3)  Reserved
  

  

Category attributes Field Descriptions 

Default  collection  interval    

 

18 iSeries:  Performance  Management  APIs



The  default  interval  to  use  when  collecting  data  for  a category  in  seconds.  This  may  be  specified  as  one  

of  15,  30,  60,  300,  900,  1800,  or  3600  seconds.  The  following  special  value  is allowed:  

 0 Use  the  collector  definition  of the collector  that  the category  is registered  to.
  

Minimum  collection  interval     

The  minimum  interval  this  user-defined  data  category  should  be  collected  at.  In other  words,  this  

represents  the  smallest  interval  of  data  collection.  This  may  be  specified  as  one  of 15,  30,  60,  300,  900,  

1800,  or  3600  seconds.  Specifying  0 represents  no  restriction  on  the  minimum  collection  interval.  

Maximum  collection  interval    

The  maximum  interval  this  user-defined  data  category  should  be  collected  at.  In other  words,  this  

represents  the  largest  interval  of  data  collection.  This  may  be  specified  as  one  of  15,  30,  60,  300,  900,  1800,  

or  3600  seconds.  Specifying  0 represents  no  restriction  on  the  maximum  collection  interval.  

Qualified  message  file  and  message  identifier    

The  qualified  message  file  and  message  identifier  of the  text  description  of  the  category.  The  first  10  

characters  contain  the  message  file  name,  the  next  10  characters  contain  the  library  name  of  the  message  

file,  and  the  final  7 characters  contain  the  message  identifier.  If  the  text  description  is specified  as a 

character  string  (in  Text description  field),  this  field  should  be  set  to  all  blanks  or hex  zeros.  The  possible  

values  for  the  library  are:  

 *LIBL  Search  the  library  list  for  the  first  occurrence  of the message  file.  

Library  name  The  name  of the  library  the  message  file  resides  in.
  

Size  of  attribute  structure    

The  size  in  bytes  of  the  category  attribute  structure.  

Text  description    

The  text  description  associated  with  the  category.  The  supplied  CCSID  will  be  applied  to  the  text  

description.  This  parameter  is  ignored  and  must  be  filled  with  blank  spaces  or  hex  zeros  if a qualified  

message  file  and  message  identifier  has  been  specified.  

Error Messages 

 Message  ID Error  Message  Text  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF222E  E &1  special  authority  is required.  

CPF3C1E  E Required  parameter  &1  omitted.  

CPF3C3C  E Value for  parameter  &1  not  valid.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPF9802  E Not  authorized  to object  &2 in &3. 

CPF9810  E Library  &1  not  found.  

CPF9820  E Not  authorized  to use  library  &1. 

CPFB537  E Error  found  in parameter  &1  at offset  &2. 

CPFB538  E Error  found  in parameter  &1  at offset  &2. 

CPFB94C  E Collection  interval  value  must  be one  of 15, 30, 60, 300,  900,  1800,  or 3600  seconds.  

CPFB94D  E Category  name  &1  aleady  exists.
 

 

Performance  Management  APIs 19



Introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

Remove Collector Notification (QypsRmvCollectorNotification)  API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

I Char(10)  

2 Qualified  data  queue  name  

I Char(20)  

3 Notification  type  

I Binary(4)  

4 Category  list  

I Array  of Char(10)  

5 Category  count  

I Binary(4)  

6 Error  Code  

I/O  Char(*)
 Service  Program  Name:  QYPSCOLL  

 

 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  Yes
  

The  Remove  Collector  Notification  (QypsRmvCollectorNotification)  API  removes  a notification  

registration  from  a collector  for  a specified  data  queue  and  collection  event.  A collection  event  occurs  

when:  

v   The  collector  cycle  interval  is  reached.  

v   The  collector  is  ended  or  stopped.  

v   The  default  data  collection  interval  is reached.  

v   The  category  data  collection  interval  is reached.

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

Data  Queue  Authority  

*CHANGE

Library  Authority  

*EXECUTE

 

20 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm


Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  that  is removing  notification.  One  of  these  special  values  must  be used:  

 *PFR  Performance  Collector
  

Qualified  data  queue  name  

INPUT;  CHAR(20)  

 The  data  queue  from  which  the  notification  is to be  removed.  The  first  ten  characters  contain  the  

data  queue  name,  and  the  second  ten  characters  contain  the  data  queue  library  name.  The  data  

queue  must  already  exist.  You can  use  these  special  values  for  the  library  name:  

 *CURLIB  The  job’s  current  library.  

*LIBL  The  library  list.
  

Notification  type  

INPUT;  BINARY(4)  

 The  type  of  event  notification  to  remove:  

 0 Collector  - remove  the  cycle,  end,  and  interval  notifications.  

1 Cycle  - remove  the  collection  cycle  event  notification.  

2 End  - remove  notification  of the end  event.  

3 Interval  - remove  notification  of the  default  collection  interval  event.  

4 Category  - remove  notification  for  the  category  event.
  

Category  list  

INPUT;  ARRAY  OF  CHAR(10)  

 List  of  category  names,  for  which  notification  is to  be  removed.  This  field  is only  applicable  when  

Notification  type  is  set  to  category  notification  (4).  Category  name  can  be  a system-defined  

category  name  or  a user-defined  category  name.  

System-defined  category  name  

A 10  character  name  of a system-defined  category.  For  the  *PFR  collector  system-defined  

categories  are:  

   

v   *APPN  

v   *CMNBASE  

v   *CMNSAP  

v   *CMNSTN  

v   *DISK  

v   *HDWCFG  

v   *IOPBASE  

v   *IPCS  

v   *JOBMI  

v   *JOBOS  

v   *LCLRSP  

v   *POOL  

v   *POOLTUNE  

 

Performance  Management  APIs 21



v   *SNA  

v   *SNADS  

v   *SUBSYSTEM  

v   *SYSBUS  

v   *SYSCPU  

v   *SYSLVL  

v   *TCPBASE  

v   *TCPIFC  

v   *USRTNS

Registered  user-defined  category  name  

A  10  character  name  of  a user-defined  category  registered  by  the  Register  Collector  Data  Category  

(QypsRegCollectorDataCategory)  API.

Category  count  

INPUT;  BINARY(4)  

 The  number  of  categories  entered  in  input  field  Category  list.  This  field  is only  applicable  when  

Notification  type  is  set  to  category  notification  (4).  Category  count  must  have  a value  of ’0’  when  

Notification  type  is  not  a category  notification  (4).  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID  Error  Message  Text  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3C3C  E Value for parameter  &1  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPF9802  E Not  authorized  to object  &2  in &3.  

CPF9820  E Not  authorized  to use  library  &1.  

CPFB94A  E Collector  communications  error.  Reason  code  &1.
  

  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

22 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Retrieve System Collector Attributes (QYPSRSCA, 

QypsRtvSysCollectorAttributes)  API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

Input  Char(10)  

2 Default  collection  interval  

Output  Binary(4)  

3 Library  

Output  Char(10)  

4 Retention  period  

Output  Binary(4)  

5 Cycle  time  

Output  Binary(4)  

6 Cycle  interval  

Output  Binary(4)  

7 Companion  user  job  

Output  Binary(4)  

8 Default  collector  definition  

Output  Char(10)  

9 Current  collector  definition  

Output  Char(10)  

10 Error  code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Service  program:  QYPSCOLL  

 

 Threadsafe:  No
  

The  Retrieve  System  Collector  Attributes  (QYPSRSCA,  QypsRtvSysCollectorAttributes)  API  retrieves  

system  or  global  collection  attributes.  Attributes  consist  of  the  default  collector  state,  the  default  collection  

interval  in seconds,  the  library  used  to  store  the  collection  data,  the  retention  period  for  the  data,  the  time  

the  initial  cycle  is  to  occur,  the  interval  between  cycles,  the  companion  user  job  flag,  the  default  collection  

definition,  and  the  currently  running  collection  definition.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

 

Performance  Management  APIs 23



Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  whose  default  values  are  to  be  retrieved.  The  special  value  is:  

 *PFR  Performance  collector
  

Default  collection  interval  

OUTPUT;  BINARY(4)  

 The  default  interval  used  when  collecting  data  for  a category  in  seconds.  The  interval  is 15,  30,  

60,  300,  900,  1800,  or  3600  seconds.  The  following  special  value  may  be  returned:  

 0 Do  not  collect  on  interval
  

Library  

OUTPUT;  CHAR(10)  

 The  name  of  the  library  used  to  store  the  collection  data.  

Retention  period  

OUTPUT;  BINARY(4)  

 The  retention  period  indicates  how  long  collection  data  is to exist.  Collection  data  older  than  the  

retention  period  is  deleted.  The  retention  period  is specified  in hours.  The  maximum  value  that  

will  be  returned  is  720  hours,  or  30  days.  The  following  special  value  may  be  returned:  

 0 Permanent
  

Cycle  time  

OUTPUT;  BINARY(4)  

 The  time  at  which  the  first  cycle  is to  occur. The  cycle  time  is  specified  in  minutes  past  midnight.  

The  maximum  allowed  value  is  1439  minutes,  which  is  one  minute  less  than  24  hours.  

Cycle  interval  

OUTPUT;  BINARY(4)  

 The  lapse  time  between  cycles.  The  cycle  time  is specified  in  hours,  and  can  range  from  a 

minimum  value  of  one  hour  to  a maximum  value  of  24  hours.  

Companion  user  job  flag  

OUTPUT;  BINARY(4)  

 Whether  a job  is  started  to  run in  concert  with  the  collector.  One  of the  following  values  will  be  

returned:  

 0 No  companion  user  job  is started.  

1 A companion  user  job  is started.  (For  the  *PFR  collector,  this  is the  database  transfer  job 

CVTPFRDTA.)
  

Default  collector  definition  

OUTPUT;  CHAR(10)  

 The  name  of  the  collector  definition  to  run. The  possible  special  values  are:  

 *CURRENT
*CUSTOM
*ENHCPCPLN

 

24 iSeries:  Performance  Management  APIs



*MINIMUM
*STANDARD
*STANDARDP  

Current  collector  definition  

OUTPUT;  CHAR(10)  

 The  name  of  the  currently  running  collector  definition.  The  possible  special  values  are:  

 *CUSTOM
*ENHCPCPLN
*MINIMUM
*NONE
*STANDARD
*STANDARDP  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3C3C  E Value for  parameter  &1  is not  valid.  

CPF3C1E  E Required  parameter  &1  omitted.  

CPF3CF2  E Errors  occurred  during  running  of &1 API.
  

API  introduced:  V4R4  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Start Collector (QYPSSTRC, QypsStartCollector) API 

 

 Required  Parameter  Group:  

 

1 Collector  name  

Input  Char(10)  

2 Default  collector  definition  

Input  Char(10)  

3 Error  code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Service  program:  QYPSCOLL  

 

 Threadsafe:  No
  

The  Start  Collector  (QYPSSTRC,  QypsStartCollector)  API  starts  a collector.  When  the  collector  job  is  not  

running,  the  job  is submitted  to  the  QSYSNOMAX  job  queue  and  a start  request  passes  to  it. If no  default  

 

Performance  Management  APIs 25

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm


collection  definition  is provided,  the  default  provided  by  the  system  value  is used.  When  the  collector  job  

is running  and  a new  default  collection  definition  is provided,  the  collector  changes  to use  that  definition.  

If the  collector  job  is  running  and  no  new  default  collector  definition  is provided,  no  action  is taken.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Job  Authority  

*JOBCTL

Required Parameter Group 

Collector  name  

INPUT;  CHAR(10)  

 The  name  of  the  collector  to  start.  The  special  value  is:  

 *PFR  Performance  collector  job  QYPSPFRCOL
  

Default  collector  definition  

OUTPUT;  CHAR(10)  

 The  name  of  the  collector  definition  to  run. The  possible  special  values  are:  

 *CURRENT
*CUSTOM
*ENHCPCPLN
*MINIMUM
*SAME
*STANDARD
*STANDARDP  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Error Messages 

 Message  ID  Error  Message  Text  

CPF222E  E &1 special  authority  is required.  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3C3C  E Value for parameter  &1  is not  valid.  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3CF2  E Errors  occurred  during  running  of &1  API.  

CPFB94A  E Collector  communications  error.  Reason  code  &1.
  

API  introduced:  V4R4  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
 

 

26 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm


Management Collection Object APIs 

The  management  collection  object  APIs  support  working  with  management  collection  objects  (attribute  

*PFR).  These  APIs:  

v   Retrieve  the  active  management  collection  object  name  

v   Retrieve  the  attributes  of  a management  collection  object  

v   Open  and  close  a management  collection  object  

v   Open  and  close  a repository  of  a management  collection  object  

v   Read  data  from  a repository  of  a management  collection  object  

The  management  collection  object  APIs  are:  

v   “Close  Management  Collection  Object  (QpmCloseMgtcol)  API”  (QpmCloseMgtcol)  closes  a 

management  collection  object.  

v   “Close  Management  Collection  Object  Repository  (QpmCloseMgtcolRepo)  API”  on  page  29  

(QpmCloseMgtcolRepo)  closes  a repository  of a management  collection  object.  

v   “Open  Management  Collection  Object  (QpmOpenMgtcol)  API”  on  page  30  (QpmOpenMgtcol)  opens  a 

specified  management  collection  object  for  processing.  

v   “Open  Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API”  on  page  32  

(QpmOpenMgtcolRepo)  opens  a specified  repository  of  a management  collection  object  for  processing.  

v   “Read  Management  Collection  Object  Data  (QpmReadMgtcolData)  API”  on  page  34  

(QpmReadMgtcolData)  positions  to a specific  record  in  a repository  of  a management  collection  object,  

returns  information  about  the  record,  and  optionally  reads  specified  bytes  of data  from  the  record.  

v   “Retrieve  Active  Management  Collection  Object  Name  (QpmRtvActiveMgtcolName)  API”  on  page  38 

(QpmRtvActiveMgtcolName)  returns  the  object  name  and  library  name  of an  active  management  

collection  object.  

v   “Retrieve  Management  Collection  Object  Attributes  (QpmRtvMgtcolAttrs)  API”  on  page  39  

(QpmRtvMgtcolAttrs)  returns  information  about  attributes  of a management  collection  object  and  

repositories  of  a management  collection  object.  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

Close Management Collection Object (QpmCloseMgtcol) API 

 

  Required  Parameter  Group:  

 

1 Management  collection  object  handle  

Input  Binary(4)  

2 Error  code  

I/O  Char(*)

 

  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
 

 

Performance  Management  APIs 27

#TOP_OF_PAGE
aplist.htm


The  Close  Management  Collection  Object  (QpmCloseMgtcol)  API  closes  a management  collection  object  

that  was  previously  opened  by  the  “Open  Management  Collection  Object  (QpmOpenMgtcol)  API”  on  

page  30.  All  repositories  that  were  opened  for  this  management  collection  object  by  the  “Open  

Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API”  on  page  32  are  implicitly  closed.  

After  the  management  collection  object  is closed,  its  handle  is no  longer  valid.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

 When  the  management  collection  object  is  closed,  the  *SHRRD  lock  placed  on  the  object  by  the  Open  

Management  Collection  Object  (QpmOpenMgtcol)  API  is released.  

Required Parameter Group 

Management  collection  object  handle  

INPUT;  BINARY(4)  

 A  handle  to  an  open  management  collection  object.  This  handle  was  created  by  the  Open  

Management  Collection  Object  (QpmOpenMgtcol)  API.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID  Error  Message  Text  

CPF0AA4  E Lock  request  was  not  satisfied  in a specified  time.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1 API.  

CPF3C3C  E Value for  parameter  &1  not  valid.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

28 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Close Management Collection Object Repository 

(QpmCloseMgtcolRepo) API 

 

  Required  Parameter  Group:  

 

1 Management  collection  object  repository  handle  

Input  Binary(4)  

2 Error  code  

I/O  Char(*)

 

  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
  

The  Close  Management  Collection  Object  Repository  (QpmCloseMgtcolRepo)  API  closes  a repository  of  a 

management  collection  object  that  was  previously  opened  by  the  “Open  Management  Collection  Object  

Repository  (QpmOpenMgtcolRepo)  API”  on  page  32.  After  the  repository  is closed,  its  handle  is no  

longer  valid.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

Required Parameter Group 

Management  collection  object  repository  handle  

INPUT;  BINARY(4)  

 A handle  to  an  open  repository  of a management  collection  object.  This  handle  was  created  by  

the  Open  Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF0AA4  E Lock  request  was  not  satisfied  in a specified  time.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3C3C  E Value for  parameter  &1  not  valid.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 29

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Open Management Collection Object (QpmOpenMgtcol) API 

 

  Required  Parameter  Group:  

 

1 Qualified  object  name  

Input  Char(20)  

2 Management  collection  object  handle  

Output  Binary(4)  

3 Error  code  

I/O  Char(*)

 

  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
  

The  Open  Management  Collection  Object  (QpmOpenMgtcol)  API  opens  a specified  management  

collection  object  for  processing  and  returns  a handle  to  the  open  management  collection  object.  This  

handle  uniquely  identifies  the  open  management  collection  object  and  is used  by  the  following  APIs:  

v   “Close  Management  Collection  Object  (QpmCloseMgtcol)  API”  on  page  27  

v   “Open  Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API”  on  page  32  

The  management  collection  object  handle  is valid  until  the  management  collection  object  is closed  by  the  

Close  Management  Collection  Object  (QpmCloseMgtcol)  API.  The  handle  is scoped  to  a job  so  that  a 

management  collection  object  opened  in  one  thread  can  be  used  by  another  thread  provided  the  handle  is 

known.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Authority  to  library  containing  collection  object  

*EXECUTE

 If the  open  operation  was  successful,  a *SHRRD  lock  is placed  on  the  management  collection  object.  

Required Parameter Group 

Qualified  object  name  

INPUT;  CHAR(20)  

 Name  of a management  collection  object  and  the  library  in  which  it is located.  The  first  10  

characters  contain  the  object  name  and  the  second  10  characters  contain  the  library  name.  

 The  system  supports  management  collection  objects  with  different  attributes;  they  contain  

different  information.  The  Management  Collection  Object  APIs  support  only  collection  objects  

which  are  created  by  the  Collection  Services  collector.  These  collection  objects  have  the  attribute  

*PFR.  

 

30 iSeries:  Performance  Management  APIs



Management  collection  object  handle  

OUTPUT;  BINARY(4)  

 A handle  to  the  open  management  collection  object.  This  handle  is used  by  the  Close  

Management  Collection  Object  (QpmCloseMgtcol)  API  and  the  Open  Management  Collection  

Object  Repository  (QpmOpenMgtcolRepo)  API  to  uniquely  identify  the  open  management  

collection  object.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF0A2B  E Not  able  to  process  management  collection  object  &1  in library  &2. 

CPF0AA4  E Lock  request  was  not  satisfied  in a specified  time.  

CPF2105  E Object  &1  in &2  type  *&3  not  found.  

CPF2110  E Library  &1  not  found.  

CPF2114  E Cannot  allocate  object  &1  in &2  type  *&3.  

CPF2207  E Not  authorized  to use  object  &1 in library  &3 type  *&2.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPF9810  E Library  &1  not  found.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 31

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Open Management Collection Object Repository 

(QpmOpenMgtcolRepo) API 

 

  Required  Parameter  Group:  

 

1 Management  collection  object  handle  

Input  Binary(4)  

2 Management  collection  object  repository  name  

Input  Char(10)  

3 Format  name  

Input  Char(8)  

4 Management  collection  object  repository  handle  

Output  Binary(4)  

5 Error  code  

I/O  Char(*)
  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
  

The  Open  Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API  opens  a specified  

repository  of  a management  collection  object  for  processing.  The  management  collection  object  is  

identified  by  a handle  which  was  created  by  the  “Open  Management  Collection  Object  

(QpmOpenMgtcol)  API”  on  page  30.  If  the  open  operation  is successful,  a handle  to  the  open  repository  

is returned.  This  handle  uniquely  identifies  the  open  repository  and  is used  by  these  APIs:  

v   “Close  Management  Collection  Object  Repository  (QpmCloseMgtcolRepo)  API”  on  page  29  

v   “Read  Management  Collection  Object  Data  (QpmReadMgtcolData)  API”  on  page  34  

The  management  collection  object  repository  handle  is valid  until  the  repository  is closed  by  the  Close  

Management  Collection  Object  Repository  (QpmCloseMgtcolRepo)  API.  The  repository  handle  is scoped  

to  a job  so  that  a repository  opened  in  one  thread  can  be  used  by  another  thread  provided  the  handle  is 

known.  

The  API  caller  must  specify  a format  name  which  identifies  the  kind  of  processing  to  be  performed  on  

the  repository  data.  This  format  name  also  defines  the  format  of  the  input  and  output  parameters  of  the  

Read  Management  Collection  Object  Data  (QpmReadMgtcolData)  API  when  this  API  is  used  with  this  

repository.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

Required Parameter Group 

Management  collection  object  handle  

INPUT;  BINARY(4)  

 

32 iSeries:  Performance  Management  APIs



A handle  to  an  open  management  collection  object.  This  handle  was  created  by  the  Open  

Management  Collection  Object  (QpmOpenMgtcol)  API.  

Management  collection  object  repository  name  

INPUT;  CHAR(10)  

 Name  of  a repository  of  a management  collection  object.  Currently,  the  API  supports  repositories  

created  by  user-defined  performance  collection  categories  only.  

Format  name  

INPUT;  CHAR(8)  

 Name  of  the  format  that  defines  the  kind  of  processing  to  be  performed  on  the  data  in  this  

repository.  Currently,  the  Management  Collection  Object  APIs  support  format  MCOD0100  only.  

 When  this  format  is  specified,  the  Read  Management  Collection  Object  Data  

(QpmReadMgtcolData)  API  will  return  raw  data  from  the  repository  of the  management  

collection  object.  No  additional  processing  will  be  performed  and  the  data  will  be  treated  as  an  

unstructured  sequence  of  bytes.  

 The  format  name  also  defines  the  format  of the  input  and  output  parameters  of  the  Read  

Management  Collection  Object  Data  (QpmReadMgtcolData)  API  when  this  API  is  called  for  this  

repository.  See  description  of  “Read  Management  Collection  Object  Data  (QpmReadMgtcolData)  

API”  on  page  34  for  more  details.  

Management  collection  object  repository  handle  

OUTPUT;  BINARY(4)  

 A handle  to  the  open  repository  of  the  management  collection  object.  This  handle  is used  by  

other  APIs  to  uniquely  identify  the  open  repository  of  the  management  collection  object.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF0AA2  E Repository  &1  is not  found  in a collection  object.  

CPF0AA3  E Attempt  to access  unsupported  repository.  

CPF0AA4  E Lock  request  was  not  satisfied  in a specified  time.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3C21  E Format  name  &1  is not  valid.  

CPF3C3C  E Value for  parameter  &1  not  valid.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1 API.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 33

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Read Management Collection Object Data (QpmReadMgtcolData) API 

 

  Required  Parameter  Group:  

 

1 Management  collection  object  repository  handle  

Input  Binary(4)  

2 Read  options  

Input  Char(*)  

3 Record  information  

Output  Char(*)  

4 Record  data  

Output  Char(*)  

5 Error  code  

I/O  Char(*)
  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
  

The  Read  Management  Collection  Object  Data  (QpmReadMgtcolData)  API  performs  the  following  

actions:  

v   Positions  to  a specific  record  in a repository  of a management  collection  object.  

v   Returns  information  about  the  record.  

v   Optionally  reads  specified  bytes  of data  from  the  record.  

The  repository  is identified  by  a handle  which  was  previously  created  by  the  “Open  Management  

Collection  Object  Repository  (QpmOpenMgtcolRepo)  API”  on  page  32.  

Record  processing  options  are  specified  in  the  read  options  parameter.  

Information  about  the  repository  record  is returned  in  the  record  information  parameter.  

Data  from  a record  is  returned  in  the  record  data  parameter.  

The  formats  of  the  read  options,  record  information  and  record  data  parameters  are  determined  by  the  

format  name  that  was  passed  to  the  Open  Management  Collection  Object  Repository  

(QpmOpenMgtcolRepo)  API  at  the  time  the  repository  was  opened  for  processing.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

Required Parameter Group 

Management  collection  object  repository  handle  

INPUT;  BINARY(4)  

 

34 iSeries:  Performance  Management  APIs



A handle  to  an  open  repository  of a management  collection  object.  This  handle  was  created  by  

the  Open  Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API.  

Read  options  

INPUT;  CHAR(*)  

 Contains  control  information  that  determines  how  the  API  will  process  the  record.  See  “Format  of 

Read  Options  Parameter.”  

Record  information  

OUTPUT;  CHAR(*)  

 Information  about  the  current  repository  record.  See  “Format  of Record  Information  Parameter”  

on  page  36.  This  parameter  should  be  large  enough  to accommodate  the  entire  record  information  

structure.  Otherwise,  results  are  unpredictable.  

Record  data  

OUTPUT;  CHAR(*)  

 If requested  in  the  read  options  parameter,  data  from  the  current  repository  record  is returned  in 

this  parameter.  The  format  of  the  data  returned  in  this  parameter  is  determined  by  the  format  

name  passed  to  the  Open  Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API  

at  the  time  the  repository  was  opened  for  processing.  

 The  only  format  supported  in  this  release  is  MCOD0100.  For  the  MCOD0100  format,  the  API  

returns  an  unformatted  sequence  of  bytes  from  the  current  repository  record.  

 This  parameter  should  be  large  enough  to  accommodate  all  data  requested  in the  read  options  

parameter.  Otherwise,  results  are  unpredictable  

 See  “Format  of  Read  Options  Parameter”  for  more  details.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Format of Read Options Parameter 

The  format  of the  read  options  parameter  is determined  by  the  format  name  passed  to  the  Open  

Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API  at the  time  the  repository  was  

opened  for  processing.  

The  only  format  supported  in  this  release  is MCOD0100.  The  table  below  shows  the  structure  of  the  read  

options  parameter  for  the  MCOD0100  format.  For  detailed  descriptions  of  the  fields  in  the  table,  see  

“Field  Descriptions”  on  page  36  below.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Bytes  provided  by API  caller  

4 4 BINARY(4)  Record  positioning  option  

8 8 BINARY(8)  Offset  in record  data  

16 10 BINARY(8)  Number  of bytes  to read  

24 18 CHAR(8)  Record  key
  

 

 

Performance  Management  APIs 35

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Format of Record Information Parameter 

The  format  of  the  record  information  parameter  is determined  by  the  format  name  passed  to  the  Open  

Management  Collection  Object  Repository  (QpmOpenMgtcolRepo)  API  at  the  time  the  repository  was  

opened  for  processing.  

The  only  format  supported  in  this  release  is MCOD0100.  The  table  below  shows  the  structure  of  the  

record  information  parameter  for  MCOD0100  format.  For  detailed  descriptions  of  the  fields  in  the  table,  

see  “Field  Descriptions”  below.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Record  status  

4 4 BINARY(4)  Record  type  

8 8 BINARY(8)  Number  of bytes  returned  

16  10 CHAR(8)  Record  key  

24  18 CHAR(8)  Record  timestamp  

32  20 BINARY(8)  Total record  data  length
  

  

Field Descriptions 

Bytes  provided  by  API  caller.  The  number  of  bytes  of  read  options  provided.  For  the  MCOD0100  format,  

this  length  should  be  at  least  32  bytes.  

Number  of  bytes  returned.  The  number  of  bytes  of  record  data  returned  by  the  API  in  the  record  data  

parameter.  

Number  of  bytes  to  read.  The  number  of  bytes  of record  data  that  should  be  returned  in  the  record  data  

parameter.  If this  field  is  set  to  zero,  no  record  data  will  be  returned.  If the  repository  record  contains  less  

data  than  requested  by  this  field,  the  API  returns  only  the  available  data.  The  number  of  bytes  returned  

field  in the  record  information  parameter  will  be  set  to  the  actual  number  of bytes  returned.  

Offset  in  record  data.  Byte  offset  into  the  record  data  identifying  the  first  byte  of the  record  data  to  be  

returned  in the  record  data  parameter.  This  field  and  the  number  of bytes  to  read  field  together  define  

which  part  of  the  record  data  will  be  returned.  

Record  key. For  the  read  options  parameter,  this  field  is used  together  with  the  record  positioning  option  

field  to  specify  the  record  key  used  in  the  record  search.  

For  the  record  information  parameter,  this  field  returns  the  key  of  the  record  actually  found.  

Format  of  this  field  is  DDHHMMSS,  where:  

 DD  Number  of days  from  the  beginning  of collection  to this  collection  object.  Day  numbering  starts  

from  0. 

HHMMSS  Time in hours,  minutes  and  seconds  when  a particular  collection  sample  was  scheduled.
  

Record  keys  of repository  records,  with  the  possible  exception  of the  first  record  in  the  collection  period,  

are  normalized  at  the  collection  interval  boundary.  For  example,  for  a 15-minute  collection  interval,  valid  

record  keys  will  be  00124500  or  01223000,  but  not  00131014.  

Record  positioning  option.  The  record  that  is the  target  of  this  call  to  the  API.  Supported  positioning  

options  are:  

 

36 iSeries:  Performance  Management  APIs



0 Read  next  record.  For  this  option,  the  API  returns  the  next  repository  record  in relation  to the one 

processed  by  the  previous  call  to the  API.  If no records  have  been  read  from  the  repository,  the 

very  first  record  is returned.  If the  previous  record  was  the  last  one  in the  repository  or if the  

repository  is empty,  the  API  returns  record-not-found  record  status.  

1 Read  current  record.  For  this  option,  the  API  returns  the  same  record  that  was  processed  by the  

previous  call  to the  API.  This  option  is used  to read  different  parts  of the  same  record.  If no 

records  have  been  read  from  repository,  the  API  returns  a record-not-found  record  status.  

2 Read  first  record.  For  this  option,  the  API  returns  the  very  first  record  in the  repository.  This  option  

is used  to start  reading  the  repository  from  the  beginning.  If the  repository  is empty,  the  API  

returns  record-not-found  record  status.  

3 Read  record  by key  equal.  For  this  option,  the API  returns  the  record  with  the  key  specified  in the 

record  key  field  of the  read  options  parameter.  If no record  is found,  the API  returns  

record-not-found  record  status.  

4 Read  record  by key  less  than  or equal.  For  this  option,  the  API  returns  the  record  with  the  largest  key  

that  is less  than  or  equal  to  the key  specified  in the  record  key  field  of the  read  options  parameter.  

If no  record  is found,  the  API  returns  record-not-found  record  status.  

5 Read  record  by key  greater  than  or equal.  For  this  option,  the  API  returns  the  record  with  the  smallest  

key  that  is greater  than  or equal  to the  key  specified  in the  record  key  field  of the  read  options  

parameter.  If no  record  is found,  the  API  returns  record-not-found  record  status.
  

Record  status.  The  result  of  record  positioning.  Valid values  are:  

 0 Record  was  successfully  found  and  processed.  

1 Record-not-found  status.  Possible  causes  for  this  status  are  listed  in the  description  of the  record  

positioning  option  field.
  

Record  timestamp.  The  exact  time  when  data  collection  started  for  the  current  repository  record.  Time  is 

represented  in the  system  timestamp  format.  See  Convert  Date  and  Time  Format  (QWCCVTDT)  API  for  

details  about  time  formats.  Unlike  the  time  represented  by  the  record  key  field,  this  time  is not  

normalized.  Note  that  data  collection  can  be  a time-consuming  process.  The  record  timestamp  field  

contains  the  time  when  data  collection  started  for  the  current  record,  not  necessarily  the  time  when  the  

collection  was  completed  and  the  last  piece  of data  was  written  into  this  record.  

Record  type.  The  type  of  the  current  repository  record.  The  following  record  types  can  be  returned:  

 0 Interval  record  

1 Collection  control  record  

2 Stop  record  

3 Unexpected  record  type
  

Total  record  data  length.  Length  in bytes  of the  record  data  in  the  current  repository  record.  

Usage Notes 

To understand  how  this  API  works,  it is important  to know  how  data  is stored  in the  management  

collection  object.  

Collection  Services  stores  performance  data  collected  for  a performance  collection  category  in  a repository  

of  a management  collection  object.  Data  is stored  as  a sequence  of  repository  records  of  different  types.  

The  following  record  types  are  defined:  

v   Collection  control  record.  This  type  of  record  can  be  used  by  the  performance  collection  category  to  store  

some  kind  of control  information  necessary  for  the  correct  interpretation  of  the  collected  data.  This  type  

of record  is normally  written  as the  first  record  of  the  collection  session,  but  can  also  be  written  as the  

last  record  before  the  stop  record.  

 

Performance  Management  APIs 37

qwccvtdt.htm


v   Interval  record.  This  type  of  record  contains  actual  performance  data.  One  record  of  this  type  is 

produced  for  every  collection  interval.  

v   Stop  record.  This  type  of  record  is  the  last  one  in  a series  of records  pertaining  to  one  collection  session.  

If data  collection  for  the  performance  collection  category  was  restarted  without  cycling  the  collector,  the  

stop  record  will  be  followed  by  an  (optional)  collection  control  record,  then  interval  records  for  the  new  

session  and  so  on.  

The  repository  records  contain  control  information  such  as  record  type,  record  key,  record  timestamp,  and  

so  on,  and  a variable  amount  of  record  data  (between  0 and  4GB).  

Error Messages 

 Message  ID  Error  Message  Text  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPF3C3C  E Value for parameter  &1  not  valid.  

CPF0AA4  E Lock  request  was  not  satisfied  in a specified  time.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

Retrieve Active Management Collection Object Name 

(QpmRtvActiveMgtcolName) API 

 

  Required  Parameter  Group:  

 

1 Qualified  object  name  

Output  Char(20)  

2 Error  code  

I/O  Char(*)
  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
  

The  Retrieve  Active  Management  Collection  Object  Name  (QpmRtvActiveMgtcolName)  API  returns  the  

object  name  and  library  name  of  an  active  management  collection  object.  This  is an  object  that  is currently  

used  by  the  Collection  Services  collector  to  collect  performance  data.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE

 

38 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm


Required Parameter Group 

Qualified  object  name  

OUTPUT;  CHAR(20)  

 The  name  of  an  active  management  collection  object  and  the  library  in  which  it is located.  On  

successful  return  from  the  API,  the  first  10  characters  contain  the  object  name  and  the  second  10  

characters  contain  the  library  name.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

Error Messages 

 Message  ID Error  Message  Text  

CPF0A1A  E No  active  collection.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1 API.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

Retrieve Management Collection Object Attributes 

(QpmRtvMgtcolAttrs) API 

 

  Required  Parameter  Group:  

 

1 Receiver  variable  

Output  Char(*)  

2 Length  of receiver  variable  

Input  Binary(4)  

3 Format  name  

Input  Char(8)  

4 Qualified  object  name  

Input  Char(20)  

5 Error  code  

I/O  Char(*)
  Service  Program  Name:  QPMAAPI  

 

  Default  Public  Authority:  *EXCLUDE  

 

  Threadsafe:  Yes
  

The  Retrieve  Management  Collection  Object  Attributes  (QpmRtvMgtcolAttrs)  API  returns  information  

about  attributes  of  a management  collection  object  and  repositories  of a management  collection  object.

 

Performance  Management  APIs 39

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm


Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Authority  to  library  containing  collection  object  

*EXECUTE

 While  retrieving  attributes,  this  API  places  a *SHRRD  lock  on  the  management  collection  object.  

Required Parameter Group 

Receiver  variable  

OUTPUT;  CHAR(*)  

 The  variable  that  receives  the  requested  information.  It  can  be  smaller  than  the  format  requested  

as  long  as  the  next  parameter,  length  of receiver  variable,  specifies  the  length  correctly.  When  this  

variable  is smaller  than  the  format,  the  API  returns  only  the  data  that  the  variable  can  hold.  

Length  of  receiver  variable  

INPUT;  BINARY(4)  

 The  length  of the  receiver  variable.  The  minimum  length  is 8 bytes.  Do  not  specify  a length  that  

is longer  than  the  receiver  variable;  the  results  are  unpredictable.  

Format  name  

INPUT;  CHAR(8)  

 The  content  and  format  of  the  information  returned  in  the  receiver  variable  for  a specified  

management  collection  object.  The  possible  format  names  are:  

 “MCOA0100  

Format”  

Retrieve  attributes  of a management  collection  object  only  

“MCOA0200  

Format”  on page  

41 

Retrieve  attributes  of a management  collection  object  and  attributes  of repositories  of an object

  

Qualified  object  name  

INPUT;  CHAR(20)  

 Name  of a management  collection  object  for  which  you  want  to retrieve  information  and  the  

library  in  which  it  is located.  The  first  10  characters  contain  the  object  name  and  the  second  10  

characters  contain  the  library  name.  

 The  system  supports  management  collection  objects  with  different  attributes,  or  objects  that  

contain  different  information.  The  Management  Collection  Object  APIs  support  collection  objects  

that  are  created  by  the  Collection  Services  collector  only.  These  collection  objects  have  attribute  

*PFR.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  code  

parameter.

MCOA0100 Format 

The  following  information  is returned  for  the  MCOA0100  format.  For  detailed  descriptions  of the  fields  in 

the  table,  see  “Field  Descriptions”  on  page  42.  

 

40 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Bytes  returned  

4 4 BINARY(4)  Bytes  available  

8 8 BINARY(8)  Object  size  

16 10 BINARY(4)  Object  retention  period  

20 14 BINARY(4)  Default  collection  interval  

24 18 BINARY(4)  Number  of repositories  

28 1C  CHAR(14)  Date  and  time  when  object  was  created  

42 2A CHAR(14)  Date  and  time  of last  update  to  the object  

56 38 CHAR(10)  Partition  serial  number  

66 42 CHAR(1)  Object  is active  

67 43 CHAR(1)  Object  was  repaired  

68 44 CHAR(1)  Summarization  status  

69 45 CHAR(3)  Reserved
  

  

MCOA0200 Format 

When  the  MCOA0200  format  is  requested,  this  API  will  return  information  about  the  management  

collection  object  (MCOA0100  format)  plus  information  about  all  of the  repositories  found  in  this  

management  collection  object.  This  format  returns  zero  or  more  “Repository  entry,”  described  later. The  

number  of  repository  entries  returned  in  this  format  is specified  in  the  number  of  repository  entries  

returned  field.  For  detailed  descriptions  of  the  fields  in  the  table,  see  “Field  Descriptions”  on  page  42.  

 Offset  

Type Field  Dec  Hex  

0 0   Everything  from  MCOA0100  format  

72 48 BINARY(4)  Number  of repository  entries  returned  

76 4C  BINARY(4)  Offset  to repository  information  

80 50 CHAR(*)  Repository  information  

80 50 BINARY(4)  Offset  to repository  entry  1 

84 54 BINARY(4)  Length  of repository  entry  1 

88 58 BINARY(4)  Offset  to repository  entry  2 

92 5C  BINARY(4)  Length  of repository  entry  2 

    ...   

    CHAR(*)  Repository  entry  1 

    CHAR(*)  Repository  entry  2 

    ...  

  

  

Repository entry 

Each  repository  entry  contains  attributes  of  one  repository  of a management  collection  object.  It includes  

one  or  more  “Collection  period  entry”  on  page  42,  described  later. 

 

Performance  Management  APIs 41



Offset  

Type Field  Dec  Hex  

0 0 CHAR(10)  Repository  name  

10  A CHAR(10)  Category  name  

20  14 BINARY(4)  Number  of collection  period  entries  

24  18 BINARY(8)  Repository  size  

32  20 CHAR(*)  Collection  period  entry  1
  

  

Collection period entry 

A new  collection  period  entry  is  created  each  time  a collection  is started  or  a collection  interval  is 

changed  for  the  performance  category  associated  with  a repository.  Each  repository  has  at least  one  

collection  period.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Length  of collection  period  entry  

4 4 CHAR(14)  Date  and  time  of collection  period  start  

18  12 CHAR(14)  Date  and  time  of collection  period  end  

32  20 BINARY(4)  Collection  interval  

36  24 CHAR(4)  Reserved
  

  

Field Descriptions 

Bytes  available.  The  length  of all  the  data  available  to  return.  All  available  data  is  returned  if the  receiver  

variable  has  sufficient  length.  

Bytes  returned.  The  length  of  the  data  actually  returned.  

Category  name.  The  name  of  the  performance  collection  category  that  created  this  repository.  

Collection  interval.  The  collection  interval  in  seconds  for  the  performance  category  that  created  this  

repository.  Each  category  can  have  its  own  collection  interval.  A performance  category  can  have  different  

collection  intervals  at  different  times  during  the  collection  (for  different  collection  periods).  If  the  

collection  interval  is negative,  this  category  was  not  configured  to  perform  interval  collections.  Such  

categories  perform  one-time-only  collections;  in  the  beginning  of the  collection  (collection  interval  is  set  to  

minus  1) or  at  the  end  of  the  collection  (collection  interval  is set  to  minus  2).  

Date  and  time  of  collection  period  end.  The  date  and  time  when  either  the  collection  was  ended  in  this  

repository  or  the  collection  interval  was  changed  for  the  performance  category  associated  with  this  

repository.  This  is  represented  in  a format  YYYYMMDDHHMMSS,  where:  

 YYYY  Year 

MM  Month  

DD  Day  of the  month  

HH  Hour  

MM  Minute  

SS Second
 

 

42 iSeries:  Performance  Management  APIs



This  field  reports  blanks  for  collection  periods  that  are  in  progress.  

Date  and  time  of  collection  period  start.  The  date  and  time  when  either  the  collection  was  started  into  

this  repository  or  the  collection  interval  was  changed  for  the  performance  category  associated  with  this  

repository.  For  a description  of  the  format  of this  field,  see  the  date  and  time  of collection  period  end  

field.  

Date  and  time  when  object  was  created.  The  date  and  time  the  collection  object  was  created.  For  a 

description  of  the  format  of  this  field,  see  the  date  and  time  of  collection  period  end  field.  

Date  and  time  of  last  update  to  the  object.  The  date  and  time  when  the  last  update  to  collection  object  

data  occurred.  For  a collection  object  that  is not  active,  this  is the  time  when  the  collection  ended  to  this  

collection  object.  For  a description  of  the  format  of this  field,  see  the  date  and  time  of collection  period  

end  field.  

Default  collection  interval.  The  default  collection  interval  in  seconds  for  this  collection  object.  Individual  

performance  categories  may  have  different  collection  intervals.  

Length  of  collection  period  entry.  The  length  of a collection  period  entry,  in  bytes.  

Length  of  repository  entry. The  length  of  a repository  entry,  in  bytes.  A  repository  entry  contains  

information  about  one  particular  repository  and  includes  one  or  more  collection  period  entries.  

Number  of  collection  period  entries.  The  number  of  collection  period  entries  reported  for  a repository.  

Each  repository  has  at  least  one  collection  period  entry.  A  new  collection  period  starts  when  the  collection  

is  started  for  the  performance  category  associated  with  this  repository  or  a new  collection  interval  is set  

for  this  category.  

Number  of  repositories.  The  number  of  repositories  found  in  this  management  collection  object.  

Number  of  repository  entries  returned.  The  number  of  repositories  for  which  information  is returned  in  

a receiver  variable.  This  can  be  different  than  the  value  in  the  number  of  repositories  field  if the  receiver  

variable  is not  big  enough  to  hold  the  entire  result.  

Object  is  active.  Whether  collection  is  currently  in  progress  for  this  collection  object.  Possible  values  are:  

 0 Collection  into  this  collection  object  has  ended  

1 Collection  into  this  collection  object  is in progress
  

Object  retention  period.  The  number  of  hours  the  collection  object  should  be  kept  on  the  system  before  it 

is  deleted  automatically.  The  retention  period  starts  when  the  collection  is ended  for  this  collection  object.  

When  the  collection  object  is  set  for  permanent  retention,  the  object  retention  period  field  is  set  to  minus  

1.  

Object  size.  The  size  of  the  management  collection  object  in  Kbytes  (K  = 1024).  

Object  was  repaired.  Whether  the  collection  object  was  repaired.  When  the  collection  object  is not  

correctly  closed,  for  example,  during  abrupt  system  termination,  it is repaired  when  it is touched  the  first  

time  after  that.  Such  an  object  may  have  corrupted  data  inside.  Using  such  an  object  may  cause  

unpredictable  results.  Possible  values  are:  

 0 Collection  object  did  not  require  repair  

1 Collection  object  was  repaired
 

 

Performance  Management  APIs 43



Offset  to  repository  information.  The  offset  in bytes  from  the  beginning  of a receiver  variable  to the  

beginning  of  a repository  information  structure.  

Offset  to  repository  entry. The  offset  in  bytes  from  the  beginning  of a receiver  variable  to  the  beginning  

of a particular  repository  entry.  

Partition  serial  number.  The  logical  serial  number  of a system  partition  where  the  collection  object  was  

created.  

Repository  information.  A variable-size  field  that  contains  information  about  repositories  in  a 

management  collection  object.  This  field  contains  an  array  of  offset  and  length  pairs  (see  offset  to  

repository  entry  field  and  length  of  repository  entry  field),  followed  by  a series  of  corresponding  

repository  entry  structures.  

Repository  name.  The  10-character  name  of  a repository  of  a management  collection  object.  

Repository  size.  The  size  of  a repository  in  Kbytes  (K  = 1024).  

Reserved.  A reserved  field.  

Summarization  status.  When  the  Collection  Services  collector  cycles  the  management  collection  object,  a 

process  is  started  for  this  collection  object  that  will  extract  performance  summary  information  to  be  used  

for  historical  data  analysis.  The  summarization  status  field  indicates  the  status  of  this  process:  

 0 Summarization  was  not  performed  for this  collection  object  

1 Summarization  is complete  

2 Summarization  is in progress  

3 Summarization  was  attempted  but  failed
  

  

Error Messages 

 Message  ID  Error  Message  Text  

CPF0A2B  E Not  able  to process  management  collection  object  &1  in library  &2.  

CPF2105  E Object  &1 in &2 type  &3  not  found.  

CPF2110  E Library  &1  not  found.  

CPF2114  E Cannot  allocate  object  &1  in &2 type  *&3.  

CPF2207  E Not  authorized  to use  object  &1  in library  &3  type  *&2.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3C21  E Format  name  &1  is not  valid.  

CPF3C24  E Length  of the  receiver  variable  is not  valid.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.  

CPF9810  E Library  &1  not  found.
  

API  introduced:  V5R2  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

User-Defined Transaction  APIs 

The  user-defined  transaction  APIs  are  used  by  an  application  to  gather  time  interval  performance  data  for  

application-defined  transactions.  These  APIs  indicate  the  start  and  end  of a user-defined  transaction.  

The  user-defined  transaction  APIs  are:  

 

44 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm


v   “End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  (QYPEENDT,  qypeEndTransaction)  indicates  

the  end  of  a user-defined  transaction.  

v   “Start  Transaction  (QYPESTRT,  qypeStartTransaction)  API”  on  page  48  (QYPESTRT,  

qypeStartTransaction)  is called  at the  start  of  a user-defined  transaction.

  Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

End Transaction (QYPEENDT, qypeEndTransaction)  API 

 

  Required  Parameter  Group:  

 

1 Application  identifier  

Input  Char(20)  

2 Transaction  identifier  

Input  Binary(4)  Unsigned  

3 Application  trace  data  

Input  Char(*)  

4 Length  of application  trace  data  

Input  Binary(4)  Unsigned  

5 Transaction  start  time  

Input  Char(8)  

6 Application  performance  counters  

Input  Char(*)  

7 Length  of application  performance  counters  

Input  Binary(4)  Unsigned  

8 Error  code  

I/O  Char(*)
  Service  Program  Name:  QYPESVPG  

 

  Default  Public  Authority:  *USE  

 

  Threadsafe:  Yes
  

The  End  Transaction  (OPM,  QYPEENDT;  ILE,  qypeEndTransaction)  API  is used  together  with  the  “Start  

Transaction  (QYPESTRT,  qypeStartTransaction)  API”  on  page  48  (QYPESTRT,  qypeStartTransaction)  API  

and  the  “Log  Transaction  (QYPELOGT,  qypeLogTransaction)  API”  on  page  101  (QYPELOGT,  

qypeLogTransaction)  API  to  collect  performance  data  for  user-defined  transactions.  The  End  Transaction  

API  is called  by  an  application  at  the  end  of  a user-defined  transaction.  

This  API  can  be  used  to  provide  both  trace  type  of performance  data  - collected  by  Performance  Explorer  

(PEX)  - and  interval  type  of  performance  data  - collected  by  Collection  Services.  

If the  Performance  Explorer  (PEX)  is  running,  this  API  generates  an  end  of  transaction  trace  record.  In  

addition  to  the  data  supplied  by  the  application  in  the  application  trace  data  parameter,  PEX  will  capture  

the  current  values  of  performance  counters  associated  with  the  current  thread  such  as  CPU  time  used,  

 

Performance  Management  APIs 45

#TOP_OF_PAGE
aplist.htm


I/O  activity  and  seize/lock  activity.  After  the  End  Performance  Explorer  (ENDPEX)  command  is run, the  

application-supplied  data  for  this  record  is  written  to  the  QMUDTA  field  in  the  QAYPEMIUSR  file.  The  

performance  counters  are  written  to  individual  fields  in  the  QAYPEMIUSR  and  QAYPETIDX  files.  

If Collection  Services  is  collecting  data  for  the  user-defined  transaction  (*USRTNS)  category,  this  API  will  

save  transaction  performance  data  for  the  current  transaction.  This  data  includes  transaction  response  

time  as  well  as  optional  performance  counters  provided  by  the  application  in the  application  performance  

counters  parameter.  

See  “Usage  Notes”  on  page  49  for  the  Start  Transaction  (QYPESTRT,  qypeStartTransaction)  API  for  more  

information.  

Authorities and Locks 

API  Public  Authority  

*USE

Required Parameter Group 

Application  identifier  

INPUT;  CHAR(20)  

 The  name  of  the  application.  Given  that  many  applications  could  use  this  API,  the  name  should  

be  chosen  so  that  it is unique.  Application  identifiers  starting  with  ″QIBM_Qccc_″,  where  ccc  is a 

component  identifier,  are  reserved  for  IBM  use.  

 The  application  identifier  is  used  as  the  transaction  type  by  Collection  Services.  The  application  

identifier  should  be  chosen  carefully,  because  Collection  Services  will  only  report  information  

about  the  first  15  unique  transaction  types  for  every  job  which  uses  user-defined  transaction  APIs.  

All  other  transaction  types  for  each  job  will  be  combined  in  a single  type  *OTHER.  

Transaction  identifier  

INPUT;  BINARY(4)  UNSIGNED  

 Any  sort  of unique  transaction  identifier,  such  as  a sequential  number.  In  order  to  collect  

meaningful  data,  the  identifier  passed  to  the  End  Transaction  API  should  be  the  same  as  the  

identifier  used  in  the  call  to  the  Start  Transaction  API  for  the  same  transaction.  

 The  transaction  identifier  is  not  used  by  Collection  Services.  

Application  trace  data  

INPUT;  CHAR(*)  

 Application-defined  trace  data  to  be  saved  by  PEX.  This  can  be  any  data  that  the  user  wants  to  

associate  with  this  transaction  - for  example,  the  user  ID  of  the  client  performing  the  transaction,  

the  name  of  the  file  being  updated  by  the  transaction,  or  the  account  ID  being  accessed  by  the  

transaction.  The  data  can  be  up  to  3032  bytes  long.  This  data  is  reported  by  PEX  in  the  

QAYPEMIUSR  file.  Application  trace  data  is not  processed  by  Collection  Services.  

Length  of  application  trace  data  

INPUT;  BINARY(4)  UNSIGNED  

 The  length  (in  bytes)  of  application-defined  trace  data  to  be  saved  by  PEX.  The  value  must  be  

between  0 and  3032.  

Transaction  start  time  

INPUT;  CHAR(8)  

 The  time  (in  MI  timestamp  format)  that  the  transaction  started.  The  user  should  provide  the  

transaction  start  time  that  was  previously  returned  from  the  call  to the  corresponding  Start  

Transaction  API.  If a null  pointer  is  passed  for  this  parameter,  Collection  Services  will  ignore  this  

request.  Transaction  start  time  is not  used  by  PEX.  

 

46 iSeries:  Performance  Management  APIs



Application  performance  counters  

INPUT;  CHAR(*)  

 Application-provided  counter  data  to  be  collected  by  Collection  Services.  The  application  can  

define  from  0 to  16  BINARY(8)  UNSIGNED  counters  that  Collection  Services  will  collect.  These  

counters  may  contain  any  kind  of  information  the  application  wants  to associate  with  this  

transaction;  for  exampel,  the  number  of  SQL  statements  processed  to  serve  the  transaction,  the  

number  of  pages  printed  for  the  transaction,  and  so  on.  The  user  should  reset  these  counters  just  

before  calling  the  Start  Transaction  API  and  provide  these  counters  when  calling  the  

corresponding  End  Transaction  API.  If  the  application  trace  data  is suitably  organized  - if it is a 

sequence  of  BINARY(8)  UNSIGNED  counters  - the  application  performance  counters  parameter  

can  be  a subset  of  the  application  trace  data  parameter  . 

 Application  performance  counters  are  not  processed  by  PEX.  

Length  of  application  performance  counters  

INPUT;  BINARY(4)  UNSIGNED  

 The  length  (in  bytes)  of  the  application-provided  counter  data  to  be  collected  by  Collection  

Services.  This  length  can  range  from  0 (no  counters)  to 128  (16  BINARY(8)  UNSIGNED  counters)  

and  must  be  a multiple  of  8. 

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Usage Notes 

For  the  description  of how  Performance  Explorer  (PEX)  and  Collection  Services  save  and  report  

performance  data  for  this  API,  see  “Usage  Notes”  on  page  49  for  the  Start  Transaction  API.  

Error Messages 

 Message  ID Error  Message  Text  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3C3C  E Value for  parameter  &1  is not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.
  

API  introduced:  V5R2  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 47

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm


Start Transaction  (QYPESTRT, qypeStartTransaction) API 

 

  Required  Parameter  Group:  

 

1 Application  identifier  

Input  Char(20)  

2 Transaction  identifier  

Input  Binary(4)  Unsigned  

3 Application  trace  data  

Input  Char(*)  

4 Length  of application  trace  data  

Input  Binary(4)  Unsigned  

5 Transaction  start  time  

Output  Char(8)  

6 Error  code  

I/O  Char(*)
  Service  Program  Name:  QYPESVPG  

 

  Default  Public  Authority:  *USE  

 

  Threadsafe:  Yes
  

The  Start  Transaction  (OPM,  QYPESTRT;  ILE,  qypeStartTransaction)  API  is used  together  with  the  “End  

Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45  (QYPEENDT,  qypeEndTransaction)  API  

and  the  “Log  Transaction  (QYPELOGT,  qypeLogTransaction)  API”  on  page  101  (QYPELOGT,  

qypeLogTransaction)  API  to  collect  performance  data  for  user-defined  transactions.  The  Start  Transaction  

API  is called  by  an  application  at  the  beginning  of a user-defined  transaction.  

This  API  can  be  used  to  provide  both  trace  type  of  performance  data  - collected  by  Performance  Explorer  

(PEX)  - and  interval  type  of  performance  data  - collected  by  Collection  Services.  

If the  Performance  Explorer  (PEX)  is  running,  this  API  generates  a start  of transaction  trace  record.  In  

addition  to  the  data  supplied  by  the  application  in  the  application  trace  data  parameter,  PEX  will  capture  

the  current  values  of  performance  counters  associated  with  the  current  thread  such  as  CPU  time  used,  

I/O  activity  and  seize/lock  activity.  After  the  End  Performance  Explorer  (ENDPEX)  command  is run, the  

application-supplied  data  for  this  record  is  written  to  the  QMUDTA  field  in  the  QAYPEMIUSR  file  (see  

“Usage  Notes”  on  page  49).  The  performance  counters  are  written  to  individual  fields  in  the  

QAYPEMIUSR  and  QAYPETIDX  files.  

If Collection  Services  is  collecting  data  for  the  user-defined  transaction  (*USRTNS)  category,  this  API  

provides  a reference  point  for  the  End  Transaction  API  to  calculate  transaction  response  time.  (See  the  

“End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45  (QYPEENDT,  qypeEndTransaction)  

API).  

Authorities and Locks 

API  Public  Authority  

*USE

 

48 iSeries:  Performance  Management  APIs



Required Parameter Group 

Application  identifier  

INPUT;  CHAR(20)  

 The  name  of  the  application.  Given  that  many  applications  could  use  this  API,  the  name  should  

be  chosen  so  that  it is  unique.  Application  identifiers  starting  with  ″QIBM_Qccc_″,  where  ccc  is a 

component  identifier,  are  reserved  for  IBM  use.  

 The  application  identifier  is  used  as the  transaction  type  by  Collection  Services.  The  application  

identifier  should  be  chosen  carefully,  because  Collection  Services  will  only  report  information  

about  the  first  15  unique  transaction  types  for  every  job  which  uses  user-defined  transaction  APIs.  

All  other  transaction  types  for  each  job  will  be  combined  in  a single  type  *OTHER.  

Transaction  identifier  

INPUT;  BINARY(4)  UNSIGNED  

 Any  sort  of  unique  transaction  identifier,  such  as a sequential  number.  The  transaction  identifier  

is not  used  by  Collection  Services.  

Application  trace  data  

INPUT;  CHAR(*)  

 Application-defined  trace  data  to  be  saved  by  PEX.  This  can  be  any  data  that  the  user  wants  to 

associate  with  this  transaction  - for  example,  the  user  ID  of the  client  performing  the  transaction,  

the  name  of  the  file  being  updated  by  the  transaction,  or  the  account  ID  being  accessed  by  the  

transaction.  The  data  can  be  up  to  3032  bytes  long.  This  data  is reported  by  PEX  in  the  

QAYPEMIUSR  file.  Application  trace  data  is not  processed  by  Collection  Services.  See  “Usage  

Notes”  for  more  information.  

Length  of  application  trace  data  

INPUT;  BINARY(4)  UNSIGNED  

 The  length  (in  bytes)  of  user-defined  data  to  be  captured  by  PEX.  The  value  must  be  between  0 

and  3032.  

Transaction  start  time  

OUTPUT;  CHAR(8)  

 The  time  (in  MI  timestamp  format)  that  the  transaction  started.  The  user  should  save  this  value  

and  pass  it unchanged  to  the  corresponding  End  Transaction  API.  If a null  pointer  is passed  for  

this  parameter,  Collection  Services  will  ignore  this  request.  Transaction  start  time  is not  used  by  

PEX.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Usage Notes 

How the data is collected 

Performance  data  provided  by  an  application  to the  user-defined  transaction  APIs  (the  Start  Transaction  

API,  the  End  Transaction  API  and  the  Log  Transaction  API)  is collected  by  both  Performance  Explorer  

(PEX)  and  Collection  Services.  

To capture  the  trace  data  provided  by  the  APIs,  a Performance  Explorer  session  muct  be  active  for  the  

current  thread.  To configure  PEX  to  collect  data  for  user-defined  transaction  APIs,  use  *USRTNS  event  on  

the  operating  system  events  (OSEVT)  parameter  of the  Add  PEX  Definition  (ADDPEXDFN)  command.  

 

Performance  Management  APIs 49

error.htm#HDRERRCOD
error.htm#HDRERRCOD


When  a PEX  session  is  active  for  the  current  thread,  a call  to  the  Start  Transaction  API,  the  End  

Transaction  API  or  the  Log  Transaction  API  will  produce  a trace  record.  In  addition  to  the  trace  data  

passed  by  the  application  in  the  application  trace  data  parameter,  PEX  will  capture  current  values  of 

system  performance  counters  associated  with  the  current  thread.  

The  application  trace  data  is reported  by  PEX  in  the  QMUDTA  field  of  the  QAYPEMIUSR  file  (see  below).  

The  performance  counters  are  reported  in  individual  fields  in  the  QAYPEMIUSR  and  QAYPETIDX  files.  

This  data  can  be  used  later  to  calculate  resource  consumption  for  the  specific  transaction.  

Collection  Services  collects  transaction-related  statistics  in  a management  collection  (*MGTCOL)  object  

when  the  collection  is  enabled  for  the  *USRTNS  performance  category.  The  Create  Performance  Data  

(CRTPFRDTA)  command  exports  the  user  transaction  data  collected  by  Collection  Services  from  the  

*MGTCOL  object  to  the  user-defined  transaction  (QAPMUSRTNS)  file.  This  file  contains  one  record  per  

transaction  type  per  job  per  Collection  Services  collection  interval.  The  data  reported  in the  file  includes  

standard  data  such  as  the  total  transaction  time  and  total  number  of  transactions,  as  well  as  optional  

application-provided  counters  (see  “End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45 

(QYPEENDT,  qypeEndTransaction)  API).  

Collection  Services  summarizes  transaction  data  within  a job  by  transaction  type.  Collection  Services  uses  

the  API  application  identifier  parameter  as  the  transaction  type.  Collection  Services  stores  transaction  data  

for  the  first  15  transaction  types  it encounters  for  a job.  If more  than  15  transaction  types  are  encountered  

in  a job,  it still  collects  the  data;  however,  the  data  is combined  and  reported  under  a transaction  type  of 

*OTHER.  (See  Collection  Services  for  more  information  on  Collection  Services  and  performance  database  

files.)  

How to use collected data 

It is the  application’s  responsibility  to  decide  what  constitutes  a transaction  and  to  use  the  user-defined  

transation  APIs  in a consistent  way;  that  is,  for  every  call  to  the  Start  Transaction  API,  there  should  be  a 

call  to  the  End  Transaction  API  with  the  same  transaction  identifier.  

Performance  Explorer  collects  application-provided  trace  data  as  well  as  current  values  for  a set  of  system  

performance  counters.  These  performance  counters  are  a snapshot  of  the  current  thread  activity  when  the  

event  was  recorded  - this  means  that  all  numeric  values  are  total  numbers  for  the  entire  life  of  the  thread  

(in  other  words,  ″raw″ values  as  opposed  to  ″delta″ values).  

Note:The  performance  counters  are  defined  as  8 byte  unsigned  binary  values  in  the  QAYPEMIUSR  file.  

However  the  data  is  coming  from  4 byte  unsigned  binary  values.  For  this  reason,  code  which  does  

computations  with  the  values  of  the  performance  counters  must  check  for  counter  wrap  - counters  will  

increment  from  4,294,967,295  (or  FFFFFFFF  hexadecimal)  to  0. The  counters  were  defined  as  8 byte  fields  

to  allow  expansion  in  the  future.  

If a transaction  ends  in  the  same  thread  it  was  started  in,  values  captured  by  the  Start  Transaction  API  

can  be  subtracted  from  the  values  captured  by  the  End  Transaction  API  to get  the  amount  consumed  by  

this  transaction:  

value  per  transaction  = 

value  from  the  End  Transaction  API  - value  from  the  Start  Transaction  API

However,  if a transaction  ends  in  a different  thread  than  it was  started  in,  this  simple  subtraction  cannot  

be  done.  Rather,  it  is  necessary  to  use  the  Log  Transaction  API  to record  two  additional  events  - one  

when  the  transaction  in  the  first  thread  ends  and  the  other  one  when  the  transaction  in the  second  thread  

begins.  Then  values  per  transaction  can  be  be  calculated  in  the  following  way:  

 

50 iSeries:  Performance  Management  APIs



value  per  transaction  = 

( value  from  the  Log  Transaction  API  in  thread  1 - value  from  the  Start  Transaction  API  ) 

+ ( value  from  the  End  Transaction  API  - value  from  the  Log  Transaction  API  in  thread  2 )

Collection  Services  does  not  collect  additional  system  performance  counters  for  the  *USRTNS  category.  

However,  Collection  Services  collects  many  types  of  performance  data  for  other  performance  categories.  

By  joining  records  from  the  QAPMUSRTNS  file  with  records  from  other  performance  database  files  

produced  for  the  same  collection  interval,  one  can  calculate  average  resource  consumption  for  

transactions  of  different  types.  

The format of the QMUDTA  field of the QAYPEMIUSR file 

The  QMUDTA  field  has  a common  header.  The  following  APIs  use  this  header:  

v   Start  Transaction  (QYPESTRT,  qypeStartTransaction)  

v   “End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45  

v   “Log  Transaction  (QYPELOGT,  qypeLogTransaction)  API”  on  page  101  

v   “Add  Trace Point  (QYPEADDT,  qypeAddTracePoint)  API”  on  page  99  

 Offset  

Type Field  Dec  Hex  

0 0 CHAR(4)  ″API  ″ eye  catcher  

4 4 CHAR(20)  Application  identifier  

24 18 CHAR(1)  Type of data:  

0 Generic  trace  point  

1 Start  of transaction  

2 End  of transaction  

3 Log  transaction
  

After  the  common  header,  the  QMUDTA  field  has  the  following  format  for  the  Start  Transaction,  End  

Transaction,  and  Log  Transaction  APIs:  

 Offset  

Type Field  Dec  Hex  

25 19 CHAR(10)  Transaction  identifier  

35 23 CHAR(1)  Reserved  

36 24 BINARY(4)  

UNSIGNED  

Length  of application  trace  data  

40 28 CHAR(*)  Application  trace  data
  

Error Messages 

 Message  ID Error  Message  Text  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3C3C  E Value for  parameter  &1  is not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.
  

API  introduced:  V5R2  

 Top | “Performance  Collector  APIs”  on page  52 | APIs  by  category
 

 

Performance  Management  APIs 51

#TOP_OF_PAGE
#TOP_OF_PAGE
aplist.htm


Performance Collector APIs 

  

The  performance  collector  APIs  allow  applications  to  be  developed  that  provide  real-time  performance  

monitoring  capabilities.  The  performance  collector  APIs  are:  

   

v   “List  Performance  Data  (QPMLPFRD)  API”  (QPMLPFRD)  returns  data  from  the  data  collector  to  the  

user  space  specified  in theWork  with  Collector  API.  

v   “Work  with  Collector  (QPMWKCOL)  API”  on  page  94  (QPMWKCOL)  controls  the  starting  and  

stopping  of  collections  of  information  for  certain  types  of resources.  This  API  allows  you  to  change  the  

way  data  about  a certain  resource  is collected.  

Note:  The  Work with  Collector  API  must  be  used  before  using  the  List  Performance  Data  API.  

The  Performance  Collector  exit  program  is:  

v   “Performance  Monitor  Exit  Program”  on  page  116 processes  the  performance  data  that  is collected  by  

the  performance  monitor  as  the  monitor  ends.  

Note:  Starting  in  Version  5 Release  1,  the  Start  Performance  Monitor  (STRPFRMON)  command  is no  

longer  supported.  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

List Performance Data (QPMLPFRD) API 

 

 Required  Parameter  Group:  

 

1 Type of resource  

Output  Char(10)  

2 Sequence  number  of collection  

Output  Binary(4)  

3 Error  Code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  Yes
  

The  List  Performance  Data  (QPMLPFRD)  API  returns  the  latest  collection  of  performance  data  in  the  user  

space  specified  for  the  resource  on  the  Work with  Collector  (QPMWKCOL)  API.  When  QPMLPFRD  is 

called,  it will  return  data  immediately  if any  data  is available;  otherwise,  it will  wait  until  data  becomes  

available  and  then  return  the  data.  QPMLPFRD  only  returns  data  for  one  type  of  a resource  at a time.  

The  user  cannot  specify  the  type  of  data  that  is returned  by  QPMLPFRD.  It  returns  whatever  resource  

data  is available  at  the  time.  The  type  of  resource  must  be  tested  to  determine  its  type  if more  than  one  

type  is collected.  The  call  to  QPMLPFRD  returns  the  type  of resource  data  and  the  sequence  number  of  

the  collection.  The  sequence  number  is  increased  by  the  user-specified  interval  time  and  can  be  used  to  

see  if a collection  was  missed.  For  example,  if job  data  is being  collected  at  15-second  intervals  and  the  

previous  call  to  QPMLPFRD  returned  a sequence  number  of  265,  the  sequence  number  for  the  next  

collection  retrieved  should  be  280  or  else  a collection  was  missed.  This  API  should  be  called  once  per  

interval  for  each  type  of  resource  data  being  collected.  

The  data  returned  by  QPMLPFRD  is in  a raw  format  and  the  user  needs  to  perform  delta  calculations  on  

the  data  before  it can  be  used  (just  as  in  the  sequence  number  example  above).  Deltas  are  the  difference  

 

52 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm


between  the  latest  data  numbers  and  the  previous  data  numbers.  For  example,  a user  requests  job  data  

every  15  seconds  using  the  Work with  Collector  (QPMWKCOL)  API.  The  user  then  calls  QPMLPFRD  to  

copy  the  latest  collection  of  data  into  the  resource’s  user  space.  The  transaction  count  for  JOB1  is 256.  In 

the  previous  collection,  the  transaction  count  for  JOB1  was  251.  By  subtracting  the  previous  data  from  the  

current  data  (256  - 251),  the  number  of  transactions  performed  by  JOB1  in that  15  seconds  is found.  Thus,  

the  user  must  retain  the  previous  interval’s  data  to  calculate  deltas  from.  After  the  deltas  are  calculated,  

the  current  data  becomes  the  previous  data  in  preparation  for  the  next  interval.  Because  QPMLPFRD  

replaces  the  data  in  the  resource’s  user  space  with  the  new  data,  the  user  must  either  save  the  previous  

interval’s  data  of  interest  or  use  QPMWKCOL  to change  the  resource’s  user  space  before  calling  

QPMLPFRD  again.  This  also  means  that  after  starting  a collection,  a user  must  call  QPMLPFRD  twice  

before  he  can  do  any  calculations.  

Using  deltas,  the  impact  of  missed  collections  is lessened  by  the  delta  calculations.  For  example,  if you  

were  collecting  data  at 15-second  intervals  and  the  sequence  numbers  for  your  last  two  collections  were  

315  and  345,  a collection  was  missed.  You can  still  perform  delta  calculations  using  these  two  collections  

and  get  data  for  the  time  period  you  missed.  Of  course,  the  data  represents  an  interval  of  30  seconds  

instead  of  15.  However,  you  should  never  calculate  deltas  for  a period  of  greater  than  4 minutes  (the  

longest  collection  interval).  When  the  time  between  collections  exceeds  4 minutes,  there  is  a risk  that  

counters  will  wrap  twice.  Because  there  is no  way  to tell  if counters  wrapped  twice,  the  user  would  

perform  delta  calculations  as normal  and  end  up  with  inaccurate  data.  

There  are  three  situations  to  consider  when  calculating  deltas.  First,  the  data  between  the  two  collections  

must  be  matched  by  item.  When  doing  this,  be  aware  that  the  number  of items  reported  and  their  order  

could  change  from  one  collection  to  another  due  to  jobs  starting  and  ending,  communications  lines  

varying  on  and  off,  disks  and  IOPs  being  replaced  and  added,  as  well  as  the  order  that  the  devices  report  

in  with  their  data.  

The  second  situation  is when  the  raw-data  counters  wrap.  For  example,  assume  counter  A  can  hold  up  to 

99  and  currently  it  is  set  at  96.  If  the  system  adds  10  to the  count,  the  value  of counter  A  becomes  6 

because  when  it  reaches  100  it starts  over  again  at 0. When  a counter  wraps,  it makes  the  delta  

calculation  result  in  a negative  number.  To compensate  for  this,  a wrap  factor  equal  to the  largest  number  

the  field  can  hold  plus  1 should  be  added  to  the  negative  delta.  The  following  excerpt  of code  (written  in 

C)  shows  how  a subroutine  can  be  defined  to  calculate  deltas.  

int  CalculateDelta(int  CurrentData,  int  PrevData)  

{ 

  #define  MAXBIN4  2147483647  

  int  Delta;  

  

  Delta  = CurrentData  - PrevData;  

  if (Delta  < 0) 

    Delta  = (Delta  + MAXBIN4)  + 1; 

  return  Delta;  

} 

Note:  Some  of  the  fields  wrap  at  smaller  values.  See  the  format  tables  for  any  differences.  

The  third  situation  involves  communications  lines  varying  off  and  on.  When  a communication  line  goes  

from  inactive  to  active,  its  counters  might  get  reset.  If you  had  been  calculating  deltas  for  such  a line,  you  

should  restart  the  calculations  (save  the  current  data  but  skip  the  delta  calculation  until  the  next  

collection  is processed).  To determine  whether  you  need  to restart  delta  calculations  due  to  a line  

activation,  you  can  check  for  a mismatch  between  the  current  and  previous  value  of the  Number  of Vary 

On  Operations  field.  Also  be  aware  that  when  a communications  line  goes  inactive,  it will  be  reported  for  

at  least  one  collection  in  the  inactive  state  and  then  disappear  from  the  list  of lines  reported.  

QPMLPFRD  relies  on  the  Work with  Collector  (QPMWKCOL)  API.  First,  QPMWKCOL  must  be  used  to  

start  a collection  before  QPMLPFRD  can  be  called.  Second,  the  user  space  specified  for  a resource  on  the  

QPMWKCOL  call  is  the  user  space  that  QPMLPFRD  will  copy  the  data  into.  

 

Performance  Management  APIs 53



The  data  in the  user  spaces  is  replaced  only  if QPMLPFRD  is called.  However,  internal  data  spaces  get  

updated  with  every  collection.  It  is these  internal  data  spaces  that  are  copied  to the  user  spaces  when  

QPMLPFRD  is called.  Therefore,  if you  do  not  call  QPMLPFRD  for  every  collection  every  interval,  data  

will  be  missed.  Although,  as  mentioned  above,  deltas  can  help  compensate  for  missed  collections,  it is  not  

recommended  to  make  a regular  practice  of  skipping  collections.  Data  can  also  be  missed  if the  

performance  collector  takes  a long  time  to  retrieve  it or  is unable  to  retrieve  it due  to  system  problems.  

The  QPMLPFRD  and  QPMWKCOL  APIs  allow  multiple  users  to  be  able  to  share  the  same  data  

collection.  This  sharing  minimizes  the  system  overhead  when  multiple  users  are  collecting  data  and  

ensures  that  each  user  is  getting  data  consistent  and  synchronized  with  other  users.  

Authorities and Locks 

None.  

Required Parameter Group 

Type of  resource  

OUTPUT;  CHAR(10)  

 The  type  of resource  the  collected  data  is for. It  will  be  set  to  one  of  the  following  values:  

 *JOB  Job-related  information  (“Job  Format”  on page  56)  

*POOL  Pool-related  information  (“Pool  Format”  on page  61)  

*DISK  Disk-related  information  (“Disk  Format”  on page  63) 

*IOP  IOP-related  information  (“IOP  Format”  on page  66) 

*COMM  Communications-related  information  (“Communications  Data  Formats”  on page  70)
  

Sequence  number  of  collection  

OUTPUT;  BINARY(4)  

 The  sequence  number  of  this  collection  of  data.  This  value  increases  by  one  for  every  second.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Format of the Generated List 

The  list  of performance  data  that  the  QPMLPFRD  API  returns  into  the  user  space  consists  of:  

v   A user  area  

v   A generic  header  

v   An  input  parameter  section  

v   A header  section  

v   A list  data  section  

The  user  area  and  generic  header  are  described  in  User  Space  Format  for  List  APIs.  For  details  about  the  

remaining  items,  see  the  following  sections.  

When  you  retrieve  list  entry  information  from  a user  space,  you  must  use  the  entry  size  returned  in the  

generic  header.  The  size  of  each  entry  may  be  padded  at  the  end.  If you  do  not  use  the  entry  size,  the  

result  may  not  be  valid.  For  examples  of  how  to  process  lists,  see  the  API  Examples.  

Except  where  noted,  delta  calculations  need  to  be  performed  on  all  numeric  (BINARY(4))  fields.

 

54 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm
apiexmp.htm


Input Parameter Section 

For  a description  of the  fields  in  this  format,  see  “Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 CHAR(10)  Type of resource  

10 A CHAR(2)  Reserved  

12 C BINARY(4)  Sequence  number  of collection
  

  

Header Section 

For  a description  of the  fields  in  this  format,  see  “Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 CHAR(10)  Type of resource  

10 A CHAR(2)  Reserved  

12 C BINARY(4)  Interval  time  

16 10 BINARY(4)  Total CPU  seconds  used  

20 14 BINARY(4)  Number  of CPUs  

24 18 BINARY(4)  Sequence  number  of collection  

28 1C  CHAR(10)  System  name  

38 26 CHAR(6)  Release  level  

44 2C  CHAR(12)  Date  and  time  of collection  

  

56 38 BINARY(4)  Total available  CPU  seconds  

  

  

  

Field Descriptions 

Date  and  time  of  collection.  The  date  and  time  the  data  collection  interval  ended.  This  will  be  in  the  

format  YYMMDDHHMMSS,  where:  

 YY  Year 

MM  Month  

DD  Day  

HH  Hour  

MM  Minute  

SS  Second
  

The  date  and  time  reported  here  are  the  same  as  those  reported  by  the  generic  header,  but  the  generic  

header  also  reports  the  century  digit.  

Interval  time.  The  number  of  seconds  since  the  initial  data  was  collected.  This  value  is  used  in  

calculations  of utilization,  counts  per  second,  and  other  time-based  calculations.  

Number  of  CPUs.  

  

The  number  of  CPUs  configured  on  the  system  at the  time  the  data  sample  was  

taken.  

   

No  delta  calculation  should  be  performed  on  this  field.  

 

Performance  Management  APIs 55



Release  level.  The  version,  release,  and  modification  level  of the  operating  system  the  data  was  collected  

on.  

Reserved.  An  ignored  field.  

Sequence  number  of  collection.  The  sequence  number  of  the  data  collection.  Each  time  data  is collected,  

this  number  is increased  by  the  user-specified  interval  time.  This  number  might  not  accurately  represent  

the  elapsed  time  and  should  not  be  used  in  place  of interval  time  for  time-related  calculations.  This  

number  can  be  used  to  detect  missed  intervals.  

System  name.  The  name  of  the  system  the  data  was  collected  on.  

  

Total  available  CPU  seconds.  The  total  amount  of CPU  time  that  was  available  to  the  partition  based  

on  its  configured  processor  capacity.  This  value  should  be  used  to  calculate  all  CPU  utilizations;  however,  

it must  be  used  for  shared  processor  partitions  and  partitions  where  the  configured  capacities  may  

change.  For  uncapped  partitions,  the  CPU  seconds  used  may  exceed  the  available  CPU  seconds  which  

indicates  the  amount  of  additional  uncapped  capacity  that  was  used.  

   

Total  CPU  seconds  used.  The  total  number  of CPU  seconds  that  are  used  during  the  collection  interval  

for  all  processors.  

Type of  resource.  The  type  of resource  the  collected  data  is  for. The  possible  values  for  this  field  are:  

 *JOB  Job-related  information  

*POOL  Pool-related  information  

*DISK  Disk-related  information  

*IOP  IOP-related  information  

*COMM  Communications-related  information
  

  

Job Format 

For  a description  of  the  fields  in  this  format,  see  “Job  Field  Descriptions”  on  page  58.  

This  format  returns  data  for  each  job  and  task  that  are  active  in  the  system  when  data  is collected  for  the  

reported  interval.  Data  is  not  returned  for  jobs  and  tasks  that  end  during  an  interval.  

The  amount  of  job  and  task  data  that  this  API  returns  is  limited  to  the  amount  of data  that  can  fit  in  the  

user  and  internal  job  spaces.  This  results  in  a limit  of  approximately  18,000  jobs  and  tasks  reported.  While  

the  spaces  support  thousands  of  jobs  and  tasks,  the  API  might  take  longer  than  the  collection  interval  to  

collect  data  on  this  many  jobs  and  tasks.  Collecting  data  for  a large  number  of jobs  and  tasks  might  also  

lead  to  undesirable  system  performance  impacts.  

Every  job  (threaded  or  not)  has  a primary  thread.  The  primary  thread  is the  first  thread  started  for  any  

job  and  it  remains  active  for  the  duration  of  the  job.  A multi-threaded  job  has  additional  threads  that  may  

start  and  end  at  any  point  during  the  life  of  the  job.  

Only  limited  support  is provided  for  multi-threaded  jobs.  When  a job  has  multiple  threads,  some  of the  

data  that  is reported  is incomplete.  Only  one  entry  is returned  for  a job  regardless  of  how  many  threads  

are  active  within  the  job.  Within  this  entry  some  fields  are  a total  of  all  thread  activity  while  other  fields  

contain  data  for  the  primary  thread  only.  Fields  that  apply  only  to the  primary  thread  are  identified  in 

the  table  below.  

 

56 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

0 0 CHAR(10)  Job name  

10 A CHAR(2)  User  name  

20 14 CHAR(6)  Job number  

26 1A CHAR(1)  Job type  

27 1B  CHAR(1)  Job subtype  

28 1C  CHAR(1)  Pass-through  source  job  flag  

29 1D  CHAR(1)  Pass-through  target  job flag  

30 1E  CHAR(1)  Emulation  job  flag  

31 1F CHAR(1)  Client  Access  application  job  flag  

32 20 CHAR(1)  Target DDM  job flag  

33 21 CHAR(1)  MRT job flag  

34 22 CHAR(1)  System/36  environment  job  flag  

35 23 CHAR(2)  Job priority  

37 25 CHAR(2)  Job pool  

39 27 CHAR(1)  Machine  interactive  flag  

40 28 CHAR(8)  Reserved  

48 30 BINARY(4)  Database  CPU  time  

52 34 BINARY(4)  Time slice  

56 38 BINARY(4)  CPU  time  

60 3C  BINARY(4)  Transaction  count  

64 40 BINARY(4)  Transaction  time  

68 44 BINARY(4)  Synchronous  database  reads2 

72 48 BINARY(4)  Synchronous  database  writes2 

76 4C  BINARY(4)  Synchronous  nondatabase  reads2 

80 50 BINARY(4)  Synchronous  nondatabase  writes2 

84 54 BINARY(4)  Asynchronous  database  reads2 

88 58 BINARY(4)  Asynchronous  database  writes2 

92 5C  BINARY(4)  Asynchronous  nondatabase  reads2 

96 60 BINARY(4)  Asynchronous  nondatabase  writes2 

100  64 BINARY(4)  Communications  puts  

104  68 BINARY(4)  Communications  gets  

108  6C  BINARY(4)  Reserved  

112 70 BINARY(4)  Binary  overflows2 

116 74 BINARY(4)  Decimal  overflows2 

120  78 BINARY(4)  Floating-point  overflows2 

124  7C  BINARY(4)  Logical  database  reads  

128  80 BINARY(4)  Logical  database  writes  

132  84 BINARY(4)  Miscellaneous  database  operations  

136  88 BINARY(4)  Permanent  writes2 

140  8C  BINARY(4)  Reserved  

 

Performance  Management  APIs 57



Offset  

Type Field  Dec  Hex  

144  90 BINARY(4)  PAG faults2 

148  94 BINARY(4)  Number  of print  lines  

152  98 BINARY(4)  Number  of print  pages  

156  9C  BINARY(4)  Active-to-wait  transitions1,2 

160  A0  BINARY(4)  Wait-to-ineligible  transitions1,2 

164  A4  BINARY(4)  Active-to-ineligible  transitions1,2 

168  A8  CHAR(10)  Line  description  

178  B2 CHAR(10)  Secondary  line  description  

188  BC  CHAR(2)  Task type  

190  BE  CHAR(2)  Task type  extender  

192  C0  BINARY(4)  Threads  currently  active  

196  C4  BINARY(4)  Thread  count  

  

200  C8  BINARY(4)  Pages  allocated  

204  CC  BINARY(4)  Pages  deallocated  

   

Note:  

1 This  counter  does  not  wrap  at  the  standard  wrap  value.  Instead,  it increments  up  to 65535,  then  wraps  to 0. 

2 This  counter  is supported  for  primary  threads  only.  For  multithreaded  jobs,  the value  reported  may  not  

reflect  the  total  job  activity.
  

  

Job Field Descriptions 

Active-to-ineligible  transitions.  The  total  number  of  transitions  from  active  state  to  ineligible  state.  

Active-to-wait  transitions.  The  total  number  of  transitions  from  active  state  to  wait  state.  

Asynchronous  database  reads.  The  total  number  of physical  asynchronous  read  operations  for  database  

functions.  

Asynchronous  database  writes.  The  total  number  of physical  asynchronous  write  operations  for  database  

functions.  

Asynchronous  nondatabase  reads.  The  total  number  of  physical  asynchronous  read  operations  for  

nondatabase  functions.  

Asynchronous  nondatabase  writes.  The  total  number  of  physical  asynchronous  write  operations  for  

nondatabase  functions.  

Binary  overflows.  The  number  of binary  overflows.  

Client  Access  application  job  flag.  This  field  will  be  set  to 1 if this  is a Client  Access  application  job.  

Otherwise,  it will  be  set  to  0. 

CPU  time.  The  processing  unit  time  (in  milliseconds)  used  by  this  job.  

 

58 iSeries:  Performance  Management  APIs



Communications  gets.  The  number  of  communications  read  (logical)  operations.  These  do  not  include  

remote  work  station  activity.  They  include  only  activity  related  to  intersystem  communication  function  

(ICF)  files  when  the  I/O  is  for  an  ICF  device.  

Communications  puts.  The  number  of  communications  writes.  These  do  not  include  remote  work  station  

activity.  They  include  only  activity  related  to  ICF  files  when  the  I/O  is  for  an  ICF  device.  

Database  CPU  time.  The  processing  unit  time  (in  milliseconds)  used  by  this  job  for  database  processing.  

For  any  particular  job,  this  field  contains  the  total  database  CPU  time  for  all  threads  of  the  job.  

Decimal  overflows.  The  number  of  decimal  overflows.  

Emulation  job  flag.  This  field  will  be  set  to 1 if this  is  a emulation  job.  Otherwise,  it  will  be  set  to  0. 

Floating-point  overflows.  The  number  of  floating  point  overflows.  

Job  name.  The  name  of the  job  or  task.  For  an  interactive  job,  the  system  assigns  the  job  the  name  of the  

work  station  where  the  job  started.  For  a batch  job,  the  name  is specified  in the  command  when  the  job  is 

submitted.  For  a task  name,  this  field  will  contain  the  first  10  characters  of  the  16-character  task  name.  

Job  number.  The  number  of  the  job  (in  decimal)  or  task  (in  hexadecimal).  Note  that  the  numbering  

system  for  jobs  and  tasks  is  different  such  that  a job  and  a task  could  have  the  same  number.  

Job  pool.  The  pool  that  the  job  ran  in.  

Job  priority.  The  job’s  priority  over  other  jobs.  

Job  subtype.  The  subtype  of  the  job.  The  possible  values  for  this  file  are:  

 blank  The  job  has  no  special  subtype  

D Immediate  

E Evoke  job  (communications  batch)  

J Prestart  job  

P Print  driver  job  

T Multiple  requester  terminal  (MRT)  job (System/36  environment  only)  

U Alternate  spool  user
  

Job  type.  The  type  of  job  or  task.  The  possible  values  for  this  field  are:  

 A Autostart  job  

B Batch  job  

I Interactive  job  

M  Subsystem  monitor  job  

R Spooled  reader  job 

S System  job  

V Vertical  Licensed  Internal  Code  (VLIC)  (tasks  only)  

W  Spooled  writer  job 

X Start-control-program-function  (SCPF)  system  job
  

Line  description.  The  name  of  the  communications  line  this  work  station  and  its  controller  are  attached  

to.  This  is only  available  for  remote  work  stations.  

Logical  database  reads.  The  number  of times  the  database  module  was  called.  This  does  not  include  I/O  

operations  to  readers/writers,  or  I/O  operations  caused  by  the  Copy  Spooled  File  (CPYSPLF)  or  Display  

 

Performance  Management  APIs 59



Spooled  File  (DSPSPLF)  command.  If SEQONLY(*YES)  is specified  on  the  Override  with  Database  File  

(OVRDBF)  command,  these  numbers  show  each  block  of  records  read,  not  the  number  of individual  

numbers  read.  

Logical  database  writes.  The  number  of  times  the  internal  database  write  function  was  called.  This  does  

not  include  I/O  operations  to  readers/writers,  or  I/O  operations  caused  by  the  CPYSPLF  or  DSPSPLF  

commands.  If SEQONLY(*YES)  is  specified  on  OVRDBF  command,  these  numbers  show  each  block  of  

records  written,  not  the  number  of  individual  records  written.  

Machine  interactive  flag.  This  field  is set  to  1 if the  machine  is counting  the  processor  resources  

consumed  by  this  job  or  task  against  the  interactive  workload.  Otherwise,  it is set  to  0.  

Miscellaneous  database  operations.  The  number  of  update,  delete,  force-end-of-data,  and  release  

operations.  

MRT  job  flag.  This  field  will  be  set  to  1 if this  is  a multiple  requester  terminal  (MRT)  job.  Otherwise,  it 

will  be  set  to  0.  

Number  of  print  lines.  The  number  of  lines  written  by  the  program.  This  does  not  reflect  what  is 

actually  printed.  Spooled  files  can  be  ended  or  printed  with  multiple  copies.  

Number  of  print  pages.  The  number  of  pages  printed  by  the  program.  

PAG faults.  The  total  number  of  times  the  process  access  group  (PAG)  was  referred  to,  but  was  not  in  

main  storage.  

  

Pages  allocated.  Total number  of  pages  of temporary  and  permanent  storage  which  have  been  

allocated  by  the  job  since  the  job  started.  

Pages  deallocated.  Total number  of  pages  of temporary  and  permanent  storage  which  have  been  

deallocated  by  the  job  since  the  job  started.  

   

Permanent  writes.  The  number  of  permanent  writes.  

Pass-through  source  job  flag.  This  field  will  be  set  to  1 if this  is a pass-through  source  job.  Otherwise,  it 

will  be  set  to  0.  

Pass-through  target  job  flag.  This  field  will  be  set  to  1 if this  is a pass-through  target  job.  Otherwise,  it 

will  be  set  to  0.  

Reserved.  An  ignored  field.  

Secondary  line  description.  The  name  of  the  communications  line  this  work  station  and  its  controller  are  

attached  to.  This  is  only  available  for  pass-through  and  emulation.  

Synchronous  database  reads.  The  total  number  of  physical  synchronous  read  operations  for  database  

functions.  

Synchronous  database  writes.  The  total  number  of  physical  synchronous  write  operations  for  database  

functions.  

Synchronous  nondatabase  reads.  The  total  number  of physical  synchronous  read  operations  for  

nondatabase  functions.  

Synchronous  nondatabase  writes.  The  total  number  of physical  synchronous  write  operations  for  

nondatabase  functions.  

 

60 iSeries:  Performance  Management  APIs



System/36  environment  job  flag.  This  field  will  be  set  to 1 if this  is a System/36  environment  job.  

Otherwise,  it will  be  set  to  0. 

Target  DDM  job  flag.  This  field  will  be  set  to  1 if this  is a target  DDM  job.  Otherwise,  it will  be  set  to  0. 

Task  type.  Type of  task.  Possible  values  are:  

 01  Resident  task  

02  Supervisor  task  

03  MI  process  task  

04  System/36  environment  task
  

Task  type  extender.  A  task  type  extender  identifies  the  area  of  functional  support  provided  by  the  task.  

See  the  task  type  field  description  for  types  of  functions  supported.  

For  detailed  information  on  task  type  extender  values,  see  Performance  data  files:  Task type  extender.  

Thread  count  The  count  of  the  number  of  threads  initiated  within  the  job.  

Threads  currently  active  The  count  of  the  current  number  of  active  threads  in  the  process  when  the  data  

was  sampled.  An  active  thread  may  be  actively  running,  suspended,  or  waiting  for  a resource.  No  delta  

calculation  should  be  done  on  this  field.  

Time  slice.  The  time  slice  value  in  seconds.  No  delta  calculation  should  be  performed  on  this  field.  

Transaction  count.  The  number  of  transactions  performed  by  the  job.  

Transaction  time.  The  total  transaction  time  (in  seconds).  

User  name.  The  user  profile  under  which  the  job  is run. The  user  name  is  the  same  as  the  user  profile  

name  and  can  come  from  several  different  sources  depending  on  the  type  of  job.  For  a task,  this  field  will  

be  blank.  

Wait-to-ineligible  transitions.  Total number  of  transitions  from  wait  state  to  ineligible  state.  

Pool Format 

For  a description  of the  fields  in  this  format,  see  “Pool  Field  Descriptions”  on  page  62.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Pool  number  

4 4 BINARY(4)  Activity  level  

8 8 BINARY(4)  Pool  size  

12 C BINARY(4)  Machine-reserved  portion  

16 10 BINARY(4)  Database  faults  

20 14 BINARY(4)  Nondatabase  faults  

24 18 BINARY(4)  Database  pages  

28 1C  BINARY(4)  Nondatabase  pages  

32 20 BINARY(4)  Active-to-wait  transitions1 

36 24 BINARY(4)  Wait-to-ineligible  transitions1 

40 28 BINARY(4)  Active-to-ineligible  transitions1 

 

Performance  Management  APIs 61



Offset  

Type Field  Dec  Hex  

44  2C  BINARY(4)  Active-to-wait  transitions2 

48  30 BINARY(4)  Wait-to-ineligible  transitions2 

52  34 BINARY(4)  Active-to-ineligible  transitions2 

Note:  

1 This  counter  does  not  wrap  at  the  standard  wrap  value.  Instead,  it increments  up  to 32767,  then  wraps  to 0. 

2 This  counter  wraps  at the  standard  wrap  value.  It will  increment  up to 2,147,483,647  (231 - 1), then  wrap  to 

0.
  

  

Pool Field Descriptions 

Active-to-ineligible  transitions.  The  total  number  of  transitions  by  processes  assigned  to this  pool  from  

active  state  to  ineligible  state.  There  are  two  versions  of  this  counter—one  that  wraps  at the  standard  

wrap  value  and  one  that  wraps  at  a nonstandard  wrap  value.  

Active-to-wait  transitions.  The  total  number  of  transitions  by  processes  assigned  to this  pool  from  active  

state  to  wait  state.  There  are  two  versions  of  this  counter—one  that  wraps  at  the  standard  wrap  value  

and  one  that  wraps  at  a nonstandard  wrap  value.  

Activity  level.  The  maximum  number  of  processes  that  can  be  active  in  the  machine  at the  same  time.  No  

delta  calculation  should  be  performed  on  this  field.  

Database  faults.  The  total  number  of  interruptions  to  processes  (not  necessarily  assigned  to  this  pool)  

that  were  required  to  transfer  data  into  the  pool  to permit  the  MI  instruction  to  process  the  database  

function.  

Database  pages.  The  total  number  of pages  of database  data  transferred  from  auxiliary  storage  to  the  

pool  to  permit  the  instruction  to  run as a consequence  of  set  access  state,  implicit  access  group  

movement,  and  internal  machine  actions.  

Machine-reserved  portion.  The  amount  of  storage  (in  kilobytes)  from  the  pool  that  is dedicated  to 

machine  functions.  No  delta  calculation  should  be  performed  on  this  field.  

Nondatabase  faults.  The  total  number  of  interruptions  to processes  (not  necessarily  assigned  to  this  pool)  

that  were  required  to  transfer  data  into  the  pool  to permit  the  MI  instruction  to  process  the  nondatabase  

function.  

Nondatabase  pages.  The  total  number  of pages  of nondatabase  data  transferred  from  auxiliary  storage  to  

the  pool  to  permit  the  instruction  to  run as:  a consequence  of  set  access  state,  implicit  access  group  

movement,  and  internal  machine  actions.  

Pool  number.  The  unique  identifier  of  this  pool.  The  value  is from  1 to 64.  No  delta  calculation  should  be 

performed  on  this  field.  

Pool  size.  The  amount  of  main  storage  (in  kilobytes)  assigned  to  the  pool.  Note  that  if a pool  is reported  

with  a pool  size  of  zero,  then  the  pool  does  not  exist.  No  delta  calculation  should  be  performed  on  this  

field.  

Wait-to-ineligible  transitions.  Total number  of transitions  by  processes  assigned  to  this  pool  from  wait  

state  to  ineligible  state.  There  are  two  versions  of this  counter—one  that  wraps  at  the  standard  wrap  

value  and  one  that  wraps  at a nonstandard  wrap  value.

 

62 iSeries:  Performance  Management  APIs



Disk Format 

  

One  entry  will  be  reported  for  each  disk  resource.  Typically,  there  will  be  one  disk  resource  per  disk  

unit  except  for  a multipath  disk  unit  which  has  multiple  disk  resources  associated  with  it.  

   

For  a description  of the  fields  in  this  format,  see  “Disk  Field  Descriptions”  on  page  64.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(4)  Disk  arm  number  

12 C CHAR(4)  Disk  drive  type  

16 10 CHAR(1)  Mirror  flag  

17 11 CHAR(1)  Mirror  status  

18 12 CHAR(2)  Reserved  

20 14 BINARY(4)  Times the  arm  not  busy  

24 18 BINARY(4)  Samples  taken  

28 1C  BINARY(4)  Drive  capacity  

32 20 BINARY(4)  Drive  available  space  

36 24 BINARY(4)  Blocks  read  

40 28 BINARY(4)  Blocks  written  

44 2C  BINARY(4)  Read  commands  

48 30 BINARY(4)  Write commands  

52 34 BINARY(4)  Processor  idle  loop  count  

56 38 BINARY(4)  Processor  idle  loop  time  

60 3C  BINARY(4)  Seeks  > 2/3  of disk  

64 40 BINARY(4)  Seeks  > 1/3  and  < 2/3  of disk  

68 44 BINARY(4)  Seeks  > 1/6  and  < 1/3  of disk  

72 48 BINARY(4)  Seeks  > 1/12  and  < 1/6  of disk  

76 4C  BINARY(4)  Seeks  < 1/12  of disk  

80 50 BINARY(4)  Zero  seeks  

84 54 BINARY(4)  Buffer  overruns  

88 58 BINARY(4)  Buffer  underruns  

92 5C  BINARY(4)  Total queue  elements  

96 60 CHAR(2)  ASP  number  

98 62 CHAR(2)  Reserved  

100  64 BINARY(4)  Reserved  

104  68 BINARY(4)  Reserved  

108  6C  CHAR(10)  IOP  resource  name  

118 76 CHAR(10)  Unit  resource  name  

128  80 CHAR(1)  Compressed  unit  

129  81 CHAR(1)  Reserved  

130  82 CHAR(10)  ASP  resource  name  

 

Performance  Management  APIs 63



Offset  

Type Field  Dec  Hex  

140  8C  BINARY(4)  ASP  number  - extended  

  

144  90 CHAR(1)  Multipath  unit  

145  91 CHAR(1)  Initial  path  of multipath  unit  

146  92 CHAR(1)  Production  copy  of remotely  mirrored  independent  ASP  

147  93 CHAR(1)  Mirror  copy  of remotely  mirrored  independent  ASP  

148  94 CHAR(4)  Reserved  

  

  

  

Disk Field Descriptions 

ASP  resource  name.  The  resource  name  of  the  ASP  to  which  this  unit  currently  is allocated.  A  value  of 

blanks  specifies  the  system  ASP  or  a basic  ASP.  

ASP  number.  The  auxiliary  storage  pool  (ASP)  to which  this  unit  is currently  allocated.  The  values  are:  

 -1 The  ASP  number  is greater  than  99 and  cannot  be reported  in this  field.  Use  the  value  in the  ASP  

number  - extended  field  instead.  

00 This  unit  currently  is not  allocated.  

01 The  system  ASP.  

02-32  A basic  ASP.  

33-99  An independent  ASP.
  

ASP  number  - extended.  The  field  is defined  the  same  as  the  ASP  number  field  except  that  it also  can  

report  ASP  numbers  greater  than  99.  The  values  reported  are:  

 0 This  unit  currently  is not  allocated.  

1 The  system  ASP.  

2-32  A basic  ASP.  

33-255  An independent  ASP.
  

No  delta  calculation  should  be  done  on  this  field.  

Blocks  read.  The  number  of  blocks  read.  The  block  length  is 520  bytes,  which  includes  8 bytes  of system  

control  information.  

Blocks  written.  The  number  of  blocks  written.  The  block  length  is 520  bytes,  which  includes  8 bytes  of  

system  control  information.  

Buffer  overruns.  The  number  of  times  that  data  was  available  to  be  read  into  the  disk  controller  buffer  

from  the  disk,  but  the  disk  controller  buffer  still  contained  valid  data  that  was  not  retrieved  by  the  

storage  device  controller.  Consequently,  the  disk  had  to  take  an  additional  revolution  until  the  buffer  was  

available  to  accept  data.  

Buffer  underruns.  The  number  of  times  that  the  disk  controller  was  ready  to  transfer  data  to the  disk  on  

a write  operation,  but  the  disk  controller  buffer  was  empty.  The  data  was  not  transferred  in  time  by  the  

disk  IOP  to  the  disk  controller  buffer.  The  disk  was  forced  to  take  an  extra  revolution  awaiting  the  data.  

Compressed  unit.  A compressed  unit  indicator.  The  values  are:  

 0 This  unit  is not  compressed.  

 

64 iSeries:  Performance  Management  APIs



1 This  unit  is compressed.
  

Disk  arm  number.  The  identifier  of  the  unit.  Each  actuator  arm  on  the  disk  drives  that  are  available  to 

the  machine  represents  a unit  of  auxiliary  storage.  The  value  of  the  unit  number  is assigned  by  the  

system  when  the  unit  is  allocated  to  an  ASP.  If the  disk  arm  number  is 0000,  then  the  arm  is not  

configured.  Both  arms  of  a mirrored-arm  pair  have  the  same  disk  arm  number  and  can  be  differentiated  

by  the  mirror  flag  value.  

Disk  drive  type.  The  type  of disk  drive,  such  as 9332,  9335,  or  6100.  

Drive  available  space.  The  total  number  of  kilobytes  of  auxiliary  storage  space  that  is not  currently  

assigned  to  objects  or  to  internal  machine  functions.  No  delta  calculations  should  be  done  on  this  field.  

Drive  capacity.  The  total  number  of  kilobytes  of  auxiliary  storage  provided  on  the  unit  for  the  storage  of  

objects  and  internal  machine  functions.  

  

Initial  path  of  multipath  unit.  The  value  of this  field  is 1 when  the  disk  resource  represents  the  initial  

path  of  a multipath  disk  unit;  otherwise,  it is 0.  The  initial  path  is  the  first  path  observed  by  the  system.  

As  such,  it can  change  after  an  IPL.  The  resource  name  of  the  initial  path  can  be  used  for  reporting  a 

multipath  disk  unit  under  a single  resource  name.  

   

IOP  resource  name.  System-unique  name  to identify  the  IOP.  

  

Mirror  copy  of  remotely  mirrored  independent  ASP.  The  value  of this  field  is 1 when  the  disk  unit  is  

in  a mirror  copy  of  a remotely  mirrored  independent  ASP;  otherwise,  it is 0. 

   

Mirror  flag.  The  flag  indicating  whether  this  disk  arm  is locally  mirrored.  The  values  are:  

 blank  The  arm  is not  locally  mirrored.  

A The  first  arm  of a locally  mirrored  pair.  

B The  second  arm  of a locally  mirrored  pair.
  

Mirror  status.  The  status  of  local  mirroring.  The  values  are:  

v   X’00’  - Not  mirrored  

v   X’01’  - Active  

v   X’02’  - Resuming  

v   X’03’  - Suspended  

  

Multipath  unit.  The  value  of  this  field  is 1 when  the  disk  resource  represents  a multipath  disk  unit;  

otherwise,  it  is  0.  Performance  data  will  be  reported  for  each  disk  resource  associated  with  a multipath  

disk  unit.  For  a multipath  disk  unit,  the  following  counters  come  from  the  device  so  their  values  are  

duplicated  for  each  disk  resource  reported:  

v   Processor  idle  loop  count  

v   Processor  idle  loop  time  

v   Seeks  (6 counters)  

v   Buffer  overruns  

v   Buffer  underruns  

Other  field  values  that  are  duplicated  include  drive  capacity  and  drive  available  space.  

The  arm  number  and  mirror  flag  of  a particular  multipath  disk  unit  can  be  used  to  identify  the  entries  

associated  with  that  unit.  

   

 

Performance  Management  APIs 65



Processor  idle  loop  count.  The  number  of  times  the  disk  controller  passed  through  the  idle  loop.  The  

count  is increased  differently  for  the  9332  and  9335  disk  drives.  For  the  9332,  this  counter  is increased  

only  if the  disk  controller  is  totally  idle  (no  I/O  operations  are  active).  For  the  9335,  even  though  the  disk  

controller  may  be  idle  and  the  counter  gets  increased,  an  I/O  operation  can  be  active  (for  example,  seek  

is being  performed).  This  field  is  nonzero  for  drive  types  that  support  a dedicated  disk  processor  and  is 

zero  for  other  drive  types.  

Processor  idle  loop  time.  The  time  (in  hundredths  of microseconds)  to  make  one  pass  through  the  idle  

loop.  The  value  reported  could  be  a multiple  of  the  actual  processor  idle  loop  time.  In  that  case,  the  value  

reported  for  the  processor  idle  loop  count  is reduced  by  the  same  multiple  so  that  the  calculated  disk  

processor  utilization  is correct.  This  field  applies  to  drive  types  that  support  a dedicated  disk  processor  

and  is zero  for  other  drive  types.  No  delta  calculation  should  be  done  on  this  field.  

  

Production  copy  of  remotely  mirrored  independent  ASP.  The  value  of  this  field  is 1 when  the  disk  

unit  is in  a production  copy  of  a remotely  mirrored  independent  ASP;  otherwise,  it is 0. 

   

Read  commands.  The  number  of  read  data  commands.  

Reserved.  An  ignored  field.  

Samples  taken.  The  number  of  samples  taken  at approximately  two  per  second.  

Seeks  < 1/12  of  disk.  The  number  of  times  the  arm  traveled  from  its  current  position  to less  than  1/12  of 

the  disk  on  a seek  request.  

Seeks  > 1/12  and  <  1/6  of  disk.  The  number  of  times  the  arm  traveled  more  than  1/12  but  less  than  1/6  

of the  disk  on  a seek  request.  

Seeks  > 1/6  and  <  1/3  of  disk.  The  number  of times  the  arm  traveled  more  than  1/6  but  less  than  1/3  of  

the  disk  on  a seek  request.  

Seeks  > 1/3  and  <  2/3  of  disk.  The  number  of times  the  arm  traveled  more  than  1/3  but  less  than  2/3  of  

the  disk  on  a seek  request.  

Seeks  > 2/3  of  disk.  The  number  of  times  the  arm  traveled  more  than  2/3  of  the  disk  on  a seek  request.  

Times  the  arm  not  busy.  The  number  of  times  there  were  no  outstanding  I/O  operations  active  at sample  

time.  

Total  queue  elements.  The  number  of  I/O  operations  waiting  service  at sample  time.  This  number  

includes  the  I/O  operation  that  is in  progress.  Divide  this  by  the  number  of samples  taken  to  get  the  

average  queue  length.  

Unit  resource  name.  

  

Typically,  there  will  be  one  disk  (unit)  resource  per  disk  unit  except  for  a 

multipath  disk  unit  which  has  multiple  disk  resources  associated  with  it (see  multipath  unit). 

   

Write commands.  The  number  of  write  data  commands.  

Zero  seeks.  The  number  of  times  the  access  arm  did  not  physically  move  on  a seek  request.  The  

operation  may  have  resulted  in a head  switch.  

IOP Format 

For  a description  of  the  fields  in  this  format,  see  “IOP  Field  Descriptions”  on  page  68.  

 

66 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  IOP  type  

9 9 CHAR(4)  Resource  type  

13 D CHAR(3)  Reserved  

16 10 BINARY(4)  Idle  loop  count  

20 14 BINARY(4)  Idle  loop  time  

24 18 BINARY(4)  RAM  utilization  

28 1C  BINARY(4)  IOP  system  function  time  

32 20 BINARY(4)  All protocols  communications  time  

36 24 BINARY(4)  SDLC  communications  time  

40 28 BINARY(4)  Asynchronous  communications  time  

44 2C  BINARY(4)  Bisynchronous  communications  time  

48 30 BINARY(4)  X.25  LLC  communications  time  

52 34 BINARY(4)  X.25  PLC  communications  time  

56 38 BINARY(4)  X.25  DLC  communications  time  

60 3C  BINARY(4)  LAN  communications  time  

64 40 BINARY(4)  SDLC  short-hold  mode  time  

68 44 BINARY(4)  ISDN  LAPE  and  LAPD  time  

72 48 BINARY(4)  ISDN  Q931  communications  time  

76 4C  BINARY(4)  Disk  time  

80 50 CHAR(1)  Function  1 identifier  

81 51 CHAR(1)  Function  2 identifier  

82 52 CHAR(1)  Function  3 identifier  

83 53 CHAR(1)  Function  4 identifier  

84 54 CHAR(1)  Function  5 identifier  

85 55 CHAR(3)  Reserved  

88 58 BINARY(4)  Function  1 time  

92 5C  BINARY(4)  Function  2 time  

96 60 BINARY(4)  Function  3 time  

100  64 BINARY(4)  Function  4 time  

104  68 BINARY(4)  Function  5 time  

108  6C  BINARY(4)  Processor  2 time  

112 70 CHAR(10)  IOP  resource  name  

122  7A CHAR(2)  Reserved  

124  7C  BINARY(4)  Reserved  

128  80 BINARY(4)  Twinaxial time  

132  84 BINARY(4)  Other  function  time  

136  88 BINARY(4)  Interrupt  level  time  

140  8C  BINARY(4)  Remote  access  time

 

Performance  Management  APIs 67



IOP Field Descriptions 

All  protocols  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  all  of the  

communication  protocol  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  applies  to  

communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  

Asynchronous  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  

asynchronous  communications  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  

applies  to  communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to 0.  

Bisynchronous  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  

bisynchronous  communications  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  

applies  to  communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to 0.  

Disk  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  disk  tasks  that  are  running  in  the  

primary  IOP  processor.  This  field  only  applies  to  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  

Function  1-5  identifier.  The  identifier  for  additional  functions  that  may  be  running  in  the  primary  IOP  

processor.  Each  function  identifier  has  an  associated  function  time  value.  Function  identifier  may  have  the  

following  values:  

v   X’00’  - No  time  value  supplied  

v   X’11’  - Integrated  xSeries  Server  for  iSeries  pipe  task  (Integrated  xSeries  Server  for  iSeries  is also  known  

as  file  server  I/O  processor  and  FSIOP.)  

v   X’20’  - Storage  subsystem  task  

v   X’22’  - Tape task  

v   X’23’  - Diskette  task  

v   X’24’  - Optical  task  

v   X’30’  - Communications  subsystem  task  

v   X’42’  - Localtalk  task  

v   X’43’  - Wireless  task  

v   X’50’  - Service  processor  task  

v   X’60’  - Cryptography  task  

This  field  only  applies  to  communications  and  multifunction  IOPs.  Otherwise,  it  will  be  set  to  X’00’.  

Function  1-5  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  the  IOP  function  that  is 

running  in  the  primary  IOP  processor.  This  field  only  applies  to  communications  and  multifunction  IOPs.  

Otherwise,  it will  be  set  to  0. 

Idle  loop  count.  The  number  of  times  the  primary  IOP  processor  ran  an  idle  loop.  This  is done  when  the  

IOP  has  no  work  to  perform.  This  count  is  used  with  idle  loop  time  to calculate  the  primary  IOP  

processor  utilization  in  seconds:  

  U = IT - (ILC  * ILT  / 100,000,000)  

where:  

 U is the  processor  utilization  in seconds  for the  interval  

IT is the  change  in the  interval  time  during  the interval  

ILC  is the  change  in the  idle  loop  count  during  the  interval  

ILT is the  idle  loop  time
 

 

68 iSeries:  Performance  Management  APIs



Idle  loop  time.  The  time  (in  hundredths  of microseconds)  for  the  primary  IOP  processor  to  run the  idle  

loop  once.  The  value  reported  could  be  a multiple  of  the  actual  idle  loop  time.  In  that  case,  the  value  

reported  for  the  idle  loop  count  is  reduced  by  the  same  multiple  so  that  the  calculated  IOP  processor  

utilitzation  is correct.  No  delta  calculation  should  be  done  on  this  field.  

Interrupt  level  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  interrupt  level  processing  

that  is running  in  the  primary  IOP  processor.  This  does  not  include  interrupt  level  processing  time  that  

can  be  associated  with  a particular  task.  This  field  only  applies  to  multifunction  IOPs.  Otherwise,  it is set  

to  0.  

IOP  resource  name.  System-unique  name  to identify  the  IOP.  

IOP  system  function  time.  The  total  time  (in  milliseconds)  used  by  the  IOP  for  basic  system  function  that  

is  running  in  the  primary  IOP  processor.  This  field  only  applies  to  communications  and  multifunction  

IOPs.  Otherwise,  it  will  be  set  to  0.  

IOP  type.  The  type  of  IOP.  The  possible  values  for  this  field  are:  

 C Communications  IOP  

D Disk  IOP  

L Local  work  station  IOP  

M  Multifunction  IOP
  

Note  that  QPMLPFRD  will  report  I/O  processor  (IOP)  statistics  differently  starting  with  Version  3 Release  

7.  Performance  statistics  for  IOPs  introduced  in  Version  3 Release  7 or  later  will  be  reported  as  

multifunction  IOPs  even  if the  IOP  supports  only  one  of the  three  IOP  functions  (communications,  disk,  

or  local  workstation).  There  will  be  no  change  in  the  reporting  of performance  statistics  for  IOPs  

introduced  before  Version  3 Release  7, which  will  still  be  reported  under  the  appropriate  IOP  type  

(communications,  disk,  local  workstation,  or  multifunction).  

ISDN  LAPE  and  LAPD  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  integrated  services  

digital  network  (ISDN)  communications  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  

only  applies  to  communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  The  ISDN  

communications  tasks  are:  

 LAPD  Link  access  procedure  D-channel  

LAPE  Enhanced  version  of LAPD
  

ISDN  Q.931  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  ISDN  Q.931  

communications  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  applies  to  

communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  

LAN  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  the  token-ring  

network,  Ethernet,  frame  relay,  fiber  distributed  data  interface  (FDDI),  and  asynchronous  transfer  mode  

(ATM)  communications  tasks  that  are  running  in the  primary  IOP  processor.  This  includes  processing  

time  due  to  token-ring  and  Ethernet  LAN  emulation.  This  field  only  applies  to communications  and  

multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  

Other  function  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  other  IOP  functions  that  are  

running  in  the  primary  IOP  processor.  Other  functions  include  those  that  cannot  be  reported  in  the  

function  1-5  identifier  fields  because  all  of  the  function  1-5  identifier  fields  are  in  use.  This  field  applies  to  

communications  and  multifunction  IOPs  only.  Otherwise,  it  is set  to 0. 

Processor  2 time.  The  utilization  (in  milliseconds)  of  the  second  IOP  processor,  which  handles  specialized  

functions.  This  field  applies  to  wireless  IOPs,  and  is  zero  for  other  IOPs.  

 

Performance  Management  APIs 69



RAM  utilization.  Available  local  storage  (in  bytes).  The  number  of  bytes  of free  local  storage  in  the  IOP.  

The  free  local  storage  will  probably  be  noncontiguous  because  of fragmentation.  This  field  only  applies  to  

communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  No  delta  calculations  should  be  

done  on  this  field.  

Remote  access  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  remote  access  tasks  that  are  

running  in  the  primary  IOP  processor.  This  field  applies  to  multifunction  IOPs  only.  Otherwise,  it is  set  to  

0. 

Reserved.  An  ignored  field.  

Resource  type.  The  model  number  of  the  IOP.  

SDLC  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  SDLC  

communications  tasks  that  are  running  in the  primary  IOP  processor.  This  field  only  applies  to  

communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  

SDLC  short-hold  mode  time.  The  total  processing  unit  time  (in  milliseconds)  that  is  used  by  SDLC  

short-hold  mode  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  applies  to  

communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0.  

Twinaxial  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  workstation  and  local  twinaxial  

tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  applies  to  multifunction  IOPs.  

Otherwise,  it will  be  set  to  0. 

X.25  DLC  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  X.25  data  link  

control  (DLC)  and  Point-to-Point  Protocol  (PPP)  communications  tasks  that  are  running  in  the  primary  

IOP  processor.  This  field  only  applies  to  communications  and  multifunction  IOPs.  Otherwise,  it will  be  

set  to  0. 

X.25  LLC  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  X.25  logical  link  

control  (LLC)  communications  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  

applies  to  communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to 0.  

X.25  PLC  communications  time.  The  total  processing  unit  time  (in  milliseconds)  used  by  X.25  packet  

layer  communications  (PLC)  tasks  that  are  running  in  the  primary  IOP  processor.  This  field  only  applies  

to  communications  and  multifunction  IOPs.  Otherwise,  it will  be  set  to  0. 

Communications Data Formats 

The  formats  for  communications  data  are  handled  differently  from  the  formats  for  other  types  of  

resources.  All  communications  protocols  are  kept  in  the  same  space,  but,  because  each  protocol  has  

unique  data  fields,  each  individual  field  in  the  space  will  have  a different  meaning  depending  on  the  

protocol.  Therefore,  different  formats  are  presented  for  each  protocol.  Also,  because  the  protocols  vary  in 

the  number  of  data  fields,  some  protocol  formats  will  not  use  all  the  space  provided  (each  record  in  the  

space  has  the  same  length).  The  communications  data  formats  are:  

v   Asynchronous  Format  (“Asynchronous  Format”  on  page  71)  

v   Bisynchronous  Format  (“Bisynchronous  Format”  on  page  72)  

v   Token-Ring  Format  (“Token-Ring  Format”  on  page  74)  

v   Ethernet  Format  (“Ethernet  Format”  on  page  79)  

v   IDLC  Format  (“IDLC  Format”  on  page  84)  

v   LAPD  Format  (“LAPD  Format”  on  page  86)  

v   SDLC  Format  (“SDLC  Format”  on  page  89)  

v   X.25  Format  (“X.25  Format”  on  page  91)  

 

70 iSeries:  Performance  Management  APIs



v   PPP  Format  (“PPP  Format”  on  page  92)

Asynchronous Format 

For  a description  of the  fields  in  this  format,  see  “Asynchronous  Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19 13 CHAR(1)  Line  active  

20 14 CHAR(12)  Reserved  

32 20 BINARY(4)  Line  speed  

36 24 BINARY(4)  Number  of vary  on operations  

40 28 BINARY(4)  Active  time  

44 2C  BINARY(4)  Bytes  transmitted  

48 30 BINARY(4)  Bytes  received  

52 34 BINARY(4)  Protocol  data  units  transmitted  

56 38 BINARY(4)  Protocol  data  units  received  

60 3C  BINARY(4)  Protocol  data  units  received  in error  

64 40 CHAR(10)  IOP  resource  name
  

  

Asynchronous Field Descriptions 

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Bytes  received.  The  number  of  bytes  received  (data  and  control  characters),  including  characters  received  

in  error. 

Bytes  transmitted.  The  number  of bytes  transmitted  (data  and  control  characters)  including  bytes  

transmitted  again  because  of  errors.  

IOP  resource  name.  System-unique  name  to identify  the  IOP.  

Line  active.  The  state  of the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

Number  of  vary  on  operations.  The  total  number  of  vary  on  operations.  

 

Performance  Management  APIs 71



Protocol.  Protocol  type.  This  will  be  set  to  A for  asynchronous.  

Protocol  data  units  received.  The  total  number  of protocol  data  units  received.  

Protocol  data  units  received  in  error.  The  total  number  of protocol  data  units  received  with  parity  and  

stop  bit  errors.  

Protocol  data  units  transmitted.  The  total  number  of protocol  data  units  successfully  transmitted  and  the  

data  circuit-terminating  equipment  (DCE)  acknowledged.  

Bisynchronous Format 

For  a description  of  the  fields  in  this  format,  see  “Bisynchronous  Field  Descriptions”  on  page  73.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19  13 CHAR(1)  Line  active  

20  14 CHAR(12)  Reserved  

32  20 BINARY(4)  Line  speed  

36  24 BINARY(4)  Number  of vary  on operations  

40  28 BINARY(4)  Active  time  

44  2C  BINARY(4)  Bytes  transmitted  

48  30 BINARY(4)  Bytes  received  

52  34 BINARY(4)  Data  characters  transmitted  

56  38 BINARY(4)  Data  characters  received  

60  3C  BINARY(4)  Data  characters  retransmitted  

64  40 BINARY(4)  Data  characters  received  in error  

68  44 BINARY(4)  Characters  received  in error  

72  48 BINARY(4)  NAK  received  to text  sent  

76  4C  BINARY(4)  Wrong ACK  to text  sent  

80  50 BINARY(4)  Enquiry  to text  sent  

84  54 BINARY(4)  Invalid  (unrecognized)  format  

88  58 BINARY(4)  Enquiry  to ACK  

92  5C  BINARY(4)  Disconnect  received  (abort)  

96  60 BINARY(4)  EOT  received  (abort)  

100  64 BINARY(4)  Disconnect  received  (forward  abort)  

104  68 BINARY(4)  EOT  received  (forward  abort)  

108  6C  BINARY(4)  Data  blocks  transmitted  

112 70 BINARY(4)  Data  blocks  received  

116 74 CHAR(10)  IOP  Resource  name
  

 

 

72 iSeries:  Performance  Management  APIs



Bisynchronous Field Descriptions 

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Bytes  received.  The  number  of  bytes  received  (data  and  control  characters),  including  bytes  received  in  

error.  

Bytes  transmitted.  The  number  of bytes  transmitted  (data  and  control  characters)  including  bytes  

transmitted  again  because  of  errors.  

Characters  received  in  error.  The  number  of  characters  received  with  a block-check  character  error. 

Data  blocks  received.  The  number  of data  blocks  received.  

Data  blocks  transmitted.  The  number  of  data  blocks  transmitted.  

Data  characters  received.  The  number  of  data  characters  received  successfully  (excluding  synchronous  

characters)  while  in  data  mode.  

Data  characters  received  in  error.  The  number  of  data  characters  received  with  a block-check  character  

error  while  in  data  mode.  

Data  characters  retransmitted.  The  number  of data  characters  transmitted  again.  

Data  characters  transmitted.  The  number  of  data  characters  transmitted  successfully  while  in  data  mode.  

Disconnect  received  (abort).  The  number  of  times  the  remote  station  issued  a disconnect  with  abnormal  

end.  This  could  occur  when  error  recovery  did  not  succeed  or  the  binary  synchronous  job  was  ended.  

Disconnect  received  (forward  abort).  The  number  of times  the  host  station  issued  a disconnect  with  

abnormal  end.  This  could  occur  when  error  recovery  did  not  succeed  or  the  binary  synchronous  job  was  

ended.  

EOT  received  (abort).  The  end  of  transmission  was  received  (abnormal  end).  This  is similar  to a 

disconnect.  

EOT  received  (forward  abort).  The  end  of  transmission  was  received  (forward  abnormal  end).  This  is  

similar  to  a disconnect.  

Enquiry  to  ACK.  An  enquiry  to  acknowledged  character.  The  remote  station  returned  an  

acknowledgment  (for  example,  ACK0),  and  the  host  system  sent  an  ENQ  character.  This  indicates  that  the  

host  station  did  not  recognize  the  acknowledgment  as  a valid  acknowledgment.  

Enquiry  to  text  sent.  The  number  of times  text  was  sent  by  a station  and  an  ENQ  character  was  returned.  

The  receiving  station  expected  some  form  of acknowledgment,  such  as an  ACK0,  ACK1,  or  NAK.  

IOP  resource  name.  System-unique  name  to identify  the  IOP.  

Invalid  (unrecognized)  format.  The  number  of times  one  of the  delimiter  characters  that  encloses  the  

data  in  brackets  being  sent  or  received  is not  valid.  

Line  active.  The  state  of the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

 

Performance  Management  APIs 73



1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

NAK  received  to  text  sent.  Negative  acknowledgment  character  received  to  text  sent.  The  number  of 

times  the  remote  station  did  not  understand  the  command  sent  from  the  host  system.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Protocol.  The  protocol  type.  This  will  be  set  to  B for  bisynchronous.  

Reserved.  An  ignored  field.  

Wrong  ACK  to  text  sent.  Wrong  acknowledgment  character  to  text  sent.  The  host  system  received  an  

acknowledgment  from  the  remote  device  that  was  not  expected.  For  example,  the  host  system  expected  

an  ACK0  and  received  an  ACK1.  

Token-Ring  Format 

Token-ring  format  was  formerly  known  as  establishment  communications  link  (ECL)  format.  

This  format  reports  token-ring  LAN  protocol  statistics  for  asynchronous  transfer  mode  (ATM)  ports  that  

support  token-ring  LAN  emulation  and  for  token-ring  ports.a  

For  a description  of  the  fields  in  this  format,  see  “Token-Ring  Field  Descriptions”  on  page  76.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19  13 CHAR(1)  Line  active  

20  14 CHAR(12)  Reserved  

32  20 BINARY(4)  Line  speed  

36  24 BINARY(4)  Number  of vary  on operations  

40  28 BINARY(4)  Active  time  

44  2C  BINARY(4)  I-frame  characters  transmitted  

48  30 BINARY(4)  I-frame  characters  received  

52  34 BINARY(4)  RNR  frames  transmitted  

56  38 BINARY(4)  RNR  frames  received  

60  3C  BINARY(4)  Reject  frames  transmitted  

64  40 BINARY(4)  Reject  frames  received  

68  44 BINARY(4)  I-frames  transmitted  

72  48 BINARY(4)  I-frames  received  

76  4C  BINARY(4)  SABME  frames  transmitted  

 

74 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

80 50 BINARY(4)  SABME  frames  received  

84 54 BINARY(4)  N2 retries  expiration  count  

88 58 BINARY(4)  T1 timer  expiration  count  

92 5C  BINARY(4)  Frames  transmitted2 

96 60 BINARY(4)  Frames  received2 

100  64 BINARY(4)  Routing  I-frames  transmitted1,2 

104  68 BINARY(4)  Routing  I-frames  received1,2 

108  6C  BINARY(4)  Line  errors2 

112 70 BINARY(4)  Internal  errors1,2 

116 74 BINARY(4)  Burst  error2 

120  78 BINARY(4)  ARI/FCI  error2 

124  7C  BINARY(4)  Abort  delimiter2 

128  80 BINARY(4)  Lost  frame1,2 

132  84 BINARY(4)  Receive  congestion2 

136  88 BINARY(4)  Frame-copied  error2 

140  8C  BINARY(4)  Frequency  error1,2 

144  90 BINARY(4)  Token error1,2 

148  94 BINARY(4)  Direct  memory  access  bus error1,2 

152  98 BINARY(4)  Direct  memory  access  parity  error1,2 

156  9C  BINARY(4)  Address  not  recognized1,2 

160  A0 BINARY(4)  Frame-not-copied  error1,2 

164  A4 BINARY(4)  Transmit strip  error1,2 

168  A8 BINARY(4)  Unauthorized  AP1,2 

172  AC  BINARY(4)  Unauthorized  MAC  frame1,2 

176  B0  BINARY(4)  Soft  error1,2 

180  B4  BINARY(4)  Transmit beacon1,2 

184  B8  BINARY(4)  IOA  status  overrun1,2 

188  BC  BINARY(4)  Frames  discarded1,2 

192  C0  BINARY(4)  Spurious  interrupts1,2 

196  C4  BINARY(4)  Total MAC  bytes  received  OK  

200  C8  BINARY(4)  Total MAC  bytes  transmitted  OK  

204  CC  BINARY(4)  Total frames  not  transmitted  - hardware  error2 

208  D0  BINARY(4)  Ring  use  count2 

212  D4  BINARY(4)  Ring  sample  count2 

216  D8  BINARY(4)  FCS/code  violations  in repeated  frames2 

220  DC  BINARY(4)  Frames  transmitted  and  failed  to return2 

224  E0  BINARY(4)  Number  of underruns2 

228  E4  CHAR(10)  IOP  resource  name  

238  EE CHAR(1)  Duplex  

239  EF CHAR(1)  Reserved  

 

Performance  Management  APIs 75



Offset  

Type Field  Dec  Hex  

240  F0 BINARY(8)  Line  speed  - long  

248  F8 BINARY(8)  I-frame  characters  transmitted  - long  

256  100  BINARY(8)  I-frame  characters  received  - long  

264  108  BINARY(8)  I-frames  transmitted  - long  

272  110 BINARY(8)  I-frames  received  - long  

280  118 BINARY(8)  Frames  transmitted  - long2 

288  120  BINARY(8)  Frames  received  - long2 

296  128  BINARY(8)  Routing  I-frames  transmitted  - long1,2 

304  130  BINARY(8)  Routing  I-frames  received  - long1,2 

312  138  BINARY(8)  Total MAC  bytes  received  OK  - long  

320  140  BINARY(8)  Total MAC  bytes  transmitted  OK  - long  

328  148  BINARY(4)  Unsupported  protocol  frames1,2 

332  14C  BINARY(4)  Reserved  

Notes:  

1 Not  applicable  for file  server  I/O  processor.  

2 Not  applicable  for token-ring  LAN  emulation  over  ATM.
  

  

Token-Ring  Field Descriptions 

ARI/FCI  error.  Address-recognized  indicator  or  frame-copied  indicator  error. This  is a physical  control  

field-extension  field  error. 

Abort  delimiter.  The  number  of  times  an  abnormal  ending  delimiter  was  transmitted  because  of  an  

internal  error. 

Active  time.  The  amount  of  time  in seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Address  not  recognized.  Total number  of  frames  with  address-not-recognized  error. 

Burst  error.  The  number  of  burst  errors.  Burst  of  same  polarity  is detected  by  the  physical  unit  after  the  

starting  delimiter  of a frame  or  token.  

Direct  memory  access  bus  error.  Direct  memory  access  (DMA)  error  for  the  IOP/IOA  bus.  

Direct  memory  access  parity  error.  DMA  parity  error  for  the  IOP/IOA.  

Duplex.  The  duplex  state  of  the  line.  For  some  lines,  this  value  might  change  over  time.  This  field  can  

have  the  following  values:  

 blank  The  duplex  state  is not  known.  

F Full  duplex:  The  line  can  simultaneously  transmit  and  receive  data.  

H Half  duplex:  The  line  can  either  transmit  data  or receive  data,  but the line  cannot  simultaneously  

transmit  and  receive  data.
 

 

76 iSeries:  Performance  Management  APIs



FCS/code  violations  in  repeated  frames.  This  counter  is incremented  for  every  frame  that  has  a code  

violation  or  fails  the  frame  check  sequence  (FCS)  cyclic  redundancy  check.  

Frame-copied  error.  The  number  of  times  a frame  with  a specific  destination  address  was  copied  by  

another  adapter.  

Frames  discarded.  The  total  number  of frames  discarded.  

Frame-not-copied  error.  Total  number  of  frames  with  frame  not  copied  error.  

Frames  received.  The  total  number  of  frames  (logical  link  control  (LLC)  and  medium  access  control  

(MAC))  received.  For  high-speed  lines,  this  counter  might  wrap  multiple  times  during  the  interval,  

resulting  in a calculated  delta  value  that  is incorrect.  To avoid  this  problem,  use  the  frames  received  - 

long  field.  

Frames  received  - long.  The  same  as  the  frames  received  field,  but  larger.  

Frames  transmitted.  The  total  number  of  frames  (LLC  and  MAC)  transmitted.  For  high-speed  lines,  this  

counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  that  is 

incorrect.  To avoid  this  problem,  use  the  frames  transmitted  - long  field.  

Frames  transmitted  - long.  The  same  as  the  frames  transmitted  field,  but  larger.  

Frames  transmitted  and  failed  to  return.  This  counter  is incremented  when  a transmitted  frame  fails  to  

return.  

Frequency  error.  The  number  of  frequency  errors  on  the  adapter.  

I-frame  characters  received.  The  total  number  of  characters  received  in all  I-frames.  For  high-speed  lines,  

this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  that  is 

incorrect.  To avoid  this  problem,  use  the  I-frame  characters  received  - long  field.  

I-frame  characters  received  - long.  The  same  as the  I-frame  characters  received  field,  but  larger.  

I-frame  characters  transmitted.  The  total  number  of characters  transmitted  in  all  I-frames.  For  high-speed  

lines,  this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  

that  is incorrect.  To avoid  this  problem,  use  the  I-frame  characters  transmitted  - long  field.  

I-frame  characters  transmitted  - long.  The  same  as  the  I-frame  characters  transmitted  field,  but  larger.  

I-frames  received.  The  number  of  I-frames  received.  For  high-speed  lines,  this  counter  might  wrap  

multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  that  is incorrect.  To avoid  this  

problem,  use  the  I-frames  received  - long  field.  

I-frames  received  - long.  The  same  as  the  I-frames  received  field,  but  larger.  

I-frames  transmitted.  The  number  of I-frames  transmitted,  excluding  I-frames  transmitted  again.  For  

high-speed  lines,  this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in a calculated  

delta  value  that  is incorrect.  To avoid  this  problem,  use  the  I-frames  transmitted  - long  field.  

I-frames  transmitted  - long.  The  same  as  the  I-frames  transmitted  field,  but  larger.  

IOA  status  overrun.  The  number  of  adapter  interrupt  status  queue  overruns.  The  earliest  results  are  

discarded.  

IOP  resource  name.  System-unique  name  to identify  the  IOP.  

 

Performance  Management  APIs 77



Internal  errors.  The  number  of adapter  internal  errors.  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

Line  errors.  The  number  of  code  violations  of frame-check  sequence  errors.  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  A value  of  -1 is  reported  if the  size  of this  field  is  too  small  to  report  the  actual  value.  When  -1  

is reported,  the  actual  value  must  be  obtained  from  the  line  speed  - long  field.  

Line  speed  - long.  The  same  as  the  line  speed  field,  but  larger.  

Lost  frame.  The  number  of  times  the  adapter  could  not  remove  its  own  frame  from  the  ring.  

N2  retries  expiration  count.  This  count  is  updated  when  the  host  has  attempted  to  contact  a station  n 

times,  and  the  T1  timer  ended  n  times  before  the  station  responded.  

Number  of  underruns.  This  counter  is incremented  each  time  a DMA  underrun  is detected.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Protocol.  Protocol  type.  This  will  be  set  to  E for  establishment  communications  link  (ECL).  

Receive  congestion.  The  number  of times  a frame  was  not  copied  because  no  buffer  was  available  for  the  

IOA  to  receive.  

Reject  frames  received.  The  number  of  reject  frames  received.  

Reject  frames  transmitted.  The  number  of  reject  frames  transmitted.  

Reserved.  An  ignored  field.  

Ring  sample  count.  The  number  of  times  the  ring  use  count  was  sampled  or accumulated.  

Ring  utilization  % = Ring  use  count/Ring  sample  count  

Ring  use  count.  The  number  of  times  the  ring  was  in  use.  

Routing  I-frames  received.  Total number  of  frames  (LLC  and  MAC)  with  a routing-information  field  

received.  For  high-speed  lines,  this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in a 

calculated  delta  value  that  is  incorrect.  To avoid  this  problem,  use  the  routing  I-frames  received  - long  

field.  

Routing  I-frames  received  - long.  The  same  as  the  routing  I-frames  received  field,  but  larger.  

Routing  I-frames  transmitted.  Total number  of frames  (LLC  and  MAC)  with  a routing-information  field  

transmitted.  For  high-speed  lines,  this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in 

a calculated  delta  value  that  is  incorrect.  To avoid  this  problem,  use  the  routing  I-frames  transmitted  - 

long  field.  

Routing  I-frames  transmitted  - long.  The  same  as  the  routing  I-frames  transmitted  field,  but  larger.  

RNR  frames  received.  The  number  of  receive-not-ready  frames  received.  

 

78 iSeries:  Performance  Management  APIs



RNR  frames  transmitted.  The  number  of receive-not-ready  frames  transmitted.  

SABME  frames  received.  The  number  of set-asynchronous-balanced-mode-extended  frames  received.  

SABME  frames  transmitted.  The  number  of set-asynchronous-balanced-mode-extended  frames  

transmitted.  

Soft  error.  The  total  number  of soft  errors  as  reported  by  the  adapter.  A soft  error  is an  intermittent  error  

on  a network  that  requires  retransmission.  

Spurious  interrupts.  The  total  number  of  interrupts  that  medium  access  control  (MAC)  could  not  decode.  

T1  timer  expiration  count.  The  number  of times  the  T1  timer  ended.  

Token  error.  When  this  adapter  serves  as  ring  monitor,  the  number  of times  the  adapter  token  timer  

ended  without  detecting  any  frames  or  tokens  on  the  ring.  

Total  frames  not  transmitted  - hardware  error.  A  count  of  frames  that  could  not  be  transmitted  due  to  

the  hardware  not  signaling  transmission  completion  for  an  excessive  period  of  time.  

Total  MAC  bytes  received  OK.  The  count  of bytes  in  frames  that  were  successfully  received.  It includes  

bytes  from  received  multicast  and  broadcast  frames.  This  number  includes  everything,  starting  from  

destination  address  up  to  but  excluding  FCS.  For  high-speed  lines,  this  counter  might  wrap  multiple  

times  during  the  interval,  resulting  in  a calculated  delta  value  that  is incorrect.  To avoid  this  problem,  use  

the  total  MAC  bytes  received  OK  - long  field.  

Total  MAC  bytes  received  OK  - long.  The  same  as the  total  MAC  bytes  received  OK  field,  but  larger.  

Total  MAC  bytes  transmitted  OK.  The  total  number  of bytes  transmitted  successfully.  This  number  

includes  everything,  starting  from  destination  address  up  to  but  excluding  FCS.  For  high-speed  lines,  this  

counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  that  is 

incorrect.  To avoid  this  problem,  use  the  total  MAC  bytes  transmitted  OK  - long  field.  

Total  MAC  bytes  transmitted  OK  - long.  The  same  as  the  total  MAC  bytes  transmitted  OK  field,  but  

larger.  

Transmit  beacon.  The  total  number  of beacon  frames  transmitted.  

Transmit  strip  error.  The  total  number  of  adapter-frame-transmit  or  frame-stripping-process  errors.  

Unauthorized  AP.  Unauthorized  access  priority.  The  number  of  times  the  access  priority  request  is not  

authorized.  

Unauthorized  MAC  frame.  The  number  of  unauthorized  MAC  frames.  The  adapter  is not  authorized  to  

send  a MAC  frame  if:  

v   A  source  class  is  specified.  

v   The  MAC  frame  has  a source  class  of  zero.  

v   MAC  frame  physical-control-attention  field  is greater  than  1. 

Unsupported  protocol  frames.  Number  of frames  that  were  discarded  because  they  specified  an  

unsupported  protocol.  This  count  is included  in the  frames  discarded  counter.  

Ethernet Format 

This  format  reports  Ethernet  LAN  protocol  statistics  for  asynchronous  transfer  mode  (ATM)  ports  that  

support  Ethernet  LAN  emulation  and  for  Ethernet  ports.  

 

Performance  Management  APIs 79



For  a description  of  the  fields  in  this  format,  see  “Ethernet  Field  Descriptions”  on  page  81.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19  13 CHAR(1)  Line  active  

20  14 CHAR(12)  Reserved  

32  20 BINARY(4)  Line  speed  

36  24 BINARY(4)  Number  of vary  on operations  

40  28 BINARY(4)  Active  time  

44  2C  BINARY(4)  I-frame  characters  transmitted  

48  30 BINARY(4)  I-frame  characters  received  

52  34 BINARY(4)  RNR  frames  transmitted  

56  38 BINARY(4)  RNR  frames  received  

60  3C  BINARY(4)  Reject  frames  transmitted  

64  40 BINARY(4)  Reject  frames  received  

68  44 BINARY(4)  I-frames  transmitted  

72  48 BINARY(4)  I-frames  received  

76  4C  BINARY(4)  SABME  frames  transmitted  

80  50 BINARY(4)  SABME  frames  received  

84  54 BINARY(4)  N2 retries  expiration  count  

88  58 BINARY(4)  T1 timer  expiration  count  

92  5C  BINARY(4)  Total frames  transmitted4 

96  60 BINARY(4)  Total frames  received4 

100  64 BINARY(4)  Inbound  frames  missed1,4 

104  68 BINARY(4)  CRC  error4 

108  6C  BINARY(4)  More  than  16 retries4 

112 70 BINARY(4)  Out-of-window  collisions1,2,4 

116 74 BINARY(4)  Alignment  error4 

120  78 BINARY(4)  Carrier  loss2,4 

124  7C  BINARY(4)  Time  domain  reflectometry1,2,4 

128  80 BINARY(4)  Receive  buffer  errors1,4 

132  84 BINARY(4)  Spurious  interrupts1,2,4 

136  88 BINARY(4)  Discarded  inbound  frames1,4 

140  8C  BINARY(4)  Receive  overruns4 

144  90 BINARY(4)  Memory  error1,2,4 

148  94 BINARY(4)  Interrupt  overrun1,4 

152  98 BINARY(4)  Transmit  underflow4 

156  9C  BINARY(4)  Babble  errors1,2,4 

 

80 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

160  A0 BINARY(4)  Signal  quality  error1,2,4 

164  A4 BINARY(4)  More  than  one  retry  to transmit4 

168  A8 BINARY(4)  Exactly  one  retry  to transmit2,4 

172  AC  BINARY(4)  Deferred  conditions4 

176  B0  BINARY(4)  Transmit frames  discarded3,4 

180  B4  BINARY(4)  Total MAC  bytes  received  OK  

184  B8  BINARY(4)  Total MAC  bytes  transmitted  OK  

188  BC  BINARY(4)  Total frames  not  transmitted  - hardware  error4 

192  C0  BINARY(4)  Total mail  frames  discarded3,4 

196  C4  CHAR(10)  IOP  resource  name  

206  CE  CHAR(1)  Duplex  

207  CF  CHAR(1)  Reserved  

208  D0  BINARY(8)  Line  speed  - long  

216  D8  BINARY(8)  I-frame  characters  transmitted  - long  

224  E0  BINARY(8)  I-frame  characters  received  - long  

232  E8  BINARY(8)  I-frames  transmitted  - long  

240  F0 BINARY(8)  I-frames  received  - long  

248  F8 BINARY(8)  Total frames  transmitted  - long4 

256  100  BINARY(8)  Total frames  received  - long4 

264  108  BINARY(8)  Total MAC  bytes  reeived  OK  - long  

272  110 BINARY(8)  Total MAC  bytes  transmitted  OK  - long  

280  118 BINARY(4)  Unsupported  protocol  frames1,2,4 

284  11C BINARY(4)  Reserved  

Notes:  

1 Not  applicable  for  file  server  I/O  processor.  

2 Not  applicable  for  wireless  LAN  support.  

3 Wireless  LAN  support  only.  

4 Not  applicable  for  Ethernet  LAN  emulation  over  ATM.
  

  

Ethernet Field Descriptions 

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Alignment  error.  The  number  of times  an  inbound  frame  contained  a noninteger  number  of bytes  and  a 

cyclic-redundancy-check  (CRC)  error. 

Babble  errors.  The  number  of times  the  transmitter  exceeded  the  maximum  allowable  time  on  the  

channel.  

Carrier  loss.  Access  to  the  network  has  been  disconnected.  

 

Performance  Management  APIs 81



CRC  error.  The  number  of  cyclic-redundancy-check  (CRC)  errors  detected  by  the  receiver.  

Deferred  conditions.  The  number  of  times  the  chip  set  on  the  IOAs  deferred  transmission  due  to  a busy  

channel.  

Discarded  inbound  frames.  The  number  of receiver-discarded  frames  due  to  the  lack  of  queue  entries.  

Duplex.  The  duplex  state  of  the  line.  For  some  lines,  this  value  might  change  over  time.  This  field  can  

have  the  following  values:  

 blank  The  duplex  state  is not  known.  

F Full  duplex:  The  line  can  simultaneously  transmit  and  receive  data.  

H Half  duplex:  The  line  can  either  transmit  data  or receive  data,  but the line  cannot  simultaneously  

transmit  and  receive  data.
  

Exactly  one  retry  to  transmit.  The  number  of frames  that  required  one  retry  for  successful  transmission.  

I-frame  characters  received.  The  total  number  of characters  received  in  all  I-frames.  For  high-speed  lines,  

this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  that  is 

incorrect.  To avoid  this  problem,  use  the  I-frame  characters  received  - long  field.  

I-frame  characters  received  - long.  The  same  as  the  I-frame  characters  received  field,  but  larger.  

I-frame  characters  transmitted.  The  total  number  of  characters  transmitted  in  all  I-frames.  For  high-speed  

lines,  this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  

that  is incorrect.  To avoid  this  problem,  use  the  I-frame  characters  transmitted  - long  field.  

I-frame  characters  transmitted  - long.  The  same  as  the  I-frame  characters  transmitted  field,  but  larger.  

I-frames  received.  The  number  of  I-frames  received.  For  high-speed  lines,  this  counter  might  wrap  

multiple  times  during  the  interval,  resulting  in  a calculated  delta  value  that  is incorrect.  To avoid  this  

problem,  use  the  I-frames  received  - long  field.  

I-frames  received  - long.  The  same  as  the  I-frames  received  field,  but  larger.  

I-frames  transmitted.  The  number  of  I-frames  transmitted,  excluding  I-frames  transmitted  again.  For  

high-speed  lines,  this  counter  might  wrap  multiple  times  during  the  interval,  resulting  in  a calculated  

delta  value  that  is  incorrect.  To avoid  this  problem,  use  the  I-frames  transmitted  - long  field.  

I-frames  transmitted  - long.  The  same  as  the  I-frames  transmitted  field,  but  larger.  

IOP  resource  name.  System-unique  name  to  identify  the  IOP.  

Inbound  frames  missed.  The  number  of  times  a receive  buffer  error  or  missed  frame  was  detected  by the  

IOA.  

Interrupt  overrun.  The  number  of interrupts  not  processed  due  to  lack  of  status  queue  entries.  

Line  active.  The  state  of  the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

 

82 iSeries:  Performance  Management  APIs



Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  For  some  lines,  this  value  might  change  over  

time.  No  delta  calculation  should  be  performed  on  this  field.  A value  of  -1  is reported  if the  size  of  this  

field  is too  small  to  report  the  actual  value.  When  -1  is reported,  the  actual  value  must  be  obtained  from  

the  line  speed  - long  field.  

Line  speed  - long.  The  same  as  the  line  speed  field,  but  larger.  

Memory  error.  The  number  of  times  the  IOA  did  not  receive  a ready  signal  within  25.6  microseconds  of  

asserting  the  address  on  the  data  or  address  lines.  

More  than  one  retry  to  transmit.  The  number  of  frames  that  required  more  than  one  retry  for  successful  

transmission.  

More  than  16  retries.  The  number  of  frames  unsuccessfully  transmitted  due  to excessive  retries.  

N2  retries  expiration  count.  This  count  is updated  when  the  host  has  attempted  to  contact  a station  n 

times,  and  the  T1  timer  ended  n times  before  the  station  responded.  

Number  of  vary  on  operations.  The  total  number  of  vary  on  operations.  

Out-of-window  collisions.  The  number  of collisions  that  occurred  after  the  allotted  time  interval  for  a 

collision  to  occur  and  after  the  transmission  attempt  to  be  retried.  

Protocol.  Protocol  type.  This  will  be  set  to  T  for  Ethernet.  

Reserved.  An  ignored  field.  

RNR  frames  received.  The  number  of  receive-not-ready  frames  received.  

RNR  frames  transmitted.  The  number  of receive-not-ready  frames  transmitted.  

Receive  buffer  errors.  The  number  of  hardware  buffer  overflows  that  occurred  upon  receiving  a frame.  

Receive  overruns.  The  number  of  times  the  receiver  has  lost  all  or  part  of  an  incoming  frame  due  to 

buffer  shortage.  

Reject  frames  received.  The  number  of  reject  frames  received.  

Reject  frames  transmitted.  The  number  of reject  frames  transmitted.  

SABME  frames  received.  The  number  of set-asynchronous-balanced-mode-extended  frames  received.  

SABME  frames  transmitted.  The  number  of set-asynchronous-balanced-mode-extended  frames  

transmitted.  

Signal  quality  error.  The  number  of  times  a signal  indicating  the  transmit  is successfully  complete  did  

not  arrive  within  2 microseconds  of  successful  transmission.  

Spurious  interrupts.  The  number  of  times  an  interrupt  was  received  but  could  not  be  decoded  into  a 

recognizable  interrupt.  

T1  timer  expiration  count.  The  number  of times  the  T1  timer  ended.  

Time  domain  reflectometry.  Counter  used  to  approximate  distance  to  a cable  fault.  This  value  is 

associated  with  the  last  occurrence  of  more  than  16  retries.  

 

Performance  Management  APIs 83



Total  frames  not  transmitted  - hardware  error.  A count  of  frames  that  could  not  be  transmitted  due  to 

the  hardware  not  signaling  transmission  completion  for  an  excessive  period  of time.  

Total  frames  received.  The  total  number  of type  II frames  received.  For  high-speed  lines,  this  counter  

might  wrap  multiple  times  during  the  interval,  resulting  in a calculated  delta  value  that  is  incorrect.  To 

avoid  this  problem,  use  the  total  frames  received  - long  field.  

Total  frames  received  - long.  The  same  as  the  total  frames  received  field,  but  larger.  

Total  frames  transmitted.  The  total  number  of  type  II frames  transmitted.  For  high-speed  lines,  this  

counter  might  wrap  multiple  times  during  the  interval,  resulting  in a calculated  delta  value  that  is 

incorrect.  To avoid  this  problem,  use  the  total  frames  transmitted  - long  field.  

Total  frames  transmitted  - long.  The  same  as  the  total  frames  transmitted  field,  but  larger.  

Total  MAC  bytes  received  OK.  The  count  of  bytes  in  frames  that  were  successfully  received.  It  includes  

bytes  from  received  multicast  and  broadcast  frames.  This  number  includes  everything,  starting  from  

destination  address  up  to  but  excluding  FCS.  For  high-speed  lines,  this  counter  might  wrap  multiple  

times  during  the  interval,  resulting  in  a calculated  delta  value  that  is incorrect.  To avoid  this  problem,  use  

the  total  MAC  bytes  received  OK  - long  field.  

Total  MAC  bytes  received  OK  - long.  The  same  as  the  total  MAC  bytes  received  OK  field,  but  larger.  

Total  MAC  bytes  transmitted  OK.  The  total  number  of bytes  transmitted  successfully.  This  number  

includes  everything,  starting  from  destination  address  up  to  but  excluding  FCS.  For  high-speed  lines,  this  

counter  might  wrap  multiple  times  during  the  interval,  resulting  in a calculated  delta  value  that  is 

incorrect.  To avoid  this  problem,  use  the  total  MAC  bytes  transmitted  OK  - long  field.  

Total  MAC  bytes  transmitted  OK  - long.  The  same  as  the  total  MAC  bytes  transmitted  OK  field,  but  

larger.  

Total  mail  frames  discarded.  The  number  of  stored  and  forward  mail  products  dropped.  

Transmitted  frames  discarded.  The  number  of outbound  frames  discarded  by  input/output  adapter  

(IOA).  

Transmit  underflow.  The  number  of  times  the  transmitter  has  truncated  a message  due  to  the  late  data  

received  from  main  storage.  

Unsupported  protocol  frames.  Number  of  frames  that  were  discarded  because  they  specified  an  

unsupported  protocol.  This  count  is  included  in  the  discarded  inbound  frames  counter.  

IDLC Format 

For  a description  of  the  fields  in  this  format,  see  “IDLC  Field  Descriptions”  on  page  85.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19  13 CHAR(10)  Network  interface  description  

29  1D  CHAR(1)  Line  active  

 

84 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

30 1E  CHAR(2)  Reserved  

32 20 BINARY(4)  Line  speed  

36 24 BINARY(4)  Number  of vary  on operations  

40 28 BINARY(4)  Active  time  

44 2C  BINARY(4)  Bytes  transmitted  

48 30 BINARY(4)  Bytes  received  

52 34 BINARY(4)  Receive  CRC  errors  

56 38 BINARY(4)  Short  frame  errors  

60 3C  BINARY(4)  Aborts  received  

64 40 BINARY(4)  Sequence  errors  

68 44 BINARY(4)  Frames  transmitted  

72 48 BINARY(4)  Frames  retransmitted  

76 4C  BINARY(4)  Frames  received  

80 50 BINARY(4)  Frames  received  in error  

84 54 CHAR(1)  B1 channel  

85 55 CHAR(1)  B2 channel  

86 56 CHAR(10)  IOP  resource  name  

96 60 CHAR(4)  B channel  used
  

  

IDLC Field Descriptions 

Aborts  received.  The  number  of  frames  received  that  contained  high-level  data  link  control  (HDLC)  abort  

indicators.  This  indicates  that  the  remote  equipment  ended  frames  before  they  were  complete.  

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

B  channel  used.  The  B  channel  used  is  associated  with  a bit  in  this  field  being  set  to 1.  Bit  0 (most  

significant  bit)  and  31  (least  significant  bit)  are  reserved.  Bits  1 to  30  are  associated  with  B channels  30 to  

1,  respectively.  

B1  channel.  The  user  can  send  data  on  this  channel.  This  is set  to 1 if the  B1  channel  was  used.  

B2  channel.  The  user  can  send  data  on  this  channel.  This  is set  to 1 if the  B2  channel  was  used.  

Bytes  received.  The  total  number  of  bytes  received  from  the  remote  link  station.  This  includes  no  errors.  

Bytes  transmitted.  The  total  number  of  bytes  transmitted  to  a remote  link  station.  This  includes  bytes  

retransmitted  and  bytes  sent  on  transmissions  stopped  by  transmit  underrun,  in  addition  to  successful  

transmissions.  

Frames  received.  Total number  of  information  (I),  unnumbered  information  (UI),  and  supervisory  (S)  

frames  received  from  the  remote  link  station.  This  includes  no  errors.  

 

Performance  Management  APIs 85



Frames  received  in  error.  The  sum  of  receive  CRC  errors,  short  frame  errors,  overrun,  underrun,  aborts  

received,  and  frame  sequence  errors.  

Frames  retransmitted.  The  number  of  frames  that  required  retransmission  due  to  errors.  Errors  can  be  

caused  by  a remote  device  that  is  failing  or  by  not  receiving  data  fast  enough.  

Frames  transmitted.  Total number  of  information  (I),  unnumbered  information  (UI),  and  supervisory  (S)  

frames  sent  to  a remote  link  station.  This  includes  frames  retransmitted  and  frames  sent  on  transmissions  

stopped  by  transmit  underruns,  in  addition  to successful  transmissions.  

IOP  resource  name.  System-unique  name  to  identify  the  IOP.  

Line  active.  The  state  of  the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

Network  interface  description.  The  name  of the  network  interface  description.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Protocol.  Protocol  type.  This  will  be  set  to  I for  IDLC.  

Reserved.  An  ignored  field.  

Receive  CRC  errors.  The  number  of received  frames  that  contain  a cyclic-redundancy-check  (CRC)  error.  

This  indicates  that  the  data  was  not  received  error-free.  

Sequence  errors.  The  number  of  frames  received  during  the  time  interval  that  contained  sequence  

numbers  indicating  that  frames  were  lost.  

Short  frame  errors.  The  number  of short  frames  received.  A short  frame  is a frame  that  has  fewer  octets  

between  its  start  flag  and  end  flag  than  are  permitted.  

LAPD Format 

For  a description  of  the  fields  in  this  format,  see  “LAPD  Field  Descriptions”  on  page  87.  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Network  interface  description  

19  13 CHAR(1)  Line  active  

20  14 CHAR(12)  Reserved  

32  20 BINARY(4)  Line  speed  

36  24 BINARY(4)  Number  of vary  on operations  

 

86 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

40 28 BINARY(4)  Active  time  

44 2C  BINARY(4)  Bytes  transmitted  

48 30 BINARY(4)  Bytes  received  

52 34 BINARY(4)  Loss  of frame  alignment  

56 38 BINARY(4)  Reserved  

60 3C  BINARY(4)  Reserved  

64 40 BINARY(4)  Reserved  

68 44 BINARY(4)  Reserved  

72 48 BINARY(4)  Errored  Seconds  

76 4C  BINARY(4)  Severely  Errored  Seconds  

80 50 BINARY(4)  Collision  detect  

84 54 BINARY(4)  Receive  CRC  errors  

88 58 BINARY(4)  Short  frame  errors  

92 5C  BINARY(4)  Aborts  received  

96 60 BINARY(4)  Sequence  errors  

100  64 BINARY(4)  Frames  transmitted  

104  68 BINARY(4)  Frames  retransmitted  

108  6C  BINARY(4)  Frames  received  

112 70 BINARY(4)  Frames  received  in error  

116 74 BINARY(4)  Total outgoing  calls  

120  78 BINARY(4)  Retry  for outgoing  calls  

124  7C  BINARY(4)  Total incoming  calls  

128  80 BINARY(4)  Retry  for incoming  calls  

132  84 CHAR(1)  S1 maintenance  channel  

133  85 CHAR(10)  IOP  resource  name
  

  

LAPD Field Descriptions 

Aborts  received.  The  number  of  frames  received  that  contained  high-level  data  link  control  (HDLC)  abort  

indicators.  This  indicates  that  the  remote  equipment  ended  frames  before  they  were  complete.  

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Bytes  received.  The  total  number  of  bytes  received  from  the  remote  link  station.  This  includes  no  errors.  

Bytes  transmitted.  The  total  number  of  bytes  transmitted  to  a remote  link  station.  This  includes  bytes  

retransmitted  and  bytes  sent  on  transmissions  stopped  by  transmit  underrun,  in  addition  to  successful  

transmissions.  

Collision  detect.  The  number  of times  the  terminal  equipment  (TE)  detected  that  its  transmitted  frame  

has  been  corrupted  by  another  TE  attempting  to  use  the  same  bus.  

 

Performance  Management  APIs 87



Errored  Seconds.  The  number  of  seconds  that  had  one  or  more  Path  Coding  Violations,  one  or  more  Out  

of Frame  defects,  one  or  more  Controlled  Slip  events,  or  a detected  Alarm  Indication  Signal  defect.  

Frames  received.  The  total  number  of  information  (I),  unnumbered  information  (UI),  and  supervisory  (S)  

frames  received  from  the  remote  link  station.  This  includes  no  errors.  

Frames  received  in  error.  The  sum  of  receive  CRC  errors,  short  frame  errors,  overrun,  underrun,  aborts  

received,  and  frame  sequence  errors.  

Frames  retransmitted.  The  number  of  frames  requiring  retransmission  due  to errors.  Errors  can  be  caused  

by  a remote  device  that  is failing  or  cannot  receive  data  fast  enough.  

Frames  transmitted.  The  total  number  of  information  (I),  unnumbered  information  (UI),  and  supervisory  

(S)  frames  sent  to  a remote  link  station.  This  includes  frames  retransmitted  and  frames  sent  on  

transmissions  stopped  by  transmit  underrun,  in  addition  to  successful  transmissions.  

IOP  resource  name.  System-unique  name  to  identify  the  IOP.  

Line  active.  The  state  of  the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

Loss  of  frame  alignment.  The  total  number  of  times  when  a time  period  equivalent  to  two  48-bit  frames  

has  elapsed  without  having  detected  valid  pairs  of  line  code  violations.  

Network  interface  description.  The  name  of the  network  interface  description.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Protocol.  Protocol  type.  This  will  be  set  to  D for  LAPD.  

Receive  CRC  errors.  The  number  of frames  received  that  contain  a cyclic-redundancy-check  (CRC)  error.  

Reserved.  An  ignored  field.  

Retry  for  incoming  calls.  The  number  of  incoming  calls  that  were  rejected  by  the  network.  

Retry  for  outgoing  calls.  The  number  of  outgoing  calls  that  were  rejected  by  the  network.  

S1  maintenance  channel.  This  field  will  be  set  to one  if this  ISDN  had  maintenance  channel  active.  

Sequence  errors.  The  number  of  received  frames  that  contained  sequence  numbers  that  indicated  frames  

were  lost.  

Severely  Errored  Seconds.  

v   For  ESF  signals,  the  number  of  seconds  that  had  320  or  more  Path  Coding  Violation  error  events,  one  

or  more  Out  of  Frame  defects,  or  a detected  Alarm  Indication  Signal  defect.  

v   For  E1-CRC  signals,  the  number  of  seconds  that  had  832  or  more  Path  Coding  Violation  error  events,  

or  one  or  more  Out  of  Frame  defects.  

v   For  E1-noCRC  signals,  the  number  of  seconds  that  had  2048  or  more  Line  Coding  Violations.

 

88 iSeries:  Performance  Management  APIs



v   For  D4  signals,  the  number  of  seconds  that  had  Framing  Error  events,  an  Out  of Frame  defect,  or  1544  

or  more  Line  Coding  Violations.  

Short  frame  errors.  The  number  of  short  frames  received.  A short  frame  is a frame  that  has  fewer  octets  

between  its  start  flag  and  end  flag  than  are  permitted.  

Total  incoming  calls.  The  total  number  of  incoming  call  attempts.  

Total  outgoing  calls.  The  total  number  of  outgoing  call  attempts.  

SDLC Format 

For  a description  of the  fields  in  this  format,  see  “SDLC  Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19 13 CHAR(1)  Line  active  

20 14 CHAR(12)  Reserved  

32 20 BINARY(4)  Line  speed  

36 24 BINARY(4)  Number  of vary  on operations  

40 28 BINARY(4)  Active  time  

44 2C  BINARY(4)  Bytes  transmitted  

48 30 BINARY(4)  Bytes  received  

52 34 BINARY(4)  I-frames  retransmitted  

56 38 BINARY(4)  Error-free  frames  received  

60 3C  BINARY(4)  Frames  received  in error  

64 40 BINARY(4)  Invalid  frames  received  

68 44 BINARY(4)  Link  resets  

72 48 BINARY(4)  I-frames  transmitted  

76 4C  BINARY(4)  Frames  retransmitted  

80 50 BINARY(4)  RR frames  transmitted  

84 54 BINARY(4)  RR frames  received  

88 58 BINARY(4)  RNR  frames  transmitted  

92 5C  BINARY(4)  RNR  frames  received  

96 60 BINARY(4)  Polling  wait  time  

100  64 CHAR(10)  IOP  resource  name
  

  

SDLC Field Descriptions 

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

 

Performance  Management  APIs 89



Bytes  received.  The  number  of bytes  received  (data  and  control  characters),  including  bytes  received  in 

error. 

Bytes  transmitted.  The  number  of  bytes  transmitted  (data  and  control  characters)  including  bytes  

transmitted  again  because  of  errors.  

Error-free  frames  received.  The  number  of I-frames,  supervisory  frames,  and  frames  not  numbered  that  

were  received  without  error  (whether  or  not  they  were  transmitted  again  from  the  remote  side).  

Frames  received  in  error.  The  number  of  I-frames,  supervisory  frames,  and  frames  not  numbered  that  

were  received  in  error. The  following  are  the  error  possibilities:  

v   A supervisory  frame  or  I-frame  was  received  with  an  Nr  count  that  is requesting  retransmission  of a 

frame.  

v   An  I-frame  was  received  with  an  Ns  count  that  indicates  that  frames  were  missed.  

v   A frame  is received  with  a frame-check-sequence  error, an  abnormal  end,  a receive  overrun,  or  a 

frame-truncated  error. 

Frames  retransmitted.  The  number  of  I-frames,  supervisory  frames,  and  frames  not  numbered  that  were  

transmitted  again.  

I-frames  retransmitted.  The  number  of  I-frames  transmitted  again.  

I-frames  transmitted.  The  number  of  I-frames  transmitted.  

IOP  resource  name.  System-unique  name  to  identify  the  IOP.  

Invalid  frames  received.  The  number  of  invalid  frames  received.  These  are  frames  received  with  either  a 

short  frame  error  (frame  is  less  than  32  bits)  or  a residue  error  (frame  is not  on  a byte  boundary).  

Line  active.  The  state  of  the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

Link  resets.  The  number  of  times  a set  normal  response  mode  (SNRM)  was  received  when  the  station  

was  already  in  normal  response  mode.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Polling  wait  time.  The  length  of  time  (in  tenths  of  seconds)  that  the  system  waits  for  the  response  to a 

poll  while  in normal  disconnect  mode  before  polling  the  next  station.  No  delta  calculation  should  be  

done  on  this  field.  

Protocol.  Protocol  type.  This  will  be  set  to  S for  SDLC.  

RNR  frames  received.  The  number  of  receive-not-ready  supervisory  frames  received.  

RNR  frames  transmitted.  The  number  of  receive-not-ready  supervisory  frames  transmitted.  

RR  frames  received.  The  number  of receive-ready  supervisory  frames  received.  

 

90 iSeries:  Performance  Management  APIs



RR  frames  transmitted.  The  number  of  receive-ready  supervisory  frames  transmitted.  

X.25 Format 

For  a description  of the  fields  in  this  format,  see  “X.25  Field  Descriptions.”  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19 13 CHAR(1)  Line  active  

20 14 CHAR(12)  Reserved  

32 20 BINARY(4)  Line  speed  

36 24 BINARY(4)  Number  of vary  on operations  

40 28 BINARY(4)  Active  time  

44 2C  BINARY(4)  Bytes  transmitted  

48 30 BINARY(4)  Bytes  received  

52 34 BINARY(4)  I-frames  retransmitted  

56 38 BINARY(4)  Frames  received  in error  

60 3C  BINARY(4)  Invalid  frames  received  

64 40 BINARY(4)  Link  resets  

68 44 BINARY(4)  I-frames  transmitted  

72 48 BINARY(4)  Error-free  frames  received  

76 4C  BINARY(4)  RR frames  transmitted  

80 50 BINARY(4)  RR frames  received  

84 54 BINARY(4)  RNR  frames  transmitted  

88 58 BINARY(4)  RNR  frames  received  

92 5C  BINARY(4)  Reset  packets  transmitted  

96 60 BINARY(4)  Reset  packets  received  

100  64 CHAR(10)  IOP  resource  name
  

  

X.25 Field Descriptions 

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Bytes  received.  The  number  of  bytes  received  (data  and  control  characters),  including  bytes  received  in  

error.  

Bytes  transmitted.  The  number  of bytes  transmitted  (data  and  control  characters)  including  bytes  

transmitted  again  because  of  errors.  

Error-free  frames  received.  The  number  of  I-frames,  supervisory  frames,  and  frames  not  numbered  that  

were  received  without  error  (whether  or  not  they  were  transmitted  again  from  the  remote  side).  

 

Performance  Management  APIs 91



Frames  received  in  error.  The  number  of  I-frames,  supervisory  frames,  and  frames  not  numbered  that  

were  received  in  error. The  following  are  the  error  possibilities:  

v   A supervisory  frame  or  I-frame  was  received  with  an  Nr  count  that  is requesting  retransmission  of a 

frame.  

v   An  I-frame  was  received  with  an  Ns  count  that  indicates  that  frames  were  missed.  

v   A frame  is received  with  a frame-check-sequence  error, an  abnormal  end,  a receive  overrun,  or  a 

frame-truncated  error. 

I-frames  retransmitted.  The  number  of  I-frames  transmitted  again.  

I-frames  transmitted.  The  number  of  I-frames  transmitted  excluding  I-frames  transmitted  again.  

IOP  resource  name.  System-unique  name  to  identify  the  IOP.  

Invalid  frames  received.  The  number  of  invalid  frames  received.  These  are  frames  received  with  either  a 

short  frame  error  (frame  is  less  than  32  bits)  or  a residue  error  (frame  is not  on  a byte  boundary).  

Line  active.  The  state  of  the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

Link  resets.  The  number  of  times  a set  normal  response  mode  (SNRM)  was  received  when  the  station  

was  already  in  normal  response  mode.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Protocol.  Protocol  type.  This  will  be  set  to  X for  X.25.  

Reserved.  An  ignored  field.  

Reset  packets  received.  The  number  of  reset  packets  received.  

Reset  packets  transmitted.  The  number  of  reset  packets  transmitted.  

RNR  frames  received.  The  number  of  receive-not-ready  supervisory  frames  received.  

RNR  frames  transmitted.  The  number  of  receive-not-ready  supervisory  frames  transmitted.  

RR  frames  received.  The  number  of receive-ready  supervisory  frames  received.  

RR  frames  transmitted.  The  number  of  receive-ready  supervisory  frames  transmitted.  

PPP Format 

For  a description  of  the  fields  in  this  format,  see  “PPP  Field  Descriptions”  on  page  93.  

PPP  lines  are  full  duplex.  

 

92 iSeries:  Performance  Management  APIs



Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Reserved  

4 4 BINARY(4)  Reserved  

8 8 CHAR(1)  Protocol  

9 9 CHAR(10)  Line  description  

19 13 CHAR(1)  Line  active  

20 14 CHAR(8)  Reserved  

28 1C  BINARY(8)  Line  speed  

36 24 BINARY(4)  Number  of vary  on operations  

40 28 BINARY(4)  Active  time  

44 2C  CHAR(10)  IOP  resource  name  

54 36 CHAR(2)  Reserved  

56 38 BINARY(8)  Bytes  transmitted  

64 40 BINARY(8)  Bytes  received  

72 48 BINARY(8)  Frames  transmitted  

80 50 BINARY(8)  Error-free  frames  received  

88 58 BINARY(4)  Frames  received  in error  

92 5C  BINARY(4)  Invalid  frames  received
  

  

PPP Field Descriptions 

Active  time.  The  amount  of  time  in  seconds  that  the  line  was  active  (varied  on).  This  field  should  be  

used  instead  of  interval  time  for  all  time-dependent  fields  calculated  (for  example,  line  utilization)  to  get  

accurate  statistics.  

Bytes  received.  The  number  of  bytes  received,  including  all  bytes  in  frames  that  had  any  kind  of  error.  

Bytes  transmitted.  The  number  of bytes  transmitted,  including  bytes  transmitted  again.  

Error-free  frames  received.  The  number  of  frames  received  without  error.  

Frames  received  in  error.  The  number  of  frames  received  with  one  of  the  following  errors:  a frame  check  

sequence  error, an  abnormal  end,  a receive  overrun,  or  a frame  truncated  error.  

Frames  transmitted.  The  number  of  frames  transmitted.  

Invalid  frames  received.  The  number  of frames  received  with  a residue  error  (frame  is not  on  a byte  

boundary).  

IOP  resource  name.  System-unique  name  to identify  the  IOP.  

Line  active.  The  state  of the  line  when  the  collection  interval  ended.  The  values  are:  

 0 The  line  is not  active.  

1 The  line  is active.
  

Line  description.  The  name  of  the  description  for  this  line.  

 

Performance  Management  APIs 93



Line  speed.  The  speed  of  this  line  in  bits  per  second  (bps).  No  delta  calculation  should  be  performed  on  

this  field.  

Number  of  vary  on  operations.  The  total  number  of vary  on  operations.  

Protocol.  Protocol  type.  This  is set  to  P for  PPP.  

Reserved.  An  ignored  field.  

Error Messages 

 Message  ID  Error  Message  Text  

CPF0A42  E Collector  ended  abnormally.  

CPF0A43  E Data  not  available.  

CPF0A44  E Collection  not  active  for  user.  

CPF0A45  E Cannot  copy  data  to user  space  &1. 

CPF0A47  E User  space  &1 in lib &2  not  large  enough.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3C90  E Literal  value  cannot  be changed.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF9872  E Program  or service  program  &1  in library  &2  ended.  Reason  code  &3.
  

API  introduced:  V2R3  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Work  with Collector (QPMWKCOL) API 

 

 Required  Parameter  Group:  

 

1 Type of action  to perform  

Input  Char(10)  

2 Type of resource  

Input  Char(10)  

3 Time  between  collections  

Input  Binary(4)  

4 Qualified  user  space  name  

Input  Char(20)  

5 First  sequence  number  

Output  Binary(4)  

6 Error  Code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  Conditional;  see  “Usage  Notes”  on page  97.
 

 

94 iSeries:  Performance  Management  APIs

aplist.htm


The  Work with  Collector  (QPMWKCOL)  API  starts,  ends,  or  changes  the  collection  of performance  data  

for  a particular  resource  on  your  system.  The  performance  collector  used  by  the  API  has  the  following  

attributes:  

v   It collects  data  for  user-specified  resource  types  that  can  include  job,  pool,  disk,  input/output  processor  

(IOP),  and  communications.  

v   It collects  data  at  time  intervals  ranging  from  15  seconds  to  four  minutes.  

v   It deposits  the  collected  data  into  user  spaces.  

v   Multiple  users  can  collect  data  at  the  same  time.  

v   The  same  resource  type  data  can  be  collected  by  different  users  with  the  same  or  different  interval  

lengths.  

v   Different  resources  can  be  collected  at  different  interval  times.  

v   It will  collect  data  until  all  collections  have  been  explicitly  ended  or  all  of the  user’s  jobs  have  ended.  

v   It does  not  calculate  deltas  on  the  data  collected.  For  more  information  on  deltas,  see  the  “List  

Performance  Data  (QPMLPFRD)  API”  on  page  52  (QPMLPFRD)  API.  

v   It will  report  job  data  for  a job  or  task  that  is active  when  the  data  is collected.  A  job  or  task  that  

terminates  during  an  interval  will  no  longer  be  reported.  

v   Its  intent  is  to  provide  performance  data  useful  for  real-time  monitoring  of system  performance.  Thus,  

it will  not  support  all  of  the  counters  that  collection  services  supports.  It is not  intended  to be  used  in  

place  of  collection  services  for  detailed  performance  analysis,  capacity  planning,  and  other  such  

functions.  

When  the  first  user  of  the  collector  issues  a call  to  the  QPMWKCOL  API,  two  jobs  (QPMASERV  and  

QPMACLCT)  are  submitted  to  batch.  QPMASERV  acts  as  a server,  communicating  between  the  APIs  

(QPMWKCOL  and  QPMLPFRD)  and  the  QPMACLCT  job,  which  does  the  actual  data  collection.  These  

jobs  run at  priority  0 in  subsystem  QSYSWRK.  No  matter  how  many  users  are  collecting  data,  there  will  

only  be  one  instance  of each  job  running.  The  programs  will  continue  to run until  all  users  have  ended  

all  of  their  collections.  They  will  also  end  if none  of  the  users’  jobs  are  still  active.  

To start  a data  collection  for  a resource,  call  the  QPMWKCOL  API  using  the  following:  

v   The  value  *START  for  the  type  of  action  to  perform  parameter  

v   The  type  of  resource  data  to  collect  (job,  pool,  disk,  input/output  processor  (IOP),  or  communications)  

v   The  length  of  time  between  collections  (15,  30,  60,  120,  or  240  seconds)  

v   The  name  and  library  of  the  user  space  the  data  should  be  copied  into.  The  user  space  must  be  created  

in  the  system  ASP  or  in a basic  ASP  and  not  in  an  independent  ASP.  This  ensures  that  the  server  job  

QPMASERV,  which  processes  the  API  request,  can  access  the  user  space.  

v   The  error  code  parameter  

A  separate  request  must  be  made  for  each  resource  desired.  When  the  request  is valid,  the  sequence  

number  of  the  first  collection  will  be  passed  back  to  the  user. The  sequence  number  is  increased  by  the  

user-specified  interval  time  and  can  be  used  to see  if an  interval  collection  was  missed.  For  example,  if 15  

is  the  first  sequence  number  received  back  from  the  QPMWKCOL  API  but  30  is the  sequence  number  

received  back  from  the  List  Performance  Data  (QPMLPFRD)  API,  you  missed  the  collection  of  data  with  a 

sequence  number  of  15.  

By  using  *CHANGE  for  the  type  of action  to perform  parameter,  the  interval  time  or  the  user  space  for  a 

resource  can  be  changed.  

To end  a collection,  use  *END  for  the  type  of  action  to  perform  parameter.  Because  a collection  will  

continue  to  be  active  until  it is  ended,  it is important  that  any  collections  that  are  no  longer  needed  be  

ended.  If an  *END  request  is  from  the  last  user  of a resource,  data  collection  of  the  resource  stops.  If not,  

 

Performance  Management  APIs 95



the  resource  will  still  be  collected,  but  this  user  will  no  longer  have  access  to data  until  a *START request  

is issued  again.  After  the  last  user  of  the  collector  ends  all  of his  collections,  the  collector  jobs  

(QPMASERV  and  QPMACLCT)  end.  

Because  QPMWKCOL  works  with  the  QPMLPFRD  API,  the  parameters  selected  for  QPMWKCOL  will  

affect  QPMLPFRD.  For  example,  the  interval  time  selected  determines  how  often  QPMLPFRD  should  be  

called.  Because  the  new  data  replaces  old  data,  if QPMLPFRD  is not  called  before  the  next  interval  is 

collected,  the  data  from  the  previous  interval  will  be  lost,  although  the  deltas  may  still  be  calculated  for  

the  longer  interval.  The  qualified  user  space  is also  an  important  parameter  to  QPMLPFRD  because  this  

is the  space  that  QPMLPFRD  will  copy  the  performance  data  into.  If the  space  is not  large  enough  to  

hold  all  the  data  or  if the  space  is locked,  an  error  message  will  be  issued  to the  user. 

Starting  in  Version  5 Release  1, performance  data  is collected  by  the  performance  data  collector  used  by 

collection  services.  This  has  the  following  implications:  

v   The  collection  services  performance  data  collector  (QYPSPFRCOL)  job  runs in  addition  to  the  

QPMASERV  and  QPMACLCT  jobs.  

v   Performance  data  is  stored  in the  management  collection  (*MGTCOL)  object,  allowing  it to be  

processed  by  the  create  performance  data  (CRTPFRDTA)  command.  

v   The  collection  services  performance  data  collector  supports  data  collection  at one-minute  intervals,  but  

not  at  two-  or  four-minute  intervals.  Therefore,  when  the  API  user  requests  data  at two-  or  four-minute  

intervals,  the  data  will  be  collected  at  one-minute  intervals,  but  reported  back  to  the  user  every  two  or  

four  minutes.

Authorities and Locks 

User  Space  Authority  

*CHANGE  

Library  Authority  

*EXECUTE  

User  Space  Lock  

*EXCLRD

Required Parameter Group 

Type of  action  to  perform  

INPUT;  CHAR(10)  

 Whether  you  want  to  start,  end,  or  change  the  collection  of  a resource.  The  following  values  may  

be  specified:  

 *START Start  the  collection  of the  specified  resource.  

*END  End  the  collection  of the  specified  resource.  

*CHANGE  Change  the  collection  of the  specified  resource.
  

Type of  resource  

INPUT;  CHAR(10)  

 The  type  of resource  to  start,  end,  or  change.  The  following  values  may  be  specified.  

 *JOB  Job-related  information  

*POOL  Pool-related  information  

*DISK  Disk-related  information  

*IOP  IOP-related  information  

*COMM  Communications-related  information
 

 

96 iSeries:  Performance  Management  APIs



Time  between  collections  

INPUT;  BINARY(4)  

 The  number  of  seconds  between  each  new  collection  of data.  The  following  values  may  be  

specified.  

 15  Collect  every  15 seconds.  

30  Collect  every  30 seconds.  

60  Collect  every  60 seconds.  

120  Collect  every  120  seconds  (2 minutes).  

240  Collect  every  240  seconds  (4 minutes).
  

Notes:  

1.   The  disk-  and  IOP-related  data  require  a minimum  of 30  seconds  between  collections.  

2.   The  communication-related  data  requires  a minimum  of 60 seconds  between  collections.  

3.   The  jobs-related  data  should  be  collected  as  infrequently  as  possible  to minimize  the  impact  

on  system  performance.

Qualified  user  space  name  

INPUT;  CHAR(20)  

 The  name  of  the  user  space  that  is to  receive  the  data  for  this  type  of  resource.  The  first  10  

characters  contain  the  user  space  name,  and  the  second  10  characters  contain  the  name  of  the  

library  where  the  user  space  is  located.  The  user  space  must  be  created  in the  system  ASP  or in  a 

basic  ASP  and  not  in  an  independent  ASP.  This  ensures  that  the  server  job  QPMASERV,  which  

processes  the  API  request,  can  access  the  user  space.  The  special  values  for  the  library  name  are:  

 *LIBL  Library  list  is used.  

*CURLIB  Current  library  is used.
  

The  library  name  value  is  resolved  when  this  API  is called.  If no  library  is specified  as  the  current  

library  for  the  job,  QGPL  is  used.  Both  entries  are  left-justified.  

First  sequence  number  

OUTPUT;  BINARY(4)  

 The  sequence  number  of  the  first  data  collection  that  will  be  available  for  the  user. 

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Usage Notes 

The  QPMWKCOL  API  has  been  classified  as conditionally  threadsafe.  This  classification  is the  result  of  a 

dependency  on  the  Submit  Job  (SBMJOB)  command,  which  has  been  classified  conditionally  threadsafe.  

Refer  to  the  SBMJOB  command  in  the  Control  Language  information  for  restrictions.  

Error Messages 

 Message  ID Error  Message  Text  

CPF0A37  E Request  type  &1 not  valid.  

CPF0A38  E Resource  type  &1  not  valid.  

CPF0A39  E Interval  time  of &1  seconds  not  valid.  

CPF0A40  E Interval  time  of &1  seconds  for  IOP  data  not  valid.  

CPF0A41  E &1  seconds  for  communications  data  not  valid.  

CPF0A42  E Collector  ended  abnormally.  

 

Performance  Management  APIs 97

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Message  ID  Error  Message  Text  

CPF0A44  E Collection  not  active  for  user.  

CPF0A45  E Cannot  copy  data  to user  space  &1. 

CPF0A46  E Interval  time  of &1  seconds  for disk  data  not  valid.  

CPF0A47  E User  space  &1 in lib &2  not  large  enough.  

CPF24B4  E Severe  error  while  addressing  parameter  list.  

CPF3C90  E Literal  value  cannot  be changed.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF9872  E Program  or service  program  &1  in library  &2  ended.  Reason  code  &3.
  

API  introduced:  V2R3  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

Performance Explorer (PEX) APIs 

For  information  about  performance  explorer  (PEX),  see  Performance  explorer.  

The  PEX  APIs  are  used  to  collect  trace  performance  data  for  user-defined  (application-defined)  

transactions  and  to  record  application-defined  trace  data.  The  user-defined  transaction  APIs  indicate  the  

start  and  end  of a transaction  and  allow  logging  during  a transaction.  

The  PEX  APIs  are:  

v   “Add  Trace Point  (QYPEADDT,  qypeAddTracePoint)  API”  on  page  99  (QYPEADDT,  

qypeAddTracePoint)  records  application-defined  trace  data.  

v   “End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45  (QYPEENDT,  

qypeEndTransaction)  indicates  the  end  of  a user-defined  transaction.  

v   “Log  Transaction  (QYPELOGT,  qypeLogTransaction)  API”  on  page  101  (QYPELOGT,  

qypeLogTransaction)  generates  a transaction  log  record  in the  PEX  trace  data.  

v   

  

“Retrieve  PEX  Information  (QYPERPEX,  qypeRetrievePexInfo)  API”  on  page  103  (QYPERPEX,  

qypeRetrievePexInfo)  returns  a list  of active  Performance  Explorer  collections.
   

v   “Start  Transaction  (QYPESTRT,  qypeStartTransaction)  API”  on  page  48  (QYPESTRT,  

qypeStartTransaction)  is  called  at  the  start  of a user-defined  transaction.

  Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
 

 

98 iSeries:  Performance  Management  APIs

#TOP_OF_PAGE
aplist.htm
#TOP_OF_PAGE
aplist.htm


Add Trace Point (QYPEADDT, qypeAddTracePoint) API 

 

  Required  Parameter  Group:  

 

1 Application  identifier  

Input  Char(20)  

2 Event  subtype  identifier  

Input  Char(10)  

3 Application  trace  data  

Input  Char(*)  

4 Length  of application  trace  data  

Input  Binary(4)  Unsigned  

5 Error  code  

I/O  Char(*)
  Service  Program  Name:  QYPESVPG  

 

  Default  Public  Authority:  *USE  

 

  Threadsafe:  Yes
  

The  Add  Trace Point  (OPM,  QYPEADDT;  ILE,  qypeAddTracePoint)  API  is used  to  record  

application-defined  trace  data.  

If Performance  Explorer  (PEX)  is  running,  this  API  generates  a trace  record  of the  type  specified  in  the  

event  subtype  identifier  parameter.  In  addition  to the  data  supplied  by  the  application  in the  application  

trace  data  parameter,  PEX  will  capture  the  current  values  of  performance  counters  associated  with  the  

current  thread  such  as  CPU  time  used,  I/O  activity  and  seize/lock  activity.  After  the  End  Performance  

Explorer  (ENDPEX)  command  is run, the  application  trace  data  is written  to  the  QMUDTA  field  in the  

QAYPEMIUSR  file  (see  “Usage  Notes”  on  page  100).  The  performance  counters  are  written  to  individual  

fields  in  the  QAYPEMIUSR  and  QAYPETIDX  files.  

Authorities and Locks 

API  Public  Authority  

*USE

Required Parameter Group 

Application  identifier  

INPUT;  CHAR(20)  

 The  name  of  the  application.  Given  that  many  applications  could  use  this  API,  the  name  should  

be  chosen  so  that  it is  unique.  Application  identifiers  starting  with  “QIBM_Qccc_”,  where  ccc  is  a 

component  identifier,  are  reserved  for  IBM  use.  

Event  subtype  identifier  

INPUT;  CHAR(10)  

 The  Performance  Explorer  (PEX)  event  subtype  to  be  used  for  the  trace  record.  Allowed  values  

for  this  parameter  are:  

 

Performance  Management  APIs 99



*APPEVT1  

*APPEVT2  

*APPEVT3  

*APPEVT4
  

To configure  PEX  to  collect  data  generated  by  this  API,  use  the  same  event  subtype  identifier  on  

the  application  events  (APPEVT)  parameter  of the  Add  PEX  Definition  (ADDPEXDFN)  command.  

Application  trace  data  

INPUT;  CHAR(*)  

 Application-defined  trace  data  to  be  saved  by  PEX.  This  can  be  any  data  that  the  user  wants  to  

associate  with  this  trace  record.  The  data  can  be  up  to  3042  bytes  long.  This  data  is reported  by 

PEX  in the  QAYPEMIUSR  file.  

Length  of  application  trace  data  

INPUT;  BINARY(4)  UNSIGNED  

 The  length  (in  bytes)  of  application-defined  trace  data  to  be  saved  by  PEX.  The  value  must  be  

between  0 and  3042.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Usage Notes 

Application-defined  trace  data  is  reported  in  the  QMUDTA  field  of the  QAYPEMIUSR  file.  

The  format  of  the  QMUDTA  field  of  the  QAYPEMIUSR  file  is  described  below.  

The  QMUDTA  field  has  a common  header.  The  following  APIs  use  this  header:  

v   “Start  Transaction  (QYPESTRT,  qypeStartTransaction)  API”  on  page  48  

v   “End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45  

v   “Log  Transaction  (QYPELOGT,  qypeLogTransaction)  API”  on  page  101  

v   Add  Trace point  (QYPEADDT,  qypeAddTracePoint)  

 Offset  

Type Field  Dec  Hex  

0 0 CHAR(4)  ″API  ″ eye  catcher  

4 4 CHAR(20)  Application  identifier  

24  18 CHAR(1)  Type of data:  

0 Generic  trace  point  

1 Start  of transaction  

2 End  of transaction  

3 Log  transaction
  

After  the  common  header,  the  QMUDTA  field  has  the  following  format  for  the  Add  Trace Point  API:  

 

100 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE


Offset  

Type Field  Dec  Hex  

25 19 CHAR(1)  Reserved  

26 1A BINARY(4)  

UNSIGNED  

Length  of application  trace  data  

30 1E  CHAR(*)  Application  trace  data
  

  

Error Messages 

 Message  ID Error  Message  Text  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3C3C  E Value for parameter  &1 is not  valid.
  

API  introduced:  V5R2  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Log Transaction  (QYPELOGT, qypeLogTransaction)  API 

 

  Required  Parameter  Group:  

 

1 Application  identifier  

Input  Char(20)  

2 Transaction  identifier  

Input  Binary(4)  Unsigned  

3 Application  trace  data  

Input  Char(*)  

4 Length  of application  trace  data  

Input  Binary(4)  Unsigned  

5 Error  code  

I/O  Char(*)
  Service  Program  Name:  QYPESVPG  

 

  Default  Public  Authority:  *USE  

 

  Threadsafe:  Yes
  

The  Log  Transaction  (OPM,  QYPELOGT;  ILE,  qypeLogTransaction)  API  is used  together  with  the  “Start  

Transaction  (QYPESTRT,  qypeStartTransaction)  API”  on  page  48  (QYPESTRT,  qypeStartTransaction)  API  

and  the  “End  Transaction  (QYPEENDT,  qypeEndTransaction)  API”  on  page  45  (QYPEENDT,  

qypeEndTransaction)  API  to  collect  performance  data  for  user-defined  transactions.  The  Log  Transaction  

API  is called  by  an  application  any  time  between  the  calls  to  the  Start  Transaction  API  and  the  End  

Transaction  API  to  trace  the  progress  of  a user-defined  transaction.  

 

Performance  Management  APIs 101

aplist.htm


This  API  can  be  used  to  provide  trace  type  of  performance  data  - collected  by  Performance  Explorer  

(PEX).  Collection  Services  ignores  this  API.  

If the  Performance  Explorer  (PEX)  is  running,  this  API  generates  a log  transaction  trace  record.  In 

addition  to  the  data  supplied  by  the  application  in  the  application  trace  data  parameter,  PEX  will  capture  

the  current  values  of  performance  counters  associated  with  the  current  thread  such  as  CPU  time  used,  

I/O  activity  and  seize/lock  activity.  After  the  End  Performance  Explorer  (ENDPEX)  command  is run, the  

application-supplied  data  for  this  record  is  written  to  the  QMUDTA  field  in  the  QAYPEMIUSR  file.  The  

performance  counters  are  written  to  individual  fields  in  the  QAYPEMIUSR  and  QAYPETIDX  files.  

See  “Usage  Notes”  on  page  49  for  the  Start  Transaction  (QYPESTRT,  qypeStartTransaction)  API  for  more  

information.  

Authorities and Locks 

API  Public  Authority  

*USE

Required Parameter Group 

Application  identifier  

INPUT;  CHAR(20)  

 The  name  of  the  application.  Given  that  many  applications  could  use  this  API,  the  name  should  

be  chosen  so  that  it is unique.  Application  identifiers  starting  with  ″QIBM_Qccc_″,  where  ccc  is a 

component  identifier,  are  reserved  for  IBM  use.  

Transaction  identifier  

INPUT;  BINARY(4)  UNSIGNED  

 Any  sort  of unique  transaction  identifier,  such  as  a sequential  number.  In  order  to  collect  

meaningful  data,  the  identifier  passed  to  the  Log  Transaction  API  should  be  the  same  as  the  

identifier  used  in  the  call  to  the  Start  Transaction  API  for  the  same  transaction.  

Application  trace  data  

INPUT;  CHAR(*)  

 Application-defined  trace  data  to  be  saved  by  PEX.  This  can  be  any  data  that  the  user  wants  to  

associate  with  this  transaction  - for  example,  the  user  ID  of  the  client  performing  the  transaction,  

the  name  of  the  file  being  updated  by  the  transaction,  or  the  account  ID  being  accessed  by  the  

transaction.  The  data  can  be  up  to  3032  bytes  long.  This  data  is  reported  by  PEX  in  the  

QAYPEMIUSR  file.  

Length  of  application  trace  data  

INPUT;  BINARY(4)  UNSIGNED  

 The  length  (in  bytes)  of  application-defined  trace  data  to  be  saved  by  PEX.  The  value  must  be  

between  0 and  3032.  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Usage Notes 

For  the  description  of  how  Performance  Explorer  (PEX)  saves  and  reports  performance  data  for  this  API,  

see  “Usage  Notes”  on  page  49  for  the  Start  Transaction  API.

 

102 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Error Messages 

 Message  ID Error  Message  Text  

CPF3C36  E Number  of parameters,  &1,  entered  for this  API  was  not  valid.  

CPF3C3C  E Value for  parameter  &1  is not  valid.
  

API  introduced:  V5R2  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Retrieve PEX Information (QYPERPEX, qypeRetrievePexInfo) API 

 

  Required  Parameter  Group:  

 

1 Receiver  variable  

Output  Char(*)  

2 Length  of receiver  variable  

Input  Binary(4)  

3 Format  name  

Input  Char(8)  

4 PEX  session  name  

Input  Char(10)  

5 Error  Code  

I/O  Char(*)
 Service  Program  Name:  QYPESVPG  

 

  Default  Public  Authority:  *USE  

 

  Threadsafe:  Yes
  

The  Retrieve  PEX  Information  (QypeRetrievePexInformation)  API  retrieves  information  about  a PEX  

session.  It can  be  used  to  retrieve  the  following:  

v   Session  name  

v   Collection  type  

v   State  

v   State  qualifier  

v   Event  count  

v   Filtered  event  count  

v   Start  complete  time  

v   Resume  time  

v   Storage  used  

v   Qualified  job  name  of  the  job  that  created  the  session  

v   Definition  name  

v   Filter  name  

 

Performance  Management  APIs 103

aplist.htm


v   Sampling  interval

Authorities and Locks 

None  

Required Parameter Group 

Receiver  variable  

OUTPUT;  CHAR(*)  

 The  variable  that  is to  receive  the  information  requested.  The  minimum  size  for  this  area  is 8 

bytes.  You can  specify  the  size  of  this  area  to be  smaller  than  the  format  requested  if you  specify  

the  length  of receiver  variable  parameter  correctly.  As  a result,  the  API  returns  only  the  data  that  

the  area  can  hold.  

Length  of  receiver  variable  

INPUT;  BINARY(4)  

 The  length  of the  receiver  variable.  If this  value  is larger  than  the  actual  size  of  the  receiver  

variable,  the  results  may  not  be  predictable.  The  minimum  value  is 8.  

Format  name  

INPUT;  CHAR(8)  

 The  content  and  format  of  the  information  returned  for  the  PEX  session.  

 The  possible  format  names  are:  

 “PEXI0100  

Format”  on page  

105  

Basic  information  about  the  PEX  session.  

“PEXI0200  

Format”  on page  

105  

Detailed  information  about  the  PEX  session.

  

PEX  session  name  

INPUT;  CHAR(10)  

 The  name  of  a PEX  session.  Special  values  supported:  

 *ALL  All PEX  sessions.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.

Header section 

For  detailed  descriptions  of  the  fields  in  this  table,  see  Field  Descriptions  

  

 Offset  

Type Field  Dec  Hex  

0 0 BINARY(4)  Bytes  returned  

4 4 BINARY(4)  Bytes  available  

8 8 BINARY(4)  Offset  to first  entry  

 

104 iSeries:  Performance  Management  APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#PEXFLDS


Offset  

Type Field  Dec  Hex  

12 C BINARY(4)  Number  of entries  returned  

16 10 BINARY(4)  Size  of each  entry  

20 14 BINARY(4)  Number  of entries  available
  

PEXI0100 Format 

The  following  information  is returned  for  one  entry  with  the  PEXI0100  format.  For  detailed  descriptions  

of  the  fields  in  the  table,  see  Field  Descriptions.  

 Offset  

Type Field  Dec  Hex  

0 0 CHAR(10)  Session  name  

10 A CHAR(2)  Reserved  

12 C BINARY(4)  Collection  type  

16 10 BINARY(4)  State  

20 14 BINARY(4)  State  qualifier  

24 18 BINARY(4)  Event  count  

28 1C  BINARY(4)  Filtered  event  count  

32 20 CHAR(8)  Start  complete  time  

40 28 CHAR(8)  Resume  time  

48 30 BINARY(4)  Storage  used  

52 34 CHAR(10)  Job name  of the  job that  created  the  session  

62 3E  CHAR(10)  User  name  of the  job that  created  the session  

72 48 CHAR(6)  Job number  of the  job  that  created  the  session
  

PEXI0200 Format 

The  following  information  is returned  for  one  entry  with  the  PEXI0200  format.  For  detailed  descriptions  

of  the  fields  in  the  table,  see  Field  Descriptions.  

 Offset  

Type Field  Dec  Hex  

0 0 CHAR(10)  Session  name  

10 A CHAR(2)  Reserved  

12 C BINARY(4)  Collection  type  

16 10 BINARY(4)  State  

20 14 BINARY(4)  State  qualifier  

24 18 BINARY(4)  Event  count  

28 1C  BINARY(4)  Filtered  event  count  

32 20 CHAR(8)  Start  complete  time  

40 28 CHAR(8)  Resume  time  

48 30 BINARY(4)  Storage  used  

52 34 CHAR(10)  Job name  of the  job that  created  the  session  

 

Performance  Management  APIs 105

#PEXFLDS
#PEXFLDS


Offset  

Type Field  Dec  Hex  

62  3E CHAR(10)  User  name  of the job  that  created  the  session  

72  48 CHAR(6)  Job number  of the job  that  created  the  session  

82  52 CHAR(10)  Definition  name  

92  5C  CHAR(10)  Filter  name  

102  5C  CHAR(2)  Reserved  

104  5E BINARY(4)  Sampling  interval
  

  

Field Descriptions 

Bytes  available.  Number  of  bytes  available  to  be  returned  by  the  API.  If this  value  is larger  than  the  

bytes  returned  it means  that  the  API  had  more  information  to return  than  the  receiver  variable  could  

hold.  

Bytes  returned.  Number  of bytes  returned  by  the  API  and  placed  in the  receiver  variable.  If this  value  is 

smaller  than  the  bytes  available,  it means  that  the  API  had  more  information  to  return  than  the  receiver  

variable  could  hold.  

Collection  type.  Indicates  type  of  data  being  collected  in  the  PEX  session.  

Possible  values  are:  

 1 Trace. 

2 Stats.  

3 Stats  hierarchical.  

6 Profile.
  

Definition  name.  Name  of  definition  used  by  the  session.  

Event  count.  Number  of  events  in  the  session.  

Filter  name.  Name  of  filter  used  by  the  session.  This  field  will  contain  a value  if a valid  filter  name  was  

specified  with  the  FTR  keyword  of  the  STRPEX  command.  If no  filter  name  was  specified  in  STRPEX,  this  

field  will  be  all  blanks.  

Filtered  event  count.  Number  of  filtered  events  in  the  session.  A filtered  event  is  one  that  is not  collected.  

It is filtered  out  based  on  specifications  supplied  in  the  Add  Pex  Filter  (ADDPEXFTR)  command.  

Job  name  of  the  job  that  created  the  session.  The  name  of the  job  that  did  the  STRPEX  command  to 

start  the  session.  

Job  number  of  the  job  that  created  the  session.  The  system-assigned  number  of  the  job  that  did  the  

STRPEX  command  to  start  the  session.  

Number  of  entries  available.  Number  of  fixed-length  entries  that  were  available  to  be  returned  to  the  

caller  of the  API,  given  sufficient  space  in  the  receiver  variable.  If this  value  is larger  than  the  number  of 

entries  returned,  it means  that  the  API  had  more  information  to return  than  the  receiver  variable  could  

hold.  

 

106 iSeries:  Performance  Management  APIs



Number  of  entries  returned.  The  number  of  fixed-length  entries  following  the  header  section.  If  this  

value  is smaller  than  the  number  of  entries  available,  it means  that  the  API  had  more  information  to  

return  than  the  receiver  variable  could  hold.  

Offset  to  first  entry.  The  offset,  in bytes,  from  the  start  of  the  header  section  to the  beginning  of  the  

actual  data  returned  by  the  API.  

Reserved.  An  ignored  field.  

Resume  time.  Time  (in  8 byte  time  of  day  format)  that  the  session  was  resumed,  if STRPEX  

OPTION(*RESUME)  was  used.  If  STRPEX  (*RESUME)  was  not  used,  this  field  will  be  set  to x’00’  (nulls).  

Sampling  interval.  Size  of  sampling  interval  in  milliseconds.  This  field  will  contain  a value  if a sampling  

interval  was  specified  with  the  INTERVAL  keyword  of the  ADDPEXDFN  command  for  the  PEX  

definition  used  by  this  session.  

Session  name.  The  name  of  the  PEX  session.  

Size  of  each  entry.  The  size  in  bytes  of  each  fixed-length  entry  following  the  header  section.  

Start  complete  time.  Time  (in  8 byte  time  of  day  format)  that  the  session  completed  its  start  activity.  

State.  Specifies  the  internal  state  of  the  session.  

Possible  values  are:  

 0 Created  

1 Active  

2 Suspended  

3 Deleted  

4 Stopped  

5 Stopping  (stop  pending)  

6 Starting
  

State  qualifier.  Specifies  additional  details  about  the  state  of the  session.  

Possible  values  are:  

 0 Normal(normal)  

2 Wrapped  (normal)  

4096  Storage  limit  reached  (limit)  

4098  ASP  storage  limit  reached  (limit)  

4099  User  profile  storage  limit  reached  (limit)  

4100  Byte  stream  file  storage  limit  reached  (limit)  

8193  Internal  error  (error)  

8194  Damage  encountered  (error)
  

Storage  used.  Number  of  bytes  of  storage  used  by  the  session.  

User  name  of  the  job  that  created  the  session.  The  user  name  of  the  job  that  did  the  STRPEX  command  

to  start  the  session.  

 

Performance  Management  APIs 107



Error messages: 

 Message  Error  Message  Text  

CPFAF04  E Session  &1  is not  active.  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3C3C  E Value for parameter  &1  not  valid.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.
  

   

API  introduced:  V5R3  

 “Retrieve  PEX  Information  (QYPERPEX,  qypeRetrievePexInfo)  API”  on page  103  | “Performance  Management  APIs,”  

on  page  1 | APIs  by  category
  

IBM Performance Management eServer iSeries APIs 

For  information  about  IBM(R) Performance  Management  (PM)  

   

iSeries(TM), see  PM  eServer  

iSeries  concepts.  

The  PM  iSeries  APIs  can  start  PM  iSeries,  end  PM  iSeries,  and  retransmit  PM  iSeries  data.  

The  PM  iSeries  APIs  follow:  

v   “End  PM  eServer  iSeries  (Q1PENDPM)  API”  (Q1PENDPM)  ends  IBM  Performance  Management  for  

eServer  iSeries  jobs.  PM  eServer  iSeries  jobs  will  not  run again  until  the  Start  API  (Q1PSTRPM)  is 

issued  or  the  product  is configured  using  the  CFGPM400  command.  

v   “Retransmit  PM  eServer  iSeries  Data  (Q1PRTRN)  API”  on  page  110 (Q1PRTRN)  marks  previously  

transmitted  data  as  untransmitted  data,  thus  allowing  the  data  to be  retransmitted.  

v   “Start  PM  eServer  iSeries  (Q1PSTRPM)  API”  on  page  111 (Q1PSTRPM)  configures  IBM  Performance  

Management  for  eServer  iSeries  to  start  sending  performance  data  to IBM.  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

End PM eServer iSeries (Q1PENDPM) API 

 

 Required  Parameter  Group:  

 

1 End  type  

Input  Char(10)  

2 Delay  time  

Input  Binary(4)  

3 Error  Code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  No
 

 

108 iSeries:  Performance  Management  APIs

aplist.htm
#TOP_OF_PAGE
aplist.htm


The  End  PM  

   

iSeries(TM) (Q1PENDPM)  API  ends  IBM  Performance  Management  for  eServer  

iSeries  jobs.  PM  eServer  iSeries  jobs  will  not  run again  until  the  Start  API  (Q1PSTRPM)  is issued  or  the  

product  is configured  using  the  CFGPM400  command.  

Authorities and Locks 

Public  Authority  

*EXCLUDE  

Special  authorities  

You must  have  *JOBCTL  special  authority  to use  this  API.

Required Parameter Group 

End  type  

Input;  Char(10)  

 The  PM  

   

iSeries(TM) jobs  to  have  controlled  endings  or  the  jobs  that  are  to be  ended  

immediately.  The  possible  values  are:  

 *CNTRLD  The  PM  eServer  iSeries  jobs  end  in a controlled  manner.  

*IMMED  The  PM  eServer  iSeries  jobs  end  immediately.  The  programs  that  are  running  do not  get time  to 

perform  cleanup.  This  option  may  cause  undesirable  results  if data  has  been  partially  updated.  

Therefore,  this  option  should  be used  only  if a controlled  end  was  unsuccessful.
  

Delay  time  

Input;  Binary(4)  

 The  delay  time  when  ″End  type″ is *CNTRLD.  This  parameter  is ignored  if ″End  type″ is 

*IMMED.  The  possible  values  are:  

 -1 The  PM  eServer  iSeries  jobs  continue  processing  until  the  activity  processing  currently  

is complete.  

Delay  time  (seconds)  The  PM  eServer  iSeries  jobs  end  immediately  after  the  delay  time.
  

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.  If  this  parameter  is  omitted,  diagnostic  and  escape  messages  are  issued  to the  

application.

Error Messages 

 Message  ID Error  Message  Text  

CPFB03A  E Range  of parameter  &2  does  not  include  &4.  

CPFB03D  E PM  eServer  iSeries  not  active.  

CPFB03E  E PM  eServer  iSeries  already  ending  with  *IMMED  option.  

CPFB03F  E PM  eServer  iSeries  already  ending  with  *CNTRLD  option.  

CPF24B4  E Severe  error  addressing  parameter  list.  

CPF3C1E  E Required  parameter  &1  omitted.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.
  

API  introduced:  V5R1  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
 

 

Performance  Management  APIs 109

error.htm#HDRERRCOD
error.htm#HDRERRCOD
aplist.htm


Retransmit PM eServer iSeries Data (Q1PRTRN) API 

 

 Required  Parameter  Group:  

 

1 Start  Date  

Input  Char(7)
 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  No
  

The  Retransmit  PM  

   

iSeries(TM) Data  (Q1PRTRN)  API  marks  previously  transmitted  data  as  

untransmitted  data.  This  allows  the  data  to  be  retransmitted.  This  API  should  be  used  only  with  the  

assistance  of IBM(R) service.  

The  date  entered  is  in  CYYMMDD  format.  

This  API  does  not  validate  that  the  date  entered  is a valid  date.  For  example,  you  could  enter  a date  of  

1000230  even  though  there  are  not  30  days  in  February.  The  API  begins  marking  data  for  retransmission  

with  the  records  that  are  greater  than  or  equal  to the  passed  date  parameter.  The  API  does  some  date  

validation;  for  example,  1000232  would  not  be  accepted.  If  successful,  you  would  expect  to  see  message  

CPC0B01  Program  Q1PRTRN  completed  successfully.  If no  message  is received,  display  the  job  log  for  

details.  

Authorities and Locks 

API  Public  Authority  

*EXCLUDE  

Special  authorities  

User  must  have  *ALLOBJ  authority  to use  this  API.

Required Parameter Group 

Start  date  

INPUT;  Char(7)  

 Records  with  this  date  or  greater  are  marked  for  retransmission.  The  date  should  be  entered  in  

CYYMMDD  format.

Error Messages 

 Message  ID  Error  Message  Text  

CPF9802  E Not  authorized  to object  QA1PONE  in QUSRSYS.  

CPF0555  E Date  not  in specified  format  or date  not  valid.  

CPC0B01  C Program  Q1PRTRN  completed  successfully.
  

API  introduced:  V5R1  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
 

 

110  iSeries:  Performance  Management  APIs

aplist.htm


Start PM eServer iSeries (Q1PSTRPM) API 

 

 Required  Parameter  Group:  

 

1 Error  code  

I/O  Char(*)
 Default  Public  Authority:  *EXCLUDE  

 

 Threadsafe:  No
  

The  Start  PM  

   

iSeries(TM) (Q1PSTRPM)  API  configures  IBM(R) Performance  Management  for  

eServer  iSeries  to  start  sending  performance  data  to  IBM.  This  allows  customers  to receive  periodic  

performance  reports  of  their  systems.  See  PM  eServer  iSeries  for  more  information  on  this  topic.  

This  API  sets  the  following  configurations:  

v   The  server  is configured  to  send  performance  data  to  IBM.  

v   The  server  is configured  so  that  it does  not  receive  performance  data  from  remote  systems  to which  it 

is attached.  

v   The  Q1PLIN  line  description  is  created  through  the  CRTLINSDLC  command  or  reuses  the  line  

description  if it already  exists.  

v   The  Q1PCTL  controller  description  is  created  through  the  CRTCTLAPPC  command  or  reuses  the  

controller  description  if it already  exists.  

v   The  Q1PDEV  device  description  is  created  through  the  CRTDEVAPPC  command  or  reuses  the  device  

description  if it already  exists.  

v   The  Q1PMOD  mode  description  is created  through  the  CRTMODD  command  or  reuses  the  mode  

description  if it already  exists.  

v   Contact  person  information  is taken  from  the  ″Work  with  Contact  Information″ (WRKCNTINF)  

interface.  

v   The  PM  eServer  iSeries  scheduler  job,  Q1PSCH,  is submitted.

Authorities and Locks 

Public  authority  

*EXCLUDE

Special  authorities  

You must  have  *JOBCTL  special  authority  to use  this  API.

Required Parameter Group 

Error  code  

I/O;  CHAR(*)  

 The  structure  in  which  to  return  error  information.  For  the  format  of the  structure,  see  Error  Code  

Parameter.  If  this  parameter  is  omitted,  diagnostic  and  escape  messages  are  issued  to the  

application.

Error Messages 

 Message  ID Error  Message  Text  

CPFB03B  E PM  eServer  iSeries  not  started.  

CPFB03C  E PM  eServer  iSeries  already  started.  

 

Performance  Management  APIs 111

error.htm#HDRERRCOD
error.htm#HDRERRCOD


Message  ID  Error  Message  Text  

CPF24B4  E Severe  error  addressing  parameter  list.  

CPF3C1E  E Required  parameter  &1 omitted.  

CPF3CF1  E Error  code  parameter  not  valid.  

CPF3CF2  E Error(s)  occurred  during  running  of &1  API.
  

API  introduced:  V5R1  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Exit Programs 

These  are  the  Exit  Programs  for  this  category.  

Collection Services Data Collection Exit Program 

 

  Required  Parameter  Group:  

 

1 Collection  request  parameters  

I/O  Char(*)  

2 Data  buffer  

Output  Char(*)  

3 Work area  

I/O  Char(*)  

4 Return  code  

Output  Binary(4)
  QSYSINC  member  name:  QPMDCPRM

  

A Collection  Services  Data  Collection  exit  program  is called  by  Collection  Services  to collect  performance  

data  for  a user-defined  performance  category.  The  Collection  Services  collector  will  store  this  data  in  the  

management  collection  object.  For  the  exit  program  to be  called  by  the  collector,  it must  first  be  registered  

using  the  “Register  Collector  Data  Category  (QypsRegCollectorDataCategory)  API”  on  page  14.  

User-defined  performance  data  that  is  stored  in  the  management  collection  object  can  be  read  using  the  

“Read  Management  Collection  Object  Data  (QpmReadMgtcolData)  API”  on  page  34.  

At  the  time  a user-defined  category  is  registered,  a single  entry  point  is specified  for  the  data  collection  

program.  This  entry  point  can  be  a program  object  (*PGM)  or  an  entry  point  in a service  program  

(*SRVPGM).  

Collection  Services  calls  this  entry  point  with  parameters  which  specify  the  type  of request  to perform  

and  the  control  information  necessary  for  the  data  collection  program  to  complete  the  request.  

Collection  Services  provides  a data  buffer  where  the  data  collection  program  will  return  collected  data.  

Collection  Services  also  provides  a work  area  which  can  be  used  by  the  data  collection  program  to  save  

its  state  between  the  calls.  

The  parameter  structure  passed  to  the  data  collection  program  is mapped  by  the  QPMDCPRM  header  file  

shipped  with  the  system  in  the  QSYSINC  library.

 

112  iSeries:  Performance  Management  APIs

aplist.htm


Required Parameter Group 

Collection  request  parameters  

I/O;  CHAR(*)  

 This  is  a structure  in  which  Collection  Services  passes  control  information  about  the  data  

collection  request  to  the  data  collection  program.  The  data  collection  program  uses  this  structure  

to  return  information  about  actions  performed.  The  format  of the  data  in  this  structure  is 

determined  by  the  parameter  format  specified  when  the  user-defined  category  was  registered  

using  the  Register  Collector  Data  Category  (QypsRegCollectorDataCategory)  API.  Currently,  

PMDC0100  is  the  only  format  supported.  The  layout  of this  structure  is described  in  “Layout  of  

Collection  Request  Structure”  on  page  114 below.  

Data  buffer  

OUTPUT;  CHAR(*)  

 This  is  a data  buffer  in  which  the  data  collection  program  returns  data  to be  stored  in  the  

management  collection  object.  Collection  Services  will  store  this  data  in  a record  of the  repository  

of the  management  collection  object.  

 For  start  collection  and  end  collection  requests,  this  is control  data  and  will  be  stored  in  a 

collection  control  record.  For  interval  collection  request,  this  is collected  performance  data  and  

will  be  stored  in  an  interval  record.  

 The  length  of  this  buffer  is  defined  in  the  data  buffer  bytes  available  field  of the  collection  request  

parameters  structure.  Writing  to  the  data  buffer  beyond  this  length  will  have  unpredictable  

results.  

Work  area  

I/O;  CHAR(*)  

 The  work  area  is  a storage  area  created  by  Collection  Services  for  the  sole  use  of the  data  

collection  program.  Initially,  the  work  area  is set  to  zeroes.  The  same  work  area  is passed  in every  

call  to  the  data  collection  program.  This  work  area  can  be  used  by  the  data  collection  program  to 

save  some  state  information  between  the  calls.  Collection  Services  will  preserve  the  work  area  

contents  between  the  calls.  The  length  of the  work  area  is set  at category  registration  time  and  is 

defined  in  the  length  of  work  area  field  of the  collection  request.  

Return  code  

OUTPUT;  BINARY(4)  

 Return  code  set  by  the  data  collection  program.  Collection  Services  will  take  an  action  based  on  

the  code  returned  from  the  data  collection  program.  The  return  code  is  ignored  for  the  cleanup  

and  terminate  request.  Possible  return  codes  and  Collection  Services  actions:  

 0 Data  collection  request  was  performed  successfully.  

> 0 Data  collection  request  encountered  recoverable  errors.  A non-zero  return  code  will  be logged  in 

the  job log.  Action  taken  by Collection  Services  depends  on the  collection  request:  

v   For  start  collection  and  end  collection  requests,  Collection  Services  will assume  that  no data  can 

be collected  for  this  category  and  data  collection  for this  category  will  be stopped.  

v   For  interval  collection  request,  Collection  Services  will  assume  that  future  requests  may  still  be 

successful.  No  data  will  be stored  for this  request.  However,  Collection  Services  will  continue  

collecting  data  for this  category.  

< 0 Data  collection  request  encountered  unrecoverable  errors.  Collection  Services  will  assume  that no 

further  data  collection  is possible  for this  category  and  stop  collecting  data  for this  category.  The  

data  collection  program  may  use  a negative  return  code  to cause  immediate  termination  of data  

collection  for  the  user-defined  category.
 

 

Performance  Management  APIs 113



Layout of Collection Request Structure 

The  layout  of the  collection  request  structure  is determined  by  the  parameter  format  specified  when  the  

user-defined  category  was  registered  using  the  Register  Collector  Data  Category  

(QypsRegCollectorDataCategory)  API.  

Currently,  PMDC0100  is  the  only  format  supported.  The  table  below  shows  the  layout  of  the  collection  

request  structure  for  the  PMDC0100  format.  For  detailed  descriptions  of the  fields  in  the  table,  see  “Field  

Descriptions”  below.  

 Offset  

Input/Output  Type Field  Dec  Hex  

0 0 INPUT  CHAR(8)  Format  name  

8 8 INPUT  CHAR(10)  Category  name  

18 12 — CHAR(2)  Reserved  

20 14 INPUT  BINARY(4)  Request  type  

24 18 INPUT  BINARY(4)  Request  type  modifier  

28 1C  INPUT  BINARY(4)  Data  buffer  bytes  available  

32 20 INPUT  BINARY(4)  Offset  to category  parameter  string  

36 24 INPUT  BINARY(4)  Length  of category  parameter  string  

40 28 INPUT  BINARY(4)  Length  of work  area  

44 2C  — CHAR(4)  Reserved  

48 30 INPUT  CHAR(8)  Interval  key  

56 38 INPUT  CHAR(8)  Interval  time  

64 40 OUTPUT  BINARY(4)  Data  buffer  bytes  provided  

68 44 OUTPUT  BINARY(4)  More  data  indicator  

72 48 — CHAR(8)  Reserved
  

  

Field Descriptions 

Category  name.  Name  of the  user-defined  category  for  which  data  collection  is  performed.  This  name  

was  registered  previously  uisng  the  Register  Collector  Data  Category  (QypsRegCollectorDataCategory)  

API.  

Data  buffer  bytes  available.  Size  of the  data  buffer  passed  in  the  data  buffer  parameter.  

Data  buffer  bytes  provided.  The  data  collection  program  indicates  in  this  field  how  many  bytes  of data  

in  the  data  buffer  should  be  stored  by  Collection  Services  in  the  repository  of the  management  collection  

object.  If this  field  is set  to  0 for  start  collection  or  end  collection  requests,  a collection  control  record  will  

not  be  created.  If  this  field  is  set  to  0 for  an  interval  collection  request,  Collection  Services  will  still  create  

an  interval  record  but  will  not  store  any  data  in  it.  This  field  is set  to zero  at  entry  to the  data  collection  

program.  

Format  name.  Name  of  the  collection  request  structure  format  passed  to  the  data  collection  program.  This  

is the  parameter  format  specified  when  the  user-defined  category  was  registered  using  the  Register  

Collector  Data  Category  (QypsRegCollectorDataCategory)  API.  Currently,  PMDC0100  is the  only  format  

supported.  

Interval  key. Record  key  of  the  repository  record  about  to  be  written  into  the  repository  of the  

management  collection  object.  Format  of  this  field  is DDHHMMSS,  where:  

 

114  iSeries:  Performance  Management  APIs



DD  Number  of days  from  the  beginning  of collection  to this  collection  object.  Day  numbering  starts  

from  0. 

HHMMSS  Time  in hours,  minutes  and  seconds  when  a particular  collection  sample  was  scheduled.
  

Record  keys  of  interval  records,  with  the  possible  exception  of  the  key  of the  first  interval  record  in a 

collection  period,  are  normalized  to  the  collection  interval  boundary.  For  example,  for  a 15  minute  

collection  interval,  valid  record  keys  will  be  00124500  or  00223000,  but  not  00131014.  

Interval  time.  Exact  time  in system  timestamp  format  when  the  Collection  Services  collector  initiated  a 

particular  request.  This  time  is  provided  for  reference  only.  Normally  this  time  is close  to the  time  

implied  by  the  interval  key  field  but,  unlike  the  interval  key,  this  time  is not  normalized.  See  Convert  

Date  and  Time  Format  (QWCCVTDT)  API  for  details  about  time  formats.  

Length  of  category  parameter  string.  Length  of the  category  parameter  string.  If the  parameter  string  

was  not  registered  for  this  category,  this  field  is set  to  0. 

Length  of  work  area.  Length  of  the  work  area  passed  in  the  work  area  parameter.  The  size  of the  work  

area  is set  during  category  registration.  

More  data  indicator.  By  setting  this  field  to  a non-zero  value,  the  data  collection  program  may  indicate  to  

Collection  Services  that  it  has  more  data  to  store  in  the  repository  of  the  management  collection  object  for  

this  request.  When  this  field  is  returned  with  a non-zero  value,  Collection  Services  will  transfer  the  

returned  data  to  the  current  repository  record  then  will  call  the  data  collection  program  again  with  all  

parameters  identical  to  the  previous  call  except  that  the  request  type  modifier  field  will  be  set  to  20.  The  

data  collection  program  may  use  the  more  data  indicator  field  as many  times  as  needed  to transfer  all 

collected  data  to  Collection  Services.  This  field  is set  to  zero  at entry  to  the  data  collection  program.  

Offset  to  category  parameter  string.  Offset  in  bytes  to  the  category  parameter  string  starting  from  the  

beginning  of the  collection  request.  This  parameter  string  was  specified  when  the  user-defined  category  

was  registered  using  the  Register  Collector  Data  Category  (QypsRegCollectorDataCategory)  API.  The  

parameter  string  can  be  used  to  pass  customization  information  to  the  data  collection  program.  The  

length  of  this  string  is defined  in  the  length  of category  parameter  string  field.  If  a parameter  string  was  

not  registered  for  this  category,  this  field  is set  to 0. The  parameter  string  is only  passed  when  the  request  

type  is  set  to  10  - start  collection  request.  

Request  type.  Type of  action  requested  from  the  data  collection  program.  The  data  collection  program  

must  support  the  following  request  types:  

 10  Start  collection  request.  This  is the  first  request  that  the  data  collection  program  will receive  in a 

data  collection  session.  When  receiving  this request,  the  data  collection  program  is expected  to 

initialize  whatever  interfaces  it uses  to collect  the data.  Optionally,  in the  provided  data  buffer,  the 

data  collection  program  may  return  collection  control  information  to be stored  in a collection  

control  record  in the  repository  of the management  collection  object.  

20  End  collection  request.  This  is the  last request  the data  collection  program  will  receive  in a data  

collection  session.  When  receiving  this  request,  the data  collection  program  is expected  to close  

whatever  interfaces  it uses  to collect  the  data,  release  resources,  and  so on.  Optionally,  in the 

provided  data  buffer,  the  data  collection  program  may  return  collection  control  information  to be 

stored  in a collection  control  record  in the  repository  of the management  collection  object.  

30  Interval  collection  request.  The  data  collection  program  will  receive  a request  of this  type  each  time  

the  interval  collection  for  this  user-defined  category  is scheduled.  The  time  between  interval  

collection  requests  is specified  at category  registration  time.  When  receiving  this  request,  the  data  

collection  program  is expected  to perform  its regular  collection  of performance  data  and  return  

collected  data  in the  provided  data  buffer.  This  data  will  be stored  in an interval  record  in the  

repository  of the  management  collection  object.  

 

Performance  Management  APIs 115

qwccvtdt.htm
qwccvtdt.htm


40 Cleanup  and  terminate  (shutdown)  request.  This  request  is sent  to the data  collection  program  when  

Collection  Services  cannot  continue  data  collection.  An example  of such  a problem  is the  loss of 

contact  with  the  Collection  Services  collector  job.  When  receiving  this  request,  the  data  collection  

program  is expected  to perform  necessary  cleanup,  release  resources,  and  so on.  The  data  

collection  program  cannot  return  any  data  for this  request.  Any  data  placed  in the  data  buffer  will  

be ignored.
  

Request  type  modifier.  This  field  modifies  the  meaning  of  the  request  type  field.  This  field  can  have  two  

values:  

 10 Normal  request  to  collect  data.  

20 Continuation  of the  previous  request.  This  value  is used  to indicate  to the data  collection  program  

that  this  is the  continuation  of the same  collection  request.  When  the  data  collection  program  

returns  with  the  more  data  indicator  set to a non-zero  value,  Collection  Services  will  transfer  the 

returned  data  to  the  current  repository  record  then  will  call  the data  collection  program  again  with  

the  same  parameters  except  that  the  request  type  modifier  field  will  be set to 20. In this  way,  the  

data  collection  program  may  store  more  collected  data  in the management  collection  object  than  

fits  into  the  data  buffer.
  

  

API  introduced:  V5R2  

 “Change  System  Collector  Attributes  (QYPSCSCA,  QypsChgSysCollectorAttributes)  API”  on page  7 | “Performance  

Management  APIs,”  on page  1 | APIs  by category
  

Performance Monitor Exit Program 

 

 Required  Parameter  Group:  

 

1 Member  name  

Input  Char(10)  

2 Library  name  

Input  Char(10)

  

The  Performance  Monitor  exit  program  is called  to  process  the  performance  data  just  collected  by  the  

performance  monitor.  You would  write  an  exit  program  for  the  performance  monitor  if you  wanted  to  be  

sure  that  the  performance  data  being  collected  was  processed  as  soon  as  the  monitor  was  done  collecting  

it.  

Note:  The  Performance  Monitor  exit  program  pertains  to the  Start  Performance  Monitor  (STRPFRMON)  

command,  not  the  Performance  Monitor  Collector  APIs.  Starting  in  Version  5 Release  1,  the  Start  

Performance  Monitor  (STRPFRMON)  command  is no  longer  supported.  

Required Parameter Group 

Member  name  

INPUT;  CHAR(10)  

 The  performance  data  member  name.  

 

116  iSeries:  Performance  Management  APIs

aplist.htm


Library  name  

INPUT;  CHAR(10)  

 The  library  that  contains  the  performance  data.

Error Messages 

The  performance  monitor  handles  any  error  that  could  occur  in  the  exit  program.  Not  only  does  the  

performance  monitor  contain  generic  MCH  (machine),  CPF  (OS/400),  and  PFR  (performance)  error  

messages,  it also  contains  a function-check  handler.  

Exit  program  introduced:  V2R3  

 Top | “Performance  Management  APIs,”  on page  1 | APIs  by category
  

 

Performance  Management  APIs 117

#TOP_OF_PAGE
aplist.htm


118  iSeries:  Performance  Management  APIs



Appendix.  Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in  other  countries.  

Consult  your  local  IBM  representative  for  information  on  the  products  and  services  currently  available  in 

your  area.  Any  reference  to  an  IBM  product,  program,  or  service  is not  intended  to  state  or  imply  that  

only  that  IBM  product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  program,  

or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  be  used  instead.  However,  it is 

the  user’s  responsibility  to  evaluate  and  verify  the  operation  of any  non-IBM  product,  program,  or  

service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  described  in this  

document.  The  furnishing  of  this  document  does  not  grant  you  any  license  to these  patents.  You can  send  

license  inquiries,  in  writing,  to:  

IBM  Director  of Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  Intellectual  Property  

Department  in  your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106-0032,  Japan  

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  country  where  such  

provisions  are  inconsistent  with  local  law:  INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  

PROVIDES  THIS  PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESS  OR  

IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  

NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  FOR  A PARTICULAR  PURPOSE.  Some  

states  do  not  allow  disclaimer  of  express  or  implied  warranties  in  certain  transactions,  therefore,  this  

statement  may  not  apply  to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  Changes  are  periodically  

made  to  the  information  herein;  these  changes  will  be  incorporated  in new  editions  of the  publication.  

IBM  may  make  improvements  and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  convenience  only  and  do  not  in  

any  manner  serve  as  an  endorsement  of those  Web sites.  The  materials  at those  Web sites  are  not  part  of  

the  materials  for  this  IBM  product  and  use  of  those  Web sites  is at  your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in  any  way  it believes  appropriate  without  

incurring  any  obligation  to  you.  

Licensees  of this  program  who  wish  to  have  information  about  it for  the  purpose  of enabling:  (i)  the  

exchange  of information  between  independently  created  programs  and  other  programs  (including  this  

one)  and  (ii)  the  mutual  use  of  the  information  which  has  been  exchanged,  should  contact:  

 

© Copyright  IBM Corp. 1998, 2005 119



IBM  Corporation  

Software  Interoperability  Coordinator,  Department  YBWA  

3605  Highway  52 N 

Rochester,  MN 55901  

U.S.A.  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  including  in  some  cases,  

payment  of  a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  available  for  it are  provided  

by  IBM  under  terms  of  the  IBM  Customer  Agreement,  IBM  International  Program  License  Agreement,  

IBM  License  Agreement  for  Machine  Code,  or  any  equivalent  agreement  between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  environment.  Therefore,  the  

results  obtained  in  other  operating  environments  may  vary  significantly.  Some  measurements  may  have  

been  made  on  development-level  systems  and  there  is no  guarantee  that  these  measurements  will  be  the  

same  on  generally  available  systems.  Furthermore,  some  measurements  may  have  been  estimated  through  

extrapolation.  Actual  results  may  vary.  Users  of  this  document  should  verify  the  applicable  data  for  their  

specific  environment.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to  change  or  withdrawal  without  

notice,  and  represent  goals  and  objectives  only.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  operations.  To illustrate  

them  as  completely  as  possible,  the  examples  include  the  names  of  individuals,  companies,  brands,  and  

products.  All  of  these  names  are  fictitious  and  any  similarity  to  the  names  and  addresses  used  by  an  

actual  business  enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  illustrate  programming  

techniques  on  various  operating  platforms.  You may  copy,  modify,  and  distribute  these  sample  programs  

in  any  form  without  payment  to  IBM,  for  the  purposes  of developing,  using,  marketing  or  distributing  

application  programs  conforming  to  the  application  programming  interface  for  the  operating  platform  for  

which  the  sample  programs  are  written.  These  examples  have  not  been  thoroughly  tested  under  all  

conditions.  IBM,  therefore,  cannot  guarantee  or  imply  reliability,  serviceability,  or  function  of these  

programs.  

If you  are  viewing  this  information  softcopy,  the  photographs  and  color  illustrations  may  not  appear.  

Trademarks 

The  following  terms  are  trademarks  of  International  Business  Machines  Corporation  in  the  United  States,  

other  countries,  or  both:
Advanced  36
Advanced  Function  Printing
Advanced  Peer-to-Peer  Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2  Universal  Database
Distributed  Relational  Database  Architecture
Domino
DPI

 

120 iSeries:  Performance  Management  APIs



DRDA
eServer
GDDM
IBM
Integrated  Language  Environment
Intelligent  Printer  Data  Stream
IPDS
iSeries
Lotus  Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating  System/2
Operating  System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print  Services  Facility
RISC  System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries  

Microsoft,  Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of Microsoft  Corporation  in the  

United  States,  other  countries,  or  both.  

Java  and  all  Java-based  trademarks  are  trademarks  of Sun  Microsystems,  Inc.  in the  United  States,  other  

countries,  or  both.  

UNIX  is a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  countries.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  of  others.  

Terms  and conditions for downloading and printing publications 

Permissions  for  the  use  of  the  information  you  have  selected  for  download  are  granted  subject  to the  

following  terms  and  conditions  and  your  indication  of acceptance  thereof.  

Personal  Use:  You may  reproduce  this  information  for  your  personal,  noncommercial  use  provided  that  

all  proprietary  notices  are  preserved.  You may  not  distribute,  display  or  make  derivative  works  of  this  

information,  or  any  portion  thereof,  without  the  express  consent  of  IBM(R). 

 

Appendix.  Notices  121



Commercial  Use:  You may  reproduce,  distribute  and  display  this  information  solely  within  your  

enterprise  provided  that  all  proprietary  notices  are  preserved.  You may  not  make  derivative  works  of  this  

information,  or  reproduce,  distribute  or  display  this  information  or  any  portion  thereof  outside  your  

enterprise,  without  the  express  consent  of  IBM.  

Except  as  expressly  granted  in  this  permission,  no  other  permissions,  licenses  or  rights  are  granted,  either  

express  or  implied,  to  the  information  or  any  data,  software  or  other  intellectual  property  contained  

therein.  

IBM  reserves  the  right  to  withdraw  the  permissions  granted  herein  whenever,  in  its  discretion,  the  use  of  

the  information  is  detrimental  to  its  interest  or, as  determined  by  IBM,  the  above  instructions  are  not  

being  properly  followed.  

You may  not  download,  export  or  re-export  this  information  except  in  full  compliance  with  all  applicable  

laws  and  regulations,  including  all  United  States  export  laws  and  regulations.  IBM  MAKES  NO  

GUARANTEE  ABOUT  THE  CONTENT  OF  THIS  INFORMATION.  THE  INFORMATION  IS  PROVIDED  

″AS-IS″ AND  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESSED  OR  IMPLIED,  INCLUDING  

BUT  NOT  LIMITED  TO  IMPLIED  WARRANTIES  OF  MERCHANTABILITY,  NON-INFRINGEMENT,  

AND  FITNESS  FOR  A PARTICULAR  PURPOSE.  

All  material  copyrighted  by  IBM  Corporation.  

By  downloading  or  printing  information  from  this  site,  you  have  indicated  your  agreement  with  these  

terms  and  conditions.  

Code disclaimer information 

This  document  contains  programming  examples.  

SUBJECT  TO  ANY  STATUTORY  WARRANTIES  WHICH  CANNOT  BE  EXCLUDED,  IBM(R), ITS  

PROGRAM  DEVELOPERS  AND  SUPPLIERS  MAKE  NO  WARRANTIES  OR  CONDITIONS  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OR  

CONDITIONS  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE,  AND  

NON-INFRINGEMENT,  REGARDING  THE  PROGRAM  OR  TECHNICAL  SUPPORT,  IF  ANY.  

UNDER  NO  CIRCUMSTANCES  IS  IBM,  ITS  PROGRAM  DEVELOPERS  OR  SUPPLIERS  LIABLE  FOR  

ANY  OF  THE  FOLLOWING,  EVEN  IF  INFORMED  OF  THEIR  POSSIBILITY:  

1.   LOSS  OF, OR  DAMAGE  TO,  DATA; 

2.   SPECIAL,  INCIDENTAL,  OR  INDIRECT  DAMAGES,  OR  FOR  ANY  ECONOMIC  CONSEQUENTIAL  

DAMAGES;  OR  

3.   LOST  PROFITS,  BUSINESS,  REVENUE,  GOODWILL,  OR  ANTICIPATED  SAVINGS.  

SOME  JURISDICTIONS  DO  NOT  ALLOW  THE  EXCLUSION  OR  LIMITATION  OF  INCIDENTAL  OR  

CONSEQUENTIAL  DAMAGES,  SO  SOME  OR  ALL  OF  THE  ABOVE  LIMITATIONS  OR  EXCLUSIONS  

MAY  NOT  APPLY  TO  YOU.  

 

122 iSeries:  Performance  Management  APIs





����

  

Printed in USA 

 

 

 

 


	Contents
	Performance Management APIs
	APIs
	Collection Services APIs
	Collector APIs
	Add Collector Notification (QypsAddCollectorNotification) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Notification Record Format
	Notification Record Field Descriptions
	Error Messages

	Change System Collector Attributes (QYPSCSCA, QypsChgSysCollectorAttributes) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Cycle Collector (QYPSCYCC, QypsCycleCollector) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Deregister Collector Data Category (QypsDeregCollectorDataCategory) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	End Collector (QYPSENDC, QypsEndCollector) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Register Collector Data Category (QypsRegCollectorDataCategory) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Collection Program Attributes
	Data Collection Program Attributes Field Descriptions
	Format of Java Options Array
	Java Options Array Field Descriptions
	Format of Category attributes
	Category attributes Field Descriptions
	Error Messages

	Remove Collector Notification (QypsRmvCollectorNotification) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve System Collector Attributes (QYPSRSCA, QypsRtvSysCollectorAttributes) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start Collector (QYPSSTRC, QypsStartCollector) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Management Collection Object APIs
	Close Management Collection Object (QpmCloseMgtcol) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Close Management Collection Object Repository (QpmCloseMgtcolRepo) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Open Management Collection Object (QpmOpenMgtcol) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Open Management Collection Object Repository (QpmOpenMgtcolRepo) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Read Management Collection Object Data (QpmReadMgtcolData) API
	Authorities and Locks
	Required Parameter Group
	Format of Read Options Parameter
	Format of Record Information Parameter
	Field Descriptions
	Usage Notes
	Error Messages

	Retrieve Active Management Collection Object Name (QpmRtvActiveMgtcolName) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retrieve Management Collection Object Attributes (QpmRtvMgtcolAttrs) API
	Authorities and Locks
	Required Parameter Group
	MCOA0100 Format
	MCOA0200 Format
	Repository entry
	Collection period entry
	Field Descriptions
	Error Messages

	User-Defined Transaction APIs
	End Transaction (QYPEENDT, qypeEndTransaction) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Start Transaction (QYPESTRT, qypeStartTransaction) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	How the data is collected
	How to use collected data
	The format of the QMUDTA field of the QAYPEMIUSR file
	Error Messages

	Performance Collector APIs
	List Performance Data (QPMLPFRD) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated List
	Input Parameter Section
	Header Section
	Field Descriptions
	Job Format
	Job Field Descriptions
	Pool Format
	Pool Field Descriptions
	Disk Format
	Disk Field Descriptions
	IOP Format
	IOP Field Descriptions
	Communications Data Formats
	Asynchronous Format
	Asynchronous Field Descriptions
	Bisynchronous Format
	Bisynchronous Field Descriptions
	Token-Ring Format
	Token-Ring Field Descriptions
	Ethernet Format
	Ethernet Field Descriptions
	IDLC Format
	IDLC Field Descriptions
	LAPD Format
	LAPD Field Descriptions
	SDLC Format
	SDLC Field Descriptions
	X.25 Format
	X.25 Field Descriptions
	PPP Format
	PPP Field Descriptions
	Error Messages

	Work with Collector (QPMWKCOL) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Performance Explorer (PEX) APIs
	Add Trace Point (QYPEADDT, qypeAddTracePoint) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Log Transaction (QYPELOGT, qypeLogTransaction) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages

	Retrieve PEX Information (QYPERPEX, qypeRetrievePexInfo) API
	Authorities and Locks
	Required Parameter Group
	Header section
	PEXI0100 Format
	PEXI0200 Format
	Field Descriptions
	Error messages:

	IBM Performance Management eServer iSeries APIs
	End PM eServer iSeries (Q1PENDPM) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Retransmit PM eServer iSeries Data (Q1PRTRN) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start PM eServer iSeries (Q1PSTRPM) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Exit Programs
	Collection Services Data Collection Exit Program
	Required Parameter Group
	Layout of Collection Request Structure
	Field Descriptions

	Performance Monitor Exit Program
	Required Parameter Group
	Error Messages


	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information


